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PREFACE 

This volume constitutes the Proceedings of the Third International 
Congress for Logic, Methodology and Philosophy of Science. The Congress 
was held at the Grand Hotel Krasnapolsky, Amsterdam, from August 25 
to September 2, 1967, under the joint of the Division of Logic, Method- 
ology and Philosophy of Science of the International Union of History 
and Philosophy of Science. The Congress took place in the Netherlands 
at the invitation of the Nederlandse Vereniging voor Logica en Wijsbegeerte 
der Exacte Wet enschap pen. 

The Congress was organized by an executive committee consisting of 
J. Ch. BoIand (treasurer), K. L. de Bouv&re, Haskell B. Curry, A. Heyting 
(chairman), B. van Rootselaar (secretary), J. F. Staal (secretary). The tech- 
nical organization was entrusted to the Holland Organizing Centre, 
the Hague. 

The Congress was divided into eleven sections and there were three 
symposia. The program for each section was drawn up by the following 
advisory committees in cooperation with the executive committee. 
1. Mathematical Logic: 

K. L. de Bouvtre, H.B. Curry, R. M. Montague, P.S. Novikov, 
J. Hintikka, J. t o s ,  A. Tarski. 

S. Feferman, A. Heyting, S.C. Kleene, G. Kreisel, A. Mostowski, 
B. van Rootselaar, K. Schutte, A. Tarski. 

E.W. Dijkstra, S. Gorn, A. van Wijngaarden, H. Zemanek. 

C. D. Parsons, B. Dreben, P. Lorenzen. 

A. G. M. van Melsen, G. Nuchelmans. 

P.G. Bergmann, H. Groenewold, G. Holton, H. Putnam, 
B. van Rootselaar, L. Rosenfeld. 

M.A. Bouman, M. T. Jansen, M. Jeuken, J.Lever, C.P. Raven, 
H. P. Wolvekamp. 

2. Foundations of Mathematical Theories: 

3 .  Automata and Programming Languages: 

4. Philosophy of Logic and Mathematics: 

5 .  General Problems of Methodology and Philosophy of Science: 

6. Methodology and Philosophy of Physical Sciences: 

7. Methodology and Philosophy of Biological Sciences: 
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8. Methodology and Philosophy of Psychological Sciences: 

9. Methodology and Philosophy of Social Sciences: 
A. Bresson, J. J. Gibson, P. Suppes, J.G. Taylor. 

I. Gadourek. 

Y. Bar-Hillel, N. Chomsky, J. F. Staal, A. van Wijngaarden. 

L. M. de Rijk, J. F. Staal. 

10. Methodology and Philosophy of Linguistics: 

11. History of Logic, Methodology and Philosophy of Science: 

There was an intersectional symposium on “The role of formal logic in the 
evaluation of argumentation in natural languages”. Parts of the discussion, 
which was chaired by Y .  Bar-Hillel, are expected to be published. 

In section 2 a symposium on “Foundations of intuitionism” was organized 
by A. Heyting. The invited addresses by S.C. Kleene, G. Kreisel, J. Myhill, 
W. W. Tait, A. S .  Troelstra are included in these proceedings. The address 
by Myhill, who was unable to attend, was read by P.G. Gilmore. A sym- 
posium on “Parenthemes” was organized by H. Hiz in section 3. Invited 
participants were A. Grzegorczyk and Z. Pawlak. 

These proceedings comprise the texts, sometimes revised, of most of the 
addresses presented by invited speakers. Abstracts of many of these addresses 
and of many of the contributed papers were issued to members at  the be- 
ginning of the Congress. The titles of all papers are listed in the scientific 
program which is published at  the end of this volume. The editors regret 
that they did not succeed in collecting the texts of all the invited addresses. 
Accordingly, these proceedings do not include the addresses by M. Dummett, 
D. Finkelstein, H. Gaifman”, R. 0. Gandy, S .  A. Kripke, D. S. Scott, 
P. Vopenka. 

On behalf of the Executive Committee and on behalf of the NederZandse 
Vereniging voor Logica en Wijsbegeerte der Exacte Wetenschappen, the 
editors wish to thank all those who made the organization of the Congress 
possible. Thanks are due in particular to His Royal Highness the Prince of 
the Netherlands, who accepted the patronage of the Congress; to the mem- 
bers of the Committee of Honour and of the Ladies’ Committee; and to the 
institutions and firms that contributed to the Congress. 

Landbouwhogeschool, Wageningen 
University of California, Berkeley 

The Editors 

* Professor Gaifman’s paper entitled The structure of models of Peano’s arithmetic will 
appear in The Pacific Journal of Mathematics. 
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Speech by Professor A. Heyting, 

president of the congress, at the opening session on august 25 

Ladies and Gentlemen, 

In the name of the Organizing Committee of this Congress I welcome you 
to the Netherlands, to the city of Amsterdam and to the Congress. It makes 
us happy that so many scholars from countries all over the world have come 
together here to exchange information, to renew and strengthen old con- 
nections and to form new ones. 

A special word of welcome is due to Mr. Nittel, who will officially open 
the Congress in the name of the Minister of Education and Sciences, to 
Professor Bar-Hillel, president of the Division for LMPS of the IUHPS, 
to Miss Hersch, professor in the University of Geneva, who will speak in 
the name of Mr. Maheu, Director-general of UNESCO, to the members of 
the Committee of Honour, and last but not least to the ladies who so kindly 
consented to add lustre to this meeting by a musical performance, Mrs. de 
Smidt and Mrs. Valkhoff. 

With grief I mention those whom I cannot welcome here because they 
died in the interval between the Congress in Jerusalem and this one. Among 
them are no less than three of our invited speakers. 

Norwood Russell Hanson died, 43 years old, on April 18 of this year in 
an airplane crash. He was professor of philosophy at Yale University. The 
organizing committee had invited him for a lecture in section 5, General 
problems of Methodology and Philosophy of Science. 

Uriel Weinreich, professor of Yiddish at Columbia University, New York, 
died on March 30 of this year, 40 years old. He had been invited for a lecture 
in section 10, Methodology and Philosophy of Linguistics. 

A. I. Malcev, professor of mathematics at the University of Nowosibirsk, 
member of the Academy of Sciences of the USSR, a leading Russian mathe- 
matician and logician, died in July of this year, about 60 years old. He was 
invited for a lecture in a plenary meeting of the Congress, organized by 
section 1, Mathematical Logic. 
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On December 2, 1966, Luitzen Egbertus Jan Brouwer died, 85 years old, 
by a traffic accident. It is unnecessary to dwell here upon his pioneer work 
in mathematics and its foundations. The symposium on the foundations of 
intuitionism, which will be held in this Congress, was planned long before 
his death; it has now assumed the character of a posthumous homage. 

Another pioneer, Abraham Adolf Fraenkel, died on October 15, 1965. 
He was 74 years old. After a professorate at Marburg, Germany, he had 
been for many years professor of mathematics at Jerusalem. He was one of 
the founders of the axiomatical set theory and much of the work that is done 
nowadays in this field would have been impossible without the foundations 
he laid. It may be said at  this place that he had very special connections 
with the Netherlands; I salute here Mrs. Fraenkel, who is Dutch by birth. 

Another pioneer, but in a slightly different sense, was Mrs. S. A. Janowska, 
professor of logic in the University of Moscow, who died in November 1966 
in the age of 70. She deserves our thanks for encouraging and furthering the 
study of symbolic logic in the USSR. 

It was further brought to my attention that Stanislaw Jaskowski, professor 
of mathematics at the University of Toruri, Poland, and a wellknown 
logician, died on November 16, 1965. 

Professor John Lemmon died on July 29, 1966. He was only 36 years old 
and had just begun a promising career by his appointment as a professor 
of philosophy at  the University of California. 

Though he died before the Jerusalem Congress, I must mention here 
Evert Willem Beth, because if he had lived, he would have taken an impor- 
tant part in the organization of this congress. The organizing committee 
painfully missed him for his extensive knowledge and for his deliberate 
judgment. We are grateful that Mrs. Beth accepted to preside over the ladies’ 
committee and that she is present here. 

I beg you to commemorate these scholars and the many others whom I 
could not mention by a few moments of silence. 

A congress like this one oscillates, so to say, between two poles, the 
mathematical and the philosophical. In other words, it oscillates between 
communication of results and defense of opinions. Fortunately, these two 
aspects are not separated. Often results give rise to discussion on their inter- 
pretation, and conversely philosophical opinions inspire mathematical results. 
In both cases discussion is essential. Let me end, in this context, with a short 
anecdote. A visitor from abroad came to Amsterdam this spring because 
he had been told we would have a hot summer here. He was very much 
disappointed when he realized that this had only been a weather forecast. 
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I take it that he found what he looked for in other parts of the world. What 
is the connection with this Congress? Simply this that I hope that it will 
become a hot congress, and then not in the meteorological sense, and that, 
as the French proverb says, from the clash of opinions sparks of truth will 
spring up. 

Thank you. 



Speech by Professor A. Heyting, 

at the closing session on September 2 

I wish to thank all those who contributed to the success of this Congress: 
First of all His Royal Highness the Prince of the Netherlands, who accepted 
the patronage of the Congress. Further the members of the Committee of 
Honour, the Government of the Netherlands and the Municipality of the 
city of Amsterdam, who offered us a reception, and the Division of Logic 
and Philosophy of Science of the International Union of History and 
Philosophy of Science which accepted the invitation of the Netherlands to 
organize the Congress. The direction and collaborators of the Holland 
Organizing Centre firmly kept the material organization in their hands ; 
among them the ladies behind the counter deserve special mentioning for 
their kind and efficient help to anybody who needed it. Those who read 
papers and those who participated in discussions really made the Congress 
deserve this name. The ladies’ committee organized excursions, thereby 
serving two purposes, the first one direct, namely to be agreeable to the 
associate members (which is an unelegant name for the lady visitors), the 
second indirect, namely to keep the ladies from making their husbands play 
truant from the lectures. Finally I thank all those who by assisting to the 
sessions positively contributed to the success of the Congress, the Division 
which I mentioned a few moments before, the United States National 
Committee for this Division, the Office of Naval Research in the U.S.A., 
the Dutch Prim Bernhard Fonds, which supports cultural efforts, the 
Wiskundig Genootschap at Amsterdam and several industrial firms which 
understand that even abstract scientific research is in the long run favourable 
to  industrial development, and therefore are willing to support it. 

It was an agreeable experience that we met in this Congress many young 
scientists also from countries which used to send delegates consisting only 
of people who had reached the top of their career. I am convinced that 
contacts between young men of different countries will essentially contribute 
to the progress of science. 

Let me end by expressing the hope that this Congress has been useful in 
the first place for the advancement of science, but in addition by bringing 
together people from all over the world. 



In Memoriam A. I. Malcev 

On the night of the 6th of August professor A. Malcev suddenly died in 
Novosibirsk. That was an unexpected blow for all those who knew him, but 
this is also an important loss for the world of mathematics. 

Malcev was a great mathematician and made fundamental scientific 
discoveries in the fields of algebra and mathematical logics. His first printed 
work, in 1936, was on mathematical logic, where he proved the compactness 
theorem and indicated its applications for model theory. This theorem 
brought him later the world fame. The next years Malcev made deep in- 
vestigations in group theory, Lie-algebras and topological algebras. He not 
only founded the fundamental theorems, as for instance the known Levi- 
Malcev theorem in the theory of Lie-algebras, but also found an interesting 
direction for research. These are, for example, study of finite approximations 
(residual finiteness) for groups and algebraic systems. Malcev also developed 
completely new methods. He was a pioneer in using methods of mathematical 
logic and universal algebra for results on such topics as group theory. Here 
one can remember Malcev’s famous work of 1941 (on new tools for studying 
local theorems in group theory) which even on the first reading surprises by 
its clearness and strength. It was mentioned by professor A. Robinson at 
the last ICLMPS. 

Later on Malcev worked in the model theory and decidability where he 
found many important results, for instance, undecidability of the elementary 
theory of finite groups. Malcev also was among the first logicians to study 
enumerated algebras. The last years he studied varieties and quasivarieties 
of universal algebras. 

Apart from his own scientific work and discoveries he always gave much 
of his time and attention to the life of algebra and mathematical logic in the 
Soviet Union. The seminar Algebra & Logic created by him in Novosibirsk 
is now well-known in the world since it is the scientific school he created 
there. 

Malcev was also original as a philosopher and we deeply regret that he 
never published his philosophical thoughts. Being born in a modest family of 
a glass-blower, he loved nature and music and was a very charming person. 
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Even a short acquaintance or a simple conversation with him was always 
rewarding. 

The memory of him as a man wiIl remain among his students and a11 those 
who knew him. And his scientific work leaves such a strong impression that 
one can not realize all its consequences now. 

Yu. L. ERSHOV 



INFINITARY PROPERTIES OF MODELS 

GENERATED FROM INDISCERNIBLES 

C. C. CHANG * 
University of’ California, Los Angeles, USA 

1. Introduction 

Let ‘II = ( A ,  . . .) be a model of a theory Tin a first-order language L with 
identity. We suppose that L has enough function symbols and T has enough 
axioms to assure that all Skolem functions are present. Let X be a subset of 
A simply ordered by the relation < . Xis said to be a set of indiscernibles in ‘u 
if for any two finite strictly increasing sequences x , < x , < - . . < x ,  and 
y1 < y z  < <y, of elements of X the models (a, x l , .  . ., x,) and (‘u:, y l , .  . ., y,,) 
are elementarily equivalent. A fundamental existence theorem due to EHREN- 
FEUCHT and MOSTOWSKI [1956] states that: If a theory Thas infinite models, 
then given any order type t, T has a model 9l with a set of indiscernibles X 
of type z. Assume now X is a set of indiscernibles in 3. Let H ( X )  be the 
Skolem hull of X in  ‘II, and let $ j ( X )  be the submodel of ‘u: determined by 
H ( X ) .  It is well known that: 

(A) $j ( X )  is an elementary submodel of 3. 
(B) Xis a set of indiscernibles in .$3 ( X )  with respect to the same ordering < . 
(C) If Y is a subset of X with the natural ordering induced on it, then 

.43 ( Y )  is an elementary submodel of !ij ( X )  and Y is a set of indiscernibles in 

If we introduce the notation c for submodels and i for elementary sub- 

(D) If (Y ,  < ) c ( X ,  G ) ,  then $j(Y)-<Sj(X).  

(E) If (Y, <)<(X, <), then % (Y)<!ij (X). 

5 (Y) .  

models, then (C) can be written more compactly as 

A fortiori it follows that 

* The preparation of this paper was partially supported by NSF Grant 5600 and partially 
by a Fulbright grant. 
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The main idea of this paper consists of the observation (Proposition 1) that 
( E )  remains true if the symbol < is replaced in both the hypothesis and the 
conclusion by the symbol <,, which expresses the elementary submodel 
relation for certain infinitary languages La,. Thus L,, properties of Y and X 
are reflected up to LA, properties of $ (Y) and $ ( X ) .  In general, for (E) to 
hold for these more general languages some restrictions must be placed on 
A and K. If no restrictions are placed on A and K, a version of (E) will still hold 
under a further broadening of the language (as will be explained below). It 
turns out that this simple observation has many interesting consequences. 
For example, in Theorem 2 we give an improvement of a result of SILVER 
[1966] (this result goes back to SCOTT [1961], ROWBOTTOM [1964] and 
GAIFMAN [1964]). Theorem 3 contains a (poor man's) version of the upward 
Lowenheim-Skolem theorem for L,, and Theorem 4 shows the existence 
of models 'u with an ordered set X of L,,-indiscernible elements in 'u. Thus 
our observation shed more light on the model theory of infinitary languages. 

2. Infinitary languages 

Throughout IC shall be an infinite regular cardinal. Some of our results can 
be restated for singular cardinals, however not much will be gained by 
putting in this complication. Small greek letters A, p, . . . shall denote ordinals 
or cardinals. The classical infinitary languages L,, where A is a cardinal has 
besides the symbols of L the following additional symbols: 

individual variables uy,  < rc;  
infinite conjunction A and disjunction W over fewer than A formulas; 
infinite universal V and existential 3 quantifiers over sequences of 
variables of length less than IC. 

The notions of atomic formulas, formulas, subformulas, free and bound 
occurrences of variables, and sentences of L,, are defined as usual. Because IC 
is regular any sentence of La, contains only subformulas with fewer than IC 

free variables. The quantifier rank of a formula is introduced by induction 
as usual. That is, the quantifier rank of cp is the sup of the quantifier ranks of 
all subformulas of cp if cp is a negation, conjunction, or disjunction; other- 
wise the quantifier rank of cp is one more than the quantifier rank of $ if 
cp =Vx$ or cp =3x$. Notice that every formula whose rank is a limit ordinal 
is a boolean combination of subformulas of smaller rank. If 1 is regular then 
every formula of La, has quantifier rank less than A. The standard notion of 
satisfaction is assumed. We write 'u= AK '23 if 21 and '23 are LA,-elementarily 
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equivalent and 
clear that L,, is just the ordinary language L. 

ordinal. The new symbols of L;, are: 

individual variables vc,  5 < K ;  

infinite conjunction A and infinite disjunction W over arbitrary sets 
of formulas; 
infinite universal V and existential 3 quantifiers over sequences of 
variables of length less than K. 

23 if 'u is an LA,-elementary submodel of 23. It is quite 

We now consider a broader class of infinitary languages L;, where R is an 

We retain all the formation rules as in the case of LA,, however the formulas 
of L;, are restricted by the following two conditions: 

each formula of LiK has fewer than K free variables, 
each formula of LiK has quantifier rank at most 1. 

These restrictions are very natural and will make the formulas of L;, into a 
set. Satisfaction is defined as usual and we introduce the corresponding 
notions %= :,23 and 'u< >, 23. We can verify that LL- is not L. Indeed, if 1 
is a regular cardinal then every formula of La, is a formula of L;, but the 
converse is not true. We point out that if L is fixed and K is fixed, then one 
can easily find cardinals A such that (for all practical purposes) the two 
languages La, and L;, differ only by those formulas whose rank is 1. The 
cardinal 1 has to be large enough so that conjunction and disjunction over 
arbitrary sets of formulas is equivalent to conjunction and disjunction over 
fewer than ;1 formulas. 

As an example for gaining an understanding of L;,, we state and prove 
the following simple result: 

(I) Suppose that '2l and 23 are elementarily equivalent K-saturated models 
(not necessarily of power K ) .  Then 2 3 H, 23 for every ordinal A. If, in addition 
c U i 2 3 ,  then a<;, 23 for all 1. 
PROOF: We only prove the first part; the second part follows easily. We 

prove the following by induction on the ordinal A: 

If 'u and 23 are K-saturated elementarily equivalent models, then 
'u= ;, 23. 

When 1=0, every sentence of Lb, is a boolean combination of atomic 
sentences. Thus the assertion follows. If 2 is a limit ordinal, then every 
sentence of L;, is a boolean combination of sentences of rank less than 1. 
Again the assertion follows. Suppose q~ is a sentence of rank A + l ,  then cp 
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is a boolean combination of sentences of form 32$ where $ is a formula of 
rank at  most A and 2 is a sequence of variables of length less than K. We may 
assume that rp = 32$. Suppose '2l P rp. Then there is a sequence d of elements 
of A of length less than K: such that (LTP $ [i]. Since 23 is Ic-saturated, there is 
a sequence 6 of elements of B such that ('53, i) 3 (B,6). As (2, d )  and (B,6) are 
still K-saturated, we apply the induction hypothesis and get (a, i)= ;,(By 6). 
Thus B P $ [6] and B t= 9. The converse is proved in an entirely similar 
manner. So (U=;A+l )K  23 and the induction is complete. 

It follows easily from (I) and standard results in model theory that if a 
countable theory T has infinite models then T has models of power at  most 2A 
which have arbitrarily large LA+,+-elementary extensions. If we assume the 
generalized continuum hypothesis then T has models of power K which have 
arbitrarily large L,,-elementary extensions. We shall see later, in (111), that 
the generalized continuum hypothesis is not needed for this result. We might 
mention that these arbitrarily large extensions can be made to be LDA+- 
elementary and L,,-elementary extensions for arbitrarily large p. Apparently, 
we can not prove these last results without the generalized continuum 
hypothesis. 

3. The main proposition 

Let X be a set of indiscernibles in 3. In view of (A) and (B), we may as 
well assume that 'u =$ ( X ) .  Let Y be a subset of X carrying the natural order 
< from X .  We suppose for simplicity that the symbol < is among those of 
L. Clearly each element a of H ( X )  is obtained from a finite number of 
elements of X by a (Skolem) term t, i.e. a =t (xl . . . x,). 

PROPOSITION 1. 
(i) For any ordinal A, if (Y ,  < ) < i K ( X ,  <), then $(Y)<; ,$ (X) .  

(ii) Let A be a cardinal such that IILII"<A for each cardinal a < ~ .  If 
(Y,  <)+. ( X ,  <), then $ ( Y)+,$ ( X ) .  (11 LII is the number of sym- 
bols in L.) 

We shall first give the proof of (i). The proof of (ii) will then follow from 
some additional remarks. We need several lemmas. 

LEMMA A. Let 0 be any formula of L;,. There is a formula 6 of L;, with 
exactly the same free variables as 0 such that given any eventually constant 
Ic-termed sequence s of elements of H ( X ) ,  

$ ( X )  t= 0 [s] if and only if $ ( X )  k 6(') [s] . 
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PROOF: (8(') is the relativization of e" to X.) We define e" by induction on 8 i 
if e is an atomic formula, e" = e ; 
if O = f i i E r  ei, 8 = i x \ i p r  B i ;  similarly for W;  
if O=Vxcp where x is a p-termed sequence of variables, let $=LAfEF Vxfpf, 
where F is the set of all p-termed sequences f of terms of L and for each 
such sequence f ,  cpJ is obtained from cp by putting in the term f s ( y e )  for 
all free occurrences of the variable x,. Each yE, is a finite sequence of new 
variables appropriate to the term f,, and x f  is the sequence obtained from 
the y5's by piecing them together; 
if6=3xcp, e"=WfsF 3xfcpf.  
We easily verify that 8 is a formula of LiK with exactly the same free vari- 

ables and quantifier rank as 8. Since every element of H ( X )  is a term of 
elements from X ,  a universal quantification over H ( X )  amounts to conjunc- 
tion of all terms t(x, ... x,) followed by universal quantification of xl, .. ., x, 
over X .  From this remark the conclusion of the lemma can be proved by an 
easy induction. 

LEMMA B. Given the formula 8 as in Lemma A. Let s be an eventually 
constant ic-termed sequence of elements of H ( X ) .  Each element sy, 5 < ic, of 
the sequence is t r ( j r )  when t5  is a term and S, is an appropriate finite se- 
quence of elements of X .  Let e", be obtained from 8 by replacing each free 
v e  by t&,) and let S be an eventually constant K-termed sequence obtained 
from S e  by an appropriate piecing together. Then gs has the same quantifier 
rank as 8, and 

!-j ( X )  I= @') [s] if and only if $3 ( X )  k e":x) [ S ]  . 
PROOF: Obvious. 

LEMMA C. Let 6 be any formula of LiK. Then there is a formula 8* of 
L;, containing only the symbols 6 and = with the same quantifier rank and 
free variables as 6 such that for any eventually constant rc-termed sequence 
s of x, 

!?j ( X )  k f?(x) [s] if and only if ( X ,  <) k O* [s] . 

PROOF: We obtain B* from 8 by systematically replacing each atomic 
formula cp (xi . . . x,) of 8 by an atomic formula cp* (xl . .. x,) containing only 
the predicate symbols < and =. Suppose xl, ..., x, are the free variables 
of cp. Consider all possible ways of linearly ordering xi, .. ., x,,, including 
possible identifications of xi with xi.  For each such linear ordering, call it 
6 p, let xil < x i2  < ..- < xi,, m < n, be a sublist of the variables x,, . . ., x, 
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arranged in increasing <, order and such that each xi, 1 < j < n ,  is equal to 
some xik, 1 < k < m .  Let (pp(xi, ... xi,) be obtained from q ( x l  ... x,) by re- 
placing each xi by the xik such that xi = x i r .  Since the set X is indiscernible 
in $ ( X ) ,  we have either 

or 

Let up (xl . . . x,) be the < ,-diagram of the set {x, . .. x,> ; up contains only the 
predicate symbols < and =, and it has xl, ..., x, as free variables. Let q* be 
the disjunction of all cr, such that case (i) above holds for 'p,. We now claim 
that for any elements ul, ..., a, of X ,  in any order and not necessarily 
distinct, 

(i) for alla,<. . .<a,  ofX,$((X)~q,[u,...a,], 

(ii) for all a, < <a, of X ,  $ ( X )  t= i q, [al . . . urn].  

$ ( X ) ! = q [ a  ,... a,] i fand onlyif ( X ,  < ) k q * [ u  l...un]. (1) 

We argue as follows. The elements a,, ..., a, are ordered by < on X in some 
way, say <,. For the formula qp we have 

$ ( X ) k q [ a ,  ... a,] if and only if $(X) l=q , [a i ,  ... aim]. 

If $ ( X ) k q [ u  l . . . a , ] ,  then $ ( X ) k q , [ a , ,  ... aim] .  Since a i , < . - - < a i m  and X 
is indiscernible, case (i) must hold. So cr, is a part of q*, and since ( X ,  < ) k  
a,[a, ... a,], we have ( X , < ) k q * [ a ,  ... a,]. On the other hand, if not 
$ ( X ) l = q [ a ,  ... a,], then not $ ( X ) b q p [ a i ,  ... aim]. So case (ii) will hold and 
up is not a part of q*. Since each crp is a complete description of the ordering 
6 ,, we see that (X, < ) k  i 'p* [al ... a,]. So (i) is proved. Now replace each 
atomic q in 0 by q*. Clearly 8* is a formula of L;, with the same quantifier 
rank and free variables as 0 but containing only the symbols < and =. 
A simple induction based on (I) will prove the lemma. 

PROOF ofProposition 1. Since Y c X ,  $ ( Y ) < $ ( X ) ,  and Y is a set of in- 
discernibles in both $ (X) and $ ( Y ) ,  we see that Lemmas A, B, C hold with 
X replaced everywhere by Y. That is to say, the transformations 0 to 0 to gS 
and 8 to 8* do not depend on X but only depend on the set of formulas 
satisfied by increasing sequences from X .  Now suppose (Y ,  <)<;,(X, <). 
Let 0 be a formula of LIK and let s be an eventually constant sequence of 
elements of H (  Y ) .  Using Lemmas A, B, C we get e", Os and (OSs)8, and the 
auxiliary eventually constant sequence S of elements of Y. The following 
statements are equivalent : 

$( Y )  1 0  CSI 3 

(Y ,  G)!=(K)*[31, 
$ ( Y )  k 0:') [jJ, 
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( X ,  <) !? (k>* [#I 3 

5 (X) k fy’ [s], 
Ei (X)b 8 cs7. 

So part (i) of the proposition is proved. To prove (ii) we need to make only 
one observation. We have to show that if 1 satisfies the hypothesis of (ii), 
then the formulas of L,, are closed under the transformations 0, gS and 
(os)*. The only possible difficulty occurs in the definition of 0 and in particular 
in the inductive definitions of e” when O=Qxcp or 9 = 3 x q .  Referring to the 
relevant part of Lemma A, notice that p < K and the total number of terms of 
L is llLll. Whence IF1 Q lILll’”’<A. So the conjunction A,,, Qx,cp, and dis- 
junction W,,, 3xfcpf are permitted in LA,. The proposition is proved. 

Combining Proposition 1 with our previous result (I) we have: 
(11) Every countable theory T with infinite models has a countable model 

which has arbitrarily large L,,-elementary extensions. 
PROOF: Let % be a countable model of T with a set of indiscernibles Xof 

order type of the rationals. We may assume that %=fj((X). It is easy to find 
arbitrarily large ordered sets Y such that ( X ,  <)<( Y, <), Y is o-saturated, 
Yisindiscernibleins (Y), and s (A’)<$( Y). By (I) we have ( X ,  <)<:@( Y, G ) ,  
and by Propostion 1 we get $ ( X ) < : ,  B ( Y ) .  Since IC is regular, this easily 
leads to 5 (X)<,,Ei (Y) .  

4. Remarks on infinitary properties of well-orderings 

In this section all exponentiation of ordinals or cardinals are taken in the 
ordinal sense. We identify an ordinal A with the model (1, <) where < is 
the natural ordering on the elements of A. For purposes of the following 
discussion we let OR denote the class of all ordinals and < the natural 
ordering of ordinals. The first result we mention is due to MOSTOWSKI and 
TARSKI [1949] (for a reference see the report by FEFERMAN [1957]): 

(i)m (mu, <)<(OR,  <). 
With the help of an observation due to Ehrenfeucht, they also obtained: 

(ii)lu (www,  < , + ) < < O R ,  <, +>, 

(iii), <,+;><(OR, <,+;). 
and 

In each case they can prove that the ordinals occurring on the left are 
smallest possible by showing that all smaller ordinals are definable in the 
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appropriate languages. In the course of investigation for this paper I proved 
(in November 1966) the following Proposition 2. After I found the proof I 
discovered in the September 1966 Journal of Symbolic Logic an article by 
KINO [1966] in which she proved a part of Proposition 2. (See remark (d) 
below for a more precise statement.) Thus a part of the credit for Proposition 
2 is due to Kino. 

PROPOSITION 2. Suppose K 6 1 < p are cardinals and cf ( I )  2 K ,  c f ( p )  2 K .  

Then 
( K A ,  6 > < ; K  ( 1 1 9  6 >' 

Furthermore each ordinal smaller than K' is definable in LiK. 

Remarks. (a) Let K =I =a and let p run through all infinite cardinals, then 
we have 

(i'>ul (cow, < ) <&(OR, < ) . 
This is stronger than the result (i)u and is, incidentally, precisely the observa- 
tion of Ehrenfeucht with the aid of which (ii), and (iii), were proved. 
Actually one can also obtain the stronger forms (ii'), and (iii'), analogous 
to (i'),. 

(b) In general, let K = I  and let p run through all cardinals with cofinality 
at least K ,  we get: 

( O K  ( K ~ ,  <><:,(OR, <>, 
and, by using the same idea of Ehrenfeucht: 

(ii')K ( ~ " ~ , < , + > < : , ( o R , ~ , i > ,  

(iii')K (rcKXX, <,+;><:,(OR, <,+;>. 
In each case, every ordinal smaller than the corresponding power of K is 
definable in LLK. 

(c) Suppose that K < I < ~ .  Then K'=I ,  so we have the simple results 

and 

If I is also regular, then we may of course remove the primes and get 
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and 
( ' 9  6)X1K(OR, 

If, in addition, K: =w,  then we have new results for the infinitary languages 
L A W .  

(d) The results of Kino mentioned earlier are (at least in the case of regular 
cardinals, for singular cardinals see KINO [1966}) the following: 

(K,, <)<,,(OR, <) if K = A f  or K: =a, 
( K ,  <) <,,<OR, <) if K is a limit regular cardinal. 

This curious difference between K a successor or limit cardinal (see (i'),) is 
due to the fact that L,, is really weaker than L:, if K is a limit cardinal. After 
reading her proof of (QK, I was convinced that Kino could have easily 
obtained the full force of Proposition 2 if she knew of the language L;, or if 
she realized the consequences of Proposition 1. The required extensions to 
the arguments in KINO [1966] are almost trivial. 

For reasons given in the last remark, we shall not give a proof of Prop- 
osition 2 here. We shall however indicate briefly in what follows the main 
steps which led us to the proof. 

LEMMA 1. If p=a+ 1 or if p is a limit ordinal and cf(p)> K ,  then 

( fCZt l ,  < ) < ; K ( K n + l ' p ,  <). 
PROOF: By induction on the ordinal A. The proof is rather tedious, but 

straightforward. 

LEMMA 2. If p =a+ 1 or if p is a limit ordinal and cf(p)& K ,  and if A is a 
limit ordinal and cf(R) 2 K ,  then 

(K' ,  < ) < ; , ( K A ' p ,  G ) .  

PROOF: We use the fact that K'= U1<* K"" and rc'*p='c'Ji1.p'for each 
y~ < 1. Then by Lemma 1, 

< K q + l ,  < ) < ; K ( K " + l * p ' ,  <) 
for all q <R. Whence by an argument involving unions of elementary chains 
we get the conclusion. 

The proof of Proposition 2 follows from Lemma 2 by putting in the 
appropriate values for 1 and p. 
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5. Applications 

We state our results for countable theories, although it is clear how to 
state them if L is not countable. 

THEOREM 1. Let T be a countable theory with infinite models. Then there 

(i) each %,=$(X,) where X ,  is a set of indiscernibles in %, of order 

(ii) II%J =Ill for each A ;  
(iii) if A<p, then X ,  is an initial segment of X ,  and 
(iv) the tower of models 3, have exactly the same infinitary properties as 

PROOF: The construction of the tower so that (i)-(iii) are satisfied is easy. 

exists an elementary tower a,, A an ordinal, of models of T such that: 

type 1; 

the tower of ordinals (A, <). 

To show (iv), suppose i c p  and p is an arbitrary ordinal such that 

(A, 6 ) <b,(P, 6 ). 
Then it follows from Proposition 1 that X,<b, gP, and this is the meaning 
of (iv). 

The following is a corolIary of Theorem 1. Compare with results (I) and 
(11). 

(111) Let T be a countable theory with infinite models. Then in each infinite 
power K ,  T has a model of power K which has arbitrarily large &,-elementary 
extensions. 

PROOF: Consider the model X, of Theorem 1 where A = K ,  (ordinal 
exponentiation). Proposition 2 shows that there are arbitrarily large cardinals 
,u such that 

(2, Q ) <:,<,uL, 6 ) * 

Whence by Theorem 1 there are arbitrarily large 'u, such that !!I,<x, aP. 
Returning to the remark following (I), we see that the proof of (111) does 

not yield arbitrarily large I,,,-elementary extensions. If we assume the 
generalized continuum hypothesis then extensions of the stronger sort can 
be found either directly by (I) or by using the q,-sets of Hausdorff and the 
methods of (11). 

For the terminology needed for the next theorem see SILVER [1966]. 

THEOREM 2. Suppose there exists a cardinal p satisfying the partition 
property p + ( ~ ~ ) < ~ .  Let r c < i < p  be cardinals such that cf(A)>x and cf(,u) 
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> K .  Then 
&) < i K  (‘“p9 ‘) 9 

where F is the Godel function enumerating all the constructible sets. 
PROOF: It is proved in SILVER 119661 that (under the given hypothesis) 

for each cardinal A > o, the model (F”1, E )  is the Skolem hull of a set X ,  of 
indiscernibles with order type A. Furthermore, if o < A  < p (cardinals), then 
X n  is an initial segment of X ,  and (F”A, &)<(F”p ,  E ) .  FromProposition2 
we have 

<xA> ) < i K  <xp, ) ’ 

Whence the conclusion follows from Proposition 1. 

constructible universe. then 
Some special cases of Theorem 2 are worthwhile stating. Let A denote the 

(*) improves the previously known result (F”w,,  & ) < A ,  and (**) yields 
(F”wz,  &)<,lalA. At the moment we do not know any interesting meta- 
mathematical consequences of (*) or (**). Whether (**) really gives more 
information about the constructible universe A (supposing that p+ (wl)‘” 
exists) is not completely clear. (The interested reader may wish to see CHANG 
119671 for some other problems.) 

THEOREM 3. (Poor man’s upward Lowenheim-Skolem theorem for LKK.) 
Suppose that L is countable and p is a cardinal such that P - + ( K ~ ) < ~  (ordinal 
exponentiation). Then every model 3 of power p has an L,,-elementary 
submodel B of power IC and the model ‘23 has arbitrarily large L,,-elementary 
extensions. 

PROOF : Using the trick first discovered by ROWBOTTOM [1964], we can find 
a set X of indiscernibles of Yl with ( X ,  <) having order type JC,. Let B be the 
Skolem hull of X in 3. Then 11Bl1 = K  and B<%. Let p be any infinite 
cardinal such that cf(p)>, IC. Find a set Y ordered of type p such that Xis an 
initial segment of Y and Y is a set of indiscernibles in 5 ( Y )  and 5 ( X ) <  

(Y) .  A combination of Propositions 1 and 2 shows that B<KK 5 ( Y ) .  

An ordered subset X of A is said to be L,,-indiscernible if for any ordinal 
A < K and any two A-termed strictly increasing sequences x and y of elements 

Clearly Ilrj(Y)ll =P. 
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THEOREM 4. Let T be a countable theory with infinite models, and let p 
be any ordinal. Then Thas a model 'u of power max(rc, 1p1) which has a set 
X of LKK-indiscernible elements with order type p. 

PROOF: We construct a model 'u of T of power max(K,Ipl) with a well- 
ordered set Y of indiscernibles of type xK-(p+ 1). We may assume that 
'u =5 ( Y ) .  Let X be a subset of Y defined by 

X =  {Y(K".(P + 1)): P < PI ,  

where y ( v )  is the qth element of Y.  X has type p, and the elements of X are 
separated in Y by at least a segment of type K ~ .  We can now appeal to Lemmas 
1 and 2 (the proof is easy and uses some simple properties of well-ordered 
sums of ordinals) and show that for any A < IC and any two I-termed strictly 
increasing sequences x and y from X ,  we have 

('3 <9x)=kK(y9 G > v ) .  

Since %=%(Y), we use Proposition 1 to get (a, x)=kK (2, y) ,  which gives 
the desired conclusion. 

Theorem 4 shows that there are models with well-ordered sets of LKK- 
indiscernibles. One could not hope to establish this by a direct application 
of the Ehrenfeucht-Mostowski result, as one can show that no infinite 
cardinal has the partition property with an infinite exponent. I do not know 
if one can construct models with LKK-indiscernibles of any given order type. 
An even more specific open problem is to find a set Z of L,,,,-types of T of 
power w 1  such that T has arbitrarily large models realizing only L,,,,-types 
of Z. Using a slightly different approach, I can show that there is a set ,Z of 
L,,, -types of T of power o1 such that T has arbitrarily large models realizing 
only Lo,,-types in Z. 
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TWO COMPLETE ALGEBRAIC THEORIES OF LOGIC 

W. CRAIG 
University of California, Berkeley, California, USA 

The purpose of this paper is to present two complete and sound algebraic 
theories of logic. They are algebraic theories in the sense that each theorem 
is an equality between two terms, each of which is formed by means of func- 
tion symbols and by means of variables all of which belong to the same kind. 
They are theories of logic because, roughly speaking, one is able to express 
and prove in them everything that can be expressed or, respectively, proved 
in first-order logic with a symbol for identity. They are sound in the sense 
that only those equalities between terms can be derived which are valid, i.e., 
hold under all the intended interpretations. Finally, they are complete in the 
sense that all those equalities between terms which are valid can be derived. 
Our proof of their completeness is quite long. We shall only present an outline. 

The two theories are closely related. Both use the same terms, but differ 
with respect to their interpretation. One theory is based on a language which, 
roughly speaking, results from the language for o-dimensional cylindric set 
algebras by adding symbols for a certain projection operation P and its 
conjugate Q. By changing from operations on sets of sequences of length w 
to operations on sets of sequences of arbitrary finite length we obtain the 
language for the other theory. Our axioms for the latter theory were dis- 
covered by asking what was needed to make Q a suitable neat embedding 
so that the neat embedding theorem from the theory of cylindric algebras 
could be applied. For the former theory we then added those axioms which 
were needed to exploit the completeness of the latter theory. 

Algebraic theories of logic have certain advantages over the usual theories 
for first-order logic with identity. All variables are of one kind, and there 
are no variable-binding operators. Also, since in each case the problem is to 
derive an equality from axioms which are themselves equalities, one can 
always proceed linearly, considering throughout the operation being denoted 
by each of the two terms of the equality to  be derived. 
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1. An algebraic language 

An ordinal shall be the set of its predecessors, a, p ,  ... shall be ordinals, 
and i,,j, . , . finite ordinals. The set of all finite ordinals shall be o. For each CI 
and each set U, "U shall be the set of functions f whose domain dom f is a 
and whose range ran f is a subset of U. In other words, "U is the set of se- 
quences f of order type CL such that each term fs =f(/?) of the sequence is an 
element of U ,  P<a. We let "U= Un<" "U. Thus "U is the set of finite se- 
quences of elements of U. The only element of O L I  and, if U = @ ,  the only 
element of "U is the function whose domain is empty, i.e., the empty set or 
sequence 8. When U is understood, we let be the operation of concate- 
nating with a sequence g @U a sequence h @ U u  "U. An operation on a set A 
shall be a function which, for some m, 0 d m <o, takes the m-tuples of ele- 
ments of A as arguments and which for each argument yields a value be- 
longing to A .  

For any set U, we now introduce the following operations on { X :  X G  " U ) ,  
taking 0, 0, 1, 1, 1 arguments respectively. 

.k="U. 
D = {f : f~ .k ,  (0 ,  I} G domLf, =f,}. 

CiX={  f:fe$ and, for some gEX,domf=domg andf i=gj  for each j+i 

PX=(f:for someuEUand g E X , g = < u ) " f ) .  
QX={f:for some uEUand S E X ,  f=<u)ng) .  
By letting .k = U, one obtains corresponding operations on { X :  X G  U } .  

For these we shall use the same symbols. We let n, u, - be the operation of 
intersection, union, or complementation respectively on either { X :  XE " U }  or 
{X: XE " U ) .  In each case, either it will appear from the context which U and 
whether {X: X G  w U }  or { X :  Xs"U} is intended, or else this does not matter. 

We let QoX=X and Qi''X=QQiX. For i<j, we let Dij=Dji=Ci+l. . .  
. . .Cj-  ,(QiD n Qi t lD n,..n Q'-'D) and we let Dii= Qi+l$. In particular, 
Do, =D, Di(i+,,=QiD,and D,,=Q.k.Then,asanoperationon{X:Xc"'U), 
Di j  is { f : f t z"U,f i= . f j } .  Thus the operations on { X : X s " U )  we are con- 
sidering are those that can be defined (by means of a term) by adding P and 
Q to those operations on { X :  X s " U }  which are considered in the theory of 
cylindric algebras. 

As an operation on { X : X G @ U } ,  Q.k is UlSn<,"U and more generally 
Q'V is Urn<,,<, "U, which is the set of finite sequences of elements of U such 
that the length of the sequence is at  least m. Hence Qm4n-Qrn+1.k=mU. 

We now construct a language L,, for these operations. The variables shall 

such thatjedomf}. 
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be no, . . . , x,, . . . , k < w. For readability we let x =xo and y = x l .  Thefunction 
symbols, with 2,2, 1,0,0, 1, 1, 1 places respectively, shall be +,-, -, 1, d, 
ci, p ,  4, where 0 6 i < w. From the 0-placed function symbols and the vari- 
ables we form the terms by adding 1-placed function symbols to the left of 
terms and by inserting 2-placed function symbols between terms, enclosing 
the resulting expression by a pair of parentheses. Henceforth, p,  0,7, . . . shall 
always be terms. An equality shall be any expression 1sc7 .  We let L, be the 
sublanguage of Lpq which results when one refrains from using p .  

Juxtaposition of names of symbols is used to indicate juxtaposition of 
the symbols named. We let 0 be the term - 1. We let qo be the empty string 
of symbols, and q'" the string q&. Parentheses are used autonymously. 
Names for outermost pairs or for pairs associating to the right are sometimes 
suppressed. 

It should be clear what is meant by the value of 7 for a set U and a sequence 
(X,, XI, ...) of subsets of ?-'U, The value is determined by assigning to each 
x, in z the set X,  c ?-'U and to each function symbol in 7 the corresponding 
operation on ( X : X c ? - ' U ) .  The value of 7 for a set U and a sequence 
( X o ,  XI, ...) of subsets of "U is determined analogously. 

We let k "  orrzif and only if and 7 have the same value for each nonempty 
U and each sequence ( X o ,  XI,. . .) of subsets of ?-'U. Note that k" p q x e x ,  but 
thatfor U=Oandt="U={@) one hasPQt=PB=@+.k. Welet ko-7ifand 
only if o and z have the same value for each U (or, equivalently, for each 
nonempty U )  and each sequence (Xo ,X , ,  ...) of subsets of "U. 

2. Two equational theories 

We now present two sets of equalities, E& and Epq. One can verify that 
k" 0 e 7  for each 0==7 in Ep"4 and that k 0*7 for each o s z  in Epq.  Thus Ep"P 
and Epq are sound for their intended interpretation. 

The Boolean part of E& shall be a set of equational axioms for the theory 
of Boolean algebras, such that + , a, - , 1 but no other function symbols are 
used. The remaining part of Eiq shall consist of the following unbracketed 
equalities 1 (a), . . ., 3 (c), where 0 < i< w and 0 < j <  w. We let Epq be the set 
consisting of the equalities in E& together with the two bracketed equalities 
2(a') and 3(d). In 3(c) we use dici+ and d,;, I ) i  for the term q'd, and di ( i+z)  
and d( i+z) ,  for the term ci+l (qid.qi+ld) .  
1. (a) c,O-0. 

(b) X S C ~ X ~ X .  

(c) c,(x*c,y)==cix*c;y. 
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(d) cicjn~cjcin. 
2. (a) qO==O. 

[(a’) 41fi1.1 
(b) 4(x+y)eqx + 0. 
( 4  4(”*Y)==4X*4Y. 
(d) q ~ ~ x = = c ~ + ~ q x .  
(e) ci(-qi+l l.x)--qifl 1-x. 

(f) @xsco(41 ‘x). 
(g) pqnX”x. 

3. (a) cod==q21. 
(a’) c l d e q 2 1 .  
(b) ci+,d==d. 
(c) d i j * c i ( d i j . x ) e d i j * x  for i+j and -2<i-j<2. 

The following changes applied to Ep4 yield a set from which, in a sense 
to be made precise in a moment, the same equalities can be derived: Omit 
2(e), replace 2(a), 2(a’) and 2(b) by 4-x--4n, in 2(f) replace 4 l . x  by n, 
and in 3(a) and 3(a’) replace 4’1 by 1. 

Given any set E of equalities, an E-path from z to z‘, or also a derivation 
based on E ofz-z‘, shall be a finite sequence (z,, ..., 7,) of terms such that 
zo is z, zt is z’ and, for each i< t ,  either zi+l is zi or zi+l  results from z, by 
the replacement of an occurrence of a term 0 by the occurrence of a term 6‘ 
such that either u==d or o’==o is obtained by substituting terms for variables 
throughout some equality in E. We let EFz==z’ if and only if there is a 
derivation based on E of z = d .  As is well-known, E t- r e z ’  if and only if, 
in the usual semantical sense, z e z ’  is a consequence of the set of expressions 
Vxio...Vxik(p==p’) such that p e p ’  is in E. 

We now state our main result, the completeness of E,”, and of Ep4 for their 
intended interpretation. 

[(d) - c O  - d * q n e  -cO - d * ~ . ]  

THEOREM 1 .  (a) If k U==zz‘, then Ep”4 1 z z ’ .  

From the soundness and completeness of Elq for its intended interpre- 
tation it follows that b ”  7ez’ if and only if there is an E’q-path (zo, ..., z t )  
from z to 7‘. One may therefore think of Elq as a sound and complete set of 
one-premise rules with each premise zi and conclusion zi+ denoting for each 
U+0 the same operation on { X : X _ c w U } .  Unless zi is z i+ l ,  premise and 
conclusion indicate a different mode of determining the value of the oper- 
ation for given arguments. For example, q(x .y) indicates that one first forms 

(b) If b zez ’ ,  then E,, t zez ’ .  
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the intersection of the two arguments and then applies Q ,  while qx-qy indi- 
cates that one first applies Q to each argument and then forms the inter- 
section. Yet, by our choice of E:,, the difference between the two modes is 
small. Hence any two modes which can be indicated in L,, of determining 
the value of an operation on ( X : X c c v U }  can be transformed into one an- 
other by a sequence of small changes, none of which affects the operation 
itself. Similar remarks apply to E,,. 

Under either of the two interpretations, L,, is adequate for first-order 
language with identity in a sense which we now sketch. For each formula tj 
of first-order language with identity we can find some n and some formula 
cp such that cp is provably equivalent to tj and such that (i) no individual 
variable ui with i > n  occurs in cp, (ii) if x j  is any predicate symbol other than 
s= and if x j  is rj-placed, then the only atomic formula containing xi and 
occurring in cp is X ~ ( U , - , ~ ,  u , , - ~ ~ + , ,  ..., u,-~, u,,-,), and (iii) for convenience, 
the only atomic formulas containing -h and occurring in cp are of the form 
ui==ui+ and the only connectives occurring in (J are 7, A ,  and quantifiers 
3vl .  Let tmcp be the term obtained from cp by replacing each xj(un-,,, u , , - , ~ + ~ ,  
..., u , - ~ ,  u , , - ~ )  by qn-r jx j ,  each U ~ = = U ~ + ~  by qid, each -I by -, each A by ., 
and each a,,, by ci. Then for any nonempty U and any sequence ( X o ,  X , ,  ...) 
of subsets of U ,  the value of $1 - q"' 1 tm cp is the set of those g en U such 
that some g"h satisfies in the usual sense cp in ( U,I0Un X0,, 'Un X I ,  ...). 
When the function symbols ofLpq areinterpreted as operations on (X: Xc " U )  
then satisfaction of cp is related to the values of tm cp in a more complex way. 
However, cp is valid if and only if tmcp has the value "U for each U and each 
sequence ( X o ,  X,, .. .> of subsets of "U.  

The completeness and soundness of Eiq under the intended interpretation, 
together with this adequacy of Lpp,  allow us to formulate problems con- 
cerning proofs in first-order logic with identity as problems concerning Eiq- 
paths. Similarly for Ep4. This reformulation may have advantages. 

3. Outline of proof 

The completeness of E,, is derived from that of Ep". To prove the com- 
pleteness of E:, we consider the set E," of equalities of L, which is obtained 
from by removing 2 ( g )  and by replacing 2(f) by the following equality: 

The completeness of E i ,  is derived from the following result, a quasi- 

THEOREM 2. If k" z e z '  and if z and T' are terms of L,, then there is some m 

2(f), qx==c,qx. 

completeness of E," for the intended interpretation. 

such that E," I- qmT==qmz'. 
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We call z normal if and only if T is somepjo such that (1) no p occurs in o, 
and (2) each subterm qp of CT is either some qixj or  some qid or  some qil. 
Thus, roughly speaking, z is normal if all occurrences o fp  are outermost and 
all occurrences of q innermost. We call CT weakly k-normal if and only if t~ 
satisfies (l), (2) and the following four conditions: (3) if q'l occurs in CJ then 
i < k, (4) if qixj occurs in CJ, then i ,< k, ( 5 )  if q'd occurs in CT, then i < k - 1, and 
(6 )  if ci occurs in CT, then i <  k. (If, in addition, 1 does not occur in CJ then we 
call CT k-normal. However, we do  not use k-normality here.) 

Lemmas 3(b), 4 and 5 are used in proving Lemma 6 below. Lemma 3(a) 
is useful in deriving Theorem I from Theorem 2. These lemmas also throw 
light on the expressive power of L, and of Lp,. 

LEMMA 3. (a) For any z one can find some normal z' such that Ei,I- z h z ' .  
(b) For any term z of L, one can find some normal term z' of L, such that 
E," k z e z ' .  

 LEMMA^. For any te rmt  ofL,andanym, E ~ k z s ( q o l . - q l l ~ z ) + . . . +  
+ (qm- 11 -qml '7) + (qml .z). 

LEMMA 5. For any normal term T of L, and any k one can find some 
weaklyk-normaltermz'ofL,suchthatE~ k$1.  -qk'll*z==$l. -qk+11.5'. 

LEMMA 6 .  Assume that Theorem 2 holds whenever z' is 0 and z is 
qk l  ' c , . .  . ck- 1p for some k <o and some weakly k-normal p. Then Theorem 
2 holds for any z and 7'. 

Consider now an arbitrary k and an arbitrary weakly k-normal p such 
that,for no m, E," k qm(qkl. co . . . ck- lp)==qmO. By Lemma 6 ,  to prove Theorem 
2 it suffices to construct some U and some sequence (X,, XI, ...) of subsets 
of "U for which the value of qkl  .c,.. . C k -  Ip is a nonempty set. We use a 
Henkin-type construction. Let a,, a2, ... be individual constants not present 
in a given first-order language and let x be a sentence of the given language 
which contains no individual variables other than uo, ul, ..., If x has 
a model, then to construct a model of x by Henkin's method it suffices to  
consider those formulas cp which contain no  individual variables other than 
u,, u l ,  ..., uk- One forms for any such 9 and any r,, rl, ..., rk- > O  the 
sentence cp [a,,, a,,, ..., ark-,]  which results from cp by substitution of a,,, 
a, , ,  ..., a,,-, for the free occurrences, if any, in 9 of u,, ul, ..., U k - 1  respec- 
tively. One then forms a certain maximal consistent set of such cp [a,,, a,!, 
..., a r k - , ] .  
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To adapt this construction, we let dji  be the term ci+l . . .c j - , (qid.qi+'  d .  
. . a .  .q j - 'd )  and s{z the term cj(dji*z) for any j>i and any T. For each 
m>max(r,, r l ,  .. ., rk-  1) and each weaklyk-normal z we let z [m; ro ,  . .., rk-  , ]  
be the term s:-~~ sm-,, . . . sm-rk- , q T. Otherwise z [m; y o , .  .., rk-  1] will be 
undefined. We think of each [m ; ro, . . . , rk- 1 ]  as related to t in the same 
way in which the single sentence cp [aro, .. ., urk- , ]  is related to cp. Speaking 
very roughly, applying qm to z converts the first m places of sequences into 
a "working space" which application of s i - r o  s z ! ; ,  ...si'Fk--: uses to 
"mimick" substitution of uro, a,,, . . ., urk-,  . 

We form a sequence (cl, u2, ...) such that (1) o1 is co ... ck- p [l ; 1,  1, 
. . ., I ] ,  ( 2 )  each 6, is some z [m; ro ,  . . ., rk -  1 ] ,  (3) for each z [n; yo, ..., rk- 1] 

there is some m>n such that t s m = ~ [ m ;  yo, ..., r k - l ]  and (4) if urn is c jz ' [m;  
y o ,  .. . . r j -  1, r j ,  rJ+ 

m + l  m + k - l  m 

. . ., rk- J, then urn+ is z'[m + 1 ; ro, . . ., r j -  1 ,  m f 1, rj+ 

A set of terms shall be consistent if and only if it contains no p b ,  ..., p:-  
such that E~t-p&*.-..p~-,==O. We let V,=(D,).  For 1 < m < o ,  we let 
V m = { c r , , } u { z [ m ; r o  ,..., r k - , ] : z [ m - l ; r 0  ,..., r k ] ~ V m V , _ l }  if, for each n, 
{qk+m'"l) u(q"am) u { q " + l p ' : p ' E V m : , _ l }  is consistent, and we let V,= 
= ( z [ m ; r ,  ,..., r k - l ~ : z [ n ? - l ; r o  ,..., r k - l ] E V m - l )  otherwise. 

One can show * that the positive integers r can be partitioned into equiva- 
lence classes i such that ro and r l  belong to  the same class if and only if, for 
some m and r2 ,  ..., rk- 1, d [ m ;  yo, r l ,  r2 ,  ..., rk-,] is in V,. We let Ube the set 
of i. One can also show * that for eachj  there is a set X j s P U  such that for 
eachsGk, (Fs, i s+ l ,  ..., Fk-1)EXjif and onlyif, for some rn and some ro ,..., 
r,- 1, qsnj[m; yo, ..., r,- 1, r,, .. ., r k - l ]  is in V,. By induction on the number 
offunction symbolsinz onethen showsthatiff=( fo, fl, ..., f m + k - l ) E k + m U  

and .fn,-ro=io,f,n-r,=il, ...,. f m - r k - , = f k k - l ,  then f belongs to the value of 
z [ m ;  ro,  ..., r k P l ]  for U and ( X o ,  X,,  ...) if and only if, for some n, z [ n ;  ro,  
..., rk- l ]  is in V,. It follows that (f ,..., i ) E k U  belongs to the value of 
co . . . ck-  ,p for U and (X,, X,, . ..). This concludes the sketch of our proof. 

.. ., rk-,]. 

* Membership of 2(e) in E; is not required for this, it is only needed for Lemmas 5 and 6. 
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General definitions of the theory of numbered algebras may be found in 
MALCEV 11961). The special theory of numbered fields was considered in 
works of FROLICH and SHEPHERDSON [1958], MOSCHOVAKIS [1965] and 
RABIN [1960]. NERODE [1963] used numbered fields for constructing an 
algorithm for p-adic integral zeros of diophantine equations. A construction 
of complicated algorithms for solving diophantine problems, as for example 
the algorithm in Ax [1967], calls for a systematic development of the general 
theory of numbered fields. The use of this theory is a new powerful tool for 
solving such problems, I think. 

In this communication I will talk about a new aspect of the general theory 
of numbered fields. I do not use a general definition of a numbered field as 
Malcev or Moschovakis do, but use the following definitions : 

Let F be a field. A map q :  N-+F from the set of natural numbers on F is 
called a numbering of the field F if cp is a one-one map of N on F, and sum 
and product operations are recursive - that is to say: functions f+ (x, y )  and 

cp(x)*q((y)) are recursive. 
If I have the numbering of the field F, I shall speak about the numbered 

field F.") If i: F, -+F, is an isomorphism from Fl to F, and the fields Fl and F2 
are numbered fields (ql : N-F, ; q, : N+F,) I say that i is a constructive map 
if the functionfi(x) - such that Vx(i(cpl (x))=cp2( f i(x))) is recursive. 

If F is a numbered field (cp : N-+ F its numbering) I say that a subfield F, c F 
is a constructive subfield iff q - ' ( F , )  is a recursively enumerable set. 

f. (x, v) such that VXY (9 (f+ ( x ,  Y ) )  = 40 (4 + q (v)) and VXY(Cp ( L k  v>> = 

1. Let F, c Fl be two fields and cp, : N+F, and q 1  : N+F, the numberings 
of these fields, such that the immersion i:F,-+F, is a constructive map. 

*) This restricted notion of a numbered field equals to RABIN'S [1960] notion of a com- 
putable field. 
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Using some results of the theory of recursively ennumerable classes we 
have without serious difficulties : 

a) There exists a recursively enumerable numbering of all intermediate 
constructive (or all jinitely generated) fields. (F,  is an intermediate field 
between F, and Fl if F, c F, c Fl and F, is a constructive subfield of Fl .) 

This statement is equivalent to the following: 
There is a recursive relation R(x,  y ,  z )  such that i f x  isjixed, the set F(x,= 

qI({y13zR(x,  y ,  z)}) is a subjield (clearly constructive) of thejield Fl and this 
subjield contains thejield F,; and moreover for  any constructive subjield F, 
of thefield Fl which contains F, there is x such that F(,..= F2. 

For numberings which satisfy a) it is possible to define reducibility. 
Then the following is true : 

b) There exists a numbering which satisfies a) to which all numberings 
verifving a) are reducable. In other words there exists a principal (or Godel’s) 
numbering. And any two such numberings are isomorphic. 

If we are interested in one-one (or Fiedberg’s) numberings the following 
is true : 

c) If the problem of equalities for finitely generated intermediate fields 
between F ,  andF, is decidable, in other words if the relation R ( ( n l ,  ..., nk>, 

then there is a one-one numbering which satisfies a). 
(ml, ..., mJ) -F0(ql (a,), ..., q1 ( n k ) ) = F O ( ( P 1  h), ..., q1 ( m J )  is recursive 

2. Using results from sec. 1, I may present constructive definitions for 
some classical notions. 

Let Fo be a prime field and F* = F,(x,, . . . ,x,, . . .) be a pure transcendental 
extension of F, with w independent variables, and Fl be the algebraic 
closure of F*.  We may introduce a numbering of the field Fl using Rabin’s 
result that the immersion F,+F, is constructive if F, is numbered in a 
natural way. Then the numbering of Fl and the numbering of all finitely 
generated subfields of Fl are constructive definitions for the notion of 
universal domain in algebraic geometry. 

Such a construction may be carried out for any numbered field. 
If we assume this definition then some algorithm problems arise for 

standard constructions in algebraic geometry. For example, does there 
exist an algorithm for finding definition fields of algebraic varieties defined 
by polynomials? 

The numbering of the algebraic closure of the field of rational numbers 
and the numberings of all fields of algebraic numbers are natural objects for 
constructivising Galois theory, class field theory and so on. The results of 
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Ax’s work [ 19671 and its proofs are naturally stated for these constructive 
objects. 

3. I will say something about relations between the theory of numbered 
fields and decision problems for elementary theories. The main statement 
which I shall formulate now, may be known but it has not been printed in 
explicit form. Some results which I shall state later in this section are found 
among Malcev’s ideas. 

THEOREM. If 9 is an AC,-class of fields which has a decidable elementary 
theory, then there exists a numbered field F E F  such that there exists a 
recursive map from the recursive set Th (I;) - set of all sentences that are true 
in F - to recursive functions which are Skolem functions for correspondeat 
sentences. Moreover there are many such fields: there exists a recursively 
enumerable class So of numbered fields that satisfy conditions for field F 
with recursive enumeration of recursive maps from the sets of sentences to 
correspondent recursive Skolem functions and Th (Fo) = Th (9). 

Remark. This theorem is true not only for classes of fields but for any 
class of algebras or models if we use the right notion of a numbered algebra 
or a numbered model (relational system). 

Using this theorem one gets a new proof of Rabin’s theorem about the 
existence of a numbering for the algebraic closure of a numbered field and a 
proof for his theorem on the characterization of fields with a splitting 
algorithm. These new proofs use the relative model completeness and 
decidability of the theory of algebraically closed fields. The same ideas may 
be used for proving that numbered ordered fields have constructive immer- 
sions in their algebraic real-closed extensions. Such results may be proved for 
some normed fields. 

The theorem may be used for the proofs of existence of numberings for 
some fields. For example, nurnberings for the field of all algebraic numbers, 
the field of all real algebraic numbers, the field of all p-adic algebraic 
numbers may be constructed in this way. It is easy to prove that any two 
numberings for one of these fields are isomorphic. Nerode’s result about 
existence of a numbering for the field of all algebraic p-adic numbers is 
proved in such a way. 

4. I should like to mention one problem about numeration. It relates to 

Does there exist a recursively enumerable class of all constructive ex- 
the theorems in the first section. 
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tensions for a fixed numbered field, such that any other recursively enumurable 
class of some constructive extensions of this field reduces to the first one? 

I note that this problem is not very clear. One has to find reasonable 
definitions for all concepts involved. 

I think that the answer will be negative. 
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MODELS WITH ORDERINGS 
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By an ordered model we mean a relational structure 
'u = ( A ,  L, Ro, R1, ...) 

for a countable language 2, such that L is a binary relation which linearly 
orders the set A .  A linearly ordered structure ( A ,  L )  is said to be K-like if 
A has power K but each element U E A  has fewer than K predecessors with 
respect to L. 2l is said to be a K-like model if 'u is an ordered model and 
( A ,  L )  is d i k e .  

This paper concerns the following problem of MOSTOWSKI [1957] and 
FUHRKEN [1965] (see also VAUGHT [1965]): 

Which pairs of cardinals u, 1 have the property that for every d i k e  model 
3 there exists a Mike model 23 which is elementarily equivalent to 2l? 

Let K+A mean that the pair of cardinals K ,  I has the above property. Our 
main theorem is the following. 

THEOREM 2.1. Suppose K is a strong limit cardinal (that is, y < K implies 

It follows that if K and A are both singular strong limit cardinals, then 

The solutions of several other cases of the problem are known from the 

1. 0+1 (SPECKER and MACDOWELL [1961]). 
2. K++w+ (Vaught; see MORLEY and VAUGHT [1962]). 
3 (GCH). If 1 is regular, then icf-tI+ (CHANG [1965]). 
4. If K is weakly inaccessible and 1 is regular, then x-1' (GCH when 

5. If K is strongly inaccessible and A is singular, then ~ 4 1  (SILVER [un- 

6. If K is weakly compact and 1 > m ,  then K + A  (HELLING [1966]). 

2@<rc), and 1 is a singular cardinal. Then ~ 4 1 .  

K H 1 .  

literature. We list them here. Assume that K ,  A are infinite cardinals. 

I>#)  (FUHRKEN 1119641). 

published]). 
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successor 

Simple counterexamples show the following negative results (see FUHRKEN 

7. If IC > w ,  then t i - ~ w .  
8. If rc is singular and I is regular, then K-I. 
9. If 1 is a limit cardinal, then ti’w1. 
Without the GCH, there is no hope of proving that rc-A for all singular 

cardinals K and A, because an obvious example shows: 
10. If K is not a strong limit cardinal and 1 is a strong limit cardinal, then 

K*1. 

If we assume the GCH, then the present situation can be summarized in 
the table below (using 1-10 and Theorem 2.1). The question mark in the 
table indicates the main problem which remains open. (Helling’s result 6 
above is a partial solution.) Theorem 2.1 filled in the singularjsingular 
position in the table. A yes with an asterisk, yes *, indicates that the answer 
is yes if 2 is the successor of a regular cardinal, and is open if 1 is the suc- 
cessor of a singular cardinal. 

[ 19641) : 

Yes Yes Yes Yes 
no yes * no no 

w 

A 

successor singular inaccessible 

Notice that Theorem 2.1 implies the unpublished result 5 above of Silver, 
since all strongly inaccessible cardinals are strong limit cardinals. Silver’s 
proof used ultraproducts, and seems quite different from the proof of Theo- 
rem 2.1 in this paper. 

The proof of Theorem 2.1, like the proofs of several of the earlier results 
1-6, has the following plan. We introduce a particular set Z of sentences 
which involve extra function symbols and, in this case, a doubly indexed 
sequence of new constant symbols cij. We then show (in Lemmas 2.3 and 
2.5): (I) If the theory of a model ‘11 is consistent with C, and if 1 is a singular 
cardinal, then there is a Mike model ?I3 which is elementarily equivalent to 
‘11. (11) If ‘11 is rc-like where ti is a strong limit cardinal, then the theory of ‘11 
is consistent with 1. 

To prove (I) we replace the constants c i j  in Z by cap, where c1 ranges over 
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cf(A) and /3 ranges over cardinals p x  which approach A. Then we use the 
compactness theorem to get a A-like model. 

The proof of (11) depends on thepolarizedpurtition relations of ERDOS and 
RADO [1956], and uses the results of that paper. Partition theorems have 
been applied in model theory several times before. For instance, see EHREN- 
FEUCHT and MOSTOWSKI [1956], MORLEY [1965], [1965a], ROWBOTTOM 
[I9641 and SILVER [1966]. It appears that polarized partition relations have 
not been used in model theory before, however. They arise here because, to 
show that C is consistent with the theory of a, we need to consider doubly 
indexed sequences of elements corresponding to the constants c i j .  

In Section 1 we introduce a notion concerning partitions, that of a "large" 
set, and we prove some lemmas about large sets which we shall use later. 
In Section 2 we prove the main result 2.1. In Section 3 we obtain a number of 
related results which follow from the proof. For example, if A is a strong 
limit cardinal, then we have a compactness theorem (Corollary 3.2) and a 
completeness theorem (Corollary 3.3) for A-like models. These answer ques- 
tions raised in MOSTOWSKI [1957] and VAUGHT [ 19651. Using general results 
of FUHRKEN [1964], [1965], our results translate at once into new theorems 
about the quantifier "there exist at least A". We also modify our proofs to 
show that, if A is singular, then every complete extension of Zermelo set 
theory with a choice function has a A-like model (Theorem 3.8). 

The results of this paper were first announced in an abstract, KEISLER 
[1967]. This work was supported in part by National Science Foundation 
Grant GP-5913. The author is a fellow of the Alfred E. Sloan Foundation. 

1. Some lemmas in partition theory 

Let us fix our set-theoretic notation. We always assume the axiom of 
choice. We shall identify cardinals with initial ordinals. The letters K ,  A, p 
will be used for cardinals, sometimes with subscripts. We use a, p, y ,  6 for 
ordinals. Ordinals are defined so that a= {P:D<a}. The iterated power of 2, 
denoted by 2 ( ~ ,  M), is defined recursively as follows: 

~ ( I c ,  0) = K ;  2 ( ~ ,  a) = ~ u p 2 ~ ( " , ~ ) ,  when a > 0 .  
f l<a  

The power, or cardinality, of a set Xis denoted by 1x1. The cardinal successor 
of K is denoted by K'. The cofinality of a cardinal ic  is denoted by cf(K). 
We assume a knowledge of the arithmetic of cardinals. The notation8 X+ Y 
means that f is a function on X into Y.  Iff is a function f: X-t Y ,  then f l Z  
denotes the restriction o f f t o  2, and for each ~ E Y ,  f - ' ( y )=(x : f ( x )=y) .  
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If X is linearly ordered by a binary relation L, a subset Y c X  is said to be 
cojinal in ( X ,  L )  iff for all X E X  there exists YE Y such that L ( x ,  y) .  

We shall use some special notation from ERDOS and RADO [1956] con- 
cerning partition relations. We denote by [XI“ the set of all subsets of X of 
power exactly K .  Thus [XI“ + O  iff [XI > K .  Let r be a natural number. The 
expression 

K -+ (4; 
means that for any partition of K into p parts, there is a set XE[K]’ such 
that [XIr lies entirely in one part of the partition. The above expression is 
called a partition relation. 

THEOREM 1.1 (Ramsey). For any positive r, a ,  b < w, 

w + (a);.  

Moreover, there exists c<w such that 

THEOREM 1.2 (ERDOS and RADO [1956]). For any infinite cardinal K and 
any r <a, 

f r + l  2 ( v ) + - +  ) K  . 

We now introduce the polarized partition relations of ERDOS and RADO 
[1956]. Let r ,  s be positive integers. The expression 

( K l , . . . ,  K J + ( 4 , . . . 2  4): 
means that for any partition of the set 

[ K l l r  X * * .  X [ K , ] ?  

into p parts, there exist sets 

X I  E[K1IA1, ..., xs€[Ks]”  

such that the set 
[XI]‘ x *.. x [XJ 

lies entirely within one part of the partition. (Erdos and Rado used vertical 
columns of K ’ S  and 2’s for the polarized partition relations, and used the 
above row notation for a quite different kind of partition relation. We use 
rows instead of columns here to save space.) 
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THEOREM 1.3 (ERDOS and RADO [1956]) .  Suppose that 

(q,..., ~ , ) - t ( ~ l , . . . , & ) ~  and K , + ~  - ( & y + l ) L r ,  
where p' 2 pKi '  "' ' K  s. Then 

( K 1 ,  . . ., Kc,+ 1) -+ (4 , . . . 7 4 + 1 > :  . 
The last two theorems have an immediate consequence, which is a polar- 

ized partition relation useful in this paper. 

COROLLARY 1.4. Suppose that for 1 < t < s, K,, I ,  are infinite cardinals and 

K t > 2 ( I t , Y - l ) ,  I , , ,  2 2 " ' .  

( K I  , . . ., 7%) + ( I :  > .. ., 5 ) A I  . 
Then 

+ r  

PROOF: By Theorem 1.2 we have 

Also, 

The result now follows from Theorem 1.3 by induction on t. 
If F : X + I ,  then the set {F- ' (a ) :a<A)  forms a partition of Xinto a t  most 

I parts. Any partition of X into at  most I parts can be represented by a 
function F: X + I  in this way. The partition we get from F also has an order 
structure inherited from the natural ordering of I .  We shall now study the 
partition which comes from F. 

Let Y, s be positive integers and let F : X + I .  ,We shall often consider se- 
quences x of length s, each term being a set of power r .  For such sequences, 
we write 

x = ( X I ,  ...) x,%> = ( ( ~ 1 1 ,  ...) xlr}r ...> { x s l ,  ...) xsr}) 7 

with single subscripts for terms of x and double subscripts for elements of 
terms of x. We define [ F ] r 3 s  to be the set of all s-tuples x of elements of [XI' 
such that 

F ( x i j )  = F(xil), i = 1, ..., s and j ,  1 = 1 ,  ..., r ,  
and 

More concisely, 
F ( x 1 , )  < F ( x 2 J  <..-< F(xs1) .  

[F]r , s=  u { [ F - l ( a l ) ] r  x... x [ F - ' ( a s ) ] ' : a ,  < . ' * < a , < I }  . 
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We now come to the main notion which we shall use, the notion of a 
“large” set. Suppose F:  Ic-1 and Sc [ F l r S s .  For each positive integer p ,  we 
consider a game G ( S , p )  between two players, I and 11. In this game each 
player has p moves. Player 1 moves first, and for his first move he chooses 
a cardinal p1 < K .  Then I1 chooses an ordinal P1 < 1. Then I chooses p z  < K 

and then I1 chooses Pz <I ,  and so on. The player 11 wins the game G(S,  p )  
iff < Pz  < ... < P, and there exist sets 

Yl E [ F -  (P1)IW’, . . .9 Y D E  [ F -  ( P p ) l W p  

[ F J ( Y ,  u.*.u Y p ) ] r ’ s c  s .  
such that 

Otherwise I wins. 
Since p is finite, it is clear that exactly one player has a winning strategy 

for the game G(S,p) .  By a winning strategy for I we mean a sequence of 
functions, 

such that for any play of 11, PI, .. ., P,, the game is won by I. Similarly, a 
winning strategy for 11 is a sequence of functions 

Pl,  P2(Pl)? ‘..) P P ( P I 9  ... 7 P p - 1 )  

PI(Pd7 P2(Pll Pdr  ... 7 P,(Pl? ... 9 P,) 

which guarantees a win for 11. 

the player TI has a winning strategy for the game G ( S ,  p) .  

in this case we shall also use the notion of a large set Sc [Fir,'. 

We shall say that a set Sc [F]‘.5 is large iff for every positive integer p ,  

If F:X- tR and 1x1 = K ,  then all the above definitions still make sense, and 

The name “large” is motivated by the following trivial lemma. 

LEMMA 1.5. Suppose F : K - + A ,  K >  1, S C [ F ] ‘ , ~ ,  and S is large. Then S is 
non-empty, and any subset of [F]‘sS which includes S is also large. 

The next two lemmas will be used in the proof of our theorem in the next 
section, and are harder. 

LEMMA 1.6. Suppose IC is a strong limit cardinal (that is p < ~  implies 
2” < K), and let R =cf(K). Let F: IC-1 be such that for each ,u < K ,  there exist 
arbitrarily large f i < A  with jF-l(fi)l>p. Let r , s  be positive integers with 
s> 1, and letf:[F]r9s-1+A. Then the set 

is large. 
s = (XEIF]r’S:f(xl, ...) q - 1 )  < F(x , , ) )  
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PROOF: We wish to show that for each positive integer p ,  I1 has a winning 
strategy for the game G(S, p). For 1 <p <s, all I1 has to do to win the game 
is to choose p1 < ... < p, such that 

because the set 
lF-l(Pl)l 2 Pl?. . . ,  IF-'(Pp)l 2 P p ,  

[ F I ( F - l ( p , )  u**.u  F-'(p,))]'*" 

is empty and thus trivially included in S. Hence in this case the fact that I1 
has a winning strategy follows from our assumption that for each p < K there 
are arbitrarily large p < I with IF-' (p)I >p. 

In case K = A  (whence K is strongly inaccessible), we easily see that I1 has 
a winning strategy for each p .  We may assume without loss of generality 
that IF-' K for each j? < I ,  because there is a subset Xc K of power K 

such that F [  X has that property. At each move t < p ,  I1 chooses p, such that 
I F 1 ( p t ) l  2 p t ,  Pt-' < p , < I ,  and p, is an upper bound for the set 

{ f ( x )  : x E [FI ( F  - (p') u . . . u F - (1, - l ) ) ] r ' s  - '> . 

This set has an upper bound because it is a subset of K of power<ic. Then 
we have 

so I1 wins the game G ( S , p ) .  

argue by induction on p .  Let p 2 s and suppose I1 has a winning strategy 

[F\(F- '  (~~)U. . .UF- ' (~,>)] '~"  c S ,  

Assume now that K > A  (whence K is a singular strong limit cardinal). We 

Pl(Pl)?..Y ~,-1~P'~~-~P,-1~ 

71 (PI),..., ?JP(Lt l ,  ... 3 Pp)  

for the game G(S,  p - 1). We shall describe a winning strategy 

(1) 

for I1 in the game G ( S , p ) .  Let I l = I + p l ,  and for l < t < p ,  

K ,  = 2(4,  r ) ,  I,, = 2"' + p, . 
Thus K, ,  I ,  depend only on plY . .., p,, and since K is a strong limit cardinal, 
each K ,  < K .  We define the first p - 1 moves in the strategy (1) by 

Yt(P1Y ... Y P J  = &(.17 . . . Y  Kr), l < t < p .  

We now construct the last move. Since K , >  2(I, ,  Y - l), we may apply Corol- 
lary 1.4 and we have 

( K i , . . . ,  K P - i ) - ' ( I ~ ~ + . . ~  Ii-i);,. 
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This partition relation obviously remains true when we make the numbers 
on the right side smaller, so 

( K l , . . . ,  ~ p - l ) - , ( P l , . . . , P p - l ) ~ .  (2) 
For brevity let 

Y1 = Yl(PJ7 ... 9 Y p - 1  = Y p - l h . . * >  P p - 1 ) .  

From the definition of the y's and the assumption that the P's are a winning 
strategy for I1 in the game G ( S ,  p - l), we see that there are sets 

Yl E [F-  ( y  . . . , Y, - 1 € [ F  - ( y  - J]"P - ' 
such that 

[FI(Yl u..*u Yp-l)]rJ c s .  

[YJ' x.* -  x [Yp- , ] l  

Consider the partition P of the set 

such that two elements 

x = <XI, ..., Xp-l ) ,  Y = ( Y l ,  ..., Y p - J  

of this set are in the same partition class iff for all increasing sequences 
il <*.-<is-1 <p, we have 

f ( X i l ,  * . * )  xis-j) = f ( Y i l ,  - . * >  Yi=-,)* 

z, E [ Y1y, . . . , 2, - 1 E [ Yp- l]flp- 

[Z,] '  x ... x [zP-,lr 

{f(Z):zEIF((Z1 u."uZp-l)]r*s-'j 

There are at most A partition classes. Therefore, by (2), there exist sets 

such that the set 

lies entirely in one partition class. This implies that the set 

is finite. Hence it has an upper bound, say a, and a< A. 

y < A  such that a<y, 
then have 

for all 

We now define the last move for 11, yp(pl, ..., ,up), to be the least ordinal 
and lF- l (y ) l>pp.  Let z , ~ [ F - ' ( y ) ] ~ ~ . \  We 

f ( Z 1 ,  ..., G I )  < < F(z, , )  

ZE[FI(Z, u~-.uzp)]r~s 

and hence I1 wins the game G(S, p). Our proof is complete. 
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LEMMA 1.7. Suppose IC is a strong limit cardinal, and let A=cf(lc). Let r ,  s 
be positive integers, let F:K-+A and suppose that SC[I$] '*~  is large. Then 
for any partition 

s = s, u...u s, 
of S into finitely many parts, at least one of the parts Si is large. 

PROOF: We give the proof only for I C > W .  The proof for K = O  is similar. 
It suffices to prove the lemma for the case m = 2 ,  for the result for arbitrary 
m then follows at once by induction. 

Suppose S =  S,  u S,  is large but S, and S,  are both small. Then for some 
positive integers p1 and p , ,  the player I has winning strategies for the games 
G(Sl,pl) and G(S, ,p , ) .  Letp  be the greater ofp,,p,. Then I has winning 
strategies for both of the games G ( S , , p )  and G ( S , , p ) ,  because making p 
larger only makes the game easier for I. Notice that the set of all plays 

p1, ..., P p ,  81, ..., Pp 
for which I wins the game G ( S , , p )  is closed under enlarging the p's. It fol- 
lows that by taking the maximum of a pair of winning strategies for I in the 
games G ( S , , p )  and G(S , ,p ) ,  we get a single strategy which is a winning 
strategy for I in both of the games. Let such a strategy be 

H ( p )  = sup{pj(Pl, ..., P j - , ) :  1 < j < p and PI,  ..., Pj-l < P )  
Since H(P) is the supremum of fewer than A=cf(rc) cardinals less than K, we 
have H(P) < IC. 

By Ramsey's Theorem (Theorem 1.1 above), there exists q<w such that 

4 +(PI; f (2) 

Let us define simultaneously for t = 1, . . ., q - 1 : 

L,= w + p,, L,+l (Pl, ...) Bf) = H(PJ + 2 K t ( p l , - 3 f l t - l ) ,  

K ,  = 2 ( J L r ) ,  Kt+l(Bl ,..., P t ) = 2 ( L f + l ( P l Y . . . , B t ) , r ) .  

Since IC is a strong limit cardinal and we have assumed at the beginning that 
IC > w,  all the K's and L ' s  are infinite cardinals less than K. Because 2 ( p ,  r )  > 
2(p, r - 1) for any cardinal p, we may apply Corollary 1.4. We obtain for 
all P1, . . ., P,- <A, the partition relation 
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This partition relation certainly remains true if we make the numbers on the 
right side smaller. Therefore 

( 4 s  K,(B1)5 ..., Kq(81, ... 1 Pq-l))+(P1, H(PI), ..., H(P,-l)L. (3) 

Since the set S is large, the strategy 

K,,K,(P,) ,...,K,(P,,...,p,-,) 

is not a winning strategy for the player I in the game G(S ,  q). Therefore there 
exist and 

x, E [ F -  ( p l ) ] K 1 ,  . . .) x, E [ F -  1 ( & ) ] K 4 @ 1 .  - , f l q -  1) 

[FI(X,  u. .*u X,)]*J c s. 
such that 

We shall define a certain partition P on the set 

(4) 

[X,]' x 9 . .  x [X,]' ( 5 )  

into finitely many parts. Since each set X j  has power Kj(p , ,  ..., p,-,), we will 
then be in a position to use the partition relation (3). Let x, y be any two 
elements of the set (5) above. We shall put x and y into the same partition 
class of P iff for all increasing sequences j ,  < ... <js < q, the elements 

( X j l ,  " ' 9  X j d > ,  ( Y j i ,  ..., Yj ,>  

of [FIX, u-..u XJ3' are either both elements of Si or are both elements of 
S2 .  Because of (4), they are both elements of S= S1 us2. 

The partition P we have just defined partitions the set (5) into finitely many 
partition classes, in fact at most 2" where n is the power of the set [q]'. By 
(3), there exist sets 

YIEIXl ]JQ,  Y2E[X,IH(fl1), ..., YqE[Xq]H@"-') 

such that the set 
[Y1]' x x [Y,]' 

lies entirely within one partition class of P. 

set [q]" into two parts. Consider an arbitrary element 
We shall next use the partition relation (2). We define a partition Q of the 



MODELS WITH ORDERlNGS 45 

where the elementsj, are listed in increasing order. Since the set (6 )  lies within 
a single part of the partition P, we have one of the following: 

[ YjJ' x * * - x [ Yj*]' f= s, , 
[ YjJ' x . . . x [ YjS]' c s, . 

(7) 

(8) 

Let us define the partition Q so that all the elements of [q]" satisfying (7) 
are in one class, and all those satisfying (8) are in the other class. 
Then by (2), there is a set 

{ k l , . . . ?  k p } E [ q l P  

such that [{k,, ..., k,}lS is entirely within one partition class of Q, say the 
one for which (7) holds. Arrange the k's in increasing order, k, < < k,. 

Now define 
Y1 = P k l ,  * . * ?  Y p  = P k , .  

We shall show that if the player I1 plays y l , .  .., y p ,  and if I plays the strategy 
(I), then I1 will win the game G ( S , , p ) .  This will contradict our assumption 
that (1) is a winning strategy for I in the game G(Sl,  p ) ,  and thus our proof 
will be complete. 

< y p .  Moreover, for all 
i<p, we have yi  < Pki - ,. The function H(P) is monotone relative to j?, that is, 

j? < p' implies H(j? )  < If@'). 

Since j?, < ... <pq and k, < -.- < k,, we have y1 < 

Therefore, for 1 < t < p ,  

Iyk,l 2 H ( f i k t - l ) a H ( y t - l ) 2  Pt(Yl , . . .?Yt- l ) .  

It follows that we may choose sets Z,, 1 d t  < p ,  such that 

zt ykt and IztI = P't(Y1, Y t - 1 ) -  

Since Y j c X j c F - ' ( p j )  for l<j<q,  we have 

z, E [ F -  (yl)]P1, . . . , ZpE [ F -  (y,)]""'" . . . . y p -  1 ) .  

[ F l ( Z ,  u...u Z,)]'," c s, 
Moreover, since (7) holds for all increasing s-tuples in {k,, ..., kp} ,  

Therefore the player I1 wins the game G ( S , ,  p ) .  Our proof is complete. The 
proof in the case K = o uses a finite analogue of Corollary 1.4 which follows 
from Theorem 1.1 instead of 1.2. 
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2. The main theorem 

We consider a countable first order predicate logic 9 which has an iden- 
tity symbol, a binary predicate symbol P,, and other predicate or function 
symbols Po, PI,. . . . Let the individual variables of 9 be u l ,  ut,  u 3 ,  . . . . For the 
basic model-theoretic notions taken for granted here see TARSKI and VAUGHT 
[1957]. 

The notion of a d i k e  model for 9’ was defined in the introduction. i n  
this section we shall prove OUT main theorem about ic-like models : 

THEOREM 2.1. Suppose K is a strong limit cardinal and 1 is a singular 
cardinal. Then for every Ic-like model 3, there is a A-like model 23 which is 
elementarily equivalent to 3. 

i n  the proof of this theorem we shall use the classical result that, given a 
countable language 9, we can effectively expand 9 to a countable language 
2* (by adding “Skolem functions”, or “Hilbert ~-functions” to 9), and 
find a theory TSkolem in 9* such that: 

(i) Every model for $P can be expanded to a model of TSkolem by some 
interpretation of the new symbols of 9*. 

(ii) TSkolem is model-complete (see ROBINSON [ 19631). 
(iii) Every submodel of a model of TSkolem is also a model of TSkolem. 
From (ii) and (iii) it follows that: 
(iv) if ?I* is a model of TSkolemr then every submodel of %* is an elementary 

submodel of %*. 
We now expand the language $P* still further, forming $P**, by adding 

to 9* a countable doubly indexed sequence of constants c i j ,  where i and j 
range over the positive integers. We shall order the pairs (i, j >  lexicographi- 
cally, that is, 

( i , j ) < ( k , l )  iffeither i < k ,  or i = k  and j < l .  

Let us say that an n-tuple of constants 

( C i l j l ,  . . . 7  ci,j,,> 
is increasing iff their subscripts form a strictly increasing n-tuple. 

DEFINITION 2.2. Let C be the set of all sentences of $e** of the types 

(a) The axioms for simple order in the symbol P, ,  and the set of axioms 

(b) Pi(c i j ,  ckl), where ( i , j )  < ( k ,  0. 

(a)-(d) below: 

of the theory TSkolem. 
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(c) P<(?(ciljl, ..., cinjn), cij), where ~(q, ..., v,) is a term of 9* and . .  i ,,..., z , < i .  

z(vl, ..., v,) is a term of 9** which contains only constants ckl such that 
k$i ,  the two sequences of constants 

(d) P<(Z ( C i l j l ,  ...) Cinj,,), Cij) + z (ciljl,  ..., Ci,jJ = 7 (cill1, ..., ci,in), where 

(ciljl, ...) cinjn> > ( ~ i ~ ~ i r  ...> ci,l,> 

are increasing, and i < i,, . . . , in. 
The theory C resembles sets of formulas used by SILVER [1966] for other 

purposes, but here we have doubly indexed constants. The sentences (c) will 
insure that the constants cij are cofinal in the set of all terms applied to con- 
stants. The sentences (d) state that when the value of a term is less than cij ,  
its value is independent of the second indices of the constants ckl where 
k > i. These sentences will insure that no element has too many predecessors. 

It is important to observe that the set I: of sentences of 6P** is "homo- 
geneous" in the following sense. Let us call two increasing sequences 

(Ciljlr .*.) cinjn> 3 < c k i l l ,  .*.) ck,,tn> 
similar iff . .  z p = z q  iff k p = k , ,  p , q = l ,  ..., n .  

Then whenever C contains a sentence 6, it also contains every sentence 
formed by replacing the sequence of all constants occurring in 6 by a similar 
sequence of constants. 

LEMMA 2.3. Suppose 'u is a model whose theory is consistent with C, and 
A is a singular cardinal. Then there exists a I-like model 23 which is elemen- 
tarily equivalent to 3. 

PROOF: Let I' be the theory of 'u. Then T u Z  is consistent. It suffices to 
prove that r has a I-like model. Let p a ,  a<cf(A), be a sequence of cardinals 
pu < 1 whose supremum is I. We form an uncountable language 2' by adding 
to .9* a doubly indexed sequence of constants 

cEp, where Q: < cf(i), f i  < p , .  

We order the pairs ( 0 1 ,  p> lexicographically, and define an increasing se- 
quence of constants of 9' exactly as we did for 9**. Let I:' be the set of 
all sentences of 9' of the forms (a)-(d), except that this time the constants 
cij stand for constants in the language 9' instead of 9**. 

We claim that I'uI:' is consistent. To prove this claim, let Cb be any 
finite subset of Z'. Let cUlpl, .. ., canP, be an increasing list of all the constants 
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occurring in EL. Then there is a similar increasing sequence ciljl, ..., cinjm of 
constants of 9**, where “similar” is as defined above. Let C, be the (finite) 
set of sentences of 9** formed from CL by replacing the constants capap by 
c iPjp .  Because of the “homogeneity” property which we have observed above 
for Z, and from the definition of C‘, we see that CocZ.  Since T u Z  is con- 
sistent, Tux, is consistent. None of the constants occur in T, and C, is 
obtained from Cb by a one to one substitution of constants. Therefore T u Zb 
is consistent, and hence I‘ u Z’ is consistent. 

By the compactness theorem, r u C’ has a model 

23’ = ( S ,  M ,  So, S1, ..., ..., b,,, ...), a < cf(A), p < pa.  

By(a), the reduct B* of B‘ to the language 2* is a model of TSkolem. Hence 
the submodel of 23% generated by the elements b,, is an elementary submodel. 
It follows that the submodel of 23’ generated by the elements b,, is also an 
elementary submodel, and hence is also a model of Cr. We may therefore 
choose the model 23’ of Z‘ such that it is generated by the elements b,,. 

Now let 23 be the reduct of B’ to the language 9. Then 23 is still a model of 
r. By (a), M is alinear ordering of 23, so B is an ordered model. We show 
that 23 is Mike. By (b), the b,, are all different. There are Za<cf(i ,  p,=A 
pairs (a, p). Therefore lBJ >A. Since 23’ is generated by the b,,, and there 
are only countably many terms in the language 2*, thus only A terms in 
Y ,  we have JB/  <A, and hence JBI = A .  

Consider any element b E  B. Then we have 

for some term of 9* and some increasing sequence of constants of 9‘. By 
(c), we have M(b,  b,,), where a is chosen so that al, ..., a,<a. Thus to show 
that b has fewer than A predecessors in the structure ( B ,  M ) ,  it suffices to 
show that b,, has fewer than A predecessors. Let us say that two increasing 
sequences 

(ba,,,, ...> barn,,,,) 2 ( b y 1 6 1 3  ‘3.) byma,,,) 

are equivalent iff for all p < m, 
a, = y p ,  andif a,< a then p p =  6,. 

(The property of being equivalent is stronger than the property of being 
similar.) The number of equivalence classes is at most o*(~Y6apLY)-cf(A),  
and since a <cf(A) <: A, o < A, and each pLy  < 1, this number is less than A. So 
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there are fewer than I equivalence classes. But by (d), if 

M ( z ( b U l / ? l l  " ' 9  bQmBm)? P U P )  and M ( z ( b y ~ d l '  " ' Y  bym6m), b U , ) 9  

then 
z(bE1f119 ' " 9  bQmBm) = z ( b y l d l ,  " ' 5  b,,dm) 

whenever the sequences are equivalent. Therefore, since 2'* has only count- 
ably many terms, the element b,, has fewer than 1 predecessors in the order- 
ing M ,  and so does the original element b. This shows that the model 93 of 
r is I-like, and completes our proof. 

We now prove an elementary lemma which allows us to simplify the 
sentences (d). 

LEMMA 2.4. Every sentence in C of the form (d) is a consequence of those 
sentences in C of the form (d) which have the additional property that 
CmZl Jjm-lml = 1. (So the sequences ( j l ,  .. .,jJ and (Il, ..., I,,) differ at only 
one position, and their difference at  that position is 1.) 

PROOF: Let G be an arbitrary sentence in C of the form (d). If the se- 
quences of constants 

( C i l j l ,  ...) Cinj,,> 3 <Cilll, ...> Ci,l,> 

are identical, then G is valid. 
Suppose that these sequences of constants are different. It is easily seen 

that we can get from the first of these sequences to the second in a finite 
number of steps, where at each step we have an increasing n-tuple of con- 
stants which differs from the preceding step in exactly one position, and at 
this position the difference is exactly 1. By this process we obtain a finite 
sequence of sentences 

61, ...) 6,€Z 

all of the form (d) and all with the additional property given in the statement 
of the lemma. Moreover, 0 is a consequence of ol, .. ., 6,. 

LEMMA 2.5. Let K be a strong limit cardinal and let 3 be a Ic-like model. 
Then the theory of 'u is consistent with C. 

PROOF: Expand 'u to a model X* of TSkolem. It suffices to prove that every 
finite subset C, c C is satisfied in 3* by some interpretation of the constants. 
By Lemma 2.4 we may assume that every ~ E C ,  of the form (d) has the extra 
property ym=, ljm-Znll=l. 
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Since ic is a limit cardinal, we may write 

ic = sup {pu: a < cf(ic)} , where each pu < K .  

The structure ( A ,  L )  is a ic-like ordering, so we may choose a strictly in- 
creasing cofinal sequence d(a), a<cf(ic), in ( A ,  L) ,  such that for each a 
there are at least pa elements between d(a) and d(a + 1). Define a function 
F:A+cf(K) by letting F(b) be the least a such that L(b, d(a)). Then for each 
M, l F - 1 ( a + l ) 1 2 p m .  This puts us in a position to use Lemmas 1.6 and 1.7. 

C, is finite, so we may choose positive integers r ,  s large enough so that 
all the constants occurring in C, are among c i j ,  1 < i < s  and I G j d r .  Each 
element 

b = ( b l ,  ...) bs) = ( { b l l ?  ...) bl j - ]? . . . ,  { b s l , . . . ,  b s r ) ) ~ [ F ] ” ” ,  

with the b i j  written in increasing order with respect to L, determines an inter- 
pretation of the constants c i j  in %*. Denote the model %* with this inter- 
pretation of the constants by (%*, b). The notation o(b) will be used to mean 
that o holds in the model (%*, b), and similarly for terms. 

To prove the lemma it suffices to show that the set of all ~ E [ F ] ’ , ~ ,  such 
that a(b) for all OEZ,, is large (since Lemma 1.5 tells us that large sets are 
non-empty). It is easily seen that if u is of the form (a) or (b), then o(b) holds 
for all b ~ [ F ] ‘ 9 “ .  

We now consider sentences of the form (c). For each OEC, of the form 
(c), let f ,  be the function 

defined by 
f,: [F]””- ’  -+ Cf(ic) 

fu(b1 ,  .’., bs-1) = F(z(b i l j , ,  ... > binjn)), (1) 

where the term z(cil j , ,  . . . , cimjn) is described in (c). The definition is meaning- 
ful becausei,, ..., i ,d i - l<s- l .  Now let 

f :  [FIrTs- + Cf(K) 

be the pointwise maximum of the (finitely many) functions f,, where OEC, 
and u is of the form (c). By Lemma 1.6, the set 

So = { b ~ [ F ] ‘ ” ” : f ( b , ,  ..., b s - l )  < F(bs , ) )  
is large. 

partition class iff 
Let us partition So as follows. Two elements a, beSo are in the same 

{oEZ,: a(.)} = { o E Z O : o ( b ) ) .  

There are at most 2‘ partition classes, where t = lCol. Therefore, by Lemma 
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1.7, at least one of the partition classes, call it S,,  is large. Then there is a 
set Zl c Z o  such that for all UES,, 

Zl = (aEZo:a(u)}. 

We claim that Zl =Zo. Once this is established our proof will be complete. 
By a previous remark, all ad, of the forms (a) or (b) belong to Zl . 

Suppose aeCo has the form (c). Since Sl is large there exist 

p1 < . * a  < p, < * a *  < p z . ,  < cf(ti), 

b,  E [ F -  (&)Ir, . 3 h . s E  [ F -  (PZ.,)l '  
such that 

In particular, 
[FJ(bl u-*-u b*.s)]r'S c s, * 

<01, ... , b , ) ~ S 1 ,  u = (bi , . . . ,  bi-1, bs, ..., b 2 . , - i ) ~ S l .  

Since S, cSo, we have 

. f ~ ( ~ 1 7 . * . 7  b s - l )  Gf(b1?'..9 bS-l) < F ( b . y l )  = P S '  

Hence by (l), 

It follows that 
F(z(bilj1, ..., binjJ) < P s .  

L(~(biIj1,  ...) bi,j,), b s j ) .  

Therefore a(.) holds, and since UES,, OEZ,. 
Finally, let O E Z ~  be of the form (d), and such that c:,=, Ij,-l,J = 1. 

Suppose ts$Z,. Let q be the unique m < n  such thatj,+l,, and letjq+l = I l .  
To avoid double subscripts we shall hereafter write i'= i4, j '  =jq, I = I q .  Con- 
sider the following strategy for the player I in the game G(S, ,  s): 

pL,(P1,...,/?m-l)=r, if m f i ' ,  

p i r ( P 1 ,  ..., pi.-,) = 2 * ( r  + 1) -+ A ( & ) + + ,  

where A ( p )  is the number of predecessors of the element d(P) in the structure 
( A ,  L). To check that this is a strategy, we note that since ( A ,  L )  is d i k e  
and IC is a limit cardinal, 2 . ( r +  1) +I(&)++  is less than ti; also, i<i' by (d). 
Now S,  is large, so I has no winning strategy for G(S , ,  s). Hence there is a 
sequence pl, ..., p, of moves which wins the game for the player I1 against 
the above strategy. That is, there exist 

Yl E [ F -  (&)IP1, ..., Y,EIF-l (P,)]"s 
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such that 
[ Y J  x - . * x  [ Y S ] ' C S , .  

Since =2*(r+l)+1(/3i)++, there exist x, YE Yit such that in the ordered 
structure ( xt, L )  there are at least r elements before x, at least r elements 
after y, and at least A(&)' elements between x and y. There exists 

b ~ [ r J  x ... x [Ysjr 

such that biri. = x and bit,. = y.  For any z between x and y, let 

Therefore, i u(u) means 

L(t(z,) ,  bij) and t ( z l )  # t ( ~ 2 ) .  (3) 

Since (3) holds for all zl, z2 which satisfy (2), and since there are at least 
elements of yi. between x and y, the element bij  of A has at least 

l(pi)' predecessors with respect to L. But F(bij)=d(Bi), so L(bij ,  d(Bi)). 
Hence the element d(Bi) has at least l(ai)' predecessors. This contradicts 
the definition of l(pi) as the number of predecessors of d(fii). We conclude 
that OEZ, after all, and our proof is complete. 

Theorem 2.1 follows at once from Lemmas 2.3 and 2.5. 

3. Some consequences and extensions of the main theorem 

In this section we use Lemmas 2.3 and 2.5 and their proofs to get addi- 
tional information about ~-1ike models. We begin with a series of corollaries. 

COROLLARY 3.1. Let 1 be a singular strong limit cardinal. Then a theory 
r in 9 has a 1-like model iff r u Z is consistent. 
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COROLLARY 3.2 (Compactness theorem). Let I be a singular strong limit 
cardinal, and let r be a set of sentences of 9. If every finite subset of r has 
a I-like model, then r has a Mike model. 

For the case cf(I)>w, the above compactness theorem was proved in 
another way by FUHRKEN [ 19651. 

COROLLARY 3.3 (Completeness theorem). Let I be a singular strong limit 
cardinal. Suppose the language 2 is recursive (that is, the sequence of num- 
bers of places of the predicate symbols Po, PI, ..., is recursive). Then the set 
of all sentences of 9 which hold in all Mike models is recursively enumerable 
(and hence has a recursive set of axioms). 

PROOF: The set 2 is recursive. It follows from Corollary 3.1 that the set 
of all sentences of 9 which hold in all Mike models is just the set of all 
consequences of ,Z which belong to 9, and hence this set is recursively 
enumerable. 

Let us now consider models 

'u = ( A ,  U ,  L, Ro, R ,  ,...) 

where U is a subset of A (i.e. a unary relation). We say that A is a relatively 
ordered model iff the restriction of L to U linearly orders U. We say that A 
is relatively d i k e  iff 'u is a relatively ordered model and ( U ,  L )  is rc-like. 
All of our above results can be generalized to relatively d i k e  models. We 
indicate this generalization for Theorem 2.1. 

COROLLARY 3.4. Let K be a strong limit cardinal and let I be a singular 
cardinal. Then every relatively tc-like model has an elementarily equivalent 
relatively I-like model. 

PROOF: Let 'u be relatively d i k e .  By a theorem of TARSKI and VAUGHT 
[1957], 'u has an elementary submodel of power IC which contains U ,  and 
hence is also relatively d i k e .  So we may assume that A has power K .  Let G 
be a one to one function of U onto A ,  and define the binary relation L! on 

L'(G(u) ,  G(v)) iff L(u,u) .  

'u' = ( A ,  L', G, U ,  L,Ro, R,, ...) 

A by 

Then the model 

is d i k e .  Hence by Theorem 2.1 there is a I-like model 

!-8' = ( B ,  M ' ,  H ,  V, M ,  So,  S , ,  ...) 
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elementarily equivalent to a’. Since H maps ( V ,  M )  isomorphically onto 
( B ,  MI) ,  the reduct 

23 = ( B ,  v, M ,  so, s,  ,...) 
is a relatively Mike model elementarily equivalent to a. 

A general result of FUHRKEN [1964], [1965] shows that theorems about 
ic-like models can be reformulated as theorems about the quantifier “there 
exist at least ic” introduced by MOSTOWSKI [1957]. Given a language 9 and 
a cardinal K ,  a new language Q, is formed by adding to 2 the new quantifier 
symbol Q and interpreting Q as “there exist at least IC”. The set of all valid 
sentences of Q, is denoted by V,. (For details see FUHRKEN [1965].) A re- 
statement of our results in terms of the languages Q, is given in the next 
corollary. 

COROLLARY 3.5. (i) If K is a strong limit cardinal and I is a singular cardi- 
nal, then every set of sentences of Q, which has a Q,-model also has a Q,- 
model. 

(ii) If K is a strong limit cardinal and 1 is a singular cardinal, then V, c V,. 
(iii) If K ,  1 are both singular strong limit cardinals, then V,=V,. 
(iv) (Completeness theorem). If A is a singular strong limit cardinal and 

the language 2 is recursive, then the set V, is recursively enumerable. 
(v) (Compactness theorem). If 1 is a singular strong limit cardinal, then 

any set of sentences of Q,  which is finitely satisfiable is satisfiable. 
VAUGHT [1964] showed that V,, is recursively enumerable (and so is V,,, 

if 1 is regular and GCH). When cf(A)>o, the compactness theorem (v) 
above was proved by FUHRKEN [1965]. The analogue of Corollary 3.5 for 
the languages Q, without identity was proved by YASUHARA [1966]. 

Up to this point we have always assumed 9 to be countable. We shall 
now show that this assumption can be relaxed somewhat. 

THEOREM 3.6. Theorem 2.1 and all its corollaries still hold if the language 
9 is uncountable but has fewer than 1 symbols. 

PROOF : The proof of Lemma 2.3 still goes through as long as 9 has fewer 
than 1 symbols. Lemmas 2.4 and 2.5 obviously remain true with no restric- 
tion at all on the number of symbols of 9. For Lemma 2.5, to show that 
the theory of 3 is consistent with a finite subset ,Zo cZ, we can pretend that 
9 has only those predicate and function symbols which occur in C,. 

The completeness theorems for Mike models in the case of an uncountable 
language must, of course, be stated in terms of an appropriate notion of 
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recursiveness for uncountable sets. Our compactness theorem in the un- 
countable case for the language Q, may be stated as follows in the terminol- 
ogy of FUHRKEN [1965] : If A is a singular strong limit cardinal, then Q, is 
(p, 0)-compact for all p < A. FUHRKEN [ 19651 obtained ( p ,  o)-compactness 
for all p<cf(A). 

Another very natural quantifier, the “equicardinality” quantifier, was 
suggested by Chang. Let Q,, be the language which has the same symbols 
as Q,, but where the formula (Qx) q ( x )  holds in a model ‘11 if and only if 
the set of all U E A  such that clck cp [a] has the same cardinality as the set A .  
To avoid trivial complications we admit only infinite models. 

COROLLARY 3.7. (i) (Lowenheim-Skolem theorem). Suppose ic is a strong 
limit cardinal and 1 is a singular cardinal. Then every theory in Q,, which 
has a model of power ic has a model of power 1. 

(ii) (Compactness). (GCH). Any set of sentences of Q,, which is finitely 
satisfiable is satisfiable. 

(iii) (Completeness). (GCH). If the language 9 is recursive, then the set 
of all valid sentences of Q ,, is recursively enumerable. 

Part (i) holds if 9 has fewer than A symbols, while parts (ii) and (iii) hold 
with no restriction on the cardinality of 9. 

The arguments needed to  derive Corollary 3.7 from known results and 
our Theorem 2.1 are developed in FUHRKEN [1964], [1965], and SLOMSON 
[1967]. Therefore we omit the proofs. To obtain the completeness of Q,,, 
(iii) above, Craig proved that it is sufficient to  show that the set n, V, is 
recursively enumerable. Slomson pointed out that the recursive enumera- 
bility of nK V, follows at  once from the results of this paper and previous 
theorems (assuming the GCH). 

For other Lowenheim-Skolem theorems for Q,,, see SLOMSON [1967]. In 
two special cases, Corollary 3.7 was already known, even without the GCH: 
The case of Q,, without an identity symbol was done by YASUHARA [1966], 
and the case of Q,, with only monadic predicate symbols by SLOMSON [ 19671 ~ 

In each case, elegant complete axioms for the language are given. 
Our next theorem sharpens the conclusion of Theorem 2.1 by giving more 

information about the order type of the Alike model 23, and also shon s that 
23 can have large “homogeneous” sets. In an ordered model ‘11, a subset 
X c A  is said to be homogeneous (or indiscerKible) iff for any two finite 
sequences 

of elements of X which are both strictly increasing with respect to L,  the 

( X I 3  ..., X”), ( Y , ,  ”., Y,> 
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expanded models 
(% XI, * * * )  xn) and (% ~ 1 ,  *.., yn) 

are elementarily equivalent. (This notion is due to EHRENFEUCHT and MOS- 
TOWSKI [ 19561 .) 

THEOREM 3.8. Suppose K is a strong limit cardinal and I is a singular 
cardinal. Let 'u be a Ic-like model. Then there is a model 58 which is elemen- 
tarily equivalent to 3 such that- 

(i) 23 is I-like; 
(ii) ( B ,  M )  has a cofinal subset of order type I ;  

(iii) for each p < I ,  there is a subset Xc B of power p which is homogene- 

(iv) there is a cofinal subset YcB which is homogeneous in '23. 
Let K be any set of cardinals less than I such that inf(K)>,(K[ and 

sup(K)=I.Thenthe model 23 above may be chosen so that, if b, denotes 
the set of all predecessors of b in ( B ,  M ) ,  then 

ous in 58; 

(v) K={lb,l:b~B and inf(K),<Jb,l}. 
We shall give an outline of the proof. First we enlarge the set Z. Define A 

to be the set Z plus all sentences of 9** of the form 

(el q(c i l j , , .* . ,  c i , j , , ) t * ~ ( c k l l l , * . * ~  c k , l , ) ,  

where q ( q ,  ..., vn) is a formula of 9* and the two sequences of constants 
are similar in the sense of the preceding section. 

The proof of Lemma 2.5 may be improved to show that: If 'u is K-like 
then the theory of 3 is consistent with A .  This is done as follows. Consider 
a finite d o c A .  We define S, as in the proof of 2.5. Using Lemma 1.7, we 
obtain a large set S,  c S,  such that whenever a formula q-q' of the form 
(e) is in A ,  and a, beS,, we have q(a) iff q(b). It now can be shown that if 
QES,, then .(a) holds for all a~d,. 

The rest of the proof is like the proof of Lemma 2.3. Let 6 be the order 
type of < K ,  <) and let pu, c t t 6 ,  be an increasing enumeration of the set K.  
Let Z be the set of all integers (including negative integers). Form the lan- 
guage Y" by adding to .Y* new constants 

c < u > m ) p ,  x < 6 ,  m c z ,  P < P , .  

We then order the subscripts lexicographically, and form the set A" of all 
sentences of 9'' of the forms (a)-(e), with (cc, m)'s for the first index and 
P's for the second index. As in the proof of 2.3, the union of A" with the 
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theory of 'u. is consistent, and thus has a model 

S"= (By M ,  Ro, R , ,  ..., ..., b(,3,>p, ...) 
which is generated by the elements b,,,,,,. 

The proof that the reduct 23 of 23" is I-like is exactly as before. The elements 
b ( a , o ) p  form a cofinal subset of order type I ,  so (ii) holds. For each fixed a, 
the elements b(a,0>8 form a set of power p a  which is homogeneous in 23. 
Since the supremum of the cardinals pa is I and any subset of a homogeneous 
set is homogeneous, (iii) follows. The elements b,=, o> form a cofinal subset 
of 23 whichis homogeneous in 23, so (iv) holds. To verify (v), first observe 
that by (c), each element b,,,,,, has at least the p a  predecessors b ~ a , , - l ) y ,  
y < p a .  By (d), the element b,,,,), has at  most W . ( ~ ~ ~ ~ ~ J . ~ K I = ~ ,  prede- 
cessors, so it has exactly p a  predecessors. Finally, one shows that an arbitrary 
be B is either caught between some pair b,,,,, ,, and b(a, , o, whence it has 
exactly p a  predecessors, or else it is less than all the elements b,,,,,, whence 
it has at most IK( predecessors. Since Kis  exactly the set of all the cardinals 

Part (v) of the above theorem improves a result in KEISLER [1967a]. Theo- 
rem 3.8 above also holds for an uncountable language 9, with, say p sym- 
bols, provided that p < I and p dinf(K). 

We conclude this paper with an application to models of set theory. We 
shall use Lemma 2.3 and the proof of Lemma 2.5 to show that, for each 
singular cardinal 1, every complete extension of a certain theory Z C ( 9 )  has 
a I-like model. The theory Z C ( 9 )  is given by a set of axioms which may be 
described as Zermelo set theory with a choice function. 

Let our language 3 have a binary predicate symbol E, two unary function 
symbols R, C and possibly other predicate and function symbols (perhaps 
uncountably many of them). The theory Z C ( 3 )  has the following axioms: 

The axioms of extensionality, pairs, unions, infinity and power sets (our 
results below also hold if the axiom of infinity is left out); 

The axiom scheme of subsets with respect of all formulas of 9; 
The recursive definition of the set of all sets of rank less than u l ,  that is 

p a ,  c1 <a, (v) follows. 

(using standard abbreviations), 

( V u l )  (1 ord(u,)+ R ( u , )  = 0); 

(vu l )  [ord(ul)+ @%) [ u 2 E R ( u l ) o ( 3 u 3 )  ( U 3 E U 1  A v2 R ( v 3 ) > 1 ] ;  

the axiom of regularity in the form 

(VO2) (W (02 BR(V1)); 
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a strong form of the axiom of choice, namely 

( V U I ) ( U 1  = 0 v C ( U 1 ) E U , ) .  

The models of Z C ( 8 )  are not ordered models. Nevertheless there is a 
natural way to define the notion of a ic-like model as follows. A model % of 
ZC(9)  is said to be ic-like iff A has power IC but for all U E A ,  

J { x E A : % k x E R ( a ) } I  < K 

(that is, the set R(a)  has power less than IC as seen from the outside). 

THEOREM 3.9. Let A be a singular cardinal, greater than the number of 
symbols of 9. Then every complete extension of ZC(8)  has a Mike model. 

PROOF: Let us first define an appropriate linear ordering on ZC(9) .  Using 
the choice function, we can construct a formula cp< (u l ,  u 2 )  of 9 such that 
from ZC(8)  one can prove the axioms of linear order with respect to 
cp, (u l ,  u2) ,  and also the sentence 

W 2 )  lord(v2) + ( v u l >  ( c p < ( V l ,  u2)*u1 ER(U2))I - (1) 

The formula cp< ( u l ,  u 2 )  may be defined informally as follows. Either 
r(u,)<r(uZ),  or else r ( u l ) = r ( u 2 )  and Z(ul, u2) ,  where r (vJ  is the rank of u1 
(i.e. the least u3 such that ul cR(v,)), and I is the linear ordering of the set 
{ u 4 : r ( u 4 ) = r ( u 1 ) }  with r ( u l )  as least element, which is chosen by C. 

We may suppose without loss of generality that the language 8 has the 
extra predicate symbol P, and ZC(8)  has the extra axiom 

(b, u2)  (P<(Ul, U 2 ) + + ( P < ( U 1 3  V 2 ) ) .  (2) 

It is well-known that there is an expansion 9* of the language 8 and a 
theory TSkolem in 8* such that all the conditions (i)-(iv) for TSkolem hold and 
also : 

(i’) Every model % of ZC(8)  has a unique expansion to a model of 
TSkolemuZC(8*), and every formula of 8* is equivalent to a formula of 
8 with respect to TSkolem u ZC(8*).  

For example, the z-theory described in MONTAGUE and VAUGHT [1959] 
will do for TSkolem. 

Now let r be any complete extension of ZC(8),  and let % be a model of 
r. Then A is linearly ordered by the interpretation L of P,. Let %* be the 
unique expansion of 3 to a model of TSkolemuZC(8*). We wish to show 
that the theory of %* is consistent with the set C of sentences in the language 
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2**. To do this we must imitate the proof of Lemma 2.5 but compute 
cardinals within the model 2”. We have made no assumption about the 
power of A ,  but within a* the sets R(a) have power 2(0, a )  when a js an 
ordinal of 91”. The notion of a cardinal number may be defined in W*, using 
the definition due to Scott: define lul I to be the set of all sets of minimal rank 
which are cardinally equivalent to u l .  Then lull is given by a term in 9*, 
and the formula ( 3 ~ ~ )  (ul = I v , ~ )  says that u1 is a cardinal number. 

The natural approach is to have the whole model ‘II take the place of K, 
and have the class of ordinals of ‘u take the place of cf(K), in the proof of 
Lemma 2.5. The difficulty is that the order type of the ordinals of ‘u might 
not be “regular”. When the axiom scheme of replacement holds in 3, then 
it also holds in a* in view of (i’), and this difficulty does not arise. When 
replacement fails, we get around the difficulty in the following way. There 
is a term n(vl) of 2’* which maps a set a of ‘u* onto a proper class in the 
model W* (that is, there is no set in W containing all z(ul), u1 €a).  Then the 
term r(7c(uI)) maps a onto a cofinal class of ordinals of a*. It follows that 
there is a well ordered structure ( a ,  I )  in ‘u* which the term r(n(vl)) maps 
isomorphically onto a cofinal class of ordinals. The same holds for any co- 
final substructure of ( a ,  I ) .  Hence, by taking a cofinal substructure of mini- 
mal order type, we may get (a, I )  to be regular in the sense that any cofinal 
substructure of ( a ,  1 )  is isomorphic to ( a ,  I). Because of the choice function 
C, there is a term of 2* with no free variables which picks out such a struc- 
ture ( a ,  I )  in the model %*. 

Now let ord‘(u,) mean “ul is an ordinal”, if the axiom scheme of replace- 
ment holds in X, and let it mean “ul =r(z(v , ) )  for some U , E U ”  otherwise. 
Let F(u,) be the least u2 such that ord’(u,) and r (u1)<u2 ,  and define F-’ (0,) 

in the obvious way. Then F and F-’ are given by terms of 2* in the model 
a*. 

We now define the notion of a large sentence cp(cll,. . ., csr) of the language 
9**, corresponding to  our previous notion of a large set. For each cp and 
each positive integer p ,  we consider the game G ( q ,  p) .  Let 

a , ,  ..., a,, b , ,  ..., bpEA. (3) 

We say that player I1 wins the game G ( q , p )  iff the following formula is 
satisfied in the model ‘u* by the elements (3): 

( a l ,  ..., up  are cardinals) --f [ord’(b,) A ... A ord’(b,) A b,  <... < b,  
A ( ~ Y ~ E [ F - ‘ ( ~ , ) ] ~ ‘ , . . . ,  Y~~[F-~(~,)]‘~)(VX)(XE[F~(~~ U . . . U ~ , ) ] “ ~  

cp (.)>I . 
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We say that the sentence (P is large iff for all positive integers p ,  

%*l=Va13b, ... Va,3b, “I1 wins G(q,  p ) ” .  

In place of Lemma 1.6, one can prove: For each term 

z(c11,  ... Y C , - l , t )  

P< (T(C117 .*., C s - l , J 5  CSJ 

of 9**, the sentence 

is large. 

for all interpretations a of the constants of 2’** in %* we have 
In place of Lemma 1.7, one can prove: If a sentence of 8** is large and if 

(%*,a)l=(P++(P,, v . * *v  ( P n ,  

then one of the sentences qm, 1 <m<n, is large. 
Using the above two lemmas one can then prove that the theory of %* 

is consistent with Z. The three proofs are like the proofs of Lemmas 1.6, 1.7 
and 2.5, with only straightforward changes. We omit the details. It follows 
fromLemma 2.3 that there is a I-like ordered model B* elementarily equiva- 
lent to %*. Then %* is a model of r and also satisfies the sentences (l), (2). 
It follows from (l), (2), and the fact that B* is Mike that for each ordinal b 
of B, we have 

{ x E B : B * k x E R (b ) }  = {X E B : B * k P, (x, b))  , 

and the set on the right side of the equation has power less than I. It follows 
that the reduct B of B* to 9 is a Mike model in the sense of models of 
ZC(S), and is also a model of r. Our proof is complete. 

The above theorem also holds for models of Zermelo-Fraenkel set theory 
with a choice function, and for Zermelo-Fraenkel set theory with the axiom 
of constructibility. In the former case, the function R(u,) is definable, while 
in the second case a choice function C(uJ is also definable. From Theorem 
3.8 we see that every complete extension of ZC(8)  has a I-like model23 
which satisfies the stronger conclusions of that theorem. (First apply Theo- 
rem 3.9 above to show that every complete extension of ZC(2’) has a k--like 
model for some singular strong limit cardinal K, and then apply Theorem 
3.8.) Theorems similar to Theorem 3.8 for models of Zermelo-Fraenkel set 
theory are proved by KEISLER and MORLEY [1967]. 

Using Theorem 3.9, we can reformulate Corollary 3.1 with a more natural 
set of sentences in place of Z. Let 3 be a language which has among its 
predicate symbols the binary predicate symbol P, . Let 9 + {E, R, C }  be the 
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language formed by adding to 9 the binary predicate symbol E and the two 
unary function symbols R, C. 

THEOREM 3.10. Let 1 be a singular strong limit cardinal greater than the 
number of symbols of 9. Then a theory r in 2 has a I-like model iff r is 
consistent with the set 0 of sentences of 2 + {E, R, C }  given below: 

(a‘) the axioms of ZC(DLP+{E, R, C}); 
(b’) the axioms of linear order in P ,  ; 

PROOF: If r is consistent with 0, then the proof of Theorem 3.9 shows 
that r has a I-like model. We need only observe that for the proof of Theo- 
rem 3.9 it is enough that the linear ordering denoted by P ,  satisfies the 
sentence (1) for all sufficiently large ordinals u2.  

Suppose, conversely, that r has a Mike model. We show that r is con- 
sistent with @. Let K be a singular strong limit cardinal of the form 
~ = 2 ( 0 ,  a+w), where 2(0, a) is greater than the number of symbols of 9. 
Then by Theorem 3.8, with 

(c’) (3%) ( V U 2 )  [ord(uz) A % E U , + ( V ~ l )  (P< ( ~ 1 , ~ 2 ) C * ~ I E R ( ~ Z ) ) I .  

K = {2(0, CI + n ) :  n < w } ,  

r has a ic-like model 2l such that for each n<w there is an element U , E A  
with exactly 2(0, a+n) predecessors in the ordering L. Now consider the 
set R(a +w), which clearly has power 2(0, a +w). Each of its subsets R(ci +n) 
has power 2(0, a+n),  n<w.  Therefore there is a one to one function f of 
R(a+w)  onto 2l such that for all n<w,fmaps the set R(a+n) onto the set 
of all predecessors of the element a, in the ordering L andf(a +n)=a,. 

Let C be a choice function for the set of sets R(a +w), that is, a function 
of R(a+o) into itself such that if xS.0 then C(X)EX. Expand the model 2l 
by giving the symbols E, R, C the interpretations which they inherit from 
the E, R and C of R(a +a) under the mappingf. Then the expanded model 
is easily seen to be a model of ru 0, so ru 0 is consistent. 
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RECURSION THEORY AS A BRANCH OF MODEL THEORY1 

R. MONTAGUE 
University of California, Los Angeles, USA 

1. Introductory and historical remarks 

The desirability of generalizing the theory of recursive functions and 
relations has for some time been widely appreciated. The goal was to obtain 
notions of recursiveness, recursive enumerability, and the like which will 
have interest in connection not only with the natural numbers but also with 
structures of an arbitrary or almost arbitrary sort, nondenumerable as well 
as denumerable. 

To some logicians it has also appeared desirable to unify two of the 
dominant subfields of contemporary logic, model theory and recursion 
theory. It is of course possible by routine methods to translate the notions 
of recursion theory into the language of model theory; but to  do this in such 
a way that the translations will have a natural and simple model-theoretic 
content, and the methods of proof a common character with those of general 
model theory, has not heretofore been fully accomplished. 

The przsent paper seeks to fulfill both objectives. It contains a theory of 
recursiveness applicable to any model (or structure) whatsoever, and forms 
a natural branch of the general theory of definability within a model. I should 
mention several attempts to  fulfill the first objective, that of generalizing 
recursiveness, and to some extent also to fulfill the second (though they have 
perhaps been more successful in connection with the first than with the 
second). Three of the other attempts antedate mine, and one follows it. The 
chronological order appears to  be the following: FRA~SSB [1961] ; LACOMBE 
[1964] and [1964a]; KREISEL [1965]; the present theory for the special case 
in which a = H,, which was obtained in the fall of 1965 2;  and Moschovakis' 

1 The research reported here was supported in part by US. National Science Foundation 
Grants GP-4594 and GP-7706. I wish also to express my gratitude, for valuable criticism, 
to Mr. Lung-Ock Chung, Dr. Charles Howard, Drs. J. A. W. Kamp, Dr. P. E. R. Martin- 
Lof, Mr. Peter Tripodes, and especially Mr. Perry Smith and Mr. Barry Kurtzrnan. 
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theory of search computability, which was obtained in the spring of 1966 
and is reported in a forthcoming paper called ‘Abstract first-order compu- 
tability’. All the authors mentioned showed that their notions, when special- 
ized to the natural numbers, reduce to the standard notions of recursion 
theory. But a generalization of concepts is empty unless it permits general 
theorems; and only Moschovakis and I (in the spring of 1966 and the late 
fall of 1965 respectively) showed that generalizations of the standard theorems 
of recursion theory could be obtained for our respective theories. It turns 
out, however, that the five general notions mentioned, with suitable minor 
specializations in each case, are all equivalent. This surprising fact was shown, 
at different times and for different pairs of notions, in LACOMBE [1964a] and 
in unpublished work of Moschovakis and his student Mr. Carl Gordon; 
Mr. Gordon is responsible for the equivalences involving the present theory.3 

The present notions appear in one way to have amore natural intuitivecon- 
tent than those considered by other authors. In the case of the other notions 
there is at least on the face of things room for speculation as to whether the 
notions are sufficiently inclusive; one might wonder, for instance, whether a 
slight extension might lead to a more natural, or at least equally natural, notion 
of recursiveness. The present notions, however, have a very natural boundary 
- considered, it is true, in terms of definability rather than computability. 

The present theory is in one direction more general than the five theories 
mentioned above. Technically speaking, the additional generality consists in 
considering an arbitrary, or almost arbitrary, cardinal a in the development 
below, and not only the special case in which a=K,; the more general 
version was obtained in June, 1966, reported in a talk in Los Angeles on 
October 14,1966, and partially summarized in the abstract MONTAGUE [ 19671. 

The notions and theorems of the generalized arithmetical hierarchy are 
presented below. Proofs are omitted, as well as the statement of some of the 
less important lemmas. Some proofs are trivial; but others are not, and will 
be presented in a monograph now in preparation. The general notions can 
be extended in an obvious way so as to treat the analytic and higher-order 
hierarchies, as well as the theory of functionals and operators. The possi- 
bility of obtaining general theorems in these domains has not yet been much 

This theory (for a = NO) was presented in conversations during November and December, 
1965, to Dr. Charles Howard, Professor Yiannis Moschovakis, and several students. The 
first public presentation occurred in Stockholm on March 11,1966. 

Another general theory, of considerable interest but not fully meeting the requirements 
of the first paragraph of this paper, is to be found in KRIPKE [1964], [1964a] and [1964b]; 
in particular, Kripke’s theory, though not restricted to particular cardinalities, applies 
naturally only to structures of which the members are ordinals. 
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explored; I therefore content myself with a mere sketch, in an Appendix, 
of general notions applicable to operators and functionals. 

2. Preliminaries 

We consider an object language with the following symbols: 
(1) For each natural number n, a denumerable sequence uo, n, . . . , vk ,  ,,, . . . of 

variables of type n. (By an individual or set variable is understood one of 
which the type is respectively 0 or a positive natural number.) 

(2) For each finite sequence s of natural numbers, an unbounded sequence 
Po,,, . . ., P,,,, . . . of predicates of type s. 

( 3 )  The logical constants E, 1, A ,  v ,  [ , I ,  V (‘is a member of’, ‘not’, 
‘and’, ‘or’, left bracket, right bracket, ‘for some’ respectively). 

Speaking a little more formally, we make the following assumption: if 
n, n’, k,  k’ are natural numbers, s, s’ are finite sequences of natural numbers, 
a, a‘ are ordinals, the pair ( k ,  n }  # (k’,  n‘}, and (s, or} # (s’, or ‘ } ,  then the 
set {E,  1, A ,  v , [ , 1, V, u k , n ,  Vk?,n’ ,  Pa,,, Pa,,,.) contains exactly 11 members, 
each of which is a finite nonempty sequence, and none of which is a sub- 
sequence of another. 

All of our development will be based on this assumption, together with 
the axioms of von Neumann-Bernays (or Morse-Keiley) set theory, including 
the Axiom of Choice. The logical constants are understood to be E, 1, A ,  

v , [, 1, and V ; a variable of type n is a sequence 2 ) k , n ,  where k is a natural 
number; a variable is a sequence which, for some natural number n, is a 
variable of type n;  a predicate of type s is a sequence P,,,, where or is an 
ordinal; apredicate is a sequence which, for some finite sequence s of natural 
numbers, is a predicate of type s; a symbol is either a logical constant, a 
variable, or a predicate; and an expression is a sequence formed by the con- 
catenation of a finite nonzero number of symbols. It is clear that the predi- 
cates, and hence also the symbols and expressions, are too numerous to 
form a set. To say that one expression occurs in another, or that the second 
contains the first, is simply to say that the first is a subsequence of the second. 
Concatenation of sequences will be indicated by juxtaposition. 

Atomic formulas have the form Puo . . . u,- where P is a predicate constant 
of some type (k, ,  . . ., k,,- 1} and uo, . . . , u , - ~  are variables of types k,, . . . , kn- 
respectively, or the form U E U ,  where, for some natural number k, u and u are 
variables of types k and k +  1 respectively. 

Formulas in general are built up from atomic formulas in the usual way, 
using 1, A ,  v , brackets, and the existential quantifier. Quantification is to 
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occur in connection with both individual and set variables. The free and 
bound variables of a formula are to be characterized as usual. 

If n is any natural number, a any cardinal, and A any set, then the nth 
power set of A (relativized to a) is characterized by the following recursion: 

U O ~ " A =  A ,  
U"+'3aA =the set of all subsets of Un3"A which have cardinality less than a. 

If s= (ko ,  .. ., k,,-') and s is a finite sequence of natural numbers, then the 
set of all relations of type s over A (relative to a) is characterized as follows : 

R""A=the set of all subsets of the Cartesian product 
( p q )  x ... x (Ukn-', 'A).  

If a is again a cardinal, then an a-modelis an ordered pair ( A ,  F )  such that 
(1) A is a nonenipty set, (2) F is a function of which the domain is a set of 
predicates, and (3) F ( P ) E R " " A  whenever P is a predicate of type s in the 
domain of F. If% = (A, F ) ,  then by Lng,, or the language of 'u, I understand 
the domain of F. If in addition P i s  a member of Lng,, then Pa is to be F(P) .  
If further a is a cardinal and n a natural number, then U,",", or the universe 
of % of type n (relative to a), is U","A. We set U:=A=U:"'. 

Suppose that % = ( A ,  F )  and G is a function of which the domain is a 
set of predicates not in Lng,. Then qAG,  or 'u augmented by G,  is ( A ,  F u  G ) .  
If 'u is an a-model, and G ( P )  is in R""A whenever P is a predicate of type s 
in the domain of G ,  then 'uAG will also clearly be an a-model. An assignment 
in t?l (of values to variables, relative to a) is a function of which the domain 
is a set of variables and of which the value for a variable in that set of any 
type n is a member of U,",". 

Suppose that r#I is a formula, a a cardinal, 'u an a-model, and f an assign- 
ment in 'LI relative to a. Thenfis said to satisfy 4 in 'u relative to a if (roughly 
speaking; an exact recursive definition could be easily constructed on the 
pattern of TARSKI and VAUGHT [1957]) all predicates occurring in #I are in 
Lng,, all free variables of 4 are in the domain off, and r#I is true when (1) 
each free variable u of 4 is taken as denoting f (u), (2) for each natural 
number n, the bound variables of 4 of type n are taken as ranging over the 
set U,",", (3) each predicate P in r#I is taken as denoting P,, and (4) logical 
constants (including E) are interpreted as usual. 

Thus we have laid the basis of what might be called general weak higher- 
order logic; the name is suggested by the fact that if we set a=Ko and 
restrict attention to  formulas whose variables all have type 0 or 1, we obtain 
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what Tarski and others have called weak second-order logic. I t  should also 
be mentioned (though this will play no part in current considerations) that 
if a is chosen sufficiently large relative to the cardinal of U,", we obtain as 
another specialization the ordinary higher-order logic of 'u with finite 
types. 

The following notation will facilitate reference to finite assignments. If 
xo, ..., x, , -~  are distinct objects, then c...;:r:> is to be that function f of 
which the domain is {x,, ..., x,-J and which is such that f ( x i ) = y i  for all 
i<n. 

If % = ( A ,  F> then by R'.", or the set of typed relations connected with 
'u and a, is understood the set of pairs (s, X ) ,  where s is a finite sequence 
of natural numbers and XER"*"A. If RER"." and R=(s, X ) ,  then the type 
of R (also called zR) is s, and the extension of R (also called R*) is X.  By 

(s, ( U Z "  x ... x U z : , ) -  R*) ,  where s is the type of R and s= 
(k , ,  ..., k n - l ) .  If K is a set of relations connected with 'u and a, then C",.(K) 
is to be the set of complements I?"'" of relations R in K.  If R is a relation 
of type ( n ,  k ) ,  then 2, or the converse of R, is the relation of type (k, n )  
of which the extension is { (y ,  x) : ( x ,  y )  ER*).  

Now suppose that 4 is a formula and R a relation connected with 'u and a. 
Then I$ is said to dejine R in 'u (relative to a) if there exist natural numbers 
k,,  ..., k,,-l such that (1) the type of R is (ko ,  ..., k n - l ) ,  (2)  the free variables 
of 4 are in { v , , ~ ~ ,  . . ., v, - k,- ,}, (3) the predicates occurring in q5 are all in Lng,, 
and (4) R* is the set of sequences (xo, ..., x , , - ~ )  such that (2ko.- .  Xn-1 u n - l . k n - l )  

is an assignment satisfying I$ in 'u relative to a. If in addition K is a set of 
relations connected with 'u and a, then 4 is said to dejine R in 'u in terms 
of members of K (relative to a) if there is a function G such that (1) the 
domain of G is a set of predicates not in Lng,, (2) (s, G ( P ) )  is in K, when- 
ever P is a predicate of type s in the domain of G, and (3) 4 defines R in 
'u"G (relative to a). We say that R is dejinable in 'u (relative to a) if there 
is a formula defining R in 'u (relative to a), and dejinable in 'u in terms of 
members of K (relative to a) if there is a formula defining R in % (relative 
to a) in terms of members of K. 

An existential quant$cation of a relation R (relative to 'u and a) is a 
relation S which is defined in terms of members of {R) (in a, relative to a) 
by a formula of the form V u Px, . . . x,- where u, x,, . . ., x , - ~  are variables 
and P is a predicate constant not in Lng,; and Z","(K) is to be the set of 
existential quantifications (relative to 'u and a) of relations in the set K. 

, or the complement of R relative to 'u and a, we understand 13, a 
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It is a bit unpleasant to speak of typed objects rather than their extensions; 
but in connection with definability it is necessary to do so, or else to substi- 
tute another corresponding complication, as the following example may 
tend to  indicate. Let a be a cardinal greater than 0, and 'u: be an a-model 
such that U: contains A (the empty set) together with at least one other 
element, and such that Lng, is empty. According to the characterization 
above, ( (0), { ( A ) } )  is not definable in 'u: (relative to a); but { { l), { ( A ) }  ) 
is so definable, and indeed by the formula i V V ~ , , V ~ , ~ E  uo, Loosely 
speaking, we could describe the situation thus. The unit set of A ,  if regarded 
as a 1-place relation of individuals, is (like all other unit sets of individuals) 
not definable in 'u:; but it is definable in 'u: if it is regarded as a 1-place 
relation of sets of individuals. 

3. The basic notions 

Let us now construct a hierarchy of formulas. By @, or the class of 
elementary formulas, is understood the intersection of all classes r such that 
(1) Pu, ... u , - ~  is in whenever Pis apredicateconstant of type ( k , ,  . . ., k n - l )  
and each ui (for i<n)  is a variable of type ki, (2) [d, A $1 and [q5 v $1 are in 
r whenever q5 and $ are in r, and (3) V U [ U E U A  $1 and i V U [ U E U A  -141 
are in r whenever q5 is in I', u is a variable of type k (for some natural 
number k) ,  and v is a variable of type k + 1. Thus in elementary formulas all 
quantifiers are bounded by membership in given sets, and predicates occur 
only positively. If n is any natural number, the class C, of n-quantiJier 
existential formulas is introduced by the following recursion ; here we do 
not count bounded quantifiers. C, is the class of formulas i q5 for q5 in 
@; Cnfl is the class of formulas V u i  q5, where u is a variable and 4 is 
in Z,,. 

This is the main classification of formulas (and derivatively of relations; 
see below) in which we shall be interested. For restricted purposes, however, 
a more refined classification is sometimes needed. By @, or Z,z, , is understood 
the class of formulas in @ or Zn respectively of which all the variables have 
types less than k. 

Now given any model 2, any cardinal a, and any set K of objects con- 
nected with 'u: and a, we may form a classification of relations corresponding 
to our classification of formulas. In particular, if r is any class of formulas, 
r'*'(K) is the set of relations R such that, for some q5 in I', q!~ defines R in 2 
in terms of members of K (relative to a). 

Some additional categories of relations may also be introduced. For 
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instance, d: ," (K)  is to be the intersection of Z:*"(K) and C",a(Z:*n(K)), 
and A:: ( K )  the intersection of Zn",;p ( K )  and C"" (Z:7f(K)). Further, 
Q:'."(K) is to be A ~ . " ( K u C a 3 " ( K ) ) .  

Let us understand FO: (or the set of n-placejrst-order relations connected 
with 'u) to be the set of all pairs (s, B ) ,  where s is the n-place sequence all 
constituents of which are 0 and B is a set of n-place sequences of members 
of UF; and FO' (or the set ofjirst-order relations connected with 'u) to be 
the union of the sets FOY, where n is a natural number. Let Z, S be the 
predicates Po,(o) ,  Po,(o,o) respectively; and let '@ be the standard Peano 
model, that is, the model such that Lng,= {Z,  S}, U z  = the set of natural 
numbers, Z, = { (0)}, and S,  = {(x, x+ 1) : XEU;}. (Thus 2, is the 
property of being 0, and S,  the successor relation between natural numbers.) 

I suggest Q:,"(A)nFO' (= dT'"(A)nFO") as the general model-theoretic 
counterpart of the set of recursive relations, Sz.";'*"( {S})nFOa (where 
SEFO') as the counterpart of the set of relations recursive in the relation S, 
Z.";','' (A)nFO' as the counterpart of the set of recursively enumerable re- 
lations, and more generally Z:,"(A)nFO" (jf n> 0)  as the counterpart of the 
set of existential n-quantifier relations in the Kleene arithmetical hierarchy. 
This suggestion becomes reasonable in the light of t he  fact (which will be 
stated below in Section 9, after other theorems that would simplify its proof) 
that in the special case in which 'u= '@ and a =No ,  Q";" (A)nFO" coincides 
exactly with the usual set of recursive relations among natural numbers, 
@,"({S})nFOa coincides with the set of relations recursive in S (in the 
usual sense) whenever SEFO', and analogous identities apply to the other 
sets mentioned above. 

4. Elementary lemmas; the generalization of Post's Theorem 

We now make some assumptions which are to  act as implicit hypotheses 
of lemmas, theorems, and remarks. 

CONVENTION 1 (to be assumed through the remainder of this paper). (1) a 
is a cardinal greater than 2; (2) 'u is an a-model; (3) k ,  ..., r are natural 
numbers. 

Throughout this paper we shall keep in mind a fixed cardinal a and a fixed 
a-model 'u; accordingly, we shall frequently omit the superscripts 'a', "u' 
and the qualifications 'relative to a', 'relative to 'u' when it is these particular 
objects that are involved. 

The following theorem is completely obvious. 
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THEOREM 1. Suppose that K, LG R'"". Then 
(I)  K S Z ( K ) S  ~ ' 3 " ;  

(2)  K G @ ( K ) S R ~ , " ;  

( 5 )  C(C ( K ) ) = K ;  

(3) if K s L ,  then @ ( K ) s @ ( L ) ;  
(4) C(K)GR",";  

(6)  C(K)=U{C({RJ): REK);  
(7) Z ( K ) = U  { Z ( ( R ) ) :  R E K ) .  

The following theorem would require proof but is still simple. 

To continue our development we must make an additional assumption. 

CONVENTION 2 (to be assumed through the remainder of this paper). For 
each PELng,, <zP, Pa) EC'(Z',"(@','(A))). 

The import of this convention is that the complement of every primitive 
relation of '!X (that is, every relation represented in 'u by a predicate) is 
'recursively enumerable' in the generalized sense, that is, definable in 'u by 
an existential quantification of an elementary formula. It is easily seen that 
Convention 2 holds in the standard specialization : 

Remark 1 .  If %=p and a=Ko, then Convention 2 holds. 
It will follow from Theorem 24 below that the hypothesis 'a = KO' can be 

weakened to 'a> No'. 

THEOREM 3. If KGR',", then @ ( C ( Z ( @ ( K ) ) ) ) = C ( C ( @ ( K ) ) ) .  

The following obvious theorem provides, so to speak, a recursive defi- 
nition of the basic classes of relations in our hierarchy. Parts (3) and (4) 
repeat the explicit definitions of other classes of relations. 



RECURSION THEORY 71 

The remaining theorems of this section follow in a purely algebraic way 
from Theorems 1 4 ,  without resort to the meanings of the notions ‘R’”’, 
‘Z(K)’,  ‘@(K)’,  ‘C(K)’, ‘En@)’. 

THEOREM 5. Suppose that K,  L E  R”.”. Then 
(1) C(KnL)= C ( K ) n C ( L ) ;  
(2) if K E  L, then Z n ( K )  G Zn(L), d , ( K )  E d,(L), and Q,(K) E Q n ( L ) ;  

(3) C(dn ( K ) ) = d o ( K ) ;  
(4) C(Qn (K>>=Qn ( K ) ;  
(5) if C ( K )  E K, then SZ,(K)=d,(K).  

THEOREM 6 .  Suppose that K c R’”“. Then 
(1) @ (C(Zn ( K ) ) )  = c(Zn ( K ) )  ; 
(2) if n#O, then @(Zn(K) )=Zn(K) ;  

(4) if n # 0, then Cl (En ( K ) )  = Zn ( K ) ;  

(6)  if n#O, then dl(Zn(K))=dn(K); 
(7) if nfO, then d, ( d , ( K ) ) = d , ( K ) ;  
(8) if n f O ,  then Q,(Q,(K))=Q,(K); 
(9) i f p  is even, then Z,(K)  E C,+,(K); 

(3) ~1 (C(Zn(K)))=zn+l (Io; 
(5 )  dl (C(Cn(K)))=dn+, ( K ) ;  

(10) i f p  is odd, then C,,(K) E Zn+p(C(K)); 
(11) if n is even, then K G  C(Zn(K) ) ;  
(12) if n is odd, then K C  C, (K) .  

The following simple consequence is the general version of Post’s Theorem, 
according to which the relations recursive in n-quantifier relations coincide 
with the relations expressible in both (n  + 1)-quantifier forms. 
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The following theorem exhibits the connection between the present hier- 
archy - Zo (K) ,  C(Z, ( K ) ) ,  Zl ( K ) ,  C(Z, ( K ) ) ,  . .. - and a hierarchy of a more 
customary sort, based on the universal as well as the existential quantifier. 
Such a hierarchy would be expressed in the style of Addison as 

A",K), Zo,(K), G ( K ) ,  Z;(a..., 

while in our symbolization the same hierarchy would become 

Ql(K)? W , ( K ) ) ,  C(Z(C(Ql(K))>), Z(C(C(C(Ql(K))))),.... 

5. Some special relations 

By I,"," is understood the identity relation on U,",", that is, the pair ( (n ,  n) ,  
{ (x, x) : XE V,","}) ; and by E:," the membership relation of level n relative 
to 'II and a, that is, the pair ( ( n ,  n +  l), {(x, y ) :  ~EU,";: and x ~ y ) ) .  As in 
the previous section, we shall frequently omit the superscripts 'W and 'a'. 

THEOREM 10. If RER"", then R is definable in 2l in terms of members of 
K (relative to  a) if and only if there is a natural number n such that 
R E X ,  (Ku c ( K )  u { r,, I. ] ). 
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Remark 2. Suppose that K c R%"". If either Lng,# A or there exists R 

By {x} , ,  we understand the unit set formed from x and n levels higher than 
such that R,  R E K ,  then A ,  ( K ) # A .  

x ;  the notion is defined recursively as follows: 

{ .}O = x 7  

{ X } f l + I  = { {x l f l } .  
By ( x ,  Y),,,k is understood { { x } ~ + ~ ,  { { x } ~ ,  {y}, ,}},  which is an ordered pair 
primarily of interest when x has type n and y has type k ;  in that case the 
members of ( x ,  Y ) , , , ~  will have the same type and (x, y),,,k will have type 
n+k+2.  We say that u is an (n, k)-pair (connected with 'u and a) if u = 
( x ,  y) , ,k ,  for some XEU, and Y E & .  If u is such a pair, then I , , , $  is the 
unique object x such that, for some y ,  u = { x ,  Y)n,k;  and 2,,,ktd is the unique 
object y such that, for some x, u = ( x ,  y), ,k.  

LEMMA 3. (1) If F i s  the relation (connected with % and a) of type (n ,  
n, n+ 1) of which the extension is { (x, y ,  {x, y } )  : x,  ~ E U , , } ,  then F E  @({I, ,}) .  

(2) If F i s  the relation of type {k,  k+n) of which the extension is 

(3) If F is the relation of type (n, k, n+k+2) of which the extension is 

(4) If P is the relation of type {n+k+2) of which the extension is 

(5) If F is the relation of type (n+k+2,  n )  of which the extension is 

(6)  If F is the relation of type (n+  k+2,  k) of which the extension is 

The following lemma establishes a connection between the hierarchies 

{ ( x ,  {.}n> : x E V k } ,  then F E @ ( { z k ) ) *  

{ ( x ,  y ,  (x7 Y)n,k) xEva and uEuk), then F E @ (  {zn, I k } ) .  

{ ( u ) :  u i s  an (n,  k)-pair}, then PE@({Z,,, I , } ) .  

{ ( u ,  lfl,kU) : u is an (n,  k)-pair}, then F E @ (  {Z,,, & } ) .  

( ( u ,  2,,,u): u is an (n, k)-pair}, then FE@({Z,,, & } ) .  

associated with the same model but two distinct cardinals. 

LEMMA 4. Suppose that b is a cardinal less than or equal to a, K c R"', 
and L is the set of relations ( ( p ) ,  { ( x )  : XEU;, ' } ) ,  where p is a natural 
number greater than 0. Then C~,b(K)sC~,"(KuLuC"'"(L)) .  

6. Functional relations 

Suppose that R is a relation of type ( k , ,  ..., k,) connected with % and a. 
Then R is said to be a functional relation if y=z  whenever (x,, ..., x , , - ~ ,  y ) ,  
(x,, ..., x f l p 1 ,  z>ER*. DR, or the ryped domain of R, is that relation of type 
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( k ,  ,..., kn-l)  of which the extension is { ( x ,  ,..., x , , - ~ ) :  for some y ,  
( x , ,  ..., x , , - ~ ,  y ) e R * ) ;  and CIR, or the typed range of R, is that relation of 
type (k , )  of which the extension is { ( y )  : for some xo, .. ., x, , . -~,  (x,, ..., 
x , , - ~ ,  y ) e R * ) .  R is total (relative to % and a) if and only if (DR)*=Uk,  x 
..ax ukn-,. If R is a functional relation and ( x , ,  ..., x , , - ~ ) E ( D R ) * ,  then 
R(x , ,  ..., x , , - ~ )  is that object y such that ( x , ,  ..., x,, .-~,  y ) € R * .  

LEMMA 5. If F is a functional relation of type (k , ,  ..., km), then F E  - -  
c(zl({F, OF, I k m ]  1). 

THEOREM 11. If F is a functional relation of type ( k o ,  ..., k,,,), K E RSva,  
n#O, and DF, Ik,~C(.Z,(K)) ,  then FEZ,(K)  if and only if F E A , ( K ) .  

THEOREM 12. Suppose that R is a relation of type (ko,  ..., kr) ,  F is a 
functional relation of type ( p , , . . . , ~ , , - ~ .  kr), and S is that relation of 
type ( k o ,  .,., k r - l , p o ,  ..., P,-~) of which the extension is { ( x , ,  ..., x ~ - . ~ ,  
y o ,  . . . , Y, , -~  ) : ( y o ,  . . . , y , -  J E( DF)* and (x,, . . . , x,- 1, F (  Y ,, . . ., y,- ,)) ER*).  
Then SEZ, ( { F ,  R})nC(C,({F, R,  D F ) ) ) .  

- -  

THEOREM 13. Suppose that F,, . .., Fk-l are total functional relations of 
the respective types ( p , ,  ..., pnP1, q,), ..., ( p , ,  ..., P , , - ~ ,  q k - l ) ,  G is a total 
functional relation of type (q,, ..., qkb l ,  r ) ,  and H i s  that total functional 
relation of type ( p , ,  ..., P , , - ~ ,  r )  such that, for all x, ,  ..., x , - ~  in Up,, ..., 
Upn -, respectively, 

Then H E A ,  ( {Fo,  ..., Fk- 1, G ,  e}). 
H ( X o , . . . ,  xn-1)=G(Fo(x,, . . . ,  Xn-l) , . . . ,  F k - l ( X O , * . . ,  X n - 1 ) ) .  

7. Closure under inductive and recursive definition 

By the conjinality of a cardinal a is understood the least cardinal b such 
that there exists a set K of cardinality b of which the members are sets of 
cardinality less than a and of which the union has cardinality a. The cardinal 
a is regular if and only if it is its own confinality. 

CONVENTION 3 (to be assumed through the remainder of this paper). a is 
an infinite regular cardinal. 

We shall continue to deal with a fixed cardinal and a fixed model, and 
consequently for the most part omit reference to them. If R is a relation of 
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which the type is a 2-place sequence, we shall understand the assertions that 
xRy and that ( x ,  ~ ) E R *  as synonymous. 

The following basic theorem, from which most of the other theorems of 
the present section can be derived, concerns inductive definitions based on 
a binary relation < regarded as giving the intended ordering of the members of 
U."*". We mayjustify such definitions without imposing any assumptions on <. 

THEOREM 14. If < is a relation (connected with U and a) of type ( n ,  n} 
and R a relation of type ( k , ,  ..., k r - , ,  n+ 1, n) ,  then there exists a relation 
P of type (k , ,  ..., k r - l ,  n )  such that (1) P E E ,  ( { R ,  <, I , , } )  and (2) for all 
x,,  ..., xr - , ,  y in uk,, ..., Uk,-], U,, respectively, ( x , ,  ..., x ~ - ~ ,  y)eP* if and 
only if there is P E  U,,, such that 

(i) for all k e p ,  ( x ,  ,..., xrPl, k)EP* and k < y ,  and 
(ii) ( x o , . . . ,  x r - l , p , y )ER* .  

If R is, for some n, a relation of type (n ,  n ) ,  then R is said to be well- 
founded if, for every nonempty set A ,  there exists X E A  such that there is no 
Y E A  for which yRx .  To obtain the uniqueness of the relation of which 
Theorem 14 asserts the existence, we must assume that the intended ordering 
is well-founded. 

THEOREM 15. If the hypothesis of Theorem 14 holds, and in addition < is 
well-founded, then there is exactly one relation P of type ( k , ,  ..., kr..-l, n )  
for which Theorem 14 (2) holds. 

The next theorem generalizes the principle of course-of-values recursion for 
the introduction of functions. Rather than speaking in terms of a relation that 
orders the members of U,,, it is convenient here to associate with each XE U, a 
subset P ( x )  of U,, regarded as the set of predecessors of x. We must assume, 
however, the well-foundedness of the predecessor relation thus induced. 

THEOREM 16. Suppose that Pis a total functional relation of type (n ,  n + I), 
that ( ( n ,  n), { ( x ,  y )  : ~ E U ,  and x ~ P ( y ) } )  is well-founded, and that G is 
a total functional relation of type (ko,. . ., k r - , ,  n, n +p + 3, p ) .  Then 

(1) there is exactly one total functional relation F of type (k , ,  ..., k r - l ,  
n , p )  such that, for all x,, ..., xr-  ,, y in uk,, ..., Uk,.-], U,, respectively, 

~ ' ( X O , . . . ?  X r - l , Y ) = G ( x o , . . . , X r - l , y t  {(z,  F ( x o , - * . ,  xr-1, z ) ) " , p : ~ ~ P ( y ) ) ) ;  

(2) if F satisfies (I) ,  then FE A ,  ({ P,  G ,  I,, I,,, Ip' I , ] ) .  

The following theorem, like Theorem 14, concerns a form of inductive 
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definition, but one with the advantage that the relations introduced are 
recursive (in the generalized sense) in given relations (including the functional 
relation P which assigns to each object of appropriate type the set of all its 
predecessors). 

THEOREM 17. Suppose that Pis a total functional relation oftype (n, n+ 1>, 
that ( ( n ,  n ) ,  ( ( x ,  y )  : Y E  U, and x ~ P ( y ) } )  is well-founded, and that S is a 
relation of type (k,, ..., k,- , ,  n, n-t- 1). Then 

(1) there is exactly one relation R of type ( k o ,  ..., k,-, ,  n )  such that, for 
all x,, .. ., x , - ~ ,  y in U,,, . .., VkP, U, respectively, 

(xo ,..., x , - ~ , ~ ) E R *  ifandonlyif  ( x o  ,..., X ~ - ~ , Y ,  { z : ( x ,  ,..., x,- , ,z)fR* 
and Z E P ( ~ ) ) ) E S * ;  

(2)  if R satisfies (l), then REA, ( ( P ,  S,  3, I , } ) .  

8. Reductions in type 

A superficial acquaintance with weak higher-order logic might lead one 
to suggest a hierarchy of relations based on two features of their defining 
formulas - quantificational structure of the sort we have indeed taken into 
account, and the types of the variables quantified. The second feature turns 
out, however, not to provide interesting distinctions. Tn certain senses, and 
under the broad assumptions enumerated in the convention below, our 
standard hierarchy, based on the full weak higher-order logic, can be reduced 
to the corresponding hierarchy within weak third-order logic (that part of 
weak higher-order logic which involves variables of types 0, 1, 2 exclusively). 
This fact, which is embodied in Theorems 18, 19 and 20 below, will play an 
important role in obtaining generalizations of the enumeration and hierarchy 
theorems of recursion theory. 

CONVENTION 4 (to be assumed through the remainder of this paper). (1) F 
is a relation (connected with 'II and a) having type (1,O) and having as its 
extension a one-to-one correspondence between U?,. and a subset of U,". 
(2) For each PE Lng,, (z P, P,) E FOm. 

Convention 4(2) is of course satisfied by the standard model 'p; and if 
'u = 'p and a = K O ,  then there obviously exists F satisfying Convention 4(1). 
Convention 4( 1) does, however, impose certain limitations on the relative 
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size of a and the cardinal of U t ;  general observations on this point are given 
in the Remark below. 

The cardinals 1,, for a an arbitrary ordinal, are introduced by the following 
recursion : 
1, =go; 
if a is any ordinal, then 
if a is a nonzero limit ordinal, then 1, is the least upper bound of the 

We say that b is a limit beth if b = 1,, for some a that is either 0 or a nonzero 
limit ordinal. By b+ is understood the cardinal successor of b, that is, the 
least cardinal greater than 6. It is clear that no limit beth is a power of 2 
(that is, of the form 2', for some cardinal c), and that if we were to assume 
the Generalized Continuum Hypothesis, it would follow that every infinite 
cardinal is either a limit beth or a power of 2. 

= 2%; 

cardinals 1,, for y <a. 

Remark 3 .  Suppose that b is the cardinal of U;. Then 
( I )  there exists F satisfying Convention 4(1) if and only if a is less than 

(2) if c is a cardinal, b=2', and a<c+, then there exists F satisfying 

( 3 )  if b is a limit beth, then there exists F satisfying Convention 4(1) if 

(4) if a < K , <  b, then there exists F satisfying Convention 4(1). 
This remark can be strenghthened: in the cases covered by parts (2) and 

(3) (and hence in that covered by (4)) we may assert the existence of a one- 
to-one correspondence which satisfies not only Convention 4( 1) but also 
the condition (which will play a part below) that the image within U t  of 
the membership relation is well-founded. 

Remark 4. Suppose that b is the cardinal of U t .  If either (1) b=2' and 
a<c+, for some cardinal c, or (2) b is a limit beth and a is less than or 
equal to the confinality of b, then there exists F satisfying Convention 4(1) 
and such that ((0, 0), { ( x , y ) : ( y ) ~ ( a F ) *  and x ~ P ( y ) } )  is well-founded. 

With the correspondence F and each natural number n we may associate 
a correspondence F(", (or Fgja if we wish to  render explicit the dependence 
on '2l and a) characterized recursively as follows: 

or equal to the least cardinal c such that b < 6'; 

convention 4( 1) ; 

and only if a is less than or equal to the confinality of 6 ;  

F(, ,  = 1:; 
if n is a natural number, then F(n+l) is a total functional relation of type 

( n + l ,  0) such that, for each aEU,,+,, F(,+,,(a) = F({F(,)(b):  bEa}). 
If U E  U,,, we may think of F(,,)(a) as that member of U ,  which 'represents' a ;  
notice that F(l) = F. If R is a relation of type ( k , ,  . . ., k r p 1 ) ,  then by R,, or 
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thefirst-order reduction of R according to F, is understood that relation in FO, 
of which the extension is {(F(ko)(ao), ..., F(kr-l)(ur-l)): (ao, ..., U ~ - ~ ) E  R*}. 

THEOREM 18. Suppose that n#O and KER",'. 
(1) If RE&, ( K ) ,  then R F ~ Z , , 3  ( { S F :  S E K } U { F ,  F, a}). 
(2)  If REC(Z, ( K ) ) ,  then R,EC(Z,,, ( { S F :  S E K } U { F ,  p, G I ) ) .  

THEOREM 19. Suppose that n#O and KE R','. Then 

(2) C ( Z n ( K ) ) n F O ' ~ C ( Z , , ,  ( { S F :  S E K ) U { F , F , ? ~ @ } ) ) .  
(1) zn ( K ) ~ F O % Z ' , , ~  ({sF: S E K }  u {F, F, a}), 

THEOREM 20. Suppose that n#O and K C  FO'. Then 

(2) C(Z, (Ku {F, F,G}))nFO"sz C(Z,,3 ( K u  { F ,  F, E})). 
(1) Z,(KU{F, F, G})~Fo"Gz,,, (KU {F, F,-}), 

9. SpeciaIization to the standard model 

It is the object of the present section to show that in the standard case 
in which 'u =q and a = N o  the notions of our general hierarchy specialize 
to the expected notions of ordinary recursion theory. 

By J ,  K,  L are understood the Cantor pairing functions, defined as follows 
for arbitrary natural numbers x, y ,  z :  

J ( x ,  Y )  = *((x+y) . (x+y+ 1)) + x, 
K ( z )  = the unique natural number x such that, for some natural 

L ( z )  = the unique natural number y such that, for some natural 
number y ,  z = J ( x ,  y), 

number x, z = J (x, y).  
Let us call x a quasi-member of y if x, y are natural numbers, x < K ( y ) ,  and 
L(L(y ) ) . ( x+  1)+ 1 divides K ( L  ( y ) ) .  We say that a natural number y 
represents a$nite set if (1) K ( y )  is the least natural number such that every 
quasi-member of y is less than K(y) ,  (2) L ( L  ( y ) )  is the least natural number 
which is different from 0 and is a multiple of all nonzero natural numbers 
less than K ( y ) ,  and (3) K ( L ( y ) )  is the least natural number which is 
different from 0 and is a multiple of all numbers L ( L  (y)).(x+ 1) + 1 for 
which x is a quasi-member of y.  Let s be the natural enumeration of the 
numbers representing finite sets (that is, the function enumerating them in 
increasing order). By Rep we understand that relation of type (1,O) con- 
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nected with 9 and No of which the extension is ((a,  y ) :  aEUr.Ko, ~ E U : ,  
and a = {x: x is a quasi-member of s ( y ) } } . 4  

LEMMA 6. If Yl =g, a = KO, and F =  Rep, then Convention 4 is satisfied. 

If R is any relation connected with 9 and KO, we may thus speak of the 
first-order reduction RE:' of R according to Rep. 

THEOREM 21. If SER'.'' and REQY~" ( { S } ) ,  then RE;:' is recursive in 
Sz;? (in the ordinary sense of 'recursive in'; see DAVIS [1958]). 

THEOREM 22. If R, SEFO', then R is recursive in S if and only if 
RERY*'O ( { S } ) .  

LEMMA 8. Rep~A!f"o(A). 

If R E F O ~ ,  then Z: ( R )  or I7: ( R )  is to be understood as the set of first- 
order relations that are respectively Z: in R or Il: in R ,  in the sense of the or- 
dinary Kleene arithmetical hierarchy; for a characterization see DAVIS [1958], 
where, however, the less customary notations 'P:' and 'Q,"' are used instead. 

THEOREM 23. Suppose that R E  FO' and n # 0. Then Z," ( R )  = 
Z:z"o ( {R,  R'"')) n FO', and I7: ( R )  = C'"' (C:"' ( {R,  R"*"})) n FOP. 

The following useful theorem, together with its lemma, is due to Mr. Perry 
Smith. 

LEMMA 9. If R is that relation of type (0,O) (connected with !J3 and KO) 
of which the extension is ((x, y )  : x, y are natural numbers and x< y }  and 
b is any infinite cardinal, then RE AT.^ (A) .  

THEOREM 24. If b is any infinite cardinal, n#O, and KG R'.'O then 
Cr9"' ( K )  s Z:3b ( K ) .  

At least one other kind of specialization holds some interest; and this 

We may read 'Rep(u)' as 'the representative of the set a'. This definition depends 
ultimately on ideas of Godel, but more immediately on those of TRIPODES [1963]; 
the present form was developed by the author in connection with criticisms of Drs. 
J. A. W. Kamp and Messrs. Lung-Ock Chung and Perry Smith. 
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occurs when we consider, in place of 9, various natural models of set 
theory (in the sense of MONTAGUE and VAUGHT [1959]). We can obtain, 
for example, all the general principles of set-theoretical recursion in 
MONTAGUE [1955] as special cases of theorems in Section 7; and the hier- 
archy theorems of Section 11 below have consequences that overlap with 
certain results in Levy 119651. We shall not, however, go into any details here. 

10. Recursive functions of expressions 

A comprehensive treatment will not be attempted here; we present only 

Iff is a function with domain A ,  n a natural number, and b a cardinal, 
as much material on these functions as will be needed in the next section. 

let us introducef"Yb by the following recursion: 
f " b  = f ;  
fn+l ,b  is . that function with domain U n + l * b  A such that, for each 

Let us introduce fS;', for any finite sequence s of natural numbers, as 
follows: 

if s = ( k , ,  ..., kn- l ) ,  then f s ; b  is that function with domain 

X E D T " + ~ ~ b A , f " + ~ ~ b ( X )  = { f " . b ( a ) :  E X } .  

Rs*b A suchthat,forallXERS~bA,f";b ( X )  = { ( f k o a b  (a,), . . . , f"- 1 ,  (an-& : 
(a,, ..., a , - d E X } .  
T h u s T x b  and f are the natural transformations induced by f of U",'A 
and R S T b A  respectively. 

We say that f is an isomorphism from 23 to 0: if there is a cardinal b such 
that B, E are b-models, Lng, = Lng,, f is a biunique function, the domain 
off is U:, the range off is U;, and whenever P is a predicate of type s in 
Lng,, PK = ,f";"(P,). If b is a cardinal and 23, E are b-models, we say that 
23 is recursively embedded in (5 by f (relative to b) if there is a b-model 33 
such thatfis an isomorphism from 23 to 33, ((0), { ( x ) :  X E U ~ } ) E A ? ~  ( A ) ,  
and for each PELng,, (TP, P, )~dF>~( i l ) .  If RER'~'A and f is a function 
with domain A ,  then Rf, or the image of R underf, is understood to be 
(S,fs;b (4). 

LEMMA 10. Suppose that b is a cardinal, n#O, 23, (5 are b-models, and 23 

(1) If REZ:'~(A) ,  then R f ~ Z > b ( A ) .  
( 2 )  If R E C ~ , ~ ( Z . : , ~ ( A ) ) ,  then R f ~ C C 2 b ( Z : 7 b ( A ) ) .  

If P is the predicate Pa,,, where CI is an ordinal and s is the sequence 
(k,,, ..., k n - l )  of natural numbers, then the index sequence of P is to be 

is recursively embedded in E byf(re1ative to 6). 



RECURSION THEORY 81 

(a, k,,  ..., k, , - l ) .  We say that a predicate P alphabetically precedes a predi- 
cate Q if the index sequence of P precedes that of Q in the usual lexicographic 
ordering of sequences of ordinals. 

Suppose that L is a finite set of predicates. By an L-expression is understood 
an expression such that all predicates occurring in it are in L, and the alpha- 
betic ordering corresponding to  L is that well-ordering relation of which the 
field is the set of L-expressions that are symbols and which is given by the list 

where L = {Q,, ..., Q,-,} and Qi alphabetically precedes Q j  whenever 
i < , j  < n. By (3 (L) is understood the standard model formed by the L-expres- 
sions, that is, that model such that, for some S,  R, C, (1)  S =  P1,(,), 
R = Pl,(o,o,, C= Pl,co,o,o), (2) Lng,(,) = { S ,  R, C } ,  (3) u:(L) is the set of 
L-expressions, (4) Se(,)  = ( ( 5 )  : C E  U t ' L )  and C is a symbol), (5) RE(&) is 
the alphabetic ordering corresponding to L, and (6) CE((L) is the concatenation 
function for L-expressions, that is, ( ( l ,  q, 5 ~ )  : 5 ,  ~EU:(~)}.  

At this point we must consider Godel numberings of the L-expressions 
- that is, biunique correspondences, between the L-expressions and certain 
natural numbers, under which the images of certain syntactical relations are 
recursive. In particular, if L is again a finite set of predicates, we understand by 
an L-numbering a function which recursively embeds @(L)in ip (relative toN,). 

Qo,... ,  Q , - ~ , E ,  7 ,  A ,  1 3  1 7  V, u0.0 ,  V O , ~ ,  V I , O ,  U O , Z ,  ~ I , I , . . . ,  

LEMMA 1 1. If L is a finite set of predicates, then there exists an L-numbering. 

As far as the recursiveness of relations among expressions is concerned, 
the particular choice of a Godel numbering is immaterial; it is easily shown 
by methods of MONTACUE [1957], Chapter 4, that if g, g' are two L-number- 
ings and R a first-order relation among L-expressions, then R g ~ A ~ ' K o  ( A )  
if and only if R g ' ~ A ~ 3 " o  ( A ) .  The following lemma could be inferred from 
this fact (which would not otherwise be used in the present paper), but can 
also be proved directly. 

LEMMA 12. Suppose that L is a finite set of predicates, g is an L-number- 
ing, C is an L-expression, and R is either 

((0), { ( u ) :  u is a variable of type n } ) ,  
((0), { ( u ) :  u is a variable}), 
((0), ( ( 4 ) :  ~ E U : ' ~ )  and 4 is a formula}), 

((O)? {<C>>>, 

((O), ( ( 4 ) :  4 E @ n  uoa(L)D, 
((O), ( ( 4 ) :  4 G n  u,"'"'>>, 
( (0 ,  O), ((9, v> : q E  ~,"'"'>>> 
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( ( 0 ,  0), { (u ,  4 ) :  C$E U,"(L), 4 is a formula, and u is a free variable of 4} ) ,  
( (0 ,  0), {(q, 0): q, OEU,"(~) and, for some symbol K, r]  = O K } ) ,  
((0, 0), ((9, K): there exists O such that q, 13EU,"(L), K is a symbol, and 

= OK)). 
Then Rg~AFf,'O (A) .  

If [ is any expression, then Oc(C) is to be the set of expressions occurring in C. 

LEMMA 13. Suppose that L is a finite set of predicates, g is an L-numbering, 
and R is the relation ((0, l) ,  {(C, Oc(()): C E  U,"'"'}). Then R g ~ A ~ , ' O  (A) .  

11. Enumeration and hierarchy theorems 

We assume the following in addition to Conventions 1 4 .  

CONVENTION 5 (to be assumed through the remainder of this paper). 
There exist distinct predicates P, Q,  R of the respective types (1, 0 ) ,  
( 1 ,  0), (0) and not in Lng, such thatfrecursively embeds (relative to a) the 
model in the model 'uA($gi), where G = Fa,'' and H = 

XEP ( y ) } )  is well-founded, then there existsf satisfying Convention 5. 
THEOREM 25. Ifeither(1) a =  N o  or(2) ( ( 0 ,  0), { ( x ,  y ) :  ( y ) e ( a F ) *  and 

In connection with condition (2), compare Remark 4 above. 
The following lemma is an immediate consequence of Convention 5, 

LEMMA 14. If REA?~'O (A), then R f ~ A y 3 "  ( {F,  F ' , " , ~ " , " } ) .  

CONVENTION 6 (also to be assumed through the remainder of this paper). 
(1)  Lng, is finite; (2) g is a Lng,-numbering. 

By a special assignment (in 3, relative to a) understand an assignment of 
values to variables (in 'u, relative to a) of which the domain is a finite set of 
variables of types less than 3. If h is such an assignment, we understand by 
h ( f 1 g )  the set {( f ( g ( u ) ) ,  { { h ( ~ ) } } ) , , ~  : u is a variable of type 0 in the domain 
of h )  u { ( f ( g ( t t ) ) ,  { h ( ~ ) } ) ~ , ~ :  u is a variable of type 1 in the domain of 
h } u  { ( f ( g ( u ) ) ,  h ( ~ ) ) , , ~ :  u is a variable of type 2 in the domain of h}. 

Theorem 24, and Lemma 10. 

LEMMA 15. ( 1 )  If h is a special assignment (in 'u, relative to a), then 

(2) If R is the relation of type (5, 0) of which the extension is {(?I(~*~', 
f ( g ( 4 ) ) ) :  4 d 3 ,  h is a special assignment (in 'u, relative to a), and h 
satisfies 4 in 'u (relative to a)}, then REAY,"({F,  F, ClF, I , ,  I,}). 

h(/dz), u;.''. 

_.- 
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(3) If n#O and R is the relation of type (5, 0) of which the extension is 
{ ( h ( f ~ g ) , f ( g ( + ) ) )  : + E C , , ~ ,  h is a special assignment, and h satisfies + in % 
(relative to  a)}, then REC;'"( {F, F, a F ,  I,, I,}). 
(4) If n#O and R is the relation of type (5, 0) of which the extension is 

{ ( h ( f , g ) , f ( g ( i + ) ) )  : ~ E Z , , ~ ,  h is a special assignment, and h satisfies i q 5  

in %. (relative to a)}, then REC"." (C;," ( { F ,  F', z, I,, r})). 
(5) If R is the relation of type (5, 0) of which the extension is { ( h ( f 3 g )  

f (g(4))) : either +€ZnV3 or += i ty for some WEC,,,, h is a special assign- 
ment, and h satisfies + in 'u (relative to a)}, then REA;;", ( { F ,  F, =, I,, I,}). 

The following three theorems generalize the ordinary enumeration 
theorems for the Kleene arithmetical hierarchy. 

- -  

- -  
THEOREM 26. Ifn#O, then there is T € Z , , ( { F ,  F, a F ,  I,, I,})n FO,,, such 

that for each REZ,(A)nFO, there exists y in the range o f f  for which 

THEOREM 27. If n#O, then there is T € C ( C , ( { F ,  p, G, I , ,  I ; } ) ) n F o k + ,  
such that for each REC(C, , (A))~FO,  there exists y in the range off for 
which R* = { ( x ,  ,..., X k - , ) :  ( y ,  X ,  ,..., xk- , )ET*} .  

THEOREM 28. If n#O, then there is T E A ~ + ~ ( { F ,  F, G, I,, &})n FOk+l 
such that for each R E  [&(A) u C (Z,(A))] n FO, there exists y in the range 
off such that R* = { ( X , ,  ..., & - I )  : ( y ,  X O ,  ..., X k - I ) € T * } .  

By Sing", or the set of singktons from %, is understood the set of all 
relations of the form ((0), {( y ) } ) ,  where Y E  U:. We cannot show that all 
singletons from % are 'recursive' relative to % and a (that is, in A Y 9 "  ( A ) ) ;  
indeed, this assertion will certainly fail if U: is uncountable. It is not un- 
natural, however, to consider also recursiveness in terms of the set of single- 
tons from %, and accordingly a hierarchy C,(Sing'), Cl(Singn-'), ... which 
corresponds to definability in terms of elements. All finite first-order re- 
lations connected with 'u and a will obviously be in A,  (Sing"); further, we 
have for this hierarchy the following analogues to Theorems 26-28. 

 THEOREM^^. If n#O, then there is T€C, ( {F ,  F, G, I,, 6))nFOk+,  
for which R*= 

R* = { ( X O ,  ... 9 X k - 1 ) :  (v, X O ,  ...) X k - I ) € T * } .  

such that for each REZ,(Sing")nFO, there exists 
{(XO, ..., X k - 1 )  (y7 XI), ..., X k - i ) E T * } .  

THEOREM 30. If n#O, then there is TEC(C,({F, F, aT I,, G}))nFO,+l 
such that for each R E  C (C,(Sing")) n FO, there exists Y E  U," for which 
R* = { ( X O ,  ..., X k - 1 ) :  (v, X g ,  ..., X k - l ) E T * } .  
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THEOREM 31. IfnfO, thenthereexists T E A n + l ( { F , F ,  m, I,, c})nFOk+l 
such that for each R~[Z, , (Sing~)uC(C, , (Sing~))]nF0~ there exjsts ~ E U ;  
for which R*= { ( x ,  ,..., ~ k - ~ ) :  ( y , x o  ,..., x ~ - ~ ) E T * } .  

From the enumeration Theorems 29-3 1 we may infer several hierarchy 
theorems asserting that at each level of our hierarchy first-order relations 
appear that appear at no lower level; this will happen, according to Theorems 
32-34, whether or not our hierarchy is based on the singletons from %. 

THEOREM 32. Ifn,  kfO, then [,Zn({F, F, z, I,, G}) - C(Zn(Sing'u - -  
{F, p,  a F ,  10, I o } ) ) ] n F O k f n .  

- -  
THEOREM 33. If n, k#O, then [C(Zc , ( {F,  F, (IF, I , ,  I,))) - Z,(Sing"u 

_.- 

{F ,p ,  aF? I, ,  IO} ) InFok fn .  

THEOREM 34. If n, kfO, then [A ,+ , ( {F ,  F, ay I,, I,)) - (Z,(Sing"u 
{F,  F, z, I,, &})uC(C,(Sing'Uu{F, F, G, I,, ~})))]nFO,#A. 

We can simplify these formulations if we are willing to assume that I ,  is 
'recursive' with respect to % and a, and that there exists a 'recursive' F 
satisfying our conventions. 

THEOREM 35. If n, k#Oand F, (IF,  I o ~ A l ( A ) ,  then the following sets are 

[z,(A) - c  sing"))^ n FOk? 

nonempty : 

[c (cn(n)) - Zn(Singa)] F O k ,  

[ A n  + 1 - (cn (Sing'U) u ( E n  (Sing'U))) 1 Fok. 

The hypothesis of Theorem 35 may be weakened: we need only assume 
that F, a F ,  I. occur somewhere in our hierarchy. In that case, however, we 
are not permitted to infer the existence of first-order relations. 

Appendix: functionals and operators 

By a reIationaI type is understood a finite sequence (so,. . ., s , , - ~ )  such that, 
for each i t n ,  si is either a natural number or a finite nonempty sequence of 
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natural numbers. By a typed relation connected with 3 and a is now under- 
stood a pair ((so,. .., s,-~), X ) ,  where (so, ..., s,-~) is a relational type and 
XE Vo x ... x Vnel, where, for each i<n, either si is a natural number and 
Vi= Us"f+' or si is a finite sequence of natural numbers and Vi= RE,". 

If s is any nonempty finite sequence of natural numbers, we add to our 
symbolism predicate variables Q,,,, . . ., Q,,,, .. . of types.  We correspondingly 
enlarge the class of formulas and the classes Zo, C,, . . ., allowing predicate 
variables of a given type to occur in the same way as predicate constants of 
that type. (In particular, predicate variables will not be quantified.) We 
extend the notion '4 defines R in 3 relative to a' in the natural way so as to 
apply to all formulas of the larger class; the relations defined may now be 
of arbitrary relational type. We obtain, of course, a corresponding enlarge- 
ment of the sets Zf?" ( K ) ,  Z:," ( K ) ,  ... ; these sets I propose as giving an 
appropriate classification not only of relations among individuals but also 
of relations having relations as relata. 

I shall confine myself here to showing how to express the usual notion of 
a recursive functional in these terms. The situation is complicated, however, 
by the fact that the literature contains several such notions, differing only 
in minor respects ; it will therefore be necessary to state several equivalences. 
Here we understand PF to be the set of partial functions, that is, the set of 
functional relations in Fog, and TF to be the set of totalfunctions, that is, 
the set of relations R in PF for which (DR)* = {(x) : XEU:}. 

Suppose that 9 is a relation of type ((O,O), 0,O) connected with 'p 
and KO. Then -9- is a recursive partial functional in the sense of SHOENFIELD 
119671 if and only if 9 is a functional relation and there exists 9 2 ~ C y " ~  ( A )  

Suppose now that 9 is a relation of type ((0, 0), 0) connected with 'p 
and No, and that KE PF. Then F is a partial recursive functional on K, in 
the sense of POUR-EL [1960], if and only if 9 is a functional relation and 
there exists W E C ~ ~ ' O  ( A )  n R7<:,O0,>,,) for which F* =9?* n ( K  x U,"). 

Suppose again that K E PF, but that 9 is a relation of type ((0, 0), (0,O)) 
connected with 'p and KO. Then 9 is a partial recursive operator on K, in 
the sense of POUR-EL [1960], if and only if 9 is a functional relation, 
(DS)* = {(G): G E K } ,  (aF)* _c {(G): GEPF}, and there exists WECY'O 
(A)nR7$,00),0,0) for which {(G, x ,  y ) :  G E K  and (x, y)€F(G)} = 
9* n (K  x U: x u:). 

Suppose again that 9 is a relation of type ((0, 0), (0,O)) connected with 
9 and KO. Then S is a partial recursive functional in the sense of KLEENE 
[1952] if and only if* is a partial recursive operator, in the sense of POUR-EL 

R'P, ' 0  <(o, o), o, o)  for which S* = B* n (TF x U," x U:). 
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[1960], on some subset of PF; and 9 is a general recursive functional in the 
sense of KLEENE [1952] if and only if 2F is a partial recursive operator, in 
the sense of POUR-EL [1960], on the set TF, and in addition (CIS)* G { ( C )  : 
GETF). 

Suppose, however, that 2F is a relation of type ((O), (0)) connected 
with '$3. In this case F is a general recursive functional in the sense of 
KLEENE [I9521 if and only if F is a functional relation, ( D ~ ) * = R : $ ~  
and the relation of type ( ( 0 ) ,  (O),O) of which the extension is 
{ ( A ,  Kg4.Ko, x): A E R T ~ ~ O  and ( x ) ~ s ( A ) )  is a member of L I ~ , ~ " ( A ) .  

It is possible also to treat recursive objects of higher types within a natural 
(though not quite automatic) extension of the present framework. 
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CRAIG’S INTERPOLATION THEOREM 

IN SOME EXTENDED SYSTEMS OF LOGIC 

A. MOSTOWSKI 
Polish Academy of Science, Warsaw, Poland 

The aim of this paper is to discuss some extensions of the predicate 
calculus and the status of the well-known interpolation theorem of Craig in 
these logics. We shall use some results of the descriptive set theory in order 
to show that the interpolation theorem fails if certain not too narrow general 
conditions are satisfied, In the final section we make some observations on 
the status of Beth theorem in extensions of the predicate logic. Our results in 
this direction are very incomplete and the subject seems to deserve a further 
study. 

1. General definitions 

We consider a logic 8 which is an extension of the usual predicate logic 
8, with identity. We use Roman capitals P, Q, R, ..., possibly with indices, 
as predicates of 8, and lower case Roman letters as variables of 8,. For 
each predicate X of 8, we denote by q ( X )  its rank i.e. the number of its 
arguments. Formulae of 9 may contain symbols which do not belong to 
8, and the grammatical structure of some formulae of 8 may be completely 
different from that of the formulae of 8,. We assume however that to each 
formula F of 2 corresponds a set Fr(F) called the set of free variablesaf 
F. If Fr(F)=O, then F is called a sentence. Moreover we assume that the 
usual logical operations 1, &, (C)( = generalization upon the variable [ of8,)  
are performable on formulae of 8 and that F r ( i  F)= Fr(F), Fr(F & G)= 
Fr(F) u Fr(G), Fr((l)F)= Fr(F)- {l}. Other logical connectives such as v , 
= and (El) are introduced in the normal way. Furthermore we assume that 
all formulae of 8,, are formulae of 9 and that the operations 1, &, (Q, Fr 
have the usual meaning when applied to formulae of 8,. 

If all free variables of F are variables of 9, then F is called normal. 
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If M = ( A ,  22) where A is a set and 22 is a function whose domain consists 
of all predicates and is such that ~ ~ ( X ) G A ~ ( ~ '  for each predicate X, then we 
call M a model. A valuation of a normal formula F in M is a function u 
which correlates with each free variable of F an element of A .  

A ternary relation i= is called an adequate satisfaction relation for 9 if 
the following conditions are satisfied for all normal formulae F and models 
M :  

(1) MI.  F[u] is defined whenever M is a model and u is a valuation of F 
in M ;  

(2) If F is a formula of So, then M t  F[u] holds if and only if u satisfies F 
in M in the usual sense; 

(3) If F is i G, then Mi= F[u] is equivalent to non M k  G[u] and if F is 
GI &Gz, then Mk F[u] is equivalent to Mi= GI [u,] and Mi= G, [uz]  where 
ui is the restriction of v to the set Fr(Gi), i= 1, 2; 

(4) If F is ( I )  G then Mi=F[u] is equivalent to the statement: M k  G[u'] 
for every valuation u' of G which coincides with u on the free variables of F ;  

(5) Let F be a normal formula, P a predicate with n arguments and G a 
normal formula with n free variables. Then there is a normal formula F, 
with the same free variables as Fsuch that the following is satisfied: whenever 
M ,  = ( A ,  9,) is a model and M= ( A ,  -2) differs fromM, just by the fact that 
S ( P ) = ( X E A ~ " ~ ' :  M ,  t G(x)}  thenM, kF,[y]-Mi= Fry]foreveryyEAF'(F'. 

F, is said to arise from F by a (functional) substitution of G for P (see 
CHURCH [1956] p. 192 for the actual construction of F, in case of the logic 
90). 

Assumption 1. There is an adequate satisfaction relation for 9. 
One of such relations k will be selected once for all and all subsequent 

definitions will be relativised to it. 
Using the relation k we define two notions with which we shall constantly 

deal : 
If F, G are normal formulae, then we say that G is a consequence of F 

and write FF G if for every model M and for every valuation u of F &  G in M 
the condition MkF[uIFr(F)] implies MtG[v(Fr(G)]. 

If F is a normal formula, then we say that a predicate X does not occur in 
F if for each pair of models M =  ( A ,  S), M' = ( A ,  9') such that 9 coincides 
with 9' except possibly on X the equivalence 

M t F [u] = M' i= F [u]  

holds for every valuation of F in M. 
It is obvious that the truth or falsity of Mi=F[u] depends only on values of 
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2 ( X )  for such predicates X as occur in F. We shall henceforth assume that 
in each formula occur only finitely many predicates. 

Writing a formula with displayed predicates e.g. F(P, Q, ..., S) we assume 
tacitly that P, Q ,  ..., S are the only predicates which occur in 1;. The function 
q whose domain is the set of these predicates and whose value q ( X )  is the 
rank of X i s  called the type of F. A model M of type q is the pair <A, 9) 
where 9 has the same domain as q and satisfies ~ ( X ) G A ~ ( ~ )  for each X 
in the domain of q. We extend in the obvious way the satisfaction relation 
M k F[v] so that M may be any model whose type is an extension of the type 
of F. 

2. Examples 

We enumerate some well-known examples in which the assumptions made 
in section 1 are satisfied. 

2.1. The weak second order logic 9, (cf. MOSTOWSKI [1961]). In this 
logic there are two types of variables: individual variables as in Z0 and 
set variables which range over finite subsets of the universe. 

2.2. The strong second order logic ps. The syntax of ZS is the same as 
that of 9, but the set variables range over arbitrary subsets of the universe. 

There are various intermed,iate second order logics which all have the 
same syntax but differ in the range of the set-variables. We quote as examples 
the following possibilities: 

2.3. The range of the set variables is the family of sets of a power < a  
contained in the universe. 

2.4. We can define an increasing sequence 9< of logics as follows: 9,, is 
5?w;9t+l has the same syntax but the range of set variables consists of 
those subsets of the universe which are definable in 64,; if il is the limit 
number, then the range of the set variables is the union of all preceding ranges. 

2.5. Logics Q,. The syntax of the logics Q, differs from that of go by 
the presence of a new quantifier Q to be interpreted as: “there are at most 
a .. .” (cf. MOSTOWSKI [1957]). 

2.6. Infinitary logics 
2.7. Sub-logics of 5?m,,m obtained by allowing not all denumerable strings 

of symbols but only some regular ones, e.g. hyper-arithmetic (cf. BARWISE 
[1967]). 

2.8. The full strong second order logic 0: has not only the set variables 
but for each n > 0 has infinitely many variables ranging over n-ary relations. 
The syntax and semantics of this logic have been described by TARSKI [1956]. 

(cf. KARP [1964]) with or without identity. 
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2.9. Full weak second order logic 9: has the same syntax as but 

Various intermediate full second order logics can be defined similarly as 
its second order variables range over finite relations only. 

in 2.3. 

3. The interpolation property 

We return to the general case of a logic Y satisfying the assumptions set 
forth in section 1. We shall say that 054 has the interpolation property if for 
arbitrary normal formulae F, G satisfying 87- G there is an interpolation 
formula H such that Ft-Hk G, Fr(H)cFr(F)nFr(G)  and each predicate 
which occurs in H occurs also in F and in G. Thus 3 has the interpolation 
property if Craig’s theorem is valid for normal formulae of 2. 

We shall show that no Y satisfying suitable assumptions has the interpo- 
lation property. The assumptions will be satisfied in cases 2=Yw, 9=2: 
and 2 = Qo. On the other hand it is known from the literature that Craig’s 
theorem is satisfied for the full strong second order logic, for 5?ol,m with or 
without equality (cf. LOPEZ-ESCOBAR [1965]) and for some sublogics of 
Y-,,, which were mentioned in 2.7 (cf. BARWISE [1967]). 

For Y=Yg,B with equality and with (a, p )# (o ,  w )  and (CI, p)#(ol, o) 
Craig’s theorem is not satisfied (cf. MALITZ [1965]). To the author’s 
knowledge the problem of its validity for logics 2.3, 2.4 and 2.5 with a>O 
is not solved. 

We shall now formulate two assumptions from which we shall derive that 
Y does not have the interpolation property. 

Let w be the set of integers and Po, Q,  the relations x+y=z, x=yz. 
The standard model of arithmetic is defined as M o  = ( A ,  d} where d is a 
function with domain consisting of one predicate N of rank 1 and two 
predicates P, Q of rank 3 such that d ( N ) = w ,  d(P)=P,, d(Q)=Q, .  

Assumption 2. There is a normal sentence A =A(N, P, Q) such that 
M o  k A and each model M of the same type as M ,  satisfying MI= A is iso- 
morphic to M , .  

3.1. Assumption 2 is satisfied for 5?=Yw, 2=2’: and 9 = Q o .  
PROOF. We take as A the conjunction of sentences which say that N is 

the whole universe, that it is ordered by the relation (Ey) P(x, y, z), that it 
has the first element, that each element has a successor and that each 
element with the exception of the first has a predecessor. Moreover we 
include to A the recursive equations for addition and multiplication and the 
sentence which says that for every x in N there are only finitely many y 



INTERPOLATION THEOREM 91 

which precede x. In case of logics YW and 9: this last sentence is 

and in case of logic Q ,  it is 

We now formulate assumption 3. For k E o  and qEwk we denote by 9, 
the k-fold Cartesian product of the spaces P ( O ~ ( ~ ) )  where P ( X )  denotes the 
family of all subsets of X .  We conceive Yq as a topological space with the 
usual product topology. 

Let R,, .. ., Rk-l be predicates of ranks q ( O ) ,  ..., q(k -  1). For p = ( p o ,  ..., 
P ~ - ~ ) E ~ ' ,  we denote by M , ( p )  the model ( w , 2 )  where 2 has domain 

for i< k.  
(N, P, Q,  Ro,..., Rk-l} and 2(N)=w,  2(P)=Po, 2(Q)=P,, 2(Ri)=Pi 

For every normal sentence F of the same type as M , ( p )  we call the set 

(P E y,: Mo (P) Fl 
the spectrum of F. 

normal F the spectrum of F is a Borel set of a class < p .  
Assumption 3. There is a recursive ordinal p<wy such that for each 

3.2. Assumption 3 is satisfied for 9=pw, 9=9: and 2=Qo. 
PROOF. Let F be a (not necessarily normal) formula of LZw with the free 

individual variables x1 ,..., x, and set variables XI ,..., X,. Let ZI and V be 
functions which correlate with each xi an integer and with each X j  a finite 
subset of w .  We prove by induction on the length of F that there is an integer 
n depending only on F such that for arbitrary u, V the set 

is Borel of class < n. The only case which is not entirely trivial is that when F 
has the form (X)G. In this case D,(u, V )  is an intersection of sets D,(u, Y ' )  
where V' ranges over valuations satisfying V'lFr(F) = V. This intersection 
is denumerable and hence D,(u, V )  is Borel of class at most n+ 1 if D,(u, V')  
was of class <PI. The case of logic 9: can be treated similarly. 

For 2 = Q 0  the theorem follows by the remark that to each F of Qo 
there is an F' of "LPw such that the conditions M k F and A4b F' are equivalent. 

If X s Y P q ,  then the set { y ~ P ( w ~ ( ' ) ) :  (Ep)  [ ( y , p ) ~ X ] }  will be called the 
projection of X. In next sections we shall prove that for arbitrary 9 satisfying 
assumptions 1-3 the following lemma is true: 

3.3. There is a q such that q ( O ) =  1 and spectra X', X " S  9, such that their 
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projections T‘, T” satisfy T’=P(w)-T”,  T‘#Gp,  T”$F, (cf. section 4 for the 
definitions of F ,  and Gp). 

Assuming 3.3 we prove 
3.4. If 9 satisfies assumptions 1-3 then 2 does not have the interpolation 

property. 
PROOF. Let X‘, A’” from 3.3 be spectra of formulae B‘, B”. We can assume 

that in B‘&B” occur only the predicates N, P, Q, R, U1, ..., Uk-l where R 
has 1 argument. Consider the sentences 

B:A&B’&(x)N(x), 
C : A & ( x ) N ( x ) + l  C”(N,P, Q , R ,  U; ,..-, Ui-l) 

where U;, . . . , U; - are predicates not occuring in A & B’ &B“ with the same 
ranks as U,, ..., Uk- l  and C ”  results from B” by substituting U:(xl, ..., xq,) 
for Ui, i = 1, . . . , k - 1. We easily see that for each model A4 of the same type 
as B & C the condition M k B implies M 1 C.  For assume that M 1  B.  Hence 
M k A  and we can assume that M = M o ( r ,  p ,  q)  where reP(w)  is the interpre- 
tation of R in M and p ,  q are interpretations in M of U1, ..., Uk-l and of 
U’, , .. ., U; - Since the lJ: do not occur in B we obtain M,(r, p )  k B’ whence 
(r ,p)EX’ and reT’ .  Hence r$T“ and therefore ( r ,  q ) $ X ”  which proves 
M0(r,  q ) k i  C “ .  Since the Ui do not occur in C” we see that M , ( r , p ,  q)kC. 

Now assume that there is an interpolating sentence D=D(N, P, Q, R) 
and let Z be the spectrum of D .  From B I- D I- C we obtain similarly as above 
that reT’+rEZ+rq!T”=rET’. Hence Z = T ‘  and by assumption 3 T‘ 
would be Borel of a class < p .  This contradicts 3.3 since Borel sets whose 
classes are < p  belong to G,. 

4. Borel sets and universal functions 

We assume the basic facts concerning these sets as known (see e.g. 
KURATOWSKI [1966] p. 345). We define Borel classes by induction as follows: 
Go is the family of open sets, F ,  is the family of closed sets; for any ordinal 
c1>0 we define Fa as the family of denumerable intersections of sets which 
belong to UBi, G, and G, as the family of denumerable unions of sets 
which belong to U,<,Fs.  For even a our notation agrees with that of 
Kuratowski; for odd a our F ,  is Kuratowski’s G, and vice versa. If XEF, u G, 
then we say that X is of class a. We shall deal. only with Borel classes whose 
indices are < p  where p is a fixed infinite recursive ordinal. Let < be a 
recursive relation which orders w in type p i -  1 ; we can assume that 0 is the 
first and 1 the last element of w. 
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Putting 
l c ( ~ , n ) = m i n { t : ( t < n ) & ( y ) , ( ~ : ( y , n ) #  t)> 

we obtain a recursive function which enumerates (possibly with repetition) 
all integers which precede n under the ordering <. In the above formula 
( Y ) ~  means "for every y satisfying y < x" and the symbol min {. . .> means 0 
if the set {. . .) is void. 

We denote by J ( i , j )  the pairingfunction+(i+j) (i+j+ l)+i. I fJ( i , j )=m, 
then we put Km = i, Lm = j. 

Using functions K, L we can establish a one-one correspondence between 
non-negative integers and finite sequences of such integers. We put 

Kon = n , K'+'n = K K i n  . 

To the integer n we let correspond a sequence of length Ln+ 1 whose 
terms are 

[.Ii = LK'+'n for i < L n ,  [n lLn  = KLn+'n.  

Thus e.g. if Ln = 3,  then the 4 terms of the sequence which corresponds to n 
are 

L K n ,  L K 2 n ,  L K 3 n ,  K 4 n .  

A set psw will be called a functional set if for any x it contains exactly 
one integer y such that Ky=x.  We put cpx=Ly and identify p with the 
mapping x- tLy .  The set of all functional sets will be denoted by g, its 
elements will always be denoted by small Greek letters. 

For any p E W  and iEo we put 

p ( i )  = { J ( x , L z ) :  J ( J ( i ,  x), Z ) E P }  * 

If p = p is a functional set then q(') is the set of pairs J ( x ,  LpJ(i ,  x ) )  and 
hence is itself a functional set satisfying q("x=LcpJ(i, x) .  It is easy to see 
that the formula q-+(q('), @), ...) defines a mapping of 93' onto 9P. 

In one place in our construction we shall use an enumeration of all 
primitive recursive functions of two arguments 

uo (k j ) ,  u l ( i , . h . . .  

where the function u(e, i, j )  = ue( i , j )  is recursive. 
We define a sub-base in P(w) as the family consisting of the sets 

%!; = { p E P ( w ) : j E p } ,  %!; = { p E P ( W ) : j $ p } .  

Each subset of P(o) which is simultaneously open and closed can be 
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represented as a finite union of finite intersections of sets belonging to the 
sub-base. Since every finite set can be represented in the form 

De = { i  < Ke:u,,(i, i )  = 0) 

we easily see that each closed and open set has the form 
1 u(s. i ,  i) 

*f ,g ,  h = u n "(u(h, i ,  j )  
i E D f  / E D ,  

wheref, g ,  h are integers. To simplify the notation we put 

@e = " K e ,  LKe,  LLe 

and obtain thus an enumeration of closed and open sets. 
The complement of @, is also closed and open and thus representable as 

eef. We note that whether a point p is or is not an element of @; depends 
solely on whether j is or is not an element ofp.  Hence whether p is or is not 
an element of ee depends solely on whether the integers u(LLe,  i, j )  with 
iEDKe, jEDi  are or are not elements of p .  Thus if we put 

Ne = max {u  (LLe, i ,  j ) :  ( i  < K e )  & ( j  < Ki)} 

we obtain the result pE%!e=pnNeE@e.  Since all subsets of N, can be 
enumerated and their sequence depends recursively on e we see that the 
relation qle, = P(0) - qLe is recursive and hence so is the function 

z = min { e ' :  qie. = P ( w )  - ee}. 
We thus have for every e 

ql; = P ( 0 )  - 4ve. 

We define now by transfinite induction two functions @,,, Y,,. We put for 
cp in 95' 

(1) @o (CP) = U 'ape 3 yo (9) = n eG 
e e 

and for n#O 

4.1. For each n in 0 and each cp in 95' 

Proof by transfinite induction on n presents no difficulty. 
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4.2. The range of Qn is the Borel class G, where a is the order type of 
integers preceding n in the ordering < ; similarly the range of Yn is the Borel 
class Fa. 

PROOF. For n = O  the theorem is true because Go is the class of all open 
sets and each open set in P(w)  is a union of a sequence of closed and open 
sets, Similarly F ,  is the class of closed sets and each such set is the inter- 
section of a sequence of closed and open sets. 

Let us assume that n # 0 and the theorem is valid for integers which precede 
n. It is obvious from (2) and (3) that @,,(cp) is the union and Y,(cp) the 
intersection of sets which belong to U, < u  F, or to Gp.  Hence each 
value of @,, belongs to G, and each value of Y,, belongs to Fa. 

Every set XEG,  can be represented as U k  x k  where X k E F B k  with pk<a.  
Let rk be the least integer such that the order type of its predecessor under 
the ordering .< is pk. In view of the definition of K there is an integer sk 
such that Ic(sk, n)=vk .  By assumption 

I xk = y r k ( $ k )  

where $ k E g .  Now we determine cp such that ' p ( k ) = $ k  and Kcpk=sk for 
each k and obtain X =  @,(cp). The proof for Y n  is similar. 

4.3. There are functions A,  B of four arguments n, qEw and cp, 9 ~ $ ?  
such that for each p ~ P ( w )  

(4) 

( 5 )  

P E @ n  (cp) = (E9)  ( 4 )  CP E @A(", 4 .  q?, 9,11 
P E Y n ( d  = (E9) ( 4 )  [P E * B h  q, 'p. s,l * 

PROOF. We define A ,  B by transfinite induction: 

A(O, 4 ,  cp, 9) = q90, B(0,  q ,  cp> 9) = (p4: 
A ( n ,  q ,  cp, 9) = B ( K ( K ~ ~ K S O ,  n) ,  4 ,  cp'Ks0' ,~9) ,  
~ ( n ,  q, cp, 9)  = A ( K ( K ~ Q ,  n), Lq, (P('~', Pq)) 

(in the last two formulae we assume n #O). 
Verification of (4) and (5) for n=O is very easy and we omit it. 
To verify the formulae (4), (5 )  for n#O we use the well known rules for 

quantifiers. Using (2) and the inductive assumption we see that the left hand 
side of (4) is equivalent to 

(Ek)  (E9)  ( 9 )  [P %B (K ( K q k ,  n ) .  4 .  qd"), 911 ' 

We can replace the quantifiers (Ek)(ES.) by a single quantifier ( E l )  
replacing k by KCO and 9 by Lc. Changing 1: into 8 we obtain the desired 
formula. 
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Similarly the left hand side of (5) is equivalent to 

( k )  (E9)  ( 4 )  b @!A(K(Krpk,  n), q ,  9)1 . 
We can replace the quantifiers ( k )  ( E 9 )  (4) by ( E l )  ( r )  replacing k by Kr, 

q by Lr and 9 by l(Kr). Changing 5 into 9 and r into q we obtain the result. 
The inductive equations for the functions A,  B can be written simpler if 

we introduce some abbreviations: 
Let .T=g x a x w ;  thus the elements of 9Y are triples (cp, 9, q) and A ,  B 

are functions of an integer n and of a point p ranging over X. 
We define two mappingsf,, f2 of X into 3: 

4)  ( K q )  g(Kq) ,  L 
f l  (P) = (dKS0)? L9,4 ) ,  fz (PI = (cp 3 

.1 (n ,  P) = K(KcpKS0, n),  

and two functions q, 7c2 : 

K Z ( 4  P) = .(KcpKq, 4. 
The recursion equations for the functions A ,  B can now be written thus: 

if n # 0, then 
A (4 P) = B (K1 ( n ,  P ) J l  (PI) 9 

B (4 P) = A (.2 ( n ,  P ) , f Z  (PI); (6) 

if n=O, then 

(7) A(0 ,  p) = U1p = cp90, B(0,  P) = u 2 p  = cp4. 

5. Properties of spectra 

Our aim is to prove that the relations r = A ( n ,  q, cp, 9), r=B(n ,  q, cp, 9) 
are spectra. To establish this fact we need some general theorems about 
spectra. For the most part they are almost obvious and we only sketch their 
proofs. 

5.1. Boolean operations performed on spectra yield spectra. The same 
holds true for the operations of identifying or permuting coordinates and 
for the operation of adding a “dummy” coordinate. 

5.2. If S c % x w  is a spectrum, then so is the set { p ~ X : ( x ) [ ( p ,  x)ES]). 
In 5.2. X may be any Cartesian product of finitely many spaces [ P ( o ) l k  

5.3. Every arithmetical relation is a spectrum. 
5.4. The set { ( p ,  x)EP(o) x w : x ~ p )  is a spectrum. 
5.5. The set 28 of functional sets is a spectrum. 
5.6. The set {(p,  r )EP(a)  x w : p ~ @ , )  is a spectrum. 

and any finite number of copies of w. 
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To prove 5.3 we use 5.1 and 5.2 and the remark that the relations x=y+z,  
x = y .  z are spectra. The set mentioned in 5.4 is the spectrum of the formula 
Ux. 5.5 is established by using 5.1-5.3 and remarking that a point p is a 
functional set if and only if it satisfies the condition (x) ( E ! y )  [ (yep )  & 
(Ky=x)] .  Finally to prove 5.6 we remark that the set 

w =  ( ( p ,  i , j > e P ( w )  x (0, l} x w : p E @ ; }  

is a spectrum and the condition p€4Vr is obtained from the condition 
( p ,  i, j ) E  W and the arithmetical relation ieDe by means of the operations 
5.1, 5.2. 

The question arises whether counter-images of spectra are spectra. 
A partial answer is given in the next theorem: 

5.7. Let f :  P(w)+P(w) be a function satisfying the following condition: 
There is a normal formula G=G(N, P, Q, U, x) with one free variable 

such that for every p ~ P ( w )  and every n in w the equivalence holds: 

Mo (PI G [.I = [. E m 1  . 
Then the counter-imagef-l(S) of any spectrum S s P ( w )  is a spectrum. 
PROOF. Let S be the spectrum of F=F(N, P, Q, U). Let Fo arise from F 

by a substitution of G for U (cf. (1.5)) and let So be the spectrum of Fo. 
Using (1.5) we obtain 

Mo (f(P)) F = Mo (PI Fo 

and hence f ( p ) ~ S = p e S , ,  i .e.f-l(S)=S0. 
As a corollary from 5.7 we obtain 
5.8. If S s 3  x P(w)  x w is a spectrum, then so is the set 

{(P, cp, 4 ) E X  x 3Y x w : ( P ,  cp(q) ,  q ) E S } .  

f: ( P ,  CP, 4 )  + ( P 3  (P(q) ,  4 )  

To see this we merely notice that the function 

satisfies the assumptions of 5.7. 

spectrum. 

representable. 

adding indices whenever necessary. 

Let us call a mappingfrepresentable if its graph { ( p ,  p ’ ) : p ’ =  f ( p ) }  is a 

5.9. Functions U,, U2,  fl, f2 ,  K,, K~ defined at the end of section 4 are 

PROOF. We let % = a x  3Y x w and denote points of X by p =(cp, 9, q)  

(a) U, is a mapping of I into w given by U,p=q$O. Hence ( p ,  k)  belongs 
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to the graph of U, if and only if (Em) { [J(O, m ) ~ 9 ]  &[J(m, k)~p]}.  It 
follows by 5.3, 5.4 and 5.1 that this set is a spectrum. 

(b) The proof for U2 is similar. 
(c) The graph of K~ consists of points ( p ,  ~ ) E % x  o which satisfy the 

condition 
(Em) [(m = K ~ K S O )  &(k  = ~ ( m ,  n ) ) ] .  

We show similarly as in (a) that the relation m= KpKSO defines a spectrum 

(d) The proof for I C ~  is similar. 
(e) The graph of fi consists of points (p, 9, q, p’, 9‘, q’) for which the 

following conditions are satisfied 

and hence in view of 5.2 the graph of K ,  is a spectrum. 

(x) ( E Y )  [(Y = J ( K W  XI)  (V’X = -QY)l7 
4‘ = q . (x) [S’x = L9x] , 

Using 5.1-5.4 we easily infer that the graph offl is a spectrum. 
(f) The proof for f 2  is similar. 

6. Proof of 3.3 

The essential step in this proof is the following result: 
6.1. The sets 

( ( r ,  12, P ) E W 2  x 3: I’ = A ( n ,  p ) } ,  
{ ( r ,  n, p ) € 0 2  x X: I’ = B ( n ,  p ) }  

are projections of spectra. 
PROOF. We shall deal only with the function A .  In order to obtain the 

result stated in the theorem we must describe the process of calculating the 
value of A for given arguments n, p .  The inductive equations (4.6) show that 
A (n,  p )  is equal to B(n,, pl) where n,, p ,  are explicitely determined by n, p .  
The value of B(n,,p,) is equal to A ( n 2 , p 2 )  and so on. The sequence of 
points ( n , , p , )  must terminate after a finite number of steps with a term 
( O , P ~ - ~ )  because ni+l<ni .  Thus according to (4.7) A ( n , p ) = A ( O , p , - , ) =  
U ,p , - ,  if k-1 is even and A(n ,p )=B(O,p ,_ , )=U,p , - ,  if k - 1  is odd. 
We write briefly A(n ,p )=  UE(k-l)Pk-l where generally n ( j )  (the parity of j )  
is equal to 1 for even j and to 2 for oddJ. 

It follows from these remarks that r = A ( n , p )  if and only if there is an 
integer k 3  1 and two sequences 

n1, ...? n k - l ,  PO? P1, *..) Pk-1 
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both of length k the first consisting of integers and the second of elements of 
%=a x a x o such that 

n o = n ,  p o = p ,  
n k - l = O ,  n j # O  for j < k - 1 ,  

= U n ( k - l ) P k - l  

{[nj+l = K n j ( n j ,  ~ j ) l & b j + l  = f = j ( n j j  pj)l). 

We can replace the sequence nj  by the number A corresponding to this 
sequence. Thus LA=k- 1 (cf. p. 93). The terms nj are then to be replaced 
by [nIj (see p. 93). The sequence of points pi ,  which is really the sequence 
of triples ( c p j ,  S j ,  qj) ,  can be replaced by two functions p, 9 and the number 4" 
corresponding to the sequence qo, ..., qk-1. We must everywhere replace 
pj=(cpj ,  S j ,  q j )  by pj=(p"),fi'j', [4"Ij). In this way we see that r = A ( n , p ) =  
A(n,  cp, 9, q)  if and only if there are two functions p, $€a, an integer k 2  1 
and two integers 6, ij such that the following conditions are satisfied: 

(1) 

(2) 

(3) ([&]k-l =O)&(j),-i([fi]j# 0) ;  

LA = Lq" = k - 1; 

([El0 = n)&(x) {[p'O'x = cpx] &[9'O'X = 9x1 &([4"10 = 4 ) ) ;  

(4) 

(5) 

= Ur(k- 1 )  17,- 1 ; 

( j l k - 1  {[[IAIj+l = K~j([Alj, pi)] &[pj+l =fnj(['Ij3 Pj)]). 

We can write this equivalence as 

[ r =  A(n,p)] - ( E p , ~ ) ( E k , A , q " ) , [ ( p ~ ~ ) & ( f i ~ ~ ) &  
( k >  l )&( l )& ... &(5)]. 

In order to prove the theorem we have now to examine the 8 components 
of the conjunction in square brackets of the above formula and to show that 
the sets of points 

(p, &cp, 9, k, 4", 2, 4 ,  n ,  r)E[P(o)l4 x Lo6 

which satisfy these components are spectra. For the first two components 
this results from the fact that a is a spectrum. For the components k >  1 ,  
(1) and (3) we obtain the result from the fact that all arithmetical relations 
are spectra (see 5.3). For the component (2) the result follows from 5.3 and 
the remark that for cp, the condition px= pcO)x is equivalent to 

( E z )  [(J(x, Lz)  E cp) ( J  ( J  (0, x). z )  E @)I . 
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This remark shows that the condition 

( V E B )  &(?E52) &(q. = qJ(O)x) 

determines a spectrum (see 5.3, 5.4). The same is true of the condition 
obtained from the above by prefixing it with the quantifier (x ) ,  cf. 5.2. 
We deal in the same way with other conjuncts in (2). 

Let us now consider the component (4). This component is equivalent to an 
alternation [(k-1 is even)&(r=U,jj,-,)] v [(k-1 is odd)&(r= U2fik-,)] .  
It will be sufficient to consider only the formula r = U, p k  - ,. 

According to 5.9 the set of quintuples ( r ,  a, j?, s, k )  where r, s, kEco and 
a, such that r =  U, (a, j?, s) is a spectrum. Using 5.8 twice we obtain the 

is a spectrum. Replacing s by any arithmetical function of 4, k we still 
have a spectrum. Hence the set of quintuples ( r ,  p, 9, q, k )  such that 
r=ul(p(k-l), g ( k - 1 )  , [q“]k-l)=U1&-l is a spectrum. We can still add su- 
perfluous (“dummy”) coordinates cp, 9, q, n and obtain the required 
result. 

Finally we consider the last component (5). Similarly as in the previous 
case it is sufficient to discuss only the formulae 

result that the set of quintuples ( r ,  @, 8, s, k )  such that r =  U, ( @k-1) ,8(k-1)  Y s) 

[ f i ] j + l  = ~i([E]j, P j )  and B j + l  =fi(CE]j, fij) 
where i = l  or 2.  We discuss only the second formula. The set of points 
(a, j?, y,  6, x, y ,  Z)E B4 x co3 for which 

(6) (a, P, X) =fi ( z g  (Y, 6, Y)) 
is a spectrum (cf. 5.9 (e)). We put a= @ + I ) ,  j?=W+’) 9 ~ = [ 4 ] j + l ,  z=[fi]j, 
y = I/#~), 6 =  C(h), y =  [s],, and infer, using 5.8, that the set of points 
(@, 8, II/, C, q , E ,  j ,  h, s> for which (6) with the above substitutions is satis- 
fied is a spectrum. We identify t j  with @, with 8, h with j and s with ij and 
infer that the set of points 

(P ,  J, f i ,  q, j >  

satisfying the equation P j + ,  =fi([2lj, j j j )  is a spectrum. Adding the dummy 
variables establishes the required resuIt. We notice, although this remark is 
by no means essential, that the relations r = A ( n , p )  and r = B ( n , p )  have 
been defined by formulae starting with just two quantifiers ranging over 37 
and that we could easily reduce their number to 1. 

PROOF of 3.3. According to 4.2. the range of the function @, is the Bore1 
class G,. Hence by the diagonal theorem (KURATOWSKI [1966] p. 372) 
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the set 

is not an element of G,. 
T' = {cp E La : cp c @ 1  (PI> 

T" = {cpeg: cp# Y,(cp)I 

rpc @ 1  (d = rpE y, (v), 

Similarly the set 

is not an element of F,. Since, by 4.1, 

the sets T' ,  T" satisfy the equation T'=P(w)-T".  It remains to show that 
T', T" are projections of spectra. It will do to prove this for T'. 

By 4.1 and 4.3 

('PET')= C ( c p E ~ ) & ( c p f w c p ) ) I =  
(E9)  ( 4 )  (Er)  [(cp & ( y  = (L49 cp, 9)) & (cp E @JI f 

By 6.1 the condition in square brackets determines a projection of a 
spectrum. Thus (see the remark at the end of 6.1) 

40 E T' = (~9) (4)  ( ~ r )  (EP, S )  [<cp, 9, P, 9, r ,  4 )  E SI 
where S is a spectrum. By the usual formal transformations we replace 
the right-hand side of this equivalence by 

(E% 5 ,  ?, 5) ( 4 )  C<cp, 9,5? P, ( 4 9  4 )  fz Sl . 
According to 5.7 and 5.8 the set of points (cp, 9, 5 , ? ,  I ,  q) which satisfy 

the condition in square brackets in the last formula is a spectrum. Hence T' 
is a projection of a spectrum. 

Theorem 3.3 in thus proved. This establishes also theorem 3.4 which we 
proved on the basis of 3.3. 

7. The Beth property 

In this section we treat briefly another property of extensions of logic -Yo. 
For obvious reasons we shall call it the Beth property. 

Let 9 be a logic satisfying the assumptions set forth in section 1, let F 
be a sentence of 9, R and R' two predicates with the same rank, say n, 
such that R' does not occur in F. We denote by F' the sentence obtained 
from F by a substitution of the formula R'(xl, ..., x,) for the predicate R 

We say that 9 has the Beth property if for arbitrary F, R, R' as specified 
(cf. 1.5). 
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above the condition 

(1) F&F’t  [R(x,, ..., x,) = R ( x l ,  ..., x,)] 

implies the existence of a formula G such that (i) all predicates occurring 
in G occur in F, (ii) the predicate R does not occur in G, (iii) the free variables 
of G are just xl,  ..., xn and 

F k  [R(xl,  ..., x,) = G ] .  

7.1. The full strong second order logic has the Beth property. 
PROOF. If (1) is valid, then we define G as 

(EX) [F,  &X(X, ,  ‘.-, xn)] 

where Fl results from F by a substitution of X(xl ,  ..., x,) for R. 
7.2. The weak second order logic does not have the Beth property. 
We shall give only a sketch of the proof. First of all we define arithmetically 

a numbering of finite sequences of finite sets of integers and a Godel num- 
bering of formulae in which only the predicates N, P, Q occur. We consider 
the ternary relation Stsf: The sequence number x of integers and the 
sequence number y of finite sets satisfy the formula number z in the model 
M , .  It is not difficult to construct a formula F ( N ,  P, Q, R) which defines 
implicitly the relation R in the sense that if M b  F then the interpretations of 
N, P, Q form a model isomorphic to M ,  and the interpretation of R is 
isomorphic to Stsf. For this formula F the condition (1) is satisfied but (2) 
is not as we can easily show using Tarski’s theorem on undefinability of 
truth (TARSKI [1956]). 

In a similar way we can show that neither the logic Qo nor 9; have 
Beth property. However no general criteria seem to be known for deciding 
whether a logic has the Beth property. 

To conclude we remark that Tarski suggested the following proof that 
9, does not have the Beth property. 

Let A(N, S) be a formula of Yaw whose all models are isomorphic to 
( w ,  2 )  where 9 ( N ) = o  and 9 ( S )  is the “less than” relation. If F(N, S, P) 
and G(N, S, P, Q) are inductive definitions of addition and multiplication 
then obviously 

A(N,S)&F(N,S,P)&F(N,S,P’)t[P(x,y,z)=P‘(x,y,z)] 
and 

A(N, S)&F(N, S, P)&G(N, S, P, Q)&G(N, S, P, Q’)k 
[Q (x, Y, 4 = Q’ (x, Y, 41. 



INTERPOLATION THEOREM 103 

If ZW had the Beth property there would exist formulae H(N, S, x, y, z) 
and K(N,  S, x, y, z) such that 

A (N, S )  k P* (N, S, H )  & G*(N, S, H,  K )  

where F*, C* are obtained from F, G by substituting H, K for P, Q. But 
then the full arithmetic would be derivable from A(N, S )  and the set of 
those sentences T(N, S) of LFw containing only the predicates N, S which 
are valid in (0, 2 )  would be undecidable. This contradicts the well-known 
result of BUCHI [1960]. 

A similar proof using the undecidability of arithmetic and the decidability 
of the theory of successor relation based on 2, (Buchi) shows that LFs 
does not have the Beth property. 
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FORMALIZATION PRINCIPLE 

G. TAKEUTI* 
Institute for Advanced Study, Princeton, N.J., USA 

A set theory T(not necessarily first order) is said to be “sufficiently strong” 
if T is true and the theory consisting of all true first order set theoretic 
sentences can be interpreted in T.  Similarly, a set theory T on the class L 
of all constructible sets is said to be “sufficiently strong” if Tis true on L and 
the theory consisting of all true first order sentences on L can be interpreted 
in T, 

First, let us consider giving principles which generate a sufficiently strong 
set theory. Now imagine the following situation. A basic theory which we 
start with and several definable (in set theory) principles by which we get a 
new stronger true theory from a true theory are given. Then the closure of 
these principles is easily proved to be not sufficiently strong for the following 
reason. We can formalize the closure in the set theory and truth theory 
implies that this closure is not sufficiently strong. Therefore we know that 
they must be highly undefinable if there exist principles to generate a suf- 
ficiently strong set theory. Then the question is this. Is there any meaningful 
principle among these highly undefinable principles? In order to consider this 
question, we shall examine the above undefinability proof of our possible 
principles. In this proof, we assume the following principle. 

PRINCIPLE: We know practically how to formalize a given well-defined 
theory. 

This is rather well-supported heuristically : It might be a most successful 
and most basic practical principle of modern logic. Let us consider the use 
of this principle as a device to create new systems. 

In order to be precise, we now state formal terminology. r$’ is understood 
to be a Godel number of a formula $. If S is a system, then “ S  is formalizable” 

* Work partially supported by National Science Foundation grant GP-6132. 
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means that the notion Prov,(r$l) "JI  is provable in S" is definable. Let us 
suppose that a method, say E, to expand a system S to a new system is 
defined by the term of Prov,. Now start with a basic system So and apply E 
to all systems which are obtained by E from So. We obtain E(S,),  E(E(S, ) ) ,  
... and S,=unc,  E"(So), where En($,) means a system obtained from 
So by it times application of E. We can again repeat this method to S,  
instead of So and so on. 

Obviously we cannot formalize the system thus obtained just because 
we have no a priori definition of Prov,, though we are confident that we 
can find an appropriate definition of Prov, for each definite individual 
system S.  I think that such a principle E is a meaningful but undefinable 
principle. 

Now we shall check the notion Prov,. Our experience shows that there 
are many adequate definitions of Prov,. What is the criterion of Prov,? 
One necessary condition for Prov, is the following. 

Condition for Prov,: Prov,(r$T)-Sl- $. 
Is this criterion enough to characterize Prov,? The answer is yes. However, 

in order to know that Prov, satisfies this condition, we have to know for 
what formulas $ Prov,(rJIT) and/or Sk I) is true. In many cases, we cannot 
decide Prov,(r$l) in S. Therefore the adequacy of a certain definition of 
Prov, seems to be judged mainly by our mathematical intuition on how S is 
constructed. The difficulty in considering Prov, is, we do not know anything 
more than the condition. What we know is that there will be one definition of 
Prov, which will be chosen by our mathematical intuition. 

Our formalization principle roughly means the following principle. 
Formalization principle: If we have created a theory S and (r$TISk $1 is 

definable in our language, then we can gain a right formalization Prov, for S. 
The important thing to do is to find a good property of a right formalization. 

In this paper, we are however interested merely in the sequence of axiom 
systems S, such that a) S,,, =E(S, )  and b) Sa= UB<. S, if a is a limit 
ordinal. (This kind of sequence was considered in FEFERMAN [I9621 for 
arithmetic and in SWARD [1967] for first order set theories.) Our So has 
w-rule and our language is a transfinite type theory. Our E is the following. 

Reflection principle: Expand S by adding Prov,(r$l) if SI-JI, or 
-I Prov,(r$l) otherwise for all sentences $. 

We shall prove the following. 
1) For every definable well-ordering 4 of w, there exists a definable 

sequence of axiom systems S,(B <ao)  satisfying a) and b), where a. is the 
order type of <. 
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2) For every definable sequence of axiom systems S,(p < ao) satisfying a) 
and b), there exists a provable well-ordering < of w in SB+l such that the 
order type of 4 is 8. (A precise definition of a provable well-ordering in a 
system S will be given later.) 

3) There exists a definable sequence of axiom systems S,(,!3<ao) satis- 
fying a) and b) such that S,, is sufficiently strong on L. 

The author believes that our mysterious ability of right formalization 
of a system S has some kind of uniform constructive nature from our 
knowledge on how S is constructed. Therefore the above-mentioned results 
make him believe that if we apply only right formalization, we can keep 
constructing axiom systems S, very far so that we can reach a sufficiently 
strong theory on L. However he cannot express this feeling mathematically 
at this moment. Thus he merely conjectures that we can formulate such a 
property of a right formalization. If this can be done, then we may say the 
following. 

Suppose that there exists an infinite mind M such that he can do the 
following. 

1) He knows the system So which will be defined later. 
2) If he once gains a system S, then he knows what is provable in S .  

3) If he reaches a system S and S is definable in our language, then he 

Then M creates a sufficiently strong set theory on L. 
Godel has presented a problem in GODEL [1965] of how to collect together 

all axioms of infinity in some non-constructive way. We think that this will 
be done by investigation on the formalization principle. 

Therefore he can appIy the reflection principle. 

knows at least one right formalization of Prov,. 

1. The language 

Our language is similar to the transfinite type theory in TAKEUTI [to 
appear] but the intended interpretation will be different from the transfinite 
type theory there. 

We start with the first order language of set theory which consists of 
individual constants 0, 1 , 2, . . . for all natural numbers, numerical variables 
il, i2 ,  i,, ... which range over all natural numbers, set variables xl, x2, x3, ..., 
one predicate constant E, and logical symbols. (As a usually abbreviated 
notation, we use a, p, y ,  . . . as variables for ordinal numbers.) We define typed 
variables and extend the notion of formula inductively by introducing the 
“degrees” of (typed) variables and formulas. We define the degree of a first 
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order variable a (denoted deg(a)) to be 0; and the degree of a first order 
formula $ (denoted deg($)) to be 0. For every formula (of first order) 
A(il ,  i2) having only numerical variables as free variables, variables of type 
A are introduced and denoted Xf, X:, X t ,  .... We define deg(XA) to be 1 
and extend the notion of formula by adjoining variables of degree 1 and 
quantifiers with respect to the typed variables to our starting language. 
The degree of any formula in this language is defined to be the maximum of 
the degrees of the variables in it. Assume that we have introduced variables 
of degree n and formulas of degree n in this way. Then for every formula 
A(il ,  i2) of degree n having only numerical variables as free variables, we 
introduce variables of type A .  The degree of a variable of type A where 
A ( i l ,  i2) is of degree rz is defined to be n+ 1. The notion of formulas is ex- 
tended by adjoining variables of degree n + 1 and quantifiers with respect to 
variables of degree n + 1 to the language. The degree of a formula is defined 
to be the maximum of the degrees of variables in it. 

The intended interpretation of XA is this. If A is a well-ordering of o and 
the order type of A is u, then X A  is a variable of type c1 and if A is not a 
well-ordering of o, then X A  is a variable of type 0, i.e., a first order variable. 
In order to stress that A is a well-ordering of o, we sometimes use X“ in 
place of XA. According to this interpretation, we define that il and i, in 
XA are bound. The formula “ A  is a well-ordering of o” can be easily ex- 
pressed by using first order variables and A and is denoted W(A).  “W(A)  
and the order type of A is a’’ is denoted I A1 = u, which is also expressed by 
using first order variables and A .  

2. Provable well-ordering 

When we talk about a system S of axioms, we always assume that S is 
some extension of ZF + V =  L in our language. S also contains axioms which 
assert that V i  is equivalent to VXEW. We also assume o-rule. Therefore 
Vi$(i)is provable in Sif  and only if all $(O), $(I), $(2), ... are provable in S. 

DEFINITION. A binary predicate < in our language is said to be a provable 
well-ordering of o in S if and only if the following conditions are satisfied. 

2) If m and n are two numerals, then one and only one of n = m, S I- n 4 m, 
1) Lst- W(<). 

and Sk m < n holds. 

DEFINITION. Let < be a well-ordering of o, and n be a numeral. lnI4 is 
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defined to be the order type of n in the well-ordering 4 .  a=lnl, can be 
expressed by using first order variables and 4. 

THEOREM. Let S be a true theory and + and 4 be two provable well- 
orderings of w in S and m and n be two numerals. Then one and only one of 
In1 < JmJ d, JmJ, < JnJ <, or JnJ = JmJ + is provable is S.  

PROOF: In this section, A(n, m), B(n, m)  and C(n, m) are defined to be 
In1 < Im( "., ImlQ. < In( a and In( = Jm1, respectively. We prove by trans- 
finite induction on (mi * that if A (n, m), then S t  A (n, m). As an inductive 
hypothesis, we assume that this is true for every m' Q m. Since A (n, m), there 
exists a numeral k such that C(n, k )  A k Q m. By the inductive hypothesis, 
S t  A(k',  k) for every numeral k' < n. Since k' < n is decidable in S, 
S k V k ' ( k '  + n-+A(k', k ) )  by using w-rule. 

Since Sl- k Q m, S t A ( n ,  m). 
In the same way, S t B ( n ,  m), if B(n, m). 
Since C(n, m)  is equivalent to Vk < nA(k,  m) A Vk 4 mB(n, k )  and k 4 n 

and k 4 m are decidable in S, St C(n, m) if C(n, m). Therefore one of 
A(n,  m), B(n, m), and C(n, m) is provable in S, and so A(n ,  m), B(n, m) and 
C(n, m) are decidable in S. 

THEOREM. Under the same hypothesis as the previous theorem, one and 
only one of 14 J < I  Q ),I 6 J < 14 I and I 4 I = ]  Q I is provable in Sand  so 
they are decidable in S.  

PROOF: I + I < I Q I is equivalent to 3mVnA(n, m). Therefore the theorein 
follows from the previous theorem. 

DEFINITION. Let 4 be a well-ordering of w. The following well-ordering Q 
is denoted 4 + 1 .  

i, Q iZ-3 i ( i  4 i, A i 4 i, A i ,  < i z )  v ( i l  + i, A V i i  (i 4 iz)). 
df 

Clearly, if W( G),  then W( 4 + 1) and J G + 11 =I < I+ 1. 

PROPOSITION. If 4 is a provable well-ordering of w in S, then so is < + 1. 

4 + 2, < + 3, ... are defined to be (4 + 1) + 1, (4 + 2) + 1 ,... 
respectively. 

3. The system So 

Our intended interpretation of X "  is a variable of type I < 1 .  Therefore 
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X "  corresponds to X A  in TAKEUTI [to appear], where A(a,  j?) is j?=cr+ 16 I. 
Since So is a subsystem of the system in 6.1 in Chapter I in TAKEUTI [to 
appear] in this sense, we shall simply present many provable formulas as 
axioms of So. For simplicity, we shall sometimes omit the universal quanti- 
fiers in front of the formulas and also omit the type sign if no confusion is 
to be feared, e.g. VX" ( X E X )  means V X "  ( X "  EX"). 

DEFINITION. X A  = YB is defined to be 

So consists of pure logic of type theory (of our language), ZF+ V=L, 
where the axiom of replacement is generalized by introducing arbitrary type 
variables of our language, w-rule and the following axiom-schemata. (All 
numbered formulas in this section are axiom-schemata in So.) 

where F is an arbitrary formula and X and Y should be precisely written by 
X A  and YB respectively. We always assume that a set variable is a special 
case of a typed variable and a numerical variable is a special case of a set 
variable. 

1. XE Y+(F(X)-F( Y)), 

2. W (  +)+3 Y + vz" ( Z €  YC-)F(Z)). 
3. W(+), X A € Y " + 1 4 Z 4 ( Z E X ) .  

4. 1 W(<)+3x(x=X"). 
5 .  3XA(x=XA). 

In general, A , ,  ..., A,+B is an abbreviation of Al A A A,+B. 

6 .  I$'(<), I$'(+)), I< l<\+l+3Y"(X"=YB).  

DEFINITION. As an application of 2, we know that there exists a unique 
such that y" + 1 

vz" (Z € Y t ,  z f x v z 3 x ") . 
This formula is sometimes abbreviated as Y<+'={x, X"} or Y= {x, X}. 
{{x}, {x, X } }  is abbreviated as (x, X). 3! Y"f2(Y"+Z=(~, X")) is prova- 
ble in So. (I! is read "there exists a unique".) 
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Ty(~r ,  X4) is also written T'(X4)<cc. As usual, we define Ty(X4)<cr and 
T y ( X " ) = a  by using Ty(X" )<a .  T y ( X " )  satisfies the following properties. 

a) Ty ( X  *) = 0-3x (x E X). 
b) a>  O+(T'(X ") < a++V Y E X *  (T'( Y )  < N)). 
We shall continue presenting axiom-schemata of So. 

8. W ( < ) ,  T y ( X A ) < I < l + 3 Y 4 ( X =  Y ) .  
9. a < I < I -+ 3 X  ( Ty (x) = Cr A \J Y (Ty ( Y )  < U+( YEX++F( y)))) .  

7. W(<)+Ty(X")< I <I. 

4. Truth definition 

We fix a Godel numbering of our language. The Godel number of I) is 
denoted r$l which is a natural number. Such notions as "i is a Godel number 
of a formula", "i is a Godel number of a formula of the form A I),, i.e. 
a formula whose outermost logical symbol is A",  etc. are expressed by 
first order language. Thereforewe use tlr$lA (r$l), V r I ) ,  A $ z l A  (r$, A $,I), 

etc. to express " V i  ("i is a Godel number of a formula" +A(i))", " V i  ("i 
is a Godel number of a formula of the form $1 A $2" +A(i))", etc. respec- 
tively. Since r$,l and r$21 are easily expressed by using A $zl, we use a 
notation like Vr$, A $27B(r$11,r$21) as a special form of Vr$l A t,b21 
A (r$l A $zl). The number of logical symbols in $ and the degree of $ (defined 
in Section 1) are primitive recursive functions of rI)l and so easily expressed 
by first order language and we denote them as NZ(r$l) and deg(r$l) re- 
spectively. grad(r$l) is defined to be w - deg(r$l)+ NZ(r$l). grad(r$l) is 
also said to be the grade of $. The Godel numbers of the k-th numerical 
variable, k-th set variable and k-th variable of type A are denoted as rikl, 
rxkl and rXt1  respectively. The k-th numeral is denoted as n(k). 

DEFINITION. Y A  = X * 'x is defined to be 

( 3 ! Z " ( ( X , Z ) E X )  A (X, Y ) E X )  V ( l q ! Z " ( ( X , z ) E X )  A Y - 0 ) .  
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DEFINITION. T, (CL, X "  + 3 )  is defined to be the conjunction of the following 
formulas. 

2) V r i  $1 (grad( r i$ l )  < a+V Y ( ( r i  $7, Y )  ~ X t t i  {r$l, Y)EX)). 
3) Vr$~~$21(grad(r$~~t+b~1)~a+VY,((r$i A$,-', Y)EX 

4) t l "dx ,$ l (g rad ( rVx ,$ l )~~~VY"  (('Vx,$l, Y ) E X  

5) VrVXf$l (grad(rVXt$l)<u+VYYQ ((rVX$$l, Y)EX 
c*vz" v Yp ( T y ( z " )  < I Q I A Y, = s(z, 'Xtl, Y)+(r$l, y,) EX))), 

where i, 4 i, is ( rA(n( i l ) ,  n(i2))7, Y ) E X  
By transfinite induction on ci, we have 

1) v rx; E xi"' v Y (( rx; E xi"', Y) E xo Y' rxp E Y' T?). 

c*(r$ll, y ) E x A  (r$219 y>Ex)). 

HvxVz, ( Z E  s(x,rxkl, y)+(r$l, z )  EX)). 

PROPOSITION. The following are provable in So.  
I )  VCL~X"+~T,(U,  A'). 
2) grad('$l) < a, < P, 

T,(C~,X;'~), T,(P,X,"+3)+(<r$1, Y ) E X ~ + + ( ~ $ ~ ,  Y)EX,). 

DEFINITION. T, (r$l, Y ") is defined to be 

3a3X"+3(g rad ( r$ l )<~  A T , ( ~ , X ) A  (r$l, Y)EX). 

By transfinite induction on grad(r$l), we have 

DEFINITION. Let t+b be a formula and X;,', ..., Xt; be all free variables 
in $. $((Ye)) is obtained from $ by replacing X f ;  ,..., Xih; by Y ' r X t ; l ,  ..., 
Y'~X;;T respectively. 

By transfinite induction on the grade of $, we have 

THEOREM. Let $ be a formula and < . . . , < ,, be all types in $. Then the 
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DEFINITION. T,  (r$l, 0) is denoted T, (r$l). 
As a corollary of the previous theorem we have 

THEOREM. Let $ be a closed formula and < .. ., <,, be all the types in $. 
Then the following is provable in So. 

(w(<J4I<,l + 3 ~ l < l ) , . . . , ( W ( < , ) + l ~ ~ l  + 3 < I G l ) ,  
W ( 4 )  + (T< (r$3- $1. 

5. Transfinite applications of reflection principle 

In this section, the system of axioms S is always an extension of So and 
“a formula is provable in S” means that it is provable from S by using 
logical inferences and w-rule. Let S(r$l) express that $ is an axiom of S. 
Then Prov,(r$l), which means “$ is provable in S”, can be expressed by 
using first order language and S(il). We fix one such uniform way to define 
Prov,(i,) from S(il). 

Now we shall consider So. So(i,) can be easily expressed by the first order 
language. Therefore there exists a first order formula To such that 

so t To ( r s o  ( i  I)’, r$3 - so (r$l). 

Moreover the following is provable for every < in So. 

I < I > 0 + (T< (rso (r$l)’) * so T$l)) .  

Now consider an arbitrary system S.  Let s” be the system E(S) ,  where E 
is the reflection principle in the introduction. Then s(i,) is expressed by 

S(i,) v 3r$l[‘‘r$lis closed” A ((Provs(‘$l) A i, = rProvs(r$l)l) 
v (-I Provs(r$l) A i ,  = r i  Prov,(r$l)l))). 

Therefore, there exists a primitive recursive function f such that 

r s ( i I )T  =f(rs(il)’). 

We fix one of such functions f. Using a theorem in the previous section, 
we have 
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THEOREM. Let G l y  ...) <,, be all the types in S(i,). Then the following is 
provable in So. 

(W(<,)-+l<A + 3 < I < l ) ~ ~ ~ ~ ~ ( W ( < n ) + / < : , I  + 3 G l<l),  
W (  <), '"-$l is closed" + ( T ,  (rS(r+l)l)- S('-+l)). 

Now let < and + be two well-orderings of w and the order type of any 
type in 4 be less than I 4 I and I < I and 1 Q I be limit ordinals. We can easily 
construct a new well-ordering 4.  of w such that 4 .  is expressed by using 
first order language, 4, and Q and 1 Q . I  = I Q 1 + I< I. We fix a method to 
construct such a well-ordering 4.  and denote it Q + 4 .  In the same way, 
for every j ,  we fix a method to define j ,  and a well-ordering 4 .  such that j ,  
and Q. are expressed by using first order language, 6, and Q and l jol< 
is zero or a limit ordinal and I j l  - 1 j,l is a natural number and I Q .I = 
I 4 1 + 1 j,l< + 6 . )  j l  - I j,\ *. In this section we denote this well-ordering Q . 
by < j .  Let $I (il) be a formula and m be a numeral. r$(m)l is expressed by the 
first order language and r$I(i,)l. r$(m)l is denoted by SubEr+(il)l, The 
operation Sub can be defined independently from r$(i,)l and m. 

Now we shall explicitly define a system obtained from So by applying 
the operation E < 1 times. The explicit definition of < is necessary to do so. 

DEFINITION. R" (h ,  i,, i3) is defined to be the conjunction of the following 

1) V j l ( V j 2 ( j l <  - j,)-+h'j, =rSo(Q1), 
formulas. 

where j,< j ,  is an abbreviation of j ,  4 j ,  v j ,  = j,. In this section, we assume 
that j ,  isthe first element in 4.  So we use h'j, ='So (it)' instead of 1). 

2) Vj,< i2Vj2 ('7, is the successor of j ,  in <''+h'jz=f(h'j1)}. In this 
section we denote "the successor of j ,  in <" ( j ,  + I ) < .  So we use 
V j <  i 2 ( h ' ( j +  1)" =f(h ' j ) )  instead of 2). 

limit ordinal numbers. S" (i,, i,, i3) is defined to be 

3 h ( R " ( h ,  i,, i,, i3)  A ( l i , /<GKI ,+3j< i2T<i2(Suby,(i1)h'j)) 
A Vj(lizl$KIr --f T,i2(Suby:i') h'j))). 

Let m be rS" (il, i,, i3)l and S" ( i l ,  i2) be S" (il, i,, m). Then 3) becomes 
the following in S" (il, i,). 

i.e. 

3) V'< i2(J j I4  EK,,+h'j=Sub;?) Subn(i')i3) 13 where KII is the class of all 

V j  < i,(ljl E K , ~  -+ h'j = Sub::" Sub%m)rS< ( i , ,  i,, i 3 ) l )  

V j e  i 2 ( J j l " ~ K I I + h j '  =rS4(il ,  n(j))'). 

Therefore we have the following. 
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PROPOSITION. Under the assumption in this section, the following is 
provable in So. 

s" ( i l ,  i 2 ) + + 3 h ( h j ' ,  = rso(il)l A vj-+ i z ( h ' ( j  + 1)" = j ( h j ' ) )  
A V j q  i z ( I j l ceKII+h' j  = 'S" ( i , ,  n(j))l) 
A (li21< eKI1 + 3 j  < i2T<i2(Suby:i1) hj')) 
A ( ( i 2 ( "  #KII + T~iZ(Sub~,("'  h' i2 ) ) ) .  

DEFINITION. R" (A ,  i) is defined to be 

h'jo = rSo(il)l A V j  -+ i ( h ' ( j  + I)< =f(h'j)) 
A V j  < i(lj1, E K ~ ~ - ~  hj' = ' S 4  (il, n(j)) l ) .  

PROPOSITION. Under the assumption in this section, the following are 
provable in So. 
1) 3hR" (h, i). 
2) A"(h, ,  il), ~ " ( h , ,  i 2 ) , j ~ . i l , j ~ i z ~ h ; j = h ; j .  
3) R 4 ( h , i ) , j < C j l  2.L I j l I ~ ~ K I I ~ I j l 1 4 = 0 5  

"h'j is a Godel number of a formula $ and every typed variable in $ is in 
S" (il, i2), i.e. in 4 and T, j , " .  

PROOF: 1) is proved by transfinite induction on i. 2) is proved by transfinite 
induction on j .  The first part of 3) is proved by transfinite induction on j .  
The second part of 3) follows from the definition of R" (h, i),fand S" (il, iz). 

QZ (l.1 4 j z  5 j -  1 I h l 4  EKII)-, 

PROPOSITION. Under the assumption in this section, the following is 
provable in So. R" (hl, i ) , j  4 i+(S" (il,j)++T<i(Subyyl) h'j)). 

PROOF: This is proved by transfinite induction on j .  If I j I $KII, then it 
suffices to show T, ,(Suby:"'h'j)t+T < j  (Suby,(")h'j). This follows from 3) in 
the previous proposition. If l jI4eKI, ,  then it suffices to show S"(il,j)* 
T, (rS" (n(i,), n( j)'), which also follows from 3) in the previous proposition 
and 

V j <  i ( l j ( " e ~ I 1 + h r ~ = r S d ( i l ,  n(j))') in ~ ~ ( h ,  i ) .  

DEFINITION. Sp (il) is defined to be Sq(il, i). The system of axioms 
consisting of closed formulas $ satisfying S: (r+l) is denoted as Sfl . 

THEOREM. Under the assumption in this section, the following are prova- 
ble in So. 
1) s,m-so(il). 
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2) j ,  = ( j +  1)4-*(SJ:o(il)~E(Sj4) (il)), where E(S)  (il) is S(i,)v Y$l (“ r$ l  
is closed” A 

((Prov,(r$l) A i, = rProvs(r$l)l) 
v (i Provs(r$l) A i, = r i  Provs(r$l)l))). 

3) lil, EK,,+(S,? (i,)-3j < isJ: (i , ) ) .  

of 2): By the previous propositions, we may assume R“ ( h , j l )  and so 

Sif (il)++ T,,, (Sub~~”)h’j , )++ T,,, (Sub;!“’f(hj’)) 

PROOF: Proof is by transfinite induction on j ,  and i. 1) is obvious. Proof 

- E (T, J1 (Sub;,“” h’j)) ( i l )  +-+ E ( S ; )  ( i  1). 

Proof of 3): By the previous propositions, we may assume R“ (h, i )  and so 

Sl< ( i , ) -3 j  < iT<i(Sub;:ii) h’ j ) c t3 j  < is; ( i l ) .  

Let < be the usual ordering of w .  Let i be the integer satisfying lil + < = 
= I < 1 + 1. S ,  is defined to be Sl? + <. The theorem means that if < be a well- 
ordering of o, then there exists a sequence Q of systems S, such that Q 
starts with So and the successor of S in Q is E ( S )  and the a-th member of 
Q is Us<, S, if a is a limit ordinal and the length of Q is 1 < 1. 

Now, we shall prove an additional property of S“ . 

PROPOSITION. There exists a provable well-ordering $ of w in E ( S ) ,  
whose order type is greater than the order type of any provable well-ordering 
of w in S.  

PROOF : We shall prove this by enumerating all provable well-orderings of 
w in S.  Let j be Godel’s pairing function of w .  ( j  is a 1-1 map from w x u 
onto w.) Then define < as follows. 

1. If el <e , ,  thenj(e,, n) < j ( e 2 ,  rn) for any n and m . 
2. If e is not a GiSdel number of a provable well-ordering in S, then 

j ( e ,  n) < j (  e,  m) if and only if n < m. 
3. If $ is a provable well-ordering of w is S, then j(r$’, n) + j(r$l, m) if 

and only if n t m .  
Such an ordering < is easily expressed by using Prov, and shown to be 

a provable well-ordering of w in E(S) .  It is obvious that < satisfies the 
condition in the proposition. 

THEOREM. In SG+ 1)4,  there exists a provable well-ordering of w whose 
order type is greater than I iI 4 .  
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PROOF: This is proved by transfinite induction on lil‘ and the previous 
proposition. 

6. The theory on L and remarks 

Since the truth definition of the first order sentences can be expressed by 
using second order language and the second order language is a part of our 
language, we can define the following notion P in our system. P(n)  is defined 
to be “n is a Godel number of a first order formula $(xl) in which x1 is only 
free variable and 3!ct+(a)”. Now 4 is defined as follows. 
1) If i P(n)  and i P(m), then n < m is defined to be n < m. 
2) n < m if i P(n)  and P(m).  
3) r$l(Xl)l <r$2(Xd1 if r $ l ~ ~ l ~ ~ ~ ~ ~ z ~ ~ l ~ ’ ~ ~ ~ r * l ~ ~ , ~ l ~  

4) ‘+l(Xl)T < r+Z(xd1 if ~(r+l(xl)l) Amfh(xl)l) 
A P ( ~ $ ~  ( ~ 1 1 ~ ) ~  W + l  (a) A $2 (a)). 

A 3a3B(u < P A  $1 (a). $2 (PI). 
< is easily expressed in our language and is a well-ordering of w. It is 
known that F”l<l is elementarily equivalent with L, where F is Godel’s 
function constructing L. From the results in Section 5 follows that there 
exists a provable well-ordering Q of o in S‘ such that I -+ 1 = 14 I. Then 
F’I QI is definable in S“ and we claim that every first order sentence 
relativized to F’ I -+I is decidable in S‘. Since S“ has o-rule, it suffices to 
show that F‘ \ill 4. EF‘ \i21+ is decidable in S4.  This can be easily proved by 
transfinite induction on j (  I i, 1 <, Ii, I +), where j is Godel’s pairing function of 
ordinals, since S“ has w-rule and Jill+ < li21e i.e. i, Q i, is decidable in 
S‘. This means that S‘ is sufficiently strong on L. 

Remark. Every notion like Prov in this paper is considered in L. Therefore 
we have to show that transfinite type theory is compatible with V=L. 
However something similar has been done for very strong transfinite type 
theory in TAKEUTI [to appear]. 

Open problems. . 
1. Let a be the supremum of all definable well-orderings of o in our 

language. Is F”a elementarily equivalent to L? 
2. Is it possible to introduce new axiom-schemata on width (cf. TAKEUTI 

[to appear]) and to establish our result on V assuming that V is very 
wide? 
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AUTONOMOUS TRANSFINITE PROGRESSIONS AND THE 

EXTENT OF PREDICATIVE MATHEMATICS 

S .  FEFERMANl 
Stanford University, Stanford, California, USA 

1. General introduction 

This is a report on formal proof-theoretic results relevant to the program 
of characterizing the informal notions of predicative dejinition and predicative 
proofz, here treated throughout under the assumption that the set qf natural 
numbers is given. 

An immediate consequence of this assumption is that the meanings of 
arithmetical definitions of properties of natural numbers are (taken to be) 
completely determined. These can be represented by formulas from a formal 
system of elementary number theory (Z) where the quantifiers are intended 
to range over the set of natural numbers. Then the proofs represented by 
derivations of the classical system (Z) are immediately acceptable. 

The basic predicative step at any stage consists in enlarging the (collection 
of) collections of definitions previously obtained by allowing definitions 
containing quantifiers ranging over these earlier collections. Formally, this 
is the principal step in the formation of the ramiJied systems, with the rules 

Research supported in part by Grant DA-ARO(D)-31-124-G655. 
The explicit introduction of these notions is due to Poincare; cf. POINCARB [1963] Ch. 4 

for his discussion of their significance. While his informal remarks make clear certain of 
the basic notions they are not unambiguous and in some cases are in actual conflict with 
each other; in other words, his own views would seem to be a mixture. For example, he 
rejects the assumption of any completed infinite totality, but accepts proof by induction 
on the natural numbers applied to statements containing numerical quantifiers, without 
any explicit restriction of the laws of logic. We are here concerned to give one coherent 
conception in the original mixture, namely that of predicativity given the totality of natural 
numbers. (It is not clear at present what other coherent conceptions can be extracted from 
the mixture.) The reader is referred to KREISEL [I9601 and FEFERMAN [1964] for surveys of 
the technical developments which Ied from the conceptions introduced by Poincare to the 
formal axiomatizations considered here. 
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of classical logic and induction on the natural numbers applied to the ex- 
tended language. 

Finally, the basic step can be iterated transfinitely often relative to any 
ordering relation provided one already has a predicative proof which shows 
this iteration to be a well-determined process. We study below the effect of 
various formal conditions, related to this requirement; we call them con- 
ditions of autonomy. The principal autonomous condition considered is that 
one already has a formal proof of the statement which expresses, under an 
impredicative interpretation, that the ordering is a well-ordering. The or- 
derings satisfying this condition will be called ‘predicative well-orderings’, 
though strictly speaking we have given no independent meaning to ‘well- 
ordering’ in predicative terms. 

The predicative definitions and proofs considered here are supposed to be 
all those which are generated by the foregoing processes. Put differently, the 
predicative definitions are all those whose meaning can be ultimately reduced 
to numerical quantification. The formal results bearing on these notions are 
summarized in 1.1 and 1.2. 

1.1. Background and earlier work 

KREISEL [1958] proposed that an appropriate technical tool for charac- 
terizing various informal notions of proof was Turing’s notion of ordinal logic 
provided the ordinals used are properly restricted; or, as one calls it now, an 
autonomous transjinite progression of formal systems {T,}. He sketched there 
two such progressions {Pa} and {R,} intended to correspond to the notions 
of jinitist and predicative proof, respectively; a formally improved version 
of {Pa} was presented in KREISEL [ 19651 pp. 169-1 73. The main conclusions 
drawn in these papers for the case of the {Pa> are that (Z) is a conservative 
extension of UP, ( a  autonomous) and that E,, is the least upper bound of 
the ordinals .(a) for autonomous a. 

In  a subsequent paper, KREISEL [1962] discussed the well-known defects 
of ramified systems for the development of classical analysis. He suggested 
as an alternative the use of subsystems of classical (unramified) analysis 
which can be predicatively justified, i.e., seen to have models at predicatively 
justified levels of the ramified hierarchy. In particular, he introduced the 
hyperarithmetic comprehension rule (HCR) as a means of proof which would 
lead from predicatively justifiable statements of classical analysis to new such 
statements. 

I introduced (FEFERMAN [1964]) a progression {He} of unramified systems 
with (HCR) as the main rule of inference, and with a certain reflection prin- 
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ciple (to be described below) as the basic means of passing from one system 
to the next. In Part I1 of that paper I sketched intertranslations between the 
autonomous progressions { R,} and {Ha}. A certain classical ordinal T o  was 
identified there as the least upper bound of the autonomous .(a). This result 
for ramified progressions was obtained independently by SCHUTTE [ 19631, 
[1965]. 

One of the most useful methods for dealing with the proof theory of 
various progressions has been the extension of Gentzen's cut-elimination 
results to 'semi-formal' systems permitting infinitely long derivations, initiated 
by Novikov and Lorenzen and developed extensively by SCHUTTE [1960]. 
Infinitary systems of this sort corresponding to the progressions {R,) and 
{H,) are denoted here by (R') and (H'). FEFERMAN [1964] also gives inter- 
translations between (R') and (H'); further, To remains the least upper 
bound of the autonomously provable well-orderings in these wider classes 
of derivations (by cut-elimination arguments for systems with transfinite 
ramification having their source in SCHUTTE [ 1960]).3 

1.2. New results 

These various notions and results will be explained in more detail in Sec- 
tions 2-4 below, and improved by eliminating certain features of the earlier 
systems which may have seemed to be ad hoc. For example, the work of 
FEFERMAN and KREISEL [ 19681 allows one to show that no new theorems are 
obtained when the rule (HCR) is replaced by a formally more general rule 
for introducing sets determined by provabZy definite formulas (Section 2.3).  

Infinitary unramified systems are developed further in Section 5. TAIT 
[1968] has shown how to use a cut-elimination result for systems with inji- 
nitefy long formulas (as well as derivations) to get a direct proof that To is 
an upper bound for the (H')-autonomous well-orderings. A smoother vari- 
ant of this argument is sketched in Section 5.2; the improvement rests on 
an interpolation theorem for infinitary formulas due to BARWISE [1967]. 

In both these progressions, the autonomy condition restricts only the 
ordinal lengths of the trees of derivations and formulas. The next step is to 
consider sharper restrictions requiring that the trees themselves (and not 
only their ordinals) be already defined; and, even more stringently, that the 
trees be previously proved to represent derivations or formulas, resp. (Sec- 

3 The forthcoming FEFERMAN [1968a] is the first of some papers which will contain a 
detailed exposition of the proofs of the various results outlined in the second half of 
FEFERMAN [1964]. 
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tion 5.3). In the most restricted case, the autonomous infinitary system turns 
out to be a conservative extension of U H, (a autonomous). 

The results obtained thus establish stability properties of the various au- 
tonomous progressions of systems considered. The ordinal T o  appears as 
the limit of the autonomous ordinals in all cases, whether the systems are 
finitary or infinitary. If the languages of two progressions are comparable 
one gets in many cases conservative extension and otherwise natural inter- 
translation results. 

The significance of these results for the problem of determining a complete 
axiomatization of predicative mathematics is discussed in the conclusion. 

2. Preliminaries for systems with finite formulas 

2.1. Basic syntax and logic 

A language which provides for quantification over the natural numbers 
as well as over certain definitions of properties of natural numbers must in 
effect be at least of 2nd-order. For simplicity, we restrict attention through- 
out to just 2nd-order theories (cf. FEFERMAN [ 19661 for some stability results 
involving higher type extensions in the language of set theory). 

The syntax is specified as follows. We have 1st-order variables x, y, z, ... 
and 2nd-order variables X, Y, Z, .... In the case of ramified systems each 
2nd-order variable is, in addition, of a specified rank, given by an element 
of the field of an ordering in the natural numbers; it is assumed that each 
element has a unique successor in the ordering. There is a constant symbol 
0 and a list ’, f,, f,, .. . of function symbols for specific primitive recursive 
functions.* The atomic formulas are those of the form t, =t2, tEX, X = Y  
(t, t,, t, 1st-order terms). Arbitrary formulas are built up by the usual oper- 
ations of propositional calculus and the quantifiers in both types; the letters 
8, Q range over these. A formula without bound 2nd-order variables is said 
to be arithmetical; letters a, 23 range over these formulas. In the ramified 
case, the rank of any formula 8 is taken to be the maximum of (0, rank(Y,), 
rank(Zj)+ 1) where Yi ,  Z j  range over the free, resp. bound variables of 8. 

The intended range of the 1st order (‘numerical’) variables is the set of 
natural numbers. When ranges are specified for the 2nd order variables each 
formula 3(x) with one free variable is regarded as a definition of a property 
of natural numbers. Ranges for the 2nd-order variables may be specified as 

4 With suitable axiomatic basis, it is sufficient to take a pairing function fa and its inverses 
fl, fz.  
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certain collections of definitions. Then a formula XEX is satisfied by an 
assignment of a natural number n to x and a formula 5 to X (8 from such 
a collection) if 5 holds at  n, i.e., if 5 ( E )  is true. A formula X = Y  is taken to 
hold under an assignment of 5, 8 to X, Y resp. when 5, 8 hold of exactly 
the same natural numbers. Unless otherwise specified, 5(x)  will stand for a 
formula which may contain free variables ('parameters') other than x; such 
formulas can be regarded as relative definitions under suitable conditions. 

The basic logical apparatus of all systems considered consists of the 
axioms and rules for classical many-sorted predicate calculus with 
equality. The basic non-logical axioms throughout are, first, extensionality 
AX, Y [ Ax(xEX-XEY)+X=Y] and all instances of induction on the 
natural numbers, S ( ~ ) A  A x [ ~ ( x ) + ~ ( x ' ) ] +  A x ~ ( x ) .  This is called the 
system of 2nd-order number theory or elementary analysis. In certain cases, 
it will also be permitted to apply instances of the comprehension axiom scheme : 

In the ramified case this is allowed whenever the rank of X is at least as large 
as the rank of 5. 
2.2. Ramijied systems 

The predicative interpretation of a ramified system with finite ranks is 
now evident. The range of the variables of rank 0 consists of all arithmetical 
formulas 'u, and of rank n i- 1 of all formulas 5 of rank < n (in all cases with 
just one free variable). The extension of this interpretation to formulas with 
variables of rank taken from a predicatively recognized transfinite well- 
ordering is also clear, since a formula 5 with just a free numerical variable 
is of limit rank ct if and only if it is of rank p for some b<u.  

It is more troublesome to give an adequate axiomatic account of the 
situation at  limit ranks. For example, at  stage o one needs something like 
the following reflection principle, for each formula 8 ( X ) :  given that for 
each n, A X"Q (X") is predicatively provable, we may infer A X'Q (Xo). For 
technical purposes this can be simplified by introduction of 'variable ranks' 
into the symbolism; cf. SCHUTTE [1963]. 

Because of the foregoing, transfinite progressions of unramified systems 
are easier to describe syntactically than the corresponding progressions of 
ramified systems. Thus while the latter are basic for a direct axiomatization 
of predicativity, the present exposition will concentrate on the former for 
the sake of simplicity. The reader is referred to FEFERMAN [1964] pp. 21-22 
for more details concerning progressions of ramified systems. 
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2.3. UnraniiJied systems: provably definite formulas 

The formulas of the unramified language do not have a direct predicative 
interpretation. Nevertheless, there is a large class of non-trivial instances of 
the comprehension schema (2.1) with predicative character, i.e., which lead 
only to theorems permitting some predicative interpretation. An informal 
idea which lies behind this is due to PoincarC : predicative classifications 
“cannot be disordered by the introduction of new elements”   PO IN CAR^ 
[1963] p. 47)5. 

Adjoin a new sort of 2nd-order variable X*, Y * ,  Z * ,  ... to the given lan- 
guage. Associate with each formula 3 the formula 3* obtained by replacing 
each bound 2nd-order variable Zi  of 3 by the corresponding variable Z:. 
Let S be a set of sentences in the original language, S* the set of 8* for 8 
in S.  A formula 3 of the original language is said to be provably dejinite 
refative to S if (3-5*) can be inferred from Su S* u { A X V X*(X = X*)} ; 
intuitively speaking, the meaning of 5 (assuming S )  at any given elements is 
undisturbed by the introduction of new sets satisfying S.6 

Throughout the following we use the letters ‘$ andQ to denote essentially nl, resp. formulas, i.e. those in prenex form with all type 1 quantifiers 
universal, resp. existential. We write [@-+(p, Q] as an abbreviation for 
[5+4]  A “p-Q]. It is easily seen that for any S, 

if St [Be‘$ ,  Q] then 5 isprovably definite refdive to S.  (2.2) 

Conversely, following FEFERMAN and KREISEL [1968], it is shown in FEFER- 
MAN [1968b] that: 

THEOREM 

(2.3) 
r f  5 is provably definite relative to S then we can find ‘$,Q 
such that St [5-(p,Q].7 

5 Poincare had the natural numbers as a ‘potential totality’ in mind in this passage; 
but the idea is equally applicable to definitions in which the property of being a natural 
number is fixed and the predicative definitions of properties of natural numbers constitute 
the potential totality considered. 
6 Model-theoretically speaking, using completeness, this is equivalent to saying that 3 
is invariant under extensions M G  M* in models of S when the domains of objects of 1st 
order are the same in M and M*.  
7 This is very closely related to the results of FEFERMAN and KREISEL [1968], though not 
explicitly stated there; the proof is along the lines of the arguments described 1.c. Sections 
4 and 5. In FEFERMAN [1968b] and [1968c], I shall give new uniform proofs of all these 
results covering various infinitary languages as well. As stated, (2.3) applies only to finitary 
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Kreisel's rule (HCR) is the following: 

If Ax[~(x)-~(x) ,Q(x)]  has been proved, infer VXAX[XEX++S(X)]. 

By (2.2) and (2.3), systems of finite formulas based on (HCR) will give the 
same theorems as systems which permit the application of the comprehension 
axiom (2.1) whenever 5 has been shown to be provably definite relative to 
the theorems previously obtained. Because it is simpler to describe syntac- 
tically, the unramified systems in the following are formulated using (HCR). 

(2.4) 

3. Autonomous infinite derivations of finite formulas 

First consider formal systems described in impredicative terms, using 
ordinals. The autonomy condition considered here requires proof of the 
formal statements WF(  <) expressing under the standard impredicative 
interpretation, that certain ordering relations are well-founded. In the sys- 
tems studied, all statements which are formally proved are true under this 
interpretation. 

Consider any formula (x<y) with two free variables and any formula 
g(x); write TI,(g(x); <) for the conjunction of A x, y, Z ( X < Y A  y<z- 
-+x<z)A AX, Y ( X < Y A ~ < X - + X = ~ )  (partial ordering) with Ax[x<xr\ 
A A y(y<x-tB(y))+B(x)]-+ A x(x<x+B(x)) (transfinite induction). Then 
take I(<) to be A XTI,(xEX; a); this is equivalent to the statement WF(<) 
of well-foundedness of <, under the relative arithmetic comprehension 
axiom. We write WO(<) for the conjunction of I(<) with A x, Y(X<XA 
A y<y-+x<y v y<x) (simple ordering). 

When I(<) is true we can assign ordinals o ( x )  to elements x of the 
field of < by the recursion o ( x ) = s ~ p ~ ~ ~ o ( y ) .  We then take o ( < ) =  
supx+ o ( x ) ;  this is called the length of the relation 4. This notation is 
extended to well-founded trees T i n  the natural numbers. 

The unramified system (H') with infinite derivation trees of finite formulas 
consists of the axioms and rules of 2nd order number theory mentioned in 
Section 2.1 together with the rule (HCR) and the o-rule: 

(3.1) f r o m  3(0), ..., B(E) ,  ... infer A xB(x). 

Then the class of (Hf)-autonomous derivations, theorems and ordinals is 
defined inductively by: (i) each finite ordinal belongs to the class; (ii) if 53 

languages; an extension of it to systems with infinitely long derivations, even of only 
finite formulas seems to require the introduction of infinite formulas (cf. Section 5 below). 

~ .- ~ ~. .~ 
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is a derivation and o ( 9 )  belongs then 9 itself belongs: (iii) if a derivation 
9 belongs and 9 proves 5 then the theorem 5 belongs; and (iv) if Ax,y 
[x<y-'$(x, y),Q(x, y)] A I(<) belongs then o(<) and all smaller ordinals 
belong. K t ( H + )  denotes the least ordinal which is not (H+)-autonomous. 

Aut(R+) is defined in a similar way for the infinitary ramified system (R'). 
Note that the variable X in a formula I(<) is in this case ranked. However, 
if I (<)  can be proved it can also be proved for any other rank introduced, 
simply by raising all ranks in the derivation of I( 4) by a fixed amount; also 
I(<) will be true when ranks are dropped. 

The main result (FEFERMAN C1964-J) for the ordinals obtained here is for- 
mulated in terms of the hierarchy of critical functions d') of ordinals, defined 
inductively as follows: K("(M)=  ma, and for v>O, K(') is the normal function 
which enumerates {t: for all p<v, ~ ( ~ ) ( 5 ) = < ) . 8  Then To is defined as the 
least fixed point of the function AvK(')(O).  Thus T o  =limn yn where yo =0, 

- 

Yn + 1 = Kc(m) (0). 

THEOREM 
A%(R+) = AT(H+) = r,. 

As we remarked in Section 1, the result Aut(Rf)=To was obtained inde- 
pendently by SCHUTTE [1963], [1965]. My proof of A;(R+)<T, was very 
similar to his (cut-elimination arguments going back to SCHUTTE [1960]). 
I proved A%(H+)<A%(R+) by showing how to associate with each (H+)- 
derivation 93 of a formula 5 with o ( B ) = a  an (R')-derivation 9' of a 
ramified formula F'""' with o(B')<w2.cr. Section 5 below now provides a 
simple direct proof of Aut(H+)<T,. It is also not difficult to get a direct 
proof of r , < G ( H + )  by translating (R') into (H+), cf. FEFERMAN [1964] 
6.19. Thus natural intertranslation results are the basis of the first equality 
in (3.2). 

4. Autonomous progressions of formal systems 

The general idea of a transfinite progression {T,) of formal systems (in 
the usual sense) is this: One specifies To and the extension principle for 
passing from T, to T,, ; at limit ordinals one takes T, = U, <, T,. We call 
these the progression conditions. 

For the case of immediate interest, suppose PrHa(r51) expresses that the 

8 In the notation of FEFERMAN [1964], dY)(a) = ~ 2 ) .  
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formula 5 is derivable from Ha by means of the usual logical rules together 
with the rule (HCR). The reflection principle for H a  is the formalized o-rule 
consisting of all instances (with A xs(x) a sentence) of 

A xpr,. (‘5 (q’) -+ A x s  (x) . (4.1) 

Then a progression {Ha} of unramified theories is determined as follows: 
H, consists of the axioms of elementary analysis, and H,,, is to be Ha to- 
gether with all instances of (4.1). 

This idea is made precise by giving a canonical means of forming the 
Pr,. from the formal description9 of the sets Ha;  this in turn depends on the 
notations for the ordinals used, i.e., by which ordering and by which defi- 
nition of the ordering the ordinals are given. Following Turing’s original 
work on ordinal logics, FEFERMAN [1962] gave a general treatment of pro- 
gressions {T,} with a in the set 0 of recursive ordinal notations. In view of 
the problematic use of well ordering in predicative mathematics, two points 
of this treatment are important. For a wide class of extension principles, 
including (4. l), the recursion theorem associates with an arbitrary natural 
number a, a definition rO of a set T, of axioms in such a way that (i) the 
progression conditions hold for an arithmetical class of ‘pseudo-notations’ 
including 0 and (ii) elementary proofs of (i) can be given (‘verifiable pro- 
gression formulas’, 1.c. p. 284). 

The restriction to recursive notations was continued in the treatment of 
the progression {H,) in FEFERMAN [1964]. However, in this case the restric- 
tion is ad hoc since not only recursive definitions are predicative. Instead, a 
more appropriate notion here is as follows. The class of (H)-autonomous 
theorems and ordinals is defined inductively by: (i) each theorem of H, be- 
longs to the class; (ii) if Ax, y[x<y4$(xY y),Q(x, y)] A I(<) belongs then 
o ( < )  and all smaller ordinals belong; (iii) if A x, y[x<y*’p(x, y),Q(x,y)] A 

A WO(<) belongs and we have any formula PrH,(x) for which the formali- 
zations of the progression conditions, with a ranging over the field of <, 
belong to the class-then for each a<a and theorem 8 of H,, 3 belongs. We 
now take A%(H) to be the least non-(H)-autonomous ordinal. 

By the corresponding modification in the case of ramified theories in 
FEFERMAN [1964] one obtains the notions of (R)-autonomous theorems and 
ordinals and Z ( R ) .  Then 

In FEFERMAN [1962] and earIier publications, I spoke of giving a collection of axioms 
intensionally as opposed to giving it extensionally, i.e., merely as a set. To avoid confusion 
with the philosophical problem of intensions it seems now preferable to use other termi- 
nology such as (for a formula which defines a set), formalpresentation of a set. 
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THEOREM 
AX(R) = AT(H) = ro.  (4.2) 

Obviously ro is an upper bound by the result (3.2). The proofs of the reverse 
inequalities are somewhat more delicate, cf. FEFERMAN [1964] pp. 24-25. 
Once again natural intertranslations are involved in the first equality stated. 

It is not immediate that the set of (H)-autonomous theorems is a subsystem 
of classical analysis. However, in my 1964 paper I described a single axiom- 
atization (IR) of this set of theorems which is obviously contained in classical 
analysis. With slight modification, the axioms of (IR) are those of 2nd order 
number theory and the rules are (HCR) together with rules which permit 
us to infer TI,(S(x); 6) and transfinite recursion on < whenever we have 
proved 

A x, Y cx d Y 4+ $3P& Y), Q(X7 Y)1 A I (<) .  

5. Autonomous infinite derivations of infinite formulas 

5.1. Background and preliminaries 

Some of the sourcesfor the consideration of infinitely long formulas here are 
as follows. First, Kreisel suggested in his 1962 paper (p. 317) that the stability 
results should remain unaffected when such formulas are introduced autono- 
mously. Second, TAIT [1968] showed how a cut-elimination theorem for 
derivations in a form of infinitary arithmetical analysis (ramified analysis of 
rank 0) could be used to get a more direct proof of Z t ( H + ) < r , .  Finally, 
a result of FEFERMAN [1968b] corresponding to (2.3) for provably definite 
formulas under infinitely long derivations seems to require in general the use 
of infinitely long $3, Q.10 Detailed proofs of the new results here will appear 
elsewhere. 

We consider infinitely long formulas (with finitely many free variables) of 
the unramified 2nd order language, built up from the standard atomic for- 
mulas by means of the usual (finite) logical operations and quantifiers and 
countably long conjunctions n and disjunctions c. Each such formula 5 
is regarded as a well-founded tree. We continue to use the letters a, 23 for 
arithmetical formulas, which as before contain no bound 2nd-order variables. 
The letters '@,a are now used for universal, resp. existential formulas i.e., 
those built up from atomic formulas and their negations using only n, C 
lo The technical reason for this is that while cut-elimination results hold for infinitely 
long derivations of finite formulas, the interpolation results needed for the arguments of 
FEFERMAN and KREISEL [1968], and FEFERMAN [1968b] require infinitely long formulas. 

- 
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and universal, resp. existential, quantifiers of either type. Every essentially nl (El) finite formula is provably equivalent to a universal (existential) for- 
mula under the hypothesis of 

A x  ( x = f i ) ,  (5.1) 
n < o  

which permits elimination of 1st order quantifiers in favor of infinite con- 
junctions and disjunctions entirely. Thus, also extensionality can be put in 
the form 

A X, Y [ ( A ~ X t t f i ~  Y) + X = Y] (5.2) 
n < o  

when (5.1) is assumed; we abbreviate (5.2) as Ext. To get a system including 
elementary analysis we need only adjoin Z,, the usual initial axioms of (Z) 
for ', f,, f, ,.... 

The infinitary system (A') of arithmetical analysis is specified here as 
follows. For each arithmetical formula 3 with free variables x, y,, . .., y,, 
Y, ,  .. ., Y ,  we have an instance of the comprehension axiom: 

(CA,) AYl,...,yn, Yl ,  ...,Y, v x A X [ X E X + +  

Y1, ..., Y", y,, ..., Y , ) ] .  (5.3) 

An (A+)-derivation 9 is one which permits (5.1), (5.2), Z,, and instances 
of (5.3) as initial non-logical hypotheses. For convenience it is assumed that 
the logical rules are presented in Gentzen sequent-form including the cut- 
rule and rules for = (e.g., the rules given by LOPEZ-ESCOBAR [1965]). We 
shall say that 9 proves 5 if it proves the sequent -5. 

By an (L+)-derivation 3 we mean one which is purely logical, i.e. none of 
(5.1)-(5.3) are assumed in 23. Given an (A+)-derivation B let CA(9)  be the 
collection of formulas A such that (CA,) appears as an hypothesis in 9. 
Suppose such a 9 proves r-+A; then we can associate directly with 9 an 
(L')-derivation 3' of 

A x C x = fi, Ext, Zo, n (CA,), r -+ A .  
n < w  Vl E C A ( 9 )  

Infinitary derivations 9 can be coded by trees in such a way that the trees 
of formulas 5 appearing in 3 can be derived from 9 (so that in particular, 
0(5)<0(3)).  Thus when introducing notions of autonomy here it is only 
necessary to specify under what conditions a derivation 9 will be accepted. 
This is given three successively stronger senses. 

5.2. Autonomy in the$rst sense 

The class of (A+)-autonomous(1) derivations, theorems and ordinals is de- 
fined inductively by: (i) each finite ordinal belongs to the class; (ii) if 9 is 
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an (A+)-derivation and o ( 9 )  belongs then 9 itself belongs; (iii) if a deri- 
vation 9 belongs and 9 proves 8 then 8 belongs; and (iv) if A x, y[x<ycr 
cr'$(x, y),Q(x, y)] A I(<) belongs then o ( < )  and all smaller ordinals be- 
long. K t ,  (A+) is the least ordinal which is not (A+)-autonomous(1). 
The principal result here is the following. 

THEOREM 

(i) Z t ,  (A+)=T,. (ii) The set of (A+)-autonomous(1) theo- 
rems is closed under the rule (HCR) and hence is an extension of (5.4) 
the set of (H+)-autonomous theorems. 

We shall only indicate the main steps of the proof. T o  < K t ,  (A+) follows 
from the fact that the set of (A+)-autonomous (1) theorems is closed under 
the second and third rules of (IR) with recursive <. The reverse inequality 
and (ii) can be obtained from the following: 

with each (A+)-derivation 9 of ('$-a) such that o ( B ) < r o  can 
be associated an arithmetical 23 and (A+)-derivation 9' of (23-'$) 
with o(9')<ro. 

To see this, assume the hypothesis of (5.5). Consider the definitional 
extension got by introducing a function symbol F, for each %E CA(9)  with 
corresponding axiom 

(5 .5 )  

(CA;) A X ,  y1, ..., yn, Y1, ..., Y,[xEF,(yi, ...) Y,, Y i ,  ...) Y J t f  
%(x, ~ 1 ,  ..., yn, Y i ,  ...> Y m ) ] .  (5.6) 

Then we can get an &+)-derivation B* with o(B*)<r, of 

A X  x = i i, Ext, Z,, (CA;), '$ +Q. (5.7) 
n < w  II E CA(O) 

The hypothesis A here consists of universal formulas, the conclusion is 
existential. It follows from an interpolation theorem of BARWISE [ 19671 that 
there is a quantifier-free (interpolant) 23, and (L+)-derivations B1, g2 of 
A+%, and B,+Q resp., such that o(9 , )<T0,  o(g2)<r0. l1  B1 may con- 
tain the function symbols F, for %E CA(B), but these can now be eliminated 
by substitution to give the required 23. 

l1 The bounds <TO are not given explicitly in BARWISE [1967], but the additional informa- 
tion is not hard to obtain from the following refinement of the cut-elimination theorem for 
(L+)-derivations (cf., e.g., FEFERMAN [1968b]): if 9 is an (L+)-derivation, o ( 9 )  = a  and 
v = sup [o@) + 1 ,  3 a cut-formula in 91 then we can find a cut-free derivation 9 of the 
same conclusion as 9 with o ( 9 )  <'~(v) (a) .  
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5.3.  Autonomy in stronger senses 
The tree of a derivation B is given by the set Tr,  of sequence numbers 

x = ( x o ,  ..., x k )  of initial segments of the branches. Then for (A+)-autonomy 
(2) we require that the set of x in Tr,  be already dejined by a provably definite 
formula. The preceding theorem (5.4) continues to hold if ‘1’ is replaced 
throughout by ‘2’. 

Finally, for (A+)-autonomy ( 3 )  we require in addition that there be already 
a proof that the formula which in fact defines Tr, satisjies the defining con- 
ditions (including well-foundedness) for  an (A+)-derivation. While every true 
arithmetical sentence is (A+)-autonomous (2), the stronger requirement in 
this last notion allows us to obtain: 

THEOREM 

The set of (Af)-autonomous(3) theorems is a conservative extension 
(5 .8 )  of 

6. Conclusion 

The work described here leads us to the following two theses: (1) T o  is the 
least upper bound of the predicative ordinals in the sense that: (1) * whenever 
iteration of the basic predicative step relative to any ordering relation < can 
be predicatively justified we have o($)<T,, and (1)** such iteration can 
be predicatively justified for each initial segment of the natural well-ordering 
+r,, of order-type I‘,(in 0). (2) The set of (R)-autonomous theorems coin- 
cides with the set of predicatively provable statements of analysis. 

I believe both these to be correct and that the stability results described 
here provide some evidence for (1) (though, of course, they do not exclude 
systematic error), In particular, the evidence for (1) * is rather convincing 
and can be put as follows: nothing like the ramified progressions will go 
beyond To,  given that predicative justification of iteration relative to < must 
yield well-ordering of < under the impredicative interpretation. I expect 
that convincing evidence for (1) ** will be pro,vided by an explanation of the 
autonomy conditions in predicative terms and a re-examination of the proof 
that r , < z t ( R ) .  The same kind of analysis will of course be required in 
order to support (2). 

It  may not be possible to obtain as definitive results for predicativity as 
Godel’s completeness theorem for predicate logic with respect to intuitive 
logical validity. Nevertheless, it is certainly possible to subject (1) and (2) 
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to a greater variety of tests, using the most evident properties of predicativity 
such as (a) every arithmetic definition is predicative and (b) every predica- 
tively defined set is hyperarithmetic (by Spector’s work, cf. FEFERMAN [1964] 
pp. 9-10 and also by the argument there p. 11). 

The most obvious objection to (1) * was discussed and answered by KREISEL 
[1965] p. 178 (3.631). He also raised the possibility of a more interesting 
objection: for a predicative proof of I(<r0) it would be sufficient to give a 
predicative proof that for all linear orderings <, I(<)+I(K(<)); here K 
is a natural extension to linear orderings of the function on well-orderings 
with o ( K ( < ) ) = ~ ~ ~ ~ ~ ) ~ ( 0 ) .  However, this possibility is excluded by an ex- 
ample, recently communicated to us by H. Friedman, of a recursive ordering < 
which contains no hyperarithmetic descending sequences but for which K( <) 
contains an arithmetic (in fact, primitive recursive) descending sequence. For 
this conflicts with (a) and (b) since I(<)-+I(K(<)) is false when relativized 
to any subclass C of the hyperarithmetic sets which contains all arithmetic 
sets.12 Both this test question and its solution provide very nice examples of 
what we have in mind. 

A correction to FEFERMAN [ 19641 Section 4, where I used the term ‘pre- 
dicative definability’ as if it could be treated independently of considerations 
of predicative justification. I discussed the commonly stated thesis that the 
predicatively definable sets are just the hyperarithmetic sets, but defended 
only the part (b) of it above.13 In any case, the terminology there was suspect, 

l2 This is analogous to the result of PARIKH [1966] which produces an ordering < well- 
ordered with respect to recursive descending sequences but for which 2< has a primitive 
recursive descending sequence. This can be used (cf. KREISEL [1968], 6(b)) to refute an 
‘argument’ against E O  as the upper bound for finitist well-orderings on the assumptions: all 
primitive recursive descending sequences are finitist and all finitist functions are recursive. 
l3 The limitations of the theory of hyperarithmetic sets for an analysis of predicative 
definitions are pointed out in KREISEL [1962] pp. 318-319, particularly the remark on 
p. 318 and (b) on p. 319; the impredicative element in going beyond TO is located explicitly. 
Perhaps it is useful to supplement this discussion as follows. Definitions given in, say, the 
languages considered here presuppose an interpretation of the logical operations; if this 
interpretation is to be classical, the range of the quantifiers must be given, and to be 
predicative the whole range must be previously comprehended. Consider KLEENE’S [1959] 
basis theorems from this point of view (which are, formally, similar to Poincarb’s idea 
cited in Section 2.3 above), and coinsider the definition of Hr, by a formula v X%(n,  X )  
with the properties: Hr, = {n :  v X%(n, X ) }  and A n, X[%(n, X)+ X is recursive in Ha 
for some u <TO]. Though each X ‘needed’ in this definition occurs in the hyperarithmetic 
hierarchy before r o ,  even granting that each such set is predicatively definable is not 
sufficient for a conclusion that this definition is predicative. It would also be necessary to 
first recognize predicatively the iteration of the jump operation relative to <r ,  in order to 
comprehend the entire range of X needed here. 
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since predicativity is primarily connected with definability and the main 
claim of that paper was that only the ramified hierarchy up to T o  was pre- 
dicatively justified. It should be added that the only essential place where 
‘provability’ intervenes in our work is in the autonomy condition concerning 
the number of iterations of predicative definition processes, in other words, 
where a precise substitute for the, as yet incompletely analyzed, idea of 
predicative ordinal is treated. 
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CONSTRUCTIVE FUNCTIONS IN 

“THE FOUNDATIONS OF INTUITIONISTIC MATHEMATICS” 

S. C .  KLEENE 
The University of Wisconsin, Madison, Wis., USA 

This paper has a modest aim: to say what we can about constructive 
functions in the formal system of intuitionistic analysis in our recent mono- 
graph with Vesley (KLEENE and VESLEY [1965], hereafter cited as “FIM”). 
Meanwhile, bold new initiatives have been taken in the formalization of 
intuitionistic analysis by Kreisel, Kripke and Myhill. 

The formal system of FIM has been criticized on the ground that its 
symbolism lacks a distinction between constructive functions and free choice 
sequences. Unquestionably, this distinction is vital for intuitionism. The fact 
that we did not make it in the symbolism is not an oversight. Indeed, we 
personally were led into the study of intuitionism (since 1939) by asking the 
question whether the constructive operations, functions, etc. of intuitionism 
can be identified with general (or partial) recursive functions. So it was a 
natural step for us to propose to identify the “laws” in Brouwer’s definition 
of ‘set’ or ’spread’ with general recursive functions, as we did in 1941 (un- 
published then, published in [195Oa]) and BETH did in [1947]. Yet in FIM 
(1965) we left out this identification. 

In FIM we aimed to set up as simple a system as we could in which the 
standard intuitionistic analysis (or theory of the continuum) can be devel- 
oped. 1 To us it seemed more interesting to confirm that this analysis can be 
developed with only what we used, than to set up at once a more powerful 
system. The field was thereby left open to anyone (including ourselves) to 
add more for further purposes. 

The reason we didn’t supply separate variables for constructive functions 
is that we took the constructiveness of the function a to be implicit in the 

1 We stopped short of the theory of species of higher order. Species of first order are 
present in one sense (they are expressed by formulas), though not in another (there are no 
variables for them). 
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intuitionistic meaning of the existential quantifier 3a, when the existence is 
affirmed outright or absolutely, as in any closed provable formula 3aA(a). 

Of course, there are also existence statements which are relative. For 
example, intuitionism certainly accepts 3p Vx p(x)=a(2x) or Va l p  Vx p(x)= 
a(2x). Here the Va expresses that the successive values of a are chosen com- 
pletely freely (from the universal spread); then the 3p expresses that the 1-3 
can be constructed from the CI (indeed, by omitting the 2nd, 4th, 6th, . . . val- 
ues of a). The same proposition can be expressed in an idiom of absolute 
existence, by using (instead of the function variable p) a functional variable F, 
thus: 3 F Va Vx F(a)(x)=a(2x). 

It seemed to us, when we finally came to write FIM Chapter I, that there 
is a certain elegance in letting the constructiveness be expressed contextually, 
when altogether intuitionism deals not only with absolute constructions and 
free choices, but also with a rich variety of relative constructions, at least 
under one interpretation. 

Now, maybe this is a matter of taste; or maybe we made a definite mis- 
take, not by accident but by misjudgement, in leaving out separate con- 
structive-function variables in FIM. 

Let us at  any rate get the facts straight about the situation in FIM.3 For 
I think I can say fairly that FIM was written very slowly and carefully; and 
e.g. the careful development of the intuitionistic theory of the continuum in 
Vesley’s Chapter I11 deserves not to  be disparaged or discarded on the 
ground of alleged deficiencies in Kleene’s formalization in Chapter I, without 
a careful hearing. 

True: FIM does not have a separate sort of variables specificalIy for con- 

2 Another point in the formalization in FIM criticized by MYHILL [I9671 is that the free 
choice sequences are extensional. Certainly, extensional free choice sequences are in- 
tuitionistically acceptable; for these, one restricts the freedom of the choices only by the 
choice law adopted in advance. Since in fact the intuitionistic theory of the continuum can 
be developed using only extensional choice sequences, it seems more interesting to do so. 
The complication of nonextensional free choice sequences (where at each choice one picks 
both a function value and a new choice law within the preceding one) can be left until a 
need arises, as perhaps for the formalization of Brouwer’s “historical” arguments. 
3 In [1967a] MYHILL also criticizes the formalization in FIM pp. 64-69 of Brouwer’s 
longer proof of the bar theorem, as “circular from the point of view of one who does not 
accept the theorem and superfluous from the point of view of one who does”. -It was 
exactly our purpose in FIM pp. 6469 to lead the reader to recognize the circularity or 
superfluity of the longer proof. Kreisel’s inductive definition of the species K of continuous 
functionals (in the unpublished notes of the Stanford seminar on the foundations of 
analysis in 1963) now provides an alternative postulate to the bar theorem itself that some 
may find more fundamental and intuitive (cf. FIM p. 51). It constitutes another way of 
introducing the reversal of direction (cf. pp. SO, 65). 
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structive functions. Nor does it have a prime formula C(a), for which more 
or less in the way of properties might be postulated, to express that CI is a 
constructive function. However, FIM does certainly have a composite for- 
mula GR(a) expressing that CI is a general recursive function, and thus, if 
Church’s thesis is used, a constructive function. Using our normal form 
theorem (e.g. p. 288 of KLEENE [1952b], hereafter cited as “IM”), we can 
take for GR(a) the following formula. 

GR(a) : 3e Vx 3y [T,(e, x, Y) & U(Y) = 441 , 
where TI  and U express a suitable primitive recursive predicate and function 
respectively. All primitive recursive predicates are numeralwise expressible, 
and expressible under the interpretation, even in just the number-theoretic 
part of the intuitionistic system of FIM, and indeed in the intuitionistic 
system of IM (cf. p. 244). And if, for the version of the normal form theorem 
selected, U ( y )  is not expressible by a term, we can simply replace U(y)=a(x) 
above by U(y, a(.)) where U (y, z) expresses the representing predicate 
U ( y ) = z  of U ( y ) .  (We won’t bother to do so in the present paper.) Alter- 
natively, we can now construe Postulate Group D of FIM, as we left open 
the possibility of doing on p. 19, to include the recursion equations for 
further primitive recursive functions sufficient to give us T,(e, x, y) as a 
standard formula (FIM p. 27) and U(y) as a term. 

Thus it is not true, if we avail ourselves of Church’s thesis, that one cannot 
in FIM express the notion of a Brouwer (i.e. constructive) spread. To say 
that cr is the choice law for such a spread, we can simply write GR(o) &Spr(a) 
(FIM p. 56). 

The notion of a spread would obviously make no sense if the values of the 
choice “law” - so-to-speak, the fencing within which one must stay along 
any path of successive free choices - were not predetermined. So, I believe, 
Brouwer envisaged his choice laws as being what we are now calling con- 
structive or computable functions (or by Church’s thesis, general recursive 
functions). 

However, it was our intention in FIM to represent Brouwer’s and Hey- 
ting’s thinking in its essentials as we understood it, but without following 
them slavishly. It appears to us that what is essential to the spread concept 
is not that the choice law be constructive (as ordinarily), but merely that it 
be fixed and knowable, potentially ad infinitum, in advance of making the 
choices for any member of the spread. 

We illustrate this by defending FIM *R14.9 p. 167, which is of the form 
a,  pER’xlo{Spr(o)&A(a, p, 0)). This has been criticized as attributing 
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to spreads a property Brouwer would never have claimed for them; for, on 
taking c1 and /? to be the same, it says that every choice sequence c1 chosen 
from R‘ constitutes a one-element spread! 

What *R14.9 means is as follows. Suppose there are two persons who are 
choosing, say Myhill and I. Let us picture Myhill as sitting in a booth, 
choosing successive values of a and of 8, each from the spread R’, and 
passing them out through a window. Myhill is industrious and untiring, but 
I am in no hurry. Now is there any reason why I cannot in a leisurely manner 
choose the successive values of y from a spread whose choice “law” a is a 
certain function constructively determined from a and b? (The actual defi- 
nition of 0 from c1 and is shown on p. 167.) For, as we conduct this exercise, 
a is just as much determined and available to me, for the purpose of fencing 
to confine my choices for y, as if its values were computed. Indeed, we can 
imagine Myhill crouched down inside the booth where I cannot see him. So 
I need not know that the booth contains Myhill making free choices rather 
than a Turing machine computing values. The output as it comes to me 
outside the booth is indistinguishable at  every finite stage. And what I do 
with the output is the same in either case. I have only to test the admissibility 
under the choice law CT of values of y I would like to choose. Each time I 
want to make a test, if enough of an initial segment of the values of c1 and jl 
hasn’t appeared yet to determine the value of 0 I need, I simply wait for 
Myhill or the machine to produce sufficient further ones, as he or it eventually 
will. I don’t see why this isn’t a perfectly good intuitionistic conception, 
even if Brouwer didn’t think of it (maybe he did).4 For each way Myhill 
may choose the sequences c1 and 8, I get my spread a. Altogether, we have 
a family of spreads 0, correlated to the pairs of free choice sequences a and 
p chosen from the spread R‘. So I believe *R14.9 is a useful theorem (for 
its intended purpose), which I see no reason to forego, though its specializa- 
tion to a = p  is hardly of much interest in its correct interpretation. 

Of course, the use of the symbolism Spr(o) in “R14.9 may be misleading 
to one who has in mind only the absolutely constructive spreads of Brouwer. 

In the starred results of FIM, Spr(o) appears in three situations. 
One is illustrated by *R14.9 (just discussed), which would be false if we 

substituted for Spr(o) the symbols GR(o)&Spr(o) to claim an absolutely 

4 I am understanding that Brouwer in his notion of ‘free choice sequence’ does really 
mean that values are successively chosen, as he seems to  say; and not that he is just using a 
picturesque circumlocution for talking about the choice law. But even in the latter reading, 
one choice law depending on the choices under another seems to me a perfectly good 
intuitionistic conception - another, more complicated, circumlocution is then involved. 
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constructive spread (Brouwer); the spread a in *R14.9 is only constructive 
relative to c( and p. 

The second situation is illustrated by *26.4 p. 57, *26.7 p. 62 and *27.4 
p. 74, which have the form Spr(o)&A(o)xB or Spr(o)&A(o)=B(o). So, 
trivially, the results would also hold if Spr(o) had been replaced by GR(o) & 
Spr(o). But (as it seemed to us), why should we do that, since the results 
hold in the stronger forms given? (Early in our enterprise, the GR(o) would 
have been built into the definition of Spr(o); but later we came to regard 
this as superfluous.) 

The third situation is illustrated by *R0.8 p. 136, which has the form of 
a closed formula 3o[Spr(o) &A(o)]. Here, in view of the above remark that 
a provable closed 3a-formula asserts the existence of a constructive function, 
the meaning is that the a is a Brouwer (constructive) spread. (Indeed, this 
is shown by the formula for a in the proof of *R0.8.) 

The reader who has become familiar with the difference between formal 
contexts in FIM where a construction is asserted as performable absolutely 
and where it is only asserted as performable relatively will not, we believe, 
be disturbed by the use of Spr(a) for "a is a spread" in both absolute and 
relative senses. 

Should a person wish to use constructive spreads in the formalism of FIM 
in contexts where the constructivity is not implicit, e.g. in the antecedent of 
an implication, like the second situation but with the constructiveness es- 
sential to the implication, he need only write GR(o)&Spr(o), if he is willing 
to work under Church's thesis. 

Returning to the third situation, where we have taken the constructiveness 
to be given implicitly, it is a fair question now whether the results can also 
be established with the constructiveness explicit. Thus, could we have proved 
*R0.8 in the form 3o[GR(o)&Spr(o)&A(o)]? This question js not quite 
fully formulated, as we haven't said just how GR(o) is to be chosen. (Dif- 
ferent proofs of our normal form theorem give different choices of T, and 
U.) In the particular case of *R0.8, the formula introducing a is simply a 
formalized course-of-values recursion, so a is primitive recursive. In any 
decent formalized theory of general recursive functions, we should certainly 
be able to prove GR(o) for the a in the proof of *R0.8. 

To answer the question in general, we propose to prove the following 
inetamathematical theorem, for a suitable proof of the normal form 
theorem. 

In the intuitionistic formal system of analysis of FIM (or in the basic system 
there), i f  k3a A(a) where 3a A(a) is closed, then k3a[GR(a)&A(a)]. 
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Indeed, if t3uA(u) where 3uA(u) is closed, then, for a suitable natural 
number e,  

Qx 3y T,(e, x, Y) &Va {Vx 3y [Tl(e, x, Y) 8~ U(Y) = a(.)] = A(a) )  . 
The latter formula expresses that e is the Godel number or index of a general 
recursive function a such that A(C0.5 

I say that I propose to prove this theorem (so officially, I am formulating 
a problem), because the moment of this Congress has arrived before I have 
had time for final editing and checking of a probable proof of which I have 
completed a first draft.6 

The key to this probable proof is a formalized realizability notion, differing 
from the formalizations of the realizability notions in FIM. To state this 
new notion E q E concisely, we shall use the abbreviation “ ! ! { ~ ) [ a ] &  
[A({T}[~])]” (read “{~)[a] is properly defined, and A({T}[u])”) for 

Vt3!yT(2‘f’*cc(y))>O&Vp[Vt3yT(2‘+’*a(y))= p(t)+ l ~ A ( p ) ] ,  

with the obvious stipulations on the variables. Cf. FIM p. 91 for the informal 
notion thus formalized (and for the stipulations on the variables, p. 9). For 
example, using this abbreviation, Clauses 4 and 8 of KLEENE [1964a] p. 33 
can be written thus: 

r4. & r ( A = B )  is V a i a r A ~  !!{~}[u]&[(~f[a]rB]}. 

r8. ~ r V a A ( a )  is Va{!!{~}[a]&[{~}[a]rA(a)]}. 

We use similar abbreviations corresponding to the informal notations 
“{z ) [a ]” ,  “(z}” and “(z}[a,, ..., ak, a , ,  ..., a,]” of FIM p. 92 as the above 
does to “{z } [a ]”  of FIM p. 91. 

Now we define a formula E q E for each formula E of FIM, by recursion 
on the number of (occurrences of) logical symbols in E, as follows. 

q l .  
q2. E q ( A & B )  is (.z)OqA&(E)lqB. 
q 3 .  E ~ ( A  v B) is 

E q P is P, for P a prime formula. 

C(E(O))O = 0 = (4 4 A &c A1 [ ( E ( O ) ) O  f 0 = (&)I q €3 &BI 

5 A Turing machine can compute the e from a given proof of the formula supposed to be 
provable. 
6 My work in formalizing recursion theory and realizability theory is considerably further 
along than when I referred to it in FIM (bottom p. 110 and top p. 111) and in Kleene 
[1964a] (p. 34 footnote 5 ,  and top p. 42). Then some parts of the path to be traversed were 
uncharted; but now I have mapped the whole journey in considerable detail, subject to 
final verifications. 
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44. Eq(A 2 €3) is V a { a q A & A I  !!{~)[a]&[{~}[a]qB]}.  
q5. E q i A  is V a i ( a q A & A ) .  
q6. ~ q V x A ( x )  is V~{!!{E}[X]&[{E}[X]~A(~)]} .  

q8. E q V a  A(a) is Va { !! {~}[a] & [{&}[a] q A(a)]} . 
97.  E 4 3x A(x) is (El1 4 A((E(O))o) & (O)),) . 

q9. E 4 3a A(a) is ! ! ( ( 4 0 )  & “ 4 1  4 A({(E)O}) 8.L A(Wo3) l  . 
The formula E q E is related to E r E in somewhat the same way as in IM 
p. 503 ‘e realizes-(k) E’ (i.e. ‘e realizes-(r t)  E’ for r empty) is related to 
‘e realizes E’. But, e.g. in Clause q4 here the modification of Clause r4 con- 
sists in inserting “&A”, while in IM (for r empty) the corresponding inser- 
tion is of “and FA”, which of course does not formalize as “&A” simply. 

We plan to show that, where “ k ~ ’  expresses provability in the intuitionistic 
system Z of FTM: 
(***I If k, E, lhen k, IE [GR(E) & E q YE], 

or more briefly t, E + t, 3~,,(,) E q VE. The proof of this should differ only 
slightly from a proof of the following, where “B” refers to the basic system : 

(**) IftI E, then k, 3~ [GR(E) & E  r YE]. 

Thus the work to be done to fill in the gaps here and in KLEENE [1964a] p. 42 
footnote 9 should be performable in parallel. 

Suppose now that (***) has been established. Then, if t3aA(a)  where 
3aA(a) is closed, we would have 

t 38 [ W E )  ! ! ( ( 4 0 1  & [(Ell 9 A({(E)O)) &A(~(E)ol)ll, 

t 3E [ W E )  ! ! {(E)oI & CA(~(E)oHll* 
whence easily 

Thence our desired result in the first form will follow, if the formal theory 
of general and partial recursive functions allows (as it should) the inference 
that, when E is general recursive, and { ( E ) ~ }  is properly defined, { ( E ) ~ }  is a 
general recursive function. To get the second form, we use the consideration 
that in the proof of (“**), as in that of (**), we would actually do the work, 
not with 3 ~ ~ ~ ( ~ )  prefixed to the statement that E realizes the closure VE of E, 
but instead using (a formal representation of) a realization function for E 
itself, paralleling the informal proof of Theorem 9.3(a) in FIM pp. 105-109. 

This treatment should also give results like the following, for the full 
intuitionistic system I of FIM. (PreviousIy, only the first two were estab- 
lished, by a different method, by JOAN RAND MOSCHOVAKIS [1965], for the 
basic system B and various subsystems of that.) 
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If  t A v B where A v B is closed, then t A or t B. 
r f  I- 3xA(x) where 3xA(x) is closed, then, f o r  some number x ,  F A (x). 
r f  tVx3yA(x, y) where Vx3yA(x, y) is closed, then t3a[GR(a)&Vx A(x, 

a(x))], and, for some number e, tVx3y[T1(e, x, y)&A(x, U(y))] and, when 
c1 is the generul recursive function having the Godel number (or index) e, 

In contrast to the last result e.g., at least by use of classical informal 

There is a closed formula Vx3yA(x, y) such that 

( x )  { M x , Y ) f o r Y = a ( x ) ) . 5  

reasoning with the realizability notion of FIM (cf. pp. 97-99): 

VX 3y A(x, y) 3 3a [GR(a) &Vx A(x, a(.))] 
and equivalently 

Vx 3 y  A(x, y) = 3e Vx 3y [Tl(e, x, Y) 8~ U(Y))] 

are unprovable in I. 
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Introduction 

At a symposium on constructivity ten years ago, also held at  Amsterdam, 
I considered in KREISEL [I9591 (‘K’ for short) an obvious extension of 
Godel’s functional interpretation of Heyting’s arithmetic (GODEL [1958], 
‘G’ for short). The objective was to study the proof theory of formal classical 
analysis, formulated as a two-sorted axiomatic theory with variables for 
natural numbers and number theoretic functions, and basic relations of 
equality and function evaluation. (For details on alternative formulations, 
e.g. using sets of natural numbers instead of number theoretic functions 
with the basic relations of membership and successor; see e.g. KREISEL 
[1968b].) As in (G), with each formula A of analysis is associated an “in- 
terpretation”A’ofthef0rm 3sVtA,(s, t)wheresand t are sequences of varia- 
bles for functions of finite type and A ,  is an elementary quantifier-free relation. 

My specific proposal was to let s and t range over the so-called continuous 
functionals or, more simply, ‘functions’ of (K) pp. 114-1 17, defined in terms 
of suitable ‘neighborhood’ or ‘representing’ functions. The conjecture was 
that, for negative A (i.e., formulae A built up from negated atomic formulae 
by means of 1, A and V), if A is formally derivable in classical analysis then 
A‘ is intuitionistically valid, when s and t range over functions defined by 
freely chosen neighborhood functions. Note that, for this interpretation, A’ 
is expressed in the language of intuitionistic analysis as given, e.g., in KLEENE 
and VESLEY [1965], KREISEL [1965] or TROELSTRA (this volume). 

Behind the conjecture was, first, the so-called principal result of (K) p. 120 
which may be stated as follows. 

Let (QF-AC) denote the schema 

V x ‘ 3 y ‘ A ( x ,  y )  + 3 z p  Vx“ A (x, zx) 

where A is quantifier-free (hence ‘QF’); x and y are variables of type t~ and 

* The preparation of this paper was supported in part by NSF Grant #GP-6726. 
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z, and z is a variable fcr functions with arguments of type (r and values of 
type z, or type ((r+z) for short. Then 

For any class of functions (of finite type) containing the functions listed in 
the system T of’(G) and satisfying (QF-AC) and for all negative A ,  we have 
the classical equivalence A-A’. 

Further it was shown in (K) p. 116, 4.141, that the continuous functions 
of finite type satisfy (QF-AC), and z can even be chosen to be recursively 
continuous. 1 

Second I expected the use of classical predicate logic to be eliminable as 
long as only formally derivable A are considered; cf. GODEL [1932] for first 
order arithmetic in place of analysis. 

In the specific sense in which I intended it this proposal has failed. 
For analyses of the notion of free choice sequence [for a summary of 
one analysis see KREISEL [1965], of another see TROELSTRA (this vol- 
ume), and for a comparison see the last section of KREISEL [1968a]], in 
terms of which the continuous functions are defined, have shown that the 
evident axioms for free choice sequences are unexpectedly weak; in particular, 
for some formal theorems A, A‘ cannot be derived from known axioms. 

What remains is to apply the proposal to subsystems of classical analysis. 
The purpose of the present lecture is to summarize work in the last ten years 
on the proposal, and to put the results in perspective by comparing them 
with other work on subsystems. As a byproduct of independent interest, we 
get distinctions between different kinds of constructive functions of finite 
(and transfinite) type, e.g., in connection with the axiom of choice; cf. 
footnote 2. 

1. Main proof theoretic result (SPECTOR [ 19621) 

If A is provable in classical analysis, then Ao(sA, t )  can be derived, for 
variable t and a suitable constant sA, in the quantifier-free system T u B R  
where BR is Spector’s schema of bar recursion. 

To describe BR we need a few definitions. For each pair of types (z, a), 
let aT(cz) be a variable for (finite sequences of) type z objects; let [c] denote 
the type (042) object such that [c] (n)  is the n-th element of c for n<Z(c), 
the length of c, and [c] (n)  = some constant for n 7 I(c); finally let Y be a 
variable of type (O+z)+O and let G and H be variables for functionals 

The two results were not formulated separately in (K). Note that the principal result as 
formulated here, answers question 6.11 on p. 123 I.c. since the effective operations (4.2 on 
p. 1 1  7) satisfy Tu (QF-AC). 
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whose value is of type cr, and whose arguments have types that make sense 
below. Let BRZ assert the existence of a function (p(r,a) (or simply (p) such 
that V ( Y ;  c; G, H )  = G ( Y ,  c) if Y ( [ ~ I )  < l ( c )  

= H [ Y ;  c; Aa(p ( Y ;  c*a ; G, H)] otherwise. 

Denote u,, BR: by BR, and u, BR, by BR when c and z range over finite 
types. 

Spector's proof has since been simplified and refined in HOWARD [ 19681 
where also a useful variant of BR, namely the rule of bar recursion, is treated. 

To get a full converse to Spector's result, one considers classical analysis 
with theprinciple of dependent choices [Z, uDC, in the notation of HOWARD 
and KREISEL [1966], and not Z, WAC,, treated by Spector]. 

A is formally derivable in Z, u DCI ifand only iffhere is a constant so such 
that Ao(s,, t )  is formally derivable in T w BR. (To prove this one verifies by 
use of 2, uDC, that the continuous functions of finite type are a model of 
T u BR.) 

While these results are, perhaps, proof theoretically satisfactory, the main 
foundational problem is wide open: For what kinds of constructive functions 
andforwhatpairs(z, cr)do fhere exist tp(r,o)satiSfying thedeJiningeguationsBR:? 

The reader should distinguish here between primitive notions of (con- 
structive) functions of higher type as in (G), and dejhed ones, as in Section 3 
below or in (K). It is not unreasonable to expect [cf. footnote 2 of SPECTOR 
[1962]] that, if some BR," is really evident for a primitive notion, then BR 
will be valid generally. But for defined notions one must expect the validity 
of BR," to depend on (7, cr). 

2. Primitive notion of function (G) 

Let us note first that the existence of (p(,,,), i.e., the validity of the simplest 
instance of BR, is not at all plausible for the notion of function described 
in (G)2, since here Y is supposed to be defined for constructive arguments 

2 Correction. My account in (K) of Godel's notion in (G) was written before I saw (G). 
I failed to emphasize decidable definitional equality between terms of all types in (G) and 
hence the absence of extensionality. To mention a more specific difference: The full axiom 
of choice Aor for all pairs of finite types o and z, holds for the notion in (G), but not for 
the (extensional) notions of effective operation and continuous function described in (K); 
for example see 2.43, p. 133 of KREISEL [1965]. However, these matters do not arise below 
in the discussion of qqo,o,. Note also that the particular functions asserted to exist in (G) 
(the schemata of T )  are extensional; this is so because, without ad hoc assumptions, we 
know so little about all possible constructive rules that an operation which we know to be 
defined for all of them, is also defined for free choice sequences. 
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only, not for arbitrary functions. Indeed if we specialize the notion (G), and 
consider only recursive number theoretic functions and (hereditarily) ex- 
tensional operations, we get the effective operations of 4.2 on p. 117 of (K), 
and the following 

Negative result. There are specific effective operations Y ,  G ,  H such that 
the equation for cannot be satisfied for all c. 

Sketch of proof. We use an effective operation Y,, defined for all recursive 
binary, i.e., (0, l), sequences, which violates Brouwer’s fan theorem; speci- 
fically there is a non-recursive binary function CI such that no En is Y,-secured 
and Y,([&]) is unbounded (in the notation of Section 1). Let Y be an 
effective operation such that 

Y([c])=lc* if c is Y,-secured and c* is the shortest initial segment of c 
which is Y,-secured, 

Y ( [ c ] ) > l c  if c is not Y,-secured. 
Choose G and H so that, for sequences c containing an element > 1, 

G(Y, c)=O=H(Y, c, $) for all $ of appropriate type; and for binary se- 
quences c, 

G(Y, C) = 1 
and 

H[Y, c, l ycp (Y;  m y ,  G, H ) ]  = 1 + max[cp(Y; c*O; G, H ) ,  cp (Y; c*l ;  G, H)] . 
Then p(Y;  c; G, H )  is not defined for c=En. 

Positive result. We now use BR,, more precisely BR; [where 1 stands for 
(O-tO), and 2 for (1+0)], as a technical auxiliury to reduce a certain sub- 
system of classical analysis to axioms for the notion implicit in (G) .  Of 
course we do not prove the validity of BR; for this notion, but we prove 
the consistency of T u BR; by use of (evident properties of) this notion. The 
subsystem in question is Z, u (C: - DC,) which includes so-called hyper- 
arithmetic analysis Z, u ( A  : - CA). Since the minimum o-model of the latter 
consists of all the hyperarithmetic sets, the system seemed to be impredicative 
(see last section of SPECTOR [1962]). 

First we apply the appendix of HOWARD [ 19681 to interpret Z, u (Zi - DC,) 
in T u BR: ; this is reduced to T u BR;, imitating the reduction of bar in- 
duction of type one to type zero in HOWARD and KREISEL [1966]. 

Next, appealing to an unpublished analysis of computations of T u BR; 
by Howard, we find that computability follows by definition by recursion 
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on xe0( l), where, as in FEFERMAN [ 19641, xoct = ma, and for /3 > 0, za enumer- 
ates the set of ordinals 

{a :  (VY < B) (xp = .)> . 
Recall that ~ ~ ~ ( 1 )  is the proof theoretic ordinal (least upper bound for 

provable Zi-well orderings) of ramified analysis of level e0.3 

Finally we wish to interpret ramified analysis of level c0, using evident 
axioms about Godel's notion (G). Strictly speaking, (G) treats only functions 
offinite type, and the proof theoretic ordinal of the axioms T listed by 
Godel, is c0,  very much smaller than xco(l). However, once the iteration 
through finite types is accepted at all, there is certainly no reason to stop 
at w. Whatever doubts there may be about further iteration we certainly 
know enough about c0 to iterate to type E ~ .  

Genera1,formal result. Ramified analysis of level c1 can be interpreted in 
the quantifier free system T"'" obtained by natural extension of Godel's T 
to type w * CI. 

Since O * E ~  =.so, we have the interpretation required. 

Discussion. The detailed description of T" for a> w has not been published. 
The reader can get a general idea by thinking of T" as a (finite) codification 
of the corresponding infinite terms in TAIT [1965]. There remains the delicate 
question: up to what CI are we 'entitled' to iterate Godel's type structure in 
(G) once we have accepted the basic notion? More generally: what exactly 
must we know about an ordering to iterate some given process along this 
ordering? In the current theory of autonomous progressions [see FEFERMAN 
(this volume)], one iterates through 2 if, for a given functional Y of type 2, 

(.I 1 a ( 1 +  Y a )  5 a ( Y a )  

be proved for free variable a of type 1, i.e., the sequence aO, a l ,  ... does not 
descend beyond Ya. This condition is weak because (*) expresses only that 
constructive descending sequences terminate. [It is, for instance, not plausi- 
ble that this justifies iteration even of a process as elementary as doubling! 
See the discussion in KREISEL [1968b], Section 6d; but see Section 6 below 
for applications where this weakness is harmless.] Now the axioms T a  are 
such that if (*) is proved from them, (*) holds also for free choice sequences 
a, and so 2 is truly well founded. So further analysis may show that the 

3 The relation between Z1 u (C: - DCI) and formal ramified analysis of level EO was first 
established by FRIEDMAN [1967] by a quite different method. 
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autonomy condition is exact after all! Note that ifthe autonomy condition 
is granted, the proof theoretic strength of the axioms ‘inherent’ in Godel’s 
notion (G) is measured by Feferman-Schiitte’s I‘, where r is the least so- 
lution of xr( l )=T.  In other words, Godel’s notion of function is an alter- 
native way of formulating the idea of reduction to the notion of natural 
numbers. 

3. Ordinals (in the sense of BROUWER [1927]): 

well-founded decidable relations. We now come to the principal foun- 
dational4 application of Section 1, where BR is restricted to BR, or BR,.5 
As in Section 2, the application depends on two things: the discovery of an 
interesting subsystem of classical analysis which can be interpreted in 
T u BR, and second the discovery of a kind of function for which T u BR, 
is valid; or, A la rigueur, the discovery of properties (of these functions) 
from which the consistency of T u BR, or, better still, the computability of 
all terms of T u BR,, is easier to establish than the consistency of the sub- 
system. 

The subsystem in question is the so-called elementary theory of well 
founded relations, i.e., Z, together with the schema WF(R)-+TI(R, A )  for 
arithmetic R (in the notation of HOWARD and KREISEL C1966-J); in full, 

V f  {Vg 3x 1 R Cf , 9 (x + 1 1 9  9 (41 
+ [VX (VY [ R  (f 7 Y > x) + AYl+ ’4x1 + ‘dx Ax11 

or even, if now g is thought of as enumerating a sequence of functions, 
90?91, ... 

V f  {VS 3x 1 R ( f ?  SX+l, s,) 
3 [Vh (Vk [R  (f, k ,  h) + Ak] + Ah)  4 Vh Ah]} . 

For proof theoretic properties of these systems see Sections 9 and 10 and 
Note V of KREISEL [1968b]. 

The formal differences between the interpretations in T u BR and T ~i BRo are minor; 
but there are some, e.g. the form of extensionality needed; see HOWARD [1968]. However, 
minor formal differences are quite consistent with essential differences in the meaning of 
two theories! think of the geometric interest of a result for n-dimensional Euclidean space 
where n < 3 and n> 3. 

As already mentioned BR1, i.e., BRo-0, is reducible to BRo, but not, in general, BRr+o 
to BR,. Observe that the type of the variable Y in BR1 is (O+(O+O))+O which is an 
instance both of (O+(O+a))+O and of (O+(a+O))+O for a=O. Quite generally, 
(O+(O+a))+O can be mapped, in T, onto (O+a)+O, but (O+(a+O))+O in general 
cannot. 
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Another good system that can be interpreted in T u B R ,  is elementary 
intuitionistic analysis H of HOWARD and KREISEL [1966] together with the 
schema above for arbitrary formulae R in the language of H (HOWARD 
[ 19681). 

Let us turn to the second question: what functions satisfy T u BR,? 

Positive result. The continuous functions of (K) can be proved to satisfy 
T u BR, in intuitionistic analysis above. (Recall from Section 1 that on their 
classical interpretation, in fact by methods of Z, uDC,, they satisfy all of 
TuBR!)  

Various straightforward proofs can be given. For reference below it is 
perhaps best to use an 'inductive' procedure, going back to BROUWER [ 19273, 
to generate the class K of neighborhood functions of type 2 functionals. Let 
e, .f denote number theoretic functions considered as defined on finite se- 
quences (coded by the numbers) n, m with 0 coding the empty sequence: 

VeVx[Vn(en = x  + 1)+Ke] 
Ve {[eo = 0 A Vy 3 f  (Kf A Vn [e(jhn) = fn])] --f Ke} . 

We consider the smallest class K satisfying the conditions above. K is picked 
out from the primitive class of number theoretic functions, say, in the sense 
of (G). As our model of T u BR, we start with K, apply the operations of T 
and the operations q ~ ( , , ~ ,  for each a. What has to be proved is that q(o,u) 
is well defined on the objects in this model. This is obvious for Y E K  and so 
we have to show that K is closed under the operations above. To verify this, 
we use a fundamental property of K ,  namely the axiom of choice in the form 

VY 3f[Ke ~ A ( y , f ) ] + 3 e V y ( K e  ~ V f { V n [ e ( p * , ) = f n ] - , A ( y , f ) ) ) .  

Negative Result. We can of course formulate in the language of intuition- 
istic analysis that there is a neighborhood function ( P ~ ~ , ~ )  of appropriate 
type that satisfies BR:: but we cannot prove this from current axioms such 
as KLEENE and VESLEY [1965], KREISEL [1965], or TROELSTRA (this volume). 

Proof. Specializing (HOWARD [1968]), the subsystem Z, u (Z; -CA) can 
be interpreted in T u BR, u BR2, but the consistency of the systems of intui- 
tionistic analysis above can be proved in Z, u (Zi - CA) by Note V of 
KREISEL [ 1968bl. 

Discussion. Both the positive and the negative results can be sharpened. 
First, as in Section 2, it is unreasonable to restrict oneself tofinite a; having 
accepted K, one would consider BRG for transfinite a; see Problem 1. 
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Correspondingly, in the language of analysis, having accepted K ,  one should 
permit the definition of species by recursion on K ;  see Problem 4. Further, 
even if BR2 is not satisfied by the continuous functions of finite type, its 
consistency may be provable from axioms for BR: for suitable r~ (see 
Problems 2 and 3), analogous to the justification of BR; in Section 2 from 
T“. Second, since (of course) the formal systems mentioned are incomplete 
the negative result is inconclusive. Not only, as we have just said, might the 
consistency of BR, be provable from BR;, but the negative result leaves open 
whether BR2 is valid for the specific class of continuous functions. See 
Problem 5 concerning hypotheses to decide this question. 

4. A critical step: 

well founded (undecidable) sub-species of a given species. Let us see what 
happens if we try to generalize Section 3 to get a model for BR, say.6 So 
let us consider, in analogy to K ,  the following species K ‘  of type 2 functions, 
where such functions are denoted by E, F and finite sequences of elements 
of K by;,j: 

Vx V E  [Vj ( E j  = x + 1) -+ K ’ ( E ) ]  
V E  { ( V e E K )  ( 3 F ~ K ’ ) ’ d j  [E(C* j )  = F B ) ]  -+ K ’ ( E ) ) .  

Granted the inductive definition of K ’, what about its properties? To repeat 
the work of Section 3 we need some such axiom of choice for K ’  as 

( V ~ E K ) ( ~ ! F E K ’ ) A ( ~ ,  F ) ~ ( 3 E ~ K ’ ) ( V e € K ) ( 3 F € K 1 ) .  
{vS [ E  (t*j> = F (31 A A (e ,  F ) )  . 

But this does not seem to be valid since K is an undecidable species! Note 
that the uniqueness condition on F cannot be expected to help (in extending a 
partial ‘function’ defined on K to a function E ) ;  recall the following example 
of footnote 17, p. 130 of KREISEL L19651, writing KO for (x:3y T(x,  x, y ) ] .  
We certainly have 

(Vx~K~)3!u[T(x,x,y) A ( V z < u ) i  T(x,x,z)]. 

But we do not expect a total function f satisfying 

(vx E KO) [T (x, x, f x) A (vz < fx) 1 T (x, x, z)] . 
6 We do not wish to claim that T u BR is, constructively, unjustifiable; on the contrary, 
see the next section. The purpose is to analyze a specific, prima facie plausible, extension of 
Section 3. 
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There is another way of looking at the matter. We can think of K as 
describing a method of generating all well founded trees with natural numbers 
at their nodes ; specifically, trees with a constructive characteristic function 
(determining what sequences are initial segments of a branch of the tree). In 
contrast, K ‘  has to be regarded as a method of generating trees at whose 
nodes we have elements of the undecidable species K.  So we are concerned 
with well founded species, and K’ corresponds to a species of species (of 
natural numbers). The next section will show that, once the notion of species 
of natural numbers is used, we get an instantaneous interpretation of classical 
analysis, and hence, by the theory of constructible sets of natural numbers, 
an interpretation of Z, u DC,, and, by Section 1, of T u BR. Consequently, 
the proposed ‘generalization’ of Section 3 is foundationally sensible only if 
we can pin-point a clear difference between the use of species-variables in- 
volved here, and the general use of Section 5 below. 

5. Species of natural numbers 

Recall first that, by use of GODEL [1932], classical analysis formulated in 
terms of sets of numbers (and not of number theoretic functions) with the 
comprehension axiom (CA) in the notation of KREISEL [1968b] can be in- 
terpreted in the intuitionistic theory of (impredicative) species of natural 
numbers, that is, formally, (CAI with intuitionistic instead of classical logic, 
cf. Section 9 of KREISEL [1968b]. This result depends on the easy observation 
that the negative ‘translation’ of the instance 3 X V y ( y ~ X t * A y )  of (CA) 
which is 

where A -  is the negative translation of A ,  is intuitionistically derivable from 
the instance 3 x V y ( y ~ X + + A - y )  of (CA).‘ 

Is (CA) vaZidfor the notion of species (of natural numbers)? Clearly, if 
quantification over species is meaningful at all, (CA) holds: for Ay to be 
intuitionistically meaningful, we must have a notion of: proofof Ay  (KREISEL 

[1965], p. 128, 2.31) and this knowledge determines per se a species X such 
that Vy ( Y E X - A ~ ) .  

What could go wrong? Of course there is the common place objection to 

Y 

1 V X l  V y ( 1 1  y € : X t t A - y )  

7 In contrast to (CA), AC or DC do not imply their negative translations. For proof 
theoretic properties of these various systems see KREISEL [1968b], Section 9 (i) and l l c ;  
also Problem 6 below. Historical note concerning GODEL [1932]: tertium non datur is 
‘harmless’ in the context of the (impredicative) theory of species, but not in the context of 
constructive functions; observe that (CA) follows from the axiom of choice by t.n.d., and 
apply KREISEL [1968b], Q9b (i) and (iii). 
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impredicative notions allegedly connected with the paradoxes ; more pre- 
cisely we consider here species of arbitrary species instead of sets of arbitrary 
sets, and take care to derive the paradoxes intuitionistically. Evidently this 
objection is as weak here as in the case of set theory since we are considering 
species of natural numbers, and not of arbitrary species.* 

Subspecies o f a  given species. I believe there are close parallels between the 
usual theory (in Zermelo’s hierarchy) of the power set operation applied to 
a given set and the impredicative theory of species. But since the comparison 
has not been treated in the literature let us spell it out. 

Given a set, or, in Cantor’s words, a manifold conceived as a unity, then 
we apply operations to it, in particular, we conceive as a unity the totality of 
all its subsets. If one really needed a proof to show that the manifold of all 
such conceptions cannot itself be conceived as a unity, one might well appeal 
to the paradoxes. 

In intuitionistic mathematics the situation is quite similar. Of course when 
we think of, say, the species of natural numbers, we do not regard it as a 
‘completed’ extension; but we do think of it as a notion we have grasped 
completely, and for this reason, we have also grasped the notion of proof 
‘about’ it, e.g. the meaning of the universal numerical quantifier, cf. the 
reducibility hypothesis of KREISEL [1965] (p. 126,2.215). Ipropose to express 
this by postulating that a notion which defines a species of natural numbers 
is (reducible to) a construciion, i.e., something that can in turn be the subject 
of our mathematical thought. Formally, for any such notion p(a, y )  (a is a 
proof that y belongs to the species considered) there is a construction cp and 
a functor F,, such that 

(where the implication 3 is interpreted truth functionally since it is applied 
to decidable relations); thus cp defines the same species as p.  

Of course it is not claimed that the impredicative species above are our 
constructions in the sense of our having, so to speak, ‘listed’ them all before 
speaking about them, ‘listed’ in the idealized sense of having given a rule of 
construction indexed by natural numbers or even ordinals. But note that 
Heyting’s own interpretation of the logical operations, e.g., of implication, 
certainly does not refer to any ‘list’ of possible proofs of the antecedent. It 
simply assumes that we know what a proof is. 

8 See Problem 6 concerning a possible objection on grounds of nonconstructivity. 
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So, if the analysis above of the constructive character of subspecies of a 
given, i.e., completely grasped, species is accepted, quantification over species 
of natural numbers does not involve ideas that are radically different from 
those implicit in Heyting’s interpretation of the propositional operations. 

The moral is not that Heyting’s interpretation is non-constructive ! nor 
that a more elementary interpretation such as Godel’s (G), is foundationally 
uninteresting. The moral is that its foundational interest depends on some- 
thing subtler than mere constructive validity. 

6. General comment 

The work reported here illustrates the typical problems and methods of 
proof theory, in particular the interplay between formal reductions, as in 
Section 1, and analyses of significant informal notions such as those men- 
tioned in the title (Sections 2, 3, 5). For each such notion we found some 
valid principles, say, S - ,  so to speak an approximation from below (such as 
TSo in Section 2 or the axioms for K in Section 3); and an approximation 
from above, say S + ,  of autonomous progressions with a weak autonomy 
condition (as in Section 2 or Problem 1). To reduce given formal principles 
to the informal notion considered, it is sufficient to interpret them in S- (for 
instance T u BR; in TEoin Section 2); for irreducibility it is sufficient to show 
that their consistency, i.e., the minimal adequacy condition that has to be 
satisfied, cannot be proved in S +  (for instance T u BRo cannot be reduced 
to Tr and hence not to the notion of function (G)). 

The need for paying attention not only to the axioms, but to the interpre- 
tation of the logical operations, particularly in constructive foundations, is 
clear from the discussion in Section 5 above, and hence the particular role 
of quantifier-, so to speak, Iogic-free principles in constructive foundations. 

7. Problems 

implicit in Sections 3 and 5. We need a few definitions. 
For any term t of type (O+(O+O)), say b(x, y) ,  such that t(x, y)= 1 can be 

proved in the system T of (G) to define a discrete ordering, let T‘ u BRL be 
the formal extension of T u BR, to types indexed by elements in the field 
of 1. (The restriction on t will not involve any loss of generality because, 
below, we shall only consider recursive well orderings, and any such ordering 
is primitive recursively homomorphic to a primitive recursive well ordering.) 

Next, let 0 be the least class of terms t such that t E 0  whenever, for variable 
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a of type I and some constant Y of type 2, 

t[a(l + Ya),  Ya]  z 1 

can be proved in T u B R ,  or in T''uBR: for some t'EOl. Let A define the 
direct sum of the orderings teO in some natural way. (Since we describe 
formal systems, we deal with dejinitions t and not the abstract orderings 
defined by t . )  

Problem 1. Describe the ordinal of A by extending Bachmann's notation, 
cf. GERBER [1967]. 

Problem 2. For tEO, does T' u BRL have a model in A ;  - CA or, equiva- 
lently, in Z: - DC, ? Conversely 

Problem 3. Can A: - CA be interpreted in T A v BR;? 
We now describe an extension of the theory of K given e.g. in Section 1 

of KREISEL [1968a] or TROELSTRA (this volume), by adding new constants 
Pi for species of functions, and the following definition principle by 're- 
cursion on K' .  

Let Aix be any formula not containing Pj f o r j a  i (nor the variables n and 
e ) ;  let Bi be obtained from a formula B, built up without use of Pj (jai), 
n orf ,  from the dummy symbol Q for a predicate of natural numbers, by 
replacing 

Q y  by 3f V n  [ P i f  A e ( j * n )  = f n ]  . 
Then 

Ve (Pie + K e )  , 
V x V e [ V n ( e n  = x  + l)-+(Piec+Aix)], 
Ve [eo = O + (Pie t+ Bi)] . 

Problem 4. Is the system-above of the same proof theoretic strength as 

To improve the negative result of Section 3, recall that the existence of 
qt2,=) can be expressed by a statement A" in the language of free choice 
sequences. Let A;, A; be the statements in the language of constructive 
functions equivalent to  A" on the two analyses of free choice sequences in 
TROELSTRA (this volume), resp. KREISEL [1965] (or perhaps (a, a) and (au, a) 
in the notation of the last section of KREISEL [1968a]). We cannot refute A; 
nor A ;  since our axioms for constructive functions are satisfied if arbitrary 
functions are allowed and then BR," is valid. 

T~ u BR;? 
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Problem 5. Can either A: or A;  be refuted if all constructive functions are 
recursive? 

Finally, coming to Section 5 and the constructive character of the theory 
of species, we know that if Vx 3y A ( x ,  y )  is proved then there is a numeral e 
such that also Vx 3z[T(e,  x, z )  A A ( x ,  Uz)] is provable (in the system). 

Problem 6. Is it consistent to add to the theory of species the schema 

for all closed formulae Vx 3y A ( x ,  y)? 

Appendix 

The reader may welcome some additional information on Giidel’s func- 
tional interpretation (G), which is scattered in the literature. 

Concerning the notions used in (G), a comparison with the notions used 
in Heyting’s interpretation of the logical particles is in KREISEL [1965] (2.3, 
pp. 128-130, particularly the bottom of p. 128); a comparison with the 
notion of function of type 2 needed for the no-counterexample-interpretation 
is in KREISEL [1968b] (Note VIIb). The notion of function in (G) is essentially 
more elementary. It is less elementary than the notion of combinatorial 
operation in KREISEL [I9651 (pp. 169-173). 

Concerning the interpretation of the logical operations in (G), it combines 
the best of two worlds. It is more elementary than Heyting’s since it is ex- 
pressed in terms of the primitive notion of function in (G), but it allows one 
to use Heyting’s elegant formal machinery. Heyting’s rules are not complete 
(for the functional interpretation) for predicate calculus by footnote 1 on 
p. 113 of (IS), and not known to be complete for propositional calculus. They 
are complete for the negative fragment by Theorem 4 of 
(p. 322) since, on the interpretation (G), 

i Vx i Prov ( x , r A l )  -+ 3x Prov ( x , r A l ) ,  

and so Theorem 2, p. 321 1.c. applies. 
Finally it may be remarked (cf. footnote 38 of KREISEL [ 

KREISEL [ 19581 

968b1) that the 
interpretation (G) allows one to formulate the generalprinciple used, but not 

Correction. This problem is open despite the assertion of KREISEL [I9651 (p. 182, 4.322) 
since the latter was based on assumptions about free choice sequences which themselves 
imply that not all constructive functions are recursive; cf. the end of TROELSTRA (this 
volume). 
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stated, in BISHOP [1967]. A typical theorem about, say continuous functions 
of a real variable, takes the form: Vf{C( f ) -3g [C(g )  A R(.f, g ) ] } ,  where 
C(f) expresses that f is continuous. The theorem may be non-constructive 
in the strong sense that there is no constructive I? such that Vf{C(f)-+ 
-[C(I’f)  A R ( f ,  rf)). The classical proof generally applies the law of the 
excluded middle, say T( f )  v i T(f), to get an intuitionistic derivation of 

‘df ( ( C ( f )  A P ( f )  v 7 Wll) -+ 39 [IC(g) A R ( f ,  s)l> * 

The interpretation in (G) of c ( f ) ~ [ T ( f )  v i T ( f ) ]  has the form 
3s V t  C,(J s, t ) ,  and g is now obtained not as a function off only, but off 
together with s. In any case s will include the modulus of continuity since 
this is provided by the interpretation of C( f) itself. It is precisely this device 
of replacing traditional notions such as that of continuous function by the 
notion together with additional information, which leads to Bishop’s con- 
structive versions. The remarks above show that the possibility of some con- 
structive version of any particular theorem is automatic; the remarkable 
discovery is that a little additional information goes a long way. One may 
compare this with axiomatization : the possibility of formalizing any par- 
ticular proof about the rationals say, is automatic; the remarkable discovery 
of axiomatic algebra was how many proofs about the rationals hold for all 
formally real fields say. 
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FORMAL SYSTEMS OF INTUITIONISTIC ANALYSIS I *  

J. MYHILL 
State University of New York, Buffalo, New York, USA 

0. Brouwer is dead 

And we at this congress have a peculiar responsibility to see that his 
thought does not die with him. Commonly, and not exclusively amongst 
non-intuitionists, he is thought to have been a hamstringer of classical 
mathematics by his criticism of the ‘principle of ommiscience’. Even those 
who have accepted this criticism (Bishop in particular) not infrequently find 
some of his arguments (including all those which essentially involve the 
notion of a free choice sequence) mystical and of no mathematical value 
except heuristically. (But Bishop has shown that even this tiny fragment of 
Brouwer’s thought equals classical mathematics in range and exceeds it in 
subtlety.) On the second level of sympathy with Brouwer’s ideas are those 
who with Kleene and in a different way the earlier Kreisel accept the notion 
of free-choice sequence as long as it is either totally free or  only tnathemati- 
cally restricted (not subject to the hazards of the ‘creating subject’s’ adven- 
tures) but would this time relegate Brouwer’s historical arguments to the 
realm of the mystical. (Aberth and the Russians lie somewhere between 
Bishop and Kleene in this series of levels.) At this second stage intuitionistic 
mathematics begins to diverge from classical (and not be a mere subsystem 
and subtilization of it like Bishop’s system), but in ways which still are 
comprehensible without going too far afield from the classical conception. 
Only Kripke, the later Kreisel and myself outside of Holland seem to have 
gone all the way with Brouwer in taking seriously his introduction of the 
creating subject into mathematical arguments. I believe the amount added 
to mathematics by this bold stroke will in a few years be realized to exceed 

* The research reported in Sections 1-5 was supported by the Office of Scientific Research, 
Contract # AF49 (638)-1643 through Hughes Aircraft Company, Fullerton, California. 
Sections 0 and 6 are additions specifically for this version. 
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by far whatever was putatively excised from it by the initial criticism - if 
indeed anything was. 

If we can critize Brouwer at  all (and none of this encomium is meant to 
suggest that his conception of mathematics is the only tenable one - which 
I do not believe for an instant - but simply that it is wholly intelligible and 
self-coherent) it is on the grounds of his rejection of formalization. To me 
the failure of existing formalisms to capture all the subtleties of his thought 
is no proof of the inadequancy of formalisms (to crystallize a particular 
moment in the flow of that thought, not to define it once and for all, which 
we would never ask in classical mathematics either) but a challenge to find 
more flexible and refined formalisms than have hitherto been found. This 
paper is the first (after my “Overture” [1967]) in a series devoted to this 
task. 

1. Introduction 

There are three axiomatizations of intuitionistic analysis in the literature ; 
HEYTING [1930b], KLEENE and VESLEY [1965], KREISEL et al. [1963] and 
KREISEL [1963]. None of these are entirely adequate for the formalization 
of existing intuitionistic mathematics: Heyting’s is seriously defective from 
the point of view of rigor (so much so that at times (cf. especially Section 12) 
there is room for serious doubt as to what the author had in mind); and in 
addition the system is not strong enough to prove even the bar theorem. 
Kleene’s system does not maintain a needed distribution between effectively 
computable functions and free-choice sequences, so that in particular his 
notion of a spread (BAR-HILLEL et al. [1967] p. 56) does not coincide with 
Brouwer’s, and has certain properties (e.g., Theorem 14.9, p. 167) which 
Brouwer would certainly never claim for it. Kreisel’s system is not subject 
to any of these defects, but it is not adequate for the formalization of those 
arguments of Brouwer (references and discussion in HEYTING [1956] ch. 
VIII and KLEENE and VESLEY [ 19651 ch. IV) which involve the construction 
of free-choice sequences depending on the solution of problems. In addition 
neither Kreisel’s system nor Kleene’s contains a theory of species, and 
Heyting’s theory of species is trivially inconsistent (the axiom S=T-+S_T 
of HEYTING C1930b-J gives an immediate contradiction with the axiom x=y 
v i ( x ~ y )  of HEYTING [1930a]). 

By “intuitionistic mathematics” we mean roughly the practice of Brouwer 
and Heyting, including the above-mentioned “empirical” arguments of 
Brouwer. We do not mean to include the extensions of current intuitionistic 
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methods contemplated by KREISEL ([1963] p. 147), any more than we would 
wish to include reflection-principles in a system meant to codify the normal 
practices of set-theory. On the other hand we will not follow Brouwer or 
Heyting slavishly; for example we will use Kreisel’s proof of the bar-theorem 
rather than BROUWER’S [1927] which we find obscure [or KLEENE and VES- 
LEY’S ([1965] p. 64) which we find clear enough formally, but scarcely con- 
vincing to anyone who has any doubts about the bar-theorem]; and we 
venture to correct an argument of HEYTING ([I9561 p. 11 8) which appears 
to us after formalization to contain a fallacy. In this series of papers we shall 
compare various possible formalizations, offering detailed arguments for and 
against each one. The purpose of the present (first) part is to present the one 
which seems to us most natural and adequate, together with some justifica- 
tion for certain of the choices we have made. Detailed justification will be 
forthcoming in later papers in the series (but cf. also MYHILL [ 19671). 

Very roughly speaking, the system is obtained from Kreisel’s by dropping 
the (Va) (3P)-continuity axiom and adding Kripke’s schema (D1 below); 
but there are several other innovations amongst which the most important 
is the introduction of a new primitive idea, the idea of lawfulness symbolized 
by a boldface D. Roughly speaking Dt, where t is any kind of term, says 
that t is determined by a law rather than a free choice or choices. This ex- 
tends to arbitrary (finite) types Kreisel’s distinction between free-choice 
sequences and (computable) functions at the lowest type. 

2. The “underlying logic” and arithmetic 

The underlying logic is an (infinitely) many-sorted intuitionistic functional 
calculus with identity. Terms are divided into types N, 0, 1, 2, . . . . A term of 
type N denotes a nonnegative integer; a term of type 0 denotes a free-choice 
sequence; a term of type i > O  denotes a species of order i (a species is of 
order i if all its elements are of order i -  1). Terms of type N have one of the 
following 4 forms: 0; tl(t2) where t, is of type 0 and t2 is of type N;  
4@,, ..., t,) (n> 1) where each of t l ,  ..., t, are of types N or 0 and 4 is a 
defined number-valued operation of the appropriate kind ; or a numerical 
variable a, b, c, .. ., z. Terms of type 0 have one of the following 4 forms: 
s ;  (2x)t where x is a variable of type N and t a term of type N;  a defined 
number-valued operation with one number-valued argument; or a free- 
choice sequence variable a, ..., w .  Terms of type i>  1 have one of the fol- 
lowing 3 forms: a defined species of type i; 4(tl, ..., t,) (n2 1) where each 
of tl, ..., t, are terms and is a defined species-valued operation with argu- 
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ments of appropriate type and values of type i ;  or a species-variable 
A ( i ) ,  ..., Z(i).  In addition K has type 1. 

Atomic formulas have one of the following 3 forms: t, = t, where tl and 
f2 have the same type; f l E t z  where for some i > O  tl has type i and t, has 
type i+ 1 ; Dt where t has any type except N. Other formulas are built up 
from these by connectives and quantifiers of all types. 

The logical axioms are the standard ones for the intuitionistic predicate 
calculus: a suitable set can be obtained from KLEENE [I9521 p. 82, KLEENE 
and VESLEY [I9651 p. 13 by adding axioms for the new sorts of variables; 
also the standard axiom and schema for identity 

x = x  
x = g &%(x) -+ %(g)  

in all types and the (dispensable) scheme of lambda-conversion 

(see KLEENE and VESLEY [I9651 p. 14 for a precise statement) with t ,  and 
t(x) of type N only. The logical rules are the usual ones. For arithmetic we 
have Peano's axioms for 0 and s with induct.ion in the form 

[OES(')&(VX) (x&)+ s(x)&))] -i (Vy) (YES"') 

where t ES(') with t of type N is short for ( lx ) t~S( ' ) ,  where x is a numerical 
variable not occurring in t. 

3. Axioms for analysis 

GROUP A .  Axioms of choice. 
These we postulate as two schemata: 

A1 . 
corresponding to KLEENE and VESLEY'S 0.1 ([I9651 p. 14) or F2 of KREISEL 
et al. 119633, and 

A2. (Dxl &... &Dxn)&(Vx)(3a)(Da&'U(x, a))+ 

(VX> (3a) %(x, a> + (3P) (VX> W X ?  B ( X N  

(3P)  (DP (VX> 'u. (x, P J )  
corresponding to Kreisel's C2. 

Here the following symbolism is used: p, is short for ( l y )  fl(2".3'), where 
multiplication and exponentiation receive their definition under the axioms 
G below; and xl, ..., x, are all the variables occurring free in %(x, a), with 
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the exception of numerical variables and a itself. The motivation of A2 is 
that only if CI depends solely on x (and not on any free-choice parameters 
occurring in %) can its value for each argument y be computed from x and y 
by a uniform effective procedure, so that the free choice parameters appearing 
in ‘LI must be restricted to taking (computable) functions as values. It is not 
enough for us simply to do this however (as it is for Kreisel Ioc. cit.), because 
we have variables of higher type in whose values free-choice sequences might 
be indirectly involved if they were not restricted by the first hypothesis of 
A2. We presume that the schemata 

(‘l4 (3Y) ‘LI(X, Y )  --* (3P)  (VX) %(X% P W )  
corresponding to Kleene’s 2.2 and Kreisel’s F1, and 

(Dx, &.. . &Dr,)&(Vx) (3y)‘u(x, Y) + (3P)(DP&(Vx) %(x, P(x))  

corresponding to Kreisel’s C1 are deducible from A1 and A2 respectively; 
if not they must be added as additional schemata. 

Kleene’s axioms 2.1-2 are thus our A1 and A2 respectively; but if we 
followed him in not distinguishing functions from other free-choice sequences 
we would not be able to make certain of the distinctions which Brouwer had 
in mind, We have already mentioned the apparent impossibility of defining 
(Brouwerian) spread in Kleene’s system (our definition of spread is obtained 
from KLEENE and VESLEY [1965] p. 56 by adding the clause Do): another 
example is the definition of (cardinal) equivalence of species which must be 
given by a law. (For example, of the set S ,  on p, 256 of BROUWER [1924] it 
is asserted that no one has established its ‘zahlbarkeit’; this is true if the kind 
of correspondences used are to be lawlike, false if they are merely arbitrary 
S%.) 

GROUP B. Axioms of continuity. 
In conformity with the analysis of free-choice sequences given informally 

in MYHILL [1967] and BAR-HILLEL et al. [1967] and developed formally in 
later papers of this series, we drop the (Va) (3P)-continuity axiom (F6 of 
KREISEL [1963], 27.1 of KLEENE and VESLEY [1965]) and replace it by the 
weaker 

B1. (Val (3x1 ‘u (a, x) -+ (V) ( P  E K (Va) (3x1 (32) 
[%(a,x)&pE(z)= s ( x ) & ( v w ) ( p E ( w )  # O + w =  z)]) 

where M ( z )  is defined in G below. Notice that we do not require that no free- 
choice (or unrestricted species-) parameters be present in %; thus x may 
depend upon values of such parameters and not only upon a. Hence is not 



166 J .  MYHILL 

necessarily lawlike and B1 does not correspond exactly to Kreisel’s F4; the 
analogue of the latter is rather 

B2. (Dx, & ... & Dxn) &(Va) (3x) %(a, x) + 

(38) (DP P E K (Val (3x1 (32) [a (a, .) 
P.(z)=s(x)&(Vw)(PCL(w)fO-+ w = z ) ] )  

where xl, . . ., x, is a list of the free variables, other than a itself and number- 
variables, which occur in %(a, x). 

Corresponding to Kreisel’s F5 (the (Va) (3f)-continuity schema) we have 

B3. Pa) (3P) (DP %(a, P)) -+ (3Y) (34) 
[ T Y E K & D ~ & ( V ~ ) ( ~ X ) ( ~ Z )  [%(a, (b , )&yE(z)  = ~ ( x )  

and 

B4. (Dx, &... &Dx,)&(Vcr)(3P)(DP&(ll(a, P ) ) - ( ~ Y ) ( ~ ~ ) ( Y E K & D Y &  
Dq5&(Va) (3x) (32) [%(a, 4,)&yE(z) = s(x)&(Vw>(ya(w) # 0- t  w = z)]). 

Here xl, ..., x, are as in B2 and 4, is short for (Ay) 4(2”.3’). 
Kreisel introduced B4 (with the x i  all of type 0) with the remark that 

functionals from free-choice sequences to free-choice sequences are continu- 
ous with the product topology on both domain and range, while functionals 
from free-choice sequences to  functions are continuous with the product 
topology on the domain and the discrete topology on the range. (We must, 
of course, drop the first part of this remark.) His immediate motivation was 
the elimination of bound free-choke sequence variables, which of course 
because of the absence of the (Va) (3P)-continuity schema (and Kreisel’s 
schema, cf. Section 4 below) we are unable to do. But B3-4 (or at any rate 
one or the other of them) are necessary also in order to formalize some of 
Brouwer’s arguments; cf. in particular BROUWER [I9241 p. 253, line 3 from 
bottom. 

&(VW) (yE(w> # 0 -+ w = z)]] 

GROUP C.  The inductive definition of continuity. 

c1 .  aEConst -+ a g K  

c2 .  (Vn) (u,EK) + a s K  

C3. 

Here Const is defined (under G below) by 

Const c S(’)  & (Va) [ (Vn)  (a E S‘”) --f a E S“’] --f K c S(l) , 

aEConsto(3x)  (a(1) = s(x))&(Vz) ( z  # 1 +a(.) = 0), 
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an=(;lx)a({n}*x) where {n> =2"", and * is defined under G (1 is the number 
of the empty sequence); and c receives its usual definition. 

There are several comments on this definition (which we take from KREI- 
SEL et al. [1963] p. IV-20, though in essence it was certainly known to 
BROUWER ([1923] p. 4)). Firstly, practically its only use is in proving the bar 
theorem (or such results as the fan theorem, or the equivalence of well- 
ordering and transfinite induction, which can also be obtained from the bar 
theorem), or else in proving continuity in such forms as Kleene's (corre- 
sponding to our B1) and parallel K-free versions of B2-4. It can certainly 
be urged that there is an inelegance in introducing a new primitive for the 
sake of half-a-dozen theorems. (But cf. Section 4(2) below.) So far as ordinary 
bread-and-butter intuitionism is concerned we could certainly have replaced 
B1-4 by their K-free versions and C1-3 by the bar theorem. However, we 
believe that axioms should have a certain transparency which we did not 
personally find in the bar-theorem when we first encountered it, and which 
we did find in C1-3 plus Kreisel's deduction of the bar-theorem from these 
and B1 (or rather B2; see below for the distinction). We do not find BROU- 
WER'S (C19271 p, 7) or KLEENE and VESLEY'S ([1965] p. 50) dogmatic assertion 
of the bar-theorem quite convincing and as we said before we find Brouwer's 
longer proof of it in BROUWER [I9271 obscure and Kleene's formalization 
of that proof (KLEENE and VESLEY [1965] pp. 64-68) circular from the point 
of view of one who does not accept the theorem and superfluous from the 
point of view of one who does. 

Secondly, it should be repeated that our K is not the same as KREISEL et 
al.'s ([1963] p. IV-20). Our K is the species of all (representing free-choice 
sequences of) continuous functionals, while Kreisel's K is the species of all 
lawlike ones. This in turn affects the details of the derivation of the bar- 
theorem and of Kleene's 27.2 in the following manner: Kreisel, possessing 
only lawlike continuous functionals, first proves the special case of the bar- 
theorem in which no free-choice parameters occur and then proves the 
general case by appealing to his own schema (Sec. 4 below). (His starting- 
point is B2 and C3 with the added hypothesis (Va) (a~,s( ' )+Du).)  We cannot 
do this because we lack Kreisel's schema; however, we can get the bar- 
theorem directly, with non-lawlike parameters, if we use B1 (which Kreisel 
lacks) instead of B2. Precisely similar modifications must be made in Kreisel's 
proof of Kleene's 27.2 (KREISEL et al. [I9631 p. 22). 

Thirdly, the axioms Cl-C3 can if desired be dispensed with (in the present 
(impredicative) system) in favor of a direct definition of K (see Sec. 4 below): 
we do not do this because someone might want to study the first-order part 
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of our system alone, without species-variables (or else to develop a predica- 
tive system; Section 5 below). 
GROUP D. Kripke's schema. 

D1. p q - ( v X )  (.(.I = 01 -l 3 & 

(3x) (.(x) = 1) + 3 I. i" (a(.) = 0 v a(.) = 1) & 

[ (Vp) ( J  (p, 3) & p = a + p E s" )))+ (7 

For the justification of this cf. MYHILL [1967], BAR-HILLEL et al. [1967] and 
KREISEL [1967]. To our best knowledge it is sufficient for the formalization 
of all Brouwer's empirical arguments except one - namely the proof that the 
virtual order of the continuum is not a pseudo-order (HEYTING [1956] p. 
117). In this proof he uses something like 

(*I J ( a ,  3) &(VS'") (DS"' &~ES" '  

where J (a ,  3) abbreviates the formula within the square brackets of D1 and 
where P=,,a means (Vx<n) (P(x)=a(x)). But since this is a 6nar hyopevov  
which introduces a wholly new dimension into empirical free-choice se- 
quences (this dimension will be explored in a subsequent paper of this series), 
and since it is not hard to give another proof of the same result using D1 
instead, we do not feel justified in adding (*> as an axiom. (We believe how- 
ever, that it is rather clearly valid on the interpretation given in MYHILL 
[1967].) 

Incidentally we can get from D1 the mentioned result as a negation of a 
quantified formula rather than a mere "nobody has the right to assert" 
statement. A similar remark applies to several other results which Brouwer 
states in the weaker form; in particular the negation (not merely the un- 
assertability) of the Bolzano-Weierstrass theorem (BROUWER [ 19523) follows 
from D1. (These two results are due to my student Richard Hull, whom we 
hope can be prevailed upon to publish them.) 

GROUP E. Axioms of extensionality. 

El.  
E2. 
E3. 

(VX> (a (4 = P ( x ) )  -+ a = B 
(Va) (a E S ( " e  a E T'") -+ S") = T")  

(VsCi)) ( ~ ( ~ ) ~ ~ ( i + ' ) ~ s ( i ) ~ u ( i + ' )  ) - p i + ' )  = u(i+l) 

(i = 1, 2, 3, ...). 

The ground of these axioms is simply that we only use species that are defined 
extensionally. We share HEYTING'S feeling [1930b] that this is all that is 
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needed for formalizing e.g. BROUWER’S arguments [1924] and [1918-191, 
even though there are places (cf. in particular [I9241 p. 246, line 19) where 
intensionally defined ones make a momentary appearance. The axiom 
schema of substitutivity in the form 

%(x) & x = t ) + % ( t ) ) ,  

it will be recalled, is assumed in our underlying logic; consequently also 
%(x) & x  = t)+%(t)), where = denotes extensional identity. Thus all contexts 
are extensional; this yields a considerable technical facility in the making of 
proofs while at the same time (because of the absence of variables for func- 
tionals) it enables us to make statements like D1 which are non-extensional 
in the sence that the p does not depend extensionally on the free-choice 
parameters of ‘u. (To digress: functional variables tend to be misleading 
anyway in some situations; for example if we define equivalence of species 
in terms of functionals we do not even get symmetry of this relation, while 
the definitionin terms of correlating species of higher order leads to no such 
annoyance.) 

Note. To make e.g. E2 true, we must strictly speaking interpret Dcc as 
meaning ‘CI is extensionally equivalent to a lawlike sequence’ rather than ‘a 
is lawlike’ (i.e. given by a law). For the latter notion extensionality (i.e. 
Da & a=P-+DP) would fail, while Dcc v i (Dcc) would hold. We shall explore 
this alternative in later papers of this series. 

GROUP F. D-axioms. 

F1. Dx,& ... &Dx,+Dt 

where t is a term of any type except N, and where xl, ..., x, are all the free 
variables o f t  which are not of type N. 

The motivation is as follows: KREISEL et al. [1963] observed that certain 
formulas (e.g. B3-4 above) hold for constructive functions which do not hold 
for free-choice sequences generally ; cf. in this connection the remarks imme- 
diately preceding Group B of axioms in this paper. (In Kreisel’s system, 
constructive functions are not merely regarded as a kind of free-choice se- 
quence: but this is a matter of notation since they are extensionally equal to 
certain free choice sequences, and the relevant form of extensionality holds, 
i.e., 

(W ( f ( x )  = cc(x>> + (‘u (4 * ‘u (S)> .) 
The distinction having been made, it became apparent to Kreisel that certain 
existential axioms had double forms, one asserting the existence of a free- 



170 J. MYHIL.L 

choice sequence and one the existence of a constructive function. For ex- 
ample while Kleene has only 

(VX) ( 3 Y )  a (x9 Y )  + ( 3 4  (VX) ‘u (x, a (XI) (1) 

(which is true if all Kleene’s Greek letters are taken as ranging over construc- 
tive functions, or all of them as ranging over free-choice sequences), Kreisel 
breaks this up into 

with a a free-choice variable, and 

with f a variable for constructive functions, and with no free-choice variables 
occurring free in 210. The idea is simple: if a y can be found for each x (in 
e.g., the case of (3) where 210 has no parameters) there must be a rule to find 
it; otherwise we could never assert the antecedent of (3) at all. Likewise for 
each fixed value of the parameters in !KO, provided these are number or 
function-variables. If however there are free-choice parameters in 2l we may 
need to know (finitely many values of) them to compute the y of (2). (The 
paradigm case is with %(x, y )  as p ( x ) = y . )  

Similar remarks apply to Kleene’s D1, which splits up into Kreisel’s F2 
and C2 (our A1 and A2). There are also two other places where the presence 
or absence of free-choice parameters in a formula make a difference; in 
Kreisel’s schema (discussed below, Section 4) and in his continuity axiom F4. 
This reads like our B1 (with minor notational changes) except that 2l is 
required to contain no free-choice parameters and that the free-choice vari- 
able p is replaced by a function-variablef(a p such that Dp in our notation). 
However there is an asymmetry in Kreisel’s treatment here; for there is a 
valid intuitionistic principle related to F4 as Kreisel’s F1 and F2 (our Al)  
are related to his C1 and C2 (our A2) respectively (in each of the three cases 
the first-named principle asserts the existence of a free-choice sequence p 
having a certain property, while the second one says that if there are no free- 
choice parameters present the p can be replaced by a constructive function 
f). This principle however (namely our B1) is not stated by Kreisel, and in 
fact he would need a new inductive definition (corresponding to our Cl-C3) 
in order to state it. Similar remarks apply to various other axioms of KREISEL 
[ 19631 ; we do not analyze all these cases in detail but simply tabulate the 
situation as follows: 
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(See above) 

F6 

AXIOM 

(inconsistent 
with D1) 

vx3y 

Choice 

Continuit 

Kreisel's 
axioni 

- 

vx3 CI 

va3 x 

Vff3P 

vCI3 f 

Ordinary form 

D-form 

Ordinary form 

D-form 

Ordinary form 

D-Form 

Ordinary form 

D-form 

Ordinary form 

D-form 
- 

Ordinary form 

D-form 

KLEENE 

2.2 

0.1 

27.2 

27.1 

Provable 
(cf. R14.9) 

~~ 

KREISEL 1 THISSYSTEM 1 
F1 Provable (cf. 

c 1  1 after A2) 1 discussion 

F2 1 A1 1 

(See above) B3 

F5 

Provable 1 1 Provable 1 (Kreisel 
contains 
Kleene) I ___- - 

(See Section 4 
F3 1 below) 

- -  

However it is not merely out of a love of symmetry that we include the 
axioms B1 and B3: we need e.g. B1 to prove something as simple and funda- 
mental as: 

(Vff) (34 .> -+ (YE) ( 3 4  (3Y) (VP) (P = a+  'u (P, Y>) 

because we do not know how to deduce this from B2 except by Kreisel's 
method in KLEENE and VESLEY [I9651 or KREISEL et al. [1963] which em- 
ploys F3 which is not available to us. 

So much for the motivation of distinguishing ordinary forms and D-forms 
of existential axioms. The remarks at the end of the section on the axioms 
of Group A give another motivation, namely that the distinction of lawlike 
and unlawlike is made much of by Brouwer himself, and many of his results 
(e.g. [1924] p. 253, line 3 from bottom) cannot even be stated in systems like 
Kleene's which does not make such a distinction. Kreisel needed to introduce 
the division at the lowest type only, because he had no species-variables. 
Once we have such variables however extension of the distinction to them 
is mandatory. Otherwise reference to free-choice sequences could be smug- 
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gled into instances of D-forms of our schemata indirectly for example by 
speaking, instead of a free-choice sequence itself, of its unit-species. 

Example. We cannot write: 

(V.1 (3Y) (a(.) = Y )  -+ (3f) ( V 4  (.(XI = f W  

(VX) ( 3 y )  [2".3Y€S"'] -+ (3f) (VX) [2".3f'"'ES(1)] 

(4) 
because a(x)=y contains a free. But by the same token we cannot write: 

because Sf1) might be the set of all 2" - 3"("), and then we could deduce (4) 
anyway. 

GROUP G. Rules of definition. 
G1. Definition of number-valued operations (functions and functionals 

(KLEENE and VESLEY [I9651 p. 19)). 
Such a definition consists of two formulas: 

4(Xl ..., X,, 0) = tl 

$ ( E l  ..., x,, S ( Y ) )  = t, 
where 4 is the symbol being defined; nBO: xl, ..., x,  are different variables 
each having type N or 0: I) is not one of xl, ..., E,: t l  is a term of type N not 
containing 4 nor any symbol which js not primitive and has not yet been 
defined, and which contains 4 only in subterms of the form +(t:, ..., t,*, y ) :  
and t, contains no free variables beyond x , ,  ..., x,, y .  
These definitions, apart from those for f and x ,  are eliminable (Kleene 
op. cit. p. 19). / 

62. Definition of species-valued operations and species. 
Such a definition consists of a formula: 

or 

where 4 is the symbol being defined: nBO: x1, ..., x,  are variables of any 
type distinct from each other and from a (from S(')):  iB 1 : and %is a formula 
containing no variables free except a (Sci') and the x i .  

4. Reasons not to extend the system further 

There are three (at least) ways in which we might consider extending the 
system: (1) by adjoining Kreisel's schema (F3 of KREISEL et al. [1963]) in 
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the form 

Dx, &... &Dx,&%(cr)-t(3fi)(Bis aspread&crEP&(Vy)(yEfi-,%(y)) (7) 

where ‘fi is a spread’ is defined as in KLEENE and VESLEY [ 19651 but with the 
addition D p ;  where a ~ f i  is also defined as in KLEENE and VESLEY [I9651 p. 57; 
where y is not one of x1 ,..., x,, and where xl... x, exhaust the free non- 
numerical variables of %(a) other than c( itself: (2) by adjoining inductive 
definitions in either of the forms contemplated by Kreisel in KREISEL et al. 
[1963] and KREISEL [1963]: or (3) by adjoining Kreisel’s axioms (KREISEL 
[1967]) for the thinking subject, namely 

k,% v 1 t,% 

((Vn) i k,%) -i i ‘u 
( I - n q )  + 

and possibly others such as 

(x  . . ., x, of any types) 

(Kreisel) ; or 
E(x) = y + kXE(X) = y 

Da & (Vx) (a(x+l)>a!(x))  & ( V x ) l t , ( , , % ~ l % v ( ( 3 x ) ~ , ~  

(Myhill : this will be discussed in a later paper of this series). We shall discuss 
these three possible extensions in turn. 

Re (1). Kreisel’s schema and Kripke’s schema D1 together imply the 
‘negation of Church’s thesis’ in the form 

pa) (Da & 1 (3n) (VX) (VY)  (a(.) = Y -i %(4 x, Y ) ) )  (8) 

where %(n, x, y )  is any formula in which only the indicated variables occur 
free. Outline of proof (details will appear in a later installment): Kripke’s 
schema gives (8) without the Da, i.e., a free choice sequence not occurring 
among the functions enumerated by % (by a diagonal argument); and then 
Kreisel’s schema provides the Dcr because it implies (KREISEL et al. [1963] 
p. IV-23) the schema 

Dx, & ... &Dxn&(3a)%(cr) -+ (3a) (Da&%(cr)) 

where x,, ..., x, are all the non-numerical free variables of %(a) other than ct 

itself. 
What are we to make of this? I do not quite share Kreisel’s scepticism 

about all constructive functions being recursive: none the less I admit that 
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there is room for some doubt, and we would presumably want Church’s 
thesis to be independent in our system at least until some substantial further 
insight is gained. 

To my mind the trouble with the above deduction lies in the shifting 
meaning of D. As soon as we admit empirically defined sequences (8), and 
therewith (7), loses its plausibility if we read D as ‘mathematically defined’. 
If we read it as ‘independent of acts of free choice’ (hence including both 
‘mathematically defined’ and ‘empirically defined’ or any combination of 
the two) it is perfectly true; but then the D in the definition of ‘ p  is a spread’ 
in Kreisel’s schema has to be construed the same way. Hence: if we divide 
free-choice sequences into those which are mathematically defined and the 
rest, we have no reason to assert Kreisel’s schema. If we divide them into 
those that are mathematically-or-empirically-defined and the rest, all the 
axioms require reexamination (we shall do this in later installments) and we 
cease to be able to define the notion of a (Brouwer) spread (and come up 
with one intermediate between the Brouwer-Kreisel one and the Kleene one). 
In that case we can prove (8) but it is certainly not the ‘negation of Church’s 
thesis’ in any reasonable sense: it is an assertion of the existence of an empiri- 
cally defined sequence not occurring in the sequence of sequences enumerated 
by a. For a complete analysis we need another predicate besides D, namely 
a predicate Ea meaning a is empirically defined: then we can have both 
Kreisel’s schema (with E replacing D) and Kripke’s in the same system. But 
as long as we have only the twofold distinction of lawful and nonlawful 
sequences, the only form of Kreisel’s schema that we can validly assert is the 
trivial one obtained by dropping Dp altogether from the definition of ‘spread’ 
in (7) (i.e. by replacing ‘spread’ by ‘Kleene spread’ as per KLEENE and VESLEY 
[1965] p. 56). 

Added in proof. Troelstra’s paper in this symposium makes the above 
argument against Kreisel’s schema entirely superfluous, and makes the 
above suggestion about E quite dubious. 

Re (2). We do not need inductive definitions because (having higher-type 
variables) we can use the Frege-Dedekind device. (Kreisel’s so-called ‘coun- 
terexample to the definition [of an inductively defined species] as an inter- 
section’ in KREISEL et al. [I9631 we find misleading stated: it shows only that 
(granted Church’s thesis) there exists an inductively defined species whose 
extension differs from that of the species obtained by the Frege-Dedekind 
device using quantified species-variables over decidable species only, which 
we hardly consider surprising.) Thus in particular we can eliminate the 
inductive definitions Cl-C3 of K (and the primitive symbol K itself) if we 
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use the direct definition 

however we do not do this in case someone wants to study the first-order 
fragment (or a predicative version) of our system. In view of Howard’s proof 
of the equivalence of well-foundedness and transfinite induction (KREISEL et al. 
[ 19631) and Vesley’s forthcoming applications of this to the formulation of 
Brouwer’s theory of ordinals (cf. KLEENE and VESLEY [1965] p. 65) we see 
no reason to adjoin to this first-order fragment any other inductive defi- 
nitions beyond Cl-C3; for it seems that only in the theory of ordinals does 
Brouwer employ such definitions (but cf. BROUWER [1927] and Section 5 
below). 

Re (3). Despite the illumination which Kreisel’s axioms for the thinking 
subject shed upon Kripke’s schema D1, we think the loss of extensionality 
too high a price to pay in technical facility. Various modifications and 
caveats of extensionality would have to be added in several other axioms 
(notably in Bl-B2: HEYTING [1956] p. 118, slips up by using the fan theorem 
on an intensional context in his proof of I (Va) (cl#O+ol#O) which (essen- 
tially) proceeds from the axioms for the thinking subject). Had he used 
Kripke’s schema instead he would not have made this mistake and would 
have gotten just the same result (of Kreisel’s reply to Myhill in BAR-HILLEL 
et al. [1967]): and the same remark (that Kripke’s schema can replace the 
t., axioms with a consequent gain in technical facility and elegance) seems to 
apply to all of Brouwer’s historical arguments so far as we have examined them. 

5. Postscript on impredicative definitions 

The above represents a formalization of impredicative intuitionism, fol- 
lowing e.g. KREISEL [1963] p. 147 rather than e.g. GODEL [1932]. (It is to a 
conversation with Godel that we owe this distinction, as well as a belief in 
the legitimacy of both forms: we here record sincere thanks to him.) For a 
formalization of predicative intuitionism (not the only one, but the closest 
we can find to Brouwer’s own intentions) we make the following modi- 
fications. 

In the formation-rules we reconstrue species-variables S( i )  as ranging over 
species of type i and order i (i.e. defined without quantification over species 
of type 3 i) and we add for a technical reason (see G3 below) also free un- 
ramified variables for species of type i. These are used in atomic formulas 
9 ( i+ ’ ) ( t )  with t of type i > O ,  but never quantified. 
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In the underlying logic we adjoin a rule of (schematic) substitution for the 
new variables corresponding to the ordinary rule of substitution for predicate 
letters in the functional calculus. In the axiom of induction replace 0~s")  
by F(')(Ax) 0 etc.; or else use a schema. 

In the axioms of analysis make the following changes: in C3 replace the 
ramified species-variable S(l) by an unramified Fc1); add to the extention- 
ality axioms El-E3 also 

E4. (VU)  (@')a 4 9%) &3(9(1)) + " (W) )  

~ 5 .  (Vs'i)) ( p ( i  + 1) s(i) c, @ i  + 1) s")) & 3 ( p ( i  + 1) )  ~ 3 (g(i + 1 )) 

in G2, require in (5) that amongst xl, ..., x, occur no script variables and no 
ordinary species-variables of any type except i ,  and that in 'u occur no bound 
species-variables at all : in (6) that amongst x 1,  . . . , x,  occur no script variables 
and no ordinary species-variables of any type > i+ 1, and that in 'u occur 
no bound species-variables of any type 2 i + 1. Finally adjoin the following 
rule 6 3  of inductive dejinition (now necessary since we cannot use the Frege- 
Dedekind device; cf. (2) of Section 4 above). If 

G3. $3(@+1), p ) & g ( i + l )  @ i + l )  --r 3 ( @ i +  1) 3 SW) 

is a theorem, where 'u has no free variables beyond those indicated, we may 
introduce a new species-constant (b of type i+  1 by the axioms 

G3,(b. 

(%((b, S")) is obtained from %(9(if1), 5'")) by replacing all subformulae 
@ i +  1 )  (t) by t~(b) ;  and 

G326 

2T (4 ,  S'") -+ s'" E 4 

(t/s(i)) (au(s(i+ 11, s(9) ~ 3 - [ i + 1 )  (P)) 
+(vs(i))(s(OEcp + $ ( i + l ) ( ~ ( O ) ) ;  

likewise reading '1' for ' i +  1' and 'a' for 'S(i)' throughout. It is thought that 
a rule of definition for inductively defined species with parameters (e.g. func- 
tions of ordinals) is derivable from 6 3  with 62;  otherwise it will have to be 
added as a new axiom. 

Note (a) that in view of Vesley's work mentioned under (2) of Section 4 we 
could probably get by without such a rule, except perhaps for the definition 
of the species C defined in HEYTING [1956] p. 108; but Vesley's work seems 
intended as an extremely illuminating technical contribution rather than as 
a historically accurate rendering of Brouwer's intentions; (b) that we have 
only one order at each type (e.g. we have no species of say points in space 
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that are defined by quantification over all first-order species of such points), 
thus only a fragment of the ramified hierarchy; but that this seems to be all 
that Brouwer uses; there is for example no splitting of cardinals or point- 
sets into a hierarchy as there would be on Weyl's treatment; (c) that occa- 
sional apparently impredicative definitions in Brouwer always seem to be 
eliminable, either (as in the case of the species just mentioned) by reducing 
them to inductive ones or else (as in the case of certain species defined in 
BROUWER [1948]) by replacing them by predicative special cases. 

6. Addendum 

Vesley recently observed that the (evidently valid) schema 

A3. 

is probably independent of (the first-order fragment of) our system (Kleene's 
proof in KLEENE and VESLEY [1965] uses 27.1); if this is true we should 
certainly adjoin it as a new axiom, and also its mate (related to it as A2 to 
Al). 

t'11.(0) W x ) ( S e s ( x >  &%(.I + ( 3 Y )  w* {Yl)) l  +Pa) (Vn) '11.u(a(n)) 

A4. [Dx, .. ., Dx, & 'u( 0 )  & (Vx) (Seq (x) & %(x) 
+. ( 3 Y )  (.* { Y > > ) l +  ( 3 4  (D@. & (Vn) '11. (a (4)) 

where q, ..., x, are all the free non-numerical variables of a. The same is 
true of 

A5. (VX) ( W ) + Y )  ( W Y )  & B(% Y > ) ) + W  (W) 
+(3cw) [(Vx) (B(a(x), x(x+l))  & a(O)=z]) (Kreisel) 

and there are even stronger things on the same lines. 
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ON SIMPLE TYPE THEORY WITH EXTENSIONALITY 

K. SCHUTTE 
University of Munich, Germany 

TAKEUTI [1953] developed a formal system GLC of simple type theory in 
a Gentzen-like way. From his fundamental conjecture for GLC that every 
derivable formula is derivable without using the cut rule, he proved the 
consistency of classical analysis. Tn SCHUTTE [1960], I formulated a similar 
formal system of simple type theory and gave a semantical equivalent to 
Takeuti’s fundamental conjecture, using partial valuations. By means of 
this semantical equivalent, the fundamental conjecture has recently been 
proved in a nonconstructive way independently by M. Takahashi and 
D. Prawitz, whose papers are not yet published. 

The system GLC does not require extensionality, and it is not possible 
to add an axiom or an inference rule for extensionality without violating 
the fundamental conjecture. In this paper, I describe a formal system STE 
of simple type theory with extensionality which has proof-theoretical proper- 
ties similar to the system in SCHUTTE [ 19601. The completeness of simple type 
theory proved by HENKIN [I19501 is provable for STE in a more syntactical 
way. 

The strict derivability in STE which corresponds to cutfree derivability is 
characterized by partial valuations as in SCHOTTE [ 19601. The analogue to 
Takeuti’s fundamental conjecture would be the statement that any derivable 
formula is strictly derivable, but this statement does not hold in STE in 
general. Of course, it holds for suitable subsystems of STE, and its proof can 
be useful to  establish consistency of subsystems of analysis like Takeuti’s 
constructive proofs of his fundamental conjecture for subsystems of 
GLC. 

The system STE uses combinators with types so that bound va- 
riables are not needed. It contains equality symbols for all types as ba- 
sic symbols which permits the definition of quantifiers as in HENKIN 
[ 19631. 
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1. The formal system STE 

1.1. Definition of types. We assume that a set of basic types is given 
containing the type 0 for formulas. The inductive definition of types is the 
following one: 

1.1.1. Any basic type is a type. 
1.1.2. If a and fi  are types then (ap) is a type. ((@) is to be understood as 

the type of mappings from the class of objects of type a into the class of 
objects of type p.) 

We use small Greek letters as syntactical variables for types. For abbrevi- 
ation we write a1 a2. .  . a, instead of (al (aZ .. . (an- an). . .)) associating to the 
right. 

1.2. Basic terms. 
1.2.1. Denumerably many variables of type a for any type a. 
1.2.2. An arbitrary number of constants of some types. 
1.2.3. The connectives N of type 00 (for negation) and A of type 000 (for 

1.2.4. For every type CI an equality symbol E, of type a010. 
1.2.5. For all types a, p, y the combinators Kls of type apa and Slsu of 

disjunction). 

type (.BY) (4 ay. 

1.3. Inductive definition of terms. 
1.3.1. Any basic term of type a is a term of type a. 
1.3.2. If aa4 and 6" are terms of types aP and a respectively, then (aaPba) 

The terms of type 0 are called formulas. 
Syntactical variables : 

is a term of type p. 

a', b", ca for terms of type a, 
x", y", za for variables of type a, 
p ,  q, r for formulas. 

For abbreviation we write ay'ay.. . a:n instead of (. . . ( a ~ ' a ~ ) .  . , a:), associ- 
ating to the left. We write i p ,  p v q , p + q  instead of Np, Apq, A(Np)q 
respectively. 

1.4. Combinations are the terms of the following forms: 
1.4.1. Kapa'bP, converting to a', 
1.4.2. SaPyaaPubaPc', converting to aa~y~"(b'p~a). 
A term is called irreducible if it does not contain a combination. 

1.5. Prime formulas are: 
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1.5.1. The irreducible formulas whose first symbol is a variable or a 

1.5.2. The irreducible formulas of the form Era'& where 7 is a basic type 
constant. 

different from 0. 

1.6. Inductive definition ofpositive parts and negative parts of a formula r. 
1.6.1. r is a positive part of r. 
1.6.2. If Np is a positive (negative) part of r, then p is a negative (positive) 

1.6.3. If Apq is a positive part of r, then p and q are positive parts of r. 
Notations : 

F [ p + ]  (or FCp-1) denotes a formula containing p as a positive (negative) 
part in a fixed place. 
F[p+, 4-1  denotes a formula containing a positive part p and a negative 
part q (each in a fixed place) such that there is no intersection between p and q 
in the formula. 

part of r. 

1.7. Definition of some special terms. 
1.7.1. V =ETcTcr where c' is a distinguished constant of a basic type 7. 

1.7.2. 17,=E,,(Ko,Y) which is a term of type (a0)O. (n, is the universal 

1.7.3. A =N(~o(SoooAN)) .  ( A  has the meaning of the "false formula" 

1.8. Definition. Let G(x") be a formula containing the variable xm in some 
places. G(x") is calledprimitive with respect to xu if it has one of the following 
forms : 

either a variable different from xff 
or a constant 
or a symbol E, where 7 is a basic type different from 0. 

either a variable different from xff  
or a constant 
or a symbol E, where j3 is an arbitrary type. 

(V has the meaning of the "true formula".) 

quantifier for objects of type a.) 

expressing the negation of the law of the excluded middle.) 

1.8.1. The first symbol of G(x") is 

1.8.2. G(x") is a formula N(H(x"))  where the first symbol of H(x") is 

1.9. Axioms and basic inference rules. 
1.9.1. Axioms : 

Every formula F[p+, p-] where p is a prime formula. 
1.9.2. Inference rules A introducing logical symbols. 
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A l .  

A2. 
FLP-1, FFq-I t FF(P v 41-1 2 

F H P  + 4)+1, FC(q +P)+1 t- FIIEoP(7t19 
A3. F [ E S ( U " P X " )  (b""x"),] k F[Eaga"Pb"P+] 

A4. F(a") 1 F(c") 

if the variable X" does not occur in the conclusion, 

where c" is a combination converting to a' 
and F(a") is a formula containing aa in some places. 

1.9.3. Inference rules B for cancellation. 

€31. 

B2. 

B3. 

where r is a basic type different from 0 
and a' is an irreducible term, 

B4. 

where G(aa) is a formula such that G(x") is primitive with respect to x", 

B5. p v A k p .  

FIIEoPq-1 V ( P  V q), F[lEoPq-] V ( 1 P  V 1 4)  1 FCEoPq-19 
F[E,,a"~b"P-] v 1 Ep(a%Q) (b"Pc") k F[E,,a"Pb"C], 

p v i E,a'a' k p  

F[E,a"b'_, G(a")+] v G(b") k F[E,aaLba_, G(u")+] 

Remark. The inference rule B5 is (together with our axioms and other 
inference rules) equivalent to the cut rule 

p v r , q v  i r k p v q .  

I .  10. Inductive definition of derivability. 
1.10.1. Every axiom is derivable. 
1.10.2. If the premises of a basic inference are derivable, then the con- 

We say that a formula is strictly derivable if it is derivable without using 
clusion is derivable. 

the rule B5. 

2. Partial valuations of the system STE 

2.1. Definition. A partial valuation is an assignment V of at most one of 
the two values t (truth) and f (falsehood) to any formula such that the 
following conditions are satisfied: 
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2.1.1. If p or i p has a value, then both formulas have different values. 
2.1.2. V ( p v q ) = t  iff V(p)=t  or V(q)=t.  V ( p v q ) = f  iff V ( p ) = f  and 

2.1.3. If V(Eopq)=t, then both formulas p and q have the same value. 

2.1.4. If V(EmPaaPbap)= t, then V(EP(auPca) (b"aca)) = t for all terms ca of 

2.1.5. V(E,a'a*)=t for all basic types 5 different from 0. 
2.1.6. If V(E,a'bOL)=t and G(a") has a value, then G(b") has the same 

V(q)  = f .  

V(Eopq) =f iff both formulas p and q have different values. 

type a. V(Em,auPb"P)=fiff V(EP(aaPxa) (b"Px"))= f for some variable xu. 

value. 

2.2. LEMMA 1. If a formula p is strictly derivable, then there is no partial 

Proof by induction on the length of the strict derivation of p .  
valuation V such that V(p)=f .  

2.3. LEMMA 2. If a formulap is not strictly derivable, then there is a partial 

To prove this lemma we use some auxiliary concepts. 
2.3.1. We can define the degree of a formula such that the premises of a 

basic inference A have lower degrees than its conclusion. This degree is used 
to prove statement b) below. 

2.3.2. We define deduction strings of a formula p inverse to the inference 
rules A and Bl-B4 in such a way that the following properties are fulfilled : 

a) If every deduction string of a formula p contains an axiom, then these 
deduction strings can be combined to a strict derivation of p .  

b) If there is a deduction string S of p which does not contain an axiom, 
then a partial valuation can be defined in which every negative part in S has 
the value t and every positive part in S (in particular p )  has the value$ 

valuation V such that V ( p )  = f .  

This gives a proof of Lemma 2. 

2.4. From the Lemmata 1 and 2 we have: 
THEOREM I. A formula p is strictly derivable if and only if there is no 

partial valuation in which p has the valuef. 

2.5. Definition. A total valuation is an assignment of exactly one of the 
two values t and f to any formula such that the conditions 2.1.1-2.1.6 for 
partial valuations are satisfied. 

A total valuation defines a general model in the sense of HENKIN [1950] 
in a straightforward manner, and vice versa every general model determines a 
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total valuation. These general models satisfy the requirements of full 
extensionality. 

2.6. LEMMA 3. A formula p is derivable if and only if the formula p v A 

Proof by induction on the length of derivations. 
is strictly derivable. 

2.7. LEMMA 4. If the formula A has a value in a partial valuation V ,  

Proof by the definition of partial valuations. 
then Vis a total valuation and V ( h ) = J  

2.8. THEOREM 11. A formula is derivable if and only if it has the value t 

This follows from Theorem I and Lemmata 3 and 4. 
in every total valuation. 

2.9. Example of a derivable formula which is not strictly derivable. Let p be 
the formula 

E ,  (x(O0)O ( S  000 K O O Y l  ")) (x(O0)O ( Sooo~ooY 8") 
where y:' and y:' are different variables and x(Oo)O is a variable. p is not 
strictly derivable because there is a partial valuation in which the formulas 

x ( ~ ~ ) ~ ( S , , , K , , ~ ~  00  ) ( i  = 1,2) 

have different values. But one can derive the formula p using the fact that 
both combinations 

S o 0 o K o o ~ P 0 Z 0  ( i  = 1,2) 

convert to the same term zo. 
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CONSTRUCTIVE REASONING 

W. W. TAIT 
University of Illinois, Chicago, USA 

TURING’S [ 1936-71 analysis of mechanical computation provides a precise 
model for the basic constructive concept of operating on finite configu- 
rations of atoms according to rules. I will formulate the model in terms of 
CURRY’S 119301 combinators. The terms are built up from the constants 
K, n, i and 0 by taking ( s t )  to be a term whenever s and t are terms. sls 2...s, 
will be an abbreviation for (. . . (slsz). . . s,). The rules of conversion are 

n s t s s ,  lcrst*rt(st), 
i r r j 0 ,  

1st => no. 

It is required in each instance of these rules that the terms r ,  s and t which 
are invoIved be normal, i.e., contain no parts which are convertible by means 
of the rules. A sequence so, ..., s, is called a reduction, and s, a reduct of 
so, if each si+l ( i<n)  is obtained by replacing some part r of si by t ,  where 
r =+ t. s j t  will mean that t is a reduct of s. If s reduces to a normal term (nt), 
we say that it is defined. It is easy to show that s reduces to at most one nt. 
Two defined terms are definitionally equal (cf. GODEL [1958])  if they reduce 
to the same nt. I.e., s and t are definitionally equal, written s ~ t ,  if u t d O .  
This relation is decidable, of course, only for defined terms (which do not 
form a decidable class).l A nt s has a natural interpretation as a partial 
operator on the class of nt: the value of s for the argument t is the nt to 
which st reduces, when it is defined. As has been customary in discussions 
of constructive mathematics, I will use the word function in the intensional 
sense of referring to the nt which defines the operation, so that identity of 

and when s and t are distinct, 

1 I am using the term decidable in the usual idealized sense, which ignores both our 
limited capacity to comprehend sufficiently long terms and the positive probability that 
we will misread symbols. 
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two functions means definitional equality, not extensional equality. For 
example, if we identify the natural numbers with the nt 

0 ,  1 = n o ,  2=7Cl, ...) 

then a numerical function of n variables is a nt s such that sk, . . . k, reduces 
to a number for all numbers k,, ..., k,. It is well-known how to represent 
recursive functions by nt. The essential point is that explicit definitions can 
be represented: If t (x , ,  ..., x,J is a term built up from the constants and the 
variables xl, ..., x,, then there is a term Ax, ... x,t(x,, ..., x,) built up from 
the constants in t (x , ,  ..., x,), 7~ and ic, such that for all nt sl, ..., s,, if 
t (sl, . . . , s,) is defined, 

(AX, ... X,'t(X,, ..., X")) s1 ... s ,  = t ( s , ,  ..., s,,). 

Now, given a term t ( x )  in the variable x ,  let r=Lx . t (xx )  Ix . t (xx) .  Then if 
t ( r )  is defined, 

r = t ( r ) .  

This is the so-calledfixed point, or first recursion theorem. 
If u is a nt, let b" range over the nt t such that ut?O - which we express 

by Ut. Finitism (HILBERT, e.g. [1925]) can be represented in terms of our 
model as being concerned with proving free variable propositions 
A(bU,', ..., 6:) of the form s(by', ..., b,"")=O, where s(b,, ..., b,) is a term 
built up from the constants and the variables b,, ..., b,. The "finite" element 
of finitism consists in this: Although the concept of an arbitrary element of 
Ui - or more precisely, an arbitrary reduction of a term uit to 0 - is admitted, 
the concept of all elements of a Ui is not. A finitist proof of A(b;', ..., 6:) 
is a description of how to transform arbitrary reductions uit,?O(i= 1, ..., n) 
into a reduction of s(t,, . .., t,,) to 0.2 For example, the principle of substitution 

A(b")  U s  

This is not a precise definition of what is to be meant by a finitist proof, of course. But 
this imprecision does not affect the validity of the principles of inference which are actually 
introduced below. I do not intend here to give a mathematical theory of constructive 
proofs. KREISEL [I9651 attempts to give such a theory of proofs, which is based on the 
assumption that it should be decidable whether or not an (intensional) object is a proof 
of a free variable formula (of a certain kind - in general, containing variables over proofs, 
themselves). But this is a highly idealized notion of proof; and for this reason, it is not 
clear what relevance this theory would have to the question of what methods of proof 
may be accepted as constructive. In any case, by introducing as mathematical objects 
such intensional objects as proofs, it goes beyond the conception of constructive mathe- 
matics which I want to discuss here, as being concerned with mechanical computations. 
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(where s may contain variables) is immediately justified on this conception. 
The way in which the structure of a reduction of ut to 0 can be used in 
constructing a reduction of s ( t )  to 0 is illustrated in the case of numbers. 
By the fixed point theorem, there is a nt v such that vOs0, v ( n s ) ~ v s  when the 
right hand term is defined, and vs is undefined when s is a nt which is not 
of the form 0 or nt. Ns means v s = O  (s is a number), and variables without 
superscripts will range over N .  The concept of an arbitrary element of N is 
simply the concept of an arbitrary finite sequence 0, 1, ..., k. Suppose that 
UO and U(nb")  are proved. Then by substitution, U1, so U2,  so U 3 ,  and 
so on up to any given number. I.e., given an arbitrary number c, Uc: The 
reduction of uc to 0 is obtained by replacing each step from t to nt in the 
sequence 0, 1, ..., c by the construction of a reduction of u ( n t )  to 0 from 
the reduction of ut to 0. This justifies the principle of mathematical induction 

UO U(nbU) 
uc 

. -  

Again, suppose that Us and U(tab") are proved. Then by substitution, 
U(tOs), U ( t  1 ( tos)) ,  and so on up to any arbitrary given number c. Thus, 
if we introduce the nt p in the usual way with pst0-s and pst(nr)-tr(pstr) 
(when the right hand terms are defined), the principle of primitive recursion 

is valid. In this way, we see that all the theorems of primitive recursive 
arithmetic (when suitably coded) are finitistically valid. In particular, the 
principle of definition by recursion up to wk (i.e., simple k-fold recursion) is 
valid for each k, since this can always be obtained by a sequence of primitive 
recursions. What about recursion up to om, i.e., two-fold nested recursion?3 
A simple example is ACKERMANN'S [1928] function 5 with 

50ba - a  + b ,  

5 (nc) Oa = qca , 
5 (nc) (nb) a - 5c (5  (nc) ba)  a ,  

3 See TAIT [1961] for the reduction of recursion up to ww to two-fold nested recur- 
sion. 
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where qca-0, 1 or a depending on whether CEO, 1 or c> 1. ( is defined 
by a two-fold nested recursion from primitive recursive functions. Set 
&,bar(nba. Then for each particular n, 5, is finitistically defined, i.e., 
N (5,ba) is valid; since to is primitive recursive, and <k+l = atR, where @ is 
a primitive recursive operation. The argument that ( is a numerical function, 
i.e., N(tcba) ,  then proceeds by iteration on the sequence 0, 1, ..., c of the 
inference: Iffis a numerical function, then so is @J But this is not a finitist 
proof, since the concept of a numerical function is not a finitist concept: 
N ( f a )  does not have the form s(f)rO, but is a universal proposition. 
Of course, this does not prove that 5 is not a finitist function, only that the 
above argument is not finitistic. But, if iteration of the substitution principle 
is the only method available for defining finitist functions - and I do not 
see what else there can be - then it is easy to  prove that each finitist function 
is primitive recursive. 

It should be noted that the present analysis differs in its conception from 
KREISEL’S [1965]. Kreisel regards the essential feature of a finitist proof to 
be its “visualizability”, and that Hilbert was simply mistaken in thinking 
that this involves a restriction to finite structures (since we want to prove 
general propositions, e.g., a+b=b+a). In terms of his analysis of the con- 
cept of visualizability, he shows that recursion up to any ordinal < E ~  can 
be justified. It is difficult perhaps to determine what Hilbert really had in 
mind, but the above discussion shows that non-trivial mathematics is 
possible under the restriction to finite structures (providing that we admit 
the concept of an arbitrary such structure). In particular, the kind of reason- 
ing involved in proving a+b=b+a, for example, need not go beyond this 
conception. 

The argument cited above that Ackermann’s function 5 is well-defined 
requires that species V of nt be introduced whose dehing  conditions are 
not of the form vt = 0, but are universal generalizations of such conditions. 
More generally, given species U and V ,  W= V u  consists of the V-valued 
functions defined on U ,  i.e., the nt s such that V(sb”). A proof of A(bw) is 
a description of how a proof of A ( t )  can be constructed from an arbitrary 
proof of Wt.4 This is a generalization of the finitist concept of a universal 
proposition. But, in the finitist case, the proofs of A ( t )  and Wt would be 
decidable syntactical objects (reductions) ; whereas in the present case (for 

4 Cf. footnote 2. Again, the imprecision of this notion does not affect the validity of the 
kinds of inference which are actually introduced below. I do not see that the question 
of whether a kind of inference is constructively valid always has an answer. But, sometimes 
we can answer it. 



CONSTRUCTIVE REASONING 189 

Wt, at least), they will involve logic themselves. The principles of substi- 
tution, mathematical induction and primitive recursion remain valid ; and 
besides, we have 

V(sb") A(a") 
W s  A(bwc")' 

Let N o = N ,  and having defined Nu and N,, let N(,,,)=N,Nw.5 Then in terms 
of our model of computability, Nu represents GODEL'S [1958] reckonable 
functions of finite type cr. Moreover, all of the axioms and rules of inference 
of Godel's theory F of functions of finite type follow immediately from the 
principles we have introduced. The propositional connectives in Godel's 
system should be interpreted as truth functions, which are coded by nt; and 
his notion of definitional equality should be interpreted as s E t ,  as we already 
noted. Thus, his axioms b'=cuv b'=cu are immediate from the fact that 
the elements of N, are nt. 

We have already seen that one function defined by recursion up to ww, 
namely Ackermann's t, can be obtained by primitive recursion once variables 
are introduced over numerical functions (i.e., of types (0, (0, ..., (0,)) ...)). 
GODEL'S [1958] consistency proof for arithmetic shows much more: F is 
closed under recursion up to any ordinal <eo;  i.e., definition of a function 
of any finite type by recursion up to an ordinal <e0  can be reduced to 
primitive recursion (generally involving functions of higher type). Namely, 
every such function is the unique solution @ of a formula A xUR(xu, @xu), 
where R is primitive recursive and AxUVyYR(xu,yy) is a theorem of the 
system F,, of arithmetic with quantification over finite types and the axioms 
of 9- added (where the schema of mathematical induction is extended to 
include all formulas of the system). This follows because induction up to 
any ordinal <e0  is provable in the system (cf. GENTZEN [1943]). But, as 
KREISEL [1959] noted, Godel's consistency proof extends to this system; 
and so there is a II/ in 9- with R(b", $bU) a theorem of F. An analysis of 
Godel's proof yields the following direct method for reducing recursion up 
to ordinals < E ~  to primitive recursion: 

Let < be a primitive recursive ordering of type a with least element 0; 
and let 

a-<ao, * * - ,  q a , - l )  
be some standard primitive recursive one-to-one correspondence between 

This definition of N ,  allows a nt to have many types. E.g., k . x  is in each No. Wecouid 
take the elements of No to be the pairs <o, s) instead of simply the nt s. 
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numbers and finite sequences of numbers with 

a, > a ,  >...> a l a l - l .  

We assume that lal=0 just in case a=O. a c b  will mean that either laJ<Jbl 
and ai=bi for all i<]al,  or else there is a k less than la1 and 161 with a,<b, 
and a i=b i  for all i<k .  c is a primitive recursive ordering of type 2" with 
least element 0: If ai represents cl i  in the ordering <, then a represents 
2"0+2"1+~~~+2""(n=JaJ- l )  in the ordering c. Let the function 4 be 
defined by the (course-of-values) recursion 

Cpb = Fb($b) 

up to 2", where Cp is of type (0, o), F is of type (0, ((0, o), 0)) and $ is the 
course-of-values function for $, i.e., $b-Ax,,$x. (For x z b ,  we will assume 
that this takes some standard value 0, of type o. E.g., 0, = 0, O(a,y) = Ix. O,.) 
(7; is defined by 

$b = Ax,,Fx (6;x), 

and Cp is explicitly defined from 6;; so it suffices to  consider the special case 

4 b  = Ax,,Fx(4x) 

of recursions up to 2", where I$ is of type (0, (0, n)). We will show that Cp 
can be defined using only recursion up to a and primitive recursion. For 
ns la l ,  let ."=(a,, ..., Then if n<lbl, 

We will define a function $ with $uubs+b" if uslbl  and u-b,-l V u=O. 
Then we can set 46=$161blb~-lb, or if 6-0, + b ~ 0 ( , , ~ ) .  Now, 

$uub G Ax,,uFx(Cpx) 

if uslbl  and ~ > O + u = b , ,  and it is O(,,,) otherwise. Thus, $Oub~O,,,,,, 
since bo =O. $u+ lob is defined primitive recursively from F and the Cpx with 
x c b U + l .  If x E b U ,  then Cpx=$ub,-,bx(or 0, if u-0). If xU=6" and x, ib , ,  

then Cpx=(($u+ l)o)x,x, where (t,h+ 1) v=Az,,$u+ lz. 
Thus, we can write 

$u + l u  = Gu + lu($u) (($u + 1) u ) ,  
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where G is primitive recursive in F. Define 
- - 

x fuu  = GWf ((xfu) u) > 

where f is of type (0, (0, (0, 0))). This is a recursive up to u, i.e., on <. Then 
we can define t+b by the primitive recursion 

*ou = A x . A y . O g ,  
$24 + l u  = x(*u) u + l u .  

This shows that recursion up to the ordinals 2"'+', 220f1 , etc. can be reduced 
to primitive recursion and recursion up to  w + 1. If we represent w + 1 by 
-the ordering 1, 2, 3, . . ., 0, then recursion up to  w + 1 has the form 

@b + 1 =Ax, ,Fx + l ( 4 x  + l),  
40 = AxFx + l ( 4 x  + 1). 

Let Xb = Ax< b 4 x  + 1. Then x is defined by the primitive recursion 

I xo =or ,  
xb  4- 1 Ax,bAY<,FY 1 (XbY) 3 

where z is the appropriate type. Then 

~ O ~ A x F x + 1 ( ~ x + l x ) ,  
4 b  + 1 = x b  + l b .  

An arithmetical interpretation of the theory 9- is obtained by arithmetizing 
the theory of combinators: Nox is a decidable predicate, and 

Each theorem of To transforms into a theorem of intuitionistic arithmetic 
qd0. This is essentially proved in TAIT [1967], except that the N,, are restricted 
in that paper to  (Godel numbers of) terms which form a minimal model 
for F. The present interpretation, which is the intended one under Church's 
thesis, is simply a reformulation of KREISEL'S [I9591 interpretation in terms 
of effective operations. But, by formulating mechanical computability in 
terms of combinators instead of the equational calculus, we are able to 

The above reduction of recursion up to 2a to recursion up to a was obtained by applying 
Godel's interpretation to the reduction given in TAIT [1961], Fn. 3, of proof by in- 
duction up to 2" to proof by induction up to a. 



192 W.W.TAIT 

interpret Godel’s concept of definitional equality, and so, the full theory F, 
instead of simply the part of 9- consisting only of numerical equations. 
(This is mentioned as a problem for the interpretation by effective operations 
in TAIT 119671, p. 200.) In any case, it easily follows from any of these inter- 
pretations that, if Y is closed under recursive definition of numerical 
functions up to E - i.e., if @o is closed under proof by induction up to tx, 
then Thus, to go beyond arithmetic simply by iterating the logical 
concept of a function, we have to go to transfinite types. It would be inter- 
esting to have a neat formulation of the extension of 9- to transfinite types; 
but the principal result of TAIT [1965a] shows that To,  the bound on predi- 
cative ordinals (as analyzed in FEFERMAN [1964] and this volume), is a bound 
on the E up to  which recursion can be obtained, providing that we do not 
introduce transfinite types of ordinal 2 To. 

The constructive theory of ordinals (cf. BROUWER [1913]) introduces a 
kind of reasoning which goes beyond predicative mathematics. Let U and V 
be species of nt, and let ps t  = ( s ,  t )  denote some standard pairing operation. 
The species T =  [U, V ]  of well-founded trees over V terminating in U is 
“inductively defined” by the conditions 

and 

In referring to this definition as inductive, I mean this: In a proof of Ts, 
nothing about T should be used other than that it satisfies the above con- 
ditions. Thus, if any species Z satisfies these conditions, a proof of Ts 
immediately yields a proof of 2s; and so, we have the principle 

of induction over T. Here, the species Z may be constructed from T, itself; 
and that is why the introduction of inductive definitions goes beyond pre- 
dicative mathematics. 

BROUWER (cf. [1913]) seems to have held that the constructive use of 
inductive definitions is restricted to the countable trees, e.g., To = [ N ,  N ]  ; 
but I have been unable to arrive at  any conception of inductive definitions 
which distinguishes the countable case from the more general one, T= [U,  V] 
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- 
for arbitrary species U and V.  Let 0 = (0,O) and n + 1 = (1, Z), and then set 
a=( 1, ix.2) (where the operation 9 is extended in an obvious way). Then 
Too follows from a proof of To6. But this should not be regarded extension- 
ally as consisting of all the proofs of TOO, TOT, ... . Rather, it is a proof that 
6 is in To for an arbitrary number b - based on what is involved in proving 
that a nt is in N .  But this is precisely what is involved in proving T(1, s) 
from T (sb”) in the general case. There is no question of having to visualize 
all the cases T ( s t )  for all t in V.7 

Let 6 be a nt with 

6 s t ( 0 ,  r )  =sr ,  6 s t ( l ,  r )  = t (1 ,  r ) ( ix .hs t ( rx) ) ,  

when r, s and t are nt and the right hand sides are defined. Then, we also 
have the principle 

Z(sb”) Z(ta‘c) 
(c  over 2”) z (6sta‘) 

of recursion over T. In the special case that tab = t,b, this principle follows 
by induction over T applied to the species 2, with ZorctZ(8str). On the 
other hand, the general case reduces to this special case. Let (s, t),=s and 
(s, t ) ,=t .  Set qbr=(r, Sstr). Then, $(O, b”)=((O, b”),sb”)=s’b”, and 
@(I,  C > Z ( ( l ,  c) ,  t(1,  c> (nx .6s t (CX))>--<<l ,  ~x.(4(cx)),>, t(1, A x . ( 4  
(CX>)o> (.3.x.(qb(Cx))1)>~tt‘(.3.x.qb(cx)). 

Brouwer’s ordinals are represented by trees in [(O), N ] .  (0 ,O) is the least 
ordinal; (1, n r )  is the successor of r ; and if s is not of the form nr, (1, s) 
is the ordinal sum sO+sl+ . BROUWR (e.g., [1927]) applied thetheoryof 
ordinals to his non-atomistic theory of nondiscrete spaces such as Baire 
space and the continuum. But, it is just as convenient to work directly with 
trees, rather than with their ordering as ordinals. In fact, it is simpler to use 
the trees in [ N ,  N ] ,  which I will call the countable trees.* Let ;.=Ax. t (nx). 
Thereisantqsuchthat,writings’tforqst, (O,s)’t=sand (1, s)’t =(s(tO))’? 
(when s and t are nt and the right hand sides are defined). Let p range over 

BROUWER (cf. [1927]) does want to regard proofs as infinite structures. But, if the proof 
of TOW is so regarded, we see that it has the same structure as 0 ;  and so it would be 
circular to infer the well-foundedness of w (i.e., TOW) from the well-foundedness of this 
proof. 

Let < denote the partial ordering of [U,  V ]  generated by sbu< s. The trees s in [N,  N ]  
are countable in the sense that the t <  s can be enumerated. Of course, the species of all 
nt is countable; and so, classically, every [U, V ]  is countable. But, I am using this term 
in its constructive sense. 
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the countable trees and f over the functions of type 1=(0,0). Then by 
induction on p ,  

i.e., the countable trees operate as functions 0ftype2=(1,0).~On BROUWER’S 
119271 analysis, a numerical valued function which is defined for all “ele- 
ments” of Baire space, i.e., all free choice sequences of numbers, is simply 
a function of type 2 of the form If .p’f .  Thus, if CI ranges over free choice 
sequences of numbers, then 

A a V b R ( W ) + +  V P A f R ( f ( P ’ f ) ) >  

where C(b) denotes the sequence (a0, ..., a(b-  1)). If s is such a finite 
sequence, sAb is the result of adding b to the end of it. On Brouwer’s analysis, 
the principle 

A a V b R (8 (b)) 
R ( s )  v i R ( s )  

A b Q ( s h b ) +  Q(s) 

of Bar Induction (cf. Kleene-Vesley), where s ranges over finite sequences of 
numbers and () is the empty sequence, is an almost immediate consequence 
of induction on the p such that A f R ( f ( p ’ f ) ) .  Kreisel and Troelstra (cf. 
Troelstra’s paper in this symposium) have shown, further, that every formula 
of intuitionistic analysis (involving quantification over N ,  N,, [ N ,  N ]  and 
Baire space) - and not just those of the form ACI V b  R(E(b)) - is equivalent 
intuitionistically to one which contains no quantifiers over Baire space.lo 

It is not the case, of course, that every function of type 2 is of the form 
Af .p’$ In classical terms, there are partial recursive functions of type 2 
which are defined for all recursive numerical functions, but cannot be 
recursively extended to all I I y  numerical functions. Constructively, we can 
put it this way: Let < denote the partial ordering of the unsecured sequences 

The same functions of type 2 are obtained from trees in [ {0}, N ]  if the definition of 

<1, s)’ t is changed: (1, nr>’ t fn( r ’  t ) ;  andif s is not of the form zr,  (1’ s), r = (s ( tO) ) ’ z  
But, by using [ N ,  N ] ,  the extra case is avoided. 
1” Kreisel and Troelstra do not use quantification over [ N ,  N ] .  Instead, they inductively 
define the species of “representing functions” of type 1 of the functions of the form 
nf.  l’f .  



CONSTRUCTIVE REASONING 195 

of a function Cp of type 2. Then simple recursive definitions of numerical 
functions, of the form 

\ Fab if tJab X b 
(Gab($a(Bab)) if Bob i b ,  

$ab = 

are valid. For, this only requires that there be no infinite sequences 
bZtJub>tJa(Oab)> ... >Pub> ..., which follows from the fact that 
Cp(2x.(Bxnb),) is defined, where (b)x denotes the xth element in the sequence 
coded by b. But, we cannot infer the validity of the general (course-of-values) 
form of recursion 

$b 3 Fb (Ax+$x) 

when 4 is not of the form Af.p’f .  For, if c is defined as above from <, we 
have seen how recursion on c can be reduced to course-of-values recursion 
on <. But, even though < may have no (computable) infinite descending 
sequences, c may have (cf. PARIKH [1966]). Nevertheless, if we have proved 
N(Cp f ) using only the kind of principles (including transfinite recursions) 
which we have so far discussed, which make no use of the fact that f is 
restricted to computable functions, then it is reasonable to suppose that q’~ 
is of the form Af.p’j: In particular, we should expect the system Fl, ob- 
tained by adding bar recursion of type 0 (cf. SPECTOR [1962]) to Godel’s 
theory 9, to be valid when we interpret functions of type 2 as countable 
trees Af.p’f  (since Spector’s extensional form of bar recursion on Af .p’ f  
can be reduced to recursion on p ) .  That this is so follows from TAIT [1967], 
which interprets Yl in intuitionistic analysis, and Troelstra’s paper: A 
function constant of type 2 in Yl is interpreted as a term I for which 
AaVb(ta=b) is a theorem of intuitionistic analysis, and so, t f ~ p ’ f  for 
some tree p .  

Brouwer’s argument for identifying the numerical valued functions on 
Baire space with the functions Af.p’f is based on a consideration of what 
it would mean to prove that a function is defined for all free choice sequences. 
A general theory of such proofs (as mental objects) would be required to  
make his argument rigorous. Yet, as it stands, it seems to me to have much 
the same kind (whether or not degree) of status as Turing’s analysis of 
computability : It presents plausible considerations for accepting a particular 
definition of what we should mean by a numerical valued function on Baire 
space. 

In terms of the functions ,lf.p’f, it is possible to give a very simple 
treatment of the Hilbert-Ackermann substitution method. By TAIT [ 1965b], 
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the crux of this method is this: Let 4 be of type (0, 1 )  with 

(*I 4 a b  s O.u.4(na) b = + a b ,  

and let F, of type ( 1 ,  ( 1 ,  0)), be defined by (explicit definitions and) simple 
recursion up to some ordinal < M .  Then there is a G of type 2, defined by 
simple recursion up to some p<2* such that, for k=GJ 

Ff (4k) = Ff ( 4 k  + 1). 

Suppose that F is I f g  .p’(f, g ) ,  where (f, g )  = Ax. ( f x ,  g x ) .  We define $ p  
by recursion onp  so that, when 4 satisfies (*), Gf = $pnf4 satisfies the above 
equation and Gf 2 n. 

$<O, m > b f 4  = b 

k = * (  s ( f  0,400) b j l lx .  &, if 4 k  + 10 5 400 

$ ( s  (f 0,4k + 10) max ( k  -t- 1, b)  ?Ax. &, otherwise. 
ICI ( 1 ,  s) bf 4 = 

By induction on p, $ p b f 4 2 b  always holds. If F =  Afg .(O, m ) ’ ( g . f ) ,  then 
it is immediate that Gf = $(O, m )  n f 4  satisfies the equation. Let F = Afg . 
(1, s)’(J g > ,  and set F,=Ifg .(sm)’<f, g). If 4 satisfies (*), then so does 

I x . 4 ~ ;  and so, if km=$(srn)n~1x .4x ,  
--b 4 

-4 + -+ 
F m f ~ k m = F m f ~ k , + l .  

Choose m = ( f  0,400). If +k,+10=400, then k , = $ ( l ,  s )  n f 4 ;  and 
4kmO=$O0 by (*), so that m=(fO, $k,O)=(fO, +k,+lO).  Hence, 

F f ( ~ k , ) = F m f ~ k , s F m f ~ k m + l ~ F f ( ~ k , + l ) .  If 4 k m + 1 0 f 4 0 0 ,  then for 
all b<k,+ 1, c$bO=$k,+ 1 .  Let m’=(f 0, 4km+10).  Then $ ( l ,  s )  nf+=$ 

(sm’) max(k, + 1 ,  n) f Ax. $x, which we set = k .  Fmt f 4 k = Frn,?4 k g ,  and, 

since k T k , + l ,  m’=(fO, 4kO)=(fO, 4 k + 1 0 ) .  So, Ff (4k )=Fm, f4km= 

+4 -t -__* 

- 
+ -+ -t -+ 

-4 

-+- 

F,tf+k+ 1 = Ff (4k+ 1). 
The rest of the treatment of the substitution method would consist in 
showing that if p is of rank <a, then G = 1 f. q’f for some q of rank < 2“. But 
I will not do this here.11 

11 This discussion applies to the substitution method for systems with mathematical 
induction. For systems with induction up to b, the condition (*) on 9 is replaced by 
+ab = 0. u .  +(mz)b < +ab, where < is the given ordering of type 8. The definition of 
must be modified in the last case; and, instead of the bound 2a on the rank of q such that 
Af.q’A we get the bound (8+ 1)a. See footnote 12. 
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Now, let p range over [U, V ]  for arbitrary species U and V, and let f range 
over V N .  Then by recursion onp ,  

so that the trees in [U,  V ]  operate as U-valued functions on V N .  Again, if 
we try to see what should be meant by a U-valued function defined for all 
free choice sequences of elements of V (where the nth choice is made only 
after it has been shown to be in V ) ,  it seems to me that we are led to the 
functions Af.p’f. Thus, if u ranges over such sequences, A u V b  R(E(b)) 
should again be interpreted by V p A  f R ( f ( p ’ f ) ) ;  and so, bar induction 
with respect to formulae Acr V b  R(E(b)) follows by induction over [U,  V ] .  

In 1962, Godel suggested that one might obtain a consistency proof for 
classical analysis by introducing such inductively defined species into 
intuitionistic mathematics. In view of SPECTOR’S [1962] interpretation of 
classical analysis in Z4 (i.e., Godel’s theory 9- with bar recursion of each 
finite type added), this seems very plausible. For, if the functions of type 
((0, a), 0) are all of the form Af.p’f, then bar recursion of type c is an 
immediate consequence of recursion on p .  But, one must show that the 
definitional axioms of C4 do not lead to functions of type ((0, a), 0) which 
are not of the form Af.p’J: 

I t  is clear that this cannot be shown using only the constructive principles 
which have been discussed here. For, arithmetizing the theory of combi- 
nations, Uv is arithmetic in U and V and [I U, V ]  is II; in U and V,  and all 
the principles which have been mentioned are formalized in II: analysis 
(i.e,. with the comprehension axiom restricted to Il: formulae). To see this, 
one need only note that induction over Uv is used only for species which are 
(classically) II: in II: in ... in I7: formulae. So, to carry out Godel’s sug- 
gestion, stronger kinds of inductive definitions must be found - or more 
generally, stronger constructive principles. 

However, the present methods do suffice to interpret Z4 in this way if 
bar recursion is restricted to types Om, where Oo = 0 and 6,+ = ((6, Om), 8). 
An examination of Spector’s interpretation of classical analysis in C4 shows 
that bar recursion of types O o = O  and 61 = 2  suffice for II: analysis. I will 
save the details of this foundation for bar recursion of types 8, for another 
occasion. At the present time, I have no idea how to extend this foundation 
to bar recursion of finite types other than the Om, so as to obtain a foundation 
for other instances of the comprehension axiom. But, using proof theory 
for infinitary formulae, it is possible to prove the consistency of the A :  
comprehension rule (i.e., if the formula has been proved to be A : ,  we take 
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as an axiom that its extension is a set). Here, we need the species T, of trees 
built up by: To = [ N ,  N ] .  If z has been obtained already in some T,, then 
T, = [ N ,  IJ, T,,], where u ranges over the appropriate species. T, already 
suffices for the II: comprehension axiom. Again, I will present the details 
another time. Actually, for the consistency of specific formal systems, the 
species T, are not needed, but only their relativizations to specific decidable 
sets M of functions (i.e., (1, t ) E T ,  only if t ~ A 4 ) .  These relativized T, 
consist of countable trees, and are themselves countable. I have not deter- 
mined the rank12, say, of the relativized T,, since, because I have been 
working with infinitary systems rather than the formal system of II: analy- 
sis, I have not determined the class M of functions needed. It is reasonable to 
suppose that the rank of the relativized T, is the upper bound in the ordinal 
diagrams of order o+ 1, since these are the ordinals TAKEUTI [1967]usedto 
prove the consistency of II: analysis. 
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THE THEORY OF CHOICE SEQUENCES 

A. S. TROELSTRAI 
University of Amsterdam, Amsterdam, Netherlands 

This paper consists of two parts. In the first part we describe a formal 
system for intuitionistic analysis, in the second part of the paper we discuss 
the intuitive justification of this system. 

The system to be discussed shall be called CS (CS from Choice Sequence). 
CS contains numerical variables, two kinds of variables for constructive 
functions and variables for choice sequences. The subsystem of CS obtained 
by restricting the language, axioms and rules of CS to expressions not in- 
volving variables for choice sequences, shall be called IDK. (IDK, because 
the main feature of the subsystem is an Inductive Definition of a class of 
constructive functions called K.) 

The main result concerning the relation between CS and IDK can be 
stated as follows. With every formula A of CS not containing free variables 
for choice sequences a translation d which is a formula of IDK can be 
associated, such that kcs A*&. In fact, a much stronger result can be ob- 
tained, since we can prove finitistically t,, A iff lIDK d. 

This paper does not contain a proof of this result; full details of the formal 
work concerning CS will appear in KREISEL and TROELSTRA. 

The formal work on the system CS was started some years ago by KREISEL 
[1963] (which was privately circulated only) and was recently improved and 
rounded off to a certain extent by a joint effort of Kreisel and the author. 

1. Some notations and conventions 

1 . l .  In this section we describe some notations and conventions for use 
in informal discussions. As logical symbols we use A ,  V, 1, &, v ,  -+, 

~~ 

1 Research for, and preparation of this paper was made possible by a fellowship from the 
Netherlands Organization for the advancement of Pure Research (Z.W.O.). 
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-. In this sequence each symbol binds stronger than all symbols to the 
right of it; we can omit parentheses accordingly. In general, we shall omit 
parentheses whenever it is possible to  do  so without confusion. 

In writing terms we adopt association to  the left: c@x=cr(P(x)). 

1.2. N indicates the set of natural numbers. Natural numbers are denoted 
by Ietters x ,  y ,  z, u, v ,  w, n, m. We shall suppose that we have an enumeration 
of all finite sequences of natural numbers, such that 0 corresponds to the 
empty sequence. The sequence number of a sequence xo, xl, x2,. . ., xu under 
this enumeration without repetition is written as (xo, ..., x u ) .  

We write as a shorthand ( x )  = 2  for the one-element sequence with only 
element x .  

n, rn are reserved to denote (on the intended interpretation of the for- 
mulae considered) sequence numbers. Concatenation of sequences corre- 
sponds to  the operation * on sequence numbers. 

} with two inverses indicated 
by superscripts i.e. (x, y}’ =x, { x ,  y l 2  = y .  

Furthermore we have a pairing function { 

Successor and predecessor are written as x+ or x+ 1, x- or x’ 1. 

1.3. S always denotes a species containing at  least two different objects. 
A process which assigns to every natural number X E N  an element of S, 

is called a sequence orfunction (from N into S ) .  2, x‘, x” will be used to de- 
note sequences in general. Equality between sequences will always be inter- 
preted extensionally, i.e. 

x = x’f+ Ax(xx = x’x). 

The species of sequences from N into S is denoted by SN. 
The constructive functions (or sequences) of SN are those sequences which 

are completely fixed in advance by some law for generating the elements. 
a, b, c, dare  letters used for constructive functions of N N .  (Sub- or super- 

scripts can be added if necessary.) The notion of choice sequence will be 
explained later; c1, p, y ,  6 ,  E are used for choice sequences. 

We use the I-notation to  define functions, I‘ for abstraction of construc- 
tive functions, 1 for abstraction of choice sequences. 

If x is a function, 2 is the corresponding course-of-values function defined 
by 

X O = O ,  jx= ( ~ 0  ,..., x(x- I)) for x > O .  

1.4. A ,  B, C, D, P, Q denote arbitrary predicates of sequences and num- 
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bers. We shall in general suppose all predicates to  be extensional with respect 
to functions, i.e. 

AX &X = X' -+ AX' . 

K is a predicate constant for constructive functions of N N ;  e, f are reserved 
for elements of K ,  hence we are permitted to introduce A e, V e as abbrevi- 
ations of A eEK, V eEK. 

We define a special constructive function k'"' for every number n. Let 
n = (xo, .. ., xu) ; then, if m = ( w ,  yo, .  . ., y,), 

1 if w s u ,  
1 if u > u ,  u < w 5 u ,  

if w > v , u < w .  

2. Basic principles of IDK 

2.J. In order to illustrate the significance of the main result announced 
above, we shall discuss the intuitive justification of the basic principles of 
IDK first. 

In the first place IDK contains an axiom of choice: 

AxVaA(x ,  a)+ VbAx(x,A'y.  b { x ,  y ) )  (1) 

( A  not containing free choice variables). 

tion A x v a, this seems to be evident. 
On account of the intuitionistic interpretation of the quantifier combina- 

2.2. The most important feature of IDK is an inductive definition of a 
certain class K of constructive functions. We make a few general remarks 
about generalized inductive definitions (g.i.d.) first. 

Let A ( P ,  s) be an expression in a certain formal language. P is a predicate 
variable (i.e. a letter standing for an arbitrary predicate in the formal ex- 
pression). Then, under suitable conditions on A ,  one can assert the existence 
of a minimal class or a minimal predicate PA, which satisfies A(PA, s)-PAs 
for all s. This amounts to introducing a new predicate constant Pa in our 
language, together with the axiom 

A s, ++ (2) 

and the axiom scheme expressing minimality (for any predicate Q in the 
extended language) 

/IS [A  ( Q ,  S )  + Qs] --t As [PAS -+ Qs]  . (3) 
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Using classical set theory, we can prove the existence of PA under a very 
general condition on A,  namely monotonicity : 

A (PI s) & P G P‘ -+ A (P’, s). (4) 

In this case, (2) can be weakened to 

since I s .  A(PA, s ) s P A ,  and hence by (5) A ( I s .  A(PA, s), t)-+A(P,, t )  and 
therefore by (3) we can conclude to (2). 

Although the existence of PA in case A satisfies monotonicity can be justi- 
fied in the general theory of constructive proofs (compare e.g. section 2 of 
KREISEL [this volume]) it is worthwhile looking for special cases which can 
be justified by means of less abstract intuitive notions. In fact for IDK we 
need only one very special class introduced by g.i.d.. 

Let us think of a predicate or a class K of constructive functions P which 
satisfies two closure conditions: 

1 ”) P contains all non-zero constant functions: 

~ x ( a  = I‘n.x + 1) -+ P a ,  

2”) If aO= 0, and for every y I’n.a(j * n) belongs to P, then a belongs to P:  

a0 = 0 & A y P (2’n.a (9 * n))  --f Pa . 
If we write 

the closure conditions for P can be expressed by 

A,(P,  u )  -+ P a .  (6)  

The minimal class K satisfying (6) is such that Ka is proved using (6) only; 
in other words, the proof conditions for Ka are: Ka is proved using 1” and 2” 
only. 

It seems natural and evident that these proof conditions determine the 
minimal class satisfying (6); but we shall elaborate this a little more. 

The natural, “direct” proof of Ka can be visualized as a (in general infinite) 
well-founded tree with a topmost node corresponding to the conclusion Ka. 
Terminal nodes correspond to inferences on account of condition (1’). Pas- 
sing from a row of immediate descendants of a node v to v itself corresponds 
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to an inference on account of condition (2"). The elements of K occurring in 
such a proof of Ka are all of the form I'n.a(m*n). 

In this way a itself codifies the natural proof of Ka. 
On account of the minimality of K, we expect the following scheme to be 

valid 
Aa [&(Q, a) -, Q a l +  Aa [Ka  -+ Qal .  (7) 

Proof-theoretically, we can convince ourselves of the validity of (7) as fol- 
lows. Suppose A a[A,(Q,  a)-Qa] holds. This means that Q is closed under 
conditions lo, 2". 

Let Ka. With every inference of type 1 "  or 2" in the natural proof of Ka 
we can associate inferences of type 3" and 4" respectively: 

3") V x(b=I 'n .x+ l)-+Kb&Qb. 
4") bO=O& AyK(I 'n .b( j*n) )& AyQ(n'n.b(j*n))-tKb&Qb. 

In this way we obtain a proof of Ka&Qa by replacing in the natural proof 
of K every inference of type 1 " or 2" by the corresponding inference of type 
3", 4". This justifies (7). 

This line of argument closely parallels the intuitive argument which con- 
vinces us of the validity of induction for the natural numbers. 

The elements of K can serve to represent continuous functionals of types 
N N + N  and N N + N N ,  as follows. 
One proves easily 

A a E K / a V x ( a ( X x )  # O),  (8) 

A a E K A n A m ( a n  # O + a ( n * m )  = a n ) .  (9) 

Let a be a function of K .  Then a functional @a of type N N + N  is deter- 
mined by: 

@ax = y -  V x ( a ( X x )  = y + 1). (10) 

(8) proves that some y satisfying (10) always can be found, (9) proves unique- 
ness of this value. Clearly @a is continuous. By looking at  a function a as a 
sequence A'n. a(R * n), x = 0, 1,2, . . . we see that we also can codify a func- 
tional !Pa of type N N +  N N  by stipulating 

( Y , x ) x = y t ,  V z ( a ( 2 * ~ z ) = y + l ) .  

(Later on, we shall argue that every continuous functional of type N N + N  
or N N + N N  has a representative in K.)  

To indicate Gea=x we write e(a)=x,  to indicate Yea=P we write elcr=p. 
For k(")la we write shortly n(a. 
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3. The systems CS and IDK 

3.1. Conventions 

Our conventions in the description of CS are in principle independent 
of the conventions for informal use, but in most cases the conventions 
are closely parallel to the informal language. We have four2 sorts of 
variables : 

numerical variables: x, y ,  z ,  u, u, w, n, m (n-Var) 
variables for constructive functions: a, b, c, d (c-Var) 
variables for K-functions: e, f (K-Var) 
variables3 for choice functions: a, p, y ,  6, E (choice-Var). 
t ,  s are used to denote terms (Tm). Terms not involving choice variables 

are called constructive terms (c-Tm). There are three kinds of functors, con- 
structive functors (c-Fn), K-functors (K-Fn), and choice functors (Fn). #, #’ 
denote arbitrary functors. 

We have three abstraction operators : i for choice-functor abstraction, 2’ 
for abstraction of constructive functors, A‘‘ for abstraction of K-functors. 
The logical symbols are &, v , v A, + ; 1, ct are conceived as abbrevi- 
ations. For successor and predecessor we write +, -; other functions are 
written as in the informal case. Furthermore we adopt the usual bracketing 
conventions. 

3.2. Simultaneous dejinition of Tnz, c-Tm, Fn, c-Fn, K-Fn 

(1) If tETrn, and t does not contain choice variables, then tec-Tm. 
(2) OETm. 
(3) Numerical variables are terms. 
(4) If t ,  sETm, then t + ,  t - ,  ( t ,  s}, t ’ ,  t 2 ,  ( t ) ,  t*sETm (possibly some 

(5) Choice variables belong to Fn. 
(6) Constructive variables belong to c-Fn. 
(7) K-variables belong to K-Fn. 
(8) If t(x)Ec-Tm, then A’x. t(x)Ec-Fn. 
(9) If t(x)ETm, then Ax. t(x)EFn. 

functions are added). 

(10) If tEc-Tm, then k(’)EK-Fn, i”n.t+eK-Fn. 
(11) If tEc-Tm, #EK-Fn, then 1”n. #(t*n)EK-Fn. 

~~ 

a Separate variables for the elements of K are added solely for the purpose of obtaining 
a suitable definition of terms and functors. 
3 We have replaced “free choice sequence” by “choice sequence”, henceforth “free choice 
variable” must be interpreted as “free choice-variable’’ not as “free-choice variable”. 
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(12) If +EK-Fn, @’EFn, then 4(+’)ETm, 414’EFn. Likewise with Fn re- 

(13) If r$EFnuK-Fnuc-Fn, and teTm, then $ ( t ) ,  @(t)eTm. 
We write t l4  for P14. 

placed by c-Fn. 

3.3. DeJnition of the class of well formed formulae (Fm) 

(1) If t,sETm, then t=seFm. 
(2) If A ,  BEFm, then (A)&(B),  (A)-t(B),  ( A ) v ( B ) ,  

A x (A) ,  V x (A) ,  A a ( A ) ,  V a(A),  A e(A) ,  V e(A),  
A @(A) ,  V a(A)eFm. 

Formulae according to clause (1) are called atomic formulae. 

3.4. Logical axioms and rules, equality axioms 

Our system contains axioms and rules for four-sorted intuitionistic predi- 
cate logic; i P is conceived as P-+o+ =O. As equality axioms and rules of 
A-conversion we have 

El.  X = X ;  E2. x=y+y=x; E3. x = ~ & ~ = z - + x = z .  E4. x=y-r(X)=t(y).  
E5. (Ax.t(x)) ( l’)=t(t’);  likewise for A’, A“. 
4 = $’ is an abbreviation for A x ( ~ x =  4 ‘ ~ ) ;  
s f t  is an abbreviation for s=t-+O+=O. 

3.5. Axioms ,for function constants and constant terms 

DI. 1 O = X + ;  D2. x + = Y + + x = Y ;  D3. {x, Y}’=x, {x,  Y}’=Y, {x~,x’}=x. 
D4. Defining equations for the introduced primitive recursive functions : 
-, *,IdX), ( ) and possibly some others. (For ( t )  we also write 2 ) .  
D5. otO=O, Ex+ =clx*(ax). Likewise for a, e instead of a. 
D6. e ( a ) = x o  v y ( e ( @ ) = x + ) .  Likewise for a, f instead of a. 
D7. (el.) x=y++(A”n. e ( ( x )*n ) )  (a)=y. Likewise for a, f instead of M. 

3.6, Induction scheme 

For arbitrary formulae Bx: 

I. [BO& A x ( B x  -+ Bx+)] + A x  Bx 

3.1. Axioms, for constructive functions 

C1. Let A (x ,  u )  be a formula without free choice variables. Then 

A x V a A ( x ,  a )+ V b A x A ( x ,  I ’ y . b ( x ,  y } ) .  
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C2. Define Ka as an abbreviation of V e(a  = e)  and let 

Then C2.1. A,(K, a)-+Ka. 
A,(P, a)= Vx[/Z’n. x + = a ]  v[aO=O& ~xP( /Z’n .a (<x>*n) ) ] .  

C2.2. For arbitrary predicates for constructive functions in our 
notation : 

A a  [AK(Q, a)  + Qa] + A a  [Ka + Qa] * 

3.8, Axioms for choice sequences 

In these axioms A contains no other free choice variables besides those 

F1. A x V aB(x, a)+ V P A x B ( x ,  ~ Y . P  { x ,  Y ) ) .  
F2. Aa- V e [ V P ( a = e l D ) &  APA(e lP) ] .  
F3. Act V a  A(a,a)+ V e  V b  An(en#O+ AaA(nla,I’y .b{(en)- ,y})) .  
F4. A ct V B A (a, P)- V e A a A(a,  ela). 
F2 is the analogon of F3 in KREISEL [1963], F3 and F4 correspond to 

exhibited. 

F5, F6 in KREISEL [1963]. - 

3.9. CS and IDK 

3.1-3.8 describe CS, IDK is obtained by restricting all axioms and rules 
to those not containing choice variables. 

If we replace in a formula A a c-functor or a choice functor by any other 
functor, the formula remains well-formed. A K-functor however, cannot 
always be replaced by another functor since &a etc. only make sense if 
4 E K-Fn. 

3.10. Consequences of the axioms 

can be proved straightforwardly and without difficulty. 
The following theorem enumerates some consequences of the axioms which 

THEOREM 1. A‘, A do not contain other choice variables besides those 
shown. 
(1) In CS we can replace F2 by the axiom 

(2) r \ e ~ a [ e = a ] ,  ~ a V a [ a = a ]  
A e [  A a A(ela)-t A a  A’(ela)]++ A a[Aa+A’a]. 

A a V x A(a ,  x)-  V e An(en#O+ A ct A(nla, (en)->) 
A E  V U A ( E , X ) -  ~e ~b ~ n ( e n # O -  r \ a ~ ( n I a , ~ ’ y . b ( < ( e n ) - ) * y ) ) )  
A a  V fA(a,f)++ V e V f A n ( e n # O +  A a A ( n l a , ~ ’ ~ . f ( ( ( e n ) - ) * y ) ) )  
A ct V P A(a, P)- V e A a A(a ,  e b ) .  
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(3) A a A x B ( M ,  x)- A x A a B(a, x) 
A a A a B(a, a)- A a A a B(a, a) 
A a A e B(a, e)- A e A a B(a, e) .  

(4) V a Aa- ? a  Aa. 
( 5 )  If Aa is an atomic formula, then A a Aa- A a Aa. 
(6 )  A a  A P A(a, P)- A e A f A a A(ela , fb) -  

209 

3.11. Definitions 

Quantifiers v a, A a are called choice quantiJ5er.s. An outermost choice 
quantifier is a choice quantifier which does not occur within the scope of 
another choice quantifier. The number of logical symbols occurring within 
the scope of an outermost choice quantifier is called the degree of the formula 
considered. 

3.12. Description of the translation 

To begin with, A v B is everywhere replaced by 

V x { ( X = O + A ) & ( x # O + B ) } .  

Now let F= F1 be a formula of CS without free choice variables, and without 
v . The translation is carried out in a number of successive steps. The formula 
F”, obtained at stage rz from the initial formula F’ is transformed into F”“ 
at stage n + 1, by replacing a subformula X of F“ with an outermost choice 
quantifier in front by a formula X ’ ,  according to one of the clauses (a)-(j) 
below. 
(a) When X =  A a Aa, A atomic, take X ‘ =  A a Aa. 
(b) When X= A a  A X  A(a, x), A a  A a A ( a ,  a) or A a  A e  A(a, e) 

(c) When X= A a A P A(a,  p) ,  take X ’ =  A e A f A a A(+, f la). 
(d) When X =  A a V x A(a, x), take X ’ =  V e A n(en#O+ 

(e) When X =  A a V a A(a, a), take X’= V e V b A n(enZO+ 

(f) When X= Acl V f A ( a ,  f), take X’= V e  V f An(en#O+ 

(g) When X =  A a V fl A(a, p), take X ’ =  V e Acc A ( @ ,  ela). 
(h) When X= A a(Aa &Ba), take X ’ =  A a Aa & A a Bu. 
(i) When X= A a(Aa+Ba), take X ’ =  A e [  A a A(+)+ A a B(eJa)]. 
(j) When X= V a Aa, take X’= V a Aa. 

take X ’ =  Ax A a A(a,  x) ,  A a A CI A(a,a),  A e A a A(&,  e )  respectively. 

A a A(nb,(en)-)). 

A a A(nla, n ’ ~ . b ( ( ( e n ) - >  *Y))). 

A a  A(nla, n”~.f(<(en>->*v))>. 

Remarks. In the application of the foregoing clauses, the newly introduced 
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variables are always supposed to be fresh. The translation of a formula A 
is indicated by writing the formula in script: d. 

With every transition to the next stage, either the degree or the total num- 
ber of outermost choice quantifiers diminishes. 

4. Some theorems concerning CS and IDK 

THEOREM 2. For every formula A of CS not containing free choice varia- 

The proof is immediate from 3.12. We can prove more, however: 
bles: kcs AH&’. 

THEOREM 3. Finitistically we can prove for any A of CS not containing 
free choice variables : 

kcs A ++ kIDK Jd * 

The proof of this theorem consists in a detailed verification that axioms and 
rules under the translation are carried over into theorems and derived rules 
of IDK. (A full proof will be presented in KREISEL and TROELSTRA.) 

Theorem 3 is the main result concerning CS. As a corollary to Theorem 3 
we obtain the result that CS is a conservative extension of IDK. Since IDK 
is a subsystem of classical analysis, we also have obtained a consistency 
proof for CS relative to  classical analysis. 

Kleene’s system (KLEENE and VESLEY [1965]) is essentially contained in 
CS (modulo some differences in the set of explicitly introduced recursive 
functions). 

The strength of IDK is greater than it may appear at  first sight; in fact, 
many predicates which can be introduced by a generalizedinductive definition 
can be defined explicitly in terms of K. As an example we state a theorem. 

DEFINITION. A ( P ,  u) is positive, if A(P,  u) is of the form 

where each A,, is either a formula of IDK or a formula P(cp(b, x, a)), cp a 
constructive functor of IDK (c, are used for disjunction, conjunction 
respectively). 

THEOREM 4. If A ( P ,  u) is positive, then a predicate PA can be explicitly 
definedin IDKsuch that A (PA, a)+PAa, and the scheme A a [ A @ ,  u)+ Qu] + 

A u[PAu+Qa] are satisfied. 
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Remark. This theorem can still be generalized considerably (KREISEL and 
TROELSTRA). Remark that an A(P,  a) of the form 

n u  

QI ... Qm 1 A i j ( . . . ,  a) 
i =  1 j =  1 

where the Qi are quantifiers of the types V x, A x, V a, and the A i j  as in the 
definition of “positive”, is equivalent to a positive A .  This can be seen by 
repeated application of C1 and contraction of variables by means of the 
pairing function. 

5. Intersubjective and solipsist situations 

The weakest possible way ofjustification for the axioms of the system CS 
would be an argument like this : IDK is intuitively justified; the use of choice- 
variables corresponds to a special “non-standard” interpretation of the logi- 
cal constants in connection with functions. This interpretation is then given 
by the translation defined in Section 3 of this paper, and the proof of Theo- 
rem 3 is in fact a verification of the fact that the laws of logic remain valid 
for the non-standard interpretation. 

This is not very satisfactory however. In this manner, the properties of 
choice sequences become a mere matter of convention. Therefore we shall 
endeavour to find a more satisfactory kind of justification. 

The most general interpretation of the logical constants was first indicated 
by Heyting; a fairly elaborate description can be found in MYHILL [1967]. 
Take as a typical example implication : asserting A +B means that we have 
a construction which transforms any proof of A into a proof of B (and that 
we possess a proof which demonstrates this fact). 

A “non-standard” interpretation of the logical constants might consist in 
restrictions on the kind of proofs used; the special interpretation of A + B  
would become: we have a construction (belonging to a class %) which trans- 
forms any proof of A which belongs to % into a proof of B, taken from the 
class 5Y. 

Now a more satisfactory justification of CS might consist of an intuitive 
description of the notions and the description of a context (an intuitive 
“picture” or “situation”) into which the non-standard interpretation of the 
logical constants (if needed) would fit naturally. 

To begin with, we make a distinction between two types of general situa- 
tion : the solipsist and the intersubjective situation. 

In solipsist situations we are concerned with the thoughts of a single 
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mathematician (in Brouwer’s terminology : creative subject). In his papers 
after 1945, Brouwer seems to argue in a solipsist situation (compare e.g. 
BROUWER [1948, 1952, 19541). 

In an intersubjective situation we have a collection of mathematicians 
C,, C2, C,, ... who can communicate or withhold information. We are inter- 
ested in conclusions valid for every mathematician. 

In the sequel we shall mainly explore intersubjective situations. In the case 
that all mathematicians have all information in common, the intersubjective 
situation reduces to the solipsist situation. 

6. Empirical sequences and “Kripke’s scheme” 

KREISEL [1967] p. 160 formalizes some basic assumptions (for an inter- 
subjective situation) which seem to underly Brouwer’s controversial counter- 
examples. 

Although the discussion in KREISEL [1967] is not likely to be definitive 
(see e.g. the remarks in VAN ROOTSELAAR) we use it here as a basis for our 
discussion. On the basis of the principles 

(( 13) indicates the intended meaning of A according to Kreisel) we can derive 
what Myhill calls “Kripke’s scheme” (MYHILL [1967], KREISEL [1967] p. 
174) : 

VX {[ AX(XX = 0) c-, 1 A] & [ vx(xx  # 0)  3 A]}. (14) 

For if we take 
l ( ~ t x A ) + ~ x = O , C t x A - t ~ x =  1 

we see that (14) is derivable for every C. 
If we define Ax‘c, V x A y  ( y > = x - + ~ ’ y = O )  we obtain: 

AX’ v X {[ A x  (XX = 0) c-, -I AX’] tk I: v x (xx f 0) + AX’]) . (15) 

The dependence of x on x’ is not continuous. 
We return to this question in Section 9. 
In the discussion in the remainder of this paper we take a constructive 
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operation to be an operation which is given in such a way that every mathe- 
matician obtains the same result by applying the prescription.4 

7. Lawless sequences 

By way of introduction, we discuss the notion of a lawless5 sequence (the 
absolutely free choice sequences of KREISEL [1958]) before we enter on the 
discussion of the more complicated notion of a choice sequence. For lawless 
sequences it is indifferent whether we consider a solipsist or an intersubjective 
situation. 

DEFINITION. A lawless sequence (for a mathematician 2) is a sequence 
~ € 5 ”  such that at  any given moment only an initial segment is known (to 2) 
with no restrictions on future terms. 

A lawless sequence x can therefore be viewed as a source which produces 
values xo, xl, xz, .. . while 2 does not know anything about the process ac- 
cording to which the values are determined. If we speak about lawless se- 
quences x, x’, either x, x‘ are thought to be the same source from the start, 
or if not, no connection between them wiII ever become known. 

(A good illustration is provided by a die; the sequence of the casts of a 
die is a sequence which takes its values in the species (1,2, ..., 6 ) ;  a t  any 
moment, only finitely many casts are known, about the future casts nothing 
can be said.) 

For lawless sequences, we can therefore assert: 

A x A x ’ ( x  = xr v x # x‘). (16) 

For either x, x’ are identical, i.e. they denote the same source of values, or 
they are intended as different sources; in the latter case, it is absurd to assume 
that a mathematician could ever prove xx = x’x for all x, hence x f 1’. 

Another important property of lawless sequences is a strong kind of con- 

“Constructive sequence” in this sense seems closely related to MYHILL’S [this volume] 
“mathematical sequence”. Suppose we make two assumptions: (a) the order of the proofs 
which are the result of the mathematical activity of a mathematician cannot be communi- 
cated to another mathematician in a finite amount of time, (b) different mathematicians 
do not necessarily have all information in common. Then one might try, tentatively, to 
distinguish Myhill’s mathematical sequences from the wider class of the empirical ones, 
by characterizing mathematical sequences as given by a law which can be communicated 
in a finite amount of time. In this case, an identification of “constructive” with “recursive” 
is certainly plausible. 

We have adopted Godel’s suggestion and replaced Kreisel’s “absolutely free choice 
sequences” by “lawless sequences”. 
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tinuity. For Ax not containing other free variables for functions besides x 
(with the possible exception of the free variables for constructive functions) 
we can assert: 

Ax + V x ( x ~  n &(AX’€ n) AX’) (17) 

(where x ~ n  is an abbreviation for V x ( j x = n ) ) .  
In the case of an intersubjective situation, one might take lawless sequences 

as to be generated for a C j  by communication (of a Ci to Cj )  of values 
x0, x1, x2, ..., and never anything more. 

In the context of an intersubjective picture we can also describe a notion 
slightly different from “lawless”; let us call it ‘yree” for the time being. 
Ci creates free sequences x, x’, x“ for C j  by communicating values x0, x1, 

x2 ,  ... ; ~ ’ 0 ,  x’l, ...; ~ “ 0 ,  .... Moreover, at some moment, Ci might decide to 
communicate information of the form x=x’ to Cj .  

Free sequences are therefore objects which individually behave like lawless 
sequences, because only an initial segment is known at any time, but they 
can be connected by extra information of the form x=x‘, ~’=x’ ’  etc. (Remark 
that this extra information nevertheless for any single free x amounts to  an 
initial segment only.) 

(17) remains valid for free sequences, but instead of (16) we obtain exactly 
the opposite : 

1 A x A x ‘ ( x  = x’ v x # x’). (18) 

An exposition of the formal theory of lawless sequences of NN is to appear 
in KREISEL. 

8. Choice sequences -justification of CS 

8.1. The justification of the full system CS asks for a certain change in the 
interpretation of the logical constants, as a consequence of certain restric- 
tions imposed on the proofs. We use a, b, .. . for choice sequences. A choice 
sequence for any mathematician Ci is a sequence p about which at  any mo- 
ment the available facts consist of an initial segment Ex (a  is a sequence 
about which nothing else is known) together with an equation b=ela. 

To state it otherwise, a mathematician C j  may create a choice sequence CI 
for Ci by starting communication of values a0, a 1 , .  . , ; C j  at a certain moment 
can add information a = elP, and then proceed with communicating values 
PO, Pl ,  ..., Ox, ...; later on, again information of the form f l y = P  can be 
added, followed by communication of values of y ,  and so on. This process 
must be such that more and more values of a are determined. 
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This notion of choice sequence is a fairly natural thing to consider if we 
look for a class of sequences invariant under continuous operations, while 
at the same time we require that operations defined on the whole class are 
necessarily continuous. 

The axioms which need justification are especially FI-F4. 
8.2. We begin with the discussion of F2; F1 will be discussed after the 

other axioms. 
Suppose a certain mathematician Ci asserts Aa, at a given time (stage) z. 

The information concerning a available to Ci at time z can be condensed into 
the form a=elj?, f3x=n. Aa must be provable for Ci on account of this infor- 
mation only. Therefore 

a' = elP' &fix = B'x -+ Act' 
and therefore 

A B ' ~ w l ( e 1 P ' ) .  

It is always possible to conceive a P ' E ~  as a sequence nly. Hence 

AY A(e(nly)). 

We can contract the two continuous operations e, k'") into one such that 
A x(e(nlx)=flx),  and therefore 

and hence 
AYA (f IY) 

Act-+ V f ( V B ( a = f l B ) &  A r A ( f 1 ~ ) ) .  
8.3. To simplify the discussion, we consider instead of F3 itself, the simpler 

consequence (a  the only free choice variable in A )  

A a V x A ( a , x ) +  VeAn(en  # O +  A a A ( k ' " ' [ a , ( e n ) - ) .  (19) 

F3 itself can be treated along the same lines. 
Suppose A a V x A ( @ ,  x). On account of the intuitionistic interpretation 

of the logical constants, this implies : there is an algorithm Q, (constructive 
procedure) which assigns to every a a natural number @a (i.e. Q, is a con- 
structive functional of type N N + N )  such that A a A(a,  @a). 

In general, we may suppose @a to depend on all the information available; 
for example, if some Zi possesses information concerning a of the form 
a = elP, Zx, then @a may depend on e as well as on Zx. Hence not necessarily 
a = p--taX= @/I. 

However, Zi may create for another mathematician Z j  a sequence p, by 
communicating values of a, and nothing more, to Zj:u0, a l ,  .. .. We shall 
suppose all mathematicians in our picture to have the same mental abilities. 
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Therefore, if C j  computes @/3, Ci must be able to conceive (by mentally 
abstracting from extra information) the idea of the object p, and Zi must also 
be able to compute @fi. 

A convenient notation to indicate the process of forming @ from a by 
“mental abstraction” is provided by a symbol, say Y ,  for an abstraction 
operator (analogous to a forgetful functor): Ya=p. 

It is clear that Ya= Ya‘ implies @Ya=@Ya‘. 
We certainly have A(Ya, @Ya); but ,Zi “remembering” the origin of Ya 

(that is, adding the extra information concerning a not contained in Ya)  
concludes from a= Ya  to A (a, @YE). 

Here we have cheated a little. For the concept of Ya is such, that Ci can 
not prove mathematically a= YE,  since realizing a= Yycr transforms Ya into 
another object. Hence permitting the substitution of a for Ya imposes in fact 
a restriction on @, i.e. a restriction on the possible proofs for p, a V x A (a,  x). 
In this sense, a non-standard interpretation of the logical constants is intro- 
duced. We shall return to this crucial point in the next paragraph. In the 
remainder of this paragraph we shall take the permissibility of the substi- 
tution of a for !Pa for granted. 

@Y is clearly a continuous functional, since now only an initial segment 
of Ya (hence of a) is used to compute the value of the functional. We can 
therefore assert continuity 

A v x  A (a ,  x) + A a vx V Y  AP (EY = BY + A ( A  x)) . 
The second part of our justification of F2 consists in making it plausible that 
every continuous functional can be represented by a function from K. 

Let us introduce a shorthand notation: (x)*x=R*x is to denote the se- 
quence x‘ with x’O= x, x‘( y + 1) = xy. Likewise n * x for finite sequences n. 

“@ is continuous” means : for every x, @x is determined by an initial seg- 
ment XX; so if j x = n ,  Ax. @(n*x) is a constant functional. 

Now we make the assumption, that if there is any proof of “@ is continu- 
ous” at all, then there must be a direct proof of this fact, using two kinds of 
inferences : 
(I) @’ is a constant functional, hence continuous. 

(11) For every x, @‘(R*x) is continuous, i.e. for every x and every x there is 
a y such that @’(R*x) is determined by j y ;  hence for every x there is 
a y‘ such that @‘x is determined by x‘y (and therefore @‘ is continuous). 

Parallel to this proof (compare the evidence presented for the axioms for 
Kin  Section 2) we can prove that Q, is represented by an eeK, starting from 
the fact that the constant functionals are represented by elements of K. 
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This type of assumption about proofs we have used is also the idea under- 
lying Brouwer’s proofs of the fan theorem and the “Wohlordnungssatz” (see 
BROUWER [1924, 19271). 

So now we are justified in stating 

A a V x  A(a,  x)+ V e A a  A(a,  e(a)) 

which is equivalent to (19). 
8.4. The justification of F4 can be obtained from the justification of F3 

in the following manner. A a v P A (a, P), on account of the interpretation 
of the logical constants, implies the existence of an algorithm @ such that 
a A(a,  @a). In particular, A a A(Ya, @!Pa), and using, as before, a= !Pa, 

we get A a A(a, @Ya).@Y=@‘ is extensiona1,i.e. a=P+@Ya=@Y/3. If we 
write (@’)x for Aa.(@’a) (x) we can rephrase our conclusion as 

Aa A (a, Ax.((@’),@)).  

AxVeAa((@‘),a= .(a)) 
We have 

(applying the previous justification of (19)). 
Hence with C1, C2.2: 

v f ~ x ~ a ( ( ( @ ’ ) , a  = (A’n . f (a*n)  (a))) 

v-fAa(Ax.(@’)xa = f l u )  
and therefore 

and this justifies F4. 
8.5. Now we return to  the justification of FI. First we remark, that once 

we have justified F2, we also have a justification of ( A ,  B with a as only free 
choice variable) : 

~ a [ A a  - + B E ]  ++ A e [  Act A (elm) --* /\a B(e(a)].  (20) 

The implication from the left to the right is immediate. 
In the other direction, we argue as follows. Suppose Am. Then by F2: 

VeC Afl A(elP)& VP(elfl = .)I. 
If we suppose A e [  A a A(ela)-+ A a B(ela)], it follows that 

APB(elP)& V P ( e l P )  = a 

Now we consider the case of F1 with one choice parameter y .  We have to 

A r  [ Ax V a  A(a ,  x, r) + V P A x  A (2y.P (x, Y } ,  x,  Y)] . 

hence BE. 

justify: 
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On account of (20) this is equivalent to showing that 

A e { A x A y V t l A ( a , x ,  e l r )+ A Y V P A ~ A ( A Y . ~ ~ { X , Y } , X ,  elv)>. 

Suppose therefore A x  A y V tl A(@, x, ely). By F4, we can replace this by 
A x V f A ?A(  f I?, x, ely), and hence by application of C1, C2.2: 

V f ' A x A y A ( W ' ( i * * )  IY, x, elv). 

The conclusion to be derived is equivalent to (on account of F4): 

Vf" AY A x  A(AY.(f "lY> {x, Y } ?  x, el?>. 

Therefore we have to show that from f' we can construct f " such that 

A ' n f '  (2 * n)  Iy = Ay.(f"lr) {x, Y }  

for every x, which is not hard to verify. (Full details in KREISEL and TROEL- 
STRA.) 

9. The continuity axioms 

9.1. In the previous section we made use of Ya=a in the justification 
of F3 and F4. However, although the use of Ya=tl seems to be essential for 
the justification of F4, in the case of F3 we can eliminate this aspect6. For 
we obtained in 8.3 A(Ya ,  @!Pa). @!Pa is computed from an initial segment 
(K) x. (Since no other information can be used by Zj . )  But if we confront 
C j  with a, then Z j  can recognize that the information about tl is a (consistent) 
extension of the information concerning Ya, and also (fi) x = Ex. Therefore 

9.2. In KREISEL [I9651 and MYHILL [1967] p. 173, Myhill used (15) as a 
counterexample to F4. It is not at all clear, however, that the x constructed 
from a choice sequence x' (in our sense) is again a choice sequence. This is 
also not clear for the notion of choice sequence considered by Myhill. So, 
although (15) certainly casts doubt on the validity of F4 if we do not make 
any restrictions on our proofs, it is not a conclusive counterexample. 

The restriction on proofs which is implicit in the use of Ya=a does not 
permit the deduction of (15), as is to be expected (since CS is consistent 
modulo IDK) and as one can see without much difficulty. 

A(a, @!Pa). 

6 MYHILL 119671 stresses the difference between F3 and F4. The argument as presented 
in MYHILL [1967] was not quite satisfactory to me, but the underlying idea is utilized in 
the argument in this paper. 
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10. Various notions of sequence 

10.1. A sequence X E S ~  is called lawless with respect to a predicate (con- 
dition) R = S N ,  if our information concerning x at any moment consists of 
an equation f t l  =t, ( t l ,  t ,  constant terms) and RX (i.e. the assertion that x 
satisfies R). 

We can describe many different notions of sequence by specializing the 
condition R in this definition. 

The notions below can either be interpreted as "lawless with respect to 
R" for a suitable R, or they are immediately derived from such notions. 
However, we shall only describe them in terms of relative lawlessness if it 
is convenient to do so. 

We introduce a notation first. If ~ E ( S ,  x S, x ... x Su-l)N, we can introduce 
projection mappings no, . . . , ff,, - such that 

xx = ((Uox) x, - - . Y  (nu- IX> x>. 
10.2. The following notions have some mathematical, didactical or his- 

(A) Lawless sequences of S N .  
(B) Constructive functions of S N .  
(C)  Free sequences of 5". 
(D) Define the following predicate for constructive functions : 

torical interest. 

S p r ( a ) o  A n V x ( a n  # O + u ( n * 2 ) # O ) & u O # O .  

Membership of a spread (u is a spread iff Spr(a)) is expressed by 
X€a- A x ( a f x Z 0 ) .  

If we take for R in the definition of relative lawlessness : Rx = V a [Spr(a) & 
X E ~ ] ,  then we have a description of the sequences lawless with respect to a 
spread. This is the notion underlying KREISEL [1963] and KREISEL [1965] 
(sec. 2.521). 

(E) Let X E ( N X  Spr)N. We define R by 

R X H  A X ( ~ O X E ( ~ I X ) ~ ) &  A ~ ( ( ~ I x ) ( x +  l ) S ( n i ~ ) x ) .  

Spread inclusion is defined by : 

? u G b -  A n ( u n  # 0- bn # 0). 

(F) Take the ff , projection of the sequences of type (E). This is the notion 

It seems that the notion originated with Brouwer (footnote on page 245 
studied in MYHILL [1967]. 
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of BROUWER [1924]). To describe it less formal: we consider the n,-pro- 
jection of a sequence of pairs ( ~ 0 ,  a,), (xl, al ) ,  .... a,, al,  ... are spreads 
such that a, 2 a, 2.. . and x belongs to every a,,. 

Remark. Distinguishing between (E) and (F) is merely a matter of con- 
venience ; the extensionality of predicates with respect to numerical values 
has to be expressed as follows for notion (E) 

AX & I7,x = I I o x r  + AX’ 

whereas for (F) we can take the usual formulation : 

Ax &x = X’ - + A X ’ .  

(G) The most general type of sequence of N N  we can formulate within 
this framework will be something like this: At any moment we know about 
x an initial segment and certain additional information of the form Tx i.e. x 
satisfies some predicate TE N N .  To state it otherwise: x is the n,-projection 
of a sequence of pairs ( ~ 0 ,  To), ( ~ 1 ,  T I ) ,  ... such that Ax(T,x), and 
A X ( T ’ + ~ G T ~ ) ,  A x ( T , s N N ) .  

This notion suffers from the indeterminateness of the intuitionistic notion 
of species. Perhaps some restrictions on the T, ought to be made. 

11. Discussion of some notions of sequence 

1 1 . 1 .  It is fairly easy to see that for the notions (F) and (G) we could 
justify the axioms F3-4 in the same manner as for choice sequences. For the 
notion (F) we can assert a stronger axiom instead of F2: 

AX++ V a  [Spr(a) & x ~ a  & Ax’ E  AX'], (21) 
A not containing free variables for sequences besides x and variables for 
constructive sequences. 

The justification can be given along the same lines as the discussion of F2 
for choice sequences. 

For notion (G) we cannot assert an axiom of this type unless we introduce 
variables for species of sequences. 

11.2. If we have a formal theory for a certain notion of sequence in which 
we can define continuous operations on sequences, then the assumption of 
unrestricted rule of substitution for terms and functors requires the notion 
to be invariant with respect to continuous transformations. For the notions 
(D) and (F) this invariance is certainly not evident. In fact, we have the fol- 
lowing formal result, which shows that these notions are not very well suited 
to a system of analysis in which continuity is to be a main feature. 
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THEOREM 5. Let CS" be obtained from CS by replacing F2 by (21) and 
omitting F4. Then we can derive in CS": 

AaVd[AyVx a{y, x} # 0-  VxAy d{x, Y }  # 01. 

Remark. The result conflicts with Church's thesis, but even without ac- 
ceptation of Church's thesis, the conclusion seems undesirable. 

PROOF: We shall introduce explicit names for various K-functors not in- 
cluded in the K-functor definition in Section 3, in order to simplify the proof. 
The existence of functions with the desired properties can be proved using 
the axioms for K and axioms of choice; therefore it is possible to eliminate 
these names in the proof. 

Let e[u]  denote a function of K which satisfies, in case Spr(u) holds: 

A a ( e [ a ] l a ~ a ) ,  AaVp(e[a]lP = a). 

(21) can be rephrased as 

Aa f-f v a [ Spr (a)  & a E a & A p A (e [ u ]  I p)] . 

Va[Spr(a)&aEa& ~ P v r ( e [ a l l P =  elr>l* vP(. = 4 P ) .  

(22) 

We apply (22) to Aa= V P(a=elp) and we obtain 

Now we substitute ela for the free variable a and apply the rule of gener- 
alization. 

The result is: 

~a v a  [Spr (a)  & ela E a & AP V Y  (e [alIP = elr)] . (23) 

We apply F4 to (23): 

VbVfAn(fn#O+ Aa[Spr(A'y.b{enL l ,y})&e:nIa€~ 'y .b{enI  l , y}& 
APv~(eC2y .b  { e n  1, y)llP = elr)]. (24) 

(Here e : f k  an abbreviation for the composition function which satisfies 

Aa(e I ( f I 4  = .:fl.>.) 
We can enumerate the functions 2'y.b {en I 1, y }  for which en # 0 by a func- 
tion c, c"=2'y.c{x,  y } .  
We obtain therefore from (24) 

AaVx(elaEcX& Ax(Spr(c"))& A L X A X ( C ~ E C ~ - +  VP(elP = a))). (25) 

Now let a be any fixed constructive function. We define a spread d from a 
by the conditions : 
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__ 
(I) For all y ,  d((L’x.0) y )  # 0. 

(11) If dn#O, then d(n*6)#O. 
(111) If dEy#O, a ( y - ~ l ) # O  ory=O, and a { y , z } # O ,  then d(Ey*(z ) )#O.  
Let s g x = I L ( l - I x ) .  

We choose a g such that A M  A x[(gla) x=sgax]. 
Substitute g : e [ d ]  for e. Then from (25) we conclude : 

V X ( ~ ’ Y . O ~ ~ ” ) + +  A y V x ( a ( y , x )  ZO). 

d’ { x ,  y }  = c”((n’z.0) ( y  + 1)) 
If we define 

we obtain 

~ 

V d ‘ ( V x A y d ‘ { x , y }  # O + + A ~ V x a { y , x }  # O )  

and hence by generalization the desired conclusion. 

12. Acting on incomplete information 

Instead of the intuitive pictures given so far, we could also have taken 
another point of view, which covers all formal facts, namely that speaking 
about lawless sequences, choice sequences etc. is only an expression of the 
fact that we are operating on certain types of incomplete information con- 
cerning sequences. 

The logical background for acting on incomplete information is described 
in GRZEGORCZYK [I9641 section 4. 

However, the explanation of disjunction and existential quantification 
given there simply refers back to a notion of sequence, as is apparent from 
the use of the word “branch”. See also KREISEL [1965] pp. 109-110. 

It is indeed hard to see (taking a simple example) what can be asserted 
about lawless sequences, that cannot be obtained from the idea of proving 
something about sequences on account of finite initial segments only. Never- 
theless, if we introduce our “notions” just by stipulating certain types of 
information we are acting on, our “notions” look rather arbitrary. We 
therefore prefer the approach of the previous sections, as being more 
suggestive. We certainly do not claim our analysis of the notion of choice 
sequence to be final; in fact, it will be clear from the discussions that there 
is a wide range of notions and “contexts” which deserve to be investigated. 

ACKNOWLEDGEMENT. I am deeply indebted to professor Kreisel for many 
stimulating discussions and remarks concerning the subject matter of this 
paper. 
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PROBLEMS IN THE THEORY OF 

PROGRAMMING LANGUAGES 

J. W. DE BAKKER 
Mathematical Centre, Amsterdam, Netherlands 

1. Introduction 

The theory of programming languages is usually divided into three parts 

a. Syntax. 
It is investigated which formal systems can be used for the definition 

of grammars of programming languages. A grammar is a set of rules that 
defines which sequences of symbols over a given alphabet form a program 
in the language concerned. Two important requirements which should be 
fulfilled by such a system are: It should be powerful enough to allow formal 
expression of all syntactical rules, and it should define the structure of a 
program in such a way that efficient translation is possible. 

(see e.g. ZEMANEK [1966]): 

b. Semantics. 
Problems are investigated which deal with the meaning of programs. 

The ultimate goal is the development of a theory that leads to a formal 
definition of the semantics of programming languages and that can provide 
an answer to questions such as: “Are two given programs equivalent?”, or 
“Is a compiler for a certain language correct?”, or “Does a given program 
solve a certain problem?”. 

c. Pragmatics. 
Here the object of study is the relation between the language and its user. 

Hence, the important question in this area is: “Which concepts should be 
included in a language to allow the programmer efficient, compact and 
elegant formulation of his problem?”. 

It is clear that for practical purposes, pragmatic problems are the most 
important. Consequently, most of the efforts in programming languages 
have been spent in this field. However, as far as we know, no theory of 
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pragmatics has been developed as yet. Theoretical considerations have up 
to now mainly been concerned with syntax. We mention only: the theory of 
context free languages with their various specializations and generalizations, 
the production language of Floyd, and the syntax directed compilers. In 
our talk, we shall not deal with these investigations but restrict ourselves 
to semantic problems and try to give an impression of the work that has been 
done in this field. 

2. Semantics and the general theory of computation 

For the development of semantic theories about programming languages, 
it is clearly desirable to have available a “general theory of computation” 
which can provide a background or framework to which semantics can be 
related. However, such a general theory of computation is only in a rudi- 
mentary stage. There are several ways of approaching such a theory. A 
survey of the situation, as it existed several years ago, has been given by 
MCCARTHY [1963b]. In our opinion, no decisive progress has been made 
since then. We shall now discuss a few approaches in somewhat more detail. 

a. The theory of computability, i.e. the theory of Turing machines, 
recursive functions, etc. It was already said by McCarthy that this theory 
has as yet only resulted in the statement of the essential limits which are 
imposed upon a theory of computation. Its relevance for a theory of al- 
gorithmic processes, as they occur in the practical use of computers, is very 
limited. However, it should be mentioned that in the past few years, research 
has started into real-time aspects of Turing machines, i.e., investigations 
which take into account the time factor, e.g. expressed by the number of 
operations that are required for a certain calculation. This new branch of 
the theory of Turing machines might eventually lead to results which are of 
interest for the theory of computation. Among the many formalisms that 
have been proposed for studies of computability, and that have all been 
proved to be equivalent, there is one system we want to mention separately, 
namely the theory of “graphschemata”. It was proved by P ~ ~ T E R  [1958] 
that these graphschemata are equivalent to recursive functions. However, 
it is probable that the formalism of graphschemata shows the closest connec- 
tion to the methods that are used in practice for the description of computer 
algorithms. This follows from the fact that graphschemata are nothing but 
flow diagrams obeying certain restrictions. Investigations in this area have 
been reported by KALUZHNIN [1961] and THIELE [1966]. Related is the work 
of BOHM and JACOPINI [1966], who exhibit a number of components, from 
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which, in a sense, each flow diagram can be made up (they need some extra 
formalism, for which we refer to their paper). 

b. Automata theory. Here the situation is the same as above. Although 
automata theory has led to many results of mathematical interest, again no 
generally accepted system, directly useful for a theory of computation, has 
come forward. We think that the following quotation from WANG [1965] is 
still valid: 

“Although there are various elegant formulations of Turing machines, 
they are still radically different from existing computers. To approach the 
latter, we should use fixed word lengths, random access addresses, accumu- 
lator, and permit internal modifications of the programs. Alternatively, 
we could, for example, modify computers to allow more flexibility in word 
lengths. Too much energy has been spent on oversimplified models, so 
that a theory of machines and a theory of computation which have extensive 
practical applications have not been born yet.” 

We shall give here a few examples of several automaton-like models that 
have been proposed in the past few years. No attempt is made at complete- 
ness, but we wish to give only an impression of the great variety that 
exists in this field: 

bl. One of the first proposals was made by KAPHENGST [1959]. This paper 
introduces concepts such as register, instruction and instruction counter, etc., 
in an abstract machine which is then proved to be equivalent to recursive 
functions. 

b2. A paper by RAYMOND [1966]. Emphasis is laid here upon a study of 
the memory of a computer. 

b3. A paper by DE BACKER and VER~EEK [1966]. In this article the notion 
of error in a computation plays an important role. 

b4. A paper by MAURER [1966]. This paper covers many aspects of 
existing computers : It treats the notions of memory, registers, input/output, 
and instructions. It appears to be an interesting contribution to a theory of 
computing that is more concerned with hardware aspects. 

b5. The stack automata, as introduced by GINSBURG, GREIBACH and 
HARRISON [1967]. Here the purpose is to simulate techniques which are used 
in the translation of programming languages. 

b6. The theory of “Random Access, Stored Program Machines”, as 
introduced by ELGOT [1966] and ELGOT and ROBINSON [1964]. We shall 
return to this later, since it has played a role in the formal definition of PL/I. 

c. MCCARTHY’S mathematical theory of computation [ 1963a, b], [ 19651. 
This theory is not directly related to either the theory of computability 
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or to automata theory. MCCARTHY’S papers [1963a, b] and [I9651 have 
become well known and have influenced work on the semantics of program- 
ming languages, as we shall see below. 

d. Proofs about programs. 
We shall make here some remarks on investigations, related to theories 

of computation, which are in some way concerned with proofs about 
programs. First of all, it is obvious that a theory intended to lead to proofs 
about programs, will be limited by unsolvability results from logic. We 
mention only the classic example concerning the impossibility of an algorithm 
which decides for each arbitrary program whether it will get into an infinite 
loop. Another difficulty that arises when one wants to develop a theory that 
can prove the correctness of a program, is the following: 

Suppose that one wishes to prove that a given program P, written in 
some programming language, gives a correct description of a certain process 
Q. This problem only makes sense if Q can be precisely stated by means of 
some other formalism, e.g. some part of mathematics. Often, however, the 
only precise way of stating process Q is by exhibiting some program that 
describes it. Clearly, in these cases a proof of the correctness of this descrip- 
tion will be very difficult or even impossible. 

We now mention a few investigations that deal with proofs about programs : 
dl .  We11 known is the work O f  YANOV [ 19601, who introduced the “logical 

schemes of algorithms” and derived several equivalence results about them. 
d2. Less well known is the work that has been done by IGARASHI [ 1964a, b]. 

d3. MCCARTHY [1963a] has used his technique of recursion induction for 
some proofs on Algolic (i.e., written in a small subset of ALGOL 60) 
programs. Later on, we shall mention another type of proof due to him. 

d4. NAUR [1966] has proposed a method to be used for the proof of 
algorithms, by the technique of what he calls “general snapshots”, i.e., 
expressions of static conditions existing whenever the execution of the 
algorithm reaches particular points. 

d5. EVANS [ 19651 has proved the correctness of two translation algorithms. 
Some references to other work in this area which we found in his paper, are: 
COOPER [I9651 and LONDON [1964]. 

See also IGARASHI [1963]. 

3. Semantic definition of programming languages 

After having tried to give an impression of the background which is 
available for a theory of semantics, we shall now deal with one of the main 
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goals of a semantic theory, namely the development of a system for the 
formal definition of programming languages. We first state some reasons for 
such a formal definition: 

a. First of all, the wish to provide the compiler-writer with a complete, 
precise and unambiguous definition of the language which he has to translate. 
Such a definition should e.g. make it clear which parts of the language are 
not fully specified, so that the compiler-writer knows where he has to give his 
own interpretation. Experience has shown that it is almost impossible to 
avoid ambiguities in the definition of a programming language by means of 
a natural language, such as English. 

b. One might require of a formal definition that it can be used as a basis 
for the development of a compiler. The formal definition should then be 
designed in such a way that it reflects in some sense the structure of the 
compiler. It should be remarked that it is often difficult to combine require- 
ments a and b. 

c. Recently, suggestions have been made for the introduction of pro- 
gramming languages which allow the programmer to include modifications 
or extensions of the language in his program. It is clear that it is necessary 
in such a situation to provide the programmer with a formalism in which 
he can state these modifications to the language. 

d. Finally, a formal definition of a programming language should provide 
insight into theoretical properties of this language. It should lead to a 
vocabulary which can be used for discussions about the language. One 
might expect of such theoretical investigations e.g. the detection of incom- 
patible, contradictory or ambiguous concepts or constructions in the 
language. It might also be used as a source of inspiration for new useful 
concepts, which would not have originated directly from practical con- 
siderations. 

We shall now discuss some systems which have been proposed for the 
formal definition of programming languages. It will appear that the situation 
is the same as with the theory of computation; i.e., almost every author has 
his own system; there is as yet no generally accepted method, nor any 
indication of a convergence in opinion towards such a method. In September 
1964, a conference on “Formal Language Description Languages” was held, 
organized by the technical committee on programming languages of the 
International Federation for Information Processing. The proceedings of 
this conference (STEEL 11966aI) show clearly how much the ideas of the 
several authors diverge. 
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First of all we mention the methods that are based upon the A-calculus. 
LANDIN [1964], [1965], [1966] is the main representative of this group. 
B ~ H M  [1966a, b] uses both the 2-calculus and the combinatory logic of 
Curry. He calls his system CUCH, derived from Curry and CHurch. The 
I-calculus also plays an important role in the work of STRACHEY [1966]. 
It appears that the kcalculus allows an elegant definition of the locality 
concept; the definition of assignment statements and goto statements 
causes more difficulties. 

Well known is the state vector approach of MCCARTHY [1966]. In 
principle, the components of the state vector are: the current values of the 
variables that occur in the program, and the number of the statement 
which is to be executed. The semantics of a program is defined by a recursive 
function that describes how the state vector changes as a result of the 
statements that occur in  the program. McCarthy admits that the structure 
of the state vector will have to become more complicated if recursion occurs 
in the program. Also, the meaning of e.g. declarations and procedures cannot 
be defined directly in terms of this state vector. 

McCarthy has applied his formalism also to give a proof of the correctness 
of a simple compiler for arithmetic expressions (MCCARTHY and PAINTER 
[1966]). Again, however, he says that in order to apply the technique to 
proofs concerning the correctness of translation of e.g. sequences of as- 
signment statements or goto statements, “a complete revision of the for- 
malism will be required”. 

WIRTH and WEBER [ 19661 let the semantic description of a programming 
language run parallel to its syntactic definition. Whenever a syntactic rule is 
applied during the analysis of a program, a corresponding semantic rule is 
applied which changes the values of zero or more entities in a so-called 
environment. The semantic rules are formalized in a language which is 
said to correspond closely to the elementary operations of a computer. 
It is assumed that the concepts of this elementary language do not need 
further formal definition. He demonstrates his system by means of a formal 
definition of the programming language EULER, based upon a generalization 
of ALGOL 60. 

FELDMAN [ 19661 has introduced a “Formal Semantic Language”, which 
he has designed for the purpose of constructing compilers. For these practical 
purposes, FSL has proven to be of much use. However, we feel that FSL is 
too complicated a language to be considered a solution to the problem of the 
formalization of semantics. 

Finally, we mention some systems which give only some principles for 
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semantic description, from which it is not yet possible to form an opinion as 
to their applicability to a complete formal definition of a programming 
language: the papers of STEEL [1966b], GARWICK [1966], and NIVAT and 
NOLIN [ 19661. 

Complete formal definitions have been given of PL/I (PL/r Definition 
Group of the Vienna Laboratory [1966]) and of ALGOL 60 (DE BAKKER 
[ 19671). We shall return to the definition of ALGOL 60 below. The definition 
of PL/I is due to a group at the IBM Laboratory in Vienna. We quote from 
the introduction to their report: 

“The method adopted is based on the definition of an abstract machine 
which is characterized by the set of its states and its state transition function. 
A PLjI program defines an initial state of the machine, and the subsequent 
behaviour of the machine is said to define the interpretation of the PL/I 
program.. . 

The basis for the development of the method are the publications of 
McCarthy, Landin and Elgot. Especially, the notions of instruction and 
computation are similar to those given by Elgot. The notion of Abstract 
syntax is due to McCarthy.” 

The impressive size of the PL/I document does not allow a more detailed 
explanation of the techniques used. 

For the sake of completeness, we mention the announcement of a paper by 
CHRISTENSEN and MITCHELL [ 19671, which will give a partly formalized 
definition of NICOL TI, a version of PL/I. 

4. A formal definition of Algol 60 

In DE BAKKER [I9671 we have investigated a method for the formal 
definition of programming languages, and applied this method to a complete 
formal definition of ALGOL 60. The system is based upon two papers by 
VAN WIJNGAARDEN [1963], [1966]. We here give only a sketch of its princi- 
ples; for details we refer to our paper. The method consists essentially of a 
combination of Markov algorithms and context free grammars. The definition 
ofa language is given by means ofa list of rules, which are either of syntactical 
nature, in which case they have the form of a production rule of a context 
free grammar, or of semantical nature. Then they have the structure of a 
substitution rule, as used in Markov algorithms. In these substitution rules, 
use is made of the metalinguistic variables, as defined in the syntactical rules. 
(A combination of syntactical and semantical elements in one rule is also 
possible; we shall not treat this feature here.) 
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As an example, we exhibit the definition of the greatest common divisor 
of two integers, written in “unary” notation, by means of the Euclidean 
algorithm: 

(integer) : : = ll(integer) 1 

((integer 1) (integer 2 ) ,  (integer 1)) +((integer l), (integer 2)) 
((integer I>,  (integer 1) (integer 2)) +((integer l), (integer 2)). 

((integer l ) ,  (integer 1)) .+ (integer 1) 

Note the occurrence of so-called “indices” within the metaljnguistic 
variables. The function of these indices is the following: If, in a certain rule, 
one of its possible productions is substituted for an indexed metalinguistic 
variable, then the same substitutions must be made in all places in this rule 
where this metalinguistic variable occurs with the same index. 

An abstract machine is introduced, called the processor, which applies the 
rules described above, to an input sequence (in the example given above, 
the processor might be asked to evaluate e.g. (1 1 1,ll)). When the processor 
has to establish whether a substitution rule is applicable to an input sequence, 
it uses a well-defined parsing scheme. Details of the way parsing is performed 
are omitted here. 

A further important property of the system is the following: Whenever 
the value of a certain input sequence has been determined, this value 
is added - in the form of a new substitution rule - to the already existing 
list of rules. Consequently, the list of rules is continuously growing, according 
as more input sequences are evaluated. This last feature, i.e. the growing of 
the list of substitution rules, is essential for the definition of a programming 
language such as ALGOL 60. The definition of ALGOL 60, as given in 
DEBAKKER [1967], consists of a list of about 800 rules, of syntactical, 
semantical (or mixed) type. If the processor evaluates an ALGOL 60 program, 
this is performed essentially by successive evaluation of the declarations and 
statements that constitute the program concerned. E.g. evaluation of the 
assignment statement a :  = 3, will lead to the extension of the already ex- 
isting list of rules with the substitution rule a-3. We cannot deal here with 
the way in which declarations, procedures, goto statements etc. are treated. 
Their treatment is explained extensively in our paper. We now give a summary 
of its contents: First a detailed description is given of the system of which 
we have sketched some principles above. Next we investigate some theoretical 
properties of the system, namely its relation to the theory of computability, 
and to a few aspects of the theory of phrase structure languages. The pro- 
cessor is defined by means of an ALGOL 60 program, and this program is 

, 
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demonstrated by a large number of examples. Then follows the definition 
of ALGOL 60, by means of about 800 rules, and a commentary upon this 
definition. 

Our system has proved capable of giving a complete formal definition of 
ALGOL 60, from the definition of integer arithmetic to the definition of 
e.g. the procedure concept. However, it cannot be used directly as a basis for 
a compiler for the language. 

5. Conclusion 

From the research which has been performed up to now in the semantics 
of programming languages, it can be concluded that, for the treatment 
of the more difficult concepts, present-day mathematics is only of limited 
use. It appears that concepts, as nowadays current in programming languages, 
often have no direct counterparts in mathematics. We give a few examples: 
One would expect that a simple concept such as the arithmetic expression, 
would be clear to everyone who knows some high school algebra. However, 
already in this simple case anomalies are caused by the possibility of side 
effects in a language such as ALGOL 60, so that e.g. a+b is not necessarily 
equal to b +a. More difficult is the concept of locality and the related problems 
of storage allocation. Although the locality concept is related to the idea of 
bound variables, this does not help much if one wants to investigate concepts 
like own dynamic arrays. The name-value relation in its simplest form is 
known in logic. However, the general reference structure, as present in the 
proposal for ALGOL 68, is again, as far as we know, without a direct 
counterpart. Simple data structures, such as vectors, matrices or rectangular 
arrays in general, or trees, are well known. This does not hold for more 
complicated structures, such as the records proposed by Hoare, see WIRTH and 
HOARE [1966]. Function designators are at first sight nothing but functions, 
as known in mathematics. However, a mathematician will not be confronted 
with the question : “What happens to  the value of the function if a jump to a 
point outside is performed?”. We know of no concept in mathematics that 
can be related to goto statements. We might remark here that a complete 
formal definition of the meaning of goto statements, at least in our system 
and in several others as well, is one of the most difficult tasks. Some authors 
consider the goto statement as a relic from the days of machine coding, and 
propose to abolish it (MCKEEMAN [1966]) or at least to diminish its use 
(DIJKSTRA [ 19651). Finally we mention the notion of parallel processing, which 
has hardly been investigated at all in computability and automata theory. 
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McCarthy once expressed the hope that mathematical logic will be as 
fruitful for the science of computation as analysis has been for physics. 
We hope to have given an impression of the results which have been obtained 
in this direction and of the many open problems which still remain to be 
studied. 
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COMPUTABLE AND UNCOMPUTABLE ELEMENTS OF SYNTAX 

H. HI2  
Vniversiiy of Pennsylvania, Philadelphia, USA 

The simplicity with which the syntax of formal languages is often presented 
has been for some time looked on with envy by linguists. The attempts to 
formulate the syntax of a natural language indicate a far greater degree 
of complexity .The syntax of a language of mathematics seems computable. 
There is a decision procedure for the well-formedness of a string of symbols. 
And there is a decision procedure which assigns the proper structure to any 
well-formed string, i.e., to any formula, so that the set of all formulas for 
that language is recursive and the set of the structures assigned to the formu- 
las is recursive. In other words, the set of ordered pairs of formulas and their 
structures is presented as a recursive set. A well known procedure for the 
generation of formulas is reversible, so that from the formula itself one can 
reconstruct its generation, and the generation is taken to be the structure of 
the formula. If, on the other hand, one cannot reconstruct the generation of 
a given string, the string is not a well-formed formula. Such procedures are 
well known and some cases of them will be given instantly. But first one may 
ask two relevant questions. Is it reasonable to expect that a natural language 
will have a similarly computable syntax, a syntax which will make the set of 
admissible texts in the language recursive and which will assign the relevant 
structures to each text in a reversible manner? And secondly, what should be 
the relevant structure or structures which we assign to a formula or to a 
sentence? With regard to the first question, it is relevant to note that a lan- 
guage of mathematics is set up with some degree of arbitrariness, and that 
to some extent it may be, and often is, changed according to the demands of 
simplicity of syntax. However, a natural language cannot be changed by 
a grammarian but must be taken as given. A closer examination of the second 
question, the question of relevant structures, will reveal that the simplicity 
with which the syntax of a mathematical language is usually presented is 
deceptive. 
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The following standard rules generate all and only well-formed formulas of 

Rule 1 .  0, 1 ,  2, 3, 4, 5, 6, 7, 8, 9 are elementary numerals. 
Rule 2. Ifa and Pare elementary numerals, then apis an elementary numeral. 
Rule3. If a is an elementary numeral, then a is a numeral. 
Rule4. If a and P are numerals, then (a+/?) is a numeral. 
Rules. If c1 and p are numerals, then a=p is a well-formed formula. 
These rules assign a structure to every formula by the very application of 

the rules. The formula shows traces of how it was obtained by the rules. But 
it does show such traces only up to some relevant details. (( 142 + 5) + (2 + 7)) = 
(772+ I )  can be obtained in several different ways. (First combine 2, + and 7, 
then 772, + and 1 ; or first combine 142 with + and 5, then 77 with 2, etc.) If 
those orders of the applications of the rules are left unspecified, whereas 
other orders of applications of the rules are strictly prescribed (e.g. Rule 5 
is always to be used last), then some derivations are considered equivalent. 
All derivations of elementary numerals are equivalent. This fact reflects a 
particular way in which we treat elementary numerals. Had we wanted to call 
attention to the fact that 772=7 x 10’ + 7 x 10’ +2  x loo, we would have 
found it useful to assign an additional structure to the elementary numerals, 
for instance, by changing Rule 1 and Rule 2: 

the arithmetic of addition: 

Rule 1’. 0, ..., 9 are digits. 
Rule 2a. If CI is a digit, then it is an elementary numeral. 
Rule 2b. If M. is a digit, and P is an elementary numeral, then aP is an 

One more concept, that of digit, and more restricted ways of producing 
formulas will assign more refined structures to arithmetic formulas, although 
the new set of rules will generate exactly the same formulas as did the first set. 
The freedom of generation granted by the first set is acceptable only if other, 
later rules of generation or of inference, or some other rules which in any 
way operate on the strings, do not refer to the structure imposed by the 
derivation of the elementary numerals. The derivation of a formula is 
computable from the formula itself only up to equivalent derivations. Which 
derivations to consider equivalent depends upon what groupings and struc- 
tures, what categorizations, are needed to be assigned. We need to assign 
exactly those structures to which we will refer in further operations on the 
formulas. Our syntax should, therefore, not only generate all and only 
formulas of arithmetic but also it should assign exactly those segmentations, 
groupings and categorizations to a formula which will be required when the 
rules of inference will be applied to the formula as a premise, or which will in 

elementary numeral. 
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some other way deal systematically with the formula. It is easy to construct 
a syntax, a set of rules of derivation, which will generate all and only well- 
formed formulas of the language but which will assign to the formulas 
irrelevent structures. For arithmetic, a queer syntax may, for instance, take as 
a relevent segment + ( and combine it with a numeral to the left and a numeral 
followed by ) to the right. But no reasonable rule of inference for arithmetic 
refers to such strings as +(. Therefore, such a syntax would be irrelevent, 
queer and inadequate. 

As an example of a queer syntax, take the following syntax of a simple 
calculus of implication in the Polish notation. To obtain a well-formed 
formula, insert in a string of n occurrences of variables n - 1 occurrences of C ,  
provided that each occurrence of a variable, except the last one, is preceded, 
not necessarily immediately, by more occurrences of C than occurrences of 
variables. In other words, if there are m occurrences of C between the 
beginning of the string and the k-th occurrence of variables, and if k < n, 
then m > k - 1. This rule generates, exactly, the well-formed formulas of the 
C-calculus. It also states some interesting properties of the formulas. But it 
does not deal with other segments than variables, C and strings which start 
from the beginning of the formula and end with an occurrence of a variable. 
Thus, following this rule, it is easy to write a program which will generate for 
n = 4: CCCppp, CCpCppp, CCppCpp, CpCCppp and CpCpCpp, with p 
replaced at different occurrences by whatever variables. The fragments of 
the formula CCpCppp which this generation will use and, therefore, the 
structure which it imposes is, roughly, this: 

CCPCPPP * 

U u 
This syntax does not treat C as a functor of two arguments. Nor does it 
state whether a string which on its own can be a well-formed formula is a 
well-formed formula when imbedded in another well-formed formula. It 
happens that this last property is needed to state the usual rules of inference, 
whereas the segments of the sort of CCp are not used in the formulation of 
the rules. It happens, however, that the structure 

CCPCPPP 
U 

U 
may be useful in some higher order sentential logics, like protothetics, in 
which CCp will be treated as a functor of two sentential arguments and 



242 H. mi 

CCpCpp as a functor of one sentential argument. It is not incorrect, there- 
fore, to assign the above structure to the formula. But it is irrelevent for the 
purpose of constructing the elementary C-calculus. For a higher order logic 
we may need ordinary syntax, the syntax given by this queer rule of genera- 
tion, and, perhaps, still other syntactic assignments to the same formula. 

This point may be well illustrated if we return to the formulas of arithmetic. 
Let the formulas with addition as the only operation be generated by the 
normal syntax outlined in Rules 1-5. So that = is (according to Rule 5 )  of 
the grammatical category of a functor which forms a formula, or a sentence, 
when flanked by two numerals; symbolically (S ; n-n). Addition, according 
to Rule 4, is of the grammatical category (n; n-n). (If one considers the 
parentheses: (n; (n-n)),) Now, the usual definition of substraction states: 
x --y = z,  if and only if y + z = x. What should be the structure of x - y = z? 
Definitions are a usual way of generating new formulas and new syntactic 
structures into a language. The syntactic structure of x-y=z should, 
therefore, also be given by the definition. Usually it is not explicitely stated. 
If the grammatical categories of variables in the definiendum are kept the 
same as when they occur in the definiens, and if the grammatical category of 
= is everywhere (S ;n-n), then x - y  = z  may still have a structure which is not 
the one usually intended. For instance, it could be of the following structure: 

x- Y =  z 
n(S;n_S) n(S;n-n) n 
1 5 1  4 2 4 2  3 3 

The symbols in the second line of a structured string indicate the grammati- 
cal category of the phrase above, and the numerals in the third line indicate 
the groupingl. Thus, in this structured string, the category of - is that of a 
functor which forms a sentence when flanked to the left by a numeral and to 
the right by a sentence. 1 and 4, in the third line, indicate which segments 
satisfy the requirements. By obvious reduction rules we can reduce the 
structured formula to S and show that it is a well-formed formula: 

X- Y =  Z 

n(S;n-S) n(S;n-n) n 
1 5 1  4 2 4 2  3 3 
n(S;n-S) S* * 
1 5 1  4 4 
S *  
5 

* *  * 

1 The formal details of the notation used are expanded in Hrz [1967]. 
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(A string of asterisks indicates that the category is assigned to the entire 
string of symbols under which the name of the category followed by the 
string of asterisks appears.) The formula x-y=z may have other structures 
yet. For instance, 

X -  Y= Z 

n((n; L); -n) n(S; n-n) n 
1 4 1  2 2 5 4 3  3 
n(n; n-) *(S;n-n) n 
1 4  1 5 4  3 3 
n* *(S;n-n) n 
4 5 4 3  3 
S* * *  * 
5 

X- Y= Z 
n((n; n-); -n) n(S; n-n) n 
2 3 2  1 1 5 3  4 4 

Presented in a more usual and less accurate way, three of the structures are 
(x-y)=z, x-(y=z) and x(-y)=z. Note that (x-y)=z if and only if 
x-(y=z) and each of them if and only if x(-y)=z. Therefore, each of 
them can serve as a definition for the other. Also, the entire string -y=z 
can be taken as a function of x: x(-y=z) or 

or 

X- Y =  Z 

n(S;n-S) n(S;n-n) n 
4 4 1 2 1 2 3  3 

Again, the discontiguous phrase x-’--=z can be a function of y :  

X - y=z 
(S;-n-)* n 

1 2  1 2 *  
But here = does not have the usual category. 

A definition should give the intended structure in such a way that the 
structure of the definiendum be computable out of the structure of the 
definiens. For ordinary substraction it suffices to indicate that - is of the 
same category as + . But the formula x - y= z, with other structures, plays 
some role in higher level mathematics where variables which range over 
complicated functions are used and, therefore, those functions can be 
substituted for variables. Note that the result of a substitution in the formula 
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x - y = z can be restructured again. For instance, 24- y = z can be restructured 
as a function of 4 :  

2 4 - y = z  
(S;-n-) n 

1 2  1 2 * * *  

In this way there are infinitely many structures which can be assigned to 
substitution instances of the formula x -y=z .  Note also that in many 
mathematical formulas there will appear grammatical categories with 
requirements not satisfied within this formula. For instance, 

- transitivity - 

(S; -(S; n-n)) (S; n-n) 
2 1  1 

This usually happens when one proceeds to an abstraction. 
In a natural language, texts often should have many different structures. 

Contrary to the formulas of mathematics, however, it is hard to  grasp all 
the structures that a text should have. The rules are not explicit; they have 
to be discovered in the actual practice of speakers who more or less system- 
atically perform changes of the texts. The applicable operations determine 
which structures are to be assigned to the text. Some of the operations are 
close paraphrases, others are constant semantic changes, still others are 
drawing consequences. The operations involved are governed by rules ; 
rules of paraphrase, rules of constant semantic changes, rules of consequence. 
An example of a close paraphrase rule is provided by a rule which allows a 
change of place of some adverbs in English. Suddenly he left the room is a 
close paraphrase of He left the room suddenly. The rule which governs this 
change must distinguish the structure of He left the room from that of He 
can leave the room. For Suddenly he can leave the room is not a paraphrase of 
He can leave the room suddenly. Negation, generalization, change of time, 
change of emphasis are typical constant semantic changes performed in 
a systematic way by speakers. And, according to English, the sentence 
He Eeft the room is a consequence of the sentence Suddenly he left the room. 
The recognition of this consequence is a necessary condition for proficiency 
in English. An adequate syntax should state the rules of consequence 
which account for the speakers’ feeling of consequence among texts. Para- 
phrasing is, of course, a particular case of drawing a consequence. 

The empirical data for a syntax of a natural language are of at  least 
eight kinds. First, some strings may be known to be acceptable texts, used 
or usable by speakers. Secondly, some pairs of texts may be judged by speakers 
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to be close paraphrases, saying the same thing in other words. A set of 
texts, each of which is a relatively close paraphrase of each other, is called a 
paraphrastic set. Some paraphrastic sets are given ; they can be solicited 
from informants. The third kind of data are sets of pairs of texts with a con- 
stant semantic difference. Paraphrasing is also a case of a constant semantic 
change, namely when the difference is close to zero. To collect pairs of 
texts with a constant semantic difference is a difficult task. Different semantic 
distinctions are carried out (obligatorily or naturally) by different languages. 
(The distinction between plural and dual is obligatory in Greek but not in 
English.) The fourth sort of data is provided by reports that some sentences, 
or some longer texts, are consequences of other texts. Just as logic system- 
atizes the consequences used in the most formal part of science, syntax 
should systematize the consequences used in other kinds of discourse. 
In addition, and parallel to these four kinds of data, there are negative data: 
that some string is not a sentence, or that it is not a usable, acceptable text; 
that two texts are not close paraphrases of each other but convey different 
information; that a pair of texts is semantically differently related than 
another pair of texts; and that a text is not considered a consequence of a 
set of texts. Linguists use the negative data extensively to falsify hypotheses 
or to delimit other hypotheses properly. 

Out of the four positive kinds of data, the first - the presence of some 
texts - is absolute, the rest are relative kinds of data. They relate some texts 
to others. We think that the relative data are far more important than the 
absolute ones. They reveal the internal property of utterances, whereas the 
absolute data state only the acceptability of the utterances. Moreover, the 
relative data include the absolute data. Only the usable texts are related as 
consequences and all the usable texts are consequences or premises for 
others. All the texts are paraphrasable. 

A syntax of a language tries to find the general rules of paraphrasing, the 
general rules of consequence, and the general rules of constant semantic 
changes in the language. These general rules will use some general concepts, 
grammatical categories, and their combinations. 

In what senses, then, may one say that a syntax is computable? 
1. It may be claimed, and it sometimes is claimed, that the set of acceptable 

texts, the set of all possible utterances in the studied language, is recursive 
and that the set of relevant structures for each text is also recursive. For 
demonstration one may accept a finite set of elementary segments, a finite set 
of elementary structures, and a finite number of rules which will generate all 
the texts with their relevant structures and which will not generate anything 
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else. It will be decidable about each string whether it is an acceptable text or 
whether it has a given structure. This plan is similar to the way the syntax of 
elementary arithmetic or of elementary logic is often presented. 

2. A less demanding requirement asks for rules which make the set of 
texts and the set of relevant structures of the text only recursively enumerable 
rather than recursive. If a string is not a usable text or if a structure does not 
apply to a text, the rules may not give us that information. But if a string is a 
text and if it has a given structure, the rules will tell us so in a finite number of 
steps. It seems that linguists frequently aim at meeting this requirement. 
But, at present, they are far from that goal, and it may be that it is too 
ambitious an aim. 

3. A syntax of a language may be said to be computable in a different 
sense when it assigns, in a computable way, for each given usable text, all 
its relevant structures. It may be the case that the rules of paraphrasing, the 
rules of consequence and the rules of constant semantic changes all require 
only a small number of structures, that the structures imposed by some of 
them are already all the structures which may be imposed by any rules. 
However, even if one can assign to  a text all its relevant structures, one 
may not necessarily find all the texts immediately generated by the given 
text. There may be many unknown rules which generate various texts 
though they operate on the same known structures. On the other hand, a 
text may be an immediate consequence of infinitely many different texts. 
Peter is a student is a consequence of Peter studies and of Peter is a good 
student and of Peter needs money since he is a student, etc. The computability 
of syntax in this sense requires that the structures of the sentence Peter is a 
student which will be involved in its derivation from any text are imposed by 
some of the derivations, and that after deriving this sentence in a few ways we 
will know that no new structure of this sentence will ever be used. 
4. One also may call a syntax computable if all its rules are decidable, 

in the sense that for each pair of texts it is decidable whether they are linked 
by the rule. 

5 .  What was said before (under 1. or under 2.) about texts may be, in 
addition, required of rules. The set of rules must be recursive or may be 
only recursively enumerable in order that the syntax be called computable. 

6. A syntactic theory may be said to be computable, not absolutely, as 
in all the preceding senses, but relatively, namely relative to a subset of 
texts. As it is more plausible to produce a syntax computable in this sense 
than in the previous senses, a more detailed description of the claim is 
proper here. 
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Among all acceptable texts, A, of a language under study, there are some 
texts which will be called elementary texts, el (A). The elementary texts are 
characterized by having a property, P, which is recursive, i.e., there is a 
decision procedure which tells us which of the texts of the language are 
elementary texts. This does not mean that there is a procedure which tells us 
which of the arbitrary strings are elementary texts. The set of elementary 
texts is recursive relative to the set of all texts. If a string is a text, then we 
can find automatically whether or not it possesses property P and, therefore, 
whether or not it is an elementary text. This point is of some importance 
when one compares what is here proposed with other grammatical theories. 
In contemporary attempts at  syntax, there are concepts which refer to ele- 
mentary texts in this sense. In Harris’ theory (HARRIS [1965] in particular 
p. 384), it is possible to compute whether or not a sentence is in the kernel 
form. In Chomsky’s theory (CHOMSKY [1964]), it is possible to compute 
whether or not a sentence is obtainable within the base. Again, in the theory 
sketched below, it is possible to compute whether or not a sentence or a 
longer utterance is regular. But all claims, if ever made, that there is a pro- 
cedure which, for an arbitrary string, decides whether it is a sentence in the 
kernel form, or whether it is obtainable within the base, or whether it is a 
regular utterance, remain disappointingly unfulfilled. 

There are many essential reasons for this. Among them an important one 
is that the language allows only some co-occurrences of words. He got a 
persistent cold and He got a sketchy knowledge of farming are English 
sentences, but He got a sketchy cold presumably is not an English sentence. 
Furthermore, for longer sentences, and for texts longer than a sentence, the 
co-occurrence restrictions become more involved. Oak is hard, This winter is 
hard are acceptable but Oak is hard but this winter is harder is a doubtful 
utterance. If one wants to understand it, one must assume that harder here is 
not short for harder than oak but is short for some phraselike harder than the 
other winter. Therefore, in the surrounding text there should be a phrase to 
which the comparison refers. One must note also that the structure of a 
sentence often depends on its environment. But John reads more than Peter 
has different readings depending on whether it appears in Peter talks more 
than John. But John reads more than Peter or in Peter reads a lot. But John 
reads more than Peter. In the first case we may freely add But so far as 
reading is concerned .... €n the second case we would paraphrase rather by 
But so far as John is concerned.. . . 

A text has references to itself. Pronouns, classifiers, and comparatives are 
among the instruments for referring, in an English text, to other parts of 
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itself. One may suppose that there is a general procedure which for any given 
acceptable text decides the references of the text to itself. (One may add that 
such a procedure may resolve the references only up to involved ambiguities, 
and up to the clarity of the text, in this respect.) But from the existence of a 
procedure to decide the referential structure of a text does not follow the 
existence of any procedure to construct all the referential structures of the 
language. As in many other aspects of syntax, here semantics plays an 
essential role. In order to construct an acceptable text, one has to know that 
some sentences are true. In the text M y  brother and his wife went to the 
theater. The man bought the tickets the phrase the man refers to my brother and 
the phrase the tickets is short for the tickets for it where it is a referential for 
going to the theater. In order to  construct this text one has to know some 
facts, namely that my brother and not his wife, nor a theater, is a man, and 
that going to a theater requires tickets. No syntax can give these facts, 
though a syntactic analysis of texts may discover many of the facts which are 
explicitly or tacitly assumed by the speakers. It is implausible that the set of 
assumed true sentences be recursive. It depends on our changing knowledge, 
and our opinion, which does not change our language though it does change 
its use. 

From the set of elementary texts, every text of the language is obtainable 
by application of a finite subset of the relevant rules. There are many, 
presumably infinitely many, rules which govern paraphrase, consequence 
and constant semantic changes in language. It may be assumed that all of 
these rules are derived from some elementary rules; that every application of 
a relevant rule can be viewed as a finite combination of applications of 
elementary, primitive rules in such a way that for each rule there is a pro- 
cedure which prescribes for each of its uses which primitive rules and in 
what order are to be used. The set R of all relevant rules is, therefore, 
recursively enumerable relative to the set el(R) of elementary rules, and the 
set of all texts is recursively enumerable relative to the set el(A) of elementary 
texts by the set el(R) of elementary rules. In addition, we can assume about 
elementary rules that they are decidable in the sense (like in 4. above) that 
there is a procedure which decides for each set of strings whether they are 
linked by one of the rules. 

This sixth sense of computability of syntax, the sense in which it seems 
plausible that one can eventually produce a computable syntax, can be 
summarized as follows : 

There are A, el(A), R, el(R) and P, such that 
(i) A is the set of texts in the language, 
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(ii) el(A)cA, 
(iii) P is a recursive property, 
(iv) w e l ( A ) r .  P(N) A ~ E A ,  
(v) R is the set of relevent rules for the language, 
(vi) e l (R)cR,  

(vii) el(R) is finite, 
(viii) p is e l ( R ) I p  is decidable, 

(ix) A is recursively enumerable relatively to el(A) by el(R), 
(x) R is recursively enumerable relatively to el(R). 
To illustrate some of the kinds of rules which may be relevant for a natural 

language, we will assume a short text and derive from it a few other texts. 
It is to be stressed, however, that this is a simple and simplified case, and 
that any adequate syntax of English would have to be much more involved. 
Let the assumed text be The teacher examined the students. Here we will not 
enter the problem that teacher is a nominalization of teaches and students a 
a nominalization of study. One, of course can go into these further details, 
as well as into the fact that teacher and students is a pair of relative terms 
(like father and daughter, or like master and servant, to use Aristotle’s 
example). But, for simplicity, we will treat the teacher and the students as 
noun phrases (N). Similarly, we will not use the referential nature of the 
definite articles in these phrases. 

The structure which we will assign to this sentence will be used by the rules 
to derive other sentences. (The notation: N - a noun phrase; S - a sentence; 
(S; N-N) - a phrase which forms a sentence when flanked on both sides by 
noun phrases; Q - a quantifier, including an article; A - an adjective; 
vrbn[N] - a verb number mark in agreement with a noun phrase; t - a 
tense mark. Thus, in the structures exhibited below, the teacher is a noun 
phrase marked by 2, ed is both a tense mark and verb number mark in 
agreement with the teacher, examin is a phrase which when followed by 
a tense mark and a verb number mark in agreement with C forms a phrase, 
which in turn froms a sentence when flanked by two noun phrases.) Some of 
the rules will be paraphrase rules, others will be rules of consequence, 
sometimes applied in reversed order so that from a consequence we will 
obtain its premiss. Still other rules may not have a clear semantic role yet 
but are useful technical aids. 

(a) The teacher examin ed * the students 
N * ((S;N-N);-tvrbn[N]) t vrbn N * 
C C Q  1 C 1  sz 
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Because examin is indeed followed by a tense mark and by a verb number 
mark, the structure reduces to a more global structure 

(a') The teacher examin ed the students 
N * (S;N-N) * N * 
c c f t  52 

which in turn reduces to S .  For some derivations it may suffice to know that 
the string is a sentence; for other derivations a more refined structure may be 
required. For the derivation which follows, the structure (a) will be used. 
First we will obtain The teacher gave an examination to the students and The 
students took an examination from the teacher which are relatively close 
paraphrases of (a). It is a frequent English procedure to obtain new para- 
phrases by nominalizing the verb and preceding it by an appropriate modal 
verb, with the same tense mark, and with a verb number mark in agreement 
with the noun phrase which is the subject of the new sentence. Different 
verbs take different modals in the form when the subject and the object 
are in the same positions as before, and different modals in the form in 
which the subject and the object are interchanged. Thus Oxford published 
Woodger, Oxford made a publication of Woodger, Woodger got a publication 
at Oxford; John will address the government, John will give an address to the 
government, The government will get an address from John. Some of the 
sentences receive a fluent modal with the original object before the nomi- 
nalized verb: Peter called me, Peter gave me a call, I g o t  a call from Peter or  
Z received a call from Peter. Similarly: The teacher gave the students an 
examination. The details of the transformations involved in these and 
similar cases vary slightly, depending on the choice of words. In the case of 
(a) the subject modal transformation goes from a sentence of the form 

(1) U P  Y 6  & 

N ((S; N-N); -t vrbn) t vrbn [N] N 
c C d  1 2 1 2  C Q  

to a sentence of the form 

(ZM1) c r q y  6 a n P  tion E 

z 1 2  c d 1 2  52 
N t vrbn ( ( S ;  N-N); -t vrbn) N 

Here q and 5 are new phrases which must be specified for each P. In our 
case, for P = examin, q =give and [ = to. So that applying the rule of 
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subject modal to (a) we obtain 

(ZMa) The teacher give ed * an examin 
N *  t vrbn ((S;N-N); 
c 1 2  Z Q  

ation to the students 
-t vrbn) N *  

1 2  52 

The phrases an and ation are constants of the transformation (1) to (CMl). 
Instead of ation we sometimes have a different constant (ment as in en- 
lightenment, zero as in call). We have to use an auxiliary rule which changes 
give ed to gave. 

Parallelly, the rule of the object modal transformation goes from (1) to 

(QM1) E q’ y 6‘ an P ation 5‘ c1 

Q 1  n c 5 2  1 c c 
N t vrbn [N] ( ( S ;  N-N);-t vrbn [N]) N 

In our case 

(52Ma) The students take ed * an examin 
N *  t vrbn [N] ((S;N-N); 
52 1 52 Z Q  

ation from the teacher 
-t vrbn [N]) N *  

1 c c 
In (ZMa) and in (52Ma) there are phrases, give, an, arion, to, rake, from 

which are not parts of phrases to which grammatical categories are assigned 
in the second line. The structures which these transformations impose on the 
resulting sentences are partial only. The situation is similar to an arithmetic 
definition which does not specify exactly the grammatical categories of all the 
phrases of the definiendum. And just as in arithmetic we cannot use the 
definiendum without deciding its full grammatical structure, so for applying 
further transformations to (CMa) or to (QMa) we have to complete their 
structures. It is natural to treat an as a quantifier and examination as a 
phrase which together with a preceding quantifier forms a noun phrase. 
(This ammounts to treatingation as ((N; Q-); ((S; N-N); -t vrbn-) -).) 
Similarly, give is to be taken as a phrase which, together with a tense mark 
and a verb number mark, forms a “verb with N to N object”, i.e., ( S ;  N-N 
to N). These new assignments are done with a view of using some specific 
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further transformations. By and large, however, some assignments are much 
more fruitful than others, and one can suggest “local” rules for fruitful 
completions of grammatical structures. Using appropriate rules of that kind 
we obtain from (ZMa) 

(EMal) The teacher give ed 
N * ( ( S ;  N-NtoN);-tvrbn [N]) t 
c c 4 5 5 2  1 2  c 1 

* an examin ation to the students 

2 c 3  Q 
vrbn [N] Q (N;Q-) * N * 

The form of the structure (ZMal) lost the fact that examination is a 
nominalized verb. For several further operations it may be relevant, however, 
to recall this fact. We cannot, therefore, say that (CMal) reveals all the 
relevant structure of The teacher gave an examination to the students. (CMa) 
shows something important which (CMal) does not. (ZMal) stresses the 
connection between give as a modal verb and give as a transitive verb. 
The transformation which applies to give as a transitive verb is applied here 
as well : 

(CMa2) The teacher give ed 
N * ((S; N-N to N); -t vrbn [N]) t 
c c 4 5 Q  1 2  c 1 

* the students an examination 

2 c 5 2  3 4 3  
vrbn[N] N * Q (N;Q-) 

The sentence The teacher gave the students an examination can be treated 
as a function of the teacher. It is so treated when it leads to the sentence 
I talked to the teacher who gave an examination to the students. We can also 
take it as a function of the students or as a function of the examination 
depending on how we combine it with other sentences: The students whom 
the teacher gave an examination did not like i t ,  W e  have read the examination 
which the teacher gave the students. In each case, out of the sentence a noun 
phrase is formed, by extracting from the sentence a noun, and by adjoining 
to the noun the remainder of the sentence by an appropriate relative pronoun. 
The general rule is this: If 

.P Y 6 
Q (N; Q-> 
1 1 
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is a sentence, then 
the y wh E a6 
Q (N; Q-) wh (N) 
2 3 2  3 

is a noun phrase. 

a function of the noun phrase p y :  
In this sentence @‘y6 we, therefore, take the discontinous phrase @...a as 

CI P Y  6 
(S; -N-) Q (N;  Q-) - 

2 3 1 2 1  3 

This is a standard way of combining sentences. The combining of sen- 
tences is one of the procedures for obtaining from some texts new texts. 
As stated above, it is expected that all texts are obtainable from some texts 
which are called ‘elementary’, and that the elementary texts are characterized 
by a computable property P. The problem remaining is what are the ele- 
mentary texts, and what should be the property P by which we recognize 
them. English may be reducible to more than one set of such texts, each with 
a different characteristic property. A reasonable assumption seems to be 
that an elementary text is a conjunction of sentences, each with a structure 
where every requirement is satisfied, i.e., if to a phrase the catagory (a; b-c) 
is assigned, then the phrase is within this sentence indeed flanked by phrases 
of categories b and c respectively. And similarly for more involved require- 
ments. Moreover, the sentences of an elementary text do not involve each 
other explicitly or implicitly except by conjunctions and by referentials. 
Such texts are called regularized. I talked to the teacher who gave an exami- 
nation to the students is not regularized in this sense, for it implicitly involves 
the sentence The teacher examined the students. The teacher examined the 
students. I talked to him is a regularized text from which the irregular one is 
obtainable by rules like those shown above. Him is a referential for the 
teacher and the period between the two sentences of the text serves as a 
conjunction. The text The students whom the teacher gave an examination did 
not like it is not regularized. Its regularized form is perhaps: The teacher 
examined the students. The students did not like it.  It is here a referential for 
the first sentence and The students for the students. The non-regularized text 
We have read the examination which the teacher gave the students involves a 
typical complication. The difficulty lies in the ambiguity of the phrase the 
examination. Either it is a referential for examined or it is short for the text 
of the examination. In our case it is certainly not a referential for examined as 
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we do not read an activity of examining. If we consider that the text The 
teacher examined the students. We have read the examination is regularized, 
we must take the examination as a higher order referential, a phrase which 
refers not directly to examined but to an understood feature of examined, 
namely that the teacher examined by asking a question and we have read 
only the question. What higher order referentials are admissible in each case 
must be given empirically. We use referentials in agreement with tacitly 
assumed sentences, sentences which are not explicitly stated because they 
are commonly known. No syntax can be expected to enumerate recursively 
all commonly known sentences which are implicitly used in referentials. 
Syntax, however, can to some extent find out what sentences were implicitly 
used for the referentials of given texts. Syntax and semantics merge. The 
use of a language presupposes the facts which are too trivial or too well 
known to be stated, though they are used for more involved locutions. The 
facts must be supplied independently of the syntactic theory and they 
constitute the recurrent anchorage of the theory in empirical linguistic data. 
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ON THE NOTION OF A COMPUTER 

Z. PAWLAK 
Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland 

In the theory of mathematical machines various machines are considered, 
such as Turing machines, push-down machines, finite automata, etc. but 
little attention is given to  formal definition of digital computers, programs 
and the study of their properties. 

The author's belief as well as that of many other people working in com- 
puter field is that a further development of this field requires more close 
relations with the existing computers. 

The paper contains formal definitions of a computer, a universal computer 
and a program. In the proposed language one can define and study machines 
which seem to be fairly good models of real computers. Some elementary 
theorems concerning computers are stated. One can find more details con- 
cerning the outlined topics in PAWLAK [1967]. 

1. Computers 

1 . 1 .  Memory 

Let A ,  C, V, be sets. Elements of A are called addresses, C is refered to as 
an alphabet and elements of C are called symbols. Elements of V are called 
markers. We allow the sets A ,  Z to be finite or infinite and the set V is as- 
sumed to be always finite. By A we denote the distinguished symbol of C 
called the empty symbol. 

Let Cand L be the sets of functions with domain and codomain as given below 

c c C A  L G  A'. 

Every CEC is called content of the memory and every [ E L  is called location 
of the memory. We assume that for every C E C ,  c ( x ) + A  for almost all X E A .  

DEFINITION 1. The memory is a system P=(M, I ,  0), where M =  C x  L 
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is referred to as a set of memory states, and I ,  0 are input and output functions 
of a memory with domain and codomain as follows: 

I : C  x A" x M +  M ,  0 :  A" x M --f M x Z, 

where n=O, 1, 2, ... is fixed for given memory. 
The function 0 may be considered as a pair of functions 

0 , : A "  x M - + M  and 0 , : A "  x M A C .  

We can extend functions Z and 0 for finite sequences of symbols and 
obtain new input and output functions I*, 0*: 

l * : C k  x An x M - t M  and O * : A "  x M - t M  x Z k ,  

where k=O, I ,  2, .. . is some fixed number for given memory. 
Thus with every memory P we can associate the memory function 

l I p : Z k  x A" x M + C k  
defined as follows 

PI, = n p ( S k 2  a,, m )  = o;(G,, I*(2k, dn, 171)) 7 

where P k = y ,  ,..., y k ,  xk=x1 ,..., xk, &=a, ,..., a, and yi, x , e C ,  a,eA, nieM. 
Two memories P and P' are said to  be equivalent if and only if 

np = np.. 
If the memory function does not depend on some arguments we shall 

omit those arguments and write simple for example n p ( & ) .  

Example 1. One address memory. Let N denote the set of natural numbers 
0, 1,2, ... . We assume for this memory A = N ,  C = N u A  and the set of 
markers V consists of only one element u. Input function for one address 
memory is as follows 

I(x, a, 112) = m ,  = ( c l ,  l , ) ,  where 
x if z = l I ( u ) ,  
c ( z )  if z i 2 ,  ( u ) ,  

c1 ( z >  = 

1 ,  (0) = a ,  

and a, Z E A ,  XEC, m e M ,  m = ( c ,  I>. 
The output function for this memory is 

O(u ,  m )  = <m, ,  ~ ( u ) ) ,  where m ,  = ( c 2 ,  1,) and c2 = c ,  
1, (v) = u . 
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The extended input and output functions for one address memory are 

I*(&,, a, m) = m, = (cl, l , ) ,  where 
c l ( z )  = xi if z = a + i - 1 and c l ( z )  = C ( Z )  otherwise, 

l , ( u ) = a ,  1 6 i 6 k .  

O* (a, m )  = ( m , ,  Z k ) ,  where m2 = ( c 2 ,  1 2 )  and c2 = c ,  
b ( V )  = a 9 

x i  = c (a  + i - 1). 

One can easily show that for one address memory n , ( X )  =Xfor  all X€Ck.  

Example 2. Stack memory. The sets A ,  C, I/ are the same as in the Ex- 
ample 1. Input function for stack memory is the following 

I ( x ,  m )  = m ,  = (c,, l , ) ,  where 
x if z = l 1 ( u > ,  
C ( Z )  if z =k 2, ( u ) ,  

c1 (z) = 

1, (0) = E(v) + 1 

Output function for this memory is 

O ( m )  = ( m , ,  c ( l ( u ) ) ) ,  where m2 = ( c 2 ,  1,) and c, = c ,  
l , (u )  = l ( u )  - 1 for l ( u )  > 0 and undefined for l ( u )  = 0 .  

The extended input and output functions for stack memory are as follows 

I*(&,  m )  = m 1  = (c,, I , ) ,  where 
x i  if z = l ( u ) + i  ( l < i < k )  i c ( z )  otherwise, c1 ( z )  = 

l , ( v ) = l ( u ) + i .  

O*(m)  = (m,, Z k ) ,  where m ,  = (c,, 1 2 )  and E ,  = c ,  

x i  = c(Z(u) - i + 1). 

One can easily verify that n P ( X ) = X - '  for all X € C k ,  where X - '  is to  mean 

Z2(u) = Z(u) - (k - l), 

xk, ..., X I .  

I .2. Instructions 

With every computer there is associated the finite set of instructions, 
R = { r o ,  r l ,  ..., r s ) .  Instruction rER is a function r :A" x M - t M ,  where n>O 
is some fixed number for a given computer. 

Two instructions r and r' are said to be equivalent if and only if for all 



258 Z.PAWLAK 

~ , E A "  and for all mEM 

If for all ~ , E A "  and for all m e M  

r (in, m) = r' (in, m )  . 

r(i , ,  m)  = m 

then r is called identity instruction and will be denoted by ro. 

r = r l  (ha, r2 (in, m)) , 

Composition of instructions r1 and r2 is the instruction r such that 

in, 6, E A" 

written short as r=rlrz.  
The instruction 

r' = r ... r 
/ h  

P 

is called an iteration of the instruction r and is written r'= r p .  

{ fa ,  f l ,  . . . , f , } .  Operation f E F is a function 
With every computer there is associated a finite set of operations, F= 

f : C n ' + C n 2 ,  n, ,n2  >O. 

Instruction r is called admissible for the memory P and the set of operations 
F if r can be represented in the form 

r ( i n ,  m )  = I*{f[oz(~ m ) ] ,  in, OT(& m ) } ,  

where f is some operation from F and I * ,  0" are the extended input and 
output functions of the memory P .  

Example 1. Transfer instruction. Let P be the memory for which A = N ,  
C = N u  A ,  V={vl, v 2 } .  Let us assume the following input and output func- 
tions for the memory P: 
i*(x, a,  b,  m) = m l  = (cl ,  1 1 ) ,  where XEC, a ,  b E A ,  m, m , E M  
and 

x if z = Z(u2) = b ,  
c(z) i f  z =I= 1 ( u 2 ) ,  
b i f y = v 2 ,  

O* (a,  b, m)  = ( m 2 ,  x) , where m2 = (c,, 1 2 )  and c2 = c ,  

a i f y = v , ,  

x = C ( l 2 ( V 1 ) )  = C(.). 
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Let us denote the transfer instruction by T(a,  6 ,  rn) and assume that the set 
of computer operations F contains the identity operation i(x) = x. We define 
transfer instruction as 

T(a, b ,  m)  = m’ = (c’, 2’) , where 
c (a )  if z = 2(v2), 
C ( Z )  if z + Z(u2), 

c’(z) = 

a if y = u I r  
b if y = u , .  

One can easily see that so defined transfer instruction is admissible for the 
assumed set of operations and assumed memory because 

T(a, b,  m) = I*{i[O,*(a,  b ,  m ) ] ,  a, b, o:(a, b, m ) } ,  

for any a, 6 ,  m. 

Example 2. Two address addition instruction. Let us consider memory 
with A ,  C, V and I*  the same as in the Example 1 but the output function 
defined as follows 

0” ( a ,  b ,  m) = ( m , ,  2,) , where m2 = (c,, I,) and c2 = c ,  
a if y = v , ,  
b if y = u 2 ,  

x1 = c ( 4 ( u 1 ) )  = C(a) ,  

I , (Y)  = { 
x2 = c ( Z , ( U , ) )  = c ( b ) .  

Let A(a ,  b, m) denote a two address addition instruction, defined as 
A(a, b, m)=m’=(c‘, 1‘)  where 

c ( a )  + c ( b )  if z = I ( u 2 )  = b ,  
if z + 1 (u2) ,  

c(2)  = 

a if y = u , ,  i b if y = u 2 .  l ( Y )  = 

One can easily verify that if the computer operations set contains addition, 
then the instruction A(a ,  b, m) is admissible 

A ( a ,  b ,  m) = I {  + [ 0 2 ( a ,  b,  J ~ I ) ]  a, b,  0, (a, b, f i x ) } .  

In the sequel it will be assumed that all the instructions are admissible, thus 
“instruction” will always mean “admissible instruction”. 
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DEFINITION 2. Instruction which changes the content of at  most one ad- 
dress in the memory or changes the location of at most one marker in the 
memory is called simple. 

THEOREM 1. Every instruction can be represented as a composition of 
simple instructions. 

1.3. Conditions 

With every computer we associate a finite set W= { W , ,  W,, . . ., Wr}, W i c  M .  
The elements of Ware called conditions. We say that the memory state me M 
satisfies the condition Wi if and only if mE Wi. 

We say that a condition Wi is admissible for the memory P if and only if 

Wi = ( m : m ~ M  and O;(&, m) = x> 

for some in, where 0: is the output function of the memory P and x is some 
fixed symbol of the alphabet Z. We shall consider only admissible conditions 
in this paper. For example for one address memory the condition may be 
the set 

W i = ( n z : m e M  and c ( a ) = O } ,  OEC, 

for some U E A .  

1.4. Control 

Let Q be a finite set of numbers { 1, 2, .. ., s>. A graph will be defined as the 
system G=(Q, Q', h,, hl), where Q ' t  Q and h,: Q- Q'-Q, hl : Q- Q'+Q. 
Q is referred to as the set of points of G and Q' is referred to as the set of 
end points of G. qeQ-Q' is called initial point of G, if for every q'EQ, 
q+hi(q ' ) ,  i=O,l. 

The sequence q l ,  .. ., q,., q i E  Q is called the path from q1 to q, in G, if for 
all i, l<i<r ,  q i + l = h j ( q i ) ,  j = O , l .  

By thejow graph we shall mean the graph G which satisfies the following 
conditions : 
1". G contains exactly one initial point, written 4,. 
2". The set of end points is not empty. 
3". For every point qEQ-qo there is a path from qo to q in G. 
4". For every point qEQ-Q' there is a path from q to q', where 4'60' .  

DEFINITION 3. The control S of the computer is a system S= ( G ,  rp, $, v) 
where G is the flow graph and rp, $, v are functions with domains and co- 



ON THE NOTION OF A COMPUTER 26 1 

domains as given below 

( p : Q + R ,  $ : Q +  W ,  v : M  x Q - + M  x Q ,  

and R, Ware some fixed sets of instructions and conditions respectively, M 
is the fixed set of memory states and Q is the set of points of the graph G. 
We assume that for every end point of Q we associate the identity instruction 
ro 

Elements of Q are also called control states. Elements of the set T= M x Q 
are called computer states. The function v is called transition function. If qo 
is the initial state of the control then ( m ,  q,,) is called the initial state of the 
computer; if q is the end state of the control, then ( m ,  q )  is called the end 
state ofthe computer, where mEM is some state of the memory. Let t = ( m ,  q) 
and t ’= (m’ ,  4‘). 

Transition function will be defined as follows 

1.5. Computers 

DEFINIT~ON 4. Computer is a system A= ( P ,  R ,  W, S ) ,  where P, R, W, S 
are the memory, the set of instructions, the set of the conditions and the 
control of the computer respectively. 

The sequence to,  t , ,  ..., tk is called the computation of the computer A if 
and only if for each ti€T (where T is the set of states of A), and for every 
i, 1 < i <  k,  t i+ = v ( t i )  and to ,  t ,  are the initial state and the end state of the 
computer A respectively. ti  are called steps of the computation. 

tk will be denoted by Corn(?,). The function Com may be considered as 
a pair of functions Corn, and Com, such that Com, ( to)  = m and Com,(tO) = q, 
and Com( t , )= t ,= (m,  4 ) .  

Thus with every computer A there is associated the function 

44(& 4, m) = 0; {En, Corn, [ I*(& d,, m) ,  401) , 

where Z* and O* are input and output functions of the memory of the 
computer A. 

DEFINITION 5. We say that the function f (xl, ..., xk) is computable by the 
computer J? if and only if f=+A for some 6, and m. 
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DEFINITION 6. The set C' c C* is decidable on the computer if and only 
if for all XEZ* there exist such dn and m that 

where 0, 1 are some distinguished elements of C. 

DEFINITION 7. The set Z 'cC*  is generable on A if and only if for all 
XEZ' there is a sequence Xk=xl, ..., xk, xi€C such that 

4,(Xk, d,, m) = x for some 5, and m.* 

Computers A and d' are equivalent if and only if f A  = f,., where f, 
denotes the function computable by the computer A, and similarf,,. 

Note. If the function f is given and we search for the computer A such 
that f = 4 ,  one may speak of synthesis of computer A. If computer di' is 
given and we search for the function 4, one can speak about the analysis 
of the computer A. 

2. Universal computers 

2.1. Classes of computers 

DEFINITION 8. Two computers A and A' are of the same class if and 
only if the memories, the instructions and the conditions of both computers 
are identical. 

In other words the computers belonging to the same class may differ at 
most in the control. 

Let X={A1 ,  ...} be the class of computers. Then by f,=(f,,, 
fA2, .  . .>, where f A ,  is the function computable by the computer Ai - we 
denote the class of functions computable by the computers of the class X'. 
Two classes of computers X ,  Y' are equivalent if and only iff,=fxr. 

One can easily define the class of one address computers, the class of two 
address computers etc. and show that these classes are equivalent. 

2.2. Universal computer 

Let X be the class of computers with alphabet Z. Computers from Y are 
denoted by A. Let be the following computer not belonging to the class 
X .  For the sake of simplicity we assume that the computer "I has the same 

* Definitions 5 ,6  and 7 are modified versions of definitions given in SCOIT [1967]. 
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set of addresses and the same alphabet as the computers from the class X,  
i.e. A=O, 1,2, ... and C=O, 1,2 ... . The input and output functions for the 
computer 9X we assume as follows 

I*:X x Zk x M + M  and 0 * : M + M  x C k ,  

where M denotes the set of memory states of the computer YX. 

DEFINITION 9. The computer 9,%? is a universal computer for the class of 
computers 3? if and only if for all zk€zk7 &EX there exist mEM such that 

where qo is the initial control state of 9X. 

2.3. Synthesis of universal computer 

Let d = ( P ,  R ,  W,  S )  be any computer which belongs to AT. We shall 
now define computer 9,%?= (P, R, W, S) in terms of computers of the class 
X and then we show that %R is universal computer for the class of computers 
X .  In order to define 9X we have to give P, R, W, S. Let us start with the 
construction of P. 

2.3.1. Memory of the computer 9X 
We recall that as the set of addresses for P we assumed the set of natural 

numbers N=O,  1, 2,  .. . . Let C be the set of content functions of P, and let Q 
be the set of control states of A. By C , = C ( ( N - Q )  we denote the set of 
partial content functions with domain restricted to the set N - Q .  We shall 
call functions from C ,  the reduced content functions. The set of markers U in 
P consists of one element u. In order to define the input and output functions 
for P we have to introduce some additional notions. 

Let M be the set of memory states of A, and let S = ( G ,  cp, $, v )  be 
the control of A, where G = ( Q ,  Q', ho, hl ) .  We introduce 1-1 mappings 
rc:M-+C,, p:R-+R,where R=(rO,  r l ,  ..., r,) is the set of instructions of the 
computer JZ and R=(rO, r l ,  . . . 7  rs), ri:A" x C,+C, - such that for all m E M ,  

and rER 

K(r(Gn, m)) = C P ( ~ > ]  (kn, ~ ( m ) ) .  

By qp is to mean the function qp:Q+R such that qp(q)=p(q(q)) ,  for all 

Let us denote by W= { W,, . .., W,} the set of conditions of A. By o is to 
s E Q .  
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mean 1-1 mapping w :  W+W, where 

w = {W1, w,, ...( WP}, wi c c, 
such that for all meM 

. i c ( r n ) ~ w ( W ~ )  ifandonlyif  t n ~ W ~ .  

$ m  denotes the function $,:Q+W such that $,(q)=w($(q)), for all q E Q .  

The set of functions (qp, $ m ,  h,, h , )  we shall denote by 0. Let 6 be 1-1 
mapping 

6 : 0 + C’ , 

where C ‘ c Z  and C’ is finite. 6 will be called the encoding function. Thus we 
are able now to represent 0 = (qp, $(*, h,, h , )  in the alphabet of !lJl. 

The input function I* of P we define as follows 

I*(&, X k ,  m) = m’ = (c’, 1’) , where 
if 0 < z < IQI, {::’;::, G,, m)) if z > IQI, 

c ’ ( z )  = 

l’(U) = 40 3 

and I* is the input function of A, 1Q1 denotes the number of elements of Q. 
The output function O* :M+M x Ck of ‘%TI satisfy the condition: 
for all mEM there exists such IEL that O z ( m ) = O z ( ~ ( m ) ,  1). 
Thus we defined the memory of 93. 

2.3.2. Instructions of the computer !lJl 

Now we have to  define the instructions of 1151. The set of instructions of !lJl 
will consist of two instructions go, 93. 9, is the identity instruction and W 
is defined in  the following way: 

9 ( m )  = m’ = (c:, 1‘) , where m = (c,, 1) and 

4 = [qp(l(u))l (cr) 7 

ho (1 (4) if c: E $0 (1 (4) i h 1 (1 (4) if c: # $ m  (1 (.>I . 
1’ (u) = 

2.3.3. Conditions of the computer !lJl 
In the computer !lJl we shall consider only one condition V 

W =  (m:mEM and l(u)eQ’ and $,l(u)= r o } ,  
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where Q' is the set of end states of M and ro is the identity instruction of 
YJI. The condition W will be written STOP. 

2.3.4. Control of the computer YJI 
The control of 9Jl we shall simply give in the form of a table 

In the table the control states are qo, ql, q,, q3 and q2 being the end state. 
cp, $, ho, h ,  are the corresponding functions of the computer m. 

Thus we completed the definition of the computer YJI. Now we are able 
to prove the following theorem 

THEOREM 2. The computer llJz is universal computer for the class of com- 

PROOF. In order to prove this theorem we have to show that for every 
puter .X. 

function,f, and for all Zk there is a computation in such that 

for some mEM. Because fA  is computable by A' therefore there is in 4 the 
computation such that 

2) 0; {Corn, [ I * (ZkY 4, m), 401) =f"&(4 
for some in and m. From the definition of I* it follows that to the initial state 
of the computer JZ corresponds exactly one initial computer state of M ,  
which is 

= (I* z k ?  m), 40). 

From the definition of the control of YJI results that to each step of the com- 
putation in 4 corresponds exactly one step in the computation in llJz- such 
that ti+ =?(ti) if and only if ti+ = v( t i ) ,  where ? is the transition function 
of 9Jl. Further from the definition of the control of it follows that 9Jl is in 
final state if and only if JZ is in its final state. By the definition of p we have 

(K [ z * ( f k ,  4, m), 40313 = [I* 2k ,  m), SO] * 



266 Z .  PAWLAK 

By the definition of the output function O* and by 2) we obtain 1) which com- 
pletes the proof. 

In this manner one can define various universal computers, for example 
one address universal computer, two addresses universal computer etc. and 
prove some properties of this computers. 

3. Programs 

Let P=ClQ be the set of the partial content functions of the universal 
computer YJl with domain restricted to the set Q, such that for all q E Q ,  

& E X ,  

= S ( @ ( q ) ) ,  

DEFINITION 10. Each function #EP is called a program in m; O(q)  is 
called a program instruction (which is to be distinguished from machine in- 
structions considered in the first section of this paper); q is called label or an 
address of the program instruction O ( q ) ;  S(O(q)) is called a code of O(q). 

With every program + t ~ g  in %TI we can associate a function f h  computable 
by the program p on the machine YJl. Two programs # and p’ are said to be 
equivalent if and only iff+ = f+.. 

It seems very important to study in detail the question of equivalence of 
programs but this is not the aim of this paper. We are going now to state 
without proof theorem concerning the form of program instructions in 
universal computers. 

THEOREM 3. For every universal computer YJl there exists an equivalent uni- 
versal computer YJl’ such that for each program instruction 

@ ( 4 )  = (CP, (41, $ m  (417 ho (41, hl(4)) 

of m’, any of below given properties may hold 
a) ho(q)=q+ 1 for all ~ E Q ,  

a’) h,(q)=q+l for all q E Q ,  

b) if q p ( q ) + r o  then h, (q )=h , (q )=q+  1 for all q E Q ,  

c) if qp(q )=ro  then ho(q)=q+ 1 for all q E Q ,  
c’) if qp(q )=ro  then h,(q)=q for all q E Q .  

Much attention has been recently paid to the semantics of programming 
languages. It seems that the presented formalization of computers and pro- 
grams contribute to this problem. The meaning of the program p can be 
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defined as the computation carried out on the universal computer !Dl ac- 
cording to the program #. Thus we can define the valuation of programs in 
the computer states in such a manner that the computation associated with 
the program yields the value of the computed functions. Thus we have the 
method for solving the following problem: let f i  be program of a universal 
computer !Dl, and let h be a computable function. We ask whether h = &. 
This seems to be of some interest not only for the theory of programming 
but also for practical computation. 
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INTERPRETATION OF QUANTIFIERS 

D. F0LLESDAL 
University of Oslo, Oslo, Norway 

1. Quantification theory might seem to be a well defined province of logic. 
Its syntactical and semantical features are quite well known to us, thanks to 
the work of Lowenheim, Skolem, Herbrand, Godel, Church and numerous 
others. 

One of the notable features of quantification, according to QUINE [1943, 
pp. 123-127; 1953a, p. 150; 1953b, pp. 79-80; 1960, pp. 166-1681 is its close 
connection with the substitutivity of identity: any interpretation of quanti- 
fiers requires the traditional substitutivity axioms of identity, that is state- 
ments of the form: 

(1) (4 ( Y >  (. = Y = .Fx = FYI 

to be true (Quine’s thesis), cf. esp. QUINE [1953b, p. 79, formula (51)]. Here 
‘F’ stands for any predicate, simple or complex. 

Note that it is the interpretation of the quantifiers that requires statements 
of form (1) to be true. Quine’s thesis is therefore not refuted by merely 
exhibiting a system of quantification theory in which (1) is not a theorem. 
If Quine is right, such a system would be semantically incomplete, there 
would be formulas in the system, like (I), which are valid, that is, true under 
every interpretation, but not provable. 

Quine has pointed out that as a consequence of this, the prospects of a 
quantified modal logic seem dim (QUINE [1943, p. 127; 1953a, pp. 150-156; 
1953b, pp. 80-81; 1960, pp. 197-1981). However, one of the foremost pro- 
ponents of quantified modal logic, Jaakko Hintikka, has rejected Quine’s 
thesis and argued that there is no such connection between substitutivity and 
quantification. To quote the closing sentence of HINTIKKA [ 19611 : “. . . our 
considerations serve to show that the principle of substitutivity of identicals 
is normally unacceptable in modal logic.” 

Hintikka has not only rejected Quine’s thesis. He has constructed a system 
of quantified modal logic in which (1) is not a theorem and, what is more 
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important, he has developed a semantics for these systems which does not 
require (1) to be true.l 

What better evidence could there be against Quine’s thesis? 
In view of all this evidence it might seem foolhardy not to give up the 

thesis. Yet in a paper, “Quantification into causal contexts” which I read to 
the previous Congress for Logic, Methodology and Philosophy of Science, 
in Jerusalem 1964 (FBLLESDAL [1965]) I gave an argument in support of 
Quine’s thesis, and I also indicated how one may get a semantics for quanti- 
fied modal logic that is compatible with the thesis. 

In that paper, I concentrated on arguing for the thesis and did not discuss 
how the seemingly so overwhelming evidence against it could be disposed 
of. The present paper is an attempt to do  this. I shall first outIine briefly a 
semantics for quantified modal logic that is compatible with Quine’s thesis, 
and then go on to consider Hintikka’s semantic proposal in order to see 
whether it does actually constitute counterevidence to Quine’s thesis. 

2. The formulas of quantified modal logic are constructed by help of a 
finite or denumerable set of primitive predicates. An mplace predicate with 
its variable places filled with variables or other singular terms that satisfy a 
condition that will be stated in section 3 is called an atomic formula. Atomic 
formulas are formulas and so are all and only those closed and open sen- 
tences which can be obtained from formulas by help of truth-functional 
connectives, quantifiers, and the symbols ‘0’ and ‘0’. 

Let us now see how these formulas can be given an interpretation that is 
compatible with Quine’s thesis. There are several ways of giving such in- 
terpretations, the semantic proposals of KRIPKE [ 1959, 1963 a, 1963 b, 19651, 
MONTAGUE [1960,1967a, 1967bl and ScorT [1967] are examples. They all 
have in common that (1) comes out valid in them. 

In non-modal quantification theory the formulas are usually interpreted 
by specifying a universe and assigning extensions to the general terms and 
references to the singular terms. 

Modal quantification theory may be interpreted in a similar fashion, except 
that here more than mere extensions matter. One has to consider other 
possible situations, states of affairs, courses of events, points of view, worlds, 
etc. and determine what extensions the terms have in them. 

Formally, what one may do, is to consider a set K of such situations, 
states, courses of events, points of view, or  worlds H. With each H is as- 

1 See the articles and book by Hintikka listed in the bibliography at the end of this paper. 
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sociated a set Y(H), intuitively the set of individuals in H, and to each 
n-adic predicate n" is assigned an extension @(n", H) in each H, where 
@(n", H) is a subset of (Y (H))" (the nth Cartesian product of Y(H) with 
itself). To the identity predicate, I ,  in particular, @ assigns in each H the 
set of ordered pairs of members of Y (H) whose first and second members 
are identical, thus @(I, H)={(x, ~ ) : X E Y ( H ) . ~ E Y ' ( H ) . X = ~ ) .  The function 
@ is called a model. 

A more or less complicated structure may be imposed upon the set K ;  in 
the following we shall assume that a dyadic relation R is defined on K, and 
that one particular member of K, which we shall call G,  is given a preferred 
position; intuitively G is the actual situation, state, course of events, point 
of view, or world. An ordered triple ( G ,  K, R )  will be called a model 
system. 

The truthvalue ~ @ ( ~ n " ( a ~ ,  ..., a,)l, H) of an atomic formula rnn(al, ...,a,)l 
inHrelativetoanassignmentofobjectsa,, ..., a, of U,,,Y(H)toa,, ..., u, 
can now be defined as follows: 

(i) @(rn"(al, ..., a,)-', H)=T if the n-tuple ( a l ,  ..., a, , )~@(n",  H). 
(ii) @(rn"(al, ..., a,)', H)=F if ( a l ,  ..., a,)#@(n", H) and 

(iii) If (a l ,  ..., a,)$(!P(H))", then rn"(al, ..., an)l is without a truth value 

Given these assignments for atomic formulas, the assignments for complex 

I. A compound is without a truth value in H if and only if it has a com- 

11. If all components of a compound have a truth value in H then the 

<a,, '. -, a,> .( Y (HI)". 

in H.2 

formulas can be built up by induction as follows: 

ponent which is without a truth value in H. 

truth value of the compound is determined as follows: 

@(r-ql, H)=T if and only if @(q, H)=F; otherwise QS(r-ql, H)=F, 
@('cp.$l, H)=T if and only if @(q, H)=T and a($, H)=T; otherwise 

@(r[7q1, H)=T if and only if @(q, H ) = T  for every H'EK such that 

@(rOcpl, H)=T if and only if @(q, H')=T for at  least one H'EK such 

@P(rcp.$l, H)=F etc. for the other truth functional connectives, 

HRH'; otherwise @(rcl~l, H)=F, 

that HRH', otherwise @(rOcpl, H)=F. 

This idea of letting some formulas be without a truth value in some possible worlds is 
reminiscent of Frege's and several others' treatment of names without a reference (cf. 
Frege's informal writings, especially "uber Sinn und Bedeutung"). As far as I know, the 
first to use it in modal logic was Prior in his systemQ in PRIOR [1957], cf. also PRIOR [1967]. 
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(Note that according to the general rule I, ‘0cp1 and ‘Ocpl are without 
truth values in H if and only if cp is without truth value In H.) 

If M, PI, . . . , p, are all the free variables in a formula cp, then C D ( ~ ( M . )  c p l ,  H) = T 
relative to an assignment of bl, ..., b, to &, ..., fl, (where the bi are members 
of Y(H)) if and only if @(q, H)=T relative to every assignment of a, 
b, ,..., b, to a,pl,  ..., p,, where a E Y ( H ) .  Otherwise, @(‘(M) cpl, H)=F re- 
lative to the given assignment. (The formula r ( ~ )  c p 1  is without a truth value 
in H relative to an assignment of b,, ..., b, to pi, ..., p, if not all the b, are 
members of Y (H).) 

We now define validity as follows: Let cp‘ be the universal closure of cp; 
then cp is valid if and only if @(cp‘, G)=T for every model @ on every model 
system (G ,  K, R ) .  

This completes the presentation of a semantics of quantified modal logic. 
The notion of possible situations, states of affairs, courses of events, points 

of view, or worlds is of course at least as vague and problematic as the ideas 
of necessity and possibility themselves, and I want to emphasize that here I 
am concerned solely with certain formal, model theoretic structures. These 
show, I hope, how quantified modal logic can be made formally respectable, 
free from logical difficulties. They do not suffice to make it philosophically 
respectable. Their main relevance for philosophic discussion seems to be that 
they show that if one is to take exception to quantified modal logic, it has to 
be on philosophic grounds, and not on logical ones. 

3. In this semantics, (1) is valid. One might wonder what then happens in 
the cases that have caused difficulties for modal logic, as for example in 
connection with ‘9=the number of planets’. The answer is that this all 
depends upon what the singular terms of our modal theory are. Terms that 
behave like singular terms in ordinary extensional contexts often cease to 
do so in modal contexts. Thus for example ‘the number of planets’ behaves 
like a good singular term in extensional contexts, it has its fixed and unique 
reference. However, in modal contexts it attaches now to one object, now 
to another. Other terms, like ‘the moon of the earth‘ presently attach to one 
definite object, in other possible worlds there might, conceivably, be several 
moons of the earth, or none. Russell, when he created his theory of de- 
scriptions, pointed out that in extensional contexts, a description ‘( I X )  Fx’ 
can be treated as a definite singular term only when there is a unique object 
satisfying ‘Fx’, that is only when (3y) (x) (Fx= . x = y ) ,  and that words like 
‘Pegasus’ which cause difficulties in extensional logic, should be regarded as 
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disguised descriptions, that can be eliminated by help of his theory. Similarly 
in modal logic, the descriptions that cause difficulties are those that fail to 
satisfy a condition stronger than but similar to Russell’s, viz. ‘(3y) O.. .O(x)  
(Fx= .x=y)’, where the number of ‘ 0 ’ s  depends upon the number of layers 
of modal operators within whose scope the description occurs. If terms that 
cause difficulties are treated as disguised descriptions and eliminated (with 
due regard to the scopes of these descriptions) our difficulties vanish. (Cf. 
e.g. CHURCH [1942] and FITCH [1949].) 

The simplest, and also most satisfactory solution, for reasons having to 
do with tests for well-formedness, would be to eliminate all singular terms, 
as suggested by Russell and Quine, in favor of variables and general terms. 
These variables of quantification would then be our only singular terms; 
and this is the point I made in my above-mentioned paper: in order to get 
a satisfactory semantics for quantified modal logic these variables of quanti- 
fication have to obey the universal substitutivity of identity, so that if ‘x’ 
and ‘y’ are quantifiable variables, and x=y, then ‘x’ can be substituted for 
‘y’ in any context, salva veritate. 

The terms that cause trouble, like ‘the number of planets’, can, if we want, 
be retained in our vocabulary, but we must treat them as a special category 
of terms that have the same position within modal logic as that which 
definite descriptions lacking a descriptum have within extensional logic : they 
do not obey the usual rules of inference for singular terms, like substitution, 
existential generalization and universal instantiation. 

As is often done with descriptions in extensional logic, we may also, if we 
want, put the restricting conditions into the rules of inference, thereby re- 
stricting them rather than our vocabulary. This is to some extent a matter 
of taste. What is important is that whatever we do, our variables of quanti- 
fication, our bindable variables, obey the universal substitutivity of identity. 

The expressive power of our system is not affected by whether we put our 
restrictions upon the class of singular terms or into the rules of inference. 

Thus, for example3, the distinction between 

it is necessary that the next president of Brazil, whoever he may be, is an F 

and 

it is necessary of the individual who as a matter of fact will be the next 
president of Brazil, that he is an F 

3 I choose this particular example, since Hintikka has argued, in [1967 b, p. 1431, that on 
this approach the distinction between the two sentences in this example cannot be made. 
(Cf. also HINTIKKA [1966 a, p. 7, and 1967 a, pp. 46 ff.].) 
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is expressed in the following way if we retain in our vocabulary of singular 
terms “irregular” terms like ‘the next president of Brazil’, or for short ‘b’: 

and 
0 Fb 

(3x) ( x = b . O F x )  

while the distinction will be expressed in the following way if we restrict our 
vocabulary of singular terms and write ‘B’ for ‘is a next president of Brazil’ : 

0 (3) [(.) (Bx= =Y).FY-J 
(3y)  [(x) (Bx- .x=y).OFy]. 

As we see, and might expect, the paraphrases become more complicated 
when we choose to restrict our vocabulary. On the other hand, these para- 
phrases make explicit what exactly is meant by our two original statements, 
so explicit indeed that we do not have to make any restriction on our rules 
of inference. When we choose to leave the vocabulary unrestricted, ,the 
paraphrases become, as we have seen, simpler, but on the other hand they 
do not carry on the face of them exactly what was meant by the original 
statements. Their meaning becomes fully explicit only when we start applying 
the rules of inference for singular terms and find that ‘by does not fulfill the 
restrictions that have been put into those rules. 

4. Now, after we have seen one way of constructing a semantics for 
quantified modal logic, let us examine Hintikka’s semantic proposal. 

Hintikka’s semantics is in many respects similar to the semantics that has 
been outlined in the preceding pages. In fact, the latter is modelled on the 
former and is nothing but an attempt to keep Hintikka’s basic ideas and 
modify them so as to overcome the difficulties that will be discussed in this 
section. 

One main difference between the two semantics is that Hintikka’s models 
are sets of formulas, an extension of Carnap’s state descriptions, and not 
algebraic structures of the kind considered here. 

A model set p of formulas may be thought of as a partial description of a 
possible state of affairs or a possible course of events, a description that is 
just large enough to show that the described state of affairs is logically 
possible : A set of (quantificational) formulas is satisfiable if and only if it is 
imbeddable in a model set, cf. e.g. HINTIKKA [1963, p. 66, 1966 b, p. 581. The 
conditions that a model set has to satisfy, are designed to insure this. Com- 
plete lists of conditions are given in several of Hintikka’s works, for example 
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in HINTIKKA [1957a, 1961,1962 and 19631. In this paper our concern is with 
the following conditions for identity: 

(C. self=) 
(C. =) 

p does not contain any formula of the form - (a=a);  
If FEW,  (a=b)Ep,  and if G is like Fexcept for the interchange 
of a and b at some (or all) of their occurrences, then G E ~  
provided that F and G are atomic formulas or identities, 

and the conditions for the quantifiers, which in the first presentation of the 
semantics (HINTIKKA [1957a, p. lo]) had the following form: 

(-1 If (3x )  F E ~ ,  then F ( u / x ) ~ p  for some free variable a ;  
(C*U> If (x) F E ~ ,  then F(b/x)Ep for every free variable b occurring 

in the formulas of p. 
The modal operators are interpreted in terms of model systems: A model 

system is a set SZ of model sets, ordered by a dyadic relation R and satisfying 
the following conditions: 

(C-1 If OFE~ESZ, then F E ~ ;  
( C W  

(C.N+) 
A set of formulas is now satisfiable if and only if it is imbeddable in a 

member of a model system. 
Condition (C. self=) expresses the reflexivity of identity. Condition (C. =) 

expresses the restricted substitutivity of identity, substitutivity restricted to 
atomic, i.e. non-modal contexts. The unrestricted substitutivity of identity, 
advocated by Quine, is of course compatible with this condition; ( C . = )  
continues to hold if one adds a condition that requires identity to be uni- 
versally substitutive. However, the two sets of conditions would lead to  in- 
compatible decisions concerning satisfiability. Thus, for example, the ne- 
gation of (1) viz: 

(2) ( 3 ~ )  ( 3 ~ )  ( X  = ~ * F x .  - Fjl) 

where ‘F’ may be non-atomic and e.g. contain modal operators, is satisfiable 
in Hintikka’s semantics, but it is not satisfiable if the restriction in (C .  =) to 
atomic contexts is removed. 

Hintikka’s semantics as it stands is therefore incompatible with Quine’s 
thesis; it offers an interpretation of the quantifiers which does not require 
(1) to be valid. 

Our problem now is: how is it possible for Hintikka to interpret the 
quantifiers so as to make (1) invalid, i.e. (2) satisfiable? 

To get some insight into this, let us see how the following instance of (2) 

If O F E ~ E Q ,  then there is in SZ at least one p* such that 
pRp* and F e p * ;  
If [ ~ F E ~ E Q ,  then for every ~ * E S Z  such that pRp*,  F € p * .  
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is interpreted in Hintikka’s semantics: 

(3) ( ~ X ) ( ~ Y ) ( X = ~ . O G X .  - O G y ) .  

This formula is imbeddable in the following model system: 
p: (3~)(3y)(x=y.UGx. - O G y )  

( 3 ~ )  (a = y .  0 Go. - 0 GY) 
a = b .  O G a .  - I JGb  
a = b . U G a . - l J G b  

Ga 
Gb 

p* (where pRp*): - Gb 
Ga . 

As explained in HINTIKKA [1957b], this means intuitively that the two 
terms ‘a’ and ‘b’, which happen to refer to the same object in our actual 
world p, refer to distinct objects in some possible world p*, in which one 
of these objects is G, the other non-G. 

The situation is clear as long as we consider only the terms. However, 
ordinarily a quantifier is interpreted as saying something not about terms, 
but about objects referred to by terms, and one might wonder what happens 
to the object which in our actual world is the common reference of ‘a’ and 
‘6’ when we pass into the possible world p*. Is this object G or is it non-G 
in p*? 

Hintikka insists that his quantifiers range not over terms, but over objects 
referred to by such terms: “... the values of the variables have to be real, 
fullfledged individuals - which seems to me the only way of making satis- 
factory sense of quantification.” HINTIKKA [ 1967 a, p. 38, cp. also e.g. 1957 b]. 
However, although this may be Hintikka’s intention, his semantic conditions 
do not adequately reflect this. They are conditions on expressions, not on 
objects referred to by these expressions. And, as we have just observed, it 
is hard to see how Hintikka’s “substitutional” conditions for the quantifiers 
can be regarded as conditions on the objects referred to. (Cf. also my argu- 
ment on p. 269 of F ~ L L E S D A L  [1965].) 

In Hintikka’s later writings, the conditions for the quantifiers are changed 
to 

(C.E’) If (3x) F E ~ ,  then F(a /x )cp  and (3x) 17 ( a = x ) ~ p  for some free 
individual symbol a ;  

(C.  LJ’) If (x) F e p  and (3y)  IJ ( b = y ) ~ p ,  then F(b/x)Ep, 
for the case where the variable ‘x’ occurs within the scope of just one modal 
operator in F, and to more complicated conditions where ‘x’ occurs within 
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the scope of several modal operators, cf. HINTIKKA [1962, pp. 146-1471 and 
later works. 

After this change, formula (3) is still imbeddable in a model system, 
namely the same system as before, with the following formulas added: 
Additions to p :  (3x) 0 ( a = x )  

(3x) 0 ( b = x )  
0 ( a = c )  
0 @ = d )  

a = c  
b = d  
Gc 
Gd;  

Additions to p* : a = c 
b = d  
- Gd 

Gc. 
So this semantics, too, is incompatible with Quine’s thesis. And, since the 

fate of the object referred to by ‘a’ and ‘b’ in fi remains in the dark, the same 
difficulties as before arise in connection with the interpretation of the quanti- 
fiers. 

In addition, the revised rules introduce another anomaly in the interpre- 
tation of the quantifiers; the quantifiers now become context dependent: in 
order to see what a quantifier means one has to look at all the occurrences 
of the variable that is bound by i t ;  the interpretation of the quantifier comes 
to depend on the number and kind of modal operators within whose scope 
the variable occurs. 

Thus, for example, the formula ‘(x) OFx’ does not read, as one might 
expect, ‘every object is necessarily F’,  but rather something like ‘every object 
that is referred to by a free individual symbol that attaches to it in every 
possible world is necessarily F’.  

There are other difficulties in connection with Hintikka’s interpretation 
of the quantifiers. For example, as in other “substitutional” approaches, 
the universe is assumed to have no more objects than there are expressions, 
i.e. it is apparently supposed to be finite or denumerable. No sense is given 
to the notion of interpretation in a non-denumerable domain. For this 
reason, deep semantical results, like the Lowenheim-Skolem theorem, be- 
come pointless trivialities on this approach. Thanks to this theorem, how- 
ever, Hintikka’s semantics supplies an interpretation, of sorts, in a finite or 
denumerable domain for every formula that is satisfiable. But it does not 
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provide us with a more general notion of interpretation. In my opinion, 
Hintikka’s approach is therefore of interest and importance as a test for 
satisfiability, a proof procedure, but not as a general semantics for quantified 
modal logic. 

The limitation to denumerable universes can be lifted if one uses a language 
with non-denumerably many constants. However, the other, more serious 
difficulties that have been discussed earlier, remain. So why then use a 
“substitutional” interpretation at  all, why not use an interpretation in terms 
of models, for example of the kind outlined in part 2 of this paper. 

I hope that it is clear from what I have said that my objection against 
Hintikka’s semantics for quantified modal logic is not that it gives rise to 
inconsistencies, it does not; but that it is based on what I have called a 
substitutional, or expressional interpretation of the quantifier. The difference 
between this interpretation and the standard interpretation might seem in- 
significant, particularly when one confines one’s attention to extensional 
contexts. But here, as in many other cases, consideration of what happens 
in non-extensional contexts brings out the differences. The differences, and 
the ensuing difficulties in Hintikka’s interpretation of the quantifiers, seem 
to me to be so decisive as to  make Hintikka’s interpretation evidence for, 
rather than evidence against, Quine’s thesis concerning the intimate con- 
nection between quantification and the substitutivity of identity. 
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AN APPROACH TO CONSTRUCTIVE MATHEMATICAL LOGIC 

A. A. MARKOV 
Academy of Science, Moscow, USSR 

According to the fundamental thesis of constructive mathematics we con- 
sider in this science merely the results of our constructions (called construc- 
tive objects) and our abilities of realizing these constructions. We admit the 
abstraction of potential realizability, i.e. we abstract from practical limi- 
tations of our abilities in space, time and material and we argue as if such 
limitations were absent. 

In constructive mathematical logic our first aim is to explain logical con- 
nectives applied to propositions in terms of logical connectives applied to 
actions. This presents no difficulties for conjunction, disjunction and exist- 
ential quantifiers, since the applications of these connectives to actions are 
almost immediately clear. But the situation is different for implication: it is 
not immediately clear what we must do when we receive the order: “if you 
make action A then make action B” or something like that. 

In fact there are several possibilities of defining the meaning of irnplica- 
tion. Two of them will be considered here. 

1. We can explain ‘‘9 implies 9” [ 3 37971 1 as admissibility of the rule 
of passing from F to 9 in a certain calculus2. 

2. We can explain ‘‘lS9’’ as the deducibility of 9 from 37 by means of 
a certain system of inference rules. 

Both these ways correspond to the naive use of implication in mathe- 
matics. 

The rigorous realizations of both these ideas are connected with extensions 
of the language used to formulate S and 59: if even this language contains 
already the implication sign, this sign is now introduced in an essentially 
new sense. A stairwise construction of mathematical logic is thus expedient. 

1 We use here the polish notation. 
2 This idea is due to LORENZEN [1955]. 
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Difficulties of a different kind arise in connection with the generality 
quantifier. The natural explanation of this quantifier includes the require- 
ment of some “unique general method” of proving every instance of the 
general proposition in question. This leads to the acceptation of some, pos- 
sibly transfinite, hierarchy of Carnap’s inference rules. If at  the same time 
implication is introduced as deducibility, then we shall possibly have a trans- 
finite hierarchy of implications. 

In the sequel I describe an attempt to build some first few floors of a 
semantjcal system of constructive mathematical logic according to the brief 
outline above. 

As basis we take a formal language L, for the so called “pure semiotics” 
i.e. for talking about strings of letters, their equality and inequality, their 
juxtaposition, their beginnings and ends etc. In L1 we use conjunctions, dis- 
junctions, the existential quantifier, the restricted existential quantifiers (there 
exists a beginning (end) of . .  ., there exists a string (letter) occurring in.. .), 
the restricted generality quantifiers (for all beginnings (ends) of .. ., for all 
strings (letters) occurring in ...). 

In the description of L, we use the following signs : the sign of equality by 
definition “e”, the sign of graphical equality of strings in the alphabet of 
L, “T”, the sign of graphical inequality of such strings “+”. The meaning 
of other metalinguistic signs will be explained below. 

L, uses the alphabet 

A , $ ~ u b c (  ) = # & v V g (  ) I .  
Strings 

(a), (aa), (aaa), .. . 

are calledforrnal letters [FI] ; strings 

(b) ,  (bb),  (bbb),  ... 

are called lettervariables [Lv] ; strings 

(c), (CC), (CCC), .*. 

are called wordvariables [I Wv]. 
F1 and the letter F are called constants [Cn]. 
Lv and Wv are called variables [Vr]. 
Vr 6 and f2 are similar if both are Lv or both are Wv. 
Cn and Vr are called atoms [At]. 
Nonempty strings composed of atoms are called terms Tr. They can also 
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be inductively defined by means of the following two generating rules: 

Tr 1 At are Tr .  

Tr 2 T -  Tr, A - At 
TA - Tr 

The signs V and 3 are called quuntiJers [Qu]. 
The signs & and v are calledjunctors [Jn]. 
The signs ( and ) are called restricters [Rs]. 
The signs = and # are called elementary signs [Es]. 
Strings of the form (ToU), where T and U are Tr, CT is an Es, are called 

Formulae [Fr] are now inductively defined by means of the following five 
elementary formulae [Ef]. 

generating rules : 

Fr 1 Ef are F r .  

Fr2 

Fr3 

F - Fr, - Fr, a -  Jn 
a 9 3  - Fr 

9 - Fr, a - Vr 
IQ9 - F T  * 

F - Fr, T-  Tr, X - Wv, K - Qu, p - Rs 
KP-TYXF - Fr 

Fr4 

Fr5 
F - Fr, T -  Tr, 5 - Lv, K - Qu 

1~17'1 5s - Fr 

Parameters [Pr] of Fr are inductively defined by means of the generating 
rules 

Pr 1 
9 - Ef, a - Vr, Q occurs in F 

SZ - Pr o f 9  

Pr3 
9 - Fr, 0 - Vr, 52 - Pr o f F ,  Q + 0 

a - Pr of 3 e F  
- 

S - Fr, X - Wv, 7'- Tr, K - Qu, p - Rs, - Pr o f F ,  Q + X 
Pr4 ______-  

52 - Pr of rcpTpXF 

F - Fr, X - Wv, T - Tr, IC - Qu, p - Rs, Q occurs in T 
52 - Pr of x p T p X 9  

Pr5 ~ 



286 A. A. MARKOV 

- F , " . K P U P X ~  -~ 

F - F r , t - L v ,  T - T r , ~ - Q u , O - P r o f F , f 2 + t  
52 - Prof  K(TI &%= 

F - Fr, 5 - Lv, T -  Tr, K - Qu, 52 occurs in T 
52 - Pr of KJTI  (9 

Pr6 

__ Pr7 

- ~ 

'1cpF2 LUA p X 9 ,  if 52 is not a Pr of S different from X ;* 

K ~ F ?  LU-I pXF," LFJ, if 52 is a Pr of 9 different 

KPF," LU, pYF," LFt L9A-J, if 52 is a Pr of 
from X and X does not occur in T; 

from X and X occurs in T. 
different 

Fl and Lv are called Zetterterms [Lt]. 
Substituents [St] of Vr are defined as follows: Lt are St of Lv, Tr are St 

Let now 52 be a Vr, T a St of a. The (metalinguistic) operator of substi- 
of wv. 

tution of T for 52 is defined inductively by means of the following rules. 

Sbl 
A - At 

U - Tr, A - At 
F," .UA, e F: .U F," LA-J 

Sb2 
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F,RLKIUI t.FJ*< 

' K  IFF LUJ( (9, if D is not a Pr of 9 different from 5 ;  
K IF," LU,I 5F: L9J, if SZ is a Pr of 9 different 

K IFF LUAI qF," LF: L9JJ, if Q is a Pr of 9 different 
from 5 and t does not occur in T; 

and 5 occurs in T.  from 
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the potential realizability of choosing a Fb [Fe] 9’ of 3 LT_r, so that 
F i  LSJ will be true. 

Sn7. A Cf 3 IT1 5 9 ,  where 5 is a Lv, T a Ct, F- [F, expresses the potential 
realizability of choosing a F1 2 occurring in j LT_r, so that F2 LF, is 
true. 

Sn8. A Cf V p T p X F ,  where Xis  a Wv, p a Rs, T a Ct, F an XF, expresses 
that every Fr FZ LF_l, where B is a Fb [Fe] of 3 LT_I, is true. 

Sn9. A Cf VlTl 5 9 ,  where 5 is a Lv, T a Ct, F a 510, expresses that every 
Fr F$ L9_r, where 2 is a Fl occurring in j LT_r, is true. 

The applicability of a given normal algorithm to a given word can be 
expressed by a closed formula of L,, and therefore truth is undecidable for 
closed formulae of L,. At the same time a semantically complete calculus 
C, dealing with such formulae can be constructed. 

C, has the three axiomschemes: 

A1 

A2 

A3 

( T =  U )  [T, U - Ct; jLTJ 7 3LUJ. 

(TZ U )  CT, u - Ct;  jLTJ + 3LUJ. 

v l ~ l  tF  [t - L v ; ~ -  tF].  

I t  uses the following 20 inference rules 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

[Q - Vr; 9 - Av of 52; 3Y - QF]  , F.2 L S J  ~- 
352% 

[ X  - WV; 9 - X F ;  p - Rs, 9 - FI] . Fc” 2 1  
3 p 9 p X S  

X 
FSLTJ LSJ [ T - c t ]  . 
3pTpXJ 

3 < T < X J  
3 < T C < X f  

[C - Cn]. 

R8 
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R9 

R10 

R11 

R12 

R13 

R15 

R16 

R17 

R l 8  

R19 

R20 

Implication applied to closed formulae of L, is then introduced as ad- 
missibility of a rule in C , .  This implication is formalized in a language L,. 
which permits to build implications applied to formulae of L, and to form 
repeatedly conjunctions of formulae already obtained. The alphabet A2 of 
L2 is obtained from A, by adjoining the implication sign =I : A 2 e A ,  2. 
F1, Lv, Wv, Cn, Vr, At, Tr, Es, Qu, Ef, Lt, St, Ct, Fw, Fb, Fe, are defined as 
in L,. 

Fr of L, are now called formulae of first degree [FI d]. 
Strings of the form =I S9?, where F and 9 are Fld,  are called implications. 
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Formulae [Fr] are now inductively defined by the three generating rules: 
Fr l  Fld are F r .  
Fr2 Im are Fr .  

Fr3 
F - Fr, 9 - Fr 
&.%9 - Fr 

~~~ 

Parameters [Pr] of Fr are inductively defined by means of the three rules: 

Pr 1 
9 - Fld ;  SZ - Pr of F in L, 

SZ-Prof@ 

Pr 3 
@,F? - Fr; SZ - Pr o f 9  

SZ - Prof  &93, 52 - Pr o f & 9 F  
~- ~~~~ 

Let 52 be a Vr, T a St of a. The operator of substitution of T for Q[FF] 
is defined by means of nine rules Sbl-Sb9, where: 

Sbl-Sb7 are as in L1 with F ld  instead of Fr;  
Sb8 is as Sb4 in L, with F l d  instead of Fr and 2 in the role of a; 
Sb9 is as Sb4 in L, with & in the role of a. 
Cf and SZF are defined as in L, . V1 of Ct and Av of Vr are defined as in L,. 
Let 9 and 9 be Cf of L,. Let C' be the calculus, obtained from C, by 

adjoining to the list of inference rules of C, the rule F/9 of passing from 
F to 9'. We say that this rule is admissible in C, if there is an algorithm 
transforming every proof in C', into a proof of the same formula in C1. 

We define now the meaning of Cf in L, as follows. 
For Cf which are F 1 d : as in L, . 
An Im 199[F, 9- Cf of L,] expresses the admissibility of the rule 

A Cf &FF? [@, F? - Cf] expresses that both these Cf are true. 
No semantically complete calculus is possible for L,. A system of inference 

F/9' in C,. 

rules R'l-R'9 valid in L, can nevertheless be proposed. 

R'1 

R'2 

@ , 3  99' 
~~ ~ [F, 3 - Cf of L,] . 
9 

3 F9,3 9 2  
3 92 

[2 - Cf of L,] . 

R'3 
9 
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3 P9,3 9% 
R’4 

R‘5 

R’6 

R’7 

R’8 

R‘9 

x 3 9  [Z, 9 - Cf of L,]. 
&X9 

3 F g  LYJ 9 for every AvP of Q 
-__ 

3 3QY9 
____ [a - Vr, Y - QFof L,]. 

In this system the rule R 9  is of an essentially different nature in compari- 
son with the other rules R‘l-R’8. Like Carnap’s rule for the generality quan- 
tifier this rule permits to pass to the Cf below the dash as soon as we have 
a unique general method of establishing every instance of the Cf above the 
dash. 

We intend now to introduce implication “+” applied to closed formulae 
f and X of L, as deducibility of .X from $ by means of the rules R’I-R‘9 
with permission to use also arbitrary true closed formulae of L,. In the 
exact definition it will be appropriate to separate the applications of R’9. 
The definition will be inductive. 

%fX will mean that X is deducible from f and some true formula of 
L2 by means of the rules R l -R8 .  %$X will mean that there are 9, 9 and 
Q, satisfying the following conditions : 

1. Y i s  QFof  L , ;  
2. 3 is Cf of L,;  
3. we possess a general method of establishing S f 3 F ;  L9,9? for every 

Av B of 52; 
4. %&$33QY9X. 
Here i is an arbitrary natural number. One can suppose that transfinite 

induction can also be necessary. 
Happily the facts are much more simple. Even the implication ‘‘A” gives 

nothing new in comparison with “%”. For an exact formulation of the cor- 
responding result we need an algorithm 9, transforming every string of the 
form i $ X  [$, Z - Cf of L,] into a closed formula of L,. This algorithm 
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can be inductively defined by the conditions : 

L%LLF9,+3F9, 
& F 3 2 9 p 3  &F29, 

.%LA 3 9F9J+& V $9 3 9-9, 

9 LA 9 &XSJ e &B+ &X, gL> &LfJ, 

2 LL &X5?AA * 9 Lf 2-9 LA 

9% 2 29,e & 2 .# v f9 3 &F#9, 

Here 9, 9, S, 3 can be arbitrary Cf of L, ; # can either be an arbitrary 
Cf of L, or a Fr of L, of the form 399[2F, 9-Cf of L,]; X ,  9, A can 
be arbitrary Cf of L2 such that & X 9  is not a formula of L,. 

We see easily that the result of application of W to a string of the form 
k 4 ? 9 [ c . X ,  8 - C f  of L,] is everytimes a CF of L, independent of i. Now 
we can state the 

THEOREM 1. Whatever be the closed formulaeXand9  of L, and the natural 
number i ,  we have L X 9  if and only i f W ‘ , s % 9 J  holds. 

“The deducibility of 9 from 3? of rank i” is thus expressible by a formula 
of L, independent of i. In the sequel we omit the rank index i over the 
arrow. 

It is natural to define the deductional negation of a closed formula X of 
L, by means of 

7XS-r .X(F # 5). 

It follows from Theorem 1 that we have 7 -19- if and only if F is true. 
Here F is an arbitrary Cf of L, and the meaning of the ordinary negation 
sign i is defined in terms of implication 3 : 

19-=+3 9.7 # 7). 

Since the applicability of a normal algorithm to a word can be expressed 
by a closed formula of L,, this may be considered as the proof of a form of 
the principle of constructive selection: if the hypothesis of the nonapplica- 
bility of a normal algorithm to a word is reduced ad absurdum by means of 
certain inference rules then the algorithm does apply to this word. 

Another consequence of Theorem 1 is the deduction theorem which states 
that we have +99, if and only if zS9, where S and 9 are Cf of L,. 
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The deductive implication can now be formalized in a language L, per- 
mitting to form implications, applied to formulae of L,, and conjunctions 
of formulae already obtained. The construction of consecutive languages 
L, can be so continued that implication in every language L,(n 2 3) will have 
a deductive meaning. 

The sequence of languages L, so obtained can be incorporated into one 
language L,, in which implications and conjunctions can be formed without 
restrictions. The operator W can be extended to L, by means of the stipu- 
lations 

B L+%LYj $9 L+ W L X j  W L L Y A j ,  

W L & X - Y j  &9 LX-J W L2-J .  

Now this operator converts every closed formula of L, into a closed for- 
mula of L,. The language L, is thus reduced to L,. 

Let us now introduce the generality quantifier V. In language for- 
mulae are built from formulae of L, by successive left adjoinings of strings 
of the form VQ [Q-variable]. V Q X  where sf? is an Q-formula means that we 
possess a method for proving every formula F: LX,, where 9 is an arbitrary 
admissible value of Q. A natural system of inference rules R"I-R"I 3 can be 
proposed for L,+, : R"l-R"5 identical with R'l-R'5. R"6-R"8 as Rr6-R'8 
with the difference that X and 9 are now Cf of L,. 

VO 3 96 
3 3896 

R"9 [Q - Vr,Y - QFofL, ,  9 - Cf of L,]. 

R" 10 

R"11 

R"12 

Fg LJVJ for every Av P of 8 
VQJV 

Here R"13 is Carnap's rule, corresponding to the semantics of the gener- 
ality quantifier. In virtue of R"13 we could replace R'9 by the simpler rule 
R"9. 

Now we can introduce a hierarchy of deductive implications for Cf of 

__ _ _  .~___ - R"13 
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7 fY will mean that .X is deducible from 2 and a list of true formulae 
of L,+ by means of R”l-R”12. 

2 f . X  will mean that we have an Q-formula Jlr of L,+l such that 
b f F $  is provable for every admissible value B of S Z ,  and that X is 
deducible from f ,  V O N  and a list of true formulae of L,, by means of 

7 $X,  where p is a limit ordinal, will mean that we have 2 f . X  for some 
ci </I. Here CI and p are constructive ordinals. I don’t know how great con- 
structive ordinals are actually necessary in the general case. In some special 
interesting cases the situation is not so bad as one might suppose. 

Let us consider first of all the case when f and .X are closed formulae of 
L,, i.e. when they do not contain the unrestricted ge~erality quantifier. It is 
not difficult to prove that in this case R”13 gives nothing new and that we 
have 2 f . X  if and only if W L+f.X_l is true. It follows that the principle 
of constructive selection holds even if the powerful Carnap’s rule is accepted 
as means for the reductio ad absurdum. 

The next interesting case is the case when: 1) f is of the form V 6 d ,  where 
d is a 6-formula of L,, determining a decidable predicate; 2) .X a closed 
formula of L,. In this case 9 f X  holds if and only if there is some admis- 
siblevahe9 of 6 such that 92L+F~Ld_lX_I  is true.Itfol1owsthatif aformula 
V 6 d  with decidable A of L, is refutable by means of our inference rules, 
then F i L d ,  is refutable for some 8. Since decidable predicates are repre- 
sentable in L,, this is another form of the principle of constructive selection: 
if it is false that a decidable predicate holds for every value of the argument, 
then one can indicate a value of the argument for which the predicate does 
not hold. Of course it is important here that the falsity of the general state- 
ment in question would be proved by definite logical means. 

R’ 1-R’ 12. 
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A SELF-CORRECTING OBSERVATION LANGUAGE * 

MARY B. HESSE 
University of Cambridge, England 

1. The structure of theories 

How should we understand the structure of scientific theory? The deduc- 
tive account has recently come under attack from various directions, together 
with its accompanying apparatus of formal calculus and interpretations, 
observational and theoretical concepts, and correspondence rules relating 
theory to observation. I shall not repeat here the detail of these attacks, but 
merely refer to some of them, and then try to sketch the outlines of a different 
model of theory-structure which may at least improve upon the deductive 
model in some respects. 

The deductive account of the relation of theory and observation inevitably 
gives rise to a picture of “levels”, with theoretical postulates at the top, 
derived theorems appearing successively down the page, and putative ob- 
servation statements at the bottom. With such a picture in mind it is easy 
to slide into the assumption that the deductive ordering from postulates to 
theorems is also an ordering from abstract to concrete, from general to 
particular, from theoretical to observational, and, because postulates are 
only postulated whereas observation statements are “directly” verified or 
falsified, also from uncertainty to certainty. But very little reflection is re- 
quired to see that these further assumptions form a tissue of non-sequiturs. 
For in the first place they neglect the elementary logical fact that in order to 
pass from general postulates to particular observational conclusions, some 
particular premises are required. These must contain at least some obser- 
vation predicates (for example: “This is a swan”, “H,O is water”), and so 
already destroy any exact correspondence between premises and theory on 
the one hand, and conclusions and observation on the other. Secondly, it 

* I am greatly indebted to Professors R. B. Braithwaite and C. G. Hempel for their 
helpful comments on earlier versions of this paper. 
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is by no means obvious that the order of deduction must also be the order of 
increasing directness of empirical verifiability. Every time a new physical 
particle is “detected”, there is at least a claim to have made an observation 
at a high level of deductive theory, and hence to have “directly verified” 
some theoretical statement. On the other hand, there are plenty of examples 
of statements “low down” in the deductive hierarchy whose verification is 
by no means easy or direct; consider any attempt to apply quantum mechani- 
cal theory in describing the outcome of a complex chemical process. 

It is no accident that deductive theorists tend to slip into these non- 
sequiturs. If the deductive system is to work it is essential that its lower, or 
observational, levels should be regarded as comparatively firmly based and 
unproblematic, in particular that the meaning of the observation statements 
should be understood independently of the theoretical superstructure, and 
that the truth-value of the observation statements should be directly acces- 
sible. For the whole deductive account was originally motivated by puzzles 
about the meaning, reference, and justification of theories, all of which were 
held to require explication in terms of observation alone. Verifiability of 
theories was abandoned, but their falsifiability still demanded that the truth- 
value of observation statements be known, or at least accepted temporarily, 
on pain of vicious regress. Logical construction of theoretical predicates was 
abandoned, but their meaning and reference, if any, were still held to depend 
upon their relations to observation predicates whose meaning and reference 
were not in question. The tendency of the whole account has been towards 
an instrumentalism in which theories have neither truth-value, meaning nor 
reference, and in which the theory-observation distinction has been made 
sharp and irrevocable. But the further this approach to instrumentalism has 
gone, the less recognizable it has become as an account of how scientific 
theories actually work. To mention only one of its consequences, which is 
in the end perhaps the only decisive objection to it, it makes quite unintelli- 
gible the predictive power of theories, where prediction is understood not 
merely in terms of new putative observation statements derived from the 
system, but in terms of new observation statements in whose truth we can 
have great confidence before they are tested. The deductive account wholly fails 
to explicate this confidence, and therefore needs at least to be supplemented 
by some kind of inductive confirmation theory of theories and predictions *. 

It is not this shortcoming of deductivism that has mainly been under 
attack however, but rather the thesis of truth-and-meaning invariance of 

* Compare also the implicit demand for such a confirmation theory in Hempel’s restatement 
of his classic deductive account of explanation: HEMPEL [1965] p. 338. 
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observation statements *. It is noticed, first, that the truth-value ascribed 
to observation statements is not independent of theory, for theory may be 
used to correct a “phenomenal law” such as, for example, Kepler’s third law, 
which was corrected by Newton’s gravitational theory. It is also noted that 
it often becomes very odd to say that the “meaning” of an observation 
statement is invariant to change of theory. The mass of a Newtonian particle 
is an unchanging measure of quantity of matter: in relativity it may be a 
relation between particles which depends upon their relative velocity. Can 
“mass” “mean” the same in the two theories? Again, Priestley claimed to 
have “carefully expelled from a quantity of minium all the phlogiston.. . by 
giving it a red heat when mixed with spirit of nitre ...”**. What kind of an 
observation statement is this? In reply to such examples, deductive theorists 
take remedial action, spurred by the fear that if the essentials of deductivism 
are abandoned, we shall introduce intolerable circularities and self-valida- 
tions into the notion of a scientific theory. In rose-tinted spectacles all things 
are rosy; do not all these coherentist objections imply that from within a 
sufficiently comprehensive theoretical framework all conceivable empirical 
facts must inevitably fit? 

I do not believe that attempts to shore up the deductive account in face 
of all these objections will be successful, but neither do I accept that its 
abandonment need result in any such vortex of relativities as just mentioned. 
The new model of theories required is to some extent already developed in 
the literature. It may in fact be regarded as an exploitation of theses of 
Duhem and Quine on the systematic interrelation of hypotheses and ob- 
servation. Duhem’s emphasis on the interdependence of hypotheses in a 
theoretical system has recently been the source of much dispute regarding 
the role of conventionalism in science, but it is less often noticed that Duhem 
also insisted that theoretical interpretation of observations is required before 
a raw “fact” can be incorporated into a theory, and even, he implied, before 
it can be expressed at all in language. Although in some respects himself a 
deductivist, there was for Duhem no unproblematic observation language, 
and no truth-and-meaning invariance of observation statements. The com- 
plement to his suggestion that a given hypothesis may be made comparatively 
immune to falsification by appropriate modification of other hypotheses is 
his equally clear suggestion that a so-called observation statement (which he 

* See especially HANSON [I9581 Chs I, 11; FEYERABEND [1962]; and KUHN [1962]. 
** This highly illuminating case-history can be examined in CONANT [1957] p. 65, and in 
TOULMIN [1957] p. 205. The quotation from Priestley is in TOULMIN [1957] p. 209. 
t Especially DUHEM [1954] Pt. 11, Chs HI-VI; QUINE [1953], [19601 Chs I, 11. 
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called a “theoretical fact”) may not be immune to falsification if it becomes 
convenient to modify it in the light of other parts of the theoretical network. 
This view of the relations of theoretical and observation statements has more 
recently been paralleled by Quine’s discussion of the net-like relations of 
analytic and synthetic statements, any sub-set of which may be relatively 
entrenched, but any of which also may be dispensible. 

The question that now arises is, can we use these suggestions to provide 
a model of theories sharp and definite enough to replace the deductive model? 
Criteria of adequacy for the new model which have so far emerged may be 
summarized as follows: 

I.  The model should make no fundamental stratification into theoretical 
and observational levels, but should rather be based on a multiplicity of 
interrelations between theoretical and observation statements, not all of them 
strict entailments. 

2. The model should not demand that the truth-value of any of these 
statements is known infallibly. 

3. The model should leave room for some shift of “meaning” of descrip- 
tive predicates between different theories, where the relevant sense of 
“meaning” remains to be clarified. 

4. Empirical falsifiability of theories must be safeguarded, and in addition 
it must be shown how some kind of confirmation can be conveyed to theories 
and predictions by observational evidence. 

I shall now try to show that a model based on a Carnap-type confirmation 
theory can be made to satisfy these conditions. Such a model will replace 
the entailments of the deductive account by confirmation-relations (or “par- 
tial entailments”) between theoretical and observation statements. Confir- 
mation as well as falsification will then be conveyed through the system from 
observation to theory; thus we may hope to satisfy requirements (1) and (4). 
Requirements (2) and (3) introduce the further feature of uncertainty of the 
evidence-statements, and this will be dealt with in the model by making a 
distinction between observation statements, which are uncertain, and ob- 
servation reports, which are once-for-all verbal entries in the record, and 
which can be regarded as the irreducible and certain evidence upon which 
the confirmation values of the rest of the system depend. 

2. The black box with loose connections 

To fix ideas let us first consider the model in the form of a black box whose 
internal state we are trying to discover. We suppose a mechanism enclosed 
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in a black box, to which are attached a number of keys and an output tape. 
About this box we know or assume the following: 

(1) It consists of K two-state relays. The position of each relay will be 
described by a primitive statement specified by a latin capital with or without 
bar, thus: A or A for the A-relay, B or B for the B-relay, and so on. 

(2) Any of the 2K sets of positions of the K relays is a possible state of 
the machine. Disjunctions of more than one and less than 2K state-descrip- 
tions will be said to describe parrial states of the machine. 

(3) The relays are not in general independent of each other. A prior 
probability distribution over all states of the machine is assumed to be known. 
This will be denoted by co(A), co(B), co(AB), and so on. 
(4) The box carries m external keys, where m < K. To each relay of a 

sub-set of m relays is attached just one of the keys. When a key is struck, say 
the A-key attached to the A-relay, the machine prints out either report ‘A’ 
or ‘2 on an external tape. No key may be struck more than once. 

(5) The printed report is not an infallible indication of the position of the 
corresponding relay, for the attachment to the printer is faulty inside the 
machine. Tt is assumed that if the relay is in state A there is a small non-zero 
probability E that ‘k will be printed when the A-key is struck, and when the 
position is A, there is a probability E that ‘A’ is printed. It is assumed that E 

has the same value for each relay, and that the faults in the relay-printer 
connections are independent of each other. Thus if a partial state of the 
machine is ABC, and the three corresponding keys are struck, there is a 
probability of (1 - E ) ~  that ‘ABC’ is printed, E (1 - E ) ~  that ‘ABC’ is printed, 
and so on. Thus, whatever the prior distribution over states, the prior 
probability of obtaining a given report is never either zero or one. 

We suppose that the state of the machine remains constant, and attempt 
by operating the keys to learn something about that state. What is learnt 
will not of course be infallible nor incorrigible by further evidence, because 
any state of the machine is consistent with any set of reports, although some 
states are much more improbable than others. 

Let us denote the report ‘A’ by A’ and the report ‘A’ by A‘. Suppose we 
strike the A-key, and A‘ is reported. Since co(A’) is non-zero we can calculate 
for any state or partial state of the machine (described by S) its posterior 
confirmation (c-value) given A‘, in terms of E and the c,-distribution: 

c(S, A’) = [.(A’, AS) c(A, S) + c(A‘, AS) c(A, S)] ~o(S)/cofA’)  
- (1 - E )  co (AS) + &cO (AS) 
- 

(1 - E )  CO (A) + ECO (A) ‘ 
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In particular we have 

1 - &  
c(A, A’) > c(A, A’) iff co(A) > & -  c,(A) (2) 

1 - &  
c(B& A’) > c(BA, A’) iff co(BA) > -- co(BA) 

& 
(3) 

Thus under some circumstances A or a state description implying A may be 
more highly confirmed than A even on evidence A‘. 

Suppose now another key is struck. The report B’ so obtained enables us 
to  calculate a new set of c-values conditionally upon A’B’: 

c (S, A’B‘) = 

- (1 - E)’ co(ABS) + ~ ( 1  - E )  [c,(ABS) + co(ABS)] + e2co(ABS) 
- 

(1 - 8)’ co(AB) + e ( 1  - E)[c,(AB) + co(AB)] + E’cO(AB) 
. 

And so on for any number of reports obtained by striking further keys. 

3. A model for scientific theory 

Now consider an interpretation of the black box in a highly simplified 
world in which we shall investigate the conditions for confirmation of scien- 
tific theories. Suppose the world consists of a finite number n individuals, 
whose nature need not be specified at  present, but which may be situations, 
events, objects, processes. Let their names be a,, a,, ..., a,,. They are to be 
described by means of a fixed finite set of 7c primitive monadic two-valued 
predicates, PI or PI, P, or P,, ..., P, or P,. We now interpret the K states 
of the black box to  be the 2”” states of this world, and the primitive propo- 
sitions A, B,-C, ... each to be an assignment of a single P, or P, to a given 
individual a,. The c,-distribution over states of the machine corresponds to 
a c,-distribution over states of the world. The process of striking a given key 
is interpreted as a singular observation of a given individual with regard to  
a given predicate, and the once-for-all report thus obtained is an observation 
report which remains for ever in the record. There is no provision in this 
model for the “same” observation to be repeated, so that we may have to 
envisage the predicates as time-linked - we never report the same property 
of an individual twice, although we may report very similar properties of 
that individual many times. What counts as a “very similar property” will 
be shown up in the c,-distribution, that is to say, if a, has property P, at  
time t ,  and P, is what we should call the “same” property at t,, then in the 
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absence of other evidence c(P2a,, P,a,) will generally be relatively high. 
The small probability E represents the probable “observational error” in 

obtaining each report. I shall have more to say later about the nature of this 
error. Positions of relays which are directly attached to keys will be said to 
be described by observation statements, and those which are not so attached, 
by theoretical statements. Any truth-function of primitive statements will be 
called a theory, whether or not it contains any theoretical statements. Re- 
member that the truth of even observation statements is not given for certain 
by observation reports. 

We can now interpret the properties of the black box in the following 
manner. There is a certain c,-distribution over the possible states of the 
world, and every time an observation report is obtained there is a change 
in the posterior c-distribution as determined by equation (1). The confir- 
mation of any theory can thus be calculated on the basis of the evidence up 
to date. The possibility of “correcting” (or more strictly, casting severe 
doubt upon) any observation statement is provided for by the fact that the 
c-value of an observation statement on the basis of evidence which may 
include i t s  corresponding observation report may become very low with in- 
creasing evidence. We shall not say, however, that any observation statement 
A, where co (A) # 0, has ever been shown to be false, for equation (1)  entails 
that c(A,Z’) for any reports Z’  is zero if and only if c,(A) is zero. To 
“detach” the conclusion ‘A is false’ would violate the continuity of c-dis- 
tributions defined by (I). For the same reason we shall not say that any 
theory is ever shown to be either true or false, however highly confirmed 
or disconfirmed it may become on increasing evidence. 

The results of the preceding section show that the success of this model 
depends crucially upon the c,-distribution. Before going any further it is 
therefore necessary to consider the immediate objection that since we have 
no grounds for assigning any particular c,-distribution to states of the world, 
all subsequent results are worthless. My claim is that we do in fact have some 
such grounds, and at this stage it is important to be clear how they should 
be understood. 

The c,-distribution required for an inductive confirmation theory need 
not be regarded as an a priori postulate from which the probabilities of 
inductive inferences are obtained deductively. Such a view would be open 
to all the Humean objections to attempts to reduce induction, even proba- 
bilistic induction, to deduction. But there is an alternative view - a confir- 
mation-theory may be regarded rather as an explication of accepted kinds 
of inductive argument, and therefore as being justified a posteriori by its 
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success in giving relatively high c-values on given evidence to those theories 
in which we would have great confidence if we followed our normally 
accepted inductive rules. Such a justification of course raises the question 
as to whether we can in fact specify any set of “normally accepted inductive 
rules”, and this is too large a question to take up here. It will have to suffice 
to state that in the simple taxonomic world we are considering here, some 
postulate like Keynes’ Principle of Limited Independent Variety is sufficient 
to explicate most of the interesting types of inference encountered in such a 
world, including Mill’s methods, and inductive arguments from analogy and 
variety. Application to a more realistic world would require extension of the 
model to deal at least with relational and ordered predicates, a task which 
involves great mathematical difficulties, but little that is new in philosophical 
principle. The crucial dependence of the model upon the c,-distribution 
therefore need not be an insuperable objection, for in simple cases it can 
already be shown that fairly liberal conditions upon the distribution are 
sufficient to generate quite powerful inductive inferences. In seeking to ex- 
plicate the structure of scientific theory it is not, fortunately, necessary to 
show that such inductive inferences are absolutely justified, only that the 
explication reproduces closely enough the intuitively acceptable rules of 
theorizing. (See, for example, CARNAP [1962], ACHINSTEIN [1963], HESSE 
[ 19641, [ 19681.) 

4. Truth-and-meaning variance 

We can now consider how far this model for scientific theories satisfies 
the requirements laid down in Section 1. 

First, it replaces the asymmetry of confirmation and falsification in the 
deductive account by a symmetry of high and low confirmation. No theory 
or system of theories is ever conclusively falsified (or verified) by any set 
of observation reports, because there is a finite probability that the reports 
may be in error. But this does not imply that we cannot compare one theory 
with another, for we can compare their c-values, and this comparison de- 
pends partly but essentially on observed evidence. There is no circularity of 
confirmation or falsification here. Also, it should be noticed that where 
genuine deductive relations do appear in the theory structure these are rep- 
resented in the model by transference of minimum c-value from premises 
to conclusions. The logic of the model is thus in this respect an extension 
rather than a replacement of the logic of deductive systems. 

Second, how far does the model represent what is true in the much-dis- 



SELF-CORRECTING OBSERVATlON LANGUAGE 3 0 5  

cussed theory-observation distinction, and the theory-ladenness of obser- 
vation? The model does make a distinction between theory and observation 
in the sense that some relay-positions are “directly” reported and some are 
not, but since this does not imply in the model that observation statements 
are infallible, the distinction is merely pragmatic and does not enter essen- 
tially into the confirmation logic. After some evidence has been collected the 
initial distinction will indeed be minimised, for some observation statements 
may be less well confirmed than some theoretical statements even though 
their corresponding reports are in the record. 

There remains the more difficult question of meaning variance. Proponents 
of this thesis are not always too clear in their expressions of it, so I shall first 
state what I think to be both true in the thesis, and to correspond best to 
the intentions of its authors. The thesis can be put in sharp paradoxical form 
as follows: * 

(1) The meaning of a term in one theory is not the same as its meaning 
in another prima facie conflicting theory. 

(2) Therefore no statement, and in particular no observation statement, 
containing the term in one theory can contradict a statement containing the 
term in the other. 

(3) Therefore observation cannot decide between such prima facie con- 
flicting theories. 

A similar paradox can be derived from (1) with regard to explanation: ** 
(la) The meaning of a term in the pre-theoretical observation language 

is different from its meaning in a theory which is said to explain that domain 
of observation. 

(2a) Therefore if the theory entails some observation statement, that state- 
ment cannot be the same as any pre-theoretical observation statement, even 
if it is typographically similar to it. 

(3a) Therefore no theory can explain the observational explanandum. 

The force of both paradoxes depends on a slide in the meaning of “mean- 
ing”, and in particular in the obscurity of “meaning” in assertions (1) and 
(la). If we enquire what the meaning-variance philosophers have in mind in 
denying sameness of meaning in (1) and (1 a), this is perhaps best expressed 
by saying that context meaning varies from theory to theory, where the con- 
text meaning of a predicate or a statement in a given theory is a function 
of all of the statements of that theory and their c-values. This suggestion 

* This paradox is examined in FINE [1967]. 
** See, for instance, NAGEL [1961]  p. 87 and ALEXANDER [1963]  pp. 84,95. 
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may sound brusque, but it does seem to be sufficient for the apparently very 
radical proposals contained in (1) and (la), since it is certainly the case that 
when, for instance, we use the word “mass” in Newtonian mechanics, we 
do commit ourselves to the likely truth of a set of statements about mass 
which is different from the set of statements about mass in relativity me- 
chanics, and this is the difference that seems to be in question in (1) and (la). 
I now interpret the assertions (1) and (la) to be the tautologous remarks 
that the set of statements contained in one theory is different from that in 
another, or in that partial theory which is sometimes called the set of ob- 
servation statements. Context meaning understood as a function of the whole 
theory in which a predicate or statement occurs is then variant by definition. 

It may perhaps seem to be an objection to this construal of context mean- 
ing that it follows that a predicate has as many context meanings as there 
are theories and partial theories in the language, and that context meaning 
within one theory changes with changing evidence. If this should seem 
counter-intuitive it should first be noted that the proposal shares this feature 
with the deductivist proposal to understand the “meaning” of theoretical 
predicates in terms of their place in the deductive system plus its observa- 
tional consequences (a proposal called “contextualism” by BRAITHWAITE 
[1962]). More importantly, however, context meaning does not exhaust the 
senses of “meaning” referred to in the paradoxes, for there are at least two 
other senses which do not share the meaning-variance of context meaning: 

(i) It does not follow from what has been said about context meaning 
that “the meaning of P” in theory TI is different from that in T, in the sense 
that deductive or confirmation relations between statements containing P are 
theory-dependent, indeed in merely stating that the context meaning of P 
varies between different theories, we are assuming the relevant identity of 
P for such logical relations. 

(ii) Nor does it follow that the reference of a statement in T, is necessarily 
or even usually different from that of a typographically similar statement 
in T,. 

The second and third parts of the paradoxes of meaning therefore do not 
follow in the sense required, for it is perfectly possible for a statement in 
one theory to contradict a statement in another; for a statement to be logi- 
cally the same in two theories; and for the empirical reference of a statement 
in one theory to be the same as its reference in another. 

It is not quite clear that this account is sufficient however, for a proponent 
of meaning variance might reply somewhat as follows. “In speaking just now 
of the ‘same’ statement, and the ‘same’ reference, you are presupposing 
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exactly what I deny, namely that observational states of affairs can be de- 
scribed in a theory-neutral language, and that it is perfectly clear which 
statements of the theory can be said to be the ‘same’ as these observation 
descriptions. Context meaning certainly cannot provide the criteria of iden- 
tity here, and typographic similarity is obviously neither necessary nor suf- 
ficient. What other features of the statements of two different theories de- 
termine that they have the same reference?” 

Let us try to clarify the issue here by returning to the black box. We now 
need to notice a feature which has been tacitly presupposed in its specifi- 
cation, namely that the keys are classified in a two-dimensional array, corre- 
sponding to the set of individuals and the set of predicates. We may visualize 
the key-board as arranged in n columns corresponding to the n individuals, 
and rc rows corresponding to the 7c predicates. This assumption of course 
begs crucial questions which are now relevant. We may perhaps regard it 
as reasonable to assume in our simple world that we know the classification 
of relays corresponding to individuals independently of the theoretical state 
we are seeking, that is, we have criteria for “same” and “different” individuals 
which, while not making our judgments infallible (as allowed for by E ) ,  

nevertheless are not generally in question (perhaps the criteria depend on 
space-time continuity and not generally on properties). But it appears much 
less reasonable to assume that we know the classification of relays in terms 
of predicates independently of the machine state we are seeking. Indeed the 
meaning-variance thesis in the form just expressed seems to deny exactly 
this, for this thesis implies not only that predicates have different contextual 
meanings in different theories, but also that they have in general different 
extensions, or empirical references. To accept this thesis in terms of the black 
box would be to suppose in general that in one theory a given relay is said 
to be probably hooked up to one key, and in another theory to a key corre- 
sponding to a different predicate. 

Such a possibility is to some extent already allowed for in  the parameter 
E ,  for we could certainly come to doubt in certain circumstances all reports 
of P,(a) on the basis of their low c-value, and to suspect that such reports 
should be replaced in these same circumstances by reports of P,(a) which 
have much higher c-value. That is to  say, the error E may be interpreted 
not only as indicating faulty relay-printer connections, but also miswired 
relays, where the relay-printer connections P, and P, have become crossed. 
It is of course built into the assumption that E is small that this could not 
be the case for most reports most of the time, and therefore the radical 
changes of meaning which seem to be envisaged by the meaning-variance 
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thesis are not accommodated in the model. An extreme meaning-variance 
position would in fact be equivalent to supposing that we were entirely in 
the dark as to which relays should be classified with which predicates. The 
problem of determining the probable state of the box in these circumstances 
might not be insoluble, but it would demand indifference assumptions about 
the prior probabilities of connections between printer and relays which could 
only seem arbitrary, and which do not seem to correspond to any general 
doubts we have about what predicates to report of what individuals in ob- 
served situations. To have such general doubts would jn fact be to doubt 
both the possibility of an intersubjective descriptive language, and also the 
efficacy of the processes by which we come to learn it. A more moderate 
meaning-variance position on the other hand might demand only that some 
alternative relay-printer connections be explicitly allowed for in the co- 
distribution, a situation which seems closer to our actual uncertainties of 
observation, and which could be simulated in the model, though at the cost 
of greater complexity. 

Difficulties connected with meaning-variance bring us finally to a general 
point regarding the use of confirmation theory in this type of model. The 
possibility of explicating continuity of inference relative to increasing evi- 
dence is bought at the price of never conclusively accepting or rejecting any 
empirical statement, and to some extent also at the price of never introducing 
new theoretical concepts. Just as we cannot accept or reject any state-de- 
scription without violating the conditions of equation (1) and hence changing 
discontinuously the sequence of c-distributions, so we cannot change our 
language by introducing new predicates, abandoning old ones, or radically 
revising their occasions of correct use without similar discontinuities in this 
sequence. These admitted limitations on the model do not however reduce 
its usefulness, they merely call for a supplementation of confirmation theory 
by a theory of acceptance and rejection, which would undoubtedly have to 
take account of the distribution of c-values obtained to date. Perhaps Kuhn’s 
conception of periods of normal science broken by changes of paradigm 
should be understco5 in terms of the occasions of acceptance or rejection 
of theories and of modifications of the predicate set. But these occasions may 
be rarer than has beel supposed, for what I hope I have indicated here is 
that many of the significant features of theoretical inference can be expli- 
cated even within one sequence of c-distributions. To just that extent there 
is an inductive logic of theoretical science, which includes what is true in 
the deductive account, while also meeting some of the objections to that 
account . 
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THE VARIETIES OF INFORMATION AND SCIENTIFIC 
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University of Helsinki, Helsinki, Finland 

1. The importance of information 

The concept of information seems to be strangely neglected by epistemo- 
logists and philosophers of language. In many everyday situations, know- 
ledge and information are nearly exchangeable terms; yet for every score of 
books with the phrase “theory of knowledge” in their titles there scarcely 
exists a single paper by a logician or philosopher dealing with the theory of 
information.1 Again, the information that a sentence yields or can yield 
might very well seem to an ordinary man much more important than the 
so-called meanings of the terms it contains, or even the meaning of the 
sentence itself. Yet, with but few exceptions, philosophers of language have 
not devoted more than a vanishingly small part of their efforts to the theory 
of information as compared with the theory of meaning. Why this should 
be so, I do not know. Perhaps the fact that mathematicians and communi- 
cation theorists largely succeeded in appropriating the term “information” 
for their special purposes a couple of decades ago has something to do with 
this.2 I also suspect that it is much harder to talk persuasive nonsense about 
the quantitative concept of information than of the qualitative notions of 
knowledge and meaning. Be this as it may, the neglect is a regrettable one. 
In this paper, I shall try to call philosophers’ attention to a few possibilities 
of correcting it. I have already tried to do so in some earlier papers3; the 
present one is partly a sequel to them and partly a new enterprise. 

One of the most interesting exceptions is constituted by the studies of Ernest W. Adam 
and his students of the role of information in certain important methodological connections. 
See ADAMS [1966], HANNA [1966]. 
2 See e.g. SHANNON and WEAVER [19491, KHINCHIN 119571, CHERRY [1957]. 
3 HINTIKKA and PIETARINEN [I9661 and HINnKKA[1968]. 
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2. Information as the elimination of uncertainty 

The philosophical study of the concept of information was started by 
Carnap and Bar-Hillel soon after 1950.4 It was called by them theory of 
semantic information, and distinguished from the statistical information 
theory of communication theorists. Similar ideas had been informally ex- 
pounded by Sir Karl Popper already in the thirties.5 

The basic idea of their approach may be said to be one particular way of 
explicating the general idea that information equals elimination of uncer- 
tainty. In order to measure this uncertainty, a distinction is made between 
the different logical possibilities that we can express in a language. The more 
of them a statement s admits of, the more probable it is in some “purely 
logical” sense of probability. The more of them a statement s excludes, the 
less uncertainty does it leave, and the more informative will it therefore be. 
The probability p(s) and information inf(s) of a statements are thus inversely 
related. 

In some earlier papers, I have examined how the different cases might be 
distinguished from each other (and weighted) on which a purely logical 
measure of information might be based in certain simple languages.6 These 
studies have strongly suggested to me that no absolute answer to this ques- 
tion is forthcoming. The weights that the different cases have to be given 
will depend on the order which we expect (or are entitled to expect) to obtain 
in the universe. Thus we are forced (it seems to me) from a purely logical 
conception of probability toward some form of Bayesianism. 

The basic idea that underlies the concept of information nevertheless 
remains essentially the same in all cases. The information of s is the amount 
of uncertainty we are relieved of when we come to know that s is true. 

3. Unexpectedness versus content 

If this is all there is to be said here, any monotonically decreasing function 
of p(s) could be thought of as a measure of the information of s. In order 
to pick out a particular measure, we must say a little more of how we expect 
the concept of information to behave vis-8-vis the concept of probability. 
Some important requirements of this kind are in fact quite straightforward. 
For instance, if it is required that inf(s) be additive with respect to proba- 

4 See CARNAP and BAR-HILLEL [1952], BAR-HILLEL and CARNAP [1953], KEMENY [1953]. 
5 POPPER [1935]. 

See HINTIKKA 119651, [1966]. 
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bilistically independent conjuncts, i.e. that inf(s, &s2) =inf(s,) + inf(s2) if 
s1 and s2 are independent with respect to a probability-measure p, then the 
inverse relation must be expressed by the definition 

inf (s) = - log p (s) (1) 

provided that certain natural further assumptions are made. 7 

However, this is not the only way in which the concept of information or 
content can be defined, for there are other requirements which we can legiti- 
mately impose on this concept and which turn out to presuppose entirely 
different ways of defining information. In so far as it can be claimed that 
all these different requirements we can use here are part of our ordinary 
presystematic idea of information, the incompatibility of these requirements 
will show that this presystematic idea is intrinsically ambiguous. 

Alternatives to (1) are in fact easy to come by. One very natural possibility 
here is to define the content cont(s) of s by the even simpler formula 

cont(s) = 1 - p(s). (2) 
The justification of definition (2) will be indicated later. 
It has been suggested that (1) is to be thought of as a measure of the 

surprise value or the unexpectedness of (the truth of) s, while (2) is a measure 
of the substantive information or content of s. This suggestion often helps to 
understand the difference between the two. 8 

The formal relation of inf(s) and cont(s) is in any case straightforward; 
it can be expressed e.g. by 

1 
1 - cont(s)' inf (s) = log (3) 

4. Measures of relative information 

In terms of inf and cont, we can also define relative measures of unex- 
pectedness and of content: 

inf,,,(s(t) = inf(s & t )  - inf(t), 
contad, (sI t )  = cont (s & t )  - cont ( t )  . 

(4) 
( 5 )  

7 A somewhat loose sketch of an argument to this effect is given by TORNEBOHM [1964] 

8 Cf. BAR-HILLEL [1964] p. 307. The logical basis of this distinction is clear enough. 
Somewhat roughly speaking, it may be said that cont measures the absolute number of 
possibilities which an item of information enables us to disregard, whereas inf measures 
the relative number of such possibilities, with respect to the total number of possibilities 
not previously eliminated. 

pp. 49-50. Cf. COX [1961] pp. 37-38. 
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These relative measures tell us simply how much information s adds to  
the information t has already given to us. This explains the use of the sub- 
script. We shall also often call infad, and contad, incrementd information (or 
unexpectedness) and incremental content, respectively. 

It is easily seen that both these measures of relative information can be 
given a very natural expression, though different in the two cases: 

infadd(Slt) = - logpjslt), (6) 

(7) cont,dd(slt) = cont(t 3 s). 

Relative unexpectedness is thus related to relative probability in the same 
way as absolute unexpectedness to  absolute (a priori) probability. The con- 
tent of s relative to t is the content of the statement that if t is true, then so 
is s.9 

This last fact suggests a way of justifying definition (2). It embodies a 
requirement which we might very well want to impose on our concept of 
(informational) content in any case.lO But if we do so, we are readily led 
to some such relation as (2) .  In fact, if we simply define 

p* (s) = cont( - s) 

then it follows easily from the requirement 

cont(s&t) - cont(t) = cont(t 2 s) (8) 
that p" satisfies some of the axioms of probability calculus. For instance, 
by substituting -s and -t for s and t in (8) we at once obtain 

p*(s v t )  = p*(s) + p*(t) 
for the case in which (s & t )  is a contradiction, provided that logically equiva- 
lent statements are assumed to be intersubstitutable. This verifies the usual 
additivity requirement. By putting s= t in (8) we likewise obtain 

p*(s) = 0 if s is a contradiction. 

If the normalizing conditions cont(s)>O and cont(s& -$)=I are assumed, 
it follows that p* satisfies all the axioms of the probability calculus (with the 
possible exception of Kolmogorov's axiom of denumerable additivity). 

9 See BAR-HILLEL [1964] chapter 15, for a number of further results concerning incremental 
content and information. 

One way of motivating (7) is as follows: the information that s adds to the information 
of t must surely be the information of the weakest statement which will, when added to t ,  
logically imply s. This statement is ( t  3 s); hence the validity of (7). 
l1 It has been suggested by Savage that this axiom is perhaps not entirely indispensable for 
all interesting purposes; see DUBINS and SAVAGE [1965] p. 10 (with references to similar 
opinions previously aired by De Finetti). 
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In terms of this measure, cont can then be defined as in (2). In this sense, 
then, does the assumption of (8) easily lead to a definition of form (2). l2 

There is another sense in which we can speak of relative information and 
relative content, however, besides the incremental sense. l3  In some ways, 
the motivation of this sense is even more obvious. Instead of asking what 
information or contents adds to  t ,  we can consider the world on the assump- 
tion that t is true, and ask how information or content could be characterized 
for this limited purpose. The resulting senses of information and content 
might be called conditional information and conditional content, in short 
infcond and cont,,,,. The way to define them is obviously to  substitute relative 
probability for absolute probability: 

From (6) it is seen that infadd(sJf)=inf,,,,(slt). We can thus omit the sub- 
scripts add and =,,,, in the case ofinf, and speak simply of relativeinformation or 
unexpectedness. However, the difference between cont,,, and cont,,,, is vital. 

The difference between the two might be illustrated by means of the fol- 
lowing example. Let us assume that we are dealing with the kind of languages 
which Carnap typically considers and in which the probability of a statement 
is the sum of the probabilities of all the state-descriptions compatible with 
it. Then cont(s) is the sum of the probabilities of all the state-descriptions 
excluded by s, and cont,,,(slt) is the sum of the probabilities of all the state- 
descriptions excluded by s but not by t. In contrast to this, COntcond(S]t) is 
the sum of the relative probabilities of all the state-descriptions excluded by 
s relative to t .  

5. Information relative to a subject matter. Transmitted information 

An important further ambiguity in the notion of information can be found 
as follows14: What is defined by (1) or (2) may be said to  be a measure of 

l2 Notice, furthermore, that by replacing s by S&-S in (8) we obtain p*(s v --s) = 

p*(t) + p*(-r) for any r .  If cont is to be nonnegative, p*(tautology) will therefore be the 
maximum of all the values that p* can have, and the assumption that p*(s v -3) = 1 is 
thus truly a normalizing stipulation only. 
l3 Somewhat surprisingly, this second sense of relative content seem not to have been 
discussed extensively in the earlier literature on semantic information. 
l4 Ideas closely related to the one which underlies the present section have been discussed 
briefly in a slightly different form by TORNEBOHM [1964] pp. 51-52, and employed by 
ADAMS [1966] pp. 159-1 68 (under the title “transmitted information”). 

~ _ _  
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the information that a statement h carries concerning the subject matter of 
which it speaks. As was indicated, it is the amount of uncertainty concerning 
whatever h is about which we get rid of when we learn that h is true. How- 
ever, very often this is not all the kind of information we are interested in. 
Frequently we are not interested in the subject matter of h at all. That is, 
frequently we are not interested in the reduction in our uncertainty con- 
cerning what h says, but rather in the reduction of uncertainty concerning 
certain other matters which our knowledge of h brings out. These matters 
may be described by some other statement, e.g. by g. Then the amount of 
information that h conveys (contains) concerning the subject matter of g is 
naturally measured by 

inf(g) - inf(g1h) = log[p(g~h)I~(g)I = l o g C ~ ( g  &h)lp(g)p(h)l (11) 

(12) 

(13) 

or, alternatively, by 

COnt (9) - contad, (9 I h)  = 1 - p (9 v h)  . 

cont(g) - contcond(glh) = p(glh) - P(g). 

This may be compared with the analogous expression 

The explanation of (1 1) is very simple: inf(g) is precisely the uncertainty 
which we get rid of when we come to know g ;  inf(g1h) is the information g 
adds to that of h, i.e. the uncertainty that there remains concerning g even 
after we have learned that h is true. Hence inf(g)-inf(g1h) measures the 
reduction of our uncertainty concerning g which takes place when we come 
to know, not g, but h. Similar remarks apply to (12). 

In the case of (13), somewhat different explanation is called for. Here 
cont(g) is the informative content of g a priori, whereas contcOna(glh) is what 
the informative content of g would be in a world in which we could restrict 
ourselves entirely to possibilities compatible with h, i.e. in a world in which 
we know the truth of h. The difference (13) is thus primarily the change in the 
information-carrying status of g which takes place when one comes to know h. 

The value of (13) can be either positive or negative. This is in keeping with 
the explanation just given of the meaning of (13), for coming to know h can 
obviously affect the relative information-carrying status of g positively or 
negatively. 

It is seen that if we put h=g,  we obtain from (11) inf(g) and from (12) 
as well as (13) cont(g). This result is of course obvious in view of the intuitive 
meanings of (1 1)-( 13), respectively. It shows that these new senses of infor- 
mation are generalizations of (1) and (2), respectively. 

It is also seen at once that (1 1) can be either positive or negative, whereas 
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(12) cannot obtain negative values. This is natural in view of the intuitive 
difference between the two measures inf and cont. Our surprise at finding 
that g is the case can be greater after we have first found out that h is true 
than it would be a priori. Thus h may have a negative surprise value con- 
cerning the subject matter of g. 

In contrast, the substantive information that h conveys concerning the 
subject matter of any g has to be positive (or zero), as it was found to be. 

When g and h are independent (with respect to the probability measure p), 
(1 1) is zero. When h 3 g is logically true, (g & h) is logically equivalent with 
h, and (11) therefore receives the value -logp(g)=inf(g). As might be 
expected, in this case the information h carries concerning the subject matter 
of g is the same g itself carries. This is in fact an optimal case, for if g is 
constant but h varies, inf(g) is the largest value (1 1) can receive. 

Similarly, (12) and (13) also assume their maxima (for a constant g) when 
g is logically implied by h. Furthermore, (1 3) is like (1 1) in that it assumes the 
value = 0 when g and h are probabilistically independent. 

It is also worth noting that both (1 1) and (12) are symmetric with respect 
to g and h, whereas (13) is not. 

Because of the importance of the ideas that underlie (11)-(13), a special 
notation may be in order. I shall use for (11) the expression transinf(hlg), 
for (12) the expression transcont,,,(h(g), and for (13) the expression trans- 
cont,,,, (hlg). The suggested approximate readings are: “the information h 
conveys concerning the subject matter of g” for the first two and “the change 
in the content of g due to h” for the third. The motivation for the notation 
will be given later. 

Examples of the distinction between the plain information inf(h) or 
cont(h) and one of the relative senses of information (11)-(13) abound in 
ordinary life. If I am told that such-and-such weather conditions obtain in 
San Francisco today (e.g. “it is foggy today”), what is the information this 
statement (call it “s”) gives me? Usually, I am not impressed by the reduction 
of my uncertainty concerning San Francisco weather today that this state- 
ment brings about, i.e., I am not particularly interested in inf(s) or in cont(s). 
I am much likelier to be interested in the information this statement gives 
me concerning the weather conditions that might be expected to obtain on 
some other day, e.g. tomorrow. For instance, I might be interested in the 
information s conveys concerning the chances that it will be foggy in San 
Francisco tomorrow, too. If this is expressed by the statement t ,  this means 
that I am interested in transinf(s1t) or perhaps in transcont,,,(slt) or trans- 
contCond(slt) rather than in inf(s) or in cont(s). 
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This homely example perhaps also illustrates the ubiquitousness of the 
senses of information we have just characterized. Another indication of their 
prevalence is the role of expressions like (1 1) in statistical information theory, 
where they are said to define transmitted information. 1 5  The connection 
between this usage and the explanations we have given of (1 1) is straight- 
forward: in the case of the transformation of messages we are interested in 
the amount of information carried by the statement that a certain definite 
message is received concerning whether what was sent or not. If k is the 
statement about the arrival of the message and g the statement about its 
being sent, then this is precisely what (1 1) expresses. 

6. Expected information 

What we have said so far does not exhaust all the senses (or kinds) of 
information one might legitimately be interested in. Often, in the kind of 
situation with which my example dealt, we are not primarily interested in 
the reduction of our uncertainty as to whether it will be foggy in San Fran- 
cisco tomorrow. Rather, we might be interested in the reduction of our un- 
certainty as to whether or not it will be foggy. One important kind of infor- 
mation can be measured by measuring the reduction of this uncertainty. A 
way of doing so is as follows : Let e = “it is foggy today” and h = “it will be 
foggy tomorrow”. Then the expected value of the information which e yields 
concerning the state of affairs described by h or by - h is 

p(hle) transinf(e1h) + p( -  hle)transinf(el-k) (14) 
or 

p(h1e) transcont,,,(elh) + p(-  hle) transcontadd(el- k) (15) 

depending whether we are considering unexpectedness or substantial infor- 
mation. 

The expression analogous to (1 5) 

p(hle) transcont,,,,(eJh) + p ( -  hie) transcontcond(el- h )  (16) 
measures the expected change in the information of the true answer to the 
question: “Is h or -h the case?” that is brought about by our knowledge 
of e. 

More generally, if we are dealing with a number of pairwise exclusive and 
collectively exhaustive alternatives h,, h,, , . ., hk, then the information which 

15 Cf. e.g. SHANNON and WEAVER [I9491 pp. 36, 110-1 11. The difference inf (g) - trans- 
inf (h I g) = inf (g I h)  is the so-called “equivocation” of the statistical information theorists. 

-. ~ 
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e carries concerning the subject matter they speak of is in  the present sense 
of the word measured by 

P (hile) 
i i P ( h i )  

p(h,le) transinf(elhi) = Ep(h,Je)  log - 

= C P(hiIe)lOg[P(hi&e)/P(hi)P(e)I (17) 

(1 8) 

i 

or by 
C p(h,\e) transcont,,,(elh,) = 1 - 1 p(h,le) p(hi v e ) ,  

i i 

respectively. An analogous expression gives the expected effect of our “evi- 
dence” e (as we may think of it) on the true alternative h i :  

C p(h,le) transcont,,,,(elhi). (19) 
i 

Expressions of the form (17) occur in statistical information theory and 
also in theoretical statistics. 16 Although they have not been considered very 
often by logicians and philosophical methodologists, it seems to me that they 
ought to have been. They arise on the basis of the very general considerations 
which were sketched above and which are largely independent of the par- 
ticular kind of probability which has been assumed to underlie our discus- 
sion. They are not due to the statistical character of the ordinary “statistical” 
information theory nor to any particular sense of probability employed 
therein. 

7. Applications of the distinctions. Local versus global theorizing 

The concept of relative information defined by (17) and (18) can be illus- 
trated by means of many different examples. One of them pertains to a line 
of argument which 1 used in an earlier paper. Suppose we have a number 
(say Ic) of primitive predicates by means of which we can classify individuals 
into K = 2 k  Q-predicates (in Carnap’s sense). Assume that we are interested 
in the question how the individuals of our universe o i  discourse are distri- 
buted among the different Q-predicates. More specifically, we may ask 
whether they leave some Q-predicates empty, i.e. whether any true general 
laws can be formulated in terms of our primitive predicates and quantifiers, 
and also what the relative frequencies of the different Q-predicates are. In 
both these respects, the information conveyed by an observation-statement 
concerning a finite number of individuals (stating which Q-predicates belong 

16 See e.g. SAVAGE [I9541 pp. 50,235-238. 
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to them) depends on what we know (or, if we are subjectivists, what we 
believe) of the overall regularity of our universe. 

An extreme case is one in which the universe is known to be completely 
regular: all individuals have the same Q-predicate, although we do not know 
a priori which. Then an observation-statement concerning a single individual 
gives us all the information we are interested in, both information concerning 
laws and information concerning relative frequencies. 

More generally, an observation statement is clearly the more informative 
the more regular the universe is known to be. For instance, if we know that 
our individuals are likely to be concentrated heavily on a few Q-predicates, 
the observation of (say) just two individuals having the same Q-predicate 
tells us more about the universe than it would do if we knew that the universe 
is “disorderly” in the sense that its members are likely to be divided evenly 
among all the Q-predicates. In the latter case, the identity of the Q-predicates 
which the two individuals have is likely to be dismissed as a freak. 

Elsewhere I have briefly discussed the consequences of observations of 
this kind. 17 Here I want to emphasize only the fact that the sense in which 
we are here speaking of the information of an observation-statement has to 
be defined by (17) or (18) rather than by (1) or (2) .  What is involved is the 
information these singular observation-statements convey concerning pos- 
sible generalizations (strict or statistical generalizations). h fact, it is readily 
seen that the ‘‘absolute’’ information (defined by (1) or (2) )  of the obser- 
vation-statements is not what is involved, for it is low precisely when an 
observation-statement is highly informative about generalizations, in the 
sense just explained, i.e. when a high degree of regularity may be expected. 
This illustrates quite strikingly the difference between (1)-(2) on one hand 
and (17)-(18) on the other. 

It also illustrates the fact that the difference between inf(e) and trans- 
inf(e1h) (as well as between cont(e) and transcont(e1h)) is especially impor- 
tant in the case of a singular statement e. We are seldom interested in the 
information such a statement conveys concerning its own subject matter, 
but rather in what it tells us concerning other (unobserved) individuals or 
concerning different possible generalizations. In contrast, we are much 
likelier to be interested in the information generalizations carry concerning 
their own subject matter. 

However, there are other important differences between different kinds 
of situations. One of the most important uses that our distinctions have is 

1 7  See HINTIKKA [1968]. 
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to show that there are several different ways of looking at the relation of 
observational data to those hypotheses which are based on them and which 
perhaps are designed to explain them. In different situations the concept of 
information can be brought to bear on this relation in entirely different ways. 
There are hence no unique explications of such concepts as “explanation” 
and “degree of factual (evidential) support”. No wonder, therefore, that a 
host of different explications have been offered for the latter notion in cur- 
rent literature. 18 In general, the scientific search for truth is much less of a 
single-goal enterprise than philosophers usually realize, and suitable dis- 
tinctions between different senses of information perhaps serve to bring out 
some of the relevant differences between different goals. 

Let us consider some differences between different cases. One of the most 
important distinctions here is between, on one hand, a case in which we are 
predominantly interested in a particular body of observations e which we 
want to explain by means of a suitable hypothesis h, and on the other hand 
a case in which we have no particular interest in our evidence e but rather 
want to use it as a stepping-stone to some general theory h which is designed 
to apply to other matters, too, besides e. We might label these two situations 
as cases of local and of global theorizing, respectively. Often the difference 
in question can also be characterized as a difference between explanation 
and generalization, respectively. Perhaps we can even partly characterize the 
difference between the activities of (local) explanation and (global) theo- 
rizing by spelling out (as we shall proceed to do) the difference between the 
two types of cases. 

8. Maximum likelihood principle and its presuppositions 

In the former case, we want to choose the explanatory hypothesis h such 
that it is maximally informative concerning the subject matter with which e 
deals. Since we know the truth of e already, we are not interested in the sub- 
stantive information that h carries concerning the truth of e. What we want 
to do is to find h such that the truth of e is not unexpected, given h.  This 
means that we want to deal with the measure of unexpectedness inf rather 
than with the measure cont, and to choose h such as to reduce the surprise 
value of e as much as possible. 

Thus we arrive at the suggestion that in the case of explanation (local 

18 A convenient summary of a number of them is provided in the survey article by KYBURG 
[1964]. Cf. also GOOD 119601 and T~RNEBOHM [1966]. 
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theorizing) we should choose h so as to maximize 

transinf(h1e) = log[p(eJh)/p(e)] . (20) 

Since e was assumed to be constant, to maximize (20) means to choose h so 
as to maximize the conditional probability p(elh), known as the likelihood 
of e given h. Thus we arrive at  the famous maximum likelihood principle as 
the natural method of choosing one’s explanatory hypothesis in the kind of 
circumstances indicated (local theorizing). 1 9  Thus the importance of this 
principle in statistics has an interesting general reason which can be brought 
out in terms of the concept of information. 

Tornebohm has suggested using (20), suitably normalized, as a measure 
of the evidential strength of h vis-A-vis e.20 In view of what we just found, 
it is not surprising that he should end up with the maximal likelihood prin- 
ciple when he applies the principle to a simple case. 

At the same time our observations may indicate some of the limitations 
of Fisher’s maximum likelihood principle. Its rationale was seen to be in 
terms of the concept of information. This recalls Fisher’s insistence that he 
is not dealing with inductive behavior or with decisions under uncertainty, 
but with “the improvement of natural k n o ~ l e d g e ” . ~ ~  Our description above 
of the circumstances in which we are led to the maximum likelihood principle 
also recalls the kind of situation (analysis of experimental data) which Fisher 
typically deals with. 22 It may be that the maximum likelihood method is tied 
more closely than its proponents sometimes realize to  cases where the ex- 
planation of the particular data predominates over other concerns. It ap- 
pears that the maximum likelihood principle is a weapon of explanation 
rather than of generalization. 

This does not mean that the maximum likelihood principle cannot occasion- 
ally be quite useful for the latter purpose, too. This is the case when we 
already know that any explanation of the particular data we have will serve 
to explain whatever other data we might be interested in. This presupposes, 
obviously, that the regularity of our universe is already known to be maximal 
(or very great) in the relevant respects - in the sense that whatever obser- 
vations we make concerning a part of it can be carried over intact so as to 

For the principle, see e.g. C R A M ~ R  [1946] pp. 498-506; FISHER [1956] pp. 68-72. 
2o TORNEBOHM [1966]. 
21 FISHER [1956] pp. 100-104. 
Bz In Fisher’s view, “the science of statistics is essentially a branch of Applied Mathematics, 
and may be defined as mathematics as applied to observational data” (FISHER [1925] p. 1). 
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apply to others.23 However, to paraphrase a well-known statement of Mill’s, 
whoever answers the question as to  when this is possible, has solved the riddle 
of induction, and the maximum likelihood principle does not help us in that 
enterprise. These observations are connected with Fisher’s penchant to as- 
sume, in the case of estimation, that the correct form of a law has already 
been discovered and that there remains only the task of estimating the 
numerical values of the parameters these laws involve. What I would con- 
sider the main aspect of theorizing as distinguished from explanation, viz. 
determining the form of these laws, is thus assumed to have been accom- 
plished before the estimation problem is raised. 

In another paper, I have studied some ways of expressing the regularity 
which we have been discussing by means of explicit parameters. 24 Whenever 
the regularity is not maximal, we have to be wary of generalizing too much 
from observations. The strength of this conservatism varies inversely to the 
regularity we are allowed to assume there is in the universe. Carnap’s A is a 
well-known index of conservatism of this kind. I have argued that its uses 
are restricted to singular inductive inference and that we need a comparable 
index of caution for inductive generalization, too. Be this as it may, it is 
interesting to see that the maximum likelihood principle results from the 
types of inductive logic which are calculated to be models (however over- 
simplified) of genuine inductive inference if and only if A+O, i.e. only if the 
regularity of our universe is maximal. I t  is only then that the maximal likeli- 
hood principle is an acceptable tool of inductive inference. 

In order to have a firm grasp of the nature of this principle, it is perhaps 
useful to have a closer look at its consequences for the kind of “Carnapian” 
situation which has already been used earlier as a testing ground (applied 
monadic first-order language). In such a situation, we can classify observed 
individuals into a number of classes (some of which may be empty) and which 
form a partition of our universe of discourse. (They may be given by the 
Q-predicates mentioned above.) If we have observed a random sample of 
individuals belonging to some of these, what hypothesis should we set up 

23 Is it accidental that so many of the most successful applications of Fisherian techniques 
have been in the field of biology? Is it perhaps the case that the presuppositions of the use 
of these techniques for the purpose of genuine theorizing are likelier to be satisfied there 
than in the social sciences? Once you have found out all the relevant features of a few well- 
developed members of a species, you are apt to have found out what you wanted for the 
whole species, one is tempted to say, and this would be precisely what the assumption of 
maximum regularity amounts to. 
24 See HINTIKKA [I9661 and cf. Carnap’s earlier work on the index of caution 1 for 
singular inductive inference, especially CARNAP [1952]. 
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concerning the whole universe? The answer which the maximum likelihood 
principle gives is known as the straight rule. 25 It tells us to assume that the 
actual relative frequencies of the different kinds of individuals in the whole 
universe are the same as the observed relative frequencies. 

It is not hard to see that this is not a very realistic method of choosing 
our hypothesis in many cases, especially when our sample is small. (Suppose 
e.g. that we have observed only two individuals of different kinds. It does 
not appear motivated to assume on the basis of such a sample that all the 
individuals of the universe belong to the two kinds our pair of observed 
individuals exemplify, or that they are divided precisely evenly between the 
two.) Hence the straight rule is rejected by the majority of writers on induc- 
tion as a method of generalizing from random samples. It is important to 
realize, however, that this rejection depends entirely on our interest in what 
they hypothesis we adopt says of individuals other than the observed ones, 
in brief, what its total information is. If our sole purpose were merely to give 
the best possible available explanation of our observations, we might be led 
to change our preferences and opt for the straight rule. And we would 
certainly do so in any case if we happened to know that the universe is 
completely regular. 

An interesting interpretation of (1 1 )  is obtained by observing that 

transinf(h1g) = inf(g) - inf(g1h) = inf(g)+ inf(h) - inf(g &h)  

which can obviously be interpreted as the amount of information shared by 
h and g .  Starting from this idea, Tornebohm makes the shrewd observation 
that the use of (20) (perhaps suitably normalized) as a measure of the accept- 
ability of h seems to be in good agreement with the practice of historians. 26 

A historian, clearly, is striving to organize his narrative so as to make the 
information it conveys overlap as closely as possible with the information 
his sources (i.e. the evidence e) contain, which is just what the maximization 
of (20) (for a fixed e) amounts to. It is important to realize, however, that 
in this respect the interests of a historian are apt to differ from those of a 
scientist. In the recent discussions concerning the methodology of history, 
it has frequently been insisted that a historian does not strive to generalize. 27 

Part of what is perhaps meant by such statements can now be appreciated. 
A historian is in the first place trying to explain the particular data he has, 

25 Cf. CARNAP [1952]. 
26 TORNEBOHM [1966] p. 85. 
27 See e.g. DRAY [1956] and the references to the subsequent discussion in PASSMORE [1966] 
pp. 539-540. 
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and is not overtly concerned with setting up theories with a view to saying 
something informative about individuals and events not immediately relevant 
to these data.28 This is precisely why a historian can be said (very roughly 
of course) to be guided, in his choice of a hypothesis h, by the expression 
(20) for the information which h gives concerning e, rather than by some 
function that turns on the overall information of h. 

More generally, the importance of likelihoods in statistical testing can be 
appreciated in the light of our observations. If two hypotheses hi and hi are 
compared with respect to their informativeness for certain particular data e, 
we have 

transinf(hi(e) - transinf(hj(e) = log [p(e(hi)/p(elhj)]. (21) 

In other words, if this is all that matters, the comparison between hi and h j  
turns entirely on the likelihood ratio p(elhi)/p(elhj). 

9. Maximizing expected content 

However, if we are interested in our data (say e)  merely as partial evidence 
for a global theory h, the situation is quite different. Here we are not so much 
interested in maximizing transinf(h1e) as maximizing in some sense the in- 
formation of h itself. Especially when h is a general statement, we are likelier 
to be interested in the substantive information it yields than in its surprise 
value. (Trying to maximize substantive information is typically an indication 
of serious global theorizing.) To maximize this directly means simply to opt 
for the least likely theory without considering any kind of evidential support, 
which is obviously unrealistic. The natural course in this case is therefore to 
consider the expected value of this substantive information as a result of the 
adoption of the hypothesis (theory) h.  If h is true, we gain the (substantive) 
information cont(h) by adopting h. If h is false, we loose the information 
which we could have gained by opting for - h, rather than h. According to 
what was just said, our net utility in this case is therefore -cont( Wh). The 
expected value of our information gain is thus 

p(h[e).cont(h) - p(-  hle)-cont(- h ) ,  (22) 

28 In view of what was said above of regularity and maximum likelihood, this is not 
incompatible with saying that genera1 laws are involved in historical explanations, too, 
provided these general laws are taken to be of a very unproblematic character - so un- 
problematic, indeed, that if they are known to apply in one case, they can be applied to all 
the others. This is not entirely unlike what the defenders of “covering-law’’ explanations in 
history have been led to say of the generalizations involved in historical explanations. 
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which simplifies as 
P(hI4 - P(h)  

This is simply the increase in the probability of 11 which has been brought 
about by the evidence e. If expected information is used as a measure of the 
acceptability of a theory, this acceptability does not depend on a priori or 
a posteriori probability alone, but on the effect of evidence - on “how well 
the theory has stood up to the test of experien~e”.~g 

I t  has been shown elsewhere that a policy of maximizing (23) when one is 
carrying out a generalization (i.e. choosing h among all the available general 
statements) results in certain interesting cases in a sound method of inductive 
generalization. 30 

On the basis of what was said above it is not surprising that it is just in the 
case of inductive generalization that this strategy succeeds. 

Hempel has proposed that we use the relative measure cOnt,dd(hle)= 
cont (e 2 h) rather than the absolute one cont (h).31 The most straightforward 
way of doing so fails, however, for if we identify the utility of the correct 
adoption of h with cont,,,(hle) and the disutjlity of an incorrect adoption 
with contadd(-hle) (i.e. with the utility which we could have gained by 
adopting - h  instead of h), the expected value of our utility will be 

p(hle)contwjd(hle) - p ( ”  hle)contadd(h .  hie) = 
=p(hle)p( -  h & e ) - p ( -  hJe)p (h&e)=O.  (24) 

This result may have been instrumental in leading Hempel to adopt a 

An attempt to use cont,,,, instead of cont,,, does not help, for 
different measure of the disutility of an incorrect adoption of h. 

p(h1e) contcond(hle) - P(-  hle)contcond(N hie) = 
=p(hIe)(1 -P(4e) ) - (1  -p(hIe))p(hle)=O. 

The use of (23) as a function to be maximized derives further support from 
other considerations. It lies close at  hand to suggest that we should maximize, 
not the expected absolute content cont(h) of a hypothesis 11, but rather the 

The similarity between this characteristic of (23) and what Popper says of his notion of 
corroboration might prompt one to offer (23) as a possible explication of corroboration. 
Good has in effect done this, in the highly interesting paper GOOD [1960]. Actually, there 
is also a rather close connection between (23) and a slightly different notion of POPPER’S 
[1954], called explanatory power. (See below, p. 329.) 
3O HINTIKKA and PIETARINEN [1966]. 
31 HEMPEL [I9621 especially pp. 153-156; HEMPEL [1960]. 
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content it has relative to the subject matter of the conjunction of all evi- 
dential statements e, or transcont,,,(hle). The expected value of this is, 
according to the principles already used in obtaining (22), 

Substituting for transcont,,,(h[ e), which by symmetry is transcont,,, (ejh), 
the expression cont(h) -contadd(hle) we obtain from (25) 

[p(hle)cont(h)- p(- h[e)cont(-h)] + 
- [P(hle)cont,dd(hle)-p(- hle)contadd(N kle)]. 

Here the second term is (24), and hence zero, while the first is (22) and hence 
identical with (23) or p(h1e)-p(h). Thus we obtain the same result no matter 
whether we are trying to maximize the expected value of the absolute content 
cont(h) of h or the expected value of the content transcont,,,(hle) of h with 
respect to the evidence e. This result may seem surprising. It is understood, 
however, when we realize that the only “boundary condition” which prevents 
us from maximizing the content of h ad libidum is the requirement that it has 
to agree with the evidence e we have. Thus the task in both cases is essentially 
to maximize the content (substantive information) that h gives us concerning 
our evidence. 

Furthermore, (23) is according to (1 3) precisely transcont,,,,(e(h), that is, 
the effect of evidence e on the information-carrying status of hypothesis h. 
In choosing h so as to maximize the expected value of its information-content 
cont(h), we are ips0 facto choosing h so as to maximize the gain which our 
evidence e gives us concerning the information h carries. There is a certain 
partial symmetry between the principle involved here and the maximum 
likelihood principle. In the latter, we are maximizing the information (in the 
sense of (1 1)) which the hypothesis gives us concerning the evidence, whereas 
in the former we are maximizing the gain in information (change in the 
information-carrying status) which the given evidence e brings about con- 
cerning a hypothesis. 

But why maximize transcont,,,,(elh) and not its expected value? This 
contrast is empty, for according to the principles used in arriving at (22) the 
expectation of transcontcond (el h)  is 

p(h[e) transcont,,,,(e[h) - p(-  hle) transcont,,,,(e( - h )  = 

= p(hIe) [p(hIe) - ~ ( h ) l  - [1 - ~ ( h l e l l  t1 - ~ ( h l e )  - (1 - ~ ( h ) ) l  = 
= p(hle) - p(h) = transcontCond(e(h). (26) 
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In other words, to maximize transcont,,,,(elh) is to maximize its expected 
value, giving us for the fourth time the same expression to be maximized. 

10. Degrees of “evidential support” 

Thus (23) serves as an especially interesting index of the relation of a 
hypothesis h to the evidence e. In suitable circumstances, it might be con- 
sidered as an index of the acceptability of h on the basis of e .  Measures of 
such acceptability are sometimes known as indices of “evidential power” of 
e with respect to h or the “corroboration” that e lends to h.32 If (23) is used 
as a measure of evidential power, it may be desirable to normalize it in a 
suitable way so as to make the bounds of its variation more uniform. 

When h and e are independent with respect to the probability measure p, 
(23) is zero, for then p(h)e)=p(h). When e logically implies h, p(h)e)= 1, and 
(23) reduces therefore to p(-h). When e logically implies -h, (23) reduces 
to - p(h). It lies here close at hand to multiply (23) by a suitable normalizing 
factor. Among the available possibilities there are e.g. the following nor- 
malizing factors: (a) l/p(h) p(-h); (b) l/p(h); (c) p(e)/p(-h). These give 
us the following respective values in the two extreme cases mentioned above: 
(a) l/p(h) and -1/p(-h); (b) p(-h)/p(h) and -1; (c) p(e) and 

These still depend on h, however. In order to see one way of making them 
independent of h, let us first use the normalizing factor (a) which is perhaps 
the most natural one here. The result can easily be rewritten as 

- P (e) P (NlP ( - h). 

which now varies between l/p(h) and - l/p(-A). An obvious way to “nor- 
malize” this so as to vary between + 1 and - 1 is to replace it by 

This always changes in the same direction as (27). 
It behaves in an orderly way: it varies between 

(27)* 

+ 1 and - 1 and receives 
these two extreme values only when t ( e 3 h )  and t ( e 3  M A ) ,  respectively, as 
one can readily verify. 

Most of the expressions which we have recently mentioned have actually 

32 For a possible difference between these two notions, see GOOD [1960]. 
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been proposed by different writers as measures of evidential power. A num- 
ber of such suggestions have been conveniently summarized by Kyburg.33 
Of the proposals he lists, those by Levi and Carnap amount to (23) itself. 
(No suggestion to this effect seems to have been actually made by Carnap, 
however, and Levi therefore appears to have been the first philosopher to 
use (23) as a measure of acceptability of h relative to e.)  The use of the nor- 
malizing factor (b) is tantamount to a suggestion by Finch, and the use of 
(c) to one by Rescher, while (27)* has been proposed by Kemeny and Oppen- 
heim as a measure of the degree of factual support. If we had normalized 
(23) directly, without first rewriting it as (27), that is to say, if we had replaced 
it simply by 

we would have obtained Popper’s measure of the explanatory power of e 
with respect to h. (The limits of its variation are (1 -p(h))/(l +p(h)) and 
-1, the former of which still depends on h.) From the point of view here 
adopted, all these proposed definitions thus turn out to be closely related 
to each other, and also turn out to be partly justifiable in terms of the con- 
cept of information. There is thus more uniformity in different philosophers’ 
conceptions of factual support (or explanatory power) than first meets the 
eye. It is perhaps significant that all the proposals we have mentioned have 
turned out to be closely connected with the concept of substantive infor- 
mation (the expected value of our cont) rather than with the concept of 
surprise value (unexpectedness). 

11. Possible reasons for preferring one sense of information 

I said earlier that scientific inquiry is a multi-goal enterprise and that there 
cannot therefore be any uniform measure of its success, i.e. any unique 
measure of how “good” one’s hypotheses and explanations are. This does 
not mean, however, that the choice of our measures of success - which 
normally prejudges partly our choice of the statistical techniques involved - 
is arbitrary or a matter of convention. Very often there are some objective 
guide-lines, and the realization of what one’s objectives are and what their 

33 See KYBURG [1964], who supplies further references to the relevant literature. It is 
perhaps worthwhile to note that in Kemeny and Oppenheim an important role is played 
by the requirement that their measure of factual support must vary between - 1 and + 1. 
See KEMENY and OPPENHEIM 119521. 
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realization presupposes can be a matter of considerable urgency. For in- 
stance, if a social science aims at a genuine theory, it cannot be satisfied with 
explanations of the different particular data that it has available, however 
“rich” these data and these explanations may be. For a discussion of this 
point in the case of sociology, see Bernard P. Cohen, “On the construction 
of sociological explanations” (forthcoming). 

There is another, much vaguer criterion that might also be worth a closer 
scrutiny. Often, the best way of describing an inductive situation is to think 
of it as arising from a second-order probability distribution, that is, from a 
probability distribution on a class of probability distributions. De Finetti’s 
famous representation (basis) theorem in fact says that this can be done under 
quite weak conditions. Now it may be the case that we do not know a priori 
some of the characteristic parameters of this second-order distribution, but 
have to estimate them on the basis of our evidence. How are we to  do this? 
In some vague sense, it seems that for this purpose the maximum likelihood 
principle is appropriate even where it is clearly inappropriate for the purpose 
of estimating the characteristics of the (true) first-order distribution. In so 
far as this feeling can be rationalized, it seems to turn on the fact that the 
second-order distribution exhaust our interest in the world. It may often be 
inappropriate to focus our explanation on one particular set of data, for 
there may be other sets of data available which we also have to heed in 
developing a satisfactory overall theory. But in the case of an explanation 
of the global features of the universe (as it were), there is nothing else we 
could possibly be interested in, and hence we can be happy if we can explain 
them to the exclusion of everything else, for there are no other universa 
which we have to beware of. And this of course means that the maximum 
likelihood principle is appropriate.34 
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EPISTEMOLOGY WITHOUT A KNOWING SUBJECT 

K.R.  POPPER 
University of London, England 

Allow me to start with a confession. Although I am a very happy philo- 
sopher I have, after a lifetime of lecturing, no illusions about what I can 
convey in a lecture. For this reason I shall make no attempt in this lecture 
to convince you. Instead I shall make an attempt to challenge you, and, if 
possible, to provoke you. 

1. Three theses on epistemology and the third world 

I might have challenged those who have heard of my adverse attitude 
towards Plato and Hegel by calling my lecture ‘ A  theory ofthe Plutonic world’, 
or ‘ A  theory of the objective spirit’. 

The main topic of this lecture will be what I often call, for want of a better 
name, ‘the third world’. To explain this expression I will point out that, 
without taking the words ‘world’ or ‘universe’ too seriously, we may distin- 
guish the following three worlds or universes: first, the world of physical 
objects or of physical states; secondly, the world of states of consciousness, 
or of mental states, or perhaps of behavioural dispositions to act; and 
thirdly, the world of objective contents of thought, especially of scientific 
and poetic thoughts and of works of art. 

Thus what I call ‘the third world’ has admittedly much in common with 
Plato’s theory of forms or ideas, and therefore also with Hegel’s objective 
spirit, though my theory differs radically, in some decisive respects, from 
Plato’s and Hegel’s. It has more in common still with Bolzano’s theory of 
a universe of propositions in themselves and of truths in themselves, though 
it differs from Bolzano also. My third world resembles most closely the 
universe of Frege’s objective contents of thought. 

It is not part of my view or of my argument that we might not enumerate 
our worlds in different ways, or not enumerate them at all. We might, 
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especially, distinguish more than three worlds. My term ‘the third world’ is 
merely a matter of convenience. 

In upholding an objective third world I hope to provoke those whom I 
call ‘belief philosophers’ : those who, like Descartes, Locke, Berkeley, Hume, 
Kant, or Russell, are interested in our subjective beliefs, and their basis or 
origin. Against these belief philosophers I urge that our problem is to find 
better and bolder theories; and that critical preference counts, but not belief. 

I wish to confess, however, at  the very beginning, that I am a realist: I 
suggest, somewhat like a naive realist, that there is a physical world and a 
world of states of consciousness, and that these two interact. And I believe 
that there is a third world, in a sense which I shall explain more fully. 

Among the inmates of my ‘third world’ are, more especially, theoretical 
systems; but just as important inmates are problems and problem situations. 
And I will argue that the most important inmates of this world are critical 
arguments, and what may be called - in analogy to a physical state or to a 
state of consciousness - the state of a discussion or the state of a critical 
argument; and, of course, the contents of journals, books and libraries. 

Most opponents of the thesis of an objective third world will of course 
admit that there are problems, conjectures, theories, arguments, journals and 
books. But they usually say that all these entities are, essentially, symbolic 
or linguistic expressions of subjective mental states, or perhaps of behavioural 
dispositions to act ; further, that these entities are means of communication, 
that is to say, symbolic or linguistic means to evoke in others similar mental 
states or behavioural disposition to act. 

Against this, I have often argued that one cannot relegate all these entities 
and their content to the second world. 

Let me repeat one of my standard arguments* for the (more or less) 
independent existence of the third world. 

I consider two thought experiments : 
Experiment (I). All our machines and tools are destroyed, also all our 

subjective learning, including our subjective knowledge of machines and 
tools, and how to use them. But libraries and our capacity to learn from them 
survive. Clearly, after much suffering, our world may get going again. 

Experiment (2). As before, machines and tools are destroyed, and our 
subjective learning, including our subjective knowledge of machines and 
tools, and how to use them. But this time, all libraries are destroyed also, 
so that our capacity to learn from books becomes useless. 

* The argument is adapted from POPPER [1962] Vol. 11; cp. p. 108. 
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If you think about these two experiments, the reality, significance and the 
degree of autonomy of the third world (as well as its effects on the second and 
first worlds) may perhaps become a little clearer to  you. For in the second 
case there will be no re-emergence of our civilization for many millennia. 

I wish to defend in this lecture three main theses, all of which concern 
epistemology. Epistemology I take to be the theory of scientiJc knowledge. 

My first thesis is this. Traditional epistemology has studied knowledge or 
thought in a subjective sense - in the sense of the ordinary usage of the words 
‘ I  know’ or ‘I am thinking’. This, I assert, has led students of epistemology 
into irrelevancies : while intending to study scientific knowledge, they studied 
in fact something which is of no relevance to scientific knowledge. For 
scientijic knowledge simply is not knowledge in the sense of the ordinary 
usage of the words ‘I know’. While knowledge in the sense of ‘I know’ be- 
longs to what 1 call the ‘second world’, the world of subjects, scientific know- 
ledge belongs to the third world, to the world of objective theories, objective 
problems, and objective arguments. 

Thus my first thesis is that the traditional epistemology, of Locke, Berke- 
ley, Hume, and even of Russell, is irrelevant, in a pretty strict sense of the 
word. It is a corollary of this thesis that a large part of contemporary 
epistemology is irrelevant also. This includes modern epistemic logic, if we 
assume that it aims at a theory of scientijc knowledge. However, any epist- 
emic logician can easily make himself completely immune from my criticism, 
simply by making clear that he does not aim at contributing to the theory 
of scientiJc knowledge. 

My first thesis involves the existence of two different senses of knowledge 
or of thought: knowledge or thought in the subjective sense, consisting of a 
state of mind or of consciousness or a disposition to behave or to react, and 
knowledge in an objective sense, consisting of problems, theories, and argu- 
ments as such. Knowledge in this objective sense is totally independent 
of anybody’s claim to know; also it is independent of anybody’s belief, or 
disposition to assent; or to assert, or to  act. Knowledge in the objective sense 
is knowledge without a knower: it is knowledge without a knowing subject. 

Of thought in the objective sense Frege wrote: ‘I understand by a thought 
not the subjective act of thinking but its objective content .. .’.* 

The two senses of thought and their interesting interrelations can be illus- 
trated by the following highly convincing quotation from HEYTING [ 19621 
p. 195 who says about Brouwer’s act of inventing his theory of the continuum: 

* Cp. FREGE [I8921 p. 3 2 ;  italics mine. 
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‘If recursive functions had been invented before, he [Brouwer] would 
perhaps not have formed the notion of a choice sequence which, I think, 
would have been unlucky.’ 

This quotation refers on the one hand to some subjective rhought processes 
of Brouwer’s and says that they might not have occurred (which would have 
been unfortunate) had the objective problem situation been different. 

Thus Heyting mentions certain possible inJluences upon Brouwer’s sub- 
jective thought processes, and he also expresses his opinion regarding the 
value of these subjective thought processes. Now it is interesting that influ- 
ences, qua influences, must be subjective: only Brouwer’s subjective ac- 
quaintance with recursive functions could have had that unfortunate effect 
of preventing him from inventing free choice sequences. 

On the other hand, the quotation from Heyting points to a certain 
objective relationship between the objective contents of two thoughts or 
theories: Heyting does not refer to the subjective conditions or the electro- 
chemistry of Brouwer’s brain processes, but to an objective problem situation 
in mathematics and its possible influences on Brouwer’s subjective acts of 
thought which were bent on solving these objective problems. I would de- 
scribe this by saying that Heyting’s remark is about the objective or third- 
world situational Zogic of Brouwer’s invention, and that Heyting’s remark 
implies that the third-world situation may affect the second world. Similarly, 
Heyting’s suggestion that it would have been unfortunate if Brouwer had 
not invented choice sequences is a way of saying that the objective content 
of Brouwer’s thought was valuable and interesting ; valuable and interesting, 
that is, in the way it changed the objective problem situation in the third world. 

To put the matter simply, if I say ‘Brouwer’s thought was influenced by 
Kant’ or even ‘Brouwer rejected Kant’s theory of space’ then I speak at  least 
partly about acts of thought in the subjective sense: the word ‘influence’ 
indicates a context of thought processes or acts of thinking. If I say, however, 
‘Brouwer’s thought differs vastly from Kant’s’, then it is pretty clear that I 
speak mainly about contents. And ultimately if I say ‘Brouwer’s thoughts 
are incompatible with Russell’s’, then, by using a logical term such as ‘in- 
compatible’, I make it unambiguously clear that I am using the word ‘thought’ 
only in Frege’s objective sense, and that I am speaking only about the 
objective content, or the logical content, of theories. 

Just as ordinary language unfortunately has no separate terms for ‘thought’ 
in the sense of the second world and in the sense of the third world, so it has 
no separate terms for the corresponding two senses of ‘I know’ and of ‘know- 
ledge’. 
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In order to show that both senses exist, I will first mention three subjective 

(1) ‘I know you are trying to provoke me, but I will not be provoked.’ 
(2) ‘I know that Fermat’s last theorem has not been proved, but I believe 

(3) From the entry ‘Knowledge’ in The Oxford English dictionary: know- 

Next I will mention three objective or third-world examples : 
(1) From the entry ‘Knowledge’ in The Oxford English dictionary: know- 

ledge is a ‘branch of learning; a science; an art’. 
(2) ‘Taking account of the present state of metamathematical knowledge, 

it seems possible that Fermat’s last theorem may be undecidable.’ 
(3) ‘I certify that this thesis is an original and significant contribution to 

knowledge . ’ 
These very trite examples have only the function of helping to clarify what 

I mean when I speak of ‘knowledge in the objective sense’. My quoting The 
Oxford English dictionary should not be interpreted as either a concession 
to language analysis or as an attempt to appease its adherents. It is not 
quoted in an attempt to prove that ’ordinary usage’ covers ‘knowledge’ in 
the objective sense of my third world. In fact, I was surprised to find in The 
Oxford English dictionary examples of objective usages of ‘knowledge’. (I 
was even more surprised to find some at least partly objective usages of 
‘know’: ‘to distinguish, to be acquainted with (a thing, a place, a person); 
... to understand’. That these usages may be partly objective will emerge 
from the sequel*.) At any rate, my examples are not intended as arguments. 
They are intended solely as illustrations. 

My first thesis, so far not argued but only illustrated, was that traditional 
epistemology with its concentration on the second world, or on knowledge 
in the subjective sense, is irrelevant to the study of scientific knowledge. 

My second thesis is that what is relevant for epistemology is the study of 
scientific problems and problem situations, of scientific conjectures (which 
I take as merely another word for scientific hypotheses or theories), of scien- 
tific discussions, of critical arguments, and of the role played by evidence in 
arguments ; and therefore of scientific journals and books, and of experiments 
and their evaluation in scientific arguments; or, in brief: that the study of a 
largely autonomous third world of objective knowledge is of decisive impor- 
tance for epistemology. 

or second-world examples: 

it will be proved one day.’ 

ledge is a ‘state of being aware or informed’. 

* See section 7.1, below. 
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An epistemological study as described in my second thesis shows that 
scientists very often do not claim that their conjectures are true, or that they 
‘know’ them in the subjective sense of ‘know’, or that they believe in them. 
Although they do not, in general, claim to know, they do, in their research 
programmes, act on the basis of guesses about what is and what is not fruit- 
ful, and what line of research promises further results in the third world of 
objective knowledge. In other words, scientists act on the basis of a guess 
or, if you like, of a subjective beZief(for we may so call the subjective basis 
of an action) concerning what is promising of impending growth in the third 
world of objective knowledge. 

This, I suggest, furnishes an argument in favour of both my Jirst thesis 
(of the irrelevance of a subjectivist epistemology) and of my second thesis 
(of the relevance of an objectivist epistemology). 

But I have a third thesis. It is this. An objectivist epistemology which 
studies the third world can help to throw an immense amount of light upon 
the second world of subjective consciousness, especially upon the subjective 
thought processes of scientists; but the comerse is not true. 

These are my three main theses. 

In addition to my three main theses, I offer three supporting theses. 
The first of these is that the third world is a natural product of the human 

animal, comparable to a spider’s web. 
The second and I think an almost crucial thesis is that the third world is 

largely autonomous, even though we constantly act upon it and are acted 
upon by it: it is autonomous in spite of the fact that it is our product and 
that it has a strong feed-back effect upon us; that is to say, upon us qua 
inmates of the second and even of the first world. 

The third supporting thesis is that it is through this interaction between 
ourselves and the third world that objective knowledge grows, and that there 
is a close analogy between the growth of knowledge and biological growth; 
that is, the evolution of plants and animals. 

2. A biological approach to the third world 

ln the present section of my talk I shall try to defend the existence of an 
autonomous world by a kind of biological or evolutionary argument. 

A biologist may be interested in the behaviour of animals; but he may 
also be interested in some of the non-living structures which animals produce, 
such as spiders’ webs, or nests built by wasps or ants, the burrows of badgers, 
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dams constructed by beavers, or paths made by animals in forests. 
I will distinguish between two main categories of problems arising from 

the study of these structures. The first category consists of problems con- 
cerned with the methods used by the animals, or the ways the animals behave 
when constructing these structures. This first category thus consists of prob- 
lems concerned with the acts of production, and with the relationships between 
the animal and the product. The second category of problems is concerned 
with the structures themselves. It is concerned with the chemistry of the 
materials used in the structure; with their geometrical and physical proper- 
ties; with their dependence upon or their adjustment to  special environ- 
mental conditions. Very important also is the feed-back relation from the 
properties of the structure to the behaviour of the animals. In dealing with 
this second category of problems - that is with the structures themselves - 
we shall also have to look upon the structures from the point of view of their 
biological functions. Thus some problems of the first category will admittedly 
arise when we discuss problems of the second category; for example ‘How 
was this nest built?’ and ‘What aspects of its structure are typical (and thus 
presumably traditional or inherited) and what aspects are variants adjusted 
to special conditions?’. 

As my last example of a problem shows, problems of the first category - 
that is, problems concerned with the production of the structure - will some- 
times be suggested by problems of the second category. This must be so, 
since both categories of problems are dependent upon the fact that such 
objective structures exist, a fact which itself belongs to the second category. 
Thus the existence of the structures themselves may be said to create both 
categories of problems. We may say that the second category of problems - 
problems connected with the structures themselves - is more fundamental : 
all that it presupposes from the first category is the bare fact that the struc- 
tures are somehow produced by some animals. 

Now these simple considerations may of course also be applied to products 
of human activity, such as houses, or tools, and also to  works of art. Es- 
pecially important for us, they apply to what we call ‘language’, and to what 
we call ‘science’.* 

The connection between these biological considerations and the topic of 
my present lecture can be made clear by reformulating my three main theses. 
My first thesis can be put by saying that in the present problem situation in 
philosophy, few things are as important as the awareness of the distinction 

~~ .________ 

* On these ‘artifacts’cp. HAYEK [19671 p. 111 
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between the two categories of problems - production problems on the one 
hand and problems connected with the produced structures themselves on 
the other. My second thesis is that we should realize that the second category 
of problems, those concerned with the products in themselves, is in almost 
every respect more important than the first category, the problems of pro- 
duction. My third thesis is that the problems of the second category are basic 
for understanding the production problems : contrary to first impressions, 
we can learn more about production behaviour by studying the products 
themselves than we can learn about the products by studying production 
behaviour. This third thesis may be described as an anti-behaviouristic and 
anti-psychologistic thesis. 

In their application to what may be called ‘knowledge’ my three theses 
may be formulated as follows. 

(1) We should constantly be aware of the distinction between problems 
connected with our personal contributions to the production of scien- 
tific knowledge on the one hand, and problems connected with the structure 
of the various products, such as scientific theories or scientific arguments, on 
the other. 

(2) We should realize that the study of the products is vastly more impor- 
tant than the study of the production, even for an understanding of the pro- 
duction and its methods. 

(3) We can learn more about the heuristics and the methodology and even 
about the psychology of research by studying theories, and the arguments 
offered for or against them, than by any direct behaviouristic or psycho- 
logical or sociological approach. In general, we may learn a great deal about 
behaviour and psychology from the study of the products. 

In what follows I will call the approach from the side of the products - the 
theories and the arguments - the ‘objective’ approach or the ‘third-world’ 
approach. And I will call the behaviourist, the psychological, and the 
sociological approach to scientific knowledge the ‘subjective’ approach or the 
‘second-world’ approach. 

The appeal of the subjective approach is largely due to the fact that it is 
causal. For I admit that the objective structures for which I claim priority 
are caused by human behaviour. Being causal, the subjective approach may 
seem to be more scientific than the objective approach which, as it were, 
starts from effects rather than causes. 

Though I admit that the objective structures are products of behaviour, 
I hold that the argument is mistaken. In all sciences, the ordinary approach 
is from the effects to the causes. The effect raises the problem - the problem 
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to be explained, the explicandum - and the scientist tries to solve it by con- 
structing an explanatory hypothesis. 

My three main theses with their emphasis on the objective product are 
therefore neither teleological nor unscientific. 

3. The objectivity and the autonomy of the third world 

One of the main reasons for the mistaken subjective approach to know- 
ledge is the feeling that a book is nothing without a reader: only if it is under- 
stood does it really become a book; otherwise it is just paper with black spots 
on it. 

This view is mistaken in many ways. A wasp’s nest is a wasp’s nest even 
after it has been deserted; even though it is never again used by wasps as a 
nest. A bird’s nest is a bird’s nest even if it was never lived in. Similarly a 
book remains a book - a certain type of product - even if it is never read (as 
may easily happen nowadays). 

Moreover, a book, or even a library, need not even have been written by 
anybody: a series of books of logarithms, for example, may be produced and 
printed by a computer. It may be the best and fullest series of books of 
logarithms - it may contain logarithms up to, say, 50 decimals. It may be 
sent out to libraries, but it may be found too cumbersome for use; at any 
rate, years may elapse before anybody uses it; and many figures in it (which 
represent mathematical theorems) may never be looked at as long as men 
live on earth. Yet each of these figures contains what I call ‘objective know- 
ledge’; and the question of whether or not I am entitled to call it by this 
name is of no interest. 

The example of these books of logarithms may seem far-fetched. But it is 
not. I should say that almost every book is like this: it contains objective 
knowledge, true or false, useful or useless ; and whether anybody ever reads 
it and really grasps its contents is almost accidental. A man who reads a book 
with understanding is a rare creature. But even if he were more frequent, 
there would always be plenty of misunderstandings and misinterpretations ; 
and it is not the actual and somewhat accidental avoidance of such misun- 
derstandings which turns black spots on white paper into a book, or an 
instance of knowledge in the objective sense. Rather, it is something more 
abstract. It is the possibility or potentiality of being understood, the dispo- 
sitional character of being understood or interpreted, or misunderstood or 
misinterpreted, which makes of a thing a book. And this potentiality or 
disposition may exist without ever being actualized or realized. 
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To see this more clearly, we may imagine that after the human race has 
perished, some books or libraries may be found by some civilized successors 
of ours (no matter whether these are terrestrial animals which have become 
civilized, or some visitors from outer space). These books may be decyphered. 
They may be those logarithm tables never read before, for argument’s sake. 
This makes it quite clear that neither its composition by thinking animals 
nor the fact that it has not actually been read or understood is essential for 
making a thing a book, and that it is sufficient that it can be decyphered. 

Thus I do admit that in order to  belong to  the third world of objective 
knowledge, a book should - in principle, or virtually - be capable of being 
grasped (or decyphered, or understood, or ‘known’) by somebody. But I do 
not admit more. 

We can thus say that there is a kind of Platonic (or Bolzanoesque) third 
world of books in themselves, theories in themselves, problems in them- 
selves, problem situations in themselves, arguments in themselves, and so 
on. And 1 assert that even though this third world is a human product, there 
are many theories in themselves and arguments in themselves and problem 
situations in themselves which have never been produced or understood and 
may never be produced or understood by men. 

The thesis of the existence of such a third world of problem situations will 
strike many as extremely metaphysical and dubious. But it can be defended 
by pointing out its biological analogue. For example, it has its full analogue 
in the realm of birds’ nests. Some years ago I got a present for my garden - 
a nesting box for birds. It was a human product, of course, not a bird’s 
product -just as our logarithm table was a computor’s product rather than 
a human product. But in the context of the bird’s world, it was part of an 
objective problem situation, and an objective opportunity. For some years 
the birds did not even seem to notice the nesting box. But after some years, 
it was carefully inspected by some blue tits who even started building in it, 
but gave up very soon. Obviously, here was a graspable opportunity, though 
not, it appears, a particularly valuable one. At any rate, here was a problem 
situation. And the problem may be solved in another year by other birds. 
If it is not, another box may prove more adequate. On the other hand, a 
most adequate box may be removed before it is ever used. The question of 
the adequacy of the box is clearly an objective one; and whether the box is 
ever used is partly accidental. So it is with all ecological niches. They are 
potentialities and may be studied as such in an objective way, up to  a point 
independently of the question of whether these potentialities will ever be 
actualized by any living organism. A bacteriologist knows how to prepare 
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such an ecological niche for the culture of certain bacteria or moulds. It may 
be perfectly adequate for its purpose. Whether it will ever be used and 
inhabited is another question. 

A large part of the objective third world of actual and potential theories 
and books and arguments arises as an unintended by-product of the actually 
produced books and arguments. We may also say that it is a by-product of 
human language. Language itself, like birds’ nests, is an unintended by- 
product of actions which were directed at other aims. 

How does an animal path in the jungle arise? Some animal may break 
through the underwood in order to get to a drinking place. Other animals 
find it easiest to use the same track. Thus it may be widened and improved 
by use. It is not planned - it is an unintended consequence of the need for 
easy or swift movement. This is how a path is originally made - perhaps even 
by men - and how language and any other institutions which are useful may 
arise, and how they may owe their existence and development to their useful- 
ness. They are not planned or intended, and there was perhaps no need for 
them before they came into existence. But they may create a new need, or 
a new set of aims: the aim-structure of animals or men is not ‘given’, but it 
develops with the help of some kind of feed-back mechanism out of earlier 
aims, and out of results which were or were not aimed at *. 

In this way, a whole new universe of possibilities or potentialities may 
arise: a world which is to a large extent autonomous. 

A very obvious example is a garden. Even though it may have been planned 
with great care, it will as a rule turn out partly in unexpected ways. But even 
if it turns out as planned, some unexpected interrelationships between the 
planned objects may give rise to a whole universe of possibilities, of possible 
new aims, and of new problems. 

The world of language, of expectations, theories and arguments, in brief, 
the universe of objective knowledge, is one of the most important of these 
man-created yet at the same time largely autonomous universes. 

The idea of autonomy is central to my theory of the third world : although 
the third world is a human product, a human creation, it creates in its turn, 
as do other animal products, its own domain of autonomy. 

There are countless examples. Perhaps the most striking ones, and at  any 

* See HAYEK [I9671 Ch. 6, esp. pp. 96, 100, n. 12; DESCARTES [1637], cp. (19311 p. 89; 
POPPER [1960] p. 65; [I9661 sect. XXIV. 
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rate those which should be kept in mind as our standard examples, may be 
found in the theory of natural numbers. 

Pace Kronecker, I agree with Brouwer that the sequence of natural num- 
bers is a human construction. But although we create this sequence, it creates, 
in its turn, its own autonomous problems. The distinction between odd and 
even numbers is not created by us: it is an unintended and unavoidable 
consequence of our creation. Prime numbers, of course, are similar unin- 
tended autonomous and objective facts; and in their case it is obvious that 
there are many facts here for us to discover: there are conjectures like Gold- 
bach’s. And these conjectures, though they refer indirectly to objects of our 
creation, refer directly to problems and facts which have somehow emerged 
from our creation and which we cannot control or influence: they are hard 
facts, and the truth about them is often hard to discover. 

This exemplifies what I mean when r say that the third world is largely 
autonomous, though created by us. 

But the autonomy is only a partial one: the new problems lead to new 
creations or constructions - such as recursive functions, or Brouwer’s free 
choice sequences - and may thus add new objects to the third world. And 
every such step will create new unintended facts; new unexpected problems; 
and often also new refutations*. 

There is also a most important feed-back effect from our creations upon 
ourselves ; from the third world upon the second world. For the new emergent 
problems stimulate us to new creations. 

The process can be described by the following somewhat oversimplified 
schema (see my [1966] especially p. 24): 

PI -+ TT+ EE -+ Pz . 
That is, we start from some problem PI, proceed,to a tentative solution 

or tentative theory TT, which may be (partly or wholly) mistaken; in any 
case it will be subject to error elimination EE which may consist of critical 
discussion or experimental tests; at any rate, new problems Pz arise from 
our own creative activity; and these new problems are not in general inten- 
tionally created by us, they emerge autonomously from the field of new 
relationships which we cannot help bringing into existence with every action, 
however little we intend to do so. 

The autonomy of the third world, and the feed-back of the third world 

* An example of the latter is Lakatos’s ‘concept-stretching refutation’; see LAKATOS 
[ 1963-641.  
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upon the second and even the first, are among the most important facts of 
the growth of knowledge. 

Following up our biological considerations, it is easy to see that they are 
of general importance for the theory of Darwinian evolution : they explain 
how we can lift ourselves by our own bootstraps. Or in more highbrow 
terminology, they help to explain ‘emergence’. 

4. Language, criticism, and the third world 

The most important of human creations, with the most important feed- 
back effects upon ourselves and especially upon our brains, are the higher 
functions of human language ; more especially, the descriptive function and 
the argumentative function. 

Human languages share with animal languages the two lower functions 
of language : (1) self-expression and (2) signalling. The self-expressive func- 
tion or symptomatic function of language is obvious: all animal language is 
symptomatic of the state of some organism. The signalling or release func- 
tion is likewise obvious: we do not call any symptom linguistic unless we 
assume that it can release a response in another organism. 

All animal languages and all linguistic phenomena share these two lower 
functions. But human language has many other functions *. Strangely 
enough, the most important of the higher functions have been overlooked 
by almost all philosophers. The explanation of this strange fact is that the 
two lower functions are always present when the higher ones are present, 
so that it is always possible to ‘explain’ every linguistic phenomenon, in 
terms of the lower functions, as an ‘expression’ or a ‘communication’. 

The two most important higher functions of human languages are (3) the 
descriptive function and (4) the argumentative function **. 

With the descriptive function of human language, the regulative idea of 
truth emerges, that is, of a description which fits the facts***. 

* For example, advisory, hortative, fictional, etc. 
** See POPPER [I9631 especially chapters 4 and 12, and the references on pp. 134,293 and 
295 to BUHLER [1934]. Biihler was the first to discuss the decisive difference between the 
lower functions and the descriptive function. I found later, as a consequence of my 
theory of criticism, the decisive distinction between the descriptive and the argumentative 
functions. See also POPPER [1966] section XIV and note 47. 
*** One of the great discoveries of modem logic was Alfred Tarski’s re-establishment of 
the (objective) correspondence theory of truth (truth =correspondence to the facts). 
The present essay owes everything to this theory; but I do not of course wish to implicate 
Tarski in any of the crimes here committed. 
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Further regulative or evaluative ideas are content, truth content, and 
verisimilitude *. 

The argumentative function of human language presupposes the descrip- 
tive function : arguments are, fundamentally, about descriptions : they criti- 
cize descriptions from the point of view of the regulative ideas of truth; 
content; and verisimilitude. 

Now two points are all-important here : 
(1) Without the development of an exosomatic descriptive language - a 

language which, like a tool, develops outside the body - there can be no 
object for our critical discussion. But with the development of a descriptive 
language (and further, of a written language), a linguistic third world can 
emerge; and it is only in this way, and only in this third world, that the 
problems and standards of rational criticism can develop. 

(2) It is to this development of the higher functions of language that we 
owe our humanity, our reason. For our powers of reasoning are nothing but 
powers of critical argument. 

This second point shows the futility of all theories of human language 
that focus on expression and communication. As we shall see, the human 
organism which, it is often said, is to express itself, depends in its structure 
very largely upon the emergence of the two higher functions of language. 

With the evolution of the argumentative function of language, criticism 
becomes the main instrument of further growth. (Logic may be regarded as 
the organon of criticism; see my [1963] p. 64.) The autonomous world of 
the higher functions of language becomes the world of science. And the 
schema, originally valid for the animal world as well as for primitive man, 

P1-+TT-+EE-+P2 

becomes the schema of the growth of knowledge through error elimination 
by way of systematic rational criticism. It becomes the schema of the search 
for truth and content by means of rational discussion. It describes the way 
in which we lift ourselves by our bootstraps. It gives a rational description 
of evolutionary emergence, and of our self-transcendence by means of selec- 
tion and rational criticism. 

To sum up, although the meaning of ‘knowledge’, like of all words, is 

* See the previous note and POPPER [1962a] especially p. 292; and POPPER [1963] chapter 10 
and Addenda. 
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unimportant, it is important to distinguish between different senses of the 
word. 

(1) Subjective knowledge which consists of certain inborn dispositions to 
act, and of their acquired modifications. 

(2) Objective knowledge, for example, scientific knowledge which consists 
of conjectural theories, open problems, problem situations, and arguments. 

All work in science is work directed towards the growth of objective know- 
iedge. We are workers who are adding to the growth of objective knowledge 
as masons work on a cathedral. 

Our work is fallible, like all human work. We constantly make mistakes, 
and there are objective standards of which we may fall short - standards of 
truth, content, validity, and others. 

Language, the formulation of problems, the emergence of new problem 
situations, competing theories, mutual criticism by way of argument, all 
these are the indispensible means of scientific growth. The most important 
functions or dimensions of the human language (which animal languages do 
not possess) are the descriptive and the argumentative functions. The growth 
of these functions is, of course, of our making, though they are unintended 
consequences of our actions. It is only within a language thus enriched that 
critical argument and knowledge in the objective sense become possible. 

The repercussions, or the feed-back effects, of the evolution of the third 
world upon ourselves - our brains, our traditions (if anybody were to start 
where Adam started, he would not get further than Adam did) our disposi- 
tions to act (that is, our beliefs*) and our actions, can hardly be overrated. 

As opposed to  all this, traditional epistemology is interested in the second 
world: in knowledge as a certain kind of belief - justifiable belief, such as 
belief based upon perception. As a consequence, this kind of belief philo- 
sophy cannot explain (and does not even try to explain) the decisive pheno- 
menon that scientists criticize their theories and so kill them. Scientists try to 
eliminate their false theories, they try to let them die in their stead. The be- 
liever - whether animal or man - perishes with his false beliefs. 

5. Historical remarks 

5.1.  Plato and Neo-Platonism 

For all we know, Plato was the discoverer of the third world. As White- 
head remarked, all Western philosophy consists of footnotes to  Plato. 

* The theory that beliefs may be gauged by readiness to bet was regarded as well known in 
1771 ; see KANT [1778] p. 852. 
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I will make only three brief remarks on Plato, two of them critical. 
(1) Plato discovered not only the third world, but part of the influence or 

feed-back of the third world upon ourselves : he realized that we try to grasp 
the ideas of his third world; also that we use them as explanations. 

(2) Plato’s third world was divine; it was unchanging and, of course, true. 
Thus there is a big gap between his and my third world: my third world is 
man-made and changing. It contains not only true theories but also false 
ones, and especially open problems, conjectures, and refutations. 

And while Plato, the great master of dialectical argument, saw in it merely 
a way leading to the third world, I regard arguments as among the most 
important inmates of the third world; not to speak of open problems. 

(3) Plato believed that the third world of forms or ideas would provide 
us with ultimate explanations (that is, explanation by essences; see my 
[1963] chapter 3). Thus he writes for example: ‘I think that if anything else 
apart from the idea of absolute beauty is beautiful, then it is beautiful for  
the sole reason that it has some share in the idea of absolute beauty. And this 
kind of explanation applies to everything.’ (PLATO, Phaedo, 100 C . )  

This is a theory of ultimate explanation; that is to say, of an explanation 
whose explicans is neither capable nor in need of further explanation. And 
it is a theory of explanation by essences, that is, by hypostasized words. 

As a result, Plato envisaged the objects of the third world as something 
like non-material things or, perhaps, like stars or constellations - to be gazed 
at, and intuited, though not liable to be touched by our minds. This is why 
the inmates of the third world - the forms or ideas - became concepts of 
things, or essences or natures of things, rather than theories or arguments 
or problems. 

This had the most far-reaching consequences for the history of philoso- 
phy. From Plato until today, most philosophers have either been nominalists * 
or else what I have called essentialists. They are more interested in the 
(essential) meaning of words than in the truth and falsity of theories. 

I often present the problem in the form of a table (see the next page). 
My thesis is that the left side of this table is unimportant, as compared to 

the right side: what should interest us are theories; truth; argument. If so 
many philosophers and scientists still think that concepts and conceptual 
systems (and problems of their meaning, or the meaning of words) are com- 
parable in importance to theories and theoretical systems (and problems of 
their truth, or the truth of statements), then they are still suffering from 

* Cp. WATKINS [I9651 Ch. VIII, esp. pp. 145f., and POPPER [1959] pp. 420-2; 119631 
pp. 18ff., 262, 297f. 
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Plato’s main error *. For concepts are partly means of formulating theories, 
partly means of summing up theories. In any case their significance is 
mainly instrumental; and they may always be replaced by other concepts. 

I D E A S  
that is 

or C O N C E P T S  or T H E O R I E S  

may be formulated in 

which may be 

and their 

may be reduced, by way of 

to that of 

D E S I G N A T I O N S  Or TERMS STATEMENTS Or P R O P O S I T I O N S  

W O R D S  ASS E RTION S 

M E A N I N G F U L  T R U E  

M E A N I N G  T R U T H  

D E F I N I T I O N S  D E R I V A T I O N S  

U N D E F I N E D  C O N C E P T S  P R I M I T I V E  P R O P O S I T I O N S  

the attempt to establish (rather than reduce) by these means their 

leads to an infinite regress 
M E A N I N G  T R U T H  

~- ~~ 

Contents and objects of thought seem to have played an important part 
in Stoicism and in Neo-Platonism : Plotinus preserved Plato’s separation 
between the empirical world and Plato’s world of Forms or Ideas. Yet like 
Aristotle””, Plotinus destroyed the transcendence of Plato’s world by placing 
it into the consciousness of God. 

* The error, which is traditional, is known as ‘the problem of universals’. This should be 
replaced by ‘the problem of theories’, or ‘the problem of the theoretical content of all 
human language’. See POPPER [1959] sections 4 (with the new footnote *1) and 25. 

Incidentally, it is clear that of the famous three positions - universale ante rem, in re, and 
post rem - the last, in its usual meaning, is anti-third-world and tries to explain language 
as expression, while the first (Platonic) is pro-third-world. Interestingly enough, the 
(Aristotelian) middle position (in re) may be said either to be anti-third-world or to ignore 
the problem of the third world. It thus testifies to the confusing influence of conceptualism. 
** Cp. ARISTOTLE, Metaphysics XI1 (A) ,  7 :  1072b21f.; and 9: 1074b15 to 1075a4. This 
passage (which Ross sums up: ‘the divine thought must be concerned with the most divine 
object, which is itself’) contains an implicit criticism of Plato. Its affinity with Platonic 
ideas is especially clear in lines 25 f. : ‘it thinks of that which is most divine and precious, 
and it does not change; for change would be change for the worse ...’. (See also ARISTOTLE, 
De Anima 429b27ff., esp. 430a4.) 
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Plotinus criticized Aristotle for failing to distinguish between the First 
Hypostasis (Oneness) and the Second Hypostasis (the divine intellect). Yet 
he followed Aristotle in identifying God’s acts of thought with their own 
contents or objects; and he elaborated this view by taking the Forms or 
Ideas of Plato’s intelligible world to be the immanent states of consciousness 
of the divine intellect.* 

5.2. Hegel 

Hegel was a Platonist (or rather a Neo-Platonist) of sorts and, like Plato, 
a Heraclitean of sorts. He was a Platonist whose world of Ideas was changing, 
evolving. Plato’s ‘Forms’ or ‘Ideas’ were objective, and had nothing to do 
with conscious ideas in a subjective mind; they inhabited a divine, an un- 
changing, heavenly world (super-lunar in Aristotle’s sense). By contrast 
Hegel’s Ideas, like those of Plotinus, were conscious phenomena: thoughts 
thinking themselves and inhabiting some kind of consciousness, some kind 
of mind or ‘Spirit’; and together with this ‘Spirit’ they were changing or 
evolving. The fact that Hegel’s ‘Objective Spirit’ and ‘Absolute Spirit’ are 
subject to change is the only point in which his Spirits are more similar to 
my ‘third world’ than Plato’s world of Ideas (or Bolzano’s world of ‘state- 
ments in themselves’). 

The most important differences between Hegel’s ‘Objective Spirit’ and 
‘Absolute Spirit’ and my ‘third world‘ are these: 

(1) According to Hegel, though the Objective Spirit (comprising artistic 
creation) and Absolute Spirit (comprising philosophy) both consist of human 
productions, man is not creative. It is the hypostasized Objective Spirit, it 
is the divine self-consciousness of the Universe, that moves man : ‘individuals 
. . . are instruments’, instruments of the Spirit of the Epoch, and their work, 
their ‘substantial business’, is ‘prepared and appointed independently of 
them’. (Cp. HEGEL 118301 paragraph 551.) Thus what I have called the 
autonomy of the third world, and its feed-back effect, becomes with Hegel 
omnipotent: it is only one of the aspects of his system in which his theological 
background manifests itself. As against this I assert that the individual 
creative element, the relation of give-and-take between a man and his work, 
is of the greatest importance. In Hegel this degenerates into the doctrine that 
the great man is something like a medium in which the Spirit of the Epoch 
expresses itself. 

(2) In spite of a certain superficial similarity between Hegel’s dialectic and 

* Cp. PLOTINUS, Enneades I I ,4 ,4  ([1883] p. 153, 3); 111, 8, 11 (I18831 p. 346,6); V, 3, 2-5; 
V, 9, 5-8; VI, 5, 2; VI, 6, 6-7. 
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my evolutionary schema 
P,-+TT+EE-+P, 

there is a fundamental difference. My schema works through error elimi- 
nation, and on the scientific level through conscious criticism under the 
regulative idea of the search for truth. 

Criticism, of course, consists in the search for contradictions and in their 
elimination : the difficulty created by the demand for their elimination con- 
stitutes the new problem (P2) .  Thus the elimination of error leads to  the 
objective growth of our knowledge - of knowledge in the objective sense. It 
leads to the growth of objective verisimilitude: it makes possible the ap- 
proximation to (absolute) truth. 

Hegel, on the other hand, is a relativist *. He does not see our task as the 
search for contradictions, with the aim of eliminating them, for he thinks 
that contradictions are as good as (or better than) non-contradictory theo- 
retical systems: they provide the mechanism by which the Spirit propels 
itself. Thus rational criticism plays no part in the Hegelian automatism, no 
more than does human creativity**. 

(3) While Plato lets his hypostasized Ideas inhabit some divine heaven, 
Hegel personalizes his Spirit into some divine consciousness : the Ideas in- 
habit it as human ideas inhabit some human consciousness. His doctrine is 
throughout that the Spirit is not only conscious but a self. As against this, 
my third world has no similarity whatever to human consciousness ; and 
though its first inmates are products of human consciousness, they are 
totally differentfrom conscious ideas or from thoughts in the subjective sense. 

5.3. Bolzano and Frege 

Bolzano’s statements in themselves and truths in themselves are, clearly, 
inhabitants of my third world. But he was far from clear about their relation- 
ship to the rest of the world***. 

It is, in a way, Bolzano’s central difficulty which I have tried to solve by 
comparing the status and autonomy of the third world to  those of animal 
products, and by pointing out how it originates in the higher functions of 
the human language. 

* See POPPER [1963] chapter 15;  POPPER [1962] Addendum to vol. ii: ‘Facts, Standards and 
Truth: A Further Criticism of Relativism’. 
** See LAKATOS [1963] p. 234, footnote 1 (Offprint p. 59). 
*** BOLZANO [1837] Vol. I, $19, p. 78, says that statements (and truths) in themselves have 
no being (‘Dasein’), existence, or reality. Yet he also says that a statement in itself is 
not m~re ly  ‘something stated, thus presupposing a person who stated it’. 
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As to Frege, there can be no doubt about his clear distinction between the 
subjective acts of thinking, or thought in the subjective sense, and objective 
thought or thought content *. 

Admittedly, his interest in subordinate clauses of a sentence, and in in- 
direct speech, made him the father of modern epistemic logic**. But I think 
that he is in no way affected by the criticism of epistemic logic which I 
am going to offer (seesection7 below):asfarasIcansee, he wasnot thinkingin 
these contexts of epistemology in the sense of a theory of scientific knowledge. 

5.4. Empiricism 

Empiricism - say, of Locke, Berkeley and Hume - has to be understood in 
its historical setting: its main problem was, simply, religion uersus irreligion ; 
or more precisely, the rational justification, or justifiability, of Christianity, 
as compared to scientific knowledge. 

This explains why knowledge is throughout regarded as a kind of belief - 
belief justified by evidence, especially by perceptual evidence, by the evidence 
of our senses. 

Though their positions with respect to the relation of science and religion 
differ widely, Locke, Berkeley*** and Hume agree essentially in the demand 
(which Hume sometimes feels is an unattainable ideal) that we should reject 
all propositions - and especially propositions with existential import - for 
which the evidence is insufficient, and accept only those propositions for 
which we have sufficient evidence: which can be proved, or verified, by the 
evidence of our  senses. 

This position can be analysed in various ways. A somewhat sweeping 
analysis would be the following chain of equations or equivalences most of 
which can be supported by passages from the British empiricists and even 
form Bertrand Russell.**** 

* See the quotation in section 1 above from FREGE [I8921 p. 32, and FREGE [1894]. 
** The way leads from FREGE to RUSSELL [1922] p. 19 and WI~GENSTEIN [I9221 5,542. 
*** For Berkeley’s position compare section 1 of ch. 3 and ch. 6 of POPPER [1963]. 
**** Cp. RUSSELL [1906-71 p. 45: ‘Truth is a quality of beliefs’; RUSSELL [1910]: ‘I shall use 
the words “belief” and “judgment” as synonyms.’ (p. 172, footnote); or: ‘...judgment is ... 
a multiple relation of the mind to the various other terms with which the judgment is 
concerned.’ (p. 180). He also holds that ‘perception is always true (even in dreams and 
hallucinations)’ (p. 181). Or cp. RUSSELL 119591 p. 183: ‘...but from the point of view of the 
theory of knowledge and of the definition of truth it is sentences expressing belief that are 
important’. See also RUSSELL [1922] pp. 19f., and Ducasse’s ‘epistemic attitudes’ in DUCASSE 
[1940], pp. 701-711. It is clear that both Russell and Ducasse belong to those traditional 
epistemologists who study knowledge in its subjective or second-world sense. The tradition 
far transcends empiricism. 
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p is verified or demonstrated by sense experience = there is sufficient reason 
or justification for us to believe p = we believe or judge or assert or assent 
or know that p is true = p is true = p. 

One remarkable thing about this position which confutes the evidence, or 
pro05 and the assertion to be proved, is that anybody who holds it ought to 
reject the law of the excluded middle. For it is obvious that the situation may 
arise (in fact, it would be practically the normal situation) that neither p 
nor not-p can be fully supported, or demonstrated, by the evidence avail- 
able. Yet it seems that this was not noticed by anybody before Brouwer. 

This failure to reject the law of the excluded middle is particularly striking 
in Berkeley; for if 

esse = percipi 

then the truth of any statement about reality can be established only by 
perception statements. Yet Berkeley, very much like Descartes, suggests in 
his Dialogues * that we should reject p if there is ‘no reason to believe in it’. 
The absence of such reasons may be compatible, however, with the absence 
of reasons to believe in non-p. 

6. Appreciation and criticism of Brouwer’s epistemology 

In the present section I wish to pay homage to L. E. J. Brouwer. 
It would be presumptuous of me to try to praise and even more presump- 

tuous to try to criticize Brouwer as a mathematician. But it may be permis- 
sible for me to try to criticize his epistemology and his philosophy of intu- 
itionist mathematics. If I dare to do so, it is in the hope of making a contri- 
bution, however slight, to the clarification and further development of 
Brouwer’s ideas. 

In his Inaugural Lecture BROUWER [I9121 starts from Kant. He says that 
Kant’s intuitionist philosophy of geometry - his doctrine of the pure intuition 
of space - has to be abandoned in the light of non-Euclidean geometry. 
But, Brouwer says, we do not need it, since we can arithmetize geometry: 
we can take our stand squarely on Kant’s theory of arithmetic, and on his 
doctrine that arithmetic is based upon the pure intuition of time. 

* See the second dialogue between Hylas and Philonous (BERKELEY [1949] p. 21 8, lines 15f.) : 
‘It is to me a sufficient reason not to believe the existence of any thing, if I see no reason 
for believing it.’ Compare DESCARTES [1637] Pt. IV (first paragraph): ‘Any opinion should 
be rejected as manifestly false [‘apevte fulsu’ in the Latin version] if the slightest reason for 
doubt can be found in it.’ 
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I feel that this position of Brouwer’s can no longer be sustained; for if we 
say that Kant’s theory of space is destroyed by non-Euclidean geometry, 
then we are bound to say that his theory of time is destroyed by special 
relativity. For Kant says explicitly that there is only one time, and that the 
intuitive idea of (absolute) simultaneity is decisive for it*. 

It might be argued- on lines somewhat parallel to a remark of Heyting’s** 
- that Brouwer might not have developed his epistemological and philo- 
sophical ideas about intuitionist mathematics had he known at the time of 
the analogy between Einstein’s relativization of time and non-Euclidean 
geometry. To paraphrase Heyting, this would have been unfortunate. 

However, it is unlikely that Brouwer would have been overmuch impressed 
by special relativity. He might have given up citing Kant as a precursor of 
his intuitionism. But he could have retained his own theory of a personal 
time - of a time of our own intimate and immediate experience. (See BROUWER 
[1949]). And this was in no way affected by relativity, even though Kant’s 
theory was affected. 

Thus we need not treat Brouwer as a Kantian. Yet we cannot sever him 
from Kant too easily. For Brouwer’s idea of intuition, and his use of the 
term ‘intuition’, cannot be fully understood without analysing its Kantian 
background. 

For Kant, intuition is a source of knowledge; and ‘pure’ intuition (‘the pure 
intuition of space and time’) is an unfailing source of knowledge: from it 
springs absolute certainty. This is most important for the understanding of 
Brouwer who clearly adopts this epistemological doctrine from Kant. 

It is a doctrine with a history. Kant took it from Plotinus, St. Thomas, 
Descartes, and others. Originally, intuition meant, of course, perception : it 
is what we see, or perceive, if we look at, or if we direct our gaze on to, some 
object. But at least from Plotinus on, there developed a contrast between 
intuition on the one hand, and discursive thinking on the other. Intuition is 
God’s way of knowing everything at  a glance, in a flash, timelessly. Dis- 
cursive thought is the human way: as in a discourse, we argue step by step, 
which takes time. 

Now Kant upheld the doctrine (against Descartes) that we do not possess 

* In the Transcendental Aesthetic (KANT [1778] pp. 46f; Kemp-Smith’s translation, 
pp. 74f.), Kant stresses under point 1) the apriori  character of Simultaneity; under points 
3) and 4) that there can be only one time; and under point 4) that time is not a discursive 
concept, but ‘a pure form of ... intuition’ (or more precisely, the pure form of sensual 
intuition). In the last paragraph before the Conclusion on p. 72 (Kemp-Smith, p. 90) he says 
explicitly that the intuition of space and time is not an intellectual intuition. 
**  See the quotation from Heyting in section 1 above. 
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a faculty of intellectual intuition, and that, for this reason, our intellect - 
our concepts - remain empty or analytic, unless indeed they are applied to 
material which is either given to us by our senses (sense intuition), or unless 
they are ‘concepts constructed in our pure intuition of space and time’ *. Only 
in this way can we obtain synthetic knowledge apriori: our intellect is essen- 
tially discursive; it is bound to proceed by logic, which is empty - ‘analytic’. 

According to Kant, sense intuition presupposes pure intuition : our senses 
cannot do their work without ordering their perceptions into the framework 
of space and time. Thus space and time are prior to all sense-intuition; and 
the theories of space and time - geometry and arithmetic - are a priori valid. 
The source of their a priori validity is the human faculty of pure intuition, 
which is strictly limited to this field, and which is strictly distinct from the 
intellectual or discursive way of thinking. 

Kant maintained the doctrine that the axioms of mathematics were based 
on pure intuition (KANT [ 17781 p. 760 f.): they could be ‘seen’ or ‘perceived’ 
to be true, in a non-sensual manner of ‘seeing’ or ‘perceiving’. In  addition, 
pure intuition was involved in every step of every proof in geometry (and 
in mathematics generally)**: to follow a proof we need to look at  a (drawn) 
figure. This ‘looking’ is not sense-intuition but pure intuition, as shown 
by the fact that the figure might often be convincing even though drawn in 
a very rough manner, and by the fact that the drawing of a triangle might 
represent for us, in one drawing, an infinity of possible variants - triangles 
of all shapes and sizes. 

Analogous considerations hold for arithmetic which, according to Kant, 
is based on counting; a process which in its turn is essentially based on the 
pure intuition of time. 

Now this theory of the sources of mathematical knowledge suffers in its 
Kantian form from a severe difficulty. Even if we admit everything that Kant 
says, we are left puzzled. For Euclid’s geometry, whether or not it uses pure 

* See KANT [I7781 p. 741 ; ‘To construct a concept means to exhibit this apriori intuition 
[the ‘pure intuition’] which corresponds to the concept.’ See also p. 747: ‘We have 
endeavoured to make it clear how great the difference is between the discursive use of 
reason through concepts and the intuitive use through the construction of concepts.’ 
On p. 751, the ‘construction of concepts’ is further explained: ‘we can determine our 
concepts in our a priori intuition of space and time in as much as we create the objects 
themselves by way of a uniform synthesis’. (The italics are partly mine.) 
** Cp. KANT [I7781 pp. 741-764. See, for example, the end of p. 762 where he says about 
proofs in mathematics (‘even in algebra’) : ‘all inferences are made safe . . . by placing them 
plainly hefore our eyes’. Cp., for example, also the top of p. 745 where Kant speaks of a 
‘chain of inferences’, and ‘always guided by intuition’. (In the same passage (p. 748) ‘to 
construct’ is explained as ‘to represent in intuition’.) 



356 K. R.POPPER 

intuition, certainly makes use of intellectual argument, of logical deduction. 
It is impossible to deny that mathematics uses discursive thought. Euclid’s 
discourse moves through propositions and whole books step by step : it 
was not conceived in one single intuitive flash. Even if we admit, for 
the sake of the argument, the need for pure intuition in every single step 
without exception (and this admission is difficult for us moderns to make), 
the step-wise, discursive and logical procedure of Euclid’s derivations is so 
unmistakable, and it was so generally known and imitated (Spinoza, New- 
ton) that it is difficult to believe that Kant can have ignored it. In fact Kant 
knew all this probably as well as anybody. But his position was forced upon 
him, by (1) the structure of the Critique in which the ‘Transcendental 
Aesthetic’ precedes the ‘Transcendental Logic’, and (2) by his sharp distinction 
(I should suggest untenably sharp distinction) between intuitive and dis- 
cursive thought. As it stands, one is almost inclined to say that there is not 
merely a lacuna here in Kant’s exclusion of discursive arguments from 
geometry and arithmetic, but a contradiction. 

That this is not so was shown by Brouwer who filled the lacuna. I am 
alluding to Brouwer’s theory of the relation between mathematics on the one 
hand and language and logic on the other. 

Brouwer solved the problem by making a sharp distinction between 
mathematics as such and its linguistic expression and communication. Mathe- 
matics itself he saw as an extra-linguistic activity, essentially an activity of 
mental construction on the basis of our pure intuition of time. By way of 
this construction we create in our intuition, in our mind, the objects of 
mathematics which afterwards - after their creation - we can try to describe, 
and to convey to others. Thus the linguistic description, and the discursive 
argument with its logic, comes after the essentially mathematical activity : 
it always comes after an object of mathematics - such as a proof - has been 
constructed. 

This solves the problem which we uncovered in Kant’s Critique. What at 
first sight appears to be a contradiction in Kant is removed, in a most in- 
genious way, by the doctrine that we must sharply distinguish between two 
levels, one level intuitive and mental and essential for mathematical thought, 
the other discursive and linguistic and essential for communication only. 

Like every great theory, this theory of Brouwer’s shows its worth by its 
fertility. It solved three great sets of problems in the philosophy of mathe- 
matics with one stroke: 

(1) Epistemological problems concerning the source of mathematical cer- 



EPISTEMOLOGY WITHOUT A KNOWING SUBJECT 357 

tainty; the nature of mathematical evidence; and the nature of mathematical 
proof. These problems were solved, respectively, by the doctrine of intuition 
as a source of knowledge; by the doctrine that we can intuitively see the 
mathematical objects we have constructed; and by the doctrine that a mathe- 
matical proof is a sequential construction, or a construction of constructions. 

(2) Ontological problems concerning the nature of mathematical objects 
and the nature of their mode of existence. These problems were solved by a 
doctrine which had two sides: on the one side there was constructivism, and on 
the other there was a mentalism which located all mathematical objects in 
what I call the ‘second world’. Mathematical objects were constructions of 
the human mind, and they existed solely as constructions in the human mind. 
Their objectivity - their character as objects, and the objectivity of their 
existence - rested entirely in the possibility of repeating their construction 
at will. 

Thus Brouwer in his inaugural lecture could imply that, for the intuitionist, 
mathematical objects existed in the human mind; while for the formalist, 
they existed ‘on paper’*. 

(3) Methodological problems concerning mathematical proofs. 
We may quite naively distinguish two main ways of being interested in 

mathematics. One mathematician may be interested mainly in theorems - in 
the truth or falsity of mathematical propositions. Another mathematician 
may be interested mainly in proofs: in questions of the existence of proofs 
of some theorem or other, and in the character of the proofs. If the first 
interest is preponderant (which seems to be the case for example with Polya), 
then it is usually linked with an interest in the discovery of mathematical 
‘facts’ and thus with a Platonizing mathematical heuristic. If the second kind 
of interest is preponderant, then proofs are not merely means of making sure 
of theorems about mathematical objects, but they are mathematical objects 
themselves. This, it seems to me, was the case with Rrouwer: those construc- 
tions which were proofs were not only creating and establishing mathe- 
matical objects, they were at the same time themselves mathematical objects 
- perhaps even the most important ones. Thus to assert a theorem was to 
assert the existence of a proof for it, and to deny it was to assert the existence 

* Cp. the end of the third paragraph of BROUWER [1912]. Brouwer speaks there about 
the existence not of mathematics but of ‘mathematical exactness’, and as it stands, the 
passage therefore applies to the problems (1) and (3 )  even more closely than to the onto- 
logical problem (2). But there can be no doubt that it was meant to apply to (2) also. 
The passage reads in Dresden’s translation: ‘The question where mathematical exactness 
does exist is answered differently ... . The intuitionist says: in the human intellect. The 
formalist says: on paper.’ 
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of a refutation; that is, a proof of its absurdity. This leads immediately to 
Brouwer’s rejection of the law of the excluded middle, to his rejection of 
indirect proofs, and to the demand that existence can be proved only by the 
actual construction - the making visible as it were - of the mathematical 
object in question. 

It also leads to Brouwer’s rejection of ‘Platonism’ by which we may under- 
stand the doctrine that mathematical objects have what 1 call an ‘autono- 
mous’ mode of existence: that they may exist without having been constructed 
by us, and thus without having been proved to exist. 

So far I have tried to understand Brouwer’s epistemology, mainly by con- 
jecturing that it springs from an attempt to solve a difficulty in Kant’s 
philosophy of mathematics. I now proceed to what I announced in the title 
of this section - to an appreciation and criticism of Brouwer’s epistemology. 

From the point of view of the present paper, it is one of Brouwer’s great 
achievements that he saw that mathematics - and perhaps I may add, the 
third world - is created by man. 

This idea is so radically anti-Platonic that it is understandable that Brou- 
wer did not see that it can be combined with a lund of Platonism. I mean the 
doctrine of the (partial) autonomy of mathematics, and of the third world, 
as sketched in section 3 above. 

Brouwer’s other great achievement, from a philosophical point of view, 
was his anti-formalism: his recognition that mathematical objects must 
exist before we can talk about them. 

But let me turn to a criticism of Brouwer’s solution of the three main sets 
of problems of the philosophy of mathematics discussed earlier in the present 
section. 

(1’) Epistemologicalproblems: Intuition in general, and the theory of time 
in particular. 

I do not propose to change the name ‘Intuitionism’. Since the name will 
no doubt be retained, it is the more important to give up the mistaken philo- 
sophy of intuition as an infallible source of knowledge. 

There are no authoritative sources of knowledge, and no ‘source’ is par- 
ticularly reliable*. Everything is welcome as a source of inspiration, in- 
cluding ‘intuition’; especially if it suggests new problems to us. But nothing 
is secure, and we are all fallible. 

~ 

* I have dealt with this problem at length in my lecture ‘On the sources of knowledge and 
of ignorance’ which now forms the Introduction to POPPER [1963]. 
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Besides, Kant’s sharp distinction between intuition and discursive thought 
cannot be upheld. ‘Intuition’, whatever it may be, is largely the product of 
our cultural development, and of our efforts in discursive thinking. Kant’s 
idea of one standard type of pure intuition shared by us all (perhaps not by 
animals in spite of a similar perceptional outfit) can hardly be accepted. For 
after having trained ourselves in discursive thought, our intuitive grasp be- 
comes utterly different from what it was before. 

All this applies to our intuition of time. I personally find Benjamin Lee 
Whorf’s report on the Hopi Indians * and their utterly different intuition 
of time convincing. But even if this report should be incorrect (which I think 
unlikely), it shows possibilities which neither Kant nor Brouwer ever con- 
sidered. Should Whorf be right, then our intuitive grasp of time - the way in 
which we ‘see’ temporal relations - would partly depend on our language and 
the theories and myths incorporated in it: our own European intuition of time 
would owe much to the Greek origins of our civilization, with its emphasis on 
discursive thought. 

At any rate, our intuition of time may change with our changing theories. 
The intuitions of Newton, Kant and Laplace differ from Einstein’s; and the 
role of time in particle physics differs from that in the physics of continua, 
especially optics. While particle physics suggests a razor-like unextended 
instant, a ‘punctum temporis’ which divides the past from the future, and thus 
a time coordinate consisting of (a continuum of) unextended instants, and 
a world whose ‘state’ may be given for any such unextended instant, the 
situation in optics is very different. Just as there are spatially extended grids 
in optics whose parts co-operate over a considerable distance of space, so 
there are temporally extended events (waves possessing frequencies) whose 
parts co-operate over a considerable distance of time. Thus owing to optics, 
there cannot be in physics a state of the world at an instant of time. This 
argument should, and does, make a great difference to our intuition: what 
has been called the specious present of psychology is neither specious nor 
confined to psychology, but is genuine and occurs already in physics**. 

Thus not only is the general doctrine of intuition as an infallible source 
of knowledge a myth, but our intuition of time, more especially, is just as 
subject to criticism and correction as is, according to Brouwer’s own ad- 
mission, our intuition of space. 

* Cp. ‘An American Indian model of the universe’ in WHORF [1956]. 
** Cp. GOMBRICH [1964] especiallyp. 297: ‘If we want to pursue this thought to itslogical 
conclusion thepunctunz temporis could not even show as a meaningless dot, €or light has a 
frequency.’ (The argument can be supported by considering boundary conditions.) 
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The main point here I owe to Lakatos’s philosophy of mathematics. It is that 
mathematics grows through criticism of guesses and bold informal proofs. 
This presupposes their linguistic formulation, and their status in the third 
world. Language, at first merely a means of communicating descriptions of 
prelinguistic objects, thus becomes an essential part of the scientific enter- 
prise, even in mathematics, which in its turn becomes part of the third world. 
And there are layers, or levels, in language (whether or not they are formalized 
in a hierarchy of metalanguages). 

Were the intuitionist epistemology correct, mathematical competence 
would be no problem. (Were Kant’s theory correct, it would not be under- 
standable why we - or more precisely Plato and his school - had to wait so 
long for Euclid*.) Yet it is a problem, since even highly competent intu- 
itionist mathematicians can disagree on some difficult points**. It is not 
necessary for us to enquire which side in the disagreement is in the right. 
It is sufficient to point out that, once an intuitionist construction can be 
criticized, the problem raised can only be solved by using argumentative 
language in an essential way. Of course, the essential critical use of language 
does not commit us to the use of arguments banned by intuitionist mathe- 
matics (though there is a problem here, as will be shown). My point at the 
moment is merely this: once the admissibility of a proposed intuitionist 
mathematical construction can be questioned - and of course it can be ques- 
tioned - language becomes more than a mere means of communication which 
could in principle be dispensed with: it becomes, rather, the indispensible 
medium of critical discussion. Accordingly it is no longer only the intuitionist 
construction ‘which is objective in the sense that it is irrelevant which subject 
makes the construction’ *** ; rather, the objectivity, even of intuitionist mathe- 
matics, rests, as does that of all science, upon the criticizability of its argu- 
ments. But this means that language becomes indispensible as the medium 
of argument, of critical discussion.**** 

It is for this reason that I regard Brouwer’s subjectivist epistemology, and 
the philosophical justification of his intuitionist mathematics, as mistaken. 
There is a give and take between construction, criticism, ‘intuition’, and even 
tradition, which he fails to consider. 

* Cp. the corresponding remark on Kant’s aprioristic view of Newton’s physics in 
POPPER [1963] chapter 2, the paragraph to which the footnote 63 is attached. 
** Cp. S. C. Kleene’s comments in KLEENE and VESLEY [I9651 pp. I76-83, on BROUWER 
[1951] pp. 357-8, which Kleene criticizes in the light of Brouwer’s note on page 1248 of 
BROUWER [1949]. 
*** Heyting in LAKATOS [1967] p. 173. 
**** Cp. LAKATOS [1963-4], especially pp. 229-35. 
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I am, however, prepared to admit that even in his erroneous view of the 
status of language Brouwer was partly right. Although the objectivity of all 
science, including mathematics, is inseparably linked with its criticizability, 
and therefore with its linguistic formulation, Brouwer was right in reacting 
strongly against the thesis that mathematics is nothing but a formal language 
game or, in other words, that there are no such things as extra-linguistic 
mathematical objects; that is to say, thoughts (or in my view, more precisely, 
thought contents). As he insisted, mathematical talk is about these objects; 
and in this sense, mathematical language is secondary to these objects. But 
this does not mean that we could construct mathematics without language : 
there can be no construction without constant critical control, and no critical 
control without giving our constructs linguistic form and treating them as ob- 
jects of the third world. Although the third world is not identical with the 
world of linguistic forms, it arises together with argumentative language : 
it is a by-product of language. This explains why, once our constructions 
become problematic, systematized, and axiomatized, language may become 
problematic too, and why formalization may become a branch of mathe- 
matical construction. This, I think, is what Professor Myhill means when 
he says that ‘our formalizations correct our intuitions while our intuitions shape 
our formalizations’ *. What makes this remark particularly worth quoting is 
that, having been made in connection with Brouwerian intuitionist proof, 
it seems indeed to provide a correction of Brouwerian epistemology. 

(2‘ )  Ontological problems: That the objects of mathematics owe their 
existence partly to language was sometimes seen by Brouwer himself. Thus 
he wrote in 1924: ‘Mathematics is based upon r‘Der Mathematik liegt 
zugrunde”] an unlimited sequence of signs or symbols r‘Zeichen’’] or of 
finite sequences of symbols ..,’**. This need not be read as an admission of 
the priority of language: no doubt the crucial term is ‘sequence’, and the 
idea of a sequence is based upon the intuition of time, and upon construction 
based upon this intuition. Yet it shows that Brouwer was aware that signs 
or symbols were needed to carry out the construction. My own view is that 
discursive thought (that is, sequences of linguistic arguments) has the strongest 
influence upon our awareness of time, and upon the development of our 
intuition of sequential order. This in no way clashes with Brouwer’s con- 
structivism; but it does clash with his subjectivism and mentalism. For the 
objects of mathematics can now become citizens of an objective third world: 

* J.MYHILL [1967] p. 175 (my italics). Also cp. LAKATOS [963-41. 
**  BROUWER [1924] p. 244. 
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though originally constructed by us - the third world originates as our 
product - the thought contents carry with them their own unintended con- 
sequences. The series of natural numbers which we construct creates prime 
numbers - which we discover - and these in turn create problems of which 
we never dreamt. This is how mathematical discovery becomes possible. More- 
over the most important mathematical objects we discover - the most fertile 
citizens of the third world - areproblems, and new kinds of critical arguments. 
Thus a new kind of mathematical existence emerges: the existence of prob- 
lems; and a new kind of intuition: the intuition which makes us see prob- 
lems, and which makes us understand problems prior to solving them. (Think 
of Brouwer’s own central problem of the continuum.) 

The way in which language and discursive thought interact with more 
immediate intuitive constructions (an interaction which, incidentally, de- 
stroys that ideal of absolute evidential certainty which intuitive construction 
was supposed to realize) has been described in a most enlightening way by 
Heyting. I may perhaps quote the beginning of a passage of his from which 
I have derived not only stimulation but also encouragement: ‘It has proved 
not to be intuitively clear what is intuitively clear in mathematics. It is even 
possible to construct a descending scale of grades of evidence. The highest 
grade is that of such assertions as 2+2=4. 1002+2=1004 belongs to a 
lower grade; we show this not by actual counting, but by reasoning which 
shows that in general (n  + 2) + 2 =n f4. . . . [Statements like this] have already 
the character of an implication: “If a natural number n is constructed, then 
we can effect the construction, expressed by (n+2)+2=n=4”.’* In our 
present context, Heyting’s ‘grades of evidence’ are of secondary interest. 
What is primarily important is his beautifully simple and clear analysis of 
the unavoidable interplay between intuitive construction and lingujstic for- 
mulation which necessarily involves us in discursive - and therefore logical - 
reasoning. The point is stressed by Heyting when he continues: ‘This level is 
formalized in the free-variable calculus.’ 

A last word may be said on Brouwer and mathematical Platonism. The 
autonomy of the third world is undeniable, and with it, Brouwer’s equation 
‘esse=construi’ must be given up; at least for problems. This may lead us to 
look anew at the problem of the logic of intuitionism: without giving 
up the intuitionist standards of proof, it may be important for critical 
rational discussion to distinguish sharply between a thesis and the evi- 
dence for it. But this distinction is destroyed by intuitionist logic which 

* Cp. HEYTING [1962] p. 195. 
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results from the conflation of evidence, orproof, and the assertion to be proved *. 
(3‘) Methodological problems: The original motive of Brouwer’s intu- 

itionist mathematics was security: the search for safer methods of proof; in 
fact, for infallible methods. Now if you want more secure proofs, you must 
be more severe concerning the admissibility of demonstrative argument: you 
must use weaker means, weaker assumptions. Brouwer confined himself to 
the use of logical means which were weaker than those of classical logic**. 
To prove a theorem by weaker means is (and has always been) an intensely 
interesting task, and one of the great sources of mathematical problems. 
Hence the interest of intuitionist methodology. 

But I suggest that this holds for proofs only. For criticism, for refutation, 
we do not want a poor logic. While an organon of demonstration should be 
kept weak, an organon of criticism should be strong. In criticism we do not 
wish to be confined to demonstrate impossibilities: we do not claim infalli- 
bility for our criticism, and we are often content if we can show that some 
theory has counter-intuitive consequences. In an organon of criticism, weak- 
ness and parsimony is no virtue, since it is a virtue in a theory that it can 
stand up to strong criticism. (It seems therefore plausible that in the critical 
debate - the metadebate - of the validity of an intuitionist construction, the 
use of full classical logic may be admissible.) 

7. Subjectivism in logic, probability theory and science 

In view of what has been said in section 5, especially on empiricism, it is 
not surprising that neglect of the third world - and consequently a subjectivist 
epistemology - should be still widespread in contemporary thought. Even 
where there is no connection with Brouwerian mathematics there are often 
subjectivist tendencies to be found within the various specialisms. I will here 
refer to some such tendencies in logic, probability theory, and physical 
science. 

7.1. Epistemic logic 

Epistemic logic deals with such formulae as ‘a knows p’ or ‘a knows that 
p’ and ‘a believes p’, or ‘a believes that p’. It usually symbolizes these by 

‘Kap’ or ‘Bap’ 

* Cp. section 5.4 above. 
** These remarks hold only for the logic of intuitionism which is part of classical logic, 
while intuitionist mathematics is not part of classical mathematics. See especially Kleene’s 
remarks on ‘Brouwer’s principle’ in KLEENE and VESLEY [1965] p. 70. 
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where ‘K’ or ‘B’ respectively stand for the relationships of knowing or be- 
lieving, and a is the knowing or believing subject andp the known or believed 
proposition or state of affairs. 

My first thesis in section 1 implies that this has nothing to do with scien- 
tific knowledge: that the scientist, I will call him ‘S’ ,  does neither know nor 
believe. What does he do? I will give a very brief list: 

‘ S  tries to understand p.’ 
‘ S  tries to think of alternatives to p.’ 
‘S tries to think of criticisms of p.’ 
‘ S  proposes an experimental test for p.’ 
‘ S  tries to axiomatize p.’ 
‘ S  tries to derive p from q.’ 
‘ S  tries to show that p is not derivable from 4.’ 
‘ S  proposes a new problem x arising out of p.’ 
‘ S  proposes a new solution of the problem x arising out of p.’ 
‘ S  criticizes his latest solution of the problem x.’ 
The list could be extended at some length. It is miles removed in character 

from ‘ S  knows p’ or ‘ S  believes p’ or even from ‘S mistakenly believes p’ or 
‘S doubts p’.  In fact, it is quite an important point that we may doubt with- 
out criticizing, and criticize without doubting. (That we may do so was seen 
by Poincart in Science and hypothesis, which may be in this point contrasted 
with Russell’s Our knowledge of the external world.) 

7.2.  Probability theory 

Nowhere has the subjectivist epistemology a stronger hold than in the 
field of the calculus of probability. This calculus is a generalization of 
Boolean algebra (and thus of the logic of propositions). It is still widely inter- 
preted in a subjective sense, as a calculus of ignorance, or of uncertain subjec- 
tive knowledge; but this amounts to interpreting Boolean algebra, including 
the calculus of propositions, as a calculus of certain knowledge - of certain 
knowledge in the subjective sense. This is a consequence which few Bayesians 
(as the adherents of the subjective interpretation of the probability calculus 
now call themselves) will cherish. 

This subjective interpretation of the probability calculus I have com- 
batted for 33 years. Fundamentally, it springs from the same epistemic 
philosophy which attributes to the statement ‘I know that snow is white’ a 
greater epistemic dignity than to the statement ‘snow is white’. 

I do not see any reason why we should not attribute still greater epistemic 
dignity to the statement ‘In the light of all the evidence available to me I 
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believe that it is rational to believe that snow is white’. The same could be 
done, of course, with probability statements. 

7.3. Physical science 

The subjective approach has made much headway in science since about 
1926. First it took over quantum mechanics. Here it became so powerful that 
its opponents were regarded as nitwits who should rightfully be silenced. 
Then it took over statistical mechanics. Here Szilard proposed in 1929 the 
by now almost universally accepted view that we have to pay for subjective 
information by physical entropy increase; which was interpreted as a proof 
that physical entropy is lack of knowledge and thus a subjective concept, 
and that knowledge or information is equivalent to physical negentropy. 
This development was neatly matched by a parallel development in infor- 
mation theory which started as a perfectly objective theory of channels of 
communication but was later linked with Szilard’s subjectivist information 
concept. 

Thus the subjective theory of knowledge has entered science on a broad 
front. The original point of entry was the subjective theory of probability. 
But the evil has spread into statistical mechanics, the theory of entropy, into 
quantum mechanics, and into information theory. 

It is of course not possible to refute in this lecture all these subjectivist 
theories. I cannot do more than mention that I have combatted them for 
years (most recently in my [1967]). But I do not harbour any illusions. 
There will be many more years before the tide will turn - if it ever does. 

There are only two final points I wish to make. 
First, I shall try to indicate what epistemology or the logic of discovery 

looks like from an objectivist point of view, and how it may be able to throw 
some light on the biology of discovery. 

Secondly, I shall try to indicate, in the last section of this lecture, what the 
psychology of discowry J D o h  JiJrc, from the same objectjvjst pint of Y ~ C X  

8. The logic and the biology of discovery 

Epistemology becomes, from an objectivist point of view, the theory of 
the growth of knowledge. It becomes the theory of problem-solving, or, in 
other words, of the construction, critical discussion, evaluation, and critical 
testing, of competing conjectural theories. 

I now think that with respect to competing theories it is perhaps better 



366 K. R. POPPER 

to speak of their ‘evaluation’ or ‘appraisal’, or of the ‘preference’ for one 
of them, rather than of its ‘acceptance’. Not that words matter. The use of 
‘acceptance’ causes no harm as long as it is kept in mind that all acceptance 
is tentative and, like belief, of passing and personal rather than objective and 
impersonal significance *. 

The evaluation or appraisal of competing theories is partly prior to testing 
(a priori, if you like, though not in the Kantian sense of the terms which 
means ‘a priori valid’) and partly posterior to testing (u posteriori, again in 
a sense which does not imply validity). Also prior to testing is the (empirical) 
content of a theory, which is closely related to its (virtual) explanatory power, 
that is to say, its power to solve pre-existing problems - those problems 
which give rise to the theory, and with respect to which the theories are 
competing theories. 

Only with respect to some pre-existing set of problems can theories be 
(a priori) evaluated, and their values compared. Their so-called simplicity 
too can be compared only with respect to the problems in whose solution 
they compete. 

Content and virtual explanatory power are the most important regulative 
ideas for the u priori appraisal of theories. They are closely related to their 
degree of testability. 

The most important idea for their a posteriori appraisal is truth or, since 
we need a more accessible comparative concept, what I have termed ‘nearness 
to truth’, or ‘verisimilitude’**. i t  is important that while a theory without 
content can be true (such as a tautology), verisimilitude is based upon the 
regulative idea of truth content; that is to say, on the idea of the amount of 
interesting and important true consequences of a theory. Thus a tautology, 
though true, has zero truth content and zero verisimilitude. it has of course 
the probability one. Generally speaking, content and testability and verisi- 
militude *** can be measured by improbability. 

The a posteriori evaluation of a theory depends entirely upon the way it 
has stood up to severe and ingenious tests. But severe tests, in their turn, 
presuppose a high degree of a priori testability or content. Thus the aposte- 
riori evaluation of a theory depends largely upon its apriori value: theories 
which are a priori uninteresting - of little content - need not be tested be- 

~~ - 

* For instance, I have no objection whatever to Lakatos’s use of the terms ‘acceptancel’ 
and ‘acceptancez’ in his ‘Changes in the problem of inductive logic’, $ 3  (LAKATOS [1968]). 
** CP.POPPER [I9631 especiallychapter 10, section 3, and addendumb; also POPPER [1962a] 
especially p. 292. 
*** Cp. POPPER, ‘A theorem on truth content’, in FEYERABEND and MAXWELL [1966]. 
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cause their low degree of testability excludes apriori the possibility that they 
may be subjected to really significant and interesting tests. 

On the other hand, highly testable theories are interesting and important 
even if they fail to pass their test; we can learn immensely from their failure. 
Their failure may be fruitful, for it may actually suggest how to construct a 
better theory. 

Yet all this stress upon the fundamental importance of a priori evaluation 
could perhaps be interpreted as ultimately due to our interest in high a poste- 
riori values - in obtaining theories which have a high truth content and 
verisimilitude, though they remain of course always conjectural or hypo- 
thetical or tentative. What we are aiming at  are theories which are not only 
intellectually interesting and highly testable, but which have actually passed 
severe tests better than their competitors; which thus solve their problems 
better; and which, should their conjectural character become manifest by 
their refutation, give rise to new, unexpected, and fruitful, problems. 

Thus we can say that science begins with problems and proceeds from 
there to competing theories which it evaluates critically. Especially significant 
is the evaluation of their verisimilitude. This demands severe critical tests, 
and therefore presupposes high degrees of testability, which are dependent 
upon the content of the theory, and therefore can be evaluated a priori. 

In most cases, and in the most interesting cases, the theory will ultimately 
break down and thus raise new problems. And the advance achieved can be 
assessed by the intellectual gap between the original problem and the new 
problem which results from the breakdown of the theory. 

This cycle can again be described by our repeatedly used diagram: 

P, -+TT+EE-+P,; 

that is: problem P ,  -tentative theory - evaluative elimination - problem P,. 
The evaluation is always critical, and its aim is the discovery and elimi- 

nation of error. The growth of knowledge - and thus the learning process - 
is not a repetitive or a cumulative process but one of error elimination. It is 
Darwinian selection, rather than Lamarckean instruction. 

This is a brief description of epistemology from an objective point of 
view: the method, or logic, of aiming at the growth of objective knowledge. 
But although it describes the growth of the third world, it can be interpreted 
as a description of biological evolution. Animals, and even plants, are prob- 
lem-solvers. And they solve their problems by the method of competitive 
tentative solution and error elimination. 
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The tentative solutions which animals and plants incorporate into their 
anatomy and their behaviour are biological analogues of theories ; and vice 
versa: theories correspond, as do many exosomatic products such as honey- 
combs, and especially exosomatic tools, such as spider webs, to endosomatic 
organs and their ways of functioning. Just like theories, organs and their 
functions are tentative adaptations to the world we live in. And just like 
theories, or like tools, new organs and their functions, and also new kinds 
of behaviour, exert their influence on the first world which they may help 
to change. (A new tentative solution - a theory, an organ, a new kind of 
behaviour - may discover a new virtual ecological niche and thus may turn 
a virtual niche into an actual one.) Behaviour or organs may also lead to the 
emergence of new problems. And in this way they may influence the further 
course of evolution, including the emergence of new biological values. 

All this holds, especially, for sense organs. They incorporate, more es- 
pecially, theory-like expectations. Sense organs, such as the eye, are prepared 
to react to certain selected environmental events - to those events which 
they ‘expect’, and only to those events. Like theories (and prejudices) they 
will in general be blind to others: to those which they do not understand, 
which they cannot interpret (because they do not correspond to any specific 
problem which the organism is trying to solve).” 

Classical epistemology which takes our sense perceptions as ‘given’, 
as the ‘data’ from which our theories have to be constructed by some process 
of induction, can only be described as pre-Darwinian. It fails to take account 
of the fact that the alleged data are in fact adaptive reactions, and therefore 
interpretations which incorporate theories and prejudices and which, like 
theories, are impregnated with conjectural expectations; that there can be 
no pure perception, no pure datum; exactly as there can be no pure obser- 
vational language, since all languages are impregnated with theories and 
myths. Just as our eyes are blind to the unforeseen or unexpected, so our 
languages are unable to describe it (though our languages can grow - as can 
our sense organs, endosomatically as well as exosomatically). 

This consideration of the fact that theories or expectations are built into 
our very sense organs shows that the epistemology of induction breaks down 
even before having taken its first step. It cannot start from sense data or 
perceptions and build our theories upon them, since there are no such things 
as sense data or perceptions which are not built upon theories (or expecta- 
tions, that is, the biological predecessors of linguistically formulated theo- 

* Cp. my remarks in LAKATOS and MUSGRAVE [1968] p. 163. 
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ries). Thus the ‘data’ are no basis of, no guarantee for, the theories: they are 
not more secure than any of our theories or ‘prejudices’ but, if anything, less 
so (assuming for argument’s sake that sense data exist and are not philo- 
sophers’ inventions). Sense organs incorporate the equivalent of primitive 
and uncritically accepted theories, which are less widely tested than scientific 
theories. Moreover, there is no theory-free language to describe the data, 
because myths (that is, primitive theories) arise together with language. 
There are no living things, neither animals nor plants, without problems and 
their tentative solutions which are equivalent to theories ; though there may 
well be, or so it seems, life without sense-data (at least in plants). 

Thus life proceeds, like scientific discovery, from old problems to the dis- 
covery of new and undreamt of problems. And this process - that of inven- 
tion and selection - contains in itself a rational theory of emergence. The 
steps of emergence which lead to a new level are in the first instance the new 
problems (P2)  which are created by the error elimination ( E E )  of a tentative 
theoretical solution (TT)  of an old problem (PI). 

9. Discovery, humanism and self-transcendence 

For a humanist our approach is important for it suggests a new way of 
looking at the relation between ourselves - the subjects - and the object of 
our endeavours : the growing objective knowledge, the growing third world. 

The old subjective approach of interpreting knowledge as a relation be- 
tween the subjective mind and the known object - a relation called by Russell 
‘belief’ or ‘judgment’ - took those things which I regard as objective know- 
ledge merely as utterances or expressions of mental states (or as the corre- 
sponding behaviour). This approach may be described as an epistemological 
expressionism because it is closely parallel to the expressionist theory of art. 
A man’s work is regarded as the expression of his inner state: the emphasis 
is entirely upon the causal relation, and on the admitted but overrated fact 
that the world of objective knowledge, like the world of painting or music, 
is created by men. 

This view is to be replaced by a very different one. It is to be admitted that 
the third world, the world of objective knowledge (or more generally of the 
objective spirit) is man-made. But it is to be stressed that this world exists 
to a large extent autonomously; that it generates its own problems, especially 
those connected with methods of growth; and that its impact on any one of 
us, even on the most original of creative thinkers, vastly exceeds the impact 
which any of us can make upon it. 
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But it would be a mistake to leave things at  that. What I regard as the 
most important point is not the sheer autonomy and anonymity of the third 
world, and the admittedly very important point that we always owe almost 
everything to our predecessors and to the tradition which they created : that 
we thus owe to the third world especially our rationality - that is, our sub- 
jective mind, the practice of critical and self-critical ways of thinking. More 
important than all this is, I suggest, the relation between ourselves and our 
work, and what can be gained for us from this relation. 

The expressionist believes that all he can do is to let his talent, his gifts, 
express themselves in his work. The result is good or bad, according to the 
mental or physiological state of the worker. 

As against this I suggest that everything depends upon the give and take 
between ourselves and our work; upon the product which we contribute to 
the third world, and upon that constant feed-back that can be amplified by 
self-criticism. The incredible thing about life, evolution, and mental growth 
is just this method of give and take, this interaction between our actions and 
their results by which we constantly transcend ourselves, our talents, our 
gifts. 

This self-transcendence is the most striking and important fact of all life 
and all evolution, and especially of‘ human evolution. 

In its pre-human stages it is of course less obvious, and so it may indeed be 
mistaken for something like self-expression. But on the human level the self- 
transcendence can be overlooked only by a real effort. As it happens with 
our children, so it does with our theories: they tend to become largely in- 
dependent of their parents. And as it may happen with our children, so with 
our theories: we may gain from them a greater amount of knowledge than 
we originally imparted to them. 

The process of learning, of the growth of subjective knowledge, is always 
fundamentally the same. It is imaginative criticism. This is how we transcend 
our local and temporal environment by trying to think of circumstances 
beyond our experience : by criticizing the universality, or the structural neces- 
sity, of what may, to us, appear (or what philosophers may describe) as the 
‘given’ or ‘habit’; by trying to find, construct, invent, new situations - that 
is, test situations, critical situations; and by trying to locate, detect and 
challenge our prejudices and habitual assumptions. 

This is how we lift ourselves by our bootstraps out of the morass of our 
ignorance; how we throw a rope into the air and then swarm up it - if it gets 
any purchase, however precarious, on any little twig. 

What makes our efforts differ from those of the amoeba is only that our 
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rope may get a hold in a third world of critical discussion: a world of lan- 
guage, of objective knowledge. This makes it possible for us to discard some 
of our competing theories. So if we are lucky, we may succeed in surviving 
some of our mistaken theories (and most of them are mistaken), while the 
amoeba will perish with its theory, its belief, and its habits. 

Seen in this light, life is discovery - the discovery of new facts, of new 
possibilities, by way of trying out possibilities conceived in our imagination. 
On the human level, this trying out is done almost entirely in the third world, 
by attempts to represent, in the theories of this third world, our first world, 
and perhaps our second world, more and more successfully; by trying to get 
nearer to the truth - to  a fuller, a more complete, a more interesting, power- 
ful and relevant truth - relevant to our problems. 

What may be called the second world -the world of the mind - becomes, 
on the human level, more and more the link between the f is t  and the third 
world: all our actions in the first world are influenced by our second-world 
grasp of the third world. This is why it is impossible to understand the human 
mind without understanding the third world, the objective mind or ‘spirit’ ; 
and why it is impossible either to interpret the third worId as a mere ex- 
pression of the second, or the second as the mere reflection of the third. 

There are three senses of the verb ‘to learn’ which have been insufficiently 
distinguished by learning theorists: ‘to discover’; ‘to imitate’; ‘to make 
habitual’. All three may be regarded as forms of discovery, and all three 
operate with trial and error methods which contain a (not too important and 
usually much overrated) element of chance. ‘To make habitual’ contains a 
minimum of discovery - but it clears the decks for further discovery; and 
its apparently repetitive character is misleading. 

In all these different ways of learning or of acquiring or producing know- 
ledge the method is Darwinian rather than Lamarckian. It is selection rather 
than instruction. But selection is a two-edged sword: it is not only the en- 
vironment that selects and changes us - it is also we who select and change 
the environment. On the human level, we do this by co-operation with a 
whole new objective world - the third world, the world of objective tentative 
knowledge which includes objective new tentative aims and values. We do 
not mould or ‘instruct’ this world by expressing in it the state of our mind; 
nor does it instruct us : both, we ourselves and the third world grow through 
mutual struggle and selection. This, it seems, holds at the level of the enzyme 
and the gene - the genetic code may be conjectured to operate by selection 
or rejection rather than by instruction or command - and through all levels, 
up to the articulate and critical language of our theories. 
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THWGS, STRUCTURES AND PHENOMENA 

IN QUANTUM PHYSICS 

B. D’ESPAGNAT 
Faculte‘ des Sciences de Paris-Orsay, Paris, France 

The question I wish to discuss bears on the interpretation of the general 
rules of conventional quantum mechanics. This problem, of course, is as old 
as quantum mechanics itself. For all scientific purposes, it would seem that 
it has received a fully satisfactory solution, namely that proposed by Bohr 
and by the Copenhagen School already a long time ago. Still, a number of 
physicists have in recent times expressed misgivings about this solution and 
said that, in spite of its scientific success, they could not consider it as being 
really a definitive solution to the problem. How can that be? 

1. “Weak” and “strong” objectivity 

Probably one element of the answer lies in the fact that different people 
are liable to attach different meanings to the word “scientific”. For some, 
the purpose of a scientific investigation is to discover “how things really are”. 
They therefore demand that a description of a physical law or principle 
should be objective in the sense that it should not refer, not even implicitely, 
to any specific abilities or inabilities of the “observer” (usually their argu- 
ment is that the observer is just a physical system, and a very complicated 
one moreover, and that it would be a manifestation of a poor methodology 
to make the fundamental principIes of physics ultimately rest on some of the 
most obscure and most accidental properties of a few complicated systems 
occupying a tiny portion of the universe). This conception of objectivity we 
will call “strong objectivity” in what follows. 

For others, mainly those who have been more or less consciously influ- 
enced by the positivist or pragmatist ideas, the purpose of a scientific investi- 
gation is only to describe the “phenomena” and to relate them to each other 
i.e., in the last resort, to find rules that enable one to calculate some proba- 
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bilities of observations, when the results of earlier observations come to be 
known. Of course, these results and these predictions should be fully com- 
municable, but this is all that is required so that in this context the word 
objectivity must be given a new meaning: it now simply means “invariance 
under any permutation of the Observers”. This we shall call “weak objec- 
tivity” or, equivalently, “intersubjectivity”. The difference between strong 
and weak objectivity is that a statement of physics may be objective in the 
weak sense and still refer in a decisive way to some abilities of the “observer”, 
if these abilities are common to all observers. 

The existence of these two quite different conceptions of the very purposes 
of physics and of objectivity, reflects itself in the difference of meanings that 
can be ascribed to the word “structure”. It is true that a general agreement 
seems nowadays to exist among physicists that the aim of their scientific 
investigation is to discover structural relationships between individual “hap- 
penings”. As was, for instance, recently stressed by ROMAN [1966], the 
importance of this realization lies in the fact that it is sufficient to determine 
both the language and the form of the physical science: the science that deals 
with structures in themselves is mathematics, therefore the language of 
physics is mathematics ; the fundamental mathematical structures are either 
topological (analytical) or algebraic, therefore modern theoretical physics 
mostly uses either analytical theorems or classifications through algebras. 

Thus it seems that we have here, at least, an unanimity of purpose and means 
among the physicists. While this is certainly true in practice - and therefore 
very important - it is obvious, however, that, philosophically speaking, the 
words “structural relationships between individual happenings” are ambigu- 
ous and will certainly be understood differently by the two families of scien- 
tists described above. Is the word “happening” merely a substitute for 
“phenomenon” i.e., for “communicable observation” or does it mean some- 
thing which “really happens” in the sense that it would happen also if there 
were no observer? The modern scientist may, as a scientist, reject the ques- 
tion, stating that it is not a scientific one. He will even probably be quite wise 
in doing so. But as a layman he cannot reject the following question: “sup- 
posing that we are interested in constructing an objective (in the strong sense) 
description of the world, does there exist a description of this kind that is 
compatible with the general rules of quantum mechanics?” This is a perfectly 
sensible question. We know that such a description is possible in the realm 
of classical physics. We may be interested to know if it is also possible in 
quantum physics. Moreover, although I do not wish to embark on a philo- 
sophical discussion on this point, I would like to mention the fact that such 
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people as the experimental physicists for instance consider the regularity of 
phenomena - the existence of structural relationships between them if you 
prefer - as a stricking piece of evidence in favor of the existence of some 
reality exterior to ourselves. Indeed they are all firmly convinced not only 
that such a reality exists, but that science is able to discover its properties. 
It is a sensible question to ask whether such an opinion is tenable or not and 
instead of discussing this on very general philosophical grounds it is better to 
ask if and under what conditions it is compatible with modern physics. 

2. “Unirealism” and classical systems 

The properties of reality (for the sake of discussing the question above we 
must assume this word may make sense) can be either general properties 
(such as: the proton has a spin 3) or special configurations (such as: the spin 
component along 0, of the proton which presently goes through my instru- 
ment is ++; the pointer of your instrument is in the graduation interval no 
4). It is, I think, well-known that, as regards the special configurations, 
quantum physics meets with serious difficulties*. Just to give a simple ex- 
ample, immediately after two spin + particles have interacted, it is not in 
general a correct statement to say that each of them has along an axis, say 
O,, a spin component that is definite and whose value we simply happen not 
to know. If this situation also holds in the case of macroscopic systems, if, 
in other words, it is not a generally correct statement to say that after inter- 
acting with a quantum system, a measurement apparatus has its pointer in 
some definite position, then obviously we are in trouble, not with the concept 
of reality, but with the identification of what we see with objectively existing 
special configurations of it. 

It is often said that orthodox quantum mechanics is able to avoid this 
difficulty by introducing the concept of classical systems. For a classical 
system, statements such as “the pointer is between graduations nos 3 and 4” 
would, in all circumstances, and with respect to every conceivable measure- 
ment, be allowable. This concept however requires a discussion. Are there 
classical systems? 

In order to be able to answer this question, we have to distinguish the 
philosophical viewpoint sometimes called “unirealism” (or materialistic 

* Some of them are discussed in D’ESPAGNAT [1965]. Generally speaking, the author is 
ashamed that he has to present here without proofs statements which may be unpalatable to 
many readers. Proofs however exist! They can be found for instance in WIGNER [1963], 
BELL [1964] and D’ESPAGNAT [1965], [1966]. 
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monism) from all the others (subjectivist, dualist etc.). “Unirealism” means 
that philosophy for which a) the whole of reality (including therefore con- 
sciousness) is purely “physical” i.e. is made exclusively of entities that obey 
the fundamental quantum principles and b) the macroscopic configurations 
we see are objective. For the reasons given above, unirealism requires of 
course that the quantum principles should satisfy “strong objectivity”. 

Then there are a few results which, for short, we shall simply state. The 
first of these (WIGNER [1963]) is the following: in the realm of unirealism 
there is no correct definition of classical systems. Either the definition defines 
an empty class, or it refers (sometimes in very hidden ways) to some limi- 
tations in the possibilities of “observers”. 

Does there, at least, exist (still in the realm of unirealism) some cases of 
systems that can be considered as classical ones to within a good approxi- 
mation? In the specific case of the measuring instrument this question takes 
the following form. “Let one instrument A be given, which interacts with 
one quantum object S that can exist in several quantum states ul ,  u2 , .  . . , ui, . . . . 
Let us say, for the sake of definiteness, that the pointer of A reaches the po- 
sition g with gi<g < g i + d g i  when the initial state of S is ui. Let us now con- 
sider the case when the initial state of S is 

u = 1 b p i  

where the bi are parameters. We already know that it is not correct to say 
there is a probability lbi(’ that after the interaction A will exactly be in a 
state q r  corresponding to g i < g  <gi+dgi. Is it, at least, generally possible 
to say that, for the individual case we are investigating (just one event), there 
is a probability w )biI2 that after the interaction A will be in a state wi,s which 
is a superposition of states u ~ , ~  with large amplitudes and of u ~ , ~  (k+ i) with 
very small amplitudes?” 

Here again, it has been demonstrated that the answer to this question is 
negative. The proof (D’ESPAGNAT [1966]) is based on the logical proposition 
that if a statement is true all its consequences, however remote, are strictly true. 
Here a statistical ensemble is considered of systems S + A of the type intro- 
duced above. If the statement that the pointer of each individual A occupies 
approximately a certain position (in the precise sense I have just described) 
were an exact statement, all its consequences, however remote, should be 
exactly true for the ensemble considered. They are not*. We conclude there- 

* Precisely speaking, a fully watertight proof of these statements requires that the 
density matrix of an ensemble should, in principle, be completely observable. This has 
been disputed. It may be that, for systems over a certain size or complexity, the 
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fore that in the realm of “unirealism” and for the discussion of individual 
cases of interaction (which is obviously necessary since such experiments 
exist), classical systems, or systems behaving approximately as classical sys- 
tems, can not be defined. Fortunately, the experiments that could show the 
non-classical behaviour of macroscopic systems are in nearly all cases prac- 
tically impossible to perform, so that it is for all practical purposes fully 
justified to treat most macroscopic systems, and in particular all measuring 
instruments, as classical. But, of course, when we introduce the word “prac- 
tical’’ in a definition of a class of systems which is used in the formulation of 
first principles, we evade “unirealism”. 

Since the concept of classical systems is an essential one for the description 
of quantum physics, we are thus left with the choice of rejecting either the 
superposition principle of quantum mechanics (at least, as a principle of 
absolute validity) or unirealism*. In the absence of any experimental evidence 
against the superposition principle most physicists, 1 think, will prefer the 
second alternative. Then again we have a priori a choice as to what consti- 
tuents of unirealism we shall reject. 

Some physicists go very far. They stress the fact that we only know the 
“phenomena”, i.e. our own experience and that of other human beings, and 
use this as an argument for rejecting as meaningless the very idea of a reality 
that i) would exist, with its own laws, even if human beings did not exist and 
that ii) on the other hand, constitutes the subject matter of scientific investi- 
gation. For them, therefore, “reality” reduces to “phenomena”. As far as I 
understand it, the very deep and subtle Niels Bohr interpretation of quantum 
mechanics (whose scientific usefulness we do not question, of course) is 
essentially based on a reduction of this kind. The physicists who call them- 
selves “positivists” are sometimes even more explicit on these points but 
essentially follow the same lines. In other words, all the physicists who 
strictly adhere to the Copenhagen interpretation or to some even more prag- 
matic modern views on physics are, partly or totally, subjectivists. They have 

density matrix overcharacterizes the system. A still unanswered (and difficult) question 
is then however: “when, precisely, does this happen and what about problems of internal 
consistency when, for instance, the large system is split?”. Remember that in the realm of 
unirealism we are not allowed to base our argumentation on the extreme difficulty or 
practical impossibility of experiments. 
* Since the proof of the incompatibility between “unirealism” and quantum mechanics 
implies the non-existence of hidden parameters, a third possibility is a hidden parameter 
theory exactly reproducing the quantum mechanical results, as that of BOHM [1962]. 
It may be shown quite generally however (BELL [1964]) that such a theory necessarily 
implies strong and instantaneous interactions at large distances between any components 
of the Universe. 

~~ -. .~ ___ ~- 
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to be, of course, because of the failure of unirealism to account for physics, 
mentioned above *. And it should certainly be stressed that they completely 
avoid the major pittfall of subjectivism, namely solipsism, since on the con- 
trary they all put communication in the foreground. If one likes epithets, 
that of “intersubjectivists” may suit them better. This, however, being recog- 
nized one may perhaps regret that this school of thought is so much im- 
pressed by the scientific importance of observation and communication that 
it refuses to analyse, and, as we said, really explicitely or tacitly rejects the 
idea of a permanent and (in the strong sense) objective substratum for the 
structures that science discovers. As regards purely scientific practice it is 
most probably quite right in doing so, since such a substratum would not be 
observable. From a more general point of view, however, it may for that 
reason appear too vulnerable to the criticism of being, under the disguize of 
scientific universality, an extreme form of humanism : a malevolent philo- 
sophical opponent could accuse it of making man’s mind not only the 
measure but, look, apparently the center, if not the very source, of things! 
A more sober analyst may find insufficient, or even inexistent, the account it 
gives of the regularity of phenomena””. 

3. Further speculations and conclusions 

Now we have seen the two extremes. Unirealism, on the one hand, which 
is a perfectly objective philosophy, in the strong sense, but which comes, 
apparently, in conflict with quantum principles, and positivism and related 
theories, which avoid these difficulties but only at the price of making poorly 
defined and (partly for that reason) probably too considerable concessions 
to subjectivism. In view of the regularity of phenomena, which seems incom- 
prehensible if the observed structures do not pertain to some independent 
“reality”, it is quite natural that we should wish to incorporate to  our de- 
scriptions the smallest possible admixture of subjectivism. I sometimes 
wonder whether, with these motivations at hand, it would not be appropriate 
(not, perhaps in science, but in philosophical reflexions about science) to 
give more considerations than has hitherto been done to explicitely dualisict 

* Relaxing only condition b) (page 380) of unirealism also leads necessarily to some 
admixture of subjectivity. See below. 
** The only serious argument of positivists about this point is that if this regularity were 
absent we would not be there to discuss the matter. This argument is not utterly convincing 
in that it does not predict that this regularity will maintain itseIf at the next moment: 
it makes it even somewhat miraculous that it should! 
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ideas, meaning by that those theories (e.g. WIGNER [1962]) which consider 
physical reality and consciousness as two complementary (and mutually 
irreducible) aspects of reality and which try to describe their relations. 

I would like to conclude with very short qualitative comments on the 
speculations of this latter kind. Several such models can be constructed. 
Their common advantages are on the one hand that they do give a reason 
for the stability of observed structures by attributing them to a reality ex- 
ternal to ourselves and, on the other hand, that they are free from logical 
inconsistencies with the general principles of quantum mechanics (some 
arguments to the contrary based on common sense presuppositions can 
easily be proved false). One feature of them must be accepted, although it 
looks a priori somewhat unpleasant: none of these models is such that, in 
a situation where no observer is present, the physical reality already possesses 
the “special configurations” that common sense would like, even then, to  
attribute to it. Some of them are led moreover to incorporate the idea that 
in the reduction process consciousness really acts on the physical reality 
(although not, of course, in a way that would be offhand experimentally 
detectable since these theories do not modify the quantum mechanical proba- 
bilities). This latter feature however, if taken litterally, is unattractive, so 
that one may be willing to pay some price in order to avoid it, at least 
formally. For instance, one may, on this occasion, be tempted to cast into 
an entirely new mould the old Kantian idea of distinguishing several levels 
of reality. A crude model along these lines could, e.g., be as follows. 

At the lowest level there is a “non-empirical reality” which is not separable, 
has none of these “special configurations” that can be described in classical 
language but has the very important rBle of being the support of the observed 
general properties (e.g. “proton has spin +”) and of the structural relation- 
ships. If one likes, a non reduced state-vector V can presumably be put in 
correspondence to it. Conscious minds can develop in relation with this non- 
empirical reality without affecting it. The rules of calculation of the various 
predictions that these minds can make follow the usual prescriptions of 
quantum mechanics, not, however, applied to V but rather to some reduced 
state-vectors obtained by applying the usual rules of the quantum evolution 
in time, including those (reductions) that refer to previous observations. It is 
convenient to construct the concept of “empirical realities” attached (at 
various levels) to these reduced state-vectors. On these, the reduction of wave 
packets through measurements, of course, acts. Finally, for most of the large 
systems, and particularly for the measuring apparatus, it is convenient to 
construct still a further idealization, described by the concept of classical 
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objects and by a shift of the moment when the indeterminate evolution is 
considered as talung place, the convention being made of fixing it, not at the 
time of perception, but at the earlier time when the quantum system interacted 
with the instrument. Such a model is still probably much too naive since its 
unattractive aspects are apparent. It may however contain some features that 
could persist in more elaborate attempts. 

We may conclude as follows. “Unirealism” is not in accordance with the 
general laws of quantum mechanics. Relaxing only the condition that the 
special configurations we observe are objective would already imply that the 
formation of such images in our “minds” are themselves very remarkable 
events, not to be accounted for by the other physical laws. Thus, from what- 
ever side we look at the problem, it seems that some departure from “strong 
objectivity” is unavoidable (at least if one refuses hidden parameters and 
the non-locality they require). Such a departure is already existent in the 
conventional interpretation of quantum mechanics. It may however be inter- 
esting, from a philosophical point of view, to elaborate further on this point 
so as to have a theory in which, even if the formation of special configurations 
is in the last resort governed by a kind of intersubjectivity, still the general 
structures disclosed by science are perfectly objective in the strong sense, 
being the properties of a fundamental (and non-empirical) reality. 
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WHAT DO PHYSICAL MODELS TELL US? 

E. MCMULLIN 
University of Notre Dame, Notre Dame, USA 

The most important single question that modern physical science poses for 
the philosopher can be simply put: what do the complex postulated structures 
of the scientist tell us of the world? The scientist appears to be doing two 
somewhat different things : he first makes use of complex measure-instruments 
to record certain “facts” about the world. These so-called facts are expressed 
in specially-constructed concepts, and depend, of course, rather critically on 
the theory of the instruments used. Having grouped these “facts” in limited 
generalizations, he then attempts to account for them, to provide an explana- 
tory structure from which they could be derived. It is this rather hazy 
separation between the descriptive and the explanatory aspects of science, 
between (if you prefer) the functions of observational terms and of theoretical 
terms, that has provided the material for much of the recent discussion in 
philosophy of science. 

Three different levels of question can be asked about this, as about any 
other problem in philosophy of science. It is important to separate these 
levels, since the techniques used in answering them are significantly different. 
First, one may take the terms in which the problem is expressed, terms 
like ‘theory’, ‘model’, ‘analogy’, and try to determine their boundaries. 
There are, as we shall see in a moment, several different ways in which this 
might be done. Having done this, the second stage is to explore the formal 
consequences of the concept-structure one has decided upon. One might, for 
instance, ask about the logical properties that follow from the definition 
of ‘model’ that has been adopted. Or one could try to formalize the notion 
of confirmation implicit in the complex of concepts, like evidence, probability, 
likelihood which one can already isolate fairly clearly in ordinary scientific 
practice. The third stage (one, it must be admitted, that is seldom reached, 
principally because of the seductive complexities of the first two stages) is 
to return to the original question, now that its linguistic and logical outlines 



386 E. MCMULLIN 

have been satisfactorily clarified, and see if one can answer it. Presumably 
the point of philosophy of science is not simply to clarify the linguistic 
usage of terms such as ‘model’, or to construct an elaborate formalism 
that reveals the logical implications implicit in this usage, important and 
indeed indispensable as these two stages are. One must surely go on to ask 
a further question: what do models, thus defined, tell us about the nature of 
the “real world”? Are they simple computational devices and no more? 
Or do they tell us, in some sort of oblique way, about physical structures 
that we cannot at  present validate on the basis of direct observation? This is, 
of course, the old issue of instrumentalism versus realism. I t  is all-too-easy 
to stop short of this issue, deterred by the notable vaguenesses of words like 
‘real’ and ‘world’, and to content oneself with what is, after all, only the 
preliminary task of clarifying and exploring the purely logical implications of 
the scientists’ metalanguage. This, as I shall argue, is to stop short of the 
properly philosophical point of the entire inquiry. 

Beginning, however, at the beginning, we have to decide how the terms 
‘model’ and ‘theory’ are to be used. It is obvious that no clear criteria for 
their use can be derived from the actual language-habits of scientists. 
Scientists are usually quite vague as to the relationship between theory and 
model, or even between model and empirical law; they use these second-order 
terms in a vague and often inconsistent manner that would play havoc in 
their science were it to be extended to the first-order terms also. On the other 
hand, this does not entitle us to construct purely stipulative definitions 
that happen to lend themselves to elegant logical elaboration. We have to 
find some half-way house between these lexical and stipulative extremes in 
the approach we adopt to definition. The aim is to  begin from ordinary usage, 
and when stipulation becomes necessary, to  choose those stipulations that 
will, so far as is possible, support those conceptual distinctions that are latent 
in actual scientific practice. Thus when two philosophers disagree as to  “what 
a model is”, a rather frequent disagreement recently, this is not like two 
scientists disagreeing as to “what a meson is” or two lexicographers disagree- 
ing as to  how the word ‘model’ is actually used in some language group. 
The criteria for settling this sort of disagreement are not purely empirical - 
we cannot go out and find a model and start observing its behavior - nor are 
they purely lexical, since linguistic usage is not sufficiently definite nor 
sufficiently well correlated with actual scientific practice, as a rule, to make 
sharp decisions of this sort possible. The criteria are, it would seem, partially 
empirical, in that one must scrutinize the actual epistemological structures 
inherent in current scientific practice and try to find a conceptual system 
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which will articulate as closely as possible with this practice. Thus, if in 
analyzing scientific method an important distinction emerges, it may be 
appropriate to use the terms ‘theory’ and ‘model’ to convey this distinction, 
even though this may not exactly correspond with verbal usage among 
scientists. On the other hand, one cannot depart too far from this usage, 
otherwise one will not illuminate but only confuse. So the criteria are 
partially lexical also. 

In the last analysis, when two philosophers disagree as to “what a physical 
model is”, it may be assumed that each has isolated some element in scientific 
practice that he considers important and has attached to it the label ‘model’, 
a label which in ordinary usage may be only loosely correlated with this 
element. When A says a model is X, and B says it is not X, one may be 
misled by the linguistic form of the argument. It sounds as though they are 
contradicting one another, when in fact what is happening is something far 
more complex: each is implicitly affirming the superiority of the network of 
explanatory terms and their correlative distinctions that he has devised to 
clarify the procedures of science. I have thought it desirable to  spend some 
time on this point of meta-methodology before beginning my topic proper, 
because the criteria for evaluation of this sort of discussion are so often 
misunderstood. 

There are several senses of ‘model’ that one can dismiss as of little 
interest for inquiry into the use of models in physical science. The scale 
model or the model as an ideal to be imitated are not relevant for us*. 
But how about the notion of model implicit in the new branch of mathematics 
called model theory? SUPPES [1961] claims that “the meaning of the concept 
of model is the same in mathematics and the empirical sciences”, though he 
adds that there is a difference in “their use of the concept”. Now a model is 
defined by the mathematician as “a possible realization in which all valid 
sentences of a theory are satisfied”** ; the “possible realization” in turn 
is a set-theoretical structure of some sort. Though this has some affinities 
with the physicist’s use of the word, ‘model’, I am going to argue that the 
differences between the two uses are at least as important as the similarities, 
and in particular that assimilating one to the other runs the risk of obscuring 
the entire function of models in empirical science. I would not agree, 
therefore, that the “meaning” or formal structure of the concept can be 
separated off from its “use” in the way that Suppes suggests. 

* These and other common usages of the term ‘model’ are discussed by BLACK [1962]. 
** Tarski, quoted by S~ppEs [1961]. 
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The empirical scientist begins by making carefully-controlled general- 
izations, usually asserting the interrelation of two or more parameters over 
a certain range and to a certain degree of accuracy. The aim of such a 
generalization is to describe a certain domain, and it will make use only of 
terms that have some sort of operational definition. However, even apparently 
simple terms like ‘length’ are embedded in a complex theory of measurement, 
involving all sorts of theoretical assumptions about rigid bodies, transport, 
and so forth. The “facts” are thus “theory-laden’’ in the sense that a set of 
theories has gone to defining the concepts in terms of which they are expressed. 
But, of course, these theories are not ordinarily the same ones that will be 
put forward to explain the facts themselves. The facts of spectroscopy, for 
instance, are dependent upon the theory of the spectroscope, but these facts 
are explained by the Bohr theory of the atom, which is quite a different 
matter. Thus the logical circularity so much emphasized by Feyerabend of 
late ordinarily does not arise; it is not as though the expressing of the 
facts in a particular language takes for granted the very theory which is 
subsequently put forward to account for the facts expressed. 

A theory is thus something put forward to ‘Laccount for” one or more 
empirical laws that are already known. It is not just a singular hypothesis, 
of the sort alluded to in statements like: “the police have a theory as to 
how the crime was committed”. It has some degree of generality. But it is 
something more than a mere higher-order generalization. To deduce an 
empirical law from a more general empirical law does not “explain” it, in the 
strong sense in which I am using this term. (It is possible that an observed 
regularity might be said to be “accounted for” by deriving it from a com- 
bination of empirical laws; we speak of this as an “account” presumably 
because of the ingenuity required to combine the laws properly.) A theory is 
intended not as a description of what one already has, but as an hypothesis, 
something that goes beyond the evidence by introducing a postulated physical 
structure that could provide a causal account of the data to be explained, 
although it is not (as yet, at least) itself directly observable. The structure 
here is called a “model”; every theory has a model associated with it, 
otherwise it could not serve to explain. It would be merely descriptive in 
intent. 

There is no need to think of the model, thus defined, as being more 
“familiar” than the data to be explained. It often is, and functions most 
easily when it is, but quite frequently it is not. The positrons posited to 
explain Anderson’s observations of particle tracks in a cloud chamber were 
not exactly familiar sorts of entities. Neither does the model necessarily 
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involve microstructure; it can be a macrostructure like a galactic wind. Nor 
does it postulate unobservables, only structures not at present observed. 
These misunderstandings have been pointed out by HESSE [1953, 19661, 
ACHINSTEIN [1964, 19651 and others. 

The model is frequently evoked by an analogy from some quite different 
domain. But it is not itself an analogue, as Achinstein correctly reminds us. 
And in some instances, it may have no analogical dimension of any significant 
sort associated with it. For instance, when the geophysicist postulates 
liquid-solid discontinuities at several levels in the core of the earth in 
order to explain seismographic data, he provides a model of the earth‘s inner 
structure which does not depend on analogies with other better-known 
objects. It is true that the laws of reflection of vibrations at liquid-solid 
interfaces are known from elsewhere. But the existence of such interfaces in the 
core of the earth is postulated here for reasons which do not appear to be 
analogical in character. 

The model is the postulated structure, whereas the theory is the set of 
statements in terms of which this structure is provisionally described. The 
theory is thus a linguistic and mathematical entity; the model is not. (Here 
we disagree with Achinstein, who equates the two.) The theory is derived 
from the model, therefore, not the reverse. Nor is the model simply an 
interpretation of the theory, as would be the case if one were to use these 
terms in their mathematical senses. True, the statements of the theory apply 
correctly to the model. But this is because the theory is about this model, 
and about nothing else. It cannot be interpreted by some other entity 
unless some of the terms that allow it to describe this model uniquely be 
dropped. 

The frequent misunderstanding of this point comes from taking the theory 
as an uninterpreted calculus. Some early accounts of the model-theory relation 
spoke of an empty calculus that could be interpreted either by the structure 
postulated in the object to be explained or by the analogue which suggested 
the use of this calculus in the first place. Thus, Bohr’s theory was thought 
of as a mathematical calculus which could be interpreted either in terms of 
hydrogen atoms or planetary systems. But this is clearly false. Bohr’s 
theory is about hydrogen atoms, and the statements comprising it make use 
of terms like ‘electrical charge’, ‘electron7, which prevent it from also 
describing planetary systems. It will not do to appeal to an abstract calculus 
embodying only the algebraic equations occurring in the Bohr theory. Such 
a calculus is not a theory at all, in the physicist‘s sense. To “interpret” it 
is not simply to find entities for which its “statements” will come out as 
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true. There are no physical statements in the calculus, so it would do no 
good to look round for an entity satisfying the expressions found there. It 
is necessary first to transform the calculus into a theory by qualifying it 
with non-formal concepts like mass and energy, involving the specification of 
non-formal operations of measurement. Only after this has been done can 
one go looking for an interpretation of the theory, although this would be a 
misleading way of putting the matter; rather, one would ask : what does the 
theory now describe? 

It is easy to see how this misunderstanding arises. There is no distinction 
between calculus and theory in mathematics or logic. Interpretation in these 
fields is a simple matter of applying the calculus directly to a mathematical 
structure described in set-theoretic terms. There is no need to introduce a new 
range of concepts to make the calculus meaningful in order that an “inter- 
pretant” for it can then be identified. The logician who attempts to formalize 
the procedures of the scientist has to be reminded frequently of two things 
which he may easily be tempted to overlook. First, mathematics and physics 
differ radically in that the symbols of physics are already interpreted and have 
no physical sense apart from that interpretation. Thus the notion of interpre- 
tation developed within mathematics (that used, for example, in model theory) 
is not properly applicable to the domain of physics. Second, the logician leaves 
aside the temporal dimension of scientific procedures : it makes no difference 
to him whether the theory is suggested by the model or the model is an 
interpretation of the theory, since the purely formal relations will be the 
same (he argues) in either case. But to the physicist, the temporal order is 
all-important. Science as an activity is something which goes on in time; 
timeless inferences and timeless interpretations are legitimate abstractions, 
but have to be carefully handled if what one is interested in is what really 
goes on in science. 

Do all physical theories involve postulated structures, that is differentiated 
entities whose properties and interrelations are at least partially specified? 
Dynamic theories seem to constitute a special category. The inverse square 
“law” of gravitation can be construed as simply describing how any given 
body moves, a t  a specified distance from the central body. Or it may be 
taken to explain what happens, in terms of a “gravitational force”, now 
regarded as a pervasive causal activity of some sort. Taken in this latter 
sense, laws of force have played a properly theoretical role in the history of 
science, so that dynamic models can be included in our discussion, even 
though the boundaries between explanation and description are much less 
well-defined in their regard. The so-called “phenomenological” models of the 
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physicist are, however, another matter. The label is used in somewhat different 
senses, but in general a phenomenological model appears to be an arbitrarily- 
chosen mathematically-expressed correlation of physical parameters from 
which the empirical laws of some domain can be derived. For instance, 
suppose one has a profusion of data about extensive cosmic ray showers, and 
one believes these showers to be due to nucleon-nucleon collisions in the 
upper atmosphere. To bring the data into a single convenient array, one may 
assume a mathematical distribution function of high generality for nucleon 
collisions, and then try to specify the parameters in the function more exactly 
in order to fit the data available. If this can be done successfully, one has an 
expression which summarizes a whole range of evidence in convenient form. 
Here the model is the expression itself and not an associated physical 
structure. It differs from a theory in that it is not regarded as an explanation, 
only as a summary, a summary whose mathematical form may, however, 
suggest where to look for a proper theoretical explanation. From the purely 
logical point of view, there is no difference between a theory and a phenome- 
nological model. Both can be axiomatized ; from both, the desired empirical 
generalizations can be derived. 

But for the physicist there is a crucial difference between them. This 
difference can be put in one or other of two ways. The physical theory makes 
an assertion about a physical sub-structure which can account for the data; 
the phenomenological model makes no such assertion. Insofar as the latter 
goes beyond the descriptive level, it does so merely to obtain greater mathe- 
matical generality and not because there are physical reasons that suggest 
such a hypothetical extension to be appropriate. 

The difference can, however, be expressed in another way which serves to 
bring out the major feature of properly physical models. When the physicist 
introduces one of these, he does so not merely to summarize the data he 
already has, but primarily in the hope that the model will prove to contain a 
further “surplus content”. A good model will be expected to suggest how the 
theory should be modified to meet new results, results which cannot be derived 
from the first simple theoretical formulation. It will suggest possible ex- 
tensions of the theory to cover ranges of the parameters not comprised under 
the empirical laws the theory was originally intended to explain. It may 
suggest possible linkages with physical domains not formerly seen to be 
related. In a word, a “good” model will contain resources for meeting the 
varied challenges which the theory based on it will inevitably evoke as new 
evidence becomes available. To the extent that the model does not show 
conceptual resilience of this sort, the physicist will tend to distrust it, or to 
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regard it as merely having had ad hoc or, if you like “phenomenological”, 
utility in the first place. 

In order to anchor these abstractions somewhat more securely, let us 
look at  the history of one of the two most productive physical models of our 
century, the Bohr model of the atom. In 1911, Rutherford discovered an 
anomalous scattering effect when a-particles pass through metal foil. The 
plausible interpretation of the very occasional sharp deflections that occur 
is to suppose that the mass of the metal atoms is concentrated in a very small 
nucleus whose charge can be computed from the average size of the deflections 
produced. It turns out that the positive nuclear charge is equal to the atomic 
number of the element; in order that the atom as a whole should be neutral we 
must then postulate the presence elsewhere in the atom of an equal number of 
negative charges of very small mass, i.e. electrons. But since the positive and 
negative charges ought to attract one another, how is it that the atom does not 
collapse? One is immediately reminded of our planetary system, between 
whose elements there are also forces of attraction, yet which does not 
collapse. A plausible model of the atom is suggested by this analogy, namely 
a massive central nucleus around which the electrons circulate in equilibrium 
orbits. But an immediate difficulty arises. According to classical electro- 
dynamics, such a system ought to radiate energy continuously, in which case 
it would, of course, collapse. Bohr realized that if the new quantization of 
energy transfer introduced by Planck were to apply here, only certain orbits 
would be “permitted”, so to speak, since the moment of momentum of the 
electron will have to be an integral multiple of h/271. 

What is the original Bohr model of the hydrogen atom then? It is a very 
simple physical structure in which a single electron revolves around a tiny 
positively-charged nucleus in which nearly all the mass of the atom is 
concentrated. It can take up only certain discrete orbits, the lowest of 
which is completely stable. It can radiate energy only in discrete amounts 
when it drops from one of the permitted higher-energy outer orbits to an 
inner orbit. This is the model, and the Bohr theory is the set of statements 
describing how such a model would behave in various conditions. It is, of 
course, the model that gives rise to the theory; there is no way for one to 
hit upon the theory somehow first. 

Bohr was led to this model by a simple analysis of the results of Rutherford 
on the one hand, and of Planck on the other. But he immediately saw 
that if he were right, i.e. if the model were a “good” one, it would have far- 
reaching consequences for the field of spectroscopy, in which vast masses 
of data had been accumulatingfor half acentury, and wherevarious numerical 
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correlations had been worked out which as yet lacked any sort of theoretical 
basis. In particular, the spectrum of hydrogen was known to contain several 
sets of sharp lines, notably the series given by the formula: 

(k = 3, 4, ...). 

Balmer had given this formula in 1885 as a “phenomenological” model for 
the lines in the visible and ultraviolet position of the hydrogen spectrum. The 
Rydberg constant, R, had been measured to an astonishing accuracy of seven 
figures; it was at  the time the most accurately known number in physics. 
Ritz had already given a quasi-theoretic interpretation of the Balmer series 
in 1908, his “Principle of combination”; according to it, such a series, 
being written as the difference between a constant and a variable term, 
must represent the difference between successive energy levels in the atom, 
where the constant term represents the “ground” energy. This suggested a 
generalization of the formula to : 

where n= 1 ,2 ,3  and m is an integer >n. And indeed the existence of such a 
series for n = 3  was shown by Paschen (1908), and for n = l  by Lyman 
(1906). 

Bohr was immediately able to derive not only this formula, but a definition 
of R as being equal to 2n2me4/ch3. When the known values of the electron 
parameters were inserted, a value of R was found which agreed with the 
observed value to three significant figures. This was already striking enough. 
But then a more careful analysis of the model showed three ways in which 
the theory would have to be modified. First, it had been assumed that the 
nucleus remains a t  rest while the electron revolves around it, which is 
equivalent to taking the nucleus to be of infinite mass. If, instead, one 
allows for the motion of nucleus and electron alike around a common center, 
one is forced to modify the series formula above by multiplying R by 
(1 +m/M),  which has the effect of increasing it very slightly, depending on 
the proportion of the electron and the nuclear masses. This immediately 
explained the puzzle of the Pickering series for ionized helium (1897), which 
ought, according to the simple Bohr theory, give a spectrum similar to that of 
hydrogen, but in fact showed lines very slightly separated from the Balmer 
lines of hydrogen. Since the values of m/M for hydrogen and helium differ, 
the effect of the nuclear motion on the energy levels will differ in the two 
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cases ; the correct value for the Pickering separation was immediately given 
by the revised formula. 

Furthermore, there is no reason to restrict the electron to circular orbits, 
since elliptical orbits are the normal paths for bodies under central forces 
of this type. This introduces a new degree of freedom, since two parameters 
are needed to specify the ellipse. But it is found that the original Bohr 
circle is equivalent in energy to a family of ellipses, or to put this in a 
different way, that allowing for elliptical orbits will, under ordinary con- 
ditions, introduce no new spectral lines. But now suppose we put the atoms 
in an intense electrical field. Stark discovered in 1913, the same year in 
which Bohr proposed his original theory, that the hydrogen lines turn out 
to have a complex “fine structure”, whose components are polarized in 
different ways when the emitting atoms are subjected to a strong electrical 
field. Three years later, Schwarzchild showed that this is due to a degeneracy 
in the original solution: the effect of the field is to separate off the energies 
of different elliptical orbits very slightly, orbits that would give the same 
energy in the absence of a field. Again, the correct answer was given for the 
amount of splitting, and for the polarizations involved. 

Finally, there was a third simplification in the way the original Bohr 
theory had represented the model: it had left out of account the relativistic 
effects due to the rapid motion of the electron. When these were computed, 
it was found that a double correction had to be made to the original series 
formula. First, the series factor l/n2 had to be increased by a very small 
amount, bearing a ratio of about 3 x to the whole. Second, there is a 
very fine splitting into two or more lines, due to a relativistic energy sepa- 
ration between the different elliptical orbits the electron could take up. 
Thus the apparently sharp lines of the Balmer series ought to show a 
fine structure, if the precision of measurement could be improved enough. 
But in actual fact, as early as 1887 Michelson had noted that the first Balmer 
“line” is, in fact, a doublet whose components are extremely close. Further 
examination of other lines in the spectra of hydrogen and ionized helium 
showed precisely the types and amount of splitting predicted from this taking 
into account of the relativistic dependence of the mass of the electron upon 
its velocity. 

So far, we have seen three ways in which the theory was amended to describe 
the original model more correctly. It is worth noting that these were not 
changes in the model, strictly speaking. All three of them are suggested 
by the original model, but for simplicity were left out of account in the 
first formulation of the theory. If one has a two-body system of the sort 
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postulated, one will have to have nuclear motion, elliptical orbits and 
relativistic mass effects, unless the laws of physics, known from elsewhere, 
are assumed not to apply to the entities of the model. 

But now we come to a modification of a different sort. Long before this, 
in 1896, Zeeman had noted a splitting effect in the H spectrum when the 
emitting atoms are placed in a magnetic field. Two different sorts of effect 
were, in fact, discovered : the so-called “normal” Zeeman effect which splits 
a singlet line into a doublet or triplet, depending on the direction of the 
force, and the “anomalous” splitting effect for multiplets. This took much 
longer to handle theoretically. Only in 1926 did Goudsmit and Uhlenbeck 
suggest an addition to the original Bohr model; an electron spin which would 
make each electron become a tiny precessing magnet in an imposed magnetic 
field. From this simple physical assumption the correct answers were found 
for both Zeeman effects, not only in hydrogen but in other types of atom as 
well. 

I have thought it worthwhile to follow this early development of the 
Bohr theory in some detail, because much may be learnt from it. One notes, 
first of all, that the original model, though suggested by analogies with the 
planetary system, was not in fact a planetary system. The force involved was 
a Coulomb force, not a gravitational one. And the electron (unlike the planet) 
is a negative charged particle, which is of central importance in explaining 
both the Stark and the Zeeman effects. Above all, the electron orbits (unlike 
the planetary ones) are quantized. It would be incorrect, therefore, to 
suppose that there is some abstract formal calculus of which both the planetary 
model of Kepler and the atomic model of Bohr are simply different realiz- 
ations. It is true that the electron does obey equations which are algebraic- 
ally similar to Kepler’s three laws. But there the resemblance ends, and the 
subsequent history of the model was governed far more by the differences 
between the two models than their similarities. 

This brings me to my final point. The good model has a surplus content 
which enables the theory based on it to survive challenge and extend in all 
sorts of unexpected ways. This is why it is false to say that science is no 
more than a summary of previous experience. If it were no more than this, 
there would be no surplus content to guide discovery in the way that the 
Bohr model - and a myriad of other similar examples could have been 
chosen - actually did. 

The presence of this surplus content is our assurance that the model- 
structure has some sort of basis in the “real world”. For what is “reality” 
if not the reservoir from which such a surplus is drawn? The fact that the 
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Bohr model worked out so remarkably indicates that the structure it postu- 
lated for the H atom had some sort of approximate basis in the real. Only 
approximate, of course, and by definition the degree of approximation can 
never be known. Later quantum mechanics would modify this simple model 
in all sorts of fundamental ways. But a careful consideration of the history 
of the model - and this is one reason why the study of the history of science is 
indispensable to an adequate philosophy of science - strongly suggests that 
the guidance it gave to theoretical research in quantum mechanics for an 
immensely fruitful fifteen years must ultimately have derived from a “fit” of 
some sort, however complex and however loose it may have been, between 
the model and the structure of the real it so successfully explained. 
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THE ORIGIN OF THE UNIVERSE 

D. W. SCIAMA 
University of Cambridge, England 

It is often said that philosophical problems, by definition, cannot be 
affected by new scientific results. If this is strictly true then the present paper 
is entirely irrelevant to a Philosophical Congress and should not be published 
in its Proceedings. If it is published it means that someone besides myself 
thinks that philosophical questions concerning the origin of the universe can 
be illuminated by new observational discoveries in cosmology. In fact the 
last few years have seen revolutionary new discoveries, thanks mainly to the 
development of radio astronomy and the concomitant optical observations. 
We appear to be on the verge of answering some really significant questions 
about the structure of the universe in space and time. 

The main conclusion to be drawn from these new discoveries is that the 
steady state theory of the universe is probably wrong. It will be recalled that 
the red shifts in the spectra of galaxies have led to the belief that the universe 
is expanding. This naturally suggests that the universe was once very much 
denser than it is today. In fact on the basis of very reasonable assumptions 
indeed it can be shown that general relativity requires there to have been a 
physical singularity in the past. (A result mainly due to Dr. S .  W. Hawking.) 
One way of avoiding this singularity is to deny the validity either of general 
relativity or of the reasonable assumptions just referred to, and to suppose 
that the universe can be in a steady state despite the expansion, the continual 
creation of new matter compensating for the recession of the galaxies. Bondi 
and Gold took the first way out, that is, denied the validity of general rela- 
tivity. Hoyle, and later Hoyle and Narlikar, took the second way out, by 
postulating the existence of a field (the creation or C field) which has negative 
energy density associated with it. 

There are three main lines of evidence which suggest that the steady state 
theory is wrong. They are 

(i) the radio source counts, 
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(ii) the red shifts of quasars, 
(iii) the excess microwave background. 

dence here, but it may be of interest if I indicate what is involved. 
It would not be appropriate to give a full scientific discussion of this evi- 

1. The radio source counts 

It is known from optical identifications that most sources in the radio 
catalogues which lie in directions away from the plane of our Galaxy are 
probably extragalactic. The relative number of sources of different measured 
intensities then tells us something about their distribution in space. The 
steady state theory makes rather specific predictions for the counts of radio 
sources, and it has been known for some time, thanks mainly to the work of 
Sir Martin Ryle and his colleagues, that the observations differ markedly 
from these predictions. To put it roughly there are too many faint sources. 
This almost certainly means that there are too many sources at large dis- 
tances, and therefore at large times in the past (because of the time the radio 
noise takes to reach us). To explain the discrepancy we have to suppose that 
radio sources differed in some way in the distant past from those existing 
to-day. Such intrinsic evolution in the contents of the universe is, of course, 
forbidden by the steady state theory, but is permitted, perhaps even expected, 
in evolutionary theories of the universe. 

Attempts have been made by several people (including myself) to get 
round this difficulty, but they have not met with much success. However, the 
majority of the sources concerned have not yet been optically identified 
(their extragalactic nature being assumed inferentially from the identifica- 
tions that have been made). Thus if this were the only evidence I think it 
should be treated with reserve. 

2. The red shifts of quasars 

Most astronomers believe that quasars have red shifts because they partake 
of the expansion of the universe. The known relation between red shift and 
distance (Hubble’s law) then places most of the quasars at very great dis- 
tances indeed, much greater than those of galaxies. A study of the distri- 
bution of the values of the red shift amongst the quasars should then provide 
a sensitive test of the steady state theory. Dr. M. J. Rees and I have made 
this test, and we find that the steady state theory is badly wrong. There is a 
loophole here, however, because a few astronomers maintain that the quasars 
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are close to our Galaxy, their red shifts having nothing to do with the Hubble 
law, but arising in some other way. This hypothesis seems unlikely at the 
moment, but really decisive evidence is still lacking. 

3. The excess microwave background 

This perhaps is the most remarkable evidence of all. It has been found 
that the intensity of the radio noise arriving at the earth at microwave fre- 
quencies (that is wavelengths of a few centimetres) is far greater than was 
expected, considering the known sources of such radiation. The evidence 
strongly suggests that the spectrum of this excess radiation is that of a black 
body. This would mean that the radiation has somehow come into thermal 
equilibrium (its temperature being about three degrees absolute). The only 
reasonable explanation that has so far been proposed is that this black body 
radiation is what is left over from the very high temperature radiation which 
may have been present when the density of the universe was extremely high. 
This “hot big bang” theory was actually formulated many years earlier by 
George Garnow and his associates. The point is that in the early high density 
stages there would have been ample time for matter and radiation to come 
into thermal equilibrium, thus guaranteeing a black body spectrum at that 
time. One can also show that the spectrum of the radiation would remain 
that of a black body as the universe expands and matter and radiation 
eventually become more or less decoupled. The effect of the expansion is 
simply to cool the radiation, and on this theory it has now cooled to a few 
degrees. (Gamow’s prediction was between one and ten degrees.) 

This explanation for the observed excess radiation, which has been pressed 
especially by R. H. Dicke and his colleagues, is an entirely natural one. By 
contrast, the steady state theory is in great difficulties. One could imagine 
radiation being created along with the matter, but why it should result in a 
black body spectrum is quite obscure. Unless a reasonable proposal can be 
made to deal with this difficulty, the excess radiation is, I think, the best 
evidence so far against the steady state theory. The loophole in this case is 
that the evidence in favour of the radiation having a black body spectrum 
is not yet quite decisive. Further measurements are on the way which are 
expected to settle this question. 

4. Conclusions 

I conclude that unless several unlikely contingencies are the case the uni- 
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verse as we know it to-day must have evolved from a much denser configu- 
ration. This configuration is sometimes referred to as the creation of the 
universe, a description which I heartily deprecate. There is no process of 
creation in the theory as we understand it today. Of course, this theory 
probably does not apply to the earliest stages of extremely high density, but 
how the correct theory will handle the singularity we simply do not know. 
I might add that we also do not know whether the universe is now going to 
expand forever or whether it will re-contract under its self-gravitation into 
another singularity, a singularity which I suppose some would call the de- 
struction of the universe. This question will probably become clearer as a 
result of the observational discoveries of the next few years. 



A UNIFIED APPROACH TO BIOLOGICAL 

AND SOCIAL ORGANISMS * 

N. RASHEVSKY 
Mental Health Research Institute, 
The University of Michigan, USA 

During the first three decades of its recent intensive growth, which began 
somewhat over forty years ago, the progress of mathematical biology con- 
sisted principally in the development of physico-mathematical or more purely 
formal mathematical models of various biological phenomena. At least 
implicitly this development was based on the expectation, if not on a firm 
conviction, that all biological phenomena could be eventually explained in 
terms of the known phenomena of physics. In 1934 we coined the term 
“mathematical biophysics” (RASHEVSKY [ 19341) to describe this kind of 
approach. With the introduction of more phenomenological mathematical 
descriptions of some biological phenomena, descriptions which did not in- 
troduce specific physical models, a broader designation, namely “mathe- 
matical biology”, became more advantageous. Mathematical biophysics is 
thus included in the broader concept of mathematical biology. 

The success of the new field has been remarkable. Hardly a branch of 
biology was left out from the mathematical approach. A number of quanti- 
tative aspects of biology were adequately represented by mathematical theory. 
In some cases quantitative relations not hitherto observed were predicted by 
the theory and subsequently confirmed experimentally. 

This development led in a natural manner to a possible mathematical 
approach to social phenomena. Among other biological phenomena mathe- 
matical biologists did study various aspects of the behavior of an individual 
under the influence of different environmental stimuli (RASHEVSKY [1960]). 
Inasmuch as a very large part of our environment consists of our fellow men, 

* This work has been aided by grant GM-12032 of the United States Public Health Service 
to the University of Michigan. 
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the above mentioned studies in the mathematical theory of individual be- 
havior led naturally to the theory of the behavior of individuals under the 
influence of other individuals, in other words to the theory of some social 
interactions (RASHEVSKY [1947], C19591). Thus, it appeared that biology 
might become a branch of physics, while sociology might become a branch 
of biology. 

An important characteristic of the above mentioned developments of 
mathematical biology and mathematical sociology was the very strong em- 
phasis on quantitative aspects. In 1954 we called attention to the circum- 
stance that such an approach was too limited to meet the demands of either 
biology or sociology. While the quantitative aspects of biology are very 
important, there are a number of qualitative, or as we called them, relational 
aspects that are at least just as important, if not even more important. There 
are a number of facts which seem to indicate that in spite of their importance, 
the quantitative, or as we called them, the metric aspects of biology may be 
subordinate in their importance to the qualitative or relational aspects. Con- 
trary to physics, we do not have any universal constants in biology. Quanti- 
tatively no two biological systems are completely identical. The absolute 
numerical values of some quantitative indices of biological phenomena differ 
from organism to organism even within the same species. What is actually 
meaningfully observable in an organism is not the exact numerical charac- 
teristics of some quantitative aspects, but rather the general functional form 
of the equations involved. This led RASHEVSKY [1938] to the introduction 
of the useful and very powerful approximation method in mathematical 
biology (RASHEVSKY [1960]). Many important biological phenomena differ 
for different organisms, not only in their quantitative aspects, but even in 
the physical mechanisms involved although some qualitative relations be- 
tween the different phenomena in the organism are invariant for all organ- 
isms. Thus, for example, the mechanisms of response to some external 
stimuli are quite different in a paramecium, an oyster and a man. Similarly, 
the mechanism of catching the food, ingesting it, digesting it, are different 
in different organisms, as are the mechanisms of locomotion. Yet for all 
motile organisms, the sequence : stimulus, locomotion towards food, ingestion 
of food, digestion of food, its absorption, is the same. But this sequence is 
a simple case of a qualitative relation which thus holds for a very wide 
variety of different organisms. 

To investigate mathematically such qualitative or relational aspects of 
biology some branch of relational mathematics must be chosen. The proto- 
type of such a branch of mathematics is found in elementary plane geometry. 
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With the exception of Pythagoras’ Theorem and two or three other theorems, 
which are of a quantitative or metric character, all theorems of plane ge- 
ometry are of a relational, non-quantitative nature. The highest development 
of relational aspects of geometry is, of course, found in topology. Theory 
of groups, theory of sets, and the general theory of relations are other 
branches of relational mathematics. 

In his first attempt to create a relational mathematical biology, RASHEVSKY 
[1954] suggested the use of topology, particularly of the theory of graphs 
for the representation of organisms in their relational aspects. The approach 
was generalized by ROSEN [1958a], who eventually used a combination of 
graph theory and of the theory of categories. General metrized and non- 
metrized topological spaces, as well as the theory of sets were used by 
RASHEVSKY [1956a, c], [1958 a]. Theory of sets was also eventually used 
(RASHEVSKY [ 1958b1). Graph theoretical studies in relational biology were 
also made by TRUCCO [1956a, b,c], by ARBIB [1966] and by BRAMSON 
[ 19661. Lately Rosen discussed the connection between sequential machines 
and organisms. The work of MARTINEZ [1964] must also be mentioned here. 
The literature on relational mathematical biology is now quite extensive. 

The conclusions of all such theoretical studies are not in the form of 
analytical expressions which describe quantitatively some biological phe- 
nomena, but rather in the form of existential propositions which state that 
the existence of such phenomena, or of specified relations between phe- 
nomena follow from the theory (RASHEVSKY [1956a], [1958a]). 

The first person to emphasize the relational aspect of biology and to use 
the theory of relations a quarter of a century earlier than Rashevsky was 
WOODGER [1937]. His emphasis was, however, in a very different direction 
than that of Rashevsky, Rosen and the above mentioned authors. However, 
Woodger is the real father of relational biology. 

In a somewhat similar manner as the quantitative aspects of biology led 
to some quantitative aspects of sociology, the relational aspects of biology 
led to some relational aspects of sociology (RASHEVSKY [1954]). Here again 
we find that the relational aspects are just as important as, if not more im- 
portant than, the quantitative or metric aspects. Social structures may differ 
widely in their quantitative aspects and yet show pronounced relational 
similarities, similarities which, as we shall see, sometimes become isomor- 
phisms. The introduction of relational biology seems to emphasize some 
analogies between biological and social sciences much more strongly than 
did the quantitative methods. 

It is characteristic of relational biology that it studies the relational aspects 
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quite independently from the metric aspects. The question naturally arises 
as to the mutual relation between the old metric mathematical biology and 
the newer relational one. How does mathematical biophysics fit into rela- 
tional biology and vice versa? There is no more contradiction between the 
two aspects of biology than there is between the same two aspects in mathe- 
matics. Topology in its pure form is completely relational. However, quanti- 
tative aspects appear in topology in the form of Bettis numbers, Eulers index, 
etc. Topological methods are blended with metrical ones in many problems 
of the theory of differential equations, a branch of typical quantitative math- 
ematics. While from the topological properties of a surface, say a torus, we 
cannot deduce anything about its metric properties, yet the knowledge of 
the metric properties of a surface at every point does completely determine 
its topology. Thus, in principle, it may be hoped that the relational properties 
of organisms and of societies may sometime be derived from their metric 
properties. The metric properties of an organism would be all expressible 
and describable in terms of physical notions because we can perceive an 
organism, or more generally know about its existence only to the extent that 
an organism manifests itself as a physical system. We either see the organism, 
or hear it, or smell it, or feel it, or weigh it, or stick a pair of electrodes into 
it and observe an electric output, etc. Thus, the expectation mentioned be- 
fore, namely that we can describe all biological phenomena in terms of 
physics, not only remains in force, but it actually follows from what we just 
said. All biological phenomena which we can observe are physical in their 
nature and therefore can be described and explained in terms of physics. 

This possibility of explaining biological phenomena in terms of physical 
ones has apparently for a long time been confused with the possibility of 
deducing from the set of physical laws the necessity of existence under certain 
conditions of biological organisms. The possibility of deducing the existence 
of biological phenomena from the laws of physics does not, however, follow 
from the possibility of representing all observable biological phenomena in 
terms of physical ones. The laws of biology in their relation to the laws of 
physics may possibly represent an analogy to the undecidable statements in 
mathematics. Such undecidable statements in mathematics are representable 
in mathematical terms, yet they may not be deduced from a given system of 
axioms. 

Is there any evidence that biological laws are not deducible from, though 
representable in terms of, the laws of physics? The answer is no, but the 
possibilities offered by such an assumption are sufficiently interesting to 
warrant a detailed study of its consequences. What holds for the connection 
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between physics and biology holds also for the connection between biology 
and sociology. The phenomena of sociology may well be representable in 
terms of the biology of interaction of two or more individuals because the 
observable behavior of an individual is the behavior of a biological system. 
It  does not follow from this that from the postulates of biology we can deduce 
the existence of social phenomena. 

If we accept the above point of view, then there still remains the possibility 
of representing ultimately the phenomena of biology and sociology in terms 
of physics. But this is no longer a complete reductionism because the three 
basic sets of postulates of the three sciences may not necessarily be deducible 
one from another. In particular, we must face the possibility that the re- 
lational aspects of biology and sociology are not consequences of the metric 
aspects of physics. 

As we already remarked, the relational aspects of biology and sociology 
bring the two sciences much closer together than do their metric aspects. In 
biological and social sciences the relational aspects appear to be more basic 
than the metric aspects. In physics the metric aspects seem to be the more 
basic ones although relational aspects are not lacking in quantum mechanics, 
and especially in the theory of elementary particles. The part played by re- 
lational aspects in physics is, however, very small compared to the part which 
they play in biological and social sciences. This seems to make the distance 
between physics, on one hand, and biology and sociology, on the other, 
much greater than the distance between biology and sociology. We shall, 
therefore, restrict ourselves here to the study of the interrelation between 
biology and sociology. 

Similarities between organisms and societies have been noted since the 
days of Herbert Spencer. There has been a great deal of discussion as to 
whether societies are organisms and vice versa. Unless we have a precise 
definition of an organism and of a society, such discussions are rather fruit- 
less. Yet the similarities just mentioned cannot be easily dismissed. There is 
a close intertwining of biological and sociological, or even economic, con- 
cepts. The biologist speaks of the division of labor between cells (as well as 
within cells), of specialization of cells or organs, etc. These are fundamen- 
tally socio-economic concepts. 

If, as we surmize, the existence of societies cannot be deduced from the 
postulates of biology, and if at the same time we observe a great many 
similarities between biological and social phenomena, then the natural thing 
is to seek for an abstract conceptual superstructure which has the properties 
common to both biological and social phenomena. Those two sets of phe- 
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nomena will then be consequences of the more general theory which de- 
scribes the superstructure. In a recent publication (RASHEVSKY [1967a]) we 
have suggested such a conceptual superstructure which we call the theory of 
organismic sets. We shall now briefly discuss some aspects and conclusions 
of the approach. 

Any society, whether human or animal, is a set of the individuals of which 
it is composed. It is, however, much more than such a set. A mere collection 
of individuals which in no way interact with each other would hardly be 
called a society. The individuals in a society interact both with the environ- 
ment and with each other and the results of these interactions are various 
products of the individuals’ activities, which are essential for the continued 
maintenance of those activities and interactions. Our modern, highly de- 
veloped societies would not be characterized completely without enumerating 
our means of communication, transportation, industrial production, etc. In 
primitive societies these results of interactions are less numerous and simpler, 
still even a primitive society is characterized by hunting or agricultural tools, 
etc. A similar thing holds for animal societies. A collection of bees without 
bee hives or ants without anthills is hardly an animal society. 

Let us now look at a multicellular organism. It is a set of cells, but also 
more than a mere set of cells. A suspension of bacteria is not an organism. 
In a multicellular organism the cells interact with each other. The results of 
those interactions, such as endocrine secretions for instance, are essential 
for the continued maintenance of the interactions. 

A unicellular organism at first does not seem to present the same picture. 
Actually it does. Every constituent part of a cell is the result of activity of 
some gene or genes, and it is necessary for a continued activity of the genes. 
Thus, a cell may be considered as a set of genes plus the products of their 
activities. 

Another important characteristic common to both biological organisms 
and to societies is the gradual specialization of activities by either the cells 
or by the individuals. In the early stages of development of a multicellular 
organism the cells are at first pluripotent and multifunctional. Gradually 
some functions of each type of cell are lost and the cell specializes in only one 
or relatively few biological functions. A similar situation holds for individuals 
in a developing society. The only exception to this seems to be the society 
of genes which form a cell. According to Beadles principle of ‘Lone gene-one 
enzyme” each gene is completely specialized and performs only one activity. 

The basic idea of the theory of organismic sets is to study sets the elements 
of which stand in certain relations to each other, those relations being sug- 
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gested by the relational aspects common to both biological and social sci- 
ences. Like any definitions, the definitions which specify an organismic set 
are arbitrary. They are, however, chosen from what we know about observed 
relational aspects common to both biology and social sciences. 

We therefore define an organismic set So as satisfying the following prop- 
erties : 

1) Each element ei of the set So of cardinality n ( i= 1,2, ..., n) can po- 
tentially perform a set S:“’ of mi activities a,,, ail, .. ., a,,,, and those activities 
result in a set Sl”’ of rizrni products p i , , p i z ,  ..., pi,,. The word “product” 
is used here not to denote a mathematical operation, but rather in an eco- 
nomic sense, as in “The radio is the product of electronic industry”. The 
italicized word “potentially” is to indicate that in a given fixed environment 
E, each e, exhibits only a subset S;;)cSi(”) of activities. Furthermore the set 
U, Sl”’ is assumed to be necessary and sufficient for all the elements e, to 
exhibit all the activities of the subset S!”. More narrowly, we may assume 
that U, Sip) is necessary and sufficient for all e,’s to exist continually. If any 
element of Ui s!“) becomes for any reason superfluous for a complete func- 
tioning of all the ei’s, it becomes inhibited, in other words the corresponding 
activity a,, ceases. The set U, ,Sip) is also necessary and sufficient for the 
replication of at least some of the elements e,. Finally, each element e, can 
function or exist on the average for a time ti without being supplied with all 
elements of the set Sip). 

A glance at the above description of an organismic set shows that in 
abstract0 it describes the behavior of either the individuals in a society, or 
of cells in a multicellular organism, or of genes in a cell, with the exception 
that the genes are completely specialized, as we have seen above. Each ele- 
ment ei of the set So of genes exhibits, therefore, only one activity and 
produces only one product. 

We then introduce a postulate to the effect that the elements of an organ- 
ismic set gradually, as time goes on, specialize each in either only one activity, 
or in a few activities. This postulate is again essentially a description of what 
we observe either in multicellular organisms or in societies. 

The requirement that all the elements of the set Ui Sl”’ are necessary for 
the normal functioning of each e, within a time ti leads to  a basic theorem 
of the theory of organismic sets. In a non-specialized set each of the elements 
ei produces the whole set Ui S!”), in other words a complete lack of speciali- 
zation means that all Sy)  are identical, so that Ui S~”=$”) .  As speciali- 
zation proceeds, this condition breaks down. In the limit of complete speciali- 
zation each element will produce only one or a very few p i .  When U, S!p)= 
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S!”, then all pi’s are produced at the site of each element ei. In case of a 
complete specialization, each pi  is produced by a different ei.  Inasmuch as 
each e, needs all the pi’s, this raises the problem of transport. In human 
societies the transport is effected by various known means. In multicellular 
organisms the main method of transport is the cardio-vascular system. In 
single cells the transport is effected either by diffusion or by the so-called 
“active transport.” In any case the transport takes time. Denote by t i k  the 
transport time of the product p i  from ei to ek. If tik > tk, then the element e, 
will not function properly and not produce P k  which is necessary for the 
normal functioning of every other e j .  Thus, when even for a single tik we 
have tik > ti, the organismic set will break down. 

Another essential postulate of the theory of organismic sets is the Postulate 
of Relational Forces (RASHEVSKY [1966a, b], [1967a]). It states that in the 
absence of long-range repelling physical forces, the elements ei, if originally 
separated, will aggregate if this aggregation results in the above-mentioned 
relations which characterize an organismic set. For societies this postulate 
is rather obvious. Human beings aggregate if this aggregation results in 
social interactions which are beneficial for their survival and the maintenance 
of their normal functions. In biology this postulate represents a hypothesis. 

From what we said about the survival of completely differentiated organ- 
ismic sets for tik > tk, it follows that if we have a collection of isolated spe- 
cialized elements ei (i= 1, 2, ..., n) ,  they will not aggregate to form an organ- 
ismic set. One isolated specialized element will not produce any pi’s because 
all the other necessary pk’s will be absent. When brought together they still 
will not produce any pi’s because the whole set Ui 5’;”’ is necessary for each 
element to function. Completely undifferentiated elements will, however, 
aggregate according to the postulate of relational forces because once such 
an aggregation takes they will not only continue to function, but will undergo 
a process of specialization. 

In societies this means that a society can be formed only when the indi- 
viduals are not specialized and when, in case of necessity, everyone can per- 
form the tasks that are necessary for his survival. If in our present highly, 
though not completely, specialized society, all products of industry and all 
the means of their production were destroyed by some catastrophe, with all 
the specialized and highly trained individuaIs surviving, our society would 
not reconstitute itself without first undergoing a process of “primitivization” 
or despecialization. Such a partial “primitivization” is familiar to everyone 
who lived through the Russian Revolution. It may occur also after devas- 
tating wars or natural disasters. 
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The cells of a higher multicellular organism, if separated and dispersed, 
will not spontaneously reconstitute the organism. But in the earliest stages 
of development, the undifferentiated cells of a blastula, when dispersed, 
spontaneously reconstitute the blastula, a phenomenon called “cytotropism” 
by W. Roux. 

The genes being completely specialized will not aggregate to start a for- 
mation of a cell. Since at some time such an aggregation occurred, at the 
earliest beginning of life, the conclusion must be drawn that originally the 
genes were non-specialized and poly-functional. Such “protogenes” would 
have been eventually inhibited as “superfluous” after a complete speciali- 
zation was reached. 

All the above holds only if at least one t i h  is greater than t h ;  with increasing 
differentiation and complexity of transport this is more likely to happen than 
not. The conceptual superstructure suggested here, the organismic sets, thus 
seems to provide a unified approach to biological and social phenomena. 
It leads to basically verifiable conclusions. It throws light on phenomena of 
metamorphosis in biology as well as the biogenetic law (RASHEVSKY [1967a]). 
It also has been shown (RASHEVSKY [1967b]) to contain the principle of bio- 
logical epimorphism, proposed and developed by us (RASHEVSKY [1960a, b]), 
which describes the relational invariants of different organisms. 

The above discussion leaves, however, an unsatisfactory asymmetry be- 
tween physics, on the one hand, and biology and sociology on the other. 
One should like to have a conceptual superstructure from which all three 
disciplines would derive. How this can be done is discussed in our most 
recent publication. It falls, however, outside the scope of the present paper. 
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SOME THOUGHTS ON THE USE OF MODELS IN PSYCHOLOGY 

B. A. FARRELL 
. Corpus Christi College, Oxford, England 

I. I want to speak about a certain branch, or current, of psychological 
work in the Anglo-American world, which I happen to know a little about, 
and which is of some philosophical interest. 

Let me begin with a very quick and crude piece of retrospection. One of 
the romantic hopes that inspired Anglo-American psychology after World 
War I was the thought that the application of scientific methods to the 
behaviour of organisms, human and infra-human, would yield acceptable 
generalizations, which simply related stimuli and responses. By the end of 
the 30s it had long become apparent that this hope was a delusion. Whatever 
the connections were between inputs and outputs - and there obviously were 
a vast and varied range of intimate connections between them - they were 
not of the simple, straightforward sort that had been previously imagined. 
By the end of the 30s, what had been clear to common sense (and to workers 
in the neurological field) also became clear to most psychologists. If the 
latter wished to arrive a t  acceptable generalizations about behaviour, they 
would also have to take into account the internal states of the organism. 
Well, how was this to be done? The obvious difficulties were that these 
states could not be identified neuro-anatomically, and hence were unob- 
servable and hypothetical. During the 30s and 40s a pioneering and courage- 
ous attempt was developed to deal with these difficulties by HULL [1943]. 
Hull argued that the postulated, internal and unobservable states of the 
organism should be tied to antecedent and postcedent observables - just as 
we do in the natural sciences. So, for example, a postulated internal state 
like Habit Strength should be tied to antecedent observable conditions like, 
for example, the number of runs in a maze; and to postcedent observables 
like, for example, the resistance of the response to  extinction training. He 
argued, moreover, that psychological techniques were strong enough in actual 
fact to carry out this programme, and to arrive at  generalizations that could 
form part of a large scale theory of organismic functioning. 
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After World War I1 the difficulties of the Hulliam answer to the problem 
became increasingly apparent. It was much more difficult than Hull had 
thought to tie internal states to observable antecedents and postcedents; and 
it became evident that it was premature to try to arrive at large generali- 
zations in the context of a large theory of organismic functioning. The 
romantic age of psychological theory construction was clearly at an end. 
However, Hull left psychologists certain important legacies. He left them, 
inter alia, very much clearer about what is involved in attempts to deal with 
internal states; and he gave them the courage to deal with these without 
embarrassment and self-apology. At the same time - after World War I1 - 
the imaginations of many psychologists were caught by the obvious analo- 
gies that could be derived from the new studies of communications engin- 
eering, control systems theory, and so on. After the War these several 
streams came together to produce a certain current or tradition of work in 
the Anglo-American world. It is this current of work which I want to talk 
about todaj. 

Psychologists in this current are not concerned to develop large scale 
theories about the functioning of organisms. Nor are they primarily con- 
cerned to establish S-R generalizations - or, as they would put it, generali- 
zations connecting inputs with outputs. They are more concerned to use data 
about observed inputs and outputs to  explore and discover the nature of the 
internal states of the particular biological systems they are investigating. For 
this purpose they explicitly construct models to represent what they suppose 
to be the nature of the internal machinery sufficient to account for the ob- 
servable input and output. Characteristically they do not interpret these 
models neuro-physiologically ; and do not consider it necessary to do so. 
But they hold themselves free to indicate possible interpretations when ap- 
propriate. However, they are far from free to  postulate whatever internal 
machinery their fancy takes them. For they are constrained in their model 
building, not only by the data about input and output, but also by the 
requirement that their models should be testable. They are apt to view their 
work as a necessary and distinguishable part of a large, many-sided, and 
world-wide enterprise. This enterprise is the enquiry into the ways in which 
the nervous systems of organisms really manage to perform the tricks they do. 

11. Let me now try to show something of the nature of this psychological 
work by presenting you, very briefly, with some examples of it. Consider the 
first, early model produced by SUTHERLAND [1957], [1958] of the visual 
system of Octopus vulgaris Lamarck. It was found that this animal could 
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distinguish vertical and horizontal rectangles, but could hardly distinguish 
them when presented obliquely. Sutherland suggested that these shapes pro- 
duced an excitation on the retina, which went to nerve cells in the optic 
lobes - where the array of excited cells represented a projection of the retina. 
He suggested that this array, and the subsequent outputs from it, are ar- 
ranged in the way shown in fig. 1. The cells of each column and each row 
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Fig. 1. Dots represent array with horizontal rectangle projected on it. Open circles: 
cells specific to each column. Filled circles: cells specific to each row. Each cell in the array 
is connected to the output cell for its own row and the output cell for its own column. 

have connections to further cells, which are specific to each column and 
each row. From this it follows that when a figure is projected on to the array 
(as shown), the amount of firing from the cells connected with the columns 
will represent the height of the figure; and the amount of firing from the 
cells connected with rows will represent the lateral extent of the figure. The 
amounts of firing for this particular figure are drawn in here - at the top 
the output from the columns, at  the left the output from the rows. With this 
model it is possible to account for the known facts about the octopus. 
Vertical and horizontal shapes produce very different patterns of excitation 
from one another; obliques do not - as we can see in fig. 2. 

Sutherland used this model to obtain a number of predictions. For ex- 
ample, consider the excitation patterns produced by a square, by a diamond 
(that is, a square on one of its corners), and by a triangle. On this model the 
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patterns are more alike for the diamond and the triangle than they are for 
the square and the triangle (see fig. 3). On testing it was found that the 
octopus distinguishes a square from a triangle more readily than it distin- 
guishes a diamond from a triangle. In general it is certainly true to say of 
Sutherland’s model that it was a fruitful one. 

output output 
f rom from 

rows 
Figure 

Columns 

Fig. 2. Figures used for investigating discrimination of orientation, with outputs 
predicted by theory. 

However, as work went on in this field, two developments occurred. 
(i) Under the stimulus - in part - of Sutherland’s model, YOUNG [1964] 

tried to discover what actual arrangements in the visual system of the octopus 
enable it to classify shapes. What he found were, not what the model sug- 
gested, but fields of dendrites lying in different orientations. Those fields 
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whose long orientation corresponded to the horizontal axis of the eye were 
the most plentiful ; those whose orientation corresponded to the vertical were 
less plentiful; and the fewest fields were those corresponding to the oblique 
axes in the eye. At the same time the work of HUBEL and WIESEL [1962] 
uncovered findings on orientation that pointed strongly in a related direction. 

oUTPur  OUTPUT 
FIGURE FROM F R O M  

COLUMNS ROW s 

Fig. 3. The neuronal patterns predicted by the theory. The second column shows the 
neuronal firing patterns representing the vertical projection of the figure; the third column 
shows the neuronal patterns representing the horizontal projection of the figure. In these 
two columns the height of the diagram represents the strength of firing of cells at a given 

point in a row of cells. 

When therefore we try to interpret Sutherland’s first model biologically, we 
find that it will not do. The visual system of the octopus is not actually 
organized in the detailed way the model suggests. 

(ii) Further psychological work with the model revealed that the octopus 
was reacting to features of the presented shapes other than their orientation. 
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The model could not cover these facts. This work suggested that a central 
idea of the model should be extended further. Instead of thinking of the 
visual system as concerned only to analyse one dimension of the stimulus 
(namely, laterality versus verticality), we should think of it as able to analyse 
an array of features of the stimulus. On this view the visual system would 
work by means of a set of stimulus analysers, which can be switched on or 
off, and which are linked to the learning machinery of the organism. These 
ideas of Sutherland and Mackintosh have been, and still are, of considerable 
heuristic importance (SUTHERLAND [1964]). 

Now let us turn for a quick glance at a part of another model, namely the 
one developed by BROADBENT [1958]. What were the relevant data Broad- 
bent was concerned to deal with? It had been found, for example, that if a 
person repeated back a passage of prose heard through one ear, he was un- 
able to report any of the verbal content of another passage presented at the 
same time through the other ear (CHERRY [1953]). In other words it was 
found that, if a person has to deal with competing messages, there is a limit 
at which his performance will break down. The question was then raised: 
what determines this limit? In particular, is it determined by peripheral 
conditions, or by central ones? It was found, for example, that similar results 
were obtained when one message was auditory and the other visual (Mow- 
BRAY [ 1953]), which strongly suggests that the limit is determined in part by 
central conditions. What is more, it was then discovered that this central 
limit is fixed primarily by the predictability, or information content, of the 
messages. For example, when dealing with competing call signs, subjects are 
able to deal correctly with an increasing load when the informational content 
is low, but are unable to do so when the informational content is high 
(WEBSTER and THOMPSON [1954]). 

Let us look first at the part of Broadbent’s model which is designed to 
handle this data (see fig. 4). He supposes that the messages come from 
the receptors and pass along different input channels until they reach a 
selective filter. Here some are blocked, and others are led through to one 
channel of limited capacity, which has access to a long term memory store. 
It is in this channel that the organism takes ‘a decision’ about the input that 
has been let through the filter (for example, what the verbal content was of 
the passage just presented); and it is this channel that the appropriate re- 
sponse is determined. 

In fact, of course, Broadbent was concerned to handle a much wider range 
of data than what I have mentioned; and his model as a whole is more 
complex than the part I have selected. The whole model can be seen in 
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fig. 5. As you see, this contains a unit for short-term memory; there are two 
feedback arrangements ; and in his discussion Broadbent makes it clear just 
how complex are the relations between the store of conditional probabilities 
and the rest of the system. 

Now it is apparent that this model, as it stands, just amounts to a block 
diagram, and it has an air of childlike simplicity about it. We may be tempted 
to  think that it is hardly a good enough model to  achieve testability. But this 
is not the case. Consider the relevant part of the model exhibited in fig. 4. 
According to the model, when messages reach the selective filter, some are 
blocked and others are allowed to pass. Well, is this true? Does our selective 
filter work like this or not? If it does, then - as we have seen - the verbal 
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Fig. 4. Broadbent’s “filter” and “information flow” model for selective attention 
(BROADBENT [1958]). The diagram illustrates a model in which man is represented as an 
information-handling system. The successive parts of the model are discussed in the text. 
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content of competing messages will just be blocked and not identified at  all. 
But how then do we account for what happens at the cocktail party? I am 
straining to hear what my neighbour is saying on my left, when, suddenly, 
above the din 1 hear my name mentioned or called on my right. When the 
cocktail party problem was taken into the laboratory, it was found that there 
are occasions on which the verbal content of irrelevant messages was identi- 
fied. This suggests that the Broadbent model is wrong at this point and needs 
modification. One of the proposed modifications is that the filter does not 
work by blocking messages, but by attenuating them in a manner which can 
be analysed in terms of Signal Detection Theory. Of course, this is merely 
an example of the way in which this apparently naive model can be subjected 
to test. What is instructive is that it has served as an important heuristic tool 
in the hands of a number of psychologists. It has been a source of inspiration 
for quite a considerable body of scientific work. In this way it has paid good 
dividends; and we have every reason to say that Broadbent has done us a 
service in offering us this model at the time. 

But what is its present status ten years afterwards? It has not yet exhausted 
its fertility, but, on the other hand, investigation is now focused on the 
details of the machinery, and it is anybody’s guess at  present what inore 
general model will emerge next, and how much this will have absorbed and 
modified Broadbent’s model in the process. For one thing, we do seem 
forced to suppose now that our channel capacity is not only limited in the 
way that Broadbent emphasized, namely, by unpredictability. I t  is also limited 
in other ways - for example, by the meaning of the input to us, which - 
paradoxically - greatly extends the amount and range of the input we can 
handle. 

A few words now about part of the model of human skill offered by 
CROSSMAN “9641. Consider only the effector side of a skill. The facts Cross- 
man tries to cover are familiar ones such as what happens when a person 
obeys the order “Quick march!”, or plays the piano, or sets about serving 
a ball at  lawn tennis. We have to suppose, Crossman argues, that most of 
the information needed to control muscle action is held in a permanent store 
that is built up during the acquisition of the skill. “The main theoretical 
problem”, Crossman says, “is how the data are organized in the store and 
retrieved for use on a given occasion. They cannot be a set of simple space- 
time patterns like the grooves on records in a juke box, because the detail 
of a given action varies greatly with circumstances.” Hence we have to 
suppose - he argues - that the human system is organized hierarchically. 
Therefore the first or initial command (or ‘goal’ set the system) “is used to 
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retrieve a list or ‘programme’ of sub-commands, which are obeyed in turn, 
each sub-command using a further list of sub-commands and so on.” How- 
ever two other facts have also to be taken into account. (i) Consider an 
example of the first fact. “If a speaker hears his own voice subject to delay 
of 200 milliseconds through headphones, his speech becomes long drawn out 
and stuttering.” Hence it seems as if “each command, at whatever level, 
includes a receptor pattern which must appear in the environment before the 
command is deemed to have been obeyed, and the next one can take over.. . 
If this checking signal is late or fails to arrive, the component actions tend 
to  be repeated until it does.” (ii) Consider an example of the second fact. In 
singing, the control of pitch takes place with a rapidity that can only be 
explained by supposing that the feedback by-passes the central decision 
machinery. Hence we have to allow for this by-passing feedback from the 
peripherery . 

To account for this range of data Crossman proposes the model shown in 
fig. 6 .  This is self-explanatory by now. The hierarchical character of the 
model is shown in the passage from ‘main goal’ on the left to  activating 
signals on the right. The incoming arrows above the blocks mark the 
channels for the checking signals that come in at each stage. The peripheral, 
by-passing feedback from motor action, and its interaction with the task set 
are shown on the right. (The diagram is actually restricted - quite unnecessarily 
- to limbic activity.) 

It seems evident on inspection that this model is open to testing and 
elaboration and modification in a way similar to that of Broadbent’s. But 
unlike Broadbent’s, it is a comparatively recent offering. When one con- 
siders the whole of Crossman’s model of skilled performance, it is not clear 
yet whether it has a heuristic value comparable to Broadbent’s, and what its 
psychological contribution will ultimately turn out to be. 

111. Let us now stand back and take a reflective look at  this current of 
psychological work. 

First of all, are these models all of the same sort? Or are there differences 
between them? It is clear that they differ considerably inter se, and in different 
ways. For example, Sutherland suggests that an optic lobe of the octopus is 
built like a metal plate with leads going off it in the ways described. Conse- 
quently, it contains a good guide to the neuro-anatomist, and others, about 
what sort of thing to look out for when they actually investigate the optic 
lobes of this animal. In contrast, Broadbent’s model contains a very poor 
guide to the neuro-anatomist-cum-physiologist when he investigates any 
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actual part of the internal apparatus of the human organism. Neither 
Sutherland’s model nor Broadbent’s is given a neural interpretation by their 
authors. Yet it seems reasonable to say that Sutherland’s is much closer to 
such an interpretation than Broadbent’s or Crossman’s. There is another 
obvious contrast between Sutherland’s and the other two. The former is 
concerned to deal with - in some sense - a much smaller range of fact or 
data than the latter two. Its scope is much smaller. Obviously the scope of 
the latter two is very large indeed. This makes them in consequence much 
more vulnerable, and suggests that their role in psychological enquiry will 
be somewhat different from that of Sutherland’s. Then there is a contrast 
of quite a different sort. Among the data that Broadbent is concerned to 
explain is the fact that, when a person has to deal with competing messages, 
there is a limit at  which his performance will break down. He explains this 
fact, in part, by supposing that we each possess a filter that does the trick. 
Now, it could be argued, this supposition is not a contingent matter, but is 
a logical consequence of our description of the data to be explained. It 
follows logically from our saying that there is a limit at  which a person’s 
performance will break down, and so on, that the person has a filter. To 
suggest that he has one is not to put forward a new empirical claim, but 
simply to state what is entailed, in part, by our description of the facts to 
be explained. The same thing is even clearer in Crossman’s model. A trained 
soldier knows what he has to do to obey the order “Quick march”. Crossman 
argues that we have to suppose that most of the information the soldier 
needs to control his muscle action here is held in a permanent store. But it 
could be maintained that to say “The soldier knows what he has to do here” 
entails saying that what the soldier knows is held in permanent store. So 
Crossman is not making an empirical discovery, but, primarily, stating this 
logical consequence of our description of the facts to  be explained. Suther- 
land’s model on the other hands stands in striking contrast here. There is 
nothing in it that is entailed by his description of the visual performance of 
the octopus. 

I do not propose to examine this last alleged contrast, and to try to de- 
termine whether it is real or only apparent. I t  is obviously a complicated 
matter; and it is also obvious that, even if the Broadbent-Crossman models 
do contain entailments, this is not all they contain by a very long chalk. 
However, it is important that we should take note of this alleged feature of 
the Broadbent-Crossman models. For in doing this we bring to the surface 
one of the things that makes us uneasy about them. We bring to the surface 
our fear that these models may be, in part, a form of faculty psychology in 
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a new guise. But whether the Broadbent-Crossman type of model building 
is, in part, a new form of faculty psychology, and if it is, whether it is a 
vicious form of it - all these are questions that I cannot stay to try to answer 
now. 

IV. It is clear from what I said earlier that Sutherland’s and Broadbent’s 
models were not sufficient to account for the data; and it is very likely that 
Crossman’s will turn out to be insufficient also. But suppose that we have 
good grounds to  believe that one of these is sufficient to  cover the existing 
and the relevant data. What have we then to do, in general, to show that 
this model is a necessary one? In other words, what have we to do in general 
to obtain the assurance that the data cannot in fact be explained in any 
other way? 

A good case can be made out for the view that it will not be enough for 
us to  discover more and more about inputs and outputs. We shall also have 
to go inside the organism, and discover how the details of the machinery are 
actually constituted and function. For this purpose we have to  make use of 
the labour and contribution of anatomists, neurophysiologists, and the like. 
It is only by making use of the evidence they can produce that we will in 
fact ever be able to obtain a definitive assurance that the actual machinery 
of complex organisms contains the elements and works in the way alleged 
by any psychological models. 

This good case, however, has also led unfortunately to some confusion. 
It has tempted the physio-anatomists to  suppose that, because psychological 
theory and techniques are not strong enough to establish what the actual 
internal machinery of organisms is like, they are therefore intellectually dis- 
reputable in some way or other, not really a necessary part of this whole 
scientific enquiry, and ultimately due anyhow to be taken over and replaced 
by physio-anatomy and related studies. Hence physio-anatomists, and the 
like, are apt to view the whole current of psychological work we are dis- 
cussing as an unfortunate and passing stage in the history of science. So they 
do not quite know what to  make of their psychological colleagues, and are 
apt to  find them a bit of an embarrassment. 

Now this confusion is a complex matter - too complex to deal with 
adequately. But it is not difficult to see that it is a confusion and wholly 
unnecessary. From the claim that psychological techniques are not strong 
enough here, we obviously cannot infer that they are disreputable. Nor can 
we infer that they are unnecessary. What the physio-anatomists overlook is 
that this current of psychological work is helping to discover the sorts of 
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functions and structures that the actual minute machinery subserves. Quite 
clearly, this is a necessary part of the whole enquiry. The physio-anatomists 
also overlook another quite crucial matter. If we are to  discover that such 
and such minute machinery subserves such and such organismic functions 
(e.g. seeing a rectangle, hearing the verbal content of a message), it does not 
seem possible to do so in practice, and perhaps even in principle, without 
the use of psychological techniques of enquiry. Hence it is far from certain 
what the relation will be in the long run between psychology and the purely 
biological studies in this field. We cannot be confident that biologists will be 
successful in a take-over bid for psychology. In the short run, however, it 
seems reasonable to argue that the macro-theories and techniques of psycho- 
logical workers and their micro-counterparts in physio-anatomy will comple- 
ment each other to their mutual advantage. We saw an example of how this 
can happen in our discussion of Sutherland’s work. 

V. It is very advisable, therefore, that outsiders, whether laymen or physio- 
anatomists, should not be tempted to  undervalue this psychological work. 
On the other hand, it is equally advisable that psychologists themselves 
should not fall into the opposite trap and overvalue it. For psychologists 
are using models which are built by analogy with other devices, or systems, 
or what not. Thus, Sutherland supposed that an optic lobe of the octopus is 
constructed like a metal plate with leads taking away electrical input in 
certain ways. Broadbent supposed that the nervous system of humans is 
constructed like a communications-cum-storage device, with a channel 
capacity limited solely by the amount of information it can carry. Crossman’s 
model is built on a similar analogy. As we have seen, the first two are of 
value, and the last will almost certainly reveal its worth in due course. But 
whatever their fertility may be, we can be reasonably certain of one thing. 
They will exhaust their fertility before they enable us to achieve a reasonably 
satisfactory account of the aspects of organismic functioning with which 
they are primarily concerned. 

Why is this? It is true, no doubt, that the history of psychology is strewn 
with models that have exhausted themselves without doing the trick, without 
cracking the code of organismic functioning. But have we not perhaps 
reached a turning point in psychology? Current models use the analogy of 
information processing devices, control systems, and the like. I have pre- 
sented three examples of them. Is it not perhaps the case that this sort of 
model is logically different from all previous ones in the psychological field, 
and really will enable us to  achieve reasonably satisfactory accounts of 
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organismic functioning? I venture to doubt whether this is the case. I think 
we can be reasonably sure that the current models will exhaust their fertility 
without cracking the code, just as other models have failed before them. 
Why do I say this? What reasons are there to think that this is the case? 
Let me mention three. 

(i) If the three models I have used for illustration are typical or repre- 
sentative - and I think they are - then it is quite obvious that their chief 
role is exploratory. This is not surprising, as soon as we appreciate that 
psychology as a whole is still in the stage of being an exploratory science at 
the present time. So it would be very surprising indeed if any current model 
were to embody an immense leap forward, and were to bridge the gulfs 
between exploration and reasonably definitive discovery. 

(ii) One of the characteristics of current models is that they are partial 
and not total in character. They do not attempt to deal with the total organ- 
ism, but select certain functions only, and then tend to concentrate on 
certain aspects only of these selected functions. But we have good reason 
to believe that organisms cannot be split up like this with safety. The 
function we select for study and modelling is very liable to be affected in its 
operations by other functions that we are ignoring. The aspects of the func- 
tion on which we are concentrating is very liable to be affected by aspects 
we are neglecting. Hence any partial model is liable to be incomplete, and 
in important respects. Clearly, any model which is built in this way is unlikely 
to provide us with a good understanding of the function concerned. 

(iii) The current models are based on analogies with other devices and 
systems. But it seems to be a fact that the nervous system of complex organ- 
isms is a type of system which is quite unique in its complexity of organi- 
zation and functioning. If this is so, then it follows that it has no close 
analogies with anything else. From which it seems to follow, in turn, that 
no models will be sufficient to crack the code of the nervous system. Hence 
their exploratory power is subject to an inherent limitation here. I confess 
however, that I am uneasy about this consideration, and uncertain about its 
implications. 

So we may be tempted to fall into two opposing misjudgements about the 
current of psychological work I have been considering. We may be tempted 
either to  undervalue this work, or to over-value it. I hope I have said enough 
to warn us against both temptations. 

VI. But whatever the scientific worth may be of this type of psychological 
work, it does produce models of mental functioning that are of some general 
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philosophical interest. Let me conclude by mentioning one respect in which 
they are of general interest. In current discussions in the philosophy of 
mind, philosophers have been very apt to presuppose that there are two, and 
only two, legitimate ways of speaking about mental functioning. The one is 
ordinary language, safe and hallowed by contact with the mother’s breast 
and knee. The other is the language of the physio-anatomist, safe because it 
deals with material things -even though they be very minute and a bit messy. 
When, therefore, I say (to take an arbitrary example): “Smith has a better 
memory than Jones”, what T am saying must be elucidated in either the one 
way or the other. If we use the former, and stay within ordinary language, 
then what I am saying has to be elucidated hypothetically. Thus: “What I 
am saying is that, for example, $1 were to ask Smith and Jones who won 
the match yesterday, Smith is more likely to remember than Jones”. And 
so on. The troubles about this answer are well known. For one thing, it is 
just false. It simply is not the case that, when I say “Smith has a better 
memory than Jones”, I am merely asserting a (concealed) string of hypo- 
theticals. I am also saying that something is the case about Smith and Jones 
here and now, even though both may be fast asleep in their beds. But what 
something else can this be? Now if we are caught within the fashionable 
presupposition of much philosophy of mind (that there are only two legiti- 
mate ways of talking here), we will not know what to say. Clearly, the 
something else cannot consist in statements about the physio-anatomical 
differences between Smith and Jones. For these are not contained within 
the meaning of our statement in ordinary language about memory; and in 
any case we have only a faint idea at present as to what these physio- 
anatomical differences may be. So we are now caught in a trap. The subject 
matter of the philosophy of mind is largely and obviously the conduct, 
behaviour and mental functioning of human organisms, of embodied persons. 
The trap in which we have been caught in recent years has contributed to 
keep much philosophy of mind somewhat remote from its subject matter, 
and very remote from the scientific study of the human organism. 

One of the interesting things about current model construction in psy- 
chology is that it points to a possible way out of this trap. There is another, 
a third way, of speaking about mental functioning which is neither ordinary 
language nor physio-anatomy. This is the way developed by the current of 
psychology we have been considering. We can speak about the sort of in- 
ternal state or states that an organism must possess for it to exhibit memory 
and intelligence and so on; and we can speak about the differences between 
these that give Smith a better memory than Jones. 



430 B. A. FARRELL 

This alternative suggestion raises some interesting possibilities. It may be 
that this way of talking will help to  free us from our present submission to 
the hypothetical in the philosophy of mind, and free us from our fear of the 
categorical import of statements about mental powers and functioning. It 
may also help to bring the philosophy of mind into a closer and more 
fruitful relation with the scientific enterprise. And, in my view, this would 
be a good thing! 

I wish to thank Dr. Mackintosh for his helpful criticisms. 
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PERCEPTION AS A FUNCTION OF BEHAVIOUR 

J. G. TAYLOR 
Piper’s Croft, Bovingdon, England 

While I fully agree with Gibson’s contention that perception involves the 
discovery of invariants, I maintain that what he has offered us is not a theory 
but a description of perception. He has failed to disclose any mechanism by 
which invariants of perception are generated to reflect the invariants of the 
environment. He seems to think that the required invariants are embedded 
in the flux of information that pours into the receptor system, and that a 
simple search is all that is needed to reveal them. 

I have two major quarrels with this formulation. First, the process of 
discovering invariants appears to be itself a kind of perceptual activity, so 
that what Gibson is trying to do is to explain perception by an appeal to a 
more primitive kind of perception. My second objection is that there are in 
fact no invariants to be discovered in the information delivered to the re- 
ceptor system. 

Consider any stationary object, and let us confine our attention to its 
position in space, neglecting any other properties we may perceive. The input 
to the eyes from this object varies with every movement of the eyes, and, 
because the projection of the retinal image on the striate area of the cortex 
is non-linear, the events in the projection area vary in a complex manner 
with the position of the image on the retina. In other words, there is a one- 
many relation between the position of the external object and the input to 
the receptor apparatus, so that an event in the striate area carries no intrinsic 
information concerning either the position or the shape of an object in the 
external field. Yet this one-many relation seems to generate an invariant of 
perception. We perceive this object as remaining in a fixed position. That is 
to say, there is a one-to-one correspondence between the positions of objects 
in environmental space and their perceived positions. 

Let me state the problem in mathematical form. I define a set, A,  whose 
elements specify the coordinates of objects in a space whose axes are an- 
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chored in the body of a seated observer; a set, B, whose elements specify 
events in the observer’s visual apparatus; and a set, C, whose elements are 
the perceived positions of the objects. There is a one-many relation between 
A and B, but a one-one relation between A and C.  The crucial question con- 
cerns the mechanism whereby A is mapped into C via B, and it is at once 
evident that this mapping cannot be effected unless there is further infor- 
mation specifying the positions of the eyes, the head and the trunk. This 
means that the receptor information must be understood as including, in 
addition to the elements of B, the elements of other sets of proprioceptive 
events, as determined by the momentary orientation of the receptor surfaces. 
If we define P I ,  P , ,  ..., as sets of proprioceptive events determined by 
the positions of the eyes, head and trunk, we may define another set, D, as a 
set each of whose elements is an n-tuple including an element of B and elements 
of P , ,  P,,  .. ., P,- That is, 

Alternatively, we may say that the elements of D are points in a multidimen- 
sional receptor space. It is evident that corresponding to each element of A 
there is a subset of D, containing a large number of elements. 

The problem can now be stated. Since the elements of A are not directly 
given to the observer, the problem is to discover a mechanism, or programme, 
whereby the elements of the multidimensional set, D ,  can be made to generate 
elements of the three-dimensional set, C,  so as to reflect, with a substantial 
measure of accuracy, the elements of the set A .  If the elements of D could 
be expressed in numerical form they could be fed into a computer, and it 
would be a trivial exercise to write a programme that would yield, as output, 
a close approximation to the elements of A .  What kind of programme does 
the living organism have to effect the mapping from D to C? 

There seem to be two possible answers to this question. The first is that 
the programme is incorporated in the genetic code. This would imply that 
the one-one relation between A and Cis the result not of interaction between 
the individual organism and its environment, but of the happy chance that 
certain genes, selected millions of years ago, determine a programme that 
maps the elements of D into C in such a manner that C is a reasonably close 
representation of A .  If this were the true answer, it would follow that any 
transformation applied to B, such as a reversal of the retinal image along the 
horizontal or vertical axis, or both, would leave the organism permanently 
impaired. But in fact the impairment is temporary, and the genetic answer 
must therefore be rejected. 
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The second answer is that there is no programme at the beginning of life, 
and each organism has to construct its own programme. This is done by the 
conditioning of motor responses directed to the objects specified by A .  For 
example, the infant learns very quickly to reach for near objects, and to do 
so in spite of the one-many relation between A and D. That is, each of the 
elements of D, including an element of B determined by an external object, 
is conditioned to a response that establishes contact with the object whose 
position is specified by an element of A .  

Since an element of B is jointly determined by the position of the object 
and the orientation of the receptors, it is evident that an element of D is 
sufficient to generate a unique response, carrying the hand to the position 
in space occupied by the object. Hence we may say that the conditioning 
process generates behavioural invariants that correspond to the invariants 
A ,  so that we have a mechanism that may well provide a basis for the one- 
one relation between A and C. 

But we have not yet arrived at our goal, because the positions of objects 
are given in C without any need for motor responses. If motor responses 
were necessary, we could perceive the position of only one object at a time. 
But in fact we perceive a whole array of objects. How can the existence 
of behavioural invariants generate simultaneous perception of many ob- 
jects? 

My answer is that the learning process builds up a vast number of links 
in the brain, connecting elements of D to the motor area. If any of these 
links, or engrams, gets free access to the motor system, a response occurs; 
but if the final common path is not available, this does not prevent the en- 
gram from being activated. That is, all the conditions for evoking a specific 
response are satisfied except the availability of the motor apparatus. The 
activity of the engram may be described as constituting a state of readiness 
for the appropriate response. Now there is nothing to prevent a myriad of 
engrams being active simultaneously. When this happens, there is a state of 
multiple simultaneous readiness for responses adapted to the positions of 
numerous objects, and the goals of these responses remain invariant despite 
changes in the relevant elements of D. 

Now the properties of simultaneity and invariance that characterise this 
state of multiple readiness are matched by similar properties in the conscious 
field of perception, so that it now seems reasonable to assert that perception 
and multiple simultaneous readiness for action are one and the same thing. 
If you insist that perception is something different from, and independent of 
the state of efferent readiness, the onus is on you to show how this independ- 
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ent perception is generated, and how its properties come to match so closely 
those of the state of readiness. 

So far the only responses I have talked about are motor responses directed 
to the positions of objects in space. But it is evident that these are not the 
only responses that can be conditioned to the elements of D. There are, for 
example, the ocular responses that serve to bring specific features of objects 
into the centre of the visual field; there are responses involving the manipu- 
lation of objects, including the innumerable skills of artists and artisans; and, 
in the human organism, there are verbal responses that serve to describe 
what is in the environment. I suggest that readiness for all these is included 
in the state of multiple simultaneous readiness, so that perception includes 
a great many components in addition to space. It follows then that perception 
is enriched whenever a new set of skills is acquired. And it also follows that 
when the set B is altered by a transformation applied to the ocular input, there 
will be disturbances of both behaviour and perception. But the errors ofbehav- 
iour are subject to correction, and we can now infer that as this correction 
proceeds, there will be a corresponding correction of the errors of perception. 

It should be noted that if I am right in identifying perception with a state 
of readiness for all the responses that have been conditioned to the elements 
of the set D, then a transformation experiment will not result in a restoration 
of veridical perception unless an opportunity is given to correct all the 
behavioural errors induced by the transformation. There are many experi- 
ments whose results appear to contradict my thesis, but invariably the ex- 
perimental conditions have been so arranged that only a limited class of 
responses is subject to correction. My thesis then mediates the deduction 
that the subjects of such experiments remain in a state of readiness for in- 
numerable erroneous responses, and there is therefore only a limited reduc- 
tion of perceptual distortion. 

Let me illustrate the point by reference to one of the experiments of 
Erismann and Kohler in Innsbruck. The subject, Dr. Kottenhoff, wore 
spectacles that reverse right and left for seven weeks continuously, but failed 
to report the correction of the right-left ordering of the perceptual field which 
had been reported by two other subjects in Innsbruck, and was subsequently 
reported by my own subject, Dr. Papert, in Cape Town. Kottenhoff’s motor 
responses were just as well adapted to the reversed input as those of the other 
three subjects. Why then was the perceptual outcome different? I questioned 
him closely about his actions in response to the reversed input, and he re- 
vealed that he had adopted a strategy that ensured that his verbal responses 
descriptive of the right-left ordering of the field would remain unchanged 
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throughout the experiment. What he did was to note that the image of an 
object on the right appeared to be close to his left temple, and he got into 
the habit of describing the positions of objects in relation to this frame of 
reference. The result was that his verbal responses, as brought out in daily 
laboratory tests, remained at variance with his motor responses. The other 
three subjects recognised that their verbal responses, no matter how correct 
they might be as descriptions of what was happening in themselves, were 
erroneous as descriptions of the positions of objects in the external field, and 
consequently made no attempt to prevent the correction of those errors. At 
the end of the experiment there was virtually complete congruity between 
verbal and motor behaviour. From this I concluded that to rectify the per- 
ception of right-left ordering it was necessary that all the behavioural systems 
affected by the transformation should be corrected so as to reflect the true 
positions of objects in space. 

This conclusion has been heavily criticised by HOWARD and TEMPLETON 
[1966], who apparently think that the perception of right-left and up-down 
ordering is innately determined by the structure of the visual apparatus, from 
retina to striate area, and is therefore immutable. They are particularly 
scornful of my claim that the correction of verbal behaviour can tip the 
balance in favour of veridical perception. But recently some interesting 
evidence has appeared to support me. 

Prompted by Sperry’s investigations of the effects of splitting the brains 
of monkeys, some surgeons in California have split the brains of patients 
suffering from intractable epilepsy. The operation involved transection of 
the corpus callosum and other commissures, but the optic chiasma was left 
intact. In some cases there was a dramatic decrease in both the frequency 
and the violence of epileptic seizures, and those patients were subjected to 
extensive tests designed to discover the psychological effects of brain-split- 
ting. This work has been described by GAZZANIGA [1967]. 

In one test the subject fixated a point in the middle of a screen, and he was 
asked to report on spots of light flashed on the screen for a tenth of a second. 
When the spots were to the right of the fixation point the subject reported 
them accurately; when they were to the left he denied seeing them. Apparent- 
ly the right hemisphere is blind. But when the subjects were asked to point 
at a momentarily presented stimulus, they did so with equal ease whether 
the spot was to the right or the left. The right hemisphere retained unimpaired 
its ability to direct motor responses. But it could not initiate verbal responses, 
because the speech centre is in the left hemisphere, and the relevant links 
between the two hemispheres had been severed. 



436 1.0.  TAYLOR 

Now let me apply my own terminology to this situation. When information 
is relayed to the right hemisphere, states of readiness for a variety of motor 
and manipulatory responses are generated, but there is no readiness for 
verbal responses. The total state of readiness is diminished by the exclusion 
of one of its important components; and this diminished state of readiness 
is not equivalent to normal perception. In fact Gazzaniga’s observations 
have established the important principle that if a human subject is not in a 
state of readiness to make a verbal statement about the character and po- 
sition of an object, he has no subjective awareness of the object. Gazzaniga 
speaks of the right hemisphere as having a limited kind of “perception”, but 
if we decide to restrict the term to conscious phenomena, we cannot accept 
this. The reports of the subjects must be regarded as conclusive on this point. 

The blindness of the right hemisphere was revealed only when stimuli 
were presented momentarily in the left visual field. When the eyes were free 
to move there was no evidence of hemianopsia. I suggest that this can be 
explained by assuming that when an object is presented in the right visual 
field, engrams mediating verbal responses are aroused to activity, and their 
activity is maintained for a few seconds through the agency of reverberating 
circuits in the left hemisphere. It follows that when an eye movement trans- 
fers the object to the left visual field, the relevant verbal engrams continue 
to be active, so that the full state of efferent readiness remains, and perception 
of the object is therefore not lost. 

In another publication (TAYLOR [1962]) I have applied this principle to 
account for a very interesting property of the visual world discussed by 
GIBSON [1950]. He pointed out that the visual world is unbounded, in spite 
of the fact that the retina is bounded. When we turn a camera so that a 
particular object is no longer represented on the film, it does not appear in 
the photograph. But when we turn our eyes so that there is no longer a retinal 
image of the object, we continue to perceive it for a short time. This is quite 
intelligible if we are willing to interpret perception as a state of behavioural 
readiness; but it must remain a profound mystery if we adhere to the classical 
doctrine that the striate area is the birthplace of visual perception. 
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ON JUDGING THE PLAUSIBILITY OF THEORIES 

H.A. SIMON* 
Carnegie- Mellon University, Pittsburgh, Pennsylvania, USA 

1. It  is a fact that if you arrange the cities (or, alternatively, the metro- 
politan districts) of the United States in the order of their population in 
1940, the population of each city will be inversely proportional to its rank 
in the list (see fig. 1). The same fact is true of these cities at other census 
dates - back to the first census - and for the cities of a number of other 
countries of the world. 

It is a fact that if you arrange the words that occur in James Joyce’s 
Ulysses in the order of their frequency of occurrence in that book, the 
frequency of each word will be inversely proportional to its rank in the list 
(see fig. 2). The same fact is true of the other books in English whose word 
frequencies have been counted (except, possibly, Finnegan s wake), and it 
is true of books in most other languages (although not books in Chinese). 

What do I mean when I say these are “facts”? In a way, it seems incorrect 
to speak in this way, since none of my “facts” is literally and exactly true. 
For example, since there were 2034 cities over 5000 population i n  the 
United States in 1940, the alleged “fact” would assert that there were there- 
fore one half as many, 1017, over 10000 population. Actually, there were 
1072. It would assert that there were one tenth as many, 203, over 50000 
population; actually, there were 198. It would assert that the largest city, 
New York, had a population just over ten million people; actually, its 
population was seven and one half million. The other “facts” asserted 

* This work was supported in part by Public Health Service Research Grant MH-07722 
from the National Institutes of Mental Health. 

I should like to dedicate this essay to the memory of Norwood Russell Hanson, in 
acknowledgment of my debt to his Patterns of discovery. His work did much to reestablish 
the notion that the philosophy of science must be as fully concerned with origins of 
scientific theories as with their testing - indeed that the two are inextricably interwoven. 
His reconstruction of Kepler’s retroduction of the laws of planetary motion will long serve 
as a model of inquiry into the history and philosophy of science. 
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above, for cities and words, hold only to comparable degrees of approxi- 
mation. 

At the very least, one would think, the statements of fact should be 
amended to read “nearly inversely proportional” or “approximately in- 
versely proportional” rather than simply “inversely proportional”. But how 
near is “nearly”, and how approximate is “approximately”? What degree of 
deviation from the bald generalization permits us to speak of an approxi- 
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Hundred largest U.S. cities, 1940 Fig. 1. 
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mation to the generalization rather than its disconfirmation? And why do 
we prefer the simple but approximate rule to the particular but exact facts? 

2. It is well known - at least among mathematical statisticians - that 
the theory of statistical tests gives us no real help in choosing between 
an approximate generalization and an invalid one.1 By imbedding our 

1 For a brief, but adequate statement of the reasons why “literally to test such hypotheses 
... is preposterous”, see SAVAGE [1954] pp. 254-256. Since such tests are still reported 
frequently in the literature, it is perhaps worth quoting SAVAGE [1954] p. 254 at slightly 
greater length: “The unacceptability of extreme null hypotheses is perfectly well known; 
it is closely related to the oftenheard maxim that science disproves, but never proves, 
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generalization in a probability model, we can ask: If this model describes 
the real “facts” what is the probability that data would have occurred at 
least as deviant from the generalization as those actually observed? If 
this probability is very low - below the magic one per cent level, say - we are 
still left with two alternatives : the generalization has been disconfirmed, 
and is invalid; or the generalization represents only a first approximation 
to the true, or “exact” state of affairs. 

10000, I I I 

Rank 

Fig. 2. Words occurring in Joyce’s Ulysses (ranked by frequency of occurrence). 

Now such approximations abound in physics. Given adequate apparatus, 
any student in the college laboratory can “disconfirm” Boyle’s Law - i.e., 
can show that the deviations of the actual data from the generalization that 
the product of pressure by volume is a constant are too great to be dismissed 
as “chance”. He can “disconfirm” Galileo’s Law of Falling Bodies even 

hypotheses. The role of extreme hypotheses in science and other statistical activities seems 
to be important but obscure. In particular, though I, like everyone who practices statistics, 
have often ‘tested‘ extreme hypotheses, I cannot give a very satisfactory analysis of the 
process, nor say clearly how it is related to testing as defined in this chapter and other 
theoretical discussions”. 
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more dramatically - the most obvious way being to use a feather as the 
falling body. 

When a physicist finds that the “facts” summarized by a simple, powerful 
generalization do not fit the data exactly, his first reaction is not to throw 
away the generalization, or even to complicate it by incorporating additional 
terms. When the data depart from s=+gtZ, the physicist is not usually 
tempted to add a cubic term to the equation. (It took Kepler almost ten 
years to retreat from the “simplicity” of a circle to the “complexity” of 
an ellipse.) Instead, his explorations tend to move in two directions: (1) 
toward investigations of his measurement procedures as possible sources of 
the discrepancies ; and (2 )  toward the identification of other variables 
associated with the deviations. These two directions of inquiry may, of 
course, be interrelated. 

In his concern with other variables, the physicist is not merely or mainly 
concerned with “control” in the usual sense of the term. No amount of 
control of air pressure, holding it, say, exactly at  one atmosphere, will cause 
a feather to obey Galileo’s Law. What the physicist must learn through his 
explorations is that as he decreases the air pressure on the falling body, the 
deviations from the law decrease in magnitude, and that if he can produce a 
sufficiently good vacuum, even a feather can be made to obey the law to a 
tolerable approximation. 

In the process of producing conditions under which deviations from a 
generalization are small, the scope of the generalization is narrowed. Now 
it is only claimed to describe the facts “for an ideal gas”, or “in a perfect 
vacuum”. At best, it is asserted that the deviations will go to zero in the 
limit as the deviation of the actual experimental conditions from the “ideal” 
or “perfect” conditions goes to zero. 

At the same time that the breadth of the empirical generalization is 
narrowed by stating the conditions, or limiting conditions, under which 
it is supposed to hold, its vulnerability to falsification is reduced correspond- 
ingly. Since this is a familiar feature of theorizing in science, I will not 
elaborate on the point here. 

Occasionally, an empirical generalization is abandoned, after innumerable 
attempts to tidy it up have failed. Bode’s Law, that the successive distances 
of the planets from the Sun constitute an approximate geometric series, 
is an example of a regularity now regarded as perhaps “accidental”, through 
failure to  discover limiting conditions that would regularize it, or underlying 
processes that would account for it. Newton’s Laws are not an example, 
for they were saved (a) by limiting them to conditions where velocities are 
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low relative to the velocity of light, and (b) by showing that just under those 
conditions they can be derived in the limit from the more general laws of 
Relativity. 

From these, and many other examples, we can see what importance 
the physical and biological sciences attach to finding simple generalizations 
that will describe data approximately under some set of limiting conditions. 
Mendel’s treatment of his sweet-pea data, as reflecting simple ratios of 3 
to 1 in the second-generation hybrids, is another celebrated illustration; as 
is Prout’s hypothesis (uneasily rejected by chemists for several generations 
until its exceptions were explained by the discovery of isotopes) that all 
atomic weights are integral multiples of the weight of the hydrogen atom. 
All of these examples give evidence of strong beliefs that when nature behaves 
in some unique fashion - deals a hand of thirteen spades, so to speak - this 
uniqueness, even if approximate, cannot be accidental, but must reveal 
underlying lawfulness. 

3. Let us return to city sizes and word frequencies. We have described 
the law-finding process in two stages : 

(1) finding simple generalizations that describe the facts to some degree 
of approximation; 

(2) finding limiting conditions under which the deviations of facts from 
generalization might be expected to decrease. 

The process of inference from the facts (the process called “retroduction” 
by Peirce and Hanson2) does not usually stop with this second stage, but 
continues to a third: 

(3) explaining why the generalization “should” fit the facts. (Examples 
are the statistical-mechanical explanation for Boyle’s Law or Boyle’s own 
“spring of the air” explanation, and Newton’s gravitational explanation for 
Galileo’s Law .) 

Before we go on to this third stage, we must consider whether we have 
really been successful in carrying out the first two for the rank-size distribu- 
tions. 

Does the generalization that size varies inversely with rank really fit the 
facts of cities and words even approximately? We plot the data on double 
log paper. If the generalization fits the facts, the resulting array of points 
will (1) fall on a straight line, (2) with a slope of minus one. 

Since we earlier rejected the standard statistical tests of hypotheses as 
inappropriate to this situation, we are left with only judgmental processes 

HANSON [1961] pp. 85-88. 
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for deciding whether the data fall on a straight line. It is not true, as is 
sometimes suggested, that almost atzy ranked data will fall on a straight line 
when graphed on doubly logarithmic paper. It is quite easy to find data that 
are quite curvilinear to the naked eye (see fig, 3). Since we are not committed 
to exact linearity but only approximate linearity, however, the conditions we 
are imposing on the data are quite weak, and the fact that they meet the 
conditions is correspondingly unimpressive. We may therefore find the 
evidence unconvincing that the phenomena are “really” linear in the limiting 
cases. The phenomena are not striking enough in this respect to rule out 
coincidence and chance. Should we believe the data to be patterned? 

It has often been demonstrated in the psychological laboratory that 
men - and even pigeons - can be made to imagine patterns in stimuli which 
the experimenter has carefully constructed by random processes. This be- 
havior is sometimes called “superstitious”, because it finds causal con- 
nections where the experimenter knows none exist in fact. A less pejorative 
term for such behavior is “regularity-seeking’’ or “law-seeking”. It can be 
given a quite respectable Bayesian justification. As JEFFREYS and WRINCH 
[1921] have shown, if one attaches a high a priori probability to the hy- 
pothesis that the world is simple (i.e., that the facts of the world, properly 
viewed, are susceptible to simple summarization and interpretation); and 
if one assumes also that simple configurations of data are sparsely distributed 
among all logically possible configurations of data, then a high posterior 
probability must be placed on the hypothesis that data which appear 
relatively linear in fact reflect approximations to conditions under which a 
linear law holds. 

The reason that apparent linearity, by itself, does not impress us is 
that it does not meet the second condition assumed above - the sparsity of 
simple configurations. A quadratic law, or an exponential, or a logarithmic, 
are almost as simple as a linear one; and the data they would produce are not 
always distinguishable from data produced by the latter. 

What is striking about the city size and vocabulary data, however, is 
not just the linearity, but that the slope of the ranked data, on a log scale, 
is very close to minus one. Why this particular value, chosen from the 
whole non-denumerable infinity of alternative values? We can tolerate 
even sizeable deviations from this exact slope without losing our confidence 
that it must surely be the limiting slope for the data under some “ideal” or 
“perfect” conditions. 

We might try to discover these limiting conditions empirically, or we 
might seek clues to them by constructing an explanatory model for the 
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limiting generalization -the linear array with slope of minus one. In this way 
we combine stages two and three of the inference process described at  the 
beginning of this section. Let us take this route, confining our discussion 
to city size distributions. 

4. To “explain” an empirical regularity is to discover a set of simple 
mechanisms that would produce the former in any system governed by the 
latter. A half dozen sets of mechanisms are known today that are capable of 
producing the linear rank-size distribution of city populations. Since they are 
all variations on one or two themes, I will sketch just one of them (SIMON 
[ 19551). 

We consider a geographical area that has some urban communities as well 
as rural population. We assume, for the urban population, that birth rates 
and death rates are uncorrelated with city size. (“Rate” here always means 
“number per year per 1000 population”.) We assume that there is migration 
between cities, and net emigration from rural areas to cities (in addition 
to net immigration to cities from abroad, if we please). With respect to all 
migration, we assume : (1) that out-migration rates from cities are uncorrelated 
with city size; (2) that the probability that any migrant, chosen at  random, 
will migrate to a city in a particular size class is proportional to total urban 
population in that class of cities. Finally, we assume that of the total growth 
of population in cities above some specified minimum size, a constant 
fraction is contributed by the appearance of new cities (i.e., cities newly 
grown to that size). The resulting steady-state rank-size distribution of 
cities will be approximately linear on a double log scale, and the slope of the 
array wiIl approach closer to minus one as the fraction of urban population 
growth contributed by new cities approaches zero. 

When we have satisfied ourselves of the “reasonableness” of the as- 
sumptions incorporated in our mechanism, and of the insensitivity of the 
steady-state distribution to slight deviations from the assumptions as given, 
then we may feel, first, that the empirical generalization can now be regarded 
as “fact”; and, second, that it is not merely “brute fact” but possesses a 
plausible explanation. 

But the explanation does even more for us; for it also suggests under 
what conditions the linearity of the relation should hold most exactly, and 
under what conditions the slope should most closely approximate to one. If 
the model is correct, then the rank-size law should be best approximated in 
geographical areas (1) where urban growth occurs largely in existing cities, 
(2) where all cities are receiving migration from a common “pool”; and (3) 
where there is considerable, and relatively free, migration among all the 
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cities. The United States, for example, would be an appropriate area to fit 
the assumptions of the model; India a less suitable area (because of the 
relatively weak connection between its major regions); Austria after World 
War I a still less suitable area (because of the fragmentation of the previous 
Austro-Hungarian Empire, see fig. 3). I do not wish to discuss the data here 
beyond observing that these inferences from the model seem generally to be 
borne out. 

Rank of communit ies  
Fig. 3. Rank-size distribution of cities in Austro-Hungarian Empire, 1910 (-) and 

in Austria, 1934 (-----). 

5. In our account thus far, the simplicity of the empirical generalization 
has played a central role. Simplicity is also an important concept in POPPER 
[1961] 3 but Popper treats simplicity in a somewhat different way than we 
have done. Popper (on p. 140) equates simplicity with degree oxfalsijiability. 
A hypothesis is falsifiable to the degree that it selects out from the set of all 
possible worlds a very small subset, and asserts that the real world belongs to 
this subset. 

3 Especially Chapter VII. 
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There is a strong correlation between our intuitive notions of simplicity 
(e.g., that a linear relation is simpler than a polynomial of higher degree) 
and falsifiability. Thus, among all possible monotonic arrays, linear arrays 
are very rare. (They would be of measure zero, if we imposed an appropriate 
probability measure on the set of all monotonic arrays.) Linear arrays with 
slope of minus one are even rarer. 

No one has provided a satisfactory general measure of the simplicity 
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Fig. 4. Population of U.S. metropolitan districts, 1900 and 1950. 
(Only districts over 1OOOOO population in 1950 are shown.) 

or falsifiability of hypotheses. In simple cases, the concepts have an obvious 
connection with degrees of freedom: the fewer the degrees of freedom, or 
free parameters, the simpler and more falsifiable the hypothesis. I shall 
not undertake to carry the formalization of the concepts beyond this 
intuitively appealing basis 4. 

4 The most serious attempts at formalization are those undertaken by JEFFREYS and 
WRINCH [1921], and GOODMAN [1958]. I must note in passing that in his discussion of the 
former authors POPPER [1961] does not do justice to their technical proposal for intro- 
ducing prior probabilities based on simplicity. 
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Notice, however, that our use of simplicity is quite different from POPPER’S 
[1961]. Popper’s argument runs like this: it is desirable that hypotheses 
be simple so that, if they are false, they can be disconfirmed by empirical 
data as readily as possible. Our argument (apparently first introduced by 
JEFFREYS and WRINCH [1921]) runs: a simple hypothesis that fits data 
to a reasonable approximation should be entertained, for it probably reveals 
an underlying law of nature. As Popper himself observes (POPPER [1961] 
p. 142, footnote*Z), these two arguments take quite opposite positions with 
respect to the “probability” or “plausibility” of simple hypotheses. He regards 
such hypotheses as describing highly particular, hence improbable states of 
the world, and therefore as readily falsified. JEFFREYS and WRINCH [1921] 
(and I) regard them as successfully summarizing highly unique (but actual) 
states of the world, therefore as highly plausible. 

Which of these views is tenable would seem to depend on which came 
first, the generalization or the data. If I construct generalizations, with 
no criterion to guide my choice except that they be simple, and subsequently 
apply them to data, then the simpler the generalization the more specific 
their description, and the less likely that they will stand up under their 
first empirical test. This is essentially Popper’s argument. 

But the argument does not apply if the generalization was constructed 
with the data in view. The rank-size hypothesis arises because we think to 
plot the data on double log paper, and when we do, it appears to be linear 
and to have a slope of minus one. There is no thought of using the data to 
falsify the generalization, for the latter has come into being only because 
it fits the data, at least approximately. 

Now one can cite examples from the history of science of both of these 
alternative sequences of events. It is probably true, however, that the first 
sequence - generalization followed by data - seldom occurs except as a 
sequel to the second. The Special Theory of Relativity, for example, led 
to the prediction of the convertibility of mass into energy. But Special 
Relativity itself was based on a generalization, the Lorentz-Fitzgerald 
equation, that was derived to fit facts about the behavior of particles in 
very intense fields of force, as well as other facts about electromagnetics 
and the “luminiferous ether”. Special Relativity did not commend itself to 
Einstein merely because of its “simplicity” independently of the facts to be 
explained (the Galilean transformations would be thought by most people to 
be simpler than the Lorentz). 

If the generalization is just that - an approximate summary of the data - 
then it is certainly not falsifiable. It becomes falsifiable, or testable, when 
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(a) it is extended beyond the data from which it was generated, or (b) an 
explanatory theory is constructed, from which the generalization can be 
derived, and the explanatory theory has testable consequences beyond the 
original data. 

With respect to the city size data, case (a) would arise if the rank size 
generalization were proposed after examining the data from the 1940 U.S. 
Census, and then were extrapolated to earlier and later dates, or to the 
cities of other countries. Case (b) would arise if we were to note that the 
explanatory theory of Section 4, above, has implications for patterns of 
migration that could be tested directly if data on points of origin and 
destination of migrants were available. 

It should be evident that the mechanisms incorporated in the explanatory 
theory were not motivated by their falsifiability. They were introduced in 
order to provide ‘‘plausible’’ premises from which the generalization 
summarizing the observed data could be deduced. And what does “plausible” 
mean in this context? It means that the assumptions about birth and death 
rates and migration are not inconsistent with our everyday general knowledge 
of these matters. At the moment they are introduced, they are already 
known (or strongly suspected) to be not far from the truth. The state of 
affairs they describe is not rare or surprising (given what we actually know 
about the world) ; rather their subsequent empirical falsification would be 
rather surprising. What is not known at the moment they are introduced is 
whether they provide adequate premises for the derivation of the rank-size 
generalization. 

Explaining the empirical generalization, that is, providing a set of mecha- 
nisms capable of producing it, therefore reintroduces new forms of test- 
ability to replace those that were lost by accepting the approximation to the 
data. Even without data on migration, the mechanism proposed to explain 
the city rank-size law can be subjected to new tests by constructing the 
transition matrix that compares the sizes of the same cities a t  two points of 
time (taking the 1900 population, say, as the abcissa, and the 1950 population 
as the ordinate (see fig. 4)). The explanatory mechanism implies that the 
means of the rows in this matrix fall on a straight line through the 
origin (or on a straight line of ‘slope + 1 on a log-log scale). The result 
(which we will expect to hold only approximately) is equivalent to the 
proposition that the expected growth rates are independent of initial city 
size. 

6. In the preceding sections a model has been sketched of the scientific 
activities of hypothesis-generation and hypothesis-testing. The model suggests 
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that there are several distinct processes that lead to hypotheses being 
formulated, judged with respect to plausibility, and tested. One of these 
processes, the generation of simple extreme hypotheses from the “striking” 
characteristics of empirical data, fits closely the idea of JEFFREYS and 
WRINCH [ 19211 that simple hypotheses possess a high plausibility. A second 
process, the construction of explanations for these extreme hypotheses, 
takes us back to POPPER’S [1961] idea that simple hypotheses entail strong 
and “improbable” consequences, hence are readily falsified (if false). There 
is no contradiction between these two views. 

To elucidate further this model of the scientific process, and to reveal 
some additional characteristics it possesses, the remaining sections of this 
paper will be devoted to the analysis of a second example, this one of 
considerable interest to the psychology of learning and concept formation. 
An important question in psychology during the past decade has been 
whether learning is to be regarded as a sudden, all-or-none phenomenon, 
or whether it is gradual and incremental. One value in stating the question 
this way is that the all-or-none hypothesis is a simple, extreme hypothesis, 
hence is highly falsifiable in the sense of POPPER [1961]. 

The experiments of ROCK [1957] first brought the all-or-none hypothesis 
into intense controversy. His data strongly supported the hypothesis (even 
under rather strict limits on the degree of approximation allowed). Since his 
generalization challenged widely-accepted incrementalist theories, his ex- 
periment was soon replicated (seldom quite literally), with widely varying 
findings. The discussion in the literature, during the first few years after 
Rock‘s initial publication, centered on the “validity” of his data - i.e., 
whether he had measured the right things in his experiment, and whether he 
had measured them with adequate precision. 

Only after several years of debate and publication of apparently contra- 
dictory findings was some degree of agreement reached on appropriate 
designs for testing the hypothesis. Still, some experimenters continued to 
find one-trial learning, others incremental learning. After several more years, 
the right question was asked, and the experiments already performed were 
reviewed to see what answer they gave5. The “right question”, of course, 
was : “Under what conditions will learning have an all-or-none character?” 
The answer, reasonably conformable to the experimental data, commends 
itself to common sense. Oversimplified, the answer is that one-trial learning 
is likely to occur when the time per trial is relatively long, and when the 

5 POSTMAN [1963], UNDERWOOD [1964]. 
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items to be learned (i.e., associated) are already familiar units6. There are 
the “ideal” or “perfect” conditions under which one-trial learning can be 
expected to occur. 

7. Meanwhile, the all-or-none hypothesis was also being applied to 
concept attainment experiments. Important work was done in this area by 
Estes, by Bourne, and by Bower and Trabasso, among others. I will take 
as my example for discussion a well-known paper by Bower and Trabasso 
that Gregg and I have analysed in another context7. 

The experiments we shall consider employ an N-dimensional stimulus 
with two possible values on each dimension, and having a single relevant 
dimension (i.e., simple concepts). On each trial, an instance (positive or 
negative) is presented to the subject; he responds “positive” or “negative”; 
and he is reinforced by “right” or “wrong”, as the case may be. 

Bower and Trabasso obtain from the data of certain of their experiments 
an important empirical generalization : the probability that a subject will 
make a correct response on any trial prior to the trial on which he makes 
his last error is a constant. (In their data, this constant is always very 
close to one half, but they do not incorporate this fact in their generalization 
as they usually state it.) Since the generalization that the probability of 
making a correct response is constant is an extreme hypothesis, the standard 
tests of significance are irrelevant. We must judge whether the data fit the 
generalization “well enough”. Most observers, looking at the data, would 
agree that they do (see fig. 5). 

But Bower and Trabasso go a step further. They derive the empirical 
generalization from a simple stochastic model of the learning process - 
they explain it, in the sense in which we used that term earlier. The ex- 
planation runs thus: (1) the subject tries out various hypotheses as to 
what is the correct concept, and responds on individual trials according 
to the concept he is currently holding; (2) if his response is wrong, he 
tries a new concept. Two important empirical quantities are associated with 

As a matter of history, J might mention that in 1957, prior to ROCK’S [1957] publication 
of his experiment, a theory of rote learning, designed especially to explain data that were 
in the literature prior to World War I1 (the serial position curve, the constancy of learning 
time per item, some of E. Gibson’s experiments on stimulus similarity) had been developed 
by E. Feigenbaum and the author. This theory, EPAM, was sufficiently strong to predict 
the conditions under which one-trial learning would occur. It was not widely known 
among psychologists at that time, however, and had little immediate influence on the 
controversy. (But see GREGG, CHENZOFF and LAUGHERY [1963], also, GREW and SIMON 
[1967b].) 

BOWER and TRABASSO [1964]; GREGG and SIMON [1967a]. 
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the model: The probability of making a correct response prior to the last 
error; and the probability that any particular trial will be the trial of last error. 

Now there are in fact rwo distinct all-or-none generalizations that can 
be formulated in terms of these two empirical quantities. The first, already 
mentioned, is the generalization that the probability of making a correct 
response is constant as long as the subject holds the wrong hypothesis 
about the concept (i.e., up to the trial of his last error). The second, quite 
different, is the generalization that the probability of switching to the 
correct hypothesis about the concept does not change over trials (i.e., that 
the probability is constant that each trial will be the trial of last error). 

80 1 

5-Trial blocks 

Fig. 5. Concept experiment: percentage of successes prior to the last error 
(from Bower and Trabasso). 

To test the first (correct response) all-or-none generalization, we have 
one datum from each subject for each trial prior to his last error - a con- 
siderable body of data to judge the approximation of the error rate to a 
constant. To test the second (correct hypothesis) all-or-none generalization, 
we have only one datum from each subject - the trial on which he made his 
last error. Hence, trial-to-trial changes in the probability of switching to 
the right concept are confounded with differences in that probability among 
subjects. If, for any single subject, this probability increases with trials, 
the increase is counterbalanced by the fact that the subjects with lowest 
average probability will tend to learn last. Thus (as Bower and Trabasso 
are careful to point out) the data to test the second generalization directly 
are scanty and inadequate. 
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8. The Bower-Trabasso stochastic model is an explanation of the observed 
constancy of the error rate. But it is a very bland model, making rather 
minimal assumptions about the process that is going on. We can pursue the 
goal of explanation a step further by constructing a more detailed model of 
the cognitive processes used by subjects in concept attainment, then using 
this detailed model to subject the theory to further tests. (As Gregg and I 
have shown in our previous paper on this topic (GREGG and SIMON [ 1967a]), 
Bower and Trabasso do, in fact, employ such a process model, but only 
informally.) 

There are two important differences between the summary stochastic 
model and the more detailed process model. The process model, but not the 
stochastic model, spells out how the experimenter selects (on a random 
basis) the successive instances, how the subject responds, and how he selects 
a new concept when his current one is found wrong. The stochastic model, 
but not the detailed model, contains two free parameters, one specifying the 
probability that the subject’s response will be (fortuitously) correct when he 
does not hold the correct concept; the other specifying the probability that 
he will select the correct concept as his new one when his current concept is 
found wrong. 

The stochastic model and process model can be formalized by stating 
them in a computer programming language (GREGG and SIMON [1967a]). 
When this is done, it is found that the stochastic model requires 15 state- 
ments - i.e., simple computer instructions - for its formulation, the detailed 
process model 27. Against this parsimony of the stochastic model must be 
balanced the fact that that model contains two free numerical parameters, 
the process model none. Which model is the simpler? 

If we apply Popper’s criteria of simplicity - the simpler theory being the 
one that is more highly falsifiable - then the question has a definite answer. 
The detailed process model is simpler than the stochastic model (see GREGG 
and SIMON [ 1967a1 pp. 271-272). For, by a straightforward aggregation 
of variables, the stochastic model, with particular values for the free para- 
meters, can be derived deductively from the process model. Hence, the 
process model is a special case of the stochastic model. (The process model 
predicts an error rate of about 0.5 per trial prior to the trial of last error. 
It also predicts the probability that the last error will occur on a particular 
trial, but this probability depends on the structure of the stimuli -the num- 
ber of attributes they possess, and the number of values of each attribute.) 

The additional detail incorporated in the process model’s assumptions 
also provides additional opportunities for subjecting the model to empirical 
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test. The hypotheses held by the subject as to the correct concept do not 
appear explicitly in the stochastic model ; hence data relating to these 
hypotheses (obtained, say, by asking the subject on each trial what concept 
he holds, as was done by FELDMAN [1964], or obtained by indirect pro- 
cedures developed by LEVINE [1966]) cannot be used to  test that model, but 
can be used to test the process model. 

If parsimony refers to  the brevity with which a theory can be described, 
then the stochastic model is the more parsimonious (fifteen statements 
against twenty-seven). But lack of parsimony, so defined, must not be 
confused with degrees of freedom. We have seen in this case that the less 
parsimonious theory is the simpler (by POPPER’S [1961] criterion), and by 
far the more falsifiable. 

Testing the detailed process theory raises all the problems mentioned 
earlier with respect to extreme hypotheses. If the error rate on guessing 
trials deviates from 0.5 should the theory be rejected? How much of a 
deviation should be tolerated? In how many cases can a subject report he is 
holding a concept different from that predicted by the theory before we 
reject the latter? I have given my reasons earlier for thinking that these 
questions are judgmental, and for concluding that the theory of statistical 
tests offers no help in answering them. A judgmental answer is that the 
theory should be rejected only if it turns out to  be “radically” wrong. 
Otherwise, deviations should lead to  a search for variables to  account for 
them, and for the “ideal” limiting case in which they would disappear. 

Justice Holmes once said: “Logic is not the life of the law”. I would 
paraphrase his aphorism by saying: “Statistics is not the life of science”. 
No existing statistical theory explains what scientists do (or should do) 
to retroduce, develop, test, and modify scientific theories. 

9. Just as statistically significant deviations of data from a general- 
ization should not always, or usually, lead us to  abandon the generalization, 
so we should not be unduly impressed by excellent statistical fits of data to  
theory. More important than whether the data fit is why they fit - i.e., what 
components in the theory are critical to  the goodness of fit. To answer this 
question, we must analyse the internal structure of the theory. 

For example, under the conditions where all-or-none learning can be 
expected to  take place, the learning trials can generally be divided into two 
parts: an initial sequence prior to learning, during which the subject can 
only guess at  the correct answer; a terminal sequence, during which the 
subject knows the correct concept, and makes no new mistakes. Let us 
suppose that the boundary between these two segments can be detected 



PLAUSIBILITY OF THEORIES 455 

(as it can in the concept-learning experiments by the trial on which the 
last error is made). 

Under these conditions, no important conclusions can be drawn about 
psychological characteristics of the subjects by examining the statistical 
structure of their responses prior to learning. For the statistics of these 
responses are simply reflections of the experimenter’s randomization of 
the sequence of stimuli. In one experiment, ESTES [1959], for example, 
employed three different conditions differing only with respect to the number 
of alternative responses (2, 4 and 8, respectively) available to the subject 
(see SIMON [1962]). He found that the relative number of errors per trial 
made in these three conditions could be represented by the formula, 
A(N-l)/N, where A is a constant and N is the number of alternative 
responses. 

The data on relative numbers of errors fit this formula with great accuracy 
- a clearcut case of success for an extreme hypothesis of the kind we have 
been commending in this paper. However, the hypothesis that was being 
tested was not a generalization about psychology, but a well-known general- 
ization about the laws of probability: that in drawing balls at random from 
an urn containing white and black balls in the ratio of 1 to ( N -  l), on the 
average ( N -  1)/N of the balls drawn will be black. This is true regardless of 
whether the subjects themselves, prior to learning, thought they were simply 
guessing or thought they were responding in selective, patterned ways to 
the stimuli. By randomizing the sequence of stimuli presented, the ex- 
perimenter guaranteed the applicability of the laws of probability to the 
subject’s errors, independently of the systematic or “random” character of 
the subject’s behavior. 

As I have pointed out elsewhere, a number of other excellent fits of 
simple generalizations to data can be attributed to the random presentation 
of stimuli, rather than to characteristics of the subjects (SIMON [1957], 
SIMON [1962], GREGG and SIMON [1967a]). This does not imply that it is 
useless to extract the underlying regularities from the data; but we must be 
careful to provide the regularities with a correct explanation. To do so, we 
must examine the internal structure of the theories that lead to the successful 
generalization. 

10. Throughout this paper, considerable stress has been placed on the 
close interaction between hypotheses and data in the building and testing of 
theories. In most formal theories of induction, particularly those that 
belong to the genus “hypothetico-deductive” or “H-D”, hypotheses spring 
full-blown from the head of Zeus, then are tested with data that exist, 
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timelessly and quite independently of the hypotheses 8 .  Theories as other- 
wise divergent as Popper’s and Carnap’s share this common framework. 

It was one of Norwood Hanson’s important contributions to challenge 
this separation of hypothesis from data, and to demonstrate that in the 
history of science the retroduction of generalizations and explanations from 
data has been one of the central and crucial processes. In making his point, 
Hanson was careful not to revert to naive Baconian doctrines of induction. 
To look at a series of size-rank distributions, approximately log-linear with 
slopes of minus one; then to conclude that all such distributions share these 
properties, is Baconian. To look at the raw data, and conclude that they can 
be described adequately by the log-linear function with slope of minus one 
is not Baconian. It is the latter form of derivation of generalizations from 
data with which Hanson was primarily concerned, and to which he (following 
Peirce) applied the name “retroduction”. 

One of my principal theses here has been that hypotheses retroduced 
in this way are usually highly plausible, and not highly improbable, as 
POPPER [I19611 would insist. We have already resolved part of the apparent 
paradox. The “improbability” to which Popper refers is improbability of 
the very special state of nature described by the empirical generalization, 
not improbability of the generalization itself. But it remains to understand 
how the scientist can ever be lucky enough to discover the very special general- 
izations that describe these a priori improbable (but actual) states of nature. 

Fortunately, considerable light has been cast on this question by progress 
in the past decade in our understanding of the theory of human problem 
solving (SIMON [1966]). If the scientist had to proceed by searching randomly 
through the (infinite) space of possible hypotheses, comparing each one 
with the data until he found one that matched, his task would be hopeless 
and endless. This he does not need to do. Instead, he extracts information 
from the data themselves (or the data “cleaned up” to remove some of the 
noise), and uses this information to construct the hypothesis directly, 
with a modest amount of search. 

Let us consider a concrete example (BANET [1966]). Suppose we are 
presented with the sequence: p, $, 2, g, . . . . What simple generalization 
can we discover to fit this sequence? We note that all the numerators are 

For a criticism of this view, see SIMON [1955]. In that paper I was concerned specifically 
with the relative dating of theory and data, and while I still subscribe to the general 
position set forth there - that this dating is relevant to the corroboration of hypotheses by 
data - 1 would want to modify some of my specific conclusions about the form of the 
relevance, as various paragraphs in the present paper will show. 
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squares, that the first and third denominators are four less than their 
numerators, the second and fourth denominators are one less. We notice 
that the sequence appears to be monotone decreasing, and to approach 
a limit - perhaps unity. Nine is 3’, 25 is 5’. Suppose we number the terms 
3, 4, 5, 6. The corresponding squares are 9, 16, 25, 36. Let’s multiply numer- 
ator and denominator of the second and fourth terms by four, getting: 8, g, 

of the sequence is nz/(n’ -4). Physicists will recognize this as the well known 
Balmer series of the hydrogen spectrum, and what we have done is to recon- 
struct hypothetically part of Balmer’s retroduction. (He probably followed 
a somewhat different path, and we have only considered the last half of his 
problem of getting from data to generalization, but this partial and somewhat 
unhistorical example will serve to illustrate our central point. For the 
actual history, see BANET’S [ 19661 interesting paper.) 

However great a feat it was for Balmer to extract his formula from the 
data, the process he used was certainly not one of generating random hy- 
potheses, then testing them. It is better described as a process of searching 
for the pattern in the data. It can be shown, for a considerable class of 
patterns that are of practical importance, in science, in music, and in 
intelligence tests, that the range of relations the searcher must be prepared 
to detect is quite small. It may be that these are the sole relations from which 
the simplicity of nature is built; it may be they are the only relations we are 
equipped to detect in nature. In either event, most of the patterns that 
have proved important for science are based, at bottom, on these few simple 
relations that humans are able to detect. 

11. In this paper, I have examined several aspects of the problem of 
testing theories, and particularly those important theories that take the 
form of extreme hypotheses. In part, my argument has been aimed at a 
negative goal - to  show that when we look at realistic examples from natural 
and social science, statistical theory is not of much help in telling us how 
theories are retroduced or tested. 

As an alternative to standard probabilistic and statistical accounts of 
these matters, I have proposed that we take into account a whole sequence 
of events: 

(1) The enterprise generally begins with empirical data, rather than with 
a hypothesis out of the blue. 

(2) “Striking” features of the data (e.g., that they are linear on a log scale 
with slope of minus one) provide for a simple generalization that summarizes 
them - approximately. 

- f :, g, . . . . Now the empirical generalization is obvious : the general term 
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(3) We seek for limiting conditions that will improve the approximation 
by manipulating variables that appear to affect its goodness. 

(4) We construct simple mechanisms to explain the simple general- 
izations - showing that the latter can be deduced from the former. 

( 5 )  The explanatory theories generally make predictions that go beyond 
the simple generalizations in a number of respects, and hence suggest new 
empirical observations and experiments that allow them to be tested further. 

“Testing” theories, as that process is generally conceived, is only one 
of the minor preoccupations of science. The very process that generates 
a theory (and particularly a simple generalization) goes a long way toward 
promising it some measure of validity. For these reasons, histories of science 
written in terms of the processes that discover patterns in nature would seem 
closer to the mark than histories that emphasize the search for data to test 
hypotheses created out of whole cloth. 
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THE LOGIC OF QUESTIONS* 

J. J. KATZ 
Department of Humunities and Research Laboratory of Electronics, 

Massachusetts Instilute of Technology. Cambridge, Massachusetts, USA 

1. Introduction 

If, like other titles, the title of this paper tells what the paper is about, 
then it might be claimed that this paper is not about anything. That is, as 
far as our hopes for acquiring knowledge are concerned, the title could just 
as well be “an expose of the life and loves of the barber who shaves all and 
only those who do not shave themselves”. 

This claim might be argued as follows: what admits of truth and falsity 
are statements, which are true when what they assert is the case and false 
otherwise. Since questions do not assert anything, but instead request 
information, truth and falsity cannot be properties of questions. Since this 
is so, it makes no sense to speak of deductive connections between questions, 
of one question logically implying another. Hence, there cannot be a logic of 
questions. 

But this conclusion does not follow from the fact that questions do not 
have truth-values. It is compatible with the premisses of this argument that 
there are deductive connections between questions; only, if there are, then the 
truth-functional interpretation of deductive connections in the case of 
statements - that truth is inherited under them - does not apply to such 
connections in the case of questions. Hence, the conclusion that there can be 
no logic of questions follows only if we grant a further premiss, one to the 
effect that logic is solely concerned with those relations between the premisses 
and conclusion of arguments on which the formers’ truth necessitates the 
latter’s. Unless some such further premiss is added, there is no valid infer- 

* This work was supported principally by the U.S. Air Force (Electronic Systems Division) 
under Contract Af 19(628)-2487; and in part by the Joint Services Electronics Program 
(Contract DA36-039-AMC-O3200(E)), the National Science Foundation (Grant GK-835), 
the National Institutes of Health (2P01 MH-04737-06), and the National Aeronautics 
and Spare Administration (Grant NsG-496). 
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ence to the impossibility of a logic of questions. As it stands, nothing in 
the argument precludes the possibility that questions have genuine logical 
properties and relations under some non-truth-functional interpretation of 
deductive connections. 

One purpose of this paper is to establish the falsity of this further premiss, 
and thus to provide a foundation for the logic of questions. To achieve this 
purpose, we must show, first, that deductive connections hold between 
entities that do not bear a truth value, that questions have logical properties 
and relations; and second, that there is a motivated and well-defined 
non-truth-functional interpretation for deductive connections between 
questions. The former will be shown by appropriate examples, ones that are 
fully on a par with those that have long served to establish that statements 
have logical properties and relations. The latter will be shown by constructing 
a non-truth-functional interpretation of validity on the basis of definitions 
from semantic theory 1 and demonstrating that these definitions and the 
interpretation based on them explain the examples is an acceptable manner. 
This type of demonstration will be essentially the same as the one on which 
the truth-functional interpretation of validity rests. 

However, there is another purpose of this paper. My more pervasive 
interest, of which my interest in the logic of questions is a part, is the 
development of semantic theory, and the elaboration of its philosophical 
consequences. 

The present paper further develops semantic theory in two ways. First, 
it extends the range of semantic concepts that the theory can successfully 
define by adding definitions for the logical properties and relations of 
questions to the definitions already given for semantic properties and 
relations such as semantic anomaly, semantic ambiguity, synonymy, antonymy, 
analyticity, contradiction, entailment, etc. Second, it increases the empirical 
support for semantic theory by showing that the conceptual apparatus of 
semantic theory - the machinery of semantic markers, readings, projection 
rules, selection restrictions, semantically interpreted underlying phrase 
markers, definitions of semantic properties and relations, etc. - explains the 
logical properties and relations in questions. 3 

Cf. KATZ [1966], [1967a]. 
Cf. KATZ [1965], [1966], [1967a] and [in press]. 
Note that this conceptual apparatus was not devised ad hoc to handle questions, but is 

part of semantic theory already, having been developed to deal with other semantic 
problems. Hence, its application to the logic of questions shows the explanatory power of 
semantic theory in much the same way that the application of the laws of mechanics for 
macro-objects to molecular phenomena shows their explanatory power. 
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This paper also elaborates further my approach to the philosophy of 
language. The approach, in essence, is to seek solutions to philosophical 
problems, or pieces of their solutions, on the basis of the theoretical con- 
structions found in linguistic theory. Elsewhere4, I have tried to show that 
some of the problems concerning analyticity, semantic categories, innate 
ideas, linguistic analysis, and logical form can be represented as questions 
about the nature of language and, so represented, can be solved by theoretical 
constructions from linguistic theory. Here, I will try to show that the theo- 
retical constructions in semantic theory, which is a part of linguistic theory, 
enable us to solve certain crucial problems about the possibility of a logic of 
questions and about the nature of logic in general. 

2. Examples of logical properties and relations of questions 

Logic is commonly regarded as the science of necessary inference. Its aim 
is the formulation of truths about the conditions under which a step of 
passing from one proposition to another in an argument is a necessary one. 
Accordingly, to show that questions have logical properties and relations, 
we must provide examples, on the one hand, of questions that are parallels 
for a statement whose truth can be inferred without any premises, and on 
the other, of questions that are parallels for a pair of statements where one 
member is true just in case the other is. That is, there must be questions with 
a property analogous to analyticity and pairs orn-tuples of questions between 
which a relation analogous to entailment holds. 

As examples of questions of the former sort, there are what are sometimes 
called “joke-questions”, questions of the “Who’s buried in Grant’s tomb?” 
variety, made famous by Grouch0 Marx (as a way of giving booby-prizes to 
deserving contestants on his quiz program). Consider these examples of 
the who’s-buried-in-Grant’s-tomb type question : 

(1) Is a spinster female? 
(2) Is a spinster male? 
(3) Who killed the man who was killed by John? 
(4) What is the color of the red wagon? 
(5) Where is the hat that is on my head? 
(6) What time is it at  exactly twelve midnight? 

Less familiar, but in this context directly suggested by (1)-(6) are the 
following parallels to entailments. 

4 In particular, KATZ [1966] and 119651. 
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(7) Is John a bachelor? 
Is John male? 

(8) Who stole a cat? 
Who stole an animal? 

Such “question-arguments’’ are parallels to arguments from the assertion 
of one statement or set of statements to the assertion of another, just as 
(1)-(6) are parallels to statements that can be asserted without premisses. 
Except for (2),  whose status will be discussed below, the analytic statements 
and statement-arguments to which (1)-(8) are directly parallel can be 
gotten simply by converting each of these interrogatives into its obvious 
declarative counter-part, e.g. (1) into “Spinsters are female”, (3) into “The 
color of my red wagon is red”, (8) into the argument from “Someone stole a 
cat” to “Someone stole an animal”, and so on. 

We should note also “mixed-arguments”, i.e. arguments involving both 
questions and statements, like 

(9) Who killed Cock Robin? 
Cock Robin is dead 

where on the occasions when the premiss-question makes a request for 
information the conclusion-statement must be true. Such examples are 
interesting because they illustrate an inherent involvement of the logic of 
questions and the logic of statements. 

I will not bother arguing that these examples are clear-cut illustrations 
that questions have logical properties and relations. It is quite uncontro- 
versial that they are. Examples (1)-(6) are certainly as clear-cut as their 
analytic parallels, and examples (7) and (8) are as clear-cut as their entailment 
parallels. Of course, some philosophers have their qualms about the parallels 
in the case of statements, but I have replied to them elsewhere. 5 Thus, I shall 
take the existence of such examples as establishing the existence of deductive 
relations among questions (and between questions and statements) and shall 
try to explicate them. 

3. The two basic questions for the logic of questions 

To explain these examples, it is necessary to answer two questions. 
First, what is the property that questions like (1)-(6) possess by virtue of 

6 KATZ [1967b]. 



THE LOGIC OF QUESTIONS 467 

which they stand as parallels to analytic statements? How can the property 
they have be like analyticity without conferring truth on cases that have it? 
Second, what is the relation between the questions in pairs like (7) or (8)? 
Also, what is the relation between the question and statement in pairs like 
(9)? If valid arguments with statements preserve truth, what do valid question 
arguments preserve? Since they do not preserve truth, how is it that, in 
cases such as (9), the truth of a statement can be inferred from a question? 

4. Linguistic background 

Before attempting to answer these questions, it will be necessary to review 
certain aspects of linguistic theory that will enter into the answers that will 
be proposed. 

The underlying phrase marker for an interrogative sentence is like the 
underlying phrase marker for a declarative except that its first (left-most) 
terminal symbol is Q and that it contains one or more noun-phrases (i.e. 
substrings of the string of terminal symbols that are dominated by the symbol 
“NP”) to which an occurrence of the symbol wh is attached.6 Q is the 

6 Interrogatives are closely related to imperatives, and may even be a form of the imperative 
type. Postal and I (KATZ and POSTAL [1965] pp. 79-120) took interrogatives to be seman- 
tically related to imperatives. We took them both as expressing propositions of the same 
semantic type, i.e. as expressing requests - requests for a certain kind of linguistic object 
(i.e. an answer) in the case of questions, and requests for behavior of some sort in the case 
of requests expressed by ordinary imperatives. We formulated this view in terms of suitable 
lexical readings for the Q and Z morphemes. However, some evidence suggests that 
the relation may go deeper, that there is also a syntactic connection between imperatives 
and interrogatives. This evidence suggests that interrogatives might even be imperatives of 
some special sort. Consider the following: 
The sentences (i) and (ii) 

(i) )En(, what is the capital of France? 

(ii) What is the capital of France, $You )7 

are both grammatical, but (iii) and (iv) 
(iii) he 

(she i 
, what is the capital of France? 

(iv) * What is the capital of France, 

are ungrammatical. Moreover, the sentences (v) and (vi) 



468 J. J. KATZ 

question morpheme. It makes the application of question transformations 
obligatory. wh is a scope indicator for Q .  Its attachment to a noun-phrase 
indicates that that noun-phrase is questioned : syntactically, that that noun- 
phrase is transformed into an interrogative pronoun which may receive a 
high intonation. In general, the noun-phrases to which wh can be attached 
are pro-forms such as “someone”, “something”, “sometime”, “someplace”, 

someway”, etc., and their corresponding interrogative pronouns occurring 
in the phonetic or orthographic realization of a sentence are “who”, “what”, 
“when”, “where”, “how”, etc. 

( 6  

For example, the underlying phrase marker for 

(10) What did John eat? 

is 

The superficial phrase marker which specifies the interrogative form of the 
sentence that (I  1) underlies is simply 

(12) is transformationally derived from (1 1) by formal operations charac- 
teristic of the generation of interrogatives. Q is deleted and the constituent 
“wh + something” is moved to the position vacated by Q. The constituent 
dominated by “Aux” is inserted between “wh + something” and the subject 
noun-phrase “John”. An occurrence of “do” is introduced immediately 
preceding the constituent dominated by “Aux”. Then “do + Past” is 
converted into “did” and “wh + something” is converted into the inter- 

~~ 

(v) * You, the capital of France is Paris 
(vi) * The capital of France is Paris, you. 
are also ungrammatical. Thus, the restriction on the subject of ordinary imperatives, 
which is characteristic of this sentence type, is found also in questions. This, of course, 
is not conclusive, but its implication shouldn’t be ignored. 
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rogative pronoun “what”. 7 (12) is operated on by phonological rules which 
provide its phonetic shape. 

Other types of interrogatives like 

(13) Who did John eat with? 
(14) When did John eat? 
(15) Where did John eat? 
(16) How did John eat? 

or rather their superficial phrase markers, are each transformationally 
derived from an underlying phrase marker of the general form described 
above by such operations of deletion, permutation, and addition. These 
underlying phrase markers are each appropriately different from the others 
in a way that reflects the differences between the interrogatives they underlie. 
That is, although each contains Q and occurrences of wlz attached to noun- 
phrases, different noun-phrases in each have wh attached to them and these 
noun-phrases occur in constituents of different syntactic types. For example, 
in (1 3) the wh-ed noun-phrase is the noun-phrase “some one” in the prepo- 
sitional phrase “with some one”; in (14) it is the noun-phrase “some time” 
in the temporal adverbial “at some time”; in (15) it is the noun-phrase 
“some place” in the locative adverbial “at some place”; and in (16) it is 
the noun-phrase “some way” in the manner adverbial “in some way”. 
The pattern of variation on the interrogative theme is thus clear: each 
distinct type of interrogative arises, transformationally, from a different 
wh -t ed noun-phrase forming part of a different, but for its type, charac- 
teristic syntactic category. Which-interrogatives, how-much-interrogatives, 
why-interrogatives, whoever-interrogatives, and other types also fall into 
place in this pattern. 8 

Jespersen and other grammarians distinguish interrogatives of the sort 
considered above from what are commonly referred to as “yes/no-questions”. 
Jespersen writes : 

Notice that the wh morpheme functions somewhat like bracketing in a quantification 
formula, in that it determines which noun-phrases in the terminal string of an underlying 
phrase marker are ‘captured’ by the question-morpheme Q. For just as not all occurrences 
of a particular variable need be in the scope of a given quantifier, so not all noun-phrases 
need be questioned, nor even all pro-forms, in an interrogative. Consider the interrogatives 
“Who did something to John?”, “Who did what to Howard?”, and “Who did what to 
whom?”. 
8 For a more detailed and complete discussion, cf. KATZ and POSTAL [1965] pp. 144-147 
and pp. 177-184. 
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There are two kinds of questions : “Did he say that?’ is an example of 
the one kind, and “What did he say?” and “Who said that?” are 
examples of the other. In the former kind - nexus-questions - we call 
in question the combination (nexus) of a subject and a predicate. . . . In 
questions of the second kind we have an unknown quantity x,  exactly 
as in an algebraic equation; we may therefore use the term x-questions. 
The linguistic expression for this x is an interrogative pronoun or 
pronominal adverb.9 

Semantically, this is a crucial distinction, but, syntactically, nexus- 
interrogatives, like the different cases of x-interrogatives that we have been 
discussing, are just another variant in the pattern. They also arise from a 
specific constituent belonging to a distinct syntactic category falling in the 
scope of the question morpheme Q. This may not at  first glance seem right 
because of the important semantic difference Jespersen mentions, yet it can 
be shown that nexus-interrogatives are also derived from wh + ed constituents. 

wh-interrogatives, regardless of type, appear as embedded questions in 
almost their standard interrogative form. For example, 

(17) John asked which Mary went 
(18) John asked where Mary went 
(19) John asked when Mary went 
(20) John asked how Mary went 
(21) John asked why Mary went 
(22) John asked who went 

But so do nexus-interrogatives. For example, 

(23) John asked whether Mary went 

This and other evidence establishes that there is a wh-ed constituent 
underlying the word “whether” whose morphemic shape is “wh + either”. 

But to show that all nexus-interrogatives are derived from wh-ed con- 
stituents in their underlying phrase marker, it must also be shown that when 
a nexus-interrogative occurs by itself as a full sentence - rather than an em- 
bedded question within another sentence - its underlying phrase marker 
contains a wh-ed constituent. That is, it must not only be shown that a 
“wh + either” occurs in the underlying phrase marker for an interrogative 
like (23) but must also be shown that a “wh + either” occurs in the underlying 
phrase marker for an interrogative like 

JESPERSEN [1933] pp. 304-305. 
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(24) Did Mary go? 

One of the things that makes it necessary to say that “wh + either” is found 
in the underlying phrase marker for interrogatives like (24) whose phonetic 
shape does not contain “whether” is that such nexus-interrrogatives are 
derived from underlying phrase markers that are disjunctive in form. 
Consider: 

(25) Did Mary go or didn’t Mary go? 
(26) Did Mary go or didn’t she? 
(27) Did Mary go or not? 
(28) Did Mary or didn’t Mary go? 

Clearly, the underlying phrase markers for (25)-(28) are disjunctive in 
form.10 Consequently, if (24) has the same underlying phrase marker as 
any of these nexus-interrogatives, its underlying phrase marker too will be 
disjunctive in form. Now, the nexus-interrogatives (25)-(28) are synonymous 
with each other, and moreover, (24) is equivalent in meaning to them. 
Each of the cases (24)-(28) questions the truth of the statement that Mary 
went. These synonymy relations cannot be accounted for on a strictly 
semantic basis, since unlike 

(29) John is a bachelor 

and 

(30) John is an unmarried adult male 

they do not hold between sentences with different morphemic content 
which through semantic interaction express the same meaning. Hence, 
these synonymy relations must be explained on the grounds that (24)-(28) 
have the same underlying phrase marker. Any sentences with the same 
underlying phrase marker are paraphrases of one another, since, insofar as 
the semantic component operates exclusively on underlying phrase markers, l1 
such sentences must receive the same semantic interpretation. 

The underlying phrase marker for (24)-(28) is: 

lo Also, contrast these with: * who went or not? 
l1 This expresses the fact that transformations make no contribution to the meaning of 
a sentence. Cf. KATZ and POSTAL 119651 and CHOMSKY [1966]. 
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S 

8 wh+either Mary Past go or Mary Past Neg go 

(24)-(28) (or rather their superficial phrase markers) are each derived 
transformationally from (3 1) by a familiar ellipsis pattern in which repeated 
elements can be deleted. l2 This derivation is not only an explanation of the 
syntactic and semantic relations between (24)-(28) but much else as well. 
For one thing, it explains the synonymy of (23) and (32). 

(32) John asked whether Mary went or not 

And for another, it explains why nexus-interrogatives like 

(33) Didn’t Mary go? 

express the same question as interrogatives like (24) even though the former 
are negatives of the latter.13 Finally, on this treatment, when a nexus- 
interrogative occurs by itself, as a full sentence, “wh + either” is phonetically 
realized in the form of a stressed initial occurrence of “do” and tense (or 
“will”, “can”, “should”, “be”, “have”, etc. and tense, as the case may be). 

In terms of this conception of the grammar of interrogatives, in particular 
the treatment of their underlying syntactic structure, it is possible to define 
the semantic relations (i) x is the presupposition of the question q ;  (ii) x is a 
possible answer to the question q ;  (iii) x is an answer to the question q ;  (iv) x is 
an evasion of the question q ;  and (v) x is a rejection of the question q. These 
definitions are not only important in their own right, but they have added 
significance here, since they will be ingredients in our definitions for the 
logical properties and relations upon which the logic of questions depends. 

The presupposition of a question is a sentence, or, better, the statement it 
expresses, which must be true if the question is to express a genuine request 

.- 

l2 Cf. CHOMSKY [1966] pp. 144-147 and pp. 177-184. 
l3 Of course, even though the negative and positive forms of a nexus-interrogative ask 
the same question, they are normally appropriate in different contexts. The latter is used in 
cases where it is reasonable for the speaker to presume that the person referred to did not 
do the thing in question. Hence, the secondary use of negative forms, as in the case where 
a husband and wife are going out and the wife is taking her time dressing, so the husband 
says “Aren’t you coming?”. Thus, this case of positive and negative forms of nexus- 
questions is like the case of “rabbit” and “bunny”, which are synonymous but used in 
different contexts, the latter being appropriate when conversing with children. Cf. also 
JESPERSON [1933] p. 304. 
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for information. The classic case of such is the presupposition of the question 

(34) When did you stop beating your wife? 

viz., the statement expressed by 

(35) You have beaten your wife at  some time 

(when used under the same utterance conditions as (34)). The notion of 
the presupposition of a question is parallel to the notion of a presupposition 
of a statement except that in the latter case the truth of the presupposition is 
a necessary condition for the sentence to express an assertion (rather than a 
request). Thus, the fact that the presupposition of 

(36) The man who invented the perpetual motion machine is Polish 

viz., the statement expressed by 

(37) Some man invented the perpetual motion machine 

is false means that (36) makes no assertion about anyone being Polish nor 
indeed any assertion at  all. As a parallel, we propose the following definition 
for (i): 

(38) A sentence x (expresses the statement which) is the presupposition of 
the question q just in case (a) the underlying phrase marker of x is 
the same as that for q except for the absence of Q and occurrences of 
wh, or (b) x is a paraphrase of (on the appropriate sense, i.e. has the 
same reading as) some sentence satisfying (a). 

On the basis of (31), the presupposition of (10) is: 

(39) John ate something 

or, by virtue of condition (b) of (38): 

(40) Something was eaten by John14 

Similarly, the presuppostions of (13)-( 16) are, respectively: 

(41) John ate with somebody 
(42) John ate at  some time 
(43) John ate at  some place 
(44) John ate in some manner 

l4 That is, (40) is just the passive of (39) and passives are synonymous with their active 
counter parts. Cf. KATZ and POSTAL [1965] pp. 72-74, and KATZ and MARTIN [1967]. 
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The presupposition of the nexus-interrogative (24) and its paraphrases 
(25)-(28) and (33) is: 

(45) (Either) Mary did go or Mary did not go 

Of course the presupposition in this type of nexus-interrogative is vacuous 
since it is an instance of a logical truth, but this is not the case for all types of 
nexus-interrogatives. The case 

(46) Did Mary go home or did Mary go to school? 

has the non-vacuous presupposition 

(47) (Either) Mary went home or Mary went to school 

The notion of a possible answer is analogous to the notion of a lawlike 
statement. 15 Just as a lawlike statement is a statement that has all the charac- 
teristics of a law except for possibly being false, so a possible answer has all 
the characteristics of an answer except for possibly being false. True lawlike 
statements are genuine laws, and analogously, true possible answers are 
genuine answers. Accordingly, the notion of a possible answer is that of a 
sentence (or the statement it expresses) that would satisfy the request for 
information if it were true. 

Our definition of this notion treats nexus-interrogatives and x-inter- 
rogatives differently, in the manner suggested by Jespersen’s remarks, i.e. 
semantically, the questions expressed by the former request information as 
to the truth or falsity of a statement (or set of statements, as in (46)) while 
those expressed by the latter request information about some unknown x. 
Thus : 

(48) A sentence x (expresses the statement which) is a possible answer to 
the question q just in case(a) q is a nexus-interrogative and x’s 
underlying phrase marker is the same as one of the two proper-parts 
of the underlying phrase marker for q whose top-most node is 
labeled ‘S’ and is directly dominated by the top-most node in that 
phrase marker; (b) q is an x-interrogative and x’s underlying phrase 
marker is the same as that of the presuppostion of q (cf. condition 
(a) of (38)) except that, for each noun-phrase NP, in the latter corre- 
sponding to a wh-ed noun-phrase in the former, NP, is replaced in 
the semantically interpreted underlying phrase marker for x by a 

15 This is a familiar notion in the philosophy of science, e.g. cf. the discussions of GOODMAN 
[1965] p. 22. 
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noun-phrase NP, such that the reading for NP, has more semantic 
markers than the reading for NP,; or (c) x is a paraphrase of (on 
the appropriate sense, i.e. has the same reading as) some sentence 
satisfying either (a) or (b). 

By this definition, in both the case of nexus-interrogatives and x-inter- 
rogatives, a possible answer provides information beyond what is contained 
in the meaning of the questioned constituent(s). However, in the former case 
this information is provided by a choice from among the disjuncts in the 
question. Jesperseii put the matter in terms of questioning “the combination 
(nexus) of a subject and predicate”. But since questioning the combination 
actually takes the form of posing alternatives, one of which expresses its 
correctness and the other its incorrectness, if a possible answer is a particular 
choice from among the alternatives posed in the question it will express a 
claim about the correctness of a predication. Accordingly, the questioning of 
a sentence-adverbial requests information beyond what is given in the reading 
of the disjunction of sentences. The reading of one (in certain cases more than 
one) of the disjuncts provides this information. Thus, possible answers to 
(24) are: 

(49) Mary did go 
(50) Mary did not go 

“yes” is a stylistic variant of possible answers such as (49), and “no” is a 
stylistic variant of possible answers such as (50), but only when the super- 
ficial form of the interrogative is that represented in (24). Such variants of 
cases like (49) and (50) - including the bureaucratic uses of “affirmative” 
and “negative” - cannot be possible answers when the superficial form of the 
interrogative is like that represented in (25)-(28) or when its underlying 
form is like that represented in (46). 

In the case of x-interrogatives, the questioning of a noun-phrase requests 
information beyond that given in the reading of the noun-phrase questioned. 
Thus, a possible answer must provide the further information. (48) (b) 
captures this in its requirement that the appropriate noun-phrases in a 
possible answer have a reading that contains more semantic markers than 
appear in the reading for their corresponding wh-ed noun-phrases in the 
question. These additional semantic markers in the relevant noun-phrases of 
a possible answer provide the further information requested. Thus, continuing 
Jespersen’s algebraic analogy, such semantic markers are the analogues of 
expressions, such as “y’”, “17”, “5y+ 8z3”, etc., which “x” may equal in an 
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equation. Accordingly, possible answers to (10) are 

(51) John ate sticks and some stones 
(52) John ate food 
(53) John ate something he had in his pocket 

Knowing already the relation of an answer to a possible answer, it is an 

(54) A sentence x (expresses the statement which) is an answer to the 
question q just in case x is a possible answer to q and x is true 
(expresses a true statement) or x is a paraphrase of such a sentence. 

and so forth. 

easy matter to define the notion of an answer to a question: 

Thus, the answer to the question expressed by 

(55) Who is president of the U.S.A.? 

is the statement expressed by 

(56) Lyndon Johnson is president of the U.S.A. 

but not that expressed by 

(57) Paul Goodman is president of the U.S.A. 

though both are possible answers to (55). 

(54) explains the nature of the request embodied in the asking of a ques- 
tion: that the person addressed by the speaker supply him with an answer 
in the sense of (54).16 

Possible answers and answers must, however, be distinguished from two 
closely related things, evasions and rejections of questions. Thus : 

(58) A sentence x (expresses the statement which) is an evasion of the 
question q just in case x is a presupposition of q. 

(59) A sentence x (expresses the statement which) is a 
question q just in case x is inconsistent with (on 
sense) the presupposition of q.17 

rejection of the 
the appropriate 

l6 Cf. KATZ and POSTAL [1965] pp. 85-91. 
17 Let P1 and Pz, respectively, be the semantically interpreted underlying phrase markers 
for x and the presupposition of q. If the reading of the subject of PI is the same as the 
reading of the subject of PZ and the reading of the predicate of PZ contains at least one 
semantic marker MI such that there is a semantic marker Mj in the reading for the predicate 
of PI (Mt # MI) and Mz belongs to the same antonymous n-tuple of semantic markers as 
Mf, then x and the presupposition of q are inconsistent. Cf. KATZ [19641 pp. 519-543. 
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By (58) the sentences18 

(60) John ate something 
(61) John ate something eatable 
(62) John ate things eatable 

are merely evasions when given as answers to (10). By (59), the cases 

(63) John did not eat anything 
(64) (John ate) nothing 

are rejections of the question expressed by (10). Similarly 

(65) Mary did go or Mary didn’t go 

is an evasion of (24) while 

(66) Mary did not go home and Mary did not go to school 

is a rejection of (47). 
However, simple nexus-interrogatives like (24) always produce legitjmate 

questions if the noun-phrases in them that occur in a referential position 
succeed in denoting something in the context where they are used. That is, 
they cannot be rejected on the basis of a true statement. We can account for 
this too. If the appropriate noun-phrases do not succeed in denoting, then 
there cannot be a true, or for that matter even a false, rejection, since these 
noun-phrases in the putative rejection will also fail to denote (in that con- 
text). On the other hand, if they succeed in denoting, then the putative 
rejection must, by (59), be logically false, since it is inconsistent with the 
presupposition of a simple nexus-interrogative and, as we observed earlier, 
such presuppositions are logical truths. 

Note, finally, that the notion of answer we have defined is that of direct 
answer. We might define an indirect answer as any true statement that 
entails a (direct) answer. Similarly, we might define indirect versions of the 
other notions defined in this section. l9 

18 Cf. the discussion of the semantic marker (Selector) in KATZ and POSTAL [1965] 
pp. 81-84 for an explanation of why the three sentences (60)-(62) are paraphrases, i.e. 
why “eatable” is redundant in (61) and (62). 
19 Thus, an indirect (a) possible answer, (b) evasion, (c) rejection, and (d) presupposition 
might be defined as a sentence that is not contradictory and (a) entails a sentence that is a 
possible answer, (b) is entailed by an evasion, (c) entails a rejection, and (d) is entailed by 
the presupposition. 
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5. Answers to the two basic questions 

Let us begin with the first of the two questions posed in Section 3. Cases 
like (1)-(6) are direct analogues of sentences that have a linguistically 
determined truth-value. A case such as (1) is the analogue of an analytic 
sentence, thus of one whose truth is linguistically determined, while a case 
such as (2) is the analogue of a contradictory sentence, thus of one whose 
falsehood is linguistically determined. But, clearly, (l), (3), (4), (5) and (6) 
cannot be taken as analytic themselves since, being questions, they express 
requests for information, not true assertions; and likewise, (2) cannot be 
taken as contradictory since, being a question, it makes no assertion, and 
hence no false one. Nevertheless, as is intuitively quite clear, they are very 
much like linguistically determined truths and falsehoods. Their similarity 
to and difference from sentences that have a linguistically determined truth- 
value can be put as follows. Just as analytic and contradictory sentences 
express assertions whose truth and falsity is guaranteed by their meaning, 
so such interrogatives express questions whose affirmative answer, negative 
answer, or answer is given by their meaning. Since such questions are parallel 
to statements with a linguistically determined truth-value, let us call them 
linguistically answered questions. 

We have to show here how the property of being a linguistically answered 
question can be defined in semantic theory. This amounts to explaining 
how the meanings of the morphemes in an interrogative sentence can de- 
termine the answer to the question it expresses, analogously to the manner in 
which the meanings of the morphemes in a declarative sentence can deter- 
mine the truth of the statement it expresses.20 

Since a question is either a nexus-question or an x-question, we have only 
to define the notions linguistically answered nexus-question and linguistically 
answered x-question. Let us consider the former case first. A nexus-question, 
as the comparison of (1) and (2) shows, can be linguistically answered in the 
afirmative or linguistically answered in the negative. Accordingly, 

(67) A nexus-question q is linguistically answered just in case q is lin- 
guistically answered in the affirmative or linguistically answered in the 
negative. 

~ 

20 It might be asked why a question like “Who saw the man who was seen by John?” is 
not linguistically answered whereas (3) is. My answer is that, like “Who’s buried in Grant’s 
tomb?’, “Who saw the man who was seen by John?’ is ambiguous. Just as Groucho 
Marx’s question can be taken either to mean who is buried in the tomb known as the place 
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There are two types of nexus-questions, ones like (24), which we may call 
simple nexus-questions, and ones like (46), which we may call complex 
nexus-questions. The former have underlying phrase markers of the form: 

FIRST DISJUNCT STRUCTURE SECOND DISJUNCT STRUCTURE 

while the latter have underlying phrase markers of the form : 

S 

C 

(69) 
or . . . or Q wh + either or 

1st 2nd nth - 

To simplify matters, I will introduce the terms “first disjunct-structure”, 
“second disjunct-structure”, and in the case of complex nexus-questions, 
“third disjunct-structure”, “fourth disjunct-structure”, and so on. A dis- 
junct-structure is a proper part of an underlying phrase marker for a nexus- 
interrogative, as shown in (68) and (69), whose top-most node is labeled ‘s’ 
and is directly dominated by the top-most node in the whole underlying 
phrase marker and whose terminal string is bounded by occurrences of the 
morpheme “or” or in the case of the first and nth, respectively, by “wh + 
either” and “or” and by “or” and the sentence boundary “#”. The left-most 
such proper-part is referred to as the “first disjunct-structure”, the next, 
as the “second disjunct-structure”, and so forth. We can define the operative 
notions in the definition (67) as follows: 

(70) A nexus-question q is linguistically answered in the affirmative just 
in case (a) q is a simple nexus-question and the reading of the subject 
of the first disjunct-structure contains every semantic marker in the 

of Grant’s interment or to mean who is buried in the tomb where Grant himself is interred, 
so the latter question can mean who else (besides John) saw the man who was seen by John 
or simply who saw him. 
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reading of the predicate of that disjunct-structure (in the semantically 
interpreted underlying phrase marker for q)  or (b) q is a complex 
nexus-question and there is one disjunct-structure the reading of 
whose subject contains every semantic marker in the reading of its 
predicate (in the semantically interpreted underlying phrase marker 
for q ) . 2 1  

(71) A nexus-question q is linguistically answered in the negative just in 
case (a) q is a simple nexus-question and the reading of the subject of 
the first disjunct-structure contains a semantic marker Mi  from the 
same antonymous n-tuple of semantic markers as a semantic marker 
Mj in the reading of the predicate of that disjunct-structure and 
M i # M j  or  the predicate contains two such semantic markers, or 
(b) q is a complex nexus-question and each of its disjunct-structures 
meet the condition in (a).22 

For simple nexus-questions, (70) and (71) say that such a question is, 
respectively, linguistically answered in the affirmative and linguistically 
answered in the negative if and only if the sentence represented by its first 
disjunct-structure is, in the former case, analytic, and in the latter, contra- 
dictory. Thus, ( 1 )  is marked linguistically answered affirmatively and (2) is 
marked linguistically answered negatively. By (67), both are marked lin- 
guistically answered. For complex nexus-questions, like 

(72) Is a spinster female or unmarried? 
(73) Is a spinster female or male? 
(74) Is a spinster male or married? 
(75) Is a spinster male or rich? 

(70) and (71) say that such a question is, respectively, linguistically answered 
in the affirmative and linguistically answered in the negative if and only if 
one disjunct-structure represents a sentence that is analytic and every dis- 
junct-structure represents a sentence that is contradictory. Thus, (72) and 
(73) are marked linguistically answered in the affirmative and (74) but not 
(75) is marked linguistically answered negatively. (72), (73) and (74) but not 
(75) are marked as linguistically answered questions by (67). 

21 This definition is to some extent a simplification, cf. KATZ (19641 and [1966]. 
22 Same comment as in previous footnote. Roughly, antonymous n-tuples of semantic 
markers reconstruct the relation of logical incompatibility between the members of a set 
of related concepts by formal distinctions in the semantic markers representing the con- 
cepts. 
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Now we turn to linguistically answered x-questions. We can simplify our 
discussion here by introducing the terms matrix-structure and constituent- 
structure. The matrix-structure of an underlying phrase marker is the whole 
phrase marker minus the subtrees in jt that are dominated by an occurrence 
of ‘S’ which is dominated by ‘NP’. Such subtrees are constituent-structures. 
Thus : 

(76) An x-question is linguistically answered just in case its semantically 
interpreted underlying phrase marker contains a matrix-structure 
which has the form of an underlying phrase marker for a question 
q’ and a constituent-structure which has the form of an underlying 
phrase marker for a possible answer to the question 4’. 

Since the underlying phrase markers for (3) and (4) are 

S 

wh+ somebody Past kill the man John Past kill the man Passive 

(77) 

(78) 

1 [ MATRIX ] 1 
STRUCTURE 

(3) and (4) are marked as linguistically answered questions. 
But beyond simply marking questions as linguistically answered or not, 
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these definitions also explain why questions so marked have the property of 
being linguistically answered. For nexus-questions the explanation is as 
follows. As we have observed, such questions query the truth of a statement, 
e.g. (24) asks about the truth of the statement that Mary went. The first 
disjunct-structure of such nexus-questions represents the statement whose 
truth is asked about in the asking of the question (and the second helps state 
the query by posing its denial as an alternative). Thus, if a nexus-question is 
marked linguistically answered in the affirmative, the first disjunct-structure 
in its underlying phrase marker will represent an analytic statement. So, 
by virtue of the fact that the statement whose truth is queried is a linguistic 
truth, the query is answered. If a nexus-question is marked linguistically 
answered in the negative, the first disjunct-structure in its underlying phrase 
marker will represent a contradictory statement. So, by virtue of the fact 
that the statement whose truth is queried is a linguistic falsehood, the 
query is again answered. In either case, then, the query is answered. 

In the case of x-questions, the explanation is this. If an x-question is 
linguistically answered, then the constituent-structure in its underlying 
phrase marker represents a possible answer to  the question represented in 
the matrix-structure of that underlying phrase marker (cf. (48) (b)). This 
possible answer is also part of the presupposition of the whole question (cf. 
(38)). If the use of such an interrogative sentence expresses a request for 
information, its presupposition must be true, since the truth of the presup- 
position of an interrogative is a necessary condition for it to express a 
question. Consequently, this possible answer - being part of the pre- 
supposition - must itself be true. But since a true possible answer is a (genu- 
ine) answer (cf. (54)), this possible answer is an answer to  the question of 
which it is a part. Therefore, the whole question gives its own answer. 
Its request for information is made and met in one and the same breath. 

Since there is a parallel to analytic statements in the case of questions, 
we should naturally try to  push the analogy further. We can carry the 
analogy further and, by so doing, uncover another interesting logical proper- 
ty of questions : the property of being linguistically unanswerable, which can 
be thought of as the parallel of contradictory statements. 

In the case of declarative sentences, semantic theory distinguishes two 
types of non-anomalous sentences, i.e. two sorts of senses that such sentences 
can have. The contrast is exemplified by 

(79) The rich queen is unhappy 
(80) The male queen is unhappy 
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Briefly23, the idea is this. (79) can be used to express a statement because 
there can be an individual for the expression “rich queen” to designate. 
The statement is true if the individual identified by this expression is unhappy 
and false if she is happy. In contrast, (80) can never be used to make a 
statement, since there cannot be anyone to whom the contradictory expression 
“male queen” refers. Moreover, if we allowed (80) to count as capable of 
expressing a statement in the manner of (79), then so would 

(81) The male queen is female. 

But this would produce a contradiction, since (8 1) would be both analytic 
and contradictory and hence be both true and false. Accordingly, it is 
necessary to say that sentences like (79) and (80) belong to different categories 
and that the category to which (80) and (81) belong is disjoint with respect to 
the category that includes the subcategories of analytic, contradictory, and 
synthetic sentences. We can accomplish this required categorization by 
defining sentences whose subject has a reading containing two distinct 
semantic markers from the same antonymous n-tuple as indeterminable 
sentences, by defining other sentences as determinable sentences, and by 
making the categories of analytic, contradictory, synthetic, etc. subcategories 
of the category of determinable sentences. 24 

Interrogatives like 

(82) Is the male queen rich? 
(83) Who did the living corpse fall on? 

express linguistically unanswerable questions. They can no more express 
answerable questions than their declarative counterparts can express true 
or false statements. The presupposition of (82) is that the male queen is 
either rich or not rich and the presupposition of (83) is that something that is 
both living and a corpse fell on someone. Both these presuppositions are 
indeterminable sentences, and hence neither can be true. Since the truth of 
the presupposition of an interrogative is a necessary condition for it to 
express a request for information, no token of an interrogative type such as 
(82) or (83) can express such a request, for there is nothing for its answer 
to be about. 

Another kind of linguistically unanswerable question is illustrated by the 
interrogative 

For more detail, cf. KATZ [1966] pp. 211-220, 
24 Cf. KATZ [I9661 pp. 21 1-220. 
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(84) Who will kill the corpse? 

In this case, although there can be something for the question and its answer 
to be about, nonetheless, the condition under which an interrogative ex- 
presses a question having an answer cannot, in principle, be met. For the 
condition is that its presupposition, that someone will kill the corpse, be 
true, and this condition cannot be met because the presupposition is contra- 
dictory. 

To cover both types of cases, we give the definition: 

(85) A question q is linguistically unanswerable just in case the presup- 
position of q is either indeterminable or contradictory. 25 

Since linguistically answered questions are the parallel of analytic statements 
and linguistically unanswerabIe questions are the parallel of contradictory 
statements, there should be a further category of questions, namely, lin- 
guistically answerable questions, which is the parallel of synthetic statements. 
Accordingly, 

(86) A question q is linguistically answerable (but not linguistically 
answered) just in case q is not semantically anomalous and satisfies 
neither (67) nor (85). 

This completes our answer to the first of the two basic questions under- 
lying the logic of questions. In short, parallel to statements that are validly 
assertable without premisses are linguistically answered questions, questions 
that are answered without an independent answer being required. 

We now turn to the second of these two questions, the problem of what 
property is preserved in valid question arguments. Or to put the problem 
another way: what sense does it make to say that the premisses in cases like 
(7) and (8) entail their conclusion? 

In the case of arguments involving statements, a conclusion that can be 
validly asserted on certain premisses is so assertable because its relation to 
its premisses is one that always preserves truth. Since the parallel of linguist- 
ically determined truth, which is what makes a statement assertable without 
premisses or on any premisses, is linguistically determined answerhood, by 
analogy, in the case of arguments involving questions, the property preserved 
ought to be sameness of answer or simply answerhood. We shall now try to 
show that this analogydoesindeedprovidethesolution to the second problem. 

25 In the case of disjunctions or conjunctions, we use the rule that if each disjunct or 
conjunct is contradictory or indeterminable, then the whole is. 
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The notion of entailment being developed in semantic theory is an 
explication of immediate - or one-step - inferences, whose validity depends 
on semantic relations among the non-logical terms in the premiss and 
conclusion. Such inferences are not adequately dealt with in the traditional 
Aristotelian theory of immediate and syllogistic inference ; and modern 
quantification theory, whatever its advantages over the traditional Aristote- 
lian theory, is no improvement over it on this score. Both fail to take into 
account semantic relations between the non-logical expressions, the nouns, 
verbs, adjectives, adverbs, and phrases compounded of them, and according- 
ly, both theories leave indefinitely many clear cases of valid inferences un- 
accounted for. 

Consider the inference from (87) to (88): 

(87) Females are dangerous motorists 
(88) Spinsters are dangerous motorists 

Proceeding in the usual way, each of the non-logical terms, “females”, 
“spinsters”, and “dangerous motorists”, is represented as the class of all and 
only those entities to which the unanalyzed term applies, and the relation 
expressed by the copula is treated as a membership or class-inclusion relation 
between the extensions of the subject and predicate terms. Thus, we represent 
(87) by drawing a circle to stand for the class of females inside a circle that 
stands for the class of dangerous motorists, since the copula of (87) indicates 
that the former is included in the latter. Next, we draw another circle for 
the class of spinsters, locating it inside the circle standing for the class of 
dangerous motorists, since this is dictated by the copula of (88). But since 
nothing constrains us to represent the extension of “spinsters” as included 
within the extension of “females”, the extensional account of this inference is : 

Thus, the inference from (87) to (88) cannot be shown to be valid. 
But since what actually constrains us to say that spinsters are females is 

just what makes “Spinsters are females” analytic, namely, the semantic 



486 J, I. KA TZ 

relation between “spinsters” and “females”, it is necessary to formulate the 
definition of entailment in a way that takes such semantic relations into 
account. Accordingly, this definition must be framed in terms of intension 
or meaning. 

Roughly, this definition may be given as follows: 

(90) A sentence s1 entails another sentence s2 just in case (a) both are 
universal and the reading of s2’s subject contains every semantic 
marker in the reading of the subject of s1 and the reading of s,’s 
predicate contains every semantic marker in the reading of the 
predicate of s2 or (b) both are particular and the reading of sI’s 
subject contains every semantic marker in the reading of the subject 
of s2 and the reading of sl’s predicate contains every semantic 
marker in the reading of the predicate of s2.26 

The inference from 

(91) Some bachelors are rich 

to 

(92) Some males are rich 

and the inference from 

(93) Some bachelors are kings 

to 

(94) Some males are monarchs 

and from 

(95) John is a bachelor 

to 

(96) John is a male 

are marked as entailments by (90) (b). The inference from (87) to (88) and 

26 A few comnients need to be made here. First, this definition is a simplification, cf. the 
references cited in footnote 21. Second, it is an extension of previous treatments, insofar 
as it treats both universals and particular sentences, cf. footnote 9 in KATZ [1967b]. 
Third, it does not treat cases where one sentence is universal and the other is particular 
because of the question of existential import of universal propositions. Finally, here by 
subject and predicate in the case of nexus-questions we mean subject and predicate of the 
first disjunct structure. 

- 
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the inferences from 

(97) Females are geniuses 

to 

(98) Spinsters are intelligent 

and from 

(99) Principals are spinsters 

to  

(100) Principals are females 

are marked as entailments by (90) (a). 
Consider now the following question-arguments (involving nexus-questions) 

that are, case by case, counterparts of the statement-arguments presented 
immediately above. 

(101) Are some bachelors rich? 
Are some males rich? 

(102) Are some bachelors kings? 
Are some males monarchs? 

(103) Is John a bachelor? 
Is John a male? 

(104) Are females dangerous motorists? 
Are spinsters dangerous motorists? 

(105) Are females geniuses? 
Are spinsters intelligent? 

(106) Are principals spinsters? 
Are principals females? 

Clearly, by (90) each of the arguments (91)-(106) are entailments, just as 
their statement-argument counterparts are, for the definition (90) is given 
for sentences, not declaratives, and in each case, the entailment in the ques- 
tion-argument and its counterpart statement-argument is based on the same 
semantic relation. 

What is preserved in a valid question-argument involving nexus-questions 
is aflrmative answerhood. That is to say, if A is an affirmative answer to the 
premiss question Q ,  and Q, entails Qz, then A is necessarily an affirmative 
answer to Q,.  For example, an affirmative answer to the premiss of (IOI),  say 
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(107) (Yes) Some bachelors are rich 

is necessarily also (implies) an affirmative answer to the conclusion of (101). 
Moreover, corresponding to the fact that in a valid deduction from one 
statement to another the falsity of the conclusion implies the falsity of a t  
least one ofthepremisses, if Nis  a negative answer to Q,, then N is necessarily 
also (implies) a negative answer to Q,. For example, a negative answer to the 
conclusion of (101) 

(108) (No) No males are rich 

is a negative answer to the premiss of (101). Notice, however, that a negative 
answer to the premiss in a valid nexus-question argument is not an answer to 
the conclusion. For example, a negative answer to the premiss of (103) is not 
an answer to its conclusion. This can be shown quite easily. Both 

(109) Is John unmarried? 

and the conclusion of (103) are entailed by the premiss of (103). Yet, given 
that the answer to the premiss of (103) is negative, these two questions can 
have opposite answers, i.e. the answer to one can be affirmative and the 
answer to the other negative. Furthermore, an affirmative answer to the 
conclusion of a valid nexus-question argument is not an answer to the 
premiss, since, for example, the answer to the conclusion in (103) can be 
affirmative while the answer to the premiss in (103) is negative. 

In valid arguments involving x-questions like (8), answerhood is preserved 
in the direct sense that anything that is an answer to the premiss question is 
itself an answer to the conclusion question. For example, if 

(1 10) The little old lady stole a cat 

is the answer to (8)’s premiss question, it is the answer to (8)’s conclusion 
question as well. But, of course, an answer to a conclusion question in such 
arguments is not necessarily an answer to the premiss question. 

Finally, in valid arguments from questions to statements such as (9), we 
can say that if the premiss question has an answer then the conclusion is true. 
But, of course, the truth of the conclusion in such cases does not imply that 
the premiss question has an answer. Thus, Cock Robin might have died of 
natural causes, so assuming that it is true that Cock Robin is dead, it does 
not follow that someone killed Cock Robin, which, as the presupposition of 
the premiss of (9), must be true if this question is to have an answer. 

In the discussion in this section we have formulated the property that 
the conclusion of a valid question-argument inherits from its premiss: 
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affirmative answerhood in the case of nexus-questions, and answerhood in 
the case of x-questions. Moreover, we have offered an explanation of the 
formal conditions under which such arguments are valid - under which 
they preserve answerhood - namely, that given in (90) and in the semantic 
theory on which (90) depends. 

6. A proposal for a question calculus 

Other logical relations can also be defined for questions, parallel to other 
logical relations of statements. As examples, we give the relations of contrary 
and contradictory for nexus-questions. 

If a nexus-question is the contrary of another, then an affirmative answer 
to one implies a negative answer to the other. The questions 

(1 1 1) Is your benefactor a spinster? 

and 

(1 12) Is your benefactor married? 

are contraries: saying yes to one implies no to the other. But it is not the 
case that saying no to one of two contrary questions implies saying yes to 
the other. A negative answer to (1 11) can be given when the benefactor in 
question is male and married. 

If a nexus-question is the contradictory of another, then an affirmative 
answer to one implies a negative answer to the other and a negative answer 
to one implies an affirmative answer to the other. (1 11) and 

(1 13) Is your benefactor a bachelor? 

constitute an example of contradictory nexus-questions. 
We can define these notions as follows: 

(114) A nexus-question q1 is the contrary of a nexus-question q2 just in 
case their subject readings are identical and their predicate readings 
are such that each contains a distinct semantic marker from the same 
antonymous n-tuple of semantic markers. 27 

(115) A nexus-question q1 is the contradictory of a nexus-question q2 
just in case they are contraries and for any semantic marker M i  in 
the reading of ql’s predicate that is not also in the reading of q2’s 

27 Cf. last comment in footnote 26. 
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predicate, there is a distinct semantic marker from the antonymous 
n-tuple to which Mi belongs in the reading for q2’s predicate and for 
any semantic marker Mj in the reading of q2’s predicate that is not 
in the reading for ql ’s  predicate, there is a distinct semantic marker 
from the antonymous n-tuple to which Mj belongs in the reading of 
ql’s predicate. That is, the readings of two subjects are the same and 
the readings of the two predicates are the same except for antonymous 
semantic markers. 28 

Given (1 15), we can develop a system of logic for nexus-questions that is 
parallel to the propositional calculus. (1 15) provides an interpretation for 
the connective ‘-’. That is, it tells us what the semantic relation between 
two questions must be in order for us to express them in the form ‘q’ and 
‘ -4’. Thus, it enables us to interpret the relation between ‘q’ and ‘ - q’ by the 
condition that a negative answer or positive answer to one implies the 
opposite answer to the other. Moreover, we can interpret ‘q1&q2’ as the 
question whose answer is an answer to ‘ql’ and an answer to ‘q2’, and we 
can interpret ‘ql v q2’ as the question whose answer is either an answer to 
‘ql’ or an answer to ‘qz’. These interpretations can be justified on the basis of 
the meanings of “and” and “or” and can be built into their dictionary 
entries. With this much, it is an easy matter to take any standard system of 
propositional calculus and convert it into a question calculus, since ‘q l  3 q2’ 
could be defined as the disjunction of the contradictory of ‘ql’ and ‘q2’. 
But this would be a trivial sort of question calculus, and one that failed to do 
justice to question-arguments. Accordingly, we want to go further and 
interpret implication in terms of (90) and equivalence in terms of synonymy. 
This leads to a question calculus with many interesting features, one well 
worth examining in more detail. 29 

7. Applications: practical and theoretical 

The practical application of the logic of statements needs no demon- 
stration. We are continually arguing with others on behalf of our statements, 

28 Cf. last comment in footnote 26. 
29 Notice that even in this system,where implication is rendered not as material conditional 
but as entailment in the semantic sense of (90), a contradiction stiil implies anything. For 
although a contradiction such as “John is a married bachelor” or “John is a bachelor and 
John is not a bachelor” does not entail “Russell is the Pope”, the latter can be inferred 
from the former on the basis of the meaning of “or” by the usual steps of simplification 
and disjunctive syllogism. 
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trying to refute theirs, and so on. But the question arises whether there is a 
practical application of the logic of questions, i.e. cases of arguing from one 
question to another that might be taken as what is explicated by a logic of 
questions, parallel to  the manner in which everyday statement-arguments are 
taken to be explicated by a logic of statements. Are there cases for which a 
logic of questions can serve as a standard of acceptable inference? 

I do not wish to claim extensive applications for the logic of questions, 
not here anyway. But it is necessary for me to show that there are some 
applications. The following as a typical example. Consider a cross-examina- 
tion in the course of a trial. Suppose the prosecuting attorney were to ask 
the witness 

(1  16) Did the victim murmur anything before dying? 

and the defense attorney were to object that the witness need not answer 
this question on the grounds that it is entailed by a previous question, 
namely 

(1 17) Did the victim utter any sound before dying? 

which, as the transcript shows, the witness answered negatively. We could 
regard the logic of questions as providing an explication of the defense 
attorney’s inference that the prosecuting attorney’s question had already 
been answered, since (1 16) is marked as entailing the previously (negatively) 
answered question (1 17), so that, by the interpretation of deductive connec- 
tions between questions, the answer to ( 1  16) is already determined, without 
the witness needing to reply. 

The theoretical application I wish to discuss concerns the nature of logic 
in general. The conception of logic that makes the notion of a logic of 
questions seem paradoxical is the view that the proper domain of logic is 
restricted to entities that bear a truth-value. “Logic”, as Quine succinctly 
puts it, “studies the bearing of logical structure [of statements] upon truth 
and falsity”.30 The business of logic, on this view, is to  construct a theory of 
logical structure that sorts out those statements that are true just by virtue 
of their logical form from those that are not.31 But, although this con- 
ception of the nature of logic is more precise than the definition of logic as 
the science of necessary inference, it is also less accurate. 

We have shown that logic concerns the logical properties and deductive 

30 QUINE [1941] p. 1 .  
31 QUINE [1959] p. xi, cf. first paragraph. 
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relations of questions as well as statements. We have shown, further, that 
there is a suitable non-truth-functional interpretation of validity for question- 
arguments that parallels the truth-functional interpretation of validity for 
statement-arguments. Accordingly,it can be no more correct to say that logic 
studies the bearing of logical structure on truth than it would be to say that 
logic studies the bearing of logical structure on answerhood. Logic studies 
both. Truth is what is preserved in valid statement-arguments and answer- 
hood is what is preserved in valid question-arguments. Neither by itself is 
what is common to all and only cases of necessary inference. 

If it were argued that the logic of statements is basic, and the logic of 
questions derivative from it, so that, once we have a logic of statements, 
we can define logical relations between questions indirectly in terms of a 
one-one mapping given by the grammar of declaratives onto interrogatives, 
it could easily be replied that the logic of questions can make the same 
claim to priority. Once we have a logic of questions, we can define logical 
relations between statements indirectly in terms of the same one-one 
grammatically determined mapping of interrogatives onto declaratives. 
That is, if someone were to claim that there is a one-one mapping M that 
pairs arguments such as that from (95) to (96) with arguments such as (103) 
and that, therefore, we can characterize a valid question-argument as one 
whose image under M is a valid statement-argument, that is, one that 
perserves truth, then it can be replied to this claim that we can also proceed 
the other way around. We can characterize a valid statement-argument as 
one whose image under M is a valid question-argument, that is, one that 
perserves answerhood. Thus, the complete symmetry that obtains here 
leads to the conclusion that neither truth nor answerhood by itself should 
occupy the privileged position of being the basis for a definition of logic. 

Once again. The entailment relation explicated in (go), as well as the 
property of redundant predication explicated in the definitions of an 
analytic statement and a linguistically answered question, are sufficiently 
general to be features of both the meaning of declaratives and the meaning 
of interrogatives, and so they are independent of the different interpretations 
of validity for statements and questions. 

Therefore, the doctrine that this entire discussion implies is that what is 
common in all and only cases of necessary inference, the common element in 
logic in any of its forms, are the semantic structures defined in the definitions 
of an optimal semantic theory of natural language. Accordingly, what 
properly defines logic are the definitions of analyticity, contradiction, 
entailment, metalinguistic truth, etc. together with definitions expressing the 
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rules of propositional logic and quantification, insofar as these are broad 
enough to represent all the logical aspects of the meanings of connectives 
like “or”, “and”, etc. and quantifiers like “all”, “some”, etc. as well as ones 
like “many”, “exactly one”, etc. The semantic structures characterized in 
these definitions, determine necessary truth and inherited truth, on the one 
hand, and necessary answerhood and inherited answerhood, on the other. 
Logic, on this hypothesis, is the study that attempts to give a systematic 
definition of the semantic structures that abstractly represent valid inferences, 
with respect to all interpretations that say what is necessary or necessarily 
inherited under them. 
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EXISTENCE, LOCATION, POSSESSION AND TRANSITIVITY 

J. LYONS 
University of Edinburgh, Edinburgh, U. K .  

In this paper, we shall be concerned mainly with four classes of sentences: 
existential, locative, possessive and perfective-transitive. They may be illus- 
trated by means of the following examples from English: 

(a) Lions exist 
(b) There are lions (in Africa) 
(a) The book is on the table 
(b) There is a book on the table 
(a) The book is John’s 
(b) John has a book 

Throughout the paper I would ask you to keep in mind the following well- 
known facts. 

(i) In some languages (e.g. Turkish) the possessive is structurally similar 
to the existential; in others (e.g. Chinese, Hindi, Russian, Gaelic, Swahili) 
the possessive is structurally similar to the locative; in others (e.g. English, 
Greek, Latin) the existential is structurally similar to the locative. 

(ii) The expression of ‘possession’ (to use the traditional, but quite un- 
satisfactory, term) by means of a quasi-transitive verb (cf. English have) with 
the ‘possessor’ as its subject and the ‘possessed thing’ as its object is relatively 
uncommon throughout the languages of the world. Far more common is a 
construction in which ‘being possessed’, rather than ‘possessing’ is what is 
predicated. 

(iii) There is a structural similarity in many languages (including English) 
between the possessive and the perfective-transitive construction (cf. the 
‘verb’ have in sentences (3b) and (4) given above). 

As I have said, these facts are well-known. Various attempts have been 
made to account for them by linguists, both in the past and in a number of 
recent and forthcoming publications. Of the works I have seen, the most 

(1) EXISTENTIAL : 

(2) LOCATIVE : 

(3) POSSESSIVE : 

(4) PERFECTIVE-TRANSITIVE : John has read the book. 
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interesting in this connexion are those by ALLEN [1964], ANDERSON [1968], 
BACH [1965], [1967], BENDIX [1966], BENVENISTE [1960], FILLMORE [1966], 
[forthcoming], GRAHAM [1967], HALLIDAY [1967], HUANG [1966], KAHN 
[1966], LANGENDOEN [1966a, b], SMITH [1964] and STAAL [1967]. In a 
forthcoming article and book, I have myself put forward the hypothesis that 
in many, and perhaps in all, languages existential and possessive construc- 
tions derive (both synchronically and diachronically) from locatives : cf. 
LYONS [1967], [1968] chapter 8. This hypothesis is not wholly original. 
Many of the points made in the argument have, to my knowledge, been 
made before; and the others may have been. Following KURYLOWICZ [1931], 
I have also proposed that the English possessive with have (e.g. John has a 
book) is diachronically related to the perfective-transitive with have (e.g. 
John has read a book) by means of a principle (which is still operative in 
English), the effect of which was to bring the ‘person interested in the state 
of affairs’ into the subject-position: cf. LYONS [1968] 5 8.4.6. (For a rather 
different, but related, suggestion: cf. CLOSS [1965]; VISSER [1963] pp. 

1 do not wish simply to repeat here what I have said elsewhere. I will, 
therefore, give only the briefest account of what the hypothesis is, without 
recapitulating the evidence, from various languages, upon which it is based. 
I will then discuss some of the implications of the hypothesis from a more 
general point of view. 

I am taking for granted the distinction between deep structure and surface 
structure that is currently drawn in transformational syntax : cf. CHOMSKY 
[1965], [1966]. I also assume that, ‘although the Surface Structures of dif- 
ferent languages are enormously varied, there is no reason to believe that 
their Deep Structures are not highly similar’ (cf. POSTAL [1966] p. 97). At 
the same time, I should point out that the hypothesis that I am putting for- 
ward does not rest upon the prior acceptance of any particular transfor- 
mational model of syntax. Indeed, it could also be stated within the frame- 
work of certain alternative approaches to syntactic analysis which are nor- 
mally described as non-transformational: e.g., those associated with the 
names of HALLIDAY [1967] or LAMB [1967]. But the closest connexion is 
probably with FILLMORE’S [forthcoming] version of transformational gram- 
mar. 

Like BACH [1967], FILLMORE [forthcoming] and LAKOFF [1965], though 
independently of them (cf. LYONS [1966]), and unlike CHOMSKY [1965] and 
HALLIDAY [1967] pp. 66-71, I am of the opinion that there is no categorial 
distinction in deep structure between what are traditionally called ‘verbs’ 

93-1 38.) 
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and ‘adjectives’ and that the copula is a purely grammatical element which 
‘carries’ distinctions of tense, mood and aspect in the surface-structure of 
sentences which do not contain a ‘full verb’. For example, I assume that the 
underlying constituent-structure of the following two sentences, (5 )  and (6), 
is identical 

(5) The girl dances 
(6) The girl is beautiful. 

Both dance and beautiful belong to the same major syntactic category in 
English. This category is appropriately called ‘verbs’, in the earliest and wider 
sense of this term - the sense in which Plato employed the Greek equivalent 
(cf. LYONS [1966]). The difference between dance and beautiful, from a syn- 
tactic point of view, is this: dance is what I will call a ‘full verb‘, beautiful 
is not. In particular (for there are many ways in which ‘full verbs’ differ from 
the various subclasses of ‘non-full verbs’ in English) beautiful is characterised 
by the following two important properties, or ‘features’: (a) it is stative; and 
(b) it does not take the temporal and aspectual inflexions of English. The 
first of these is connected with the fact that a sentence like The girl is being 
beautiful is unusual, if not ungrammatical (it can be interpreted by ‘recate- 
gosizing’ beautiful as nonstative, or dynamic: cf. LYONS [1968] Q 8.4.7; the 
second is connected with the fact that one says The girl was beautiful, rather 
than *The girl beautifulled. (These two properties, although they are nor- 
mally associated with ‘adjectives’, are independent. The distinction of ‘verbs’ 
and ‘adjectives’ is quite inadequate for the description of the deep structure 
of English: cf. LYONS [I19681 chapters 7 and 8.) 

The ‘dummy verb’ be is generated by the grammar of English to ‘carry’ 
the past-tense and perfective-aspect inflexions whenever a word like beautiful 
occurs as the head of the predicate: cf. JAKOBS and ROSENBAUM [1967] p. 43. 
Presumably, it is the same rule which inserts be before the ‘present participle’ 
to form the progressive aspect (e.g. The girl is dancing) and before the ‘past 
participle’ to form the perfective passive (e.g. The window is broken). Simi- 
larly with the locative and possessive sentences, (2a) and (3a), given above - 
The book is on the table and The book is John’s. The underlying predicate of 
the former is the locative phrase on the table, and of the latter what for the 
moment we may call the ‘possessive phrase’ John’s. Once again, the ‘dummy 
verb’ be is generated by the grammatical rules of English to serve as the 
‘locus’ for tense, mood and aspect in surface structure. There are other 
languages in which a quite different copula is used for possessive and locative 
sentences from that which is used (if there is one) in what we may refer to 
as ‘attributive’ sentences (e.g. The girl is beautiful). 
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Each of the five types of sentences to which we have referred so far in 
connexion with the distribution of the ‘verb to be’ in English is related to a 
corresponding noun-phrase in which the predicate is transformed to ad- 
nominal position: cf. the beautiful girl, the dancing girl, the broken window, 
the book on the table, John’s book. Standard transformational treatments of 
English generate such phrases - rather counter-intuitively, to my mind - via 
relative-clauses: cf. LEES [1960], SMITH [1961], BACH [1965], JAKOBS and 
ROSENBAUM [1967]. We need not go into this question here. 

So far so good. Let us now turn to (2b) and (3b) - There is a book on the 
table and John has a book. At first sight, these sentences would seem to be 
quite different structurally. It is obvious that the only deep-structure differ- 
ence between (2a) The book is on the table and (2b) There is a book on the 
table is that in (2a) the subject is definite, whereas in (2b) it is indefinite. In 
other words, (2b) is an alternative (and more common) version of A book 
is on the table or On the table is a book. (For this ‘expletive’ function of there, 
cf. FILLMORE [forthcoming] Q 3.5. It may be compared with the ‘expletive’ 
it studied by LANGENDOEN [1966a, b].) But (3a) The book is John’s differs 
from (3b) John has a book in the same way that (2a) differs from (2b). John 
has a book is the obligatory version of the ungrammatical * A  book is John’s. 
It will be observed that, in both locative and possessive sentences, the in- 
definite subject is ‘demoted’, as it were, from a position of prominence in 
surface-structure. The ‘expletive’ there and the verb have serve the same 
function in the syntax of modern English: they bring the locative, in the one 
case, and the ‘possessor’, in the other, into the ‘topic’-position in surface 
structure (for the ‘topic’-‘comment’ distinction: cf. HOCKETT [1958] p. 201, 
CHOMSKY [1965] p. 221, HALLIDAY 1119671, GRUBER [1967]). It is worth 
pointing out that these two syntactic ‘devices’ are employed in many other 
types of sentences: There’s a window broken, There’s a man coming to inspect 
the premises, We have guests coming to lunch, Z had my car stolen, etc. I shall 
not go further into this question, except to point out one fact. Everyone is 
aware that sentences like The window is broken are ambiguous (or, if you 
wish, ‘neutral’) as between perfective and habitual aspect. It is also well 
known that the explicit occurrence of an agentive by-phrase makes them 
habitual (as also does the occurrence of certain adverbials, e.g. regularly - 
but that is irrelevant to the present point). It is not always realized that the 
corresponding agentive form of the perfective The window is broken is in fact 
the active X has broken the window. The English perfect with have, like the 
possessive with have, and like such sentences as John has a book on the table 
(cf. There is a book on the table), originated under the operation of the 
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principle to which we have already referred - a principle which brings the 
‘person interested in the state of affairs’ into the subject-position in surface 
structure. I believe that transitive-perfective sentences occupy a double po- 
sition, as it were, in the grammar of modern English: one may generate them 
as one generates the intransitive perfectives (and this is the method favoured 
by most generative grammarians since the publication of CHOMSKY [1957]); 
or one may generate them from the ‘simple’ passive perfectives like The 
window + (be) broken. But I will not argue this point here: cf. LYONS [1968] 
Q 8.4.6. I must now move on to the more hypothetical part of my thesis (for 
I am almost inclined to say that so far I have been asserting matters of fact). 

This is, you will recall, that both existential and possessive sentences, are 
‘derived’ from locatives (I put the word ‘derived’ in quotation marks to 
remind us that we must come back to ask what is meant by ‘derived’ in this 
context). There is no need to stress the diachronic connexion between exist- 
ential and locative sentences: the use of a locative (and deictic particle) in 
English and in various other European languages - cf. there in There are 
lions ( in  Africa) - is sufficient evidence of this. In fact, the ‘existential‘ be- 
copula does not normally occur in English (or in other languages with which 
I am acquainted) without a locative complement. It might seem reasonable 
to say that all existential sentences are at least implicitly locative (the term 
‘locative’ being understood to include both temporal and spatial reference). 
Kahn has argued this point for Greek, to my mind quite convincingly; and 
he has pointed out that for the Greeks (and the ‘absolute’ use of the ‘exist- 
ential’ dvat was fairly common in Greek - hence the importance of the 
problem of ‘being’ and ‘becoming’ in Western philosophy: cf. LYONS [1963] 
p. 115) it was taken as axiomatic that ‘whatever is, is somewhere; whatever 
is nowhere is nothing’; cf. KAHN [1966] p. 258. This would suggest, as I said 
in my earlier paper [1967], that the Platonic, Aristotelian and Scholastic 
account of ‘being’ depended upon a tacit or acknowledged application of 
the ‘analogical’ mode of reasoning by way of what the Scholastics called the 
‘via negativa’ - by abstracting from the spatiotemporal implications of 
‘normal’ existential statements. That is to say God exists or There is a God 
is understood ‘analogically’ with reference to such sentences as Lions exist 
or There are lions - the deep structure of the latter sentences being, as it were, 
lions + somewhere (cf. book + on the table). 1 also suggested that this analysis 
of ‘existential’ sentences was ‘in accord with the views of a number of 
twentieth-century empirical philosophers, who would say that existential 
statements are logically equivalent to pointing, or deixis’ (i.e. lions exist is 
reducible to lions there). I was thinking of such philosophers as Russell and 
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Ayer (in my now rather hazy recollections of reading them some years ago). 
Professor J. F. Staal [personal communication] suggested that I would do 
better to compare the thesis ‘to be is to be somewhere’ with Quine’s slogan 
that ‘to be is to be the value of a variable’. All I can say on this topic - and 
I am reluctant to say even this in a gathering of specialists - is that, whereas 
there seems to me to be good evidence in natural language for the connexion 
between existential and deictic (or ‘ostensive’) sentences, I am not aware of 
any syntactic evidence that would lead the linguist to dispense with a category 
of ‘names’ (or nouns) in the syntactic analysis of any natural language, cf. 
LYONS [1966] p. 232. But I am well aware that is a very amateurish reply. 
I therefore pass the question on to the philosophers and logicians, and turn 
instead to the relationship between locative and possessive sentences. 

The first point that must be made is that the traditional term ‘possessive’ 
is far too narrow. The majority of English sentences of the form NP, - have - 
NP,, or phrases of the form NP,’s NP, have nothing whatsoever to do with 
possession, or ownership. And it is quite wrong to assume that this is the 
primary, or central, meaning of have (or the ‘genitive’) in all sentences (or 
phrases) which will support this interpretation: e.g. John has a book or 
(John’s book): cf. BENDIX [1966] pp. 37ff. The second point is that in many 
languages, as I mentioned at the beginning of this paper, what we will trans- 
late into English as ‘possessive’ sentences are quite clearly locatives (using 
a locative case, preposition or postposition): and it is interesting to note that, 
in default of any contextual information, our decision is usually influenced 
by the classification of the locative-noun as animate or inanimate (cf. BENDIX 
[1966] pp. 85, 110). In other words, book + (be) table + ‘locative’ would be 
translated as ‘The book is on the table’ and book + (be) John + ‘locative’ as 
‘John has the book’. Finally, in many languages the case or preposition of 
the ‘indirect object’ (‘dative’) is identical with that of ‘motion towards’. Give 
the book to me is related to I have the book as Bring the book here (or Put the 
book here) is related to The book is here: in the former case we say that to me 
is the ‘indirect object’, in the latter that here is ‘directional’ (or locative). But 
to me cannot be classified as either ‘indirect object’ or ‘directional’, to the 
exclusion of the other, in Bring the book to me. My hypothesis, therefore, 
is that the distinction between locatives and possessives, in languages Iike 
English in which there is a distinction, is a secondary surface-structure dis- 
tinction based, largely, on the distinction between animate and inanimate 
nouns. John has a book is the surface-structure ‘realization’ of what might 
be represented as A book (be) at-John. (For further discussion I must refer 
you to my earlier paper; for a fuller account of the theoretical framework, 
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1 refer you to my forthcoming book: cf. LYONS [1968].) I now want to discuss 
the general implications of the hypothesis that I have put forward. 

I have suggested that both existential and possessive sentences are derived 
from locatives. I must now explain what ‘derivation’ means in this context, 
since the term ‘derivation’can be interpreted in at least four ways (apart from 
the more particular sense in which it opposes ‘inflexion’). 

The first, and most obvious, distinction is between synchronic and dia- 
chronic derivation. Not so very long ago, it was quite common for linguists 
to object to the use of ‘process-terminology’ in the synchronic analysis of 
languages: cf. especially HOCKETT [I19541 ; discussed by TEETER [1964]. One 
or two linguists still maintain this attitude: cf. LAMB [1964]. But I should 
imagine that the majority now accept that considerations of simplicity or 
economy will frequently favour the derivation of one form from another in 
the synchronic description of a language. Since the advent of generative 
grammar, synchronic derivation has been given a clear interpretation in 
terms of the ordering of the rules in the system. We assume, therefore, that 
the notion of synchronic derivation is legitimate and reasonably well-under- 
stood. 

Every recent textbook of linguistics lays stress upon the necessity of making 
the synchronic description of languages independent of diachronic consid- 
erations (including LYONS [1968] 6 1.4.5). This does not mean, however, 
that there is no connexion between synchronic and diachronic derivation. 
It has long been clear that the Saussurian dichotomy between diachronic and 
synchronic analysis can only be drawn ‘macroscopically’ (i.e. with respect 
to Ptats de langue that are relatively far-removed in time). Any speech- 
community at any one time includes speakers of different ages, of different 
geographical and social backgrounds ; and their speech reflects these differ- 
ences. Despite these differences, they are generally able to communicate 
successfully with one another. The fact that they can communicate with one 
another is no doubt explained in part by the relatively high degree of re- 
dundancy in natural languages. But it may also be the case that what Hockett 
has called the ‘common core’ [1958] pp. 331ff. - the overlap in the gram- 
matical, phonological and semantic systems of different speakers - is more 
‘central’, or ‘basic’; and this may also be true, in general, of two diachroni- 
cally-distinct e‘tats de langue. 

This hypothesis forms part of a theory of language-change recently pro- 
posed by Halle, who has suggested, following Chomsky, ‘that language 
acquisition by a child may best be pictured as a process of constructing the 
si mplest (optimal) grammar capable of generating the set of utterances, of 
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which the utterances heard by the child are a representative sample’ (HALLE 
[1962] p. 64). He goes on to conjecture that the changes in the speech of 
adult speakers are accounted for by the addition or elimination of a few 
‘low-level’ rules, but that the child who ‘constructs his own optimal gram- 
mar by induction from the utterances to which he has been exposed’ (HALLE 
119621 p. 65), will not necessarily arrive at the same grammar as that 
which his parents have ‘internalized’. He may simplify it by, inter alia, re- 
ordering the rules. I do not wish to express any opinion about the validity 
of particular details of Halle’s theory of language-change, because I do not 
consider myself sufficiently competent in the field of phonology, to which it 
has so far been applied : but cf. CLOSS [ 19651. But it does seem to me to have at 
least aprima facie plausibility, and it has inspired some interesting work in the 
comparison of dialects (cf. KEYSER [1963], SAPORTA [1965], VASILIU [1966]). 

My point is simply that we should not be surprised, but rather should 
expect, that there should be some correlation between synchronic and dia- 
chronic derivation. It is for this reason that I adduced both kinds of evidence 
in support of the hypothesis I put forward in my earlier paper. At the same 
time, I would emphasize that these are in principle empirical questions. 
Where we have the historical evidence - and we have at least some of this in 
the case of the constructions I have been referring to - we can compare the 
diachronic order of development with the order of the rules in the synchronic 
description of the language at a particular period. 

The third sense in which the term ‘derivation’ might be interpreted has to 
do with what has been called the ‘ontogeny’ of language (cf. BRAINE [1963]) - 
the acquisition of language by children. A good deal of research is now being 
devoted to this question: cf., for example, MCNEILL [1966], KLIMA and 
BELLUGI [1966], and papers in SMITH and MILLER [1966], and LENNEBERG 
[1964]. As HALLE [1962] has pointed out (with an apt quotation from 
Meillet), the theory of language-change cannot be treated in isolation from 
a theory of the acquisition of language by children. It seems reasonable to 
assume (although this assumption has been challenged) that the order in 
which young children learn more complex constructions will reflect their 
decreasing ‘centrality’ in the language which they eventually come to speak. 
It would be interesting to know, therefore, whether there is any evidence of 
this nature for the hypothesis that existential and possessives derive from 
locatives. Once again, this seems to me to be an empirical question. 

The fourth sense of ‘derivation’ is one that I will merely mention: this has 
to do with the development of human language from something that was 
not human language - if, in fact, it did ‘develop’ from some non-human 
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system of communication. Much as I should like to, I doubt whether I can 
legitimately call upon those working in the field of animal-communication 
for evidence to support my hypothesis! I must be content with the notions 
of synchronic, diachronic and ‘ontogenetic’ derivation. I have assumed that 
there will be a considerable degree of convergence in the evidence that might 
be brought forward from these areas of linguistic (and psycholinguistic) 
research. 
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LEIBNIZ ON POSSIBLE WORLDS 

B. MATES 
University of California, Berkeley, USA 

When defining logical truth in terms of interpretations or models, logicians 
frequently make reference to the Leibnizian idea that a proposition is a 
necessary truth if and only if it is true of all possible worlds. The same 
idea is usually mentioned in discussions of the semantics of modal logics. 
As soon as one looks a bit further into the matter, however, it becomes 
apparent that the concepts of ‘possible world’ employed by modern in- 
vestigators are quite different from that of Leibniz himself; and although 
perhaps this is all to the good, there may be some interest in considering 
what the effect would be if a more strictly Leibnizian approach were followed. 

The present paper describes certain features of the Leibnizian conceptual 
framework and attempts to incorporate them in the semantics of a formalized 
language. Specifically, the formal system to be discussed will be a first order 
monadic predicate calculus with identity and necessity, and also with indi- 
vidual constants that do not in all cases denote. A similar system without 
the modal operator will be considered in an auxiliary way. 

Although in presenting Leibniz’s views I have done my best to stick to the 
strict historical truth, the reader who is unfamiliar with the subject should 
be warned that for the most part we are working not from treatises but rather 
from a large number of notes and other bits and pieces, written over a 
long period of time and apparently not intended for publication. It is 
unreasonable to expect such fragments to present a complete and coherent 
doctrine. There are Leibnizian statements that I do not know how to recon- 
cile with the interpretation here offered; where I am aware of these I mention 
them in footnotes or other references. It also should be mentioned at the 
outset that clearly the formalized language toward which Leibniz was 
moving would have been more like that of Lesniewski than like the Fregean 
systems employed by most logicians today, and inevitably a certain amount 
of distortion is involved in attempting to apply his ideas to a type of language 
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he never considered. Nevertheless I believe that such application is not with- 
out interest. 1 

I 

1. The general outlines of Leibniz’s doctrine of possible worlds are well 
known to every philosopher. Especially striking is the way in which matters 
of logic, metaphysics, and theology are interwoven. Leibniz tells us that the 
actual, existent world is only one of infinitely many possible worlds that 
could have existed (G I1 40).2 It is, indeed, the best of these possible worlds, 
in the sense that any alteration whatsoever, taken together with all its 
ramifications, would be a change for the worse; and of course that is why 
God chose to make actual this particular world rather than one of the 
others. The distinction between the actual world and the various other 
possible worlds is associated with certain philosophically significant classi- 
fications of statements or sentences. Instead of employing a simple di- 
chotomy between truth and falsehood, Leibniz in effect relativizes these 
concepts to possible worlds. Given a sentence and a possible world, the 
sentence is said to be true or false ofthat possible world. Thus, the sentences, 
‘Caesar crossed the Rubicon’ and ‘Adam was the first man’, are true of the 
actual world but false ofinfinitely many other possible worlds. (In fact, it turns 
out that they are true of the actual world only, as will be discussed in the 
sequel.) On the other hand, the sentence, ‘Either Caesar crossed the Rubicon 
or he didn’t’, in the sense that either it is or it is not the case that he did, is 
true not only of the actual world but of all possible worlds. Such sentences 
are called by Leibniz necessary truths (‘truths of reason’, ‘eternal truths’, 
cp. C 18, NE 714). Sentences true of the actual world but not of all possible 
worlds are contingent truths (‘truths of fact’).3 

Following the usage of Russell (R 32), we say that a sentence is true 
or false of a possible world rather than in it. The truth value of a sentence 
relative to a possible world does not depend upon what would have happened 
to the language, or to that sentence in particular, if the given possible world 
had been made actual. Thus the sentence, ‘there are no sentences’, is 

For reasons of space I have not attempted to make clear in detail the relevance of my 
discussion to the recent literature on the same subject. In the biliography, however, I have 
listed a number of books and papers that set forth ideas to which the views of Leibniz are 
highly germane. 

To decipher the citations, see the bibliography. 
Usually, however, Leibniz defines a necessary truth as ‘one the contradictory of which 

involves a contradiction’ (e.g., at S 480). 
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presumably true of some possible worlds (though not in one); and although 
no sentence is itself a necessarily existent substance or has a necessarily 
fixed sense, some sentences are true of all possible worlds. 

2. Attributes and concepts 

lf, seeking to come to closer quarters with the subject, we now raise the 
heuristically useful (though in other ways suspect) question, “What, exactly, 
is a possible world?”, difficulties appear at  once. Leibniz’s stock answer 
seems to be that a possible world is a collection of individuals. But of 
course the only actually existing individuals (i.e., the only individuals) are 
the ones that constitute the actual world, and thus we seem led to the un- 
satisfactory conclusion that the number of nonactual possible worlds is 
either 1 or 0. Many philosophers try to restore the desired multiplicity by 
saying that in addition to the actual individuals, which exist, there are also 
some entities called ‘possible individuals’, which ‘subsist’. Upon occasion 
Leibniz himself talks this way and gives the appearance of believing the 
associated doctrine (cp. G I l l  573). It seems to me, however, that his 
metaphysics offer him another and somewhat more satisfactory method of 
handling the problem. 

Consider, for example, a name like ‘Adam’, which denotes an individual 
existing in the actual world, and compare it with a name like ‘Pegasus’, 
which does not (but for which there could have been a corresponding in- 
dividual). Associated with the name ‘Adam’ there is, according to Leibniz, 
not only Adam himself but also the so-called complete individual concept 
of Adam, which is said to ‘involve’ all of Adam’s attributes, including 
everything that has ever happened to him and everything that will happen 
to him, as, for example, that he will have such and such progeny (G I1 42, 
G I1 131, G IV 437, S 475, S 477).4 With the word ‘Pegasus’, on the other 
hand, there is associated a compIete individual concept but no corresponding 
individual (cf. C 53). The concept of Pegasus (and it will be noticed that here 
and at  other essential points in this discussion we are forced to quantify or 
abstract into oblique contexts) contains all the attributes Pegasus would have 

4 In connection with this we may note that if essentialism is the doctrine that distinguishes 
‘some traits of an object as essential to it ... and other traits of it as accidental’ (QUINE 
[1963] p. 104), then Leibniz is no essentialist. It seems that in effect he chooses the alterna- 
tive of regarding every trait of an object as essential to it, and what saves the contingency 
of synthetic truths about the object is only the fact that the object might not have existed 
at all. 
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had if he had existed.5 Leibniz seems to hold that corresponding to every 
significant proper name there is a complete individual concept, which is such 
that it might be exemplified by an individual. Usually he limits the attributes 
under consideration to what he calls ‘simple’ attributes - i.e., to attributes 
that cannot be ‘analyzed’ or ‘explicated’ in terms of other attributes. Thus a 
complete individual concept is a set of (or an attribute composed of) simple 
attributes jointly satisfiable by exactly one individual ; it is ‘complete’ in 
the sense that it contains every simple attribute such an individual would 
have. Since all the attributes of an individual substance are presumed to be 
analyzable, or resolvable, into simple ones, a complete individual concept is 
complete also in the sense that every attribute a corresponding individual 
would have is ‘deducible’ from the set of attributes constituting the concept 
(G IV 432, S 475, S 478). 

All simple attributes are ‘positive’, while complex attributes are composed 
of the simples by negation and (possibly infinite) conjunction (cp. C 35). 
Leibniz says further, ‘all purely positive terms are compatible inter se’ (S 480, 
G VII 195, R 20n). It is not easy, if this is true, to see how there can be more 
than one complete individual concept. But Leibniz seems worried by a differ- 
ent difficulty. When he speaks of the ‘compatibility’ of positive attributes, he 
evidently has in mind something more like their independence; he cannot 
understand how one object’s having a positive attribute P can logically 
imply or exclude another object’s having a positive attribute Q .  He decides 
that this is one of those mysteries understandable by God but not by man. 

Some of these details are irrelevant to the exegetical suggestion I wish to 
make here, which is only that we interpret the term ‘possible world’ as 
referring for Leibniz to a set of individual concepts, and not to a set of 
individuals. In that way he can avoid introducing a shadowy realm of 
‘possible individuals’ in addition to the abstract entities (i.e., the attributes 
and concepts) already involved in his metaphysics.8 We may note that since 
in the case of the actual world there is a 1-1 correspondence between the 

5 Or, perhaps, all the attributes an object must have if it is properly to be called ‘Pegasus’, 
where the word ‘properly’ carries such a metaphysical load that only Pegasus can properly 
be called ‘Pegasus’. 
6 Apparently this does not apply to names of mathematical objects, which latter are 
considered by Leibniz to be ‘abstract’ and ‘nonreal’ (cf. C 8). 
7 One is reminded of the problem faced by Professor Carnap when, endeavoring (in 
Meaning and necessity) to explicate logical connections (including logical independence) in 
terms of his L-concepts, he found that in defining these L-concepts he had to stipulate 
explicitly that the atomic sentences of his language were inter se logically independent. 
8 There is a considerable amount of indirect textual support for this interpretation. 
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individual concepts and objects exemplifying them, there will sometimes be 
no harm in speaking of that world as though it were a collection of individuals 
(cf. G VII 303). 

3. Cornpossibility 

Individual concepts are said to be cornpossible if they are capable of 
joint realization. Thus, on the interpretation here proposed, a possible 
world is a set of mutually compossible complete individual concepts. It is 
‘maximal’ in the sense that it contains every complete individual concept 
that is compossible with the ones it contains. We are told explicitly that, 
just as there are infinitely many possible worlds, so there are infinitely many 
elements in each possible world (T 128, T 267, but cf. C 360) and infinitely 
many attributes in each individual concept (G IV 432, G V 268, NE 309). 

Distinctively Leibnizian is the view that in the actual world, and in every 
other possible world, each individual concept is interlocked with each of the 
other individual concepts in that world; each ‘mirrors’ all the others 
(GI1 112, GII40 ,  R 132, R 205, NE 716, C 15, C 19). Making the same 
point in another way, Leibniz says that each individual of the actual world is 
related to all of the others, and every relation is ‘grounded’ in simple 
properties of the things related; the other possible worlds are similarly 
constructed (T 128). 

Thus, for example, consider again the individual concept of Adam. 
Contained in this concept are one or more simple properties that are 
the ground (as concerns Adam) of the truth of the proposition, ‘Adam 
was the father of Cain’ (cp. G I1 37). If Adam had not been the father 
of Cain, Adam would not have been the same Adam; more exactly, Adam 
would not have existed (T 128). Similarly, if Cain had not been the son 
of Adam, he would not have existed. Putting the matter in still another 
way, any concept that does not contain the simple attributes that are the 
basis of Adam’s being the father of Cain is not the concept of Adam. 
The concepts of Adam and Cain are connected in this manner; so are 
those of Cain and Abel; and the same is true of every other collection of 
concepts in every possible world (cf. G I1 42 ff., T 168). 

One sees, therefore, that the relation of compossibility between individual 
concepts, unlike that of consistency between sentences or propositions, is 
transitive;g since it is also reflexive and symmetrical it is an equivalence 

This crucial point was explicitly noted for the first time, so far as I know, by RESCHER 
(Philosophy of Leibniz, p. 17). 

~- 
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relation. As noted above, the possible worlds are ‘maximal’ or ‘closed’ with 
respect to this relation; so they are just the equivalence classes into which 
the relation of compossibility partitions the entire class of complete indi- 
vidual concepts. Thus, each such concept belongs to one and only one 
possible world (G 111 573, R 66, T 371, but cf. G VII 194, T 146), and two 
concepts are compossible if and only if they belong to the same possible 
world. 

As is well known, Leibniz believed these matters to possess important 
theological aspects. He argues that in creating the actual world God did 
not have a choice as to  whether Judas should be a betrayer, but only whether 
Judas-who-was-going-to-be-a-betrayer should exist. Otherwise expressed, 
the point is that there are not two possible worlds, in one of which Judas 
betrays Christ and in the other of which he does not. God cannot be charged 
with having decided that Judas should sin. He did decide, however, that 
Judas peccaturus should nevertheless exist, “since He saw that this evil 
would be immensely outweighed by greater goods and that there was no 
better way” (C 24). ‘‘If the smallest evil that comes to pass in the world”, 
Leibniz says in another place, “were missing in it, it would no longer be 
this world; which, with nothing omitted and all allowance made, was 
found the best by the Creator who chose it” (T 128, T 10). 10 

The point under discussion is also relevant to God’s omniscience. Since 
“all things are connected in each one of the possible worlds” and “the 
universe, whatever it may be, is all of one piece, like an ocean: the least 
movement extends its effect there to any distance whatsoever” (T 128) - 
since this is so, “God sees in each portion of the universe the whole thing . . . 
He is infinitely more discerning than Pythagoras, who judged the height of 
Hercules by the size of his footprint” (T 341). This capacity of God’s is but 
the limit of a similar property Leibniz thought he had noticed in men: 
“the wiser a man is, the less detached intentions he has, and the more the 
views and intentions he does have are comprehensive and interconnected” 
(G I1 19). 

There is also a grammatical aspect to the matter. It seems evident that 
for Leibniz the plausibility of his doctrine on this point is intimately con- 
nected with a certain grammatical transformation that in most cases is 
permissible in Latin but seems to have no simple counterpart in English. 

l o  On the other side, Diodorus’s view, that everything possible happens, is put down by 
Leibniz as due to a confusion of possible with compossible with what exists (G 111 572 ff., 
E 654). 
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In general, he tells us (C 379 ,  to say 

A est B 

A B  est existens; 

Petrus est abnegans 

Petrus abnegans est existens. 

Thus every simple question about an individual is transformed into a 
question of existence. Note, for future reference, that as a special case 

is the same as to say 

e.g., to say 

is to say 

A est A 

A A  est existens, 

A est existens. 

is transformed into 

i.e., into 

It is worth noting that there is a lack of symmetry between the ways 
in which individuals and attributes of individuals are treated, as concerns 
the question whether their identity is preserved from one possible world to 
another. According to Leibniz it is not possible that a given individual 
should have had attributes other than the ones he does have. But it is possible 
that a given attribute should have characterized individuals other than 
the ones it does characterize. Thus, although no individual concept is part 
of two possible worlds, the attributes that constitute concepts are the same 
from one world to another. (Indeed, Leibniz sometimes talks as though 
every attribute is part of some individual concept in each possible world.) 
This seems to imply that an attribute may characterize an individual or 
belong to his concept without itself having the (an) attribute of characterizing 
that individual or belonging to his concept. Adam is a man, so Adam’s con- 
cept involves the attribute of manhood, but the attribute manhood does not 
have the attribute of being involved in Adam’s concept. If it did, then 
manhood would not be the same in any possible world to which the concept 
of Adam did not belong. In other words, no men could have existed other 
than the ones who do. 

(In this regard classes appear to fare like individuals and differently 
from attributes. If Adam had not existed, the class of men would not have 
been the same, although the attribute presumably would have been unaffected. 
We can say intelligibly, “Suppose that there had been fewer men than there 
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are”, and metaphysicalize this into, “Suppose that the attribute of manhood 
had belonged to  fewer objects than it does”. But if we say, “Suppose that 
the class of men had contained fewer elements than it does”, our remark 
hardly can be understood in the sense of “Suppose that this very class, which 
has so-and-so many elements, had had fewer elements”. It seems intelligible 
only when taken in the sense of, “Suppose that the attribute of manhood 
had belonged to fewer objects and so that the class determined by this 
attribute had had fewer elements than the class it actually does deter- 
mine”.) 

4. We come next to the principle, Nihili nullae proprietates sunt (“Nothing 
has no properties”), a Scholastic maxim asserted by Leibniz on many 
occasions. It does not mean, of course, that there is something called ‘nihil’ 
and which has the remarkable property of having no properties at  all. 
Nor, I believe, is its force brought out by rephrasing it as, “Everything has 
some property”, for that seems to be as completely trivial a metaphysical 
proposition as will ever be found. The point is rather that Leibniz’s advocacy 
of this principle amounts in practice to a decision to regard as false every 
atomic sentence that contains a nondenoting name. Since, for him, existence 
is a predicate (NE 401), so that ‘ A  existsl, where A is a name, is an atomic 
sentence, this in turn amounts to asserting the following: 

A singular name N is non-denoting if and only if every atomic sentence 
containing N is false. (Here cf. C 393 # 153, S 478, C 252, S 474, NE 516.) 
Other formulations of the principle and discussions of it substantiate the 

proposed interpretation. For example, in one place it appears in the form, 
Non entis nulla sunt attributa, i.e., “what does not exist has no properties”. 
And at nearly every occurrence it is found in some such context as: 

Suppose that . .. N is not A ,  N is not By N is not C, etc. : then N is called 
Nothing. From this definition there follows the common saying that 
Nothing has no attributes’ (S 472, cf. C 252, C 356, S 474). l1 

11 As the passage just quoted shows, the simple sentences Leibniz has in mind are of the 
form r A  is BT, where the argument positions may be occupied by singular or general terms. 
The formal system toward which he was moving was probably more like that of Lesniewski 
than like the Fregean-style predicate calculi employed by most logicians today. When he 
says r N  is Nothing1 he means in effect not only that N denotes nothing at all if N is a 
singular term (like ‘Pegasus’), but also that N denotes the empty set if N is a general term 
(like ‘man twenty feet tall’) (cf. COUTURAT [1901] p. 348 n2). Consequently, it would be more 
accurate to say that part of the point of Non entis nulla attribiira sunt, as understood by 
Leibniz, is that a singular name is nondenoting if and only if every atomic sentence 
containing it is false. 
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Leibniz explicitly rejects the possibility of saying that atomic sentences 
containing nondenoting terms are neither true nor false. In one place, where the 
context shows that only atomic sentences are under consideration, he states : 

In order, namely, to keep (the principle) that every proposition is 
true or false, (I consider) as false every proposition that lacks an existent 
subject or real term (C 393). 

Leibniz also makes it clear that although such atomic sentences are false, 
their negations and many other compounds containing them are true. He 
goes on to say that while such a procedure may not be consonant with ordi- 
nary usage, there is no reason for him to care about that, for he is engaged 
in finding a suitable notation (propria signa), not in trying to establish the 
application of existing terminology (recepta nomina) (loc. cit., cf. C 188, C 
272, 273). 

The idea of considering atomic sentences false if they contain singular 
terms that fail to name has of course occurred to many other philosophers 
and logicians.12 No doubt the most obvious objection to this procedure is 
based upon the consideration that what is expressed by an atomic sentence 
in one language may be expressed by a complex sentence in another. Or, 
even in the same language, there may be cases in which an atomic sentence 
seems synonymous with a sentence that is not atomic. Thus it might be felt 
awkward to declare that ‘Zeus is bald’ is false while at the same time in- 
sisting that ‘Zeus does not have hair on his head’ is true. Probably Leibniz’s 
reply to this sort of objection would be to reiterate his view13 that in the 
realm of thought, as in that of language, there is a complex and a simple, and 
that the ideal language he is seeking will associate signs with thoughts in 
such a way that signs for complex thoughts will be composites of the signs 
for their parts. “The law of expressions is this”, he says, “that the expression 
for a given thing shall be composed of the signs of those things the ideas of 
which compose the idea of the given thing”. So the point is that in an ideal 
language, to which alone Leibniz intends his considerations strictly to apply, 
atomic sentences express the ‘atomic thoughts’, and hence difficulties of the 
type mentioned above cannot arise. l4 

_ _ _ _ _ _ ~  
However, COUTURAT (loc. cir.) is surely mistaken in supposing that by ‘nihil’ Leibniz 

always meant the empty set and hence should have defined it as ‘the term that is included in 
every term’. Couturat also argues mistakenty that for Leibniz non-ens means the impossible; 
on this cf. Parkinson, Papers, p. lvii. 
12 Cf., e.g., QUINE, Logical Point of View, pp. 166-7. 
13 A view that is as unintelligible as it is common. 
14 Also, Leibniz thought that the more perfect a language is, the more of its inferences will 
be formal; from this point of view he says he prefers binary notation in arithmetic, 
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Note that once again we have the consequence that if the singular term 
A fails to name, then the sentence ‘ A  is A1 is false. 

5. Identity 

Leibniz’s views on identity are central to his entire metaphysics. His most 
widely known pronouncement on this topic is his principle, “Things are the 
same if it is possible to substitute one for the other everywhere salva veritate” 
or “That A is the same as B means that the one may be substituted for the 
other in any proposition whatsoever salva veritate”. It is usual to point out 
that these (and other) formulations given by Leibniz seem to involve a 
confusion of sign and object (cp. C 35, C 72, C 240, NE 279 ff.j.15 Perhaps 
he should have said something like one of the following: 

(1) For any names N and N ’ :  the sentence ‘ N =  N ‘ l  is true if and only if 
N and N’ are everywhere interchangeable salva veritate: or 

(2) For any objects A,  B :  A is identical with B if and only if A and B have 
all their attributes in common; or 

(3) For any objects, A ,  B :  A is identical with B if and only if every 
predicate expression that is true of A is true of B and conversely. 

In connection with the features of Leibnizian philosophy under discussion 
here, the seemingly slight differences among these three formulations are 
by no means without important effect. Principle (1) leads to the result that 
every sentence of the form ‘ N =  N l  is true, whether or not N denotes an 
object existing in the actual world, i.e., an object. (And it is reasonably 
clear that for Leibniz not all names denote.) On this basis ‘Pegasus = 
Pegasus’ would be true of the actual world even though Pegasus does not 
exist. The initial quantifiers of formulations (2) and (3), on the other hand, 

because e.g. ‘3 x 3 = 9’ can be demonstrated by 
1 1  
1 1  
1 1  
- 

11 
iooi 

cf. KNEALE and KNEALE, Development, pp. 327 ff. 
15 See also QUINE, Word and Object, pp. 116, 117. Quine mentions formulations by 
Aristotle and Aquinas. Cf. also Sextus Empiricus, Hyp. Pyrrh. 11, p. 229. The question 
whether Leibniz was in fact guilty of a use-mention confusion is not quite easy, since it 
could be argued that he was defining the identity of concepts (not objects) in terms of some 
sort of ‘interchangeability’ of these in propositions (not sentences). At NE 379 ff., Leibniz 
inveighs against ‘confusing words and things’. 
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run over (existent) objects; thus these forms of the principle yield no con- 
clusions about the truth or falsity of sentences such as the one just mentioned. 
As indicated earlier, other statements by L.eibniz suggest that he was inclined 
to regard these identity sentences as false of the actual world, and, in general, 
to think that r N =  N l  is to count as false of any possible world not containing 
the concept associated with N .  Indeed, this follows (as he notes) from the 
doctrine of the previous section plus the plausible assumption that self- 
identity is a simple attribute. Furthermore, at several places Leibniz ex- 
plicitly interprets ‘ABZAB’ as ‘AB does not exist’ (C 393; cf. K 181). It 
must be acknowledged, however, that on one occasion he adds the curious 
remark, “When everything is taken into consideration, though, it is perhaps 
better to say that we can indeed always write A =  A but that when A does not 
exist nothing useful can be concluded therefrom”. 

Often the identity of things and the identity of their concepts seem im- 
perfectly distinguished by Leibniz, and 1 am inclined to think that this is 
because his doctrine implies that individuals (of the actual world) are 
identical if and only if their corresponding individual concepts are identical. 
In a very interesting passage he writes: 

... Thus ‘Alexander the Great’ and ‘King of Macedonia’ and ‘Con- 
queror of Darius’ are intersubstitutable, and so are ‘triangle’ and ‘trilateral’. 
Furthermore, such identities can always be demonstrated by resolution . . . 
Suppose that A and B are terms, and that the definition of each is substi- 
tuted for it, and the definitions of (resulting) parts are substituted for 
them, and so on until primitive, simple terms are reached; then if one 
comes out formally the same as the other, A and B coincide or are virtually 
identical ... For changes made by substituting a definition for what is 
defined, or vice versa, preserve truth ... So A coincides with B if it is 
possible to substitute one in place of the other salva veritate, or if when 
one analyzes each by substituting values or definitions in place of the 
terms the same thing (where ‘same’ is meant formally) results in both 
cases (C 362). 

Part of the point of this appears to be that two terms A and B are inter- 
changeable salva veritate just in case they can be resolved into one another 
by substitutions of a sort that preserve truth when made in sentences (e.g., 
by substituting definiens for definiendum, or vice versa). For any such 
interchange could be accomplished also by the same sequence of substitutions 
that carries A into B. Assuming that A and B can be resolved into one another 
in the way described just in case the associated concepts are identical, then 
this is still another indication that for Leibniz individuals of the actual 
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world are identical if and only if their concepts are identical (cf. S 307).16 
As an alternative to his definition of identity in terms of substitutivity 

salva veritate Leibniz often defines it as follows: A is the same as B if and 
only if A is B and B is A (C 382, S 479). We noted earlier that as Leibniz uses 
variables the substituends include both singular and general terms (this is, 
of course, syntactically easier in Latin than in English). Thus he applies the 
just-mentioned definition not only in cases like 

but also in cases like 
Octavianus et Augustus idem est, 

Felix et pius idem est. 

In dealing with the latter sentence he pIainly takes 

Pius est ,felix et felix est pius 

Omnis pius est felix et omnis felix est pius. 
to be equivalent with 

I am convinced that this ambiquity (if we may somewhat incorrectly 
call it that) in Leibniz’s use of variables is partially responsible for his 
ambivalent attitude toward ‘A  is A1 as a law of logic. When A is general, 
this proposition has for him no existential import, amounting to ‘Whatever 
is A is A’. When A is singular, on the other hand, Leibniz is inclined to deny 
‘ A  is A 1  if A fails to name, on the ground that what does not exist has no 
attributes, including, presumably, the attribute of self-identity. In setting up 
the formal calculus embodying Leibnizian ideas we shall let the sentence 
p z 0 come out false for nondenoting /I, but at  the same time we shall make 
recompense by including as valid such sentences as A a(c(=pt+a=~)  and 
A a(Bat,Ba) (cf. NE404  ff., ‘Everythingis what it is ... A is A’, S472, C266, 
C 186). 

Before we leave the topic of identity it is interesting to observe in passing 
that Leibniz himself drew attention to the kinds of cases in which what we 
now call ‘Leibniz’s Law’ fails, namely those involving oblique or referentially 
opaque contexts. He puts it this way: 

If A is B and B is A ,  then A and B are called the same. Or, A and B are 
the same if they can be substituted for one another everywhere (excepting, 
however, those cases in which not the thing itself but the manner of 
conceiving the thing, which may be different, is under discussion; thus 

16 The favorite example, that no two eggs are in all respects alike (cf., e.g., S 476) may be 
found also in Sextus Empiricus, Adv. Math. VII 409. 
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Peter and the Apostle who denied Christ are the same, and the one term 
may be substituted for the other, unless we are considering the matter in  
the way some people call ‘reflexive’: e.g., if I say ‘Peter, insofar as he was 
the Apostle who denied Christ, sinned’, I cannot substitute ‘Peter’ and say 
‘Peter, insofar as he was Peter, sinned’) (S 475).17 

The analysis here offered by Leibniz is, in its essentials, very much like that 
of Frege, who said, “in indirect discourse we talk about the senses of the 
words”, and that the sense of a word “contains the manner and context of 
presentation” of the designated object. Leibniz’s expressions de re and de 
modo concipiendi also suggest the medieval distinction of modalities de dicto 
and de re, a distinction with which he was doubtless familiar. 

Another, somewhat less clear, statement to the same effect is the following. 
Aoo B means that A and B are the same or may be substituted for one 

another everywhere (unless this is not permissible, which happens in 
those cases in which a term is presented for consideration in a certain 
respect; e.g., granted that Triangle and Trilateral are the same, still if you 
say ‘A triangle, as such, has (an angle-sum of) 180 degrees’ it is not 
permissible to substitute ‘trilateral’, since part of the content lies in that 
(way of saying it) (C 261)). 

6. Relations 

In a passage that if often quoted, Leibniz says: 
You will not, I believe, admit an accident which is in two subjects at 

once. Thus I hold, as regards relations, that paternity in David is one 
thing, and filiation in Solomon is another, but the relation common to 
both is a merely mental thing, of which the modifications of singulars are 
the foundation (G I1 486). 

This remark usually is taken to mean that according to Leibniz there is 
not, in addition to individual substances and their attributes, a third category 
of metaphysically fundamental entities called ‘relations’. The doctrine seems 
to be that the truth of each true sentence of the form ‘ A  is BT, where A 
is a singular term and B expresses a simple attribute, depends in almost a 
pictorial way upon the existence of an extralinguistic complex consisting of 
an individual substance’s ‘having’ that attribute (C 241), and that the truth 
of all other kinds of sentences is to be reduced somehow to the truth of these. 

17 My delight in finding this passage is somewhat mitigated by the fact that, according to 
what I am propounding as ‘standard’ Leibnizian doctrine, Peter wouldn’t have been Peter 
if he hadn’t sinned. 
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In the case of negations, conjunctions, generalizations (cp. C 252), and 
even modalizations built up out of such materials it is not too difficult to 
make a plausible guess about how the reduction would be accomplished. 
And presumably if B expresses a complex attribute analyzable into simple 
attributes B, ,  B,, ..., B,, ... the truth of ‘ A  is B7 would be the same as that 
of some combination, possibly very complicated but hopefully truth-func- 
tional, of the sentences ‘ A  is Bil. But sentences of the form A g B ,  with A 
and B singular terms and 9 a relational expression, seem to cause particular 
difficulty for Leibniz. He is not content to take the trivial way out that just 
rereads or redescribes the sentence 

David is the father of Solomon, 

for example, as ascribing the attribute ‘father of Solomon’ to David and 
the attribute, ’having David as father’, to Solomon; it is clear, to use some 
more recent terminology, that he would not be inclined to accept every open 
sentence with one free variable as expressing an attribute. 

We know very little about how Leibniz did propose to explicate relational 
sentences in terms of the sentences for which he supplied fundamental 
metaphysical counterparts. For a few special cases we have analyses or hints. 
He says that 

Peter is similar to Paul 
is reducible to 

Peter is now A and Paul is now A ,  

for some A ,  and he uses this ‘reduction’18 to explain how the former has as a 
consequence the sentence 

Paul is similar to Peter (C 244). 

In line with the definition of identity in terms of substitutivity, the truth of 
an identity sentence, like 

Paris = Alexander 

presumably would depend upon whether all sentences of the form ‘Paris 
is AT, with A expressing a simple attribute, have the same truth values as 
the corresponding sentences with ‘Paris’ replaced by ‘Alexander’ (plus, 
as argued above, the condition that ‘Paris’ denotes). Further there are 

18 Of course, unless the quantifier is understood as part of the analysans, no reduction has 
been given. By using a free variable, Leibniz leaves us guessing. 
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indications that sentences of the form 

A is the one and only B 
were to be analyzed as 

A is B and, for every C, if Cis B then A is C and C is A (C 239). 

Leibniz’s treatment of the sentence 

Paris loves Helen 

is especially significant. It shows that he contemplated making essential 
use of non truth-functional operators in his reductions. For this sentence he 
offers 

Paris loves, and by that very fact (eo ipso) 
Helen is loved (C 287). 

For the still more complicated case 

Titius is wiser than Caius 

he produces the remarkable (multiply opaque) analysis : 

Titius is wise, and qua wise is superior insofar as 
(quatenus) Caius qua wise is inferior (C 280). l9 

It is difficult for a nonmetaphysician to appreciate Leibniz’s motivation 
for these linguistic contortions, but at any rate one can see that he hoped 
to analyze relational sentences by means of sufficiently complex (and not in 
general truth-functiona1)combinations of the sentences he accepted as atomic. 

7. Summary 

According to the present interpretation, then, possible worlds are maximal 
sets of mutually compossible complete individual concepts, and a complete 
individual concept is a maximal set of (or a ‘maximal) attribute composed of) 
compatible simple attributes. How two such concepts can fail to be com- 
possible is a great mystery, according to Leibniz, but he clearly holds that 
there are infinitely many possible worlds, each of which contains infinitely 
many concepts. All the concepts of a given possible world are interlocked 

16 Leibniz proposes to eliminate adverbs in a similar way: ‘Petrus stat pulchre = Petrus 
est pulcher quatenus est stans’ (C 242). ‘Omnis B est C’ is analyzed as ‘Si A est B etiam 
A est C’ (C 252). 
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with one another; each concept belongs to exactly one possible world. Each 
significant singular term is associated with a complete individual concept. 
A sentence of the form ‘A is B l ,  with singular A,  is true of a possible world 
W if and only if the individual concept associated with A belongs to Wand 
contains the attribute expressed by B (C 85, S 474). Thus in particular, if 
the individual concept associated with A does not belong to W, then the 
sentence is false (“what does not exist has no attributes”). Even ‘ A  is AT,  
with singular A ,  is false of possible worlds to which the individual concept 
associated with A does not belong. An identity sentence rA=B7, i.e., 
‘A  is B and B is A1, with A ,  B singular, is true of a possible world if and only 
if the individual concepts associated with A and B are the same and belong to 
that possible world; otherwise it is false. A generalization is true of a possible 
world if and only if all of its instances, with singular terms for concepts 
belonging to that world, are true of that world.20 And a sentence is a 
necessary truth if and only if it is true of all possible worlds. 

8. On this basis we can go some distance toward constructing a Leibnizian 
semantics for a system of quantified modal logic with identity and individual 
constants. As a first step we briefly describe a nonmodal system that in most 
respects is like ordinary systems of predicate logic but does not assume that 
every interpretation assigns a denotation to each individual constant. In this 
system an atomic sentence is false under a given interpretation if it contains 
an individual constant to which that interpretation assigns no object as 
denotation. 

For definiteness, let the formalism be the result of adding individual 
constants to the formalism of TARSKI [1965]. Thus an atomic formula is 
the concatenation of a predicate of rank n 2 1 with an n-termed sequence 
of individual symbols, i.e., variables and/or individual constants ; the class 
of formulas is the smallest class including the atomic formulas and containing 
14, (c#I-++), and A a4 whenever it contains 4 and $, for any expressions 
4, + and variable a. A formula in which no variable occurs free is called a 
sentence. For any formula 4, variable a, and individual symbol p, &a/p is 
the result of replacing all free occurrences of a in 4 by occurrences of p. 

An interpretation is an ordered pair ( K ,  @), where K is a nonempty set 
and @ is a function that assigns to each predicate of rank n a subset of “ K  

Zo I thought T had textual support for this, but I can no longer find it. 
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(and to the identity predicate, in particular, the identity relation among 
elements of K ) ,  and to each individual constant either nothing at all or an 
element of K. 

Given an arbitrary sentence # and an interpretation 9= <K, @), # will be 
true or false relative to that interpretation (9-true or 9-false). These notions 
are defined as follows. Let $, x be formulas, a a variable, and f l  the first 
(in some fixed ordering) individual constant not occurring in 4. 

(1) If # is atomic, then # is $-true iff 5 assigns elements of K to all 
individual constants occurring in # and these elements (when taken in the 
order in which their corresponding constants occur in 6) are related by the 
relation that & assigns to the predicate of q5 ;  

(2) If # is 7 $, then # is $-true iff $ is not 9-true; 
(3) If q5 is ($-+x), then # is9-true iff either $ is noty-true or x is9-true, 

(4) If # is A a$, then # is 9-true iff $u/P is 9’-true for every 8-variant 

Further, # is $-false iff # is not 9-true. 
(Where p is any individual constant, an interpretation 9’ is a p-variant of 

9 iff 9’ makes an assignment to f i  and f and 9‘ are the same or differ at  
most in not assigning the same thing to p. Note that ‘is a 8-variant of’ is 
not symmetrical.) 

A sentence # is universally valid if q5 is $-true for every interpretation 4. 
Complete sets of axioms for the universally valid sentences of this system 

are not hard to find. One such set may be obtained by making relatively 
minor modifications in the elegant set for the system 2 ,  of KALISH and 
MONTAGUE [ 19651 (cf. TARSKI [ 19651) for ordinary predicate logic with 
identity. Namely, for all formulas (6, $, x, variables u,  and individual 
symbols p, y we take all universal closures of the following as axioms: 

or both; 

9l of 9. 

( 1) (4  - $)-W -x> 4 4  -XI> ; 
(2) (1#-4)+#; 
(3) #-+(l#+$h 
(4) A a(#-$)-+( A a#-+ A at(/); 
(5) #+ A u#, where u does not occur free in #; 
(6) 1 A u i u r p ,  where 
(7) /I=?+(#-+$), where 4, $ are atomic and $ is like # except for 

(8) 6-1 A u i a s 8 ,  where # is atomic and 0 is an individual constant 

The single rule of inference is modus ponens. 

is a variable; 

containing an occurrence of y where q5 contains an occurrence of p ;  

occurring in 4. 
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The essential differences between this set and the set for the system Z5 
are the addition of axiom-schema (8) and the restriction of the axioms (6)  to 
those cases in which /? is a variable. If ‘1 A a i  a = p’ is read ‘/? exists’, it 
will be seen that the former of these changes reflects the Leibnizian principle 
that “What does not exist has no properties” and that the latter expresses 
our decision not to presuppose that every individual constant denotes. 

Completeness may be proved along the lines of Henkin’s proof, as formu- 
lated e.g. in MATES [1965]. Relative to that formulation the principal change 
is that w-completeness must be redefined in such a way that a set of sentences 
r is a-complete iff, for every formula $ and variable a, if i A a 1  $ belongs 
to r then there is an individual constant /? such that $ M / / ?  and belong 
to r. This leads to the result that, if r is maximal d-consistent and o-complete, 
then A cc$ E r  iff & / / ? E r  for every individual constant /? such that p=/? E r .  

Comparison of the foregoing axioms with the axioms for the Kalish- 
Montague system C, shows that (i) every individual-constant-free theorem 
of ordinary predicate logic with identity is a theorem of the present system, 
and (ii) every theorem of this system is a theorem of ordinary predicate logic 
with identity. From the semantic characterization of the theorems it is 
evident that the rule of substitution for predicates does not hold; for example 

F a + i  A x 7  Fx 

i F a - + i  A x i i F x  

is not. Intuitively, if the individual a has the property F, then something has 
F, but if it is not the case that the individual a has F, the reason might be 
that a does not exist at all. 

is a theorem, but 

9. One could construct a more-or-less Leibnizian system of predicate logic 
by adding modal operators to the foregoing revised quantification theory, 
in the manner suggested in KRIPKE [1963,2], p. 89n. But in order to stay 
somewhat closer to the Leibnizian framework we shall formulate our 
semantics in terms of attributes and concepts, abandoning (partially) the 
relatively secure basis of sets. 

For this second system the formalism will be the same as for the system 
described above, except that (i) a necessity-symbol i-J is added, and (ii) all 
predicates other than the identity predicate are of rank 1 .  

A complete individual concept is a set of simple properties satisfiable by 
exactly one thing and containing all the simple properties that would belong 
to that one thing if it existed. The set of all complete individual concepts and 
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the set of all simple properties are denumerably infinite. Cornpossibility is 
an equivalence relation in the former set, partitioning it into equivalence 
classes, called possible worlds. There are denumerably infinitely many 
possible worlds, each containing infinitely many concepts. The nonlogical 
conkants of our language are interpreted, once and for all, as follows: (i) the 
set of individual constants is mapped onto the set of complete individual 
concepts; (ii) the set of singulary predicates is mapped onto the set of simple 
properties. (If p is an individual constant, let C(p) be the complete individual 
concept associated with f l ;  if 8 is a singulary predicate, let C(0) be the 
simple property associated with 0.) 

We define the relation true of, for any sentence 4 and possible world W, 
as follows. Let $, x be formulas, CI a variable, p, y individual constants, 
0 a predicate other than the identity predicate. 

(1) If 4 is OD, then + is true of Wiff C(~)EC(P) and C ( ~ ) E  W ;  
(2) If 4 is P = y ,  then 4 is true of Wiff C(fl)=C(y) and C ( ~ ) E  W ;  
(3) If 4 is i$, then + is true of W iff $ is not true of W ;  
(4) If 4 is ($+x), then 4 is true of W iff either $ is not true of W or x is 

( 5 )  If 4 is A a$, then + is true of Wiff t+hcr/p is true of Wforeveryindividual 

(6 )  If 4 is a$, then 4 is true of W iff $ is true of every possible world W‘.  

A sentence 4 is a necessary truth iff 4 is true of all possible worlds. 
Due to the open-endedness and perhaps the vagueness of the foregoing 

semantics, there can be no question of constructing a complete set of 
axioms for the system. For example, nothing that has been said would deter- 
mine in a particular case whether ++$, with +, $ atomic sentences, was a 
necessary truth or not. 2 l  We are able, however, to characterize certain large 
classes of necessary truths syntactically and to provide counterexamples 
for various principles (e.g., for the so-called ‘Barcan formula’ - MARCUS 
[1946] - and its converse) that have sometimes been proposed as laws of 
modal quantification theory. Note that such counterexamples can always 
be made ‘intuitive’ - relative to Leibniz’s philosophical outlook, at  least - 
via the definition of ‘true of’ given above.22 

true of W, or both; 

constant p such that C@)E W; 

21 Thus, for each individual constant j3 there are infinitely many predicates 0 such that 
j3 = j3 + 0j3 is a necessary truth (cf. NE 309) and infinitely many for which it is not a 
necessary truth. 
22 As Mrs. Marcus (MARCUS [1963]) has said, “ ... the polemics of modal logic are perhaps 
best carried out in terms of some explicit semantical construction”. 
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A. Some classes of necessary truths. 
(1) All the universally valid sentences of the earlier system that are 

sentences of the Leibnizian system are necessary truths; and in fact all 
sentences derivable by modus ponens from sentences of types (1)-(8), with 
4, $, x now taken as arbitrary formulas of the Leibnizian system, are 
necessary truths. 

(2) For any formulas 4, $: all universal closures of (i) 04-4, (ii) 
0(~+$)-(04-0$), and (iii) i O $ - + O i  04 are necessary truths, and 
if 4 is a necessary truth, so is 04. Therefore, the Leibnizian system includes 
the Lewis system S5 ,  cf. PRIOR [I9621 p. 312. 

(3) All theorems of the ‘quantified M’ system of KRIPKE [1963, 21 are 
necessary truths. 

(4) For any formulas 4,  $ and individual constants p, y :  all universal 
closures of p= y+ 0 (@-+$) are necessary truths, where $ is like 4 except for 
having occurrences of y at one or more places where 4 has occurrences of p . 2 3  

( 5 )  For any individual constants p, y and possible world W :  p= y is true 
of W iff -I A O I ~ ~ E B  is true of W and all sentences (epw8y)  are true of W 
for all singulary predicates 8. 

(6) Where 0 ,  $, &, and t-$ are defined in the usual manner: 
(i) For every individual constant 0, 0 
(ii) For every pair of individual constants f i ,  y, 

(iii) For any  individual constants pl,. . ., p, 

(iv) For any variables a l ,  ...? a,, 

is a necessary truth. 

O ( p - p & y - y ) - O ( p ~ p ~ y _ y )  is a necessary truth. 

O ( p 1 f p 1 & p 2 ~ p P 2 & . . . & p s f P n )  is a necessary truth. 

~ ~ ~ ~ . . . a , ( ~ ( ~ ~ a ~ & . . . & a ~ ~ a ~ & . . . & c c , _ , f a ~ )  is a necessary truth. 

B. Counterexamples, etc. 
(1) Specification, of course, does not hold; e.g., Aa8a-8p is not in 

general a necessary truth, for variable a, individual constant 8, and singulary 
predicate 8. 

(2) Generalization on individual constants does not hold; i.e., it is not 
the case that for every formula q5, variable a, and individual constant p, 
if q5alP is a necessary truth and does not occur in 4, then A a+ is a necessary 
truth. Counterexample : let individual constants fl, p‘ and possible worlds 

23 It seems that paradoxes like the one about ‘(9 > 7)’ can best be handled in this 
sort of system (expanded to include nonlogical predicates of rank greater than 1) by adding 
a Russellian theory of descriptions with scope always taken as innermost. 



LEIBNlZ ON POSSIBLE WORLDS 521 

W, W’, be such that C(~?)E W, C(/~ ’ )EW‘ ,  Wf W‘. Then o(j?fj?&j?’=j?’) 
is a necessary truth, but A cc 0 (j? $ j? &a = LY) is not, since it is not true of W. 
Thus 

Adam doesn’t exist but Pegasus does 

is true of a possible world, and so 

0 (Adam doesn’t exist but Pegasus does) 

is true of the actual and all other possible worlds, i.e., is a necessary truth. 
But 

A x  0 (Adam doesn’t exist but x does) 

is false of the actual world because Adam is one of the values of the variable; 
thus the specific case is a necessary truth but the generalization is not. 

(3) The so-called Barcan formulas l \a 04-0 Acctp are not in general 
necessary truths. If C(~?)E W, then Acc 0 (LYSLY-~?=/?) is true of W, but 
0 ACY (~~=cc++ j?= j? )  is not true of any W. E.g., it is true of the actual world 
that every object in it exists in those and only those possible worlds in which 
Adam exists, but it is not true of the actual world that in every possible 
world all the objects exist if and only if Adam exists. The converses of the 
Barcan formulas fail, too: 0 A LY a= cc is a necessary truth but Acc Ua-cc 
is not; i.e., in each possible world everything is self-identical, but nothing 
in the actual world is self-identical in any other world, since it does not even 
exist in any other world. There is in general no commutativity of quantifiers 
with modal operators. 

(4) j?= y-f y ,  for individual constants j?, y is not a necessary truth, 
nor are its generalizations. 

Although, as mentioned above, there can be no question of axiomatizing the 
set of necessary truths (since ‘necessary truth’ has been not defined exclusively 
in terms of the logical form of the expressions concerned), we could introduce 
a set of ‘formally necessary truths’ or ‘truths that are necessary by virtue of 
their form’ and ask whether axioms can be found for that totality. One 
could say, for example, that 4 is aformally necessary truth if and only if is a 
necessary truth and every result of replacing distinct nonlogical constants in tp 
by distinct nonlogical constants is again a necessary truth. I do not know how 
or even whether axioms can be found for this subset, but clearly the sentences 
6 (i)-(iv) above (which seem collectively to express the crucial facts that every 
individual concept belongs to  some possible world, no individual concept 
belongs to  more than one possible world, there are infinitely many possible 
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worlds, and each possible world contains infinitely many individual con- 
cepts) are among the promising candidates. z4 
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GANGESA ON THE CONCEPT OF UNIVERSAL PROPERTY 
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Inference in Indian logic can be described as the establishment of an 
object through another already known object by establishing a connection 
between these two. That which we are going to prove by inference will be 
called probandum (sddhya), while the object by which we are going to prove 
it will be called probans (hetu). And the connection or association between 
these two objects is empirically established by the inductive method. We 
can define theclass of agreeinginstances (sapakaa) as the classa of all objects 
x such that the probandum is present in x. In symbols: 2 (x possesses the 
probandurn). Similarly the class of disagreeing instances (vipaksa) can be 
defined as class /3 of all objects x such that the probandum is absent from x. 
In symbols: 2 - ( x  possesses the probandum). Thus, any member of a is a 
sapukja1 and any member of /3 is a vipukFa. Now, the probans as a property 
can be present in all, some or no members of a. Similarly, the probans can be 
present in all, some or no members of p. Combining these two sets of cases 
we get nine possibilities, of which only two cases are cases of valid inference2. 

~ ~~ 

There is, however, one difficulty here. Thepakxa, i.e., the subject of inferential conclusion, 
possesses also the probandum, if the inference is a valid one. Thus, pakJn should also be 
a member of a. But to avoid a petitio principii, the pakFa should be considered as being in 
a twilight zone during the process of inference. In other words, we are not sure whether the 
probandurn is present in the p a k p  or not. DiIinrTga defined pakJa as: scidhyatvenepsitah 
pakso viruddhdrthcinircikikytu~ (quoted by VACASPATI [1925] p. 273). In his system,gakJa differs 
fromsapak:a in that in the latter the probandumis already established while in the former 
the probandum is not yet established. See DINNAGA [1965] Chapter 111, verse 18cd and the 
vikytti; Kanakavarman (fol. 130a-l30b), Vasudhararaksita (fol. 45a). I owe this information 
to my friend Prof. M. Hattori. Navya-nytiya tackled this problem by its doctrine of 
pakjatci. See MAWIKA~THA [1953] pp. 109-115; GANGESA [1926] p. 1079-1176. 
a The second and the eighth in Ditintiga’s table are valid forms of inference. In one case 
the probandum and the probans are equal in extension, in the other case the class of 
probans is included under the class of probandum. See next note. 
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The above is a rough sketch of Dinniiga’s system of logic as found in 
his Hetucakradamaru (c.A.D. 500).3 For our purpose it is important to note 
here that one of the nine possibilities demands that the probans be present in 
all members of a as well as p. Now, if c( and p are taken to be two comple- 
mentary classes in the sense that taken together they exhaust the whole 
universe of discourse, then the probans in the above case will be a universal 
property which is present everywhere. UDDYOTAKARA [1915] (c.A.D. 580) 
argued that in some cases of inference even our probandum can be a uni- 
versal, i.e. everpresent, property. This implies that with regard to certain 
cases of inference class p may be a null class, class a being a universal 
class 4. 

In Navya-nyiiya school, however, the concept of everpresent property 
appears to have been taken very seriously. Navya-nyiiya writers like Valiabha, 
Manikantha and GangeSa, rejected all such definitions of vykpti (invariable 
concomitance between the probans and the probandum) as were based on 
the notion of nondeviation (avyabhicaritatva) because such definition would 
be inapplicable to cases of inference with an everpresent property as the 
probandum 5. The siddhkntalakSana ‘conclusive definition’ of vyipti is formu- 
lated in such a way that it becomes logically applicable to all cases of infer- 
ence including those in which some everpresent property is the probandum 6.  

Although there had been important and significant developments in logical 
theories (in India) during the period between Dinniiga and GangeBa (c.A.D. 
1325), my main concern in this paper will be with the position of GangeSa. 

First, let me point out that an everpresent property, in the sense I am using 
it here, cannot be identified with the notion of universal class for the follow- 
ing reason. Using the convention of modern class logic we can say that 

This is a very short but illuminating manual of logic written by Didniiga. It consists of 
a table of nine forms of inference and only 17 explanatory verses. The Sanskrit original is 
lost but the Tibetan translation is available. 
4 I am using the term “everpresent” to translate the Sanskrit “kevakInvuyin” although 
there is a touch of neologism here. “Omnipresent” and “ubiquitous” are not acceptable 
for this purpose because they express just the opposite sense. The physical space, for 
instance, is omnipresent or ubiquitous because everything exists in space, but it is not 
kevukinvuyin. “KevukInvayin” means a property which is present in everything. “Unne- 
gatable” (used by Ingalls) may be all right inspite of the periphrasis, but I fear that it is 
more suitable to be an adjective of “term” rather than of “property”. I refrain from using 
“universal property” in order to avoid confusion with “universal class”. 
5 Thus see VALLABHA [1927-19341 (c.A.D. 1175) p. 500, line 1; M A ~ K A N T H A  [1953] 
(c.A.D. 1300) pp. 45-46; and GANGESA [1926] p. 141. For an English version of the 
argument see INGALLS [1951] pp. 61-62, 86 and 151. 

See MANIKA~THA [1953] p. 62; and GANGESA [1926] p. 391. Ingalls gave a rough idea 
about the structure of this definition (INGALLS [1951] p. 62). 
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classes with same members are identical. Thus, ‘o = w” may be written as a 
convenient abbreviation of ‘ ( x )  ( x e o -  = -xEo’)’.  But a property or an at- 
tribute, in its non-extensional sense, cannot be held to be identical with 
another attribute even ifthey are present in all and only the same individuals 7. 

Properties are generally regarded by the Indian logicians as nonextensional 
inasmuch as we see that they do not identify two properties like anityatva 
(noneternal-ness) and krtakatva (the property of being produced or caused) 
although they occur in exactly the same thingss. In Udayana’s system, 
however, such properties as are called j i t i  (generic characters) are taken in 
extensional sense because Udayana (c.A.D. 1025) identifies two j&i proper- 
ties only if they occur in the same individualsg. 

Following the older tradition of the Nyiiya school (noted in Uddyotakara), 
GarigeSa classified the types of inference as follows lo: 1. kevakinvayin, cases 
in which the probandum is an everpresent property, 2. kevalavyatirekin, 
cases in which the probandum is a property unique to the subject (pakFa) so 
that no agreeing instances are available, 3 .  anvaya-vyatirekin, cases in which 
the probandum is a property present, in some examples but absent from 
others. The third type includes the commonest forms of inference where 
both classes a and p (i.e., sapaksa and vipakja) are neither universal class nor 
null class. We shall be concerned here mainly with the first type, in which 
there cannot be any vipaksa, i.e., class p is a null class. 

Uddyotakara’s example (taken from Dinniiga’s 11) of anvayin inference 
(corresponding to the first type here) was “Sound is noneternal because it 
is a product (anityah iaabdah kytakatvit)”. Here the probandum noneternal- 
ness will be a universal property for those thinkers who hold to the doctrine 
that everything is noneternal. Note here that the universe of discourse in 
this case will include only noneternal things and hence class p will be a null 

See QUINE [1961] p. 107. Particularly significant is the remark of Quine [1963] p. 2, 
“If someone views attributes as identical always when they are attributes of the same 
things, he should be viewed as talking rather of classes”. 
8 Those familiar with the Western logic may recall Carnap’s excellent illustration of the 
distinction between class and property: the class of humans and the class of featherless 
bipeds are identical but the property humanity is distinct from the property of being a 
featherless biped. See CARNAP [1956] p. 18. 

This is the significance of the condition called tulyutvu (equipollence) found in the list 
of six jdti-bddhukas (impediments to generic characters) mentioned by UDAYANA [ 1885- 
19191 p. 33, lines 7-8. 
lo GAWESA [1926] p. 1326, See in this connection UDDYOTAKARA [1915] p. 46. 
11 Dinnfiga anticipated the possibility of kevuhvuyin inference and discussed the issue in 
DINNAGA [1965] Chapter 111, verse 20. See Kanakavarman (fol. 131a-131b); Vasudhara- 
rakvita (fol. 45a). But this created little problem in DinnBga’s system. According to him, 
‘to be absent from vipukja’ can conveniently be interpreted as ‘absence of vipakFa’. 
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class. Viicaspati (c.A.D. 950) cited a better example of this type of inference: 
ViSesa (particularity) is namable because it is knowable. In a slightly modified 
form, this example was accepted as a paradigm in later Nygya school: The 
pot is namable because it is knowable. 

GangeSa defined this kind of inference as one where there is no disagreeing 
instances (vipaksa). Since everything in the universe of discourse is (at least, 
theoretically) namable or expressible in language, the property namability 
(abhidheyatva) is a universal property and in no individual is there an 
absence of namability. To cite an instance where namability is absent is 
ips0 facto to demonstrate that this instance is not inexpressible. If, however, 
the opponent does not cite such an instance where namability is absent, but, 
nevertheless, believes it to be existent, then as far as the logicians’ inference 
is concerned it is as good as non-existent, since inferential procedure demands 
the use of language. The opponent may argue that although a disagreeing 
instance in this case is not expressible in language, it can still be a communi- 
cable concept in the sense that it is conveyed by the meaning of some lin- 
guistic expression. But this would run counter to the Nyiiya premiss that 
there cannot be any instance which is not namable. 

Besides, GangeSa argued from the opponent’s viewpoint, the notion of 
everpresent property invites the following paradox. If p is asserted to be an 
everpresent property then one can infer validly from this premiss that p is 
not everpresent. It is observed that each property (dharma) is such that it is 
legitimate (according to the Indian theory of induction) to assert that each 
property is such that it is absent from something. Using quantificational 
notations and interpreting ‘Fx’ as ‘X is a property’ and ‘Oxy’ as ‘X is present 
in y’ we may represent this premiss as: 

Now, since p is a property (which we have assumed to be everpresent), it 
follows (by universal instantiation and truth-functional tautology) that p 
is such that it is absent from something. In  other words, the conclusion is 
‘ (3y)-  Opy’. This implies that there is an instance y where p (i.e., knowa- 
bility) is not present. Thus, our original assumption that p is an everpresent 
property is contradicted. 

Gaigeia tried to answer this objection as follows. If the property ‘to be 
absent from something’, i.e. the property represented by the propositional 
function ‘ (3y)-  Opy’, is said to be a property which is not absent from any- 
thing then the same property becomes everpresent. If, however, this property 
(ie., ‘to be absent from something’) happens to be not present in something 
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x then that x becomes, in fact, everpresentlz. Let us try to understand the 
implication of this argument. Let class w be defined as a(3y)-  Oxy. Now, if 
we assume - (WEO), it means that the statement ‘(3y) - Owy’ is false, i.e., 
‘ - ( 3 y )  - Owy’ is true. This implies that the classproperty of w is something 
which is not absent from anything, i.e., everpresent. In an indirect way, this 
means that w is a universal class. If, on the other hand, we assume WEW 

then the statement ‘(3y)-Owy’ becomes true. This means that there is 
something y from which the class-property w is absent. But to deny the 
class-property w of something y means to admit y as an everpresent prop- 
erty. 

GangeSa’s argument was exactly similar to this, although he did not use 
the notion of class. Instead, he used his notion of constant absence (atyan- 
tdblzdva) and its counterpositive-ness (pratiyogitfi). A constant absence is 
arrived at  by hypostatizing the negation illustrated in the matrix ‘there is no 
x in y’ or ‘x is not present in y’. Thus, y is said to be the locus which possesses 
constant absence of x, and x is said to be the counterpositive of an absence 
which is present in locus y.13 In fact, the constant absence of x may con- 
veniently be regarded as a class-property of the class which is defined as 
j ( 3 x )  ( x  is not present in y) .  The mutual absence of x (illustrated by the 
matrix ‘ y  is not x’) may likewise be regarded as a class-property of the class 
which is defined (using usual symbols for identity and negation) as j ( 3 x )  
( x#y ) .  This interpretation of absences in terms of the class-concept of 
modern logic gets indirect support from the fact that Navya-nyiiya, in most 
cases, identifies two absences which occur in the same locil4. 

Thus, GangeSa argued as follows. If the property of being the counter- 
positive of a constant absence does not become the counterpositive of any 
constant absence then the same property can be taken to be everpresent. And 
if, on the other hand, that property is regarded as the counterpositive of 
some constant absence (say, the constant absence of x in locus y )  then the 
locus y where such a constant absence resides becomes itself an everpresent 
property. The upshot of GangeSa’s argument is that if something x is a 
property it does not necessarily follow that there is something else y where- 

l2 This argument may remind one of the famous class-paradox, viz., if the class of all 
classes which are not members of themselves is a member of itself, then it is not a member 
of itself. But note that GangeSa’s philosophical motivation was different. 
13 For the notions of counterpositive and constant absence, see INGALLS [1951] p. 5 4 5 8 .  
They have also been explained in detail in my book, see MATILAL [I9681 pp. 52-61,9445. 
14 Thus the prevailing view of Navya-nyZya writers is that the two absences which are 
samuniyatu (equipollent) are identical. 
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from x will be absent because there are everpresent properties also. An 
everpresent property can now be defined as : 

D1. x is an everpresent property if and only if x is not the counterpositive 
of any constant absencel5. 

To develop the next point in Gangeia’s discussion we have to understand 
what Navya-ny2ya calls a non-pervasive (avycfpyavytti) property. A property 
is called non-pervasive if and only if it occupies only a part of the locus such 
that in remaining parts of the locus there is the constant absence of that 
propertyl6. Thus, properties like a pot or contact-with-a-monkey (in fact, 
almost all properties except certain abstract ones like cow-ness), with respect 
to their loci, such as a piece of ground or a tree, behave as non-pervasive 
properties. Now, the constant absence of a propertyp is regarded as another 
property, say q, which is present in all things except where p is present. But 
the constant absence of any non-pervasive property, it may be argued, will 
become an everpresent property simply because such an absence is not only 
present in all loci except where the non-pervasive property in question is 
present but also in locus where the same non-pervasive property is present. 
This follows from the very definition of non-pervasive property. But 
GangeSa pointed out that as soon as we introduce the notion of delimitors 
(avuccheduka) in our discourse the constant absence of a non-pervasive 
property (say, a pot) can no longer be, strictly speaking, an everpresent 
property. Thus, a pot cannot be said to be constantly absent from the locus 
ground as delimited by the counterpositive (pratiyogin) pot. In simple 
language, this only means that right in the space of the ground occupied by 
the pot there cannot be any constant absence of the pot. Hence, such a 
constant absence is not everpresent. Note that the notion of delimitor here 
serves to dispel the vagueness of ordinary uses of ‘locus (adhikaraya)’ 
and ‘occurrence ( v p i ) ’ .  

15 M A ~ I K A ~ ~ A  [1953] gave a similar definition of everpresent property “tatrdtyan- 
tdbhdvEpratiyogi dharrnah kevaldnvayi” (p. 126). Manikantha’s three-fold classification 
of pardmaria corresponds to Gangeia’s three-fold classification of inference. But there 
seems to be a difference. Manikantha seems to consider the nature of the probans while 
Gahgeia, as he has been explained by Raghuniitha, considers the nature of the probandum. 
Thus, an inference with an everpresent property as the probandum and an ordinary 
(non-everpresent) property as the probans will be included under the first type, i.e., 
kevulrinvayin inference. This is, at least, what Gadiidhara seems to think. See Gadiidhara’s 
sub-commentary on Raghaniitha’s commentary on GANGESA [I9261 p. 1327, lines 6-7: “. .. 
kevalinvayiscidhyaka-vyatirekiheroli kevaldnvayyanumdnatayri . . . ” 
18 See INGALLS [I9511 p. 73. The meaning of “contact-with-a-monkey” has been explained 
by Ingalls. See also MATILAL [1968] pp. 53, 71-72. 
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Another suggestion for constructing an everpresent property can be given 
as follows. The ubiquitous physical space (gagana) in the Nylya-VaiSesika 
system of categories is held to be a non-occurrent entity in the sense that it 
does not occur in any locus. All entities of the Ny5ya-VaiSesika system are 
properties (in the sense that they occur in some lpcus or other) except 
entities like the ubiquitous space. Thus, since there is no entity where the 
space might occur as a property, the constant absence of the space becomes 
everpresent. But this procedure eventually leads to some difficulties. Techni- 
cally speaking, the constant absence of the space can very well be the counter- 
positive of another constant absence, viz., the constant absence of the con- 
stant absence of the space (which, according to Nylya, is just identical with 
the space itself). Thus, the above definition of everpresent property cannot 
be applied to the constant absence of the space. This eventually landed 
GangeSa into the puzzling discussion of the Nayva-nylya school, viz., 
what constitutes the absence of an absence?l7 

The constant absence of x is constantly absent from all things except 
those that have no x.  Hence, the constant absence of the constant absence of 
x is present in all and only those things where x is present. Applying the 
principle of identification of the indiscernibles, Udayana, and following 
him GangeSa, identified the constant absence of the constant absence of x 
with x on the gound that 

A. ( y )  ( y  has the constant absence of the constant absence of x *  = * y  
has x). 

The mutual absence of pot is constantly absent from all things that are 
called “pot”, i.e., from all things that have pot-ness. Thus, the constant 
absence of the mutual absence of pot is present in all and only those things 
that have pot-ness. Therefore, as above, one can identify the constant 
absence of the mutual absence of pot with pot-ness on the principle that 

B. ( y )  ( y  has the constant absence of the mutual absence of pot * E * y  has 
pot-ness).l8 

Note that we are identifying here two class-properties on the ground that 
the corresponding classes are identical by virtue of their having the same 
members. This indirectly supports my earlier suggestion that absences in 

l7 See INGALLS [1951] pp. 68, 71-72. 
18 See GANGESA [1926] p. 1350: atyantcibhivcityantcibhivah pratiyogy eva; anyonyibhcivi- 
tyantibhdvas tu pratiyogivyttir asidhirano dharma iti. See UDAYANA [ 19261 Chapter 111, 
verse 2. 
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many contexts can conveniently be taken to be class-properties suitably 
chosen. And properties, in such contexts, are used in their non-intensional 
sense. 

Navya-nylya, however, regards the constant absence of the ubiquitous 
space as an everpresent property, and accordingly, GangeSa developed a 
technical sense of ‘everpresent property’ by rephrasing D1 as follows : 19 

D2. x is everpresent if and only if x is not the counterpositive of any 
occurrent (vyttimat) constant absence. 

Although the constant absence of the space may be said to be the counter- 
positive of the constant absence of the constant absence of the space, the 
second absence is not occurrent because it is to be identified with the space 
and the space is, by definition, not occurrent anywhere. Properties like 
knowability and namability are not the counterpositive of any occurrent 
constant absence and hence they can be called everpresent. This is one of 
many possible interpretations of GangeSa’s rephrasing (which was ambiguous 
in the original). But, according to  Raghuniitha, this was just GangeSa’s way 
of being polite to the opponent (cf. abhyupagamamdtram). Actually, the 
constant absence of the constant absence of the space cannot be identified with 
the space because the above principle A is not applicable here. Since in the 
Nylya-VaiSesika system there is no entity which has the space as a property, 
we cannot identify it with the constant absence of the constant absence of 
the space under principle A. The significance of the adjective “occurrent 
(vrttimat)” was explained by Raghunltha as follows. When something is 
said to  be present in something else, it is present there always through some 
relation or other. Thus, in speaking of something as ever present one should 
specify the relation through which it is considered present everywhere : 

D3. x is ever present through relation r if and only if r is the delimiting 
relation of the counterpositive-ness of some constant absence and x 
is never the counterpositive of such absence20. 

To expose another logical difficulty involved in the notion of everpresent 
property we have to go back to the definition of kevalciizvayin inference 
(type 1 above). First, it is odd to say that the probans does not reside in 
disagreeing instances, when there is, in fact, no disagreeing instance. It is 

l9 GARGESA [1926] p. 1353 : vrttimad-atyantibhivipratiyogitvam kevalcinvayitvam. 
2o Raghuntitha comments on GANGESA [1926] p. 1354: evarp ca yatsambandha‘vacchin- 
napratiyogitcikibhcivipratiyogitvarp yasya tasya tena sambandhena kevakinvayitvam iti 
sicayitum vrttimad iti. 
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further odd to say that there is no disagreeing instance, when “disagreeing 
instance (vipak~a)” is a mere indesignate or empty (nirupdkhya) term, for 
one tends to argue that to make such denials meaningful our acceptance of 
the existence of such non-entities is in order. Vacaspati puzzled over this 
problem because, according to the Nyiiya theory, each negation, in order to 
be meaningful, must negate a real entity and must denote an absence which 
usually behaves as a property occurring in some locus. Thus, an absence is 
always determined by its counterpositive (i.e., the negatum) on the one hand 
and by the locus (ddhdra) on the other21. Viicaspati tried to solve the above 
puzzle by saying that the prudent course is silence, i.e., not to deny or affirm 
anything (including existence) of the non-existents. The denial sounds odd 
because its contradictory, i.e., affirmation, sounds odd too22. Udayana 
suggested a better method of answering such problems. According to him, a 
statement like 

(1) “the rabbit’s horns do not exist” 

does not affirm or deny existence of anything, but simply expresses an 
absence not of the rabbit’s horns but of horns, an absence which occurs in a 
rabbitz3. Note that having horns is a real property such that one can 
meaningfully speak of its absence (another real property for the Naiyayikas). 
This analysis is related to the epistemological theory of error of the Nyiiya 
school, which is technically known as anyathdkhydti. The structure of this 
analysis may remind one of B. RusseIl’s analysis of similar statements with 
his theory of description24. In quantificational notations, (I) can be analyzed 
as : 

(2) (x) (x is a rabbit 3 x is a locus of the absence of horns) or, 
-(I.) (x is a rabbit - x is not a locus of the absence of horns). 

Applying Udayana’s principle of analysis, GangeSa tried to make sense 
of statements which make use of such indesignate expression as “the 
absence of an everpresent property like knowability”, viz., 

(3) “the absence of knowability is not present in y” (a true one). 
(4) “the absence of knowability is present in y” (a false one). 

21 VACASPATI [1925] p. 172: sadbhydm ubhdvo nirupyate naikena satery uktam. 
22 See  VACASPATI [1925] pp. 172-173. 

Compare UDAYANA [1957] p. 331 : kas tarhi SaSuiyigam nfistity usydrrhaF7Sa.k udhika- 
rape vi@gdbhdvo’stiti. In UDAYANA [1940] Udayana discussed at length the example 
“bundhyd-suto na vakrfi (the son of a barren woman does not speak)” (see pp. 64-73). 
24 See RUSSELL [1919] pp. 168-180. 
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Note that “the absence of knowability” is, as it stands, an empty term and 
on par with “the present king of France”. According to GangeSa, we can 
rephrase (3) and (4) as: 

(5) Knowability is not the counterpositive of any absence that may occur 

(6) Knowability is the counterpositive of an absence which occurs in y .  

Here, (5) predicates of knowability the absence of the property of being the 
counterpositive of any absence occurring in y ,  while (6) predicates of know- 
ability the counterpositive-ness of an absence occurring in y.  Thus, (5) 
expresses a trivial truth (see D l  before) while (6) expresses a falsehood. 
Note that “an absence which occurs in y” will denote a real absence occurring 
in the thing substituted for y and that its counterpositive will be a real 
entity. Hence the property of being such a counterpositive is also a real 
property which characterizes certain things (viz., things which are really 
absent from y )  but not knowability. 

GangeSa used this method of analysis in order to make sense of the doubt 
or uncertainty (sagkzya) of the form “perhaps it is knowable, perhaps it is 
not”. This statement which expresses a doubt can be said to be a meaningful 
statement if it is rephrased in the above manner so as to avoid the use of 
any empty term-complex such as “the absence of knowability” (which refers 
to nothing) as a predicate or even as a subject (as in 4 above). Note that the 
second part of the statement expressing doubt, viz., “it is not (knowable)”, 
would have contained such an empty term-complex, if it were straight- 
forwardly analyzed in its logical form: it has the absence of knowability. 

It should be noted in this connection that, according to the Navya-nylya 
theory of inference, an inference (as an effect, i.e., kdrya) must be pre- 
conditioned by what Navya-nylya callspak~atd25. The condition ofpakwtd, 
according to the view of the old Nyiiya, involves in the presence of a doubt or 
uncertainty which should be expressed in the form “perhaps the subject 
possesses the probandum, perhaps it does not”. This postulate is based upon 
the simple fact that we do not infer something which we already know with 
certainty unless we wish to prove it again. Now, if inference of an everpresent 
property like knowability has to be an actual event, it should be pre- 
conditioned by an uncertainty of the form described above. Thus, the 
statement which expresses this uncertainty or doubt must be a meaningful 
statement so that the required doubt ( s a ~ i u y u )  may, in fact, arise. GangeSa 

in y. 

25 M A ~ K A N ~ I A  [1953] pp. 109-115; and GARGESA [1926] pp. 1079-1176. 
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pointed out that when the second part of the statement expressing doubt is 
interpreted as (6 )  above we can retain its meaningfulness and avoid using 
empty terms that refer to nothing26. 

I would like to conclude by remarking that while studying Indian logic, 
scholars will find themselves concerned with issues of two different kinds. 
The first are those problems which are bounded by the Indian tradition 
itself, i.e., those which arise out of the peculiar yet rich tradition of India’s 
scholastic past. They are partly conditioned by the Sanskrit language and 
partly by the fundamental concepts and philosophical attitudes that Indian 
logicians inherited. The second set of problems which we face here could be 
called universal. They are, in essence, the very same problems faced by the 
Western tradition, though often, because of the parachiol and tradition- 
bound interests of both sides, this fact has been either ignored or badly 
misunderstood. I cannot help feeling that a historian would be gratified to 
learn that many of the problems with which Indian logicians of the 12th and 
13th centuries came to grips are very similar to the problems faced by 
modern analytic philosophers. In judging these medieval logicians we must 
bear in mind the fact that it is only quite recently that many of these issues 
have been satisfactorily explained. For students of philosophy in general, and 
more particularly for historians of philosophy, I find it regrettable that so 
little of the Indian philosophical materials are available in anything like 
satisfactory form. The dificulties are not only those of language, but also the 
peculiar philological problems in translating Sanskrit philosophical texts. 
Far too many of the existing translations are not only unreadable but also 
sometimes philosophically absurd. Some of them abound in old-fashioned 
terminology that is at best misleading, and at worst simply wrong. I make this 
remarks about the materials, because it seems to me obvious that future 
historians will increasingly take note of the considerable Indian contributions 
to the general heritage of philosophy and it is essential that they do so on 
the basis of careful and valid studies and translations. 
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S. A. KRIPKE, Recursion on ordinals and models of sub-systems 
of analysis. 
Closure of the session. 

8.00 p.m. 

9.30 a.m.-1 1.50 a.m. 
9.30 a.m.-10.00 a.m. 

10.10 a.m.-10.40 a.m. 
10.50 am-11.10 a.m. Interval. 
11.10 a.m.-11.40 a.m. 

11.50 a.m. 

9.50 am-12.30 a.m. 
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10.30 a.m.-10.45 a.m. 
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philosophical knowledge. 
M. RIESER, Kazimierz Ajdukiewicz (1890-1963). 
H. L. MULDER,Ludwig Wittgenstein comments on the pamphlet 
‘Wissenschaftliche Weltauffassung der Wiener Kreis’. 

9.30 a.m.-12.30 p.m. Contributed Papers 
9.30 a.m.- 9.45 a.m. 

10.50 a.m.-11.05 a.m. 
11.10 a.m.-11.25 a.m. 
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11.30 a.m.-11.45 a.m. 

11.50 a.m.-12.05 p.m. 
12.10 p.m.-12.25 p.m. 

12.30 p.m. 

C. EISELE, The problem of mathematical continuity in the thought 
of Charles S. Peirce. 
I. LAKATOS, What caused the downfall of the infinitesimals? 
W. K. WILSON, Correlations, essences, and Carnap’s use of 
‘enumerative definition’. 
Closure of the session. 

THURSDAY AFTERNOON, AUGUST 31 
Session in commemoration of A. I. Malcev. 
Speaches by A. TARSKI and Yu. L. ERSHOV. 

Sections 1 and 2, Chairman: P. C. GILMORE 
Invited Half Hour Addresses 
K. SCHUTTE, On simple type theory with extensionality. 
G. TAKEUTX, Formalization principle. 
Closure of the session. 

3.30 p.m. 

4.10 p.m.- 5.30 p.m. 
4.10 p.m.- 4.40 p.m. 
4.50 p.m.- 5.20 p.m. 
5.30 p.m. 

2.30 p.m.- 5.30 p.m. 
2.30 p.m.- 2.45 p.m. 
2.50 p.m.- 3.05 p.m. 
3.10 p n -  3.25 p.m. 
3.30 p.rn.- 3.45 p.m. 
3.50 p.m.- 4.05 p.m. 
4.10 p.m.- 4.25 p.m. 
4.30 p.m.- 4.45 p.m. 
4.50 p.m.- 5.05 p.m. 
5.10 p.m.- 5.25 p.m. 
5.30 p.m. 

2.30 p.m.- 5.10 p.m. 
2.30 p.m.- 2.45 p.m. 
2.50 p.m.- 3.05 p.m. 

3.10 p.m.- 3.25 p.m. 
3.30 p.m.- 3.45 p.m. 
3.50 p.m.- 4.05 p.m. 
4.10 pm.- 4.25 p.m. 
4.30 p.m.- 5.05 p.m. 
5.10 p.m.- 5.40 p.m. 

5.45 p.m. 

10.00 a.m.-12.15 p.m. 
10.00 a.m.-l0.45 a.m. 
11.00 a.m.-11.15 a.m. 
11.15 a.m.-12.00 a.m. 

12.15 p.m. 

Section 4, Chairman: D. F~LLESDAL 
Contributed Papers 
E. M. BARTH, Modal logic and natural deduction. 
R. M. MARTIN, On objective intensions and Frege’s Sinne. 
L. 0. KATTSOFF, On existence in mathematics. 
E. STENIUS, On the semantical status of laws of logic. 
S .  E. LEVY, Syntactical contiguity in the sentential calculus. 
A. J. UEMOV, Objects identity and validity of analogy-conclusions. 
E. AGAZZI, About limitations in the validity of the exclude third. 
J. TUCKER, Methodology and the foundations of mathematics. 
J. FANG, What is, and ought to be, philosophy of mathematics? 
Closure of the session. 

Section 6, Chairman: P. G. BERGMANN 
Contributed Papers 
W. K. BURTON, Justifiable physical theories. 
M. STRAUSS, The Huygens-Leibniz-Mach criticism in the light of 
present knowledge. 
B. Jmos, Limit forms of empirical knowledge. 
C. MARE, Causality and duration. 
F. QUELON, Matter and arithmetical exactness. 
J. A. AKCHURIN, Informational capacity and microworld. 
0. ONICESCU, Mouvement et structure mecanique et relativite. 
A. POLIKAROV, A new conception of the relationship between the 
macro-world and the submicro-world. 
Closure of the session. 

FRIDAY MORNING, SEPTEMBER 1 
Section 7, Chairman: Chr. P. RAVEN 
Invited Half Hour Addresses 
J. H. WOODGER, Aspects of biological methodology. 
Interval. 
N. RASHEVSKY, A unified approach to biological and social 
organism. 
Closure of the session. 
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9.30 a.m.-12.30 p.m. 
9.30 a m -  9.45 a.m. 
9.50 a.m.-10.05 a.m. 

10.10 a.m.-10.25 a.m. 
10.30 a.m.-10.45 a.m. 

10.50 a.m.-1 1.05 a.m. 

11.10 a.m.-11.25 a.m. 

11.30 a.m.-11.45 a.m. 
11.50 a.m.-12.05 p.m. 
12.10 p.m.-12.25 p.m. 

12.30 p.m. 

9.30 a.m.-12.30 p.m. 
9.30 a.m.- 9.45 a.m. 
9.50 a.m.-10.05 a.m. 

10.10 a.m.-10.25 a.m. 
10.30 a.m.-10.45 a.m. 
10.50 a.m.-1 1.05 a.m. 

11.10 a.m.-11.25 a.m. 

11.30 a.m.-1 1.45 a.m. 
11.50 a.m.-12.05 p.m. 
12.10 p.m.-12.25 p.m. 
12.30 p.m. 

2.30 p.m.- 5.30 p.m. 
2.30 p.m.- 3.00 p.m. 
3.10 p.m.- 3.40 p.m. 
3.50 p.m.- 4.10 p.m. 
4.10 p.m.- 4.40 p.m. 
4.50 p.m.- 5.20 p.m. 
5.30 p.m. 

Section 1 ,  Chairman: A. A. MARKOV 
Contributed Papers 
A. MENNE, Zur Transitivitat der Irnplikation. 
A. OBERSCHELP, On the interpolation theorem of the predicate 
calculus. 
G. C. MOISIL, Sur le calcul des propositions d’ordre supkrieur. 
R. SUSZKO, Algebraic treatment of translatability and of non- 
creativity in extending of theories. 
F. VON KUTSCHERA, Interpretation of classical logic in construc- 
tive semantics. 
K. SEPER, A remark on monotone functions of many-valued 
logic. 
A. KRON, Causal ordering in first order theories. 
W.,FELSCHER, On criteria of definability. 
A. L. DARZINS, The ‘unambiguous’ characterization problem: 
more complex cases. 
Closure of the session. 

Section 6,  Chairman: H. J. GROENEWOLD 
Contributed Papers 
M. BUNGE, On physical meaning. 
B. C. VAN FRAASSEN, On Beth‘s semantics of physical theories. 
H. SCHLEICHERT, On the application of semantics to physics. 
C. G. G. VAN HERK, Primitive physical concepts. 
J. D. SNEED, Theoretical terms in set-theoretic axiomatizations of 
physical theories. 
R. M. ROSENBERG, On axiomatics of Newtonian particle me- 
chanics. 
H. J. TREDER, On the structure of physical laws. 
A. KOSLOW, The structure and significance of the law of inertia. 
H. R. POST, Logic of theory-construction in physics. 
Closure of the session. 

FRIDAY AFTERNOON, SEPTEMBER 1 
Section 6, Chairman: W. YOURGRAU 
Invited Half Hour Addresses 
D. W. SCIAMA, The origin of the universe. 
D. FINKELSTEIN, Logical consequences of complementarity. 
Interval. 
B. DIESPAGNAT, Objets et phknombnes en physique quantique. 
E. MCMULLIN, What do physical models tell us? 
Closure of the session. 

Section 1, Chairman: R. 0. GANDY 
Contributed Papers 
M. A. TAICLIN, Finitely generated commutative subgroups. 
S. Ju. MASLOV, Algorithms of logic inference search, based on the 
inverse method. 
A. GRZEGORCZYK, Assertions depending on time andcorrespond- 
ing logical calculi. 
H. KAMP, Expressibility in tense logic. 
I. RUZSA, A new formal system of deontic logic. 

2.30 p.m.- 5.30 p.m. 
2.30 p.m.- 2.45 p.m. 
2.50 p.m.- 3.05 p.m. 

3.10 p m -  3.25 p.m. 

3.30 p.m.- 3.45 p.m. 
3.50 p.m.- 4.05 p.m. 
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B. CHENDOW, A theory of modalities. 
K. POTTHOFF, Some results concerning non-standard models of 
arithmetic. 
M. ~ C H T E R ,  Applications of direct and inverse limit to elementa- 
ry classes. 
C. G. MCKAY, Some results on intermediate propositional logics. 
Closure of the session. 

4.10 p.m.- 4.25 p.m. 
4.30 p.m.- 4.45 p.m. 

4.50 p m -  5.05 p.m. 

5.10 p.m.- 5.25 p.m. 
5.30 p.m. 

2.30 p.m.- 4.50 p.m. 
2.30 p.m.- 2.45 p.m. 

2.50 p m -  3.05 p.m. 
3.10 p.m.- 3.25 p.m. 

3.30 p.m.- 3.45 p.m. 
3.50 p m -  4.05 p.m. 

4.10 p.m.- 4.25 p.m. 

4.30 p m -  4.45 p.m. 
4.50 p.m. 

9.30 a.m.-lO.lS a.m. 

10.30 a.m.-12.30 p.m. 
10.30 a.m.-11.00 a.m. 

11.10 a.m.-11.40 a.m. 
11.50 a.m.-12.20 p.m. 
12.30 p.m. 

10.30 a.m.-12.30 p.m. 
10.30 a.rn.-10.45 a.m. 
10.50 a.m.-1 1.05 a.m. 
11.10 a.m.-11.25 a.m. 
11.30 a.m.-1 1.45 a.m. 

11.50 a.m.-12.05 p.m. 
12.10 p.m.-12.25 p.m. 
12.30 p.m. 

10.30 a.m.-12.30 p.m. 
10.30 a.m.-10.45 a.m. 

Section 7, Chairman: N. RASHEVSKY 
Contributed Papers 
J. F. FROLOV, Dialectics and methodology of biological know- 
ledge. 
F. G. ASENJO, Mathematical organisms. 
A. LINDENMAYER, An axiom system for the development of fila- 
mentous organisms. 
H. LEY, The conception of models in biology. 
S. R. MIKULINSKI, The history of biological science and contem- 
porary problems. 
P. MTH, Monadology and general system theory. Some aspects 
of the philosophy of Leibniz and the ‘Wissenschaftslehre’ of 
Ludwig van Bertalanffy. 
M. JEUKEN, Models in biology. 
Closure of the session. 

SATURDAY MORNING, SEPTEMBER 2 
Section 1 ,  Chairman: A. TARSKI 
Invited Hour Address 
A. MOSTOWSKI, The descriptive set theory and some problems 
of logic. 

Section 1, Chairman : D. SCOTT 
Invited Half Hour Addresses 
H.GAIFMAN, Types of elements in non-standard models of 
Peano’s arithmetic. 
R. M. MONTAGUE, A generalization of recursion theory. 
Yu. L. ERSHOV, Numbered fields. 
Closure of the session. 

Section 4, Chairman: R. M. MARTIN 
Contributed Papers 
P. T I C H ~ ,  Analyticity in terms of Turing machines. 
A. A. ZINOV’EV, Theory of logical inference. 
P. WEINGARTNER, Towards a far reaching calculus of systems. 
P. BRAFFORT, Lindenbaum’s problem: Present situation and 
possible developments. 
A. A. SUBBOTIN, Algebraic semilattices and formal logic. 
H. P. JOCHIM, Note on intuitionism and the ‘modality scandal’. 
Closure of the session. 

Section 6, Chairman: R. M. ROSENBERC 
Contributed Papers 
L. S. POLAK, Problems of models in physics. 
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10.50 a.m.-1 1.05 a.m. 

11.10 a.m.-1 1.25 a.m. 
11.30 a.m.-11.45 a.m. 
11.50 a.m.-12.05 p.m. 

12.10 p.m.-12.25 p.m. 

12.30 p.m. 

M. E. OMELJANOVSKI, Philosophical aspects of the measurement 
problem in quantum theory. 
N. F. OFCHINNIKOW, Principles of conservation. 
B. ROGERS, The possibility of non-continuous physical space. 
S. T. MELJUKIN, Some methodological problems of the unity of 
scientific knowledge. 
M. S. ASIMOV, About a correlation between philosophical and 
physical notions of matter. 
Closure of the session. 

SATURDAY AFTERNOON, SEPTEMBER 2 
Closing Session. 2.00 p m -  3.00 p.m. 
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