
Lecture Notes in Computer Science 4102
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Schahram Dustdar José Luiz Fiadeiro
Amit Sheth (Eds.)

Business Process
Management

4th International Conference, BPM 2006
Vienna, Austria, September 5-7, 2006
Proceedings

13

Volume Editors

Schahram Dustdar
Vienna University of Technology
Distributed Systems Group (DSG), Information Systems Institute
Argentinierstrasse 8/184-1, 1040 Wien, Austria
E-mail: dustdar@infosys.tuwien.ac.at

José Luiz Fiadeiro
University of Leceister
Department of Computer Science
Leicester LE1 7RH, UK
E-mail: jose@fiadeiro.org

Amit Sheth
University of Georgia
Department of Computer Science
415 Graduate Studies Research Center, Athens, GA 30602-7404, USA
E-mail: amit@cs.uga.edu

Library of Congress Control Number: 2006931678

CR Subject Classification (1998): H.3.5, H.4.1, H.5.3, K.4.3, K.4.4, K.6, J.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-38901-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-38901-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11841760 06/3142 5 4 3 2 1 0

Preface

The 4th International Conference on Business Process Management (BPM 2006)
was held in Vienna, Austria, on September 5–7, 2006, organized by the VitaLab,
Distributed Systems Group, Institute of Information Systems, Vienna University
of Technology.

The present volume collects the papers accepted for presentation at the main
conference. A series of co-located workshops were held together with BPM, the
proceedings of which are published as volume 4103 of Springer’s Lecture Notes
in Computer Science series.

Paper submission was strong and geographically well distributed: 78 papers
originated from Europe, 32 from Asia, 14 from the Americas, 11 from Oceania,
and 3 from Africa, to a total of 40 different countries.

All papers were reviewed by at least three referees and competition for accep-
tance was very high: of the 138 submitted papers, only 20 were accepted as full
research papers (14% acceptance rate), 5 as industrial papers and 15 as short
papers. Further to these, invited lectures were delivered by Donald Ferguson –
an IBM fellow, Dave Green – an architect for Microsoft’s Windows Workflow
Foundation, and Edwin Khodabakchian – Vice President of Product Develop-
ment at Oracle. We want to thank our keynote speakers and their organizations
for their invited presentations.

We take this opportunity to thank the members of the Program Committee
and the additional reviewers for their tremendous effort in guaranteeing the
scientific quality of BPM. We would also like to thank the Steering Committee
for their constant support.

We are also indebted to the local organization staff for their timely and
precious support, in particular to Florian Rosenberg and Eva Nedoma for their
invaluable help in making BPM 2006 a reality. We thank Marco Aiello for the
help in assembling this volume. Last but not least, we would like to express our
gratitude to Frank Leymann (Industrial Chair), Johann Eder (Workshop Chair),
and Jan Mendling (Demo Chair).

We hope you will find the articles in the present volume a valuable and up-to-
date picture of the state of the art in research on business process management
and its industrial impact.

June 2006 Schahram Dustdar, Jose Fiadeiro, Amit Sheth
BPM PC Chairs 2006

Organization

BPM 2006 was organized by the VitaLab, Distributed Systems Group, Institute
of Information Systems, Vienna University of Technology.

Executive Committee

General Chair: Schahram Dustdar (Vienna Univ. of Technology, Austria)

Program Co-chairs: Schahram Dustdar (Vienna Univ. of Technology, Austria)
Jose Fiadeiro (Univ. of Leicester, UK)
Amit P. Sheth (LSDIS lab, Univ. of Georgia, and Semagix,

Inc., USA)

Industrial Chair: Frank Leymann (Univ. of Stuttgart, Germany)

Workshop Chair: Johann Eder (Univ. of Vienna, Austria)

Demo Chair: Jan Mendling (Vienna Univ. of Economics and Business
Administration)

Local Organization: Florian Rosenberg, Chair (Vienna Univ. of Technology,
Austria)

Martin Vasko (Vienna Univ. of Technology, Austria)
Eva Nedoma (Vienna Univ. of Technology, Austria)
Gudrun Ott (Vienna Univ. of Technology, Austria)
Margret Steinbuch (Vienna Univ. of Technology, Austria)

Program Committee

Wil van der Aalst, The Netherlands
Rama Akkiraju, USA
Gustavo Alonso, Switzerland
Karim Baina, Morocco
Steve Battle, UK
Boualem Benatallah, Australia
Djamal Benslimane, France
M. Brian Blake, USA
Christoph Bussler, USA
Jorge Cardoso, Portugal
Fabio Casati, USA
Malu Castellanos, USA

Sanjay Chaudhary, India
Francisco Curbera, USA
Peter Dadam, Germany
Jörg Desel, Germany
Asuman Dogac, Turkey
Marlon Dumas, Australia
Schahram Dustdar, Austria
Johann Eder, Austria
Jose Fiadeiro, UK
Dimitrios Georgakopoulos, USA
Stefania Gnesi, Italy
Claude Godart, France

VIII Organization

Paul Grefen, The Netherlands
Kees van Hee, The Netherlands
Arthur ter Hofstede, Australia
Gerti Kappel, Austria
Dimitris Karagiannis, Austria
Haim Kilov, USA
Kwang-Hoon Kim, Korea
Akhil Kumar, USA
Frank Leymann, Germany
Peri Loucopoulos, UK
Zongwei Luo, Hong Kong
Axel Martens, USA
Mike Papazoglou, The Netherlands
Barbara Pernici, Italy

Olivier Perrin, France
Manfred Reichert, The Netherlands
Hajo Reijers, The Netherlands
Wolfgang Reisig, Germany
Heiko Schuldt, Switzerland
Marek Sergot, UK
Amit Sheth, USA
A Min Tjoa, Austria
Farouk Toumani, France
Vijay Vaishnavi, USA
Kunal Verma, USA
Mathias Weske, Germany
Michal Zaremba, Ireland

Referees

Fuat Akal
Bugrahan Akcay
Taiseera Al Balushi
Lachlan Aldred
A. K. Alves de Medeiros
Samuil Angelov
Danilo Ardagna
Donald Baker
Maurice ter Beek
Ralph Bobrik
Lindsay Bradford
Stephan Breutel
Roberto Bruni
Antonio Bucchiarone
Cinzia Cappiello
Martin Carpenter
Andrzej Cichocki
Marco Comuzzi
Remco Dijkman
Yishu Ding
Boudewijn van Dongen
Rik Eshuis
Alessandro Fantechi
Hans-Georg Fill
Nadine Froehlich
Mario Fusani
Joy Garfield
Andreas Glausch

Jose Gomes
Christian Guenther
Ozgur Gulderen
Farshad Hakimpour
Sandra Hintringer
Peter Hoefferer
Christian Huemer
Anke Hutzschenreuter
Monique Jansen-Vullers
Yildiray Kabak
Shubir Kapoor
Dimka Karastoyanova
Kwang-Hoon Kim
Oliver Kopp
Gerhard Kramler
Marcello La Rosa
Christoph Langguth
Marek Lehmann
Lei Li
Beate List
Rong Liu
Niels Lohmann
Jeroen van Luin
Dominic Müller
Peter Massuthe
Franco Mazzanti
Harald Meyer
Stefano Modafferi

Thorsten Moeller
Nataliya Mulyar
Enrico Mussi
Bela Mutschler
Tuncay Namli
Martin Nemetz
Mariska Netjes
Alex Norta
Olivia Oanea
Alper Okcan
Mehmet Olduz
Justin O’Sullivan
Raju Pavuluri
Maja Pesic
Horst Pichler
Marco Pistore
Frank Puhlmann
Jan Recker
Guy Redding
Anne Rozinat
Nick Russell
Tayfun Sen
Alexander Serebrenik
Natalia Sidorova
Michael Springmann
Christian Stahl
Iain D. Stalker
Veronika Stefanov

Organization IX

Ibrahim Tasyurt
Irene Vanderfeesten
Senthil Velayudham
Eric Verbeek
Laura Voicu

Jochem Vonk
Marc Voorhoeve
Kenneth Wang
Ton Weijters
Daniela Weinberg

Matthias Wieland
Manuel Wimmer
Zixin Wu

Sponsoring Institutions

We acknowledge the support of the following companies and institutions.

Ultimus

Austrian Computer Society

Stadt Wien

TU Wien

Table of Contents

Invited Talks

Enterprise Business Process Management – Architecture, Technology
and Standards . 1

Donald F. Ferguson, Marcia Stockton

BizTalk Server, Windows Workflow Foundation, and BPM 16
Dave Green

Monitoring and Mining

Analyzing Interacting BPEL Processes . 17
Niels Lohmann, Peter Massuthe, Christian Stahl,
Daniela Weinberg

Tracking over Collaborative Business Processes . 33
Xiaohui Zhao, Chengfei Liu

Beyond Workflow Mining . 49
Clarence A. Ellis, Aubrey J. Rembert, Kwang-Hoon Kim,
Jacques Wainer

Service Composition

Adapt or Perish: Algebra and Visual Notation for Service Interface
Adaptation . 65

Marlon Dumas, Murray Spork, Kenneth Wang

Automated Service Composition Using Heuristic Search 81
Harald Meyer, Mathias Weske

Structured Service Composition . 97
Rik Eshuis, Paul Grefen, Sven Till

Isolating Process-Level Concerns Using Padus . 113
Mathieu Braem, Kris Verlaenen, Niels Joncheere,
Wim Vanderperren, Ragnhild Van Der Straeten, Eddy Truyen,
Wouter Joosen, Viviane Jonckers

XII Table of Contents

Process Models and Languages

Process Equivalence: Comparing Two Process Models Based on
Observed Behavior . 129

W.M.P. van der Aalst, Ana Karla Alves de Medeiros,
A.J.M.M. Weijters

Investigations on Soundness Regarding Lazy Activities 145
Frank Puhlmann, Mathias Weske

On the Suitability of BPMN for Business Process Modelling 161
Petia Wohed, W.M.P. van der Aalst, Marlon Dumas,
A.H.M. ter Hofstede, Nick Russell

Workflow Model Compositions Preserving Relaxed Soundness 177
Juliane Siegeris, Armin Zimmermann

Dynamic Process Management

Semantic Correctness in Adaptive Process Management Systems 193
Linh Thao Ly, Stefanie Rinderle, Peter Dadam

A Framework for the Development and Execution of Horizontal
Protocols in Open BPM Systems . 209

Javier Fabra, Pedro Álvarez, José Ángel Bañares, Joaqúın Ezpeleta

History-Based Joins: Semantics, Soundness and Implementation 225
Kees van Hee, Olivia Oanea, Alexander Serebrenik,
Natalia Sidorova, Marc Voorhoeve

On Representing, Purging, and Utilizing Change Logs in Process
Management Systems . 241

Stefanie Rinderle, Manfred Reichert, Martin Jurisch,
Ulrich Kreher

Service Composition

Towards Formal Verification of Web Service Composition 257
Mohsen Rouached, Olivier Perrin, Claude Godart

E-Service/Process Composition Through Multi-Agent Constraint
Management . 274

Minhong Wang, William K. Cheung, Jiming Liu, Xiaofeng Xie,
Zongwei Luo

Table of Contents XIII

Web Service E-Contract Establishment Using Features 290
Marcelo Fantinato, Itana Maria de Souza Gimenes,
Maria Beatriz Felgar de Toledo

Applied BPM

A Redesign Framework for Call Centers . 306
Monique H. Jansen-Vullers, Mariska Netjes, Hajo A. Reijers,
Mark J. Stegeman

Building Business Process Driven Web Applications 322
Victoria Torres, Vicente Pelechano

Industrial Papers

A Proposal for an Open Solution Business Process Integration
and Management Implementation Framework . 338

Fathi M. Al-Ghaiati

Experiences in Enhancing Existing BPM Tools with BPEL Import
and Export . 348

Jan Mendling, Kristian Bisgaard Lassen,
Uwe Zdun

Introducing Case Management: Opening Workflow Management’s
Black Box . 358

Kees Kaan, Hajo A. Reijers, Peter van der Molen

IT Support for Release Management Processesin the Automotive
Industry . 368

Dominic Müller, Joachim Herbst, Markus Hammori,
Manfred Reichert

Diagnosing SCA Components Using wombat . 378
Axel Martens, Simon Moser

Short Papers

Verifying Workflows with Cancellation Regions and OR-Joins: An
Approach Based on Reset Nets and Reachability Analysis 389

Moe Thandar Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede,
David Edmond

XIV Table of Contents

Towards a Methodology for Deriving Contract-Compliant Business
Processes . 395

Zoran Milosevic, Shazia Sadiq, Maria Orlowska

An AsmL Executable Model for WS-BPEL with Orthogonal
Transactional Behavior . 401

Luciano Garćıa-Bañuelos

Optimizing Exception Handling in Workflows Using Process
Restructuring . 407

Mati Golani, Avigdor Gal

Formalizing Service Interactions . 414
Gero Decker, Frank Puhlmann, Mathias Weske

Decision Mining in ProM . 420
Anne Rozinat, W.M.P. van der Aalst

Managing Process Variants as an Information Resource 426
Ruopeng Lu, Shazia Sadiq

Verification of Business Process Integration Options 432
Georg Grossmann, Michael Schrefl,
Markus Stumptner

Verifying BPEL Workflows Under Authorisation Constraints 439
Xiangpeng Zhao, Antonio Cerone,
Padmanabhan Krishnan

Selecting Necessary and Sufficient Checkpoints for Dynamic
Verification of Fixed-Time Constraints in Grid Workflow Systems 445

Jinjun Chen, Yun Yang

Faulty EPCs in the SAP Reference Model . 451
Jan Mendling, Michael Moser, Gustaf Neumann, H.M.W. Verbeek,
B.F. van Dongen, W.M.P. van der Aalst

A Hybrid Approach for Generating Compatible WS-BPEL Partner
Processes . 458

Simon Moser, Axel Martens, Marc Häbich,
Jutta Mülle

Towards a Task-Oriented, Policy-Driven Business Requirements
Specification for Web Services . 465

Stephen Gorton, Stephan Reiff-Marganiec

Table of Contents XV

Parameterized BPEL Processes: Concepts and Implementation 471
Dimka Karastoyanova, Frank Leymann, Jörg Nitzsche,
Branimir Wetzstein, Daniel Wutke

Behavioral Technique for Workflow Abstraction and Matching 477
Kais Klai, Nomane Ould Ahmed M’bareck, Samir Tata

Author Index . 485

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 1 – 15, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Enterprise Business Process Management – Architecture,
Technology and Standards

Donald F. Ferguson1 and Marcia Stockton2

1 IBM Fellow, SWG Chief Architect, IBM Software Group, USA
dff@us.ibm.com

2 Senior Technical Staff Member, IBM Software Group, USA
mls@us.ibm.com

Abstract. All enterprises’ operations require integrating information, and
processing information with applications. This has been true for decades, if not
centuries. Information and application integration has evolved from completely
person centered verbal communication (blacksmith to apprentice), through
paper documents-mail-fax, email and Web page interactions. The information
and applications control the flow of goods and operations on them. These are
the business processes of the economy. Coming from vastly different starting
points, the evolutionary paths of business designs and IT architectures are
converging, in a striking example of convergent evolution. In some cases,
enterprises are almost purely information processing businesses, e.g. insurance.
The past few years have seen explosive growth in direct program-program
interaction for application integration, removing manual steps to yield
tremendous improvements in reliability and efficiency. Controlling the
sequence of program interactions and information flow, and knowing the status
of the flows, are fundamental to an enterprise’s functions. Automating,
monitoring and optimizing the flow is the field of business process
management. The past two years have seen the emergence of several
architectural and standards based innovations. This paper, with a focus on the
end-to-end model, provides a technical overview of the standards, architecture,
programming and runtime models that make modern BPM possible.

1 Model – Assemble – Deploy – Manage (MADM)

Business professionals collaborating with IT professionals define a model
(architecture) of the business. Often the model is simply a set of “business processes,”
e.g. steps to process a purchase order. Additionally, the model may include business
artifacts (purchase order, bill of materials), policies (schedule premier customers
ahead of others) and the business components (shipping department, finance and
accounting). The business model could include key performance indicators (KPIs).
Examples of KPIs include: percentage of purchase orders that complete without
manual intervention, or average dollar value of submitted shopping carts. These KPIs
directly measure business performance, e.g. profit, customer satisfaction. Figure 1
provides an overview of end-to-end business process management (BPM).

The fundamental goal of BPM is to iteratively and coherently describe and
implement the business model through the development stage, into running systems
and monitoring KPIs. This is what distinguishes BPM from more classic approaches

2 D.F. Ferguson and M. Stockton

Shared
Model(s)
Shared

Model(s)

Assemble

Run

Model

Monitor

DeployShared
Model(s)
Shared

Model(s)

Assemble

Run

Model

Monitor

Deploy

Fig. 1. BPM Loop

to application development and execution. Existing systems are often vertically
integrated applications, with only fragmentary views of the business. The systems
typically do not report on satisfaction of business goals, or if they have this capability
to any extent, it was added after the fact.

Many recent innovations -- service oriented architectures, Web services and
standard languages for describing business processes, business artifacts, business
events and services -- make BPM goals more achievable.

This paper provides an overview of the recent innovations. The breadth of
standards and concepts often make seeing the forest difficult, as there are many,
changing trees. There are, however, an emerging set of architecture models that
integrate the many concepts. The models also enable consumable, progressive
discovery and application of the concepts. Moreover, the emerging architecture
naturally represents the business architectures and business models. The business
architecture and BPM/SOA architectures’ evolution are converging.

1.1 Model

The most popular modeling tools are white boards, followed closely by Microsoft
Office. However, there is an increasing trend to more formal and rigorous modeling.
Some organizations use focused tools, e.g. WebSphere Business Modeler [1] or
Intalio [2]. Others use tools that extend spreadsheets, documents or diagrams to
incrementally support business process modeling. Formal modeling has two major
benefits:

1. Precise notation: The well-defined semantics of formal models can capture
information in an unequivocal manner, whereas if you use PowerPoint® or white
boards, people who were not in the room do not know what dotted arrows or purple
circles mean.

2. Reliable hand-offs: Modeling tools can generate implementation templates and the
structure of the supporting applications (SOA services), business processes and
artifacts. This is less error-prone than reading documents and guessing the desired
application behavior. Bad things happen when programmers guess.

Surprisingly the connection between model and assemble (build) is bidirectional.
Organizations often use modeling tools to reverse engineer systems to explain the
existing applications to business professionals.

 Enterprise Business Process Management 3

1.2 Assemble

Historically, programmers think of “building” an application, or elements of an
application. The trend is increasingly moving to assembling an application, or
business process. Packaged and pre-existing applications provide much of the
necessary function. Implementing the business model and its changes often simply
requires assembling (and configuring) existing applications into a composite
application that integrates the existing systems. A business process, coordinating the
integrated composite application, is often accompanied by development of some new
services to complete the business process. Assembly has two sub-models:

1. Structure: Which services, processes and artifacts comprise the composite
application? What are the governing policies? …

2. Behavior: What are the sequences/control flows of calling the applications? What
is the data flow? What are the state transitions? …

An example of assembly tools is WebSphere Integration Developer [3]. Many other
companies have similar capabilities, e.g. SAP [4].

1.3 Deploy

The newly assembled, existing and configured applications run on an IT infrastructure
(systems, application servers and middleware, packaged applications, pub/sub
systems …). The deploy phase maps the application artifacts and configuration
information to the systems and software environments. The incremental nature of
deployment creates enormous challenges. The applications, processes and data
formats change while existing applications and transactions are executing. Imagine
changing the flight control system of a trans-Pacific flight.

Unexpectedly, information technology (IT) systems and application management
itself is evolving to a BPM model. Rolling out patches, upgrading software, etc. are
business processes. Products are evolving in this space, e.g. IBM IT Service
Management [5]. Standards evolving in the IT governance space include IT
governance processes (IT Infrastructure Library [6]), and the use of SOA and Web
services to manage applications and systems (Management Using Web Services [1],
Web Services Distributed Management [7], WS-Management [8]). The essential
realization is that complex IT management functions like call center/trouble ticket or
software upgrade approval are essentially business processes. Moreover, many
business processes are a mix of IT activities and application activities. The business
process for adding a new employee will update payroll systems, employee profile
systems and issue configured PCs, activate LAN ports and VPN user ids.

The IT Service Management solutions and standards:

− Define long-running, complex IT management operations using business process
modeling, which implement the processes using SOA centered workflow/BPM
engines.

− Provide SOA Web service APIs for management agents.
− Use portals to integrate manual steps within the service management processes.

The portals support user interfaces to applications, work lists, etc.

4 D.F. Ferguson and M. Stockton

− Use Web service based events to monitor processes and compute KPIs, e.g.
average time to resolve a problem ticket.

− Build integrated information models for configuration information. The systems
use Web service to perform information integration and federated databases.

− Warehouse/analyze business process events; automate reactions to event patterns.

1.4 Monitor

Monitoring is the observation of the executing composite applications. IT monitoring
observes throughput, response, resource utilization, problem events, etc. This enables
change, for example allocating more servers, to improve satisfaction of business goals
(for example, the time to process a purchase order). Business monitoring observes the
execution of the solution. (For example, did a purchase order fail a credit check or
require manual intervention? Emit an event when a credit check fails.)

The stream of business events enables intervention and reaction. Assume a credit
check fails. Part of the business process definition may be event filters, which look for
events or event streams matching a pattern. A filter for the credit check failure event
may trigger an email or instant message to the account representative. Aggregating
events into summaries interesting to employees, and making the summaries available
through email or a Web portal is extremely common.

A common element of business models is key performance indicators. How does
the business measure the success of their business model? The business may want to
achieve a target value for purchase orders; a business not achieving its goal may want
to modify personalization and product suggestions on their portal. The business may
want to reduce cost by eliminating manual approval of purchase orders; if not meeting
the goal, they might modify the approval-automation rules in the rule systemapproval.
Business events supply the data for computing KPIs. The solutions can warehouse the
events and perform analytics to compute KPIs.

The event and KPI models are explicit elements of the business process model.
These elements flow through all steps in the MADM loop. Business modeling defines
the taxonomy and formats for events, the KPIs and the event filters and actions. The
assemble phase realizes the model constructs; the deploy and run phases emit the
events. Standards emerge in this space, for example the Web Services Distributed
Management Event Format.

1.5 Nirvana

The preceding exposition restates the well-known BPM Nirvana. We have been
striving for enlightenment for years, if not decades. What is different now? We
provided some insight in the preceding sections. The remainder of the paper
articulates technical changes that make the goals more achievable.

2 Business Architecture and IT Architecture

Businesses have components: factories, departments, teams. Unfortunately,
businesses are very rarely designed from a top-town perspective. Poor or haphazard
business designs, with ill-defined interfaces between components and no clear

 Enterprise Business Process Management 5

understanding of components’ behavior, are much more common than well-conceived
ones. Enterprises evolve from mergers and acquisitions, and local decisions over lines
of business and geographical units, often resulting in duplications such as disjoint,
multiple shipping departments or administration systems.

Convergent evolution is a powerful, descriptive and prescriptive theory. Kangaroos
and Kangaroo Rats are not closely related, but have similar locomotion. Platypuses and
otters are not closely related, but are similar. In each case, the pair of similar animals
independently acquired similar solutions to certain problems that it faced in its
environment. Convergent evolution explains the similarity between the evolution of
enterprise business architectures and SOA; both evolved in parallel to address the same
kinds of problems, and not-so-coincidentally arrived at very similar approaches.

Enterprises are evolving towards well-factored and defined business components
[9]. Business components offer well-defined services with standard business object
formats. The business architecture detects redundant components and sub-
components. Once detected, the enterprise can consolidate or divest the redundant
components (to the extent their vision for a streamlined business design dictates).

The new business architecture enables selective externalization and flexible
placement of components. In fact, many enterprises “own” almost none of the
business components; their business model is the composite, aggregate solutions.

There is large body of literature on the benefits of the new business architecture
(please see the reference for case studies and references). Our key observation is the
close alignment of the business architecture and the SOA technical model. It is
fundamentally this parallelism – in an apparent example of convergent evolution —
which enables the IT realization of an enterprise to match the business architecture.

There is a second, subtler observation. Historically, the industry focused on
changing IT to make it more responsive to the business needs. Yet modern, SOA
based IT solutions have evolved to an effective architecture. Going forward, we
foresee a slight change in emphasis: similar pressures will cause the business to be
more like IT.

There are many definitions of “service” and service-oriented architecture. We will
use the following definition [10]:

A Service is a set of functionality provided by one entity for the use of others.
… Opacity is a core component [i.e., trait] of services. Each Service has a
Service Description. A Service Description is a set of metadata declaring all
aspects of a service necessary for a Service Consumer to understand the
service’s externally inspectable aspects.

These definitions are correct, but are not sufficient to provide a SOA realization of a
business architecture that supports BPM. For example, business components provide
services to other business components, but also use services. The Service Component
Architecture [11] is an evolving set of specifications to define a SOA component
model. Many of the elements of SCA directly support BPM.

The definition of service description identifies the needs for metadata. SCA brings
together several standards and patterns for formalizing this metadata. The standards
are: XML Schema Definition (XSD), Web Services Description Languages (WSDL) ,
WS-Policy, BPEL4WS, and Elements of the Unified Modeling Language.

6 D.F. Ferguson and M. Stockton

Finally, SOA relies on loose coupling and flexible binding. If service A needs to
invoke an operation O, the service (component) to use may be selected at runtime. The
specific shipping service to use may depend on the purchase order, current business
contracts, etc. Loose coupling and flexible binding are accepted concepts in SOA. The
technical architecture we describe in Section 3 identifies the architecture models for
mediation and integrating event driven processing with SOA. These concepts offer
greater flexibility than dynamic binding. The message transport mechanism, the
enterprise service bus (ESB), contains active logic within its message-processing
components, which can, for example, transform messages into a format compatible with
the message recipient or modify routing based on a message’s payload.

Integrating a set of standards provides a more complete, coherent model that
facilitates the business process modeling and assembly phases. It also provides a more
complete, concrete rendering of business concepts in an IT model. Extensions to the
architecture, which are patterns for services/components, improve the fidelity for
representing business designs. The ESB allows dynamic connections between
business processes and the services it choreographs.

An additional element of SCA is an increasingly portable programming model for
services components. This model, which extends beyond language-specific
approaches like J2EE, offers many benefits to both programmers and CIOs, most
notably avoiding vendor lock-in to specific products. SOA flexibility is as valuable to
business architectures and business process management as it is to IT implementation.
Consider that the evolution of a business component architecture may dictate
migration of business functions to partners, service providers, etc. A portable
approach to implementing services and components facilitates this flexibility.

3 Architecture Overview

This section refines the concepts previewed in Section 2. Much of the application
architecture focus is ensuring that the application (SOA) architecture supports the
business architecture. There is a special emphasis on coherence of the business
process models and the SOA models. This coherence helps integrate the modeling
phase of a solution with the assembly, run and monitor phases. So, the first element
of the application architecture we describe is the process model. A process
choreographs a dynamic set of services. We follow the process concepts with
modeling and assembly of dynamic sets of services.

A second tenet of the application architecture is well-defined services, metadata
and flexible binding. These are key requirements for mapping the business
architecture to the application architecture. To ensure flexibility and responsiveness to
changing business designs, the portfolio of services and the processes must be able to
evolve independently. We explain a general set of approaches to service description
and metadata, and an evolving standard architecture (the Service Component
Architecture).

To be useful, a service must be executable. Runtime products that support the
monitor phase of the BPM lifecycle play an extremely important role in SOA and SCA.
Section 3.3 describes the integration of monitoring/management with SOA and SCA.

 Enterprise Business Process Management 7

Existing systems, such as CICS and IMS, offer robust support for change
management. Programmers for these systems find them intuitive and easy to program.
Many of these benefits derive from applying a set of well-known best practices or
design patterns. Similar patterns are emerging for SOA, and we briefly enumerate the
core patterns.

3.1 Application Architecture

3.1.1 Composition – Processes and Structure

3.1.1.1 Business Processes – Motivation. Figure 2 provides an overview of two
approaches to building SOA business solutions. The first approach, labeled inflexible,
is just that. The solution is inflexible and violates two SOA design principles. Two
services access the same data (S1 and S2 access D2). This violates the principle of
well-defined interfaces. The two services effectively communicate through private
data signals. The services’ implementations (e.g. S1) also orchestrate or choreograph
other services within their implementations. How do these violations cause
inflexibility? Three problems are salient:

Inflexible Design

Flexible Design

S2

S4

S3
S1

D1

S1

Pre-existing
app. A4

D3

S2

S3
D3

D1

S4
A4

Inflexible Design

Flexible Design

S2

S4

S3
S1

D1

S1

Pre-existing
app. A4

D3

S2

S3
D3

D1

S4
A4

Fig. 2. Well-designed Business Processes

1. The ability to independently evolve and refine services provides flexibility.
2. Embedding sequences and control flows for service invocation within the code of a

service makes change difficult
3. Embedded signaling through data and encapsulated (implicit) service choreography

make flexible modeling and monitoring more difficult.

Figure 2 also provides an example of a more flexible design. Services are atomic
elements; their implementation may access data, call pre-existing applications (e.g. A4),

8 D.F. Ferguson and M. Stockton

use libraries, etc. A key design principle is the sharing of data between services is
prohibited; services may not even call applications that share data. Another principle is
that all aggregation and control flow of service operations must be external to the atomic
services, and reside in a well-defined business process.

3.1.1.2 Behavioral Composition. Experience with products and solutions reveals
three fundamental approaches to composing the behavior of services to form business
processes and composite applications. 1) A control flow and composite activity model
-- The standard approach to control flows and composite activities is BPEL4WS.
There are many documents on BPEL4WS, and we will not discuss it here. 2) A state
machine model -- State machines are also widely understood, and we will not discuss
them. 3) A message flow/event model.

SCA takes an interesting approach to behavioral composition. On first
examination, SCA’s primary focus seems to be structural composition, which we will
discuss below. The evolving SCA specifications and products introduce three sub-
types/kinds of SCA components. WebSphere Process Server/WebSphere Integration
Developer/WebSphere ESB are examples:

1. There is a component kind for BPEL4WS, which supports control flow and
composite activity composition.

2. A Business State Machine is component kind that implements a state machine
model. A component has a current state and state machine. For any state, only
certain operations are enabled. The state machine changes state based on the called
operation, and may execute a private operation on the transition. There are also
state entry and exit guards.

3. WebSphere Enterprise Service Bus provides support for composition through event
and message flows, including composing primitives and sub-flows into a larger
composition. We will briefly discuss this model below (Section 3.1.5).

In SCA, BPEL4WS processes, state machines and ESB event/message flows are SCA
components. Externally, these component types look like any other. Programmers
implement behavioral composition by writing new SCA components that behaviorally
compose other components. The programmer may add the new components to an
application or solution, or develop a separate module that performs the composition.

This approach may appear to violate some of the principles we articulated in
Section 3.1.1.1, e.g. embedding control flow in components.

3.1.1.3 Business Processes – Structural Composition. A service component in SCA
documents the interfaces it supports and the interfaces it requires. We explain the
details of the approach to documenting the interface in Section 3.1.2. Figure 3
provides an overview of structural composition. The model “wires” required
interfaces to implemented interfaces. Interface compatibility can consider all aspects
of the metadata describing the interface. Programmers wire service components
together to create assemblies called modules. The model is recursive: modules may
export interfaces and require interfaces. Assemblers can then wire modules together
to build subsystems and solutions.

 Enterprise Business Process Management 9

Services
(SCA Components)

Required Interface
Implemented Interface

Services
(SCA Components)

Required Interface
Implemented Interface

Fig. 3. Structural Assembly

The wiring approach simplifies the process of assembling services into new
solutions, and modifying the services that comprise a solution. The key benefit is that
all service components have the same external model. Programmers can perform
assembly without being aware of the component’s implementation.

Finally, assembly can be dynamic. The model is not static. Because of loose coupling
and the enterprise service bus functions, modules and solutions can change rapidly.

3.1.2 Service Components, Service Description and Business Artifacts
A component implements one or more interfaces, which it defines in WSDL. (Many
SCA implementations will support defining interfaces in native languages, e.g.
COBOL, to simplify the developer’s task; tools then generate any necessary WSDL.)
The component also identifies one or more required interfaces.

Another key element, not yet explicitly part of SCA, is a business artifact.
Services and their operations are the verbs that implement an enterprise’s business
model: create purchase order, approve purchase order. Business artifacts are what the
verbs manipulate, e.g. account, purchase order. WS-ResourceFramework [17] is an
evolving standard for integrating Web services and business artifacts. WebSphere
Process Server and WebSphere Integration Developer support business state
machines (BSMs).

Most literature on SOA and Web services assert that Web services are stateless.
This is true only in a narrow sense. Most Web services manage and manipulate state
data, i.e. the business artifacts. The opacity requirement for services implies that the
business artifacts are not externally visible, and the service’s operations completely
describe its behavior. There are three ways in which a business artifact becomes
externally visible, however.

1. Its operations send and receive messages, which projections from an underlying
data model.
2. Service description metadata expresses relationships between service operations
and the artifact’s state, incidentally providing intuitive monitoring data. One can ask,
“What is the state of my purchase order?”

10 D.F. Ferguson and M. Stockton

Prolog

Types

Messages

Bindings

Policy
Control Descriptors

Deployment Descriptors

Operations

Port Types

JMS/MQ
HTTP
IIOP
… …

Impl.

Stub

Required
Interfaces

ESB

Container

“Resources”

“Abstract Process”

Prolog

Types

Messages

Bindings

Policy
Control Descriptors

Deployment Descriptors

Operations

Port Types

JMS/MQ
HTTP
IIOP
… …

Impl.

Stub

Required
Interfaces

ESB

Container

“Resources”

“Abstract Process”

Fig. 4. Components and Interfaces

3. The additional metadata provided by business artifacts, lifecycle states, operations
and messages aid in service discovery and binding, ensuring that consumers and
providers have a common understanding of business artifacts and their behavior.

Business artifacts and state machines have limited ability to express behavior. For the
description of aggregate behavior spanning multiple operations, interfaces and
artifacts, BPEL4WS introduces the notion of an abstract process. The abstract
process projects a service component’s “business process” from the perspective of a
consumer or provider.

The evolving Service Component Architecture provides a rich set of constructs for
describing the interface syntax and behavior of services. The model is consumable
and incremental. Solution developers can start with simple interfaces, as outlined
here, and gradually increase sophistication. Despite having a logical external model,
a component’s innards are typically completely opaque.

3.1.3 Policy
The preceding service description concepts focused on documenting what a
service/component does: e.g. it creates, approves, and cancels purchase orders.
Equally important is how the component implements its functions and what it expects
of callers or services that it calls. A component may have policy annotations on the
interfaces and other elements. The policy annotations typically describe quality-of-
service related concepts. For example,

− Does the component require that callers sign or encrypt messages? What certificate
authorities does the component trust?

− The component may require reliable messaging, ensuring that there are no
duplicate messages or out-of-order messages.

 Enterprise Business Process Management 11

Web service standards such as WS-Transactions [12], WS-ReliableMessaging [13],
and WS-SecureConversation [14] define formats and protocols on top of the base
SOAP and HTTP protocols. The standards provide additional quality of service for
interactions. The standards and protocols may offer parameter choices, e.g. what
message digest algorithm may be used in a security protocol. Each Web service
interoperability specification typically has a companion extension to WS-Policy [15]
that allows services to document the details of protocols that it supports/requires.

The base policy framework supports Boolean composition of policy statements, for
example AND/OR/NOT. This allows a service to specify sets of policies that it
supports. During binding, the infrastructure performs a policy intersection to
determine a choice of policy settings that both the caller and called support.

3.1.4 Bindings
Most BPM systems support protocols in addition to SOAP/HTTP. Metadata
associated with a component documents support for other protocols. The binding may
support for the policies natively, for example reliable messaging on WebSphere-MQ.

3.1.5 Enterprise Service Bus
Wiring is a powerful concept because of its simplicity and intuitive model. The
approach appears limiting and in conflict with the flexible, dynamic and loose
coupling of SOA. The service component model provides a layered approach to
increasing flexibility and function. Logically, all wires flow through an enterprise
service bus. Wires offer a continuum of function ranging from a direct, design-time
connection between components, to a logical connection resolved at runtime based on
specified metadata, to a mediation that routes dynamically based on message content,
to an actor in a complex publish-subscribe system.

Wiring is a simple model

but
is limited

-------- ---------------

Transparent
Mediation

Implements

Emit Event

Subscription
Filter

Topics

Filter
Analyze
Rules

Wiring is a simple model

but
is limited

Wiring is a simple model

but
is limited

-------- ---------------

Transparent
Mediation

Implements

-------- ---------------

Transparent
Mediation

-------- ---------------

Transparent
Mediation

-------- ---------------

Transparent
Mediation

Implements

Emit Event

Subscription
Filter

Topics

Filter
Analyze
Rules

Emit Event

Subscription
Filter

Topics

Filter
Analyze
Rules

Fig. 5. Enterprise Service Bus

12 D.F. Ferguson and M. Stockton

ESB tools support composing basic mediations into composite mediations. The
example above is a composite of routing and transformation; other typical mediations
include side effects (e.g. logging), and augmentation (adding pertinent data to
messages).

The key benefit of the ESB mediation model is flexibility. New services or new
versions of services can join the bus. An integration specialist can change service
request routing transparently to existing, deployed services and modules.

It is important to note that some ESB function may execute within application
endpoints, providing performance levels comparable to a traditional implementation.

3.1.6 Configuration and Customization
Service components are highly configurable. Configuration may occur during
assembly or at runtime. Some component kinds are inherently configurable. For
example, rule sets, BPEL4WS processes and business state machine are effectively
documents that an engine interprets. Configuration is as simple as changing the
underlying document and setting an “as of time” for the change to take affect.

SCA defines a property model for binary components. The component may define
an accompanying “document” that declares parameters that configure the
component’s behavior. An example might be the maximum value of a PO.
Developers set the properties during assembly. It may also be possible to change the
properties for deployed components, for example by inserting mediations.

3.2 Runtime Architecture and Deployment

Figure 6 provides an overview of the two key concepts in the runtime architecture.
The first concept is the container abstraction. Logically all components, including
business processes, execute/reside in a container. The container “wraps” the
component, pre- and post-processing all service invocations. The pre-post processing
implements the policies associated with the component. For example, if the
component specifies that message from a sender must be in order and digitally signed,
the container implements these functions before passing it to the business logic.

The container abstraction and policy have many advantages. Implementing quality
of service logic should be separate from business logic. The necessary policies may
change over time, or from composite application to composite application. Using the
declarative model enables this flexibility. Most runtimes support a service provider
interface (SPI) for adding new quality-of-service functions and policy types.

The runtimes typically support several container kinds, including workflow
engines, the ESB, containers for code (J2EE™ application servers), XML enabled
databases, etc. The containers may be on separate runtimes and machines, or often
within a single runtime. Finally, distinguished services—such as
transaction/coordination manager, logging, authorization and authentication—may be
available on the bus.

A complete application has associated metadata that defines the components,
modules and their versions. The metadata also defines the container types for each
component. Modern deployment systems like Tivoli Provisioning Manager [16]
implement deployment and change-management business processes for solution
deployment and update.

 Enterprise Business Process Management 13

Fig. 6. Runtime Architecture

3.3 Monitoring and Management

Business process monitoring and management occurs through a business event model.
The modeling and assembly phases define explicit business events. For example,
there may be an explicit “emit business event” activity in a state machine or
BPEL4WS process. The component may emit this event in the same way that code
logs a condition or an exception. Containers also support dynamic, automatic event
generation. For example, the container may emit business events when messages
arrive for a component. The event includes the input message and response. Most
BPEL4WS containers support configurable monitoring of BPEL4WS processes,
emitting business events for selected activity transactions.

There may be a mismatch between the emitted event format and the observer’s
expected format. Business events flow through the ESB, which enables routing,
transformation, etc. Many ESB systems also support mediations that use rules or logic
to examine event streams looking patterns. When the mediation detects a pattern, it
emits an event indicating that the pattern occurred. The mediation may also invoke an
operation on a service when recognizing the pattern. This enables automated
execution of business processes, rules, and so forth, when specific conditions occur.

14 D.F. Ferguson and M. Stockton

Business process management systems also enable the logging of events to a data
warehouse for business intelligence, and the connection of end-user dashboards to the
event system.

4 The Role of Standards

Standards play a key role in business process management. Standards are the
mechanism for integrating applications and infrastructure between companies, lines of
business, geographies in a multinational company, etc. Many people are familiar with
and understand interoperability standards like SOAP/HTTP and WS-Interop.

Standards play two other roles:

• They enable interoperability between different organizations development tools
(and management products), and between products provided by different software
vendors. For example, SOAP/HTTP provides runtime interoperability between
service A and service B. The developers use the services’ WSDL, XSD, WS-
Policy, BPEL4WS abstract processes, etc. to develop the services.

• They also enable portable services, components and modules. This area is
evolving. J2EE™ is one example. BPEL4WS/BPELJ, XSL and XQuery are other
(mostly) portable models. Finally, WS-Policy and policy grammars for
infrastructure also enable portability.

5 Summary and Future Directions

Business process management and monitoring is becoming THE way that enterprises
implement their business models. SOA and Web services have enabled BPM to grow
and expand. As the standards continue to emerge, BPM will become progressively more
powerful. This is especially true because the standards enable cross-enterprise
collaboration, globalization, etc. Much of the emphasis on BPM derives from two
observations:

1. SOA, components and BPM, and the architecture of businesses (componentization,
partnership, outsourcing, …) are co-evolving to similar design points. Thus, BPM
and SOA are the natural ways to implement flexible business models.

2. The industry is realizing that many problems previously solved with non-BPM
concepts are in-fact ideally suited for BPM. Complex systems management and
data center governance processes are an example. Application development and
governance itself is a business process management problem.

BPM and SOA are not complete, however. The BPM platform exposes several open
problems and directions for research:

− Modeling is a powerful, useful concept. Model constructs and environments have
only rudimentary support for reasoning about and analyzing the model. Simulation
and testing are the state of the art.

− Beauty is in the eye of the beholder. One of programmers’ most common questions
is, “What makes something a good service? Should I surface my database through

 Enterprise Business Process Management 15

one “mondo service,” or have a service per table?” Experiential guidance and tool
support for service identification, factoring, etc will be increasingly critical.

− Most business processes integrate people and commercial data processing
applications. Web service and Grid service models have converged. This make
calling just-in-time optimization, simulation, etc in business processes possible.
Our industry is only at the beginning of understanding and exploiting these
capabilities.

− There has been recent discussion of “situation applications,” “ad hoc applications”
or “just-in-time” applications. These applications are targeted for a very specific,
usually short duration and narrowly scoped problem. In some sense, the
applications are the natural evolution of wikis, spreadsheets and Web services.
Simple BPM concepts will increase the power and flexibility of these applications.

References

1. http://www-306.ibm.com/software/integration/wbimodeler
2. http://www.intalio.com/
3. http://www-306.ibm.com/software/integration/wid/
4. http://www.sap.com
5. http://www-306.ibm.com/software/tivoli/features/it-serv-mgmt/
6. http://www.itil.co.uk/
7. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
8. http://msdn.microsoft.com/ws/2004/10/ws-management
9. Linda S. Sanford, Dave Taylor. Let it Grow – Escaping the Commodity Trap. Pearson

Education, 2006. ISBN 0-13-148208-4.
10. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm.
11. http://www-128.ibm.com/developerworks/library/specification/ws-sca/.
12. http://www.ibm.com/developerworks/library/ws-coor/
13. http://www.ibm.com/developerworks/webservices/library/ws-rm/
14. http://www.ibm.com/developerworks/library/ws-secon/
15. http://www.ibm.com/developerworks/library/ws-polfram/
16. http://www.ibm.com/software/tivoli/products/prov-mgr/
17. http://www.oasis-open.org/committees/wsrf/

BizTalk Server, Windows Workflow Foundation,
and BPM

Dave Green

Microsoft Corporate Campus
One Microsoft Way

Redmond, WA 98052, USA
davgreen@microsoft.com

Abstract. The release of BizTalk Server 2006 in March, and the upcoming
releases of Windows Workflow Foundation and BizTalk Server 2006 R2 are mile-
stones in Microsoft’s BPM strategy. This talk is about how BizTalk Server and
Windows Workflow Foundation work together, how Microsoft thinks about and
supports BPEL, how Microsoft partners can add and are adding value to this pic-
ture, and how all these pieces combine to deliver a BPM solution.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, p. 16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analyzing Interacting BPEL Processes�

Niels Lohmann, Peter Massuthe, Christian Stahl, and Daniela Weinberg

Humboldt–Universität zu Berlin
Institut für Informatik
Unter den Linden 6

10099 Berlin, Germany
{nlohmann, massuthe, stahl, weinberg}@informatik.hu-berlin.de

Abstract. This paper addresses the problem of analyzing the interac-
tion between BPEL processes. We present a technology chain that starts
out with a BPEL process and transforms it into a Petri net model. On
the model we decide controllability of the process (the existence of a
partner process, such that both can interact properly) and compute its
operating guideline (a characterization of all properly interacting partner
processes). A case study demonstrates the value of this technology chain.

Keywords: Business process modeling and analysis, Formal models in
business process management, Process verification and validation, Petri
nets.

1 Introduction

To an increasing extend interorganizational cooperation is crucial for enterprises
to meet the new challenges of ever faster changing business conditions and the
growing number of competitors in all kinds of business fields.

In this context, services play an important role: they serve as the basic
building blocks of such interorganizational cooperations. Recent publications
apply the term service in different contexts with varying denotations (see [1]
for a survey). A common understanding is that a service basically encapsulates
self-contained functions that interact through a well-defined interface via asyn-
chronous message passing.

A service can typically not be executed in isolation – services are designed for
being invoked by other services, or for invoking other services themselves. The
interaction of services is described by the paradigm of service-oriented comput-
ing (SOC) [2]. Thereby, two different approaches can be distinguished: service
orchestrations consider one particular service that directs the logical order of all
other services, whereas service choreographies consider the case where individ-
ual services work together in a loosely coupled network. The participants of such
interactions are called partners.

The most common implementation of services are web services. The Business
Process Execution Language for Web Services (BPEL, also known as WS-BPEL
� Partially funded by the BMBF project “Tools4BPEL”.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 17–32, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

18 N. Lohmann et al.

or BPEL4WS) [3] is an accepted language to describe web services. We shall
refer to a web service that is described in BPEL as a BPEL process or process
for short.

A choreography of BPEL processes may cause nontrivial interaction between
them. Thus it is a challenging task to decide whether the whole choreography of
processes interacts properly, i. e. it is free of deadlocks and there are no messages
being sent that cannot be received any more. There are two main reasons for
non-proper interaction: (1) a process may have an erroneous design. For instance,
the process may contain an internal choice relevant for the expected behavior of
a partner, but the partner is not informed which decision is actually made; (2)
the interactional behaviors of two processes of the choreography exclude each
other. For example, the processes run into a situation where one process waits
for a message of the other one and vice versa.

Thus a BPEL process needs to be analyzed thoroughly before it is deployed.
For this purpose, we can make use of several results in the context of the analysis
of services and of backing BPEL processes with a formal semantics. In [4] the
notion of controllability was developed. A service is controllable if there exists
a partner such that both interact properly. Thus an erroneous design of a ser-
vice itself is detected by analyzing its controllability. We further developed the
operating guideline of a service. The operating guideline characterizes all prop-
erly interacting partners in a compact way [5]. With the aid of the operating
guideline it can be checked whether the interactional behaviors of two services
exclude each other. As a formal model for BPEL processes open workflow nets
(oWFNs) [6], a special class of Petri nets, are used. Further, we developed a
feature-complete Petri net semantics for BPEL [7]. The semantics allows for
an automatic transformation of BPEL processes into Petri net models [8]. The
resulting Petri net models are well-suited for computer-aided verification. The
verification, however, is restricted to the internal behavior of a BPEL process so
far and does not consider the interactional behavior.

BPEL2oWFN
BPEL

process

pattern

repository

Petri net (PNML,

LoLA, PEP, APNN)

model checkers

(CTL, LTL, deadlocks)

open workflow net
Fiona

(controllability, OG)

Fig. 1. Proposed tool chain to analyze BPEL processes

In this paper we extend the analysis of BPEL processes presented in [8]
by interactional behavior. We introduce two tools – BPEL2oWFN and Fiona.
BPEL2oWFN transforms a BPEL process into an oWFN. That way it is possi-
ble to analyse the interaction between BPEL processes with Fiona, a tool that
decides controllability and computes the operating guideline. Thus, we present
a technology chain (Fig. 1) that starts out with a BPEL process, transforms it
into an oWFN or a Petri net and that finally analyses the process by either using
Fiona or by using a common model checker. Throughout this paper we restrict

Analyzing Interacting BPEL Processes 19

ourselves to the interaction of two processes only. For the interaction of more
than two processes, some theoretical results [9] exist, which are not implemented
yet.

The rest of the paper is organized as follows: in Sect. 2, we provide an overview
of the general concepts of BPEL and introduce our model, open workflow nets.
We also explain controllability of oWFNs and operating guidelines for oWFNs.
A BPEL example process, an online shop, is presented in Sect. 3. Section 4
explains the concepts of our advanced transformation and translates the online
shop into an oWFN. The resulting oWFN is then analyzed in Sect. 5. We present
a slightly modified version of that process in Sect. 6 and analyze it, too. In Sect. 7
we describe related work in detail. Finally, we conclude with directions to future
research.

2 Background

2.1 BPEL

The Business Process Execution Language for Web Services (BPEL) [3], is a
language for describing the behavior of business processes based on web ser-
vices. For the specification of a business process, BPEL provides activities and
distinguishes between basic and structured activities. A basic activity can com-
municate with the partners by messages (invoke1, receive, reply), manipulate
data (assign), wait for some time (wait) or just do nothing (empty), signal faults
(throw), or end the entire process instance (terminate).

A structured activity defines a causal order on the basic activities and can
be nested in another structured activity itself. The structured activities include
sequential execution (sequence), parallel execution (flow), data-dependent
branching (switch), timeout- or message-dependent branching (pick), and re-
peated execution (while). The most important structured activity is a scope. It
links an activity to a transaction management and provides fault, compensation,
and event handling. A process is the outmost scope of the described business
process.

A fault handler is a component of a scope that provides methods to handle
faults which may occur during the execution of its enclosing scope. Moreover,
a compensation handler can be used to reverse some effects of successfully exe-
cuted activities. With the help of an event handler, external message events and
specified timeouts can be handled.

2.2 Open Workflow Nets

Open workflow nets (oWFNs) [6] are a special class of Petri nets and can be seen
as a generalized version of van der Aalst’s workflow nets [10]. As a substantial
difference, in an oWFN the interface of a service is explicitly represented as sets
of input and output places. In our model we concentrate on control flow aspects

1 We use a typewriter font for BPEL activities.

20 N. Lohmann et al.

of services and abstract from data (like, e. g., the content of messages). For data
with finite domain, however, important message content can be represented in
our approach. For instance, a channel receiving messages with Boolean values can
be represented by its separation into two channels: one for messages with content
true and one for messages with content false. Hence, oWFNs provide a simple
but formal representation of services, still preserving sufficient information to
analyze proper interaction of such services.

We assume the usual definition of Petri nets. An open workflow net is a Petri
net N = (P, T, F), together with (1) an interface I = in ∪ out such that I ⊆ P ,
in ∩ out = ∅, and for all transitions t ∈ T it holds: if p ∈ in (p ∈ out), then
(t, p) /∈ F ((p, t) /∈ F), (2) a distinguished marking m0, called the initial marking,
and (3) a set Ω of distinguished markings, called the final markings. The places
in in (out) are called input (output) places. The inner of an oWFN N can be
obtained from N by removing all interface places, together with their adjacent
arcs. As a convention, we label a transition t connected to an input (output)
place x with ?x (!x).

Throughout this paper we only consider acyclic open workflow nets, i. e. nets
where the transitive closure of F contains no cycles. As an example, consider
the oWFN N1 depicted in Fig. 2.

Fig. 2. An example oWFN N1. The net has
three input places, login, terms, and order, and
two output places, confirm and invoice. The ini-
tial marking m0 is [p0] which denotes one to-
ken on place p0. N1 has only one final marking,
[p6,p7].

In m0 the net waits for the login message
from a partner. If the message arrives, transi-
tion ?login can fire and produces a token on
place p1.

Then, firing transition t1 yields the mark-
ing [p2,p3]. This means that the net is ready to
concurrently receive an order message (order)
and a terms of payment message (terms). The
order is confirmed (!confirm) and the terms of
payment are followed by an invoice (!invoice).
If both transitions have fired, the final marking
[p6,p7] is reached.

p0

p1

p2

?login

t1

?order

login

p3

?terms

p4

!confirm

p5

!invoice

order

p6 p7

terms

confirm

invoice

The interplay of two oWFNs N and M is represented by their composition,
denoted by N ⊕ M . Thereby, we demand that the nets only share input and
output places such that an input place of N is an output place of M and vice
versa. The oWFN N ⊕ M can then be constructed by merging joint places and
merging the initial and final markings. Merged places become internal to N ⊕M .

A marking (sometimes called a state) m of N is called a deadlock if m enables
no transition. An oWFN in which all deadlocks are final markings is called weakly
terminating. Obviously, the net N1 in Fig. 2 itself is not weakly terminating. N1

Analyzing Interacting BPEL Processes 21

requires a partner who sends and receives messages. N1 is not able to reach its
final marking [p6,p7] on its own. Given an oWFN N , we call an oWFN S a
strategy for N iff N ⊕ S is weakly terminating.

2.3 Controllability of oWFNs

Intuitively, controllability of an oWFN N means that N can properly interact
with some other net. Formally, N is controllable iff there exists a strategy for
N . Like the soundness property for workflow nets (cf. [10]), controllability is a
minimal requirement for the correctness of an oWFN.

In [4] we developed an algorithm to efficiently decide the controllability of an
oWFN N . Intuitively, the algorithm tries to construct (synthesize) a strategy,
i. e. an oWFN S, which imposes the weak termination property of S ⊕ N . If the
construction fails, N is not controllable. If it succeeds, N is controllable and we
have constructed a strategy, S. This construction is, in fact, a problem known in
the literature as controller synthesis (see [11]). Technically we do not construct
a strategy S, i. e. an oWFN, but an automaton that reflects the interactional
behavior of S instead. To avoid confusion, we call the constructed automaton
controller, but denote it with S as well.

To construct such a controller S, we first construct the interaction graph (IG)
of N which has also been introduced in [4]. The IG represents a controller’s point
of view of N . A node of the graph represents the set of all states that N can reach
by consuming (already present) messages or producing messages itself. The actual
state of N is hidden for S. S knows the history of sent and received messages only.
From that information, in each node, S can deduce a set of states of N which con-
tains the state that N is really in. Thus a node of the graph represents a hypothesis
of the controller with respect to the actual state of N .

S can control the net in a limited way by sending or receiving messages. Each
edge of the graph represents an event of S. A sending event (labeled by !) means
that S sends a message to N . The new message may enable N to fire previously
disabled transitions, i. e. deadlocks may get “resolved”. A receiving event (labeled
by ?) of S represents the receiving of a message by the controller. Thereby, the
controller gets some more knowledge about the state that N might be in.

In the constructed IG, we then look for a controller S for N . The controller
is a subgraph of the IG containing the root node and fulfilling the following
property: for every node v of the subgraph and each deadlock in v which is no
final marking, there exists an event at v that resolves that deadlock and leads
to a node of the subgraph again. This property can easily be checked while the
IG is constructed. The oWFN is controllable iff such a controller can be found.
In a final step, the controller could be transformed into an oWFN by using the
theory of regions, for instance. This oWFN is then a strategy by construction.

As an example, the IG of the oWFN N1 (see Fig. 2) is depicted in Fig. 3.
As we can see in the IG of N1 each deadlock in any node (except for the final
marking in the last node) is resolved. Hence, the IG itself represents a controller,
and we conclude that N1 is controllable. Please note that two other subgraphs
constituting controllers can also be found in the IG of N1.

22 N. Lohmann et al.

Fig. 3. The IG for the net N1 of Fig. 2. The
first node of the IG represents the hypothesis
that the controller of N1 has about N1 when
neither messages have been sent nor received:
the net must be in state [p0], which is a dead-
lock. Hence, the first node contains the state
[p0] only.

However, sending a login message resolves
the deadlock. Hence, we add an edge labelled
with the sending event !login and a new (yet
empty) node to the IG. N1 is now in state
[p0,login] and may fire transition ?login reach-
ing the state [p1]. After successively firing all
enabled transitions the next reachable deadlock
is [p2,p3]. So the new node contains the states
[p0,login], [p1], and [p2,p3].

Now one of two sending events is possible:
!order or !terms. So we add two edges and two
empty nodes, and so on.

The last node of the controller represents
the states where N1 can be in after all the mes-
sages are exchanged. There is only one dead-
lock, [p6,p7], in that node which is the final
marking of N1.

[p0]

[p0, login]
[p1]

[p2, p3]

 !login

[p0, login, order]
[p1, order]

[p2, p3, order]
[p3, p4]

[p3, p6, confirm]

!order

[p0, login, terms]
[p1, terms]

[p2, p3, terms]
[p2, p5]

[p2, p7, invoice]

 !terms

[p3, p6]

 ?confirm

[p3, p6, terms]
[p5, p6]

[p6, p7, invoice]

 !terms

[p6, p7]

?invoice

[p2, p7]

 ?invoice

[p2, p7, order]
[p4, p7]

[p6, p7, confirm]

 !order

 ?confirm

2.4 Operating Guidelines for oWFNs

The IG of an oWFN N contains only some controllers of N . For a representation
of all controllers (all properly interacting partners) of N , the concept of the
operating guideline (OG) for N was introduced in [5]. As we did in the section
before, we do not directly represent the strategies as oWFNs, but represent their
behaviors as automata.

The OG of N is constructed as follows: in a first step, an extended interaction
graph for N is computed which considers more events than the original one.
This results in a controller performing more events than the one given by the
original IG. In [9] it has been proven that every (properly interacting) controller
must be a subgraph of the constructed one. Unfortunately, the converse is not
true – only subgraphs that fulfill some further conditions are controllers for N ,
too. The second construction step is devoted to these conditions. In [5] we have
shown that it is possible to code the conditions as a Boolean formula for each
node of the controller. For a node v, the formula at v is in conjunctive normal
form (CNF) over the events at v. Adding the corresponding formulae to the
controller results in an annotated controller, the operating guideline for N .

The OG characterizes the set of all strategies for an oWFN and can be read
as follows. We are allowed to remove nodes (except for the root node) and edges
from the OG as long as, in each node v, the formula at v is still satisfied. To
evaluate such a formula, the (remaining) outgoing edges constitute an assignment

Analyzing Interacting BPEL Processes 23

of truth values to the literals of the formula: an outgoing edge from node v with
label x assigns true to the literal x in the formula at v. Each subgraph that can
be constructed this way is a controller per construction.

Operating guidelines can be used to efficiently check whether two oWFNs
will interact properly even before actually composing them. Given a controller
representing an intended partner’s behavior, we developed an algorithm to check
whether it is characterized by the OG or not [12].

Figure 4 shows the operating guideline of the oWFN N1 depicted in Fig. 2.
In a node of the OG, the corresponding annotation is depicted. The reachable
states of N1 are hidden.

Fig. 4. The OG for the oWFN N1 of Fig. 2.
The annotation of the first node is a disjunc-
tion (!terms ∨ !login ∨ !order), i. e. a one-
clause CNF formula. It means that every con-
troller must, as its first event, send one of the
three corresponding messages. The controller
of Fig. 3, for instance, performs the event !lo-
gin which is obviously correct according to the
OG. The OG also allows a controller which
first sends its order to N1. This possibility re-
sults from the proposed asynchronous way of
interaction. Even if the order was sent first, it
would keep pending on the place order until
N1 has consumed the login message sent later.

The annotation true of the last node means
that no event has to be performed any more.

In sum, the OG of N1 characterizes 77 dif-
ferent controllers for N1.

!terms ∨ !login ∨ !order

!terms ∨ !order

 !login

!terms ∨ !login

!order

!login ∨ !order

!terms

!terms ∨ ?confirm

!order

!invoice ∨ ?order

!terms

?invoice ∨ ?confirm

!terms

!terms

 ?confirm

?confirm

?invoice

?invoice

?confirm

true

?confirm ?invoice

!terms

!order

!order

?invoice

!order

 !login

!login

!terms

 !login

 !login !order

3 Example Process: Online Shop

In this section we present an online shop as our example process. It is a simple
but realistic business process and a modification of an online shop presented
in [13]. The online shop’s BPEL specification consists of 15 activities and an
event handler and is depicted in Fig. 5. We abstract from the BPEL syntax and
use a more intuitive graphical notation: a box frames an activity. For structured
activities the corresponding BPEL construct is additionally depicted in the top
left corner of the box. We use icons for basic activities, optionally with a mes-
sage name shown below it. A sequence is depicted by arcs whereas concurrent
activities are grouped in parallel separated by a dashed line.

When the online shop receives the login information from a customer, its busi-
ness strategy distinguishes between already known customers and new customers.
In case of a known customer the left branch is executed: first the shop expects an
order, and then it sends the invoice to the customer. In case of a new customer

24 N. Lohmann et al.

new customerknown customer

login

invoice

order

sequence

confirm

order

sequence

invoice

terms

sequence

deliver

flow

switch

sequence

abort

sequence

eventHandlers

Stop

process
Legend:

Stop

receive

invoke

terminate

Fig. 5. The online shop process

(right branch) the shop initiates two tasks concurrently: in the first task (left se-
quence) the shop first receives the order and then confirms it. In the second task
(right sequence) the shop receives the terms of payment before it sends an invoice
to the customer. In either case the shop finally sends the delivery information to
the customer. The customer may send an abort message at any time. We modeled
this as an onMessage event handler that receives the abort message and then ter-
minates the whole process. In Fig. 5 we depicted the event handler as a box, too.
The expected message is also depicted by a receive icon.

4 Translating BPEL to Open Workflow Nets

4.1 Petri Net Semantics for BPEL

Our goal is to formally analyze BPEL processes. To achieve this goal we translate
a BPEL process into an open workflow net using the semantics of [7]. As the
semantics itself is not the focus of this paper, we only summarize the main ideas
of it. The semantics is guided by the syntax of BPEL. In BPEL, a process is built
by plugging instances of BPEL constructs together. Accordingly, we translated
each construct of the language separately into a Petri net. Such a net forms
a pattern of the respective BPEL construct. Each pattern has an interface for
joining it with other patterns as it is done with BPEL constructs. The semantics
aims at representing all properties of each BPEL construct within its respective
pattern.

Please note that a pattern itself is not an open workflow net. Only the com-
position of all patterns of the activities of the process forms an open workflow
net. The collection of patterns forms our Petri net semantics for BPEL. The
semantics is complete (i. e. it covers all the standard and exceptional behavior

Analyzing Interacting BPEL Processes 25

of BPEL) and formal (meaning it is suitable for computer-aided verification).
However, to decide controllability or to construct the operating guideline of a
BPEL process it is not necessary to model all features of BPEL. As an example,
Fig. 6(a) shows the receive activity “login” as it is used in the online shop.
Figure 6(b) shows its corresponding Petri net pattern that is used to check con-
trollability in the following sections. It is an abstraction of the original pattern of
the semantics and does neither model variables nor correlation sets. As a means
of simplification, we also do not model the occurrence of BPEL standard faults
in the whole process.

<receive

partnerLink="customer"

portType="customerPT"

operation="login"

variable="var">

</receive>

(a) A receive activity.

init

final

?login

t2

t1
stop

stopped

login

(customer)

(b) The corresponding pattern.

Fig. 6. The input place login is determined by the given partnerLink, portType, and
operation. The dotted box frames the pattern. The places on the frame (init, final, stop,
and stopped) describe the interface of the pattern used to join it with other patterns.
The execution of the activity can be stopped any time by marking place stop and firing
either t1 or t2.

4.2 The Tool BPEL2oWFN

The described Petri net semantics for BPEL was prototypically implemented
in the tool BPEL2PN [8]. The resulting Petri net does not model the interac-
tional behavior and therefore only allows for verification of the internal behavior.
Another drawback of BPEL2PN is its “brute-force” mapping approach which re-
sults in huge models for BPEL processes of realistic sizes and therefore does not
permit efficient analysis.

To scale down the model size we pursue three objectives. (1) We improve the
Petri net patterns of the semantics. (2) We choose specific (smaller) patterns
from a repository with the help of information gained by static analysis. (3)
We use structural simplification rules to compact the generated Petri net model
and thus reduce its state space. These features were implemented in the tool
BPEL2oWFN2, the successor of BPEL2PN. BPEL2oWFN is capable of gener-
ating oWFNs and other file formats (PNML, low-level PEP notation, APNN,
and LoLA low-level nets) and thus supports a variety of analysis tools.

Novel patterns. The Petri net semantics as described in [7] was designed to
formalize BPEL rather than to automatically generate compact Petri net models
that are necessary for computer-aided verification. Some patterns were designed

2 Available at http://www.informatik.hu-berlin.de/top/tools4bpel/bpel2owfn

26 N. Lohmann et al.

t1 t2 t3

p3p1

p4 p5

p2

t4

p6

(a)

t1 t2

p1

p4

p2

t4

p6

(b)

t1,t2

p1

p4

p2

t4

p6

(c)

t1,t2

p1

p4,p6 (t4)

p2

(d)

Fig. 7. The implemented structural reduction rules. From the original net (a) all
structural dead places and transitions are removed (b). Then duplicate transitions
are merged (c), and simple sequences are collapsed (d).

to be easily understood and made use of quite “expensive” constructs such as re-
set arcs. We improved these patterns and replaced them by less intuitive patterns
with simpler structure. As mentioned before, we abstract from data and model
data-driven decisions by non-determinism. As a result, the generated oWFN is
a 1-safe low-level Petri net which improves the verification performance.

Static analysis. Instead of mapping each BPEL activity to a single pattern
modeling its behavior in all possible contexts, BPEL2oWFN employs a reposi-
tory of several patterns for each activity. Each pattern (e. g. the receive pattern
in Fig. 6(b)) is designed for a certain context or to preserve specific properties
only. To choose the most compact pattern for a certain verification task, we
perform static analysis (see [14] for an overview) for the BPEL process.

Structural simplification. Finally, we use structural reduction rules to further
scale down the size of the generated Petri net model w. r. t. the requirements
of the given analysis task. Currently, three reduction rules are implemented: at
first, all structural dead places and transitions are removed. Secondly, duplicate
transitions are merged. Thirdly, simple sequences (a transition with exactly one
place in its preset and postset) are collapsed. As the nodes of the IG consist of
sets of reachable markings, structural reduction may dramatically scale down
the size of the IG. The rules are exemplified in Fig. 7.

4.3 Translating the Online Shop

Using BPEL2oWFN, we now translate the online shop example process into an
oWFN3. The generated net originally has 112 places (including 4 input and 3
output places), 117 transitions, and 371 arcs. Structural reduction simplifies the
net to 61 places (including the 4 input and 3 output places), 58 transitions,
and 191 arcs. The structural reduction also affects the state space of the inner
of the generated oWFN. The number of reachable states is reduced from 510
to 205.

3 As the process terminates after receiving an abort message, we modeled the event
handler to receive at most one abort message. Thus, the generated oWFN is acyclic.

Analyzing Interacting BPEL Processes 27

5 Analyzing the Interaction of oWFNs

5.1 The Tool Fiona

Fiona4 is a tool to automatically analyze the interactional behavior of a given
oWFN N . Fiona provides two techniques: it checks for the controllability of
N , and it calculates the operating guideline for N . Fiona uses oWFNs as its
input which is the output of BPEL2oWFN. Thus we can easily analyze BPEL
processes.

Depending on the goal the user wants to achieve (controllability analysis or
calculation of the operating guideline) the tool either builds up the interaction
graph or the operating guideline. Fiona computes the nodes and the events of
the respective graph as described in Sect. 2. To compute the states of the graph
nodes we use efficient algorithms that were implemented in the model checking
tool LoLA [15].

To find a controller in the computed graph (IG or OG), each of its nodes is
analyzed. The analysis is done while the graph is constructed. It is a backward
analysis starting at the leaf nodes. The analysis makes use of colors: black nodes
are yet to be analyzed, blue nodes denote nodes of the controller and red nodes
are not part of the controller. Initially, each node is colored black. If we have
calculated a leaf node of the graph which contains only such deadlocks that
are final markings, we color this node blue. If a leaf contains further deadlocks,
it is colored red (since every such deadlock is not resolved). An internal node
becomes blue if there exists for each deadlock (which is no final marking) an
activated event leading to a blue node again. If this is not the case, the node
becomes red. In case of building the OG, the analysis additionally computes the
Boolean annotation of the node. Finally, each node has been colored either blue
or red. The graph contains a controller iff the root node is blue. The controller is
constituted by the largest connected blue subgraph that contains the root node.

Fiona implements several optimizations: for instance, the red color of a node
can sometimes be concluded before all of its successors are known. For such a
node, we do not need to compute the remaining successors, since they cannot
be part of the controller later on. Furthermore, not all states in a node must be
stored to compute the successors – these states are rejected.

5.2 Analyzing the Online Shop Model

We now want to analyze our online shop example from Sect. 3. Firstly, we
use Fiona to calculate the IG of the corresponding oWFN which we got from
Sect. 4.3. The IG consists of 16 nodes and 19 edges. A blue subgraph can be
found that has 8 nodes and 8 edges, containing the root node. Thus this subgraph
constitutes a controller and the online shop is controllable.

The controller found reflects the intended behavior of a customer. First he
sends a login, followed by an order. Then he must be able to either receive an
invoice (in case he is known to the shop) or to receive the confirmation (in case

4 Available at http://www.informatik.hu-berlin.de/top/tools4bpel/fiona

28 N. Lohmann et al.

he is a new customer). If he actually has received the confirmation, he must send
a terms of payment message. After that he will receive the invoice. In either case
he finally receives the delivery information. At any time he may abort. We did
not depict the IG due to the lack of space and because it can be found as a
subgraph in the corresponding OG. The latter has 12 nodes and 15 edges and is
depicted in Fig. 9(a). Compared to the IG, the OG contains more interleavings
of sending or receiving messages. For instance, a customer may reverse the order
of sending the login and the order message.

6 The Online Shop Revised

Let us take a look at the online shop presented in Sect. 3 once again. The shop
now modifies its business strategy: every known customer that orders something
can choose a gift. The modified online shop is depicted in Fig. 8.

The changes only affect the left branch of the switch. The shop initiates two
tasks concurrently now: in the first task (left sequence) the shop first receives the
order and then confirms it. In the second task (right sequence) the shop receives
which gift is chosen before it sends the invoice to the customer. The rest of the
process is as in Fig. 5.

The analysis with Fiona reflects that this simple change has a crucial effect
on the behavior of the process. The IG of the revised online shop has 32 nodes
and 40 edges. The corresponding controller inside the IG consists of 6 nodes
and 5 edges which is less than the original controller of Sect. 5.2. Our algorithm
concludes that the process is controllable, too. However, the reflected strategy is
not the intended one. The controller in the IG represents a customer who sends
an abort message during the interaction.

new customerknown customer

login

confirm

order

sequence

invoice

terms

sequence

deliver

flow

switch

sequence

abort

sequence

eventHandlers

Stop

process

confirm

order

sequence

invoice

gift

sequence

flow

Fig. 8. The modified online shop

Analyzing Interacting BPEL Processes 29

!abort ∨ !login ∨ !order

true

!abort

!order

 !login

!login

 !order

true

(?invoice ∨?deliver) ∧(?confirm)

!order

?invoice

?deliver?deliver

?invoice

!abort ∨ !terms

?confirm

true

 ?invoice

?deliver

?deliver

?deliver ∨?invoice

?deliver ?invoice?deliver

 !abort !terms

 !login

(a)

!abort ∨ !login ∨ !order

true

!abort

 !order

 !login

!login

 !order

?confirm

 !order

!abort

 ?confirm

true

 !abort

 !login

(b)

Fig. 9. Operating guidelines (a) of the original online shop of Fig. 5 and (b) of the
modified shop of Fig. 8. The OG in (a) characterizes different intended customers of
the original shop, whereas the OG in (b) documents that there is only one possible
way to interact with the modified shop: to abort.

The IG represents only one customer’s behavior. For further information we
need Fiona to calculate the OG. It is depicted in Fig. 9(b) and consists of 7
nodes and 7 edges. A closer look at the OG reveals that actually every customer
of the modified shop must eventually send an abort message. This surely means
that the process is controllable. However, the way this is done is obviously a not
intended one. There is no way that a customer can get what he has ordered from
the process.

Let us take a look at what went wrong when we modified our online shop from
Sect. 3. We can see that the shop does not communicate its inner decision about
which branch (known customer, new customer) is chosen. In the original online
shop (Fig. 5) the controller must send an order, but receives either an invoice or
a confirmation w. r. t. which branch the shop has chosen before. That way the
controller knows what branch the shop is actually in and hence knows how to
continue. In contrast, in the modified shop the controller must send an order and
receives undistinguishable confirmation messages in either case. The modified
shop expects a choice of a gift in case it decided for the known customer branch.
In the other case it expects the terms of payment. The controller, however,
does not know about the decision of the shop. That means, it does not know

30 N. Lohmann et al.

what message to send. This is reflected by the OG of the new shop as well (see
Fig. 9(b)): in the situation where a partner receives the confirmation he does
not know whether the shop decided for the left or the right branch. Hence, he
can choose either to send a gift choice or the terms of payment. In either case
it is not guaranteed that the message will always be consumed, and therefore it
should not be sent in the first place. However, sending an abort is always correct.

This simple example shows that even a smallmodification of a processmay result
in an unintended interactional behavior. The effect on the interactional behavior
of a BPEL process is not obvious. Since this is not obvious even for small processes
as in our shop example, it is even more challenging for BPEL processes of realistic
size. In general, processes may have a complex structure that it is not possible to
detect such erroneous structures in the BPEL process manually. With the help of
the operating guideline we can see if there exists a controller that interacts with
our process as we have expected it during the process design.

7 Related Work

Several groups have proposed formal semantics for BPEL. Among them, there
are semantics based on finite state machines [16,17], the process algebra Lo-
tos [18], abstract state machines [19,20], and Petri nets [21,7]. The group of van
der Aalst also follows a Petri net-based approach [21]. Their semantics, however,
does not cover the communication of BPEL. It enables several analysis meth-
ods including the detection of unreachable activities and BPEL standard faults
like “conflicting receive” (two concurrent receive activities are waiting for the
same input message). Further, it is possible to perform a reachability analysis
for the garbage collection of unconsumable messages later on. Those methods
are implemented in the tool WofBPEL [22].

In [23] BPEL processes are transformed into an annotated subset of oWFNs,
BPEL annotated Petri nets (BPNs). The transformation is oriented on a mod-
ified version of our semantics [7], which does not include most of the fault and
compensation handling. For BPNs a technique for analyzing the controllability
has already been introduced in [13] – the communication graph. It is similar
to our proposed IG. As a main difference, this graph performs communication
steps, where each step consists of a (possibly empty) sending phase followed by
a (possibly empty) receiving phase. Therefore, the communication graph tends
to be more complex than our IG (cf. [4]).

8 Conclusion and Further Work

We presented a framework to formally analyze the interactional behavior of
BPEL processes. Both the translation from BPEL into compact Petri net models
as well as the further analysis of controllability and the computation of the
operating guideline are implemented which allows for a fully-automatic analysis.
The results show that we can detect non-trivial model flaws of interacting BPEL
processes that would have been hard or impossible to find manually.

Analyzing Interacting BPEL Processes 31

In the current translation approach we use static analysis to compact the gen-
erated model only. However, it is possible to check certain properties statically,
i. e. without generating a model at all. In future work we want to use control
flow analysis to detect unreachable (thus dead) activities or other design flaws.
To further support this analysis, we have to add data aspects to our model and
replace non-determinism by data-driven decisions.

To analyze interactions consisting of more than two interacting processes,
existing theoretical results have to be integrated into Fiona. In addition, algo-
rithms to decide controllability and to compute the operating guidelines of cyclic
oWFNs have to be established to complete the analysis spectrum.

To support the redesign of erroneous (e. g. not controllable) services, the analy-
sis results (e. g. counter-examples) have to be translated back into BPEL source
code. This will be extremely helpful to support process designers during the
modelling.

Finally, our tool Fiona is not restricted to analyze BPEL processes only. Since
Fiona uses oWFNs as its input we have a very general formalism at hand that
can be used to model various kinds of interacting processes. Therefore Fiona
can, for instance, also be used to analyze interorganizational workflow as well.

References

1. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-Services: A Look Behind the
Curtain. In: PODS ’03, New York, USA, ACM Press (2003) 1–14

2. Papazoglou, M.P.: Agent-Oriented Technology in Support of E-Business. Commu-
nications of the ACM 44(4) (2001) 71–77

3. Andrews, T., et al.: Business Process Execution Language for Web Services, Ver-
sion 1.1. Technical report, BEA, IBM, Microsoft (2003)

4. Weinberg, D.: Reduction Rules for Interaction Graphs. Technical Report 198,
Humboldt-Universität zu Berlin (2006)

5. Massuthe, P., Schmidt, K.: Operating Guidelines – An Automata-Theoretic Foun-
dation for Service-Oriented Architectures. In: QSIC 2005, Melbourne, Australia,
IEEE Computer Society (2005) 452–457

6. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. AMCT 1(3) (2005) 35–43 To appear.

7. Stahl, C.: A Petri Net Semantics for BPEL. Techn. Report 188, Humboldt-
Universität zu Berlin (2005)

8. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri Nets. In: BPM 2005.
Volume 3649 of LNCS., Nancy, France, Springer-Verlag (2005) 220–235

9. Schmidt, K.: Controllability of Open Workflow Nets. In: EMISA. LNI, Bonner
Köllen Verlag (2005) 236–249

10. Aalst, W.: The Application of Petri Nets to Workflow Management. Journal of
Circuits, Systems and Computers 8(1) (1998) 21–66

11. Ramadge, P., Wonham, W.: Supervisory Control of a Class of Discrete Event
Processes. SIAM J. Control and Optimization 25(1) (1987) 206–230

12. Massuthe, P., Schmidt, K.: Operating Guidelines – An Automata-Theoretic Foun-
dation for Service-Oriented Architectures. to appear (2006)

13. Martens, A.: Verteilte Geschäftsprozesse – Modellierung und Verifikation mit Hilfe
von Web Services. PhD thesis, Humboldt-Universität zu Berlin (2004)

32 N. Lohmann et al.

14. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. 2nd edn.
Springer-Verlag (2005)

15. Schmidt, K.: LoLA: A Low Level Analyser. In: ICATPN 2000. Number 1825 in
LNCS, Springer-Verlag (2000) 465–474

16. Arias-Fisteus, J., Fernández, L.S., Kloos, C.D.: Formal Verification of BPEL4WS
Business Collaborations. In: EC-Web’04. Volume 3182 of LNCS., Springer (2004)
76–85

17. Fu, X., Bultan, T., Su, J.: Analysis of Interacting BPEL Web Services. In:
WWW ’04, ACM Press (2004) 621–630

18. Ferrara, A.: Web Services: A Process Algebra Approach. In: ICSOC, ACM (2004)
242–251

19. Fahland, D., Reisig, W.: ASM-based Semantics for BPEL: The Negative Control
Flow. In: ASM’05, Paris XII (2005) 131–151

20. Farahbod, R., Glässer, U., Vajihollahi, M.: Specification and Validation of the
Business Process Execution Language for Web Services. In: ASM. Volume 3052 of
LNCS., Springer (2004) 78–94

21. Ouyang, C., Verbeek, E., van der Aalst, W.M., Breutel, S., Dumas, M., ter Hofst-
ede, A.H.: Formal Semantics and Analysis of Control Flow in WS-BPEL. Technical
report (revised version), Queensland University of Technology (2005)

22. Ouyang, C., Verbeek, E., Aalst, W., Breutel, S., Dumas, M., ter Hofstede, A.:
WofBPEL: A Tool for Automated Analysis of BPEL Processes. In: ICSOC 2005.
Volume 3826 of LNCS., Amsterdam, The Netherlands (2005) 484–489

23. Martens, A., Moser, S., Gerhardt, A., Funk, K.: Analyzing Compatibility of BPEL
Processes – Towards a Business Process Analysis Framework in IBM’s Business
Integration Tools. In: ICIW’06, IEEE Computer Society Press (2006)

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 33 – 48, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Tracking over Collaborative Business Processes

Xiaohui Zhao and Chengfei Liu

Centre for Information Technology Research
Faculty of Information and Communication Technologies

Swinburne University of Technology
Melbourne, Victoria, Australia

{xzhao, cliu}@it.swin.edu.au

Abstract. Workflow monitoring is a routine function of a workflow manag-
ement system for tracking the progress of running workflow instances. To keep
participating organisations as autonomous entities in an inter-organisational
business collaboration environment, however, it brings challenges in generating
workflow tracking structures and manipulating instance correspondences
between different participating organisations. Aiming to tackle these problems,
this paper proposed a matrix based framework on the basis of our relative
workflow model. This framework enables a participating organisation to derive
tracking structures over its relative workflows and the involved relevant
workflows of its partner organisations, and to perform workflow tracking with
the generated tracking structures.

1 Introduction

With the trend of booming global business collaborations, organisations are required
to streamline their business processes into dynamic virtual organisations [1, 2]. A
virtual organisation defines the trading community of a set of participating
organisations for conducting collaborative business processes. Normally, the building
blocks of a collaborative business process are the pre-existing business processes of
participating organisations. Therefore, it is fundamental that a collaborative business
process knows how the business process belonging to different organisations are
linked together for cooperation [3, 4]. While this kind of cooperation is a pre-
requisite, organisations must act as autonomous entities during business collaboration.
Besides, certain levels of privacy of participating organisations have to be guaranteed.
Many existing inter-organisational workflow approaches streamline the related
business processes of different organisations, into a public view workflow process [5-
9]. This public view neutralises the diversity of the perception on collaborative
business processes from different organisations, and fails to support business privacy
sufficiently. We reckon that different organisations may see different pictures of a
collaborative business process, and may need to know and be only allowed to know
certain details of the collaboration with their partner organisations. To support this,
we have proposed a new approach for collaborative business process modelling called
relative workflow model [10]. In this model, different visibility constraints,
perceptions, and relative workflow processes can be defined for different participating
organisations.

Most traditional workflow monitoring approaches, such as WfMC Monitor and Audit
specification [11, 12], BEA Weblogic Integration [13], IBM WebSphere MQ Workflow

34 X. Zhao and C. Liu

[14], the agent based workflow monitoring [15] and the customisable workflow
monitoring [16], are mainly applicable either in an intra-organisational setting or in an
environment where a public view of a collaborative business process is assumed without
privacy concern. To our best knowledge, there is little discussion on workflow
monitoring in an inter-organisational environment concerning privacy. This paper aims to
fill this gap. Based on the relative workflow model, the tracking structure for a relative
workflow process is defined and a matrix based framework is proposed to enable a
participating organisation to derive tracking structures over its relative workflow
processes and the involved relevant workflow processes of its partner organisations, and
to perform tracking based on the generated tracking structures.

The remainder of this paper is organised as follows. Section 2 analyses
requirements of workflow tracking in a privacy sensitive environment with a
motivating example. In Section 3, we first review our relative workflow approach,
then introduce some representation matrices, after that we define the tracking
structure of a relative workflow process and discuss the fundamental rules for
workflow tracking. Based on these rules, several matrix operations are presented in
Section 4 for tracking structure generation, together with the algorithms for
generating tracking structures and performing tracking. Conclusion remarks are given
in Section 5.

2 Requirement Analysis with Motivating Example

Basically speaking, current public view approaches all rely on a single workflow
model to support inter-organisational business collaboration. This means that once the
workflow model for a collaborative business process is defined, it will be open to all
participating organisations. If we follow a public view approach, a participating
organisation may not be able to offer different visibilities to different organisations.
As such, different partnerships between different collaborating organisations cannot
be achieved. In our opinion, the visibility between participating organisations is
inherently relative rather than absolute. Our relative workflow approach [10] was
proposed based on this “relative perspective” philosophy. This approach discards the
public view on the inter-organisational workflow process, and allows different
organisations to create different views or relative workflow processes upon the same
collaborative business process. These multiple relative workflow processes enable
participating organisations behave as autonomous entities and enhance the flexibility
and privacy control of business collaboration. In the same time, they bring challenges
to inter-organisational workflow tracking.

Figure 1 illustrates a business collaboration scenario where a retailer collects
orders from customers, and then purchases products from a manufacturer. The
manufacturer may contact a shipper for booking product delivery while making goods
with supplies from a supplier. In this scenario, a retailer may track the collaborative
business process as follows: After placing an order with a manufacturer, the retailer
may contact the manufacturer and enquire about the execution status of the
production process by referring, say the order number. Furthermore, the retailer may
also contact the shipper via the manufacturer and enquire about shipping information
after the manufacturer organises product shipping for the retailer by a shipper.

 Tracking over Collaborative Business Processes 35

However, the retailer may not be allowed to enquire about the goods supply
information, because that could be confidential information of the manufacturer and is
hidden from the retailer. For a manufacturer, it may track same collaborative business
process differently. Besides the retailer and shipper, the manufacturer can also track
the supplier for goods supply information.

a1: Raise Order

a2: Place Order
with

Manufacturer

a4: Pay Invoice

a3: Invoice
Customer

b1: Collect Order

b4: Schedule
Delivery

b5: Confirm Delivery

b3: Make
Goods

b6: Invoice Retailer

c1: Collect Order

c2: Preparation

c3: Delivery

c4: Confirm Delivery

lbc1

lbc2

lab1

lab3

Org A: Retailer Org B: Manufacturer Org C: Shipper
Process a: Product Ordering Process b: Production Process c: Shipping

lab2

b2: Plan Production

ra1

ra2

ra3

rb1

rb2 rb3

rb4 rb5

rb6

rc1

rc2

rc3

d1: Collect Order

d2: Preparation

d3: Delivery

lbd2

Process d: Supplying

rd2

rd1

Org D: Supplier

lbd1

Fig. 1. Inter-organisational collaboration example

From this scenario, we can see that (1) a participating organisation may require
tracking other organisations for its involved part of a collaborative business process;
(2) each participating organisation may track same collaborative business process
differently.

The first point requires collaboration between participating organisations, which is
fundamental to inter-organisational workflow tracking. The second point, however,
requires that a participating organisation is treated as a fully autonomous entity and
can provide different visibilities to different organisations. Obviously, the public view
approaches cannot meet the second requirement. Our relative workflow approach can
meet both requirements, as we can see from the following sections.

3 Relative Workflows and Tracking Structures

3.1 Relative Workflow Model

In this section, we briefly review the relative workflow model. Figure 2 shows the
relative workflow meta model, which has been proposed in [10]. In this model, an
organisation, say g1, is considered as an entity holding its own workflow processes
called local workflow processes. A local workflow process, lp1, of organisation g1 can
be denoted as g1.lp

1.
As the owner, an organisation naturally has an absolute view of its local workflow

processes. On the contrary, the host organisation (the owner organisation) may only
allow a restricted view of its local workflow processes to its partner organisations due

36 X. Zhao and C. Liu

Relative Workflow
Process

hashashas

Perceivable
Wf Process

Local Wf
Process

Message
Link Set

Perception

composes
match

1 1 1

[1, n] [1,n] [1, n]

1 1

Visibility
Constraints

hashas

Message
Description

[1, n]

[1, n]

[1, n]

1

1

[1, n]

11

Relative Workflow
Process

has has has

Perceivable
Wf Process

Local Wf
Process

Message
Link Set

Perception

composes

111

[1, n][1,n][1, n]

1

Visibility
Constraints

has has

Message
Description

[1, n][1, n]
1

[1, n]

11

[1, n]

1

g2
g1

Fig. 2. Relative workflow meta model

to the privacy concern. This restriction mechanism may hide some confidential
workflow tasks and related links or set some tasks only observable rather than
interactable to some partner organisations according to the partnership. The degree of
task visibility are defined by visibility constraints, which currently contains three
values, viz., “invisible”, “trackable” and “contactable”, as shown in Table 1.

Table 1. Visibility values

Visibility value Explanation
Invisible A task is said invisible to an organisation, if it is hidden from the

organisation.
Trackable A task is said trackable to an organisation, if this organisation is

allowed to trace the execution status of the task.
Contactable A task is said contactable to an organisation, if the task is trackable to

the organisation and the task is also allowed to send/receive messages
to/from this organisation for the purpose of business interaction.

Visibility constraints are used as a component in defining perceptions. A
perception lpg

gp .2

1
 defines how organisation g1 sees g2’s local workflow process lp. In

the motivating example, the manufacturer may set up the following content in the set

of visibility constraints, VC, of its perception ioner.ProductManufactur
Retailerp .

ioner.ProductManufactur
Retailerp .VC = {(“collect order”, Contactable), (“plan production”,

Invisible), (“make goods”, Trackable), (“schedule delivery”, Trackable),
(“confirm delivery”, Contactable), (“invoice retailer”, Contactable)}

These visibility constraints allow a partial view of the manufacturer’s production
process for the retailer. This partial view is called perceivable workflow process. The
perceivable workflow process of g2’s local workflow process g2.lp

1 defined for

organisation g1 is denoted as 1
2 1
. glpg .

To represent the diverse partnerships, an organisation may generate a series of
perceivable workflow processes of same local workflow process for different partner

 Tracking over Collaborative Business Processes 37

organisations. And the inter-organisational business interactions are characterised as
directed inter process links, such as lab1 and lbc2 in Figure 1. In our relative workflow
meta model, these inter process links are defined as message descriptions before
being linked, and messaging links after being linked, as shown in Figure 2.

Finally, a relative workflow process can be created by combining the messaging
links which connect “contactable” tasks of neighbouring organisations. As shown in
Figure 2, a relative workflow process consists of three parts, viz. local workflow
processes, perceivable workflow processes and relevant messaging links. Such a
relative workflow process represents the collaborative business process perceivable
from an organisation.

For example, we suppose that the involved organisations in the motivating example
set up the following visibility constraints in proper perceptions, together with

perception ioner.ProductManufactur
Retailerp , which has been given before.

ingroductOderRetailer.P
erManufacturp .VC = {(“raise order”, Invisible), (“place order with manufacturer”,

Contactable), (“invoice customer”, Contactable), (“pay invoice”, Contactable)};
ippingShipper.Sh
erManufacturp .VC = {(“collect order”, Contactable), (“preparation”, Invisible),

(“delivery”, Trackable), (“confirm delivery”, Contactable)};
ippingShipper.Sh

Retailerp .VC = {(“collect order”, Invisible), (“preparation”, Trackable),

(“delivery”, Trackable), (“confirm delivery”, Trackable)};
upplyingSupplier.S
erManufacturp .VC = {(“collect order”, Contactable), (“preparation”, Invisible),

(“delivery”, Contactable)}.

(a)

1

4

3

2

1

5

3

2

rb1

rb4

ra1

ra2

ra3

Org B:
Process b

Org A:
Process a

lab1

lab2

1

4

3

2

rc1

rc2

rc3

Org C:
Process c

1

5

4

2

rb1

rb3

rb5

Org B:
Process b

lbc1

lbc2

(b)

4

rb5

rb2 rb3

3

rb2

rb4

1

4

3

2

ra1

ra2

ra3

Org A:
Process a

lab1

lab2

6

rb6
lab3

6

rb6

lab3

1

5

3

rb4

4

rb5

rb2 rb3

4

3

2

rc2

rc3

1

4

3

2

ra1

ra2

ra3

Org B:
Process b

Org A:
Process a

Org C:
Process c

lab1

lab2 lbc2

6

rb6

lab3

(c)

3

2

1

rd1

rd2

Org D:
Process d

Fig. 3. Relative workflow and tracking structure examples

Since the retailer and the supplier have no partner relationship in the collaborative
business process, they do not define perceptions for each other.

38 X. Zhao and C. Liu

According to these visibility constraints, the retailer and the manufacturer may
generate corresponding relative workflow processes, as shown in Figure 3 (a) and (b),
respectively.

The tasks with dashed circles denote the invisible tasks. These two diagrams
clearly illustrate that the relative workflow processes for same collaborative business
process may be different from different organisations’ perspectives. This reflects the
relativity characteristics of our relative workflow approach.

3.2 Representation Matrices

To accurately depict the proposed relative workflow model, we establish several
matrices to formally represent key concepts of the relative workflow model.

Self Adjacency Matrix
An n-task workflow process p of organisation g is represented by a special matrix,
called Self Adjacency Matrix (SAM), which is defined as,

r, if exists link r linking task ti and task tj, where i < j; p
gD n×n = [dij], where dij=

⎩
⎨
⎧

0, otherwise.

Each element of an SAM denotes an intra process link between tasks, such as ra1
and rb2 in Figure 1. As a link connecting tasks ti and tj is put in dij, not dji, where i<j,

p
gD is always an upper triangular matrix. For example, process a in Figure 1 can be

represented by SAM a
AD =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0000

000

000

000

3

2

1

a

a

a

r

r

r . Similarly, b
BD =

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

000000

00000

00000

00000

0000

00000

6

5

4

32

1

b

b

b

bb

b

r

r

r

rr

r and

c
CD =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0000

000

000

000

3

2

1

c

c

c

r

r

r .

A self adjacency matrix can be used to represent not only a local workflow process
but also a perceivable workflow process, a relative workflow process, or a tracking
structure, which will be introduced later.

Transformation Matrix
When composing a local workflow process p into a perceivable workflow process for
organisation g, the composition is subject to the visibility constraints defined in
proper perceptions. The details of this composition can be found in [10]. In this paper,
we formalise the composition process as an n×n triangular 0-1 matrix, called
Transformation Matrix (TM), which is defined as

1, if task tj is composed into task ti (j ≠ i), or not composed (j = i); p
gT n×n = [tij], where tij=

⎪
⎩

⎪
⎨

⎧

0, otherwise.

This matrix can be directly derived from the visibility constraints defined in the
corresponding perception, following the task composition algorithm discussed in [10].
Notice, each column has only one element with value “1”, because each task can be
composed only once or may not be composed at all. For example, the procedure of
composing local workflow process b into a perceivable workflow process for

 Tracking over Collaborative Business Processes 39

organisation A can be described by TM =b
AT

1 1 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

. This composing

procedure is conducted by the visibility constraints defined in perception bB
Ap . .

Likewise, we can calculate that =c
AT

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

1000

0100

0011

0000

.

Boundary Adjacency Matrix
Finally, we also represent the relevant messaging links in a matrix. The messaging
links between two workflow processes, p1 and p2, from the perspective of organisation
g, can be represented by an m×n matrix called boundary adjacency matrix (BAM),
where m is the number of tasks belonging to p1, and n is the number of tasks
belonging to p2. A BAM is defined as follows,

l, if exists messaging link l connecting p1.ti and p2.tj

21| pp
gB m×n = [bij],

where bij =
⎩
⎨
⎧

0, otherwise.

For example, the interaction relationship between local workflow process b and
perceivable workflow process c at the site of organisation B, can be represented by
BAM =cb

BB |

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0000

000

000

0000

0000

0000

2

1

bc

bc

l

l

. Similarly, ba
AB | =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

3

2

1

00000

00000

00000

000000

ab

ab

ab

l

l

l
.

3.3 Tracking Structure

From the discussion in the motivating example section, we see that an organisation’s
tracking structure is its observable view upon the execution progress of one
collaborative business process. Technically, a tracking structure is different from a
relative workflow process, because the latter is created by messaging links connecting
to contactable tasks of neighbouring organisations while the former may go beyond
neighbouring organisations through trackable tasks.

Unlike the “contactable” visibility value defined in Table 1, the “trackable” value
is designed for tracking purpose and can be set on the tasks of the workflow processes
belonging to non-neighbouring organisations. We define a tracking structure for each
relative workflow process and this tracking structure can be defined by including
trackable tasks from its non-neighbouring organisations.

Tracking Structure: A tracking structure ts for organisation g’s relative workflow
process rp consists of the following tasks and links.

− The tasks include: (i) the tasks of relative workflow process rp; (ii) the union of
task sets of perceivable workflow processes that are reachable from g. These
perceivable workflow processes may belong to g’s neighbouring and non-
neighbouring organisations. The reachability of a perceivable workflow process
from an organisation is to be discussed in next sub section.

40 X. Zhao and C. Liu

− The links include: (i) the links of relative workflow process rp; (ii) the union of
link sets of perceivable workflow processes that are reachable from g; (iii) the set
of messaging links between perceivable workflow processes that are visible from g.
The visibility of a messaging link from an organisation is to be discussed in next
sub section.

3.4 Rules

From the definition of a tracking structure, we need to first define the visibility of a
messaging link and the reachability of a perceivable workflow process from an
organisation. They all depend on the visibility of tasks. For this purpose, we establish
the following rules that are used to generate a perceivable workflow process and to
determine whether a perceivable workflow process is reachable via visible messaging
links and therefore can be included in the tracking structure.

Intra Process Visibility Rule: If a task t in organisation g1’s local workflow process
g1.lp is set invisible to organisation g2, then t is hidden by composing it into a visible
(contactable or trackable) task of g1.lp. The links connecting t will be changed
accordingly. The composition procedure will be discussed in the composition
operation in next section. After composition, g1.lp becomes a perceivable workflow
process g1.lpg2.

Inter Process Visibility Rule: A messaging link l connecting two perceivable
workflow processes is said visible to organisation g, if and only if both tasks
connected by l are visible to g.

Expansion Rule: Let ts be the tracking structure for a relative workflow process of
organisation g. A perceivable workflow process outside ts is said reachable and
therefore can be included into ts, if and only if it has at least one visible messaging
link connecting a task inside ts.

Following the Intra Process Visibility Rule, the original link rb1 connecting tasks b1
and b2 of process b in Figure 1 becomes invisible in its perceivable form for
organisation A in Figure 3 (c) because b2 is invisible to organisation A.
Correspondingly, links rb2 and rb3, which connect b2 and b3, b2 and b4 in Figure 1
respectively, are now changed to connect b1 and b3, b1 and b4, in Figure 3 (c).
Following the Inter Process Visibility Rule, messaging link lbc1 connecting task b4 and
task c1 is not visible while messaging link lbc2 connecting task b5 and task c5 is visible
in Figure 1. Following the Expansion Rule, the perceivable workflow processes of
process c is reachable because of the existence of the visible messaging link lbc2. By
applying all these rules, we can finally generate a tracking structure shown in Figure 3
(c) for A’s relative workflow process shown in Figure 3 (a).

4 Generating Tracking Structures

4.1 Operations

According to the rules discussed in last section, we define three matrix operations for
tracking structure derivation.

 Tracking over Collaborative Business Processes 41

Operation 1. Composition Operation
As defined in the TM for a local workflow process, each element with value “1” in a
non-diagonal position (i, j) stands for a procedure of composing the composed task tj
to the composing task ti. Under the restriction of the Intra Process Visibility Rule, the
following sub rules may apply to this composition:

(1) a link connecting tj and tk (k ≠ i) is changed to a link connecting ti and tk;
(2) a link connecting ti and tk (k ≠ j) is unchanged;
(3) a link connecting ti and tj is discarded.

The first sub rule requires an operation that can be applied to the SAM defined for
the local workflow process. This operation first adds the elements in row j to their
corresponding elements in row i, and then sets all elements in row j to zero. This can
be achieved by applying a matrix multiplication to this TM and the SAM defined for
the local workflow process. A function freshape is assigned to reshape the result matrix
into an upper-triangular form.

For input matrix nnM × , function freshape is defined as

mij + mji, i < j; freshape(M n×n) = M°n×n = [o
ijm], where

ijm =o ⎧
⎨
⎩

0, otherwise.

The second sub rule identifies the case that needs no action. From the definition of
a TM, we can see that the composing tasks of this case all have value “1” on the
diagonal line, which takes no effect in the matrix multiplication.

Regarding the third sub rule, we need to check whether there exists a link
connecting ti and tj in the corresponding TM. This can be easily achieved by checking
whether there exists a row that has value “1” at both column i and column j. We can
represent the existence of such a link by a boolean expression, i.e. |frow(i)= frow (j)|,
where frow(x) defines a function that returns the row where column x has the value “1”.

Finally, these three sub rules can be merged together as an operation ⊗, which is

defined on Tn×n⊗Dn×n=[xj

n

x

ixrowrow dtjfif ..)(≠)(∑
1=

]n×n. Hence, organisation g1 may apply

a Composition Operation on a local workflow process p to generate a perceivable
workflow process for g2. This can be defined as

)(... 1

1

1

2

1

2

pg
g

pg
greshape

pg
g DTfD ⊗=

Here pg
gD .1

1
and pg

gT .1

2
are the SAMs of g1’s local workflow process p and the

corresponding TM for perception pg
gp .1

2
, respectively.

By applying this composition operation, organisations B and C can generate
perceivable workflow processes b and c for organisation A in the form of

()b b b
A reshape A BD f T D= ⊗ =

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

000000

00000

00000

00000

000000

0000

6

5

4

32

b

b

b

bb

r

r

r

rr and c
AD =)(c

C
C
Areshape DTf ⊗ =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0000

000

000

0000

3

2

c

c

r

r

.

42 X. Zhao and C. Liu

Operation 2. Connection Operation
According to the Inter Process Visibility Rule, we need to identify the visible
messaging links between perceivable workflow processes in order to include
perceivable workflow processes of non-neighbouring organisations in the tracking
structure for an organisation. For this purpose, we need to identify the visible tasks by
simply checking elements valued “1” in diagonal positions of the corresponding TM.
We use function fdiag to diagonalise TM T into a diagonal matrix T°. Function fdiag is
defined as follows,

1, if tij = 1 and i = j; fdiag(T n×n) = T°n×n, where o
ijt =

⎩
⎨
⎧

0, otherwise.

The visible messaging link between two workflow processes, for example, g1’s p1
and g2’s p2, from the perspective of another organisation, say g3, can be represented as
BAM 2211

3

.|. pgpg
gB . The Connection Operation connecting g1.p1 and g2.p2 for g3 can be

defined as

TTpgpg
g

pg
gdiag

pg
gdiag

pgpg
g BTfTfB)))(()((2211

1

11

3

22

3

2211

3

.|....|. ⋅⋅=

This connection operation first requires g1 to diagonalise TM 11

3

.pg
gT , and then

perform a matrix multiplication on the diagonalised 11

3

.pg
gT and BAM 2211

1

.|. pgpg
gB . g2 will

subsequently use the diagonalised matrix 22

3

.pg
gT to multiply the result matrix from g1.

In the connection operation, proper transposition operations are needed to align the
columns of the left hand matrix with the rows of the right hand matrix for matrix
multiplication.

Regarding the motivation example given in Section 2, organisations B and C can
generate matrix cb

AB | for organisation A to provide the visible messaging links between

B’s process b and C’s process c in A’s view.

;

000000

00000

000000

000000

000000

000000

)))(()((

2

||

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⋅⋅=

bc

TTcb
B

b
Adiag

c
Adiag

cb
A

l

BTfTfB

Operation 3. Extension Operation
The Expansion Rule is used for extending the tracking structure to include
perceivable workflow processes of both neighbouring and non-neighbouring
organisations. Technically, an extension step can be represented as an Extension
Operation. With a local workflow process p1 in the tracking structure, organisation g1
may apply the extension operation to include a local workflow process p2 of
organisation g2 in the tracking structure. This can be defined as.

D

BD
D pg

g

pgpg
g

pg
gpgpg

g ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

22

1

2211

1

11

12211

1 .

.|..
.|.

0
.

 Tracking over Collaborative Business Processes 43

For example, the tracking structure containing process a and b from the view of

organisation A, can be described by a composite SAM
D

BD
D

b
A

ba
A

a
Aba

A ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

0

|
| , which is

obtainable through this extension operation.

4.2 Generation Algorithm

The tracking structure generation can be technically considered as a process of
appending a new generated column each time a reachable workflow process is
detected. This new generated column consists of a new SAM and a series of BAMs.
The new SAM describes the inner structure of this detected workflow process, while
the BAMs describe the interaction relationships between the detected workflow
process and the processes already included in the structure.

As shown in Figure 4, at the starting point, the tracking structure contains
only 11

1

. pg
gD , which means that only g1.p1 is included. Afterwards, g1 detects that

perceivable workflow process g2.p2 is reachable from g1.p1, and then appends a
column containing 2211

1

.|. pgpg
gB and 22

1

.pg
gD to the tracking structure. Likewise,

organisation g2 may append a column containing 3311

1

.|. pgpg
gB , 3322

1

.|. pgpg
gB and 33

1

.pg
gD ,

when g2 detects that process g3.p3 is reachable from g1.p1 via g2.p2. This appending
process continues until all reachable perceivable workflow processes are detected.
Because the inter process interaction relationships can only be identified by the
organisation (context organisation) that owns the “bridging” workflow processes, by
which the expansion proceeds, a propagation mechanism is adopted to spread this
detection process over all involved organisations. The context organisation for an
appending step may change from time to time. Organisation g1 is called the original
context organisation of this tracking structure.

()

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⇒

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⇒⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⇒

nn

nn

nn

nn

pg
g

pgpg
g

pg
g

pgpg
g

pgpg
g

pg
g

pgpg
g

pgpg
g

pgpg
g

pg
g

pg
g

pgpg
g

pg
g

pgpg
g

pgpg
g

pg
g

pg
g

pgpg
g

pg
gpg

g

D

BD

BBD

BBBD

D

BD

BBD

D

BD
D

.

.|..

.|..|..

.|..|..|..

.

.|..

.|..|..

.

.|..
.

1

33

1

33

1

22

1

3322

1

22

1

11

1

3311

1

2211

1

11

1

33

1

3322

1

22

1

3311

1

2211

1

11

1

22

1

2211

1

11

111

1

0000

...............

..00

...0

...

00

0
0

Fig. 4. Tracking structure evolving process

We note that the process shown in Figure 4 starts from g1’s local workflow process
g1.p1 instead of g1’s relative workflow process g1.rp. Actually, g1.rp can be generated by
the first step of the process when g1 is the context organisation.

Algorithm 1 details the generation procedure. In algorithm 1, function relatedProc(p)
returns a set of local workflow processes and perceivable workflow processes that have

44 X. Zhao and C. Liu

direct interactions with process p. Function includedProc(trackStruc) returns all
included workflow processes at that moment in tracking structure trackStruc, which
initially contains an SAM defined on a local workflow process of the original context
organisation. Function BAM(p1, p2, g) returns the BAM between processes p1 and p2
from the view of organisation g, using the connection operation. Function SAM(p, g)
returns the SAM of process p from the view of organisation g, using the composition
operation. Function genOrg(p) returns the organisation of process p.

Algorithm 1. genTrackStruc - Tracking Structure Generation
Input:
trackStruc - A tracking structure matrix
cxtProc - A local workflow process of the context organisation
origCxtOrg - The original context organisation that starts the generation
Output:
trackStruc - The expanded tracking structure matrix

Step 1 Detect workflow processes
detectedProcSet = relatedProc(cxtProc);
includedProcSet = includedProc(trackStruc);
detectedProcSet = detectedProcSet – includedProcSet;
Step 2 Expand the tracking structure
appendedProcSet = ∅;
for each process pi ∈ detectedProcSet
 tempB = BAM(cxtProc, pi, origCxtOrg);
 if tempB is a non-zero matrix then
 newColumn = NULL;
 for each process pj ∈ includedProcSet
 B = BAM(pj, pi, origCxtOrg);
 Append B to newColumn.
/* generate related boundary adjacency matrices of the new column*/
 end for
 D = SAM(pi, origCxtOrg);
/* generate the self adjacency matrix of the new column */
 Append newColumn and D to trackStruc, using extension operation.
 includedProcSet = includedProcSet ∪{ ip };

 appendedProcSet = appendedProcSet ∪{ ip };

 end if
 end for
Step 3 Propagate the detection process
for each process pi ∈ appendedProcSet
 targetOrg = genOrg(pi);
 /* Ask targetOrg to call genTrackStruc */
 trackStruc = targetOrg.genTrackStruc(trackStruc, pi, origCxtOrg);
end for
Step 4 Return the expanded tracking structure
return trackStruc;

The tracking structure generation process starts from a local workflow process of the
original context organisation, and then spreads to all reachable workflow processes of the
involved organisations. When this generation process comes to an organisation, this
organisation becomes the context organisation of the above algorithm.

 Tracking over Collaborative Business Processes 45

For example, if we starts from the retailer’s product ordering process, i.e., process
a in the motivating example, this algorithm first detects the workflow processes
having direct interactions with process a. Then it checks for each detected workflow
process whether it is reachable from organisation A, and if so, the detected process
will be included to the tracking structure. In this step, organisation B’s process b is

included, and the tracking structure is expanded to
D

BD
D

b
A

ba
A

a
Aba

A ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

0

|
| . After that, this

generation process will be propagated to B, and B repeats the above steps to extend
the tracking structure. At this stage, B may find process c and process d, while only
process c is included. This is because that the retailer and the supplier do not set up
perceptions for each other in this example, and hence no transformation matrix is
defined for process d from A. Therefore, the tracking structure is finally expanded

to cba
AD |)|(=

| |

|0

0 0

a a b a c
A A A

b b c
A A

c
A

D B B

D B

D

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, which equals to the diagram shown in Figure 3 (c).

Here, ca
AB | is a zero matrix because there is no direct interactions between processes a

and c, and the other sub matrices can be found from the former part of this paper.

4.3 Performing Workflow Tracking

In an inter-organisational workflow environment, there is another issue, i.e., how to
keep the correct correspondence between collaborating local workflow instances.
From the semantics of a collaborative business process, we can find the cardinality
relationship between collaborating local processes, e.g., more than one instance of
process a may associate with a single instance of process b for the purpose of batch
production. While this kind of cardinality relationship can be determined at build
time, the correlation between the particular instances of these processes has to be
determined at run time, when they “shake hands”.

To perform workflow tracking, we design a data structure, as shown in Figure 5, to
keep the necessary information for tracking. This data structure consists of a series of
lists, each of which represents the set of instances belonging to a specific local
workflow process. Each element of a list has several units to record the workflow
execution status. The links connecting elements represent the correspondence
between instances of different workflow processes.

The tracking process is similar to a graph traversal process, where the nodes
represent the related workflow instances and the arcs represent their messaging links

Process p1 Process p2 Process p3

Instance I21 Instance I31

Instance I32

Instance I3n

…

…

Instance I11

a1 started
a2 unstarted…

…

Instance I22

Instance I12

Instance I2n

InstanceI1n

…

…

1

2

3

Fig. 5. Tracking data structure

46 X. Zhao and C. Liu

Algorithm 2. trackProc - Tracking Process

Input:
trackStruc - The tracking structure to conduct the tracking
origInstance - An instance of the original context organisation’s initial local workflow

process defined in trackStruc
DS - The tracking data structure
Output:
DS - The updated tracking data structure

Step 1 Initialisation

trackInstanceSet = ∅;
stack s=new stack();
s.push(origInstance);
Step 2 Discover the participating workflow instances

while s is not empty do
 cxtInstance = s.pop();
 foundInstanceSet = linkedInstances(cxtInstance, trackStruc) – trackInstanceSet;
 for each i ∈ foundInstanceSet
 s.push(i);
 cxtProc = genProc(cxtInstance);
 BAMset = relatedBAMs(cxtProc, trackStruc);
 for each link l of each boundary adjacency matrix B∈ BAMset
/* now, start discovering workflow instances by following each visible messaging link */
 partnProc = partnerProc(B, cxtProc);
 partnOrg = genOrg(partnProc);
 if cxtInstance.l is newly fired then
 newInstanceSet=∅;
 Ask partnOrg to check any new participating instances of partnProc, and set the
instances to newInstanceSet.
 newInstanceSet = newInstanceSet – trackInstanceSet;
/* filter the previous discovered instances */
 for each i ∈ newInstanceSet
 addInstance(partnProc, i);
 addLink(cxtInstance, i);
/* update the tracking data structure */
 s.push(i);
/* and add the newly discovered instance to the stack */
 end for
 end if
 end for

trackInstanceSet = trackInstanceSet ∪ { cxtInstance };
/* the set of instances to track */

end while
Step 3 Update the execution status of participating workflow instances

for each instance i ∈ trackInstanceSet
 p = genProc(i);
 targetOrg = genOrg(p);
 Enquire targetOrg for the execution status of i, and then update the status of i in DS.
end for

 Tracking over Collaborative Business Processes 47

to be tracked. In addition, new participating workflow instances will be identified at
the time when visible messaging links are fired.

Details can be found in Algorithm 2. In this algorithm, function addInstance(p, i)
inserts instance i to the list of process p in the tracking data structure. Function
addLink(i1, i2) creates a link between instances i1 and i2 in the tracking data
structure. Function linkedInstances(i, trackStruc) returns the instances linked to
instance i in the tracking data structure, according to the tracking structure trackStruc.
Function relatedBAMs(p, trackStruc) returns the set of BAMs related to process p,
defined in trackStruc. Function partnerProc(B, p) returns the partner process of p
defined in BAM B. Function genOrg(p) returns the organisation of process p.
Function genProc(i) returns the process of instance i.

This algorithm starts from a local workflow instance of the original context
organisation. Following the corresponding tracking structure, this algorithm searches
along visible messaging links and propagates the execution status queries to all
reachable workflow instances with the cooperation of participating organisations. The
corresponding tracking structure records the interaction relationship between the
processes of these reachable workflow instances. When an inter-organisational
interaction is fired, the algorithm will check whether any new workflow instances join
the business collaboration. If so, the algorithm will add these workflow instances to
the tracking data structure.

5 Conclusion

This paper contributed to the study of workflow tracking across organisational
boundaries. Compared with other workflow tracking solutions, the approach proposed
in the paper not only enables an organisation to track other organisations for its
involved parts of collaborative business processes, but allows different organisations
track same collaborative business process differently as well.

In the paper, we deployed a matrix based framework which includes three
representation matrices and three matrix operations. Algorithms using these matrices
and operations for generating tracking structures and performing workflow tracking
are developed. The framework allows an organisation to generate its own tracking
structure based on its visibility to other organisations, thus privacy can be protected.
The framework also allows a tracking structure to be generated on the fly, thus
enables flexibility in workflow tracking. Based on its own tracking structure, an
organisation can proactively trace the execution progress of its involved part of a
collaborative business process.

Acknowledgements

The work reported in this paper is partly supported by the Australian Research
Council discovery project DP0557572.

48 X. Zhao and C. Liu

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., and Weske, M.: Business Process
Management: A Survey. In Proceedings of International Conference on Business Process
Management (2003) 1-12.

2. Osterle, H., Fleisch, E., and Alt, R.: Business Networking - Shaping Collaboration
between Enterprises. Springer Verlag (2001).

3. Gans, G., Jarke, M., Lakemeyer, G., and Schmitz, D.: Deliberation in a Modeling and
Simulation Environment for Inter-organizational Networks. In Proceedings of Advanced
Information Systems Engineering (2003) 242-257.

4. Zdravkovic, J. and Johannesson, P.: Cooperation of Processes through Message Level
Agreement. In Proceedings of Advanced Information Systems Engineering (2004) 564-
579.

5. Grefen, P., Aberer, K., Ludwig, H., and Hoffner, Y.: CrossFlow: Cross-Organizational
Workflow Management for Service Outsourcing in Dynamic Virtual Enterprises. Data
Engineering, 24(1) (2001) 52-57.

6. van der Aalst, W. and Mathias, W.: The P2P Approach to Inter-organizational Workflows.
In Proceedings of International Conference on Advanced Information Systems
Engineering (2001) 140-156.

7. Wetzel, I. and Klischewski, R.: Serviceflow beyond Workflow? IT Support for Managing
Inter-Organizational Service Processes. Information Systems, 29(2) (2004) 127-145.

8. Lazcano, A., Schuldt, H., Alonso, G., and Schek, H.-J.: WISE: Process based E-
Commerce. IEEE Data Engineering Bulletin, 24(1) (2001) 46-51.

9. Colombo, E., Francalanci, C., and Pernici, B.: Modeling Coordination and Control in
Cross-Organizational Workflows. In Proceedings of DOA/CoopIS/ODBASE (2002) 91-
106.

10. Zhao, X., Liu, C., and Yang, Y.: An Organisational Perspective on Collaborative Business
Processes. In Proceedings of International Conference on Business Process Management.
Nancy, France. Lecture Notes in Computer Science (2005) 17-31.

11. WfMC: Workflow Management Coalition Audit Data Specification [WfMC 1015] (1998)
12. WfMC: The Workflow Reference Model, [WfMC 1003] (1995)
13. BEA. Using BEA WebLogic Components http://edocs.beasys.com/wlac/pdf/compguide.

pdf (2000)
14. IBM: BPEL4WS Business Processes with WebSphere Business Integration

http://ibm.com/redbooks (2004)
15. Wang, M. and Wang, H.: Intelligent Agent Supported Flexible Workflow Monitoring

System. In Proceedings of 14th International Conference on Advanced Information
Systems Engineering (2002) 787-791.

16. Hur, W., Bae, H., and Kang, S.H.: Customizable Workflow Monitoring. Concurrent
Engineering-Research and Applications, 11(4) (2003) 313-325.

Beyond Workflow Mining

Clarence A. Ellis1, Aubrey J. Rembert1, Kwang-Hoon Kim2,
and Jacques Wainer3

1 Collaboration Technology Research Group
Department of Computer Science
University of Colorado at Boulder

Boulder, CO 80306, USA
{skip, rembert}@cs.colorado.edu

2 Collaboration Technology Research Lab
Department of Computer Science, Kyonggi University

Suwonsi Kyonggido 442-760, South Korea
kwang@kyonggi.ac.kr

3 Institute of Computing, State University of Campinas
Campinas 13084-971, SP, Brazil

wainer@ic.unicamp.br

Abstract. In the domain of Business Process Management and Work-
flow Management Systems, the log of work transactions executed has
been found to be a useful artifact. The ideas, work, and literature on
workflow mining have been primarily concerned with examining the
workflow event log to rediscover control flow. Workflow mining has gen-
erally been defined as “the process of extracting a workflow model from a
log of executions of activities”. In fact, most of the literature specifically
and narrowly is concerned with rediscovering the precedence relations
amongst activities. It is generally a hidden assumption that all activi-
ties are known a priori because they are listed by label in the workflow
event log. In this position paper, we explore the possibility of removing
this assumption, and thus performing workflow discovery rather than
precedence rediscovery. Workflow discovery does not assume that pro-
cess structure or even activities are known a priori and is concerned with
discovering a wholistic perspective of workflow.

Workflow management systems are people systems that must be de-
signed, deployed, and understood within their social and organizational
contexts. Thus, we argue in this document that there is a need to expand
the concept of workflow mining beyond the behavioral perspective to en-
compass the social, organizational, and activity assignment perspectives;
as well as other perspectives. To this end, we introduce a general frame-
work and meta-model for workflow discovery, and show one approach to
workflow discovery in a multidimensional perspective.

1 Introduction

A Workflow Management System (WFMS) can be a tremendous aid to an or-
ganization in effectively enacting their business processes. But how does the

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 49–64, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

50 C.A. Ellis et al.

WFMS know the particular processes of the particular organization? The an-
swer is BPA (business process analysis) and workflow modeling. These steps re-
sult in a model of work within an organization in a language that is logical and
rigorous enough to be interpreted by computer software. Realistically, for large
organizations, BPA and workflow modeling are complex nontrivial tasks which
are known to be time consuming, expensive, and error prone [20]. Furthermore,
workflow management systems are “people systems” that must be understood
and designed with an eye towards social and organizational contexts. However,
this is difficult and elusive to capture within a logical and rigorous description.
The result is that workflow management systems tend to be inhibitive to hu-
mans, and potentially stifle creativity [15]. Additionally, large organizations are
complex dynamic systems; this carries the implication that their workflow pro-
cesses constantly change. Thus, the formal workflow process models created as a
result of BPA and workflow modeling are not only partial and inhibitive, they are
typically obsolete! Fortunately, people are frequently quite clever at performing
“workarounds” to somehow subvert the WFMS.

Workflow mining has been offered as a solution to the problems described
above. Workflow mining has been described as the automatic construction of
workflow models from workflow event logs produced by process-aware informa-
tion systems. A workflow event log is typically an interleaved list of events from
numerous process instances. Currently, most workflow mining algorithms oper-
ate on workflow event logs that, in general, conform to the following schema:

1. work case number
2. activity identifier
3. participant (i.e. person or subsystem performing the activity)
4. date/time

By examining the workflow event log, a workflow mining algorithm can detect
the ordering of activity executions for each process instance, and then infer the
general process structure. As a simple example of how a typical workflow mining
algorithm operates, suppose a we examine the workflow event log of a process
that has four activities, a1, a2, a3, and a4. Suppose that all four activities are
always executed in some order by each work case. If we observe over a large
number of process instances that a1 is always executed first and a4 is always
executed last, then we can begin to piece together a workflow process model
that requires a1 to complete before all other activities, and a4 to execute after
all others. If we find process instances in the log where a2 begins before a3, and
other cases where a2 begins after a3, then we can infer that the process begins
with a1; after it completes, a2 and a3 execute concurrently; and after they both
complete, then a4 executes.

This extremely simple example typifies what current workflow mining algo-
rithms do. It also highlights some areas of further research for workflow mining.
For instance, most workflow mining algorithms do not consider the social or
organizational contexts of the processes they discover. To our knowledge, there
exists only one concrete workflow mining algorithm for discovering the social

Beyond Workflow Mining 51

context of a workflow process [18]. Furthermore, current workflow mining al-
gorithms operate based on the hidden assumption that activities are known a
priori. Therefore, the environments in which workflow mining is most suitable
are organizations with well defined activities. However, if an organization does
not have labels that group the fine-grained actions it performs, the utility of
workflow mining is greatly reduced.

What can we do about all this? Well, consider the following workflow dream.
You have determined that your company could potentially gain great benefit
from a WFMS in efficiency and effectiveness, but your company does not have
well-defined notions of activities. One option is to hire an expensive consulting
firm; do a nine month study and tediously create a detailed set of workflow
descriptions. Alternatively, you could continue doing work as normal, with the
exception that your work will be recorded in some type of event log. At some
point in the future, this event log will be examined by computer software that
will automatically construct a logical and rigorous workflow model for your or-
ganization. This scenario is the essence of workflow discovery. The concept of
workflow discovery is an extension to workflow mining. It removes the assump-
tion about knowing activities a priori.

In this exploratory position paper, we will present one simple approach to
performing workflow discovery. In section 2, we describe the ICN meta-model
and the ICN models used as targets of workflow discovery. In section 3, we
provide some very simple general techniques for performing workflow discovery.
In section 4, we describe some related work. Finally, in section 5 we describe our
conclusions and future research directions.

2 ICN Meta-model and Framework

We consider workflow discovery to be a sub-area of Knowledge Discovery in
Data (KDD) [16] and we use models formed from the Information Control Net
(ICN) meta-model as discovery targets. The Information Control Net (ICN)
meta-model is used to create multidimensional workflow models[6,7]. In the ICN
meta-model, a multidimensional workflow model consists of a family of models.
A model represents either an organizational dimension or an organizational per-
spective. An organizational dimension is a set of homogeneous organizational
objects and a set of zero or more automorphisms over those organizational ob-
jects. An organizational perspective is a set of organizational objects and a set
of mappings over those organizational objects.

The distinction between an organizational dimension and an organizational
perspective is quite subtle. At this point, we need to make a clear distinction
between the two. Organizational dimensions represent aspects or properties of
an organization while organizational perspectives represent the examination or
observation of an organization from one or more dimensions.

Organizational perspectives and organizational dimensions are modeled in
the ICN meta-model using an organizational framework, organizational schema,
and organizational net. The organizational framework is used to specify classes

52 C.A. Ellis et al.

of organizational objects. The organizational schema is used to specify the set
of mappings over the classes of organizational objects. The organizational net is
used to specify the dynamic behavior of an organization.

Definition 1 (Organizational Framework). An organizational framework is
a 3-tuple, F = (G, R, A), where G is a class of abstract organizational objects
(i.e. goals, constraints, ideals, and policies), R is a class of concrete organiza-
tional objects, resources (i.e people, data repositories, and chairs), and A is a
class of functional organizational objects, activities.

Definition 2 (Organizational Schema). An organizational schema is a tu-
ple, S = (F, fs) where F is an organizational framework and fs is a set of early
binding mappings over F .

Definition 3 (Organizational Net). An organizational net is a 3-tuple, N =
(S, T, fn), where S is an organizational schema, T is a class of tokens, and fn

is a set of late binding mappings over S and T .

2.1 Some Useful Perspectives

We stress that there are a plethora of perspectives [10], many are important and
still unexplored (e.g. the “security” perspective and the “reputations” perspec-
tive). Below we provide a brief description of two perspectives, namely the behav-
ioral perspective and the activity assignment perspective. Before we describe these
two perspectives, we first describe the dimensions used to realize them.

The activities dimension of an organization depicts what an organization does.
The organizational objects of this perspective are a finite set of activities. The
precedence automorphism is a typical mapping in this dimension. However, not
all organizations have well structured processes. Therefore, not all organizations
specify precedence between their activities. The roles dimension emphasizes how
an organization is structured. The organizational objects of this dimension are
the roles of an organization. The automorphisms over organizational objects in
this dimension are highly domain dependent. The participants dimension fo-
cuses on the active agents (e.g. people or computers) of an organization. The
organizational objects of this dimension are a finite set of participants.

2.2 Behavioral Perspective

The behavioral perspective is formed when we observe an organization through
the activities dimension. This perspective describes the control flow of a workflow
process. The behavioral perspective is modeled with an ICN Control Flow Model.

Definition 4. An ICN Control Flow Model is the tuple CFM = (A, δ) where:

1. A is a finite set of activities
2. δ = δi ∪ δo

(a) δi: A → 2A is a multivalued mapping from an activity to a vector of
vectors of activities that precede it (2A is the power-set of A).

Beyond Workflow Mining 53

(b) δo: A → 2A is a multivalued mapping from an activity to a vector of
vectors of activities that it precedes.

In the ICN Control Flow Model, there are three types of activities, two that are
control activities and one that is a work activity. A control activity alters the
control flow of a process. A work activity does not affect control flow, but it
usually changes the state of a case. The control activities are the AND-Control
and the OR-Control. Informally, an AND-Control can be either an AND-Split,
an AND-Join, or both. Symmetrically, an OR-Control can be either an OR-Split,
an OR-Join, or both.

In the graphical depiction of an ICN Control Flow Model, precedence is mod-
eled as a directed edge. A work activity is represented by a labeled circle with
at most one directed edge leading into it and at most one directed edge leading
out of it. An AND-Control is represented by a small dark circle with one or
more directed edges leading out of it and/or one or more directed edges leading
into it. An OR-Control is represented by a small hollow circle with one or more
directed edges leading out of it and/or one or more directed edges leading into it.
Figure 1 depicts the graphical representations of the different types of activities
in an ICN Control Flow Model.

Fig. 1. Activity Types in the ICN Control Flow Model

2.3 Activity Assignment Perspective

The activity assignment perspective is formed by defining a set of relationships
between three dimensions: participants, roles, and activities. Depending on the
size and nature of an organization, the dimensions involved in this perspective
can vary. For a small organization, with say 2 people and a relatively simple
organizational process, it is quite adequate and convenient to relate participants
directly to the activities they perform. However, in organizations with Very Large
Scale Workflow (VLSW)[11], this type of relationship is very impractical; it is
more appropriate to relate activities to roles, then relate roles to participants.
In this paper, we will assume that the organizations are sufficiently large and

54 C.A. Ellis et al.

have a need for the inclusion of roles in this perspective. The activity assignment
perspective is modeled with an ICN Activity Assignment Model.

Definition 5. The ICN Activity Assignment Model is the tuple
AAM = (R, A, P, φ, ζ) where:

1. R is a finite set of roles
2. A is a finite set of activities
3. P is a finite set of participants
4. φ: A → 2R is a single-valued mapping from an activity to a vector of roles.
5. ζ: R → 2P is a single-valued mapping from a role to a vector of participants

Graphically, roles are represented as labeled ovals. Participants are represented
as labeled stick figures. The φ mapping is represented as directed edges from roles
to activities. The ζ mapping is represented as directed edges from participants
to roles. Figure 2 depicts an ICN activity assignment model, as it relates to one
activity instance.

Fig. 2. An ICN Activity Assignment Model

3 Workflow Discovery

In order to describe the concept of workflow discovery in more depth, we consider
a hypothetical piece of collaborative software similar to [12] and [4] that allows
an organization to computerize its cases and gives participants the autonomy to
route those electronic cases. In this software system, the actions of a participant,
as they relate to a case, are recorded in a work transaction log. A work transaction
log consists of a set of work transactions, which are composed of a transaction
number, a case number, the state of a case after it has been changed or viewed,
the participant that changed or viewed the case, and the time the participant
changed or viewed the case.

In the remainder of this section, we describe a simple workflow discovery
technique via a simplified order processing workflow example enacted with our
hypothetical software system.

Beyond Workflow Mining 55

3.1 Order Processing Example

Consider the following order processing workflow in Example 1 and assume that
it is enacted with our hypothetical collaborative software system. It should be
noted that typically this workflow is not known a priori; we only provide this
example to give some context to, and simplify the description of, one approach
to workflow discovery.

Example 1 (Order Processing Workflow)

1. Receive Order from Customer
2. Check Customer’s Credit
3. If Customer Approved for Order

(a) Send Order to Shipping/Billing Department
(b) Bill Order to Customer
(c) Ship Order to Customer

4. If Customer Not Approved for Order, Simply Notify the Customer

Let the electronic order form depicted in Figure 3 represent a process instance
of the order processing workflow. Given the electronic order form and our hypo-
thetical collaborative software system, there is a rich set of information that can
be discovered about the order processing workflow. For instance, if we observe
that a single participant is not responsible for filling out the entire order form,
the participants that perform similar actions can be clustered together into roles.
Similarly, the actions performed in each work transaction can be clustered into
activities. By examining these clusters of activities and roles, we can discover an
ICN multidimensional workflow model that is composed of an ICN Control Flow
Model and an ICN Activity Assignment Model. In our discussion, we make the
simplifying assumption that an activity can occur only once within a workflow
process (i.e. no loops and no multiple occurrences of activities). It should be
noted that once activities are discovered either the ICN Activity Assignment
Model or the ICN Control Flow Model can be discovered.

3.2 Workflow Discovery Techniques

We now describe some techniques to cluster work transactions into activities and
cluster participants into roles. We then give general directions about how these
clusters can be formed into an ICN Control Flow Model and an ICN Activity
Assignment Model. First, we begin with a discussion of a technique for workflow
discovery in the behavioral perspective. Then, we move to a discussion about a
technique for workflow discovery in the activity assignment perspective.

We will now provide an abstraction to the order form in Figure 3 by associating
each label of the order form to a case attribute. If there are n case attributes, we
assign a unique integer i, where 1 ≤ i ≤ n, to each case attribute from the top
to bottom and left to right of the order form. In our order processing workflow
example, n = 22. The Customer Name attribute of an order, where an order
is a process instance or case of the order processing workflow, maps the to the

56 C.A. Ellis et al.

Fig. 3. Order Form for Order Processing Workflow Example

integer 2, and the Ship to Customer Address case attribute maps to the integer
16. It should be noted that the labels YES and NO on the order form do not
correspond to case attributes; they are simply labels of the values that can be
assigned to the Order Approval case attribute, which maps to the integer 11.

Let the work transaction log of Table 1 be the history of state changes of the
order form in Figure 3 for three different orders. The change set of a work trans-
action wj , denoted by CS(wj), is the set of case attributes that have changed in
the jth work transaction. We employ the Simple Matching Coefficient to mea-
sure the similarity between change sets of work transactions in order to induce
activities. To do this, we represent each change set of a work transaction as a
binary string such that the ith position in the binary string corresponds to the
ith case attribute. If the ith case attribute was changed during work transaction
wj , then the ith bit in CS(wj) will be a 1. Alternatively, if the ith case attribute
was not changed during wj , the ith bit in CS(wj) will be a 0. For instance,
in Table 1, the change set CS(w1) = {1, 2, 4, 5, 6, 8, 9, 10, 22} of the first work
transaction w1, maps to the binary string 1101110111000000000001.

Beyond Workflow Mining 57

Table 1. Work Transaction Log based on the Order Processing Workflow and the
Order Form

TRANS NUM CASE NUM CHANGE SET PARTICIPANT TIME
1 1 {1, 2, 4, 5, 6, 8, 9, 10, 22} JOE 12
2 2 {1, 2, 3, 7, 9, 10} JACK 23
3 3 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} LISA 36
4 1 {11, 12, 22} SHAWN 45
5 3 {11, 22} SHAWN 76
6 2 {11, 14} SHAWN 80
7 1 MATHEW 120
8 2 MATTHEW 126
9 1 {15, 16} JACK 160
10 1 {18, 19} JOE 175
11 3 {21, 22} LISA 192
12 2 {18, 20, 22} LISA 214
13 2 {15, 17, 22} JACK 280

Definition 6 (Simple Matching Coefficient). The Simple Matching Coeffi-
cient of binary vectors x and y is SMC = f11+f00

f01+f10+f11+f00
where

– f00=the number of attributes where x is 0 and y is 0
– f01=the number of attributes where x is 0 and y is 1
– f10=the number of attributes where x is 1 and y is 0
– f11=the number of attributes where x is 1 and y is 1

Given two change sets CS(wi) and CS(wj), their Simple Matching Coefficient,
SMC (CS(wi), CS(wj)), is a number in the interval [0, 1]. If it is the case that
SMC (CS(wi), CS(wj)) is greater than some user-defined threshold, then CS(wi)
and CS(wj) are considered similar.

However, using the Simple Matching Coefficient in its current form to compare
work transactions with empty change sets (i.e. work transactions 7 and 8 in
Table 1) to work transactions with non-empty change sets is problematic. This
is because these two situations have different semantics. If a work transaction
has an empty change set, then the case was only viewed and not changed. This
is, however, a valid action, but we don’t want a clustering algorithm to conclude
that viewing a case and making very small changes to a case constitute the same
activity. To remedy this situation, we modify the Simple Matching Coefficient
such that it considers two strings to be dissimilar (i.e SMC = 0) if one of the
strings contain all 0s and the other string contains a 1 at some position. This is
denoted by mSMC.

We will now give a high-level clustering technique based on our modified
version of the Simple Matching Coefficient. The technique begins by creating
for each change set CS(wj) a change set cluster C(j). Let C be the set of all
change set clusters. For each cluster C(i), C(j) ∈ C, where i �= j, if the proximity
of their centers is less than some user defined threshold, the technique merges
cluster C(j) into cluster C(i). For simplicity, we consider the center of a cluster

58 C.A. Ellis et al.

C(i), denoted by center(C(i)), to be the conjunction of the change sets inside
of the cluster. The proximity of two clusters C(i) and C(j) is denoted by the
equation

proximity(C(i), C(j)) = 1 − mSMC(center(C(i)), center(C(j))) (1)

Cluster merging halts when the proximity of the centers of the remaining clusters
is greater than some user defined threshold. The remaining clusters in C become
the activities in our organization. We can then use those activities to form process
traces. A process trace is a sequence of activities ordered on the basis of process
execution. A set of process traces can be used as input into traditional workflow
mining algorithms to discover the precedence relations between activities. The
pseudo-code in Algorithm 1 describes succinctly the technique that we have
discussed above.

Algorithm 1. Activity Discovery Technique
1: Create a cluster for the change set of each work transaction
2: Add each cluster to C
3: Let MAX PROX be the user defined maximum allowable proximity for cluster

merging
4: while ∃(C(i), C(j) ∈ C) : proximity(center(C(i)), center(C(j))) ≤ MAX PROX

do
5: Merge cluster C(j) into C(i).
6: Update C to reflect the merger
7: end while
8: Create an activity for each cluster in C

We will now execute the algorithm on the work transaction log in Table 1.
First, we transform the change sets of each work transaction into a binary string:

(1, 1101110111000000000001)
(2, 1110001011000000000000)
(3, 1111111111000000000000)
(4, 0000000000110000000001)
(5, 0000000000100000000001)
(6, 0000000000100100000000)
(7, 0000000000000000000000)
(8, 0000000000000000000000)
(9, 0000000000000011000000)
(10, 0000000000000000011000)
(11, 0000000000000000000011)
(12, 0000000000000000010101)
(13, 0000000000000010100001)

Then we create a cluster C(i), where 1 ≤ i ≤ 13, for the change set of each work
transaction. Since we are working with a small number of work transactions each

Beyond Workflow Mining 59

with a small number of case attributes, we will assume that clusters should be
merged if their proximity is less than or equal to .40 (i.e MAX PROX = .40).
Based on this threshold of proximity, we can combine clusters C(1), C(2),and
C(3) into cluster C(1) . Next, we can combine clusters C(4), C(5), and C(6) into
cluster C(4) . Then, we can combine clusters C(7) and C(8) into cluster C(7) .
Next, we can combine clusters C(9) and C(13) into cluster C(9) . Then we can
combine clusters C(10) and C(12) to form cluster C(10).

After the execution of this portion of the algorithm,

C = {C(1), C(4), C(7), C(9), C(10), C(11)}

such that the clusters in C represent the activities of the order processing work-
flow. We can now use these clusters to form process traces. We use those process
traces as input those into a traditional workflow mining technique such as the
model rewriting technique of [21]. To make the precedence relation discovery
process easier to understand, we relabel the clusters in C such that: C(1) = A,
C(4) = B, C(7) = C, C(9) = D, C(10) = E, and C(11) = F. A process trace is
formed by associating the change set of a work transaction with its correspond-
ing activity and then extracting the sub-sequence of activities that belong to
the same case. The result of this step on the order processing workflow is the
set of process traces PT = {ABCFE, ABCEF, ABD}. We can use the rewrite
rules of [21] on this set of process traces to produce the ICN Control Flow Model
depicted in Figure 4.

Using the discovered activities, we can now discover the roles of the partic-
ipants in the order processing workflow. The participant set of an activity A,
denoted by PS(A), is the set of participants that performed activity A. To in-
duce roles, we follow a strategy similar to the discovery of activities described
above. Each participant in an organization is assigned a number from 1 to n,
where n represents the total number of participants in the organization. We use
this information to construct an n-length binary string for each participant set.
If participant i performed activity A, then the bit at position i in the binary

Fig. 4. ICN Control Flow Model of the Order Processing Workflow

60 C.A. Ellis et al.

string PS(A) will contain a 1. If participant i did not perform activity A, then
there will be a 0 at position i in binary string PS(A).

If the participant sets of different activities are similar, we can infer that
these participants belong to the same role. We will use Jaccard’s Coefficient, a
slightly different notion of similarity than the Simple Matching Coefficient, to
form roles. We use Jaccard’s Coefficient because it takes into account that most
participants in an organization don’t perform the same activities. For instance,
the number of participants that can approve a loan in a bank is small compared
to the number of participants that cannot approve a loan. This is contrasted with
discovering activities, where it is equally important to know what case attributes
have changed as well as what case attributes have not changed, assuming that
at least some case attributes have changed (our modified version of SMC).

Definition 7 (Jaccard’s Coefficient). The Jaccard Coefficient of binary vec-
tors x and y is J = f11

f01+f10+f11
where

– f00=the number of attributes where x is 0 and y is 0
– f01=the number of attributes where x is 0 and y is 1
– f10=the number of attributes where x is 1 and y is 0
– f11=the number of attributes where x is 1 and y is 1

Participant sets PS(A) and PS(B) are considered similar if J(PS(A), PS(B))
is greater than some user defined threshold of similarity. Only participant sets
that have some relatively large intersection are grouped together into roles.

We use the definition of Jaccard’s Coefficient to induce clusters and therefore
roles from participant sets. The technique begins forming a cluster C(A) for
each participant set PS(A). If the proximity of the centers of clusters C(A) and
C(B) is less than some user defined threshold, merge C(B) into R(A). Repeat
this cluster merging step until no more clusters can be merged. The remaining
clusters will become roles. The center of a cluster C(A), denoted by center(C(A))
is the disjunction of the participant sets in it. Let R be the set of participant
set clusters. The proximity measure for participant sets is

proximity(C(A), C(B)) = 1 − J(center(C(A)), center(C(B))) (2)

Algorithm 2 describes compactly the clustering technique discussed above. We
will now use this technique on the work transaction data in Table 1. First, we as-
sign integers to the participants. Then, we convert the participant sets into bi-
nary strings. Let the following be the participant number assignments: (1, JOE),
(2, JACK), (3, LISA), (4, SHAWN), and (5, MATTHEW). The participant
sets arePS(A)= 11100,PS(B)= 00010,PS(C)= 00001,PS(D)= 01100,PS(E)
= 10100, and PS(F) = 00010. If we create a cluster for each participant set and let
MAX PROX = .40, after the cluster merging phase, the remaining clusters are:
C(A), C(F), and C(C). We then transform these clusters into roles by relabeling
the clusters such that C(A) = RX , C(F) = RY , and C(C) = RZ , relating the
participants of a cluster to a corresponding role, and then relate that role to the ac-
tivities that at least one of the participants in the corresponding cluster performs.
We have now formed the ICN Activity Assignment Model of Figure 5.

Beyond Workflow Mining 61

Algorithm 2. Role Discovery Technique
1: Create a cluster for each participant set.
2: Add all participant set clusters to R
3: Let MAX PROX is the user defined maximum allowable proximity for cluster

merging
4: while ∃(C(A), C(B) ∈ R) : proximity(center(C(A)), center(C(B))) ≤

MAX PROX do
5: Merge cluster C(B) into cluster C(A).
6: Update R to reflect the merger
7: end while
8: Associate roles to each of the remaining clusters in R

Fig. 5. ICN Activity Assignment Model of the Order Processing Workflow

4 Related Work

To our knowledge, this paper is the first known investigation into multidimen-
sional workflow discovery, which is removing the assumption that activities are
known a priori and discovery different perspectives of workflow. As mentioned in
the introduction, workflow discovery is an extension to process/workflow mining.

The concept of process control flow discovery is not new; it was first investi-
gated within the context of software processes in [3,2]. However, workflow mining
is a new and fledgling field. It was first studied in [1] by Agrawal et al. In that
paper, the authors describe workflow mining as a two step process: (1) discover
a workflow graph that conforms to the workflow event log and (2) find the edge
conditions of the workflow graph. The discovery of edge conditions is a necessary
step in this workflow mining algorithm because the target language in this paper

62 C.A. Ellis et al.

can’t explicitly represent AND-Control or OR-Control constructs. Agrawal et.
al. also describe a method for dealing with iteration and noisy logs.

In [13], Schimm describes a workflow mining algorithm and tool that dis-
covers properly nested block-structured workflow models via a model rewriting
approach. Schimm’s workflow mining algorithm is based on a workflow algebra.
Similarly, Wainer, Kim, and Ellis in [21] describe a technique for inducing prop-
erly nested workflow models using model rewriting rules. However, their work
did not include a concrete workflow mining algorithm description.

Herbst in [9], describes a machine learning approach to discover sequential and
concurrent workflow models in the ADONIS language. Their work introduced
problem classes for workflow mining and a heuristic for discovering multiple
instances of an activity (the duplicate activities problem). Their algorithm first
constructs Stochastic Activity Graphs (SAG)s and transforms these graphs into
sequential workflow models in the ADONIS language.

Silva et. al. [14] investigated the idea of discovering probabilistic workflow
models from workflow event log data. Their learning algorithm attempts to dis-
cover a probabilistic And/Or Graph.

Greco et. al. in [8], take a slightly different approach to workflow mining. They
assume that they are given a workflow model and the workflow event log that
this workflow model generated. The goal of their algorithm is not to discover a
workflow model, but to discover useful knowledge about process instances. They
also describe some intractability results.

In [5], Dustdar et. al. explore workflow mining in the context of ad-hoc pro-
cesses. This is done using the Caramaba [4] process-aware collaboration system.
A tool, TeamLog, was built that converted Caramba logs into an XML format
that could be used by a workflow mining algorithm.

In [20], van der Aalst et. al. studied workflow mining with Petri Nets as the
target language. He and his group have developed the α-algorithm to discover
a certain class of Petri Nets. In that paper, they discuss some of the limitations
of the α-algorithm, (mining short loops and dealing with noise) and propose
extensions. His group has also identified and classified some of the remaining
key scientific challenges for workflow mining (e.g the non-free choice construct
and hidden activities). In [17], van der Aalst et. al. proposed a genetic algorithm
help solve the non-free choice problem. For a good overview of workflow mining,
the authors recommend [19].

5 Conclusion and Future Work

In the domain of Business Process Management and Workflow Management Sys-
tems, workflow mining has been primarily concerned with examining the work-
flow event log to rediscover control flow. In this document we have explored the
possibility of moving beyond conventional mining, and performing workflow dis-
covery rather than precedence rediscovery. To this end, we introduced a general
framework and meta-model for workflow discovery, and showed how discovery
can be effectively enacted within a multidimensional perspective.

Beyond Workflow Mining 63

Future work includes designing concrete discovery algorithms based on live
and synthetic data. We are particularly interested in mining in unstructured
environments (i.e. no concept of an activity and ad-hoc processes). Work to be
done also includes further specification and mining of other perspectives (e.g:
the “security” perspective, “data-flow” perspective, the “organizational” per-
spective, the “social” perspective, the “reputation” perspective, and the “case”
perspective). We would like to investigate mining algorithms that address com-
plex iteration constructs (i.e. concurrency within a loop), dynamic change, and
that execute in the presence of noisy and incomplete event logs. Conventional
workflow mining assumes that many of the elements of the organizational frame-
work are known in advance. As the field matures, we expect to remove more and
more of these assumptions, and do more sophisticated workflow discovery.

References

1. Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. Mining process mod-
els from workflow logs. In EDBT ’98: Proceedings of the 6th International Con-
ference on Extending Database Technology, pages 469–483, London, UK, 1998.
Springer-Verlag.

2. Jonathan E. Cook and Alexander L. Wolf. Discovering models of software processes
from event-based data. ACM Trans. Softw. Eng. Methodol., 7(3):215–249, 1998.

3. Jonathan E. Cook and Alexander L. Wolf. Event-based detection of concurrency. In
SIGSOFT ’98/FSE-6: Proceedings of the 6th ACM SIGSOFT international sym-
posium on Foundations of software engineering, pages 35–45, New York, NY, USA,
1998. ACM Press.

4. Schahram Dustdar. Caramba - a process-aware collaboration system supporting
ad hoc and collaborative processes in virtual teams. Distrib. Parallel Databases,
15(1):45–66, 2004.

5. Schahram Dustdar, Thomas Hoffmann, and Wil van der Aalst. Mining of ad-hoc
business processes with teamlog. Data Knowl. Eng., 55(2):129–158, 2005.

6. Clarence A. Ellis. Information control nets: A mathematical model of informa-
tion flow. In SIGMETRICS ’79: Proceedings of the 1979 ACM SIGMETRICS
conference on Simulation, measurement and modeling of computer systems, pages
225–240, New York, NY, USA, 1979. ACM Press.

7. Clarence A. Ellis. Formal and informal models of office activity. In IFIP Congress,
pages 11–22, 1983.

8. Gianluigi Greco, Antonella Guzzo, and Giuseppe Manco. Mining and reasoning
on workflows. IEEE Transactions on Knowledge and Data Engineering, 17(4):519–
534, 2005. Senior Member-Domenico Sacca.

9. Joachim Herbst. A machine learning approach to workflow management. In ECML
’00: Proceedings of the 11th European Conference on Machine Learning, pages 183–
194, London, UK, 2000. Springer-Verlag.

10. Stefan Jablonski and Christoph Bussler. Workflow Management: Modeling Con-
cepts, Architecture, and Implementation. International Thomson Computer Press,
1996.

11. Kwang-Hoon Kim and Clarence A. Ellis. Workflow performance and scalability
analysis using the layered queuing modeling methodology. In GROUP ’01: Pro-
ceedings of the 2001 International ACM SIGGROUP Conference on Supporting
Group Work, pages 135–143, New York, NY, USA, 2001. ACM Press.

64 C.A. Ellis et al.

12. Thomas W. Malone, Kenneth R. Grant, Kum-Yew Lai, Ramana Rao, and
David Rosenblitt. Semistructured messages are surprisingly useful for computer-
supported coordination. ACM Trans. Inf. Syst., 5(2):115–131, 1987.

13. Guido Schimm. Mining exact models of concurrent workflows. Comput. Ind.,
53(3):265–281, 2004.

14. Ricardo Silva, Jiji Zhang, and James G. Shanahan. Probabilistic workflow mining.
In KDD ’05: Proceeding of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, pages 275–284, New York, NY, USA, 2005.
ACM Press.

15. Lucy A. Suchman. Plans and situated actions: the problem of human-machine
communication. Cambridge University Press, New York, NY, USA, 1987.

16. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Min-
ing. Addison Wesley, 2005.

17. Wil M. P. van der Aalst, Ana Karla A. de Medeiros, and A. J. M. M. Weijters.
Genetic process mining. In ICATPN, pages 48–69, 2005.

18. Wil M. P. van der Aalst and Minseok Song. Mining social networks: Uncovering
interaction patterns in business processes. In Business Process Management, pages
244–260, 2004.

19. Wil. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm,
and A. J. M. M. Weijters. Workflow mining: a survey of issues and approaches.
Data Knowl. Eng., 47(2):237–267, 2003.

20. Wil M. P. van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining:
Discovering process models from event logs. IEEE Transactions on Knowledge and
Data Engineering, 16(9):1128–1142, 2004.

21. Jacques Wainer, Kwanghoon Kim, and Clarence A. Ellis. A workflow mining
method through model rewriting. In CRIWG, pages 184–191, 2005.

Adapt or Perish: Algebra and Visual Notation
for Service Interface Adaptation

Marlon Dumas1, Murray Spork2, and Kenneth Wang1

1 Queensland University of Technology, Australia
{m.dumas, kw.wang}@qut.edu.au

2 SAP Research Center Palo Alto, USA
murray.spork@sap.com

Abstract. The proliferation of services on the web is leading to the for-
mation of service ecosystems wherein services interact with one another
in ways not necessarily foreseen during their development or deploy-
ment. A key challenge in this setting is service mediation: the act of
retrofitting existing services by intercepting, storing, transforming, and
(re-)routing messages going into and out of these services so they can
interact in unforeseen manners. This paper addresses a sub-problem of
service mediation, namely service interface adaptation, that arises when
the interface that a service provides does not match the interface that it
is expected to provide in a given interaction. The paper focuses on rec-
onciling mismatches between behavioural interfaces, i.e. interfaces that
capture ordering constraints between interactions. It presents a declar-
ative approach to service interface adaptation based on: (i) an algebra
over behavioural interfaces; and (ii) a visual language that allows pairs
of provided-required interfaces to be linked through algebraic expres-
sions. These expressions are fed into an execution engine that intercepts,
buffers, transforms and forwards messages to enact the adaptation logic.

1 Introduction

There is an increasing acceptance of Service-Oriented Architectures (SOAs) as a
paradigm for integrating software applications within and across organisational
boundaries. In SOAs, independently developed and operated applications are
made available as services that may be interconnected with one another using
standardised protocols and languages. One of the cornerstones of SOAs is the
principle that each service operates according to an interface. In a broad sense,
a service’s interface captures the types of messages that the service can produce
and consume, the message encodings and transfer protocols that the service
supports or requires, and the dependencies between message exchanges. Armed
with such information, developers can build systems that draw upon function-
ality from multiple services and make them collaborate in complex manners.

Services may be reused across development projects, development teams, or
even across organisational boundaries. It is thus normal to expect that services
will be reused in context for which they were not originally designed. Consider

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 65–80, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

66 M. Dumas, M. Spork, and K. Wang

a procurement service which, after sending an order to an order management
service, expects to receive one and only one response. Now, consider the case
where this procurement service is required to engage in a new collaboration
wherein the order management service may send a first response acknowledg-
ing the order and accepting or rejecting a subset of its line items, and later on
send zero, one or more additional updates to accept or reject the remaining line
items as their availability is determined. This interface mismatch is illustrated
in Figure 1. The figure shows an interface provided by an existing service (the
provided interface) and the interface that this service is expected to provide in
a new context (the required interface). The interfaces shown in this example
are taken from industry standards: the provided interface corresponds to a frag-
ment of an xCBL/UBL order management process1 while the required interface
corresponds to a RosettaNet partner interface process.2

Fig. 1. Interface mismatch scenario

Cast more generally, service reuse leads to situations where a service is re-
quired to participate in multiple collaborations where different interfaces are
required from it. These “required interfaces” may correspond to different mes-
sage granularities, message types, and dependencies between message exchanges.
Thus, service reuse calls for mechanisms to mediate between the interface na-
tively provided by a service and the various interfaces that are required from it.
We call this problem service interface adaptation.

Service interfaces can be described from a structural perspective, where the
focus is on message types, and from a behavioural perspective, where the fo-
cus is on control dependencies between message exchanges. The problem of
interface adaptation from the structural perspective has received considerable
1 http://www.xcbl.org and http://docs.oasis-open.org/ubl/prd-UBL-2.0
2 http://www.rosettanet.org

Adapt or Perish: Algebra and Visual Notation 67

attention, leading to a number of transformation definition (e.g. XSLT) and
schema mapping tools such as Microsoft BizTalk Mapper, Stylus Studio XML
Mapping Tools, and SAP XI Mapping Editor.3 In comparison, the problem of
interface adaptation from a behavioural perspective is still open.

In this setting, the research question that we address can be formulated as fol-
lows: how to enable a service implementing a given behaviour (e.g. the behaviour
on the left-hand side of Figure 1) to participate in interactions where a different
behaviour, yet the same functionality, is required from it (e.g. the behaviour
on the right-hand side of Figure 1). Traditionally, this problem is addressed by
developing adaptors using programming languages. However, these adaptors are
costly to develop and to maintain. Furthermore, the use of programming lan-
guages makes it difficult to check that these adaptors correctly implement the
intended adaptation logic or that they do not create deadlocks.

Accordingly, we propose a declarative approach to service interface adapta-
tion that emphasises on the behavioural perspective and can coexist with ex-
isting approaches to structural interface adaptation. The proposal comprises a
visual notation underpinned by an algebra of interface transformation operators.
The visual notation provides a declarative means for developers to map between
required and provided interfaces. The algebra provides a semantics for the nota-
tion and provides a basis for executing these mappings. The proposal has been
validated by a prototype tool that mediates between pairs of provided-required
interfaces by intercepting, buffering, transforming and forwarding messages ac-
cording to interface transformation expressions.

The rest of the paper is structured as follows. Section 2 introduces background
concepts. Next, Section 3 presents the algebra of interface transformation op-
erators while Section 4 presents the visual notation and its relationship to the
algebra. Section 5 then discusses a prototype implementation. Finally, Section 6
compares our proposal with related work and Section 7 concludes.

2 Background

The operators put forward in this paper are defined over behavioural interfaces.
We view a behavioural interface as a collection of control dependencies defined
over a set of message exchanges. Behavioural interfaces complement structural
interfaces such as those that can be described in WSDL. Structural interfaces
describe the individual message exchanges in which a service can engage (e.g. in
terms of message types and transport protocols) while behavioural interfaces are
concerned with dependencies between message exchanges. Behavioural interfaces
are known under different names, including abstract process in BPEL [7] and
collaboration protocol profile/agreement in ebXML [10].

Various languages can be used to specify behavioural interfaces, e.g. UML
Activity Diagrams, BPMN [12] or BPEL. We abstract from the language em-
ployed to describe behavioural interfaces by adopting a general definition based
3 See http://www.biztalk.org, http://www.stylusstudio.com, and http://
www.sap.com/platform/netweaver/components/xi resp.

68 M. Dumas, M. Spork, and K. Wang

notions from the field of concurrency theory. For illustration purposes however,
we depict behavioural interfaces using UML activity diagrams in which actions
are named according to the type of message being sent or received.

Behavioural interfaces are defined in terms of communication action schemas.
A communication action schema4 is a statement that a service may send or
receive a message of a given type. We represent a communication action as a
tuple (AN , D,MT) where AN is the name of the action, D indicates whether the
action is inbound (receive) or outbound (send) with respect to the service being
described, and MT denotes the type of messages that are sent or received by
the action. Since the focus is on behavioural aspects, we abstract from the way
message types are represented and instead we refer to message types through
identifiers. For example, a communication action whereby a procurement service
sends a purchase order to an order management service is represented as a tuple
(“place order”, “purchase order”, out).

Formally, we define a behavioural interface as a possibly infinite set of traces
(or strings) over an alphabet made up of communication actions. A trace t over
an alphabet of communication actions defines a linear order and we call this order
relation <t. Each token in a trace represents an instance of a communication
action. Thus, we distinguish between a communication action schema as defined
above and instances (i.e. occurrences) thereof that appear in a trace. A trace may
contain several instances of the same communication action schema. This is the
case of behavioural interfaces that define repetitive behaviour (e.g. the interface
on the right-hand side of Figure 1) such that the same action may be executed
more than once as part of a single execution of the behavioural interface (e.g.
action “Receive PO Update” in Figure 1). Below, we represent traces as lists of
communication action instances [a1, . . . , an].

Different traces of an interface may include instances of different actions.
This happens when there is conditional branch in the interface. For example,
it may be that for purchase orders with quotes > 500 something is done, while
for purchase orders with lower quotes, something else is done. However, we can
group the traces of an interface into disjoint groups gt1, gt2, . . . such that all
the traces in a given group gti contain the same set of action instances, albeit
ordered differently in each trace. Given a group of traces gt of an interface I, we
define a run r over interface I as a partial order <r such that:

∀a1, a2 ∈ Actions(gt) a1 <r a2 ↔ (∀t ∈ gt a1 <t a2)

...where Actions(gt) denotes the set of action instances common to all traces in
group gt. If a1 <r a2 we say that a1 necessarily precedes a2.

Consider for example the interface represented in Figure 2. It consists of four
traces: t1 = [a1, a2, a4], t2 = [a1, a3, a5, a6, a7], t3 = [a1, a3, a6, a5, a7] and t4
= [a1, a3, a6, a7, a5].5 We can cluster these traces into two groups gt1 = {{t1}}
and gt2 = {{t2, t3, t4}} such that each group corresponds to a run. The run r1

4 We write communication action or simply action where there is no ambiguity.
5 Throughout the paper, we use lowercase to denote action instances and uppercase

to denote action schemas. For example, a1 denotes an instance of action A1.

Adapt or Perish: Algebra and Visual Notation 69

Fig. 2. Sample behavioural interface used to illustrate the notions of trace and run

corresponding to gt1 is such that a1 <r1 a2 and a2 <r1 a4, while the run r2
corresponding to gt2 is such that a1 <r2 a3, a3 <r2 a5, a3 <r2 a6, and a6 <r2 a7.

3 Interface Transformation Algebra

The proposed model for interface transformation is based on a collection of
operators for expressing how to go from one behavioural interface to another.
We propose six operators namely flow, scatter, gather, collapse, burst, and hide.
We do not claim that this set of operators is complete in any sense. However, we
have designed each operator based on common mismatch pattern identified in
prior work. Specifically, the flow, scatter gather, and hide operators correspond
to the mismatch patterns identified in [9,1,3]6, the collapse operator corresponds
to the “bundling patterns” supported in SAP XI (see Section 6) while the burst
performs the opposite of the collapse.

All six operators are algebraic in the sense that they take as input a be-
havioural interface (and other parameters) to produce another behavioural in-
terface. In the sequel, an interface taken as input by a transformation operation
is called the source interface while the interface that is produced is called the
target interface. The notion of source and target interface are not to be confused
with those of provided and required interfaces. The source interface may cor-
respond to the required interface, the provided interface, or to an intermediate
interface generated by another operation as illustrated later.

To define the transformation operators, we use the following notations:

– Interface denotes the type of all possible behavioural interfaces.
– Action<T> denotes the type of all possible actions that produce or consume

a message of type T . This is a parameterised type.
– AID denotes the type of all action identifiers.
– direction(a) denotes the directionality of action a (inbound or outbound).

6 The hide operator also corresponds to notions of behaviour abstraction studied in
the area of behaviour inheritance [11].

70 M. Dumas, M. Spork, and K. Wang

3.1 The Flow Operator

The Flow operator describes a transformation where an action defined in the
source interface becomes another action in the target interface. The type of this
operator is:

Flow : Interface,Action<ST>, (ST → TT),AID → Interface

The Flow operator takes as input: (i) a source interface SI , (ii) an action SA
within this source interface that produces or consumes a message of a type ST ,
(iii) a function F that converts a message of type ST to a message of another
type TT , and (iv) an action identifier IDTA. From there, it produces an interface
TI which has the same set of runs as SI except that in each of the resulting runs,
every instance of action SA is replaced by an instance of an action TA, such that
direction(SA) = direction(TA). The message produced by an instance of TA that
replaces an instance of SA (say sa) is obtained by applying function F to the
message produced or consumed by sa). Thus, TA = (IDTA,TT , direction(SA)).
The use of the Flow operator is illustrated in Figure 3.

Fig. 3. The Flow operator

3.2 The Gather Operator

The Gather operator is applied when multiple actions from the source inter-
face map to a single action in the target interface. The messages produced by
the designated actions in the source interface are combined together using an
aggregation function. The use of this operator is illustrated in Figure 4.

Fig. 4. The Gather operator

The Gather operator is in fact an infinite family of operators (Gather)n (n ≥
2) with the following type:

Adapt or Perish: Algebra and Visual Notation 71

Gathern : Interface,Action<ST 1> . . .Action<STn>,

(ST 1 . . .STn → TT),AID → Interface

Gathern takes as input: (i) an interface SI , (ii) n actions SA1, . . . ,SAn, (iii) an
aggregation function AF , (iv) an action identifier IDTA. The resulting interfaceTI
defines the same set of runs as SI except that in each of these runs, every consec-
utive combination of instances of actions SA1 . . .SAn (say sa1 . . . san) is replaced
by an instance of an action TA (say ta such that (TA = IDTA,TT , direction(SA)).
Instance ta is placed in the resulting run such that:

∀a ∈ Actions(r) \ {sa1, . . . , san}(∃i ∈ [1..n] a <r sai) ⇒ a <r′ ta
∧ (∀i ∈ [1..n] a >r sai) ⇒ a >r′ ta

... where r is the original run and r′ is the run obtained after replacement of
sa1 . . . san with ta. Runs r and r′ are identical except for this replacement.

The message produced by an action instance ta that replaces a combination
of action instances sa1 . . . san is obtained by applying aggregation function AF
to the list of messages produced or consumed by sa1 . . . san.

By consecutive combination of instances of actions SA1 . . .SAn in a run r, we
mean that in between an occurrence of SAi and an occurrence of SAi+1 (where
i ∈ [1..n−1]), there is no occurrence of another action SAj (j ∈ [1..n]) such that
sai <r saj <r sai+1. For this definition to make sense, the following precondition
must be associated to operator Gathern: the set of actions SA1, . . .SAn should
be ordered in a way compatible with their control dependencies in the source
interface SI . Specifically, for any given consecutive combination of actions as
defined above, the following must hold:

∀i, k ∈ [1..n], i < k → ∀r ∈ Runs(SI) ¬(sak <r sai)

Another precondition of the Gathern operator is that all the actions being gath-
ered should have the same directionality, and there should not be an action of the
opposite directionality that lies in-between the actions being gathered. Formally:

∀i, j ∈ [1..n], i
= j →(∀r ∈ Runs(SI) sai ∈ Actions(r) → saj ∈ Actions(r))
∀i, j ∈ [1..n], i < j →Direction(sai) = Direction(saj)∧

¬∃sam ∈ Actions(SI) Direction(sam)
= Direction(sai)∧
sai <r sam <r saj

The rationale for this precondition is the following. Gathern replaces a combina-
tion of actions sa1 . . . san with a single action ta. If sa1 . . . san were “receives”
and there was a “send”(say sendA) between them (sa1 <r sendA <r san),
we would have that sendA <r′ ta due to sendA <r san and the definition of
Gathern. However, the service implementing SI can not execute sendA prior to
the execution of ta, since the execution of sendA requires information coming
from sa1 (sa1 <r sendA) and this information is only known once ta has been
executed. So on the one hand sendA needs to occur before ta and on the other
hand it needs to occur after ta. The above precondition prevents this deadlock.

72 M. Dumas, M. Spork, and K. Wang

3.3 The Scatter Operator

The Scatter operator is applied when a single action in the source interface is
transformed into multiple actions in the target interface.

Fig. 5. The Scatter operator

Like with the Gather, (Scatter)n (n ≥ 2) is an infinite family of operators:
Scatter2, Scatter3, For a given n, the type of this operator is:

Scattern : Interface,Action<ST>, (ST → TT 1 . . .TTn),
Placement<Action<TT 1> . . .Action<TTn>> → Interface

Operator Scattern takes as parameter an interface SI , an action SA, a function
DS that splits a message into multiple ones, and a partially ordered set of actions
TA1 . . .TAn (called a placement) all with the same directionality, and returns an
interface. The resulting interface TI has the same set of runs as SI except that in
every run of SI , every instance of SA is replaced by a subrun containing instances
of actions TA1 . . .TAn. The actions in the subrun are arranged as described
by the placement P. The placement may be represented in many ways. One
possible representation (though not necessarily the most expressive one) is as an
expression composed using operators SEQ and PAR that represent sequential
and parallel placement respectively. For example given a placement SEQ(TA2,
PAR(TA1, TA3)), each occurrence of SA is replaced by a subrun in which TA2
is executed first followed by both TA1 and TA3 in any order.

The messages produced or consumed by the instances of actions TA1 . . .TAn

that replace an instance of SA (say sa), are obtained by applying the data
splitting function DS to the message produced or consumed by sa.

3.4 The Collapse Operator

The Collapse operator is used when a stream of messages resulting from multiple
instances of the same communication action is aggregated into a single message,
as illustrated in Figure 6. In this figure, the source interface (left) is such that
the shipment notifications are sent incrementally as the products are dispatched.
Meanwhile, the target interface (right) requires a single shipment notification.

The type of the Collapse operator is:

Collapse : Interface,Action<ST>, (List<ST> → TT),AID → Interface

Adapt or Perish: Algebra and Visual Notation 73

Fig. 6. The Collapse operator

The Collapse operator takes as parameter an interface SI , an action SA, an
aggregation function AF , and an action identifier IDTA, and produces a target
interface TI . The resulting interface TI has the same set of runs as SI except
that in each run, the set of instances of SA (if any) is replaced by a single instance
of action TA such that TA = (IDTA,TT , direction(SA)). The message produced
or consumed by an instance of TA that replaces a sequence of instances of SA
(say sa1 . . . san) is obtained by applying the aggregation function AF to the set
of messages produced or consumed by sa1 . . . san.

The collapse operator requires the execution environment to: (i) track the
progress of the source and target interfaces; (ii) perform a reachability analysis
each time the source interface changes state;7 (iii) once the action to be collapsed
is no longer reachable from the current state, apply the aggregation function to
the set of accumulated messages; (iv) dispatch the aggregated message when the
target interface reaches a state where it can consume it.

The collapse operator as defined above is such that all instances of a “source”
action are replaced by a single action instance. In some scenarios however, one
may wish not to aggregate all instances of the source action, but only a subset
thereof up to the point where a milestone is reached. For example, one may need
to aggregate all part shipment notifications until an invoice is received, then
aggregate the next set of shipment notifications until another invoice is received
and so on. In future, we plan to investigate extensions to the Collapse operator
that capture more general scenarios.

3.5 The Burst Operator

The Burst operator works in the reverse of the Collapse operator and is used
when a single message needs to be split into a stream of messages. This operator
is used where the transformed stream of message consists of repeated instances
of the same communication action as illustrated in Figure 7.

The type of the Burst operator is:

Burst : Interface,Action<ST>, (ST → List<TT>),AID → Interface

7 We can optimise this step so that the analysis is only performed once per state.

74 M. Dumas, M. Spork, and K. Wang

Receive
Order Confirmation

Receive Line Item
Confirmation BURST

...

...

...

...

Fig. 7. The Burst operator

The operator Burst takes as parameter an interface SI , an action SA from SI ,
a function SF , and an action identifier IDTA, to produce a target interface TI .
The resulting interface TI has the same set of runs as SI except that in each
run, every instance of action SA is replaced by a sequence of instances of an
action TA such that TA = (IDTA,TT , direction(SA)). The message produced
by a sequence of instances of TA (ta1 <r ta2 <r . . . tan) that replaces a single
instance of action SA (say sa) is obtained by applying the “splitting” function
SF given as third parameter of the Burst operator, to the message produced or
consumed by sa.

3.6 The Hide Operator

The Hide operator is used when an action from the source interface is not re-
quired in the target interface. Specifically, the action produced by the source
interface is to be ignored (i.e. discarded) as illustrated in Figure 8.

Fig. 8. The Hide operator

The type of the Hide operator is:

Hide : Interface,Action<ST> → Interface

The Hide operator takes as input an interface SI and an action SA within this
interface, and produces as output an interface TI identical to SI , except that
in each run of SI , any instance of action SA is removed. Before applying this

Adapt or Perish: Algebra and Visual Notation 75

operator, the developer needs to ensure that the message produced or consumed
by the action being hidden is not crucial to the operation of the adapted service.

We have intentionally avoided introducing any operators that handle the sce-
nario where an action from the target interface is needed but is not provided
by the source interface. This scenario requires the introduction of business logic
in the adaptor, which is undesirable from a software maintenance perspective.
Indeed, this would result in the business logic being spread across the service
and the adaptors. Subsequently, any change in the business logic would require
developers to trace back which adaptors need to be changed.

4 Visual Notation

4.1 Visual Representation of Mapping Expressions

An interface mapping between a provided interface and a required interface is a
collection of interface transformation expressions (E1, . . . En). A transformation
expression can be either outbound (dealing with “send” actions) or inbound
(dealing with “receive” actions).

An interface transformation expression is represented as follows. Each oper-
ation in the expression a node linked through edges to other operations or to
actions in the required interface or in the provided interface. Edges are directed
according to the message flow. Visually, we distinguish two groups of operators:
Hide, Flow, Gather, Scatter on the one hand, and Burst and Collapse on the
other. Nodes corresponding to the first group can be represented by the same
symbol (say a rectangle). They can be distinguished because a Flow node has one
incoming and one outgoing edge, a Gather node has multiple incoming and one
outgoing edge, a Scatter node has one incoming and multiple outgoing edges, and
a Hide node has multiple incoming edges and no outgoing ones. The Collapse
and Burst nodes have one incoming and one outgoing edge, so to distinguish
them from the Flow, we need to use different symbols. We represent them as
concentric rectangles containing two convergent or divergent arrows indicating
whether it is a collapse or a burst respectively.

Figure 9 illustrates how interface transformation expressions are visually rep-
resented using the example introduced in Section 1. The mapping expressions
(namely E1 and E2) captured in this figure can be textually expressed as follows:

E1 = Flow(PI ,PA1, F1,RA1)
E2 = Gather(Collapse(RI ,RA3, F2, IA),RA2, IA, F3,PA2)

The outbound interface mapping expression E1 is a single-operator transfor-
mation expression that converts action PA1 into RA1. The inbound interface
mapping expression E2 is a composition of a Gather and a Collapse operator.
The Collapse operator is applied first and transforms RA2 into an intermediate
interface containing an action IA that replaces action RA3. The interface ob-
tained from the Collapse operation is then given as input to the Gather function
which merges RA2 and IA and replaces them with action PA2.

76 M. Dumas, M. Spork, and K. Wang

Fig. 9. Example of a visual mapping

Formally, an interface transformation expression is a directed acyclic graph
whose sources are actions in one interface (e.g. the required) and whose sinks are
actions in the other interface (e.g. the provided interface). For an interface map-
ping to cover all possibilities, it should be such that every action in the provided
interface is the source or the sink of at least one transformation expression.

4.2 Mapping Constraints

Interface mappings may create deadlocks. To detect such deadlocks, we define
below a condition that an interface mapping needs to fulfil. We do not claim that
this condition covers all possible deadlock scenarios. In future work, we plan to
investigate more general conditions.

Given any two expressions Ei, Eo ∈ IM such that Ei is inbound and Eo is out-
bound, if there are four actions A1 ∈ TargetActions(Ei), A2 ∈ SourceActions
(Eo), A′

1 ∈ SourceActions(Ei) and A′
2 ∈ TargetActions(Ei), then the precedence

relationbetween A1 and A2, if any, should be compatible with that between A′
1 and

A′
2. Specifically, for every run r of the target interface of Ei such that r contains

an instance of action A1 (say a1), let a′
1 be an instance of action A′

1 that maps to
a1 through expression Ei. Now assuming that in r there is an instance of A2 (say
a2) that maps to an instance of A′

2 (say a′
2) through expression Eo, then:

a1 < a2 ⇒ ¬(a′
2 < a′

1)

Figure 10 shows a violation of this constraint. The provided interface expects
to receive the payment (A1) before sending the shipment A2, while in the re-
quired interface the opposite holds, thus creating a deadlock. More generally,
the rationale for this constraint is that it is not possible to send information
that is dependent on other information we have not yet received, nor to receive
information that is dependent on other information we have not yet sent.

Adapt or Perish: Algebra and Visual Notation 77

Fig. 10. Example violating the first mapping constraint

5 Tool Support

We are currently developing a prototype implementation of an interface map-
ping tool and a service mediation engine that support the visual notation and
the algebra respectively. The implementation of the mediation engine has been
completed while that of the mapping tool is underway.

The mapping tool is a graphical editor allowing developers to load pairs
of provided-required behavioural interfaces and to link them through interface
transformation expressions. Behavioural interfaces are represented as BPEL ab-
stract processes supplemented by their corresponding WSDL definitions. Data
manipulation functions are coded in XSLT. This provides a hook for connecting
the editor with schema mapping tools that produce XSLT as output.

The output of the interface mapping tool consists of the original pair of
required-provided interfaces, the transformation expressions specified by the de-
veloper, as well as configuration information related the service endpoints that
implement the provided and the required interfaces. In line with our aim to
abstract away from the language used to describe behavioural interfaces, the en-
gine relies on an abstract representation of behavioural interfaces in the form of
Finite State Machines (FSMs) whose transitions are labelled by communication
actions. Such FSMs capture the information needed to execute the transfor-
mation expressions while abstracting away from evolving technology such as
BPEL. This design choice entails however that, when deploying an interface
mapping, the mapping tool must convert the BPEL abstract processes that
it takes as input into the FSMs used by the execution engine. Translations
from BPEL process definitions to FSMs have been studied in the literature,
see e.g. [6].

The deployment of an interface mapping into the mediation engine results in
the engine exposing a new service endpoint that behaves according to the re-
quired interface. An external application or service (say S1) can then send mes-
sages to this endpoint managed by the mediation engine which, based on the logic
of the corresponding transformation expressions, stores, transforms and eventu-
ally forwards messages to the service endpoint that implements the required
interface (say S2). Subsequently, the engine intercepts all messages between S1
and S2 and manipulates them according to the transformation expressions.

78 M. Dumas, M. Spork, and K. Wang

Messages intercepted by the engine need to be correctly associated to their
corresponding service instance. To this end, we impose that every SOAP message
intercepted by the mediation engine should contain a WS-Addressing messageID
and (optionally) a relatesTo header. The engine uses these headers to correlate
new messages with previously intercepted messages in order to determine the
correct service instance to which the new message belongs. Messages with a
relatesTo header are assigned to an existing service instance, while messages
without this header lead to the creation of new instances, unless there is no
service registered with the mediation engine that matches the action identifier
of the message (SOAP-Action header), in which case the message is put into a
pool of unallocated messages. The mediation engine includes an administration
console to monitor the current status of service instances managed by the engine
and to view histories of intercepted, transformed and forwarded messages.

6 Related Work

Traditionally, the concept of “interface” has been associated to a collection of
operations or message type definitions. This view has transpired into WSDL. Ac-
cordingly, the problem of interface adaptation has been approached as a schema
reconciliation problem. In the case of Web services, this comes down to mapping
between different XML schemas which is a well-understood problem [8].

In this paper, we adopt a broader view on interfaces, encompassing behaviour
in addition to structure. This view has been advocated in the field of component-
based software engineering where the issue of interface adaptation over be-
havioural interfaces has received some attention. Yellin & Strom [13] define a
notion of compatibility of components whose behavioural interfaces (called pro-
tocols) are described as FSMs. Their work addresses the question of verifying
that a given adaptor (specified as a FSM) is able to to reconcile two incompatible
behavioural interfaces. The authors assume that the adaptors can not store an
unbounded number of messages. Our Collapse operator breaks this assumption.
For example, the adaptor specified in Figure 9 needs to store an unbounded
number of “updates”. The “bounded buffer” assumption is motivated by unde-
cidability issues that arise when verifying properties of adaptors. But as shown
in Figure 9, the assumption is unrealistic in the application domain of Web ser-
vices. Yellin & Strom also discuss how to generate an adaptor from a set of
links between parameters (i.e. message parts) in the provided interface and cor-
responding parameters in the required interface. But there is an assumption that
the adaptors do not use the equivalent of a Collapse, Burst, or Hide operator.

Another technique for generation of adaptors for behavioural interfaces is
defined in [9]. As in Yellin & Strom , the authors deal with mismatches corre-
sponding to the “Flow”, “Gather” and “Scatter” operators, not with “Burst”,
“Collapse” and “Hide”. This work also differs from ours in that it does not con-
sider the use of composable transformation operators with a graphical syntax.

More recent research has addressed the problem of interface adaptation in
the context of Web services. Benatallah et al. [3] identify a set of “mismatch

Adapt or Perish: Algebra and Visual Notation 79

patterns” between behavioural interfaces and provide templates of BPEL code
that developers may reuse to build adaptors that resolve these mismatches. How-
ever, the compositionality of these BPEL templates is not considered and thus
the approach is not systematic. Similar mismatch patterns are identified in [4]
and [1] where high-level architectures for addressing such mismatches are pro-
posed. The Adapt framework [1] goes further by proposing a notation for N-
to-M mappings, i.e. mappings where data coming from N services are collected
and repartitioned among M services. This is similar to the Gather and Scatter
operators but it does not take into account any information contained in the
behavioural interfaces, e.g. the data is forwarded to the target services as soon
as it has been collected and in no particular order, whereas our Gather operator
forwards messages in a specific order to fulfill the constraints of the target inter-
face. Altenhofen et al. [2] propose a formal model for process mediation based
on Abstract State Machine (ASM) specifications. They show how these ASMs
can be refined to deal with mismatch patterns such as those identified in [4].
Fuchs [5] proposes another approach to interface adaptation. However, this con-
tribution focuses on reconciling operational differences such as security policies,
service level agreement, etc.

SAP eXchange Infrastructure (XI) supports behavioural interface adaptation
through so-called “bundling patterns”8. These patterns come with process tem-
plates that can be used in scenarios where certain types of messages need to be
buffered until they are all available and then aggregated into a single message.
However, these patterns only address a restricted set of behavioural interface
adaptation scenarios and do not provide a systematic approach to the problem.

7 Conclusion and Future Work

In this paper, we introduced a declarative approach to service interface adap-
tation based on an algebra of six operators over behavioural interfaces; and a
visual language that allows pairs of provided and required interfaces to be linked
through algebraic expressions. The paper also introduced an architectural view
of our execution engine that consumes these algebraic expressions and facilitates
message interception, buffering and transformation to enact the adaptation logic.

In future work, we plan to investigate notions of completeness in the context
of service interface adaptation that would enable us to characterise the expres-
siveness of the algebra and to define more powerful extensions or alternatives
thereof. One fundamental question that should be addressed is: When can a ser-
vice implementing a given provided interface be adapted to fit a given required
interface without adding new business logic into the adaptor. As discussed in
Section 3.6, adding business logic into the adaptors can lead to maintainability
issues, since business logic would then be spread across the service and its adap-
tors, rather than being concentrated in the service. In other words, we envisage
that adaptors should be restricted to data transformations and coordination
aspects, leaving the business logic entirely within the service.

8 See http://tinyurl.com/h427a and http://tinyurl.com/kpe3a.

80 M. Dumas, M. Spork, and K. Wang

In addition, we plan to develop techniques to semi-automatically infer possible
links between provided and required interfaces. For example, when a send action
in a provided interface has an associated message type similar (according to a
similarity metrics) to that of a send action in the required interface, we can
infer that these two actions should be linked through a Flow operation. By
combining these heuristics with similar heuristics developed in the context of
schema mapping [8], we seek to design techniques for semi-automatic generation
of adaptors for conversational services.

Acknowledgment. This research is funded by a Queensland “Smart State”
Fellowship and ARC Linkage Project LP0455394, both co-sponsored by SAP.

References

1. G. Alonso, C. Pautasso, and B. Biörnstad. CS Adaptability Container. Deliverable
#11, EU FP5 Project “ADAPT”, August 2004.

2. M. Altenhofen, E. Börger, and J. Lemcke. An abstract model for process media-
tion. In In Proceedings of the 7th International Conference on Formal Engineering
Methods (ICFEM), pages 81–95, Manchester, UK, November 2005. Springer.

3. B. Benatallah, F. Casati, D. Grigori, H. R. Motahari Nezhad, and F. Toumani.
Developing Adapters for Web Services Integration. In Proceedings of the 17th
International Conference on Advanced Information System Engineering, CAiSE
2005, Porto, Portugal, pages 415–429. Springer, 2005.

4. E. Cimpian and A. Mocan. WSMX Process Mediation Based on Choreographies.
In Proceedings of the Business Process Management Workshops, pages 130–143,
Nancy, France, September 2005. Springer.

5. M. Fuchs. Adapting web services in a heterogeneous environment. In Proceedings
of the Second IEEE International Conference on Web Services, ICWS 2004, San
Diego, California, USA, pages 656–664, 2004.

6. H.Foster, S.Uchitel, J.Magee, and J.Kramer. Tool support for model-based engi-
neering of web service compositions. In IEEE International Conference on Web
Services (ICWS), Orlando FL, USA, July 2005. IEEE Computer Society.

7. R. Khalaf, N. Mukhi, F. Curbera, and S. Weerawarana. The Business Process
Execution Language for Web Services. In Process-Aware Information Systems.
John Wiley & Sons, 2005.

8. L. Popa, Y. Velegrakis, R. Miller, M. Hernández, and R. Fagin. Translating web
data. In Proceedings of the 28th International Conference on Very Large Databases
(VLDB), pages 598–609, Hong Kong, China, August 2002.

9. H. Schmidt and R. Reussner. Generating adapters for concurrent component pro-
tocol synchronisation. In Proceedings of the 5th IFIP International Conference
on Formal Methods for Open Object-Based Distributed Systems (FMOODS), En-
schede, The Netherlands, March 2002. Kluwer Academic Publishers.

10. UN/CEFACT and OASIS. ebXML Business Process Specification Schema (Version
1.01). http://www.ebxml.org/specs/ebBPSS.pdf, 2001.

11. W. van der Aalst and T. Basten. Inheritance of workflows: An approach to tackling
problems related to change. Theoretical Computer Science, 270(1-2):125–203, 2002.

12. S. White. Business Process Modeling Notation (BPMN). Version 1.0 - May 3,
2004, BPMI.org, 2004. www.bpmi.org.

13. D. Yellin and R. E. Strom. Protocol specifications and component adaptors. ACM
Transactions on Programming Languages and Systems, 19(2):292–333, 1997.

Automated Service Composition Using Heuristic
Search�

Harald Meyer and Mathias Weske

Hasso-Plattner-Institute for IT-Systems-Engineering at the University of Potsdam
Prof.-Dr.-Helmert-Strasse 2-3, 14482 Potsdam, Germany
{harald.meyer, mathias.weske}@hpi.uni-potsdam.de

Abstract. Automated service composition is an important approach
to automatically aggregate existing functionality. While different plan-
ning algorithms are applied in this area, heuristic search is currently not
used. Lacking features like the creation of compositions with parallel or
alternative control flow are preventing its application. The prospect of
using heuristic search for composition with quality of service properties
motivated the extension of existing heuristic search algorithms.

In this paper we present a heuristic search algorithm for automated
service composition. Based on the requirements for automated service
composition, shortcomings of existing algorithms are identified, and so-
lutions for them presented.

Keywords: Processes and service composition, Process planning and
flexible workflow.

1 Introduction

Service Composition is an important approach to aggregate existing functional-
ity into new functionality. Functionality, available as services, is composed and
enacted as a process. Creating service compositions is a time-consuming, error-
prone manual task. Hence, different approaches for its automation exist [1,2,3,4].
In this paper we present an approach for automated service composition based
on a heuristic search algorithm.

Heuristic search is a promising approach for automated planning. Contrary to
other planning approaches, it is currently not used for automated service com-
position. Lacking features prevent the wide-spread usage. But its clear-cut and
easy to understand principle makes heuristic search a promising starting point
for more elaborated automated service composition approaches. Metric-FF [5]
allows planning with numerical properties and the optimization for them. This
can be used to implement quality of service properties. Using heuristic search
as the basis for semi-automated composition might also be a viable approach.

� This paper presents results of the Adaptive Services Grid (ASG) project (contract
number 004617, call identifier FP6-2003-IST-2) funded by the Sixth Framework Pro-
gram of the European Commission.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 81–96, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

82 H. Meyer and M. Weske

But heuristic search algorithms have some severe shortcomings: Generated plans
are totally-ordered. This is critical as it prevents taking advantage of possible
parallelism and invoke services in parallel. Heuristic search also does not sup-
port alternative control flows. These are required if the exact services to invoke
are only known at run-time, based on results of previously invoked services. For
example, to process a payment if several different payment options are available
the correct service must be invoked according to the payment option. If the pay-
ment option is selected only at run-time, the service composition must contain
alternative control flows for each possible payment option. Constructing such
plans is not supported by classical heuristic search planners.

In the following section a usage scenario is introduced. In section 3 the critical
requirements that hinder the usage of heuristic search are presented. Section 4
then proposes extensions to overcome the shortcomings by extending an existing
algorithm. The paper closes with a view on related work in section 5 and a
conclusion.

2 Usage Scenario

To illustrate the automated service composition approach of this paper a small
usage scenario is introduced. It is a payment process that can be part of some
larger business process. Figure 1 shows an example for a composition. It starts by
determining the credit card company for a given credit card number. Afterwards

Determine
CreditCard
Company

Saferpay:
Authenticate
Payment

Saferpay:
Perform
Payment

PayPal:
Perform
Payment

Send
Receipt

CreditCard
Number

CreditCard
Company

Amount

Payment
Information

Receipt

Amount

Payment
Information

Transaction
Handle

Transaction
Handle Receipt

Receipt

Determine
CreditCard
Company

Saferpay:
Authenticate
Payment

Saferpay:
Perform
Payment

PayPal:
Perform
Payment

Send
Receipt

Amount

File
Receipt

Send
ReceiptReceipt

Fig. 1. Payment Composition

Automated Service Composition Using Heuristic Search 83

the payment is performed with the correct payment service. The payment service
of Saferpay1 actually consists of two services. A payment has to be authenticated
before it is performed. This is not necessary for the PayPal2 payment service.
Based on the issuing credit card company, payment through Saferpay, PayPal,
or both is possible. Of course, always only one of them is actually used. Finally,
the receipt is send to the customer and filed in the database. Based on the actual
request, different compositions are possible. If for example the request already
states that the credit card is from a specific credit card company supported by
SaferPay, the composition only consists of four services: authenticate payment,
perform payment, file receipt, and send receipt.

The presented composition algorithm is implemented and used as a part of
the Adaptive Services Grid (ASG) project3. The scenario is derived from a larger
scenario by one of the project partners. The Dynamic Supply Chain Management
scenario is about the integration of suppliers in the domain of Internet Service
Providers (ISP).

3 Shortcomings of Existing Heuristic Search Algorithms

In [6] we presented elaborated requirements analysis for automated service com-
position algorithms. Most of these requirements are fulfilled by existing heuristic
search algorithms. Hence, we are limiting ourselves to the following critical ones:

1. Parallel control flow
2. Uncertainty in initial state and service effects
3. Alternative control flow
4. Creation of new variables

The first requirement is parallel control flow. Compositions consist of service
invocations and their ordering. This ordering is the control flow. The straight
forward approach is to assume a total ordering between service invocations and
perform them sequentially. But in reality service invocations are often only par-
tially ordered. If services do not depend on each other’s results and do not
conflict with each other, they can be invoked in parallel. This saves execution
time. Therefore a composition algorithm must be able to create compositions
with control flows that only contain the necessary orderings.

The second requirement is to support uncertainty in the initial state and
service effects. Executing a service with uncertain effects leads to several new
states. This is necessary to represent a service that determines the issuing credit
card company based on a credit card number. The exact outcome can only be
determined after actually invoking the service for a given credit card number.
After invoking a service with uncertain effects we are in more than one possible
state. Hence, we might as well start with multiple possible states. Uncertainty in

1 Saferpay is a registered trademark of Telekurs Group.
2 PayPal is a registered trademark of eBay Inc.
3 http://asg-platform.org

84 H. Meyer and M. Weske

the initial state is necessary to express that for a certain fact only the possible
values but not the exact value are known. For compositions containing service
invocations with uncertain effects starting in an uncertain initial state it must
be ensured that they work correctly in all possible situations.

The third requirement – alternative control flow – yields from the support
of uncertainty in the initial state and in service effects. Invoking the service
to determine the issuing credit card company based on the credit card number
leads to several possible states. Based on the actual state, different service must
be invoked to perform the payment. But determining the actual state can only
be done when enacting the composition and invoking the services. To create
compositions that work in all possible states it is necessary to support or-splits
that lead to alternative control flows.

The fourth requirement – creation of new variables – results from the fact that
in the data flow of a composition new data is created on the fly. This is not limited
to writing the data into an existing variable but also includes the creation of new
variables. This is complicated and often not possible in automated planning. This
limitation of the planning model, already criticized in [7], simplifies planning.
As all the variables are known, all possible service invocations can be calculated
in advance. Services that are not invokable because the necessary variables for
input or output parameters are missing, can be pruned.

Hence, in this planning model all variables used during composition must be
defined in advance. This includes also intermediate variables that are neither
used in the input nor in the output. For the payment scenario this means that
a variable for the transaction handle of Saferpay must be be defined. It is not
obvious why such a variable could be necessary. By adding this variable we are
encoding assumptions about possible composition results into the service request.
For PayPal the transaction handle is not necessary and other companies might
require other intermediate variables. Defining all necessary variables requires
a lot of information about the service landscape and at least a rough idea of
how the composition could look like (e.g. which services might be used). For a
realistic composition approach it is therefore required that activities can create
new variables and that the service composer takes these into account.

4 A Heuristic Search Algorithm for Service Composition

In this section a composition algorithm that overcomes all these limitations
will be presented. Before starting with the description of the algorithm, the
notions of service, service specification, service composition, and service request
are introduced. A service is a discrete business functionality. It is described by
a service specification:

Definition 1. A service specification s = (I, O, p, e) is a tuple with

– I: List of input parameters
– O: List of output parameters

Automated Service Composition Using Heuristic Search 85

– p: The precondition of the service is a disjunction-free logical expression and
must be satisfied in order to invoke the service.

– e: The effect of the service is a disjunction-free logical expression. It describes
the changes to the current state resulting from the invocation of the service.

The afore-mentioned definition states that services have exactly one method to
invoke. This differs from the service definition used for example in the WSDL
standard [8]. But as WSDL does not specify choreographies, each method can
be seen as an individual service and specified separately.

Definition 2. A service request R = (a0, g, D) is a triple consisting of the
initial state a0, the goal state g and a service domain D. A state is a logical
expression. This concept is refined later. A service domain D = (S, o) consists
of a set of service specifications and and ontology describing the concepts used
to specify services.

A service composition c is a list of service invocations c = 〈s1, ..., sk〉. A
service request is fulfilled by a service composition that starting from the initial
state reaches a state that satisfies the goal state by subsequently invoking the
services from the composition.

4.1 Enforced Hill-Climbing

Our algorithm is based on enforced hill-climbing [9]. It is a forward heuristic
search in state space. A state is defined as follows:

Definition 3. A logical expression is defined as:

– A logical literal is a logical expression
– Two literals composed using the junctors ∨ (disjunction) and ∧ (conjunction)

is a logical expression

A logical expression is disjunction-free if it does not contain disjunctions. A
disjunction-free logical expression a can be divided into the two logical expression
a+ and a− where a+ contains all positive literals and a− contains all negated
literals. A state is a disjunction-free and negation-free logical expression.

A logical expression a satisfies another logical expression a′ (written as: a |=
a′) if every positive literal of a′ is in a and no negative literal of a′ is in a.

State space is the search space that is spanned by the states and the transitions
in between them:

Definition 4. Service s = (I, O, p, e) is invokable in state a if a |= p. Invok-
ing service s in state a leads to a state transition. This can be defined by the
state transition function γ(a, s) = a′. If a |= p then a′ = a

⋃
e+ \ {x|¬x ∈ e−}.

A state a has a direct successor a′, written as a → a′, if a service s exists
and γ(a, s) = a′. The successor relation can be inductively extended to indirect
successors →+=→

⋃
{(a, a′′)|(a, a′) ∈→ ∧(a′, a′′) ∈→+}.

86 H. Meyer and M. Weske

Enforced Hill-Climbing is an extension of Hill-Climbing. Hill-Climbing uses a
heuristic function h(a, g) to select states until the goal is reached. The heuristic
h(a, g) delivers an approximation of the distance of the state a to the goal g.
Starting with the initial state, a new state is selected from the direct successors.
The first successor that is, according to the heuristic, better than the current
state is selected and assigned as the new current state. This process is continued
until the current state satisfies the goal state. Given an admissible heuristic
and a mechanism to prevent visiting states multiple times, the algorithm always
terminates. It terminates successfully if it reaches a state that satisfies the goal
state. It fails if a state a is reached so that no direct successor a′ with h(a′, g) <
h(a, g) exists.

(a) (b)

3

2 1

0

1

3

1 1

0

2 1

Fig. 2. Hill Climbing is not optimal (a) and incomplete (b)

Hill-Climbing does not create optimal compositions and it is incomplete.
Figure 2(a) illustrates the reason for the in-optimality. Displayed are states, their
heuristic values, and possible state transitions. If the state with heuristic 2 is eval-
uated first, it is selected even though a shorter path exists. Another problem is the
greediness of Hill-Climbing. Greediness means that optimization is done locally
without taking the path to the current state into account. This is only of impor-
tance if a cost function is associated with state transitions. Otherwise the admis-
sible heuristic guarantees that greediness does not affect the composition result.
Figure 2(b) demonstrates why Hill-Climbing is incomplete: If the upper path is
taken, composition fails after the first state with heuristic 1 as no direct successor
with a better heuristic can be found. Such a state is called a local maximum.

Enforced Hill-Climbing solves the problem of local maxima by switching to
breadth-first search if it gets trapped in a local maximum. This works as depicted
in Fig. 3. If the evaluation of a state shows that it is not better than the current
states all its direct successor are added to the end of A′. Hence when all direct
successors are evaluated and none was better than the current state, Enforced
Hill-Climbing starts evaluating the successors of the successors. This is contin-
ued until either a better state is found or no reachable states are unevaluated
and composition fails. In the situation from Fig. 2(c) Enforced Hill-Climbing
switches to breadth-first search in the state with no better direct successors.
Through breadth-first search the state with heuristic 0 (the goal) is found and
it can finish successfully. Regardless of this extension is Enforced Hill-Climbing

Automated Service Composition Using Heuristic Search 87

1 a = i
2 c := empty compos it ion
3 whi l e ¬(a |= g)
4 A′ = new Queue
5 enqueue (A′ , {a′|a → a′})
6 f o r a′ ∈ A′

7 i f h(a′, g) < h(a, g)
8 add (c , s) with γ(a, s) = a′

9 s = s′

10 goto 3
11 e l s e
12 enqueue (A′ , {a′′|a′ → a′′})
13 end
14 end
15 compos it ion f a i l e d
16 end
17 compos it ion s u c c e s s f u l

Fig. 3. Enforced Hill-CLimbing

still incomplete but termination is still guaranteed as breadth-first search always
terminates. Fig. 4 shows that composition fails if the upper path is taken. The
upper path is a dead end and the algorithm is not able to turn around and
leave it. As termination is always guaranteed, one approach to deal with incom-
pleteness, as proposed by [9], is to switch to another complete but slower search
algorithm (e.g. A*) if Enforced Hill-Climbing fails. The enforcement extension
of Hill-Climbing does not affect the in-optimality of the algorithm.

3

2 1

0

2 1

Fig. 4. Enforced Hill-Climbing is incomplete

4.2 Extending Enforced Hill-Climbing

Enforced Hill-Climbing does not support any of the aforementioned require-
ments. Uncertain effects or initial states cannot be handled by creating alterna-
tive control flows. Compositions are strictly sequential and no variables can be
created during the composition. In the following we present how each require-
ment can be addressed.

Implementing requirement 1: Parallel control flow. The first step to-
wards parallel control flow is to support the parallel selection of multiple services.
Figure 5 illustrates that this leads to a denser search space as more state tran-
sitions are possible. But at the same time paths become shorter.

88 H. Meyer and M. Weske

File
Re
cei
pt

SendReceipt

SendReceipt

File
Re
cei
pt

File
Re
cei
pt

SendReceipt

SendReceipt

File
Re
cei
pt

FileReceipt,
SendReceipt

Fig. 5. State Space without and with parallel selection

To invoke services in parallel it must be ensured that they can actually work in
parallel. First this means that services where one service creates the precondition
of the other service cannot be invoked in parallel. For example, the payment
processing must be finished before the receipt can be send. This can be ensured
by extending the invocability definition to sets of services: a set of services is
invokable in a given state if every service is invokable in the state. But this
definition is not sufficient as two invokable services may be in conflict. Before
we can define invocability for sets of services we need to define what it means if
two services are in conflict:

Definition 5. Two services s1 = (I1, O1, p1, e1) and s2 = (I2, O2, p2, e2) are in
conflict if:

– s1 deletes the precondition of s2: ¬x ∈ e1 ∧ x ∈ p2

– s1 creates a fact whose negation is the precondition of s2: x ∈ e1 ∧ ¬x ∈ p2

– s1 and s2 have inconsistent effects: x ∈ e1 ∧ ¬x ∈ e2

A set of services S = {s1, ..., sn} is in conflict if two services si(1 ≤ i ≤ n)
and sj(1 ≤ j ≤ n) exists which are in conflict.

Based on this notion we can define invocability and invocation for service sets:

Definition 6. A set of services is invokable if each service is invokable and it
is conflict-free. Given a set of conflict-free services S = {s1, ..., sn} invocation
of S is equal to the sequential invocation of all si(1 ≤ i ≤ n) in arbitrary order.
The state transition function can be extended accordingly: γ(a, S) = a′.

To support the parallel selection of multiple services one modification of En-
forced Hill-Climbing is necessary: Line 8 where the new service is added to the
composition must deal with the extended state transition function γ(a, S). More
than one service can be added to a composition at the same time. As the parallel
selection should be reflected in the resulting composition, we need to modify our
composition definition. The easiest way to do that would be to extend the previ-
ous list of services to a list of service sets. But with respect to further additions
we choose another definition:

Automated Service Composition Using Heuristic Search 89

Definition 7. A composition C = (S,
cond
≺) consists of a set of service invoca-

tions S and a partial order
cond
≺ between them. For two services si, sj ∈ S an

ordering si

cond
≺ sj is defined if si was added to the composition before sj. Here

cond is that part of the effect of si that is necessary to invoke sj. Likewise,

si

cond

≺ sj if both were added in the same step.

Implementing requirement 2: Uncertainty in initial state and service
effects. States, preconditions, and effects must include disjunction to support
uncertainty. Disjunction in states is not only used to express uncertainty about
the initial state. It also used to express several distinct goal states. Disjunction
in the precondition of a service allows to express that the service is invokable
in different situations. This does not increase the expressiveness as this can
be simulated by multiple services. Disjunction in service effects can be used
to express uncertainty about the service’s outcome. To work with these richer
expressions, we introduce a set-based representation of logical expressions with
disjunctions:

Definition 8. Given a logical expression a its disjunctive normal form can be
expressed as a set aset = {a1, ..., an} of disjunction-free logical expressions. Here
each ai represents one conjunction of the disjunctive normal form.

A logical expression and its set-based representation can be used interchangeably.
When a distinction is necessary we will name the set-based notation aset. When
speaking about a state and its set-based representation it is helpful to think of
the set-based representation as a set of possible states. The definition for state
satisfaction needs to be extended accordingly:

Definition 9. A state a satisfies another state g if ∀ai ∈ aset ∃gj ∈ gsetai |= gj.

Hence, a set of possible current states satisfies a set of allowed goal state if
every possible current state satisfies at least one allowed goal states. Now we
have developed the foundation to represent uncertainty. Yet it is unclear how we
can actually deal with uncertainty during planning. In automated planning two
approaches have been developed: conformant planning and contingent planning.
Using conformant planning, additional service invocations are added that ensure
the correct working of the composition, without actually determining the current
state or the actual effects of service invocations. While this is a simple model,
it is often not practicable. For example instead of first determining the correct
credit card company and then charging the credit card only with the correct
payment service, it is tried to charge the credit card using each payment service.
While, hopefully, the credit card is only charged once, the other services may
charge a fee making the payment process very expensive. Conformant planning
makes most sense when controlling robots that lack sensors. In business scenarios
another approach is more practicable. Contingent planning introduces the ability
to sense the actual value of fact during run-time and then continue accordingly.
This means after determining the credit card company for a credit card, the

90 H. Meyer and M. Weske

actual value is sensed during run-time and then the correct service is invoked.
For the control flow of the composition or-splits must be support that lead to
alternative control flows.

Implementing requirement 3: Alternative control flow. In the previous
section we extended the notion of states to include uncertainty. Service effects can
now include disjunction as well. This means that we can actually reach several
alternative states by invoking a service. To support contingent planning it must
also be possible to invoke a service if it is only invokable in some of the current
states. Figure 6 illustrates this situation. Invoking the service to determine the
credit card company leads here to two possible states4. In the first state the
SaferPay authentication service is invokable and in the second state the PayPal
payment service is invokable. Invoking them only changes the state in which
they were invokable. As multiple services may be selected (see section 4.2) both
services can be selected in parallel changing both states at once. To support this
notion, invocation and invokability need to be extended:

Definition 10. A service s = (I, O, p, e) is invokable in a state a if ∃ai ∈
aset∃pj ∈ psetai |= pj. Invoking a service in a state a leads to a state transi-
tion. This can be defined by a state transition function γ(a, s) = a′. If a |= p then
a′ = {ai|ai ∈ aset, ∀pj ∈ pset, ai
|= pj} ∪ {ai ◦ e|ai ∈ aset, ∃pj ∈ pset, ai |= pj}.
The operation ai ◦ e = {ai

⋃
e+

j \ {x|¬x ∈ e−j }|ej ∈ eset} applies the effect to one
logical expression.

Invoking a service with uncertain effects results in several possible states. If
subsequent services cannot be invoked in all states, an or-split is added to the
composition. In our example this is the case after determining the credit card
company.

For our composition algorithm it is irrelevant which path from Fig. 6 is ac-
tually taken, because only necessary orderings between service invocations are
added. This is done by linking two service invocations only if one produces the
precondition of the other or if they are in conflict. Formally:

Definition 11. For two services s1 = (I1, O1, p1, e1) and s2 = (I1, O1, p1, e1) a

link s1
cond
≺ s2 exists if:

– cond ∈ p2 ∧ producer(s1, a, x) ∧ x ∈ cond where producer(s, a, x) is the
relation of fact x from state a produced by service s

– or s1 and s2 are in conflict.

Often it is not only necessary to create alternative branches but to also merge
them later. In our example this is necessary after payment has been performed.
A first approach to merging might be to detect equivalent states and unify them
to one state. In Fig. 6 states E and F seem to be mergable be merged because
they represent the same fact: payment has been performed. In reality things are

4 In reality this might be more, but two is sufficient for presentation.

Automated Service Composition Using Heuristic Search 91

A

B

C
Determine
CreditCard
Company

D

C

B

E

SaferPay:
Authenticate
Payment

PayPal:
Perform
Payment

D

E

SaferPay:
Authenticate
Payment
PayPal:
Perform
Payment

PayPal:
Perform
Payment

SaferPay:
Authenticate
Payment

F

E

SaferPay:
Perform
Payment

SaferPay:
Perform
Payment

F

C PayPal:
Perform
Payment

Fig. 6. Extended State Transition

not that easy and calculating state equivalence is hard and may be impossible.
As a matter of fact E and F are not really equivalent as F also includes the
transaction handle. Although both states mean the same for us, detecting this
is not possible. We can only merge states which are exactly identical. This is
unproblematic as in the end we are not interested in merging states but merging
control flows. This is a lot easier: Control flows can be merged if the current set
of services is invokable in some or all possible states. Both succeeding services in
our example – filing the receipt and sending the receipt to the customer – can
be invoked in both possible states. Hence we can merge the alternative control
flows. The inability to merge the states costs us performance, as we have to
evaluate more states, but it does not prevent us from doing a merge.

The interesting point about introducing only necessary links is that it renders
the parallel selection of service unnecessary. As only necessary links are added,
two service that can be invoked in parallel will be composed as running in parallel
even if they are selected subsequently. We are still using the parallel selection as
it is currently unclear whether its denser search space is a disadvantage or its
shorter search paths are an advantage.

Implementing requirement 4: Creation of new variables. Creating new
variables is currently not supported by most planners. This results not only
from limitations of the language used to describe requests [7] but it also greatly
simplifies creating the composition. If all variables are known in advance it is
easy to determine which services can be invoked. If we do not specify that a
transaction handle variable exists, the SaferPay services are never invokable and
hence can be pruned. But as we do not want to specify the transaction handle
in our request, this behavior is undesirable.

92 H. Meyer and M. Weske

To solve this problem we need to allow the creation of new variables if a
matching variable for the output of a service does not exist. But the unrestricted
addition is problematic as this yields a possibly infinite set of states and makes
planning semi-decidable [10,11]. Thus we are introducing a very restricted form of
variable creation. A variable may only be created if no variable of the same type
already exists. While this keeps the problem decidable it may be too restrictive
as it fails if two variables of the same type need to be created. We are currently
not allowing the deletion of variables, as we have not encountered any practical
use for it.

4.3 A Heuristic for Extended Enforced Hill-Climbing

As the heuristic guides the search it is crucial for the performance of the com-
poser. An approach to find a heuristic for a given problem is to relax it (make
it simpler). Enforced Hill-Climbing was originally developed together with the
Relaxed Graphplan heuristic [9]. Essentially it solves a simplified version of the
composition request using the Graphplan planning algorithm [12]. We take the
length of the generated composition as the heuristic. Graphplan works by first
creating a planning graph and then extracting the solution from it. The relax-
ation or simplification of the problem results from ignoring the negative effects of
service invocations. In the presence of negative effects back tracking is necessary
during solution extraction. As negative effects are ignored, the heuristic can be
calculated in polynomial time [9].

For our algorithm the calculation of the heuristic function can be even more
simplified. We skip the solution extraction phase. Why the solution extraction
phase was necessary for FF and can be skipped here, will be become evident after
we have build up such a planning graph. A planning graph consists of two kinds of

s1

s2

s3

f1

f2

f1

f2

f3

f4

f5

f1

f2

f3

f4

f5

f6

fact
layer
1

fact
layer
2

fact
layer
3

activity
layer
1

activity
layer
2

s2

s1

Fig. 7. A Planning Graph

Automated Service Composition Using Heuristic Search 93

nodes: fact nodes and activity nodes. Fact nodes represent literals (or facts) from
states and activities represent service invocations. Starting from the facts of the
initial state alternating layers of facts and activities are added until a fact layer is
reached that satisfies the goal. Figure 7 illustrates such a graph. Starting from the
initial state all invokable services (in this case s1 and s2) are added to the first ac-
tivity layer. This activity layer produces a new fact layer including all the positive
effects of s1 and s2. Now a new service s3 is invokable. The resulting fact layer
now includes our goal (e.g. f6) and we are finished with building the graph. The
original planning graph from Graphplan additionally contains mutual exclusion
relations between two activities or two facts if the activities are in conflict or if the
facts only result from conflicting activities. If negative effects are ignored no mu-
tual exclusion relations will be added as all conflicts emerge from negative effects.
Now the original Relaxed Graphplan heuristic would continue by extracting a se-
quential solution from the graph. But as we are not interested in the length of a
sequential solution we can directly count the number of activity layers and take it
as our heuristic. As the resulting composition contains as much parallel invocation
of services as possible this is quite a good. The upper-limit for the heuristic is the
actual distance from the goal. The value can actually be lower as we are ignoring
conflicts. Hence it is admissible.

Like the original Relaxed Graphplan heuristic, this heuristic can be calculated
in polynomial time. To reduce space consumption we can use an optimization.
As we are only interested in the number of activity layers and we do not want
to extract a solution, it is sufficient to just keep the current fact layer and count
the number of activity layers used to reach this fact layer. This greatly reduces
space consumption.

5 Related Work

As mentioned in the introduction, a lot of different approaches towards service
composition exist. Most are adapting existing automated planning algorithms.
In [1] a slightly different approach is followed. They designed their own algorithm
that finds the necessary services to invoke through backward-chaining and and
then identifies additional necessary services in a second forward-chaining phase.
In [3] Hierarchical Task Network (HTN) planning is used for service composition.
HTN planning is based on the notion of composite tasks that can be refined to
atomic tasks using predefined methods. In domains where these methods that
are essentially sub-processes exist, HTN planning provides a very fast approach.
In [2] the model checking planner MBP is presented. Model checking is based
on nondeterministic state-transition systems. States are not represented explic-
itly. It has the ability to generate conformant and contingent plans. It can also
generate cyclic plans and has the notion of extended goals. Through extended
goals it is possible to impose requirements not only on the goal state but also
on intermediate states. But it is not able to create compositions with parallel
control flows as the definition of state transition systems is restricted to invoking
just one service per state transition.

94 H. Meyer and M. Weske

We are using heuristic search instead of any of the above-mentioned ap-
proaches as heuristic search promises to be easily extensible to support opti-
mization for QoS properties and the adaption towards semi-automated compo-
sition. Heuristic search algorithms are currently not used for automated service
composition. Our work is based upon previous research by Hoffmann and Nebel
who developed the planners FF [9] and Metric-FF [5]. They introduced Enforced
Hill-Climbing and Relaxed Graphplan as a heuristic. Metric-FF also supports
numerical properties and the optimization for them. This functionality can be
used to optimize for QoS properties. As demonstrated earlier their algorithm
does not support uncertainty about the initial state or service invocation effects,
is not able to compose parallel or alternative control flows, and does not create
intermediate variables.

Recently, several extensions to heuristic search algorithms were proposed to
support some of the required features [13,14,15,16]. But all of them are based
on the restricted planning model imposed by the Planning Domain Description
Language (PDDL) and thus are not able to created intermediate variables [7].
LPG [13] performs heuristic search in plan space instead of state space. The
nodes of the search space are (partial) plans and transitions between them are
plan refinement operations (e.g.: adding an additional service invocation). LPG
is a temporal planner and hence supports parallel control flow. Compositions
are partially ordered and durations are assigned to service invocations. LPG
supports optimization for duration and other numerical properties. It can not
deal with uncertainty and it cannot create alternative control flows. Sapa [14] is
also a temporal planner and supports optimization for duration and numerical
properties. But unlike LPG it does perform search in state space. In that regard
it is very similar to FF and Metric-FF. Sapa uses A* as the search strategy. In
contrast to Enforced Hill-Climbing is A* complete and optimal if an admissible
heuristic is used. We did not use A* because you have to trade in performance
for completeness and optimality. Sapa does not support uncertainty and the cre-
ation of alternative control flows. Conformant-FF [15] and Contingent-FF [16]
are both extension of the original FF planner. They extend it by functionality
for conformant planning and contingent planning. Both work with uncertainty
through the notion of belief states. A belief state is equivalent to our extended
state definition and incorporates a set disjunction-free states. It represents the
possible states. For Conformant-FF the main difference to FF is the handling of
the belief states: Planning starts in a set of possible states and is finished if all
the possible current states satisfy the goal. It creates conformant plans without
alternative control flows and is therefore not usable for automated service com-
position. Contingent-FF on the other hand creates contingent plans that include
alternative control flows. It is quite similar to out approach. Through its more
efficient representation of possible states and further optimizations it has some
advantages over our approach. But it does currently not support parallel con-
trol flow and alternative control flows are not merged resulting in tree-shaped
compositions.

Automated Service Composition Using Heuristic Search 95

6 Conclusion

In this paper we presented a heuristic search algorithm for automated service
composition. It supports the creation of composition with parallel and alternative
control flows allowing uncertainty about the initial state and service effects. The
ability to create variables during composition ensures its applicability in real
world business scenarios. Our implementation currently significantly is slower
than FF and its descendants. There are two main reasons for this: a larger search
space and missing optimizations. The search space is larger than the one of FF as
we search for possible parallel invocations and create intermediate variables on
the fly. Several different optimization strategies for heuristic search algorithms
have been proposed. With helpful actions [9] or favored actions [17] a subset of
the invokable services representing the most promising ones is defined. Evaluat-
ing them first often considerably increases performance. In Conformant-FF and
Contingent-FF belief states are represented by the initial state and the invoked
service sequence reducing efforts to calculating the actual state. Adapting these
optimizations to our approach will increase performance significantly.

Future directions of our research will be directed at extending the composer
by numerical state properties. This extension allows for the representation of
Quality of Service properties (e.g. price, execution time). Using these proper-
ties during composition makes it possible to optimize for desired values. We
are also adapting the search algorithm to work in a semi-automated modeling
environment. Here a human modeler creates the composition, but the composi-
tion component assists him by finding matching services / sub-compositions or
verifying that a composition fulfills a given goal.

References

1. Zeng, L., Benatallah, B., Lei, H., Ngu, A., Flaxer, D., Chang, H.: Flexible Com-
position of Enterprise Web Services. Electronic Markets – Web Services 13 (2003)
141–152

2. Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and
monitoring web service composition. In: Workshop on Planning and Scheduling for
Web and Grid Services (held in conjunction with The 14th International Conference
on Automated Planning and Scheduling. (2004) 70 – 71

3. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service
composition using shop2. Journal of Web Semantics 1 (2004) 377–396

4. Berardi, D., Calvanese, D., Giacomo, G.D., Mecella, M.: Composition of services
with nondeterministic observable behaviour. In: Proceedings of the Third Interna-
tional Conference on Service-Oriented Computing. Volume 3826 of Lecture Notes
In Computer Science., Heidelberg (2005) 520–526

5. Hoffmann, J.: Metric-FF planning system: Translating ”ignoring delete lists” to
numeric state variables. Journal Of Artificial Intelligence Research 20 (2003) 291
– 341

6. Meyer, H., Kuropka, D.: Requirements for automated service composition. In Eder,
J., Dustdar, S., eds.: Business Process Management Workshops. Volume 4103 of
Lecture Notes In Computer Science., Heidelberg, Springer (2006) (to appear).

96 H. Meyer and M. Weske

7. Boddy, M.: Imperfect match: PDDL 2.1 and real applications. Journal Of Artificial
Intelligence Research 20 (2003) 133 – 137

8. W3C: Web Services Description Language (WSDL) 1.1. (2001)
9. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through

heuristic search. Journal of Artificial Intelligence Research 14 (2001) 253 – 302
10. Chapman, D.: Planning for conjunctive goals. Artificial Intelligence 32 (1987)

333–377
11. Erol, K., Nau, D.S., Subrahamnian, V.: Complexity, decidability and undecidability

results for domain-independent planning. Artificial Intelligence 76 (1995) 75–88
12. Blum, A., Furst, M.: Fast planning through planning graph analysis. Artificial

Intelligence 90 (1997) 281–300
13. Gerevini, A., Saetti, A., Serina, I.: Planning through stochastic local search and

temporal action graphs. Journal of Artificial Intelligence Research 20 (2003)
239 – 290

14. Do, M., Kambhampati, S.: Sapa: A multi-objective metric temporal planner. Jour-
nal Of Artificial Intelligence Research 20 (2003) 155 – 194

15. Brafman, R., Hoffmann, J.: Conformant planning via heuristic forward search: A
new approach. In Sven Koenig, Shlomo Zilbe Koenig, S.Z., ed.: Proceedings of the
14th International Conference on Automated Planning and Scheduling (ICAPS-
04), Morgan-Kaufmann (2004) 355 – 364

16. Hoffmann, J., Brafman, R.: Contingent planning via heuristic forward search with
implicit belief states. In: Proceedings of the 15th International Conference on
Automated Planning and Scheduling (ICAPS-05), Morgan-Kaufmann (2005)

17. McDermott, D.: A heuristic estimator for means-ends analysis in planning. In:
Proceedings of the International Conference on Artificial Intelligence Planning Sys-
tems. (1996) 142–149

Structured Service Composition�

Rik Eshuis, Paul Grefen, and Sven Till

Eindhoven University of Technology, Department of Technology Management
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{h.eshuis, p.w.p.j.grefen, s.till}@tm.tue.nl

Abstract. Composition languages like BPEL and many enactment tools
only support structured process models, while most composition
approaches only consider unstructured models. In this paper, we outline
a semi-automatic approach for composing a set of services with data flow
dependencies into a structured process model. These data flow dependen-
cies can be automatically derived from the input and output messages of
each service, but some additional user input is needed to annotate depen-
dencies with specific branching types. Heart of the approach is a fully auto-
matic composition algorithm that given an annotated dependency graph
constructs a structured composition. We illustrate the approach by apply-
ing it to an example case study from the CrossWork project, which studies
the dynamic formation of cross-organisational workflows.

Keywords: Process and service composition, cross-organisational pro-
cess support, formal models in business process management.

1 Introduction

Today, companies more and more focus on their core competences, relying on
competences of other companies to deliver requested products or services. The
resulting cross-company collaborations give rise to networked organisations, in
which one company acts as main contractor and the network partners deliver
products and services to the main contractor. The market dictates that these
networks are highly agile and efficient. This typically means that networks are
formed on an ad hoc basis, depending upon a specific service requested by a
customer.

The most promising technology to support this way of working is service-
oriented computing. Web services are self-contained functions that are defined
in an implementation-independent way, usually in WSDL [8]. Their descriptions
are published in a publicly accessible repository. Service consumers can search
for specific web services offered by providers and invoke the found web services.
Upon request of a customer, a main contractor can search the repository for
basic services offered by service providers and orchestrate these into a composite

� This work is supported by the IST project CrossWork (No. 507590) and the IST
Network of Excellence INTEROP (No. 508011).

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 97–112, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

98 R. Eshuis, P. Grefen, and S. Till

service that meets the customer’s request. When the composite service is enacted,
the main contractor (service composer) invokes the basic services in the order
specified in the service orchestration.

While BPEL [2] has emerged as standard language for describing service com-
positions, the actual problem of how to orchestrate a set of given services, still
remains open. Formal approaches [10,17,18,22] focus on automated service com-
position. There, the effect of each service is modelled with a pre- and post-
condition. This allows the application of techniques from AI planning and pro-
gram synthesis to orchestrate the services into a composite service. However, it
puts the burden on the service provider to formally specify its services and to
annotate the WSDL specifications with this additional information.

Other approaches are more pragmatic and derive graph-based compositions
by analysing input/output dependencies between services [5,15]. In graph-based
compositions, services are coordinated through control elements like AND-splits,
AND-joins, XOR-splits, and XOR-joins. Though such approaches do not re-
quire any annotation of the web services, they suffer from another disadvantage:
Graph-based process models can contain flaws, for example deadlocks. Execut-
ing such a flawed composition could result in failures at run-time, which involves
considerable expense to repair.

This problem with graph-based models disappears if the models are struc-
tured1, i.e., if each split has a corresponding join and if the split-join pairs
are properly nested [13,16]. Models violating this constraint are similar to pro-
grams containing goto’s. The most important orchestration language, BPEL,
is mainly structured (BPEL only allows cross links between parallel services
and parallel blocks). Moreover, the research on workflow patterns has shown
that each of the evaluated workflow enactment tools supports structured pro-
cess models [1]. Thus, considering structured compositions only is a reasonable
choice.

The goal of this paper is to outline a semi-automatic approach for com-
posing a given set of services into a structured composition, i.e. a structured
process model. The approach consists of several steps. First, dependencies be-
tween services are derived based on the input and output messages of each
service. Next, these abstract dependencies are typed with concrete branching
types like AND and XOR. Finally, the concrete dependencies are used to com-
pose the services into a structured process model. While the first and last
step can be fully automated, the second step needs user input, as we argue
in Sect. 3.

The remainder of this paper is organised as follows. Section 2 gives an overview
of the composition approach. Section 3 defines dependency graphs. We distin-
guish between abstract and concrete dependency graphs, concrete ones specifying
types for branching points. Section 4 defines an algorithm which given an ab-
stract dependency graph, fully automatically constructs a structured

1 Structured process models should not be confused with structured processes. These
latter allow their structure to be specified in any model, including graph-based ones.
In that terminology, processes supported by for example groupware are unstructured.

Structured Service Composition 99

composition without branching types. Next, it defines how concrete dependency
graph can be used to type the structured composition. Section 5 discusses how
the approach is applied in the CrossWork project [9] to achieve a peer-to-peer
integration of black-box workflows. Section 6 gives an overview of related work.
Finally, Sect. 7 winds up with conclusions and further work.

2 Overview

To motivate the composition approach, we consider a simple purchasing process
which consists of a number of services. Some services output data that is required
by other services. The composition has to respect these data flow dependencies.
The services and their dependencies are shown in graph form in Fig. 1. Section 3
defines these graph forms formally.

By means of an arrow, we show that some service depends on another service.
For example, Make production plan depends on input from Receive order. This
dependency information can be easily derived from the signatures of the services
(see Sect. 3). If a service has more than one incoming (outgoing dependency),
then either all the previous (next) services can be done (AND) or only one
(XOR).

Figure 2 shows a structured composition that complies with the dependencies
shown in Fig. 1. The circles indicate splits (more than one outgoing edge) and
joins (more than one incoming edge). Circles with an A denote AND splits/joins
whereas ones with an O denote XOR splits/joins. Note that in structured pro-
cess models circles come in pairs and that each pair has the same type (either
A or O).

Furthermore, note that some dependencies are translated only indirectly into
control flow. For example, in Fig. 2 there is no edge connecting Check credit and
Create invoice. For graph-structured compositions, such an edge would have been
created in the composition. However, there is a path from Check credit to Create
invoice, thus the desired dependency is respected by the composition.

Receive
Order

Check
Credit

Make
Production

Plan

Create
Invoice

Send
Reply

Get
Shipment

 Plan

Make
Fulfillment
Schedule

Cancel
OrderAND

AND

AND

ANDXOR

XOR

XOR

Fig. 1. Services for purchasing process and their dependencies

100 R. Eshuis, P. Grefen, and S. Till

Receive
Order

Check
Credit

Make
Production

Plan

Create
Invoice

Send
Reply

Get
Shipment

 Plan

Make
Fulfillment
Schedule

Cancel
Order

A

A A

A O O

Fig. 2. Structured composition for Fig. 1

In general, however, the composition can be even more different from the data
flow, since dependencies might not be structured. For example, a dependency
might require a synchronisation between two parallel blocks (blocks are explained
in Sect. 4). Such a synchronisation is not allowed in structured process models.
This implies that a structured process implementing such a synchronisation looks
quite different from the data flow dependency graph.

For example the dependencies in Fig. 3 cannot be implemented straightfor-
wardly in a structured model. Figure 5 shows a flawed composition in which the
data flow dependencies are directly translated into control flow dependencies.
The composition is flawed because it is not structured: there is a synchronisa-
tion between two blocks.

Figure 4 shows a structured composition that does satisfy the dependencies.
The dependency graph in Fig. 3 is abstract: it does not contain explicit informa-
tion about AND and XOR dependencies. Therefore, we use the generic notion
of a composite block, indicated with the symbol C inside the circles.

3 Dependency Graphs

First we define and explain abstract dependency graphs. Next, concrete depen-
dency graphs, which extend abstract dependency graphs with specific branch-
ing types, are introduced. Finally, we discuss how dependency graphs can be
constructed.

A B C

D E F

Fig. 3. Services with cross synchronisation dependencies

Structured Service Composition 101

C C C C

A

D

B C

E F

Fig. 4. Structured composition for Fig. 3

C

C

C

C

A

D

B C

E F

Fig. 5. Non-structured composition for Fig. 3

3.1 Abstract Dependency Graphs

Services communicate with each other through messages. Each message consists
of a set of typed data items. Inline with existing work on ontological-based
matching of data types in the context of services [6,20], we consider business
types here, not low-level data types. For example, a message could comprise a
data item of type order and a data item of type customer. Given a message m,
we denote by types(m) the set of types of the data items in m. For each service
s, input(s) denotes its input message and output(s) its output message. One of
these messages is required, otherwise the service does not need to be composed
with the other services.

Based on the input/output data types of each service, we can define depen-
dencies between services. If a service a outputs a data item with a certain type
and service b needs as input a data item with the same type, then b depends on a.
More advanced notions of matching outputs to inputs, for example those based
on ontological concepts [6,20], can be easily used instead. If multiple messages
refer to the same stateful data item, some additional dependencies based on the
states need to be defined, but we do not consider that here.

We capture dependencies between a set S of services in a graph. An abstract
dependency graph is a tuple (S, E) with

– S
df= {s1, s2, . ., sn} a set of services

– E
df= {(s, s′) ∈ S × S|type(data(output(s)) ∩ type(data(input(s′))) �= ∅}

Note that the notion of dependency graph is quite generic and is also used
in areas like program analysis and database systems. Other works in service
composition like [15] also use dependency graphs.

102 R. Eshuis, P. Grefen, and S. Till

When defining the algorithm in Sect. 4, we use some auxiliary functions on
dependency graphs. Given a service s, its set of pre-condition services, written
pre(s) are those services on which s depends. Symmetrically, the set of post
condition services of s, written post(s), are those services that depend on s:

pre(s) df= {x|(x, y) ∈ E ∧ y = s}.
post(s) df= {y|(x, y) ∈ E ∧ x = s}.

For the algorithm, we require that each dependency graph with services
s1, s2 ∈ S satisfies the following constraints:

C1 The dependency graph is acyclic.
C2 If there is an edge from s1 to s2, then there is no path with length greater

than 1 from s1 to s2.

The first constraint rules out the construction of loops. The relaxation of this
constraint to deal with the construction of structured loops is planned as future
work.

The second constraint is needed for the algorithm, but is not very restrictive.
Dependency graphs violating the constraint can be easily repaired, by either
removing the violating dependency since it is redundant, or by putting an empty
service between services s1 and s2 for each pair s1, s2 of violating services. The
latter solution is needed to construct if-then-else compositions with an empty
else-branch.

To illustrate the differences, consider the two examples in Fig. 6, which both
violate C2. For example (a), the most obvious solution would be to remove
the dependency Receive Order→Process Order, since archiving is always done
and therefore the dependency is redundant. But for (b), the most logical so-
lution is to include an empty service between Receive Credit Application and
Send Notification, since Assess Risk is only required for credit applications over
a certain limit (if-then-else construct). Note that we resolved both violations
by applying domain knowledge. This obviously implies that we need user
input.

Receive
Order

Archive
Order

Process
Order

Receive
Credit

Application

Assess
Risk

Send
Notification

(a) (b)

Fig. 6. Two dependency graphs violating C2

3.2 Concrete Dependency Graphs

A concrete dependency graph is a tuple (S, E, join, fork) where (S, E) is an
abstract dependency graph and functions join and fork label respectively the
incoming and outgoing dependencies of a service with the branching type:

join, fork : S → {AND, XOR}.

Structured Service Composition 103

AND

XOR

A

B

C

D

E

AND

XOR

XOR

A

Dummy1

Dummy2

B

C

D

E

(a) (b)

Fig. 7. Invalid dependency graph (a) and valid dependency graph with same depen-
dencies as (b)

We require that join(s) only exists if s has more than one service on which
it depends. Similarly, fork(s) only exists if s has more than one service that
depends on s.

These functions are only used in the second stage (see Sect. 4.3). Note that
inconsistencies can arise in that latter stage, so not every labelling yields a valid
composition. We elaborate on this in Sect. 4.3.

The labelling assigns one type only to incoming resp. outgoing dependencies.
This might seem restrictive. For example, languages like XPDL [25] allow that
some incoming or outgoing links have type AND while other have type XOR.
Thus, the dependency graph in Fig. 7(a) would be valid in XPDL. However, we
rule it out since it is ambiguous: it is not specified whether for example B and
D can be done both or are exclusive.

This restriction can be overcome by using empty services, which have no
implementation but whose sole purpose is to describe dependencies. For example,
Fig. 7(b) shows a dependency graph with the same services and dependencies
as in Fig. 7(a), but now two empty services are included. Now, the dependency
between for example B and D is made precise: either B is done or D but not
both.

3.3 Constructing Dependency Graphs

Abstract dependency graphs can be derived completely automatically from the
signature of the web services, as explained in Sect. 3.1. However, to resolve
violations of C2, some user input is needed, as argued in Sect. 3.1.

Concrete dependency graphs are then constructed by the user (a domain
expert), by specifying in the abstract dependency graph for each service the type
of its incoming and outgoing dependencies. The reason for doing this manually
is that message dependencies themselves are usually not sufficient to decide on
the type of a dependency. For example, consider two services that both have
as input an order for some goods. If both services deal with shipping, they
would be exclusive and type XOR would be used. If one service deals with

104 R. Eshuis, P. Grefen, and S. Till

picking up the requested goods from the warehouse and another with calculating
the total fee to be paid, both services are required and type AND would be
useful.

4 The Algorithm

First, we explain the structured composition language. Next we explain the con-
struction algorithm which takes as input an abstract dependency graph and
outputs a structured composition. Finally, we explain how such a structured
composition can be typed by analysing the concrete dependency graph.

4.1 Structured Composition Language

Various formalisations of structured workflow models exist [13,23]. We choose
here a hierarchical view, where leaf nodes are services and non-leaf nodes are
blocks. In the graphical syntax, the beginning and end of a block is demarcated
by a split and join node respective.

We consider two kinds of blocks here: composite blocks of type COMP and
sequential blocks of type SEQ. In the next section, COMP blocks are annotated
with types AND or XOR.

The children of blocks are specified as parameters, a set in case of COMP
and a list in case of SEQ blocks. For example COMP{SEQ[X, Y], SEQ[Z]} is
a process in which X is done before Y and both are done in parallel with or
exclusive to Z. The following definition formalises this.

Given a set of S of services, the following inductive definition formalises the
set of structured compositions on S:

– Each service s ∈ S is a structured composition.
– If X1, X2, . ., Xn are structured compositions, then so are SEQ[X1, X2, . ., Xn]

and COMP{X1, X2, . ., Xn}.
In the algorithm, we use some additional functions on blocks. Given a block

b, we denote by children(b) the children of b and by parent(b) the unique parent
block of b. Since we consider a hierarchical structure, each block has one par-
ent, except the root of the hierarchy which has no parent. Finally, services(b)
indicates the set of services that are a direct or indirect child of b. For example,
services(COMP{SEQ[X, Y], SEQ[Z]}) = {X, Y, Z}.

4.2 Construction Algorithm

The construction algorithm is listed in Fig. 8. It takes as input a dependency
graph and returns a structured composition satisfying the input dependencies.
Due to space limitations, we do not provide a formal proof of correctness, but it
can be observed that each operation changing the constructed structured com-
position results in another structured composition. The definition is strongly
inspired by an existing algorithm to translate Petri nets into statecharts [11].

Structured Service Composition 105

1: procedure StructuredComposition((S, E))
2: C := SEQ[constructBlock(Initial(S, E))]
3: processed := Initial(S, E)
4: while processed �= S do do
5: toprocess := next(processed)
6: for each maximal influencing subset I of toprocess do
7: BlockI := constructBlock(I)
8: InputI := {s ∈ processed|post(s) ∈ I}
9: N := the most nested block in C containing all services in InputI .

10: if N is composite then
11: NotPreI := {c ∈ children(N)|InputI ∩ services(c) = ∅}
12: if NotPreI �= ∅ then
13: PreI := COMP{c ∈ children(N)|InputI ∩ services(c) �= ∅}
14: N ′ := COMP ({SEQ[PreI,BlockI]} ∪ NotPreI)
15: replace N by N ′ in C
16: else
17: parent(N).append(BlockI)
18: end if
19: else
20: parent(N).append(BlockI)
21: end if
22: processed := processed ∪ I .
23: end for
24: end while
25: return C
26: end procedure

Fig. 8. Algorithm for constructing structured compositions

In the initial phase, a composition is created (l. 2) from the set of Initial(S, E)
of initial services, i.e. the services not depending on any other service:

Initial(S, E) = {s1 ∈ S|�s2 ∈ S : (s1, s2) ∈ E}
Function constructBlock(X) composes a given set X of services into either a
single service (if X is singleton), or otherwise into a composite block consisting
of a set of sequential blocks, each containing one service from X .

constructBlock(X) =
{

x , if X = {x}
COMP{SEQ[x]|x ∈ X} , otherwise

Next, the set processed of services in S that are already processed is updated
with the initial services (l. 3).

In the main phase, the structured composition is iteratively constructed by
processing services in S. In each iteration, first the set of services to be processed
in this iteration is determined and put in toprocess (l. 5).

A service can be processed next if all services on which it depends have been
processed, in other words, all its input data can be delivered by previously
processed services. Function next returns the services to be processed next,

106 R. Eshuis, P. Grefen, and S. Till

A

B

C

D

E

F

Fig. 9. Example dependency graph

which are those unprocessed services whose pre-condition services have been
processed:

next(processed, S) df= { s ∈ S | pre(s) ⊆ processed } \ processed.

To explain lines 6-23, we first observe that services in the set toprocess cannot
be processed one by one. To see why, consider the example in Fig. 9. Suppose
services A, B and C have been processed, then next returns D, E, and F. Now,
D depends on both B and C. To translate this into control flow, the block en-
compassing both B and C has to end before D. But this implies that the block
also ends before E and F. To achieve this, D, E, and F need to be processed as a
group.

To define precisely which services need to be processed in a group, we intro-
duce the notion of influence. Two services are directly influenced by each other if
they depend on the same service, i.e., their pre-conditions overlap. For example,
in Fig. 9, services B and C both depend on A, and therefore directly influence
each other. Note that each service directly influences itself.

Two services s1, s2 influence each other if they either directly influence each
other or if there is another service s that directly influences s1 and influences s2.
(Thus, mathematically speaking, the influence relation is the transitive closure
of the direct influence relation.) For example, in Fig. 9 services E and F influ-
ence each other even though their pre-conditions are disjoint, since D directly
influences both E and F.

A set of services is influencing if each of the services influences all other services
in the set. An influencing set I of services is maximal compared to set of services
X if adding any service s ∈ X \ I would result in a non-influencing set. For
example, if in Fig. 9 X = {D, E, F}, then I = {D} is not a maximal influencing
set, since E and F are lacking. Hence, the only possible set I is X itself.

Maximal influencing subsets of services are processed in lines 6-23. To explain
these lines, consider the dependency graph in Fig. 1, and suppose the algorithm
starts the second iteration. After the first iteration, the constructed composition
is C=SEQ [Receive order, COMP{SEQ [Make Production Plan],SEQ [Get Shipment
Plan],SEQ [Check Credit]}]. For the second iteration, the only service to be pro-
cessed is Make Fulfillment Schedule, so I = {Make Fulfillment Schedule}.

Structured Service Composition 107

In line 7, first the block comprising the services in I is constructed.
Next, line 8 defines the set InputI of services in processed on which services in I

depend. For the example, InputI = {Make Production Plan, Get Shipment Plan}.
Set InputI is used next (l. 9) to search the constructed composition for the

most nested block N containing all pre-condition services for I. For the exam-
ple, N=COMP{SEQ [Make Production Plan],SEQ [Get Shipment Plan],SEQ [Check
Credit]}.

If N is a basic service (l. 19), then BlockI can be appended to the SEQ block
parent of N (l. 20). Note that by construction, each basic service has a SEQ
parent.

If N is a COMP block (l. 10), there are two cases.

– N is a COMP block having some child blocks that do not contain any
service pre-condition to I (l. 12). Then the new block BlockI only needs
to be appended to those child blocks of N on which services in I depend.
Hence, BlockI needs to be inserted into N , rather than appended to the
parent of N .
In the example, child block SEQ[Check Credit] of N does not contain any
service input to Make Fulfillment Schedule. Thus, Make Fulfillment Schedule
does not need to be appended to Check Credit, but only to the block encom-
passing Make Production Plan and Get Shipment Plan.
In line 13 a new composite block PreI is constructed which has only those
children of N that contain services on which some service in I depends. For
the example, PreI becomes COMP{SEQ [Make Production Plan],SEQ [Get
Shipment Plan]}.
Next, the new block N ′ is a composite block, consisting of one sequential
child block consisting of PreI followed by BlockI, plus the child blocks in
NotPreI, which do not contain any service that is pre-condition to I (l. 14).
For the example, N ′ =COMP{SEQ [Check Credit],SEQ [COMP{SEQ [Make
Production Plan],SEQ [Get Shipment Plan]},Make Fulfillment Schedule]}.
Finally, N ′ can replace N (l. 15).

– If every child block of N contains a service that is pre-condition to a service
in I (l. 16), then BlockI can be simply appended to the SEQ block parent
of N (l. 17).

Finally, the constructed composition is returned (l. 25).

4.3 Concrete Dependencies

As explained in Sect. 3, if a service has multiple incoming or outgoing dependen-
cies, these dependencies can be annotated with types. The resulting dependency
graph is a concrete dependency graph.

Concrete dependency graphs can be used in a straightforward manner to
type composite COMP nodes in the structured composition returned by the
algorithm in Fig. 8. If a service s has more than one outgoing dependency,
then each COMP block b for which each child has services that depend on s,
gets the type fork(s). Symmetrically, if a service s has more than one incoming

108 R. Eshuis, P. Grefen, and S. Till

dependency, then each COMP block b for which each child has services on which
s depends, gets type join(s). The following definition defines this formally:

type : COMP → {AND, XOR}
type(b) df=

{
fork(s) , if for every child c of b, services(c) ∩ post(s) �= ∅
join(s) , if for every child c of b, services(c) ∩ pre(s) �= ∅

Note that an inconsistent labelling of the concrete dependency graph might
lead to conflicting types being assigned to the same block. For example, if in
Fig. 1 join(Make Fulfillment Schedule) would be XOR rather than AND, this
would mean that Make Production Plan and Get Shipment Plan are exclusive,
while fork(Receive Order) stipulates they are done both. In that case, the struc-
tured composition cannot be typed in a consistent way, and the concrete depen-
dency graph should be changed.

5 CrossWork Case Study

In this section, the complete approach is explained by means of a case study
from the IST project CrossWork [9]. The goal of CrossWork is to support the
dynamic formation of Networks of Automotive Excellence (NoAE). These net-
works are virtual enterprises, consisting of automotive suppliers that collaborate
with each other to deliver a product requested by an OEM. Examples of such a
product are the interior of a car or a watertank for a truck. Suppliers need to
collaborate since an individual supplier is typically not large enough to handle
a product request of an OEM all by itself. An NoAE is formed dynamically, de-
pending upon the specific product request received by one specific supplier (the
main contractor). The two main steps in dynamic NoAE formation is finding the
partner suppliers that can deliver parts of the requested product (team forma-
tion) and constructing a global NoAE workflow that coordinates and integrates
the local workflows of the individual suppliers (workflow formation). This paper
focuses on the last part.

In the case study, an OEM requests a watertank from one member of a cluster
of automotive suppliers. We assume the member has selected the partners. The

prepare
Orders

produce Grommet

buy Grommet

produce Pump

produce Motor

produce WT Body

assemble
MotorPump

assemble
Water Tank

Fig. 10. Abstract dependency graph

Structured Service Composition 109

prepare
Orders

produce Grommet

buy Grommet

produce Pump

produce Motor

produce WT Body

assemble
MotorPump

assemble
Water Tank

XOR

AND

AND
AND

XOR

Dummy1

Dummy2

AND

Dummy3

Fig. 11. Concrete dependency graph for Fig. 10

prepare
Orders

A
Dummy1

Dummy2

A

O
produce Grommet

buy Grommet
O

produce
Pump

produce
Motor

produce WT Body

A A
A

A
assemble

Motor
Pump

assemble
Water
Tank

Dummy3

Fig. 12. Structured composition for Fig. 11

workflow of each partner is shown as a black box service in Fig. 10. Thus, the
internal structure of the local workflows is hidden, but partner suppliers can offer
an external view to the entire network through some additional interfaces [12].
Note that the dependency graph in Fig. 10 violates the second constraint on de-
pendency graphs, since there is an edge connecting Prepare Orders and Assemble
Motorpump. Therefore, the user (a domain expert) has to provide a corrected
version, and also needs to annotate the dependencies with types. Figure 11 shows
a corrected concrete dependency graph. For example, the user has decided that
only one of the services produceGrommet and buyGrommet is necessary. Next,
three dummy services were needed to obtain a valid typing. Furthermore, some
direct dependencies, e.g. between prepareOrders and assembleMotorPump have
been removed, because the user decided they are redundant (e.g. prepareOrders
delivers input to assembleMotorPump by means of produceMotor).

Finally, the workflow is composed using the algorithm defined in Sect. 4. The
result of the composition is shown in Figure 12. This workflow is now ready to
be fed into a workflow engine and to organize a production of a watertank. For
the demonstrator prototype, a BPEL engine is used.

6 Related Work

The topic of service composition has attracted already the attention of many
researchers. Existing approaches can be classified into three categories: manual,

110 R. Eshuis, P. Grefen, and S. Till

partly automated, or fully automated. Approaches in the manual category as-
sume that a user manually designs a service composition, including the binding
to concrete web services. In this category we find languages like BPEL [2] and
JOpera [21] and concrete composition prototypes [3,26].

In approaches in the semi-automatic category [7,19], the user must provide a
composition skeleton which defines the process logic. This skeleton is then in-
stantiated automatically by searching for atomic services that match each of the
services specified in the skeleton. The focus of these approaches lies on automat-
ically finding substitute services for a specified service.

Fully automatic approaches (e.g. [4,10,17,24]) mostly come from the field of
AI or formal reasoning. These approaches require that web services are specified
formally with pre- and post-conditions. This puts a considerable burden on the
shoulders of service designers, since WSDL specifications do not require that
level of detail and hence need to be annotated with the additional pre- and
post-conditions.

Though our approach is semi-automatic, the actual composition algorithm
is fully automated. Compared to the automated composition approaches, our
approach is much simpler since we do not require formally specified pre- and
post-conditions, and thus user do not have to provide as much input as in the
mentioned other approaches. Drawback, however, is that our approach is less pre-
cise, since service dependencies are less detailed than pre- and post-conditions.

As explained in the introduction (Sect. 1), the work most resembling ours
is [5,15]. However, these approaches focus on composing unstructured process
models, while we construct structured ones. As shown in Sect. 2, constructing
structured models is more complex since data flow dependencies cannot be trans-
lated directly into structured control flow. In fact, we are aware of only one other
approach [10] that constructs structured process models, but that one is based
on formal pre and post-condition reasoning.

Another way of dealing with the unstructuredness problem would be to trans-
form an unstructured process model into a structured one. Some preliminary
research has been done on this topic [13,14,16], based on techniques developed
in the 70’s and 80’s to structure sequential programs containing goto’s. Unfor-
tunately, converting an unstructured process model into a structured one has
revealed to be quite intricate, because process models can contain parallelism
while programs are sequential. Consequently, only for sequential process mod-
els automated transformations exist. We therefore have adopted an approach in
which services are directly composed into a structured process model.

7 Conclusions and Further Work

We have presented an approach for composing services into a structured com-
position. Though the approach itself requires manual input, a large part of it
is fully automated. Key part is an algorithm that given a set of services and
their interdependencies, fully automatically constructs a structured composi-
tion satisfying the given dependencies. The user must still give input to the

Structured Service Composition 111

algorithm by annotating the dependency graphs. However, this work is a lot less
than annotating services with formal pre- and post-conditions, which is required
by most other comparable service composition approaches.

Key feature of the approach is that the constructed compositions are struc-
tured and make use only of basic workflow patterns that are supported by virtu-
ally every workflow tool [1]. This feature enables the constructed compositions
to be encoded straightforwardly into any process language including BPEL [2]
and other standard languages like XPDL [25]. However, it considerably compli-
cates the composition task, since dependencies cannot be translated directly into
control flow links.

For further work, we plan to extend the algorithm to deal with loops. Also,
we are currently implementing the algorithm in a prototype in the context of
the CrossWork project [9].

References

1. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

2. T. Anders, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Execution
Language for Web Services, Version 1.1. Standards proposal by BEA Systems,
International Business Machines Corporation, Microsoft Corporation, SAP AG,
Siebel Systems, 2002.

3. B. Benatallah, Q.Z. Sheng, and M. Dumas. The self-serv environment for web
services composition. IEEE Internet Computing, 7(1):40–48, 2003.

4. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Auto-
matic service composition based on behavioral descriptions. International Journal
of Cooperative Information Systems, 14(4), 2005.

5. A. Brogi and R. Popescu. Towards semi-automated workflow-based aggregation
of web services. In F. Casati, P. Traverso, and B. Benatallah, editors, Proceedings
of Third International Conference on Service Oriented Computing (ICSOC05),
Lecture Notes in Computer Science 3826. Springer, 2005.

6. J. Cardoso and A. Sheth. Semantic e-workflow composition. Journal of Intelligent
Information Systems, 21(3):191–225, 2003.

7. F. Casati and M.-C. Shan. Dynamic and adaptive composition of e-services. In-
formation Systems, 26(3):143–162, 2001.

8. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001.

9. CrossWork consortium. Crosswork project, IST no. 507590. http://www.

crosswork.info.
10. Z. Duan, A. Bernstein, P. Lewis, and S. Lu. A model for abstract process specifi-

cation, verification and composition. In Proceedings of the 2nd international con-
ference on Service oriented computing (ICSOC’04), pages 232–241. ACM Press,
2004.

11. R. Eshuis. Statecharting Petri nets. Beta Working Paper Series, WP 153, Eind-
hoven University of Technology, 2005.

12. P. Grefen. Service-oriented support for dynamic business process management. In
D. Georgakopoulos and M. Papazoglou, editors, Service Oriented Computing. MIT
Press, 2006. To appear.

112 R. Eshuis, P. Grefen, and S. Till

13. B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On structured workflow
modelling. In B. Wangler and L. Bergman, editors, Proc. CAiSE ’00, pages 431–
445. Springer, 2000.

14. J. Koehler and R. Hauser. Untangling unstructured cyclic flows - a solution based
on continuations. In R. Meersman and Z. Tari, editors, Proc. CoopIS/DOA/
ODBASE 2004, Lecture Notes in Computer Science 3290, pages 121–138. Springer,
2004.

15. Q. Liang, L. N. Chakarapani, S. Su, R. Chikkamagalur, and H. Lam. A semi-
automatic approach to composite web services discovery, description and invoca-
tion. Int. Journal on Web Service Research, 1(4):64–89, 2004.

16. R. Liu and A. Kumar. An analysis and taxonomy of unstructured workflows. In
W.M.P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors, Proc.
3rd Conference on Business Process Management (BPM 2005), Lecture Notes in
Computer Science 3649, pages 268–284, 2005.

17. M. Matskin and J. Rao. Value-added web services composition using automatic
program synthesis. In C. Bussler, R. Hull, S.A. McIlraith, M.E. Orlowska, B. Per-
nici, and J. Yang, editors, CAiSE’02 workshop on Web Services, E-Business, and
the Semantic Web, Revised Papers, Lecture Notes in Computer Science 2512, pages
213–224. Springer, 2002.

18. S.A. McIlraith and T.C. Son. Adapting golog for composition of semantic web
services. In D. Fensel, F. Giunchiglia, D.L. McGuinness, and M.-A. Williams,
editors, Proc. of the 8th International Conference on Principles and Knowledge
Representation and Reasoning (KR-02), pages 482–496. Morgan Kaufmann, 2002.

19. B. Medjahed, A. Bouguettaya, and A. Elmagarmid. Composing Web services on
the Semantic Web. The VLDB Journal, 12(4):333–351, 2003.

20. M. Paolucci, T. Kawamura, T.R. Payne, and K.P. Sycara. Semantic matching of
web services capabilities. In I. Horrocks and J.A. Hendler, editors, Proc. Interna-
tional Semantic Web Conference (ISWC’02), Lecture Notes in Computer Science
2342, pages 333–347. Springer, 2002.

21. C. Pautasso and G. Alonso. The JOpera visual composition language. Journal of
Visual Languages & Computing, 16(1-2):119–152, 2005.

22. S.R. Ponnekanti and A. Fox. Sword: A developer toolkit for building composite
web services. In Proc. of the 11th International World Wide Web Conference, 2002.

23. M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of
Workflow without Loosing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

24. P. Traverso and M. Pistore. Automated composition of semantic web services into
executable processes. In S.A. McIlraith, D. Plexousakis, and F. van Harmelen,
editors, Proc. Third International Semantic Web Conference ISWC (2004), Lecture
Notes in Computer Science 3298, pages 380–394. Springer, 2004.

25. Workflow Management Coalition. Workflow process definition interface – XML
process definition language. Technical Report WFMC-TC-1025, Workflow Man-
agement Coalition, 2002.

26. J. Yang and M. Papazoglou. Service components for managing the life-cycle of
service compositions. Information Systems, 29(2):97–125, 2004.

Isolating Process-Level Concerns Using Padus

Mathieu Braem1, Kris Verlaenen2, Niels Joncheere1, Wim Vanderperren1,
Ragnhild Van Der Straeten1, Eddy Truyen2, Wouter Joosen2,

and Viviane Jonckers1

1 System and Software Engineering Lab (SSEL), Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

{mbraem, njonchee, wvdperre, rvdstrae, vejoncke}@vub.ac.be
2 DistriNet, Katholieke Universiteit Leuven
Celestijnenlaan 200A, 3001 Leuven, Belgium

{kris.verlaenen, eddy.truyen, wouter.joosen}@cs.kuleuven.be

Abstract. Current workflow languages for web services suffer from poor
support for separation of concerns. Aspect-oriented software develop-
ment is a well-known approach to improve this. In this paper, we present
an aspect-oriented extension for the WS-BPEL language that improves
on current state-of-the-art by introducing an explicit deployment con-
struct, a richer joinpoint model, and a higher-level pointcut language.
In addition, the supporting technology is compatible with existing WS-
BPEL engines.

Classification. Business process modeling and analysis, processes and
service composition.

1 Introduction

Over the last years, web services [1] have been gaining a lot of popularity as
a means of integrating existing software in new environments. By composing
a number of basic web services, new web services can be created that provide
more advanced functionality. These compound web services can then be reused
in even other web services, which further facilitates software reuse.

Originally, the only way to compose web services was by manually writing the
necessary glue-code in programming languages such as C and Java. It quickly
became clear, however, that a composition of web services is more naturally cap-
tured by dedicated workflow languages [2] than by general-purpose programming
languages.

Today, the most popular workflow language with regard to the composition of
web services is the Business Process Execution Language (WS-BPEL) [3]. WS-
BPEL builds on the foundations of WSFL [4] and XLANG [5], and can be used
to specify both executable business processes and abstract business processes.
Executable processes model the behavior of one participant in a composition (i.e.
orchestration), while abstract business processes specify the externally visible
behavior of a composition (i.e. choreography). WS-BPEL processes are platform-
and transport-independent, and are expressed using XML.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 113–128, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

114 M. Braem et al.

1.1 Separation of Concerns

In this paper we improve the modularization capability of WS-BPEL in order
to provide a better separation of concerns [6] in the workflow specification. In
WS-BPEL (and other workflow languages, for that matter) a large number of
concerns (such as authorization and billing) cannot be cleanly separated from
the main functionality of the workflow specification. WS-BPEL processes suffer
from a problem that is named the “tyranny of the dominant decomposition” [7].
A WS-BPEL process can only be decomposed according to the control flow
of the process, and concerns that do not align with this decomposition end
up scattered across the process specification and tangled with one another. For
example, billing requires invoking some billing service each time before and after
a certain functionality in the process is provided. This makes it difficult to add,
modify, or remove such concerns. Also, because WS-BPEL processes must be
specified in a single XML file, complex processes give rise to large XML files
which can become difficult to understand, maintain and evolve.

To solve the above problem, we propose to apply aspect-oriented decomposi-
tion and composition mechanisms to WS-BPEL. Aspect-oriented software devel-
opment (AOSD) [8] has been gaining a lot of popularity as a means of improving
separation of crosscutting concerns in software. Examples of such crosscutting
concerns are security concerns such as access control and confidentiality [9], de-
bugging concerns such as logging [10] and timing contract validation [11], and
business rules such as billing [12]. The goal of AOSD is to achieve a better sepa-
ration of concerns, by allowing crosscutting concerns to be specified in separate
modules called aspects, so that adding, modifying or removing these concerns
does not require changes to the rest of the system.

Traditional aspects consist of two main parts: pointcut definitions and ad-
vices. Points in the program execution where an aspect can be applied (e.g.
method invocations in object-oriented programming) are called joinpoints. Point-
cuts select sets of joinpoints where aspects should be applied; these pointcuts
can be expressed using declarative pointcut languages. An advice specifies the
concrete behavior that should be executed at certain joinpoints — typically
before, after or around the original behavior of the joinpoints. Inserting the be-
havior defined by aspects at the correct locations in the main program is called
weaving.

Initial research on AOSD has concentrated on applying its principles to the
object-oriented programming paradigm. However, as motivated by Arsanjani et
al. [13] and others [14,15,16], AOSD has a lot of potential in a web services
context, too.

1.2 Web Service Composition in Telecom

The research described in this paper is part of a larger research project, which
is named WIT-CASE and is performed in collaboration with Alcatel, and which
addresses composition of web services on a telecom service delivery platform. We
will therefore illustrate the motivation for our approach by providing examples
from within this context. Typical use cases for a telecom service delivery platform

Isolating Process-Level Concerns Using Padus 115

include setting up and executing a multi-party conference call. Such use cases
mostly have the same general characteristics. For example, the platform needs
to check whether the user is allowed to access the functionality he has requested
before providing this functionality (authorization), and the user needs to be
billed for his usage according to some billing scheme (billing).

Both the authorization and billing concerns are typically crosscutting. There-
fore, an aspect-oriented approach can improve the modularization of web service
compositions on a telecom service delivery platform. Without support for AOSD,
nearly every WS-BPEL process on our platform would start with some autho-
rization code before executing its main functionality, and would perform some
billing functionality before and/or after certain resources are used. This means
that, when some part of the authorization or billing policies changes, all these
processes need to be modified. The presence of more than one authorization or
billing policy would even further complicate this situation.

If, on the other hand, support for AOSD is available, crosscutting concerns
such as authorization and billing can be expressed separate from the processes’
main functionality in dedicated aspects. If authorization or billing policies would
change, this would only require changes to the corresponding aspects, and not
to the main processes. If one would like to support more than one authorization
or billing policy (e.g. fixed fee billing as well as duration billing), it is sufficient
to simply implement an additional aspect.

In this paper, we propose an aspect-oriented programming extension for WS-
BPEL, named Padus, in order to provide a better separation of concerns. The
characteristics of the telecom service delivery platform and the goals of the WIT-
CASE project have had a profound impact on the design and implementation of
Padus. First of all, the overall workflow specification language should be suffi-
ciently expressive and should support creation of higher-level composition prim-
itives. Moreover, adding AOP support to WS-BPEL should be as less disruptive
as possible to the existing tool chain and should introduce as less run-time per-
formance overhead as possible. For these reasons we have chosen to follow an
approach in which the design of Padus is based on a logic-based programming
language (in order to increase expressive power and ability to construct higher-
level composition primitives) and the implementation of Padus is based on a
static transformation approach (in order to be compatible with existing tool
chain and minimize run-time performance overhead).

The paper is structured as follows. Section 2 describes our AOP language for
WS-BPEL, while section 3 describes how this language is implemented. A brief
case study is provided in section 4. We present related work in section 5 and
state our conclusions in section 6.

2 The Padus Language

We present Padus, an aspect-oriented extension to WS-BPEL, which aims to
overcome its lack of support for modularization of crosscutting concerns. It al-
lows introducing crosscutting behavior to an existing WS-BPEL process in a

116 M. Braem et al.

modularized way. Developers can augment WS-BPEL processes with additional
behavior at specific points during their execution. These points can be selected
using a logic pointcut language, and the Padus weaver can be used to combine
the behavior of the core process with the behavior specified in the aspects. Us-
ing Padus, the complexity of the core process can be controlled by specifying
crosscutting concerns like security and billing in separate aspects.

In this section, we describe the design of the Padus language. We follow the
template for describing AOP languages proposed in AOSD-Europe’s survey on
aspect-oriented programming languages [17]. We describe the language along
five dimensions: the joinpoint model (section 2.1), the pointcut and advice lan-
guages (sections 2.2 and 2.3), the aspect modules (section 2.4), and the aspect
deployment language (section 2.5).

2.1 Joinpoint Model

Joinpoints are well-defined points during the execution of a WS-BPEL pro-
cess where extra functionality could be inserted. They are related to the ac-
tivities that are provided in WS-BPEL. Table 1 lists the kinds of joinpoints
that are available. Each type is related to a specific WS-BPEL activity, which
can be easily deduced from the type’s name. The joinpoint model does not
only allow behavioral joinpoints but also includes structural joinpoints related
to structural WS-BPEL activities (which contain one or more activities
themselves).

Table 1. Types of joinpoints available in Padus

Behavioral joinpoints Structural joinpoints

invoking replying sequencing switching
receiving assigning looping (“while”) picking
throwing terminating flowing scoping
compensating doingNothing (“empty”)

Joinpoints are associated with properties relevant to that particular joinpoint.
Some of these properties are related to the attributes and elements of the cor-
responding WS-BPEL activity. For example, table 2 provides the attributes of
“invoking” joinpoints. Additional properties specify, among others, in which WS-
BPEL process or structural activity a joinpoint occurs. Dynamic properties, like
in which process instance a joinpoint occurs and the value of certain variables,
are defined too. Using these properties, one can more precisely select interesting
joinpoints.

2.2 Pointcut Language

A pointcut selects a specific set of joinpoints. Pointcuts can be used to specify the
joinpoints where additional behavior should be inserted. The pointcut language
of Padus is based on logic meta-programming [18,19]. A pointcut can be seen as

Isolating Process-Level Concerns Using Padus 117

Table 2. Attributes of “invoking” joinpoints

Attribute Type Description

name String An optional name for the WS-BPEL activity
partnerLink String The partner link used by the invoke
portType String The port type used by the invoke
operation String The operation of the port type that is invoked
inputVariable String The message that should be sent
outputVariable String The variable that should contain the reply message

invoking(Joinpoint, ‘smsService’, ‘smsServicePT’, Operation),
startsWith(Operation, ‘send’).

Listing 1. Simple pointcut that captures “invoking” joinpoints that invoke an opera-
tion of which the name starts with “send”

a collection of constraints on the type and properties of allowed joinpoints. In
addition, a pointcut is able to expose certain information (e.g. argument values)
so that the advice can exploit this.

The pointcut language defines a predicate for each type of joinpoint. The
attributes of the predicate refer to the attributes of that specific type of joinpoint.
Table 3 shows the exposed bindings of the invoking predicate. Only the version
with the most variables is really required. The others can be written in function of
the larger one. The predicates with less variables simply offer extra convenience.

Table 3. Bindings for the “invoking” predicates

Predicate binding Description

invoking(Joinpoint, Name, PartnerLink, PortType, All allowed attributes
Operation, InputVariable, OutputVariable)

invoking(Joinpoint, Name, PartnerLink, Input and output variable
PortType, Operation) names not bound

invoking(Joinpoint, PartnerLink, PortType, Only Partnerlink, PortType
Operation) and Operation bound

By constraining the attributes of a joinpoint predicate, certain joinpoints can
be selected. Pointcuts can combine these predicates with standard predicates that
are available in Prolog [20], for comparing basic data types, searching lists, etc.
Pointcuts can include negations, and predicates can be combined with conjunc-
tions or disjunctions. The small example in listing 1 denotes a pointcut that cov-
ers all “invoking” joinpoints of operations on the smsServicePT port type of the
smsService partner link of which the name of the operation starts with “send”.

The pointcut language also offers predicates for constraining or exposing ad-
ditional (possibly runtime) properties of joinpoints, like for instance the process
or process instance a joinpoint occurs in, etc. Table 4 gives an overview of some
of these predicates.

118 M. Braem et al.

Table 4. Predicates for constraining additional properties of joinpoints

Predicate Description

inProcess(Joinpoint, Process) Links a joinpoint with the process
it is defined in.

inProcessInstance(Joinpoint, ProcessInstance) Links a joinpoint with the process
instance it occurs in.

variableValue(ProcessInstance, Name, Value) Links the name of a variable to its
value in a specific process instance.

Using a logic pointcut language offers significant advantages over more tradi-
tional approaches. The pointcuts can use the full power of unification on logic
variables (by backtracking). Furthermore, since pointcuts are logic rules that
cover joinpoints, new user-defined pointcuts can be reused in the definition of
similar pointcuts. The logic engine supporting our pointcut language also allows
writing recursive pointcut definitions. The base predicates available in the point-
cut language have well chosen names, which can clearly express the intension of
the pointcuts and improve readability.

2.3 Advice Language

The advice language is used to specify how the behavior at certain joinpoints
defined by a pointcut should be altered. Similar to traditional aspect-oriented
systems, advices can either be added to the original behavior, or can replace the
original behavior. New behavior can be introduced by inserting it before or after
certain joinpoints defined by the pointcut. An around advice must be used if
existing behavior might need to be replaced.

In advices can be used to add behavior inside some activity, like for example
add an extra concurrent activity to a flow activity. This cannot be simulated
by before or after advices. In some cases, an around advice could be used as a
workaround, but this would result in significant code duplication. The in advice
can not only be used to add new activities in structural WS-BPEL activities, but
also to customize the behavior of certain WS-BPEL activities, like for example
adding variables to a scope, or adding flow links to any WS-BPEL activity.
Table 5 gives an overview of all the situations where an in advice could be
used.

Advice code is defined in an XML element that specifies the type of the
advice. A pointcut describes the points in the original process to which the
advice applies. The extra behavior that should be inserted is specified using
standard WS-BPEL elements. For before, after and around advices, this is a
WS-BPEL activity. In advices can be used to insert other WS-BPEL elements
too, as specified in table 5. For around advices, the <proceed> activity could be
used to include the original behavior specified by the joinpoint. The pointcut’s
attributes are exposed to the advice; these can be accessed in the advice by
prefixing their name with the ‘$’ character. Listing 2 shows an example of a before
advice that logs all invocations of the smsServicePT web service. The extra
behavior that is inserted is a sequence of two activities: first, the log message

Isolating Process-Level Concerns Using Padus 119

Table 5. Pointcuts where an in advice could be used

Joinpoint Element Description

all types source Add the activity as source of a flow link.
target Add the activity as target of a flow link.

flowing activity Add a new parallel activity to a flow.
links Add a new link to a flow.

switching case Add a new case to a switch.
otherwise Add the otherwise element to a switch.

picking onMessage Add a new message trigger to a pick.
onAlarm Add a new timeout trigger to a pick.

scoping variable Add a variable to a scope.
correlationSet Add a correlation set to a scope.
faultHandler Add a fault handler to a scope.
compensationHandler Add a compensation handler to a scope.
eventHandler Add an event handler to a scope.

assigning copy Add a copy to an assign.
invoking correlation Add a correlation element to an invoke.

catch Add a specific catcher to an invoke.
catchAll Add a generic catcher to an invoke.
compensationHandler Add a compensation handler.

receiving correlation Add a correlation element to a receive.
replying correlation Add a correlation element to a reply.

containing the invoked operation is created; then, this message is sent to the
logging service.

2.4 Aspect Modules

An aspect represents one crosscutting concern. As such, aspects can contain
several before, after, in and around advices. Listing 3 shows an example as-
pect that logs the start and end of all invocations of the smsServicePT web
service. The main sections of an aspect are the using declarations (lines 2–6),
the pointcut (lines 8–9) and advice definitions (lines 11–22), and the actual ad-
vices (lines 24–30). To allow reuse of pointcuts and advices, aspects can include
other aspect files.

<before joinpoint="Jp" pointcut="invoking(Jp, ‘smsService’, ‘smsServicePT’, Operation)">
<sequence>
<assign>

<copy>
<from>Logging invocation of operation $Operation</from>
<to variable="logMsg" part="msg" />

</copy>
</assign>
<invoke partnerLink="logging" portType="log:loggingPT"

operation="logMessage" inputVariable="logMsg" />
</sequence>

</before>

Listing 2. An advice that logs all invocations of the SMS service

120 M. Braem et al.

1 <aspect name="logSMSInvocations">
2 <using>
3 <namespace name="xmlns:log" uri="logging.example.com" />
4 <partnerLink name="logging" partnerLinkType="log:loggingLT" />
5 <variable name="logMsg" type="log:logMsg" />
6 </using>
7

8 <pointcut name="smsInvocation(Jp, Operation)"
9 pointcut="invoking(Jp, ‘smsService’, ‘smsServicePT’, Operation)" />

10

11 <advice name="logMessage(Message)">
12 <sequence>
13 <assign>
14 <copy>
15 <from>$Message</from>
16 <to variable="logMsg" part="msg" />
17 </copy>
18 </assign>
19 <invoke partnerLink="logging" portType="log:loggingPT"
20 operation="logMessage" inputVariable="logMsg" />
21 </sequence>
22 </advice>
23

24 <before joinpoint="Jp" pointcut="smsInvocation(Jp, Operation)">
25 <advice name="logMessage(‘Invoking $Operation’)" />
26 </before>
27

28 <after joinpoint="Jp" pointcut="smsInvocation(Jp, Operation)">
29 <advice name="logMessage(‘Invoked $Operation’)" />
30 </after>
31 </aspect>

Listing 3. An example aspect logging the start and end of all SMS service invocations

Adding new behavior usually requires extending the information defined at
process-level, too. For example, adding a new invocation to a process usually
requires adding a partner link that specifies the interface of the new service, and
a new variable that will contain the message that should be sent to that service.
The <using> tag (lines 2–6) allows the definition of such information global
to the process. It may include variables, partner links, partners, fault handlers,
compensation handlers, event handlers and namespaces.

Pointcut expressions can be reused (lines 8–9) by giving them a name and
specifying the parameters, which can either be further constrained when reusing
the expression, or be referred to from inside an advice reusing the pointcut.
Defining a pointcut expression like this generates a higher-level pointcut predi-
cate that can then be used in other pointcut expressions.

The extra behavior that shouldbe inserted in before, after, aroundand in advices
can be reused too (lines 11–22). The advice behavior is given a name and can be
parametrized.These parameters canbe referred to from inside the advice codewith
their name (using the ‘$’ prefix). The named advice behavior can be called from
within advice code using the <advice> element (line 25 and line 29).

2.5 Aspect Deployment Language

A Padus aspect deployment specifies how aspects should be applied to the base
processes and consists of two main parts: aspect instantiation and aspect com-

Isolating Process-Level Concerns Using Padus 121

<deployment>
<!-- the following aspects need to be deployed for the selected processes -->
<aspect name="..." process="..." id="..." />
<aspect name="..." process="..." id="..." />
...
<!-- the following precedence declarations are valid for the selected process

or for all processes if no process is specified -->
<precedence [process="..."] />

<aspect id="..." [advice="before|after|around|in"] />
<aspect id="..." [advice="before|after|around|in"] />

</precedence>
...

</deployment>

Listing 4. Aspect deployment specification

position. Aspect instantiation is responsible for instantiating and applying an
aspect type to a concrete process. Processes are referenced using their name.
It is also possible to select processes in a pattern-based manner using a logic
language very similar to our pointcut language. As such, it is for instance pos-
sible to select only those processes that invoke a particular service or to select
processes whose name starts with a given identifier. Listing 4 illustrates aspect
deployment in Padus.

The second part of an aspect deployment, namely the aspect composition, is
responsible for specifying the aspect precedence in case multiple aspects apply
to the same joinpoint. In case no precedence is specified, the advice is executed
in the order in which their corresponding aspects are specified. A precedence
declaration overrides this default and is able to specify precedence on a per-
advice-type basis. Aspect precedence for a before advice can thus be different
than precedence for an after advice. The precedence is also able to vary over sev-
eral deployments of the same aspect type, as it is bound to the aspect instance’s
ID and not to its type. Furthermore, the precedence specification can be limited
to certain processes only, allowing a custom precedence specification for each
process or group of processes if necessary. Similar to aspect instantiation, the
process selection can be name-based or pattern-based.

3 The Padus Implementation

3.1 General Architecture

In existing literature on aspect-oriented execution models, two main approaches
can be identified:

– Static Weaving: In a statically woven approach, the aspect and base-code
are woven (i.e. merged) before run-time on either source or byte-code level.
At runtime the aspects, like the base code, cannot be redefined, removed nor
can new aspects be added.

– Dynamic Weaving: A dynamically woven approach uses dedicated tech-
niques to allow weaving at runtime. This allows to dynamically add, remove
and redefine aspects.

122 M. Braem et al.

We opt for a statically woven approach for the execution model of the Padus
language. Because the language is used to describe real-time processes in a tele-
com service delivery platform, performance is extremely important. In contrast
to dynamic weaving, static weaving introduces no runtime overhead. Another
important advantage is that it does not require a dedicated execution platform
(i.e. a modified WS-BPEL engine in our case), which would otherwise seriously
limit the applicability of the approach. Figure 1 illustrates the architecture of
our weaver. A WS-BPEL process is transformed based on the aspect deploy-
ment descriptions. The result is again a regular WS-BPEL process that can be
deployed on all WS-BPEL execution engines.

BPEL
process

Aspect
Definition

Static
Weaver

Aspect
Deployment
Description

Resulting
BPEL

Process

Standard BPEL Execution Engine

Aspect
DefinitionAspect

Definition

Fig. 1. Padus weaver architecture

3.2 Pointcut Matching and Document Transformation

In order to match the pointcuts and transform the target WS-BPEL specifica-
tion, the following steps are taken:

– Translation: The WS-BPEL process is translated to a set of logic facts in
the Prolog language. For every WS-BPEL activity, several facts are generated
that define the equivalent activity in Prolog. There is also an explicit back-
link to the nodes in the XML tree representation of the WS-BPEL process.
This allows for a fast reverse translation process from any given activity to
the concrete XML node.

– Matching: A logic engine (SWI-Prolog) is used to find all solutions for the
pointcut rule. The result is a set of facts representing activities where the
aspect is applicable. In case the pointcut defines conditions that are to be
dynamically evaluated (such as variableValue(ProcessInstance, Name,
Value)), partial evaluation is applied to only evaluate the static part of
the pointcut. The dynamic part of the pointcut is inserted at the beginning
of the advice. If it does not evaluate to true, the advice is not executed.

Isolating Process-Level Concerns Using Padus 123

Separating the dynamic part of a pointcut and inserting the conditional
advice is independent from a concrete WS-BPEL process and the result
might thus be stored for later deployments of the same aspect.

– Joinpoint Identification: All solutions for the rule are translated back to
WS-BPEL activities using the explicit back-link generated in the translation
process. The result is a set of joinpoints denoted by XPath in the WS-BPEL
XML tree where the aspect should be woven.

– Transformation: An XML transformation engine (based on XSLT) is used
to transform the WS-BPEL document at the joinpoints identified in the pre-
vious step. Depending on the concrete advice semantics, a different trans-
formation is applied. For a before advice for instance, the advice process is
inserted before the identified joinpoints. Non-WS-BPEL constructs in the
advice, such as proceed, have to be translated to valid WS-BPEL activities
as well. In case of proceed in an around advice for instance, the replaced
behavior of the joinpoint is inserted instead of the proceed activity.

4 Case Study

In this section we show how our aspect language can be used to add billing to a
multi-party conference call process. Two types of billing schemes are supported:
a fixed fee billing scheme where the end user should pay a fixed price at the end of
the conference call, and a duration billing scheme where the price is determined
based on the duration of the conference call. Three aspects are used to represent
these two billing schemes:

– A generic billing aspect (see listing 5) is used to define concepts common to
both billing schemes: the billing service and message definitions (lines 2–6),
the pointcuts representing the start and end of a conference call (lines 7–10),
and an advice for invoking the billing service (lines 11–14).

– The fixed fee billing aspect (see listing 6) introduces one advice that invokes
the billing service with a fixed price at the end of the conference call.

– In the duration billing aspect (see listing 7), a first advice (lines 6–13) stores
the start time of the conference call in a new variable (line 4), while a second
advice (lines 14–25) uses this time to calculate the price of the conference
call based on its duration and then invokes the billing service.

The logic needed for adding billing to the conference call process is now cleanly
modularized and is not scattered across the basic control flow, which is very
useful for keeping the complexity of the core functionality under control. Any of
the two billing aspects can now be combined with the conference call process, or
any other process, greatly improving reusability. The billing scheme can easily
be modified afterwards too.

The deployment descriptor in listing 8 specifies how the aspect should be
instantiated. Here we apply the FixedFeeBilling aspect to the ConferenceCall
process. Suppose a SecurityCheck aspect is used to make sure that only users
that are allowed to end the conference call can actually do so. In this case, the

124 M. Braem et al.

1 <aspect name="Billing">
2 <using>
3 <namespace name="xmlns:bill" uri="my.billing.uri" />
4 <partnerLink name="billing" partnerLinkType="bill:billingLT" />
5 <variable name="billingMsg" type="bill:billingMsg" />
6 </using>
7 <pointcut name="confCallStarts(Jp)"
8 pointcut="invoking(Jp, ‘ConfCallService’, ‘confCallPT’, ‘createConfCall’)" />
9 <pointcut name="confCallEnds(Jp)"

10 pointcut="invoking(Jp, ‘ConfCallService’, ‘confCallPT’, ‘closeConfCall’)" />
11 <advice name="billService">
12 <invoke partnerLink="billing" portType="bill:billingPT"
13 operation="billService" inputVariable="billingMsg" />
14 </advice>
15 </aspect>

Listing 5. Aspect defining generic billing concepts

1 <aspect name="FixedFeeBilling">
2 <include name="Billing" />
3 <after joinpoint="Jp" pointcut="confCallEnds(Jp)">
4 <sequence>
5 <assign>
6 <copy>
7 <from>1.5 EUR</from>
8 <to variable="billingMsg" part="price" />
9 </copy>

10 </assign>
11 <advice name="billService" />
12 </sequence>
13 </after>
14 </aspect>

Listing 6. Aspect implementing a billing scheme with a fixed fee

1 <aspect name="DurationBilling">
2 <include name="Billing" />
3 <using>
4 <variable name="startTime" type="xsd:time" />
5 </using>
6 <before joinpoint="Jp" pointcut="confCallStarts(Jp)">
7 <assign>
8 <copy>
9 <from expression="func:getCurrentTime()" />

10 <to variable="startTime" />
11 </copy>
12 </assign>
13 </before>
14 <after joinpoint="Jp" pointcut="confCallEnds(Jp)">
15 <sequence>
16 <assign>
17 <copy>
18 <from expression="func:calculatePrice(
19 bpws:getVariableProperty(‘startTime’), ‘0.4 EUR’)" />
20 <to variable="billingMsg" part="price" />
21 </copy>
22 </assign>
23 <advice name="billService" />
24 </sequence>
25 </after>
26 </aspect>

Listing 7. Aspect implementing a billing scheme based on duration

Isolating Process-Level Concerns Using Padus 125

1 <deployment>
2 <aspect name="FixedFeeBilling" process="ConferenceCall" id="ConferenceCallBilling" />
3 <aspect name="SecurityCheck" process="ConferenceCall" id="ConferenceCallSecurity" />
4 <precedence process="ConferenceCall" />
5 <aspect id="ConferenceCallSecurity" />
6 <aspect id="ConferenceCallBilling" />
7 </precedence>
8 </deployment>

Listing 8. Aspect deployment specification

SecurityCheck aspect should be applied first, to make sure that the billing only
occurs if the conference call is actually terminated. Note that in this simple
example the default precedence could be used to specify the right order in which
the aspects should be applied too, but this might not be the case anymore if
more processes and/or aspects were defined.

5 Related Work

AO4BPEL [14] is an aspect-oriented extension to WS-BPEL that allows for more
modular and dynamically adaptable web service compositions. Each WS-BPEL
activity is a potential join point. In contrast to Padus, AO4BPEL uses the lower-
level XPath pointcut language. Pointcuts are too low-level and refer directly to
paths in the document tree, which limits their reusability and makes them fragile
with respect to evolution of the base process. Furthermore, their approach does
not support an explicit aspect deployment construct nor allows for aspect reuse.
While AO4BPEL allows for aspect addition and removal while processes are
running, supporting this requires a custom-made WS-BPEL engine, which is
incompatible with the existing tool chain.

Courbis and Finkelstein [21] present an aspect-oriented language extension
very similar to AO4BPEL. They also use XPath as a pointcut language and use
a custom WS-BPEL engine for allowing dynamic aspect addition and removal.
In contrast to AO4BPEL and Padus, however, the advice language is Java.

The Web Services Management Layer (WSML) [22] uses aspects implemented
in JAsCo [23] to capture client-side web service management concerns such as
billing, transactions, selection and caching. Compositions of web services are
handled by traditional approaches such as WS-BPEL. The WSML is thus com-
plementary to our approach: Padus is able to specify process specific aspects
that reflect over the process definition while the WSML specifies service specific
aspects independent of process details.

Previous research [18] already showed the advantage of using a logic lan-
guage for both aspect declaration (defining pointcuts as logical queries) and
weaver implementation (representing the program as logical facts) in the con-
text of Smalltalk. The logic meta-programming approach to AOP also allows
non-expert programmers to define their own high-level, domain-specific aspect
languages.

126 M. Braem et al.

6 Conclusions and Future Work

The paper presents an extension of WS-BPEL for allowing a better separation of
concerns through aspect-oriented programming. The Padus language improves
on existing approaches by:

– Providing a rich joinpoint model consisting of all WS-BPEL activities.
– Employing a higher-level logic-based pointcut language that makes the point-

cuts less dependent on the concrete document structure. This makes the
pointcuts less fragile with respect to evolution of the WS-BPEL process.
Because of the higher-level pointcuts, reusing them becomes easier as well.

– Introducing the concept of an in advice to add new behavior to existing
elements, which extends the expressiveness of the advice language.

– Providing an explicit deployment construct that allows to specify aspect
instantiation to specific processes expressively using a logic language. As-
pect composition is tackled by an expressive precedence specification that is
able to vary depending on the aspect instances, advice types and concrete
processes.

– Remaining compatible with the existing infrastructure.

Our aspect-oriented extension for WS-BPEL is an XML-based language and
can be defined using an XML Schema [24]. But, similar to specifying a WS-
BPEL process using a graphical notation (e.g. BPMN [25]), a more user-friendly
graphical notation for aspects can be defined too. We already started on an
extension of BPMN that supports the aspect-oriented idea and that can be
translated to Padus aspects.

Acknowledgments

This research is partly funded by Alcatel Belgium and the Institute for the
Promotion of Innovation Through Science and Technology in Flanders (IWT-
Vlaanderen) through the WIT-CASE project.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V., eds.: Web Services: Concepts,
Architectures and Applications. Springer-Verlag, Heidelberg, Germany (2004)

2. Du, W., Elmagarmid, A.: Workflow management: State of the art vs. state of the
products. Technical Report HPL-97-90, Hewlett-Packard Labs, Palo Alto, CA,
USA (1997)

3. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann,
F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana,
S.: Business Process Execution Language for Web Services version 1.1 (2003)
http://www.ibm.com/developerworks/library/ws-bpel/.

4. Leymann, F.: Web Services Flow Language (WSFL 1.0). IBM (2001)

Isolating Process-Level Concerns Using Padus 127

5. Thatte, S.: XLANG — web services for business process design. Microsoft (2001)
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm.

6. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Comm. ACM 15(12) (1972) 1053–1058

7. Ossher, H., Tarr, P.: Using subject-oriented programming to overcome common
problems in object-oriented software development/evolution. In: Proc. 21st Int’l
Conf. Software Engineering, IEEE Computer Society Press (1999) 687–688

8. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. Technical Report SPL97-008 P9710042,
Xerox PARC (1997)

9. De Win, B., Joosen, W., Piessens, F.: Developing secure applications through
aspect-oriented programming. In Filman, R.E., Elrad, T., Clarke, S., Akşit, M.,
eds.: Aspect-Oriented Software Development. Addison-Wesley, Boston (2005) 633–
650

10. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of AspectJ. In Knudsen, J.L., ed.: Proc. ECOOP 2001, LNCS 2072,
Berlin, Springer-Verlag (2001) 327–353

11. Vanderperren, W., Suvée, D., Jonckers, V.: Combining AOSD and CBSD in Pa-
coSuite through invasive composition adapters and JAsCo. In: Proceedings of
Net.ObjectDays 2003, Erfurt, Germany (2003) 36–50

12. D’Hondt, M., Jonckers, V.: Hybrid aspects for weaving object-oriented function-
ality and rule-based knowledge. In Lieberherr, K., ed.: Proc. 3rd Int’ Conf. on
Aspect-Oriented Software Development (AOSD-2004), ACM Press (2004) 132–140

13. Arsanjani, A., Hailpern, B., Martin, J., Tarr, P.: Web services: Promises and
compromises. Queue 1(1) (2003) 48–58

14. Charfi, A., Mezini, M.: Aspect-oriented web service composition with AO4BPEL.
In Zhang, L.J., ed.: Proceedings of the 2nd European Conference on Web Services
(ECOWS 2004), Erfurt, Germany, Springer-Verlag (2004) 168–182

15. Cottenier, T., Elrad, T.: Dynamic and decentralized service composition with Con-
textual Aspect-Sensitive Services. In: Proceedings of the 1st International Confer-
ence on Web Information Systems and Technologies (WEBIST 2005), Miami, FL,
USA (2005)

16. Verheecke, B., Vanderperren, W., Jonckers, V.: Unraveling crosscutting concerns
in web services middleware. IEEE Software 23(1) (2006) 42–50

17. Brichau, J., Haupt, M.: Survey of aspect-oriented languages and execution models.
Technical Report AOSD-Europe-VUB-01, AOSD-Europe (2005)

18. De Volder, K.: Aspect-oriented logic meta programming. In Lopes, C., Kiczales, G.,
Tekinerdoğan, B., De Meuter, W., Meijers, M., eds.: Workshop on Aspect Oriented
Programming (ECOOP 1998). (1998)

19. De Volder, K.: Type-Oriented Logic Meta Programming. PhD thesis, Vrije Uni-
versiteit Brussel (1998)

20. Deransart, P., Ed-Dbali, A., Cervoni, L., eds.: Prolog: The Standard Reference
Manual. Springer-Verlag (1996)

21. Courbis, C., Finkelstein, A.: Towards aspect weaving applications. In: ICSE ’05:
Proceedings of the 27th international conference on Software engineering, New
York, ACM Press (2005) 69–77

22. Cibrán, M.A., Verheecke, B., Jonckers, V.: Aspect-oriented programming for dy-
namic web service monitoring and selection. In Zhang, L.J., ed.: Proceedings of
the 2nd European Conference on Web Services (ECOWS 2004), Erfurt, Germany,
Springer-Verlag (2004)

128 M. Braem et al.

23. Suvée, D., Vanderperren, W.: JAsCo: An aspect-oriented approach tailored for
component based software development. In Akşit, M., ed.: Proc. 2nd Int’ Conf. on
Aspect-Oriented Software Development (AOSD-2003), ACM Press (2003) 21–29

24. Fallside, D.C., Walmsley, P.: XML Schema part 0: Primer second edition.
W3C Recommendation 28 October 2004, World Wide Web Consortium (2004)
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/.

25. White, S.A.: Business Process Modeling Notation (BPMN) version 1.0 (2004)
http://www.bpmn.org/.

Process Equivalence: Comparing Two Process

Models Based on Observed Behavior

W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

{w.m.p.v.d.aalst, a.k.medeiros, a.j.m.m.weijters}@tm.tue.nl

Abstract. Invariousapplicationdomains there is adesire to comparepro-
cess models, e.g., to relate an organization-specific process model to a ref-
erence model, to find a web service matching some desired service descrip-
tion, or to compare somenormativeprocessmodelwith aprocessmodel dis-
covered using process mining techniques. Although many researchers have
worked on different notions of equivalence (e.g., trace equivalence, bisim-
ulation, branching bisimulation, etc.), most of the existing notions are not
very useful in this context. First of all, most equivalence notions result in
a binary answer (i.e., two processes are equivalent or not). This is not very
helpful, because, in real-life applications, one needs todifferentiate between
slightly different models and completely different models. Second, not all
parts of a process model are equally important. There may be parts of the
process model that are rarely activated while other parts are executed for
most process instances. Clearly, these should be considered differently. To
address these problems, this paper proposes a completely new way of com-
paring process models. Rather than directly comparing two models, the
process models are compared with respect to some typical behavior. This
way we are able to avoid the two problems. Although the results are pre-
sented in the context of Petri nets, the approach can be applied to any pro-
cess modeling language with executable semantics.

Keywords: Process Equivalence, Petri Nets, Process Mining.

1 Introduction

Today one can find a wide variety of process models in any large organization
[10]. Typical examples are:

– reference models (e.g., the EPC models in the SAP R/3 reference model)
– workflow models (e.g., models used for enactment in systems like Staffware,

FLOWer, FileNet, Oracle BPEL, etc.),
– business process models/simulation models (e.g., using tools such as ARIS,

Protos, Arena, etc.),
– interface/service descriptions (e.g., the Partner Interface Processes in Roset-

taNet, the abstract BPEL processes in the context of web services, choreog-
raphy descriptions using WSCDL), or

– process models discovered using process mining techniques.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 129–144, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

130 W.M.P. van der Aalst, A.K.A. de Medeiros, and A.J.M.M. Weijters

Given the co-existence of different models and different types of models, it is
interesting to be able to compare process models. This applies to different lev-
els ranging from models at the business level to models at the level of software
components (e.g., when looking for a software component matching some specifi-
cation). To compare process models in a meaningful manner, we need to assume
that these models have semantics. Moreover, we need to assume some equivalence
notion (When are two models the same?) People working on formal methods have
proposed a wide variety of equivalence notions [1,11,13], e.g., two models may
be identical under trace equivalence but are different when considering stronger
notions of equivalence (e.g., bisimulation). Unfortunately, most equivalence no-
tions provide a “true/false” answer. In reality there will seldom be a perfect fit.
Hence, we are interested in the degree of similarity, e.g., a number between 0
(completely different) and 1 (identical). In other to do so, we need to quantify
the differences. Here it seems reasonable to put more emphasis on the frequently
used parts of the model.

A

B DC

E

p1

p2 p3

p5p4

p6

F

(a) (b) (d)

legend:
A=register request
B=book train
C=book flight
D=book hotel
E=send invoice
F=change hotel

(e)

frequencies:
40: ABDE
85: ACDE
15: ADBE
20: ADCE

(f)

A

B DC

E

p1

p2

p5p4

p6

A

DC

E

p1

p2 p3

p5p4

p6

A

B DC

E

p1

p2 p3

p5p4

p6

(c)

Fig. 1. Running example

To clarify the problem, let us consider Figure 1 where four process models
(expressed in terms of Petri nets [16]) are depicted. These models describe the
booking of a trip, see the legend for the interpretation of the various transi-
tions in the Petri nets, e.g., C refers to the booking of a flight. Clearly, these

Process Equivalence: Comparing Two Process Models 131

models are similar. However, using classical equivalence notions all models are
considered different. For example, in process (a) it is possible to have the execu-
tion sequence ADBE while this sequence is not possible in (b) and (c). More-
over, the Petri net in Figure 1(d) allows for ACDFDE which is not possible
in any of the other models. Note that we focus on the active parts of the net
(i.e., the transitions) rather than passive things such as places. Although classi-
cal equivalence notions consider the four models to be different, it is clear that
some are more similar than other. Therefore, we want to quantify “equality”,
i.e., the degree of similarity. A naive approach could be to simply compare the
sets of transition labels, e.g., nets (a) and (b) have the same transition labels:
{A, B, C, D, E} while (c) has a smaller set (without B) and (d) has a bigger
set (with F). However, models with similar labels can have completely different
behaviors (cf. (a) and (b) in Figure 1). Therefore, it is important to consider
causal dependencies and the ordering of activities, e.g., to distinguish between
parallelism and choice. Another approach could be to consider the state spaces
or sets of possible traces of both models. However, in that case the problems are
that there may be infinitely many traces/states and that certain paths are more
probable.

In this paper, we investigate these problems and propose a completely new
approach. The main idea is to compare two models relative to an event log con-
taining “typical behavior”. This solves several problems when comparing dif-
ferent models. Even models having infinitely many execution sequences can be
compared and automatically the relevance of each difference can be taken into
account. Moreover, as we will show, we can capture the moment of choice and
analyze causalities that may not be explicitly represented in the log.

To give some initial insights in our approach, consider the set of traces listed
in Figure 1(f). Each trace represents an execution sequence that may or may not
fit in the models at hand. Moreover, frequencies are given, e.g., in the event log
trace ABDE occurred 40 times, i.e., there were 40 process instances having this
behavior. Figure 1(f) represents some “typical behavior”. This may be obtained
using simulation of some model or it could be obtained by observing some real-
life system/process. All 160 traces fit into the first Petri net (cf. Figure 1(a)),
moreover, this Petri net does not allow for any execution sequences not present in
the log. In this paper, we will quantify a notion of fitness. However, our primary
objective is not to compare an event log and a process model, but to compare
models in the presence of some event log as shown in Figure 1(f). Compare for
example models (a) and (b): in a substantial number of cases (35) D precedes
B or C. If we compare (a) and (c) based on the log, we can see that for 55
cases there is a difference regarding the presence of B. We will show that we can
quantify these differences using the event log. It is important to note that we
do not only consider full traces, e.g., if we compare Figure 1(a) with a Petri net
where D is missing in the model, there is still some degree of similarity although
none of the traces still fits (they all contain D).

The remainder is organized as follows. After providing a brief overview of
related work, we introduce some preliminaries required to explain our approach.

132 W.M.P. van der Aalst, A.K.A. de Medeiros, and A.J.M.M. Weijters

Although we use Petri nets to illustrate our approach, any other process model
with some local execution semantics (e.g., EPCs, activity diagrams, BPMN, etc.)
could be used. In Section 4, we present two naive approaches (one based on the
static structure and one based on a direct comparison of all possible behaviors)
and discuss their limitations. Then, in Section 5 we present the core results of
this paper. We will show that we can define precision and recall measures using
event logs containing typical behavior. These notions have been implemented in
ProM [9]. Finally, we conclude the paper.

2 Overview of Various Equivalence Notations and
Related Work

In the literature, many equivalence notions have been defined for process models.
Most equivalence notions focus on the dynamics of the model and not on the
syntactical structure (e.g., trace equivalence and bisimulation [1,11,13]).

This paper uses Petri nets as a theoretical foundation [16]. In [15] an overview
is given of equivalence notions in the context of Petri nets. See also [5] for more
discussions on equivalence in the context of nets. Most authors translate a Petri
net to a transition system to give it semantics. However, there are also authors
that emphasize the true-concurrency aspects when giving Petri nets semantics.
For example, in [7] the well-known concept of occurrence nets (also named runs)
are used to reason about the semantics of Petri nets.

Any model with formal/executable semantics (including Petri nets) can be
translated to a (possibly infinite) transition system. If we consider transition
systems, many notions of equivalence have been identified. The weakest notion
considered is trace equivalence: two process models are considered equivalent
if the sets of traces they can execute are identical. Trace equivalence has two
problems: (1) the set of traces may be infinite and (2) trace equivalence does
not capture the moment of choice. The first problem can be addressed in various
ways (e.g., looking at finite sets of prefixes or comparing transition systems
rather than traces). The second problem requires stronger notions of equivalence.
Bisimulation and various kinds of observation equivalence [13] attempt to capture
the moment of choice. For example, there may be different processes having
identical sets of traces {ABC, ABD}, e.g., the process where the choice for C or
D is made after executing A or the process where the same choice is made only
after executing B. Branching bisimilarity [11] is a slightly finer equivalence notion
than the well-known observation equivalence [13]. A comparison of branching
bisimilarity, observation equivalence, and a few other equivalences on processes
with silent behavior can be found in [11]. Based on these equivalence relations
also other relations have been introduced, e.g., the four inheritance relations in
[1] are based on branching bisimilarity.

All references mentioned so far, aim at a “true/false” answer. Moreover, they
do not take into account that some parts of the process may be more important
than others. Few people (e.g., Prakash Panangaden and Jose Desharnais [8])
have been working on probabilistic bisimulation using labeled Markov processes

Process Equivalence: Comparing Two Process Models 133

rather than labeled transition systems. See [8] for an excellent overview of this
work and also links to the probability theory community working on metrics on
spaces of measures. In this paper, we use a different approach. We do not assume
that we know any probabilities. Instead we assume that we have some example
behavior than can serve as a basis for a comparison of two models. Also related is
the work on metric labeled transition systems where the “behavioral difference”
between states is a non-negative real number indicating the similarity between
those states [6]. This way one can define a behavioral pseudometric to compare
transition systems as shown in [6]. Note that this approach very much depends
on an explicit notion of states and it is not clear how this can be applied to a
practical, mainly activity oriented, setting.

As far as we know, this paper is the first to propose the use of “typical
behavior” recorded in event logs as an aid for comparison. This makes the work
quite different from the references mentioned in this section. Moreover, we show
that this can be used in the context of process mining [2,4].

3 Preliminaries

This section introduces some of the basic mathematical and Petri-net related
concepts used in the remainder.

3.1 Multi-sets, Sequences, and Matrices

Let A be a set. IB(A) = A → IN is the set of multi-sets (bags) over A, i.e.,
X ∈ IB(A) is a multi-set where for each a ∈ A: X(a) denotes the number of
times a is included in the multi-set. The sum of two multi-sets (X + Y), the
difference (X − Y), the presence of an element in a multi-set (x ∈ X), and
the notion of subset (X ≤ Y) are defined in a straightforward way and they
can handle a mixture of sets and multi-sets. The operators are also robust with
respect to the domains of the multi-sets, i.e., even if X and Y are defined on
different domains, X +Y , X −Y , and X ≤ Y are defined properly by extending
the domain where needed. |X | =

∑
a∈A X(a) is the size of some multi-set X

over A.
For a given set A, A∗ is the set of all finite sequences over A. A finite se-

quence over A of length n is a mapping σ ∈ {1, . . . , n} → A. Such a sequence is
represented by a string, i.e., σ = 〈a1, a2, . . . , an〉 where ai = σ(i) for 1 ≤ i ≤ n.
hd(σ, k) = 〈a1, a2, . . . , ak〉, i.e., the sequence of just the first k elements. Note
that hd(σ, 0) is the empty sequence.

Every multi-set can be represented as a vector, i.e., X ∈ IB(A) can be repre-
sented as a row vector (X(a1), X(a2), . . . , X(an)) where a1, a2, . . . ,an enumerate
the domain of X . (X(a1), X(a2), . . . , X(an))T denotes the corresponding column
vector (T transposes the vector). Assume X is an k × � matrix, i.e., a matrix
with k rows and � columns. A row vector can be seen as 1 × � matrix and a
column vector can be seen as a k × 1 vector. X(i, j) is the value of the element
in the ith row and the jth column. Let X be an k × � matrix and Y an � × m
matrix. The product X · Y is the product of X and Y yielding a k × m matrix,

134 W.M.P. van der Aalst, A.K.A. de Medeiros, and A.J.M.M. Weijters

where X · Y (i, j) =
∑

1≤q≤� X(i, q)Y (q, j). The sum of two matrices having the
same dimensions is denoted by X + Y .

For any sequence σ ∈ {1, . . . , n} → A over A, the Parikh vector −→σ maps every
element a of A onto the number of occurrences of a in σ, i.e., −→σ ∈ IB(A) where
for any a ∈ A: −→σ (a) =

∑
1≤i≤n if σ(i) = a then 1 else 0.

3.2 Petri Nets

This subsection briefly introduces some basic Petri net terminology [16] and
notations used in the remainder.

Definition 1 (Petri net). A Petri net is a triple (P, T, F). P is a finite set of
places, T is a finite set of transitions (P ∩ T = ∅), and F ⊆ (P × T) ∪ (T × P)
is a set of arcs (flow relation).

Figure 1 shows four Petri nets. Places are represented by circles and transitions
are represented by squares.

For any relation/directed graph G ⊆ A × A we define the preset •a = {a1 |
(a1, a) ∈ G} and postset a• = {a2 | (a, a2) ∈ G} for any node a ∈ A. We use
G• a or a

G• to explicitly indicate the context G if needed. Based on the flow
relation F we use this notation as follows. •t denotes the set of input places for
a transition t. The notations t•, •p and p• have similar meanings, e.g., p• is
the set of transitions sharing p as an input place. Note that we do not consider
multiple arcs from one node to another. In the Petri net shown Figure 1(d):
p5• = {E, F}, •p5 = {D}, A• = {p2, p3}, •A = {p1}, etc.

At any time a place contains zero or more tokens, drawn as black dots. The
state of the Petri net, often referred to as marking, is the distribution of to-
kens over its places, i.e., M ∈ IB(P). In each of the four Petri nets shown in
Figure 1 only one place is initially marked (p1). Note that more places could
be marked in the initial state and that places can be marked with multiple
tokens.

We use the standard firing rule, i.e., a transition t is said to be enabled if and
only if each input place p of t contains at least one token. An enabled transition
may fire, and if transition t fires, then t consumes one token from each input
place p of t and produces one token for each output place p of t. For example, in
Figure 1(a), A is enabled and firing A will result in the state marking place p2
and p3. In this state both B, C, and D are enabled. If B fires, C is disabled, but
D remains enabled. Similarly, if C fires, B is disabled, but D remains enabled,
etc. After firing 4 transitions in Figure 1(a) the resulting state marks p6 with
one token (independent of the order of B or C). In the following definition, we
formalize these notions.

Definition 2 (Firing rule). Let N = (P, T, F) be a Petri net and M ∈ IB(P)
be a marking.

– enabled(N, M) = {t ∈ T | M ≥ •t} is the set of enabled transitions,
– result(N, M, t) = (M − •t) + t• is the state resulting after firing t ∈ T ,

Process Equivalence: Comparing Two Process Models 135

– (N, M)[t〉(N, M ′) denotes that t is enabled in (N, M) (i.e., t ∈ enabled
(N, M)) and that firing t results in marking M ′ (i.e., M ′ = result(N, M, t)).

(N, M)[t〉(N, M ′) defines how a Petri net can move from one marking to another
by firing a transition. We can extend this notion to firing sequences. Suppose
σ = 〈t1, t2, . . . , tn〉 is a sequence of transitions present in some Petri net N with
initial marking M . (N, M)[σ〉(N, M ′) means that there is also a sequence of
markings 〈M0, M1, . . . , Mn〉 where M0 = M , Mn = M ′, and for any 0 ≤ i <
n: (N, Mi)[ti+1〉(N, Mi+1). Using this notation we define the set of reachable
markings R(N, M) as follows: R(N, M) = {M ′ ∈ IB(P) | ∃σ(N, M)[σ〉(N, M ′)}.
Note that M ∈ R(N, M) because M is reachable via the empty sequence.

Note that result(N, M, t) does not need to yield a multi-set if t is not enabled
in marking M because some places may have a negative number of tokens.
Although this is not allowed in a Petri net (only enabled transitions can fire),
for technical reasons it is sometimes convenient to use markings that may have
“negative tokens”. This becomes clear when considering the incidence matrix of
a Petri net.

Definition 3 (Incidence matrix). Let N = (P, T, F) be a Petri net and M ∈
IB(P) be a marking.

– Ñ is the incidence matrix of N , i.e., Ñ is a |P |×|T | matrix with Ñ(p, t) = 1
if (p, t) ∈ F and (t, p) ∈ F , Ñ(p, t) = −1 if (p, t) ∈ F and (t, p) ∈ F , and
Ñ(p, t) = 0 in all other cases,

– result(N, M, σ) = M + Ñ · −→σ is the state resulting after firing σ ∈ T ∗,1

– enabled(N, M, σ) = enabled(N, result(N, M, σ)) is the set of enabled transi-
tions after firing σ ∈ T ∗.

The incidence matrix of a Petri net can be used for different types of analysis,
e.g., based on Ñ it is possible to efficiently calculate place and transition invari-
ants and to provide minimal (but not sufficient) requirements for the reachability
of a marking. It is important to see that result(N, M, σ) does not need to yield a
valid marking, i.e., there may be a place p such that result(N, M, σ)(p) < 0 indi-
cating a negative number of tokens. If (N, M)[σ〉(N, M ′), then result(N, M, σ) =
M ′. However, the reverse does not need to be the case. enabled(N, M, σ) cal-
culates which transitions are enabled after firing each transition −→σ times using
function result and the earlier defined function enabled (cf. Definition 2). It may
be the case that while executing σ starting from (N, M), transitions were forced
to be fired although they were not enabled. As a result, places may get a neg-
ative number of tokens. The reason we need such concepts is because we will
later compare Petri nets with some observed behavior. In such situations, we
need to be able to deal with transitions that were observed even if they were not
enabled.
1 Note that σ does not need to be enabled, i.e., transitions are forced to fire even if

they are not enabled. Also note that we do not explicitly distinguish row and column
vectors.

136 W.M.P. van der Aalst, A.K.A. de Medeiros, and A.J.M.M. Weijters

4 Naive Approaches

In this paper we propose to compare two processes on the basis on some event log
containing typical behavior. However, before presenting this approach in detail,
we first discuss some naive approaches.

4.1 Equivalence of Processes Based on Their Structure

When humans compare process models they typically compare the graphical
structure, i.e., do the same activities (transitions in Petri net terms) appear in
both models and do they have similar connections. Clearly, the graphical struc-
ture may be misleading: two models that superficially appear similar may be very
different. Nevertheless, the graphical structure is an indicator that may be used
to quantify similarity. Let us abstract from the precise split and join behavior
(i.e., we do not distinguish between AND/XOR-splits/joins). In other words, we
derive a simple graph where each node represents an activity and each arc some
kind of connection. For example, the Petri net shown in Figure 1(a) is reduced to
a graph with nodes A, B, C, D and E, and arcs (A, B), (A, C), (A, D), (B, E),
(C, E) and (D, E). For the other Petri nets models in Figure 1 a similar graph
structure can be derived. It is easy to see that each of the four process models has
a different graph structure. However, there are many overlapping connections,
e.g., all models have arc (A, C). This suggests that from a structural point of
view the models are not equivalent but similar. When quantifying the overlap
relative to the whole model we can take the perspective of the first model or the
second model. This leads to the definition of precision and recall as specified
below.2

Definition 4 (Structural Precision and Recall). Let N1 = (P1, T1, F1) and
N2 = (P2, T2, F2) be two Petri nets. Using C1 = {(t1, t2) ∈ T1 × T1 |t1 N1• ∩ N1•
t2 = ∅} and C2 = {(t1, t2) ∈ T2 × T2 |t1 N2• ∩ N2• t2 = ∅}, we define:

precisionS(N1, N2) =
|C1 ∩ C2|

|C2| recallS(N1, N2) =
|C1 ∩ C2|

|C1|

precisionS(N1, N2) is the fraction of connections in N2 that also appear in N1. If
this value is 1, the precision is high because all connections in the second model
exist in the first model. recallS(N2, N1) is the fraction of connections in N1 that
also appear in N2. If this value is 1, the recall is high because all connections
in the first model appear in the second model. Note that here we think of N1

as the “original model” and N2 as some “new model” that we want to compare
with the original one.

Let Na, Nb, Nc, and Nd be the four Petri nets shown in Figure 1. precisionS

(Na, Nb) = 3
5 = 0.6. recallS(Na, Nb) = 3

6 = 0.5. Note that precisionS(N1, N2) =
recallS(N2, N1) by definition for any pair of Petri nets N1 and N2. Therefore,

2 These metrics are an adaptation of the precision and recall metrics in [14].

Process Equivalence: Comparing Two Process Models 137

we only list some precision values: precisionS(Na, Nb) = 0.6, precisionS(Na,
Nc) = 4/4 = 1.0, precisionS(Na, Nd) = 6/8 = 0.75, precisionS(Nb, Na) = 3/6 =
0.5, precisionS(Nb, Nc) = 2/4 = 0.5, precisionS(Nb, Nd) = 3/8 = 0.375, etc. If
we consider Na to be the initial model, then Nc has the best precision of the
other three models because all connections in Nc also appear in Na. Moreover,
if we consider Na to be the initial model, then Nd has the best recall because
all connections in Na also appear in Nd.

p6

(a) (b) (c) (d)

A

CB

D

p1

p2 p3

p5p4

p6

A

CB

D

p1

p2

p3

p4

A

CB

D

p1

p2 p3

p5p4

p7

A

CB

D

p1

p2 p3

p4

p5

A

Fig. 2. Although the connection structures of (a) and (b) are similar they are quite
different in terms of behavior. Moreover, the connection structure of (a) and (c) differs
while the corresponding behaviors are identical.

The precision and recall figures for the four process models in Figure 1 seem
reasonable. Unfortunately, models with nearly identical connections may be quite
different as is shown in Figure 2. Let Na, Nb, Nc, and Nd be the four Petri nets
shown in Figure 2.3 Although precisionS(Na, Nb) = recallS(Na, Nb) = 1, Na

and Nb are clearly different. In Na transitions B and C are executed concur-
rently while in Nb a choice is made between these two transitions. However,
although Na and Nc are structurally different (precisionS(Na, Nc) = 4/5 =
0.8), they have identical behaviors. These examples show that Definition 4 does
not provide a completely satisfactory answer when it comes to process equiv-
alence. Nevertheless, precisionS(N1, N2) and recallS(N1, N1) can be used as
rough indicators for selecting a similar model, e.g., in a repository of reference
models.

3 Note that strictly speaking Nd does not correspond to a Petri net as defined in
Definition 1, because there are two transitions A. However, it is easy to extend
Definition 1 to so-called labeled Petri nets where different transitions can have the
same label.

138 W.M.P. van der Aalst, A.K.A. de Medeiros, and A.J.M.M. Weijters

4.2 Equivalence of Processes Based on Their State Space or Traces

Since process models with a similar structure may have very different behaviors
and models with different structures can have similar behaviors, we now focus
on quantifying the equivalence of processes based on their actual behaviors. We
start with a rather naive approach where we define recall and precision based
on the full firing sequences of two marked Petri nets.

Definition 5 (Naive Behavioral Precision and Recall). Let N1 =
(P1, T1, F1) and N2 = (P2, T2, F2) be two Petri nets having initial markings
M1 and M2 respectively. Moreover, let the corresponding two sets of possible full
firing sequences be finite:
S1 = {σ ∈ T ∗

1 | ∃M ′∈IB(P1)
(N1, M1)[σ〉(N1, M

′) ∧ enabled(N1, M
′) = ∅} and

S2 = {σ ∈ T ∗
2 | ∃M ′∈IB(P2) (N2, M2)[σ〉(N2, M

′) ∧ enabled(N2, M
′) = ∅}.

precisionB((N1, M1), (N2, M2)) =
|S1 ∩ S2|

|S2|

recallB((N1, M1), (N2, M2)) =
|S1 ∩ S2|

|S1|

Clearly, the initial markings of N1 and N2 are highly relevant. However, if these
are clear from the context, we do not explicitly mention these, i.e., precisionB

(N1, N2) = precisionB((N1, M1), (N2, M2)) and recallB(N1, N2) = recallB((N1,
M1), (N2, M2)).

Let Na, Nb, Nc, and Nd be the four Petri nets shown in Figure 2 and Sa, Sb,
Sc, and Sd their corresponding full firing sequences. Sa = {〈A, B, C, D〉, 〈A, C, B,
D〉}, Sb = {〈A, B, D〉, 〈A, C, D〉}, Sc = Sa, and Sd = Sb. Hence, precisionB(Na,
Nb) = 0 and recallB(Na, Nb) = 0, i.e., the models are considered to be com-
pletely different because there are no identical full firing sequences possible in
both models. However, precisionB(Na, Nc) = 1 and recallB(Na, Nc) = 1 and
precisionB(Nb, Nd) = 1 and recallB(Nb, Nd) = 1.

We can also consider the four process models in Figure 1. The fourth model
(Nd) has an infinite set of full firing sequences. Therefore, we focus on the first
three models: Na, Nb, and Nc. Let us first compare Na and Nb: precisionB(Na, Nb)
= 2/2 = 1 and recallB(Na, Nb) = 2/4 = 0.5, i.e., all full firing sequences in
Nb are possible in Na but not the other way around. Although Nc differs from
Nb, the precision and recall values are identical when comparing with Na, i.e.,
precisionB(Na, Nc) = 1 and recallB(Na, Nc) = 0.5.

These examples show that Definition 5 provides another useful quantification
of equivalence quite different from Definition 4. However, also this quantification
has a number of problems:

1. The set of full firing sequences needs to be finite. This does not need to be
the case as is illustrated by the Petri net shown in Figure 1(d).

Process Equivalence: Comparing Two Process Models 139

2. The models need to be terminating, i.e., it should be possible to end in a
dead marking representing the completion of the process. Note that models
may have unintentional livelocks or are designed to be non-terminating. For
such models, we cannot apply Definition 5 in a meaningful way.

3. Definition 5 does not take into account differences in importance (i.e., fre-
quently visited parts of the model are probably more important). For ex-
ample, certain full firing sequences may have a very low probability in com-
parison to other sequences that occur more frequent. Clearly this should be
taken into account.

4. Fourth, Definition 5 appears to be too rigid, i.e., one difference in a full firing
sequence invalidates the entire sequence. In Figure 2 precisionB(Na, Nb) = 0
and recallB(Na, Nb) = 0 although both models always start with A and end
with D.

5. The moment of choice is not taken into account in Definition 5, i.e., essen-
tially trace equivalence is used as a criterion. Many authors [1,11,13] have
emphasized the importance of preserving the moment of choice by defining
notions such as observation equivalence, bisimilarity, branching/weak bisim-
ilarity, etc. To illustrate the importance of preserving the moment of choice,
consider Nb and Nd depicted in Figure 2. Although precisionB(Nb, Nd) = 1
and recallB(Nb, Nd) = 1, most environments will be able to distinguish both
processes. In Nb in Figure 2(b) there is no state where only B or just C is
enabled. However, such states exist in Nd in Figure 2(d), e.g., there can be
a token in p2 enabling only B. Suppose that B and C correspond to the
receipt of different messages sendt by some environment. In this case, Nd

potentially deadlocks, e.g., a message for B cannot be handled because the
system is waiting for C (i.e., p3 is marked). Such a deadlock is not possible
in Nb.

The problems listed above show that similarity metrics based on criteria directly
comparing all possible behaviors in terms of traces are of little use from a practi-
cal point of view. An alternative approach is to compare the state spaces rather
than the sets of traces. For example, trying to establish a bisimulation relation
where states are related in such a way that any move of one process model can
be followed by the other one and vice versa [1,11,13]. However, this would only
solve some of the problems listed above. Moreover, the notion of state often only
exists implicitly and it is very difficult to extend more refined equivalence no-
tions to include probabilities (cf. [6,8]). Therefore, we propose another approach
as presented in the next section.

5 Equivalence of Processes in the Context of Observed
Behavior

To overcome the problems highlighted so far, we propose an approach that uses
exemplary behavior to compare two models. This exemplary behavior can be
obtained on the basis of real process executions (in case the process already

140 W.M.P. van der Aalst, A.K.A. de Medeiros, and A.J.M.M. Weijters

exists), user-defined scenarios, or by simply simulating one of the two models
(or both). We assume this exemplary behavior to be recorded in an event log.

Definition 6 (Event log). An event log L is a multi-set of sequences on some
set of T , i.e., L ∈ IB(T ∗).

An event log can be considered as a multi-set of full firing sequences (cf. Defi-
nition 5). However, now these sequences may exist independent of some model
and the same sequence may occur multiple times.

Before comparing two process models using an event log, we first define the
notion of fitness. This notion is inspired by earlier work on genetic mining and
conformance checking [12,17].

Definition 7 (Fitness). Let (N, M) be a marked Petri net and let L ∈ IB(T ∗)
be a multi-set over T .4

fitness((N, M), L) =

(
∑

σ∈L

L(σ)
|σ| |{i ∈ {0, |σ| − 1} | σ(i + 1) ∈ enabled(N, M, hd(σ, i))}|)/|L|

fitness((N, M), L) yields a number between 0 and 1. Note that per sequence
σ ∈ L we calculate the number of times that a transition that was supposed
to fire according to σ was actually enabled. This is divided by |σ| to yield a
number between 0 and 1 per sequence. This number shows the “fit” of σ. This
is repeated for all σ ∈ L. Since the same sequence may appear multiple times
in L (i.e., L(σ) > 1), we multiply the result for σ with L(σ) and divide by
|L|. Definition 7 assumes that |L| > 0 and |σ| > 0. This is not a fundamental
restriction, if such strange cases occur (empty event log or an empty sequence),
then we can simply assume that 0/0 = 0.

As an example, consider the event log L shown in Figure 1(f) containing 160
traces. Clearly, fitness(Na, L) = 1 because all sequences in L can be reproduced
by Na.5 Moreover, fitness(Nb, L) = (40 + 85 + (15 ∗ 3/4) + (20 ∗ 3/4))/160 =
0.945, fitness(Nc, L) = ((40 ∗ 1/2) + 85 + (15 ∗ 1/2) + 20)/160 = 0.828, and
fitness(Nd, L) = 1. These examples show that Definition 7 matches our intuitive
understanding of fitness. It is important to note that transitions are “forced”
to fire even if they are not enabled, cf. Definition 3. Moreover, a particular se-
quence can be “partly fitting”, e.g., if we parse sequence 〈A, B, D, E〉 using
Nc in Figure 1(c), half of the sequence fits. When forcing the execution of
〈A, B, D, E〉 using Nc, A is initially enabled. However, B is not enabled and
does not even exist in the model. Nevertheless, in the resulting state D is still
enabled. However, after firing D, the last event in the sequence (E) is not en-
abled. Hence, only two of the four events in 〈A, B, D, E〉 are actually enabled,
4 Note that not all events in the log need to correspond to actual transitions. These

events are simply ignored, i.e., we assume enabled(N, M, σ) to be defined properly
even if not all transitions in σ actually appear in N .

5 Note that again we omit the initial marking if it is clear from the context, i.e.,
fitness(Na, L) = fitness((Na, [p1]), L).

Process Equivalence: Comparing Two Process Models 141

resulting in a fitness of 0.5. Note that it is better to look at individual events
rather than considering whole sequences like in Definition 5. Using Definition 7,
fitness(Nc, L) = 0.828. However, if we would focus on completely fitting se-
quences, fitness(Nc, L) = (0 + 85 + 0 + 20)/160 = 0.656, i.e., considerably lower
because partly fitting are ignored.

Inspired by the definition of fitness, we would like to compare two models on
the basis of a log. A straightforward extension of Definition 7 to two models
is to compare the overlap in fitting or partially fitting sequences. However, in
this case one only considers the actual behavior contained in the log. Therefore,
we go one step further and look at the enabled transitions in both models and
compare these, i.e., we do not just check whether an event in some sequence is
possible, but also take into account all enabled transitions at any point in the
sequence. This idea results in the following definition of precision and recall.

Definition 8 (Behavioral Precision and Recall). Let (N1, M1) and (N2,
M2) be marked Petri nets and let L ∈ IB(T ∗) be a multi-set over T .6

precision((N1, M1), (N2, M2), L) =

(
∑

σ∈L

L(σ)
|σ| (

|σ|−1∑

i=0

|enabled(N1, M1, hd(σ, i)) ∩ enabled(N2, M2, hd(σ, i))|
|enabled(N2, M2, hd(σ, i))|))/|L|

recall((N1, M1), (N2, M2), L) =

(
∑

σ∈L

L(σ)
|σ| (

|σ|−1∑

i=0

|enabled(N1, M1, hd(σ, i)) ∩ enabled(N2, M2, hd(σ, i))|
|enabled(N1, M1, hd(σ, i))|))/|L|

To explain the concept consider a log L = {(〈A, B, C, D〉, 2), (〈A, C, B, D〉, 1)}
and the first three Petri nets shown in Figure 2. precision(Na, Nb, L) = ((2/4 ∗
(1/1 + 2/2 + 0/1 + 1/1)) + (1/4 ∗ (1/1 + 2/2 + 0/1 + 1/1)))/3 = 0.75 and
recall(Na, Nb, L) = ((2/4 ∗ (1/1 + 2/2 + 0/1 + 1/1)) + (1/4 ∗ (1/1 + 2/2 + 0/1 +
1/1)))/3 = 0.75. precision(Na, Nc, L) = recall(Na, Nc, L) = 1.

We can also consider the four process models in Figure 1 with respect to
the logs shown in Figure 1(f). precision(Na, Nb, L) = ((40/4 ∗ (1/1 + 2/2 +
1/1 + 1/1)) + (85/4 ∗ (1/1 + 2/2 + 1/1 + 1/1)) + (15/4 ∗ (1/1 + 2/2 + 2/3 +
1/1)) + (20/4 ∗ (1/1 + 2/2 + 2/3 + 1/1)))/160 = 0.98 and recall(Na, Nb, L) =
((40/4 ∗ (1/1 + 2/3 + 1/1 + 1/1)) + (85/4 ∗ (1/1 + 2/3 + 1/1 + 1/1)) + (15/4 ∗
(1/1 + 2/3 + 2/2 + 1/1)) + (20/4 ∗ (1/1 + 2/3 + 2/2 + 1/1)))/160 = 0.92. Note
that both numbers would be lower if the sequences starting with 〈A, D, . . .〉
would be more frequent. Let us now compare Na and Nd in Figure 1 using L.
precision(Na, Nd, L) = ((40/4∗(1/1+3/3+1/1+1/2))+(85/4∗(1/1+3/3+1/1+
1/2))+(15/4∗(1/1+3/3+2/3+1/2))+(20/4∗(1/1+3/3+2/3+1/2)))/160 = 0.75

6 Note that the two denominators |enabled(N2, M2, hd(σ, i))| and |enabled(N1, M1,
hd(σ, i))| may evaluate to zero. In these case, the numerator is also zero. Again, we
assume in such cases that 0/0 = 0.

142 W.M.P. van der Aalst, A.K.A. de Medeiros, and A.J.M.M. Weijters

and recall(Na, Nd, L) = ((40/4∗(1/1+3/3+1/1+1/1))+(85/4∗(1/1+3/3+1/1+
1/1))+(15/4∗ (1/1+3/3+2/2+1/1))+(20/4∗ (1/1+3/3+2/2+1/1)))/160 =
1. Note that Nd allows for behavior not present in log L (i.e., executing F).
Nevertheless, as we can see from precision(Na, Nd, L) = 0.75, the enabling of F
is taken into account. It is also easy to see that Definition 8 takes into account the
moment of choice, i.e., the enabling of set of transitions is the basis of comparison
rather than the resulting sequences. Hence, we can distinguish Nb and Nd in
Figure 2.7

In Section 4.2 we listed five problems related to the use of Definition 5. It is
easy to see that Definition 8 addresses each of these problems:

1. Even models with an infinite set of firing sequences can be compared using
a finite, but representative, set of traces.

2. Models do not need to be terminating.
3. Differences between frequent and infrequent sequences can be taken into

account by selecting a representative log.
4. Partial fits are taken into account, i.e., small local differences do not result

in a complete “misfit”.
5. The moment of choice is taken into account because the focus is on enabling.

Given the attractive properties of the precision and recall metrics defined in
Definition 8, we have implemented these metrics in the ProM framework [9].8

Here it has been applied to a variety of process models. In particular the context
of genetic mining [3].

One the of critical success factors is the availability of some log L that can
serve as a basis for comparison. We propose to use existing event logs or to
generate artificial logs using simulation.

Existing logs can be extracted from information systems but can also be
obtained by manually describing some typical scenarios. It is important to re-
alize that today’s information systems are logging a wide variety of events. For
example, any user action is logged in ERP systems like SAP R/3, workflow
management systems like Staffware, and case handling systems like FLOWer.
Classical information systems have some centralized database for logging such
events (called transaction log or audit trail). Modern service-oriented architec-
tures record the interactions between web services (e.g., in the form of SOAP
messages). Moreover, today’s organizations are forced to log events by national
or international regulations (cf. the Sarbanes-Oxley (SOX) Act that is forcing
organizations to audit their processes).

An example application scenario where existing event logs are used is the
comparison of an existing process and a set of possible redesigns. For each of
the redesigns, we can measure the precision and recall taking an event log of the
existing information system as a starting point. First of all, the existing process

7 Note that Nd contains duplicate labels, i.e., two transitions with label A. However,
it is possible to extend Definition 8 and the resulting approach for such models.

8 ProM and the analysis plug-in implementing the precision and recall metrics can be
downloaded from www.processmining.org.

Process Equivalence: Comparing Two Process Models 143

can be compared with this event log using the fitness notion presented in this
section. This gives an indication of the quality of the initial model. Then, if the
quality is acceptable, each of the redesigns can be compared with the existing
process using this log.

Another approach would be to use simulation. This simulation could be based
on both models or just the initial model. Note that the generated logs do not need
to be complete, because Definition 8 also takes the enabling into account. It is
more important that the probabilities are taken into account, because differences
in the frequently visited parts of the model are of less importance than differences
in rarely visited parts of the model.

6 Conclusion

This paper presented a novel approach to compare process models. Existing
approaches typically do not quantify equivalence, i.e., models are equivalent or
not. However, for many practical applications such an approach is not very useful,
because in most real-life settings we want to distinguish between marginally
different processes and completely different processes. We have proposed and
implemented notions of fitness, precision, and recall in the context of the ProM
framework. The key differentiator is that these notions take an event log with
typical execution sequences as a starting point. This allows us to overcome many
of the problems associated with approaches directly comparing processes at the
model level. Although our approach is based on Petri nets, it can be applied to
other models with executable semantics, e.g., formalizations of EPCs, BPMN,
or UML activity diagrams.

Future work will focus on the application of the concepts and tools presented
in this paper. We have already applied the approach in the context of process
mining. Genetic algorithms have been evaluated using notions of precision and
recall [3]. However, these notions can be applied in a wide variety of situations,
e.g., to measure the difference between an organization specific process model
and a reference model, to select a web service that fits best based on some
description (e.g., PIPs or abstract BPEL), to compare medical guidelines, or to
compare an existing process model with some redesign.

References

1. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach
to Tackling Problems Related to Change. Theoretical Computer Science, 270
(1-2):125–203, 2002.

2. W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters. Genetic
Process Mining. In G. Ciardo and P. Darondeau, editors, Applications and Theory
of Petri Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages
48–69. Springer-Verlag, Berlin, 2005.

3. W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters. Process
Equivalence in the Context of Genetic Mining. BPM Center Report BPM-06-15,
BPMcenter.org, 2006.

144 W.M.P. van der Aalst, A.K.A. de Medeiros, and A.J.M.M. Weijters

4. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

5. E. Best and M.W. Shields. Some equivalence results for free choice nets and simple
nets, and on the periodicity of live free choice nets. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Proceedings of CAAP ’83, volume 159 of Lecture Notes in
Computer Science, pages 141–154. Springer-Verlag, Berlin, 1987.

6. F. van Breugel. A Behavioural Pseudometric for Metric Labelled Transition Sys-
tems. In 16th International Conference on Concurrency Theory (CONCUR 2005),
volume 3653 of Lecture Notes in Computer Science, pages 141–155. Springer-
Verlag, Berlin, 2005.

7. J. Desel. Validation of Process Models by Construction of Process Nets. In W.M.P.
van der Aalst, J. Desel, and A. Oberweis, editors, Business Process Management:
Models, Techniques, and Empirical Studies, volume 1806 of Lecture Notes in Com-
puter Science, pages 110–128. Springer-Verlag, Berlin, 2000.

8. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled
Markov processes. Theoretical Computer Science, 318(3):323–354, 2004.

9. B. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A New Era in Process Mining Tool
Support. In G. Ciardo and P. Darondeau, editors, Application and Theory of Petri
Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages 444–454.
Springer-Verlag, Berlin, 2005.

10. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology. Wiley
& Sons, 2005.

11. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisim-
ulation Semantics. Journal of the ACM, 43(3):555–600, 1996.

12. A.K.A. de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic Pro-
cess Mining: A Basic Approach and its Challenges. In C. Bussler et al., editor,
BPM 2005 Workshops (Workshop on Business Process Intelligence), volume 3812
of Lecture Notes in Computer Science, pages 203–215. Springer-Verlag, Berlin,
2006.

13. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1980.

14. S.S. Pinter and M. Golani. Discovering Workflow Models from Activities Lifespans.
Computers in Industry, 53(3):283–296, 2004.

15. L. Pomello, G. Rozenberg, and C. Simone. A Survey of Equivalence Notions of
Net Based Systems. In G. Rozenberg, editor, Advances in Petri Nets 1992, volume
609 of Lecture Notes in Computer Science, pages 420–472. Springer-Verlag, Berlin,
1992.

16. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

17. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In C. Bussler et al., editor,
BPM 2005 Workshops (Workshop on Business Process Intelligence), volume 3812
of Lecture Notes in Computer Science, pages 163–176. Springer-Verlag, Berlin,
2006.

Investigations on Soundness

Regarding Lazy Activities

Frank Puhlmann and Mathias Weske

Business Process Technology Group
Hasso-Plattner-Institute for IT Systems Engineering

at the University of Potsdam
D-14482 Potsdam, Germany

{puhlmann, weske}@hpi.uni-potsdam.de

Abstract. Current approaches for proving the correctness of business
processes focus on either soundness, weak soundness, or relaxed sound-
ness. Soundness states that each activity should be on a path from the
initial to the final activity, that after the final activity has been reached
no other activities should become active, and that there are no unreach-
able activities. Relaxed soundness softens soundness by stating that each
activity should be able to participate in the business process, whereas
weak soundness allows unreachable activities. However, all these kinds
of soundness are not satisfactory for processes containing discriminator,
n-out-of-m-join or multiple instances without synchronization patterns
that can leave running (lazy) activities behind. As these patterns occur
in interacting business processes, we propose a solution based on lazy
soundness. We utilize the π-calculus to discuss and implement reasoning
on lazy soundness.

1 Introduction

Business Process Management (BPM) aims at designing, enacting, managing,
analyzing, and adapting business processes [1]. A key technology for implement-
ing BPM systems are service-oriented architectures (SOA). These aim at sup-
porting business processes within and between companies [2]. However, they also
increase the complexity to be modeled, especially regarding interacting business
processes. Thus, special care has to be taken during the design phase to avoid
errors leading to deadlocks or livelocks. The former leads to processes stopping
execution and interaction with their environment, whereas the latter might con-
tinue working but the process is never finished. Three major approaches for
analyzing the correctness of business processes have been published: Soundness
[3], Relaxed Soundness [4], and Weak Soundness [5]. All three approaches op-
erate on a special type of business processes, called workflow nets [6] but they
can be adapted to graph-based approaches like BPMN, EPC, or UML Activity
Diagrams.

However, soundness, relaxed soundness, and weak soundness are not satisfac-
tory for processes containing discriminator, n-out-of-m-join or multiple instances

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 145–160, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

146 F. Puhlmann and M. Weske

without synchronization patterns. These patterns are required in interacting
business processes for representing interaction patterns [7], as Racing Incoming
Messages (discriminator), One to many Send/Receive (n-out-of-m-join) or exe-
cute secondary tasks (multiple instances without synchronization). All of these
patterns can leave activities behind that are or can become active after the final
activity has been reached. Thereby, all processes containing these patterns are
not sound per definition (i.e. in terms of Petri nets they leave tokens in the net).
One example is a business process where three experts are asked to write an ex-
pertise each. The process can continue after two expertises have been received.
Only in certain cases a follow up activity has to wait for all three expertises
to continue, e.g. if the first two expertises are very different. As the experts
need different time for responding, the business process could have been already
finished while the last expert is still writing her expertise. However, all three ex-
perts have to be paid after delivering their work. In this case, there is a clean-up
or lazy-activitiy remaining (pay the last expert) that does in certain cases not
directly contribute to the successful execution of the business process, but is an
integral part of it.

Nevertheless, the given example might be relaxed sound. Relaxed sound pro-
cesses, in turn, might contain deadlocks or livelocks that should be avoided.
Weak soundness in contrast allows no activities to be active after the final activ-
ity has been reached. To overcome the limitations of soundness and weak sound-
ness regarding these patterns, and to go beyond relaxed soundness by proving
deadlock and livelock freedom, we propose a solution based on lazy soundness.
Lazy soundness will be derived, discussed and implemented based on business
processes formalized in the π-calculus, thus extending our prior work [8].

The paper is structured as follows. We first extend our motivation and discuss
related work, followed by the preliminaries required for formal process represen-
tation and analysis. The main part introduces lazy soundness for formalized
business processes, also including a running example. A tool support section
shows how the theoretical results can be applied practically and also takes a
look at performance. The paper concludes with an outlook of future work.

2 Motivation and Related Work

During our research on soundness for business processes defined in the π-calculus
[9], a process algebra that can formally represent all Workflow patterns [8] as
originally described in [10], we analyzed the soundness of discriminator, n-out-
of-m-join and multiple instances without synchronization patterns (denoted as
critical patterns in the remainder). These patterns can leave activities behind
that are or can become active after the final activity has been reached. Sound-
ness, in contrast, states that no activities are or can become active after a final
activity has been reached. Thus, all processes containing these patterns are not
sound per definition.

We investigated weak and relaxed soundness for supporting the critical pat-
terns [4,5]. Relaxed soundness indeed supports the patterns but relaxed sound

Investigations on Soundness Regarding Lazy Activities 147

Lazy
Sound

Relaxed
SoundWeak

Sound
Sound

Fig. 1. A classification for different kinds of soundness

processes might contain livelocks and deadlocks. Weak soundness proves pro-
cesses to be free of locks, but also forces all activities to finish before the fi-
nal one. Thus, it does not support the critical patterns. To overcome these
limitations we propose lazy soundness, complementing relaxed soundness by
covering livelocks and deadlocks, and extending weak soundness by allowing
activities to become active after the final activity has been reached. Unreach-
able activities are not covered. However, by combining relaxed and lazy sound-
ness we can prove processes to be free of deadlocks, livelocks, and dead
activities.

Figure 1 gives a classification of the different kinds of soundness. Lazy sound-
ness states that if an activity is reachable from the initial activity, then the
final activity is always reachable from this activity. (guarantees deadlock and
livelock freedom). Furthermore, the final activity will only be reached once to
denote the successful execution of the business process. Clean-up or so called
lazy-activities might still be or become active. Relaxed soundness states that
all activities of a business process participate in it (dead activity freedom). A
relaxed sound process might contain deadlocks or livelocks. Weak soundness is
a subset of lazy soundness by prohibiting lazy-activities, but still permitting
dead activities. The rules for soundness are fullfilled by the intersection of weak
and relaxed soundness, representing deadlock, livelock, and dead activity free
processes without lazy activities. The intersection of relaxed and lazy soundness
without soundness will not be investigated in this paper. Nevertheless, it offers
interesting properties.

An important piece of related work is YAWL [11]. YAWL claims to support
all workflow patterns, but actually redefines some of them to fit the YAWL
semantics. Actually, the semantics of the critical workflow patterns has been
changed.1 A YAWL discriminator cancels all other tasks before the discrimina-
tor. A YAWL n-out-of-m-join only joins instances of the same activity, using a
multiple instance pattern. Finally, a multiple instances without synchronization
task has to be joined by an OR-join. All three solutions contradict the original
workflow patterns but allow a YAWL net to be sound. In [12], an approach of
reasoning in YAWL focusing on relaxed soundness is introduced, i.e. it requires
all activities of a business process to be on a path from the initial to the final
activity. However, this kind of reasoning also allows deadlocks and livelocks in
the process, which is too relaxed regarding formal analysis. Lazy soundness, in
contrast, is based on π-calculus formalizations of the workflow pattern [8], that

1 See http://www.yawl.fit.qut.edu.au/about/patterns/ for details.

148 F. Puhlmann and M. Weske

capture the original semantics of the critical patterns, as these is required for
interacting business processes and even special cases of traditional ones.

3 Preliminaries

This section introduces the π-calculus and the representation of business pro-
cesses in it. Our motivation on using the π-calculus rather than other formalisms
like Petri nets is discussed in [13].

3.1 The π-Calculus

The π-calculus is an algebra for the formal description and analysis of concurrent,
interacting processes with support for link passing mobility. It is based on names
and interactions used by processes defined according to [14].

Definition 1 (Pi Calculus). The syntax of the π-calculus is given by:

P ::= M | P |P ′ | vzP | !P
M ::= 0 | π.P | M + M ′

π ::= x〈ỹ〉 | x(z̃) | τ | [x = y]π .

The informal semantics is as follows: P |P ′ is the concurrent execution of P and
P ′, vzP is the restriction of the scope of the name z to P , and !P is an infinite
number of copies of P . 0 is inaction, a process that can do nothing, M + M ′

is the exclusive choice between M and M ′. The output prefix x〈ỹ〉.P sends a
sequence of names ỹ over the co-name x and then continues as P . The input
prefix x(z̃) receives a sequence of names over the name x and then continues
as P with z̃ replaced by the received names (written as { ˜name/z̃}). Matching
input and output prefixes might communicate, leading to an interaction. The
unobservable prefix τ.P expresses an internal action of the process, and the
match prefix [x = y]π.P behaves as π.P , if x is equal to y.

Throughout this paper, upper case letters are used for process identifiers and
lower case letters for names. Furthermore defined processes from the original
paper on the π-calculus are used for parametric recursion, that is A(y1, ..., yn)
[9]. The formal semantics of the π-calculus is based on transition systems. We
only give short definitions of the required concepts and refer to [14,15] for details.

Definition 2 (Transition Sequence). A sequence of interactions on names
or unobservable actions is denoted as P

α−→ P ′, where α describes the sequence
of actions required to transform a process P to P ′. �

Definition 3 (Context). A context is a process term with a hole, denoted as
[·]. The hole can be filled with a process other than 0. �

We write C[P] for a context C with [·] replaced by P. The replacement is literal,
which means that names free in P may be bound in C[P]. For example, let
C = vx(xa.0 | [·]), then C[x(y).0] = vx(xa.0 | x(y).0).

Investigations on Soundness Regarding Lazy Activities 149

Definition 4 (Observability Predicate). Observability predicate ↓μ on
names or co-names μ is defined by:

1. P ↓x if P can perform an input action with subject x and
2. P ↓x if P can perform an output action with subject x. �

The observables of a processes are then the free (unrestricted) names it can

use for receiving and sending. For example, P
def
= vz(!xz.0 | vz(wa.0 | w(v).0 +

y(u).0))), contains P ↓y and P ↓x as the observables of P .

Definition 5 (Weak Open Bisimulation Equivalence). Informally, two π-
calculus processes P and Q are weak open bisimulation equivalent if they have
the same observable behavior regarding the observability predicates ↓s̃. �
Thus, regarding weak open bisimulation, we abstract from all other internal
actions. Formal details can be found in [15].

3.2 Business Process Patterns in the Pi-Calculus

Business processes in the π-calculus have been introduced in [8], by giving a col-
lection of all workflow patterns [10] in their respective π-calculus formalization.
An additional pattern common in interacting business processes, called Event-
based Rerouting, has been presented in [16]. All pattern representations are based
on events rather then states. A π-calculus process representing an activity waits
for its required events (preconditions), does some internal action (functional
part), and thereafter generates new events (postconditions). A business process
formalized in the π-calculus consists of π-calculus processes representing different
workflow patterns and a set of names, used for representing events.

During our investigations on lazy soundness, some pattern formalizations from
[8] had to be refined since their original definitions are erroneous under certain
circumstances.

Deferred Choice. As the π-calculus supports no transactional transitions, we
need to make the choices in the preceding process to support loop behavior:

A = τA.(benv.b.0 + cenv.c.0) B = b.τB .B′ c.τC .C′ .

MI without Synchronization. B has to continue immediately, however instances
of B may still be active. This formalization gives a more applicable semantics
to the pattern while still corresponding to [10]:

A = τA.b.0 B = b.((
n∏

i=1

τB .0) | B′) .

Cancel Activity. Cancel activity has to accept a cancel event even after the
functional part τ has been executed to provide correct routing:

A =a.envA(test1).[test1 = ⊥].τA.envA(test2).[test2 = ⊥].A′

EA =envA〈⊥〉.EA + envA〈�〉.EA′ .

150 F. Puhlmann and M. Weske

A

B

C

2

N1 N2

N3

N4

N5

N6 N7 N8

e1

e2

e3

e4

e5

e6

e7

e8 e9
D

3

Fig. 2. A process containing a N-out-of-M-Join and a Multiple Instances without Syn-
chronization pattern

4 Process Graphs

This section defines how business processes are formalized in terms of set theory
and process algebra. It grounds structural correctness, that in turn is required
for behavioral analysis discussed later on.

4.1 Structure

We start with the definitions of a Process Graph, a data structure that represents
the behavioral aspects of a business process. Process graphs provide us with
a uniform semi–formal representation of business processes regardless of their
actual notations.

Definition 6 (Process Graph). A process graph is a four-tuple consisting of
nodes, directed edges, types and attributes. Formally: P = (N, E, T, A) with

– N is a finite, non-empty set of nodes.
– E ⊆ (N × N) is a set of directed edges.
– T : N → 2TY PE is a function mapping nodes to types.
– A : N → KEY ×V ALUE is a function mapping key/value pairs to nodes.�

The nodes N of a process graph define the activities of a process, and the directed
edges E define dependencies between activities. Each node can have none, one,
or more types assigned by the function T . Furthermore, each node can hold
optional attributes represented by key/values pairs assigned by the function A.
Sub-Processes are represented by a node N of the special type Reference, that
references another process graph, i.e. T (N) = {Reference}. As such composed
process graphs can always be flattened, we only consider flat process graphs.
Some additional functions for accessing the sets of a process graph are given
by:

– source : E → N returns the source node of a directed edge.
– target : E → N returns the target node of a directed edge.
– type : N → T returns the types of a node (same as T (N)).

To show the coherence between a process graph and a graphical notation, we give
an example of how to map the structurally relevant parts of a business process

Investigations on Soundness Regarding Lazy Activities 151

to a process graph. We consider business processes given as a Business Process
Diagram (BPD) of the Business Process Modeling Notation (BPMN) [17]. Other
graph-based notations like EPCs or UML2 Activity Diagrams can be mapped
in a similar manner.

Example 1 (Partly Mapping of a BPD to a Process Graph). A BPD is exemplary
mapped to a process graph P = (N, E, T, A) by the following steps:

1. N is given by all flow object of the BPD.
2. E is given by all sequence flows of the BPD.
3. T is given by the corresponding types of the flow objects.
4. A is given by additional attributes of flow objects, e.g.:

(a) The number of incoming sequence flows for an n-out-of-m-join node;
(b) The number of instances to be created for an activity;
(c) The nodes to be canceled for a cancel event. �

An actual example of a business process modeled in BPMN is given in Figure 2.
The process contains a n-out-of-m-join pattern, modeled by a gateway with the
number of required sequence flows inside, as well as a multiple instances without
synchronization pattern, modeled by activity D. The activities A, B, and C
can represent sub-processes for contacting three different experts for writing
an expertise. After two of them are ready, the process continues. However, some
cleanup work is left for the remaining activity, e.g. receiving the last expertise and
paying the expert. Although this does not directly contribute to the process, it is
still required. Activity D send the accepted expertises to three different involved
persons. This is again a lazy activity, as the business process can actually finish,
even while the documents are actually in delivery. The complete business process
diagram is mapped to a process graph according to the mapping rules given in
Example 1.

Example 2 (Expertise Process). The process graph P = (N, E, T, A) of the ex-
ample from Figure 2 is given by:

1. N = {N1, N2, N3, N4, N5, N6, N7, N8}
2. E = { (N1, N2), (N2, N3), (N2, N4), (N2, N5), (N3, N6), (N4, N6),

(N5, N6), (N6, N7), (N7, N8) }
3. T = {(N1, StartEvent), (N2, ANDGateway), (N3, T ask), (N4, T ask),

(N5, T ask), (N6, N -out-of -M -Join), (N7, MIwithoutSync),
(N8, EndEvent)}

4. A = {(N6, (continue, 2)), (N7, (count, 3))} �

4.2 Semantics

We now give formal semantics to a process graph by mapping it to π-calculus
processes according to the following algorithm.

Algorithm 1 (Mapping Process Graphs to π-Calculus Processes). A
process graph P = (PN , PE , PT , PA) is mapped to π-calculus processes as follows:

152 F. Puhlmann and M. Weske

1. Assign all nodes of P an unique π-calculus process identifier N1 · · ·N |PN |.
2. Assign all edges of P an unique π-calculus name e1 · · · e|PE |.
3. Define the π-calculus processes according to the behavioral patterns found in

[8,16] as given by the type of the corresponding node. Take care of recursive
definitions for supporting loop behavior, under the restrictions that:
(a) All processes representing a node with no incoming edges do not support

re-execution, and
(b) All processes representing a node with no outgoing edges support re-

execution by recursion.
4. Replace each functional part τ of the behavioral patterns mapped before

with [·], thus constructing a context of each node.
5. Define a global process N = (ve1, · · · , e|PE |)

∏|PN |
i=1 Ni. This process can

contain further components or restricted names according to the contained
patterns. �

A node of a process graph is executed if the context of the corresponding π-
calculus process is reached. We can now map the process graph from Example
2 to π-calculus processes.

Example 3 (π-calculus Process for Expertise Process).

Tasks : N3 = e2.[·].(e5.0 | N3) , N4 = e3.[·].(e6.0 | N4)

N5 = e4.[·].(e7.0 | N5)

ANDGateway : N2 = e1.[·].(N2 | e2.0 | e3.0 | e4.0)
N -out-of -M -Join : N6 = (vh, run)(N61 | N62)

N61 = e5.h.0 | e6.h.0 | e7.h.0

N62 = h.h.run.h.N6 | run.[·].e8.0
MIwithoutSync : N7 = e8.([·].0 | [·].0 | [·].0 | e9.0 | N7)

StartEvent : N1 = [·].e1.0
EndEvent : N8 = e9.[·].N8

Global : N = (ve1, · · · , e9)
8∏

i=1

Ni

A task waits for preconditions (the incoming edges), executes the functional per-
spective abstracted by a context, and generates postconditions (i.e. co-names).
Although not required for the example, the processes use recursion to support
loop behavior. Note that a BPMN AND Gateway combines two patterns, paral-
lel split and synchronization, into one node. The process N1 representing a Start
Event does not support re-execution by recursion. If a whole process should be
executed another time, a new instance of it has to be created. �

5 Structural and Lazy Soundness

This section introduces correctness criteria for process graphs. We distinguish
between structural and behavioral criteria. The former is denoted by structural

Investigations on Soundness Regarding Lazy Activities 153

soundness, whereas the latter is given by soundness, relaxed soundness, and lazy
soundness. We focus on lazy soundness in this paper, although weak soundness
can be defined and proved in a similar manner.

5.1 Structural Soundness

Structural soundness for process graphs is based on the concepts introduced in
the following paragraphs.

Definition 7 (Path). A path in a process graph P = (N, E, T, A) is a sequence
of directed edges leading from one node to another. Formally, a path ε from n1

to n2 is written as: n1
ε→ n2 with n1, n2 ∈ N and ε ∈ E∗, where we allow an

empty sequence. An arbitrary path from n1 to n2 is denoted as n1
∗→ n2. �

Definition 8 (Reachability). A node of a process graph P = (N, E, T, A)
is reachable from another node if and only if there exist a path leading from
the first to the second node. Formally: n2 ∈ N is reachable from n1 ∈ N , iff
∃ε ∈ E∗ : n1

ε→ n2. �

Definition 9 (Defined Process Graph). A process graph P = (N, E, T, A)
is defined if and only if there is exactly one node of the type Initial Node, denoted
as Ni, that is not the target of any edge and exactly one node of the type Final
Node, denoted as No, that is not the source of any edge. Formally: ∃n ∈ N :
InitialNode ∈ type(n)∧ ∀n1, n2 ∈ N : InitialNode ∈ type(n1) ∧ InitialNode ∈
type(n2) ⇒ n1 = n2 and ∃n ∈ N : FinalNode ∈ type(n) ∧ ∀n1, n2 ∈ N :
FinalNode ∈ type(n1) ∧ InitialNode ∈ type(n2) ⇒ n1 = n2. Furthermore:
∀n ∈ N : InitialNode ∈ type(n) ⇒ �e ∈ E : target(e) = n and ∀n ∈ N :
FinalNode ∈ type(n) ⇒ �e ∈ E : source(e) = n. �

Definition 10 (Strongly Connected Process Graph). A defined process
graph P = (N, E, T, A) is strongly connected, if and only if for all nodes exists
a path from the initial to the final node. Formally: ∀n ∈ N with Ni

∗→ n ⇒ n
∗→

No �

This definition is in contrast to common definitions of a strongly connected
directed graph, e.g. by Knuth [18]. We do not require a graph to be short circuited
for analysis.

Lemma 1. PMIN (N, E, T, A) = ({N1}, ∅, {(N1, InitialNode), (N1, F inal
Node)}, ∅) is the smallest strongly connected process graph.

Proof (Lemma 1). Direct proof. PMIN (N, E, T, A) is strongly connected as it is
defined by exactly one initial and final node, and the only node lies on an (empty)
path from the initial to the final node. Formally: ∃n1 ∈ N : InitialNode ∈
type(n1) ∧ ∃n2 ∈ N : FinalNode ∈ type(n2). ∀n1, n2 ∈ N : n1

∅→ n2. All
components of PMIN have the lowest possible count of elements for a strongly
connected process graph. Formally: |PMIN (N, E, T, A)| = (1, 0, 2, 0) following
from Definition 6 and 9. �

154 F. Puhlmann and M. Weske

Definition 11 (Structural Sound). A process graph P = (N, E, T, A) is
structural sound if and only if:

1. There is exactly one initial node Ni ∈ N .
2. There is exactly one final node No ∈ N .
3. Every node is on a path from Ni to No. �

Structural soundness for process graphs adapts the definition of a workflow net
as a special kind of Petri net introduced in [6].

Lemma 2. A strongly connected process graph is structural sound.

Proof (Lemma2). Direct proof. Criterion 1 and 2 from Definition 11 are fulfilled,
as a strongly connected process graph is defined. Criterion 3 follows directly from
Definition 10. �
Lemma 3. PMIN (N, E, T, A) is structural sound.

Proof (Lemma 3). Follows directly from Lemma 1. �

Algorithm 2 (Deciding Structural Soundness). We describe an algorithm
for deciding structural soundness of a process graph P (N, E, T, A):

1. Check if P is defined, i.e. has exactly one initial and exactly one final node
(see Definition 9).

2. Check if P is strongly connected, i.e. if every node is on a path from the
initial to the final node (see Definition 10). �

5.2 Lazy Soundness

Lazy soundness extends structural soundness by taking the semantics of the
process nodes into account. Therefore it considers the π-calculus representation
of a process graph, which includes semantics for the types of the process nodes.
Lazy soundness states that there are no livelocks or deadlocks in the process
graph regarding the semantics of the nodes. Furthermore, the final node will be
executed exactly once, while other nodes representing activities can still be or
become executed. However, they must not trigger the final node again. To define
lazy soundness, we need the definition of semantic reachability, i.e. if a node lies
on a path from the initial to the final node according to the semantics of all
nodes.

Definition 12 (Semantic Reachability). A node of a process graph P =
(N, E, T, A) is semantically reachable from another node if and only if there
exists a path leading from the first to the second node according to the semantics
of all nodes. �
Regarding the mapping of a π-calculus process from a process graph, a π-calculus
process representing a node is semantically reachable from another π-calculus
process representing a node, if and only if there exists a transition sequence from
the functional abstraction τ of the first process to the functional abstraction τ
of the second process. Lazy soundness is then defined as follows.

Investigations on Soundness Regarding Lazy Activities 155

Definition 13 (Lazy Sound). A structural sound process graph P = (N, E, T,
A) is lazy sound if it represents a business process that is deadlock free and
livelock free, as long as the final node has not been reached. Once the final node
has been reached, other nodes might still be executed, however the final node is
not enacted again. Formally:

1. The final node No must be semantically reachable from every node n ∈ N
semantically reachable from the initial node Ni until No has been reached for
the first time.

2. The final node No is reached exactly once. �

To be able to trace the transition sequences required for semantics reachability,
we annotate the π-calculus mapping of a process graph with two observability
predicates ↓i, and ↓o. Using these predicates, we can observe the execution of
the initial activity by ↓i, and the final activity by ↓o.

Algorithm 3 (Lazy Soundness Annotated π-calculus Process). To
annotate a π-calculus process representing a process graph for reasoning on lazy
soundness, we need to fill the holes, i.e. [·] ,of the process definitions with:

– τ , if the the corresponding process graph node has incoming and outgoing
edges,

– i.τ , if the corresponding process graph node has only outgoing edges,
– τ.o, if the corresponding process graph node has only incoming edges, and
– i.τ.o if the corresponding process graph node has no incoming or outgoing

edges. �

An example can be found in Example 4. Due to the fact of being able to observe
the initial and the final activity, we can prove lazy soundness for process graphs.
Thus, for every activity reachable after the initial activity has been observed,
we must always be able to observe the final activity exactly once if the process
graph if lazy sound. If we observe the final activity more then once or never at
all, the process graph contains a deadlock or livelock. We derive this theorem
by constructing the smallest lazy soundness annotated π-calculus mapping of a
process graph and prove it to be lazy sound.

Lemma 4. SLAZY = i.τ.o.0 with the observability predicates ↓i and ↓o is the
smallest lazy soundness annotated π-calculus mapping of a process graph satis-
fying lazy soundness.

Proof (Lemma 4). The proof consists of two parts. We first show that SLAZY is
the smallest lazy soundness annotated π-calculus of PMIN . Secondly, we prove
that SLAZY is lazy sound by constructing all transitions.

1. Direct proof. SLAZY is the smallest lazy soundness annotated π-calculus
mapping of PMIN . It has exactly one node denoted by τ and no pre- or
postconditions. The initial node is exactly the final node, denoted by i before
and o after τ .

156 F. Puhlmann and M. Weske

2. Direct proof. Lazy soundness for SLAZY is proved by constructing all transi-
tions: i.τ.o.0 i→ τ.o.0 τ→ o.0 o→ 0. The transition trace proves that the initial
node is always executed once (observability predicate ↓i), all possible transi-
tions are executed thereafter (one τ -transition), and eventually the final node
is executed (observability predicate ↓o) before SLAZY reaches inaction. �

Now we are ready to introduce the theorem for proving lazy soundness on struc-
tural sound process graphs mapped to a lazy sound π-calculus representation.

Theorem 1. Each structural sound process graph P more complex then PMIN

is mapped to a lazy soundness annotated π-calculus process D, so that D ∼o
i,o

SLAZY if and only if P is lazy sound. �

Proof (Theorem 1). Direct proof. Each structural sound process graph more
complex then PMIN is mapped to a lazy soundness annotated π-calculus pro-
cess D with ↓i as the observability predicate of the initial node and ↓o as the
observability predicate of the final node. The observability predicates are thus the
invariants of the π-calculus processes. If a lazy soundness annotated π-calculus
process D ∼o

i,o SLAZY , the corresponding process graph P of D must then be
lazy sound. �

Algorithm 4 (Deciding Lazy Soundness). We describe an algorithm
for deciding lazy soundness of a structural sound process graph mapped to π-
calculus processes.

1. Map the structural sound process graph to π-calculus processes, following
Algorithm 1.

2. Annotate the π-calculus processes for lazy soundness, following Algorithm
3.

3. Check the annotated definition for weak open bisimulation equivalence with
SLAZY concerning ↓i and ↓o. �

This algorithm has already been implemented and will be discussed in the next
section.

6 Tool Support and Discussion

This section evaluates how the theoretical results achieved can be applied and
verified using existing tools such as Mobility Workbench (MWB), Advanced
Bisimulation Checker (ABC), or Open Bisimulation Checker (OBC) for deciding
weak open bisimulation equivalence on π-calculus processes [19,20,21].

6.1 Tool Integration

To be able to integrate these tools into our theoretical framework, we have
created a tool chain consisting of several scripts. The first script is written in

Investigations on Soundness Regarding Lazy Activities 157

AppleScript and exports a graphical BPMN business process diagram from Om-
niGraffle2 to a process graph. We had to use a slightly modified BPMN notation
to support all workflow pattern, as can been see in Figure 2 were we introduced
an n-out-of-m-gateway. We created Ruby scripts for deciding structural sound-
ness of process graphs, as well as mapping process graphs to lazy and weak
soundness annotated π-calculus processes. The generated π-calculus processes
are then used as input to the tools MWB and ABC for deciding lazy or weak
soundness. We illustrate lazy soundness by example in the corresponding input
style for MWB or ABC:

Example 4 (Lazy Soundness annotated π-calculus process of Example 3 for Tool
Analysis).
agent N8(e9,o)=e9.t.’o.N8(e9,o)
agent N7(e8,e9)=e8.(t.0 | t.0 | t.0 | ’e9.0 | N7(e8,e9))
agent N6(e5,e6,e7,e8)=(^h,run)(N6_1(e5,e6,e7,e8,h,run) | N6_2(e5,e6,e7,e8,h,run))
agent N6_1(e5,e6,e7,e8,h,run)=e5.’h.0 | e6.’h.0 | e7.’h.0
agent N6_2(e5,e6,e7,e8,h,run)=h.h.’run.h.N6(e5,e6,e7,e8) | run.t.’e8.0
agent N5(e4,e7)=e4.t.(’e7.0 | N5(e4,e7))
agent N4(e3,e6)=e3.t.(’e6.0 | N4(e3,e6))
agent N3(e2,e5)=e2.t.(’e5.0 | N3(e2,e5))
agent N2(e1,e2,e3,e4)=e1.t.(N2(e1,e2,e3,e4) | ’e2.0 | ’e3.0 | ’e4.0)
agent N1(e1,i)=i.t.’e1.0
agent N(i,o)=(^e1,e2,e3,e4,e5,e6,e7,e8,e9)(N8(e9,o) | N7(e8,e9) | N6(e5,e6,e7,e8) |

N5(e4,e7) | N4(e3,e6) | N3(e2,e5) | N2(e1,e2,e3,e4) | N1(e1,i))
agent S_LAZY(i,o)=i.t.’o.0

We can ask ABC for deciding weak open bisimulation equivalence on N and
SLAZY , thus deciding lazy soundness for the process graph from Example 2:

abc > weqd (i,o) N(i,o) S_LAZY(i,o)
The two agents are weakly related (315).
Do you want to see the core of the bisimulation (yes/no) ? no

Since N(i, o) is weak open bisimulation equivalent to SLAZY , the corresponding
process graph is lazy sound. By simply modifying the AND Gateway of the ex-
ample given in Figure 2 to an XOR Gateway in the corresponding lazy soundness
annotated π-calculus process, we can prove the corresponding process graph to
be not lazy sound:

abc > agent N2(e1,e2,e3,e4)=e1.t.(N2(e1,e2,e3,e4) | (’e2.0 + ’e3.0 + ’e4.0))
Agent N2 is defined.
abc > weqd (i,o) N(i,o) S_LAZY(i,o)
The two agents are not weakly related (9).
Do you want to see some traces (yes/no) ? no

Obviously, the modified process graph is not lazy sound as it contains a deadlock.

6.2 Supported Patterns and Performance

Tool support for reasoning on lazy soundness is still limited by the supported
patterns as well as performance. Multi merge and simple merge patterns behave
the same (indeed, same π-calculus representation). Since the π-calculus has a
blocking semantics, parallel activation will be queued until the merge activity
is ready again. The synchronizing merge pattern in the π-calculus has non local
2 http://www.omnigroup.com/applications/omnigraffle/

158 F. Puhlmann and M. Weske

Table 1. Performance results for deciding lazy soundness

Fig. 2 Fig. 2 mod. Fig. A6 [6] Fig. 2 [16] Bookstore [24]

Nodes 8 nodes 8 nodes 10 nodes 15 nodes 21 nodes

MWB 10s < 1s < 1s 15s 6s

ABC 40s 2s 6s 275s 167s

ABC.opt 13s < 1s 2s 55s 50s

Lazy Sound? Yes No Yes Yes Yes

semantics and is thus only supported by workarounds ranging from introduc-
ing a local semantics (true/false token passing, corresponding split/choice and
synchronizing merge patterns, where the split/choice informs the corresponding
merge about the number of incoming arcs) to global analysis (e.g. delay synchro-
nizing merge while other transitions are possible). Further discussions regarding
the synchronizing merge pattern can be found in [22,23]. Arbitrary cycles are
only partly supported in MWB as well as ABC. These tools fail at deciding
processes with loops generating an infinite number of ↓o. This is indeed a tool
related issue, as the reasoning could be stopped immediately after more then
one o has been observed, instead of creating the full space state. A related issue
concerns multiple instances with a dynamic number of instances, either runtime
or without a priori knowledge. MWB as well as ABC fail for unknown reasons at
detecting the contained cycles, while they work at simple loops. However, both
issues are tool related and do not disturb the theory. For all patterns containing
cancellation, i.e. cancel activity, cancel case, event-based rerouting, we can not
actually stop the unobservable action τ , only immediately reroute the control
flow and cancel all related outgoing flows.

Regarding the performance of deciding weak open bisimulation, we are cur-
rently investigating existing tools. First practical results for business processes
containing different patterns have been collected in table 1.3 Some processes
have been converted to BPMN and can be found in the cited references. Figure
2 and the modified version have been discussed in this paper. Figure A6 from
[6] contains arbitrary cycles. Figure 2 from [16] contains event-based rerouting
and deferred choice patterns. The bookstore process from [24] contains multiple
deferred choices and arbitrary cycles.

7 Conclusion

In this paper, we introduced and discussed a new correctness criterion for busi-
ness processes, called lazy soundness. Lazy soundness proves a business process
to be deadlock and livelock free, but does not cover dead activities, or requires
all activities to be finished when a final activity is reached. It can be classified
below weak soundness and soundness, i.e. all sound and all weak sound busi-
ness processes are lazy sound, and beside relaxed soundness, i.e. a relaxed sound

3 Rough estimations measured on an Apple PowerBook G4 1.5GHz with 1.25GB RAM.

Investigations on Soundness Regarding Lazy Activities 159

business process can be lazy sound. A stronger kind of lazy soundness is weak
soundness, forcing all activities to finish before the final activity is reached.

Lazy soundness is an important correctness criterion for business processes, as
it supports reasoning on deadlock and livelock freedom without being to restric-
tive regarding so called clean-up or lazy-activities that can be left behind. Our
reasoning framework presented supports the original semantics of the workflow
patterns discriminator, n-out-of-m-join, and multiple instances without synchro-
nization. It achieves this by utilizing the π-calculus as formal foundation. All
existing workflow patterns [8] as well as new routing patterns [16] can be repre-
sented in this calculus. It has strong theoretical reasoning capabilities based on
different kinds of bisimulation [14,15], that can be used to prove lazy soundness.
We already achieved first feasibility results using a tool chain for converting
BPMN business process diagrams to π-calculus processes that can be analyzed
using existing π-calculus tools. Obviously, the underlying concepts of lazy sound-
ness as discussed in section 2 can also be adapted to other formalizations like
workflow nets.

Further work will focus on complete support for soundness and relaxed sound-
ness, as well as reasoning on interacting business processes. Therefore, a special
capability of the π-calculus, namely channel-passing, will be of special interest
as it allows support for dynamic routing patterns [7]. Alongside, we will improve
tool development focusing on weak open bisimulation for π-calculus processes
representing workflow patterns.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H., Weske, M.: Business Process Manage-
ment: A Survey. In van der Aalst, W.M.P., ter Hofstede, A.H., Weske, M., eds.:
Proceedings of the 1st International Conference on Business Process Management,
volume 2678 of LNCS, Berlin, Springer-Verlag (2003) 1–12

2. Burbeck, S.: The Tao of e-business services. Available at:
http://www-128.ibm.com/developerworks/library/ws-tao/ (2000)

3. van der Aalst, W.M.P.: Verification of Workflow Nets. In Azéma, P., Balbo, G.,
eds.: Application and Theory of Petri Nets, volume 1248 of LNCS, Berlin, Springer-
Verlag (1997) 407–426

4. Dehnert, J., Rittgen, P.: Relaxed Soundness of Business Processes. In Dittrich,
K., Geppert, A., Norrie, M.C., eds.: CAiSE 2001, volume 2068 of LNCS, Berlin,
Springer-Verlag (2001) 157–170

5. Martens, A.: On Compatibility of Web Services. Petri Net Newsletter 65 (2003)
12–20

6. van der Aalst, W., van Hee, K.: Workflow Management. MIT Press (2002)
7. Barros, A., Dumas, M., ter Hofstede, A.: Service Interaction Patterns. In van

der Aalst, W., Benatallah, B., Casati, F., eds.: Proceedings of the 3rd Interna-
tional Conference on Business Process Management, volume 3649 of LNCS, Berlin,
Springer-Verlag (2005) 302–318

8. Puhlmann, F., Weske, M.: Using the Pi-Calculus for Formalizing Workflow Pat-
terns. In van der Aalst, W., Benatallah, B., Casati, F., eds.: Proceedings of the 3rd
International Conference on Business Process Management, volume 3649 of LNCS,
Berlin, Springer-Verlag (2005) 153–168

160 F. Puhlmann and M. Weske

9. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I/II.
Information and Computation 100 (1992) 1–77

10. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.: Work-
flow Patterns. Technical Report BETA Working Paper Series, WP 47, Eindhoven
University of Technology (2000)

11. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage (Revised version. Technical Report FIT-TR-2003-04, Queensland University
of Technology, Brisbane (2003)

12. Verbeek, H., van der Aalst, W., ter Hofstede, A.: Verifying Workflows with Can-
cellation Regions and OR-joins: An Approach based on Invariants, BETA Working
Paper Series, WP 156. Technical report, Eindhoven University of Technology,
Eindhoven, The Netherlands (2006)

13. Puhlmann, F.: Why do we actually need the Pi-Calculus for Business Process
Management? In: Proceedings of the 9th International Conference on Business
Information Systems. (2006) (to appear)

14. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Paper-
back edn. Cambridge University Press, Cambridge (2003)

15. Sangiorgi, D.: A Theory of Bisimulation for the Pi-Calculus. In: CONCUR ’93:
Proceedings of the 4th International Conference on Concurrency Theory, Berlin,
Springer-Verlag (1993) 127–142

16. Overdick, H., Puhlmann, F., Weske, M.: Towards a Formal Model for Agile Service
Discovery and Integration. In Verma, K., Sheth, A., Zaremba, M., Bussler, C., eds.:
Proceedings of the International Workshop on Dynamic Web Processes (DWP
2005). IBM technical report RC23822, Amsterdam (2005)

17. BPMI.org: Business Process Modeling Notation. 1.0 edn. (2004)
18. Knuth, D.E.: The Art of Computer Programming. 3rd edn. Volume 1. Addison–

Wesley (1997)
19. Björn Victor, Faron Moller, M.D., Eriksson, L.H.: The Mobility Workbench. Avail-

able at: http://www.it.uu.se/research/group/mobility/mwb (2005)
20. Briais, S.: ABC Bisimulation Checker. Available at: http://lamp.epfl.ch/∼

sbriais/abc/abc.html (2003)
21. Frendrup, U., Jensen, J.N., Hüttel, H.: OBC Workbench. Available at:

http://www.cs.auc.dk/research/FS/ny/PR-pi/ (2001)
22. Wynn, M., Edmond, D., van der Aalst, W., ter Hofstede, A.: Achieving a General,

Formal and Decidable Approach to the OR-join in Workflow using Reset nets
(2005)

23. Kindler, E.: On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. In Desel, J., Pernici, B., Weske, M., eds.: Proceedings of the 2nd Interna-
tional Conference on Business Process Management, volume 3080 of LNCS, Berlin,
Springer-Verlag (2004) 82–97

24. van der Aalst, W.M.P., Weske, M.: The P2P Approach to Interorganizational
Workflow. In Dittrich, K., Geppert, A., Norrie, M., eds.: Proceedings of the
13th International Conference on Advanced Information Systems Engineering
(CAiSE’01), volume 2068 of LNCS, Berlin, Springer-Verlag (2001) 140–156

On the Suitability of BPMN
for Business Process Modelling�

P. Wohed1,��, W.M.P. van der Aalst2,3, M. Dumas3,
A.H.M. ter Hofstede3, and N. Russell3

1 The Department of Computer and Systems Sciences, SU/KTH, Sweden
petia@dsv.su.se

2 Faculty of Information Technology, QUT, Australia
{m.dumas, a.terhofstede, n.russell}@qut.edu.au
3 Department of Technology Management, TU/e, The Netherlands

w.m.p.v.d.aalst@tm.tue.nl

Abstract. In this paper we examine the suitability of the Business Process Mod-
elling Notation (BPMN) for business process modelling, using the Workflow Pat-
terns as an evaluation framework. The Workflow Patterns are a collection of pat-
terns developed for assessing control-flow, data and resource capabilities in the
area of Process Aware Information Systems (PAISs). In doing so, we provide
a comprehensive evaluation of the capabilities of BPMN, and its strengths and
weaknesses when utilised for business process modelling. The analysis provided
for BPMN is part of a larger effort aiming at an unbiased and vendor-independent
survey of the suitability and the expressive power of some mainstream process
modelling languages. It is a sequel to previous work in which languages includ-
ing BPEL and UML Activity Diagrams were evaluated.

Keywords: BPMN, Business Process Modelling, Workflow Patterns.

1 Introduction

The focus on Process-Aware Information Systems (PAISs) during the last decade has
led to a new generation of languages and tools for process modelling. Existing lan-
guages for process description have been enhanced, e.g. UML 2.0 Activity Diagrams
(AD), while new languages like BPMN and BPEL have been developed and have ex-
perienced rapid take-up. The common feature of these three languages is their focus
on providing a comprehensive, integrated notation for (business) process modelling.
Despite their common aims, these languages operate at different levels: UML AD and
BPMN are graphical and informal notations targeted at analysts while BPEL is a textual
and executable language targeted at application developers.

This broad characterisation does not, however, provide insights into the suitability
of these languages for (business) process modelling, or how they actually relate to each
other. To address these issues, a thorough analysis of each of the languages is necessary.

� This work is funded in part by VR 621-2001-2768 and by ARC DP0451092.
�� Research conducted during a visit to the Queensland University of Technology.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 161–176, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

162 P. Wohed et al.

In this paper we focus on BPMN. Through a detailed examination, we aim to expose
advantages and shortcomings of BPMN and to critically question its suitability for busi-
ness process modelling. This analysis is part of a broader survey of mainstream process
modelling languages and is a companion to earlier analysis of UML 2.0 AD [17,9] and
BPEL [15,1]. The overarching goal of the survey is to provide comparative insights,
which is achieved by analysing the languages using a common framework, namely the
Workflow Patterns (www.workflowpatterns.com).

The Workflow Patterns Framework is a collection of generic, recurring constructs
originally devised to evaluate workflow systems, but also suitable to evaluate workflow
standards, business process languages and PAISs in general. Following Jablonski and
Bussler’s classification [3], these patterns span the Control-flow, Data and Resource
perspectives of PAISs. Our choice of this evaluation framework is based on the fact that
it is: (1) widely used; (2) well accepted; (3) comprehensible to IT practitioners; and (4)
sufficiently detailed to provide a comprehensive basis for assessing the capabilities of
process modelling languages.

In essence, the contributions of this paper are as follows:

– It is the first multi-perspective evaluation of the expressive capabilities of BPMN;
– It provides an assessment of the overall suitability of BPMN for process modelling;
– It identifies areas for possible improvement of BPMN;
– It provides a basis for comparing BPMN with related languages.

Previous efforts [11,7] have analysed the quality and ontological standard of BPMN.
The evaluation in [11] is based on the Semiotic Quality Framework. It is positioned by
its authors as a more general than and complementary to the evaluation in [7], which
relies on the Bunge Wand and Weber (BWW) Framework. Based on an ontology for
Information Systems, the BWW Framework is at a higher abstraction level and less
specialised compared to the Workflow Patterns Framework. Lastly, a review of the ca-
pabilities of BPMN from a control flow perspective based on the Workflow Patterns is
provided in [14]. However, the evaluation in [14] has a limited focus as well as ambi-
guities which we have identified in [16].

In the remainder of the paper we evaluate BPMN from the Control-flow, the Data
and the Resource perspectives. Then we discuss our findings and compare these with
earlier evaluations of UML 2.0 AD and BPEL.

2 The Control-Flow Perspective in BPMN

In this section we examine the control-flow perspective of BPMN and its ability to rep-
resent a series of twenty common control-flow modelling requirements that occur when
defining process models. These requirements are described in terms of the Workflow
Control-flow Patterns [2]. The material in this section summarises the findings reported
in a technical report [16]. There has also been a review of this perspective of BPMN
by White [14], who is one of BPMN’s developers. The results reported here differ from
those in [14], however due to space limitations we refer to [16] for a detailed discussion
on the differences and the flaws identified in [14].

On the Suitability of BPMN for Business Process Modelling 163

2.1 Basic Control-Flow Patterns

The basic control-flow patterns define elementary aspects of process control. These
are analogous to the definitions of elementary control-flow concepts laid down by the
Workflow Management Coalition [12]. There are five of these patterns:

– WCP1: Sequence – the ability to depict a sequence of activities;
– WCP2: Parallel split – the ability to capture a split in a single thread of control into

multiple threads of control which can execute in parallel;
– WCP3: Synchronisation – the ability to capture a synchronisation of multiple par-

allel subprocesses/activities into a single thread;
– WCP4: Exclusive choice – the ability to represent a decision point in a workflow

process where one of several branches is chosen;
– WCP5: Simple merge – the ability to depict a point in the workflow process where

two or more alternative branches come together without synchronisation.

All these five patterns can be captured in BPMN. Sequence corresponds directly to the
“sequence flow” construct, while the other four patterns are illustrated in Figure 1.

P
ar

al
le

l S
p

lit

b1
A

B1

B2

A

B1

B2

B

A
B1

B2

a) with AND-gateway b) Implicit c) through sub-Activities

b2

B

d) with AND-gatewayS
yn

ch
ro

n
is

at
io

n

C

B1

B2

C

B1

B2

e) partially through sub-Activities

A

B

C A

B

C

cond 1

cond 2

Ddefault

A

B

C

cond 1

cond 2

default D D

cond 1

cond 2

default

g) with XOR-gateway, alt 1 h) with XOR-gateway, alt 2 i) without XOR-gateway

CB1

B2 D

f) in a context

E

B

C

D

E

B

C

D

E

B

C

DM
er

g
e

j) with XOR-gateway, alt 1 k) with XOR-gateway, alt 2 l) Implicit

E
xc

lu
si

ve
 C

h
o

ic
e

Fig. 1. Basic control-flow patterns in BPMN

164 P. Wohed et al.

2.2 Advanced Branching and Synchronisation Patterns

This class of patterns corresponds to advanced branching and synchronisation scenarios
that often do not have direct realisations in PAISs but are relatively common in real-life
business processes. There are four of these patterns:

– WCP6: Multiple choice – the ability to represent a divergence of the thread of
control into several parallel branches on a selective basis;

– WCP7: Synchronising merge – the ability to depict the synchronised convergence
of two or more alternative branches;

– WCP8: Multiple merge – the ability to represent the unsynchronised convergence
of two or more distinct branches. If more than one branch is active, the activity
following the merge is started for every activation of every incoming branch;

– WCP9: Discriminator – the ability to depict the convergence of two or more branches
such that the first activation of an incoming branch results in the subsequent activ-
ity being triggered and subsequent activations of remaining incoming branches are
ignored. It is a special case of N-out-of-M pattern, where N is equal to one.

The solution for the Multiple merge pattern is identical to the solution for the Simple
merge pattern (see figures 1j, 1k and 1l). The solutions for the Multiple choice pattern
are illustrated in figures 2a, 2b and 2c. The Discriminator pattern is captured for the case
when it joins the instances of a Multiple Instances task, see Figure 2d. A work-around
generalising this solution to the N-out-of-M join is shown in Figure 2e and a work-
around for the N-out-of-M join pattern for distinct activities is presented in Figure 2f.
The Synchronising merge pattern is captured partially through the OR-join gateway.
The solution is partial because it assumes a structured workflow context.

2.3 Structural Patterns

Structural patterns identify whether the modelling formalism has any restrictions in
regard to the way in which processes can be structured (particularly in terms of the type
of loops supported and whether a single terminating node is necessary).

a) with OR-gateway c) without a gatewayb) with Complex gateway

e) N-out-of-M Join for a MI taskd) Discriminator for a MI task

M
u

lt
ip

le
 C

h
o

ic
e

D
is

cr
im

in
at

o
r

A

B

C

D

cond 1

cond 2

default

A

B

C

D

flow 1

flow 2

flow 3

B D

ActivityType: Task
LoopType: MI
MI_Condition: M
MI_Ordering: Parallel
MI_FlowCondition: One

B1

BM

D

...

StartQuantity=N

N completed

N completed

E

D

StartQuantity=N

N completed

N completed

EB

ActivityType: Task
LoopType: MI
MI_Condition: M
MI_Ordering: Parallel
MI_FlowCondition: None

A

B

C

cond 1

cond 2

Ddefault

f) N-out-of-M Join

Fig. 2. Advanced branching and synchronisation patterns in BPMN

On the Suitability of BPMN for Business Process Modelling 165

– WCP10: Arbitrary cycles – the ability to represent loops that have multiple entry
or exit points;

– WCP11: Implicit termination – the ability to depict the notion that a given subpro-
cess should be terminated when there are no remaining activities to be completed
(i.e. no explicit unique termination node is needed).

Both of these patterns are directly supported in BPMN.

2.4 Multiple Instances (MI) Patterns

This category encompasses situations where is more than one instance of an activity
active at the same time for the same process instance. There are four such patterns:

– WCP12: MI without synchronisation – the ability to initiate multiple instances of
an activity within a given process instance;

– WCP13: MI with a priori design time knowledge – the ability to initiate multiple
instances of an activity within a given process instance. The number of instances is
known at design time. Once all instances have completed, a subsequent activity is
initiated;

– WCP14: MI with a priori runtime knowledge – the ability to initiate multiple in-
stances of an activity within a given process instance. The number of instances
varies but is known at runtime before the instances must be created. Once all in-
stances have completed, a subsequent activity is initiated;

– WCP15: MI without a priori runtime knowledge – the ability to initiate multiple
instances of an activity within a given process instance. The number of instances
varies but is not known at design time or at runtime before the instances must be
created. Once all instances have completed, a subsequent activity is initiated. New
instances can be created even while other instances are executing or have already
completed.

The first three of these patterns can be captured in BPMN as illustrated in Figure 3.
The MI without a priori runtime knowledge pattern is not directly supported in BPMN
because it is not possible to add instances on-the-fly.

2.5 State-Based Patterns

This class of patterns characterise scenarios in a process where subsequent execution is
determined by the state of the process instance. There are three such patterns:

B C

ActivityType: Task
LoopType: MI
MI_Condition: M (constant)
MI_Ordering: Parallel
MI_FlowCondition: None

A B C

ActivityType: Task
LoopType: MI
MI_Condition: M (constant)
MI_Ordering: Parallel
MI_FlowCondition: All

A

a) without synchronisation b) with a priori design time knowledgeM
u

lt
ip

le
 In

st
an

ce
s

c) with a priori runtime knowledge

B C

ActivityType: Task
LoopType: MI
MI_Condition: M (variable)
MI_Ordering: Parallel
MI_FlowCondition: All

A

Fig. 3. Multiple Instances patterns in BPMN

166 P. Wohed et al.

A

C

B

A

c (type
receive)

b (type
receive)

a) with Event-Based Exclusive Gateway b) with Receive actities c) simple tasks

b

c

~

A

C

D
ef

er
re

d
 C

h
o

ic
e

In
te

rl
ea

ve
d

P
ar

al
le

l R
o

u
ti

n
g

Fig. 4. State-based patterns in BPMN

– WCP16: Deferred choice – the ability to depict a divergence point in a process
where one of several possible branches should be activated. The actual decision on
which branch is activated is made by the environment and is deferred to the latest
possible moment;

– WCP17: Interleaved parallel routing – the ability to depict a set of activities that
can be executed in arbitrary order;

– WCP18: Milestone – the ability to depict that a specified activity cannot be com-
menced until some nominated state is reached which has not expired yet.

Owing to the absence of the notion of state, only the Deferred choice pattern can be fully
captured in BPMN. This is illustrated in figures 4a and 4b. The Interleaved parallel
routing pattern is captured for the case when the activities to be interleaved are simple
tasks. This solution is illustrated in Figure 4c. The Milestone pattern is not supported.

2.6 Cancellation Patterns

Cancellation patterns characterise the ability of the modelling formalism to represent
the potential termination of activities and process instances in certain (specified) cir-
cumstances. There are two such patterns:

– WCP19: Cancel activity – the ability to depict that an enabled activity should be
disabled in some nominated circumstance;

– WCP20: Cancel case – the ability to represent the cancellation of an entire pro-
cess instance (i.e. all activities relating to the process instance) in some nominated
circumstance.

Both of these patterns can be captured in BPMN. The solutions are shown in Figure 5.

AA

a) with error event b) for sub-process

Cancel Cancel

c) for transaction d) with terminate event

A A

C
an

ce
l A

ct
iv

it
y

C
an

ce
l C

as
e

Fig. 5. Cancellation patterns in BPMN

On the Suitability of BPMN for Business Process Modelling 167

Table 1 summarises the results from this part of the evaluation. The table also shows
the results from the evaluations of UML 2.0 AD, BPEL, and a concrete system based
on the latter language Oracle BPEL Process Manager (PM) Version 10.1.2. In the con-
clusion we will compare BPMN with these other languages.

3 The Data Perspective in BPMN

Extensions [10] to the Workflow Patterns Initiative have focused on identifying and
defining generic constructs that occur in the data perspective of PAISs. In total forty data
patterns have been delineated in four distinct groups – data visibility, data interaction,
data transfer and data-based routing. In this section, an analysis of BPMN is presented
using the data patterns described in [10].

3.1 Data Visibility Patterns

Data visibility patterns seek to characterise the various ways in which data elements can
be defined and utilised within the context of a process. In general, this is determined by
the main construct to which the data element is bound as it implies a particular scope in
which the data element is visible and capable of being utilised. There are eight patterns
which relate to data visibility:

– WDP1: Task data – data elements defined and accessible in the context of individual
execution instances of a task or activity;

– WDP2: Block data – data elements defined by block tasks (i.e. tasks which can be
described in terms of a corresponding decomposition) and accessible to the block
task and all corresponding components within the associated decomposition;

– WDP3: Scope data – data elements bound to a subset of the tasks in a process
instance;

– WDP4: Multiple instance data – data elements specific to a single execution in-
stance of a task (where the task is able to be executed multiple times);

– WDP5: Case data – data elements specific to a process instance which are accessi-
ble to all components of the process instance during execution;

Table 1. Support for the Control–flow Patterns in 1–BPMN, 2–UML2.0 AD [17,9], 3–
BPEL [15,1], and 4–Oracle BPEL PM v.10.1.2 [5]

1 2 3 4 1 2 3 4
Basic Control–flow 11. Implicit Termination + + + +
1. Sequence + + + + Multiple Instances Patterns
2. Parallel Split + + + + 12. MI without Synchronization + + + +
3. Synchronisation + + + + 13. MI with a priori Design Time Knowledge + + + +
4. Exclusive Choice + + + + 14. MI with a priori Runtime Knowledge + + – +
5. Simple Merge + + + + 15. MI without a priori Runtime Knowledge – – – +/–
Advanced Synchronisation State-Based Patterns
6. Multiple Choice + + + + 16. Deferred Choice + + + +
7. Synchronising Merge +/– – + + 17. Interleaved Parallel Routing +/– – +/– –
8. Multiple Merge + + – – 18. Milestone – – – +/–
9. Discriminator +/– + – – Cancellation Patterns
Structural Patterns 19. Cancel Activity + + + +/–
10. Arbitrary Cycles + + – – 20. Cancel Case + + + +

168 P. Wohed et al.

– WDP6: Folder data – data elements bound to a subset of the tasks in a process
definition but accessible to all task instances regardless of the case to which they
correspond;

– WDP7: Workflow data – data elements accessible to all components in all cases;
– WDP8: Environment data – data elements defined in the operational environment

which can be accessed by process elements.

BPMN supports several of these patterns. Task, Block and Case data are supported
through the attribute Properties of Task, Sub-Process and Process elements, respec-
tively. Scope data is not supported as the Group construct does not offer any data han-
dling for the elements it groups together.

Multiple instance data is partially supported. There are three situations where mul-
tiple instances of a given task may arise: (i) Where a task is specifically designated as
having multiple instances in the process model. The lack of an attribute “Properties” for
the distinct instances of a multiple instances activity (akin to the attribute Properties of
Activity) eliminates the possibility to handle any instance specific data for a multiple
instances task; (ii) Where a task can be triggered multiple times, e.g., it is part of a loop
or it is a task following a multiple merge construct. These situations are allowable in
BPMN; (iii) Where two tasks share the same decomposition. This is supported. An ac-
tivity decomposition can be captured through the notion of an Independent Sub-Process.
Several Independent Sub-Processes can invoke one and the same Process.

Folder, Workflow and Environment data patterns are not supported in BPMN.

3.2 Data Interaction Patterns

Data interaction patterns deal with the various ways in which data elements can be
passed between components within a process instance and also with the operating envi-
ronment (e.g. data transfer between a component of a process and an application, data
store or interface that is external to the process). They examine how the characteristics
of the individual components can influence the manner in which the trafficking of data
elements occurs. There are six internal data interaction patterns:

– WDP9: Data elements flowing between task instances;
– WDP10: Data elements flowing to a block;
– WDP11: Data elements flowing from a block;
– WDP12: Data elements flowing to a multiple instance task instance;
– WDP13: Data elements flowing from a multiple instance task instance;
– WDP14: Data elements flowing between process instances or cases.

Data interaction between tasks (WDP9) can be utilised in three different ways: (i)
through integrated control and data channels; or (ii) through distinct control and data
channels; or (iii) through the use of global shared data. BPMN supports global shared
data (through the Properties attribute for a Process), hence the third alternative is clearly
supported. It also appears that the first two alternatives are supported. Data interaction
through distinct control and data channels is supported through the notion of Data Ob-
ject. Data interaction through integrated control and data channels is supported through
the construct of Data Objects associated with sequence flows.

On the Suitability of BPMN for Business Process Modelling 169

Furthermore, the Data interactions block task to and from sub-workflow (WDP10
and WDP11) are directly supported. One of the means of doing this is via parameters,
i.e., through the Input- and OutputPropertyMaps attributes. This is relevant for cases
where the decomposition is defined through an Independent Sub-Process. Another way
of doing this is through the global shared data defined for a process. This is relevant for
the cases when the decomposition is defined through an Embedded Sub-Processes.

Data interaction to and from multiple instance task instances (WDP12 and WDP13)
and data interaction between cases (WDP14) are not supported in BPMN.

In addition to the internal data interaction patterns, there are 12 external data inter-
action patterns. These are characterised by three dimensions:

– The type of process element – task, case or complete process – that is interacting
with the environment;

– Whether the interaction is push or pull-based;
– Whether the interaction is initiated by the process component or the environment.

The patterns Task to Environment, Push and Pull, and Environment to Task, Push and
Pull, (i.e., WDPs 15, 16, 17 and 18) are supported in BPMN. They are captured through
one or a pair of message flow(s) flowing to, from, or to and from a task and the boundary
of a pool representing the environment. Note that for these patterns the environment is
modelled explicitly.

The patterns Case to Environment, Push and Pull, as well as Environment to Case,
Push and Pull (i.e., WDPs 19–22) are not supported. Message flows can indeed be
drawn between the boundaries of two pools where one of the pools represents a process
and the other one the environment. However, “If the Message Flow is connected to the
boundary to the Expanded Sub-Process, then this is equivalent to connecting to the Start
Event for incoming Message Flow or the End Event for outgoing Message Flow.” ([13],
p. 117). Hence, this construct does not provide support for data exchange of case data
at any moment during the execution of a case.

Finally, the Workflow to Environment, Push and Pull, and Environment to Workflow,
Push and Pull patterns (i.e., WDPs 23-26) are not supported, as workflow data is not
supported in BPMN (see WDP7 above).

3.3 Data Transfer Patterns

Data transfer patterns focus on the way in which data elements are actually transferred
between one process element and another. They aim to capture the various mechanisms
by which data elements can be passed across the interface of a process element. There
are seven distinct patterns in this category:

– WDP27: Data transfer by value – incoming – incoming data elements passed by
value;

– WDP28: Data transfer by value – outgoing – outgoing data elements passed by
value;

– WDP29: Data transfer – copy in/copy out – where a process element synchronises
data elements with an external data source at commencement and completion;

170 P. Wohed et al.

– WDP30: Data transfer by reference – without lock – data elements are commu-
nicated between components via a reference to a data element in some mutually
accessible location. No concurrency restrictions are implied;

– WDP31: Data transfer by reference – with lock – similar to WDP30 except that
concurrency restrictions are implied with the receiving component receiving the
privilege of read-only or dedicated access to the data element;

– WDP32: Data transformation – input – where a transformation function is applied
to a data element prior to it being passed to a subsequent component;

– WDP33: Data transformation – output – where a transformation function is applied
to a data element prior to it being passed from a previous component.

In BPMN, the WDP27 and WDP28 patterns are supported through the notion of the
Input and OutputSets. WDP29 Data transfer – copy in/copy out is partially supported.
It occurs when a decomposition is realised with Independent Sub-Processes. The data
attributes to be copied into/out of the Independent Sub-Process are specified through
the Input- and OutputPropertyMaps attributes. As these PropertyMaps are in the form
of Expressions we assume that also different transformation functions can be captured
through them. Transformation functions can also be defined through Expression As-
signments of Gates. This implies that the patterns WDP32 and WDP33 are partially
supported as well. The support is partial because it only applies to data transfer to and
from Independent Sub-Processes or to Activities subsequent to a Gateway, and not be-
tween any pair of Activities.

Finally, the WDP31 Data transfer by reference – with lock is supported. As BPMN
adopts a token-oriented approach to data passing, the parameters – which typically re-
late to objects – are effectively consumed at activity commencement and only become
visible and accessible to other activities once the specific activity to which they were
passed has completed and returned them.

3.4 Data-Based Routing Patterns

Data-based routing patterns capture the various ways in which data elements can inter-
act with other perspectives and influence the overall execution of the process. There are
seven (relatively self-explanatory) patterns in this category:

– WDP34: Task precondition – data existence;
– WDP35: Task precondition – data value;
– WDP36: Task postcondition – data existence;
– WDP37: Task postcondition – data value;
– WDP38: Event-based task trigger;
– WDP39: Data-based task trigger;
– WDP40: Data-based routing.

BPMN does not directly support pre- and postcondition definitions. Hence, the patterns
35 and 37 are not supported. In the cases data transfer is realised though Data Objects,
the boolean attributes RequiredForStart and ProducedAtCompletion capture the Pre-
and postconditions for data existence (i.e., WDP34 and WDP36).

The Message, Timer, Error and Cancel Event constructs provide direct support for
the Event-based task triggering pattern (WDP38). The Rule Event construct provides

On the Suitability of BPMN for Business Process Modelling 171

Table 2. Support for the Data Patterns in 1–BPMN, 2–UML2.0 AD [17,9], 3–BPEL [15,1], and
4–Oracle BPEL PM v.10.1.2 [5]

Data Visibility 1 2 3 4 Data Interaction (External) (cont.) 1 2 3 4
1. Task Data + +/– +/– +/– 21. Env. to Case – Push-Oriented – – – –
2. Block Data + + – – 22. Case to Env. – Pull-Oriented – – – –
3. Scope Data – – + + 23. Workflow to Env. – Push-Oriented – – – –
4. Multiple Instance Data +/– + – +/– 24. Env. to Workflow – Pull-Oriented – – – –
5. Case Data + – + + 25. Env. to Workflow – Push-Oriented – – – –
6. Folder Data – – – – 26. Workflow to Env. – Pull-Oriented – – – –
7. Workflow Data – + – – Data Transfer
8. Environment Data – – + + 27. by Value – Incoming + – + +
Data Interaction (Internal) 28. by Value – Outgoing + – + +
9. between Tasks + + + + 29. Copy In/Copy Out +/– – – +
10. Block Task to Sub-wf Decomp. + + – – 30. by Reference – Unlocked – – + +
11. Sub-wf Decomp. to Block Task + + – – 31. by Reference – Locked + + +/– –
12. to Multiple Instance Task – + – +/– 32. Data Transformation – Input +/– + – –
13. from Multiple Instance Task – + – +/– 33. Data Transformation – Output +/– + – –
14. Case to Case – – +/– – Data-based Routing
Data Interaction (External) 34. Task Precondition – Data Exist. + + +/– –
15. Task to Env. – Push-Oriented + – + + 35. Task Precondition – Data Val. – + + +
16. Env. to Task – Pull-Oriented + – + + 36. Task Postcondition – Data Exist. + + – –
17. Env. to Task – Push-Oriented + – +/– + 37. Task Postcondition – Data Val. – + – –
18. Task to Env. – Pull-Oriented + – +/– + 38. Event-based Task Trigger + + + +
19. Case to Env. – Push-Oriented – – – – 39. Data-based Task Trigger + – +/– –
20. Env. to Case – Pull-Oriented – – – – 40. Data-based Routing + + + +

support for the Data-based task trigger pattern (WDP39). Finally, the Data-based rout-
ing (WDP40) is supported, as Condition Expressions are possible to specify for Se-
quence Flows.

Table 2 shows a summary of the results from the Data perspective.

4 The Resource Perspective in BPMN

Recent work [8] has focused on the resource perspective and the manner in which work
is distributed amongst and managed by the resources associated with a business pro-
cess. Our investigations have indicated that these patterns are relevant to all forms of
PAISs including modelling languages such as XPDL and business process enactment
languages such as BPEL. In this section, we examine the resource perspective of BPMN
and its expressive power in regard to work distribution. Forty three workflow resource
patterns have been identified in seven distinct groups:

– Creation patterns – which correspond to restrictions on the manner in which spe-
cific work items can be advertised, allocated and executed by resources;

– Push patterns – which describe situations where a PAIS proactively offers or allo-
cates work to resources;

– Pull patterns – which characterise scenarios where resources initiate the identifica-
tion of work that they are able to undertake and commit to its execution;

– Detour patterns – which describe deviations from the normal sequence of state
transitions associated with a business process either at the instigation of a resource
or the PAIS;

– Auto-start patterns – which relate to situations where the execution of work is trig-
gered by specific events or state transitions in the business process;

172 P. Wohed et al.

– Visibility patterns – which describe the ability of resources to view the status of
work within the PAIS;

– Multiple resource patterns – which describe scenarios where there is a many-to-
many relationship between specific work items and the resources undertaking those
work items.

In BPMN, the association of a particular action or set of actions with a specific resource
is illustrated through the use of the Pool and Lane constructs, commonly called Swim-
lanes. “A Pool represents a Participant in the Process. A Participant can be a specific
business entity (e.g. a company) or can be a more general business role.” ([13], p. 103).
“A Lane is a sub–partition within a Pool...” ([13], p. 106). Hence, the Direct allocation
pattern (WRP1) as well as the Role–based allocation pattern (WRP2) are directly sup-
ported. Furthermore, a partitioning of a Process into Pools and Lanes is not required,
i.e., the resource allocation for the different activities is not necessarily done during
design time. Hence the Automatic execution pattern (WRP11) is also supported.

None of the other Creation Patterns are supported within BPMN. This is a conse-
quence of the restrictive manner in which Swimlanes are specified (i.e., only by specify-
ing their Names, and in case of sub-division, the sub-division hierarchy) and the lack of
support for relationships between distinct Swimlanes. Lack of a capability specification,
integrated authorisation framework, organisational model and access to some execution
history, rules out any form of support for Capability–based allocation (WRP8), the Au-
thorisation (WRP4), Organisational allocation (WRP10) and History-based allocation
(WRP9) patterns respectively.

In a BPMN model activities become “live” once they receive the specified StartQuan-
tity control-flow tokens. The resource associated with a given Swimlane can have mul-
tiple activities executing at the same time. There is no notion of scheduling work execu-
tion or of resources selecting the work (i.e. the activity) they wish to undertake, hence
there is minimal support for the Push, Auto-start or Multiple Resource patterns. The
following patterns from these classes are directly supported:

– WRP14: Distribution by allocation - single resource – the resource(s) associated
with a given Swimlane is immediately allocated a Task/Sub-Process once it is trig-
gered.

– WRP19: Distribution on enablement – all activities in a Swimlane are associated
with the resource responsible for the Swimlane when they are triggered.

– WRP36: Commencement on creation – an activity is assumed to be live as soon as
it receives the specified StartQuantity control-flow tokens.

– WRP39: Chained execution – once an activity is completed it “sends” a control-
flow token to every subsequent activity. A subsequent activity is triggered when it
receives the specified StartQuantity of tokens.

– WRP42: Simultaneous execution – there are no constraints on how many instances
of a task specified for one Swimlane can be active at any time.

None of the Pull, Detour or Visibility patterns are supported. The results from this part
of the evaluation are summarised in Table 34 and clearly reveal that BPMN provides
little support for the resource patterns.

4 Since BPEL does not cover the resource perspective, Table 3 does not include a BPEL column.

On the Suitability of BPMN for Business Process Modelling 173

Table 3. Support for the Resource Patterns in 1–BPMN, 2–UML2.0 AD [17,9], and 4–Oracle
BPEL PM v.10.1.2 [5]

Creation Patterns 1 2 4 Pull Patterns (cont.) 1 2 4

1. Direct Allocation + + + 24. System-Determ. Work Queue Content – – –
2. Role-Based Allocation + + + 25. Resource-Determ. Work Queue Content – – +
3. Deferred Allocation – – + 26. Selection Autonomy – – +
4. Authorization – – – Detour Patterns

5. Separation of Duties – – – 27. Delegation – – +
6. Case Handling – – + 28. Escalation – – +
7. Retain Familiar – – + 29. Deallocation – – +
8. Capability-based Allocation – – + 30. Stateful Reallocation – – +
9. History-based Allocation – – +/– 31. Stateless Reallocation – – –
10. Organizational Allocation – – +/– 32. Suspension/Resumption – – +
11. Automatic Execution + + + 33. Skip – – +
Push Patterns 34. Redo – – –
12. Distribution by Offer-Single Resource – – + 35. Pre-Do – – –
13. Distribution by Offer-Multiple Resources – – + Auto-start Patterns

14. Distribution by Allocation-Single Resource + + + 36. Commencement on Creation + + –
15. Random Allocation – – +/– 37. Commencement on Allocation – – –
16. Round Robin Allocation – – +/– 38. Piled Execution – – –
17. Shortest Queue – – +/– 39. Chained Execution + + –
18. Early Distribution – – – Visibility Patterns

19. Distribution on Enablement + + + 40. Config. Unallocated Work Item visibility – – –
20. Late Distribution – – – 41. Config. Allocated Work Item visibility – – –
Pull Patterns Multiple Resource Patterns

21. Resource-Init. Allocation – – – 42. Simultaneous Execution + + +
22. Resource-Init. Exec. - Allocated Work Item – – + 43. Additional Resources – – +
23.Resource-Init. Execution - Offered Work Item – – +

5 Discussion and Conclusion

There are inherent difficulties in applying the Workflow Patterns Framework for assess-
ing a language that does not have a commonly agreed-upon formal semantics nor an
execution environment. The BPMN specification [13] provides a mapping from BPMN
to BPEL, for which execution engines and formalisations exist. Closer inspection how-
ever shows that the mapping to BPEL in [13] is only partial, leaving aside models with
unstructured topologies as well as constructs such as OR-join and complex gateways
(see [6] for a discussion). Moreover, since the mapping is described in prose, it is sub-
ject to interpretations. More generally, many ambiguities can be found in the BPMN
specification due to the lack of formalisation. In our work, we documented some of
these ambiguities as well as assumptions that we made to circumvent them.

The results of the Workflow Patterns analysis of BPMN are presented in tables 1, 2
and 3. A “+” indicates direct support, a “+/–” partial support, and a “–” lack of support.
These tables also contain results from previous pattern-based evaluations of UML 2.0
AD [17,9], BPEL [15,1] and an implementation of BPEL, namely Oracle BPEL PM
Version 10.1.2 [5]. It can be seen from these tables that BPMN provides direct support

174 P. Wohed et al.

for the majority of the control-flow patterns and for nearly half of the data patterns,
while support for the resource patterns is scant.

Along the control-flow perspective (Table 1), BPMN lacks support for the Multiple
Instances without a priori runtime knowledge and for the Milestone patterns while the
Synchronising merge, Discriminator and Interleaved parallel routing patterns are only
partially supported. The limitations in capturing the Milestone and Interleaved parallel
routing patterns stem from the lack of an explicit notion of “state”. As for the Synchro-
nising merge, partial support is provided by BPMN’s OR-join Gateway but the seman-
tics of this construct needs generalisation to cover unstructured process models (see
[18] for a general treatment of the OR-join). Finally, the concepts available to describe
discriminator and tasks and sub-processes with multiple instances require extensions.

An outcome of the analysis of the Control-flow perspective that is not visible from
Table 1 is that many patterns have multiple representations. The simpler patterns have
as many as three different representations in BPMN. On the other hand, detailed knowl-
edge of the attributes associated to BPMN’s modelling constructs is required to capture
some of the more advanced patterns.

Regarding BPMN’s support for the Data patterns (Table 2) it can be seen that Work-
flow and Environment data patterns are not supported. Data interaction to and from a
Multiple Instances task is not supported because any instance-specific data for a task or
sub-process with a “multiple instance” marker can not be specified. Also support for the
external data interaction patterns is limited. Only the patterns capturing the interaction
between tasks and the environment are supported, as they can be captured by mod-
elling the environment as a separate process which may be represented in full, as an ab-
stract/public process, or implicitly through references in send and receive tasks/events.

Finally, BPMN’s support for the Resource perspective is minimal (Table 3). It is
acknowledged in the specification ([13], p. 22) that the modelling of organizational
structures and resources is outside the scope of BPMN. However, the presence of the
concepts Lane and Pool for representing parties and roles gives a contradictory impres-
sion. It is obvious though that Pools and Lanes do not provide a means for representing
the subtleties associated with selective work allocation across a range of possible re-
sources and the management of the resulting work items at run-time.

The tables also compare BPMN with UML 2.0 AD and BPEL. Along the Control-
flow perspective, BPMN and UML 2.0 AD are largely overlapping. BPMN is slightly
stronger when it comes to capturing the Interleaved parallel routing and the Synchro-
nising merge patterns and slightly weaker in its support for the Discriminator pattern,
but these differences are minor. It can also be seen from Table 1 that some Control-flow
patterns are supported in BPMN but not in BPEL and vice-versa. Thus, manifestations
of these patterns in a BPMN model would require special care when translating the
model into BPEL. A translation from BPMN to BPEL is hence not as straightforward
as it is often purported to be.

For the Data perspective the support for the patterns in BPMN and UML 2.0 AD is
slightly different. UML 2.0 AD is stronger in capturing Multiple instances data as well
as Data interaction to and from multiple instances tasks, while BPMN is stronger in the
Data interaction between task and environment, due to the fact that the environment can
be explicitly modelled. There are further differences for the patterns in the Data transfer

On the Suitability of BPMN for Business Process Modelling 175

and Data-based routing categories, as well as differences from the patterns captured by
BPEL. However, even if the set of patterns captured in this perspective is distinct for
every language and even if none of the languages fully captures all the patterns, it can
be argued that the Data perspective is reasonably well covered.

Unfortunately, the same can not be said for the Resource perspective. The presence
of the concepts Lane and Pool in BPMN reveals the need (and an intention) to support
this perspective. However, providing support for a minimal set of resource patterns only
exposes the immaturity of the language along this perspective. To the benefit of BPMN,
it can be said that support for the resource perspective is also minimal in UML 2.0 AD
and out of the scope of the upcoming BPEL standard. At the same time, extensions of
BPEL to cover the resource perspective have been proposed (e.g. BPEL4People [4]) and
some of these extensions are implemented in commercial tools such as Oracle BPEL
PM, thus highlighting even further the necessity of capturing this perspective. More
generally, the lack of support in BPMN and UML 2.0 AD for the resource perspective,
contrasted to the ongoing efforts in the BPEL community to address this perspective,
exposes a gap between contemporary process modelling tools and process execution
engines (the latter generally support the resource perspective in one way or another). To
achieve a consistent and coherent use of process models, from analysis down to imple-
mentation and enactment, it is important that the Resource perspective is more widely
acknowledged as an integral part of business process modelling. Instead of creating new
process modelling notations that largely overlap with existing ones along the control-
flow perspective, the focus should rather be on further refining the existing notations to
satisfactorily cover all aspects relevant to PAISs.

Acknowledgments. We thank Chun Ouyang for valuable discussions on BPMN and
Nataliya Mulyar for her analysis of Oracle BPEL.

References

1. W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, N. Russell, H.M.W Verbeek, and
P. Wohed. Life After BPEL? In Proc. of the 2nd Int. Workshop on Web Services and Formal
Methods (WS-FM), volume 3670 of LNCS, pages 35–50. Springer Verlag, 2005.

2. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

3. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK, 1996.

4. M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von
Riegen, P. Schmidt, and I. Trickovic. WS-BPEL Extension for People –
BPEL4People. http://www.ibm.com/developerworks/webservices/
library/specification/ws-bpel4people, July 2005. accessed 16 March 2005.

5. N.A. Mulyar. Pattern-based Evaluation of Oracle-BPEL (v.10.1.2). Technical report, Center
Report BPM-05-24, BPMcenter.org, 2005.

6. C. Ouyang, M. Dumas, S. Breutel, and A.H.M. ter Hofstede. Translating Standard Process
Models to BPEL. To appear in Proceedings of 18th International Conference on Advanced
Information Systems Engineering (CAiSE 2006), June 2006.

7. J. Recker, M. Indulska, M. Rosemann, and P. Green. Do Process Modelling Techniques Get
Better? A Comparative Ontological Analysis of BPMN. In 16th Australasian Conference on
Information Systems.

176 P. Wohed et al.

8. N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow Resource
Patterns: Identification, Representation and Tool Support. In Proc. of 17th Int. Conf. on
Advanced Information Systems Engineering (CAiSE05), volume 3520 of LNCS, pages 216–
232. Springer, 2005.

9. N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and P. Wohed. On the Suitability of
UML 2.0 Activity Diagrams for Business Process Modelling. In Third Asia-Pacific Confer-
ence on Conceptual Modelling (APCCM2006), volume 53 of CRPIT, pages 95–104, Hobart,
Australia, 2006. ACS.

10. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow Data
Patterns. In Proc. of 24th Int. Conf. on Conceptual Modeling (ER05), volume 3716 of LNCS,
pages 353–368. Springer Verlag, Oct 2005.

11. T. Wahl and G. Sindre. An Analytical Evaluation of BPMN Using a Semiotic Quality Frame-
work. In CAiSE’05 Workshops. Volume 1, pages 533–544. FEUP, Porto, Portugal, 2005.

12. WfMC. Workflow Management Coalition Terminology & Glossary, Document Number
WFMC-TC-1011, Document Status - Issue 3.0. Technical report, Workflow Management
Coalition, Brussels, Belgium, 1999.

13. S. White. Business Process Modeling Notation (BPMN). Version 1.0 - May 3, 2004,
BPMI.org, 2004. www.bpmi.org.

14. S. White. Process Modeling Notations and Workflow Patterns. In Workflow Handbook 2004,
pages 265–294. Future Strategies Inc., Lighthouse Point, FL, USA, 2004.

15. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis of Web
Services Composition Languages: The Case of BPEL4WS. In Proc. of 22nd Int. Conf. on
Conceptual Modeling (ER 2003), volume 2813 of LNCS, pages 200–215. Springer, 2003.

16. P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and N. Russell. Pattern-
based Analysis of BPMN - an extensive evaluation of the Control-flow, the Data and the
Resource Perspectives. BPM Center Report BPM-05-26, BPMcenter.org, 2005.

17. P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and N. Russell. Pattern-
Based Analysis of the Control-Flow Perspective of UML Activity Diagrams. In Proc. of 24th
Int. Conf. on Conceptual Modeling (ER05), volume 3716 of LNCS, pages 63–78. Springer
Verlag, 2005.

18. M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Achieving a
General, Formal and Decidable Approach to the OR-Join in Workflow Using Reset Nets.
In Proc. of 26th Int. Conf. on Applications and Theory of Petri Nets 2005, volume 3536 of
LNCS, pages 423–443. Springer, 2005.

Workflow Model Compositions
Preserving Relaxed Soundness

Juliane Siegeris (born Dehnert)1 and Armin Zimmermann2

1 Fraunhofer ISST Berlin
juliane.siegeris@isst.fraunhofer.de

2 Technische Universität Berlin
azi@cs.tu-berlin.de

Abstract. Very often, e.g. in the context of inter-organizational Work-
flow or web services, it is necessary to merge existing business process de-
scriptions. It is clear that correctness criteria valid for the single process
descriptions should remain valid also for the combined model. However,
looking at the popular soundness criterion this can not always be guar-
anteed. In this paper various composition alternatives are summarized
and their ability to preserve relaxed soundness (in contrast to soundness)
is investigated.

Keywords: Workflow, Composition, Inter-organizational Workflow,
Validation, Petri nets.

1 Introduction

Process-aware information systems are an important aid in the design, improve-
ment and execution of complex business processes. An important support for
the modeling of complex business processes is provided by composition tech-
niques. There are different scenarios for their application. The first are modular
modeling and the combination of workflow patterns or building blocks. Other
scenarios fall in the context of inter-organizational workflows or web services.
Here it is essential to combine existing process descriptions on the basis of in-
formation exchange. Division of labor in general requires workflow composi-
tion, also inside one organization. Efficient use of available resources is an issue
here.

The significance of composition within workflow modeling is reflected in the
literature by numerous related publications, see e.g. [KMR00, AH02, AHT02]
[HB03, CWBH+03]. Different composition variants are described and the result
is checked for structural and behavioral properties. So far, the focus was put on
the soundness property, i.e liveness and boundedness of the composed process
model.

The aim of this paper is to analyze a list of significant composition techniques
in terms of WF-nets and to check whether the composition of relaxed sound
models is again relaxed sound. We will see that in comparison to soundness,
relaxed soundness is preserved by additional composition techniques.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 177–192, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

178 J. Siegeris and A. Zimmermann

For the modeling we refer to WF-nets, a variant of Petri nets, that have been
successfully used for the description and analysis of business processes. Their
formal and furthermore operational semantics allows to use the process model
as input for a workflow engine directly. In order to do this, the process description
should be sound [Aal98]. Soundness guarantees that there are no dead tasks and
that the process will always terminate properly, i.e. achieve the required result.
Relaxed soundness has been proposed as a weaker property than soundness,
thus allowing more workflow structures. In a relaxed sound WF-net, not all but
only so many execution sequences must terminate properly, that every transition
(task) is visited at least once. In [DZ04, DvdA04] it was shown how methods
from Petri net controller synthesis can be applied to transform a relaxed sound
and bounded WF-net into a sound model. Advantages and disadvantages w.r.t.
the modeling and analysis of workflows are discussed for the two mentioned
properties and well-structuredness in [DZ05].

The aim of this paper is to emphasize the benefit of relaxed soundness against
the background of composition. Therefore, we will investigate a list of significant
composition techniques and check whether relaxed soundness is preserved. The
following techniques are covered:

– Refinement of a task by another workflow (or subcontracting in an interor-
ganizational workflow): An atomic task is split into substeps that are de-
scribed by another workflow in a hierarchical fashion. This technique goes
back to [Val79] and was redefined for WF-nets in [AH02].

– Combinations of workflows as a whole: the simplest case is chained ex-
ecution or sequential, but other options include iterative, parallel, alter-
native, discriminative (race condition), and multi merge composition, see
e.g. [AH02, HB03, CWBH+03].

– Client-server-like asynchronous composition with information exchange dur-
ing concurrent execution (similar to loosely coupled). Parts of the workflow
are executed concurrently after the invocation of a service, and arbitrary in-
formation exchange may take place between the partners during the service
execution, see e.g. [Aal99, KMR00, AHT02, Mar05].

– Parallel composition with mutual use of restricted resources or capacity shar-
ing: Two or more workflows operate distributed and need to be synchronized
because of common resources.

We will prove that all of the above composition techniques in fact preserve
relaxed soundness. This is important because it guarantees that by starting
with simple relaxed sound building blocks and combining them following the
given composition rules, ill-formed workflows are avoided. The resulting com-
plex WF-nets can thus be made sound automatically following [DZ04, DvdA04],
and executed on a workflow management system afterwards.

The remainder of the paper is structured as follows. Necessary basics are
briefly revisited first. The main part of the paper recalls the mentioned set of
composition techniques in terms of WF-nets and provides proofs for the fact that
the composition types preserve relaxed soundness. Some concluding remarks are
given finally.

Workflow Model Compositions Preserving Relaxed Soundness 179

2 Preliminaries

For the modeling of business processes we refer to Place/Transition nets3 and use
the more specific class of WF-nets as introduced in [Aal98]. A WF-net (P, T, F)
is briefly characterized by a source place (•i = ∅) and a sink place o (o• = ∅).
Furthermore, it must hold that for any node n ∈ (P ∪ T) there is a path from
i to n and from n to o. This ensures that every task (transition) or condition
(place) contributes to the processing of cases.

Considering the behavior of a WF-net, we will always investigate the life-cycle
of a single case, thus consider systems where initially only the source place i is
marked (Mi(i) = 1 and for all p ∈ P \ {i} : Mi(p) = 0). Figure 1 (i) shows a
simple WF-net with two parallel threads.

resource
places P_r

resource places P_r

i)

ii)

iii)

Fig. 1. A standard WF-net (i) and two resource constrained derivatives (ii) and (iii)

In the standard definition ofWF-nets, resources are not explicitly characterized.
According to [vHSSV05] we extend the notion of WF-nets to include information
about the use of resources in the model. A resource belongs to a type. For every type
a new place is introduced in the net, where resource tokens are located when they
are available. The resources become part of the case-modeling tokens when they
are occupied. Resources are assumed to be durable, i.e. they are used (blocked) and
released later on. Resources are never created nor destroyed.

Definition 1 (Resource constrained WF-net). A WF-net PN = (P, T, F)
becomes a resource constrained WF-net (Prc, T, Frc) by enhancing the set of
places P with the set Pr of resource places (Prc = P ∪ Pr, P ∩ Pr = ∅) and
the flow relation F by corresponding arcs Fr (F ∪ Fr, Fr ⊆ (Pr × T) ∪
(T × Pr)).

A standard WF-net can thus be interpreted as a special case of a resource-
constrained one, where Pr = ∅. Different examples, illustrating the use of re-
sources, are provided in the resource constrained WF-nets of Figure 1 (i-iii).

Resources are neither created nor destroyed during the processing. Therefore
they are part of the initial marking Mi of the corresponding resource-constrained
3 An introduction to Place/Transition nets is e.g. given in [DR98], where the concepts

of pre- and postset •x and x•, marking M , firing rule and firing sequence are defined
among others.

180 J. Siegeris and A. Zimmermann

WF-system, and their initial number is specified by R : Pr −→ IN . Formally,
Mi is defined as:

∀p ∈ P ∪ Pr : Mi(p) =

⎧
⎪⎨

⎪⎩

1 if p = i

R(p) if p ∈ Pr

0 otherwise

An important property in the context of workflow management is sound-
ness [Aal98]. A WF-net is sound if termination in a final marking Mf is always
possible. Furthermore, there are no dead transitions and neither deadlocks nor
live-locks.

This definition was enhanced for resource constrained WF-nets with multi-
ple cases (k-soundness [vHSSV05]). In this paper we only consider single cases
(the special case of 1-soundness), for which the definition reads as below. For
notational convenience we introduce a final marking Mf such that

∀p ∈ P ∪ Pr : Mf (p) =

⎧
⎪⎨

⎪⎩

1 if p = o

R(p) if p ∈ Pr

0 otherwise

Definition 2 (Soundness of resource constrained WF-nets). A resource
constrained WF-net PN with input place i is sound for some R ∈ INPr iff

1. For every state M reachable from state Mi it holds that the number of tokens
in each resource place is less than or equal to its initial number: ∀M ∈
RPN (Mi), ∀p ∈ Pr : M(p) ≤ R(p) (resources are durable).

2. For every state M reachable from state Mi, there is a firing sequence leading
from state M to state Mf : ∀M : (Mi

∗−→ M) ⇒ (M ∗−→ Mf) (proper
termination).

3. In addition to [vHSSV05] we require that there are no dead transitions in
PN : ∀t ∈ T ∃M, M ′ : (Mi

∗−→ M
t−→ M ′).

Enhancing the definition of a sound firing sequence accordingly, we get

Definition 3 (Sound firing sequence). Let PN be a resource-constrained
WF-net initially marked with Mi. A firing sequence σ is sound iff it leads from
Mi to Mf and does not violate the durability property: Mi

σ−→ Mf ∧ ∀M ∈
VisitedPN (Mi, σ) 4, ∀p ∈ Pr : M(p) ≤ R(p).

The set of sound firing sequences of a WF-net PN with initial marking Mi is
denoted by Σ sound

PN,Mi
in the following. If the initial marking is implicitly clear, we

just write Σ sound
PN .

In a sound WF-net all firing sequences beginning in Mi can be continued until
Mf (i.e. terminate properly), resulting in a sound firing sequence. The resource

4 With VisitedPN (M, σ) we denote the set of markings visited during a firing sequence
σ = t1, t2, . . . , tn starting in M .

Workflow Model Compositions Preserving Relaxed Soundness 181

constrained WF-nets of Figure 1 are all sound in the shown initial marking.
However, if the resource places of net (iii) are initially only marked with one
token, soundness of the corresponding WF-system would be violated.

Another important property for the modeling of business processes is relaxed
soundness. A WF-system is relaxed sound iff each transition is contained in at
least one sound firing sequence of the system.

Definition 4 (Relaxed soundness of resource constrained WF-nets).
A process specified by a (resource-constrained) WF-system (PN, Mi) is relaxed
sound iff every transition of PN is contained in a sound firing sequence: ∀t ∈
T ∃σ ∈ σsound (PN, Mi) : t ∈ σ.

Relaxed soundness poses weaker requirements to a process description than
soundness. In contrast to a sound WF-net, a relaxed sound WF-net may have
firing sequences which do not terminate properly. These firing sequences possi-
bly deadlock in a marking other than Mf or do not terminate at all (livelock).
Consider again the resource constrained WF-net from Figure 1 (iii). The net is
relaxed sound, also if there is initially only one token per resource place.

From the given definitions it can easily be seen that a sound WF-net (either
resource constrained or not) will also necessarily be relaxed sound. Note that if
there are no resource places, the definitions of soundness and relaxed soundness
coincide with the classical soundness notion [Aal98] and the primary notion of
relaxed soundness [DR01], respectively.

3 Composition Techniques

In this section, different composition techniques are considered and interpreted
in terms of WF-nets. Moreover, it is shown that their application to relaxed
sound WF-nets leads to composed models that are again relaxed sound. The
results presented in the first two subsections mainly transfer well-known results
to the class of relaxed sound WF-nets.

To start with, net composition via transition refinement is considered. This
method was first introduced in [Val79], where it was used to enhance Petri nets
by well-formed blocks. In [AH02] the method was adapted for WF-nets.

3.1 Composition Via Transition Refinement

Two WF-nets are composed by replacing a transition of the first WF-net (A)
by a transition-surrounded second WF-net (B). Figure 2 illustrates this kind of
composition. It is easy to see that the resulting net is again a WF-net.

Refining a transition t of a sound WF-net A by a transition surrounded sound
WF-net B, the composed WF-net is not necessarily sound. If the main WF-net
(here WF-net A) is not safe, proper termination is not guaranteed. We refer
again to Figure 2. The result of the illustrated composition is not sound5. This
5 Note, here the counterexample from [HSV03] was slightly changed, as the refining

WF-net (here WF-net B) was primarily not sound.

182 J. Siegeris and A. Zimmermann

WF-net A

WF-net B

t_ini t_fin

t

Fig. 2. Not sound WF-net composed by transition refinement

goes back to the fact that the refining WF-net becomes initiated with two tokens
in i. This caused a deadlock, as B was in fact 1- but not 2-sound. However, if the
two WF-nets are sound6 and the main WF-net is additionally safe, the composed
WF-net is always sound [AH02]. We will now investigate the property for relaxed
sound WF-nets which are not necessarily safe.

Theorem 1. When a transition t of a relaxed sound WF-net A is refined by a
relaxed sound WF-net B, the resulting WF-net C is again relaxed sound.

Proof. To prove that C is relaxed sound, we have to show that every transition
ti of C is contained in at least one sound firing sequence of C7. We construct a
set of sound firing sequences of C as follows. First, all sound firing sequences of
A that do not contain t are considered (this set may be empty). Second, we take
all sound firing sequences of A that do contain t (there must be at least one of
them) and replace t by one of the (always existing) sound firing sequences of B.
Third, we select one of the sound firing sequences of A containing t, and form a
set of new firing sequences by substituting t in it by elements of a set of sound
firing sequences of B. This set is chosen such that all transitions of WF-net B
are contained in it (which is always possible because B is relaxed sound). The
union of these three sets is a set of sound firing sequences of C by construction.
It remains to be shown that each transition of C is contained in at least one of
them, which is obvious because A and B are relaxed sound and all their “local”
sound firing sequences are contained in the constructed set. �

3.2 Combinations of Workflows as a Whole

Within this paragraph we consider purely structural composition techniques that
define the interaction of two WF-nets A and B by the use of workflow pattern.

6 We again refer to the classical soundness definition here, i.e. 1-soundness.
7 Except for ti = t, which is replaced by B.

Workflow Model Compositions Preserving Relaxed Soundness 183

WF-net A

WF-net B

WF-net BWF-net A i) sequential
composition

iii) parallel
composition

ii) iterative
composition

AND-split AND-join

WF-net B

WF-net A

iv) strict alternative
composition

XOR-split XOR-join

WF-net B

WF-net A

Fig. 3. Structural composition rules using basic WF-pattern

The following basic and advanced pattern will be used: sequence, structured
cycle, parallel split (AND-join), synchronization (AND-join), exclusive choice
(XOR-split), simple merge (XOR-join) multiple choice (OR-split), synchronizing
merge (OR-join), discriminator and multi merge.

Sequential composition of WF-nets. One workflow process is enabled after
the completion of the other. Within the proposed composition technique this
was implemented linking two WF-nets with a transition connecting the sink of
the first with the source of the second WF-net, cf. Figure 3 (i).

Iterative composition of WF-nets. Two workflow processes can repeatedly
be executed after one another, where the loop can be abandoned after termi-
nation of one of the processes. The composition technique, implementing this
pattern of a structured cycle in terms of WF-nets, is provided in Figure 3 (ii).

Parallel composition of WF-nets. Two workflow processes are routed in par-
allel. This composition technique was implemented accommodating the parallel
split and the synchronization pattern as shown in Figure 3 (iii).

Alternative composition of WF-nets. Two workflow process are activated
alternatively. There are two implementations possible. Applying the basic WF-

184 J. Siegeris and A. Zimmermann

WF-net A

WF-net B

i) alternative
composition

ii) discriminitive
composition
(1-out -of-2-join)

t

AND-split
Multi
merge

iii) multi merge composition

XOR-split AND-join

WF-net B

WF-net A

OR-split OR-join

WF-net A

WF-net B

DiscriminatorAND-split

t

Fig. 4. Structural composition rules using advanced WF-pattern

pattern exclusive choice and simple merge two WF-nets are composed, such
that only one of them is executed, cf. Figure 3 (iv). The second possibility of
conditional routing is implemented accommodating the advanced WF-pattern
multiple choice and synchronizing merge. Here, the two WF-nets can be used
either in parallel or alternatively, cf. Figure 4 (i).

Discriminative composition of WF-nets. Two workflow processes are en-
abled at the same time. After the first terminates, subsequent tasks are activated.
Termination of the second process is awaited but ignored, i.e. no subsequent
tasks are triggered. This behavior was implemented using a parallel split and a
discriminator pattern. Figure 4 (ii) illustrates this composition technique. The
subsequent task is modeled by transition t. The privilege to activate the sub-
sequent task is modeled by a semaphore, i.e. a resource place initially marked
with one token.

Multi merge of WF-nets. Two workflow processes are activated in paral-
lel. If one of them terminates the subsequent task is activated. In contrary to
the previous composition technique, the subsequent task is not activated once,
but twice. In order to unify the two threads again, the proposed composition

Workflow Model Compositions Preserving Relaxed Soundness 185

technique uses an exclusive choice and a synchronization pattern. Figure 4 (iii)
illustrates this composition technique.

When applying the proposed set of composition techniques, it is guaranteed
that the resulting net is always a WF-net, which can hence again be used for
composition. This follows from the fact that the WF-nets are only composed via
their source and there sink place. Note that the proposed composition techniques
only represent a choice. There are other combinations of WF-pattern possible,
providing meaningful compositions of two or more workflow processes.

We will now investigate whether the proposed composition techniques main-
tain relaxed soundness. Therefore we will prove the following statements.

1. A sequence of relaxed sound WF-nets is relaxed sound.
2. The result of the iterative composition of two relaxed sound WF-nets is again

relaxed sound.
3. A parallel composition of relaxed sound WF-nets is relaxed sound.
4. An alternative composition of relaxed sound WF-nets is relaxed sound.
5. The proposed discriminative composition of two relaxed sound WF-nets

yields again a relaxed sound WF-net.
6. The proposed multi merge composition of two relaxed sound WF-nets yields

again a relaxed sound WF-net.

Proof. The proof argumentation is for all statements the same. Replacing every
placeholder for the WF-nets A and B in the composition rules with a single
transition with one input and one output place, we gain a set of WF-nets. All
these WF-nets are relaxed sound. We exploit the previous result, concluding that
refining the transitions by relaxed sound WF-nets, the resulting nets are again
relaxed sound. �
Note that this result cannot be transferred for soundness, as some of the gained
WF-nets are not sound, namely the ones described in Figure 4 (i) and 4 (iii).

The following two composition techniques are somehow more complex than the
previous ones. The difference is that the interaction of the two WF-nets now goes
beyond the use of the source and the sink place but comprises additional elements.

3.3 Combination of WF-Nets Due to Information Exchange

The fact that e.g. two organizations interact on some purpose is mostly reflected
in the exchange of data or flow of information. In terms of WF-nets this is
modeled by interface places. Typical examples include sending and reception of
data or documents.

The corresponding composition technique assumes two independent WF-nets
A and B, where B provides a service that A needs (client-server pattern). Fig-
ure 5 illustrates this type of combination. Some information must be passed
between A and B to facilitate their interaction. Therefore the server WF-net B
has to be invoked by a request, and an interface for the exchange of results and
possible further data/information must be available.

This composition technique is similar to the approach proposed in [AHT02],
where C-nets modeling the behavior of SW-components are composed to form

186 J. Siegeris and A. Zimmermann

WF-net A

WF-net B

Interface with
places P_Interface

Fig. 5. Combination of WF-nets via interface places

complex architectures. Therefore a set of interface places was introduced, con-
necting transitions of the two WF-nets. This set is denoted by Pinterface in the
following, and shown in the figure.

As in [AHT02] we assume the interaction to be always executed within the
scope of the client (WF-net A). That is, the client starts the interaction (marks
the initial place of B) and the server always reports back to the client when it
finished the interaction (marks the final place of B). The combined workflow
model C comprises the client model A, interface places Pinterface , and server
workflow B. Therefore, initial and final places of the client iA and oA are the
respective places of the combined model. The initial and final place of the server
are part of the interface (iB , oB ∈ Pinterface).

There are two further assumptions on this composition type: First, every place
of the interface connects exactly one pair of transitions: the introduced interface
places thus have exactly one transition in their preset and one transition in their
postset, out of which obviously exactly one belongs to each WF-net A or B.
Formally, ∀p ∈ Pinterface : |•p| = |p•| = 1, •p ∈ TA ⇔ p• ∈ TB and vice versa. We
denote by the set of synchronization transitions Tsync the ones that are connected
to an interface place, Tsync = {t ∈ TA ∪ TB |∃p ∈ Pinterface : t ∈ •p ∪ p•}.

Moreover, we require every synchronization transition to be connected to only
one interface place ∀t ∈ Tsync : |•t ∩ Pinterface | = |t• ∩ Pinterface | = 1. There is
thus a one-to-one correspondence between synchronization transitions in A and
B, which is formally captured by relation sync(t1, t2) ⇔ ∃p ∈ Pinterface : t1 ∈
•p, p ∈ •t2 ∨ t2 ∈ •p, p ∈ •t1.

It has been shown in [AHT02] that the combined net C is again a WF-net.
However, it is not clear whether the (relaxed) soundness of C follows from the
soundness properties of A and B. In the general case (without further restric-
tions) the combination does not preserve soundness nor relaxed soundness which
is illustrated in Figure 6 (i).

For sound WF-nets there are two alternative additional requirements that are
sufficient conditions for a soundness-preserving composition of this type. It was
shown in [AHT02] that the global model C is sound if the local workflow nets are
branching bisimular. Its informal meaning for the workflow is that the behavior of
A is not restricted by adding B and the interface. A structural property that is a
sufficient condition which is simpler to check is a request-response-pattern defined
in the same paper. However, it restricts the allowed interactions significantly.

Workflow Model Compositions Preserving Relaxed Soundness 187

WF-net A

WF-net B

(i) WF-net C is not relaxed sound

WF-net A

WF-net B

(ii) WF-net C is relaxed sound;
required condition does not hold

t_B

t_A

p_AB1

(iii) WF−net C, without the implicit
interface place, is relaxed sound;
required condition does hold

WF−net B

WF−net A

Fig. 6. Examples for the combination of WF-nets via interface places

We will show in the following that C is relaxed sound if A and B are, pro-
vided that there are pairs of sound firing sequences in A and B such that the
synchronization transitions appear in the same order and multiplicity in them.

A minor additional requirement is an upper bound on the number of occur-
rences of every synchronization transition in any local firing sequence (in an
isolated A and B). This is done only to prevent infinitely many invocations of
B. Transitions other than the synchronizing ones may still occur infinitely often.

The idea behind the proof is to look at the local sound firing sequences of A
that have some interaction with B, and to consider those that “match” some local
firing sequence of B. Two firing sequences match if they describe an interleaving
of transition firings that may be executed concurrently without a deadlock. The
non-synchronization transitions are obviously not an issue here, we only have to
consider the interactions between the two models. Each of the firing sequences in
A and B can be executed locally until the next synchronization transition appears.
Here come the structural restrictions into play: because of the one-to-one relation-
ship between synchronization transitions in A and B, their sequence is defined by
theway they are connectedwith an interface place. Ifwe imagine allmatching firing
sequences constructed in this way, we only have to make sure that every transition
of A and B appears in one of them to know that C is relaxed sound.

To improve readability of the following theorem we introduce the notion of
an abstracted firing sequence to filter out non-synchronization transitions. A
firing sequence σabstract of a WF-net PN = (P, T, F) w.r.t. the transition subset
Tsync ⊆ T is denoted as an abstraction of a firing sequence σ of PN iff σabstract

is derived from σ by deleting every occurrence of all t ∈ T \ Tsync .
We say that two abstracted firing sequences σabstract

A and σabstract
B of WF-

nets A and B match if their lenghts are equal,
∣
∣σabstract

A

∣
∣ =

∣
∣σabstract

B

∣
∣, and the

transition steps are pairwise connected by interface places8: ∀i ∈ 1, . . .
∣
∣σabstract

A

∣
∣ :

sync(σabstract
A [i], σabstract

B [i]).

Theorem 2. Let WF-net C be the composition of relaxed sound WF-nets A
and B as described above, and Pinterface their set of interface places. Consider
the two sets of all abstracted sound firing sequences for A and B, denoted by
Σsound,abstract

A and Σsound ,abstract
B .

8 σ[i] denotes the i-th transition in the sequence.

188 J. Siegeris and A. Zimmermann

The composed WF-net C is relaxed sound if every synchronization transition
of A is contained in an abstracted sound firing sequence of A for which there is a
matching abstracted sound firing sequence of B (and vice versa). Formally, ∀t ∈
TA ∩ Tsync : ∃σA ∈ Σsound,abstract

A such that t ∈ σA and ∃σB ∈ Σsound ,abstract
B

with σA matching σB .

Proof. To prove that the composed WF-net C is relaxed sound, we have to
show that there are sound firing sequences of C such that all transitions of
C are contained in at least one of them. We consider two cases for transition
t ∈ TA ∪ TB:

1. There is no sound firing sequence containing t with a matching
sequence: Thus there is no synchronization transition contained in the sound
firing sequences visiting t, and hence B is not invoked; therefore t ∈ TA. As WF-
net A was relaxed sound, there is a sound firing sequence σ ∈ Σsound

A containing
t. The firing sequences visiting t are not influenced by the introduction of the
additional interface places (otherwise t would have been part of such a related
pair of firing sequences), concluding that σ must also be a sound firing sequence
of the composed WF-net C.

2. There is a sound firing sequence containing t with a matching firing
sequence: Assume w.l.o.g. that t ∈ TA, and denote the sound firing sequence
containing t by σA. We may then safely assume from the theorem that there is
at least one sound firing sequence σB of B that matches σA.

It remains to be shown that t is contained in a sound firing sequence of C.
Such a firing sequence is constructed by an interleaving of σA and σB with the
following rules.

– In every step, select either σA or σB to be progressed, such that every tran-
sition firing follows the local sequence in A or B.

– Transitions from σB may only be selected in the time span between an
invocation of B, i.e. when a token is added to iB ∈ Pinterface , until B has
terminated, i.e. when a token is added to oB.

– If at least one of the next transitions in the sequences σA and σB is not a
synchronization transition, select it to be fired. This is always possible in
any order because there are no synchronization dependencies.

– In the case that both next transitions are in Tsync , fire them one after the
other in the sequence that is specified by their postset or preset relation
with the connecting interface place. This ordering is unique because of the
restrictions on the interface.

– Continue until both sequences σA and σB have been fully executed, which
is the case when oA is marked.

The local order of the transitions in σA and σB remains the same in the
constructed firing sequence of C, and all dependencies between A and B are
observed. The effect of the introduced interface places comes down to a synchro-
nization of the connected transitions. Because σA and σB were sound, we can
conclude that also their constructed interleaving is sound. �

Workflow Model Compositions Preserving Relaxed Soundness 189

WF-net A

WF-net B

Common resource
places P_Common_Resource

AND-split AND-join

Fig. 7. Composition of WF-nets via common resource places

Note that our additional requirement is much weaker than the one given in
[AHT02]. It is in fact sufficient to require bisimulation only for a set of firing
sequences covering all transitions, to ensure that a composition of relaxed sound
WF-nets preserves this property. The consequence of the fewer restrictions is
that WF-net A may not only postpone but possibly also restrict the behavior of
WF-net B and vice versa.

Although the above requirement is sufficient for a preservation of relaxed sound-
ness, there are other cases in which C is relaxed sound as well. Figure 6 (ii) shows an
example. In the shown case the problem stems from an unnecessary synchroniza-
tion between transitions tA and tB, which is overspecified because of their indirect
causal dependency. Such cases can be easily detected and avoided based on the no-
tion of implicit places [Ber87]. A place is implicit if its removal does not change the
overall behavior, i.e. does not enable additional firing sequences. As a consequence,
we remove all implicit places from the interface, which possibly extends the set of
synchronization patterns for which the above proof applies.

Removing the implicit place pAB1 from Figure 6 (ii) leads to the model given
in Figure 6 (iii) where our condition holds. It can therefore be concluded that
the composed WF-net from Figure 6 (ii) is relaxed sound.

3.4 Parallel Composition with Mutual Use of Restricted Resources

For this composition technique we explicitly refer to resource-constrained WF-
nets. Remember that resources were typed via resource places. If two processes
request the same type of resources it is useful to compose the two nets by merging
the resource places.

In the presence of shared resources it has to be investigated whether there
are any bad interactions, e.g. leading to a deadlock. Therefore the two nets are
always composed in parallel, i.e. initiated at the same time. Figure 7 illustrates
this kind of composition. It is obvious that the resulting net again fulfills the
requirements of a WF-net.

Starting from two sound WF-nets this composition technique does not main-
tain soundness. A counterexample is given in Figure 8. Still, we will show that
starting with relaxed sound WF-nets the resulting net is again relaxed sound.

190 J. Siegeris and A. Zimmermann

WF-net A

WF-net B

Common resource
places P

AND-split AND-join

Fig. 8. Deadlock in a WF-net, composed by joining common resource places

Theorem 3. Composing relaxed sound resource constrained WF-nets A and B
at common resource places, the resulting WF-net C is relaxed sound.

Proof. We only have to show that there are enough sound firing sequences in C
such that all transitions of C are contained in at least one of them. We know the
primary WF-nets contained enough sound firing sequences to cover the set TA or
TB, respectively. These two nets are now composed in parallel. It is nevertheless
possible to execute A completely first, and then B as a whole because of their
relaxed soundness property. The resulting firing sequences are obviously sound
sequences of C and cover all transitions of A and B by construction. �

4 Conclusion

This paper investigated whether typical composition techniques for Petri net
workflow models preserve relaxed soundness. We have shown that (under addi-
tional restrictions in some cases) any two relaxed sound WF-nets can be com-
posed, leading to a WF-net that is again relaxed sound. The application of pre-
vious results drawing on Petri net controller synthesis [DZ04, DvdA04] extend
such a net to a sound one with an automated algorithm.

The presented results allow to construct WF-nets by combining basic patterns
in a stepwise composition or hierarchical refinement approach. Any combination
of the described compositions is possible in sequential steps. Such a composition
always leads to a relaxed sound model if the initial building blocks were relaxed
sound. The only restriction is that common resources and interface places may
not be used at the same time for the proofs to hold. The controller generated
by [DvdA04] guarantees a sound result to be derived from the final composition.

For the resource composition technique this means that the presented result is
not as trivial as one may think from the proof. If the possibility of mutual waiting
for the release of resources exist, it is not required to fully sequentialize the execu-
tions of A and B. Parts of the execution may allow interleaving without running
into a deadlock. None of the possible concurrent behavior is deleted, because the
controller algorithm always computes the maximally permissive behavior. Apply-
ing the algorithm to a relaxed sound model with shared resources thus results in
scheduling resource accesses such that no deadlock will occur.

Workflow Model Compositions Preserving Relaxed Soundness 191

Although it is guaranteed that the composed WF-net is relaxed sound, it may
be unbounded. That is the case if one of the initial WF-nets was unbounded;
unboundedness is never introduced by the application of the presented rules.
As the used controller algorithm only works on the basis of a finite reachability
graph, it cannot be applied in these cases.

A side effect of the presented results is the following. Relaxed soundness can be
shown in finite time if it holds, while the check for not being relaxed sound takes in-
finite time for unbounded nets [Deh03]. The set of compositions preserving relaxed
soundness of this paper may offer a better possibility to check relaxed soundness
for unbounded WF-nets. If subnets can be identified in a model such that it can be
interpreted as the result of a composition, relaxed soundness has to be checked for
the subnets only.Theproblem is thus cut back in size,which canbe done repeatedly
until a set of submodels is derived that are known to be relaxed sound.

References

[Aal98] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Man-
agement. The Journal of Circuits, Systems and Computers, 8(1):21–66,
1998.

[Aal99] W.M.P. van der Aalst. Interorganizational Workflows: An Approach
based on Message Sequence Charts and Petri Nets. Systems Analysis -
Modelling - Simulation, 34(3):335–367, 1999.

[AH02] W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Mod-
els, Methods, and Systems. MIT press, Cambridge, MA, 2002.

[AHT02] W.M.P. v.d. Aalst, K.M. van Hee, and R.A. v.d. Toorn. Component-
based software architectures: a framework based on inheritance of be-
havior. Science of Computer Programming, 42(2–3):129–171, 2002.

[Ber87] G. Berthelot. Transformations and decompositions of nets. In G. Rozen-
berg, editor, Advances in Petri Nets, volume 266 of LNCS. 1987.

[CWBH+03] P. Chrzastowski-Wachtel, B. Benatallah, R. Hamadi, M. O’Dell, and
A. Susanto. A Top-Down Petri Net-Based Approach for Dynamic Work-
flow Modeling. In W. van der Aalst, A. ter Hofstede, and M. Weske,
editors, Int. Conf. on BPM, volume 2678 of LNCS, pages 336–353, 2003.

[Deh03] J. Dehnert. A Methodology for Workflow Modeling - From business
process modeling towards sound workflow specification. PhD thesis, TU
Berlin, 2003.

[DR98] J. Desel and W. Reisig. Place/Transition Petri Nets. volume 1491 of
LNCS. Springer, 1998.

[DR01] J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes.
In K.L. Dittrich, A. Geppert, and M.C. Norrie, editors, Advanced Infor-
mation System Engineering, CAISE 2001, volume 2068 of LNCS, pages
157–170. Springer, 2001.

[DvdA04] J. Dehnert and W.M.P. van der Aalst. Bridging the Gap Between Busi-
ness Models and Workflow Specifications. Int. Journal of Cooperative
Information Systems (IJCIS), 13(3):289–332, 2004.

[DZ04] J. Dehnert and A. Zimmermann. Making Workflow Models Sound Us-
ing Petri Net Controller Synthesis. In R. Meersman and Z. Tari et.al.,
editors, Int. Conf. Cooperative Information Systems (CoopIS) 2004, vol-
ume 3290 of LNCS, pages 139–154, Cyprus, 2004.

192 J. Siegeris and A. Zimmermann

[DZ05] J. Dehnert and A. Zimmermann. On the Suitability of Correctness
Criteria for Business Process Models. In W.M.P. van der Aalst and
B. Benatallah et.al., editors, Int. Conf. Business Process Management,
BPM 2005, volume 3649 of LNCS, pages 386–391, France, 2005.

[HB03] R. Hamadi and B. Benatallah. A Petri Net-based Model for Web Service
Composition. In X. Zhou and K.-D. Schewe, editors, 14th Australasian
Database Conference (ADC2003), volume 17 of Conferences in Research
and Practice in Information Technology, Australia, 2003.

[HSV03] K.M. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Sep-
arability of Workflow Nets in the Stepwise Refinement Approach. In
W.M.P. van der Aalst and E. Best, editors, 24th Int. Conf. on Applica-
tion and Theory of Petri Nets, LNCS, pages 337–356. Springer, 2003.

[KMR00] E. Kindler, A. Martens, and W. Reisig. Inter-Operability of Workflow
Applications: Local Criteria for Global Soundness. In W.M.P. van der
Aalst, J. Desel, and A. Oberweis, editors, BPM: Models, Techniques, and
Empirical Studies, volume 1806 of LNCS, pages 235–253. Springer, 2000.

[Mar05] Martens, A. Analyzing web service based business processes. In M. Ce-
rioli, editor, 8th Int. Conf. on Fundamental Approaches to Software En-
gineering (FASE 2005), volume 3442 of LNCS, pages 19–33. Springer
Verlag, 2005.

[Val79] R. Valette. Analysis of Petri nets by stepwise refinements. Journal of
Computer and System Sciences, 18:35–46, 1979.

[vHSSV05] K. M. van Hee, A. Serebrenik, N. Sidorova, and M. Voorhoeve. Sound-
ness of resource-constrained workflow nets. In ICATPN, pages 250–267,
2005.

Semantic Correctness in Adaptive Process
Management Systems

Linh Thao Ly, Stefanie Rinderle, and Peter Dadam

Dept. DBIS, University of Ulm, Germany
{thao.ly, stefanie.rinderle, peter.dadam}@uni-ulm.de

Abstract. Adaptivity in Process Management Systems (PMS) is key to
their successful applicability in pratice. Approaches have already been de-
veloped to ensure the system correctness after arbitrary process changes
at the syntactical level. However, still errors may be caused at the se-
mantical level. Therefore, the integration of application knowledge will
flag a milestone in the development of process management technology.
In this paper, we introduce a framework for defining semantic constraints
over processes in such a way that they can express real-world applica-
tion knowledge. On the other hand, these constraints are still manageable
concerning the effort for maintenance and semantic process verification.
This can be used, for example, to detect semantic conflicts when ap-
plying process changes (e.g., drug incompatibilities). In order to enable
the PMS to deal with such semantic conflicts we also introduce a notion
of semantic correctness and discuss how to (efficiently) verify semantic
correctness in the context of process changes.

Keywords: Semantic Correctness, Semantic Process Verification, Se-
mantic Constraints, Adaptive Process Management Systems.

1 Introduction

Due to steadily changing conditions at the global market, companies are forced
to frequently adapt their business processes [1–4]. Therefore, adaptivity is the
key factor for the successful application of process management technology in
practice. Generally, process changes can take place at two levels – process type
and instance level [5, 6]. Therefore, it is crucial for an adaptive process manage-
ment system (PMS) to support both kinds of changes. However, it is still not
sufficient to support process type and instance changes in an isolated manner.
An adaptive PMS must also allow for the interplay between process type and
instance changes [7]. A framework for the support of process type and instance
changes as well as for their interplay (i.e., the support of change propagation to
already individually modified instances) has been developed [3, 8]. Within this
framework the structural (syntactical) correctness of the system is always pre-
served after arbitrary process changes. For example, it is automatically checked
by the PMS whether process changes will lead to structural errors, like deadlock-
causing cycles or not properly supplied input parameters, or to inconsistent in-
stance states. However, the framework abstracts from semantical aspects. Thus,

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 193–208, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

194 L.T. Ly, S. Rinderle, and P. Dadam

semantic errors may arise, especially in the context of process changes intiti-
ated under time pressure. Consider, for example, process instance I reflecting
the treatment process for patient Smith as depicted in Fig. 1. Assume that, due
to suddenly arising headache, the drug Aspirin is administered to patient Smith.
This is achieved by inserting activity Administer Aspirin into instance I in an
ad-hoc manner by, for example, a nurse at her workplace.

Fig. 1. Semantic conflicts after process changes due to drug incompatibility and de-
pendencies between activities

However, in this treatment process, the drug Marcumar, which is not com-
patible to Aspirin, is already administered some activities ahead (semantic con-
flict). Even if the process change is syntactically correct, it is not semantically.
Especially when the process instance is often modified in an ad-hoc manner
(for instance, Administer Marcumar was previously inserted as an ad-hoc mo-
dification) or when process changes at scheme level and at instance level occur
together, it is likely that those conflicts remain undetected by users. If the PMS
was aware of the incompatibility of these activities, it could prevent the user
from causing semantic conflicts by, for example, warn the user accordingly. In
Fig. 2, the user (a doctor with the appropriate authorization) still performs the
change operation but has to document the reason for overriding the semantic
constraint. Thus, it is possible to trace back semantic conflicts.

As motivated, it is crucial to be able to also integrate application knowledge
(i.e., semantic knowlegde) within the process change framework in order to avoid
semantic conflicts. In this context, many challenging questions arise:

– How to formalize and integrate application knowledge within an adaptive
PMS?

– How to define a notion of semantic correctness of processes after changes?
– How to support the efficient verification of the semantic correctness?
– How to maintain the knowledge base?

Semantic Correctness in Adaptive Process Management Systems 195

Fig. 2. Interaction scenario when a semantic conflict occurs

In this paper, we extend the framework presented in [3, 8] by integrating appli-
cation knowledge into adaptive PMS. First of all, we provide a formalization for
semantic constraints imposed on business processes. In particular, we introduce
two fundamental kinds of semantic constraints (mutual exclusion constraints and
dependency constraints) which serve as a basis for the following considerations.
However, the set of semantic constraints can be easily extended. Based on the
notion of semantic constraints, a general criterion for the semantic correctness
of business processes (independently from the underlying process meta model) is
provided. We show how to verify semantic correctness of processes based on this
criterion, in particular in the context of process changes. For this, we exploit the
semantics of the applied change operations, for example when applying single
change operations (e.g., adhoc changes of process instances), or when applying
concurrent changes (e.g., propagating process schema changes to biased process
instances). Afterwards, we discuss different possibilities to realize verification of
semantic process correctness in an efficient manner. One way based on exploit-
ing certain process meta-model properties is discussed in more detail. Finally, we
show how the semantic constraints can be organized within a domain repository.

This paper is structured as follows. In Sect. 2, a framework for the definition
of semantic constraints and the notion of semantic correctness are introduced.
In Sect. 3, we show how the semantic correctness of processes can be verified.
In Sect. 4, we show the application of the criterion when, for example, a block-
structured process model is used. In Sect. 5, a framework for organizing semantic
constraints is introduced. Related work is discussed in Sect. 6. Finally, Sect. 7
concludes with a summary and an outlook on future research.

2 Semantic Constraints and Semantic Correctness in
Adaptive Process Management Systems

As motivated in Sect. 1, it is desirable to integrate (semantic) application know-
ledge in the PMS in order to avoid semantic conflicts. It is in principle possible
to integrate even very complex application knowledge in adaptive PMS. By con-
necting the PMS with a knowledge-based system or an expert system (e.g. [9,
10]), for instance, application knowledge maintained in the external system can
be used by the PMS to avoid semantic conflicts. However, two important as-
pects influence the possibilities of integrating application knowledge in adaptive
PMS. First of all, it is an important question how and by whom the knowledge
base is maintained. The more application knowledge, and in particular the more

196 L.T. Ly, S. Rinderle, and P. Dadam

complex the knowledge, the greater is the effort to keep the knowledge base
up-to-date. Thus, there is a risk that the knowledge, according to which the
semantic checks are performed, is outdated. In fact, this might be even more
dangerous than not performing semantic checks at all. Users might rely on the
semantic checks to ensure the semantic correctness of the process not knowing
that the knowledge base is outdated. As a consequence, it seems reasonable to
only integrate that kind of application knowledge which is really important and
which will really be kept up-to-date. Second, the goal of integrating application
knowledge is to enable the PMS to also perform process checks at the semantic
level. However, the effort to perform these semantic checks must not lead to a
bottleneck, especially when changes on process schemes are propagated to many
running (and possibly ad-hoc modified) instances. This restricts the complexity
of application knowledge to be integrated in adaptive PMS.

The two aspects mentioned above need to be kept in mind when thinking about
integrating application knowledge in adaptive PMS. In future work, we will inves-
tigate the influence of these aspects in more detail. In this paper, we introduce two
fundamental kinds of semantic constraintswhich can be imposed on processes:mu-
tual exclusion constraints and dependency constraints. These constraints refer to
activities and impose certain conditions on how these activities can be used in the
process. By enabling the PMS to be aware of these fundamental constraints, many
semantic errors, for example the ones depicted in Fig. 1, can be avoided. On the
other hand, the introduced kinds of constraints are still manageable regarding the
effort for maintenance and for semantic verification.

Mutual exclusion constraints express that two activities are not compatible
and should not be executed together, for instance administering two incompa-
tible drugs. Please note, that this does not mean that these activities must
not occur in the same process. Due to the process structure, it depends on the
position of the activities whether the constraint is satisfied or not. In Fig. 3, a
semantic conflict occurs in the first process fragment while the second process
fragment is semantically correct. Mutual exclusion constraints are symmetric.

Fig. 3. Semantic conflict dependent of process structure

Dependency constraints express that an activity is dependent of another activity,
i.e. these activities need to occur together in the process. In Fig. 1 for instance,
activity Perform Surgery is added to the process. However, in the treatment
process the activity Prepare Blood Bottles needs to be performed before and
Make Appointment for Follow-Up Examination needs to be performed after
Perform Surgery. These semantic dependencies of Perform Surgery cause a
semantic conflict, when only Perform Surgery is inserted to the process.

Semantic Correctness in Adaptive Process Management Systems 197

Whether a process change can be applied to a concrete process is, therefore,
not only a question of structural correctness or data flows but also a question
of whether the semantic constraints over the process are violated by the process
change. For our following considerations we assume the uniqueness of activities
in a process (i.e. each activity may occur only once in a business process).

Definition 1 (Semantic constraint). Let A be a set of activities1. A se-
mantic constraint c is defined as a tuple (type,source,target,position,userDefined)
whereas

– type ∈ {Exclusion, Dependency}
– source, target ∈ A, source �= target
– position ∈ {pre, post, notSpecified}
– userDefined is a user-defined parameter

The parameter type denotes whether the semantic constraint is a mutual ex-
clusion constraint or a dependency constraint. The second parameter source
denotes the source activity the constraint refers to while target denotes the tar-
get activity related to the source activity. Parameter position specifies the order
the source and target activity are to be related to each other within the process
(e.g., the surgery depends on the preparation of blood bottles and the bottles
have to be prepared before (pre) the surgery). The last parameter userDefined
can be used for several purposes, for instance for additionally describing the
constraint. Furthermore, it might also be used to indicate the importance of the
constraint. For instance, to indicate whether a constraint is merely a recom-
mendation or whether it is more severe. This information can be used by the
PMS client to create an appropriate feedback for the user. As an example, the
constraint mentioned above would look like this:

(Dependency, Perform surgery, Prepare blood bottles, pre,
Blood bottles need to be prepared for the patient and stored in
the surgery room before the surgery can take place)

In Def. 2, the satisfaction of semantic constraints is defined taking the notion
of execution trace as a basis. According to Def. 2, the constraint above, for
example, is satisfied over a process if the source activity (Perform surgery) is
not included in this process. In case it is, the constraint is satisfied, if Prepare
blood bottles is always performed before Perform surgery in each possible
execution trace of the process, in which Perform surgery appears.

Definition 2 (Satisfaction of semantic constraints). Let A be a set of ac-
tivities which can be used to specify a process p of type T. Let Q be the set of
all possible execution traces of p. A trace q ∈ Q is defined by q :=< e1, . . . , ek >
with events ei = End(t)2, t ∈ A. Then, we define the following functions:

1 Within the ADEPT framework, for example, A refers to the activity repository
containing all relevant activities in the context of a certain process type T.

2 We abstract from start events in the traces.

198 L.T. Ly, S. Rinderle, and P. Dadam

– activities: Q �→ A with activities(q):= {t1, . . . , tn} with
q =< e1, . . . , ek > ∧ ∀ tl ∃ ei with ei = End(tl), l = 1, ..., n; i = 1, ..., k (i.e.,
activities denotes a function that returns the set of all activities included in
an execution trace q).

– processActs(p):={t1, . . . , tn} with
∀ tl ∃ q ∈ Q with tl ∈ activities(q), l = 1, ..., n (i.e., processAtcs returns
all activities included in the process p).

– traceSucc: A × Q �→ A with traceSucc(t, σ):= {t1, . . . , tn} with
σ =< e1, . . . , ek >, t1, . . . , tn ∈ activities(σ) ∧ ∀ tl : ∃ ei, ej ∈ σ with
ei = End(tl), ej = End(t), l = 1, ..., n; i, j = 1, ..., k ∧ i < j (i.e.,
traceSucc denotes a function which returns all direct or indirect successors
of a given activity t within an execution trace σ).

– tracePred: A × Q �→ A with tracePred(t, σ):= {t1, . . . , tn} with
σ =< e1, . . . , ek >, t1, . . . , tn ∈ activities(σ) ∧ ∀ tl : ∃ ei, ej ∈ σ with
ei = End(tl), ej = End(t), l = 1, ..., n; i, j = 1, ..., k ∧ i > j (i.e.,
tracePred denotes a function which returns all direct or indirect predecessors
of a given activity t within an execution trace σ).

Let a1, a2 ∈ A be two activities, a1 �= a2. Then, a semantic constraint c =
(type, source, target, position, userDefined) with source=a1 and target=a2 is
satisfied over process p (formally: satisfied(c, p) = True) iff one of the fol-
lowing conditions holds:

– type ∈ {Exclusion,Dependendency} and a1 /∈ processActs(p)
– type = Exclusion, position = pre and ∀ execution traces φ ∈ Q:

a1 ∈ activities(φ) ⇒ a2 /∈ tracePred(a1, φ)
– type = Exclusion, position = post and ∀ execution traces φ ∈ Q:

a1 ∈ activities(φ) ⇒ a2 /∈ traceSucc(a1, φ)
– type = Exclusion, position = notSpecified and ∀ execution traces φ ∈ Q:

a1 ∈ activities(φ) ⇒ a2 /∈ traceSucc(a1, φ) and a2 /∈ tracePred(a1, φ)
– type = Dependendency, position = pre and ∀ execution traces φ ∈ Q:

a1 ∈ activities(φ) ⇒ a2 ∈ tracePred(a1, φ)
– type = Dependendency, position = post and ∀ execution traces φ ∈ Q:

a1 ∈ activities(φ) ⇒ a2 ∈ traceSucc(a1, φ)
– type = Dependendency, position = notSpecified and ∀ execution traces φ ∈ Q:

a1 ∈ activities(φ) ⇒ (a2 ∈ tracePred(a1, φ) or a2 ∈ traceSucc(a1, φ))

Otherwise, c is violated over p (formally: satisfied(c, p) = False).

For a process type (e.g., the treatment process), many constraints might be
relevant. Even if the process was modelled semantically correct at buildtime,
due to possible (unforeseen) process changes, activities might be deleted from
or added to the process at runtime. Furthermore, mutual exclusion constraints
cannot be modelled in the control-flow of a process. In these cases, the constraints
imposed on the process will help to ensure a semantically correct execution. Now,
based on the notion of satisfaction of constraints, a semantic correctness criterion
for business processes can be defined.

Semantic Correctness in Adaptive Process Management Systems 199

Definition 3 (Semantic correctness of business processes). Let T be a
process type and let p be a process of type T. Let further Cp be the set of all
semantic constraints defined over p. Process p is semantically correct ⇐⇒

∀c ∈ Cp: satisfied(c, p) = True

Using Def. 1–3, it is possible to state for each business process whether the
business process is semantically correct or not.

3 On Preserving Semantic Correctness of Processes

As specified in Def. 3, a process (no matter whether it is a process instance or
a process schema) is semantically correct only if all of its semantic constraints
are satisfied. Consequently, the semantic constraints of the process need to be
analyzed when checking the process’ semantic correctness. Not all the constraints
on a process, however, are relevant. Depending on the situation in which the
semantic check is initiated, it is possible to restrict the set of relevant constraints
to be verified and thus to reduce the effort for semantic process verification. We
now have a closer look on that.

In Sect. 3.1, we show how the semantic correctness of process schemes can be
verified. In Sect. 3.2, we show how to ensure the semantic correctness of a process
when ad-hoc process adaptations are carried out. In Sect. 3.3, we consider how
to maintain the semantic correctness when schema evolution is performed. For
the remainder of this section, let p be the process to be verified and let Cvp be
the set of the constraints to be verified in the respective situation.

3.1 Semantic Correctness of Process Schemes

Basically, there are two ways of ensuring the semantic correctness of process
schemes depending on the way the process models are constructed. If a process
model is built by applying process changes to an “empty” schema the PMS
might perform a semantic check each time a change operation is applied and
check whether the semantic correctness of the process is still preserved after
the change or not (cf. 3.2). The second possibility is to take an already existing
process model3 and to verify the correctness of the complete process schema
at once. In this case, it is necessary to verify, whether the constraints imposed
on the process are satisfied or not. However, constraints, for which the source
activity is not included in the process, are always satisfied over this process by
definition. Thus, these constraints need not be considered.

More formally: Cvp Schema={c ∈ Cp; c(source)4 ∈ processActs(p)}

3.2 Semantic Correctness After Applying Ad-Hoc Process Changes

In our framework, an ad-hoc process change is considered semantically applicable
to a process if its application still preserves the semantic correctness of the
3 This is, for instance, relevant when a process model is imported to the PMS or the

process schema is obtained by applying process mining techniques.
4 c(source) denotes the source parameter of the constraint c.

200 L.T. Ly, S. Rinderle, and P. Dadam

process. The naive way of verifying the semantic correctness of a process after a
process change is to verify the complete process model, as described in Sect. 3.1.
However, this effort can be reduced by exploiting the semantics of the applied
change operations (e.g., which activity has been inserted at which position).
Thus, depending on which change operation is requested, only a smaller subset
of constraints on the process needs to be verified. In the following, we discuss
the interplay between change operations of type Insert, Delete and Move and
the set of constraints to be verified.

When inserting an activity t into process p, all semantic constraints over p
which have t as source parameter need to be verified since they might be violated.
However, since dependency constraints which do not have t as source parameter
cannot be violated by the addition of t, only mutual exclusion constraints with t
as target parameter need to be considered. We can even further restrict the set of
interesting exclusion constraints to those constraints whose source parameter is
among the activities of p and whose target parameter corresponds to the inserted
activity t. That is because all exclusion constraints, whose source parameter are
not included in the process, are satisfied by definition.

More formally: Cvp Insertion={c ∈ Cp; (c(source)=t) or (c(type)5=Exclusion
and c(source) ∈ processActs(p) and c(target)6=t)}.

When deleting an activity t from process p, all semantic constraints over p
with t as source parameter are satisified by definition. Similar to the insertion of
activities, all constraints for which t occurs as target parameter are potentially
interesting for correctness checks. However, mutual exclusion constraints with t
as target parameter cannot be violated by the deletion of t. Only dependency
constraints with t as target parameter and for which the source parameter is
included in p might be violated by the deletion operation and therefore need to
be verified.

More formally: Cvp Deletion={c ∈ Cp; c(type)=Dependency and c(source) ∈
processActs(p) and c(target)=t}.

The moving of an activity t from its original position within process p to
a new position pos can be understood as being equivalent of deleting t and
inserting t at pos afterwards7. Consequently, all constraints that which might be
violated after applying deletion and insertion operations need to be verified.

More formally: Cvp Move = Cvp Deletion ∪ Cvp Insertion.

3.3 Semantic Correctness for Process Schema Evolution

In addition to ad-hoc changes at the instance level, adaptive PMS must support
the modification of process schemes at the type level followed by the migra-
tion of running instances to the modified process schema as well. The semantic
correctness of the process schema after applying the changes can be verified
5 c(type) denotes the type of the constraint c (Dependency or Exclusion).
6 c(target) denotes the target parameter of the constraint c.
7 In conjunction with data flow aspects, moving is not always equivalent to deleting

and inserting. However, this assumption can be used to derive statements about
possible semantic conflicts here.

Semantic Correctness in Adaptive Process Management Systems 201

by using the considerations for ad-hoc changes made in Sect. 3.2. In case the
schema change is semantically correct, it will also be semantically correct when
being applied to unbiased instances (i.e., instances which still run according to
the process schema they have been started on). However, the direct applica-
tion of the schema change to biased instances (i.e., instances which have already
been individually modified) might lead to semantic conflicts between type and
instance changes. Assume that at instance level drug Marcumar has been ad-
ministered for process instance I as an ad-hoc change. Afterwards, at process
type level, activity Administer Aspirin is inserted into the associated process
schema and is to be propagated to I. Migrating I to the modified process schema
then causes a semantic conflict, even though the migration can be performed in
a syntactically correct manner. Therefore, we have to check whether the process
changes at type level are semantically applicable to the biased instances. We
assume that the biased instances are semantically correct after the individually
applied process instance changes. The propagation of changes at type level to
a biased instance is semantically correct if the type changes are semantically
applicable to the biased instance as ad-hoc instance change or vice versa (cf.
Sect. 3.2).

Due to only considering biased instances, the number of instances to be
checked is highly decreased. However, it is possible to further decrease the num-
ber of instances and relevant constraints to be verified. For example, if the change
operations applied to a process instance constitute a superset of the change op-
erations applied to the process schema (or vice versa), no semantic conflicts can
occur. Due to space restrictions, we omit further details. For details on superset
relations between change operations we refer to [8, 11].

For an efficient implementation of the considerations in Sect. 3, employing
indexing techniques in order to easily access the relevant constraints in the re-
spective situations seems very useful. After having considered, which constraints
need to be verified in different situations, in the next section we consider how to
verify those constraints.

4 On Optimizing Semantic Process Verification

The semantic correctness criterion for business processes defined in Sect. 2 is
generic and can be applied to any process meta-model (e.g., Petri Nets [1] or
BPEL4WS Nets [12]). For verifying the criterion, reachability analysis can be
applied (i.e., by calculating all possible execution traces and checking them for
certain order relations between activities according to the semantic constraints)
which might be very costly. Therefore, we want to investigate different meth-
ods to ensure the semantic correctness criterion which are less expensive. In
this paper, we present an approach which makes use of certain properties of
the underlying process meta-model, namely block-structuring (e.g., WSM Nets
[3]). However, we intend to also develop model-independent methods in future
work.

202 L.T. Ly, S. Rinderle, and P. Dadam

4.1 Background Information

This section summarizes background information on WSM Nets [13, 14] as pro-
cess description formalism in order to present an optimized verification method
for semantic correctness.

A process schema is represented by a WSM Net which defines the process
activities as well as the control and data flow between them. When using WSM
Nets the control flow schema can be represented by attributed, serial-parallel
graphs. In order to synchronize activities from parallel paths additional links
can be used [15]. In this paper we abstract from cyclic structures within the
process meta model in order to provide a fundament for an optimized semantic
correctness verification. Further on, a WSM Net comprises a set of data elements
and a set of data edges. A data edge links an activity with a data element and
either represent a read access of this activity or a write access. The total set of
data edges constitutes the data flow schema.

Definition 4 (WSM Net). A tuple S = (N, D, NT, CtrlEdges, SyncEdges,
DataEdges, BC) is called a WSM Net, if the following holds:

– N is a set of process activities and D a set of process data elements
– NT: N �→ {StartFlow, EndFlow, Activity, AndSplit, AndJoin,

XOrSplit, XOrJoin, StartLoop, EndLoop}
NT assigns to each node of the process schema a respective node type.

– CtrlEdges ⊂ N × N is a precedence relation definining the valid order of
activities (notation: nsrc → ndst ≡ (nsrc, ndst) ∈ CtrlEdges)

– SyncEdges ⊂ N × N is a precedence relation between activities of parallel
branches

– DataEdges ⊆ N × D × {read, write} is a set of read/write data links between
activities and data elements

– BC: N �→ Conds(D) where Conds(D) denotes the set of all valid transition
conditions on data elements from D. BC(n) is undefined for nodes n with
NT(n) �= XOrSplit.

Which constraints have to hold such that a process schema S is well-structured
is summarized in [15, 8] (e.g., absence of deadlock–causing cycles and correctly
supplied input parameters). In the context of this paper, the block-structuring
property is important, i.e., for all activities of node type AndSplit (XOrSplit)
there is a unique activity of node type AndJoin (XOrJoin) and blocks (sequences
as well as parallel and alternatives branchings can be nested but must overlap).

In this paper we abstain from defining process instances (see [3]) since this is
not relevant for the following considerations.

4.2 On Exploiting Process Meta Model Properties

From the general constraint satisfaction criteria presented in Sect. 2 we derived
meta-model specific conditions on WSM Nets. Using these meta-model specific
criteria the satisfaction of semantic constraints and thus the semantic correctness
of a process can be verified in an optimized way. For all semantic constraints in

Semantic Correctness in Adaptive Process Management Systems 203

Def. 1, such meta-model specific criteria can be derived. Due to space restrictions,
however, we abstain from presenting all the criteria. Instead, as an example, we
show how a particular meta-model specific criterion can be derived. Consider
the following semantic constraint over the treatment process from Sect. 1:

c1: (Dependency, Perform surgery, Prepare blood bottles, pre, ...)

If Perform surgery does not occur in the treatment process, then c1 is satis-
fied by definition and consequently not of further interest for semantic process
verification (cf. Sect. 3). In case Perform surgery occurs in the process, it is
necessary that Prepare Blood Bottles is a direct or indirect predecessor of
Perform surgery in the treatment process for c1 to be satisfied. Otherwise,
it is not possible that Prepare Blood Bottles is performed before Perform
Surgery, each time Perform Surgery is performed. However, this is not suf-
ficient, since this execution order is not guaranteed. When verifying semantic
constraints, it is necessary to also take the process structure into account. If
Prepare Blood Bottles is contained in the inner part of an XOR-block while
Perform Surgery is not, Prepare Blood Bottles is not sure to be performed
each time Perform Surgery is performed. Therefore, c1 is not satisfied over the
process depicted in Fig. 4.

Prepare blood
bottles

Perform surgery

Fig. 4. Prepare blood bottles is not sure to be performed each time Perform
surgery is performed

From this example we conclude the following conditions for the satisfaction
of that kind of dependency constraints over block-structured meta models:
A semantic dependency constraint cdep= (Dependency, source, target, pre, ...)
over a process p represented by a WSM Net S = (N, D, NT, ...) with source ∈
N (i.e. source ∈ processActs(p)) is satisfied (i.e., satisfied(cdep, p) = True) if
and only if the two following conditions hold:

– target ∈ pred∗(S, source) (necessary condition)
– ∀s ∈ N with NT (S) = XOrSplit: target ∈ inBlock(S, s) ⇒ source ∈

inBlock(S, s) (sufficient condition), where:
• pred∗(S, n) (succ∗(S, n)) denotes the set of all direct and indirect prede-

cessors (successors) of n in S8

• inBlock(S, s) := succ∗(S, s) ∩ pred∗(S, join(S))
• join(S, s) yields the unique associated join for split node s

8 Note that pred∗ (succ∗) refers to structural predecessors (successors) whereas
tracePred (traceSucc) refers to predecessors (successors) within execution traces.

204 L.T. Ly, S. Rinderle, and P. Dadam

In the following we show that these conditions ensure the semantic correctness.

Proof sketch. Let cdep= (Dependency, source, target, pre, userDefined) be a
semantic dependency constraint over a process p represented by a WSM Net
S = (N, D, NT, ...) with the set of all execution traces Φ for which source ∈ N
holds. Then, the following proposition �� is to be proven (cf. Def. 2):

satisfied(cdep, p) = True ⇐⇒
(target ∈ pred∗(S, source)) ∧
(∀s ∈ N with NT (S) = XOrSplit: target ∈ inBlock(S, s) ⇒
source ∈ inBlock(S, s))
�� ⇐⇒
∀φ ∈ Φ: source ∈ activities(φ) ⇒ target ∈ tracePred(source, φ) (i) ⇐⇒
(target ∈ pred∗(S, source)) ∧
(∀s ∈ N with NT (S) = XOrSplit: target ∈ inBlock(S, s) ⇒
source ∈ inBlock(S, s)) (ii)

“=⇒”: Proof by contradiction (i.e. ((i) =⇒ (ii)) ⇐⇒ (¬(ii) =⇒ ¬(i)))

Let us assume that (ii) does not hold (i.e. ¬(ii) holds). Let us first assume that
the necessary condition does not hold, i.e. target /∈ pred∗(S, source). This means
that there is no path from source to target in p. Then, there are four possibilities:

1. target /∈ N =⇒ source /∈ tracePred(target, Φ)
2. target ∈ succ∗(S, source) =⇒ source /∈ tracePred(target, Φ)
3. target and source are in an parallel block
4. target ∈ N and target in an XOR-path while source is in the other XOR-

path

Possibilities 1 and 2 are clear. If the third possibility is true, then cdep is also
violated since, due to the interleavings of parallelly executed activities, there
might be at least one trace, where target and source do not occur in the required
ordering relation. If the fourth possibility is true, then either source or target are
executed during an process execution. Thus cdep is violated as well. As shown,
all possibilites that are left when the necessary condition is not true lead to the
violation of cdep (¬(i)).

Now let us assume that the necessary condition holds, but not the sufficient
condition. This means: ∃s, NT (S) = XOrSplit with target ∈ inBlock(S, s) ∧
source /∈ inBlock(S, s). Since target ∈ pred∗(source)) holds (necessary condi-
tion), we can construct an execution trace of p by not chosing the XOR-path
which target is on while still executing source. This leads to ¬(i). �
The reverse direction ”⇐=” can be proven analogously.

The satisfaction criterion for dependency constraints for block-structured pro-
cess meta-models presented above can be verified very efficiently. Special con-
structs of the meta-models, for instance references to the split and join nodes,
can be exploited by the PMS in order to find out whether the respective con-
straint is satisfied or not. However, using the meta-model specific criterion it
is also possible to leave the verification to an external reasoning system (e.g.
RACER [9]). In this case, information about the process structure need to be

Semantic Correctness in Adaptive Process Management Systems 205

mapped to rules in the reasoning system in order enable it to apply inference
techniques. We intend to further investigate these implementation alternatives
in future work.

5 A Framework for Semantic Constraints

In our approach, a set of semantic constraints is assigned to a process. However,
several processes may share constraints. In this section, we present a framework
for organising semantic constraints such that they can be reused easily.

Additional
process specific

constraints

Domain
constraints

Selection of relevant domain
constraints

Constraints on Treatment Process

Treatment Process
Activity

Repository
Process

Repository

references

Domain Constraints
Repository

Domain: Minimally
invasive cardiac surgery

Constraints:...

Domain: Minimally
invasive cardiac surgery

Constraints: ...

Domain: Minimally
invasive cardiac surgery

Constraints:...

Process Engineer

Fig. 5. Organisation of constraints in a domain constraints repository

The three main components of the framework are the domain repository, the
process repository, and the activity repository (cf. Fig. 5). Semantic constraints
are organised in the domain repository. In particular, constraints are assigned
to domains, for instance the domain Minimally invasive cardiac surgery. Thus,
a domain contains a set of constraints that are typical of this domain. The
constraints presented in this paper refer to activities which are organized in an
activity repository. For future work, we also plan to introduce constraints that
refer to other abstraction levels, for instance abstraction levels in the activity
repository. Process types (process schemes) are organized in a process repository.
Each process type is assigned a domain of the domain repository. Thus, it is
possible to assign a default set of domain constraints to a process. However,
processes that are assigned to the same domain might still have different semantic
constraints that are not captured in the domain. Therefore, for each process type,
the process designer can specify additional semantic constraints for the process
or leave out some unnecessary domain constraints.

6 Related Work

The issue of integrating semantics in process management systems has often been
adressed in literature. In particular, there are interesting approaches from the

206 L.T. Ly, S. Rinderle, and P. Dadam

clinical domain concerning the formalization of clinical guidelines in a computer-
readable way, e.g. [16, 17] and GLIF3 [18] or GUIDE [19]. However, so far, this
information cannot be directly used for automatical analyses by the PMS.

Current approaches on adaptive PMS mainly focus on structural aspects
(e.g., [3, 4, 8, 20]) or have a different notion of semantic correctness (e.g., [21,
1]). Many related approaches focus on the aspect of integrating heterogenous
resources. In particular, activities and their parameters are often described us-
ing ontologies, e.g. [22–24] and also many approaches concerning semantic web
service composition, for instance [25, 26]. When a process is composed, the PMS
can check, whether the activities and their parameters semantically fit together.
However, these approaches do not consider semantic constraints over processes,
for instance mutual exclusion constraints, the way we do.

As discussed in Sect. 2, approaches from the field of Artificial Intelligence,
in particular knowledge-based systems, e.g. [27, 10, 9], can be used to integrate
application knowledge in PMS. This is also closely related to approaches con-
cerning the integration of business rules in PMS. Application knowledge can be
sourced out into a Business Rule Engine, e.g. commercially available systems
like ILOG [28]. Thus, decision processes, for instance, which outgoing paths of
an activity to follow, can be supported taking also background knowledge into
account. This approach, however, is not directly suitable for situations like the
one outlined in our example scenario since this situation concerns not only the
occurrence of an activity in the process but also the relations between activi-
ties (cf. Fig. 3). In [29, 30], an approach to ensure the integrity of processes is
introduced. Rules, realized as database triggers, are applied, when certain data
conditions occur. Using the change framework presented in [3, 8] the process is
adapted in an ad-hoc manner according to the triggered rule. Our approach,
however, goes further since for the semantic verification, structural information
about the process is needed.

In [31] van der Aalst et al. introduced an approach for verifying given proper-
ties of past processes by applying process mining techniques. This approach can
help detecting constraint violations. However, the approach introduced in [31]
is orthogonal to our work because it aims on analysing past processes on cer-
tain aspects while our intention is to ensure the semantic correctness of running
processes. Thus, these two approaches can complement each other.

We consider our approach to be orthogonal to the approaches mentioned in
this section.

7 Conclusion and Outlook

In this paper, we introduced a framework for the integration of application
knowledge within an adaptive PMS by using semantic constraints. Based on
these constraints, a generic criterion for semantic correctness of processes has
been provided. We have shown how this criterion can be generally ensured.
Furthermore, we have addressed the issue of verifying semantic correctness after
process changes. Exemplarily for block-structured process meta-models, we have
shown how semantic process verification can be realized in an efficient manner.

Semantic Correctness in Adaptive Process Management Systems 207

Finally, an architecture for the integration of semantic constraints within an
adaptive PMS has been presented.

Using our approach, all semantic conflicts caused by violation of dependency
and mutual exclusion constraints can be avoided. However, the expressiveness
of the presented constraints is limited. Therefore, in future work we will extend
our framework, e.g. by introducing context restrictions on constraints concerning
their validity (e.g., time or location) or by introducing constraints on other
levels of granularity than the activity level (e.g. data). Furthermore, we want
to develop further methods to efficiently verify semantic correctness within an
adaptive PMS. For example, we want to analyze how the information referred
to by semantic constraints can be organized (e.g., within an ontology) in order
to decrease evaluation effort. All considerations are to be implemented within
the adaptive PMS ADEPT (e.g. [15]).

Acknowledgement. We thank Michael Nahler for the valuable results of his
Master thesis ([32]) which have partially been incorporated in this paper.

References

1. v.d. Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling
problems related to change. Theoret. Comp. Science 270 (2002) 125–203

2. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data and Knowledge
Engineering 24 (1998) 211–238

3. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. DPD 16 (2004) 91–116

4. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. In: HICSS-34. (2001)

5. Kochut, K., Arnold, J., Sheth, A., Miller, J., Kraemer, E., Arpinar, B., Cardoso,
J.: IntelliGEN: A distributed workflow system for discovering protein-protein in-
teractions. DPD 13 (2003) 43–72

6. Reichert, M., Rinderle, S., Dadam, P.: On the modeling of correct service flows
with BPEL4WS. In: EMISA’04. (2004) 117–128

7. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. DKE 50 (2004) 9–34

8. Rinderle, S.: Schema Evolution in Process Management Systems. PhD thesis,
University of Ulm (2004)

9. Haarslev, V., Möller, R.: Description of the racer system and its applications. In:
Proceedings International Workshop on Description Logics (DL-2001), Stanford,
USA, 1.-3. August. (2001) 131–141

10. Hayes-Roth, F.: Rule-based systems. Commun. ACM 28 (1985) 921–932
11. Rinderle, S., Weber, B., Reichert, M., Wild, W.: Integrating process learning and

process evolution - a semantics based approach. In: BPM’05. (2005)
12. Andrews, T., Curbera, F., Dholakia, H., et al., Y.G.: BPELWS - Business Process

Execution Language for Web Services. (2003) BEA Systems, International Business
Machines Corporation, Microsoft Corporation, SAP AG, Siebel Systems.

13. Rinderle, S., Reichert, M., Dadam, P.: On dealing with structural conflicts between
process type and instance changes. In: BPM’04. (2004) 274–289

14. Rinderle, S., Reichert, M., Dadam, P.: Disjoint and overlapping process changes:
Challenges, solutions, applications. In: CoopIS’04. (2004) 101–120

208 L.T. Ly, S. Rinderle, and P. Dadam

15. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93–129

16. Maviglia, S., Zielstorff, R., Paterno, M., Teich, J., Bates, D., Kuperman, G.: Au-
tomating complex guidelines for chronic disease: Lessons learned. Journal of Amer-
ican Medical Inf. Ass. 10 (2003) 154–165

17. Blaser, R., Schnabel, M., Heger, O., Opitz, E., Lenz, R., Kuhn, K.: Improving
pathway compliance and clinician performance by using information technology.
In: MIE’05. (2005)

18. Boxwala, A., Peleg, M., Tu, S.: GLIF3: a representation format for sharable
computer-interpretable clinical practice guidelines. Biomed Inform. 37 (2004)
147–61

19. Quaglini, S., Stefanelli, M., Cavallini, A., G, G.M., Fassino, C., C, C.M.: Guideline-
based careflow systems. Artif Intell Med 20 (2000) 5–22

20. Weske, M.: Flexible modeling and execution of workflow activities. In: Proc. Hawaii
Int’l Conf. on System Sciences, Hawaii (1998) 713–722

21. van der Aalst W. M. P., Basten, T., Verbeek, H.M.W., Verkoulen, P.A.C., Voorho-
eve, M.: Adaptive workflow: On the interplay between flexibility and support.
Interprise Information Systems (2000) 63–70

22. Pathak, J., Caragea, D., Honovar, V.: Ontolgy-extended component-based work-
flows: A framework for constructing complex workflows from semantically hetero-
geneous software components. In: SWDB’04. (2005) 41–56

23. Bowers, S., Lin, K., Ludäscher, B.: On integrating scientific resources through
semantic registration. In: SSDBM’04. (2004)

24. Kim, J., Gil, Y., Spraragen, M.: A knowledge-based approach to interactive work-
flow composition. In: ICAPS 04. (2004)

25. Cardoso, J., Sheth, A.: Semantic e-workflow composition. JIIS. 21 (2003) 191–225
26. Zhang, R., Arpinar, I.B., Aleman-Meza, B.: Automatic composition of semantic

web services. In: Intl. Conf. on Web Services, Las Vegas NV, June 2003. (2003)
27. Hayes-Roth, F., Jacobstein, N.: The state of knowledge-based systems. Commun.

ACM 37 (1994) 26–39
28. Ader, M.: Ilog components for business process management solutions (2002)
29. Greiner, U., Ramsch, J., Heller, B., Löffler, M., Müller, R., Rahm, E.: Adap-

tive guideline-based treatment workflows with adaptflow. In: CGP 2004. (2004)
113–117

30. Müller, R., Greiner, U., Rahm, E.: Agentwork: A workflow system supporting
rule-based workflow adaption. DKE 51 (2004) 223–256

31. v. d. Aalst, W., de Beer, H., van Dongen, B.: Process mining and verification of
properties: An approach based on temporal logic. In: CoopIS’05. (2005) 130–147

32. Nahler, M.: Semantical conflicts in adaptive process managament systems (2005)
(in german).

A Framework for the Development and
Execution of Horizontal Protocols in Open

BPM Systems�

J. Fabra, P. Álvarez, J.A. Bañares, and J. Ezpeleta

Instituto de Investigación en Ingenieŕıa de Aragón (I3A)
Department of Computer Science and Systems Engineering, University of Zaragoza,

Maŕıa de Luna 3, E-50018 Zaragoza, Spain
{jfabra, alvaper, banares, ezpeleta}@unizar.es

Abstract. A new generation of open Business Process Management
(BPM) systems based on the service-oriented architecture and Web ser-
vice technologies has recently emerged. The general tendency for these
systems should be governed by the integration of independent Web-
service specifications. Web services requirements guide the description,
execution and choreography of business process and the implementation
of frameworks for supporting the coordination, synchronization and cre-
ation of business transactions. However, a wide variety of open research
issues related to the lack of maturity of the involved specifications makes
the development of standard-based BPM systems difficult. In this paper
we propose an abstract architecture inspired by Web service specifica-
tions to overcome these difficulties. Also, a particular implementation
based on the Nets-within-Nets paradigm and the Renew tool is presented.
The result is an executable infrastructure able to run business processes
(their workflows and coordination protocols) as well as the horizontal
protocols that guarantee a coherent outcome of their whole execution,
such as the WS-Atomic Transaction protocol.

Keywords: SOA and Process Management, Formal models in BPM,
Horizontal protocols, Petri nets, Nets-within-Nets paradigm.

1 Introduction

In [1] a Business Process Management (BPM) system is defined as a middleware
system that provides a central point of control for the definition and orches-
tration of business processes. Regardless of the technologies used in its imple-
mentation, these systems integrate a set of software tools for the definition of
business processes, an engine able to run the tasks described by the process
descriptions and frameworks for the creation and execution of business trans-
actions involving a set of processes. New business opportunities offered by the
� This work has been supported by the research project PIP086/2005, granted by the

Government of Aragón.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 209–224, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

210 J. Fabra et al.

Internet have motivated the development of a new generation of open BPM
systems oriented towards inter-organization business processes. In this context,
different initiatives inspired by the service-oriented architecture and Web ser-
vice technologies [2] have been launched with industry-wide support with the
aim of promoting common frameworks for open solutions, such as the Workflow
Management Coalition, RosettaNet and ebXML. In parallel, other independent
initiatives have published their standard specifications for the description of busi-
ness processes (BPEL4WS [3]) and their protocols and allowed conversations
(WCSI [4], WS-CDL [5] and OWL-S [6]) with the objective of helping organi-
zations to coordinate their business processes and transactions in a Web service
environment (the horizontal protocols [2] described by Web Service Coordination
and Web Service Transactions specifications [7] or the Web Service Composite
Application Framework [8], for instance).

Nevertheless, despite of these standardization efforts, many open issues must
be considered as research targets. Let us, for instance, to adopt the software
developer point of view. When building an open and standard-based BPM sys-
tem many problems must be dealt with. Among the most important ones, the
following must be considered: 1) the standards involved have different levels of
maturity; 2) there are duplicated standardization initiatives dealing with the
same aspect (such as WCSI and WS-CDL for the description of the external
behavior of business processes or Web Service Transactions and Web Service
Composite Application Framework for managing business transactions); 3) there
is a lack of a global vision of different involved standards and a clear method-
ology to develop complex Web-based solutions by means of their integration;
and 4) the analysis and verification of the different distributed components that
compose a system is a very difficult task.

Recently, a very interesting research work is being carried out to apply the
well-developed theory and tools of Petri nets to the world of Web services, where
Petri nets are the tool to model and analyze the behavior of Web services,
allowing to alleviate some of the lacks just described. In some cases, the models
are obtained from a translation process, taking some standard descriptions as the
input; in other cases, the Petri net model is directly generated by the engineer.
In [9], WS-BPEL descriptions are translated into Petri nets to provide that
formalism with a formal semantics; [10] generates High Level Petri net models
from DAML-S specifications, as is the case in [11]. With a different point of view,
[12] focuses on the analysis of Web service’s properties (such as compatibility
and equivalence between Web services) based on a Petri net model translated
from a BPEL4WS service’s specification.

In [13] we proposed a system infrastructure, based on the Nets-within-Nets
paradigm [14] and the Renew tool [15], for the design and execution of Web ser-
vices, which can be understood as an instance of the more abstract and general
approach presented in [16]. In this paper, an evolution of this infrastructure is
introduced, which supports the execution of business processes (their workflows
and conversations) and provides a standard-based framework for the coordina-
tion, synchronization and the creation of business transactions. This flexibility is

A Framework for the Development and Execution of Horizontal Protocols 211

shown by means of the implementation of a particular horizontal protocol, as is
the case of WS-AtomicTransaction [7]. Besides, this implementation allows us to
show how the main open issues described above can be dealt with the proposed
Web services infrastructure.

The paper is organized as follows. Section 2 presents the current approaches
for Web service composition and coordination and shows some of its lacks.
Section 3 introduces an evolution of the original model presented in [13], an
infrastructure for Web service development and execution based on the Nets-
within-Nets paradigm and the Renew tool, for the design and execution of Web
services. This infrastructure is applied to the design and implementation of the
WS-Atomic Transaction [7] horizontal protocol in Section 4. Finally, Section 5
contains some concluding remarks and future work directions.

2 Current Approaches for Web Service Composition and
Coordination

Service composition is an aspect related to the implementation of a Web service
whose internal logic involves the invocation of operations offered by other Web
services. It is then clear that Web services composition requires different Web
services to interact. A conversation is a dialog among two or more Web services
participating in these complex interactions, whereas a coordination protocol de-
scribes a set of acceptable conversations (the external observable behavior of
involved Web services) [2].

In order to be able to compose general Web services, which can require complex
interactions, service invocation has to be provided with a long-lasting conversation
where several messages are exchanged before the service is completed [17].

The following elements are necessary when Web service compositions must
be considered: 1) a high-level composition language, enabling the specification
of the way services have to be combined, the order in which they must be in-
voked and the way in which service invocation parameters are determined; 2) a
development environment, typically characterized by a graphical user interface,
for the design of schemas denoting the order constraints imposed to the way
services are invoked; and 3) a composition engine, able to execute the business
logic imposed by the composite service [2]. Different proposals are available in
the marketplace, most of them offering some type of modeling mechanism based
on the BPEL4WS specification [3].

As stated before, a composite service must interact with other Web services
by invoking the operations they publish. BPEL4WS uses WSDL interfaces to
describe the functionality it offers and also to invoke functionalities required from
other Web services [18,19]. As a consequence, the management of interactions
provided by BPEL4WS is based on one-shot interactions instead of a long-lived
conversational approach, causing business and conversation logics to be highly-
coupled. Nevertheless, a natural evolution of the BPEL4WS specification should
replace current WSDL-based abstractions with new conversation models such as
WCSI [4], WS-CDL [5] and OWL-S [6].

212 J. Fabra et al.

On the other hand, a composite service must deal with the (possible) failure of
some participating Web services, guaranteeing a coherent outcome of the whole
business process [18]. Actually the Web service Coordination (WS-Coordination)
specification [20] provides a mechanism for initiating and agreeing on the out-
come of a multiparty interaction. Being WS-Coordination a general coordination
framework, different protocols can be used to define specific ways of reaching a
global agreement, as it is the case of WS-AtomicTransaction [7] for ACID trans-
actions or WS-BusinessActivity [21] for long-running and compensation-based
transaction protocols.

As an alternative to WS-Coordination, the Web Service Composite Appli-
cation Framework (WS-CAF) [22] supports the coordinated and transactional
composition of multiple Web services, whose most emphasized contribution is to
consider coordination contexts [23] as a first-class architectural entities, facilitat-
ing the management of large-scale environments.

3 An Infrastructure for Web Service Development and
Execution

In [13] we proposed a basic model, based on the Nets-within-Nets paradigm and
the Renew tool, for the design and execution of Web services, which can be
understood as an instance of the more abstract and general approach presented
in [16]. An evolution of that original model which maintains its main components
is presented in this section.

Firstly let us briefly introduce a top-level view of the abstract architecture we
are proposing for the development of Web service execution environments, and
then a particular infrastructure implemented in accordance with its architectural
rules.

3.1 High-Level Components of an Architecture for Web Service
Execution Environments

Figure 1 outlines the main components of an architecture able to execute Web
services and interpret their conversations.

The composition component integrates a workflow engine that executes the
business logic of composed services. Some of these services are exposed to ex-
ternal consumers as WSDL-described services and other provide operational
support, for example, for the execution of transactions. In any case, a workflow-
based language, such as BPEL4WS, can be used to describe the business logic
of the mentioned services.

In order to make possible service executions, even when the involved providers
require complex interactions, service invocations have to be modeled as conver-
sations. In the proposed architecture, the management of conversations is kept
separated from the business logic. In fact, these are complementary one to each
other.

A Framework for the Development and Execution of Horizontal Protocols 213

Fig. 1. Top-level view of the architecture

The conversation component interprets the coordination protocols; more
specifically, the role-specific view of a protocol played by the service. A proto-
col defines the interactions among services, the way sending/receiving operations
must be ordered, the format and encoding of messages, etc. Different approaches
have been considered to move from one-shot service invocations towards more
powerful and flexible ways of defining the valid sequences of messages and the
coordination protocols or conversation policies, as proposed in [24,25], or, alter-
natively, WSCI or WS-CDL.

Messages exchanged among services are dispatched by the message broker
component. Messages generated by the conversations must be routed to either
external or internal service providers. On the other hand, incoming messages
must be dispatched to a conversation or to the composition component. These
messages may cause the execution of a new service instance or the start of a new
conversation for a running service.

The last link in this chain corresponds to the binding components. They serve
as the bridge between the proposed architecture and the external world, allowing
the communication with external entities that use a wide variety of communi-
cation technologies, such as SOAP, JMS, HTTP, SMTP, etc. These components
understand messages in the message broker requiring some interaction with a
given external entity and with some specific communication technology, and are
able to execute such communication. They are also able to receive incoming in-
vocations and to translate them into the adequate messages to be put into the
message broker.

3.2 Initial Design Considerations

In order to make the paper as self-contained as possible, let us remember here the
main design aspects involved in the participant model presented in [13], which
are strongly related to the components of Figure 1. The proposal was based on
the following facts:

214 J. Fabra et al.

1. Both, Web service composition and coordination have quite similar aspects,
which are strongly related to concurrent elements, and for which (the dif-
ferent families of) Petri nets are very adequate tools. Composition aspects
are related to the way the involved Web services are organized, while coordi-
nation elements are related to the way interactions (conversation protocols)
must be arranged.

2. Interactions among Web services have an inherent asynchronous nature and
are organized by means of global agreed protocols, in which involved services
accept to play different roles. Service architects can logically group one or
more exchanged messages (like units of communication between services) to
form interaction patterns (MEPs, Message Exchange Patterns of WSDL);
or alternatively to form complex conversations and protocols grouping sev-
eral messages, which are associated with some well-defined behavior for the
participating services. In this sense, the adopted approach is quite similar to
the one proposed in [24].

3. An asynchronous standard-independent coordination language as an inter-
mediate language for the definition and execution of coordination protocols
can be an interesting approach (the same as defining intermediate code when
implementing compilers). We have considered the Linda [26] coordination
model as intermediate language for the modeling of conversations among
Web services [13]. This choice is motivated because its communication prim-
itives are particulary well-suited for Web service environments allowing an
uncoupled communication and requiring a minimum prior knowledge be-
tween the cooperating peers. Besides, a Linda-based coordination space is
used as the repository where conversations and Web processes write/read
messages in an implementation-independent way. In this sense, it can be
interpreted as a message broker.

4. Binding components must be implemented to send and receive messages
by the different standardized transport protocols (SOAP, JMS, RMI, etc.).
In this sense, they are responsible of inserting the information coded in
received messages into the Linda-based coordination space, and recovering
from the coordination space (and optionally formatting) messages to be sent
to external services.

5. The fact of having the models corresponding to composition and coordina-
tion aspects to be executed in a collaborative way in a instance of the ar-
chitecture makes the Nets-within-Nets based approach to be quite natural.
Another reason is the fact of the existence of the Renew tool, which facil-
itated an easy definition and execution of our participant model, together
with the easy interaction between the Petri net models and Java code.

3.3 The Nets-Within-Nets Paradigm

Let us now briefly remember some definitions about Reference nets [27]. Refer-
ence nets is a subclass of the Nets-within-Nets family of Petri nets [14]. Nets-
within-Nets are an extension of the Colored Petri net formalism. They fall into
the set of object oriented approaches. In classical Petri nets, the net structure is

A Framework for the Development and Execution of Horizontal Protocols 215

static, and tokens move inside the net. Nets-within-Nets have a static part (the
environment, also called system net) and a dynamic part, composed of instances
of object nets that move inside the system net. These instances can be created
in a dynamic way. Each object net can have its own internal dynamic behavior
and can also interact with the system net by means of interactions. The system
net can also move (transport) object nets by its own.

[]

system net

x x

x

x x

n n
t10

t11 t12

t13

n: new objectClass1

x:i()
:i()

x

objectClass1

t2t1

x x

x

x x

n n
t10

t11 t12

t13

n: new objectClass1

x:i()

x

[]

:i()t2t1

x x

x

x x

n n
t10

t11 t12

t13

n: new objectClass1

x:i()

x

[]

:i()t2t1

x x

x

x x

n n
t10

t11 t12

t13

n: new objectClass1

x:i()

x :i()t2t1

x

x

x x

n n
t10

t12

t13

n: new objectClass1

x:i()

x
:i()t2t1

[]
[]

b)

d)c) e)

t11

x

a)

Fig. 2. a) A reference Net-within-Net example with the system net and an object net.
b) The previous systems once transition t10 has been fired. c) Evolution from the state
in Figure-b) when t11 fires (transport). d) Evolution from the state in Figure-b) when
t1 fires (autonomous object event). e) Evolution from the state in Figure-b) when the
synchronized firing of t12 and t2 occurs (interaction).

Reference nets are a special subclass of Nets-within-Nets in which tokens in
the system net, instead of object nets, are references to object nets, so that it is
possible for different tokens to refer to the same object net. Figure 2-a) depicts a
system net and an object net class. Firing transition t10 creates two references
to a new instance of objectClass1, moving the system to the state in Figure 2-
b). In Nets-within-Nets three different types of transition firings are possible.
The first one corresponds to the case in which an object instance executes an
object autonomous action: in the state in Figure 2-b), transition t1 of the object
net is enabled, and can fire independently of the system net, leading to the state
in Figure 2-d). The second one corresponds to the initiative of the system net:
in the state in Figure 2-b), transition t11 of the system net is enabled, and can
fire moving the reference from the input place of transition t11 to its output
place, leading to the state in Figure 2-c) (notice that nothing has changed in the
internal state of the object net). This is the reason why these firings are called
transports. The last case corresponds to the synchronized firing of a transition

216 J. Fabra et al.

of the system net with a transition of an object: in the state in Figure 2-b),
transitions t12 and t2 can synchronize their firings (this is indicated by the
common part in their inscriptions, :i()), whose firing will give the state in
Figure 2-e). This way of firing is called an interaction.

A powerful tool called Renew [28] allows to execute reference nets. It is de-
veloped in Java, and allows an easy integration of reference nets and Java code
associated to transitions (it is possible to access Java code from the net, but
also to access the net from Java code). This makes Renew to become a very
interesting and useful tool to work on Web services environments.

3.4 Implementation Details

Figure 3 shows our proposal of Web service execution infrastructure, based on
the Nets-within-Nets paradigm and the Renew tool. It corresponds to what in
Nets-within-Nets terminology is called the system net. Service compositions are
modeled as Petri nets (workfows) which stay in place work-space. Conversa-
tions, also modeled as Petri nets, stay in place conversation-space. Both are
modeled as object nets, as defined in the Nets-within-Nets paradigm.

Work Space

w

w:end()

[w,conv,idConv]

w

w:begin()

w

w

w

w:execute(id,service,XMLin,XMLout)

[w,conv,idConv]

w:absCond(w,idConv,XML);
conv:absCond(w,idConv,XML)

w:endConv(w,idConv,XMLout);
conv:end(w,idConv,XMLout)

w

w

[w,conv,idConv]

[w,conv,idConv]

this:t([idConv,from,rol])

w:beginConv(w,idConv,XMLin);
conv:begin(w,idConv,XMLin)

w

[idConv,from,rol]

[w,conv,idConv]

[w,conv,idConv]

w

this:getIdConv(idConv);
w:createConv(w,idConv,rol,to,conv);

this:w([idConv,rol,to])

w

t1

t2

t3

t10

t20

t21

t22

t31

t30

t24

t23

t41

conv:w(t);
this:w(t)

conv:r(t);
this:r(t)

conv:t(t);
this:t(t)

t42

[w,conv,idConv]

[w,conv,idConv]

t40

[w,conv,idConv]
Conversation Space

:r(t)

:t(t)

:w(t)

t

t

t

Message Space

w:new WorkFlow(...)

[idConv,from,rol]

[idConv,from,rol]

w:new WorkFlow(rol);
w:participateConv(w,idConv,from,rol,conv)

w:participateConv(w,idConv,from,rol,conv)

Fig. 3. A Nets-within-Nets Web service execution infrastructure

A new composition to be executed in the infrastructure can start as either,
its own initiative (firing transition t1, which implies to create a new conversa-
tion, to adopt a role in this conversation and to ask the Web service community
for candidates interested in adopting the rest of needed roles (firing of tran-
sition t31) or as a response to some request put by another participant into
the message space (transition t30 once the adequate message has been put

A Framework for the Development and Execution of Horizontal Protocols 217

there by a binding component of an external Web service, as it is described be-
low). This last case is the symmetric of the previous one: a service accepts to
play a role in a conversation created by another Web service, which implies to
create the inner workflow and the conversation necessary to play the accepted
role (transition t24). A running composition may also participate on a conver-
sation, and consequently, an inner workflow does not have to be created (trans-
ition t23).

Different interactions can be necessary between a workflow and a conversa-
tion resulting from the conversation execution; these interactions are executed
by firing transitions t20, t21, t22. The execution of a workflow in a partici-
pant may also require to call some internal services (as querying a database or
launching a manufacturing process, for instance); this is accomplished by firing
transition t10. The easy interaction between Renew and Java code associated
to transitions facilitates this task.

On the other hand, the place message-space is the internal repository for
incoming/outgoing messages. This place, together surrounding elements, forms
our message broker. The place and the associated transitions form a Linda-like
coordination system. We have also implemented it in the Renew tool [29], which
has made its integration in our participant model an easy task. With its current
implementation, it is possible to use one broker per participant, to share the
same broker for a set of participants of the same organization and also to use it
as an external service, shared by a set of inter-organizational services. Besides,
binding components have been implemented for executing the real interactions
across the Internet using particular protocols. They are the bridge between the
external world and our message-space.

Figure 4 is an abstract view of the infrastructure, to show it as an instance of
the architecture described by Figure 1. Place work-space, together surrounding
elements and the workflows modeled as Petri nets match the composition com-
ponent. In a similar way place conversation-space and conversations match
the conversation component. To conclude, as it was mentioned above, place
message-space and the associated transitions form the message broker, and
the binding components the interface to provide communication with external
entities.

4 An Implementation of Horizontal Protocols as Web
Services

In this section we present a working implementation of the WS-Atomic Trans-
action [7] horizontal protocol (a standard transaction service based on the Two-
Phase Commitment transaction protocol commonly used in database systems).
For such purpose, the involved operations must be published as Web services
(a similar consideration is contained in the IBM Web Services Toolkit [30]).
This model provides an example integrating WS-Coordination [20] and WS-
Transaction [7] on the partner infrastructure explained in Section 3.

218 J. Fabra et al.

Fig. 4. An abstract view of the model in Figure 3

4.1 Description of a Standard Transaction Service

Figure 5 shows the scenario of the Atomic transaction protocol in a trace chart
and depicts the architectural overview at the top of the figure. First, we consider
the existence of a Director, who is responsible of performing the transactional
process when an application requires to execute a set of operations under a
coordination context. Second, a Coordination Framework, which represents the
core of the transaction protocol, composed of: the Registration service, which
registers the participants in the transaction; the Activation service, which creates
the coordination context and informs the coordinator about the participants; and
the Coordinator, which performs the Two-Phase Completion protocol. Finally,
the involved resources, being each one managed by the corresponding Resource
manager, which serves as a bridge between the Director or the Coordination
framework and the resource, publishing its access methods as Web services [30].
Thus, a Participant is represented as a pair composed of a resource and its
corresponding Resource manager.

The presented architecture allows an easy integration on a distributed schema,
where each service can be executed on different physical hosts.

The execution of the Atomic Transaction protocol, following the specifications
described in [7], can be divided into three phases. The Activation phase, in which
the application requiring to perform an atomic Web service operation under the
Completion protocol (this is, under the WS-Atomic transaction protocol) dele-
gates the execution of the protocol to the Director, which creates a transactional
activity context using the WS-Coordination Framework Activation service (step
1a). The Activation service notifies the Coordinator about the created context

A Framework for the Development and Execution of Horizontal Protocols 219

Director
Activation

Service

Registration

Service
Coordinator

Resource

Manager
Resource

1a) Create

1c) CC, @Reg

2a) Register

2b) @Coord

3a) Operation Sequence (Coordination Context)

3b) response

4a) Register

4b) Notify

1b) Create

4c) @Coord

5a) Execute

5b) Result

6a) Commit (Completion)

6b) Committed

7a) Prepare/Commit (2PC)

Director Coordination Framework Participant (WS)

7b) Prepared/Committed

Registration

phase

Completion

phase

Activation

phase

Fig. 5. A scenario of Atomic transactions

(1b) and returns to the Director a coordination context identifier (CC) and the
address of the Registration service (1c). Note that the CC identifier is used during
the rest of the protocol execution to uniquely identify the transaction and also
to specify the protocol type (in this case, the Atomic transaction).

In the Registration phase the Director interacts with the Registration ser-
vice with a request-response protocol (steps 2a and 2b) to obtain the address
of the Coordinator. Then, the Resource managers of the involved resources are
demanded to perform the corresponding operations (3a). The first time a Re-
source manager receives and processes an activity context, it must access the
WS-Coordination Registration service using the address provided by the Direc-
tor (4a). Then, the Registration service notifies the Coordinator that a new par-
ticipant is going to perform an operation under the given CoordinationContext
(4b), and sends back the address of the Coordinator (4c). The resource executes
the requested operation (5a) and the results are returned to the Director through
the manager (steps 5b and then 3b). Subsequent operations on the same partic-
ipant do not require to repeat the registration steps (4a to 4c).

Finally, once all participants have executed the requested operations the Com-
pletion/Coordination phase is performed. The Director sends a commit message
to the Coordinator (6a) and blocks until it receives a response. The Coordina-
tor is responsible of performing the agreement protocol with each participant
that was previously registered. First, a prepare message is sent to solicit the
resource status and collect the votes (7a). When all votes have been collected
a final outcome is transmitted sending a commit/rollback message (7a) de-
pending on whether the transaction can be committed or not. As soon as all
resources have performed their commit actions (7b), the Coordinator sends a
committed notification to the Director (6b). Then, the Application is notified
that the transactional operation has been performed successfully.

220 J. Fabra et al.

[]

:begin()

idConv

idConv

t70

t71

:beginConv(this,idConv,["DirectorAddr","AS","CreateCC"])

idConv

idConv

:endConv(this,idConv,XMLresponse)
XMLresponse

t73

t72

t74

[CC,@RS]

t83

t82

t81
conv: new DirectorRol;
:createConv(this,idConv,"coordinate","coordinatorRol",conv)

:endConv(this,idConv,"committed")

:end() t84

[idConv,CC]

[idConv,CC]

[idConv,CC]

[idConv,CC]

Completion phase

Registration phase

Activation phase

conv: new DirectorRol;
:createConv(this,idConv,"activateContext","activationRol",conv)

[]

:begin(w,idConv,XMLin)

:t([idConv,CS,"Director","committed"])

[w,idConv,XMLin]

:w([idConv,from,to,XMLin])

[w,idConv,[from,to,XMLin]]

[w,idConv,from,to]

:end(w,idConv,"committed")

[w,idConv,from,to]

[w,idConv,from,to]

[w,idConv,from,to]

t85

t86

t87

t88

...

...
coordinate_conversation

...

t31

Peer_Director
Director’s workflow

Director’s work-space

t20

t21

:beginConv(this,idConv,["DirectorAddr","CS",["2PC",CC]])
t40

t41

Director’s conversation-space

Fig. 6. The (partial) Director workflow and conversation(s) interaction

4.2 Modelling and Implementation of the Involved Entities

According to our proposal, the involved entities in the Atomic transaction pro-
tocol (Director, Coordination framework and participants) must be described by
means of their workflows and coordination protocols. Interactions between these
entities are modeled using an intermediate Linda-like conversation language,
which is independent of the deployment scenario of entities and the underlying
communication technologies. Binding components are responsible for considering
these communication details.

From the modelling/implementation point of view, the approach we propose
allows the separation of workflows and conversations. From a methodological
point of view different perspectives can be adopted. On the one hand, one can
use very simple conversations (using, for instance, simple in/out and out/in
conversation patterns). The main drawback of this approach is that it produces
too complex workflow models, highly-coupled with the involved protocols, in the
same way some languages as BPEL4WS do. On the other hand, our proposal also
allows the use of complex conversations as a modeling approach, which produces
simpler workflows. This approach provides a clear separation of the business
logic (implemented by the workflow) and the needed interactions, implemented

A Framework for the Development and Execution of Horizontal Protocols 221

[]

[w,idConv,to]

[w,idConv,XMLin]
t91

t92

t93

t94

[w,idConv,from,CC]

:t([idConv,participant.getAddress(), "CS", ["prepared",CC]]);
action counter.setPrepared(participant.getAddress());

t96

:w([idConv,"CS", participant.getAddress(), ["commit",CC]])
guard counter.allPrepared()

[w,idConv,CC,participant]

[w,idConv,CC,participant]

[w,idConv,CC,participant]

[w,idConv,CC,participant]

:w([idConv,"CS", participant.getAddress(), ["prepare",CC]])

[w,idConv,CC,participant]

:w([idConv,"CS",from,"committed"])

t95

t97

t98

t99

t101

t102

[]

t85

t86

t87

t88

...

t21

t20

...
:t([idConv,from,to,XMLin])

[]

t115

t121

[idConv,CC]

:absCond(this,idConv,XMLout)

t120

t122

t123

[idConv,CC,op]

[idConv,CC,XMLout]

t124

[idConv,CC,XMLout]

t125

t126 :end()

:endConv(this,idConv,"done")

:begin()

[idConv,CC]

[idConv,CC]

Peer_Coordinator

t22

Coordinator’s work-space

coordinator_conversation

[w,idConv,from,CC,participant_list]

participant = retrieve_participant(participant_list);
:w[idConv,"coordinator",participant.getAddress()]

communication
space

Director’s
conversation-space

guard counter.allCommitted()

[w,idConv,from,counter]

[w,idConv,from,CC,participant_list]

[w,idConv,CC,participant]

[w,idConv,from,counter]
t100

[w,idConv,from,XMLin]

Coordinator’s conversation-space

:t([idConv,participant.getAddress(), "CS", ["committed",CC]]);
action counter.setCommitted(participant.getAddress());

action counter = new Counter(participant_list);

[w,idConv,from,CC,participant_list]

[w,idConv,from,CC]

:end(w,idConv,"done")

Coordinator’s workflow

[w,idConv,from,CC,participant_list] :absCond(w,idConv,participant_list)

[idConv,CC,op]

[idConv,CC]

[idConv,CC]

conv: new CoordinatorRol;
:participateConv(this,idConv,
 "coordinate","coordinatorRol",conv)

:beginConv(this,idConv,"CS")

:absCond(this,idConv,[op,CC])

:execute(id,op,CC,XMLout])

[idConv,CC]

[w,idConv,CC,participant]

[w,idConv,from,counter]

[w,idConv,from,counter]
[w,idConv,CC,participant]

[w,idConv,from,
CC,participant_list]

:absCond(w,idConv,[op,CC])
[w,idConv,from,[op,CC]]

:begin(w,idConv,XMLin)

[w,idConv,from,counter]

Fig. 7. Coordinator overview

by means of the conversation(s) the workflow is involved in. These conversations
can be started either by the service itself or by another Web service. This second
approach is the one adopted in the following to implement the transactions
service.

Left part of Figure 6 shows a partial representation of the workflow cor-
responding to the previously described Director. The workflow stays in the
work-space place of the peer executing it (Peer Director). It manages the
composition of the services required to perform the atomic transaction cre-
ating three conversations, one for each phase. Let us now concentrate on the
Completion phase that is executed between transitions t81 and t83. t81 cre-
ates the conversation and places on the communication-space a request for the
CoordinationRol synchronizing with t31. Right part in Figure 6 represents the
request-response interaction. Transition t86 corresponds to the request, while
transition t87 performs the reception of the response. These transitions syn-
chronize, respectively, with t40 and t41 in the peer infrastructure to access to
the communication space. The synchronized firing of t83, t88 and t21 means
that the protocol conversation has finished.

222 J. Fabra et al.

On the other hand, right part of Figure 7 corresponds to the (partial) workflow
executing the coordinator part.

From the Coordinator’s point of view, the Completion phase corresponds to
the transitions between t120 and t125. Transition t120 takes, from the commu-
nication space, the request for participating in the Completion phase and creates
the Coordinator’s conversation. The interactions needed to execute this phase
are more complicated, and require to create and execute a complex conversation
involving the Coordinator, the Director, and the participants.

Firing transition t92 the Coordinator’s conversation takes the input param-
eters from the communication space. These parameters are passed to the work-
flow through the abstract condition by the synchronized firing of t93, t122 and
t22. Then, the workflow executes a local query to retrieve a list with the reg-
istered participants under the given coordination context identifier (t123). The
synchronized firing of transitions t124, t94 and t22 the workflow returns to
the conversation the list of involved participants (variable participant list).
With this information, the Coordinator initiates a parallel set of conversations
corresponding to the completion protocol, one with each participant (transitions
t95 to t100). Once the completion messages have arrived from all the partic-
ipants (firing of transition t101), the committed message is returned to the
Director firing transition t101. The conversation is then terminated by means
of the synchronized firing of transitions t125, t102 and t21.

5 Conclusions

Developing and using business processes is a complex task, which requires the
help of both, formal methods for the specification, modeling and analysis, and
also flexible and powerful tools for their execution and monitoring.

In the context of Web services, the authors adopted high level Petri nets as
the formalism for the first aspect, and Renew as the tool for the implementation
issues. In this paper we have shown how these tools can be adapted to work on
the domain of business processes. In a previous work, the authors provided a
prototype of framework able to run workflows and coordination protocols and
the related horizontal protocols. As an application case, the paper details an
executable implementation of the WS-Atomic Transaction protocol.

Our future work will concentrate on different aspects. First, on the implemen-
tation of some new Web service-related (horizontal) protocols. And second, on
the study of the application of Petri net based analysis techniques to the check-
ing of desired behavioral properties, such as compatibility or deadlock freeness,
for instance.

Acknowledgements

The authors want to thank the three anonymous referees, whose remarks helped
us to improve this paper.

A Framework for the Development and Execution of Horizontal Protocols 223

References

1. U. Dayal, M. Hsu, and R. Ladin: Business Process Coordination: State of the
Art, Trends and Open Issues. In: Proceedings of the 2th Very Large Databases
Conference (VLDB 2001), Roma, Italy. (2001)

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju: Web Services. Concepts, Archi-
tectures and Applications. Springer Verlag (2004)

3. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana: Business Pro-
cess Execution Language for Web Services (BPEL4WS). Technical report, BEA
Systems, IBM Corp., Microsoft Corp., SAP AG, and Siebel Systems (2003)

4. A. Arkin, S. Askary, S. Fordin, K. Kawaguchi, D. Orchard, S. Pogliani, K. Riemer,
S. Struble, P. Takacsi-Nagy, I. Trickovic, and S. Zimek: Web Service Choreography
Interface (WSCI). Technical report, World Wide Web Consortium (W3C) (2002)

5. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon: Web Service
Choreography Description Language (WS-CDL). Technical report, World Wide
Web Consortium (W3C) (2004)

6. D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness,
B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara: Bringing
Semantics to Web Services: The OWL-S Approach. Number 3387 in Lecture Notes
in Computer Science. In: First International Workshop, SWSWPC 2004. Revised
Selected Papers. Springer Verlag (2004) 26–42

7. IBM, BEA Systems, Microsoft, Arjuna, Hitachi, IONA: Web Services Transactions
specifications. Technical report, IBM (2005)

8. Arjuna, Fujitsu Software, IONA Technologies, Oracle and Sun Microsystems: Web
Service Coordination Framework(WS-CF). Technical report (2004)

9. C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. ter Hofstede, and
H.M.W. Verbeek: Formal Semantics and Analysis of Control Flow in WS-BPEL
(Revised version). Research Report BPM-05-15, Business Process Management
(BPM) Center, BPMcenter.org (2005)

10. D. Moldt and J. Ortmann: Dagen: A tool for automatic translation from DAML-S
to high-level petri nets. In: Fundamental Approaches to Software Engineering: 7th
International Conference, FASE 2004, Springer-Verlag (2004) 209–213

11. Srini Narayanan and Sheila A. McIlraith: Simulation, verification and automated
composition of web services. In: WWW ’02: Proceedings of the 11th international
conference on World Wide Web, New York, NY, USA, ACM Press (2002) 77–88

12. A. Martens: Analyzing web service based business processes. In: Fundamental
Approaches to Software Engineering: 8th International Conference, FASE 2005.
(2005)

13. P. Álvarez, J. A. Bañares, and J. Ezpeleta: Approaching Web Service Coordina-
tion and Composition by Means of Petri Nets. The Case of the Nets-Within-Nets
Paradigm. Number 3826 in Lecture Notes in Computer Science. In: Third Interna-
tional Conference on Service Oriented Computing –ICSOC 2005. Springer Verlag
(2005) 185–197

14. R. Valk: Petri Nets as Token Objects - An Introduction to Elementary Object
Nets. Lecture Notes in Computer Science: 19th Int. Conf. on Application and
Theory of Petri Nets, ICATPN’98, Lisbon, Portugal, June 1998 1420 (1998) 1–25

15. L. Cabac, M. Duvigneau, D. Moldt, and H. Rölke: Modeling Dynamic Architectures
Using Nets-within-Nets. In: 26th International Conference On Application and
Theory of Petri Nets and Other Models of Concurrency, Miami, Florida (2005)

224 J. Fabra et al.

16. D. Moldt, S. Offermann, and J. Ortmann: Proposal for Petri Net Based Web
Service Application Modeling. Number 3140 in Lecture Notes in Computer Science.
In: Web Engineering: 4th International Conference, ICWE 2004. Springer Verlag
(2004) 93–97

17. L. Ardissono, G. Petrone, and M. Segnan: Enabling flexible interaction with web
services. In: Extending Web Service Technologies: The use of Multi-Agent ap-
proaches. Springer Verlag (2004) 187–208

18. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. Ferguson: Modeling
Business Processes: BPEL. In: Web services platform architecture. Prentice Hall
(2005) 313–340

19. F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana: The next step in
web services. Communications of the ACM 46 (2003) 29–34

20. Arjuna Technologies, BEA Systems, Hitachi, IBM, IONA Technologies & Mi-
crosoft: Web service coordination (ws-coordination). Technical report (2005)

21. Arjuna Technologies, BEA Systems, Hitachi, IBM, IONA Technologies & Mi-
crosoft: Web Services Business Activity Framework (WS-BusinessActivity). Tech-
nical report (2005)

22. Arjuna Technologies, Fujitsu Limited, IONA Technologies, Sun Microsystems and
Oracle Corporation: Web Services Composite Application Framework (WS-CAF).
Technical report (2003)

23. Arjuna Technologies, Fujitsu Limited, IONA Technologies, Sun Microsystems and
Oracle Corporation: Web Services Context (WS-Context). Technical report (2003)

24. J. E. Hanson, P. Nandi, and S. Kumaran: Conversation Support for Business
Process Integration. In: Proceedings of the 6th International Enterprise Distributed
Object Computing Conference (EDOC2002). (2002) 65–74

25. G. Petrone: Managing flexible interaction with Web Services. In: AAMAS-03
Workshop on Web-services and Agent-based Engineering (WSABE 2003), Mel-
bourne (2003) 41–47

26. N. Carriero and D. Gelernter: Linda in context. Communications of the ACM 32
(1989) 444–458

27. O. Kummer: Introduction to Petri Nets and Reference Nets. Sozionik Aktuell 1
(2001) 1–9

28. O. Kummer and F. Wienberg: Renew - the reference net workshop. In: Tool
Demonstrations, 21st International Conference on Application and Theory of Petri
Nets, Computer Science Department, Aarhus University, Aarhus, Denmark (2000)
87–89

29. J. Fabra, P. Álvarez , J. A. Bañares, and J. Ezpeleta: RLinda: a Petri net based
implementation of the Linda coordination paradigm for Web services interactions.
In: To appear in Proceedings of the 7th International Conference on Electronic
Commerce and Web Technologies (EC-Web 2006), Vienna, 5.-7. September (2006)

30. Alphaworks: Web Services Toolkit (WSTK). Technical report, IBM (2005)

History-Based Joins:
Semantics, Soundness and Implementation

Kees van Hee, Olivia Oanea�, Alexander Serebrenik, Natalia Sidorova,
and Marc Voorhoeve

Department of Mathematics and Computer Science,
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{k.m.v.hee, o.i.oanea, a.serebrenik, n.sidorova, m.voorhoeve}@tue.nl

Abstract. In this paper we study the use of case history for control
structures in workflow processes. In particular we introduce a history-
dependent join. History dependent control offers much more modeling
power than classical control structures and it solves several semanti-
cal problems of industrial modeling frameworks. We study the modeling
power by means of workflow patterns. Since proper completion (i.e. the
ability of any configuration reachable from the initial one to reach the
final one) is always an important ”sanity check” of process modeling,
we introduce a modeling method that guarantees this property for the
new control structures. Finally we consider an implementation of the
proposed control structures on top of an existing workflow engine.

Keywords: Business process modeling and analysis—Formal models
in business process management—Process patterns—Process verification
and validation—Workflow management systems.

1 Introduction

There is a variety of process modeling frameworks and tools available. A mod-
eling framework for processes consists of a syntax and semantics. The syntax is
often a graphical notation of a diagram language. Semantics concern the behav-
ior of the processes.

We may distinguish industrial frameworks, such as EPCs [12,17], UML ac-
tivity diagrams [8], BPMN [22] and BPEL4WS [6,21], and the more academic
frameworks like Petri nets and process algebras. In industry there is a tendency to
standardize the frameworks and the late three frameworks are in fact standards.
The academic frameworks have several variants. Petri nets variants include,
among others, place-transition nets, predicate-transition nets [9] and colored
Petri nets [16]. For process algebras we have such formalisms as pi-calculus [20],
CSP [15] and CCS [19].

� Supported by the NWO Open Competitie project “Modeling and Verification of
Business Processes” (MoveBP), Project number 612.000.315.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 225–240, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

226 K. van Hee et al.

Most of the industrial frameworks suffer from the fact that they have no for-
mally defined semantics which causes many problems when applying them. The
only analysis facilities these frameworks offer is syntax checking and sometimes
simulation of modeled processes. The academic frameworks have exact formal
semantics and they offer besides syntax checking, methods for the analysis of
the behavior of the modeled processes. The industrial frameworks offer more
“modeling power” than the academic frameworks, which means that they of-
fer more modeling primitives and modeling patterns that can easily be applied
to practical situations. It is obvious that many research has been devoted to
link the two types of frameworks. The industrial frameworks are mapped onto
the academic frameworks in order to provide them with formal semantics and
the accompanying analysis methods [4,12,21,23]. These mappings are far from
straightforward and sometimes impossible, see for instance [17].

The industrial frameworks cover most of the control structures (connectors
and patterns) needed for modeling workflow processes in practice. Typical ex-
amples of connectors are the XOR-split, XOR-join, AND-split and AND-join.
But there are many others like the implicit-OR split and the m-out-of-n split
and join. The YAWL language [4] is an attempt to incorporate most of them.
For YAWL formal semantics are defined in the form of a transition system.

In this paper we study the use of the case history as a way to obtain more
flexible control structures. In workflow management systems the concept of a
case is very important. A case is the object that is treated by the tasks of the
workflow process. (Note that it is allowed that two or more tasks work in parallel
on the same case.) The case history is the set of all events a case was engaged
in. The case history offers the possibility to express all kind of preconditions for
tasks or connectors (see [11] for a history-based logics). From the experiments we
have done so far with the control structures of BPMN, UML activity diagrams
and EPC’s we have seen that semantics for the control structures can easily be
formulated using the case history.

We have three objectives. Firstly we will introduce new split and join con-
nectors that are based on the case history. Based on the case data the split
connector may produce as many case tokens as it likes for each outgoing arc. In
the tasks the case data can be updated by a user or a software agent. We do
not consider the case data here. The new join connector should be able to deal
with all possible decisions made in split connectors, just by inspection of the
case history. These new connectors provide more modeling power than the usual
ones. In order to do so we introduce a simple modeling framework that covers
most of the control structures of the existing industrial frameworks. The frame-
work is only meant to define and analyze the new control structures and not as a
new modeling language. The syntax is very easy so it is not difficult to translate
models in our framework into the industrial ones. We consider three types of
connectors: the split connector, the transfer connector and the join connector.
The split connector consumes one object, called case token and may produce as
many case tokens as necessary for all its outgoing arcs. The transfer connector
is consuming one case token from one of its inputs and producing exactly one

History-Based Joins: Semantics, Soundness and Implementation 227

for one of the output arcs. It is in fact a combination of a classical XOR split
and XOR join [4]. The join connector is special: it waits for all case tokens that
may arrive as its inputs and then it consumes them all and produces one output
case token. The modeling engineer should understand the semantics of the join
connector well in order to make correct process models.

Secondly we want to be able to guarantee the proper completion property of
processes, which is normally called soundness for workflow nets. We will give suf-
ficient conditions for processes in our framework to satisfy this property. Proper
completion requires that a workflow is always able to finish without leaving
“garbage”. This generic property could be considered as a “sanity check” that
should hold for all workflow applications. Our goal is to have a modeling method
that guarantees soundness by construction.

Thirdly we consider the implementation of the new control structures. Instead
of constructing a new workflow engine we propose to build an add-on for an
existing workflow engine. The only requirement is that the workflow engine will
log the events and that this event log is accessible.

In section 2 we introduce the syntax of our framework, whereas in section
3 we describe the semantics. In section 4 we introduce soundness and describe
“soundness by construction” rules. In section 5 we consider an implementation
of the new control structures for an existing workflow engine. In section 6 we
consider the modeling power of the proposed control structures by comparison
with the well-known workflow patterns. In section 7 we consider future work.

2 Syntax

It is not our intention to define “yet another workflow language”, like the suc-
cessful YAWL, but to give a simple language that expresses the most essential
elements of workflow languages, the control structures. We believe that our con-
trol structures are as flexible as possible and therefore our approach provides
semantics that can be applied to other frameworks as well.

The modeling framework comprises the following concepts:

Process is a graph with two kinds of nodes: tasks and connectors.
A workflow process has one initial task (without inputs) and one final task
(without outputs), and each node is on a path from the initial to the final
task.

Task is a unit of activity. A task has one input and one output node, except for
the initial and the final one. Tasks usually correspond to activities carried
out by users, such as registering a patient or prescribing medication.

Connector is either a split, a join or a transfer connector. A split connector
has one input arc and n (n ≥ 1) output arcs. A join connector has n input
arcs (n ≥ 1) and one output arc. A transfer connector has one or more input
arcs and one or more output arcs.

Case is an entity to be treated by the process. A case has a documented history
that reflects the tasks performed and the choices made. We may have several
active cases in a process. We consider them independently of each other.

228 K. van Hee et al.

i 3-split

e

g

h

3-joind
transfer

a
transfer

f

bc

XX

Fig. 1. An example of a workflow process

Next we formalize these concepts. A graph is a tuple G = (N, A), where N is
the set of nodes and A ⊆ N ×N is the set of arcs. Given a node n in G, the preset
•n of n, and the postset n• of n are {m | (m, n) ∈ A} and {m | (n, m) ∈ A},
respectively. Given a set S, |S| denotes the cardinality of S.

Definition 1 (workflow process). A workflow process P is defined by a graph
(N, A) where:

– N , called the set of nodes, is a union of pairwise disjoint sets: a set of tasks
T , a set of split connectors S, a set of join connectors J and a set of transfer
connectors X;

– A ⊆ N × N is a set of arcs;
– the initial task i ∈ T and the final task f ∈ T satisfy •i = f• = ∅ and

|i•| = |•f | = 1;
– |•t| = |t•| = 1 for all t ∈ T \ {i, f};
– |•s| = 1 and |s•| ≥ 1 for all s ∈ S;
– |•j| ≥ 1 and |j•| = 1 for all j ∈ J ;
– |•x| ≥ 1 and |x•| ≥ 1 for all x ∈ X;
– ∀x ∈ N : path(i, x) ∧ path(x, f), where the predicate path is defined by:

path(x, y) = ∃n ≥ 0 : ∃z0, . . . , zn ∈ N : x = z0 ∧ y = zn ∧ (∀k : 0 ≤ k < n :
(zk, zk+1) ∈ A).

We denote the outgoing arc of i by ai and the incoming arc of f by af . Graph-
ically, we represent tasks by rectangles and connectors by diamonds. Transfer
connectors are marked with an X .

Fig. 1 gives an example of a process. In the example we can see an iteration
between the transfer nodes, and parallel threads, between the 3-split and 3-join.
It is possible to have just one thread active, but two or three threads can execute
concurrently. In this particular example the set T consists of tasks a, b, c, d, e,
g and h, the set S of the 3-split, the set J of the 3-join, and the set X of the
transfer connectors.

3 Semantics

A workflow system over a workflow process consists of the workflow process
and cases in execution. Cases are identified by means of case identities (ids),

History-Based Joins: Semantics, Soundness and Implementation 229

which are assumed to be positive integers. Cases are represented by means of
tokens that either are engaged in an activity performed by the user (task) or
can be waiting for an activity performed by the user (task) or by the system
(connector). The connectors, the initial and the final tasks are activities carried
out instantaneously by the workflow management system. One case may be
represented by a number of tokens. Placement of tokens in the workflow system
is called a marking.

As already mentioned in the introduction we explicitly store the case history.
To this end we keep a global history log, being a sequence of events, where an
event is the consumption or the production of tokens after the firing of a rule.
Thus, a state of the workflow system is a pair (m, h) where m is a marking and h
is a history log. Using the notion of state we define the semantics of a workflow
system as a transition system.

In order to formalize these notions we need a well-known concept of a multiset.
Let B be a set. A multiset m over B is a mapping m : B → N. The set of all
multisets over B is N

B. We use + and − for the sum and the difference of
two multisets and =, <, ≤ for comparisons of multisets, which are defined in a
standard way. We say that a multiset m over B is non-empty is there exists
b ∈ B such that m(b) > 0. We also use N

+ to denote N \ {0}.
We introduce first the notions of a token and a marking.

Definition 2. Let P be a workflow process. A token is a pair (n, k), where
n ∈ A ∪ T \ {i, f} is an arc or a task and k ∈ N

+ is a case id. A marking m is
a multiset of tokens, m ∈ N

(A∪T\{i,f})×N
+
.

Unlike in the case of markings the history logs do not record actions performed
by the user but only those performed by the workflow management system. To
this end events logged are transfers of tokens from one multiset of arcs to another
multiset of arcs. For the sake of simplicity we distinguish between productions
and consumptions.

Definition 3. Let P be a workflow process.

– An event is a triple (l, k, λ), where l ∈ {prod, cons}, k is a case id and λ is
a multiset of arcs.

– A state σ is a pair (m, h), where m is a marking, and h, called a history log,
is a sequence of events.

– The initial state σ0 is (∅, ε), where ∅ denotes the empty marking and ε—the
empty history log.

Adding an event (l, k, λ) to a history log h is denoted by h·(l, k, λ). This notation
can be easily generalized to concatenation of logs.

As we are going to see, for states reachable from the initial state, history log
determines uniquely the corresponding marking. Therefore, the use of marking
is for presentation purposes only: actual workflow management systems do not
need to have a global look at the marking but will make use only of the history
log. We describe the semantics of a workflow system by means of a transition
relation between states as follows:

230 K. van Hee et al.

Definition 4. Let P be a workflow process. The semantics of the workflow sys-
tem over P is given by a transition system T = (Σ, →, σ0), where Σ is the set
of states of the workflow system, σ0 is the initial state and →⊆ Σ × Σ is the
transition relation defined by the rules (a − g) below. Let σ = (m, h).

(a) case creation rule (creates a token with a new id on the outgoing arc of
the initial task) σ → σ′ if σ′ = (m + (ai, k), h · (prod, k, ai)), where k =
max(n1,k1)∈m k1 + 1. We define max(n1,k1)∈∅ k1 as 0.

(b) start task rule (transfers a token from the incoming arc of a task to the
task) σ → σ′ if (a, k) ∈ m, where a is the incoming arc of a task t ∈ T \{i, f}
and σ′ = (m + (t, k) − (a, k), h · (cons, k, a));

(c) complete task rule (transfers a token from a task to the outgoing arc of
the task) σ → σ′ if (t, k) ∈ m for some t ∈ T \ {i, f} and σ′ = (m + (a, k) −
(t, k), h · (prod, k, a)), where a is the outgoing arc of the task t.

(d) complete case rule (removes a token from the incoming arc of the final
task) σ → σ′ if (af , k) ∈ m and σ′ = (m − (af , k), h · (cons, k, af)).

(e) split rule (removes a token from the incoming arc and puts at least one
token on the outgoing arcs of the split connector) σ → σ′ if
– (a, k) ∈ m, where a is the incoming arc of a split node s ∈ S;
– σ′ = (m − (a, k) + m′, h′), where

• m′ is a finite non-empty multiset of tokens with the case id k on the
outgoing arcs of s, i.e., m′ ∈ N

{(s,n)|n∈N}×{k};
• h′ = h · (cons, k, a) · (prod, k, ma), where ma is a multiset of outgoing

arcs of s occupied by the tokens of m′, i.e., ma ∈ N
{(s,n)|n∈N} and

for any n ∈ N , ma((s, n)) = m′(((s, n), k));
(f) transfer rule (removes one token from an incoming arc of a transfer node

and puts one token on an outgoing arc of the transfer node) σ → σ′ if
– (a, k) ∈ m, where a is an incoming arc of a transfer node x ∈ X;
– σ′ = (m − (a, k) + (a′, k), h′), where a′ is an outgoing arc of x and

h′ = h · (cons, k, a) · (prod, k, a′);
(g) join rule (removes tokens with the same id from the incoming arcs of a

join node and puts one token on the outgoing arc) σ → σ′ if
– a condition C(j, k, (m, h)), requiring that all tokens with the id k that

could potentially arrive to the join j have already arrived. We postpone
discussion of this condition.

– σ′ = (m + (a′, k) − mk
j , h · (cons, k, mk

a) · (prod, k, a′)), where a′ is the
outgoing arc of the join connector j and mk

j ≤ m is the multiset of tokens
on the incoming arcs of the join connector j having the id k, and mk

a is
the set of arcs corresponding to mk

j .

We further assume that the transfer connectors are fair. Formally, let x be
a transfer connector and let σ0 → σ1 → . . . → σn → . . . be an infinite firing
sequence containing infinitely many applications of the (f)-rule for x. Assume
that in this firing sequence tokens arrive infinitely many times on x. Then, we
require that tokens are produced infinitely often for each outgoing arc of x.

We write σ
∗→ σ′ if there is a sequence of rules that lead from σ to σ′. In this

case we also say that σ′ is reachable from σ.

History-Based Joins: Semantics, Soundness and Implementation 231

Next we formalize the condition C above. A join connector should wait for
all possible incoming tokens, i.e., it is allowed to fire when at least one token is
present on one of the incoming arcs, and there is evidence that no other tokens
with the same case id can possibly arrive unless the join itself fires. Straight-
forward formalization of this intuition is impossible since producing more tokens
on the incoming arcs of some join j1 might require reasoning on fireability of
some another join j2 which in its turn might involve reasoning on firings of j1 (the
so-called “vicious circle”, see [17]). To resolve this circular definition problem we
introduce a tentative firing relation with respect to a join j. Using this notion
we say that a join can fire, if no additional tokens on the incoming arcs are
produced by any sequence of tentative firings.

We say that tasks, split and transfer connectors fire tentatively with respect
to j if they fire according to Definition 4; join j cannot fire tentatively with
respect to itself; any other join can fire tentatively whenever there is at least one
token present at one of its incoming arcs.

Definition 5. For each join connector j, we define a tentative firing relation
→j. Let σ = (m, h) be a state. Then σ →j σ′ if

– σ → σ′ by firing rules (a − f) of Definition 4;
– σ′ = (m+(a′, k)−mk

j′ , h·(cons, k, mk
a)·(prod, k, a′)), where a′ is the outgoing

arc of the join connector j′ �= j and mk
j′ ≤ m is the multiset of tokens on the

incoming arcs of j′ having the id k, and mk
a is the set of arcs corresponding

to mk
j′ .

We write σ
∗→j σ′ if there is a sequence of firings that lead from σ to σ′.

We now define the condition C for the join connector. Let (m, h) be a state,
mk

j ≤ m the non-empty multiset of tokens on the incoming arcs of a join con-
nector j, having the same id k and aj the outgoing arc of j. The condition C
states that there is no state (m′, h′) reachable from (m, h) by a series of tentative
firings for which the number of tokens on the incoming arcs increases:

C(j, k, (m, h)) ::= ∀(m′, h′) : ((m, h) ∗→j (m′, h′)) ⇒ m′k
j ≤ mk

j .

Consider now the workflow process in Figure 2 which is taken from [17]. The
process is in a state in which the join connectors j1, j2, and j3 have a token
on an incoming arc. The join rule connector for j1 needs to consider its own
tentative firing where the other join connectors, j2, j3 and j4 fire using the
transfer rule. Thus we have the following tentative firing sequence (((s1, j1), k)+
((s1, j2), k)+((s1, j3), k), h) →j1 (((s1, j1), k)+((s1, j2), k)+((j3, s4), k), h′) →j1

(((s1, j1), k) + ((s1, j2), k) + ((s4, j1), k), h′′), which violates the condition C, i.e.
we reach a state in which the number of tokens on the incoming arcs of the join
connector has increased. In fact, none of the join connectors can fire since the
condition C is violated for all of them. Hence, the process deadlocks.

States reachable from σ0 in T have an important property: for any such state
(m, h) the marking m can be uniquely derived from the history log h. Intuitively,

232 K. van Hee et al.

s1

j1

j2

j3

s2

s3

s4

j4

i f

Fig. 2. Vicious loop

this means that the states are consistent and that by “playing the log”, i.e.,
producing and consuming the tokens as recorded in the log, one obtains the
corresponding multiset of tokens m. The converse is clearly not true as more
than one history log may result in the same multiset of tokens.

Lemma 6. Let P be a workflow process and let T = (Σ, →, σ0) be the transi-
tion system giving the semantics of the workflow system over P . Then, for any
(m1, h1) and (m2, h2) such that σ0

∗→ (m1, h1) and σ0
∗→ (m2, h2), h1 = h2

implies m1 = m2. Moreover, for any (m1, h1) and (m2, h2) such that σ0
∗→j

(m1, h1) and σ0
∗→j (m2, h2), h1 = h2 implies m1 = m2.

Proof. The proof is done by induction on the length of the history log.

The most important corollary of this Lemma states that the condition C can be
verified based solely on the knowledge of the history.

Corollary 7. For any states (m1, h1) and (m2, h2) reachable from σ0 it holds
that C(j, k, (m1, h1)) is logically equivalent to C(j, k, (m2, h2)) whenever h1 = h2.

4 Soundness

In this section we define soundness, introduce a class of well-structured processes
and show that well-structured processes are sound. A process is sound (cf.[14,3])
if and only if after the initial task created a new case, it is possible for each
reachable state to continue the process such that the final task can be executed
and that after that execution, no tokens of that case are left on the arcs or tasks
of the process. To formalize this intuitive requirement we restrict the transition
relation → to applications of rules (b), (c), (e − g) of Definition 4, i.e., we do not
allow creating new tokens (rule (a)) and destroying tokens (rule (d)). We denote
this restricted transition relation ⇀.

Definition 8 (Soundness). A workflow process P is called sound if for any
case id k and for all σ such that ((ai, k), (prod, k, ai))

∗
⇀ σ

– there exists a history log hf such that σ
∗
⇀ ((af , k), hf), and

– σ
∗
⇀ (m + (af , k), hf) implies m = ∅.

History-Based Joins: Semantics, Soundness and Implementation 233

Next we formulate a structural condition implying soundness of a process. To
this end we introduce task refinement. The general idea of refinement consists in
replacing a basic element in a structure by a more elaborate one. In our case one
can replace a task in a workflow process by another workflow process. Refinement
is formalized in the following definition.

Definition 9. Let P1 and P2 be workflow processes defined by (N1, A1) and
(N2, A2), respectively, with N1 = T1 ∪ S1 ∪ J1 ∪ X1 and N2 = T2 ∪ S2 ∪ J2 ∪ X2,
and i1, f1 and i2, f2 are the initial and final tasks of P1 and P2, respectively. Let
t ∈ T1. Then, the refinement of t in P1 by P2, ref(t, P1, P2), is a graph (N, A),
where N = T ∪ S ∪ J ∪ X and i, f ∈ T such that:

– if t = i1 then i = i2, else i = i1;
– if t = f1 then f = f2, else f = f1;
– T = T1 ∪ T2\{t}, S = S1 ∪ S2, J = J1 ∪ J2, X = X1 ∪ X2;
– (n, n′) ∈ A if one of the following holds:

• n, n′ ∈ N2 and (n, n′) ∈ A2;
• n, n′ ∈ N1\{t} and (n, n′) ∈ A1;
• t �= i1 and •t = {n}, n′ = i2;
• t �= f1 and n = f2, t

• = {n′}.

The following lemma establishes correctness of refinement as an operation.

Lemma 10. Let P1, P2 be workflow processes as in Definition 9 and let t ∈ T1.
Then, ref(t, P1, P2) is a workflow process.

Proof. Immediate by checking the definitions.

Using the notion of refinement we present a class of processes that are sound
by construction. We start with two basic types of workflow processes, called
acyclic and cyclic blocks. Then we introduce well-structured workflow processes
(cf. [7,18]) that can be built by means of refinement using these blocks. We pose
two additional requirements on an acyclic block. The first connector, i.e., the
connector closest to i, should be a split connector, while the last connector, i.e.,
the connector closest to f , of an acyclic block should be a join connector. Note
that the first and the last connectors are unique.

Definition 11. A well-structured workflow process is defined recursively using
two kinds of blocks:

1. An acyclic block is an workflow process P = (N, A) such that
– for all n1, n2 ∈ N , path(n1, n2) ∧ ¬path(n2, n1), and
– if S ∪ J ∪ X �= ∅ then

• there exists j ∈ J such that for all n ∈ N , n �= j and path(j, n)
implies n ∈ T and

• there exists s ∈ S such that for all n ∈ N , n �= s and path(n, s)
implies n ∈ T .

2. A cyclic block is presented in Figure 3, where T = {i, f, t1, t2}, S = J = ∅,
X = {x1, x2} and A = {(i, x1), (x1, t1), (t1, x2), (x2, f), (x2, t2), (t2, x1)};

234 K. van Hee et al.

X

i f
x2x1

t1

t2

X

Fig. 3. Cyclic block

3. A well-structured workflow process P is an acyclic block, a cyclic block or
P = ref(t, P1, P2) where P1 is a well-structured workflow process, P2 is a
cyclic or an acyclic block, and t is a task in P1.

Observe that the requirement that P2 is a block rather than an arbitrary well-
structured process does not influence the set of well-structured processes: any
process that can be obtained by a series of refinements of two well-structured
processes can be also obtained with series of refinements where P2 is a block.

The workflow process P from Figure 1 is well-structured. To see this, observe
that it can be obtained by the following steps. First, take a cyclic block with tasks
a and t1. Refine this workflow process with respect to t1 and the acyclic block with
two distinct tasks (the initial task and the final task). By doing this one obtains
the left part of the process from Figure 1 starting with i and going up to d where
d serves as the final task. Refine this process with respect to the final task and the
acyclic net corresponding to the right part of from Figure 1 starting from d and
leading to f . The right part of Figure 1 is a valid acyclic block since it does not
contain cycles, the first connector is a split and the last connector is a join.

Lemma 12. An acyclic block is sound.

Proof (Sketch). Use induction on the number of joins preceding the current one.
If there are no preceding joins, the join can fire, since real firings coincide with
the tentative firings. Moreover, after the firing of this join there are no tokens in
the preceding part of the process. Assume by induction that all joins having no
more than n preceding joins can fire and no tokens are present after the firing
in the part of the process that precedes them. Joins having n + 1 predecessor
joins depend either on non-joins that cannot deadlock by their semantics or on
joins with no more than n predecessors that cannot deadlock by the inductive
assumption. Hence joins of depth n + 1 also can fire and after the firing the
corresponding part of the process is empty.

Theorem 13. A well-structured workflow process is sound.

Proof (Sketch). Let P be a well-structured process. By Definition 11, P is either
an acyclic block, a cyclic block or it has been obtained as the result of the
refinement operation. The proof is done by induction on construction of P .

– If P is an acyclic block then it is sound by Lemma 12.
– Assume that P is a cyclic block. This block does not contain joins so firings

cannot deadlock. Semantics of the transfer rule implies that at each firing

History-Based Joins: Semantics, Soundness and Implementation 235

exactly one token will be produced. Fairness assumption for transfer nodes
guarantees that the output token will be eventually placed on af .

– Let P be obtained as the result of refinement of a sound process P1, a block
P2 and a task t. If P2 is a cyclic block than the fairness assumption guarantees
that tokens eventually leave it. P2 consumes and produces the same tokens
as t. Hence, soundness of P1 implies soundness of P . Let P2 be an acyclic
block. If exactly one token arrives at the input arc of P2, it will also leave
P2 (by Lemma 12). Hence, P2 again behaves exactly as t and soundness of
P1 implies soundness of P . If multiple tokens with the same case id arrive
at the input arc of P2 then t was preceded by a split connector. Thus, t is
followed by a corresponding join connector. Since join does not depend on
the number of incoming tokens but on their presence or absence, P is sound.

5 Implementation

In this section we discuss how an existing workflow engine (WE) can be ex-
tended to support workflow processes as defined above. To this end, we define
an activation control extension called (AC).

We describe the communication protocol between the AC and the WE. The
WE sets up the static structure of the AC by creating nodes and arcs connecting
them. Then it communicates the tokens received and sent, and the activation
of the various nodes. The AC keeps track of the number of tokens waiting at
each input arc. A node is enabled if there are tokens on some input arc; for
enabled nodes except join nodes the WE must communicate their firing to the
AC. Enabled join nodes only fire if the condition C holds, i.e., all its indirect
predecessor arcs are empty; this is the task of the AC to report this to the WE.
By firing, tokens are consumed and produced.

The implementation of the protocol is as follows. Nodes and arcs are objects of
classes Node, Arc respectively. The static structure of the process is established
by entering the predecessor and successor node (from/to) of an arc and the direct
predecessor and successor arcs (dpred/dsucc) of each node. By computing the
transitive closure, the indirect successor join nodes of an arc and the indirect
predecessor arcs of a join node are computed.

The dynamic structure is maintained by keeping track for each arc of the num-
ber of tokens of a given case k (pending(k)). Pending tokens can be produced,
consumed or emptied. For all nodes except join nodes, the WE report the firing
by calling the repf method with as parameters the case k, the input arc c (which
should satisfy self.dpred = {c}) and a list of arcs for the produced tokens (the
arcs should be contained in self.dsucc). For join nodes, the AC induces the
firing by calling indf(k), signaling the WE. Both the repf and indf methods
update the state by producing, consuming or emptying tokens from arcs.

After having consumed tokens from the input arc, the repf method will search
whether enabled successor join nodes may fire; if so, the indf method of that join
node is called. The consumption of tokens induced by the indfmethod of some join
node j will not lead to the firing of another join node, since every enabled successor
join node of j has the direct successor arc of j as indirect predecessor.

236 K. van Hee et al.

s1
a1

a2

a3

a4

j1

t4

t2

t3

t5

x1

x2

x3
j2t6

t1

a14

a5

a6

a7

a13

a8

a9

a10

a12

a15

a16

a17

a11
a18

s2

i f

ai

af

 X

X

 X

Fig. 4. Example workflow process

In Figure 5, a trace is shown for the AC in Figure 4, except for the initial and
final firing, the handling of which has been left to the WE. The initial split node
s1 starts by producing two tokens on a4, then node t1 fires twice. After the first
firing, the successor node j1 cannot fire because the indirect predecessor arc a4
possesses a token. After a second firing of t1, all indirect predecessor arcs of j1
are empty, so j1 is triggered, the a13 tokens are consumed and an a17 token is
produced. Then x2 fires, producing a a11 token, after which x3 fires, producing
an a10 token. Now j1 is triggered again, after which x2 and j2 fire, leaving the
network empty. The firing for case k, thus, terminated successfully.

Below an implementation of the AC in object-oriented pseudo-code is given.

class Arc
attr from, to: Node;
func pending(k:caseID): Nat;

isucc: setof(Node); /* indirect successor join nodes */
meth prod(k:caseID); /* pending(k) := pending(k) + 1 */

cons(k:caseID); /* pending(k) := pending(k) - 1 */
empty(k:caseID) /* pending(k) := 0 */

end;

class Node
attr dpred, dsucc, ipred: setof(Arc): /* (in)direct predecessors/successors */
meth repf(k:caseID, c: Arc, l: listof(Arc)); /* report firing: tasks, splits, transfers */

indf(k:caseID); /* induce firing: joins */

method repf(k:caseID, c: Arc, l: listof(Arc)) ::=
f: Bool;
while l!= empty do head(l).prod(k); l := tail(l) od;
c.cons(k);
if c.pending(k) = 0
then for j in c.isucc with (j.dpred).pending>0 do

f = true;
for a in j.ipred while f do f := a.pending=0 od;
if f then j.indf(k) od;

method indf(k) ::=
/* trigger firing of self in WE */
for a in dpred do a.empty(k) od;
dsucc.prod(k);
end;

History-Based Joins: Semantics, Soundness and Implementation 237

ENV WE node
arc

start(k)
s1.repf(k,0,[a4,a4])

a4.prod(k)

a4.cons(k)

t1.repf(k,a4,[a13])
a13.prod(k)

j1.indf(k)
fire(j1,k)

x2.repf(k,a17,[a11]) a17.prod(k)

a17.cons(k)

a11.prod(k)
x3.repf(k,a11,[a10])

a11.cons(k)
a10.prod(k)

a4.prod(k)

t1.repf(k,a4,[a13])

a4.cons(k)

a13.prod(k)

a13.empty(k)

j1.indf(k)
fire(j1,k)

a10.empty(k)
a17.prod(k)

a17.cons(k)

x2.repf(k,a17,[a18])
a18.prod(k)

j2.indf(k)
fire(j2,k)

a18.empty(k)end(k)

Fig. 5. Message sequence chart of AC implementation

6 Workflow Patterns

In order to evaluate the expressive power of the framework we consider the
well-known collection of twenty-one workflow patterns used for benchmarking
the functionality of formalisms and tools [5]. For the sake of brevity we do not
describe the patterns.

The first category consists of basic control patterns. Sequence pattern cor-
responds to an arc; parallel split to a split connector that puts tokens at all
outgoing arcs; synchronization to a join that assumes that exactly one token
arrives on each of the incoming arcs; exclusive choice to a transfer connector
with one incoming and multiple outgoing arcs; and simple merge to a join con-
nector with multiple incoming and one outgoing arc under assumption that not
more than one token arrives on the incoming arcs. Next advanced branching and
synchronization patterns are considered. Multiple choice corresponds to a split
connector; synchronizing merge to a join; multiple merge to a transfer connec-
tor with multiple incoming and one outgoing arc. Discriminator and n-out-of-m
join cannot be expressed in the basic formalism but they can be expressed with
history-dependent preconditions. Structural patterns include arbitrary cycles and
implicit termination. Arbitrary cycles can be imitated by transfer connectors in
a way similar to the cyclic block (Figure 3). Implicit termination can be modeled
by adding a final join. The next group of patterns involves multiple instances
(MI). MI without synchronization can be mimicked by using a split connector
with one outgoing arc that can produce an arbitrary number of tokens. MI with a
priori known design time knowledge and MI with a priori known runtime knowl-

238 K. van Hee et al.

Rec trade
manually

Rec trade
electronically

Trade adm.
manually

Trade adm.
electronically

Trade
check

Match
BLIM

Reject
BLIM

Start
process
release

X

X X

X

Monitor adm.
and receipt

i f

Fig. 6. Acyclic workflow process

edge correspond to a split-join pair enclosing a task where both connectors can
produce and, respectively, consume n tokens where n is known at design time
or at runtime. MI with no a priori runtime knowledge can also be imitated by
a split-join pair such that join is has one incoming arc coming from split (via a
task) and another one(s) coming from a different part of the process. State-based
patterns include deferred choice, interleaved parallel routing and milestone. We
cannot model the deferred choice as our formalism is not concerned with environ-
ment. Interleaving parallel routing can be imitated by split, followed by a set of
tasks and then by a join. Implementing the milestone pattern demands history-
based preconditions. The last group of patterns is dedicated to cancellation: we
cannot model these patterns. Summarizing the discussion above we observe that
our formalism is powerful enough to express eighteen out of twenty-one patterns
of [5].

Figure 6 shows an acyclic workflow process corresponding to the event-driven
process chain example in [12] in which XOR nodes have been transformed into
transfer nodes, AND splits into split connectors and AND joins into join con-
nectors. While in [12] we have added “color” (data attributes) to synchronize
the choices made by the transfer connectors, here we can add preconditions for
such transfer connectors based on the history log. Note that we have added a
final join connector for the final events that makes the workflow process sound.

7 Conclusions and Future work

In this paper we have investigated application of case history to controlling
workflow processes. We have seen that constructs such as join that usually require
elaborate semantics [17] can be easily expressed if case history is included in
the model. We have further defined an appropriate notion of soundness and
provided a sufficient condition for it. We further reported on implementation of
the framework and its application in YasperWE.

History-Based Joins: Semantics, Soundness and Implementation 239

We intend to apply and extend the results of this study in two directions.
Firstly we will implement the algorithms in our experimental workflow engine,
called YasperWE [2]. YasperWE is an extension of a modeling tool, called Yasper
(Yet Another Smart Process EditoR) that is developed at our institute [1,10,13]
and the document manager InfoPath of MicroSoft. Yasper supports workflow
design, simulation and analysis. In particular Yasper supports the case concept
and the use of resources. The extension (WE) of Yasper is the workflow engine.
With Infopath it is possible to design an XML document and to define different
views on that document. These views have can be displayed as forms with the
usual user interface facilities, such as tables, list boxes, check boxes and radio
buttons. For each case type (i.e. each process) a document type in the form of
an XML schema is designed with InfoPath. Also a set of forms is defined, one
for each view. In YasperWE each task is connected to a view. As soon as the
initial task for a process is executed, a case document is created and all resources
that can handle the case receive an alert (a work item in the input basket of
the resource). The workflow engine has very little knowledge of the cases: only
the case identity is known and this identity can be passed to InfoPath. The
workflow engine obtains messages from InfoPath about the branch to be chosen
in a split connector or the readiness of a task or join connector. So the data
manipulation is in fact “outsourced” to InfoPath. In InfoPath the whole case
history is memorized. So to implement the control structures we have to build a
component that inspects the case history and determines the control actions for
the workflow engine. The second line of work is the formalization of the concept
of local history, i.e. the history of the case restricted to the block it is in. This
will allow for compositionality results which make verification easier.

References

1. Yasper. Petri net editor. www.yasper.org.
2. Yasper workflow engine (YasperWE). www.yasper.org/we.
3. W.M.P. van der Aalst and K. van Hee. Workflow Management: Models, Methods,

and Systems. MIT Press, 2002.
4. W.M.P. van der Aalst and A. H. M. ter Hofstede. YAWL: yet another workflow

language. Inf. Syst., 30(4):245–275, 2005.
5. W.M.P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.

Workflow patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.
6. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,

D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business
process execution language for web services. version 1.1, 2003. Available at
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf.

7. P. Chrzastowski-Wachtel, B. Benatallah, R. Hamadi, M. O’Dell, and A. Susanto.
A top-down petri net-based approach for dynamic workflow modeling. In Business
Process Management, volume 2678 of Lecture Notes in Computer Science, pages
336–353, 2003.

8. M. Dumas and A. H. M. ter Hofstede. UML activity diagrams as a workflow
specification language. In M. Gogolla and C. Kobryn, editors, UML, volume 2185
of Lecture Notes in Computer Science, pages 76–90. Springer, 2001.

240 K. van Hee et al.

9. H. J. Genrich and K. Lautenbach. System modelling with high-level Petri nets.
Theor. Comput. Sci., 13(1):109–136, 1981.

10. K. van Hee, O. Oanea, R. Post, L. Somers, and J. M. van der Werf. Yasper a
tool for workflow modeling and analysis. In Proceedings of the 5th International
Conference on Application of Concurrency to System Design (ACSD 2006), 2006.
accepted.

11. K. van Hee, O. Oanea, A. Serebrenik, N. Sidorova, and M. Voorhoeve. Mod-
elling History-Dependent Business Processes. In Proc. of the Workshop on Mod-
elling, Simulation, Verification and Validation of Enterprise Information Systems
(MSVVEIS06), 2006. to appear.

12. K. van Hee, O. Oanea, and N. Sidorova. Colored Petri nets to verify extended
event-driven process chains. In OTM Conferences (1), volume 3760 of Lecture
Notes in Computer Science, pages 183–201. Springer, 2005.

13. K. van Hee, R. Post, and L. Somers. Yet Another Smart Process Editor. In Proc.
of European Simulation and Modelling Conference (ESM 2005), EUROSIS, Porto,
Portugal, 2005.

14. K. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and separability of workflow
nets in the stepwise refinement approach. In Proc. of ICATPN’2003, volume 2679
of LNCS, pages 337–356, 2003.

15. C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–
677, 1978.

16. K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical.
Springer-Verlag, 1992.

17. E. Kindler. On the semantics of EPCs: Resolving the vicious circle. Data Knowl.
Eng., 56(1):23–40, 2006.

18. R. Liu and A. Kumar. An analysis and taxonomy of unstructured workflows. In
Business Process Management, volume 3649 of Lecture Notes in Computer Science,
pages 268–284, 2005.

19. R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1982.

20. R. Milner. Communicating and Mobile Systems: The Pi Calculus. Cambridge
University Press, 1999.

21. C. Ouyang, E. Verbeek, W. van der Aalst, S. Breutel, M. Dumas, and A. H. M. ter
Hofstede. WofBPEL: A tool for automated analysis of BPEL processes. In ICSOC,
volume 3826 of Lecture Notes in Computer Science, pages 484–489. Springer, 2005.

22. S. A. White. Workflow patterns with BPMN and UML. Technical report, IBM,
2004. Available at: http://www.bpmn.org/Documents/Notations

23. M. T. Wynn, D. Edmond, W. M. P. van der Aalst, and A. ter Hofstede. Achieving
a general, formal and decidable approach to the OR-join in workflow using reset
nets. In Proc. of ATPN, volume 3536 of Lecture Notes in Computer Science, pages
423–443. Springer, 2005.

On Representing, Purging, and Utilizing
Change Logs in Process Management Systems

Stefanie Rinderle1, Manfred Reichert2, Martin Jurisch1, and Ulrich Kreher1

1 Dept. DBIS, University of Ulm, Germany
{stefanie.rinderle, martin.jurisch, ulrich.kreher}@uni-ulm.de
2 Informations Systems Group, University of Twente, The Netherlands

m.u.reichert@utwente.nl

Abstract. In recent years adaptive process management technolgy has
emerged in order to increase the flexibility of business process imple-
mentations and to support process changes at different levels. Usually,
respective systems log comprehensive information about changes, which
can then be used for different purposes including process traceability,
change reuse and process recovery. Therefore the adequate and efficient
representation of change logs is a crucial task for adaptive process man-
agement systems. In this paper we show which information has to be
(minimally) captured in process change logs and how it should be rep-
resented in a generic and efficient way. We discuss different design alter-
natives and show how to deal with noise in process change logs. Finally,
we present an elegant and efficient implementation approach, which we
applied in the ADEPT2 process management system. Altogether the pre-
sented concepts provide an important pillar for adaptive process man-
agement technology and emerging fields (e.g., process change mining).

1 Introduction

The management of log information is crucial in different areas of information
systems. One prominent example are transaction logs in database systems which
allow to restore a consistent database state after transaction abortions or system
crashes. Log information is also exploited for analysis in fields like data mining
[1], online analytical processing [2], and process mining [3]. Current process man-
agement systems (PMS) maintain comprehensive execution logs which capture
events related to the start and completion of process activities [4,5].

A key requirement for BPM technology becoming more and more important
in practice is (runtime) adaptivity; i.e., the ability of the PMS to support (dy-
namic) changes at the process type as well as the process instance level. Several
approaches have been discussed in literature (e.g. [6,4,5]), and a number of pro-
totypes demonstrating the high potential of adaptive PMS have emerged [7,8].
Obviously, with the introduction of adaptive PMS we obtain additional run-
time information about process executions not explicitly captured in current
execution logs. This information can be useful in different context and should
therefore be managed in respective change logs. Change log entries may contain

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 241–256, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

242 S. Rinderle et al.

information about the type of a change, the applied change operations and their
parameterizations, the time the change happened, etc. (cf. Fig. 1).

The kind of change information being logged and the way this information
is represented are crucial for the usefulness of change logs. To our best knowl-
edge there has been no profound work related to these fundamental issues so
far. Several use cases appear when dealing with change log management. First,
execution logs themselves are not sufficient to restore the logical structure of
a process instance to which ad-hoc changes have been applied (e.g., insertion
or deletion of activities). Instead, additional information from change logs is
needed. Second, change traceability is an important requirement for any adap-
tive information system. In the medical domain, for example, all deviations from
standard procedures have to be recorded for legal reasons. Third, the logged in-
formation can be utilized if similar situations re-occur and a previous process
change shall be reused. Fourth, conflicts between changes concurrently applied
to the same process (instance) can be detected based on change log information
[9]; i.e., conflict analyses can be based on the logged information.

Traceability and change reuse are requirements mainly related to the user level
since change information is then presented to and possibly used by human actors.
By contrast, restoring process structures after changes and analyzing concurrent
changes for the absence of conflicts concern the system level and usually do
not involve user interaction. Furthermore, comparable to the use of execution
logs in connection with process mining, we must be able to deal with noise in
change logs, i.e., information which is unnecessary, irrelevant, or even wrong.
Purging change logs from such noise is an important prerequisite, for example,
for comparing (conflicting) changes, for reasoning about change effects, and for
change mining. However, providing specific views on change logs, which hide
noisy information, is useful for better user assistance as well, e.g., by providing
a homogeneous view on process changes or facilitating their reuse. In summary,
the following challenges emerge with respect to change log management:

– How shall change log information be represented in order to meet the de-
scribed requirements? Which representation form is appropriate at the user
level and which one is needed at the system level?

– How can we create purged views on change logs at the user level (e.g., to
hide ’noise’ from users)?

– How can we efficiently store and manage change log information at the sys-
tem level?

In our previous work on adaptive process management (e.g., [10,5]) we have
introduced a theoretical framework for dealing with changes at both the process
type and the process instance level. In particular we have put emphasis on formal
correctness issues arising in connection with dynamic process changes at differ-
ent levels. In this paper we tackle the above mentioned challenges and introduce
a mature approach for representing change information in adaptive PMS. This
approach is based on a set of well-defined change operations (applicable at dif-
ferent levels), on change transactions, and on change logs. Further we describe
how to create special views on change logs which purge these logs from noisy

On Representing, Purging, and Utilizing Change Logs 243

Process Type Level:

Enter
order

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Process Type Schema S

patData

Process Instance Level:

Lab test

I1 on S:

Instance-specific change log cLI1(S):

((sInsert(S, Lab test, Prepare Patient, Examine Patient), primary),

(sMove(S, Inform Patient, Prepare Patient, Examine Patient), primary))

Inform Patient

Lab test

I2 on S:

Instance-specific change log cLI2(S):

((sInsert(S, xRay, Inform Patient, Prepare Patient), primary),

(delAct(S, xRay), primary),

(delAct(S, Inform Patient), primary),

(sInsert(S, Inform Patient, Examine Patient, Deliver Report), primary),

(sMove(S, Inform Patient, Prepare Patient, Examine Patient), primary),

(sInsert(S, Lab Test, Examine Patient, Deliver Report), primary))

Inform Patient

completedactivated TrueSignaled

Primitive Representation of change log cLI1:
cLprim

I1(S)= (addNode(S, Lab test),
removeEdge(S, Examine patient, Deliver Report, Ctrl),
addEdge(S, Examine Patient, Lab test, Ctrl),
addEdge(S, Lab test, Deliver report, Ctrl),
removeEdge(S, Enter order, Inform patient, Ctrl),
removeEdge(S, Inform patient, Prepare Patient, Ctrl),
removeEdge(S, Prepare patient, Examine patient, Ctrl),
addEdge(S, Enter order, Prepare patient, Ctrl),
addEdge(S, Prepare Patient, Inform patient, Ctrl),
addEdge(S, Inform patient, Examine Patient, Ctrl))

Primitive Representation of change log cLI2:
cLprim

I2(S)= (addNode(S, xRay),
removeEdge(S, Inform Patient, Prepare Patient, Ctrl),
addEdge(Inform Patient, xRay, Ctrl),
addEdge(xRay, Prepare Patient, Ctrl),
removeEdge(Inform Patient, xRay, Ctrl),
removeEdge(xRay, Prepare Patient, Ctrl),
delNode(S, xRay),
addEdge(S, Inform Patient, Prepare Patient, Ctrl),
removeEdge(S, Enter Order, Inform Patient, Ctrl),
removeEdge(S, Inform Patient, Prepare Patient, Ctrl),
delNode(S, Inform Patient),
addEdge(S, Enter Order, Prepare Patient, Ctrl),
removeEdge(S, Examine Patient, Deliver Report, Ctrl),
addNode(S, Inform Patient),
addEdge(S, Examine Patient, Inform Patient, Ctrl),
addEdge(S, Inform Patient, Deliver Report, Ctrl),
removeEdge(S, Examine patient, Inform patient, Ctrl),
removeEdge(S, Inform patient, Deliver REport, Ctrl),
removeEdge(S, Prepare patient, Examine patient, Ctrl),
addEdge(S, Examine Patient, Deliver Report, Ctrl),
addEdge(S, Prepare Patient, Inform patient, Ctrl),
addEdge(S, Inform patient, Examine Patient, Ctrl))
addNode(S, Lab test),
removeEdge(S, Examine patient, Deliver Report, Ctrl),
addEdge(S, Examine Patient, Lab test, Ctrl),
addEdge(S, Lab test, Deliver report, Ctrl))

Fig. 1. Change Logs for Modified Process Instances

information (at the user level). Finally, we show how noise-free change logs can
be efficiently implemented at the system level.

Sect. 2 deals with basic issues related to change log representation. In Sect.
3 we present an approach for (logically) purging change logs from noise. Sect.
4 shows how change information can be efficiently handled at the system level.
Sect. 5 gives an illustrating example. In Sect. 6 we discuss related work and in
Sect. 7 we conclude with a summary and an outlook on future work.

2 On Representing Change Logs

We assume a graph–based meta model for defining process templates and repre-
senting changes on them. For the sake of simplicity, we restrict our considerations
to Activity Nets as, for example, used in MQSeries Workflow [11]. However, our
approach can be easily adapted to other process meta models as well.

Logically, a process change is accomplished by applying a sequence of change
primitives or operations to the respective process graph (i.e., process template).
In principle, the change information to be logged can be represented in differ-
ent ways, which more or less affect the use cases described in Sect. 1. To meet
the requirements of these use cases we must find an adequate representation for
change log information and appropriate methods for processing it. Independent
from the applied (high–level) change operations, for example, we could trans-
late the change into a set of basic change primitives (i.e., graph primitives like

244 S. Rinderle et al.

addNode or deleteEdge). This would still allow us to restore process structures,
but also result in a loss of information about change semantics. Consequently,
change traceability and conflict analyses would be limited. As an alternative we
can explicitly store the applied high–level change operations (incl. their parame-
terization). We will illustrate both approaches (see also Fig. 1) and discuss their
strengths and drawbacks.

We first define the notion of process template. For each business process to
be supported a process type T is defined. It is represented by a process template
of which different versions may exist.

Definition 1 (Process Template). A tuple S with S = (N, D, CtrlEdges,
DataEdges, EC) is called a process template, if the following holds:

– N is a set of process activities and D a set of process data elements
– CtrlEdges ⊂ N × N is a precedence relation

(notation: nsrc → ndst ≡ (nsrc, ndst) ∈ CtrlEdges)
– DataEdges ⊆ N × D × {read, write} is a set of read/write data links between

process activities and process data elements
– EC: CtrlEdges �→ Conds(D) ∪ {TRUE} where Conds(D) denotes the set of

all valid transition conditions on data elements from D.

For a process template several correctness constraints exist, e.g., (N, Ctrl-
Edges) must be an acyclic graph to ensure the absence of deadlocks (for de-
tails see [10,9]).

For definining changes on a process template two basic approaches (cf. Fig.
2) exist. One approach is to define changes by applying a sequence of basic
graph primitives (e.g., inserting or deleting nodes and edges) to the process
graph (template). Whether the resulting graph is correct (e.g., does not contain
deadlock-causing cycles) or not can be checked, for example, by analyzing the
resulting process graph. Tab. 1 summarizes selected change primitives.

Table 1. Examples for Change Primitives on Process Templates

Change Primitive Applied to S Effects on S
addNode(S,X) adds node X to template S
delNode(S,X) deletes node X from template S
addEdge(S,A,B,Ctrl) adds control edge (A, B) between activities A and B to S
removeEdge(S,A,B,Ctrl) removes edge (A, B) from S

The other possibility is to use high-level change operations each of which
combining change primitives in a certain way (cf. Fig. 2a), e.g., to insert an
activity and embed it into the process context. High-level operations comprise
more semantics and are characterized by formal pre- and post-conditions. The
latter can be used, for example, to ensure correctness when applying a set of
operations to a process template. Table 2 presents selected high-level change
operations. These operations can be applied at the process type as well as the
process instance level in order to create or modify process templates. For the

On Representing, Purging, and Utilizing Change Logs 245

Enter
order

Examine
patient

Deliver
reportInform

Patient
Prepare
Patient

b) Primary and Concommitant Changes:

patData
Change Logs

Change Transactions

High-Level Change Operations

sInsert (…), delAct(…), …

Change Primitives

addNode (…), deleteNode(…), …

a) Change Framework

Primary
Change

Concommitant
Changes

Fig. 2. (a) Overview Change Framework (b) Primary and concomitant Changes

Table 2. Examples for High-Level Change Operations on Process Templates

Change Operation opType subject paramList Effects on S
op Applied to S

Additive Change Operations
sInsert(S,X,A,B) Insert X S, A, B adds activity X between two directly

succeeding activities A and B
cInsert(S,X,A,B,c) Insert X S, A, B, sc adds activity X between two directly

succeeding activities A and B as a con-
ditional branch with transition condi-
tion c.

Subtractive Change Operations
delAct(S,X) Delete X S deletes activity X from template S and

relinks context activities
Order-Changing Operations

sMove(S,X,A,B) Move X S, A, B moves activity X from its current po-
sition to the position between directly
succeeding activities A and B

two operations serial move and serial insert Fig. 3 gives more details (incl. pre-
and post-conditions and used change primitives).

In order to express more complex changes, high-level change operations can
be combined within change transactions (cf. Fig. 2a). This might be needed,
for example, if the application of a single change operation would lead to an
incorrect process template, but this problem can be overcome by applying a set
of concomitant change operations. As example consider the scenario from Fig.
2b). Assume that activity Enter order shall be deleted. Due to the existence of
data-dependent activities either this change has to be rejected or the two data-
dependent activities have to be concomitantly removed to preserve data flow
correctness [10]. These concomitant changes must then be carried out within
the same change transaction. For change analysis it makes sense to distinguish
between such primary changes (i.e., changes which initiate the change trans-
actions) and secondary (i.e., concomitant) changes (i.e., operations preserving
process template correctness afterwards).

As mentioned, process changes may be conducted at the type as well as
the instance level. In both cases, several change transactions may be applied
during the lifecycle of the process instance or process type respectively. These

246 S. Rinderle et al.

Fig. 3. Serial Move/ Serial Insert Operation with Pre- and Post-Conditions (when
applying it to a process instance; NS: activity state)

transactions are logically grouped in the change log of the instance or type.1

In Def. 2 we formally define change transaction and change log. We base this
definition on the notion of a process template independent from whether this
template is related to a process type or process instance.

Definition 2 (Change Transaction, Change Log). Let S = (N, D, ...) be
a process template. A sequence of change transactions cL = < Δ1, ..., Δk > ap-
plied to S is denoted as process change log. Thereby each change transaction Δj :=
< (opj

1, cK
j
1), ..., (op

j
nj

, cKj
nj

) > (j = 1, ... , k) consists of a sequence of high-level
change operations opj

1, . . . , op
j
nj

where either all operations were successfully ap-
plied or none of them (atomicity). Flag cKj

k ∈ {primary, concomitant} indicates
whether opj

k is a primary change operation or a concomitant one2.

In our implementation we maintain additional attributes for change log entries
(e.g., time stamps). However this is outside the scope of this paper.

1 For the sake of readability we use single process instances or process types as granule
for a change log.

2 A change transactions Δ may also consist of exactly one change operation op. In
this case we write op instead of Δ for short and set cK to primary.

On Representing, Purging, and Utilizing Change Logs 247

Since all transactions Δj preserve correctness, the intermediate process tem-
plates Sj resulting after the application of change Δj are correct. Formally: S +
Δ1:= S1, S1 + Δ2 := S2, ... , Sk−1 + Δk := Sk are correct process templates.
In addition state-related correctness is checked when applying instance changes
[5]. However these checks are not based on change logs but on execution logs.

For several reasons it makes sense to maintain both of the aforementioned
representation forms for changes in respective logs; i.e., representation of the
change as a set of high-level operations and as a set of low-level change primitives.
On the one hand, high-level operations are user-friendly and capture more change
semantics, on the other hand low-level change primitives enable efficient conflict
checks (as we will discuss later on). Therefore, in addition to change log cL
(cf. Def. 2) we introduce cLprim which comprises the primitive represenation of
cL, i.e., in cLprim the high-level operations from cL are replaced by the change
primitives of the respective high-level operations (cf. Fig. 3). As example take
the change scenario from Fig. 1 where both representation forms are depicted.

At runtime new process instances can be created and executed based on a
process template S. Logically, each instance I is associated with an instance-
specific process template SI := S+cLI

3. S = S(T,V) denotes the original process
template from which I was derived, whereby T denotes the process type and V
the version of the process type template; cLI constitutes the instance-specific
change log which contains all changes applied to I so far.

The current execution state of I is represented by a marking (NSSI , ESSI). It
assigns to each activity n and to each control edge e its current status NS(n) or
ES(e) respectively. Further, execution history HI captures events related to the
start and completion of activities. Based on S, HI and cLI the current structure
and state of instance I can be restored at any point in time.

Definition 3 (Process Instance). A process instance I is defined by a tuple
(T, V, cLI , MSI , HI , ValSI) where

– T denotes the process type and V the version of the process template S :=
S(T,V) = (N, D, CtrlEdges, ...) instance I was derived from. We call S the
original template of I.

– Change log cLI captures the instance-specific change transactions ΔI
i (i =

1, ..., n) applied to I so far. We also denote cLI as bias of I. SI := S + cLI

(with SI = (NI , DI , . . .)) resulting from the application of cLI to S is called
instance–specific template of I.

– MSI = (NSSI , ESSI) describes node and edge markings of I:
NSSI : NI �→ {NotActivated, Activated, Running, Completed, Skipped}
ESSI : (CtrlEdgesI) �→ {NotSignaled, TrueSignaled, FalseSignaled}

– HI denotes the execution history of I which captures events related to the
start and completion of activities

– ValSI is a function on DI. It reflects for each data element d ∈ DI either
its current value or the value UNDEFINED (if d has not been written yet).

3 For unchanged instances cLI = ∅ and consequently SI = S holds.

248 S. Rinderle et al.

3 The Logical View – On Purging Change Logs

After having defined the notion of change log we now have a closer look at
the information captured by such logs. This makes sense since changes with
same effects can be expressed in different ways and therefore be represented
by different sets of change operations. As example consider Fig. 1 (left side).
Though the changes captured by cLI2 and cLI2 comprise different operations,
at the end they have resulted in equal schemes for instances I1 and I2. When
analyzing cLI2 we can observe that this change log contains operations which
do not have any effect (e.g., insertion and immediate deletion of activity xRay).
Reason for the presence of such changes can be that users either do not act in a
goal-oriented way (i.e., they ”try out” the change) or, e.g. in the medical domain,
certain possible steps (treatments) are first considered and discarded later.

For the mentioned use cases (e.g., change mining, conflict checking) logs should
only provide relevant information (about those changes which actually have had
effects). By contrast, irrelevant or noisy information make checks or the compar-
ison of changes (as necessary when propagating a process type change to biased
process instances) difficult. For traceability reasons, by contrast, the logs should
exactly reflect the change transactions as applied (independent from their actual
effects). Consequently, change log management should provide different views on
the stored information depending on the respective use case. In this paper we
consider two views, the original change log view (containing all change transac-
tions) and the purged change log which only reflects change transactions which
actually had an effect on the affected process template.

1. Let S be a process template which is transformed into template S′ by apply-
ing the operations from change log cL. The first group of changes without
any effect on S′ are compensating changes, i.e., changes mutually compen-
sating their effects. Consider the change log as depicted in Fig. 4: activ-
ity xRay is first inserted (between Inform Patient and Prepare Patient)
and afterwards deleted by the user. Therefore the associated operations
sInsert(S, xRay, Inform Patient, Prepare Patient) and delete(S,
xRay) have no visible effects on S′.

2. The second category of noise in change logs comprises changes which only
have hidden effects on S’. Such hidden changes always arise when deleting
an activity which is then re-inserted at another position. This actually has
the effect of a move operation. Consider again Fig. 4 where activity Inform
Patient is first deleted and then inserted again between Examine Patient
and Deliver Report. The effect behind this is the same as of the move oper-
ation sMove(S, Inform Patient, Examine Patient, Deliver Report).

3. There are changes overriding effects of preceding ones (note that a change
transaction is an ordered set of operations). Fig. 4 depicts a change log
where the effect of the hidden move operation sMove(S, Inform Patient,
Examine Patient, Deliver Report)) is overwritten by operation sMove
(S, Inform Patient, Prepare Patient, Examine Patient), i.e., in S′

Inform Patient is finally placed between Prepare Patient and Examine
Patient.

On Representing, Purging, and Utilizing Change Logs 249

cLI2(S)= (

Δ1 = (sInsert(S, xRay, Inform Patient, Prepare Patient), primary),

Δ2 = (delAct(S, xRay), primary),

Δ3 = (delAct(S, Inform Patient), primary),

Δ4 = (sInsert(S, Inform Patient, Examine Patient, Deliver Report), primary),

Δ5 = (sMove(S, Inform Patient, Prepare Patient, Examine Patients), primary),

Δ6 = (sInsert(S, Lab Test, Examine Patient, Deliver Report), primary))

Compensating ChangesCompensating Changes

Hidden ChangesHidden Changes

Overriding ChangesOverriding Changes

sMove(S, Inform Patient, Examine Patient, Deliver Report)

Fig. 4. Different Types of Noise within Change Log

In order to purge a change log from such noise we provide an algorithm for
detecting and removing irrelevant or noisy information from change logs. Let
cL =< Δ1, ..., Δn > be a change log whose application to template S = (N, D, ..)
has resulted in template S′ = (N ′, D′, ...). We call Nadd

cL := N’ \ N the set of all
added activities in S’ and Ndel

cL := N \ N’ the set of all deleted activities.
For the sake of readability and without loss of generality we assume that all

change transactions Δj (j = 1, ..., n) consist of exactly one (primary) change
operation opj (formally: ∀Δj : Δj =< (opj , primary) >); i.e., we abstain from
change transactions comprising multiple operations. However, the algorithm pre-
sented in the following can be applied to most complex change transactions as
well. Exceptional are only very special cases as the following example shows.
Assume that an activity is deleted (primary change) followed by the concomi-
tant deletion of data-dependent steps (e.g., deletion of Enter order as depicted
in Fig. 2b). Assume further that this activity is re-inserted afterwards, but not
all of the other deleted steps. Taking the scenario from Fig. 2b), for example,
activities Enter order and Examine might be re-inserted, but activity Deliver
report not. Though the primary changes override each other (deletion and in-
sertion of Enter order) there is a remaining effect. Consequently the associated
change transactions cannot be completely purged from the change log.

Informally the algorithm for purging change logs works as follows: First of
all, sets Nadd

cL and Ndel
cL are determined. Taking this information change log cL

can be purged. This is accomplished by scanning cL in reverse direction and by
determining whether change transaction (operation) Δj = opj (j = 1, . . . , n)
actually has any effect on S. If so we incorporate Δj = opj into another –
intially empty – change log cLpurged. Finally, in order to reduce the number
of necessary change log scans to one we use auxiliary sets to memorize which
activities, control edges, data elements and data edges have been already treated.
The following informal description focuses on the insertion, deletion, and moving
of activities in order to get the idea behind the respective algorithm. However,
the used methods can be also applied to purge logs capturing information about
insertion and deletion of, for example, data elements.

– Assume that we find a log entry Δj = opj for an operation inserting activity
X between activities src and dest into S and that X is not yet present in
A (let A be an auxiliary set for which A = ∅ holds at the beginning), i.e.,
Δj = opj is the last change operation within cL which manipulates X . If

250 S. Rinderle et al.

X has been already present in S (X �∈ Nadd
cL) a hidden change is found.

Consequently, a respective log entry for an operation moving X between src
and dest is created and written into cLpurged.

– If log entry Δj = opj denotes an operation deleting X from S, X �∈ A, and
X is still present in S′ (X �∈ Ndel

cL) we have found a compensating change.
Therefore Δj = opj (and the respective insert op.) are left outside cLpurged.

– If log entry Δj = opj denotes an operation moving X to a position between
activities src and dest and Δj = opj is the last operation within cL having
effects regarding X (X �∈ A) we have to distinguish two cases: If X has been
inserted before Δj = opj (X ∈ Nadd

cL) we write a new log entry in cLpurged

denoting an operation inserting X between src and dest. If X has been also
present in S (X �∈ Nadd

cL) we write Δj = opj unalteredly into cLpurged.

A formalization of the method described above is given in Alg. 1. Due to lack
of space we restrict this description to serial insert operations. However adopting
parallel and branch insertions runs analogously and has been considered in our
approach (see [9] for details).

Definition 4 (Purged Change Log). Let S = (N, D, . . .) be a (correct) pro-
cess template. Let further cL be a change log whose application transforms S into
another (correct) process template S’ = (N ′, S′, . . .). Let (Nadd

cL := N’ \ N and
Ndel

cL := N \ N’. Algorithm 1 determines the purged change log cLpurged.

Algorithm 1. PurgeConsolidate(S, N, N’, cL=(Δ1 =op1, . . . , Δn = opn))
−→ cLpurged

A:=∅; cLpurged = ∅;
Nadd

cL := N ′ \ N; Ndel
cL := N \ N ′;

for i = n to 1 do {
if (Δj = opj = serialInsert(S, X, src, dest)) {
if (X �∈ A) {
A := A ∪ {X}; //X not considered so far
if(X �∈ Nadd

Δ){ //X actually not inserted −→ hidden move
if (src �= c pred(S, X) ∧ dest �= c succ(S, X)4){ //X moved to another position?
cLpurged.addFirst(serialMove(S, X, src, dest))//adds entry at beginning of cLpurged;

}} else {
cLpurged.addFirst(serialInsert(S, X, src, dest));}} continue};

if (Δj = opj = serialMove(S, X, src, dest)) {
if (X �∈ A) {
A := A ∪ {X};
if (X ∈ Nadd

cL) {
cLpurged.addFirst(serialInsert(S, X, src, dest)); } else {
if (src �= c pred(S, X) ∧ dest �= c succ(S, X)) {
cLpurged.addFirst(serialMove(S, X, src, dest));}} continue;}

if (Δj = opj = delete(S, X)) {
if (X �∈ A) {
A := A ∪ {X};
if(X ∈ Ndel

cL){
cLpurged.addFirst(delete(S, X));}}}

cLpurged.addFirst(opi);
}
return cLpurged;

4 c pred(S, X) (c succ(S, X)) denotes all direct predecessors (successors) of X in S.

On Representing, Purging, and Utilizing Change Logs 251

Fig. 5. Purging the Change Log of Instance I2 (cf. Fig. 4)

Figure 5 depicts how change log cLI2 from Fig. 4 is purged resulting in purged
change log cLpurged. This view just contains those change transactions (opera-
tions) which actually have had an effect on the instance-specific template.

Altogether purging change logs in the described way results in a specific, logi-
cal view on the conducted changes. This view may, for example, be presented to
users if an overview on the actual change effects on the original process template
is required. As we will discuss in the next section, at the system level a more
efficient approach becomes necessary.

4 The Implementation View – The Delta Layer Concept

In this section we present concepts for representing changes at the system level
which have been implemented within the ADEPT prototype. Before present-
ing the delta layer concept in more detail, some background information on the
general representation of process type and process instance templates is needed.
Fig. 6a illustrates an approach which has been implemented by several adaptive
PMS [8,12]. The process logic (e.g., control and data flow) is encapsulated within
object process template which represents the process type. Instance objects rep-
resenting process instances solely contain runtime information (like activity ex-
ecution states or – logically – the content of data elements). The associated
process type is expressed by a reference to the respective process template ob-
ject. Following this approach, all instances of a given process type reference the
same template object. We chose this representation since the necessary storage
space is significantly reduced – especially for a large number of running instances
– compared to storing a process description for each instance in a redundant way.

In order to reflect the difference between template and instance objects (e.g.,
after instance changes) we introduced the delta layer concept (cf. Fig. 6b). The
delta layer is represented by an object which has the same interfaces as the
process template object and therefore offers the same operations. As difference
between the delta layer object and the template object the delta layer object

252 S. Rinderle et al.

does not reflect the whole process graph but only those parts of the process
template which have been changed by instance-specific modifications. There-
fore, together with the template object the delta layer object allows to restore
the instance-specific template of biased instances. The instance object which
represents a biased instance does no longer reference the associated template
object but the delta layer object. The delta layer object itself references the
original template object and therefore preserves the assocation between instance
and process type. Unchanged instances directly reference the original process
template object further on.

Fig. 6. On Representing Process Template and Process Instance Objects

Fig. 7 depicts how the delta layer concept is realized. As discussed in Sect.
2, at the system level, the (high-level) change operations are translated into
change primitives which directly operate on node and edge sets. We represent
change information by change log cL and its primitive representation cLprim.
The change primitives captured by cLpurged are directly stored within the delta
layer (e.g., information about added and deleted nodes and edges). For change
log cLI1, for example, the set of added nodes and edges as well as the set of
deleted edges exactly reflect the ”difference” between templates SI1 and S′

I1.
The ”self-purging” effect of storing changes within a delta layer is illustrated

by Fig. 8. Change log cLI2 contains noise, i.e., information which has to be purged
fromthe change log in order to obtain a ”minimal” viewon the change effects.Using
the delta layer this purging effect is automatically achieved since the change prim-
itives overwrite unnecessary information automatically. For compensating change
operations sInsert(S, xRay, Inform Patient, Prepare Patient) and delAct
(S, xRay), for example, first control edge (Inform Patient, Prepare Patient)
is removed and re-inserted afterwards such that this change has no effect within
the delta layer.

5 Illustrating Example

We illustrate the different concepts presented in this paper by means of an ex-
ample – a process template evolution with related instance migrations. Consider

On Representing, Purging, and Utilizing Change Logs 253

Enter
order

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance Schema SI1 of I1 (before change)

Enter
order Lab testInform

patient
Prepare
Patient

Examine
Patient

cLI1 = (sInsert(S, Lab test, Prepare Patient, Examine Patient, sc1),
sMove(S, Inform Patient, Prepare Patient, Examine Patient)):

cLprim
I1=

(addNode(S, Lab test),
removeEdge(S, Examine patient, Deliver Report, Ctrl),
addEdge(S, Examine Patient, Lab test, Ctrl),
addEdge(S, Lab test, Deliver report, Ctrl),
removeEdge(S, Enter order, Inform patient, Ctrl),
removeEdge(S, Inform patient, Prepare Patient, Ctrl),
removeEdge(S, Prepare patient, Examine patient, Ctrl),
addEdge(S, Enter order, Prepare patient, Ctrl),
addEdge(S, Prepare Patient, Inform patient, Ctrl),
addEdge(S, Inform patient, Examine Patient, Ctrl))

Lab test

Deliver
report

Instance Schema SI1‘ of I1 (after change)

…Ctrl(Examine patient, Deliver report)Examine
Patient

…Ctrl(Prepare Patient, Examine patient)Prepare Patient

Deliver report

…Ctrl(Inform Patient, Prepare Patient)Inform Patient

…Ctrl(Enter order, Inform Patient)Enter order

DataETypeEdgesNode

Copy of Internal Representation of SI1

…Ctrl(Lab test, Deliver report)Lab test

…Ctrl(Examine patient, Lab test)Examine Patient

…Ctrl(Inform Patient, Examine patient)Prepare Patient

Deliver report

…Ctrl(Prepare Patient, Inform Patient)Inform Patient

…Ctrl(Enter order, Prepare Patient)Enter order

DataETypeEdgesNode

Copy of Internal Representation of SI1‘

(Prepare Patient, Examine patient)(Prepare Patient, Inform patient)

Ctrl(Enter order, Inform Patient)Ctrl(Lab test, Deliver report)

(Inform Patient, Prepare Patient)(Enter order, Prepare patient)

(Inform patient, Examine patient)

Ctrl(Examine Patient, Deliver report)Ctrl(Examine Patient, Lab test)Lab test

TypedelEdgesType newEdgesinNodes

Delta Layer for SI1‘:

Fig. 7. Process Instance Changes Stored within Delta Layer

the scenario depicted in Fig. 8: Instances I1, I2 and I3 were derived from process
type template S and have been individually modified. For I1 and I2 activity
Lab test was inserted between Examine patient and Deliver report, and
activity Inform patient was moved to the position between Prepare patient
and Examine patient. For I3 activity Inform patient was moved to the same
position as for I1 and I2 but, by contrast, activity Deliver report was deleted.
The instance changes are captured by the logs cLI1 , cLI2 , and cLI3 where cLI2

contains noisy information. The purged view on cLI2 as well as the primitive
representations of all change logs are depicted in Fig. 8 as well.

Taking this scenario assume that the process type template S is modified by
inserting activity Lab test between activities Examine patient and Deliver
report and by moving activity Inform patient to the position between
Prepare patient and Examine patient. The associated change log cLT1 and
the delta layer for the new template version S′ capture these changes. When
migrating I1, I2, and I3 to S′ (after performing required correctness checks [5])
the delta layers of I1, I2, and I3 are purged by the delta layer of S′. This be-
comes necessary since the instance delta layers must not capture information
about changes which are already reflected by the delta layer of the new template
version after their migration. For I1 and I2, for example, all instance-specific
changes are already captured by the delta layer of S′. Thus the delta layer and
the resulting change log based on S′ become empty. For I3 the already captured
move operation of Inform patient is purged from the delta layer of I3 on S′,
but the change primitives reflecting the deletion of activity Deliver report are
still kept. With this the delta layer of I3 on S′ exactly represents the difference
between the instance-specific template of I3 and S′.

254 S. Rinderle et al.

Fig. 8. Process Template Evolution (Example)

On Representing, Purging, and Utilizing Change Logs 255

Altogether, the change log management illustrated by this example meets all
imposed requirements. The applied changes are still traceable at type and in-
stance level due to the full change logs being kept (e.g., change log for I2). The
purged view on, for example, change log cLI2 may be helpful for reusing the
change operation. At the system level, the delta layers provide the information
necessary for restoring instance-specific templates at any point in time. Fur-
thermore, they constitue the basis for checks (e.g., regarding possible overlaps
between changes) and for correctly determining the resulting delta layers and
instance-specific changes after instance migration.

6 Related Work

As discussed the management of log information plays an important role in dif-
ferent areas. Examples are recovery in DBMS or data analyses in the context
of data mining [1], online analytical processing [2], and process mining [3]. For
process mining a meta model representation for execution logs based on MXML
format has been developed [13]. In particular, for OLAP and process mining
views on logs are built as well (e.g., by clustering [1] or filtering [14]). However,
none of these approaches has dealt with change logs so far. Therefore the frame-
work for change log management presented in this paper can be used as basis for
an optimized mining of advanced aspects in adaptive PMS (e.g., change mining).

In general, adaptivity in PMS has been a hot topic in literature for many years.
Most approaches have focussed on process instance or process type changes and
related correctness issues [6,4]. Some approaches have also dealt with both kinds
of changes in one system [7,5,8]. However, the representation and organization of
the changes themselves has been left pretty vague so far. The approach presented
in this paper is complementary to this work.

There are only few approaches dealing with an efficient implementation of
advanced process management functionality, [15,7]. So far, they have neglected
issues related to change log management. The functionality of existing proto-
types are mostly restricted to buildtime and runtime simulations. Using such
simulations it can be shown that the particular functionality is realized in prin-
ciple, but not how it can be implemented in a performant way in practice. Our
ADEPT system is one of the very few available research prototypes for adaptive,
high-performance process management [12].

7 Summary and Outlook

We have presented an approach for the management of change logs in PMS
facing requirements of different uses cases. In order to meet these requirements
we have distinguished between the representation of change information at the
user and the system level (high-level operations vs. primitives). Based on this we
have defined change primitives and operations as well as change transactions. A
special view on change logs, the so called purged change logs, has been introduced
in order to present the actual change effects to users (e.g., for reuse purposes). For

256 S. Rinderle et al.

the system level, we have presented the counterpart based on change primitives
stored within a delta layer. An example on correctness checks in the context
of process template evolution and individually modified process instances has
illustrated the presented concepts.

In future we want to use our change management approach for advanced
application scenarios. One example is the mining of change logs in order to, for
example, derive process type changes from process instance logs. Furthermore,
the presented results are to be transferred to other types of change logs (e.g.,
logs capturing information on changes of organizational models [16]) as well.
Finally we intend to formalize our approach to derive change logs from delta layer
information which can be used, for example, to calculate differences between
changes. This is necessary, for example, to store correct instance-specific changes
after migration to a changed process type template.

References

1. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Academic Press
(2001)

2. Bauer, A., Günzel, H.: Data Warehouse Systems. dpunkt (2004)
3. v.d. Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Weijters,

A.: Workflow mining: A survey of issues and approaches. DKE 27 (2003) 237–267
4. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. DKE 24 (1998)

211–238
5. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by

adaptive workflow systems. Distributed and Parallel Databases 16 (2004) 91–116
6. v.d. Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling

problems related to change. Theoret. Comp. Science 270 (2002) 125–203
7. Kochut, K., Arnold, J., Sheth, A., Miller, J., Kraemer, E., Arpinar, B., Cardoso,

J.: IntelliGEN: A distributed workflow system for discovering protein-protein in-
teractions. DPD 13 (2003) 43–72

8. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. In: HICSS-34. (2001)

9. Rinderle, S.: Schema Evolution in Process Management Systems. PhD thesis,
University of Ulm (2004)

10. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93–129

11. Leymann, F., Altenhuber, W.: Managing business processes as an information
ressource. IBM Systems Journal 33 (1994) 326–348

12. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management
with ADEPT2. In: ICDE’05. (2005) 1113–1114

13. van Dongen, B., van der Aalst, W.: A meta model for process mining data. In:
CAiSE’05 Workshops. (2005) 309–320

14. van Dongen, B., de Medeiros, A., Verbeek, H., Weijters, A., van der Aalst, W.:
The ProM framework: A new era in process mining tool support. In: ICATPN’05.
(2005) 444–454

15. Weske, M.: Object-oriented design of a flexible workflow management system. In:
ADBIS98. (1998) 119–131

16. Rinderle, S., Reichert, M.: On the controlled evolution of access rules in cooperative
information systems. In: CoopIS’05. (2005) 238–255

Towards Formal Verification of Web Service
Composition

Mohsen Rouached, Olivier Perrin, and Claude Godart

LORIA-INRIA-UMR 7503
BP 239, F-54506 Vandœuvre-les-Nancy Cedex, France

{mohsen.rouached, olivier.perrin, claude.godart}@loria.fr

Abstract. Web services composition is an emerging paradigm for en-
abling application integration within and across organizational bound-
aries. Current Web services composition proposals, such as BPML, WS-
BPEL, WSCI, and OWL-S, provide solutions for describing the control
and data flows in Web service composition. However, such proposals re-
main at the descriptive level, without providing any kind of mechanisms
or tool support for analysis and verification. Therefore, there is a growing
interest for the verification techniques which enable designers to test and
repair design errors even before actual running of the service, or allow
designers to detect erroneous properties and formally verify whether the
service process design does have certain desired properties.

In this paper, we propose to verify Web services composition using an
event driven approach. We assume Web services that are coordinated by
a composition process expressed in WSBPEL and we use Event Calculus
to specify the properties and requirements to be monitored.

1 Introduction

In 2001, Gartner defined Business Process Management as a general term de-
scribing a set of services and tools that provide for explicit process management
(e.g. process modeling, analysis, simulation, execution, monitoring and admin-
istration), ideally including support for human and application-level interaction.
Five years later, Service Oriented Architectures (SOA) seems to be a key archi-
tecture to support BPM. With SOA, an application can be now considered as
a composition of services, Workflow Management Systems (WfMSs), or legacy
applications. Thus, a business process becomes a set of composed services that
are shared across business units, organizations, or outsourced to partners.

Currently many products that offer modeling, analysis, and simulation facil-
ities for business processes exist. However, one of the great advantages offered
by the coupling of BPM and SOA is that designers can not only model, analyze,
simulate, but they can also use the result directly for deployment, using WS-
BPEL for instance. Functions at the modeling layer can be linked to required
services at the architecture level, and engines can now manage the resulting
business process. This is a great improvement, and it clearly shows that BPM
over SOA can add value over traditional WfMSs for instance. However, there
are many challenges for trully realizing BPM over SOA.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 257–273, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

258 M. Rouached, O. Perrin, and C. Godart

A first challenge deals with the ability to offer self-management of the designed
processes [18]. This is an important topic since these processes are quite complex
and dynamic, and deviations from the expected behavior may be highly desirable.
In fact, one may want to adapt the process due to changes in the way the process
is actually used, as it sometimes exists a gap between the designed process and
the observed behavior. Then, once a deviation is found, it is important to dynam-
ically adapt either the process, either the services that render the functions of the
process. For that, it is important to collect information about business process ac-
tivities, and to modify the process (at the design layer) and/or the services used
by the process (at the execution layer). A second challenge is the need for check-
ing the consistency of the process. This can be done either statically, i.e. at design
time, or dynamically, i.e. at runtime. For the static part of the work, we should
be able to express the business process using a formalism on which we can reason
on. As business processes are quite huge and complex, proving the correctness of
the composed business process is not an easy task, and it is hard to find their po-
tential bottlenecks: livelocks, deadlocks, unused activities, inaccurate activities,
inaccurate flows, inaccurate wiring between functions in the model and services in
the SOA, etc. For the dynamic part of the verification, the business process should
be auditable. For that, we can use process mining techniques, because processes
(and their associated services) leave many traces of their behavior in the underly-
ing systems they used to be executed. In our approach, we use mining techniques
not for discovery but for dynamic verification of the execution of the process, i.e.
requirements associated with the process. The verification deals with two kind of
requirements: the functional requirements, and the non-functional requirements,
such as security for instance.

In this paper, we propose an event-based approach for checking consistency
of a business process, for mining the business process events, and for analyzing
the process execution. It appears that using events is very attractive when com-
pared to other approaches, as stated in [18]. Main advantages are: (i) business
processes leave their business events in so-called event logs,(ii) it exists various
works for checking event-based specifications consistency. Our proposition pro-
vides a formal framework for modeling and checking the consistency of WSBPEL
compositions. We use the Event Calculus (EC) of Kowalski and Sergot [7], and
an extension proposed by Mueller on Discrete EC [12]. Compared to other works,
the choice of EC is motivated by both practical and formal needs, and it gives
three major advantages. First, in contrast to pure state-transition representa-
tions, the EC ontology includes an explicit time structure that is independent
of any (sequence of) events under consideration. This helps for managing event-
based systems where a number of input events may occur simultaneously (risk of
non-deterministic behavior [11]). Second, the EC ontology is close enough to the
WSBPEL specification to allow it to be mapped automatically into the logical
representation. Thus, we use the same logical foundation for verification at both
design time (static analysis) and runtime (dynamic analysis). Third, the seman-
tics of non-functional requirements can be represented in EC, so that verification
is once again straightforward.

Towards Formal Verification of Web Service Composition 259

The paper is structured as follows. Section 2 introduces a scenario used to
illustrate our approach. Section 3 rapidly presents WSBPEL and EC, and de-
scribes how to transform WSBPEL into EC. Section 4 studies the EC checking
and indicates how the proposed formalism can verify and detect some examples
of inconsistencies that may arise in the running scenario. The related work is
discussed in Section 5, and Section 6 concludes and outlines future directions.

2 Case Study

Throughout this article, we will illustrate our ideas using a running example of
Web services composition. We consider a car rental scenario that involves four
services. A Car Broker Service (CBS) acts as a broker offering its customers the
ability to rent cars provided by different car rental companies directly from car
parks at different locations. CBS is implemented as a service composition process
which interacts with Car Information Services (CIS), and Customer Manage-
ment Service (CMS). CIS services are provided by different car rental companies
and maintain databases of cars, check their availability and allocate cars to cus-
tomers as requested by CBS. CMS maintains the database of the customers
and authenticates customers as requested by CBS. Each Car Park (CP) also
provides a Car Sensor Service (CSS) that senses cars as they are driven in or
out of car parks and inform CBS accordingly. The end users can access CBS
through a User Interaction Service (UIS). Typically, CBS receives car rental re-
quests from UIS services, authorizes customers contacting CMS and checks for
the availability of cars by contacting CIS services, and gets car movement infor-
mation from CSS services. However, due to the autonomous nature of services
and the run-time monitoring of requirements, many complications may arise.
For example, CBS can accept a car rental request and allocate a specific car
to it if, due to the malfunctioning of a CSS service, the departure of the rel-
evant car from a car park has not been reported and, as a consequence, the
car is considered to be available by the UIS service. Through this example, we
aim to demonstrate how Web services interactions can be specified and formal-
ized using events, and how this specification could facilitate their monitoring at
run-time.

3 Transforming BPEL into Event Calculus

3.1 Overview of BPEL

WSBPEL [1] introduces a stateful model of Web services interacting by ex-
changing sequences of messages between business partners. The major parts of
a BPEL process definition consist of (1) partners of the business process (Web
services that the process interacts with), (2) a set of variables that keep the
state of the process, and (3) an activity defining the logic behind the interac-
tions between the process and its partners. Activities that can be performed are
categorized into basic, structured, and scope-related activities. Basic activities

260 M. Rouached, O. Perrin, and C. Godart

perform simple operations like receive, reply, invoke and others. Structured ac-
tivities impose an execution order on a collection of activities and can be nested.
Then, scope-related activities enable defining logical units of work and delineat-
ing the reversible behavior of each unit. Below, we describe the main activities
(basic and structured).

Basic Activities. Basic activities in a WSBPEL process support primitive
functions (e.g. invocation of operations and assignments of variable values):

(i) the invoke activity calls an operation in one of the partner services of the
composition process.

(ii) the receive activity makes the composition process to wait for the receipt
of an invocation of its operations by some of its partner services.

(iii) the reply activity makes the composition process to respond to a request
for the execution of an operation previously accepted through a receive
activity.

(iv) the assign activity is used to copy the value from a variable to another one.
(v) the throw activity is used to signal an internal fault.
(vi) the wait activity is used to specify a delay in the process that must last for

a certain period of time.

Structured Activities. Structured activities provide the control and data flow
structures that enable the composition of basic activities into a business process:

(i) the sequence activity includes an ordered list of other activities that must
be performed sequentially in the exact order of their listing.

(ii) the switch activity includes an ordered list of one or more conditional bran-
ches that include other activities and may be executed subject to the sat-
isfiability of the conditions associated with them.

(iii) the flow activity includes a set of two or more activities that should be
executed concurrently. A flow activity completes when all these activities
have completed.

(iv) the pick activity makes a composition process to wait for different events
(expressed by onMessage elements) and perform activities associated with
each of these events as soon as it occurs.

(v) the while activity is used to specify iterative occurrence of one or more
activities as long some condition holds true.

3.2 Event Calculus

The Event Calculus [7] is a temporal formalism designed to model and reason
about scenarios characterized by a set of events, whose occurrences have the
effect of starting or terminating the validity of determined properties. Given a
(possibly incomplete) description of when events take place and a description of
the properties they affect, EC is able to determine the maximal validity intervals
over which a property holds uninterruptedly. The reasoning is based upon the
hypothesis that all changes must be due to a cause, and properties of the world
can only change at particular time points when events happen.

Towards Formal Verification of Web Service Composition 261

Language. The ontology of the event calculus comprises fluents, events (or
actions) and timepoints. Events are the fundamental concept that brings about
changes to the world. Any property of the world that can change over time is
known as a fluent. A fluent is a function of the timepoint. The Event Calculus
uses predicates to specify actions and their effects. Then, the following predicates
define fluents’ initiation, state, and termination, and events happening:

– HoldsAt(f, t) is true iff fluent f holds at timepoint t.
– Happens(a, t) is true iff action a happens at timepoint t.
– Initiates(a, f, t) expresses that fluent f holds after timepoint t if action a

happens at t.
– Terminates(a, f, t) expresses that fluent f does not hold after timepoint t

if action a happens at t.
– InitiallyT rue(f)|InitiallyFalse(f) define if f holds or not at timepoint 0.

Axiomatics. The four axioms below capture the behavior of fluents once inti-
ated or terminated by an action.

– Clipped(t1, f, t2) ←− Happens(a, t1) ∧ (t1 ≤ t < t2) ∧ Terminates(f, t2)
– Declipped(t1, f, t2) ←− Happens(a, t1) ∧ (t1 ≤ t < t2) ∧ Initiates(f, t2)
– HoldsAt(f, t2) ←− Happens(a, t1) ∧ Initiates(a, f, t1) ∧ (t1 < t2) ∧

¬Clipped(t1, f, t2)
– ¬HoldsAt(f, t2) ←− Happens(a, t1) ∧ Terminates(a, f, t1) ∧ (t1 < t2) ∧

¬Declipped(t1, f, t2)

Clipped expresses if fluent f was terminated during time interval [t1, t2[. Sim-
ilarly, Declipped expresses if fluent f was initiated during time interval [t1, t2[.
Fluents which have been initiated by event continue to hold until it occurs an
event which terminates them (HoldsAt). Similarly, fluents which have been ter-
minated by an event continue not to hold until an event which initiates them.

Then, we need to describe fluents’ behavior before the occurrence of any
actions which affect them:

– HoldsAt(f, t) ←− InitiallyT rue(f) ∧ ¬Clipped(0, f, t)
– ¬HoldsAt(f, t) ←− InitiallyFalse(f) ∧ ¬Declipped(0, f, t)
– InitiallyT rue(f)|InitiallyFalse(f)

Using these predicates, a fragment of the event log of the car rental scenario
introduced in Section 2 is shown in Figure 1. Variables loci, vehi, and cari repre-
sent respectively the park number, the car number, and the customer identifier.

3.3 Our Approach: BPEL2EC

We now focus on how to transform WSBPEL activities into EC formulas in order
to formally specify services behavior and therefore facilitate their analysis and
verification.

262 M. Rouached, O. Perrin, and C. Godart

L1 : Happens(CSS.Enter(op1),1)
L2 : InitiatesCSS.Enter(op1), equalTo(v1, veh1), 1)
L3 : Initiates(CSS.Enter(op1), equalTo(p1, loc1), 1)
L4 : Happens(CSS.Enter(op2),27)
L5 : Initiates(CSS.Enter(op2), equalTo(v1, veh1), 27)
L6 : Initiates(CSS.Enter(op2), equalTo(p1, loc3), 27)
L7 : Happens(UIS.RelKey(op3, veh2), 28)
L8 : Happens(UIS.RelKey(op3),29)
L9 : Happens(UIS.CarRequest(op4),49)
L10: Initiates(UIS.CarRequest(op4), equalTo(p, loc2), 49)
L11: Happens(CIS.F indAvailable(op5, loc2), 50)
L12: Happens(CIS.F indAvailable(op5),51)
L13: Initiates(CIS.F indAvailable(op5), equalTo(Res, veh2), 51)
L14: Happens(UIS.CarHire(op6, veh2, loc2), 52)
L15: Happens(CSS.Enter(op7),53)
L16: Initiates(CSS.Enter(op7), equalTo(v1, veh2), 53)
L17: Initiates(CSS.Enter(op7), equalTo(p1, loc4), 53)
L18: Happens(UIS.RetKey(op8),54)
L19: Initiates(UIS.RetKey(op8), equalTo(v, veh2), 54)
L20: Happens(UIS.CarRequest(op9),69)

Fig. 1. The CRS Event Log

Mapping of Basic Activities. Basic WSBPEL activities are transformed into
their EC counterparts according to the transformations shown in Figure 2.

The EC representation of an invoke activity that calls an operation O in
a service P consists of a literal such that it exists an event of calling O (i.e.,
inv:P.O(vID, vX)) and an event notifying the reception of the execution of
O by the service composition (i.e., rec:P.O(vID)). The variable vID takes
as value a unique identifier that represents the exact instance of the opera-
tion invocation and the variable vX takes the value that the input variable X
of O has at the time of the invocation. The value of the output variable Y
of O is represented by the fluent equalT o1(Y, vY) initiated by the Initiates
predicate.

The EC representation of a receive activity in a service P that receives an
invocation of its operation O by other partner service consists of a literal such
that it exists an event of receipt of an invocation of O (i.e. rec:P.O(vID)), where
the variable vID represents the exact instance of the operation invocation by
other partner. The value of the variable X of O on message receipt is represented
by the fluent equalT o(X, vX) initiated by the Initiates predicate.

A reply activity in a service P that respond to a previously accepted request
for the execution of the operation O is represented in EC using a literal such that
it exists the completion of the execution of O (i.e. rep:P.O(vID, vX)), where the
variable vID represents the exact instance of the operation invocation and the
variable vX represents the value of the output variable X of O.
1 The fluent equalTo(V arName, val) signifies that value of V arName is equal to val.

Towards Formal Verification of Web Service Composition 263

Sample BPEL Code Sample EC Specification
<invoke partnerLink="P"
portType= "a:Pport"
operation= "O"
inputVariable= "X"
outputVariable= "Y"/>

Happens(inv:P.O(vID,vX), t1)∧(∃t2)
Happens(rec:P.O(vID), t2)∧(t1≤t2)∧
Initiates(rec:P.O(vID), equalTo(Y,), t2)

<receive partnerLink="P"
portType= "a:Pport"
operation="O"
variable="X"/>

Happens(rec:P.O(vID), t)∧Initiates(rec:
P.O(vID), equalTo(X, vXc), t)

<reply partner="P"
portType = "a:Pport"
operation= "O"
variable="X"/>

Happens(rep:P.O(vID, vX), t)∧Happens
(rec:P.O(vID, vX), t1)∧(t1 < t)

<assign name ="A">
<copy><from variable ="X"
part="a"/>
<to variable="Y" part="b"/>
</copy>
</assign>

Happens(as:A(vID), t1)∧(∃t2)(t1<t2)∧
Initiates(as:A(vID), equalTo(Y.b, vX.a),
t2)

<actType name="A">...</actType>
<wait for = "T"/>

<actType name="B">...</actType>

EC(A,T)∧EC(B, T)∧maxt(A)<
(mint(A) − T)

<throw faultName="faultname"
faultVariable="X"/>

Happens(th : faultname(vID, vX), t)

Fig. 2. Mapping of Basic activities

Then, the EC representation of a throw activity that signals internal fault
faultName in a service P consists of a literal such that it exists a throwing
event, (i.e. th:faultName(vID, vX)), where the variable vID represents the
exact instance of the throw activity and the variable vX represents the value of
the faultV ariable being thrown.

Mapping of Structured Activities. After transforming the basic activities, it
is also important to specify their temporal relationships. That is the case for the
sequence and the flow constructs. The translation scheme of the EC formulas
for the squence and switch activities is given in Figure 3.

In these patterns, (i) actType can be any type of a basic or structured WS-
BPEL activity; (ii) EC(A,T) represents the EC formulas where A is an activity
and T a temporal domain (we use an ordered set (T,≺), and the natural num-
bers N with their usual ordering); (iii) mint(A) represents the time variable of
the earliest predicate in the formulas of activity A (i.e., the predicate that is
expected to occur the first given the constraints between the time variables of
the predicates representing A), and (iv) maxt(B) represents the time variable

264 M. Rouached, O. Perrin, and C. Godart

Sample BPEL Code Sample EC Specification
<sequence>
<actType name="A"> ... </actType>
<pick>

<onMessage partner="P"
portType= "a:Pport"
operation="O" variable="X">

<actType name="B">...</actType>
</onMessage>
<onAlarm for="T">
<actType name="C">...</actType>
</onAlarm>

</pick>
</sequence>

EC(A, T)∧Happens(om:O(vID, vX), t2)∧
(maxt(A)≤t2≤(maxt(A)+T))∧Initiates(
om:O(vID, vX), equalTo(X,vX), t2) =⇒
EC(B, [mint(B)])∧t1 < mint(B)
EC(A, T)∧¬Happens(om:O(vID, vX), t2)

∧(maxt(A)≤t2≤(maxt(A)+T))=⇒EC(C
, [mint(C)])∧maxt(A)+T< mint(C)

<switch>
<case condition=" P=v1">
<actType name="A">...</actType>
</case>

<otherwise>
<actType name="C">...</actType>
</otherwise>

</switch>

HoldsAt(equalTo(P, v1), t1)=⇒EC(A,
[mint(A)]) ∧ (t1 < mint(A))
¬HoldsAt(equalTo(P, v1), t1)=⇒EC(C,

[mint(C)])∧t2< mint(C)

Fig. 3. Mapping of pick and switch activities

of the latest predicate in the formulas of activity B (i.e., the predicate that is
expected to occur the lastest given the constraints between the time variables of
the predicates representing B). The rest of the transformations are analogous to
the transformation of switch and pick activities, and are presented in Figure 4.

Let us now give an example of EC formulas extracted according to the above
patterns. We show an extract of the WSBPEL specification of the car rental
scenario introduced in section 2, and the EC formula extracted from it. This
fragment refers to the part of process that receives a request for a car and
checks for available cars. It is presented in Figure 5.

The first implication in the EC formula represents the link rec−to−auth in the
flow activity of the process. Conditions of this implication represent the receive
activity receiveRequest, and its consequence represents the sequence activity in
the process. The second implication represents the ordering of the constituent
activities of the sequence activity: its conditions represent the assign activity
a1 and its consequence represents the invoke of activity findCar.

4 EC Checking

In the previous section, we showed how to translate the WSBPEL constructs
into their Event Calculus predicates counterparts. The objective of this section
is to show how we offer reasoning about a WSBPEL process represented as a set

Towards Formal Verification of Web Service Composition 265

Sample BPEL Code Sample EC Specification
<sequence>
<actType name="A">...</actType>
<actType name="B"> ...</actType>

</sequence>

EC(A, T)=⇒EC(B, T)∧maxt(A)<
mint(B)

<while condition="P=v1">
<actType name="A">... </actType>

</while>

HoldsAt(equalTo(P,v1), t1)=⇒EC(A,
[mint(A)])∧t1 < mint(A)

<flow>
<links>
<link name="AtoB"/>
<link name="AtoC"/> ... </links>
<actType name="A">
<source linkName="AtoB"
transitionCondition="P=v1"/>

<source linkName="AtoC" /> ...
<actType name="B">
<target linkName="AtoB" /> ...
<actType name="C">
<target linkName="AtoC" /> ...
</flow>

EC(A, T)∧HoldsAt(equalTo(P,v1), t1)
∧ maxt(A)<t2=⇒EC(B, [mint(B)])∧t2
<mint(B)
EC(A, T)=⇒EC(C, [mint(c)])∧maxt(A)

< mint(C)

Fig. 4. Mapping of Structured activities

of EC predicates in order to check its consistency in three cases: the first case is
a static check, before running the process, the second case is at runtime, and the
third case is the ability to check the process execution against non-functional
requirements.

4.1 Static Verification

The need for static verification is important for composite processes which co-
ordinate a set of autonomous Web services because these processes can be very
complex processes, and that we need to check if a WSBPEL process is consis-
tent, which is not a trivial task as soon as a WSBPEL process manages con-
currency, distribution and long-duration activities. Transforming WSBPEL con-
structs into EC predicates gives the opportunity to model-check such a process,
with respect to temporal constraints, and to verify that processes satisfy certain
properties.

For instance, let us suppose a process including a flow construct. This con-
struct allows to specify one or more activities to be performed concurrently. The
EC specification on this construct is given in Figure 4. Once it is rewritten using
EC predicates, we propose a solution for verifying a WSBPEL process instance
against its temporal constraints. For instance, we can express that, given a se-
quence of two services, the second service will be executed only once the first one
is completed (see Figure 3 for the EC specification of WSBPEL sequence). This
very basic example shows that it is possible to formally check the control flow of

266 M. Rouached, O. Perrin, and C. Godart

Part of WSBPEL composition process for CRS
<process name="CRS"> <target linkName="rec-to-auth"/>
<partners> ... </partners> <assign name="a1">
<flow> <copy><from variable="Req" part="Loc"/>
<links> <to variable="Q" part="Loc"/>
<link name="rec-to-auth"/> </copy>
</links> </assign>
<receive name="receiveRequest" <invoke name="findCar"
partner="UIS" partner="CIS"
portType="sns:UISPT" portType="crns:CISPT"
operation="CarRequest" operation="FindAvailable"
variable="Req" inputVariable="Q"
createInstance="yes"> outputVariable="Res"/>

<sourcelinkName="rec-to-auth"/> </sequence>
<sequence> </flow>

</process>

EC formulas
Happens(rec:UIS.CarRequest(oID1), t1)∧Initiates(rec:UIS.CarRequest(oID1),
equalTo (Req.Loc, vReq.Loc), t1) ∧ Initiates(rec:UIS.CarRequest(oID1),
equalTo(Req.CId, vReq.CId), t1)=⇒
(∃t2)(t1<t2)∧Happens(as:a1(aID), t2)∧(∃t3)(t2<t3)∧Initiates(as:a1(aID),
equalTo(Q.Loc, vReq.loc), t3)=⇒
(∃t4)Happens(inv:CIS.F indAvailable(oID2, vQ), t4)∧(t3 ≤t4)∧(∃t5)
Happens(rec:CIS.F indAvailable(oID2, vQ), t5)∧(t4≤t5)∧Initiates(rec:CIS.
F indAvailable(oID2, vQ), equalTo(Res, vRes), t5))

Fig. 5. Example of EC formulas extracted from the WSBPEL process for CRS

a WSBPEL process (and the interactions between the Web services) using the
EC predicates, and this offers the ability to discover the potential flaws of such
a process such as livelocks, deadlocks, or unused branches in the control flow.

4.2 Dynamic Verification

A second aspect of verification is the runtime verification. This kind of verifica-
tion is welcome since some interactions between Web services that constitute a
process may be dynamically specified at runtime, causing unpredictable interac-
tions with other services, and making the previous verification method (static)
unusable. This dynamic behavior can not be model-checked, but it remains im-
portant to be sure that the execution of the process remains consistent. This is
the reason why we offer the possibility to verify a process at runtime. As the
verification occurs in real-time, it becomes possible to handle deviations wrt.
the observed behavior of the process. To provide this verification, we use logical
predicates (as in the previous method), but we compare these predicates with
the events that occur and are recorded during the process execution. When one
or several predicates are unsatisfied, this means that something wrong occurs in
the execution, and it is possible to exactly point out what happens.

Towards Formal Verification of Web Service Composition 267

For instance, in our example, the CSS and the CIS services won’t be owned
by the owner of CBS. Moreover, new instances of the CSS and CIS services may
be deployed when new car rental companies and car parks make their offerings
available to the CBS, and existing instances may be withdrawn when companies
and car parks stop their collaboration with CBS. When such conditions occur,
services monitoring has to be based on events and state information that can
be reasonably assumed to be in the ownership of the service provider and is
fixed at runtime. Requirements for individual services are still to be specified
and monitored but only if this is possible through events that are known to the
composition process, or events that can be derived from them.

4.3 Non-functional Requirements Verification

Another interest is the ability to model non-functional requirements using the
EC, and to check a process against these properties. Let us consider an exam-
ple on policies (security policies for instance). We consider a WSBPEL process
that expect to enforce some high-level authorization policies. The specifications
of these authorization policies are separated from the process code, and they
should be carefully audited. Using the EC, we are able to formalize these poli-
cies by embedding logical predicates, and to check if a process complies with the
policies.

4.4 Example

Let us suppose the following CRS requirements, represented as rules.

R1) The rule R1 expresses an assumption about the behavior of the CSS sen-
soring services: (∀t1, t2)Happens(inv : CSS.Enter(oID1), t1) ∧ Initiates
(inv : CSS.Enter(oID1), equalT o(v1, vID), t1)∧Initiates(inv : CSS.Enter
(oID1), equalT o(p1, pID1), t1) ∧ Happens(inv : CSS.Enter(oID2), t2) ∧
(t1+tm

2 ≤ t2)∧Initiates(inv : CSS.Enter(oID2), equalT o(v2, vID), t2)∧
Initiates(inv : CSS.Enter(oID2), equalT o(p2, pID2), t2) =⇒ (∃t3)
Happens(inv : CSS.Depart(oID3), t3)∧(t1+tm ≤ t3 ≤ t2−tm)∧Initiates
(inv : CSS.Depart(oID3), equalT o(v3, vID), t3) ∧ Initiates(inv : CSS.
Depart(oID3), equalT o(p3, pID1), t3).

According to this rule, if a car vID is sensed to enter a car park pID1
at time t1 and later, at time t2, the same car is sensed to enter the same
or a different car park, then a Depart event (signifying the departure of
vID from pID1) must have also occurred between the two enter events.
The Happens predicates in R1 represent the invocation of the operations
Enter and Depart in CBS by CSS following the entrance and departure of
cars in car parks. The Initiates predicates initiate fluents that represent
the specific value bindings of the input parameters vi and pi (i=1,2,3) of
the operations Enter and Depart. R1 represents a composite requirement
whose satisfiability depends on the availability of CSS services and their

2 tm refers to the minimum time between the occurrence of two events.

268 M. Rouached, O. Perrin, and C. Godart

ability to correctly execute. This requirement is an example of requirement
that cannot be statically verified and that must be monitored at runtime.

R2) The rule R2 defines the behavior of CIS services:
(∀t1, t2)Happens(inv : CIS.F indAvailable(oID, pID), t1)∧Happens(rec :
CIS.F indAvailable(oID), t2) ∧ (t1 ≤ t2) ∧ HoldsAt(equalT o(availability
(vID1), ”not avail”), t2 − tm) =⇒ ¬Initiates(rec : CIS.F indAvailable
(oID), equalT o(vID2, vID1), t2).

According to this rule, the operation FindAvailable, which is provided
by the CIS service and searches for available cars at specific car parks,
should not return the identifier of a car to CBS unless this car is available.

R3) The rule R3 states that whilst a customer has the key of a car, this car
cannot be available for rental:
(∀t1, t2, t3)Happens(inv : UIS.RelKey(oID1, vID), t1) ∧ Happens(rec :
UIS.RelKey(oID1), t2) ∧ (t1 ≤ t2) ∧ Happens(inv : UIS.RetKey(oID2),
t3)∧(t2 ≤ t3)∧Initiates(inv : UIS.RetKey(oID2), equalT o(v, vID), t3) =⇒
(∀t4)(t1 < t4)∧(t4 < t3)HoldsAt(equalT o(available(vID), ”not avail”), t4).

Detecting Some Deviations. Assuming the log of events of the car rental
scenario (see Figure 1), we now show how we can detect some deviations:

D1) The behavior of CBS violates the requirement R1. This occurs because
there are two enter events that signify the entrance of veh1 first to car
park loc1 at T=1 (see literals L1-L3 in Figure 2) and, subsequently, to car
park loc3 at T=27 (see literals L4- L6 in Figure 2) but no depart event to
signify the departure of veh1 from loc1 between these enter events.

D2) The requirement R2 is violated by the behavior of CBS. The violation of R2
in this case occurs since we can derive from the requirement R3 that veh2
could not be available from T=30 when its key was released (see literals L7
and L8 in Figure 1) until T=53 (that is one time unit before its key was
returned back). Nevertheless, the execution of the operation FindAvailable
of the CIS service at T=51 reports that vehicle veh2 is available (see literal
L13 in Figure 1).

5 Architecture and Implementation

To support the verification and the consistency checking of the behavior of a
Web service composition, we propose the framework shown in Figure 6.

The EC checker processes the events which are recorded in the event log by
the event extractor in the order of their occurrence, identifies other expected
events that should have happened but have not been recorded (these events
can be derived from the composition requirements by deduction), and checks if
these events are compliant with the behavioral properties and assumptions of
the composition. When events are not consistent with specified requirements,
the EC checker records the deviation in a deviations log.

Non-functional requirements are additional constraints about the behavior of
partners, or their individual services. These constraints are specified by service

Towards Formal Verification of Web Service Composition 269

WS composition
(BPEL specs &

WSDL files) BPEL2EC

BPWS4J
Engine

Log4j
Collector

Event
extractor

Event
log

EC
Checker

EC
formulas

Non functional
requirements

Deviations
log

Specifications/documents Functional component

Fig. 6. Monitoring framework

providers and must be expressed in terms of events, effects and state variable
conditions which are used in the behavioral properties directly or indirectly,
and are formalized in terms of EC predicates. They may include, for example,
security and control access policies.

The BPEL2EC tool is built as a parser that can automatically transform a
given BPEL process into EC formulas according to the transformation scheme
detailed in Section 3.3. It takes as input the specification of the Web service
composition as a set of coordinated web services in WSBPEL and produces as
output the behavioral specification of this composition in Event Calculus. This
specification can be amended by the service providers, who can also use the
atomic formulas of the extracted specification to specify additional assumptions
about the operations if appropriate.

While executing the Web service composition, the process execution engine
generates events which are sent as string streams to the event extractor of our
framework. In our implementation, we have used the engine bpws4j3 and log4j4
to generate logging events. The event extractor (which is implemented as a
remote log4j server) sets some log4j properties of the bpws4j engine to specify
level of event reporting (INFO, DEBUG etc.). The logging events from bpws4j
that corresponds respectively to the invocation of an operation in some external
service and its receive activity look as follows:

2006-03-13 11:41:59,714[Thread-34]
DEBUG bpws.runtime.bus Invoking external service with[WSIFRequest:se
rviceID=’{http://tempuri.org/services/CarReg}CarRegServicefb0b0-fbc59
65758-8000’operationName=’isAvailable’incomingMessage=’org.apache.wsi
f.base.WSIFDefaultMessage@155423name:nullparts[0]:[JROMString:loc:One
]’contextMessage=’null’]

2006-03-13 11:42:00,724[http8080-Processor25]
INFO bpws.runtime- Incoming request:[WSIFRequest:serviceID=’{http:
//carservice.org/wsdl/OnlineRenter}carServiceBP’operationName=’receiv

3 http://alphaworks.ibm.com/tech/bpws4j
4 http://logging.apache.org/log4j/docs/

270 M. Rouached, O. Perrin, and C. Godart

e Request’incomingMessage=’org.apache.wsif.base.WSIFDefaultMessage@25
491dname:null parts[0]:[JROMString:loc:One]parts[1]:[JROMString:custI
d:km r]’Context-Message=’org.apache.wsif.base.WSIFDefaultMessage@1e32
382 name:null parts[0]:http://xml.apache.org/soap/v1parts[1]:{http://
carservice.org/wsdl/OnlineRenter}CarRenter parts[2]:CRS’]

The [Thread-34] is the unique ID assigned by the bpws4j engine to the invo-
cation of the external service of this instance of the invoke activity and the
corresponding response from the external service. The [http8080-Processor25]
is the unique ID assigned by the bpws4j engine to this instance of the receive
activity and its corresponding reply activity. These events are then converted
to EC events to be checked by the EC checker, which uses the Discrete Event
Calculus Reasoner5.

6 Related Work

It exists various research activities to formally define, analyze, and verify Web
services orchestration languages. A group at Humboldt University is working
on formalizations of BPEL for analysis, graphics and semantics [9], using Petri-
nets and ASMs to formalize the semantics of BPEL. However, the pattern-based
Petri-Net semantics of BPEL [16] does not capture fault handling, compensation
handling, and timing aspects. Moreover, the feasibility of verifying more complex
business processes is not clear and still subject to future work.

Additionally, there are some attempts based on finite state machines [5], and
process algebras [3]. Although all of them are successful in unraveling weak-
nesses in the informal specification, they are of different significance for for-
mal verification. Like abstract state machines, these approaches typically do
not support some of BPEL’s most interesting features such as fault and event
handling.

Work concerning the area of adapting Golog for composition of semantic web
services is carried out by McIlraith and others [10]. They have shown that Golog
might be a suitable candidate to solve the planning problems occurring when
services are to be combined dynamically at run-time. Additionally they related
their work [8] to WSBPEL explicitly by stating that the semantic web efforts in
the research area are disconnected from the seamless interaction efforts of indus-
try and thus propose to take a bottom-up approach to integrating Semantic Web
technology into Web services. But they mainly focus on introducing a semantic
discovery service and facilitating semantic translations.

Formal verification of Web Services is addressed in several papers. The SPIN
model-checker is used for verification [13] by translating Web Services Flow Lan-
guage (WSFL) descriptions into Promela. [6] uses a process algebra to derive a
structural operational semantics of BPEL as a formal basis for verifying prop-
erties of the specification. In [4], BPEL processes are translated to Finite State
Process (FSP) models and compiled into a Labeled Transition System (LTS)

5 http://decreasoner.sourceforge.net

Towards Formal Verification of Web Service Composition 271

in inferring the correctness of the Web service compositions which are specified
using message sequence charts. In [14], Web services are verified using a Petri
Net model generated from a DAML-S description of a service.

One common pattern of the above attempts is that they adapt static verifica-
tion techniques and therefore violations of requirements may not be detectable.
This is because Web services that constitute a composition process may not be
specified at a level of completeness that would allow the application of static
verification, and some of these services may change dynamically at run-time
causing unpredictable interactions with other services.

Unlike these earlier verification efforts, we consider the correctness of the in-
dividual peer implementations as well as the verification of the global properties
of the composite Web services. Verification of the communication flow does not
guarantee that the composition behaves according to the specification unless we
ensure that each individual service obeys its published contract.

The Event Calculus has been theoretically studied. Denecker et al. [2] use
the Event Calculus for specifying process protocols using domain propositions
to denote the meanings of actions. In [17] the Event Calculus has been used
in planning. Planning in the Event Calculus is an abductive reasoning process
through resolution theorem prover. [19] develops an approach for formally rep-
resenting and reasoning about business interactions in the Event Calculus. The
approach was applied and evaluated in the context of protocols, which represent
the interactions allowed among communicating agents. Our previous work [15]
is close enough to the current work. It presents an event-based framework as-
sociated with a semantic definition of the commitments expressed in the Event
Calculus, to model and monitor multi-party contracts. This framework permits
to coordinate and regulate Web services in business collaborations.

7 Conclusion and Future Directions

In this paper, we have presented a formal framework for checking both functional
and non-functional requirements of Web service composition. The properties
to be monitored are specified using the Event Calculus formalism. Functional
requirements are initially extracted from the specification of the composition
process that is expressed in WSBPEL. This ensures that they can be expressed
in terms of events occurring during the interaction between the composition
process and the constituent services that can be detected from the execution log.
Non-functional requirements to be checked are subsequently defined in terms of
the identified detectable events by service providers.

The framework is still under development. Ongoing work on it is concerned
with: (1) the implementation of the EC checker since until now we have used
the Mueller’s Discrete EC Reasoner, (2) the study of the correctness require-
ments in Web service coordination protocols, and their specification in terms of
events expressed in the Event Calculus in order to facilitate their integration in
our framework, (3) the study of alternatives to establish links with other process

272 M. Rouached, O. Perrin, and C. Godart

algebra in order to import process algebra specific verification techniques such
as axiomatizations of behavioral equivalences.

References

1. A. Arkin, S. Askary, B. Bloch, and F.Curbera. Web services business process
execution language version 2.0. Technical report, OASIS, December 2004.

2. M. Denecker, L. Missiaen, and M. Bruynooghe. Temporal reasoning with abductive
event calculus. In Proceedings of the 10th European Conference and Symposium on
Logic Programming (ECAI), pages 384–388, 1992.

3. A. Ferrara. Web services: a process algebra approach. In ICSOC ’04: Proceedings
of the 2nd international conference on Service oriented computing, pages 242–251,
New York, NY, USA, 2004. ACM Press.

4. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Compatibility verification for
web service choreography. In ICWS ’04: Proceedings of the IEEE International
Conference on Web Services (ICWS’04), page 738, Washington, DC, USA, 2004.
IEEE Computer Society.

5. X. Fu, T. Bultan, and J. Su. Analysis of interacting bpel web services. In WWW
’04: Proceedings of the 13th international conference on World Wide Web, pages
621–630, New York, NY, USA, 2004. ACM Press.

6. M. Koshina and F. van Breugel. Verification of business processes for web services.
Technical report, New York University, SFUCMPT-TR-2003-06.

7. R. Kowalski and M. J. Sergot. A logic-based calculus of events. New generation
Computing 4(1), pages 67–95, 1986.

8. M. S. Mandell, D.J. Adapting bpel4ws for the semantic web: The bottom-up
approach to web service interoperation. In Proc of the 2nd Int. Semantic Web
Conf. (ISWC), 2003.

9. A. Martens. Analysis and re-engineering of web services. In ICEIS (3), pages
419–426, 2004.

10. S. McIlraith and T. Son. Adapting golog for composition of semantic web ser-
vices. In Proc of the 8th International Conference on Principles of Knowledge
Representation and Reasoning, 2002.

11. R. Miller and M. Shanahan. The event calculus in classical logic - alternative
axiomatisations, 1999.

12. E. T. Mueller. Event calculus reasoning through satisfiability. J. Log. and Comput.,
14(5):703–730, 2004.

13. S. Nakajima. Verification of web service flows with model-checking techniques. In
CW, pages 378–385, 2002.

14. S. Narayanan and S. A. McIlraith. Simulation, verification and automated composi-
tion of web services. In WWW ’02: Proceedings of the 11th international conference
on World Wide Web, pages 77–88, New York, NY, USA, 2002. ACM Press.

15. M. Rouached, O. Perrin, and C. Godart. A contract-based approach for monitoring
collaborative web services using commitments in the event calculus. In Sixth In-
ternational Conference on Web Information Engineering System (WISE05), pages
426–434, 2005.

16. K. Schmidt and C. Stahl. A petri net semantic for BPEL4WS validation and
application. In Proceedings of the 11th Workshop on Algorithms and Tools for
Petri Nets (AWPN 04) / Ekkart Kindler (Ed.), pages 1–6. Bericht tr-ri-04-251,
Universitt Paderborn, Sept. 2004.

Towards Formal Verification of Web Service Composition 273

17. M. Shanahan and M. Witkowski. Event calculus planning through satisfiability. J.
Log. and Comput., 14(5):731–745, 2004.

18. W. M. P. van der Aalst, H. T. de Beer, and B. F. van Dongen. Process mining
and verification of properties: An approach based on temporal logic. In OTM
Conferences (1), pages 130–147, 2005.

19. P. Yolum and M. P. Singh. Reasoning about commitments in the event calculus:
An approach for specifying and executing protocols. Annals of Mathematics and
Artificial Intelligence, 42(1-3):227–253, 2004.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 274 – 289, 2006.
© Springer-Verlag Berlin Heidelberg 2006

E-Service/Process Composition
Through Multi-agent Constraint Management

Minhong Wang 1,2, William K. Cheung2, Jiming Liu 3,2, Xiaofeng Xie 2,
and Zongwei Luo4

1 Division of Information and Technology Studies, The University of Hong Kong
maggie_mh_wang@yahoo.com

2 Department of Computer Science, Hong Kong Baptist University
william@comp.hkbu.edu.hk, xiexf@ieee.org

3 School of Computer Science, University of Windsor
jiming@uwindsor.ca

4 E-Business Technology Institute, The University of Hong Kong
zwluo@eti.hku.hk

Abstract. E-service/process composition requires allocating suitable resources
to a set of services that constitute a composite service/process. The problem is
complicated due to undetermined constraints of each component service and
unpredictable solutions contributed by service providers. It needs the ability to
rapidly identify the suitable solutions as well as effectively coordinate them un-
der various constraints. In this paper, an agent-mediated coordination frame-
work for e-service/process composition is proposed. Each agent works as a bro-
ker for each service type, posting service constraints, searching suitable solu-
tions and refining the constraints for achieving coherence among the decisions
of each service. Based on the framework, a prototype of multi-agent supported
e-supply chain composition is implemented. The experimental results indicate
the significant effectiveness of the approach.

1 Introduction

A composite service is a set of services together with the control and data flow among
the services, which is similar to a workflow or process [1, 9]. Service composition
contains two main stages, planning and scheduling. In the planning stage, a plan of a
composite service is generated or a process of the service is determined to achieve the
goal; in the scheduling stage, real services are searched, selected and bound to fulfill
the plan [16]. Although planning and scheduling seem similar, they are different.
Planning tackles the problem of finding plans to achieve goals; scheduling deals with
the exact allocation of resources to activities over time precedence, duration, capacity,
and incompatibility. To date, the methods of automated service composition have
been studied with growing interests, particularly focusing on plan generation in AI
approaches or process modeling in workflow approaches [26, 30]. While
e-service/process composition is similar to traditional workflow or process composi-
tion, it is more complex as a result of a huge amount of web service resources to be
searched, scheduled and coordinated, especially in a real-time fashion [4]. Therefore,
consideration of the complexity, such as dynamic availability of web services and
large number of alternative combinations of service choices is essential to

 E-Service/Process Composition Through Multi-agent Constraint Management 275

e-service/process composition [24, 5]. In relation to the two stages of service compo-
sition -- planning and scheduling, this work will particularly focus on service schedul-
ing, dealing with the assignment of services or tasks to appropriate service providers
where a set of constraints has to be regarded.

After a composite service is decomposed into a set of component services with a
plan generated, real-time selection, coordination and aggregation of partial solutions
to component services is crucial for building a global solution to the composite ser-
vice. Partial solutions may not have a complete view of the global solution, and very
often generate incoherent and contradictory hypotheses and actions [24]. If a service
is scheduled to start before its preceding service is completed, it may fail for lack of
prerequisite resources from the preceding service. From the viewpoint of service
scheduling, the complexity of e-service composition is mainly from the uncertainty in
determining the constraints (referring to start time, execution duration, cost, destina-
tion, etc.) of component services, and the unpredictability (referring to availability,
capacity, price, location, etc.) of partial solutions to the component services. As a
result, there maybe no feasible global solution achieved based on tentative constraints
of services, and it needs a series of adjustments of these requests to achieve the goal.
Given this observation, a critical problem of e-service/process composition is to find a
way to achieve coordination and coherence among decisions of component services in
a real-time and adaptive fashion [24].

To this end, this paper considers an agent mediated approach to e-service/process
composition. Automated coordination by software agents is a key enabling technol-
ogy for e-commerce. Considering the large-scale and dynamic settings in web-based
environments, business services can be delegated to a number of autonomous problem
solving agents, which are enabled to manage complex activities based on continuous
awareness of situations and real-time decisions of activities [23]. Agents can be
viewed as entities that act flexibly in modern computing environment by coping with
various constraints [12]. It offers a new perspective of autonomous activity, interac-
tivity, reactivity and proactivity as a result of the attempt to handle local and global
constraints [25]. To deal with the uncertainties and dynamics in e-service/process
composition, we introduce a dynamic constraint-based and agent mediated coordina-
tion framework. In this framework, coordination among services is modeled as a
distributed constraint optimization problem (DisCOP) in which solutions and con-
straints are distributed into a number of component services and to be solved by a
group of agents. Each agent works as a broker of each service type, managing tenta-
tive service request as well as identifying suitable solutions from service providers.
Based on real-time local information and information inferred from communication
with others, each agent may refine its constraints for achieving compatibility of solu-
tions with other agents.

The remainder of the paper is organized as follows. We first outline the constraint
problem to be solved in e-service/process composition in Section 2. Section 3 presents
the multi-agent framework, and elaborates the mechanism of agent-mediated constraint
management for e-service/process composition. The effectiveness of the approach is
demonstrated by simulated experiments in Section 4. The related work in terms of web
service composition, constraint programming, and workflow & supply chain schedul-
ing is discussed in Section 5. Finally, we conclude the work in Section 6.

276 M. Wang et al.

2 Constrain Management in E-Service/Process Composition

To enable e-service/process composition, research efforts have been put on improving
workflow technologies for supporting cross-enterprise workflows. While most work
has focused on workflow modeling, constraint management is crucial to designing
and managing workflows for allocating and scheduling activities to appropriate re-
sources. Time/temporal constraints were addressed as a critical component early in
workflow systems in [7, 13, 29, 31]; resource constraints (related to people, machine,
and software issues) were investigated lately in [10, 20]. Most work has concentrated
on scheduling and run-time checking of workflows, especially in the context where
the requirements of each activity are determined and all available resources are
known in advance. As discussed, e-service/process composition is more complex than
traditional process composition by virtue of undetermined constraints of component
services and unpredictable solutions from service providers. Furthermore, in addition
to time and resource constraints, other type of constraints such as cost, location, etc.
should be taken into account as well.

To this end, e-service composition is mapped as an agent-based DisCOP. A DisCOP
consists of a set of variables, each assigned to an agent, where the values of the vari-
ables are taken from finite and discrete domains. Finding a solution to a DisCOP re-
quires that all agents find the values for their variables that satisfy not only their own
constraints but also interagent constraints [27, 11]. In this work, component services are
mapped to variables, and solutions of component services are mapped to values.

In web service composition, a composite service consists of:

(1) A finite set of component services involved in the composite service S,

S = {S1, S2, …, Sn }.

(2) A domain set, containing a finite domain of solutions to each component service:

D = {D1, D2, …, Dn }, ∈∀i [1, n], Si∈ Di.

(3) A constraint set, C = {C(RC1), …, C(RCi), …, C(RCI)}, where each RCi is an or-
dered subset of the services, and each constraint C(RCi) is a set of tuples indicating the
mutually consistent solutions to the services in RCi.
(4) An objective set, F = {F(RF1), …, F(RFj), …, F(RFJ)}, where each RFj is an ordered
subset of the services, and each objective function F(RFj) indicates the objective value to
be minimized for the mutually consistent solutions to the component services in RFj.

The feasible solution, L, for the composite service is an assignment to all services
such that the assignment satisfies all given constraints. Specially,

L = < V1, V2, …, Vn > L∈ D1×D2×…×Dn

where Vi ∈ Di is a specified domain member of Di, so called as a partial solution.
If there is no objective function, the constrain optimization problem is degenerated

into the constrain satisfaction problem, where any feasible solution is a solution to
problem. If there is only one objective function, the feasible solution with minimized
objective value is considered as the solution. If there are multiple objective functions,
all the solutions in the Pareto set are recognized.

For each component service, its domain is contributed by corresponding service
providers. Unlike traditional situation, e-service is complex in that the domain mem-

 E-Service/Process Composition Through Multi-agent Constraint Management 277

bers in each domain Di are unpredictable in advance and varied throughout the com-
position process. It is mainly due to: a) a service provider may be reluctant to report
its all solutions for commercial privacy; b) to list all possible partial solutions in ad-
vance may make the solving intractable; c) solutions are explored based on updated
service request. Hence, each component service may have to maintain its service
requests for collecting required partial solutions from service providers.

With regard to service request, the issues of time, cost and location are concerned
as important attributes of quality of service [16, 2, 6]. Normally, a composite ser-
vice should be completed before the due date and be delivered to the location re-
quired by the customer; a feasible solution with the lowest cost will be accepted.
For each component service, it should be scheduled to start after its preceding ser-
vice is completed, and to end before its succeeding service starts. Moreover, when
the customer and component service providers are distributed in different locations,
one or more delivery services are embedded into the composite service. Further-
more, the cost issue in service composition is dealt with as a constraint optimization
problem to identify the best composite solution (the one of the lowest cost). To
manage these constraints, we take time and location as the issues to be constrained,
and the global cost as the issue to be optimized. Hence each domain member has
multiply feature values to answer for different issues, with each constraint or objec-
tive applied on certain feature value.

Given these observations, the main problem discussed in this work is to find an ap-
propriate solution from each domain that can be integrated to form a composite ser-
vice satisfying the above constraints. The difficulty is that the available solutions to
each service type are unknown in advance. To find them, we need send service re-
quests to service providers. However, we only have the constraints of the composite
service instead of the constraints of each component service. To solve the problem,
we may first estimate the constraints of each component service, and then refine them
based on real-time responses from service providers and send out again for achieving
more compatible solutions.

3 Agent-Based E-Service/Process Composition

In this section, we outline the framework of e-service/process composition through
multi-agent constraint management by taking e-Supply Chain Management (e-SCM)
as an example. A supply chain is a network of suppliers, manufactories, distribution
centers, and retailers. Conventional supply chains are based on tight and long-term
integration of partners. Such kind of close and static relationship among partners
makes the integration cost high and makes it impractical to dynamically integrate
partners in an on-demand manner [22]. The advent of web-based technologies will
allow low cost and instant integration of supply chain partners. Compared with tradi-
tional supply chains, supply chains established via e-service/process composition are
characterized by large number of service resources to be selected and aggregated. The
ability to rapidly identify suitable resources and effectively coordinate them across the
chain is a key to e-supply chain success [18].

278 M. Wang et al.

3.1 Multi-agent Framework

As shown in Fig.1, a society of software agents, including a Service Dispatcher
Agent, and a set of Service Broker Agents and Service Provider Agents is proposed. It
is corresponding to a composite service depicted in Fig.2, where a product service is
fulfilled through a set of services including procuring components, preprocessing
components, assembling components into products, postprocessing products1, and
delivering components or products whenever the customer and service providers are
distributed in different locations. Once receiving a request (e.g. 1000 products to XYZ
Plaza before 25-02-2006) from a customer, the Service Dispatcher will generate a
service plan/process with constraints estimated for each component service. Accord-
ingly, a set of Service Brokers are deployed, each for a specific component service.
To decrease the complexity of the composition process caused by adding deliver
services on demand, we treated delivery as a type of standard service that could be
provided by a certain global delivery company (e.g. DHL), and could be bound with
any component service when necessary (refer to more details in Section 3.2.2).

Fig. 1. An agent-mediated service composition framework

After receiving service requests from the Service Dispatcher, Service Brokers will
send them to Service Providers for collecting suitable solutions to each service. How-
ever, the available bids or solutions may not be compatible with each other to form a
global solution. A Service Broker needs coordinate with its neighbouring brokers to
refine the constraints for achieving new bids that could be involved in a global solu-
tion. For the sake of simplicity, we ignore the situations that there are more than one
preceding or succeeding service of a component service in this paper.

1 This work focuses on the discussion of service scheduling in service composition, therefore

how to generate or predefine a plan or flow for a composite service is beyond the scope of
this work.

 E-Service/Process Composition Through Multi-agent Constraint Management 279

Fig. 2. A composite service process

3.2 Agent-Mediated Constraint Management

E-service/process composition requires a set of agents to allocate suitable re-
sources/web services to a set of services. We define the ith service to be performed in
a composite service as follows:

Si = [Su, Sv, Rqi]

where Su denotes the preceding service of Si; Sv denotes the succeeding service of Si;
Rqi denotes the requirement of Si , defined as follows:

Rqi = [sti, eti, locai, desti]

It consists of four parts: sti denotes the start time scheduled for Si; eti denotes the end
time expected for Si; locai denotes the location of Si; desti denotes the destination of
Si. For different service type, the requirement constitution can be different. For exam-
ple, while the end time is to specify the available time of a material procurement ser-
vice, the start time of such type of service is not meaningful and will not be specified.

In this work, each Service Broker is designed as a dynamic constraint-based agent.
The detail how they interact with each other to achieve coherence among decisions of
component services is discussed as follows.

3.2.1 Initialize Service Requests
The requirement Rqi is initially estimated by the Service Dispatcher, and then be re-
fined by Service Brokers throughout the composition process. The estimation is based
on the customer’s request as well as the history information of the component ser-
vices. The estimation of time constraints is based on the average percentage of time
spent on the services. For example, a composite service S is requested to start on July
1, and to finish by July 20. It is composed of three services, S1, S2 and S3, respectively
taking 25%, 50% and 25% of the time on average. Accordingly, S2 can be scheduled
to start on July 6 and to end by July 15. Moreover, the start time of the first service
and the end time of the last service are fixed, as required by the customer. Similarly,
the locations and destinations of component services are also initially specified by the
Service Dispatcher, and then be tuned by Service Brokers, with the destination of the
final service to be fixed.

3.2.2 Collect Solutions from Service Providers
Each Service Broker then forwards its service request to Service Providers for collect-
ing bids of each service, where a bid is defined as follows.

Bidij = [b_idij, s_tij, e_tij, cij, locij, desij]

Bidij, the jth bid sent to Service Broker i for service i contains five parts: b_idij denotes
the ID number of the bid, which is associated with the private details of a bid; s_tij and

280 M. Wang et al.

e_tij denote the start time and end time respectively scheduled for the service; cij de-
notes the cost claimed by the service provider; locij denotes the location of the service;
desij denotes the destination of the service. Each provider may generate a bid satisfy-
ing the request with the lowest cost. In case of no bid generated due to the time con-
straints, the provider may relax the constraints as less as a bid generates. If the pro-
vider cannot make the service reach the destination by itself, a standard delivery ser-
vice could be bound to the service with delivery cost and delivery time taken into
account.

3.2.3 Filter Out Dominated Solutions
For all bids received from service providers, the Service Broker will filter out domi-
nated bids before posting them as candidate solutions. A newly received bid, Bidiβ
(bid β for service i), is identified as a dominated bid if it is worse than or the same
with an existing candidate solution Bidij by satisfying the following condition.

ciβ ≥ cij AND s_tiβ ≤ s_tij AND e_tiβ ≥ e_tij AND lociβ = locij AND desiβ = desij

On the other hand, any existing candidate solution Bidij will be filtered out if it is
dominated by a new bid Bidiβ by satisfying the following condition.

ciβ < cij AND s_tiβ ≥ s_tij AND e_tiβ ≤ e_tij AND lociβ = locij AND desiβ = desij

After a bid is removed as a dominated bid, its connections with other bids are re-
moved as well. By filtering out dominated solutions, the number of partial solutions,
i.e. domain members can be controlled in a reasonable scale.

3.2.4 Identify Compatible Solutions
Each Service Broker will report its newly posted bids to its preceding and succeeding
Service Broker, so that each broker may identify its solutions that are compatible with
the solutions of its neighbours. We denote service u and service v as the preceding
and succeeding service of service i, and Bidiβ, Biduα, Bidvγ as a bid of service i, service
u, service v respectively. After posting Bidiβ, Service Broker i will connect it with
Biduα, an existing bid of its preceding service if the two bids are compatible by satis-
fying the following condition.

s_tiβ > e_tuα AND lociβ = desuα

The Service Broker will also link Bidiβ with Bidvγ, an existing bid of its preceding
service if the two bids are compatible by satisfying the following condition.

e_tiβ < s_tvγ AND desiβ = locvγ

3.2.5 Identify Promising Solutions
In service composition, each Service Broker may utilize its own information and
limited information from its neighbours for coordination and achieving coherence
among the solutions. To achieve this, a Service Broker needs identify a promising
solution of its preceding and a promising solution of its succeeding service, based on
which it can refine the constraints of its own service to seek new bids that would be
compatible with the promising solutions of its neighbours. A solution to a component
service is more promising to be involved in a global solution if it connects with more
existing solutions to its preceding or succeeding service, as well as leaves more free
time to its succeeding or preceding or service. As an example shown in Fig.3, each
bid is posted with its start time, end time, and connections with other bids. Bidb5 is

 E-Service/Process Composition Through Multi-agent Constraint Management 281

identified as the most promising preceding solution from the viewpoint of Sc. It is
because Bidb5 is connected with more bids of its preceding service, Sa as well as leav-
ing more time to its succeeding service Sc than any other bid of Sb. On the other hand,
Bidb5 is also identified as the most promising succeeding solution from the view-
point of Sa. It is because Bidb5 is connected with more bids of its succeeding service Sc
as well as leaving more free time for its preceding service Sa than any other bid of Sb.
In this way, each Service Broker may identify a promising preceding solution among
all the solutions of its preceding service, and a promising succeeding solution from all
the solutions of its succeeding neighbour. A new bid of a service will be more proba-
bly involved in a global solution if it is compatible with both the promising preceding
solution and the promising succeeding solution.

Fig. 3. Solutions to component services and their connections

A promising solution is identified based on its promising value. The promising
value is measured by its connectivity with its neighbour solutions and the free time it
leaves for its neighbour solutions. In detail, the preceding promising value
(Pre_prom) of Bidij is measured by the following function.

Pre_prom (Bidij) = w_conn * Pre_conn (Bidij) + w_tf * Pre_tf (Bidij)

where Pre_conn (Bidij) measures the connectivity of Bidij with its preceding solutions;
Pre_tf (Bidij) measures the free time Bidij leaves for its succeeding solutions; w_conn
and w_tf denote the weight of Pre_conn and Pre_tf respectively. Pre_conn (Bidij) and
Pre_tf (Bidij) are further detailed as follows.

Pre_conn (Bidij) = (preij – MINPREi) / (MAXPREi – MINPREi)

where preij denotes the number of the preceding bids that connect with Bidij; MAX-
PREi denotes the maximum value of preij for ∀ j; MINPREi denotes the minimum
value of preij for ∀ j.

Pre_tf (Bidij) = (MAXETi – e_tij) / (MAXETi – MINETi)

where e_tij denotes the end time of Bidij; MAXETi is the maximum value of e_tij for
∀ j; MINETi is the minimum value of e_tij for ∀ j.

282 M. Wang et al.

Similarly, the succeeding promising value (Suc_prom) of Bidij can be measured by
the following function.

Suc_prom (Bidij) = w_conn * Suc_conn (Bidij) + w_tf * Suc_tf (Bidij)

where Suc_conn (Bidij) denotes the function to measure the connectivity of Bidij with
its succeeding solutions; Suc_tf (Bidij) measures the free time Bidij leaves for its pre-
ceding solutions; w_conn and w_tf denote the weight of Suc_conn and Suc_tf respec-
tively. Suc_conn (Bidij) and Suc_tf (Bidij) are further detailed as follows.

Suc_conn (Bidij) = (sucij – MINSUCi) / (MAXSUCi – MINSUCi)

where sucij denotes the number of succeeding solutions that connect with Bidij; MAX-
SUCi is the maximum value of sucij for ∀ j; MINSUCi is the minimum value of sucij
for ∀ j.

Suc_tf (Bidij) = (MAXSTi – s_tij) / (MAXSTi – MINSTi)

where s_tij denotes the start time of Bidij; MAXSTi denotes the maximum value of s_tij
for ∀ j; MINSTi denotes the minimum value of s_tij for ∀ j.

Based on the promising value, a promising bid can be selected using different
strategies, such as random selection strategy, elitist strategy and tournament selection
strategy. The random selection strategy chooses a bid at random. The elitist strat-
egy selects the best bid, i.e. the bid with the largest promising value. Tournament
selection is one of many methods of selection in genetic algorithms which runs a
"tournament" among a few individuals chosen at random from the population and
selects the winner (the one with the best fitness) for crossover. Selection pressure can
be easily adjusted by changing the tournament size. If the tournament size is higher,
weak individuals have a smaller chance to be selected. Tournament selection is
equivalent to random selection when the tournament size is 1, and equivalent to elitist
strategy when the tournament size is the population size. As shown in Fig.3, by using
the elitist strategy, the Service Broker of Sc may choose Bidb5 as its most promising
preceding solution, and Bidd2 as its most promising succeeding solution.

3.2.6 Refine Constraints Towards a Global Solution
Based on the promising preceding solution Biduα (a solution of the preceding service
Su) and the promising succeeding solution Bidvγ (a solution of the succeeding service
Sv), the Service Broker of Si may refine its service constraints Rqi as follows.

Rqi = [sti, eti, locai, desti]

where sti = e_tuα + 1; eti = s_tvγ – 1; locai = desuα; desti = locavγ
In this way, Service Brokers may achieve coordination and coherence among deci-

sions of component services through a series of adjustments on constraints that are
individually made but interact with each other.

Furthermore, Service Brokers may communicate for figuring out a global solution
at regular intervals. One or more feasible global solutions could be generated, and the
one of the lowest cost will be reported to the Service Dispatcher as a bid for the cus-
tomer. The main activities involved in the proposed approach are summarized as a
flow chart in Fig. 4.

 E-Service/Process Composition Through Multi-agent Constraint Management 283

Fig. 4. A flow chart of agent-mediated e-service composition

4 Experiments

A number of experiments have been run to evaluate the performance of the proposed
approach. A service network is randomly initialized by varying the distribution of
price, stock, deliverable time, and location of the procurement service providers, as
well as varying the distribution of price, overall load, available time periods, and
location of the providers of production services such as preprocess, assembly and
postprocess. Furthermore, each procurement service provider may have more than
one service options associated with different price, stock and deliverable time, e.g. the
earlier deliverable time the higher price. For a procurement request, a supplier may
generate a bid based on a pack of options to satisfy the time constraint at the lowest
cost. The experiments simulate the agent-mediated coordination in supply chain com-
position by associating 24 providers of each service type, and going through 50 cycles
of constraint refinement for each problem. Each problem is tested 500 times to calcu-
late the success rate, average cost, and average time used to achieve a global solution.
Results are reported for two suites of problems to see the impact of number of ser-
vices involved in a composite service: 1) problems of four component services in-
volved, where the composite service chain is relatively short; 2) problems of seven
component services involved, where the composite service chain is relatively long.

284 M. Wang et al.

Each suite is made of five sets of problems obtained by varying due time of the com-
posite service as very tight, tight, average, loose, and very loose.

Furthermore, as discussed, a key to this approach is to identify promising solutions
of component services, based on which the constraints of component services can be
refined towards a global solution. Accordingly, the method of evaluating the promis-
ing value of a solution as well as the strategy of choosing a promising solution are
regarded as the important factors of success of the approach, hence tested in the ex-
periments. The results are further detailed below.

1) Weights of Connectivity and Time Freedom in Evaluating a Promising
Solution

From the viewpoint of generating a global solution, a partial solution to a component
service is more promising to be involved in a global solution if it is more connective
with its neighbour service solutions and leaves more free time to neighbour solutions.
Accordingly, we test how the weigh of connectivity and time freedom used for meas-
uring the promising value may impact the performance of the approach.

Fig. 5. Weights of connectivity and time freedom in measuring the promising value

As shown in Fig.5, either connectivity only (1/0) or time freedom only (0/1) cannot
perform better than their mixed form in certain weight. Especially, the performance is
better when the weight is about 0.35 for connectivity and 0.65 for time freedom, when
the due time of the composite service is tight. This weight structure also yields better
results in other situations of due time, and we choose it for further experiments.

2) Impact of Three Strategies of Selecting a Promising Solution
As a key step in agent-mediated constraint management, promising solutions to com-
ponent services are identified for constraint refinement. Fig.6 summarizes the per-
formance of three strategies used for selecting a promising solution, i.e. random selec-
tion strategy, elitist strategy, and tournament selection strategy. It is shown that the
tournament selection strategy performs better than the other two by a higher success
rate in most situations of due time. The results also show a faster speed and similar
cost as a result of this strategy. The elitist strategy yields poor results, mainly due to
the premature convergence caused by the greedy nature.

 E-Service/Process Composition Through Multi-agent Constraint Management 285

Fig. 6. Success rates of three selection strategies

3) Tournament Size of the Tournament Selection Strategy
For selecting an appropriate tournament selection strategy, different tournament sizes
are tested. In doing so, we compare the tournament selection strategy with the random
selection strategy by calculating their relative performance in success rate, cost and
speed with the change of tournament size. As shown in Fig.7, the success rate of the
tournament selection strategy is about 10% higher than that of the random selection
strategy when the tournament size is 5, in the situation of average due time. Further-
more, the experiments indicate that the tournament selection strategy yields an overall
better performance when the tournament size is 4 or 5 in all situations of due time.

Seven Component Services

Fig. 7. Tournament selection strategy with tournament size

4) Tournament Selection Versus Random Selection
Setting the tournament size as 4, we compare the tournament selection strategy with
the random selection strategy by calculating their relative performance in Fig.8. It is
shown that the success rate of the tournament selection strategy is 58% higher than
that of the random selection strategy in very tight due time situation. The speed of
the tournament selection strategy is 11% faster than that of the random selection
strategy in average due time situation. These results also indicate that the tournament
selection strategy yields an overall better performance by more successfully generat-
ing a global solution with less time in most situations of due time, however with less
difference in cost.

286 M. Wang et al.

Fig. 8. Tournament selection versus random selection: relative performance

5 Related Work

The emergence of web services has received many interests to support the interaction
of business partners and their processes by inter-connecting web services. There are
abundant literatures of web services, mainly on the description of web services, the
syntax of their flows, and how they could be executed [15]. With regard to web ser-
vice composition, most researches have fallen in the realm of workflow/process com-
position and AI planning [21, 17].

AI planning and scheduling techniques have been playing an essential role in man-
aging workflows of web services, including their composition, resource allocation,
execution and repair [9]. However, many issues remain to be resolved on how to
identify the most appropriate ways to formalize service composition as a planning and
scheduling problem. Most ongoing studies have made efforts on service planning, i.e.
working out a sequence in which services are invoked. With respect to the major
difference between web service composition from workflow composition, there is a
need on how to identify appropriate service candidates from a number of resources,
especially by addressing non-functional properties, such as cost, timeliness, security,
and dependability [14, 28]. From this point of view, service scheduling, the exact
allocation of activities or services to appropriate resources has become critical to
ensuring reliable web service composition. There have been growing attention paid to
this field in terms of constraint driven web service composition and QoS aware web
service composition (e.g. [2], [3], [6]), where web service compositions have been
translated into a certain type of constraint satisfaction and optimization problem.
However, existing methods require a completely specified problem as input and have
not been able to deal with uncertainties and dynamics of the environment. In more
detail, they did not solve the problem where only the constraints of the composite
service are specified, with the constraints and available solutions of component ser-
vices not completely known. Moreover, there have been fewer efforts on managing
the dynamics inside a scheduling process, e.g. changes of service offerings and ser-
vice constraints. Indeed, we face the ambiguity in determining the constraints of spe-
cific services involved in a composite service, which may further result in the uncer-
tainties and dynamics throughout the composition process. Furthermore, although

 E-Service/Process Composition Through Multi-agent Constraint Management 287

there are a number of service providers available for each service type, they may be
engaged in various composite services at different time. Therefore, it is not necessary
that every service request can be allocated to an appropriate service resource at one
time. To this end, our approach aims to handle such over-constrained problem and
handling uncertainties and dynamics by using dynamic constraint-based agents that
dynamically and interactively tune the constraints of services involved in a composite
service.

This work is also related to workflow scheduling, resource management and con-
straint analysis in workflow modeling. In addition to those mentioned in Section 2,
other relevant work includes job-shop scheduling in production and supply chains,
where constraint logic programming has been used to deal with scheduling problems.
In many of these studies, agents have been used to represent physical resources for
solving resource scheduling problems [8, 19]. However, most approaches rely on
complete information of all available resources, such as cost, location, and available
time. They suffer from uncertain and dynamic information of resources and tasks.
Instead of using conventional job scheduling approaches, more robust and adaptive
strategies should be adopted in dynamic web-based environments [5].

6 Conclusions

E-service/process composition is a complex task that coordinates the flow of informa-
tion among services and links their business processes under various constraints.
Existing constraint programming methods require a completely specified problem as
input. They can not solve the problem of e-service composition where only the con-
straints of the composite service are specified, with the constraints and available solu-
tions of component services not completely known. In this paper, we have described a
multi-agent formulation that can be used to deal with uncertainties and dynamics of
service composition especially in web-based environments. The key idea behind the
approach lies in a distributed multi-agent system, in which autonomous agents have to
make choices of component services to undertake within a composite service. Coor-
dination among agents is modeled as a distributed constraint satisfaction problem in
which solutions and constraints are distributed into specific services. This system can
self-organize itself, where each individual agent explores its own solution, coordi-
nates with other agents and gradually evolves towards a global solution state. Al-
though presented in the context of supply chain management, this approach is appro-
priate to other situations where a set of services are to be composed as a result of a
large amount of resources to be searched, scheduled and coordinated, especially in a
real-time fashion.

Acknowledgement

The authors thank the reviewers of BPM 2006, and Mr. Haijing Jiang for their con-
structive comments on this paper. This work was supported by a RGC Central Alloca-
tion Group Research Grant (HKBU 2/03/C) from Hong Kong Government.

288 M. Wang et al.

References

1. Aalst, W.M.P., Dumas, M., and Hofstede, A.H.M., Web Service Composition Languages:
Old Wine in New Bottles? 29th EUROMICRO Conference, 2003, 298-305

2. Ardagna, D. and Pernici, B., Global and Local QoS Guarantee in Web Service Selection,
Business Process Management Workshops, LNCS 3812, 2006, 32-46

3. Canfora, G., Penta, M., Esposito, R., and Villani, M.L., QoS-Aware Replanning of Com-
posite Web Services, 2005 IEEE International Conference on Web Services (ICWS 2005),
2005

4. Casati, F. and Shan, M., Dynamic and adaptive composition of e-services, Information
Systems, 26(3), 2001, 143-163

5. Cheung, W.K. and Liu, J., On Knowledge Grid and Grid Intelligence – A Survey, Compu-
tational Intelligence - An International Journal, 21(2), 2005, 111-129

6. Claro, D.B., Albers, P., and Hao, J.K., Selecting web services for optimal composition,
ICWS 2005 Second International Workshop on Semantic and Dynamic Web Processes,
2005

7. Eder, J., Panagos, E., and Rabinovich, M., Time Constraints in Workflow Systems, 11th
International Conference on Advanced Information Systems Engineering (CAiSE), LNCS
1626, 1999, 286-300

8. Fox, M.S., Barbuceanu, M., and Teigen, R., Agent-Oriented Supply-Chain Management,
International Journal of Flexible Manufacturing Systems, 12(2/3), 2000, 165-188

9. Kumar, A. and Zhao, J.L., Workflow support for electronic commerce applications, Deci-
sion Support Systems, 32(3), 2002, 265-278

10. Li, H., Yang, Y., and Chen, T.Y., Resource constraints analysis of workflow specifica-
tions, Journal of Systems and Software, 73, 2004, 271-285

11. Liu, J., Jing, H., and Tang, Y.Y., Multi-agent oriented constraint satisfaction, Artificial In-
telligence, 136(1), 2002, 101-144

12. Liu, J., Jin, X.L., and Tsui, K.C., Autonomy Oriented Computing (AOC): Formulating
computational systems with autonomous components, IEEE Transactions on Systems,
Man, and Cybernetics, Part A: Systems and Humans, 35(6), 2005, 879- 902

13. Marjanovic, O. and Orlowska, M.E., On modeling and verification of temporal constraints
in production workflows, Knowledge Information Systems, 1(2), 1999, 157-192

14. Menasce, D.A., Composing Web Services: A QoS View, IEEE Internet Computing,
8(6), 2004, 88-90

15. Milanovic, N. and Malek, M., Current Solutions for Web Service Composition, IEEE
Internet Computing, 8(6), 2004, 51-59

16. Muscettola, N., Integrating Planning and Scheduling, in Zweben, M., and Fox, M.S. (eds),
Intelligent Scheduling, Morgan Kaufmann, 1994, 169-212

17. Rao, J. and Su, X., A Survey of Automated Web Service Composition Methods, First In-
ternational Workshop on Semantic Web Services and Web Process Composition
(SWSWPC), 2004, 43-54

18. Sadeh, N.M., Arunachalam, R., Eriksson, J., Finne, N., and Janson, S., TAC-03 - A Sup-
ply-Chain Trading Competition, AI Magazine, 24(1), 2003, 92-94

19. Sauer, J. and Appelrath, H., Scheduling the Supply Chain by Teams of Agents, 38th Ha-
waii International Conference on System Sciences (HICSS), 2003.

20. Senkul, S. and Toroslu, I.H. An architecture for workflow scheduling under resource allo-
cation constraints, Information Systems, 30(5), 2005, 399-422

21. Srivastava, B. and Koehler, J., Web Service Composition - Current Solutions and Open
Problems, ICAPS 2003 Workshop on Planning for Web Services, 2003.

 E-Service/Process Composition Through Multi-agent Constraint Management 289

22. Subramani, M., How Do Suppliers Benefit from Information Technology Use in Supply
Chain Relationships? MIS Quarterly, 28(1), 2004, 45-73

23. Wang, M. and Wang, H., From Process Logic to Business Logic -- A Cognitive Approach
to Business Process Management, Information & Management, 43(2), 2006, 179-193

24. Wang, M., Cheung, W.K., Liu, J., and Luo, Z., Agent-based Web Service Composition for
Supply Chain Management, IEEE Joint Conference on E-Commerce Technology (CEC'
06) and Enterprise Computing, E-Commerce and E-Services (EEE' 06), 2006

25. Weiß, G., Cognition, Sociability, and Constraints, ECAI 2000 Workshop on Balancing
Reactivity and Social Deliberation in Multi-Agent Systems, LNCS 2103, 217-236

26. Weske, M., Aalst, W.M.P., and Verbeek, H.M.W., Advances in Business Process Man-
agement, Special Issue of Data and Knowledge Engineering, 50(1), 2004, 1-8

27. Yokoo, M., Distributed Constraint Satisfaction: Foundation of Cooperation in Multi-agent
Systems, 2001, Springer, Berlin, New York

28. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., and Chang, H., QoS-
Aware Middleware for Web Services Composition, IEEE Transactions on Software Engi-
neering, 30(5), 2004, 311-327

29. Zhao, J. and Stohr, E., Temporal workflow management in a claim handling system, Pro-
ceedings of Work Activities Coordination and Collaboration (WACC’99), 1999,
187–195.

30. Zhao, J.L. and Cheng, H.K., Web services and process management: a union of conven-
ience or a new area of research? Decision Support Systems, 40(1), 2005, 1-8

31. Zhuge, H., Cheung, T., and Pung, H., A timed workflow process model, Journal of Sys-
tems and Software, 55(3), 2001, 231-243

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 290 – 305, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Web Service E-Contract Establishment Using Features

Marcelo Fantinato1, Itana Maria de S. Gimenes2, and Maria Beatriz F. de Toledo1

1 Institute of Computing, University of Campinas, Brazil
2 Department of Computer Science, University of Maringá, Brazil

mfantina@ic.unicamp.br, beatriz@ic.unicamp.br, itana@din.uem.br

Abstract. Electronic contracts describe inter-organizational business processes
in terms of supply and consumption of electronic services (commonly Web ser-
vices). In a given contract domain, it is usually possible to identify a set of well-
defined common and variation points. Feature modeling is an ontology-like
technique that has been widely used for capturing and managing commonalities
and variabilities of product families in the context of software product line. This
paper proposes a feature-based approach in order to decrease the complexity in
Web service e-contract establishment. The feasibility of the approach is shown
by a case study carried out within the telecom context and based on experimen-
tal software engineering concepts.

1 Introduction

The Internet and Business Process Management Systems (BPMS) are major steps to-
wards improving inter-organizational cooperation [1], [2]. Moreover, service-oriented
computing [3] helps the integration among applications executed by BPMS. The main
type of electronic service (e-service) being used currently for this purpose are the web
services [4]. Web services are an emergent and promising technology for the effective
automation of inter-organizational interactions. They are a specific type of e-service
based on industry standard technologies such as WSDL [5], UDDI [6], and SOAP [7]
– all of them based on XML. The use of these standards makes easier service auto-
matic publication, discovery and invocation.

E-contracts are used to describe the supply and the consumption details of elec-
tronic services within a business process [8]. E-contracts concerned with Web ser-
vices are normally called Web service e-contracts. There is a complexity involved in
e-contract establishment that may hinder new business partnerships. This complexity
is due to: the amount of information necessary in e-contract establishment; the poten-
tial long-duration of complex electronic negotiations; and the involvement of different
profiles (business and development teams) from distinct organizations.

To deal with these drawbacks, many approaches to e-contract establishment
achieve information structure and reuse using contract templates [8]-[14]. In most of
them, templates are normally treaded as simple documents that have empty fields to
be fulfilled. In general, the existent approaches do not offer suitable mechanisms to
manage common and variable elements in similar contracts. Although they contribute
with a series of advances in the area of e-contract elaboration and enactment, they
provide a limited potential for information reuse.

 Web Service E-Contract Establishment Using Features 291

In this paper, a new approach to e-contract establishment is proposed. It is based on
software product line concepts and mainly in feature modeling. Its main contribution
is to offer a principled and efficient way for information reuse, optimizing the Web
service e-contract establishment process. More than offering contract templates, it in-
tends to manage more efficiently the mandatory, optional and alternative parts of
them. A similar but partial approach has already been presented [15], but it is not con-
cerned with the specific Web service context besides other new extensions.

Product Line (PL) promotes the generation of specific software products from a
product family based on the reuse of a well-defined infrastructure [16]. PL exploits
common points among systems in the same domain and manages variabilities
among them in a systematic way [17]. Both software development and e-contract
establishment demand an efficient information reuse. Thus, both may take profit of
the PL approach to achieve a better understanding of domains and reduce time-to-
market [18].

Most of the PL methodologies uses feature modeling [19] to capture and manage
common points and variabilities [17], [18], [20]-[23]. Feature models are a kind of
computing ontology [24], [25] used to describe properties of entities at different lev-
els of abstraction. They constitute a simple, structured and easy to understand repre-
sentation of information that may be used in different phases of the software devel-
opment cycle. These facilities may also be helpful in e-contract establishment making
contracts easier to understand and improving information reuse.

In brief, the proposed approach consists of some stages derived from a specific PL
process, making use of feature modeling to allow the generic representation of e-
services by features. The e-contract establishment activities (including negotiation be-
tween involved parties) will be oriented by the feature model and feature model con-
figurations. The contracted generic e-services will be mapped to the Web services im-
plementing them, which are referenced in the resulting e-contract. Applying this
approach, the management of commonalities and variabilities will make the reuse of
e-services and the establishment of new e-contracts easier.

The paper is organized as follows. Section 2 presents related works. Section 3
and 4 present an overview of e-contracts and feature modeling respectively. Section 5
introduces the proposed approach for Web service e-contract establishment. The case
study is described in Section 6 and some lessons learned are discussed in the follow-
ing section. Finally, conclusions and future work end the paper.

2 Related Work

CrossFlow project [8] is one of the precursor projects to treat e-contracts systemati-
cally through contract templates. CrossFlow allows template creation using pre-
existent e-contracts that are often used in some business domain. Its reuse approach
allows that fields with variable values are kept blank to be filled later, for each spe-
cific contract. CrossFlow last papers already indicated the necessity of more system-
atic ways to deal with templates. Chiu et. al. [9] advance towards this direction. Tem-
plates are treated as new entities in contract metamodels and may contain template
variables whose values are defined during e-contract establishment. Variable values

292 M. Fantinato, I.M. de S. Gimenes, and M.B.F. de Toledo

are defined and changed in a controlled way. Other similar approaches, which make
use of e-contract metamodels, are presented in [10]-[12]. Some papers treat specifi-
cally the negotiation process to establish e-contracts, such as [26]-[28]. However, in
these and other similar approaches, there is little emphasis in information reuse. It is
expected that with the use of feature modeling, as proposed in this paper, better reuse
be achieved. This new approach can be understood as a contract parameterization way
that must be improved during the several e-contract instantiations that can take place
with a same contract type.

There is some research concerned with the description of Web service properties in
the e-contract context. The WSLA framework [13] supports the creation and use of
QoS attributes for Web services in e-contract templates. This approach facilitates
automatic matchmaking in the Internet. In a more recent work [14], it is presented a
unified framework for comprehensive contractual description of Web services. More-
over, two complimentary standards are proposed to treat policy guarantees for Web
services: WS-Agreement [29], [30] and WS-Policy [31], [32]. In this context, the ap-
proach proposed here is just interested in how to manage the mandatory, optional and
alternative QoS levels in a high-level way. Therefore, the feature-based approach to
Web service e-contract establishment can be potentially used in association with any
of these standards.

3 Electronic Contracts

E-contracts [8] consist of: parties representing organizations involved in a business
process, activities representing e-services to be executed during process enactment,
and contractual clauses describing restrictions on the execution of activities. There
are three types of clauses [33]: obligations (what parties should do), permissions
(what parties are allowed to do) and prohibitions (what parties should not do). Ob-
ligations may include QoS clauses associated with e-services. These clauses define
attributes such as performance, availability, security and reply time [13], 34, [35].

E-contracts may be derived from models or templates. Models are instances of
metamodels for a specific application domain. Templates are partially-filled contracts.
To facilitate the specification of e-contracts and their transfer between BPMSs, XML-
based languages have been developed. Either DTD or, more recently, XML Schemas
can be used in the specification of metamodels.

The e-contract metamodel used in the proposed approach is based on the one de-
veloped within the CrossFlow project [8] for its significance in the area [1] and wide
coverage of essential aspects. The original metamodel, which does not take into ac-
count Web services, is presented in the next section.

3.1 CrossFlow e-Contract Metamodel

CrossFlow e-contracts are established between two parties: the provider and the con-
sumer of an e-service. According to the metamodel in Fig. 1 (presented as an Entity-
Relationship Diagram), an e-contract has five sections described below. The refine-
ment of each section by other metamodels is presented in [36].

 Web Service E-Contract Establishment Using Features 293

Fig. 1. CrossFlow e-contract metamodel [8]

• Concept: contains the terminology used in the e-contract. This section consists of a
list of parameters formed by name, type and description. They receive a value dur-
ing contract establishment or execution time.

• Process Model: defines the inter-organizational business process between the par-
ties. It is based on the Process Description Language (PDL) by Workflow Man-
agement Coalition (WfMC) [37]. Processes are constituted by the Process Ele-
ments – Activities and Transitions. The other elements in the language are not used
in this context.

• Enactment Clause: specifies clauses related to operations. There are three types of
operations: control (e.g. suspend, abort), monitoring (e.g. operations to consult
process status), QoS (e.g. operations that check if QoS attributes are satisfied).

• Usage Clause: defines how the contract must be used. Among required conditions,
it can be cited the maximum number of process instances to be created at a time.

• Description: contains text in natural language for human readers.

CrossFlow contracts are specified in XML. The specification for a complete meta-
model is available at the CrossFlow project site [36].

4 Feature Modeling

Feature modeling is an important technique that has been applied for capturing and
managing commonalities and variabilities in PL [17]. It has been originally proposed
in the domain engineering context, as part of the Feature-Oriented Domain Analysis
(FODA) method [19], and has been applied in a range of domains including telecom
systems, template libraries, networks protocols, and embedded systems.

In general, a feature model is a description of the relevant characteristics of some
entity of interest. A feature can be defined as a system property that is relevant to
some stakeholder and is used to capture commonalities or discriminate systems in a
family. They may denote any functional or non-functional characteristic at the re-
quirement, architectural, component, platform, or any other level [17]. According to
the original FODA method, features can be mandatory, optional or alternative.

Process
Model

Contract

Descrip-

tion

Usage
Clause Concept

Enactment
Clause

(0,N)

(0,N)

(1,1) (1,1) (1,1) (1,1) (1,1)

(1,1)

(N,M) (0,1) (0,1) (0,1) (0,1)

(0,M)

(1,1)

(0,M) (1,N)

(0,M)

(0,N)

(0,M)

(0,N)

(0,N)

Process
Element

referes
to

referes
to

referes
to

referes
to

referes
to consists

of

hashas hashas has

294 M. Fantinato, I.M. de S. Gimenes, and M.B.F. de Toledo

Features can be organized in a feature diagram, which is a tree-like structure where
each node represents a feature and each feature may be described by a set of sub-
features represented as children nodes [21]. Feature diagrams offer a simple and intui-
tive notation to represent variation points without using implementation mechanisms
such as inheritance or aggregation. A set of feature diagrams and additional informa-
tion – such as descriptions, binding times and priorities – forms a feature model [17].

A feature model can describe the configuration space of a system family. A mem-
ber of the system family can be specified by selecting the desired features from the
feature model within the variability constraints defined by the model (e.g., the choice
of exactly one feature from a set of alternative features). This process is called feature
configuration [17].

Due to its high level of abstraction, feature modeling has been used with other
goals besides PL, such as: encapsulating system requirements, driving marketing de-
cisions, future planning and communication between system stakeholders [22]. Some
development tools have facilitated the use of feature model concepts in the industry.
For instance, RequisitePro [38] already supports feature modeling, although without
any graphical representation.

Feature models can be understood as a kind of computing ontology [24], [25]. On-
tologies have been often used in computer science to capture knowledge about some
domain of interest, enabling its sharing and reuse – e.g. in Semantic Web [39]. Both
techniques are used to represent concepts in a particular domain and relationships be-
tween them. Despite some similarities, there are differences between them. Ontology
languages and tools commonly offer reasoning facilities to check consistency and
completeness, and inference engines to enhance rules processing. On the other hand,
feature modeling offers facilities to capture and manage common and variable con-
cepts. Both could be extended to incorporate characteristics offered by the other one.

The feature metamodel used here is the one proposed by Czarnecki et. al. [17]. Its
main advantages are: integration of previous extensions and balance between simplic-
ity and conceptual completeness. The metamodel is presented in the next section.

4.1 Cardinality-Based Feature Metamodel

The cardinality-based feature metamodel involves the concepts of attributes, feature
groups, diagram modularization, and feature and feature group cardinalities. The
metamodel is presented as a Class Diagram in Fig. 2.

There are three kinds of features in a feature model: root feature that forms the
root of the different feature diagrams in a model; grouped feature that can only occur
in a feature group; and solitary feature that is, by definition, not grouped in a feature
group. Many features in a typical feature model are solitary. Features can have an at-
tribute with a typed value – string value or integer value. The abstract classes Con-
tainableByFG and ContainableByF stand for those kinds of objects that can be con-
tained by a feature group and a feature, respectively. A feature group contains
grouped features or diagram references, whereas a feature can include solitary fea-
tures, feature groups and references. Diagram modularization is achieved by using the
FDReference class, which stands for a feature diagram reference. It can refer to only
one root feature, but a root feature can be referred by several references.

 Web Service E-Contract Establishment Using Features 295

Fig. 2. Cardinality-based feature metamodel [17]

Feature and feature group cardinalities are represented as attributes in the feature
metamodel. Feature cardinality defines how often a solitary sub feature (and possible
subtrees) can be cloned as a child of its parent feature. Similarly, group cardinality is
a property of the relationship between a parent and a set of sub features. A feature
group expresses a choice over the grouped features in the group.

5 Modeling Web Service e-Contracts Based on Features

This section presents an overview of Web service e-contract establishment based on
feature modeling. More details about the approach are found in the next section where
the case study is presented. The proposed approach consists of five stages according
to the FORM process (A Feature-Oriented Reuse Method with Domain-Specific Ref-
erence Architectures) [20] used in PL. The stages are the following:

1. E-service feature model elaboration: A feature model is elaborated to represent e-
services and further related information (such as QoS attributes) from each organi-
zation willing to provide services for others. All possible e-services are represented
by features in a high-level way, without considering technical details;

2. Web service e-contract template creation: Having an e-service feature model as the
basis, a Web service e-contract template is created. It will contain basic informa-
tion that can be used in any e-contract to be established from this feature model.
Here, all the high-level e-services are mapped to Web services implementing them;

3. Web service development and publication: Web services that implement the
e-services to be electronically contracted must be developed to be available during
e-contract establishment. They may have been developed before and just reused;

4. E-service feature model configuration: The e-service feature model is configured to
represent the exact e-services, from each organization, and QoS attributes to be
used in a specific integration between systems from two cooperative organizations;

5. Web service e-contract establishment: Using the e-service feature model configura-
tion, a Web service e-contract is defined by refining an e-contract template.

Stages 1, 2 and 3 are entirely carried out just once for the same contract domain,
i.e. preparing the integration between two types of organizations (or systems). Stages
4 and 5 are carried out entirely for each instance of a Web service e-contract between

Feature

name

Solitary
Feature

Feature
Cardinality

String
Value
name

name

Feature Group
Group Cardinality

Root
Feature

FDRefer-
ence

TypedValue

Contain-
ableByFG

Contain-
ableByF

Feature
Model

Grouped
Feature

Integer
Value
name

*

*

*

0..1

0..1

1*

Atribute

296 M. Fantinato, I.M. de S. Gimenes, and M.B.F. de Toledo

two specific organizations (or systems). During the execution of the last two stages,
the first three stages can be partially carried out again, when appropriate, to manage
further information not treated previously. The last two stages are executed knowing
the involved partners; therefore, this approach is not intended for dynamically estab-
lished business relationships.

Fig. 3 represents, by a class diagram, the artifacts produced and the relationship be-
tween them. The E-service feature model is the basic artifact from which a unique
Web service e-contract template is created and one or more E-service feature model
configurations (one for each desired integration between systems) are derived. The e-
contract template is created based also on the Support information artifact. For each
E-service feature model configuration, a specific Web service e-contract is estab-
lished. All the e-contracts are established based on the same e-contract template. All
the Web services implementing e-services of the feature model are referenced by the
Web service e-contract template. Only the Web services implementing e-services of
the feature model configuration are referenced by the corresponding e-contract.

Fig. 3. Artifacts relationship

The feature model represents only the e-services required for the integration be-
tween two systems. Further information for the creation of the e-contract template,
such as activities belonging to a single system that take part into the process and the
activity transitions, is grouped in the Support information artifact.

6 Case Study

This section presents a summary of a case study undertaken on a pseudo-real scenario
(i.e., not in a real organizational settings) to evaluate the approach above. In addition,
more details about each stage are discussed in the context of the case study. This case
study is based on the concepts of experimental software engineering and the evalua-
tion of software engineering methods and tools [40], [41].

6.1 Application Domain

The case study object is the integration between two Business and Operation Support
Systems (BOSS) [42] in the telecom context [43]. The systems are the following:

• Customer Relationship Management (CRM): System that manages the relationship
between customers and a telecom company. Its execution requires the integration
with other telecom BOSS systems such as: asset management, outside plant man-

Web service
e-contract template

Web service
e-contract

E-service feature
model configuration

E-service
feature model 1 1

1

1 1

1

* *

Web service

1

1
*

*

Support
information 1

1

 Web Service E-Contract Establishment Using Features 297

agement, workforce management, service rating, service billing, collection, dun-
ning and accounting;

• Dunning: System that supports customer debit charging which can involve actions
such as debit notification (by mail or by phone), service supply suspension (partial
or total) and legal actions.

The case study has considered that a telecom company (operating the CRM sys-
tem) outsourced the charging activities to another company (operating the Dunning
system) – creating an inter-organizational business process. Each system provides a
set of e-services to be used by the other and an e-contract is established to define the
details about the business agreement.

6.2 E-Service Feature Model Elaboration

In this stage, a feature model for each system involved in the collaboration is devel-
oped. In addition to high-level e-services, the feature model should describe QoS at-
tributes and functional specifications for each e-service. Fig. 4-a and Fig. 4-b show
the partial feature diagram representing e-services provided by the Dunning system to
the CRM system. These diagrams have been produced by the FeaturePlugin tool [44].

Fig. 4. Dunning e-service feature model. a) Dunning e-services / b) Dunning QoS attributes.

Mandatory, optional and alternative features specify common points and variabili-
ties related to e-service provision. The inherent flexibility of the feature metamodel
allows the definition of e-services in different ways. Rules have been defined to make
e-service specifications always uniform. These rules are described below and are pre-
sented as a Class Diagram in Fig. 5. Actually, Fig. 4-a and Fig. 4-b represent an in
stance of meta- model presented in Fig. 5.

298 M. Fantinato, I.M. de S. Gimenes, and M.B.F. de Toledo

1

1 1

e-service feature diagram

e-services qos-attributes

service-
group

service

service-
detail

attribute

no-
control

levelqos-
levels

1

1

1

1 1

1

11

1

1 1

1

1

0..* 1..* 1..*

1..*

0..*

0..*

0..1

1..*

2..*

0..*

monitoring

control

activity

Fig. 5. Hierarchical rules for e-service specification using features

1. Each e-service feature diagram consists of one root feature named e-services (Fig.
4-a) and, optionally, one root feature named qos-attributes (Fig. 4-b);

2. Features below e-services must be created using the three following types:
• service-group feature: represents a group or sub-group of e-services in the ser-

vice hierarchy – used to structuralize service information (e.g. Charge Ac-
tions);

• service feature: represents an e-service, which can be one of three subtypes: ac-
tivity – services representing business actions of the process (e.g. Action Applica-
tion), control – services representing process management actions (e.g. Action
Cancellation) and monitoring – services representing process query actions (e.g.
Charge Action Status Query);

• service-detail feature: represents additional information of an e-service (e.g.
Charge Action Types and its grouped features and sub-features).

3. Features below qos-attributes must be created using the three following types:
• attribute feature: represents a QoS attribute that must be set by e-services (e.g.

Reply Time). An attribute feature must have a feature group to contain only two
grouped features – no control and qos-levels;

• no-control feature: represents the option in which QoS attribute may be unde-
fined to a specific QoS attribute for a specific e-service;

• qos-levels feature: represents the QoS levels that can be defined for a specific
QoS attribute of a given e-service. A qos-levels feature must have a feature
group to contain its QoS level options;

• level feature: represents a specific QoS level that can be defined for one QoS at-
tribute (e.g. 15 seconds). One of the level features for a qos-levels feature can
have no predefined value, being represented by a TypedValued.

The qos-attributes root feature must be referenced by all the features of the service
type below the e-services root feature using the modularization mechanism (e.g., ref:
qos-attributes associated with Action Application). The original feature metamodel has
been extended to include an attribute that identifies the feature type according to the
previous two categories. Feature types are not noticeable in the diagram (Fig. 4-a and
Fig. 4-b) but they are presented elsewhere within the tool. The names given to fea-
tures may suggest their type.

 Web Service E-Contract Establishment Using Features 299

6.3 Web Service e-Contract Template Creation

In this stage, the Web service e-contract template associated with the e-service feature
model is created. The CrossFlow e-contract metamodel (Section 2.1) has been ex-
tended to incorporate the Web service technology. Process Description Language
(WfMC PDL) used in Process Model section was substituted by BPEL4WS (Business
Process Execution Language for Web Services) [45], a XML-based language. As
CrossFlow e-contracts are also based on XML, this change has been easily applied.
Other CrossFlow e-contract metamodel sections have not been changed.

Most of the information required to create the template comes directly from the
feature model, whereas any further information comes from the Support information
artifact. There is a guideline for the mapping between entities in the feature meta-
model and entities in the e-contract metamodel (in a one-to-one mapping basis). As
this mapping is not automatic yet, human support is needed to complete it. A brief de-
scription of this mapping guideline is described below.

• Concepts: major parameters defining contract concepts are based on features of the
service-detail type. Other parameters may be created using information from the
Support information artifact;

• Process Model: most of the activities in the business process are created from fea-
tures of the service type and activity subtype. Other activities (such as those be-
longing to a single system) and the activity transitions may be created using infor-
mation from the Support information artifact;

• Enactment Clauses: control and monitoring clauses are also created from features
of the service type, and control and monitoring subtypes – respectively, whereas
QoS clauses are created from features of the attribute type and its sub-features (no-
control, qos-level and level);

• Usage Clause: section not used in this case study;
• Description: section for free text.

All features in the feature model are considered when creating the e-contract tem-
plate (mandatory, optional and alternatives). As a result, a possibly large and generic
business process will be created, in which several integration types between the sys-
tems are considered. This generic process will be specialized during e-contract estab-
lishments according to the feature model configuration. The business process may be-
gin with a basic version and evolve while the e-contract template is used.

Fig. 6 presents two small parts of the template produced by the case study. The
first part belongs to the BPEL4WS-adapted Process Model section in which two ac-
tivities, applyChargeActions and revertChargeActionApplication (which are mapped to
the respective Web services defined elsewhere by WSDL descriptions), are defined
from the respective features in the feature model. The other part belongs to the En-
actment Clause section in which the QoS clause is defined (the QoS Reply Time is de-
fined for the applyChargeActions activity). All the possible QoS levels for this attrib-
ute are presented in the template, as they have not been selected yet.

Fig. 7 presents a graphical view of the generic business process defined in the
Web service e-contract template. Activities (and transitions) represented by solid
elements are related to mandatory features whereas the dashed ones are related to

300 M. Fantinato, I.M. de S. Gimenes, and M.B.F. de Toledo

optional or alternative features. Activities represented by gray-colored elements are
internal activities that are never invoked by other systems (not represented in the
feature model). Each feature of the service-group type can derive a process section.
Only the Charge Actions and Reversions are detailed whereas others, such as Ir-
regular Checks and Debit Parceling and Cancellation are just pointed out as other
process sections.

<invoke partner="dunning"
 portType="actionApplierPT"
 operation="applyChargeActions"
 inputContainer="customerInDebit"
 <target linkName"crm-to-dunning"/>
 <source linkName"dunning-to-crm"/>
</invoke>

<invoke partner="dunning"
 portType="actionReversionApplier"
 operation=" revertChargeActionApplication "
 inputContainer="actionToRevert"
 <target linkName"crm-to-dunning"/>
 <source linkName"dunning-to-crm"/>
</invoke>

(...)

<GoalExpression>
 <Condition>
 <ActRef ActID="applyChargeActions"/>
 <ParamRef ParamID="REPLY_TIME"/>None|5|15|30|Other
 </Condition>
</GoalExpression>

Fig. 6. Partial CRM-Dunning Web service e-contract template

Fig. 7. Partial CRM-Dunning generic business process

6.4 E-Service Feature Model Configuration

The two previous stages are executed before Web service e-contract establishment.
These produced artifacts may be reused in several situations involving business part-
ners with similar characteristics. These next two steps are executed for each specific
e-contract to be established.

The current stage corresponds to the main negotiation phase in which e-services
and related contractual details are chosen. Negotiation is carried out according to con-
figuration techniques for feature modeling [17]. Features representing mandatory e-

Treat
Customer

Debits

Apply
Charge
Actions

Register
Service
Order

Execute
Service
Order

Apply
Action

Reversion

Update
Action
Status

Update
Reversion

Status

Cancel
Action

Application

Cancel
Action

Reversion

Finalize
Action

Application

Finalize
Action

Reversion

Query
Action
Status

Query
Reversion

Status

Update
Customer

Status

Charge Actions and Reversions Irregular
Checks

Debit Parceling
and Cancellations C

R
M

D
u
n
n
i
n
g

 Web Service E-Contract Establishment Using Features 301

services are kept whereas optional and alternative features are chosen according to the
negotiation between the involved parts. Cardinalities restrictions must be satisfied.

Fig. 8-a and Fig. 8-b show the partial configuration of the e-service feature model
corresponding to the diagrams in Fig. 4-a and Fig. 4-b. Mandatory features reappear
selected whereas some optional and alternative features have been selected and others
have not. For example, Action Application (of service type) must be selected whereas
Charge Action Reversions (of service-group type) and, consequently, its sub-features,
are not selected, although they could have been. Moreover, only some features of the
Charge Action Types (of service-detail type) have been selected as they correspond to
the types of charging actions to be contracted.

Fig. 8. Dunning e-service feature model configuration a) E-services / b) QoS attributes

Features representing QoS attributes should also be configured. References to the
qos-attributes root feature are created the features of service type (Fig. 8.b). QoS at-
tribute configuration is carried out for all features that have this reference. For ex-
ample, the QoS level “15 seconds” has been chosen for the Action Application e-
service.

6.5 Web Service e-Contract Establishment

In this stage, the Web service e-contract template is refined to completion considering
the e-service feature model configured in the previous stage. In this stage, pending de-
tails are defined and information not required are removed from the contract.

Fig. 9 shows the partial Web service e-contract corresponding to the template in
Fig. 6. Considering that the feature Charge Action Reversions has not been selected in
the e-service feature model configuration, the corresponding activity (RevertCharge-

302 M. Fantinato, I.M. de S. Gimenes, and M.B.F. de Toledo

ActionApplication) does not appear in the e-contract. For the QoS Reply Time attribute,
only the selected level during the configuration (“15 seconds”) appears in the estab-
lished e-contract.

<invoke partner="dunning"
 portType="actionApplierPT"
 operation="applyChargeActions"
 inputContainer="customerInDebit"
 <target linkName"crm-to-dunning"/>
 <source linkName"dunning-to-crm"/>
</invoke>

(...)

<GoalExpression>
 <Condition>
 <ActRef ActID="applyChargeActions"/>
 <ParamRef ParamID="REPLY_TIME"/>15
 </Condition>
</GoalExpression>

Fig. 9. Partial CRM-Dunning Web service e-contract

Fig. 10 presents a graphical view of the specific business process defined in the
Web service e-contract. It has been created based on the generic process (Fig. 7). This
process contains only the activities related to the mandatory features or the optional
and alternative features that have been selected during feature model configuration.

Fig. 10. Partial CRM-Dunning specific business process

During Web service e-contract establishments, unforeseen information such as new
activities, new e-services or transitions might be required. In this case, artifacts used
in the establishment of e-contracts (feature model and e-contract template) may be
updated to include this information. This facility allows reuse during the establish-
ment of other e-contracts. After the last stage, the established Web service e-contract
may be released and used by BPMSs.

7 Lessons Learned

This section presents the lessons learned from the development and the exercising of
the feature-based approach to e-contract establishment.

• E-service representation: The feature modeling technique has been considered suit-
able for the representation of e-services and QoS attributes. The metamodel flexi-
bility has allowed the use of specific rules for e-services specification. Modulariza-

Treat
Customer

Debits

Apply
Charge
Actions

Register
Service
Order

Execute
Service
Order

Update
Action
Status

Cancel
Action

Application

Finalize
Action

Application

Query
Action
Status

Update
Customer

Status

Charge Actions and Reversions

C R M

Dunning

 Web Service E-Contract Establishment Using Features 303

tion facilities have been particularly useful for QoS attributes specification. Even if
the produced artifacts are not reused, the application of feature models to e-service
allows structured representation that is useful per se. With the support tool it has
been possible to add new properties into the feature model and extend the meta-
model used in the case study.

• Web service e-contract establishment: The metamodel used includes the most rele-
vant items required in an e-contract. The e-contract well-defined structure shows
the potential reuse in this application domain. The metamodel has been easily ex-
tended to incorporate the Web service technology since the metamodel and
BPEL4WS are both XML-based. BPEL4WS has been considered rather complete
and consistent, simplifying the e-contract template creation. Some restrictions have
been found in the QoS attributes subsection of the XML specification, which have
been adapted to make possible a better interpretation by BPMS.

• Metamodels mapping: It has been identified a direct mapping between elements in
feature and e-contract metamodels. Some rules have been defined to map the fea-
tures representing e-service information to elements in e-contract sections. These
rules have proved to be suitable. However, human intervention has been necessary
to complete the mapping.

• Approach contributions: The case study has demonstrated that the use of feature
models during the establishment of Web service e-contracts makes them easier to
understand, simple and systematic. The approach improves information and artifact
reuse; and allows a quicker contract establishment. Common points and variabili-
ties provided by feature modeling represent e-services in a controlled and struc-
tured way. Distinct stakeholders, at different levels, can benefit from the proposed
approach. The e-service feature model can be understood as a Web service e-
contract configuration space – depending on the choices made during feature
model configurations, different and specific e-contracts are established.

8 Conclusions and Future Work

In this paper, a new approach to e-contract establishment based on feature modeling is
proposed. Its main contribution is allowing a better management of common and vari-
able points found in similar Web service e-contracts and information reuse in a sys-
tematic way. Such improvement is achieved by the use of e-contract templates associ-
ated with feature models. Inspired by the software product line context, the proposed
approach can be seen as a kind of e-contract product line. The feasibility of the pro-
posed approach has been shown by a case study carried out within the telecom con-
text and based on experimental software engineering concepts.

Future work includes: a detailed evaluation of the actual possibilities and advan-
tages in extending feature models to incorporate some characteristics offered by com-
puting ontologies, in the e-contract context; the automated support for the elaboration
of Web service e-contract templates and e-contracts based on e-service feature models
and feature model configurations (mainly for the automatic mapping between meta-
models); and the adoption of specific QoS mechanisms applied to Web services –
such as WS-Agreement or WS-Policy standards, aiming at enhancing the adherence
between e-contract metamodels subsections.

304 M. Fantinato, I.M. de S. Gimenes, and M.B.F. de Toledo

Acknowledgements

This work was partially supported by CAPES, CNPq, FAPESP and Araucaria
Foundation.

References

[1] U. Dayal, M., and R. Ladin, “Business Process Coordination: State of the Art, Trends,
and Open Issues”, VLBD 2001, Morgan Kaufmann, Italy, 2001, pp. 3-13.

[2] F. Leymann, D. Roller, and M.-T. Schmidt, “Web services and business process man-
agement”, IBM Systems Journal, 41(2), IBM Press, 2002, pp. 198-211.

[3] M. Papazoglou, and D. Georgakopoulos, “ServiceOriented Computing”, Communications
of the ACM: ServiceOriented Computing, 46(10), ACM Press, 2003, pp. 24-28.

[4] Web Services. http://www.w3.org/2002/ws/.
[5] Web Services Description Language (WSDL). http://www.w3.org/TR/wsdl.
[6] UDDI.org. http://www.uddi.org.
[7] SOAP Specifications. http://www.w3.org/TR/SOAP.
[8] Y. Hoffner, S. Field, P. Grefen and H. Ludwig, “Contract-Driven Creation and Operation of

Virtual Enterprises”, Computer Networks, The International Journal of Computer and Tele-
communications Networking, North Holland, Volume 37, pp. 111-136, September 2001.

[9] D.K.W. Chiu, S-C Cheung, and S. Till, “A Three Layer Architecture for E-Contract En-
forcement in an E-Service Environment”, HICSS 2003, USA, 2003.

[10] M. Rouached, O. Perring and C. Godart, “A Contract Layered Architecture for Regulat-
ing Cross-Organisational Business Processes”, BPM 2005, Springer, 2005, pp. 410-415.

[11] P.R. Krishna, K. Karlapalem, A.R.Dani, “From Contract to E-Contracts: Modeling and
Enactment”, Information Technology and Management, 6(4), 2005, pp. 363-387.

[12] O. von Susani and P. Dugerdil, “Contract-Based Cross-Organizational Automated Proc-
esses”, IEEE CEC 2005, IEEE Computer Society, 2005, pp. 540-543.

[13] A. Keller and H. Ludwig, “The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services”, Journal of Network and Systems Management,
11(1), Springer, 2003, pp. 57-81.

[14] V. Tosic, “On Comprehensive Contractual Descriptions of Web Services”, IEEE Int.
Conf. On e-Technology, e-Commerce and e-Service, 2005, pp.444-449.

[15] M. Fantinato, M.B.F. de Toledo and I.M.S. Gimenes, “A Feature-based Approach to
Electronic Contracts”, IEEE Joint Conference on E-Commerce Technology (CEC'06) and
Enterprise Computing, E-Commerce and E-Services (EEE'06), 2006.

[16] SEI – Software Engineering Institute, “A Framework for Software Product Line Practice”
Version 4.2, http://www.sei.cmu.edu/productlines/framework.html, Pittsburgh.

[17] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged Configuration through Specializa-
tion and Multi-Level Configuration of Feature Models”, Software Process Improv. and
Practice, 10(2), John Wiley & Sons, 2005, pp. 143-169.

[18] E.A. Oliveira Junior et. al., “A Variability Management Process for Software Product
Lines”, CASCON 2005, IBM Press, Canada, 2005.

[19] K. Kang et. al., “Feature-Oriented Domain Analysis (FODA) Feasibility Study”, Techni-
cal Report CMU/SEI-90-TR-021, SEI/CMU, Pittsburgh, 1990.

[20] K.C. Kang et. al., “FORM: A Feature-Oriented Reuse Method with Domain-Specific Ref-
erence Architectures”, Annals of Soft. Engin., Vol. 5, Springer, 1998, pp. 143-168.

[21] V. Cechticky et. al., “XML-Based Feature Modelling”, ICSR 2004, Springer, Spain,
2004, pp. 101-114.

 Web Service E-Contract Establishment Using Features 305

[22] P. Sochos, I. Philippow, and M. Riebisch, “Feature-Oriented Development of Software
Product Lines: Mapping Feature Models to the Architecture”, Net.ObjectDays 2004,
2004.

[23] M. Griss. “Implementing Product-Line Features with Component Reuse”, ICSR 2000,
Springer, Austria, 2000, pp. 137-152.

[24] T. R. Gruber. “A translation approach to portable ontologies”. Knowledge Acquisition,
5(2):199-220, 1993.

[25] OWL Web Ontology Language Overview Web site. http://www.w3.org/TR/owl-features/.
[26] W. Streitberger, “Framework for the Negotiation of Electronic Contracts in E-Business

on Demand”, IEEE CEC 2005, IEEE Computer Society, 2005, pp. 370-373.
[27] S. Rinderle and M. Benyoucef, “Towards the Automation of E-Negotiation Processes Based

on Web Services - A Modeling Approach”, WISE 2005, Springer, 2005, pp. 443-453.
[28] A. Jertila and M. Schoop, “Electronic Contracts in Negotiation Support Systems: Chal-

lenges, Design and Implementation”, IEEE CEC 2005, IEEE Comp.Soc., 2005, pp.
396-399.

[29] A. Andrieux et. al., “Web Services Agreement Specification (WS-Agreement).
https://forge.gridforum.org/projects/graap-wg/document/WS-
AgreementSpecificationDraft. doc/en/10. 2006.

[30] N. Oldham et. al., “Semantic WS-Agreement Partner Selection”, 15th International World
Wide Web Conference (WWW2006), ACM, 2006.

[31] S. Bajaj et. al., “Web Services Policy Framework (WS-Policy)”, http://
download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-polfram/ws-policy-2006-
03-01.pdf.

[32] L. Baresi, S. Guinea and P. Plebani, “WS-Policy for Service Monitoring”, 6th VLDB
Workshop on Technologies for E-Services (VLDB-TES'05), 2005.

[33] O. Marjanovic and Z. Milosevic, “Towards Formal Modeling of e-Contracts”, EDOC
2001, IEEE Computer Society, USA, 2001, pp. 59-68.

[34] A. Sahai et. al., “Automated SLA Monitoring for Web Services”, DSON 2002, Springer,
Canada, 2002, pp. 28-41.

[35] D.A. Menasce, “QoS Issues in Web Services”, IEEE Internet Computing, 6(6), pp. 72-75,
Nov/Dec, 2002.

[36] CrossFlow Web site. http://www.crossflow.org.
[37] WfMC Web site. http://www.wfmc.org.
[38] IBM Rational RequisitePro Web site. http://www-306.ibm.com/software/awdtools/

reqpro.
[39] H. Wang, L. Y. Fang, J. Sun, H. Zhang and J. Z. Pan. “A Semantic Web Approach to

Feature Modeling and Verification”, SWESE, 2005.
[40] B. Kitchenham, L. Pickard, and S. Lawrence Pfleeger, “Case Studies for Method and

Tool Evaluation”, IEEE Software, 12(4), IEEE Computer Society, 1995, pp. 52-62.
[41] S.L. Pfleeger, “Experimental design and analysis in software engineering: Part 2: how to

set up and experiment”, ACM SIGSOFT Soft. Eng. Notes, 20(1), 1995, pp. 22-26.
[42] K. Terplan, “OSS Essentials: Support System Solutions for Service Providers”, John

Wiley & Sons, USA, 2001.
[43] J. Hunter and M. Thiebaud, “Telecommunications Billing Systems – Implementing and

Upgrading for Profitability”, McGraw-Hill, USA, 2003.
[44] M. Antkiewicz and K. Czarnecki, “FeaturePlugin: Feature Modeling Plug-in for Eclipse”,

Workshop on Eclipse Technology Exchange, ACM Press, Canada, 2004, pp. 67-72.
[45] Business Process Execution Language for Web Services (BPEL4WS). http://www-128.

ibm.com/developerworks/library/specification/ws-bpel/.

A Redesign Framework for Call Centers

M.H. Jansen-Vullers, M. Netjes, H.A. Reijers, and M.J. Stegeman

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

{m.h.jansen-vullers, m.netjes, h.a.reijers}@tm.tue.nl,
m.j.stegeman@student.tue.nl

Abstract. An important shortcoming in the Business Process Redesign
(BPR) literature is the lack of concrete guidance on how to improve an
existing business process. Our earlier work has aimed at filling this gap
by identifying a set of BPR best practices. This paper takes a further step
by showing how a set of best practices can be used to derive a redesign
framework for a specific domain, in this case for call centers. Such a
framework identifies the various available design options and specifies the
relevant performance characteristics. To evaluate concrete design config-
urations (i.e., coherent combinations of design choices) we use a formal
modelling approach based on Petri nets and the simulation tool CPN-
Tools. An industrial case study is used to gather relevant context data.
We expect that this work helps researchers and practitioners to optimize
the performance of actual call centers and to set up similar frameworks
for other domains.

Keywords: Business Process Redesign, Call centers, Simulation, Petri
nets.

1 Introduction

There is a strong movement in BPM research to identify recurring problems and
their solutions, e.g. with respect to process modelling [1] and data processing
[22]. Earlier, similar explorations of patterns and best practices have taken place
in architecture [2], business planning [13], health care [8], software development
[5], and manufacturing [7]. It could be argued that such attempts are signs of
a research field to become more mature, as its shifts attention from the specific
and concrete to the general and abstract.

One particular research field within BPM that would be served by a more sci-
entific approach is that of Business Process Redesign (BPR). BPR is concerned
with optimizing the structure of a business process and exploiting the opportu-
nities that IT provides hereto [4]. As many authors have argued [16,24,28], there
is little concrete guidance to be found in the great numbers of BPR publica-
tions on how to actually turn an existing process into a better performing one.
“Given the prominence of BPR in recent years”, say Melao and Pidd [15], “such
superficiality is a little puzzling.”

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 306–321, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Redesign Framework for Call Centers 307

In our earlier work, we presented a set of 29 best practices for process redesign
[21], as distilled from documented cases (e.g. [9]), earlier approaches towards
identifying best practices (e.g. [18], and our own BPR experience (see [20]).
For example, the ‘order assignment’ best practice states that a worker should
perform as many steps as possible for the same order, as this will positively
affect the quality of the work. The set of best practices was validated through
case studies and a large survey among experienced BPR practitioners [12].

Although such a collection of BPR best practices fits the desirable trend to
identify solutions for recurring problems, it has some limitations. First of all, the
best practices concerned are evaluated with respect to rather abstract notions of
cost, quality, flexibility, and time. This makes it difficult to predict the impact
of applying a best practice in a concrete situation. Moreover, skilful efforts are
still required to adapt best practices to make them fit a particular context of the
recurring problem. For example, the options for one particular worker to execute
a number of steps in a financial business process are different from those in a
health care setting.

In this paper we will demonstrate how this generic list of best patterns can be
used to develop a domain-specific redesign framework. Such a framework offers:

1. the relevant process design options that are available for generating specific
designs in such a domain

2. the concrete performance characteristics that are considered relevant in this
domain,

3. the means to accurately predict the actual performance for a specific design
configuration with respect to such characteristics.

For the development of a redesign framework, we turn towards the field
of call centers. Call centers have received a wide share of research attention
[6,14,23,25,26,27,30,31]. A very apparent best practice that is relevant in this
domain is that of finding the right mix of specialists and generalists. Compared
to generalists, specialists are expected to be fast and reliable, deliver good qual-
ity, etc. On the other hand, it takes time and cost to become a specialist, and
a specialist can handle only particular types of cases or perform only particular
tasks of an individual case.

For the evaluation component of the framework, we propose the use of dis-
crete event simulation. In particular, we used the software package CPN Tools
version 2.0.0 [10,29]. Literature revealed that both queueing theory and simu-
lation models are applied in this area [6]. Queueing models have the advantage
of being able to find optimal staffing levels, but the disadvantage that a real-
istic call center process is too complex to be modelled in an adequate manner.
Simulation models can be arbitrarily complex while yielding good results. The
price to be paid, however, is that the result is merely a comparison of several
scenarios instead of the optimal scenario.

Our research method has been to first study the wide field of literature related
to the subject of optimizing call centers. Our set of best practices was then used
as a lens to consider the recurring solutions from the various specific redesign
actions. This has led to a number of best practices with their specific application

308 M.H. Jansen-Vullers et al.

in the domain. Next, we enriched this selection (1) by extending the observed
ways of adapting best practices towards a wider set of conceivable solutions and
(2) by incorporating best practices that we did not see applied in the call center
domain so far (but seem attractive). In taking these steps, a list of domain-
specific design options emerged that sets the stage for creating concrete design
configurations, i.e. a combination of concrete choices with respect to the design
options. Independent from this path, we identified important performance char-
acteristics from the call center literature, e.g. abandonment rates and numbers
of handled calls. Finally, we used simulation to determine the performance of
several design configurations under some realistic scenarios. To give the design
configurations a realistic content, we used the actual data we gathered from a
case study we performed at a large Dutch call center (e.g. intensity of calls,
staffing levels, etc.). Obviously, these data could be replaced with information
from other concrete call centers.

The structure of our paper is now as follows. In Section 2, we review the
existing literature on call centers. This review results in an overview of best
practices that can be observed in call center settings and a set of relevant per-
formance characteristics. In Section 3, we present the various design options that
result from a wider consideration of the various best practices. Next, in Section
4, we describe an industrial call center, which is used to provide the context
information for the redesign framework. In Section 5, we will present a set of
design configurations, which are being evaluated using simulation. Finally, we
will present our conclusions and ideas for future work.

2 Related Work

In this section we describe the related work to redesign call center processes. We
first provide an overview of call centers in literature. Then we elaborate the call
center processes from the viewpoint of redesign best practices. We conclude this
section with an overview of performance management in call centers.

2.1 Call Centers in Literature

Call centers are a fruitful domain for many research disciplines. Mandelbaum
published an extensive overview of call center literature in many different areas,
such as operations research, consumer and agent psychology, management mod-
els, etc. [11]. Starting from this overview, we researched literature on staffing
levels in multiple skill inbound call centers [27]. In the area of analytical models,
a lot of models have been developed for generalists, specialists and cross-trained
workers. An example of this type of models is the gatekeeper model [25].

Figure 1 represents this call center model that uses the principles of gatekeep-
ers and referrals to characterize the difference between generalists and specialists.
The authors conclude that the performance of a call center and the behavior of
an agent (gatekeeper) mainly depend on the prescribed referral rate (the rate at
which work is routed from generalists to specialists). If a call is too difficult to

A Redesign Framework for Call Centers 309

gatekeeper
diagnosis

gatekeeper
treatment

specialist
treatment

customer
exits

customer
exits

customer
enters

k

1-F(k)

immediate
referral
(1-k)

system boundary

treatment
incorrect
(k-F(k)

Fig. 1. Gatekeeper and referral configuration of a call center [25]

be handled and solved by the gatekeeper, he or she refers the call to a special-
ist. The authors call it a triage system, because customers first interact with a
generalist who determines whether the attention of a specialist is required.

Another view on the call center process is provided, e.g., by Zapf [30,31].
He uses a Petri-net kind of model to represent the process in a call center, see
Figure 2. Calls flow from left to right through the model, being processed by
tasks Register, C lassify and H andle. Resources are assigned to (a set of) tasks,
and are either Generalists or Specialists with skill i. The difference with the
previous representation of a call center process is the distinction between two
types of requests (standard and special) which are handled both in a different
way. The difficulty of a service request is known upfront in this case. Standard
requests are classified and handled by generalists and special requests are first
classified by generalists and then handled by specialists.

R HC

R HC

G S1 Sn

First line Second line
Standard

Special

Fig. 2. Two-level design of a call center process, based on [31]

2.2 Redesign Best Practices in Call Centers

The literature on call centers revealed a number of design options, which we now
describe from a best practices viewpoint. The best practices are given in italics.

310 M.H. Jansen-Vullers et al.

The distinction between standard and special case types [21] is quite common
but may not be that strict for the incoming calls at a call center and may be
unknown upfront. Some calls can be classified as standard calls because they
are relatively easy to solve by the generalists in the 1st line. Some calls are
sent straight away to the 2nd line. In addition to this distinction of case types,
a distinction between synchronous and asynchronous requests can be defined
[30]. The notion of different case types enables a distinction of different routings
per case type. This kind of specialization of a more general routing is called
triage [21].

The distinction of 1st line and 2nd line operations is based on the principle
of task composition [21] and refers to one of the two basic designs of a call
center: the one-level design and the two-level design. These designs come from
the fact that the process in a call center consists of a limited number of steps:
registration, classification and handling of requests. This does not leave much
room for variation in task composition, if one considers that registration and
classification may be done implicitly when (trying to) handle the case.

The application of task automation [21] is encountered in the form of auto-
mated call distributers (ACDs). Application of ACD tools and techniques sup-
ports or even executes the task of classification of a call, which may also lead to
contact reduction [21].

Finally, the distinction between generalists and specialists [21] is frequently
encountered. A generalist is considered to be able to handle all standard calls
whereas a specialist can handle all calls. Note that also other definitions exist,
e.g. a generalist can handle all calls whereas a specialist can handle only one par-
ticular type of calls. In this context, also cross-trained workers can be recognized,
being able to handle a set of call types.

Summarizing, when looking to call center literature from the viewpoint of
redesign best practices, we found the following best practices (though never
combined in one approach):

– case types: standard/special and synchronous/aynchonous
– triage: based on the two kinds of case types, different routings may be defined
– task composition: one level and two-level designs
– task automation, i.e. an ACD menu
– generalist/specialist: consider different skill sets for cross-trained workers.

2.3 Performance Measurement in Call Centers

A last topic we would like to highlight is related to performance characteristics in
call centers. Many papers in call center literature focus on specific performance
characteristics, e.g. the number of lost calls or the throughput time. Generally,
four main dimensions are distinguished in the effects of (re)design measures:
time, cost, quality and flexibility. The trade-off that has to be made between
the different dimensions is often difficult. Usually, an improvement along one
dimension comes at the expense of another. Brand and Van der Kolk clarify this
with the devil’s quadrangle [3].

A Redesign Framework for Call Centers 311

Amongst others, Zapf and Heinzl provide an extensive overview on perfor-
mance characteristics for call centers [31]. They distinguish quality objectives
and efficiency objectives. Based on their paper, we defined the following perfor-
mance characteristics:

– Service level, i.e. the number of answered calls divided by the sum of the
numbers of answered and lost calls.

– Speed of answer, i.e. the average time before a call can be accepted.
– Throughput time, i.e. the overall time a call is ‘open’, including both service

time and waiting time. We distinguish throughput time of standard requests
and special requests.

– Labor costs, i.e. resource allocation times salary. Labor costs may account
up to 60 percent of a call center’s total operating costs.

3 Mapping onto Process Designs

In the previous section we have seen that several papers focus on the redesign of
call centers, though a structured approach is lacking here. Elements in existing
approaches are the distinction of one-level and two-level designs on the one
hand and synchronous and asynchronous requests on the other. Furthermore,
some authors distinguish standard and special requests, and some distinguish
several case types. However, a combination and integration of those approaches
is lacking. In this section, we will look at the redesign best practices as already
encountered in literature, extend them in a wider set of solutions and finally
incorporate other fruitful best practices [12].

Task Composition
Starting point of our redesigns is the distinction between one-level designs and
two-level designs. On top of this, we are able to add a number of best practices,
which are elaborated below.

Introduction of Case Types and Triage
The definition of standard versus special requests is usually defined based on the
complexity of the request. This means that the required skill set is the same for
both standard and special requests, though the skills for special requests require
a more advanced level. A more detailed classification of case types may be based
on the content of a request, e.g., the ACD type in a call center. In many cases a
strong correlation exists between complexity of the case and the case type based
on contents. For one group, the referral rate may be more than 90% whereas
the referral rate of the other group may be less than 10%. Finally, one can
distinguish between synchronous and asynchronous requests. Both types can be
subdivided into standard/special or per ACD type. Recognizing a division into
case types, enables the consideration of alternative process designs per (group
of) case type(s); this is called triage. This can be applied on all one-level and
two-level designs.

312 M.H. Jansen-Vullers et al.

Introduction of Generalist - Specialist Dilemma
An example of triage can be encountered when assigning generalists and special-
ists based on different case types, in this domain by (groups of) ACD type. A
special case is the division into two groups: standard and special. Note that sev-
eral definitions of ‘specialist’ exist. In some definitions or domains, a specialist
has the same skills as a generalist, but on a more advanced level. In that case,
specialists are homogeneous. In other cases or domains, a specialist implies that
he has only one particular skill on an advanced level, whereas other specialists
have different advanced skills. As a results, the specialists form an heterogeneous
resource group. We may apply the generalist-specialist dilemma in a one-level
design and in a two level design both in the 1st and 2nd line.

Introduction of Task Automation and Contact Reduction
If specialists are introduced in the 1st line or calls are directly forwarded to
specialists in the 2nd line, a mechanism needs to be introduced in order to decide
to which specialist queue the call should be added. One way to do so is by
introducing automation. In the 1st line this is commonly known as the ACD
menu, an alternative counterpart for the 2nd line should be introduced in addition
to this automated menu. If calls are either completely handled in the 1st line or
in the 2nd line, contact reduction has been realized as well.

Apart from a black and white division of those who can do all tasks and cases
and those who can do only one task or case type, we introduce cross-trained
workers. When considering Figure 2, this may include more generalist resources
in the 2nd line, but we may also consider introducing more specialized workers
in the 1st line.

Introduction of Flexibility
In a homogeneous setting, the selection of a suitable resource is trivial. However,
in a heterogeneous setting, we may have a choice either to select a specialist or
any of the cross trained workers for a particular task. Flexibility means that we
want to keep as much options open as possible [17]. In a random assignment
procedure for task A, one may assign a resource with skills A and B instead of
a resource with only skill A. As a result, a subsequent assignment for task B is
not possible anymore. Several strategies can be introduced to increase flexibility
and to optimize process performance. In this paper, we assign the resource that
has the required skill and is the most specialized resource available.

Introduction of Additional Resources
A very simple measure to improve process performance is to add resources to
the existing staffing level. The additional costs can be calculated quite easily
and the benefits in terms of time and flexibility can be determined. Apart from
increasing the current staffing level, one may consider to move staff from one
resource group to another, e.g., from the 2nd line to 1st line, or the other way
around, or even to another group of cross trained workers. These movements
may be permanent but also temporary, e.g. during peak hours.

By reviewing the redesign best practices, we are now able to create a large set
of possible process designs which can be evaluated for any setting of a concrete

A Redesign Framework for Call Centers 313

call center. In addition to the individual best practices encountered in (both
queuing theory and simulation!) literature, we contributed

– integration of currently applied best practices in one approach
– fine-grained application of generalist/specialist and triage best practices
– addition of flexibility best practice
– addition of additional resources best practice.

4 Case Study: The IT Help Desk

Within a large Dutch call center we have performed a case study at the IT help
desk. The IT help desk provides IT support to 4,000 employees which contact the
IT help desk when they have IT related problems or questions. The IT help desk
can be described by some typologies or terminologies that are used in literature
to characterize call centers [27]. In this section we will describe the process, the
characteristics and the parameters of the IT help desk.

4.1 The Process

In this subsection the IT help desk process will be explained. As shown in Fig-
ure 3 the IT help desk process begins with the arrival of calls. The incoming
communication channels are synchronous (telephone, personal contact) as well
as asynchronous (mail, fax). Most calls enter the process by telephone and callers
go through an Automated Call Distributor (ACD) before speaking to an agent.
With the ACD, the caller chooses a type of problem from a menu, after which the
ACD leads the call to a suitable agent. Callers have to wait for the availability
of an agent and during this queueing process they may decide to hang up. The
IT help desk consists of a 1st line and a 2nd line. All calls enter the 1st line
which is taken care of by agents that can handle all ACD options from the
menu. The 1st line agents are generalists and the ACD is just used as part of
the communication infrastructure and a recording tool for historic data on calls
and agents. The ACD database, AVAYA, allows for access to the database and
designing all kinds of ACD types and call reports.

An incoming call will be classified by a 1st line generalist and served and
solved right away if possible. If the call turns out to be too difficult, it will be
forwarded to an agent in the 2nd line. The agents in the 2nd line are called
specialists and can only handle specific tasks or problems. Specialists in the 2nd

line are heterogeneous, a specialist with skill A cannot replace another specialist
with skill B. This resembles the idea of process partitioning [31]. A specialist in
the 2nd line may reroute the call to another specialist when necessary or send it
to a 3rd line. This 3rd line is outside the scope of this case study.

4.2 The Characteristics and Parameters

The historic data present in the AVAYA database has been analyzed to make
reliable estimations and predictions on the required input parameters for the

314 M.H. Jansen-Vullers et al.

Service
2nd line

Service 2nd line

arrivals

Arrivals

Service
1st line

Service 1st line

queueing
process

queueing process

ACD
menu

ACD menu

CALL

solved 2nd

CALLCALL

to 1st line

CALLX16

CALL

to ACD
menu

CALL

to 2nd
line

CALL

to queue

CALLACD menu queueing process

Service 1st line

Arrivals

Service 2nd line

solved 1st

aband

to 3rd

Fig. 3. Overview of the (executable) process model of the IT help desk

modelling of the IT help desk process. We analyzed the number of calls for each
call type and the routing of calls through the process. We also analyzed arrival,
waiting and service times and agent availability. One whole year of historic data
has been used for these analyses.

Calls are routed through the IT help desk process as illustrated in Figure 3.
The call center process starts with incoming calls. Based on our analyses we
distinguish two basic types of calls: incidents and requests for information. The
percentage of incident calls that was registered is determined at 72%. Further-
more 30% of incidents and 93% of information requests is solved immediately by
a 1st line agent. From these percentages we derive that almost all information
requests are handled in the 1st line which makes them standard calls. For similar
reasons we perceive the incident calls as special calls which are classified in the
1st line and handled by the 2nd line. The inter-arrival rate of calls (the number
of seconds between each call) is stored in the AVAYA database in time blocks of
30 minutes. Our analysis showed no patterns or trends over the months or the
years in terms of incoming calls. However, the number of calls in the time blocks
is different per day and week and this is modelled in detail.

Before a call is answered, the caller is waiting in a queue. While in the queue,
the caller may become impatient, leading to an abandoned call. Approximately
80% of the callers is either not patient at all or, on the contrary, very willing to
wait for service. The fact that calls are abandoned is represented in the simulation
model by a function representing the patience of the caller. The abandonment
of calls is implemented in the IT help desk model with a parameter representing
the patience of the caller. When a call is serviced it will either be solved in the
1st line or it is forwarded to a specialist in the 2nd line. This specialist could
redistribute the call to another specialist or to the 3rd line when he is unable
to solve the problem or he could send the call back to the 1st line for further
registration.

In the 1st line an agent answers, registers, classifies and if possible solves
the call. The service of the call at the 1st line ends when an agent closes the
call or when he sends the call through for further service in the 2nd line. The
distribution of service times in the 1st line seems to be random. Every time block

A Redesign Framework for Call Centers 315

of the day and week may have a different number of available agents. Ten weeks
of detailed time block data has been used to determine averages for every time
block within the week. The time an agent is available to take a call is very likely
to be less than the time for which he is scheduled [19], because of coffee breaks,
trips to restrooms, etc. The detailed data of the ACD reports though, shows the
average number of agents that has been logged on the ACD per time block.

In the 2nd line, the agents are specialists and can handle one type of special
calls. Therefore, each specialist has its own capabilities and skills. We measured
the time spent on a call by specialist type. Also work schedules, pauses and
available time to handle calls have been collected to obtain the availability of
the 2nd line agents.

5 Simulations

Based on the general redesigns defined in Section 3 and the case described in
Section 4, this section focuses on the evaluation of particular redesigns. The
general redesigns are formulated per best practice; for a particular redesign we
combine these in an integrated set, e.g. we chose to apply cross-trained workers
in a one level design instead of in any of the two level designs. To compare a
particular redesign with an alternative, we use simulation. In this section, we
first describe our simulation approach, followed by the evaluation of a number
of process designs.

5.1 Simulation Scenarios

Each of the designs will be simulated for a number of scenario’s, e.g. average
arrival rate, overflow, etc. The previously defined designs have been implemented
in a CPN model and run in CPN Tools 2.0.0 [10]. The models have been verified
for structural correctness by a State space analysis, and have been validated
by comparing the simulation results with current numbers of performance and
output of the IT help desk. Current numbers were based on the design of the
current situation with the current settings of the IT help desk. These settings
included the arrival pattern, the distribution of case types and the number of
resources for the 1st and 2nd line.

Although the current settings are interesting to be compared for the defined
designs, we also added a number of different scenarios. In case the current settings
may change, we can consider the impact of alternative scenarios on a particular
design beforehand. We distinguished the following scenarios:

S1 current situation
S2 change in arrival pattern: number of cases increases with 75%
S3 number of special cases increases to 75%
S4 number of standard cases increases to 75%
S5 number of generalists has been reduced from 6 to 5
S6 number of specialists has been reduced from 16 to 15

316 M.H. Jansen-Vullers et al.

All simulations are run with a warm-up period of 8 weeks and a run length of
4 weeks for measurement purposes. The analysis is based on a non-terminating
simulation in a steady state, 30 replications per simulation. One simulation thus
included 30 replications of 12 weeks, taking about 20 minutes of computer time.
In total, we analyzed 6 scenarios for 10 different designs, i.e. 1800 replications.

Each of the performance characteristics has been implemented as a monitor
in CPN Tools [29]. We calculated the 95% reliability intervals to be able to com-
pare simulation results of different design/scenario combinations and to decide
whether discovered process improvements were significant.

5.2 Specialization in a One-Level Design

In this section, we created process models based on a one level design and two
request types: standard and special. We evaluate the generalist-specialist best
practice in three different designs: (1) one-level with only generalists who can
handle all requests, (2) one-level with only specialists who can handle only one
request type and (3) one-level design with cross-trained workers. In the design
with cross-trained workers, we created one group of heterogenous specialists
(1 advanced skill, total 11 skills) and two groups with partly the same skills
(standard requests) and partly different skills (5 resp. 6 advanced skills).

Comparison of the simulation results show that resource utilization is lower
in design 2, which can be explained by (too) high a number of lost calls. There-
fore design 2 is unacceptable in our case study. The service levels in design 1
and 3 are both within the service level agreements, even with an overload of
calls (scenario 2) or with an unfavorable unbalance of request types (scenario
3 and 4). Differences between scenarios within a design are not significant, but
differences in throughput time between the designs 1 and 3 for special calls are
significant. For a final evaluation, management of the call center should balance
the expensive design 1 with the less expensive design 3. Such a final assessment
is based on salaries of generalists versus cross-trained workers. Based on resource
utilization, the price of decreased throughput time can be calculated, especially
for special calls (see Table 1).

5.3 Task Composition

In this subsection we play with different task compositions, which may have
task automation or contact reduction as a side-effect. Simulation results are
obtained for three designs. In each of these designs standard requests are being
registered, classified and handled in the 1st line by generalists. Special requests
in these designs are treated as follows: (1) register and classify in the 1st line, (2)
only registration in the 1st line and (3) all steps are executed in the 2nd line. We
observed that the latter design resulted in low service levels, outside the service
level agreements. This can be explained by the relatively long service times in
the second line, causing long waiting lines and lost calls. The other two designs
have no significant difference in service levels, except for the overload scenario
which is handled significantly better in design 2. Average speed of answer is best

A Redesign Framework for Call Centers 317

Table 1. Simulation results of three one-level designs. Lower Bound (LB) and Upper
Bound (UB) are given for 95% reliability intervals.

design scenario service resource speed of throughput time throughput time
level utilization answer special calls standard calls

LB – AVG – UB LB – AVG – UB
1 1 100 0.342 0.000 1472-1489-1506 143-144-144
1 2 100 0.431 0.005 1468-1482-1496 144-145-145
1 3 100 0.282 0.000 1484-1513-1542 147-148-148
1 4 100 0.403 0.002 1474-1488-1502 133-134-135
1 5 100 0.354 0.000 1461-1482-1503 144-145-145
2 1 89 0.286 2.292 2488-2533-2578 146-147-148
2 2 85 0.339 3.533 2602-2637-2672 148-149-150
2 3 89 0.228 4.786 2413-2465-2517 152-153-154
2 4 83 0.313 1.670 2595-2645-2696 133-134-135
3 1 99 0.307 0.067 2414-2457-2500 143-144-145
3 2 98 0.377 0.277 2396-2440-2485 144-145-145
3 3 100 0.235 0.010 2324-2390-2408 148-149-149
3 4 97 0.369 0.509 2398-2439-2484 132-133-134
3 5 99 0.315 0.084 2391-2437-2483 144-145-146
3 6 99 0.307 0.145 2383-2423-2463 143-144-145

in designs 2 and 3. In design 2 this can be explained by the fact that resources are
no longer allowed to try to solve special requests, thus spending less time here.
In design 3, this can be explained by the fact that resource utilization is much
less than in other designs. This effect can also be observed in the throughput
times of standard and special requests for the three designs. Management of the
call center should decide whether the number of lost calls for design 3 can be
acceptable given lower operation costs. If this is not acceptable, design 2 seems
to be favorable over design 1.

5.4 Synchronous Versus Asynchronous Designs

When distinguishing synchronous requests from asynchronous requests, one needs
to decide whether these types should be handled differently. To evaluate this effect
we compare two designs. The first design is a two level design with standard and
special requests, the current situation of the IT help desk as described in Section
4. In this design, synchronous and asynchronous requests are handled the same
way. The second design differs only with respect to the treatment of asynchronous
requests, see Figure 4. We stress that this particular comparison is merely an il-
lustration; a similar distinction can be made in other designs, e.g. in a one-level
design or a design including cross-trained workers. Simulation results and final as-
sessment of trade-offs may be different due to different numbers of resources per
resource class and different cost of resource classes.

In terms of service level, the two designs perform both quite well in all sce-
narios. The resource utilization in the 1st line is higher for design 2, resource

318 M.H. Jansen-Vullers et al.

R HC

R HC

G

First line Second line

R HC

Standard

Special

Asynchronous

S1 Sn

Fig. 4. Two-level process design, with different routing for asynchronous calls

Table 2. Comparison of two two-level designs for asynchronous requests: (1) design 1
performs better, (2) design 2 performs better and (*) no significant difference

scenario service res. util. res. util. speed of throughput throughput
level 1st line 2nd line answer time (special) time (standard)

1 (*) (2) (1) (2) (*) (2)
2 (*) (2) (1) (2) (*) (2)
3 (*) (2) (1) (2) (*) (2)
4 (*) (2) (1) (2) (*) (2)
5 (*) (2) (1) (2) (*) (2)

utilization in the 2nd line is higher for design 1. The average speed of answering
is much better in design 2. Throughput times of special requests are a bit less in
design 1 (not significant) and throughput times of standard requests are better
in design 2 (significant). An overview is provided in Table 2.

5.5 Generalist-Specialist Dilemma and Flexibility

In Section 5.2 we compared three one-level designs to assess the added value of
cross-trained workers and specialists. We concluded that advanced skilled gen-
eralists perform better but might be very expensive. We observed that (slightly
less expensive) cross-trained workers already improved the call center perfor-
mance. In this section, we elaborate on the assignment of cross-trained workers.
We compare such assignments based on a random assignment procedure with
those based on a more flexible assignment, i.e. we assign the most specialized
resource.

For the one level design we simulate design 3 from Section 5.2 (random as-
signment) and compare the results with flexible assignment. For the two level
design, we adapted the design of the case study (Figure 2): the 16 specialists with
one skill are replaced by 8 specialists with 1 skill and 4 cross-trained workers

A Redesign Framework for Call Centers 319

with skills 1-4 and 4 cross-trained workers with skills 5-8. Again, we compared
random assignment with flexible assignment.

When analyzing the simulation results, little differences can be observed in
service level, resource utilization and speed of answer. An improvement, how-
ever, can be observed for the throughput time of special requests, especially in
scenario’s with an overload of special calls or with fewer resources.

6 Conclusion

In this paper, we had a look at call center design and redesign literature through
the lens of redesign best practices. We aimed at defining domain specific best
practices, thus supporting future redesigns in the domain. Call center literature
revealed that several best practices have been applied, but in different kinds of
approaches and without making use of structured integration of best practices.
Our approach resulted in a redesign framework for call centers which includes a
combination of best practices:

– task composition: one level and two-level designs
– case types: standard/special, synchronous/aynchonous and based on ACD

types.
– triage: based on the case types defined above, different routings may be

defined
– generalist/specialist: consider different skill sets, i.e. specialists (1 skill),

cross-trained workers (set of skills) and generalists (all skills). This can be
observed in one-level design and in a two-level design (2nd line) on an ad-
vanced level and in a two-level design (1st line) on a limited level.

– task automation: an ACD menu in the 1st line or an extended menu in the
2nd line may support optimal queuing, thus reducing redistribution in the
2nd line.

– flexibility: in any design with overlapping skill sets, a better algorithm than
random selection may improve process performance.

– task addition: adding resources or moving resources from one resource class
to another may reduce recource utilisation at particular moments and thus
improve lead times.

Based on the framework, favorable designs can be developed and compared
with discrete event simulation. In this way, trade-offs between operational costs
(resource utilization times salaries), throughput times, and service levels can
be quantified, in this way supporting management in making good redesign
decisions.

In future, our research will focus on the further development of process de-
signs. In the case study we showed that the application of cross-trained employ-
ees may be beneficial. It is obvious that a particular selection of skills for this
resource group will perform much better than other selections, depending on
the mix of request types that will enter the process. We aim to develop further
guidelines, e.g. based on analytical models on skill based routing, that can be

320 M.H. Jansen-Vullers et al.

integrated in the redesign framework for call centers. In addition, we would like
to extend our studies towards other domains, so that a deeper understanding of
the application of redesign best practices can be accomplished.

Acknowledgement

This research is supported by the Technology Foundation STW, applied sci-
ence division of NWO and the technology programme of the Dutch Ministry of
Economic Affairs.

References

1. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(3):5–51, 2003.

2. C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language: Towns, Build-
ings, Construction. Oxford University Press, New York, 1977.

3. N. Brand and H. van der Kolk. Workflow Analysis and Design. Kluwer Bedrijf-
swetenschappen, Deventer (in Dutch), 1995.

4. T.H. Davenport. Process Innovation: Reengineering Work through Information
Technology. Harvard Business School Press, Cambridge, Mass., 1993.

5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston, 1995.

6. N. Gans, G. Koole, and A. Mandelbaum. Telephone Call Centers: Tutorial, Re-
view and Research Prospects. Manufacturing & Service Operations Management,
5(2):79–141, 2003.

7. J. Golovin. Achieving stretch goals: best practices in manufacturing for the new
millennium. Prentice-Hall Editions, New York, 1997.

8. J.M. Grimshaw and I.T. Russell. Effect of clinical guidelines on medical practice:
a systematic review of rigorous evaluations. Lancet, 342(8883):1317–22, 1993.

9. M. Hammer and J. Champy. Reengineering the corporation:a manifesto for business
revolution. Harper Business Editions, New York, 1993.

10. L.M. Kristensen, S. Christensen, and K. Jensen. The Practicioner’s Guide to Col-
ored Petri Nets. International Journal on Software Tools for Technology Transfer,
2(2):98–132, 1998.

11. A. Mandelbaum. Call Centers. Research Bibliography with Abstracts. Down-
load from http://iew3.technion.ac.il/serveng/References/references.html, most re-
cent access March 25, 2006, Israel Institute of Technology (Technion), Haifa, 2004.

12. S. Limam Mansar and H.A. Reijers. Best Practices in Business Process Redesign:
Validation of a Redesign Framework. Computers in Industry, 56(5):457–471, 2005.

13. J. Martin. The best practice of business. John Martin Publishing, London, 1978.
14. V. Mehrotra and J. Fama. Call center simulation modelling: methods, challenges

and opportunities. In S. Chick, P.J. Sanchez, D. Ferrin, and D.J. Morrice, editors,
Proceedings of the 2003 Winter Simulation Conference, pages 135–143, 2003.

15. N. Melao and M. Pidd. Use of business process simulation: a survey of practitioners.
Journal of the Operations Research Society, 54(1):2–10, 2003.

16. J. Motwani, A. Kumar A, and J. Jiang. Business process reengineering: a theoret-
ical framework and an integrated model. International Journal of Operations &
Production Management, 18(9-10):964–77, 1998.

A Redesign Framework for Call Centers 321

17. M. Netjes, W.M.P. van der Aalst, and H.A. Reijers. Analysis of resource-
constrained processes with Colored Petri Nets. In K. Jensen, editor, Sixth Work-
shop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools
(CPN’ 05), volume 576. University of Arhus, Denmark, 2005.

18. J. Peppard and P. Rowland. The essence of business process reengineering.
Prentice-Hall Editions, New York, 1995.

19. J. Pitchitlamken, A. Deslauriers, P. l’Ecuyer, and A.N. Avramidis. Modelling and
simulation of a telephone call center. In S. Chick, P.J. Sanchez, D. Ferrin, and D.J.
Morrice, editors, Proceedings of the 2003 Winter Simulation Conference, pages
1805–1812, 2003.

20. H.A. Reijers. Design and Control of Workflow Processes: Business Process Manage-
ment for the Service Industry, volume 2617 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 2003.

21. H.A. Reijers and S. Limam Mansar. Best Practices in Business Process Redesign:
An Overview and Qualitative Evaluation of Successful Redesign Heuristics. Omega:
The International Journal of Management Science, 33(4):283–306, 2005.

22. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow
data patterns: Identification, Representation and Tool support. In L. Delcambre,
H.C. Mayr, J. Mylopoulos, and O. Pastor, editors, Proceedings of the 24th Int.
Conf. on Conceptual Modeling (ER05), volume 3716 of Lecture Notes in Computer
Science, pages 217–221. Springer-Verlag, Berlin, 2005.

23. A. Seidmann and A. Sundararajan. The effects of task and information asymmetry
on business process redesign. International Journal of Production Economics, 50(2-
3):117–128, 1997.

24. A. Sharp and P. McDermott. Workflow modeling: tools for process improvement
and application development. Artech Prentice-Hall Editions, Boston, 1997.

25. S.Hasija, E.J. Pinker, and R.A. Shumsky. Staffing and routing in a two-tier call
center. International Journal of Operational Research, 1(1-2):8–29, 2005.

26. R.A. Shumsky and E.J. Pinker. Gatekeepers and Referrals in Services. Management
Science, 49(7):839–856, 2003.

27. M.J. Stegeman and M.H. Jansen-Vullers. Determining optimal staffing levels in
multiple skill inbound call centers: a literature survey. Beta Reports 160, Eindhoven
University of Technology, Eindhoven, 2006.

28. G. Valiris and M. Glykas. Critical review of existing BPR methodologies. Business
Process Management Journal, 5(1):65–86, 1999.

29. L. Wells. Performance Analysis using Coloured Petri Nets. In A. Boukerche, S.K.
Das, and S. Majumdar, editors, Proceedings of the Tenth IEEE International Sym-
posium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS’02), pages 217–221. IEEE Computer Society, 2002.

30. M. Zapf. From the customer to the firm: ealuating generic service process designs
for incoming customer requests. Computers in Industry, 55(1):53–71, 2004.

31. M. Zapf and A. Heinzl. Evaluation of generic Process Design Patterns: an Ex-
perimental Study. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors,
Business Process Management: Models, techniques and Empirical Studies, volume
1806 of Lecture Notes in Computer Science, pages 83–98. Springer-Verlag, Berlin,
2000.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 322 – 337, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Building Business Process Driven Web Applications*

Victoria Torres and Vicente Pelechano

Department of Information System and Computation
Technical University of Valencia

Camí de Vera s/n 46022
Valencia, Spain

{vtorres, pele}@dsic.upv.es

Abstract. The Internet has turned to be one the most common platform for the
development of applications. In addition, sometimes the specification of these
applications is given to web developers in the form of Business Processes (BP),
and from this specification they are asked to develop the corresponding Web
Application. In this situation, Web Engineering Methods should provide a way
in which these specifications could be taken and be transformed into a Web
Application that gives support to the process execution. Furthermore, when we
are talking about B2B applications, we have to take into account that these BP
usually involve the use of distributed functionality where different partners
collaborate to accomplish an agreed goal. Therefore, in this work we provide a
method for the automatic generation of Web Applications that give support to
BP specifications. For this purpose, we generate from a BP definition the
Navigation (web pages) and the WS-BPEL executable description that
implements the entire process.

1 Introduction

The Internet has turned to be the most common platform for the development of
business applications. This is due to the fact that many organizations and companies
are already providing their functionality by means of Web Service technology.
Moreover, sometimes the description of these business applications is highly tied to a
Business Process (BP) definition, and hence the objective of these applications is not
only information management but also process management. Therefore, in these
situations it is more natural to describe these processes in the most appropriate way,
which is by means of workflow charts, activity diagrams or a similar notation.

Web Engineering Methods emerged to address some of the aspects that
conventional software methods did not consider while generating Web applications.
These aspects refer to Navigational and Presentation issues, and these became, within
the Web Engineering methods, first-order citizens in the conceptual modelling step.
Most well known Web Engineering Methods follow a Model Driven Development
(MDD) approach in the sense that they are based on a set of models that cover those
concerns that are necessary to specify a Web Application (structure, behaviour, navig-
ation and presentation). In addition to this, when these models are unambiguously

* This work has been developed with the support of MEC under the project DESTINO

TIN2004-03534 and cofinanced by FEDER.

 Building Business Process Driven Web Applications 323

specified, with clear semantics, they can be (semi-)automatically transformed in order
to obtain the equivalent solution in terms of an implementation technology. Therefore,
Web Engineering Methods should now be adapted to accept BP definitions and by
means of a set of transformations generate the appropriate software solution.

In addition, we should also take into account that real BPs do not only include
automated activities and system participants, in fact, they can also include
human participants (participants that require a user interface to interact with the
process) and manual activities (activities that are not automated at all, for instance,
“to make a phone call” or “to review a document”). Moreover, the kind of
interaction that a human participant can have within a BP can range from simple
decisions to the introduction of some required data through a user interface.
Therefore, Web Engineering Methods should provide a mechanism that allows
designers to define the necessary graphical interfaces (by means of their
Navigational Model) that give support to the required interaction between human
participants and the process.

The challenge pursued in this work is to extract from a BP definition the required
navigation (user interaction) to execute the process via a Web Application. We have
focused on those cases where the interaction with the user is crucial for the process to
be accomplished.

The main contribution of this work is to provide a proposal for the automatic-
generation of Web Applications that give full support to the execution of BPs. To
achieve this goal we generate from a BP definition (1) the required graphical user
interface to launch and complete process activities, as well as (2) the equivalent
executable definition of the process. This proposal allows us to obtain BP
implementations that are totally integrated within the Web Application. This
integration is achieved at three levels, which are data/content, functionality and
graphical user interface. This proposal is based on the OOWS [7] approach (a Model
Driven Web Development Method that is an extension to the object-oriented software
production method OO-Method [15])-OOWS introduces the required expressivity to
capture the navigational and presentational requirements of web applications. For this
purpose we have defined an extension to the OOWS Navigational Model that allows
us to model the graphical interfaces that are necessary to allow interaction between
human participants and the business process.

The rest of the paper is structured as follows. Section 2 makes an overview of the
related work in both, the Web Engineering and the Business Process area. Section 3
provides an overview of the proposal presented in this work. In section 4 we introduce
the example used to present the proposal. Section 5 presents the set of stereotypes
added to the BPMN notation to allow us modelling the corresponding graphical user
interfaces. Section 6 introduces the transformation approaches used in this work. In
Section 7 we first provide an overview of the OOWS approach and then present the
transformation rules for the generation of the OOWS Navigational Model that gives
support to the BP execution. Section 8 provides an overview of the interaction schema
followed to build the equivalent process defined in the Web Services Business
Process Execution Language (WS-BPEL [4]). Finally, section 9 gives some
conclusions and outlines some further work.

324 V. Torres and V. Pelechano

2 Related Works

Several Web Engineering methods have developed their own proposal for the
systematic development of Web applications. Moreover, these methods have been
extended to provide solutions to the new challenges that have come up in the Web
application development. In particular, most of these proposals (UWE and OO-H
[13], OOHDM [16], WebML [9] and WSDM [6]) have extended their methods in
order to support the integration between Navigation and Business Processes.
However, in some cases these extensions (1) do not consider the interaction of
different business partners, (2) do not provide a process oriented user interface to
guide the user for the accomplishment of their pending tasks or (3) do not take into
account that real BPs entail sometimes the realization of manual tasks.

On the other hand, the solutions provided in the area of business processes (Oracle
BPEL Process Manager1, Active BPEL2, etc.) are more centred on the orchestration of
Web Services more than in providing a suitable user interface that solves the
interaction between the user and the business process. In fact, as stated in [2], the WS-
BPEL language does not consider people as a type of participant in a process
definition. In this sense, the Oracle BPEL Process Manager has developed a solution
to define this interaction. However, this solution is provided at the implementation
level, what entails that Web Engineering Methodologies cannot take profit of these
mechanisms at the modelling level.

3 Proposal Overview

As we have stated previously, Web Engineering Methods should allow us to specify
the application functional requirements by means of BP definitions. Moreover, the
BPs that we want to model, range from those that include human interaction for the
realization of some activities to those that include activities that are performed by
external partners. For this reason, we have included within the OOWS method a
model that allows us to define a BP. This model is the Business Process Model
(BPM). Fig. 1 provides a graphical overview that includes just the models involved in
the proposal as well as the relationships defined between them. The purpose of the
BPM is to describe by means of a graphical notation a set of activities performed by
different agents and sequenced by means of a control flow. These activities invoke
operations that have been modeled either in the Class Diagram (CD) or in the
Services Model (SM). The existing relationship between the BPM and the CD and the
SM is depicted graphically in Fig. 1 by means of an arrow stereotyped with the
<<uses>> keyword. The set of operations defined in the CD include the functionality
that is provided within the boundaries of our system. On the other hand, the
functionality that is “lent” from external partners is defined in the SM. The SM was
introduced in a previous work [18] in order to define the set of services (and
operations provided by these services) that are supplied by external partners. The
major benefit of having external functionality at the modeling level is twofold, (1) it

1 http://www.oracle.com/technology/products/ias/bpel/index.html
2 http://www.activebpel.org/

 Building Business Process Driven Web Applications 325

allows us to handle external functionality as if it was part of our system and (2) it
facilitates the integration between external functionality and other models defined in
our method.

Structural Model
(Class Diagram)

Business Process Model

Navigational Model

Services Model

OO-Method OOWS

«uses»

«uses»

«generates»
Model-to-Model transformation

P
R

O
B

L
E

M
 S

P
A

C
E

WS-BPEL language

S
O

L
U

T
IO

N
 S

P
A

C
E

«generates»
Model-to-Text transformation

«generates»
Model-to-Text transformation

Presentation tier
(HTML, ASP, JSP, Servlets)

Fig. 1. Proposal Overview. Relationship between Models.

Some activities defined within the process definition require the existence of a user
interface to be performed. These user interfaces are defined in the Navigational Model
and allow the user to interact with the process by introducing some data, starting some
activities or taking decisions over some displayed data. The relationship between the
BPM and the Navigational Model is depicted in Fig. 1 as an arrow stereotyped with
the “<<generates>> Model-to-Model transformation” keyword. This means that from
a BP definition we are going to obtain, after applying a set of transformation rules, an
initial version of the navigational model that will give support to the process
execution. Then, once the Navigational model is completely defined, again, by means
of model-to-text transformations we generate the equivalent graphical interfaces
represented in a specific technology.

Finally, to execute the BP definition in a process engine, we transform the process
definition into a target executable process language. This transformation is
represented in Fig. 1 with an arrow stereotyped as “<<generates>> Model-to-Text
transformation”. Once we have the equivalent executable description we can execute
the process in any engine capable of executing process definitions created in WS-
BPEL [4].

As can be seen in Fig. 1, the OOWS/OOMethod approach, in the same direction as
the MDA proposal, is based on the use of models to achieve software development. In
fact, its models characterize the system domain at the problem space, independently
of any particular implementation technology.

326 V. Torres and V. Pelechano

4 The e-Library Example

To illustrate the proposal, we include in this work an example based on a real scenario
that has been identified in the Department of Information Systems and Computation
at the Technical University of Valencia. The department has developed a web
application (www.dsic.upv.es) following the OOWS approach. This application
provides the typical information and functionality that a web site like this usually
offers (access to personal directories, information about subjects given at the
department, enrollment to seminars and so on). Moreover, this application supports
the realization of a set of Business Processes. However, the activities that make up the
BPs are hidden through the navigation of the application, and users usually have the
feeling that they are executing operations individually and not as a part of a whole
process. This fact can finally imply that users involved in the process get lost when
they have to perform an activity (normally when the process takes a long time to be
completed) because they do not have the process in mind (which is quite normal if we
think that people usually have multiple and disparate responsibilities).

The BP that we have taken as the running example (Request Book Purchase
Business Process) has as main goal to purchase a new book for the library of the
department and to lend it to the purchase applicant after the book arrives to the
department. This process involves the participation of different agents, which range
from individuals (the secretary staff of the department, the department librarian, and
the applicant member) to automated systems (the central library system and the
department system). The graphical definition of the running example is shown and
explained in the following section.

5 The Business Process Model. Defining the BP Example

There are available several notations (such as UML Activity Diagrams, UML EDOC
Business Processes, IDEF, ebXML BPSS or BPMN among others) that can be used to
model BPs. As it is stated in [3], there is a gap between a BP definition and its
equivalent process definition that has to be bridged. On the one hand, a BP definition
focuses on providing a high level view of the activities performed by different agents
to accomplish a specific goal. On the other hand, a process definition is more focused
on technical aspects that define how these activities are accomplished. In this work,
we have skipped the high level definition of a process and have directly defined BPs
as process models. In particular, we are going to use the Business Process Modeling
Notation (BPMN) [5] because it provides a mapping between the graphics of the
notation to the underlying constructs of an execution language, in particular to the
WS-BPEL language, what makes this notation a good candidate to be used. This
notation is designed to cover a wide range of type of diagrams. However, as our goal
is to obtain those software components that implement these BP definitions, we are
going to use the notation for the design of “detailed private business processes with
interactions to one or more external entities”. It is important to make this clear in
order to obtain, after the application of the transformation rules, a correct Web
Application solution.

 Building Business Process Driven Web Applications 327

As we have stated before, from a BPMN definition we want to obtain two different
kinds of assets, one is the graphical interface that will allow the user to interact with
the process, and the other one is the executable definition of the process.

Fig. 2 depicts the BP definition of the running example. In this figure we can see
how participants are organized first in pools (to represent the different organizations
that take part in the process) and then in lanes (to organize different roles within the
same organization). Moreover, to differentiate when human participants behave as
individuals or as members of a group we have refined the participant type role (type
that represents human participants) into role-one (to refer to individuals) and role-any
(to refer to a group). In the running example (see Fig. 2) we have defined two Pools,
one for the DSIC organization and another for the Central Library (external system).
For instance, within the DSIC organization we have included four lanes to organize
responsibilities; three of them refer to human roles (Librarian, Secretary and Member)
and the last one refers to an automated system.

Request a
Book Purchase

Validate the
request

Approve?

M
E

M
B

E
R

S
E

C
R

E
T

A
R

Y

C
E

N
T

R
A

L
 L

IB
R

A
R

Y

Notify Request
Rejection

LI
B

R
A

R
IA

N

Request
[pending]

S
Y

S
T

E
M

No

Pick Up
Books

Load Book
Details + Notify Book

Purchase

Loan Book

Default
(Yes)

Request
[validated]

«user»

«manual»

«service»

«user»

«service» «service»

«service»

«
en

tit
y»

«r
ol

e-
an

y»
«r

ol
e-

an
y»

«r
ol

e-
on

e»

Send
 Request

«send»
Recv. Purch.
Notification

«receive»

D
S

IC

Fig. 2. Process Definition for the “Request Book Purchase” Business Process

The lanes that refer to human beings are stereotyped with the <<role>> keyword.
On the other hand, automated participants are stereotyped with the <<entity>>
keyword. Once Pools and Lanes are identified, we proceed to define the activities and
the control flow that sequences them. We have stereotyped activities with the manual,
user, service, send and receive keywords depending on the kind of activity that we
want to represent. We want to note that the realization of a manual activity do not
imply any change in the state of the automated system. For readability reasons, we
have included a graphical definition that only displays the basic structure, control
flow and data within the BP. However, this definition also includes a set of attributes
that define completely each element of the process.

6 Transformation Techniques. Background

Currently, the Model Driven Architecture (MDA) is the most well known approach to
achieve the Model Driven Development (MDD) and advocates for the use of models

328 V. Torres and V. Pelechano

in software development. These models are defined at different levels of abstraction,
which are (1) system requirements modelled in a computation independent model
(CIM), (2) system description defined in a platform independent model (PIM) where
details of its use of its platform are not shown and (3) a detailed system specification
that specify how to use a particular type of platform, the platform specific model
(PSM). The act of converting one model into another from the same system is called a
Model transformation. Fig. 3 and Fig. 4 depict graphically the approach proposed by
the MDA to achieve transformations. However, model transformation does not
always refer to transformations between models defined at different levels of
abstractions (see Fig. 3). In fact, the same approach can be used to transform any
model into another related model (see Fig. 4).

PIM

PSM
Platform
Specific
Types

Platform
Independent

Types

Transformation
Specification

subtypes of

subtypes of

source types

target types

Transformation

Model 1

Model 2 Metamodel B

Metamodel A

Transformation
Model

language used

language used

source language

target language

Transformation

Fig. 3. PIM to PSM transformation approach Fig. 4. Model to Model transformation approach

In particular, within the context of this work, we need to perform two different
kinds of transformations, which are (1) model-to-model transformations (PIM-to-PIM
transformations) to generate the Navigational Model from the BP definition and (2)
model-to-text transformations (PIM-to-Code transformations) to generate an
executable process definition in WS-BPEL.

7 Model-to-Model Transformations. From BPMN to OOWS

This section is divided into four subsections. In the first one, after providing a brief
overview of the OOWS approach, we present the primitives that have been added to
this method and the reasons why they are necessary. In the second subsection we
provide an overview of languages and tools to achieve model-to-text transformations.
Next, we define intuitively (and using the graphical notation of the MOF QVT
Relations language) the transformation rules that generate the corresponding OOWS
Navigational model. Finally, we include some of the generated user interfaces
obtained after applying the transformations.

7.1 New Navigational Primitives for Business Process Support

The OOWS method extends OO-Method with three additional models (which are the
User, Navigation and Presentation models) that allow us (1) to express what kind of
users can interact with the system as well as the inheritance relationships between
them, (2) to define the visibility and the navigational semantics of the system for each

 Building Business Process Driven Web Applications 329

user and (3) to specify the presentational requirements for the user interfaces.
However, the current primitives defined by the OOWS approach do not fit well to
represent the Navigation required by BP execution. For this reason, we have defined a
set of new primitives in order to (1) organize the way pending activities are displayed
to the user, (2) guide the user in order to complete his/her pending tasks, and (3) to
improve the user experience while performing the activities assigned to him/her. This
improvement is achieved by providing him/her with additional information that will
help the user to finish the activity.

The OOWS Navigational model allows us to define the navigational structure of a
web application at the conceptual level. To do this, we associate a navigational map
to each kind of user defined in the User model. A navigational map is represented by
a directed graph whose nodes represent navigational contexts and whose arcs portray
navigational links (see Fig. 5).

On the one hand, a navigational context defines a view over the class diagram (see
Fig. 6) that allows us to specify an object population retrieval that defines the
information that users can access. On the other hand, a navigational link defines a
reachability relationship among contexts. There are two kinds of navigational links:

(1) Exploration links (targeted with dashed arrows and depicted with the “E” label
in Fig. 5) that define a reachability relationship between every context of the
navigational map and the target context. For instance, in Fig. 5 the Authors, Books
and Members contexts can be accessed by the secretary user from any other
navigational context.

(2) Sequence link (targeted with solid arrows and depicted with the “S” label in
Fig. 5). These navigational links define a reachability relationship between two
specific contexts. For instance, in Fig. 5 the Loans context can only be accessed either
from the Books or Members contexts.

Exploration
Navigational Context

Sequence
Navigational Context

Exploration
Navigational Link

E

«context»
Authors

SECRETARY

E

«context»
Books

E

«context»
Members

S

«context»
Loans

Sequence
Navigational Link

E

«context»
Books

«view»
Copy

-internal_id
-purchase_date
-state

«view»
Book

-title
-isbn
-editorial
-num_edition
-year_publication

«view»
Author

-name
-nationality

«view»
LoanInternal_id

[Loans]

ATTRIBUTE INDEX IDX_by_title
ATTRIBUTE INDEX title,year_publication

INDEX

«AIU»
Books

Fig. 5. Navigational Map for the secretary user Fig. 6. Detailed view of the Books Navig-
ational Context

Furthermore, this model includes mechanisms that facilitate users to access the
information retrieved by the context (see bottom part of Fig. 6). We can define
indexes to provide users with summarized information about the object population
and search filters, which allow users to find specific objects.

330 V. Torres and V. Pelechano

In its current state, the OOWS method allows users to decide which paths, from
those already defined in the navigational map (via Exploration and Sequence links),
they want to follow. However, within the execution of a process, the user does not
decide which contents navigate through; in fact, it is the process which should drive
the user to the next contents to accomplish the process target goal. For this purpose,
we have included a set of primitives to model the navigation that define business
processes. These new primitives are ProcessContext, ActivityContainer, Main-AIU,
Complementary-AIU and Human-AIU and they are explained in the following
paragraphs.

Given a specific type of user, the ProcessContext primitive defines, in an abstract
way, a process whose activities (or some of them) are assigned to this user. Each
different activity is represented by means of the ActivityContainer primitive. An
ActivityContainer is composed of a set of AIUs. An AIU (Abstract Information
Unit) is an abstraction mechanism introduced to bring together a set of contents
(class views) that are somehow related. Through the AIU primitive we can model
contexts as an aggregation of contents, where no relationship between AIUs is
expected at all.

The proposed extension includes three different new kinds of AIUs: Main-AIU,
Complementary-AIU and Human-AIU. An ActivityContainer is defined as a set of
AIUs which can include either a Main-AIU or a Human-AIU and optionally several
Complementary-AIU. The Main-AIU primitive presents the data and functionality
needed in order to perform certain task. The Human-AIU primitive provides the user
with a mechanism to inform the process that a manual activity has been completed.
Moreover, the graphical interface that implements a Human-AIU includes the
description of the manual task (for instance “Send the document via fax” o “Make a
phone call”). On the contrary, Complementary-AIU provides information that
complements the one given by the Main-AIU and Human-AIU. Although the contents
provided by a Complementary-AIU are not vital to accomplish a task, they really help
the user to complete the task. For instance, this primitive gathers some information
kept in the system avoiding the user to navigate through the web application to
acquire it.

Regarding the Main-AIU, this abstraction mechanism provides the necessary data
and functionality to perform the activity that it was designed for. On the other hand, a
Complementary-AIU provides a mechanism to include a set of data that helps the user
while performing an activity. Although the content supplied by a Complementary-AIU
is not vital for the accomplishment of the activity (i.e. a list that provides the user with
the necessary information to take a decision, avoiding the user to search for that
information by navigating through the system) it helps the user in accomplishing it.

Finally, a Human-AIU provides the user with a mechanism to notify the process
that he/she has already finished a manual activity (an activity that is not automated at
all). This mechanism, at the implementation level (see Fig. 7), could be represented as
a button whose effect after pressing it is to make the process continue. This graphical
interface also includes a description of the manual activity to perform (i.e. “Send a
report via fax” or “Prepare the meeting and make the necessary arrangements”).

 Building Business Process Driven Web Applications 331

MEMBER

CHANGE PROFILE

HOME

Department

Directory

Teaching

My TO-DO List – Pick up Books

Pick up Books

Please, pick up the book “Software Engineering” from the General
Library and bring it to the porter’s office.

Done

Task
Name

Task
Description

Activates the
Notification

Fig. 7. Graphical Implementation of a Human-Activity Primitive

7.2 Model-to-Model Transformations Language/Tool Support

There are different techniques that can be used to define transformations between
models. Among the most used (or popular) languages/techniques we find MOF 2.0
QVT [10], MTF (an IBM implementation of a subset of QVT) [11], ATL [1] or AGG
[17]. In particular we have chosen to use the QVT specification because it has been
adopted by the OMG as the MDA standard to achieve model-to-model
transformations. The QVT specification has a hybrid declarative/imperative nature.
The declarative part is made of two languages (Relations and Core) that embody the
same semantics at two different levels of abstraction. On the other hand, the
imperative part is represented by the Operational language.

In this work we have defined transformations using the Operacional Mappings
imperative language. This language allows us to define unidirectional transformations
between models, which are instances of MOF (Meta Object Facility) metamodels. We
have used the Borland Together Architect 2006 for Eclipse that allows us to define
transformations in this language and execute them over models defined by means of
Ecore (a MOF Core implementation together).

7.3 Transformation Rules Definition

To define the rules that generate the associated GUI, we only take into account the
elements defined within the lanes marked as «role» in the BP definition (tasks that are
performed by people). Therefore, we apply the following rules to the elements
defined within these lanes:

• Process Context Definition. For each lane defined in the process with its typed
valued as «role» (human participant) we build a Process Context in the
Navigational Map. We want to note that the roles used in the BP definition
correspond to the type of users defined in the User Diagram modeled in the
Navigational model. In the running example we build a Process Context called
Request Book Purchase for the secretary user type (see Fig. 9).

• Activity Container Definition. Each «user» and «manual» tasks within the
boundaries of a «role» (human participant) Lane are transformed into Activity
Containers. For instance, in the running example we include two Activity
Containers within the Request Book Purchase Process Context previously built,
one for the Validate Request activity and another for the Pick up Book activity (see
Fig. 9).

332 V. Torres and V. Pelechano

• AIU Definition.
o For the tasks that are defined as «user» tasks include a Main-AIU within the

Activity Container.
 If the operation defined in the task refers to an operation modeled in the Class

Diagram, then include a class view in the Main-AIU that references the class
that contains the operation.

 If the operation defined in the task refers to an operation modeled in a
Service (from the SM), then include a service view [18] in the Main-AIU that
references the service that offers this operation.

o For the tasks defined as «manual» tasks include a Human-AIU within the
Activity Container. In Fig. 9 the Pick up Books Human-AIU has been created
for the Pick_up_books activity container.

Task2ActivityContainer

«domain»
t:Task

name = n
type=’user’ or ‘manual’

«domain»
ac:ActivityContainer

name = n

C E

bpm oows

when
Lane2ProcessContext(l,pc)

where
UserTask2MainAIU(l,pc) or ManualTask2MainAIU(l,pc)

l: Lane
pc:ProcessContext

Fig. 8. QVT Transformation

As an example, and for readability reason, Fig. 8 depicts using the graphical
notation of the QVT Relations language the second transformation rule presented
above. This transformation rule builds activity containers for each user or manual task
included within the role lanes of the BP definition.

In the MOF QVT specification, transformations can be invoked for two purposes,
either to check the consistency between models or to modify one model to enforce
consistency. In particular, the transformation depicted in Fig. 8 has been defined to
modify the OOWS model (target model) to enforce consistency with the BPMN
model. The “E” label under the right limb of the relation symbol (depicted as a
hexagon) specifies that the OOWS domain is enforced to be consistent with the
BPMN model. The when clause specifies the conditions under which the relationship
needs to hold, so the relation Task2ActivityContainer needs to hold only when the
Lane2ProcessContext relation holds between the lane containing the task and the
process context containing the activity container. The where clause included in the
above transformation specifies that the relations UserTask2MainAIU(l,pc) and
ManualTask2MainAIU(l,pc) are going to be applied on every task within a lane.

 Building Business Process Driven Web Applications 333

After applying the transformation rules defined above we obtain the basic
navigational model required to execute the process (process contexts, their activity
containers, their Main-AIUs and so on). Fig. 9 depicts the process context obtained
for the secretary role. Moreover, this context also includes a set of complementary
content that the web designer should add. These included elements refer to
Complementary-AIUs.

«activity container» Validate_request
«Complementary-AIU»

Last Purchases

«view»
Copy

«view»
Book

-title

«Complementary-AIU»
Sanctioned Members

«view»
Member

-name
-surname

«Main-AIU»
Validate Requests

«view»
Member

-name
-surname

+resolve_request()

«view»
Request_book

-title
-authors
-editorial
-num_edition
-year_publication
-units_to_buy

P
«process context»

Request book purchase

state == pending or rejected

is_sanctioned == true

Purchase_date in last_month

INDEX IDX_byTitle
ATTRIBUTES title, Member.name, Member.surname
OPERATION validate_request()
LINK ATTRIBUTE title

«activity container» Pick_up_books

«Human-AIU»
Pick Up Books

Complementary-AIU
Manually Generated

Index Manually
Generated

Complementary-AIU
Manually Generated

Fig. 9. Process Context for the Validate_request activity defined in the Request Book Purchase
Process

For the Process Context depicted in Fig. 9 we have included manually (1) an index
associated to the Validate Request Main-AIU and (2) two Complementary-AIUs
associated to the Validate_Request activity container. The generated user interface is
depicted in Fig. 10. On the one hand, the index defined for the Validate Request
Main-AIU provides an indexed access to the population of the Request_book class.
This index retrieves a list (just including the data defined in the ATTRIBUTES
section of the index, which are the title of the book and the name and surname of the
requester) where the user can chose one item (object) from the list. This selection
makes the selected object to become active in the AIU. On the other hand, the
complementary-AIUs added to the activity container provide the user with two lists
that gather, the sanctioned members and the last purchased books. These lists will
help the secretary user to decide about the acceptance or rejection of each request.

7.4 Generated User Interface

The implementation of the user interface of the web application is performed by the
OOWS tool [19]. Given a Navigational Model, this tool generates the set of web
pages that allow the user to interact with the application. Briefly, the procedure
followed by the tool to obtain the implementation is the following:

(1) It creates a web page for each activity container included in a Process Context.
These generated web pages are dynamic and retrieve the information, which is

334 V. Torres and V. Pelechano

generated by the ONME tool [14], and functionality that was defined in the
corresponding AIUs.

(2) When an AIU includes an index, the tool generates an additional web page that
retrieves as a list the information modelled in the AIU. (See the Validate
Requests section in Fig. 10).

 My TO-DO List

 Digital Library

 Department Library

 Material Purchases

 News Management

 My TO-DO List

SECRETARY

CHANGE PROFILE

HOME

Department

Directory

Teaching

Research

Intranet

Links

Intranet

 Intranet

Juan García Pérez
María Sánchez Ortiz
María Sánchez Ortiz

Applicant Member Validate

Validate Requests
Title

Software Engineering
Software Engineering
Web Ontologies

Reject

Done

Complementary Data
Sanctioned Members Last Purchases

María Sánchez Ortiz
Raúl Pérez Sanz
Pedro Solaz Bueno
Joaquín Bermúdez Gracia
Rosa López Reina
Juan A. Moreno Marques

Software Engineering
Programming Java
Programming Web Services in .NET
Algorithms
Quality on Software Engineering
Datawarehouse and XML

My TO-DO List – Validate Requests

Information
Area

Navigation
Area

Link to the
TO-DO List

Main-AIU
Presented as an

INDEX

Complementary
AIU

Complementary
AIU

Navigated
Path Area

Fig. 10. Web page generated for the Validate Requests Activity

The set of web pages generated are made up of two different areas (see Figure 8),
which are the information and the navigation area. On the one hand, the information
area is where the contents (lists, forms and so on) are shown to the user. In particular,
Fig. 10 includes the Validate activity container shown in Fig. 9. This activity
container includes a Main-AIU (Validate Requests) and two Complementary-AIUs
(Sanctioned members and Last Purchases). On the other hand, the navigation area is
what allows the user to navigate through the web application. Moreover, the
navigation area includes a new link where the user can access his/her TO-DO list.
This list includes the activities that the logged user has pending to complete. This list
is obtained by querying the workflow engine the state of the started process for a
specific user.

8 Model-to-Text Transformations. From BPMN to WS-BPEL

This section is organized in two subsections. On the one hand, first subsection
provides a brief overview about the language used to perform model-to-text
transformations as well as the reasons that led us to take this decision. On the other
hand, second subsection outlines the strategy followed to obtain the equivalent WS-
BPEL process definition.

8.1 Model-to-Text Transformation Language/Tool Support

There are different alternatives to perform model-to-text transformations. Among the
most well know techniques we find (1) XSLT [21], (2) Template Languages (as JET,

 Building Business Process Driven Web Applications 335

Velocity [20] or FreeMarker [8]) or (3) MOFScript [12]. The MOFScript language is
currently a candidate in the OMG RFP process on MOF Model to Text
Transformation (http://www.omg.org/docs/ad/05-11-03.pdf). To achieve this kind of
transformation we have chosen the MOFScript model-to-text transformation language
because (1) it is a language specifically designed for the transformation of models into
text files, (2) it deals directly with metamodel descriptions, (3) its transformations can
be directly executed in a tool (in particular within the Eclipse environment) and (4) it
provides a file constructor for the creation of the target text file. The tool that we have
used to implement the transformations is the MOFScript tool included within the
Generative Model Transformer (GMT) project of Eclipse.

8.2 Obtaining Executable BP Descriptions

Model-to-text transformations have been organized in several modules. For instance,
for each generated file (WSDL files and WS-BPEL) we have defined a specific
transformation. The generated WSDL files define the interfaces of the functionality
implemented within the boundaries of our system (defined in the CD) and that takes
part in the process. On the other hand, the executable WS-BPEL description of the BP
is obtained after applying the BPMN to WS-BPEL mappings outlined in [5].

Regarding the Web Services that take part in the process, we have organized them
in three groups which are (1) services whose operations are implemented in our
system, (2) services whose operations are provided by external partners and (3)
services that simulate manual (non automated) activities. The reason why we build
this third kind of service is that WS-BPEL does not provide support to human
participation interaction. In fact, every participant included in the process must be a
service. Therefore, we had to find a way in which human tasks could be “simulated”
in order to generate executable definitions of the process. We need to define
executable business processes that include activities that range from services provided
via web services to activities that are not automated and that are performed by people.

In order to do this, we propose to build a module (called the Task Manager) in
charge of managing the Web services that simulate the interaction between the
process and the people involved in it. Among the responsibilities of this module we
distinguish the two following:

 Collect the messages produced by service invocations launched by the process
engine. These services refer to user and manual tasks defined in the process; this
is, to tasks that involve participation with users.

 Listen to the requests received by the application layer and returning, given a
user in particular and his/her role, the list with his/her pending tasks as well as
the contexts that allow performing these tasks.

We want to note that all the services exposed by the Task Manager should be

defined as asynchronous. This is because the process has to wait until the person in
charge of doing this task notifies the process that the activity has been completely
finished. This notification is performed by means of the corresponding user
interface. As a result, once this notification is done, it is the Task Manager module
that gathers and returns to the process the results of the activity.

336 V. Torres and V. Pelechano

Process Flow

Local
System

(Web Service)

External
Partner1

...

Activity1

Activity2

Activityn

...

Task
Manager

Activity1

Activity2

Activityn

...

External
Partner2

External
Partnern

Fig. 11. Web Service Interaction schema

On the other hand, to define the interaction between the local system and the
process, we have also defined a web service (Local System Web Service, see Fig. 11)
whose operations refer to the activities that are implemented by the operations defined
in our system. The schema that has been designed to build the interaction between the
participating actors is depicted in Fig. 11. In this figure we also can see that the
interaction with external partners is performed via Web services. The definition of
these Web services was imported to the SM at the modelling level.

9 Conclusions and Further Work

In this work we have presented, based on a model transformation approach, a solution
to generate Web Applications whose specification is highly tied to a BP description.
In order to cover properly all kind of Web Applications, Web Engineering Methods
should consider supporting BPs in an appropriate way, where not only automated
participants are considered (in the form of Web Services) but also human participants.
For this reason, we have tuned the OOWS approach in order to accept this kind of
specifications and generate the appropriate Web solution.

For this purpose, we have defined a set of transformations, Model-to-Model and
Model-to-Text depending on the origin and target artifacts that take part in the
transformation. In particular, to obtain the WS-BPEL definition of the process we had
to decide how to perform this transformation, as a model-to-model or model-to-text
transformation. In the end, we opted for the model-to-text transformation because this
approach allows us to develop, in a very short time, the BPMN to WS-BPEL
generator. This speediness is due mainly to the fact that it is not necessary to realize
the construction of the WS-BPEL metamodel.

As further work we have planned to integrate the solution presented in this work
within the ONME tool [14]. This tool provides a conceptual modeling-based
environment where the model becomes the program, and the code generation process
is fully automated following a MDA based approach.

Moreover, we want to study the presentation patterns associated with the new
primitives introduced to the Navigational model. In fact, the Presentation Model is
strongly based on the navigational model and uses its navigational contexts to define
the presentation properties.

 Building Business Process Driven Web Applications 337

References

1. Atlas Transformation Language (ATL). http://www.sciences.univ-nantes.fr/lina/atl/
2. A Joint White Paper by IBM and SAP: WS-BPEL Extension for People – BPEL4People.

July 2005
3. Andersson, B., Bergholtz, M., Edirisuriya, A., Ilayperuma, T., Johannesson, P.: A

Declarative Foundation of Process Models. CAiSE 2005: 233-247
4. Business Process Execution Language for Web Services Specification, version 1.1 dated

May 5, 2003
5. Business Process Modeling Notation (BPMN) Version 1.0 - May 3, 2004
6. De Troyer, O., Casteleyn, S.: Modeling Complex Processes for Web Applications using

WSDM, In Proceedings of the Third International Workshop on Web-Oriented Software
Technologies, IWWOST2003

7. Fons, J, Pelechano, V., Albert, M., Pastor, O.: Development of Web Applications from
Web Enhanced Conceptual Schemas. In Workshop on Conceptual Modeling and the Web,
ER'03, volume 2813 of Lecture Notes in Computer Science. Springer, 2003.

8. Freemarker. http://freemarker.sourceforge.net/
9. Manolescu, I., Brambilla, M., Ceri, S., Comai, S., & Fraternali, P. (2005). Model-driven

design and deployment of service-enabled web applications. ACM Trans. Inter. Tech. 5, 3,
439-479.

10. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification. Final Adopted
Specification ptc/05-11-01.

11. Model Transformation Framework (http://www.alphaworks.ibm.com/tech/mtf)
12. MOFScript. http://www.eclipse.org/gmt/mofscript/
13. N. Koch, A. Kraus, C. Cachero and S. Meliá, “Integration of Business Processes in Web

Application Models”. Journal of Web Engineering. Vol. 3, No. 1 (2004)
14. OlivaNova Model Execution System. CARE Technologies (www.care-t.com).
15. Pastor, O., Gomez, J., Insfran, E., Pelechano, V. The OO-Method Approach for

Information Systems Modelling: From Object-Oriented Conceptual Modeling to
Automated Programming. Information Systems 26, pp 507–534 (2001)

16. Schmid, H. A., Rossi, G.: Modeling and Designing Processes in E-Commerce
Applications. IEEE Internet Computing 8(1): 19-27 (2004)

17. The Attributed Graph Grammar System v1.2.4. http://tfs.cs.tu-berlin.de/agg/. 2004
18. Torres, V., Pelechano, V., Ruiz, M., Valderas, P.: A Model Driven Approach for the

Integration of External Functionality in Web Applications. The Travel Agency System.
MDWE 2005.

19. Valderas, P., Fons, J., Pelechano, V: Transforming Web Requirements into Navigational
Models: AN MDA Based Approach. ER 2005: 320-336

20. Velocity. http://jakarta.apache.org/velocity/
21. XSL Transformations (XSLT) Version 1.0. http://www.w3.org/TR/xslt

S. Dustdar, J.L. Fiadeiro,and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 338 – 347, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Proposal for an Open Solution Business Process
Integration and Management Implementation

Framework

Fathi M. Al-Ghaiati

Founder of GAIA Technology Innovation, Egypt
M.Sc. from Faculty of Engineering and Automatic Control, Alexandria University, Egypt

fathi.ghaiati@gaiati.com
www.gaiati.com

Abstract. SOA, Service Oriented Architecture, some people tightly couple this
concept with some technologies, as some believes that SOA is about Web
Services and its orchestrations. SOA, is the umbrella of “Business Services”
and “Enterprise Architecture”, meanwhile the technology evolves in the
direction of building and sustaining both concepts; at early days it was tight to
Enterprise Application Integration and vendor specific solutions, then Web
Services and its orchestrations, and now Business Process Management is in the
front with the WS-BPEL, WfMC-XPDL, ebXML-BP business integration open
standards. However, Open Standards communities have helped a lot in
understanding SOA concepts and building the base open standards for
implementing SOA in right approaches, it is not providing an open solution
implementation framework for SOA. This article proposes an Open Solution
Business Process Integration and Management Implementation Framework
based on technology open standards that we believe in its value for today and
future. By this initiative article we are looking for examining and verifying this
framework through SOA communities.

Keywords: Service-Oriented Architecture and Process Management, E-services
Architectures and Technology, Workflow Management Systems.

1 The Business Problem and Business Case

Last four years, where the SOA open standards communities were not started or
starting to evolve; the Enterprises’ Business needs for Services Delivery to its
customers through new channels such as Web, WAP, IVR, and B2B were huge and
the competition was high especially in the Banking Industry. This lead some large
organizations to go to non standards based customized EAI solution, using specific
vendor oriented products (they locked into), and become an IT solution provider
dependent.

Moreover, some organizations kept securing their internal infrastructure by up
security (i.e. using only domain firewalls); ignoring the integrity, authenticity,
confidentiality, non-repudiation, and accountability and violating its architecture
policies in some cases to reach to the market on the targeted time.

 A Proposal for an Open Solution Business Process Integration 339

In the worst scenarios, integration projects are locked in by conflicts in
conceptualization, an Enterprise failing to store its customers and users secure
information in an LDAP e-Directory due to less integration capabilities of its EAI
solutions with open standards is an example.

The chaos in EAI has lead to different integration frameworks that most of them
are not based on standards.

In the Banking Industry, the integration concept is very old since the telefax (telex)
days for operational banking; in the early days of SWIFT FIN messaging integration
was mainly based on point to point forcing all legacy applications to talk the same
language of the outside world to be able to integrate with it, while not speaking the
business language. Now, many Banks are in the challenge of integrating its business
to use the new evolving open standard “SWIFT XML”.

A need for an Open Solution SOA framework based on open standards with large
supporting communities is becoming a must; moreover this puts more challenges on
Large Enterprises to invest in such framework. We acknowledge Open Application
Group (OAG), SWIFT, and Open Mobile Alliance group (OMA) for their effort in e-
business messaging standardization in various industries (relatively manufacturing &
e-commerce, banking, and telecommunication).

Now Business Enterprises (small as well as large) are lacking a clear road map for
its business strategy alignment with the technology for having a continuous business
return all the time.

2 Towards a SOA Open Solution and Sustainability

Some people think that Java is competing with business process open standards WS-
BPEL, WfMC … etc. This is not completely right, Java supports those standards.
These standards are tools optimized for the orchestration of synchronous and
asynchronous interactions into long running business flows, and are made open to
help us talk the same language; i.e. to make “invisible contribution” by sharing the
same vocabulary and concepts. Meanwhile, Java communities are advancing
development tools for the sole purpose of leveraging sustainable industry advances in
software engineering, for example the latest JBI, Java Business Integration (JSR 208),
which defines the core component architecture for SOA Business Integration, has
helped the eclipse community propose projects like Java Workflow Toolbox (JWT)
and SOA Tools Project (STP).

We see such effort of open source development communities for open standards is
a right path for Enterprises SOA open solution that is based on optimized integration
of open source products for executing open standards.

For sustainability to be achieved, the framework of integrating such products
together must be powerful enough in orchestrating these products, and to comply with
the current research efforts that will guide the enhancement and change in the future.
Some research points are Semantic Knowledge, Ontology based Information Assets
Representation and Generation, Emulating Human Immune System in Systems
Security, Cognitive Agents, Ontological Agents … etc.

340 F.M. Al-Ghaiati

3 Proposed Solution Framework

3.1 Philosophy

Back to the meaning of the SOA, Service Oriented Architecture is the umbrella of
“Business Services” and “Enterprise Architecture”; the players of the Business
Services are Service Consumer (could be intra-enterprise or extra-enterprise), Service
Provider, and Services Orchestrator, meanwhile the Architecture must integrate them
through the support of Services Registry, and Contracts management.

This scenario is like a hybrid of multi-distributed agents; each agent may be
static or evolve acting as cognitive agent (i.e. human oriented agent). The
communication framework between these agents is our challenge in this article to
reach to the minimum or null effect of the evolution of any agent being in a
sustainable world.

3.2 The Framework

The following diagram (Fig. 1.) illustrates the proposed framework high level
architecture. This architecture is based on the N-tier application pattern that
considered as the best pattern to articulate and design an application around the
realities of managing state across great distances, multiple channels, complex
transaction types executed with a good response time, and high-scalability
requirements through the support of Service Based/Oriented Architecture with
multiple access methods and application integration, also scalability on the level of
network, server, and desktops.

The main objective of this framework is to be able to maintain the individuality of
each application while enabling the sharing of enterprise data and linking of
enterprise processes (i.e., enterprise applications are tightly integrated while being
loosely coupled) in a controlled environment.

In such types of solutions there are many factors (software system attributes) that
affect the product and its quality, and make the solution accepted for evaluation. Such
factors are

• Security considering data-integrity, accountability, confidentiality, authenticity,
and non-reproduction on different domains (e.g. intra- and extra- the enterprise),

• Availability and Reliability, the system must be designed in a way that responds
to the external and internal events that may require to have some sort of
clustering, failover management, fault detection, …etc.

• Performance, the solution must guarantee minimum service level performance
requirements,

• Modifiability and Maintainability, to keep extensions easier in such types of
solutions requires basing the solution on international standards and supporting
general interfacing schemas, and considering recommended features in coding
considering modularity, reusability, extendibility, and simplicity of the code.

• Interoperability, using open standards for applications communication enables a
high level of portability between them.

 A Proposal for an Open Solution Business Process Integration 341

Fig. 1. Proposed Framework High Level Architecture

So that, the components of the framework are structured in a way to help achieving
those mentioned challenges and more to act as an open solution for the SOA problem
in the market. The next sections provide an overview for each component.

3.3 Framework Components Overview

In this framework, the Enterprise Business Process Management components plays
the role of Heart of the solution that pumps the blood to all the body entities, the
Extended Directory Application (EDA) plays the role of the Immune System, External
Messaging Services (EMS) plays the role of the Interfaces Channels, the Knowledge
Layer Assemblers (KLA) plays the role of the Experience and Capabilities
Dictionary and Discoverer, the Enterprise Messaging Exchange Extended schema
Bus (EMEE-Bus) the Blood Vessels, and the legacy application remains the Brain of
the main logic (Business).

(Extra and Intra) Enterprise Messaging Services (EMS) Gateway
The EMS Gateway acts as a transparent synchronously and/or asynchronously
two way (“push or publish” and “pull” or “Request/Response”) messaging gate
between the Enterprise EMEE middleware and its customers/users/agents for the
purpose of external communication (e.g. mobile messaging exchange (SMS or
MMS), or e-mail messaging exchange, or telefax/telex, SWIFT, WAP, Web, Portal,
XBRL); it could be an advertisement, customer specific information, up to business

342 F.M. Al-Ghaiati

transactions. The verification of the message content and authentication of the
business message sender is a business service dependent so it must be a property of
the EMEE engine.

This application is structured in a way that initiates a “Channel Service Instance
(CSI)” for each external physical entity (delivery channel) for interfacing with (e.g.
SMSc for Telecom A, SMSc for Telecom B, Mail Server for gaiati.com domain, mail
server for gaiati.org domain, …etc). On the other side of the CSI, it interfaces with the
inside enterprise over EMEE-Bus through a specific ports (i.e. JMS queues) or shared
ports with another CSI using XML messaging.

The service engine of the EMS is designed to act as a technology standards
integrator where it integrates the mobile messaging standard protocols (e.g. SMPP,
MM7, MM1), or e-mail (SMTP or POP3 mime) messaging standard with an
enterprise wide schema (EMEE schema) building factories.

Meanwhile the CSI gets its properties (e.g. external messaging center properties
and its public key if exists, public key for EMEE engine , messaging ports ...etc)
through EDA during startup process to initiate its binding components and links to a
specific service engine (factory instance of a service engine component).

The major benefits of this architecture of EMS and CSI in general:

• It decouples the enterprise applications from the delivery channel specifications,
makes the focus of the contents of the message not how and when to deliver it.

• Makes the enterprise independent of the changes of the standards in the delivery
channels interfacing.

• Easy to extend the enterprise applications to support more delivery channels in
future such as TV.

• Inherits all generic benefits of the proposed SOA Framework for
Implementation.

Enterprise Extended Directory Application (EDA)
The EDA is here to play the role of a central point of applications configuration and
security management (e.g. applications startup/stopping management processes). Also
it plays a role of checking applications users provided security information.

Moreover, it plays the role of a guard between the inter-Enterprise applications and
the Enterprise LDAP eDirectory.

The objective behind this is to achieve:

• A standard secure and controlled enterprise oriented messaging interface
between the application and eDirectory, an EMEE for EDA schema provides
this through encapsulating DSMLv2.0 requests within it.

• Loosely couple the inter-enterprise applications from the Enterprise continuous
evolution of its Directory structure, and even standards in LDAP.

• To come-over the limitations of the LDAP protocol, that cannot query on
multiple levels in one request.

• Central point of enterprise security information management (authentication and
authorization).

 A Proposal for an Open Solution Business Process Integration 343

Enterprise Knowledge Layer Assemblers (KLA)
The objective of this layer is to have a unique center of the Enterprise knowledge
information; it is based on meta-data and meta-meta definition. It is supposed to hold
services registry and its information, applications properties, legacy and enterprise
message formats (note, for non xml message formats, a mapping to an xml schema
definition is a must and to be stored as well in this layer), mapping rules between
messages, validation and business rules dictionary, open standard business specific
schemas (e.g. ebXML core components such as UN/CEFACT, and UN/EDIFACT)
comprise a Universal Business Library (UBL), … etc.

We see in the coming years there will be a great evolution in the open standards
that will support or be incorporated in this layer as the semantic, and ontology are
opening more advanced approaches of knowledge representation and generation. So
the decision to have one central layer of the Enterprise wide information is a right
approach especially for future extensions.

The major objective of this layer is to achieve:

• Central point of the enterprise e-business knowledge (information) management
• One portable solution and place for enterprise knowledge management
• Enable easy to integrate ways between the EMEE engine tools and the

enterprise knowledge
• To be ready for semantic web for web services and its discovery
• Being as a knowledge base for supporting system dynamics and/or inference

engines

Enterprise Legacy Applications
The Brain
These are the Enterprise existing traditional applications that play the role of the core
engines of the enterprise business. Specific adapters are needed to interface with these
legacy applications; it can be encapsulated with the enterprise wide EMEE schema for
communicating with EMEE engine in a secure and standard based approach. This
concept will enable enterprises to build this adapter once for a domain or set of
applications that shares the same runtime platform (e.g. MVS CICS 3270).

Enterprise Messaging Exchange Extended Schemas – Bus (EMEE-Bus)
The Blood Vessels
The EMEE schema provides a robust and scalable XML schema for messaging
exchange between different applications in the enterprise controlled by the EMEE
centralized middleware. The EMEE middleware Engine with the EMEE schema
comprises a standard Service Oriented Architecture Framework for Integration
between the different enterprise applications.

The main objective behind the EMEE schema is to have one enterprise wide core
schema, that resolves the inter-enterprise security problems (data-integrity,
accountability, confidentiality, authenticity, and non-reproduction) by implementing it
once and deploying it at the connection points of all communicating applications (i.e.
part of the interface or the adapter interface). Achieving this concept will enable
interoperability between components, model expendability (e.g. easy integration with

344 F.M. Al-Ghaiati

an Intruder Detection System (IDS)), and enable the enterprise to focus on its business
functionality extension rather than on how to integrate each new business component.

This EMEE schema is an application integration schema that is built over the
SOAP schema. Another alternative for EMEE schema could be the Web Services
schemas over SOAP, but we see that the open standards in this area are focusing on
solving the extra-enterprise integration problems rather than the inter-enterprise.
Either a customized version of web service schemas or a new schema for
encapsulation (such as this proposed EMEE schema) needs to be open standardized
for a wide inter-enterprise generic and secure integration, also for monitoring of the
performance and availability management.

Enterprise Business Process Management Components
The Heart
From the practice, an Enterprise SOA for a complete business process management
solution cannot be achieved by one product or a single integration standard, such
SOA solution must be like a suite of products that comprise integration engines and
integration support/adds on products.

Now, the open standards work has identified three major standards for SOA
engines that can work together to run the enterprise SOA; it is the WS-BPEL the
Business Process Execution Language for Web Services open standard by OASIS,
WfMC XPDL XML Process Definition Language for workflow management open
standard by Workflow Management Coalition, and a need for an EAI that is based on
the JBI the Java Business Integration standard. Integrating these engines together
supports applications integration at the process as well as event level (human or
application), and providing different levels of business process and end to end service
assembling (Workflow, Business process, application integration) and service
integration independent of its location.

The need for powerful configuration and management tools for the orchestration
definition in these engines is a must, for the support of fast business process
definition, integration and management. These tools could help the user by providing
standard design patterns, act as a cognitive tool that guides and thinks with the user
building its experience by international as well as enterprise local integration practices
(i.e. extends and utilizes the information kept in the Knowledge Layer), and to
provide solution total management tools (i.e. design, deploy, monitor, and optimize).

The suite of products that tights these engines and tools together, we called it the
“Enterprise Messaging Exchange Engine (EMEE management engine)”.

In e-business spectrum the need for supporting more integration components has
become a fact, here are some examples for such needed components:

• When the existing legacy applications are being account based, a need for
centric customer/entity management that integrates the enterprise with its
customer/agents/users is a must.

• A need for an Enterprise central notification engine that manages the enterprise
notifications between applications and users or event between applications and
each other is a must.

 A Proposal for an Open Solution Business Process Integration 345

More e-business Integration Adds on / Support components can be introduced
today and in the future based on the business needs.

4 The Solution and Technology

JBI, the Java Business Integration Standard (JSR 208) is gaining more potential as a
JCP approved standard that defines the core component architecture for SOA. Now
we see the direction is moving towards emphasizing over this standard. We encourage
the open source communities to propose more projects to fill the gap in the proposed
framework, especially to see an open source project(s) for WfMC complete workflow
architecture solution based on JBI. More interest and focus on the standardization of
the knowledge layer is required.

4.1 Where Can Intellectual Property Software Products Fit in This
Framework?

It can fit into any component in the model as it complies with open standards and has
a good base for products supports and extensions such as IBM, and Microsoft.

Vendors provide superior value to their customers when supporting open
standards in their products. Unfortunately, this is not true in most real world
deployed systems where each vendor has his own proprietary integration interface
or API. However, software engineers successfully utilized technologies like remote
procedure call, reliable messaging and web services in their integration architecture,
wrapping the legacy applications functions. Although standards are being used in
these systems; the systems themselves are designers driven. New standards like JBI
and SCA are trying to address this problem, providing implementations of a SOA
approach for integration. Quoting from Dave Chappell's book “Enterprise Service
Bus”:

“Because the ESB can support multiple ways of connecting into it, applications
don't require any drastic changes to "get on the bus." The motto for ESB adoption is
"If you can't bring the application to the bus, bring the bus to the application." This
means that applications should be able to connect into the bus with as little
modification as possible. It is the bus, not the applications, that provides the flexibility
in connection technologies.”

JBI, for example, allows an integrator to encapsulate the application into the JBI
container acting as a service engine, or communicating with it over a specific
protocol through a binding component. Either way an integrator was able to
achieve, the communication, or “message exchange” in JBI terms, between service
engines and binding components is part of the specification. Perhaps the closest
concepts to this are the broker and router patterns, where applications are decoupled
communicating through the broker and addressing each other through the router.
Moreover, it is possible for a service provider inside a JBI container to describe and

346 F.M. Al-Ghaiati

publish the service it provides, allowing a consumer to query, discover and
consume the service.

5 Proposed Framework and Sustainability

When Sustainability is being checked a major question must be asked:

How Can This Architecture Fit into the Future Research and Technology
Evolution?

The main objective of this framework is to decouple the business from the
communication while it tightly couples the interface keeping components to virtually
orchestrate.

With JBI, the binding component is virtually wires external services with internal
service engine components; meanwhile each service engine evolves in its business
domain irrespective of how, when, and where it will be used.

This gives the business logic a complete freedom to evolve and provide services to
the market faster and in a stable way, meanwhile the communication (binding) is
visited only for spreading the space of the framework or enhancing the
communication between components.

From the research perspective, semantic web and anthologies are going to play
major roles in both knowledge and logic engines where they turn information into
useful knowledge, harness Enterprise knowledge assets (maintain and find the right
information at the right time and place), and secure Enterprise competition as it
efficiently release and reuse knowledge.

In the presented framework each component engine has specific domain of
functions where it can evolve its way of thinking or doing the work meanwhile the
base for the communication is not affected.

Examples for current research, the research of “Ontology Based Information Assets
Representation and Generation” can help the Knowledge Layer component to provide
its service (service engine) in a more advanced way meanwhile the underlying
communication infrastructure between components is functioning.

Another example, the EDA engine component (service engine) can evolve to
emulate the human immune system in its functionality meanwhile the same Blood
Vessel is ruining the life over the EMEE-Bus.

And a third example is to have ontology based work list assignment to the right
expert for problem solving in a human workflow, or dynamic ontology based service
selection/execution.

We see the most sustainable framework in this life is Human structure, so we tried
in this presented framework to emulate the human being, our logic and brain evolves,
our communication ways evolves, ….etc meanwhile our core interface is being
sustainable helping us to evolve as we are going; actually Humans make the
civilization and cope with it, the civilization does not make us.

6 Conclusion

In this article, we explored SOA within current open standards and supporting open
technologies, proposed an SOA Open Solution Business Process Integration and

 A Proposal for an Open Solution Business Process Integration 347

Implementation Framework based on the current open standards and considering the
impact of current research on it. The main objective of proposing this framework in
this article is to examine and verify it with the SOA communities, hoping to share by
this framework in the definition of “Language of Sustainability in e-business” and to
become a “Center Of Excellence (COE)” as the effort takes on a larger, multi-process
scope, and spanning multiple domains.

Experiences in Enhancing Existing BPM Tools
with BPEL Import and Export

Jan Mendling1, Kristian Bisgaard Lassen2, and Uwe Zdun1

1 Institute of Information Systems and New Media
Vienna University of Economics and Business Administration

Augasse 2-6, A-1090 Wien, Austria
{jan.mendling, uwe.zdun}@wu-wien.ac.at

2 Department of Computer Science, University of Aarhus
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

k.b.lassen@daimi.au.dk

Abstract. The Business Process Execution Language for Web Services
(BPEL) has become a de-facto standard for executable process speci-
fications. The broad industry acceptance of BPEL forces workflow and
BPM system vendors to consider respective import and export interfaces.
Yet, several existing systems utilize graph-based BPM languages such as
EPCs, Workflow Nets, UML Activity Diagrams, and BPMN in their
modeling component while BPEL is rather a block-oriented language in-
spired by process calculi. In this paper we identify transformation strate-
gies as reusable solutions for mapping control flow between graph-based
BPM tools and BPEL. Furthermore, we present a case study in which
we have applied these strategies in an industry project. This case study
shows that transformation strategies are helpful for implementing import
and export interfaces in a systematic way, and that they can easily be
extended to address vendor-specific aspects of a graph-based BPM tool.

1 Introduction

The Business Process Execution Language for Web Services [1] (BPEL4WS or
BPEL) has become a de-facto standard for executable process specifications. Al-
though the BPEL 2.0 standard is not yet published by OASIS, there are already
several systems that support BPEL, including Oracle BPEL Process Manager,
IBM Websphere, or the open source system ActiveBPEL. For an overview of cur-
rently available BPEL implementations see [8]. This broad industry acceptance
forces other BPM system vendors to consider BPEL support, too.

Basically, tool vendors have two options to approach this challenge: to pro-
vide a native BPEL implementation with a corresponding new modeling tool;
or, to enhance the existing modeling tool with BPEL import and export. The
import/export option might be preferable to vendors for several reasons. First,
it is much quicker, easier, and cheaper to be implemented than a native BPEL
component. Furthermore, the evolution of the vendor’s tool is decoupled from
potential modifications of the BPEL standard. Finally, the experiences that went

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 348–357, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Experiences in Enhancing Existing BPM Tools 349

Fig. 1. Graph-based modeling with UML Activity Diagrams in MS Visio versus block-
oriented modeling with BPEL in Oracle BPEL Designer

into the tool are a valuable asset for the vendor. Therefore, in the context of an
existing industrial tool, it is often not an option to start yet another BPEL stan-
dard implementation from scratch. Rather it is desirable to enhance the existing
tool with BPEL import and export. The trade-off of enhancing an existing tool
with BPEL import and export is that conceptual mappings have to be identified
between the modeling language of the BPM tool and BPEL. In particular, the
mapping of control flow is a non-trivial task, especially if the BPM tool uses
a graph-based language. Such graph-based languages like EPCs, UML Activity
Diagrams, BPMN, or Workflow nets are used by many BPM modeling tools
because they are handy in the analysis and design phase of a project. In the fol-
lowing, we will use the term graph-based BPM tool to refer to them. On the other
hand, processes can be modeled in a block-oriented fashion, similar to process
calculi. BPEL is in first place a block-oriented language, as the control flow can
be defined by nesting structures, e.g. sequence, while, or flow structured activi-
ties. Yet, BPEL also includes graph-based links that can be used within a flow
block. Figure 1 illustrates graph-based versus block-oriented process modeling.

The representational differences of control flow between graph-based BPM
tools and rather block-oriented BPEL is a major problem for the implementation
of BPEL import and export interfaces. In the following, we consider control
flow transformation strategies as defined in [9] to solve this problem. Section 2
presents available transformation strategies for importing and exporting BPEL
from graph-based BPM tools. In Section 3 we present our experiences of a case
study where we utilized the transformation strategies for the implementation of
an export interface for a commercial graph-based BPM tool. This tool uses UML
Activity Diagrams in its modeling component. After discussing some related
research in Section 4, we give a conclusion of the case study in Section 5.

2 Transformation Strategies for Graph-Based BPM Tools

In this section we describe transformation strategies for importing from and ex-
porting to BPEL, respectively to and from a graph-based language such as EPCs,

350 J. Mendling, K.B. Lassen, and U. Zdun

BPMN, Workflow nets, and UML Activity Diagrams. Most of these languages
support the definition of sub-processes, and we will take advantage of that fact
in some transformation strategies. The idea of the strategies is to explicate map-
ping options between BPEL and graph-based languages and to provide formal
algorithms that can be adapted to the specifics of any graph-based language.
Formal definitions and algorithms for each strategy are available in [9].

One specific problem of the mapping between BPEL and graph-based lan-
guages is that a transformation is not always possible. Some strategies require
structural properties of the input format to be satisfied. Table 1 distinguishes
structured graphs and acyclic graphs. Essentially, a structured graph uses only
control flow patterns that can be mapped to BPEL structured activities. This
also includes a simple loop that can be mapped to a BPEL while. An acyclic
graph can include any kind of split and join conditions as long as there is no
cycle. This implies that an acyclic graph does not need to be structured. Such
graphs can always be mapped to a BPEL flow that permits only acyclic links.
Furthermore, a BPEL process is structured if it does not include any link el-
ements. In the following, we briefly describe transformation strategies for the
import of BPEL to a graph-based BPM tool (Section 2.2) and for the export of
BPEL from (Section 2.1). Table 1 gives an overview of them and for which input
they are applicable.

Table 1. Transformation strategies and applicable models

Transformation Strategy Structured Acyclic All Transformation Strategy Structured All
from Graph to BPEL Graph Graph Graphs from BPEL to Graph BPEL BPEL
Element-Preservation - + - Flattening + +
Element-Minimization - + - Hierarchy-Preservation + -
Structure-Identification + - - Hierarchy-Maximization + +
Structure-Maximization + + -

2.1 Exporting BPEL from a Graph-Based BPM Tool

Transformation strategies in this section can be divided into two categories:
Either they preserve the graph-based modeling paradigm by mapping to a BPEL
flow (Element-Preservation, Element-Minimization) or they map to structured
activities whenever possible (Structure-Identification, Structure-Maximization).
The general idea of each strategy is illustrated in Figure 2.

Element-Preservation. This strategy maps all process graph elements to a flow
construct and arcs to links. It is a prerequisite of this strategy that the pro-
cess graph is acyclic. This is because a BPEL flow is not allowed to have cycles
defined with links [1]. Routing elements of the graph-based language such as de-
cision nodes and synchronization points are mapped to BPEL empty activities
with respective join conditions and links carrying the appropriate split condi-
tions (see Figure 2). The advantage of the Element-Preservation strategy is that
it is simple to implement and the resulting BPEL will be very similar to the
original process graph since there is a one-to-one correspondence between nodes
and activities. As a drawback, the resulting BPEL control flow includes more

Experiences in Enhancing Existing BPM Tools 351

assign

assign

assign

assign

flow

sequence

sequence

link

assign

assign

target

assign

assign

source

Graph

flow

link

assign

assign

link

link

...

empty

target

target

source

...

Structure-
Maximization

Element-
Preservation

flow

link

link

link

...

assign

target

target

source

Element-
Minimization

assign

target

source

source

flow

sequence

sequence

assign

assign

assign

assign

Structure-
Identification

Fig. 2. Illustration of Transformation Strategies for Export

elements than actually needed: joins and splits are translated to separate empty
activities in BPEL although split and join conditions could also be annotated
to other activities. Furthermore, the resulting BPEL might be more difficult to
read than structured activities, such as sequences. If the BPEL code is used in
a scenario where readability is important, it should be applied for small process
graphs since all elements of the process graph are mapped to one flow construct.

Element-Minimization. This strategy simplifies the generated BPEL code of the
Element-Preservation strategy. The general idea is to remove the empty activities
that have been generated from joins and splits and instead represent splitting
behavior by transition conditions of links and joining behavior by join conditions
of subsequent activities. As a prerequisite the process graph needs to be acyclic
in order to make dead path elimination of BPEL work. The advantage of the
resulting BPEL process is that it follows the semantics of the flow construct
more closely than the Element-Preservation strategy, since it removes empty
activities generated from joins and splits (see Figure 2). As a drawback, it is
less intuitive to identify correspondences between the process graph and the
generated BPEL specification. This strategy should be used in scenarios where
the resulting BPEL code needs to have as few nodes as possible. This might be
the case when runtime performance of the BPEL process matters. In contrast
to the Element-Preservation strategy, the amount of nodes is decreased since all
empty activities translated from join and split nodes are skipped.

Structure-Identification. The general idea of this transformation strategy is to
identify structured activities in the process graph and apply structural reduction
rules as defined in [9]. As a prerequisite the process graph needs to be structured
according to a definition also described in [9]. The advantage of this strategy is
that all control flow is translated into structured activities (see Figure 2). With
regard to the readability of the resulting code, this is the most suitable strategy
since it reveals the structured components of the process graph. As a drawback
the relation to the original process graph might not be intuitive to identify. This
transformation strategy is appropriate in a scenario when the BPEL should be

352 J. Mendling, K.B. Lassen, and U. Zdun

flow

sequence

sequence

link

assign

assign

target

assign

assign

source
assign

assign

assign

assign

assign

assign

assign

assign

assign

assign

assign

assign

BPEL Process Flattening Hierarchy-Preservation Hierarchy-Maximization

Fig. 3. Illustration of Transformation Strategies for Import

edited by a BPEL modeling tool such as Oracle BPEL designer that displays
the process as a nesting of structured activities.

Structure-Maximization. The general idea of this strategy is to apply the reduc-
tion rules of the Structure-Identification strategy as often as possible to identify
a maximum of structure (see Figure 2). The remaining annotated process graph
is then translated following the element-preservation or Element-Minimization
strategy. The advantage of this strategy is that it can be applied for arbitrary
unstructured process graphs as long as its loops can be reduced via the reduction
rules defined in [9]. Still this strategy is also not able to translate arbitrary cycles,
i.e. cycles with multiple entrance and/or multiple exit points. A drawback of this
strategy is that both Structure-Identification and at least Element-Preservation
strategy need to be implemented. This strategy could be used in scenarios where
models have to be edited by a BPEL modeling tool such as Oracle BPEL designer
that uses structured activities as the primary modeling paradigm.

2.2 Importing BPEL into a Graph-Based BPM Tool

Transformation strategies for importing BPEL can be divided into two cate-
gories: Either the BPEL structure is transformed into a graph with no hierarchy
(Flattening Strategy), or a graph where the BPEL structure is preserved as much
as possible (Hierarchy-Preservation, Hierarchy-Maximization). The general idea
of each strategy is illustrated in Figure 3.

Flattening. The general idea of this strategy is to map BPEL structured activi-
ties to respective process graph fragments. The nested BPEL control flow then
becomes a flat process graph without hierarchy (see Figure 3). For this strategy,
there are no prerequisites, both structured and unstructured BPEL control flow
can be transformed according to this strategy. The advantage of flattening is
that the behavior of the whole BPEL process is mapped to one process graph.
Yet, as a drawback the descriptive semantics of structured activities get lost.
Such a transformation strategy is useful in a scenario where a BPEL process has
to be visually communicated to business analysts.

Experiences in Enhancing Existing BPM Tools 353

Hierarchy-Preservation. This strategy maps each BPEL structured activity to
a sub-process in a hierarchy of nested graph-based processes (see Figure 3). The
nesting of structured activities is preserved as nodes with sub-process relations.
The algorithm can be defined in a top-down way similar to the Flattening strat-
egy. Changes have to be defined for the transformation of structured activities as
each is mapped to a new process graph. A prerequisite of this strategy is that the
BPEL code is structured: links across the border of structured activities cannot
the expressed by the subprocess relation. The advantage of this strategy is that
the descriptive semantics of structured activities is preserved. Furthermore, such
a transformation can correctly map the BPEL semantics of Terminate activities
that are nested in Scopes. As a drawback, the model hierarchy has to be nav-
igated in order to understand the whole process. This strategy might be useful
in a scenario where process graphs are formally verified and then mapped back
to BPEL structured activities.

Hierarchy-Maximization. One disadvantage of the Hierarchy-Preservation strat-
egy is that it is bound to structured BPEL. The Hierarchy-Maximization strat-
egy aims at preserving as much hierarchy as possible, and it is applicable to
any (structured or unstructured) BPEL control flow. This strategy maps BPEL
structured activities to sub-processes if there are no links nested that cross the
border of the activity (see Figure 3). Accordingly, this strategy does not have any
prerequisites regarding the BPEL code structure. The advantage of Hierarchy-
Maximization is that as much structure as possible is preserved. Yet, the transfor-
mation logic of both previous strategies, Flattening and Hierarchy-Preservation,
needs need to be implemented to realize Hierarchy-Maximization.

3 Case Study

In an industry project, we designed a BPEL export filter for a workflow de-
signer that uses a graph-based notation based on UML activity diagrams includ-
ing product-specific extensions. In essence, we followed the element-preservation
strategy and deviated in order to capture specifics of the UML Activity Dia-
gram variant of the workflow designer. These deviations related to start and end
events, split elements, and a two-level modeling concept. Models built by the
workflow designer have exactly one start node and end nodes with implicit ter-
mination semantics. As they do not need to be represented in the flow element,
we decided not to transform them to BPEL. Accordingly, also arcs connected
with start and end nodes are not mapped to BPEL links. The workflow designer
offers two split elements that have semantics comparable to an XOR split; these
are switch nodes (two alternatives) and decision nodes (multiple alternatives).
We decided to map both of these elements to a BPEL switch that includes empty
elements for each alternative that serves as a source for a link to the subsequent
activity. This design has been chosen instead of a mapping to empty activities
in order to easier distinguish different types of splits when the exported BPEL
is re-imported. Furthermore, the workflow designer offers a two-level modeling
approach: step nodes similar to process graph functions have to be specified by

354 J. Mendling, K.B. Lassen, and U. Zdun

a sequence of one or multiple step actions. Step nodes are part of the UML
model, step actions have no visual representation. As a consequence, we map
step nodes to BPEL sequences that nest further BPEL activities corresponding
to the semantics of the step actions.

The mapping of many proprietary concepts of the workflow designer turned
out to be a problem. These proprietary concepts include sub-workflow elements,
step actions, and properties of the individual visual elements:

– Regarding the sub-workflow concept, we decided to map each sub-workflow
to a BPEL scope and a nested invoke. This allows us to define the input
parameters of the sub-workflow as local variables in the scope and represent
the invocation of the sub-process via a BPEL invoke. For a more appropri-
ate mapping, the upcoming BPEL-SPE extension will be very helpful [7],
especially for variable passing as well as fault and compensation handling.

– Step actions are defined in an abstract class, which is customized by a number
of different possible step actions, such as defining a (local) variable, inline
Java code, or mail sending. To map these steps, we first defined a generic
mapping operation to BPEL in the abstract step action class which is used
when no special class overrides the operation. In this case, a BPEL invoke is
written to the output, containing the name of the step as a partner link. We
also defined mappings for a number of concrete step actions. For instance, in
the step action for invoking a form-based input, the partner link is set to the
application receiving the form-based input. The inline Java code step action
is transformed to a BPELJ snippet [3]. The variable setting step action is
mapped to a BPEL assign activity.

– All visual elements of the workflow designer can have additional properties.
Some of those, such as time-out conditions and escalations, might even have
an influence on the control flow. We defined a special XML namespace for
these properties and included them as attributes in the respective BPEL
activity. Finally, we had to map step actions contained in the step nodes to
BPEL basic activities.

Figure 4 illustrates the transformation with an example UML Activity Dia-
gram and the generated BPEL export. The first step node Step 103 contains
two step actions: a send email task and Java inline code. The step node is
mapped to a sequence containing basic activities for each of the step actions.
The send email task maps to an invoke of the respective service, the Java inline
code is mapped to a BPELJ snippet. The following decision node is transformed
to a switch. The empty activity in its case branch serves as the source for
a link to the subsequent sequence containing the assign activity (Step 37).
The other branch links to the join node represented as an empty activity with
joinCondition in BPEL. Afterwards there is a step node containing Java inline
code (Step 43).

In conclusion, the transformation strategies have helped us to find a sys-
tematic, initial approach and process for the transformation of the workflow
designer’s notation to BPEL. They are also useful for explaining the overall

Experiences in Enhancing Existing BPM Tools 355

UML Activity Diagram
in Workflow Designer

Generated BPEL Export
for the Diagram

step node

step actions
1. send email

2. java inline

Step 103

$output != null

1. assign

Step 37

else

1. java inline

Step 43

<?xml version="1.0" encoding="UTF-8"?>
<process name="new" xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:bpelj="http://schemas.xmlsoap.org/ws/2003/03/business-process/java">
 …
 <flow>
 <links>
 <link name="Transition 123"/>
 <link name="Transition 134"/>
 <link name="Transition 87"/>
 <link name="Transition 156"/>
 <link name="Transition 192"/>
 </links>
 <sequence name="Step 103">
 <invoke name="send email" inputVariable="input" outputVariable="output"/>
 <bpelj:snippet>
 <bpelj:code>System.out.println("email sent");</bpelj:code>
 </bpelj:snippet>
 <source linkName="Transition 123"/>
 </sequence>
 <switch>
 <case condition="$output != null">
 <empty><source linkName="Transition 134"/></empty>
 </case>
 <otherwise>
 <empty><source linkName="Transition 87"/></empty>
 </otherwise>
 <target linkName="Transition 123"/>
 </switch>
 <sequence name="Step 37">
 <assign/>
 <target linkName="Transition 134"/>
 <source linkName="Transition 156"/>
 </sequence>
 <empty joinCondition="bpws:getLinkStatus('Transition 87') or bpws:getLinkStatus('Transition 156')>
 <target linkName="Transition 87"/>
 <target linkName="Transition 156"/>
 <source linkName="Transition 192"/>
 </empty>
 <sequence name="Step 43">
 <bpelj:snippet>
 <bpelj:code>System.out.println("finished");</bpelj:code>
 </bpelj:snippet>
 <target linkName="Transition 192"/>
 </sequence>
 </flow>
</process>

Fig. 4. UML Activity Diagram and generated BPEL export

design decisions. The case study also shows that the transformation strategies
can be mixed. The strategies define ideal, prototypical mappings, but in a com-
plex product like the workflow designer in our case study it is necessary to
identify the most suitable transformation strategy for the different parts of the
mapping. In addition, in a real-world industry product, there are proprietary ex-
tensions, such as step actions or properties in our case, and model elements with
further semantics, such as sub-workflows, which are not addressed by the trans-
formation strategies. These require further deviations from the general strategies.

4 Related Work

There have been several works on transformations between BPEL and graph-
based process modeling languages. We highlight only some of them and refer to
[9] for a more comprehensive overview.

The export of BPEL from a graph-based BPM tool can be related to work
dedicated to model-driven development of executable BPEL process definitions.
A conceptual mapping from EPCs to BPEL is presented in [13]. The authors
choose a transformation based on the Element-Preservation strategy for the
reason that it is easy to implement. In [11] a Workflow-net -based modeling
approach for BPEL including a respective transformation is presented. Similar
to the Structure-Identification strategy, Workflow nets are reduced by matching

356 J. Mendling, K.B. Lassen, and U. Zdun

components that are equivalent to BPEL structured activities such as switch and
pick. The Structure-Identification strategy has been chosen in order to generate
readable BPEL template code and not executable BPEL processes.

Further work takes the modeling standards UML and BPMN as a starting
point. In [4] a BPM-specific profile of UML is used to generate BPEL code.
From the paper the transformation strategy is not clear, but the figures suggest
that the author uses an Element-Preservation strategy and maps sequences to
BPEL sequences. The BPMN specification [12] comes along with a proposal for
a mapping to BPEL. As BPMN is a graph-based BPM language, the strategies
of Section 2.1 can be applied. The subsection 6.17 of BPMN spec presents a
mapping that is close to the Structure-Identification strategy. Yet, the mapping
is given rather in prose, a precise algorithm and a definition of required struc-
tural properties is missing. Ouyang et al. [10] show a translation from so-called
Standard Process Models (SPMs) [5] to BPEL. SPM basically reflects the com-
monalities of UML Activity Diagrams and BPMN. The authors generate Event-
Condition-Action (ECA) rules for each activity in the SPM that describes what
event must occur under what condition for an activity to become active. Each
ECA is translated into BPEL as an event handler resulting in the entire BPEL
process being a sequence of event handlers that invoke each other. To improve
their result they only make ECAs for what they call Clusterable Activity Blocks
(CABs), parts of an SPM that among other things do not contain AND-splits
and AND-joins. This improves the readability of the resulting BPEL since nodes
that are local in CABs are local in the BPEL. This approach can be regarded
as an additional strategy for transforming graph-based process models to BPEL
that is able to handle arbitrary cycles, too.

5 Conclusion

In this paper, we discussed import and export interfaces as a simple option
for BPM tool vendors to provide BPEL support. We identified transformation
strategies between graph-based BPM tools and BPEL as helpful predefined so-
lutions to the problem of mapping control flow in this context. In a case study
we applied transformation strategies in the implementation of an export inter-
face of a commercial BPM tool that utilized UML Activity Diagrams for process
modeling. The transformation strategies have helped us to find a systematic,
initial approach for the export. Yet, several specifics of the tool required de-
viations and extensions to the strategies. Some of the mapping problems have
already motivated to envision extensions to the new BPEL Version 2.0 [2]. While
we could already utilize the BPEL-J specification for inline Java code, the envi-
sioned BPEL-SPE extension would have been very helpful to map sub-processes.
Maybe some of the vendor-specific activity properties like escalation would be
considered in the future BPEL4People extension [6]. These extensions have the
potential to facilitate a more straight-forward mapping and a simpler interchange
of process definitions via BPEL in the future.

Experiences in Enhancing Existing BPM Tools 357

References

1. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1. Specification, BEA Systems,
IBM Corp., Microsoft Corp., SAP AG, Siebel Systems, 2003.

2. Assaf Arkin, Sid Askary, Ben Bloch, Francisco Curbera, Yaron Goland, Neelakan-
tan Kartha, Canyang Kevin Liu, Satish Thatte, Prasad Yendluri, and Alex Yiu.
Web services business process execution language version 2.0. wsbpel-specification-
draft-01, OASIS, September 2005.

3. Michael Blow, Yaron Goland, Matthias Kloppmann, Frank Leymann, Gerhard
Pfau, Dieter Roller, and Michael Rowley. BPELJ: BPEL for Java. Whitepaper,
BEA and IBM, 2004.

4. Tracy Gardner. UML Modelling of Automated Business Processes with a Map-
ping to BPEL4WS. In Proceedings of the First European Workshop on Object
Orientation and Web Services at ECOOP 2003, 2003.

5. Bartek Kiepuszewski, Arthur H. M. ter Hofstede, and Wil M. P. van der Aalst.
Fundamentals of control flow in workflows. Acta Inf., 39(3):143–209, 2003.

6. Matthias Kloppmann, Dieter König, Frank Leymann, Gerhard Pfau, Alan Rick-
ayzen, Claus von Riegen, Patrick Schmidt, and Ivana Trickovic. WS-BPEL Exten-
sion for People BPEL4People. Joint white paper, IBM and SAP, July 2005.

7. Matthias Kloppmann, Dieter König, Frank Leymann, Gerhard Pfau, Alan Rick-
ayzen, Claus von Riegen, Patrick Schmidt, and Ivana Trickovic. WS-BPEL Exten-
sion for Sub-processes BPEL-SPE. Joint white paper, IBM and SAP, 2005.

8. Dieter König. WS-BPEL Standards Roadmap. Invited Talk at the
3rd GI-Workshop XML4BPM 2006, http://wi.wu-wien.ac.at/˜mendling/
XML4BPM2006/WS-BPEL%20Standards.pdf, February 2006.

9. J. Mendling, K. Lassen, and U. Zdun. Transformation strategies between block-
oriented and graph-oriented process modelling languages. Technical Report JM-
2005-10-10, WU Vienna, http://wi.wu-wien.ac.at/home/mendling/publications/
TR05-Strategy.pdf, October 2005.

10. C. Ouyang, M. Dumas, S. Breutel, and A. H.M. ter Hofstede. Translating Standard
Process Models to BPEL. In Proceedings of the 18th International Conference on
Advanced Information Systems Engineering (CAiSE), LNCS, 2006.

11. Wil M.P. van der Aalst, Jens Bæk Jørgensen, and Kristian Bisgaard Lassen. Let’s
Go All the Way: From Requirements via Colored Workflow Nets to a BPEL Imple-
mentation of a New Bank System. In R. Meersman and Z.Tari, editors, Proceedings
of CoopIS/DOA/ODBASE 2005, Cyprus, LNCS 3760, pages 22–39, 2005.

12. S. A. White. Business Process Modeling Notation. Specification, BPMI.org, 2004.
13. J. Ziemann and J. Mendling. EPC-Based Modelling of BPEL Processes: a Prag-

matic Transformation Approach. In Proceedings of MITIP 2005, Italy, 2005.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 358 – 367, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Introducing Case Management:
Opening Workflow Management’s Black Box

Kees Kaan1, Hajo A. Reijers2, and Peter van der Molen1

1 Gyata BPI Consultants, P.O. Box 43, 4230 DJ Meerkerk, The Netherlands
{kkaan, pvandermolen}@gyatabpi.com

http://www.gyatabpi.com
2 Technische Universiteit Eindhoven, Department of Technology Management,

Information Systems Group, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
h.a.reijers@tm.tue.nl

Abstract. Workflow management systems are very adequate for supporting the
flow of work through enterprises, but do not deliver coordination support to
end-users within the work items they perform. In this paper, the concept of case
management is introduced, which specifically targets this type of support. Its
associated technology is intended to be used as a harmonious extension of
workflow technology, instead of a competing system. A discussion in some
depth is presented of the concept, methods, and technology of case manage-
ment, as well as experiences with its application in industry.

1 Introduction

Technologies fight for survival, evolve, and undergo their own characteristic life
cycle. They typically roam from an initial stage, where precursor technologies can be
distinguished, through stages of development and maturity, towards finally becoming
a relic [13]. It is safe to say that workflow technology has not quite reached that ter-
minal stage. Throughout the introduction of office automation technology in the 70s,
the rise of commercial systems during the 80s and 90s up till its recent re-branding as
Business Process Management system, workflow technology is actively being re-
searched and widely applied in industry (see e.g. [5,15,18]).

An interesting question is whether workflow technology should be considered as
the final solution in providing support to people in coordinating their work. Workflow
management systems (WfMSs) take care of the logistics of a workflow process by
handing out work items to performers according to a predefined workflow plan
[2,9,10]. What actually happens within the execution of a task for a particular case is
of no concern to the WfMS. Aside from monitoring changes to case attribute values
that may be of influence on further routing, the tasks in the workflow process are
“black boxes” as far as the WfMS is concerned. And yet, in many settings it is hardly
the case that people follow a strict sequence of operations to perform any but the
simplest of tasks. In fact, one of the main reasons that a task cannot (or will not) be
completely automated seems to be that it requires humans to skillfully adjust the con-
tents of a task to fit the requirements of one case over the other.

 Introducing Case Management: Opening Workflow Management’s Black Box 359

We can clarify this by the following example. Consider a single task in the proc-
essing of loan applications. Even though this task consists of several elementary parts
(or activities), not all of these are relevant in every situation. If the application in-
volves a new customer - that is, someone without an account - then the registration of
its data and the preparation of a welcoming letter are relevant. Also, if a new customer
requests a relatively high loan amount, some background investigation and the prepa-
ration of an additional appendix in the contract are relevant. In all cases where the
loan amount is high (regardless of any account held by the customer), performing a
risk analysis and informing the surveillance agency is relevant. Finally, for each ap-
plication a contract is prepared. Clearly, this example shows how various activities
exist within the scope of a single task which may or may not be applicable for a spe-
cific case.

While adequate for supporting the flow of work through enterprises (facilitating
work distribution and task authorization), a WfMS is not very suitable to support the
routing through activities within a single task. In an attempt to create such WfMS
support nonetheless, a process designer may face the issues of “model explosion” and
“self-routing” versus “lack of support”. Striving to support the worker in a flexible
way, one might end up adding as many possible routes between activities until the
model becomes unmanageable (model explosion). Also, this will result in a solution
where tiny work items are routed from and to the same resource (self-routing). When
striving to keep models simple and maintainable on the other hand, one might end up
with system imposing so many restrictions on the workers that it frustrates rather than
supports their tasks (“lack of support”).

In this paper, the concept of case management is introduced, which specifically
aims at providing support within workflow's “black boxes”. Case management is
being supported by concrete methods, techniques, and tools and has been successfully
applied in industry in over a dozen occasions. Despite other recent technologies which
aim to bring a more fine-grained support to performers, e.g. case handling systems
[1,3], case management is not advocated as a substitute for workflow management but
as a harmonious extension. This can be clearly seen in industrial applications of case
handling technology, where it is usually closely integrated with the operations of
commercial workflow management systems (e.g. Tibco's Staffware Process Suite and
FileNet's P8 platform).

The structure of this paper is as follows. In Section 2, the case management con-
cept is clarified, together with its supporting methodologies and tools. In Section 3, a
real-life application is described. Related work is reviewed shortly in Section 4. The
paper ends with our conclusions in Section 5.

2 Case Management

2.1 Concept

Assuming that the workflow management paradigm is contingent with the support
needs for work distribution and authorization, but not with the needs at the workplace,
we introduce an architecture in which the processing of cases by individuals is de-
coupled from the routing of the cases through the enterprise. This decoupling allows

360 K. Kaan, H.A. Reijers, and P. van der Molen

the use of specialized process support paradigms for both aspects of the business
process. As shown in Fig. 1, we propose the use of Workflow Management (including
its methods, techniques and tools) on the flow of control level and introduce the case
management paradigm on the work contents level.

Fig. 1. Refining workflow tasks into activities

Within such a scope, it can be assumed that workers will receive work items from a
WfMS, which are instantiations of particular tasks for particular cases. (Note that we
use the terminology from [2] here). To complete a work item, a set of activities needs
to be performed. A central element in case management is that the characteristics of
the case determine what activities are considered to be relevant during case process-
ing. This relevance is considered as the context of activities and expressed in terms of
conditions on the case attributes. Fig. 2 shows the meta-model of process definition
and enactment in workflow and case management. In this model, the left-hand side
shows conceptual design-time elements, which result in run-time instantiations on the
right-hand side.

As a work item is picked up at run-time, a list of all relevant activities is presented
to the worker. An activity is contained in the list if the condition by which its context
is specified in the process model is met by the case attributes at run-time. In the meta-
model, this is expressed by the entity Context evaluation, which follows from the
combination of a context definition and the run-time case attribute values. Unless
otherwise specified (as we will describe in the next paragraph), the worker can per-
form any subset of the activities in any order to complete the work item. If the case
characteristics change during the execution of an activity, the list of relevant activities
is updated accordingly. Through this mechanism, the behavior can be achieved that
activities are added and removed from the list while the case is being worked on. This
resembles the real-life situation that changing a product while working on it also in-
fluences what operations can be performed on it.

Counterbalancing the freedom of the worker with respect to the activities that are
carried out to complete a work item, some restrictions can be modeled. As a first
construct, activities can be specified to be required in a certain context. This means
that as long as this context applies and the activity has not been performed, the worker

 Introducing Case Management: Opening Workflow Management’s Black Box 361

Activity

Work item

1

*

Context evaluation

* 1

CaseTask

1 *

Activity definition

1

*

1

*

Context definition

1 *

1 *

Case definition

1

*

1 *

1 *

Conceptual Actual

1 *

* 1

W
or

kf
lo

w
 M

an
ag

em
en

t
C

as
e

M
an

ag
em

en
t

C
ase

Fig. 2. Meta-model for the interplay between workflow management and case management

cannot complete the work item. However, ‘relevance’ takes precedence over ‘being
required’, i.e., a required activity that is not relevant in some context, is treated as not
being required to complete the work item. As a second construct, activities can be
specified to be non-repeatable in a certain context. This means that the worker cannot
perform the activity for a second time once it has been completed. As a third con-
struct, an activity can be specified as being allowed to be performed only if another
activity has already been completed.

2.2 Obtaining the View on Activities

Clearly, the case management concept presupposes a very fine-grained view on the
activities that people perform within the context of carrying out a work item. This
implies the need for methods to acquire relevant and valid information in terms of
tasks, activities, contexts and restrictions. This section describes a bottom-up process
analysis and design approach particularly suitable for situations in which case man-
agement is applied.

The key idea is that, in a session together with all workers (or representatives)
that have a role in the process, the group is asked to collect all activities that are
carried out in the process. Each activity has its name written on a small card and is
grouped together with related activities. With the objective that groups of activities
should form coherent tasks for individuals, the papers are rearranged until consen-
sus is reached on the main flow of the process in terms of tasks. Each of these tasks
has now already been decomposed into activities. This resulting model can be used
to facilitate further steps in a business process management project and implement-
ing case management.

2.3 Modeling

Activities and their relevance can be modeled graphically. In this case, relations be-
tween the relevance contexts of several activities are specified visually. In workflow

362 K. Kaan, H.A. Reijers, and P. van der Molen

Management, graphical languages have been used extensively to model business
processes, both in commercial products and in the academic field. Visual models can
provide intuitive insight in the process and can facilitate the communication about
models between stakeholders from different disciplines.

The idea of expressing the relevance of certain pieces of work in certain situations
is to think of overlapping contexts surrounding one or more activities. If we refer back
to the loan processing example of Section 1, six activities can be distinguished within
the task of handling a new loan application. Together with their contexts, they are
visualized in Fig. 3.

We assume that on the workflow management level, two case attributes are
available: cust_has_account and loan_amount (see table B in the figure). These are
used in the model to specify two situations: (1) the situation in which this case in-
volves a customer without an account, and (2) the situation in which the loan
amount is relatively high. Situation (1) corresponds with the predicate not
cust_has_account; situation (2) corresponds with the predicate loan_amount > 1000
(see table C in the figure).

The activities Register customer data and Prepare welcome letter are relevant in
the context of situation (1). The activities Perform risk analysis and Inform surveil-
lance agency are relevant in the context of situation (2). The activities Investigate
customer background and Prepare contract appendix are relevant in the context
where the two situations coincide. That is, they are relevant only if situations (1) and
(2) both apply to the case. For this reason, they are drawn in the intersection of situa-
tion (1) and (2). Finally, Prepare contract is not restricted to any situation, because it
is relevant at all times. As its context is universal, we draw it at some point outside
situations (1) and (2).

2.4 Tool Support: Activity Manager

Activity Manager is a tool that supports case management. It has been applied in
projects in the past years by the Altran Group member Gyata BPI Consultants in The
Netherlands. It is being developed by Workflow Management Solutions and licensed
by BPI Products. At the moment of writing, the most recent version was 1.2, with a
version 2.0 under development.

From the perspective of the WfMS, the Activity Manager (AM) is an application
instantiated when the user picks up a work item from the WfMS. Within the AM,
various activities are presented to the user. Each activity is related to an application.
Interfaces exist between AM and a large number of WfMSs, including FileNet,
Staffware, Oracle Workflow, K2, COSA and IBM MQSeries. The interface between
the WfMSs and the AM allows the AM to access the case variables defined in the
WfMS.

To interface with other information system components (like databases, document
management systems or transaction systems), small interface applications are used.
These applications control the flow of information between the AM and the men-
tioned components. Some of these applications can be wrapper applications to inter-
face with legacy systems. The AM toolbox provided by Gyata BPI Consultants con-
tains a set of generic plug-in applications to interface with various ‘off-the-shelf’

 Introducing Case Management: Opening Workflow Management’s Black Box 363

Fig. 3. Modeling the example of handling a loan application

Fig. 4. Screen shot of the Activity Manager

system components. The functionality of these plug-ins varies from relatively ‘lean’
(transferring data back and forth) to relatively ‘rich’ (providing a user interface for
viewing and modifying information from various systems). One example from the
latter is a viewer application that enables users to view documents from the document
management system, edit related case data, and provide decision information through
an integrated user interface.

364 K. Kaan, H.A. Reijers, and P. van der Molen

In addition to applying the case management concept as we describe it in this pa-
per, the AM supports the use of time frames in which activities are relevant, the
starting of activities in parallel, the definition of a repository of plug-ins to be
started by the user and an ad-hoc taskbar for starting common functionality from
anywhere in the process. The visual approach in modeling activities we described in
the previous section is not supported yet in the current available version of the
product.

3 Application

Only practice can prove a new concept’s value in terms of feasibility and applicabil-
ity. Case management originates from industry and has been applied in approximately
15 projects over the past years. Examples of implementations running today are in
retail, government, insurance and international banking. One of these implementa-
tions will be discussed here in some more detail.

Our case involves a health insurance company for all active and retired employees
of the Dutch national police. Starting in 2001, an existing WfMS solution based on
Staffware was extended with case management. The reasons for this were a lack of
user-friendliness and too high a dependency on custom-made applications. Some of
the applications used to support the workflow tasks allowed access to as much as 100
data fields. For workers, it proved to be very hard to navigate through these applica-
tions to complete their tasks. On the level of workflow logistics however, the routing
between the workers proved to be adequate.

Leaving the workflow model intact, case management was introduced at the work-
place by means of the Activity Manager. After refining tasks into activities, a set of
small-scale user interface components was designed to support the several kinds of
operations performed by the workers. These components were then re-used exten-
sively to support the activities performed by the workers.

In two years, two primary and six secondary processes have been analyzed and
supported. The first process (addressing the handling of objections) took six months
to implement, including the development of the required generic user interface com-
ponents. A second process (handling the applications of withdrawal authorizations)
took three months to implement. For subsequent processes, development lead times
dropped below three months.

As an example of the benefits for the business processes themselves, the opera-
tional lead time of the second mentioned process dropped from 22 to 6 days by intro-
ducing workflow management technology and then dropped to 3 days by introducing
case management. Case management in particular introduced the benefit of increased
flexibility and uniformity in user interface presentation.

The case illustrates the use of case management to support the worker at a fine-
grained level without the need to develop applications that incorporate knowledge of
the business process. Also, it illustrates that the concept of activities enables us to re-
use generic small-scale components for user interaction. At present, the described
solution is still in use.

 Introducing Case Management: Opening Workflow Management’s Black Box 365

4 Related Work

Current WfMSs are by no means considered perfect. It has been argued that they fail
to provide human actors two major things [4]: (1) awareness of the situation and (2)
the flexibility to handle changes. Although some researchers have discussed the first
issue (e.g. [12]), a large part of current research into workflow technology has fo-
cused on the issue of flexibility (e.g. [4,6,8,11,14]). It should be noted here that insuf-
ficient coordination support within task execution is not considered as one of the ma-
jor lacks of workflow technology, although it is sometimes mentioned (e.g. [1]).

Highly relevant for the topic of this paper is the work on case handling systems,
which are positioned as addressing both the awareness and flexibility issues [1,2]. The
case handling solution consists of three parts: (1) the system's focus is on the case, (2)
the process is data-driven, and (3) parts of the process are left implicit [1]. Through
this combination, end users do receive fine-grained support in executing specific
tasks, as the case handling system is involved at all times when case data is being
manipulated. This is one of the problems we mentioned in the introduction. Moreover,
the other problem we mentioned of potentially highly complex and unmaintainable
workflow models is claimed to be countered by implicit modeling, i.e. only the nor-
mal process flow is modeled and the end user is provided with default mechanisms to
deviate from this normal flow.

Therefore, case handling systems can be seen as dealing with exactly the same is-
sues as case management, although addressing them from a different starting point,
i.e. the issues of flexibility and awareness. However, case handling systems come
with their own problems. In earlier work, we argued that the specific nature of a case
handling system may actually impair the primary strengths of WfMSs with respect to
coordination effort, maintainability, efficiency, and quality [16]. The use of a case
management system in combination with a traditional WfMS is presented here as an
alternative.

OS OS OS

D
B

M
Sappl. appl.

D
B

M
Sappl.

UIMS

1965-1975 1975-1985 1985-1995

OS

D
B

M
S

W
F

M
S ap

pl
.

UIMS

1995-2005

OS

D
B

M
SCM

W
F

M
S appl.

UIMS

2005-2010

OS OS OS

D
B

M
Sappl. appl.

D
B

M
Sappl.

UIMS

1965-1975 1975-1985 1985-1995

OS

D
B

M
S

W
F

M
S ap

pl
.

UIMS

1995-2005

OS

D
B

M
S

W
F

M
S ap

pl
.

UIMS

1995-2005

OS

D
B

M
SCM

W
F

M
S appl.

UIMS

2005-2010

Fig. 5. Trends in information systems development (adapted from [2])

5 Conclusion

This paper introduces the concept of case management with its supporting technol-
ogy. From a high-level perspective, case management can be seen as a next step in the
evolution of information systems. Starting from the monolithic IT systems in the 50’s,
generic functionality has increasingly been taken out of applications and put into
decomposed management systems, such as Operating Systems (OSs), Database Man-
agement Systems (DBMSs), User Interface Management Systems (UIMS), and

366 K. Kaan, H.A. Reijers, and P. van der Molen

WfMSs [2]. Case management (CM) takes out the coordination logic within single
tasks from the generic application (see Fig. 5). Instead, a generic system is available
that offers both support and flexibility to the performer for executing a work item.

Clearly, there are open issues that need to be addressed. From a conceptual point, it
is unclear where exactly the boundary lies between tasks and activities. This may
sometimes hamper the decision where to place the right “split” between the support of
the WfMS and the case management system. Although some notions have been sug-
gested such as the Logic Unit of Work and the use of ACID properties from transac-
tion processing to define task boundaries [2,7], the workflow management community
has not delivered a concrete and definite distinction criterion yet. Our research into
the clustering of related activities is related to this issue [17].

On a technical level, the visual modeling language that has been developed to cap-
ture the contexts of various activities needs yet to be integrated in the current soft-
ware. We expect that a full graphical design environment will greatly add to the un-
derstandability and maintainability of case management models, in this way enhanc-
ing its value for delivering concrete support at the work floor.

References

1. van der Aalst, W.M.P., Berens, P.J.S.: Beyond Workflow Management: Product-Driven
Case Handling. In Ellis, S. et al., (eds.): International ACM SIGGROUP Conference on
Supporting Group Work (GROUP 2001). ACM Press, New York (2001) 42-51.

2. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods, and
Systems. MIT Press, Cambridge (2002).

3. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case Handling: A New Paradigm for
Business Process Support. Data and Knowledge Engineering 53(2) (2005) 129–162.

4. Agostini, A., De Michelis, G.: A Light Workflow Management System using Simple
Process Definitions. Computer Supported Cooperative Work 9(3) (2000) 335–363.

5. Cardoso, J., Bostrom, J.P., Sheth, A.: Workflow Management Systems and ERP Systems:
Differences, Commonalities, and Applications. Information Technology and Management
5(3/4) (2004) 319-338.

6. Cugola, G.: Inconsistencies and Deviations in Process Support Systems. PhD thesis.
Politecnico di Milano, Milan (1998).

7. Grefen, P.W.P.J., Pernici, B., Sanchez, G. (eds.): Database Support for Workflow Man-
agement : The Wide Project. Kluwer, Dordrecht (1999).

8. Heinl, P., Horn, S., Jablonski, S., Neeb, J., Stein, K., Teschke, M.: A Comprehensive Ap-
proach to Flexibility in Workflow Management Systems. Software Engineering Notes
24(2) (1999) 79-88.

9. Jablonski, S. Bussler, C.: Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London (1996).

10. Georgakopoulos, D., Hornick, M., Sheth, A.: An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel
Databases 3(2) (1995) 119-153.

11. Kammer, P.J. , Bolcer, G.A., Taylor, R.N., Hitomi, A.S., Bergman, M.: Techniques for
Supporting Dynamic and Adaptive Workflow. Computer Supported Cooperative Work
9(3/4) (2000) 269-292.

 Introducing Case Management: Opening Workflow Management’s Black Box 367

12. Kueng, P.: The Effects of Workflow Systems on Organizations: A Qualitative Study. In:
Aalst, W.M.P. et al., (eds.): Business Process Management. Lecture Notes in Computer
Science nr 1806. Springer Verlag, Berlin (2000) 301-316.

13. Kurzweil, R.: The Age of Spiritual Machines: When Computers exceed Human Intelli-
gence. Viking, London (1999).

14. Reichert, M. Dadam, P.: ADEPTflex – Supporting Dynamic Changes of Workflows with-
out Losing Control. Journal of Intelligent Information Systems 10(2) (1998) 93-129.

15. Reijers, H.A., Aalst, van der, W.M.P.: The Effectiveness of Workflow Management Sys-
tems: Predictions and Lessons Learned. International Journal of Information Management
56(5) (2005) 457-471.

16. Reijers, H.A., Rigter, J.H.M., Aalst, van der, W.M.P.: The Case Handling Case. Interna-
tional Journal of Cooperative Information Systems 12(3) (2003) 365-391.

17. Reijers, H.A., Vanderfeesten, I.T.P.: Cohesion and Coupling Metrics for Workflow Proc-
ess Design. In: Desel, J., Pernici, B., Weske, M., (eds.): Proceedings of the 2nd Interna-
tional Conference on Business Process Management (BPM 2004). Lecture Notes in Com-
puter Science 3080, Springer Verlag, Berlin (2004) 290-305.

18. zur Muehlen, M.: Workflow-based Process Controlling. Logos Verlag, Berlin (2004).

IT Support for Release Management Processes
in the Automotive Industry�

Dominic Müller1,2, Joachim Herbst1, Markus Hammori1,
and Manfred Reichert2

1 Dept. REI/ID, DaimlerChrysler AG Research and Technology, Germany
{uni-twente.mueller, joachim.j.herbst,
markus.hammori}@daimlerchrysler.com

2 Information Systems Group, University of Twente, The Netherlands
{d.mueller, m.u.reichert}@ewi.utwente.nl

Abstract. Car development is based on long running, concurrently ex-
ecuted and highly dependent processes. The coordination and synchro-
nization of these processes has become a complex and error-prone task
due to the increasing number of functions and embedded systems in mod-
ern cars. These systems realize advanced features by embedded software
and enable the distribution of functionality as required, for example,
by safety equipment. Different life cycle times of mechanical, software
and hardware components as well as different duration of their devel-
opment processes require efficient coordination. Furthermore, product-
driven process structures, dynamic adaptation of these structures, and
handling real-world exceptions result in challenging demands for any IT
system. In this paper we elaborate fundamental requirements for the
IT support of car development processes, taking release management as
characteristic example. We show to which extent current product data
and process management technology meets these requirements, and dis-
cuss which essential limitations still exist. This results in a number of
fundamental challenges requiring new paradigms for the product-driven
design, enactment and adaptation of processes.

1 Introduction

In the automotive industry, car development has been dramatically influenced by
the introduction of electrical and electronic (E/E) systems. E/E-systems consist
of electrical control units (ECUs), i.e., embedded systems containing hardware
and software components. In modern cars, we can find up to 70 ECUs compris-
ing more than 10.000.000 lines of code [1,2]. Several bus systems interconnect
dependent ECUs realizing joint features like safety or multimedia functions. Car
manufacturers expect shorter development cycles by faster implementation, bug
fixing and installation of ECU software. Process support in E/E development
shall accelerate product development and transfer of new technologies into the
� This work has been funded by DaimlerChrysler Research and Technology and has

been conducted in the COREPRO (configuration based release processes) project.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 368–377, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

IT Support for Release Management Processes in the Automotive Industry 369

car. However, development processes must also meet the requirements of product
liability laws and industrial standards, e.g., by adopting CMMI (Capability Ma-
turity Model Integration) to achieve process maturity in car development or by
implementing IEC 61508 to meet safety requirements. Altogether, mature pro-
cesses shall contribute to realize strategic goals like high quality of the developed
components and thus the whole car.

These expectations have raised new challenges for car development, particu-
larly regarding the integrated support of engineering processes in the disciplines
mechanics, electronics and software [3]. The synchronization of the different de-
velopment life cycles is one challenge; another arises from the handling of the
complex dependencies in E/E systems due to highly networked ECUs. Finally,
different departments, engineering teams and external suppliers participating in
the development processes have to be coordinated (cf. Fig. 1).

Fig. 1. E/E development with highly linked organizational structures, requirements,
documents, product structures and processes [4]

The optimal coordination and synchronization of the development processes
related to different car components is the key to adequate IT support. Fig. 1
illustrates the strong correlation between data and process structures. In partic-
ular, the structuring of the different development processes and their concrete
dependencies are determined by the hierarchical structuring of the E/E system.
Consequently, a process structure may have to be adapted if the corresponding
product structure changes. For example, when adding a subsystem (e.g., a nav-
igation system) to the product structure, new processes (e.g., for testing and
releasing the new component) must be added and synchronized with the other
ones. This is a complex task to be accomplished in a consistent and semanti-
cally correct manner. Finally, knowledge about the relations between process and
data structures is helpful in the context of exception handling. When real-world
exceptions related to a product component (e.g., failures in ECUs) occur, excep-
tion handling at the process level (e.g., abortion of the process) might become
necessary.

This paper shows the high potential of BPM technology when being applied to
product-driven processes in car development. We elaborate fundamental require-
ments for the IT support of automotive development processes taking release
management (RLM) as characteristic example. To evaluate these requirements

370 D. Müller et al.

and to elaborate shortcomings of existing technology, we apply the process en-
gine of a product data and process management system to RLM processes. We
summarize the results of this evaluation and discuss which challenges remain
with respect to the IT support of RLM processes.

Section 2 discusses characteristics of RLM processes and Section 3 elaborates
basic requirements for their IT support. In Section 4 we highlight fundamental
challenges based on the results of an implementation of RLM processes with the
tool UGS Teamcenter Engineering. Section 5 discusses solution approaches in
literature and Section 6 closes with a summary.

2 Release Management Processes

Release management (RLM) is an important part of the overall development
process. Major goal of RLM is to systematically release the different product
components at a specific point in time, for example, when a certain quality
gate (i.e., milestone) or production start are reached. RLM covers configuration
management, testing and finally the release of all necessary ECUs.

Different hardware and software versions as well as different variants of ECUs
complicate RLM significantly. As an example for a product component with vari-
ants consider the air condition unit, where each variant is adapted to a specific
climate region. These variants are realized by ECU configurations (when talking
about ECUs we mean ECU configurations) consisting of different software or
hardware. Fast implementation and change of ECU software result in about 100
changes of the total car system per day in early development phases [5]. How-
ever, proper functioning of every single variant as well as the total car system
(based on combinations of all variants) have to be ensured. Thus, testing and
release constitute complex tasks within the overall development process.

So far, ECUs often have been released without relying on a formal process
that considers their complex dependencies. Due to the missing synchronization
of the RLM processes for the different product components, costs as well as du-
ration for integrating and testing have significantly increased. For this reason,
configuration-based RLM has been introduced. The overall goal is to explicitly
consider the dependencies between product components by defining hierarchical
product configurations (cf. Fig. 2). These configurations represent the techni-
cal, logical, organizational or electrical view on the product [1]. The creation
of configurations for E/E subsystems (e.g., the air condition unit) also helps
encapsulating ECUs that realize functionality in common. As a result, we ob-
tain a hierarchical configuration structure. Fig. 2 shows the encapsulation of the
dependent ECUs 1, 2 and 3 by the configuration Subsystem 2.

Instead of performing RLM processes in an isolated fashion and solely at
the level of single ECUs, we need improved process coordination and process
synchronization. Case studies pointed out that the ordering structure of the
RLM processes is determined by the configuration structure. We denote this
phenomenon as configuration-driven process structure. The example in Fig. 2
shows a configuration-based release process. The creation of these RLM processes

IT Support for Release Management Processes in the Automotive Industry 371

ECU 2

Total System

Subsystem 3

ECU 1 ECU 3

Development Processes

Hierarchical Configuration-Driven Process

e.g. Supplier Development e.g. Release Management e.g. Logistics

Hierarchical structure
according to the configuration

structure

Subprocesses in hierarchical
process structure

Process on ECU-Level, e.g.
concrete testing process for

ECU 3

Workflow with actitvities

Process step, e.g. Testing
with SubprocessesConfiguration Structure

Total System

Subsystem 1

Subsystem 2

Subsystem 3

ECU 1

ECU 2

ECU 3

Total System
Level

Subsystem
Level

ECU
Level

Subsystem 1

Subsystem 2

External Synchronizations

Fig. 2. Configuration-driven process structure

demands in-depth knowledge about the total car system and its configurations as
well as existing dependencies between them [6]. Thus RLM processes cannot be
fully automated, but consist of manually executed steps as well. The procedure
to create a total system release (cf. Fig. 3), for example, starts with the following
steps to gain the current ECU versions for a new release:

Configuration-Driven Process

SM 1 SM 2 SM 3

CM

1.3

ED 1 ED 2 ED 3

5.2

1.3
System 2

1.25.22.4
ECU CECU BECU A

1.3
System 2

1.25.22.4
ECU CECU BECU A

QG E
Release

1.3
System 3System 2System 1

QG E
Release

1.3
System 3System 2System 1

2.4 1.2

Total System
Level

Subsystem
Level

ECU
Level

Actor with role
SubsystemManager

Process executed for
configuration Subsystem 3

Total System

Subsystem 1

Subsystem 2

Subsystem 3

ECU 1

ECU 2

ECU 3

Total system configuration
including subsystems with

latest versions

Reported ECU version

Notification

Report version

Configuration Structure

Fig. 3. Procedure to create a configuration-based release

1. With the given configuration structure, the actor with role configuration
manager (CM) notifies the subsystem managers (SM) who are responsible
for the subsystem level (e.g., SM1, SM2 and SM3 in Fig. 3).

2. All Actors with role subsystem manager(SM) also notify ECU level actors
(ED) to retrieve the versions of their components (e.g., in Fig. 3 subsystem
manager SM2 asks ECU level actors ED1, ED2 and ED3).

3. The actors working at the ECU level report the latest working ECU version
to the corresponding SM (e.g., ED1 reports ECU version 2.4 in Fig. 3).
After synchronizing the ECU versions, the SM generates a new version for
the subsystem and reports it to the CM.

4. After completing the subprocesses and synchronizing the reported subsystem
versions, further steps can be taken (e.g., triggering of external logistics
processes for ordering the ECUs needed for testing).

372 D. Müller et al.

The long duration of RLM processes amplifies the need for flexible adaptation
of process structures during runtime. As an example, consider the removal of the
configurationSubsystem 2 from the configuration structure as shown in Fig. 2. Sev-
eral adaptations of the process structure become necessary, such as the termination
and removal of the processes for Subsystem 2 as well as its subprocesses ECU 1 and
ECU 2. The process for ECU 3 is still needed since this component is also linked
with Subsystem 3. To ensure consistent and semantically correct process results,
dependent processes in the process structure have to be notified (e.g., the supe-
rior process Total System in Fig. 2). In addition, also external processes, which are
synchronized with the configuration-driven process structure have to be informed
about the change (e.g., the logistics department might have to cancel orders for
removed ECUs). Similar reactions will become necessary if the process structure
is modified by changing the process definition (e.g., due to optimization) or when
adapting the running processes to deal with exceptional events.

Adaptation procedures must enable adequate runtime reactions to external
events as well. A process exception will occur, for example, if an actor on ECU
level (e.g., ED1) does not report the ECU version the actor on the superior level
(SM2) in time (cf. Fig. 3). Then the actor on the superior level (SM2) has to
react, e.g., by sending a notification to ED1 or by exchanging this actor. Further,
exceptions caused by exogenous events (e.g., failures found in ECUs) have to be
handled by the process management (cf. Fig. 4). If a minor error appears, such
as a failure in the multimedia component, one possible reaction will be to stop
the execution in this subtree of the process structure, to fix the error at ECU
level, and to continue (or restart) the execution of the dependent processes. By
contrast, a severe fault in the braking subsystem has extensive consequences,
necessitating, for example, the abortion of the complete process (including all
dependencies) and marking the release as faulty. In this case, the RLM processes
for the respective ECU, the encapsulating subsystem and the total car system
have to be restarted after error correction (cf. Fig. 4).

The more complex configuration structures are the more difficult exception
handling becomes. In case of an exception, all dependent processes have to be
notified even if they have been already finished. The latter becomes necessary
since external processes might also be affected by the exception. In large and

ECU 2

Total System

Subsystem 3

ECU 1 ECU 3

Development Processes

Hierarchical Configuration-Driven Process

e.g. Supplier Development e.g. Release Management e.g. Logistics

Subsystem 1

Subsystem 2

Exception Handling

4. If necesseary extend exception
handling to further processes, e.g. Total
System and Logistics.

2. Inform dependent acitivities. Start error
detection on ECUs 1,2 and 3.
3. Error in ECU 3 detected. Mark ECU 3 as
faulty and inform dependent processes.
Exception Handling in dependent
subsystems 2 and 3.

1. Error in Subsystem 2 detected.
Configuration Structure

Total System

Subsystem 1

Subsystem 2

Subsystem 3

ECU 1

ECU 2

ECU 3

Total System
Level

Subsystem
Level

ECU
Level

Fig. 4. Exception handling in configuration-driven process structures

IT Support for Release Management Processes in the Automotive Industry 373

highly coupled process structures, ad hoc reactions in conjunction with hierarchi-
cal and external dependencies may cause serious consequences up to deadlocks.
Exception handling mechanisms must ensure process consistency as well as se-
mantically correct and efficient process enactment.

3 Requirements for IT Support

The high number of product variants, versions and component dependencies as
well as dynamic adaptations of product structures make manual synchronization
of related RLM processes almost impossible. The major goal for the IT support
of RLM processes is therefore to assist process participants in managing the com-
plex dependencies among configuration-driven process structures at the different
configuration levels (cf. Fig. 4); the focus is less on the complete automation of
all activities of a particular RLM process. Based on the experience we gained
during our case studies, we distinguish four categories of requirements as shown
in Table 1.

Table 1. Requirements for IT support

A. IT Landscape
A1) Product data and configuration management functionality
A2) Process management and data exchange

B. Process Control
B1) Configuration driven process structures
B2) Flexible subprocess execution
B3) External synchronizations

C. Process Enactment Support
C1) Flexible adaptation of process structures
C2) Exception Handling

D. Usability
D1) Visualization
D2) Logging, monitoring and forecasts
D3) Semantical merge of processes

3.1 IT Infrastructure

IT support for RLM processes demands basic features and interfaces on IT
infrastructure. First, there is a need for integrated product data management
(PDM) in order to store and manage engineering data (e.g., component infor-
mation, technical documents and software) and their dependencies in a consis-
tent manner, and to make this information available for development processes
(Req. A1). This includes support for product configuration management with
the ability to manage a large number of product variants and versions [7]. Sec-
ond, the IT system must also provide standard process management functions
and support the controlled exchange of data between the PDM and the process
management system (PMS) (Req. A2). This is required, for example, to transfer
configuration-related results from the PMS to the PDM system (e.g., to flag a
component as released after completing a RLM process). Further, user informa-
tion needed for role resolution by the PMS is usually stored inside documents of
the PDM system and therefore has to be made available for the PMS.

3.2 Process Control

To enable process control, we have to implement the configuration-driven pro-
cess structures (Req. B1). First, standard modeling concepts are needed for

374 D. Müller et al.

describing the different aspects of a process (e.g., control and data flow, reuse of
process fragments). Second, appropriate concepts for modeling hierarchical pro-
cess structures become necessary to realize superior processes depending on the
result of subprocesses; i.e., nested processes must fulfill a condition (e.g., provide
a specified data quality or simply finish) until processes on higher levels are able
to continue their execution. We call this mechanism hierarchical synchroniza-
tion (cf. Fig. 4). As opposed to the common definition of hierarchical processes,
where a subprocess is considered as a refinement of a superior process activity
[8], we define a process activity as a placeholder for a set of subprocesses ac-
cording to the configuration structure. These subprocesses constitute instances
of different process definitions (e.g., different testing processes for multimedia
and safety subsystems). Additional dependencies in hierarchical structures or
exception handling constraints have to be applied to the hierarchical process
structure.

Another requirement for synchronizing hierarchical processes concerns auton-
omy in terms of flexible execution of the subprocesses (Req. B2). As opposed to
strict hierarchical process structures, there is a need to start single (and already
instantiated) subprocesses independently of their superior processes. For exam-
ple, the RLM process for ECU 1 in Fig. 3 may be started independent from the
RLM process of Subsystem 2. The synchronization of the hierarchical structure
(cf. Req. B1) must be ensured for this case as well. In order to meet Req. B1
subprocesses have to fulfill the defined condition before superior processes can be
started. Further, there are dependencies to external processes (e.g., Subsystem
3 is connected to an independent process outside the hierarchical structure in
Fig. 4), which we call external synchronizations (Req. B3).

3.3 Process Enactment Support

As described in Section 2, the flexible adaptation of configuration-driven process
structures is a must. If a configuration change occurs, the hierarchical process
structure has to be dynamically adapted (e.g., by adding or removing subpro-
cesses) to ensure consistent results [9]. Thereby, hierarchical as well as external
synchronizations have to be considered (irrespective of their execution state) and
- if necessary - be adapted to ensure semantically consistent results (Req. C1).
Changes of process definitions also affect running process instances. Due to the
long execution time, proper adaptation might become necessary.

Further - and this is probably the most challenging issue - exception handling,
in the sense of reacting on real-world exceptions, must be enabled. These excep-
tions are expected (to some extent), but require flexible handling mechanisms
due to the large number of concurrently executed, dependent processes. Pro-
cess reactions (executed automatically or by human interaction) depend on the
error classification (comp. Section 2). Among other things, it must be possible
to abort, redo and restart subprocesses in an efficient way. Thereby results of
finished processes must be preserved, if they are not affected by the exception.
Semantically consistent configuration structures and consistent process execu-
tion must be ensured in any case (Req. C2).

IT Support for Release Management Processes in the Automotive Industry 375

3.4 Usability

To enable the user-friendly execution of configuration-driven process structures,
visualization support with partial, abstract, data- and process-centric views is
required as well as the presentation of process changes and exceptions in a user
friendly way (Req. D1). To ensure data privacy, authorization mechanisms with
access control have to be implemented. For instance, engineers need technical
views on configurations (and corresponding processes), while external suppliers
shall only have restricted access to activities of assigned configurations (with
exceptions being hidden). Managers want to have high-level views on the process,
which are enriched with forecasts of process and product performance (e.g.,
execution duration, costs or the product quality). Basic to this kind of process
intelligence is the creation and analysis of execution and change logs (Req. D2).

Regarding usability, we want to highlight the semantical merge of processes
on ECU level (Req. D3). Generally, developers may be responsible for several
ECUs. Considering the process in Fig. 3, the developer has to report the current
version for every single ECU. From his point of view, it is sufficient to report
all of his ECUs in one step. To realize this demand the execution of several
processes has to be semantically merged.

4 Evaluation of Current Technology

The defined requirements in mind, we evaluated IT systems currently used in
the automotive domain. For this purpose, we implemented the RLM process
from Fig. 3 based on the PDM system UGS Teamcenter Engineering and its
underlying process engine. This tool supports the management of engineering
and product data, enables configuration management, and allows for process
modeling and execution. Due to lack of space, we focus on the most important
results of our evaluation (cf. Table 2).

Table 2. Summary rating of Teamcenter Engineering

A. IT Landscape
A1) Product data and configuration management functionality
A2) Process management and data exchange

B. Process Control
B1) Configuration driven processes structures
B2) Flexible subprocess execution
B3) External synchronizations

C. Process Enactment Support
C1) Flexible adaptation of process structures
C2) Exception Handling

D. Usability
D1) Visualization
D2) Logging, monitoring and forecasts
D3) Semantical merge of processes

+ = supported o = partially supported – = not supported

Rating
+
+

Rating
–
o

Rating
–
–
o

Rating
o
o
–

Teamcenter Engineering provides full product and configuration management
support and meets the requirement for the exchange of data between PDM sys-
tem and PMS (Req. A1 + A2). Basic mechanisms for modeling processes with
sequential and parallel routing are available. Though hierarchical processes are
supported, there is no possibility to create hierarchically synchronized processes
as needed for configuration-driven process structures (Req. B1). Thus, flexible
subprocess execution (Req. B2) also remains unsupported. Synchronization with

376 D. Müller et al.

external processes is enabled by a predefined activity (so called sync task). How-
ever this concept is too inflexible (e.g., synchronization based on data quality is
unsupported) to meet Req. B3.

Adaptations of (hierarchical) process structures are not supported at all (Req.
C1). The same applies to flexible exception handling (Req. C2). Though the
process engine supports some ad hoc actions, like aborting the execution of
an activity or revoking the whole process, the consideration of dependencies to
realize exception handling in hierarchical process structures remains a challenge.

Visualization mechanisms like the ones set out by Req. D1 are also not pro-
vided. While basic logging mechanisms are available (Req. D2), further concepts
like automatic evaluation of the derived data and forecasts based on this data
stay unsupported. The realization of semantical merge of processes (Req. D3) is
also not possible using standard features.

5 Related Work

Based on the described requirements and the results of our PDM system evalu-
ation we have investigated solution approaches from literature.

Workflow systems define fixed control flows to manage the execution of ac-
tivities. In contrast, case handling [10] describes the coordination based on data
objects. This enables less rigid process execution and shall make dynamic changes
obsolete. Case handling also provides a way to create direct links between data
objects and processes (denoted as product-driven case handling). A commercial
implementation is provided by the FLOWer system [11]. Data-driven process
modeling is an interesting approach for development processes. However, our
focus is on process synchronization rather than on the coordination of single
activities. Further, we identified several approaches that handle parts of our
requirements. A solution approach meeting Req. B1 is product-based workflow
design [12], a method for redesigning process structures based on product struc-
tures. Further, approaches for adaptive process management enable flexible pro-
cess changes during runtime [13].

Related approaches are provided by AHEAD and SIMNET. AHEAD [14]
deals with dynamic (software) development processes. It offers dynamic support
for project management, process management, and engineering data manage-
ment. The authors assume that development processes cannot be planned in
detail in advance. Based on the modeled relationships between data and pro-
cesses, dynamic task nets are generated. Even though the goals of this approach
are closely related to ours, there are many differences. In contrast to software
processes, car development is more complex and needs fixed processes to guar-
antee evolving and mature processes and thus high quality.

SIMNET [4,15] is an approach for managing engineering workflows. Its goal is
to enhance the communication between the participating parties in engineering
processes by linking product data and workflow management (denoted as product
data-driven process). SIMNET focuses on the provision of an evolutionary data
model; extensive and flexible process control has not been considered.

IT Support for Release Management Processes in the Automotive Industry 377

6 Summary and Conclusion

Carmanufacturers aremore andmore recognizing that processmanagement is cru-
cial not only for car productionbut also for the support of the complex development
processes. Fast changes in technology and increasing complexity of development
processes in the automotive domain are the challenges for an IT supported pro-
cess management. As shown in this paper, current technology meets the require-
ments of car development processes only to a small degree. Especially the lack of
flexibility and the non-availability of configuration-driven BPM tools prevent the
usage of current process engines for development process support or necessitate
a high degree of customization. New mechanism and paradigms for flexibility in
configuration-driven process structures are required to enable IT support for pro-
cess coordination not only in the automotive industry.

References

1. Knippel, E., Schulz, A.: Lessons learned from implementing configuration manage-
ment within E/E development of an automotive OEM. In: INCOSE ’04. (2004)

2. DaimlerChrysler AG, Research and Technology: Hightech report 01/2002 (2002)
3. VDI (Association of German Engineers): VDI 2006 - Design methodology for

mechatronic systems. (2004)
4. Rouibah, K., Caskey, K.: A workflow system for the management of inter-company

collaborative engineering process. Engineering Design 14(3) (2003) 273–293
5. Wehlitz, P.: Nutzenorientierte Einführung eines Produktdatenmanagement-

Systems. PhD thesis, TU Munich (2000)
6. Heinisch, C., Feil, V., Simons, M.: Efficient configuration management of automo-

tive software. In: ERTS ’04. (2004)
7. Crnkovic, I., Asklund, U., Dahlqvist, A.P.: Implementing and Integrating Prod-

uct Data Management and Software Configuration Management. Artech House
Publishers (2003) ISBN 1-58053-498-8.

8. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice-
Hall PTR (2000) ISBN 0-13-021753-0.

9. Müller, D., Reichert, M., Herbst, J.: Flexibility of data-driven process structures.
In: DPM ’06. (2006)

10. Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new paradigm for business
process support. DKE 53(2) (2005) 129–162

11. Aalst, W., Berens, P.J.S.: Beyond workflow management: Product-driven case
handling. In: GROUP 2001. (2001) 42–51

12. Reijers, H., Limam, S., Aalst, W.: Product-based workflow design. Management
Information Systems 20(1) (2003) 229–262

13. Reichert, M., Dadam, P.: ADEPTflex: Supporting dynamic changes of workflow
without loosing control. JIIS 10(2) (1998) 93–129

14. Jäger, D., Schleicher, A., Westfechtel, B.: AHEAD: A graph-based system for
modeling and managing development processes. In: AGTIVE. (1999) 325–339

15. Goltz, M., Schmitt, R.: Simnet - workflow management for simultaneous engineer-
ing networks. IMV Institutsmitteilung 23 (1998) 97–100

Diagnosing SCA Components Using WOMBAT

Axel Martens1 and Simon Moser2

1 IBM TJ Watson Research Center
Component Systems Group

Hawthorne (NY), USA
amarten@us.ibm.com

2 IBM Böblingen Laboratory
Business Process Solutions

Böblingen, Germany
smoser@de.ibm.com

Abstract. The Service Component Architecture (SCA) is a new tech-
nology aiming to simplify application development in a service-oriented
architecture. Developing a SCA application basically consists of two
major parts: The implementation or discovery of individual components,
and the assembly of sets of components. Since each assembly itself might
act as a component within a larger application, SCA obviously enables
the construction of complex distributed systems that are hardly analyz-
able. Hence crucial questions like compatibility, consistency or soundness
of components need to be answered early during the development pro-
cess. This paper presents Wombat– an analysis tool that is integrated
into IBM’s development environment to perform on demand verification
tasks. Wombat benefits from established formal methods for distributed
systems. It tailors those methods to relevant use case and puts them into
a context that directly supports the development of SCA applications.

Keywords: Business Process Modeling, SOA, Web service composition,
Tool based Verification, BPEL, State Machine, Petri nets.

1 Introduction

The core idea of service-oriented architecture is to separate business functional-
ity exposed as reusable components from business logic that orchestrates those
components. This idea has been known to the workflow community at least
for 15 years. Major software vendors like BEA, IBM, Oracle, SAP and others
are now collaborating on specifications for actual business application devel-
opment in accordance with this paradigm – called Service Component Archi-
tecture (SCA) [14]. SCA builds on open standards such as Web services and
aims to provide developers with simpler and more powerful ways of constructing
applications.

Simplifying the development process will encourage more and more companies
to build their business critical applications based on SOA [1]. In this context,
questions of correctness of applications, compatibility and exchangeability be-
tween components, and generation of partner or mediator components become

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 378–388, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Diagnosing SCA Components Using wombat 379

Fig. 1. A SCA component implemented by a BPEL process

more crucial than ever. Moreover, increasing complexity of applications requires
the methodical support for those questions being closely tied to the development
process. This paper presents Wombat – a tool that is integrated into IBM’s
SCA development environment. Wombat performs verification and generation
tasks on demand – based on efficient formal methods that have been tailored
to SOA relevant use cases – while only minimal additional user knowledge is
required.

To motivate the focus of Wombat, the remainder of this section gives a short
overview on SCA and describes the five major use cases. Section 2 delves into
details of Wombat’s architecture illustrated by an example. The employed for-
mal methods are explained in Section 3. Since Wombat focusses on supporting
the SCA developer, it puts a lot of effort into processing analysis results – as
exposed in Section 4. Finally, Section 5 points to further steps of Wombat’s
evolution.

1.1 Overview on SCA

The Service Component Architecture [14] divides the development of applica-
tion into two major parts: First, the implementation of components providing
services and second, the wiring of components to build the business application
through.

A SCA component is a generalization of a Web service. It can be imple-
mented with different languages such as JAVA, BPEL, state machines or just
by specifying message routing and mediation. That way, it is possible to easily
integrate legacy applications. Each component provides standardized interfaces
to the outside, and it might require others to implemented certain interfaces
– called references. Figure 1 shows a the server component of an ATM proto-
col implemented as BPEL process. It provides the ATMServerInterface with three
one-way operations, and it requires somebody to provide the ATMClientInterface

380 A. Martens and S. Moser

with similar structure. The component awaits the PIN and evaluates it. If valid,
the message Success is sent, and the server expects the account type selection
whereupon it returns the associated Balance. Else, the message Failure is sent.

A SCA module (a. k. a. assembly) orchestrates a set of given components by
wiring them together. Each wire connects a reference of one component with an
interface of another component. Since not all interfaces are called from inside
the module nor all references are resolved therein, a SCA module itself might
provide interfaces to the outside – called exports or entry points, and it might
require interfaces to be implemented somewhere else – called imports or external
services. Thus, a SCA module can act as a component within a larger assembly.

1.2 SCA Relevant Use Cases

Giving the setting of SCA, we can assume there is a process designer who knows
the components and defines the wiring. Wombat therefore supports currently
five use cases, that seem most relevant to the development of SCA applications.

Final Correctness Check: While creating wires between components, the
check of static type compatibility between required and provided interfaces can
easily be performed. But considering especially stateful components like BPEL
processes, this is not sufficient to ensure the correctness of the resulting SCA
module as Figure 3 will later show. A development tool, however, should be
able to answer the question whether its components really fit together with
respect to the implemented behavior, i. e. control and data flow. Correctness in
that sense is a necessary property of any useful SCA module.

Early Compatibility Check: If a fully specified SCA module has proven to be
correct, obviously, all its components behave compatibly. On the other hand, if
two wired components are not behavioral compatible, the resulting SCA module can
not be correct at all. Given two components and the outlined wiring of the SCA
module, a development tool should be able to answer the question whether the
composition of those two components forms a useful building block for the further
assembly of the SCA module. As exposed in Section 3.2, behavioral compatibility
is closely related to the notions of correctness and controllability.

Component Template Generation: Lets assume, Component 1 and 2 have
been developed and proven compatible, and the overall wiring has been outlined.
Only the implementation of Component 3 missing. Obviously, there are many
constraint to its behavior imposed by the context. Given the interfaces of a
component and the behavior of its partners, a development tool should be able
to generate a template of that component such that behavioral compatibility is
guaranteed.

Component Exchangeability: Since SCA separates business logic from actual
implementation, each component can be maintained independently as long as
changes do not break the overall module. If a component in shall be exchanged
by another component, a development tool should be able to decide whether this

Diagnosing SCA Components Using wombat 381

is possible in the given context. Unfortunately, this property is undecidable in
general. But with respect to the pure control flow, consistent behavior of both
components is a necessary condition for the required exchangeability.

Component Model Abstraction: Since a SCA module can become a com-
ponent within a larger SCA module, complex systems can be built that are
increasingly expensive to analyze. But, not all component details are necessary
to reason about the properties of the module. A development tool should be
able to generate a simplified, abstract model for a complex component in order
to develop and analyze the larger SCA module.

2 Analysis Framework

Although SCA is a quite new technology, the core problem of service compo-
sition has been studied for almost decades. Hence, there is a huge theoretical
background with a wide range of efficient algorithms. As shown in Figure 2(a),
our approach is making this methods directly applicable to SCA in three steps.

1. Transformation of given component model of any supported component
language into a common formal representation. Our approach is based on Petri
nets because this method has been proven to be perfectly suited of formalizing
and analyzing distributed business processes and Web services [3,5,9]. Currently,
Wombat fully supports BPEL, state machines and human tasks. We are working
on the extension to all IBM supported SCA modeling languages [10].

2. Analysis of structure and behavior of Petri net models to detect deadlocks,
unbound loops, unreachable code, illegal states. Most algorithms generate either
graphs of execution or communication traces [5]. While such a formal represen-
tation precisely describes the cases in which for example a certain property is
violated, it is not well suited to communicate with the user.
3. Interpretation of analysis results is the most important part since the
gained knowledge has to be mapped back into the original models. This is
done by simulation of the original models or by generation of new component
models [8].

2.1 Architecture

Our tool Wombat was designed as extension to the IBM’s WebSphere Integra-
tion Developer (WID) – the eclipse based development environment for SCA.
Figure 2(b) shows a high-level view on the architecture. On top, the WID layer
provides access to the data model and the native editors for all SCA languages.

The Wombat.Core layer holds the Petri net data model and allows examination
and manipulations of Petri nets. This component has been inspired by the
PetriNetKernel [2]. As explained in Section 3.1, we have extended their Petri
net data model to maintain the relation to the original component model.

The Wombat.UI component is closely tied to this layer. Besides providing a Petri
net editor, this component enables visualization and simulation of SCA modules
(cf. Sec. 4.1), and provides wizards guiding through the analysis process.

382 A. Martens and S. Moser

Process
Language

Models

Formal
Output Repre-

sentation

2. Analysis

Formal
Input Repre-

sentation

1. Transform
ation3.

In
te

rp
re

ta
tio

n

Process
Language

Models

Formal
Output Repre-

sentation

2. Analysis

Formal
Input Repre-

sentation

1. Transform
ation3.

In
te

rp
re

ta
tio

n

(a) The analysis cycle

IBM WebSphere Integration Developer

Process Language
Data Models

Wombat.IO

Wombat.
Core

Wombat.
Analyzer

Wombat.UIProcess Model
Importer

Process Model
Generator

Petri Net
Data model

Petri net
Manipulation

Built-in
Algorithms

Interface to
external Tools

Multi-page
Editor

Trace
Simulator

Analysis
Wizards

Process Language
Editor/Viewer

Process Language
Manipulation

(b) The architecture

Fig. 2. Analysis framework Wombat

The Wombat.IO layer bridges the gap between the two worlds: It performs the
mapping of a component model into a Petri net as well as the generation of new
component model out of analysis results (cf. Sec. 4.2). Most of the mapping is
done fully automatically. Nevertheless, at some points user interaction can yield
to greater accuracy [4]. Finally, the extensible Wombat.Analyzer layer contains
the actual analysis functions [5]. To enhance the performance it is planned
to replace some of our own implementations by efficient model checking tools
(e. g. [12]).

2.2 Example

Wombat provides on demand verification tasks according to the previously de-
scribed use cases, e. g. correctness check. While executing this task, Wombat

transforms each component of the SCA module into a Petri net, minimizes the re-
sults and composes all component Petri nets with respect to the specified wiring.
This yields an integrated Petri net for the whole module – the formal input rep-
resentation. For the correctness check, the reachability graph of the module
net is generated – the formal output representation – to decide the correctness
property. If proven correct, the user gets to see a report on the SCA module
providing statistic information. Otherwise, the user can select and simulate a
generated execution trace that violates the correctness property.

Figure 3 shows Wombat’s Petri net editor simulating a SCA module consisting
of two BPEL components: The ATMServerProcess (cf. Fig. 1) on the right and an
ATMClientProcess on the left. There are two wires between the components, and
the client is called from the outside via the ATMModuleExport. While simulating,
the editor highlights step by step the active objects: After receiving the Request,
the client process determines the account type and sends the selection to the
server – in this case the message Checking. At this point the simulation stops
since a deadlock state has been reached: While the client is waiting for the
Success message the server has not even started working yet. As Section 4 will
show, this is only one way to present analysis results to the user.

Diagnosing SCA Components Using wombat 383

Fig. 3. Error trace simulation in Wombat’s editor

3 Formalization

Since our goal was to apply available research results rather than reinventing
the wheel, Wombat is based on Petri nets. There are efficient tools available
for structural analysis [15] and model checking [12], and many other research
projects also focus on Petri nets and Web Services, e. g. [3, 7, 9].

3.1 Formal Model

Basically, a Petri net is a bipartite directed graph. It consists of a set of transi-
tions and a set of places that are the nodes of the graph. The flow relation
is represented by arcs that always connect a place to a transition and vice
versa [11]. A transition represents a dynamic element, i. e. an activity of a
business process. A place represents a static element, i. e. the causality between
activities or a message channel. The state of a Petri net is represented by black
tokens distributed over the places. Wombat’s Petri net representation shown in
Figure 4(a). It is based on the generic Petri net data model described in [2] with
two extensions.

Block Structures: While transforming a SCA component into a Petri net, each
element of the source language is mapped into a modular Petri net pattern. A
BlockStructure defines the boundary of such a pattern and keeps the correspon-
dence to a source Language Element. A relation between different source language
elements is represented either explicitly by a BlockArc or implicitly through the
parent-child-relation. Hence, the component structure is still visible in the re-
sulting net. Figure 3 actually shows a Petri net in Wombat’s editor while hiding
all Petri net nodes, i. e. showing only block structures and block arcs.

384 A. Martens and S. Moser

Fig. 4. Wombat’s formal background

Events: An event represents a state change of a source language element, e. g.
the activation of a task, the selection of a branch or the completion of a trans-
action. Mapping such an element into a block structure, each event is assigned
to one embedded Petri net node. Wombat keeps track of those events while
composing or simplifying Petri nets. That way, each execution trace of the Petri
net contains sufficient information to simulate the original component model.

3.2 Properties

Given a formal representation of the original component languages, we need to
define properties that can be verified automatically and that correspond with
the questions raised while outlining the use cases. Figure 4(b) shows the stack
of properties which forms the basis for Wombat’s analyzer functionality.

Correctness is the core property of a SCA module’s internal behavior. It forms
the foundation for all further properties and basically stands for the absence of
errors. While the classification may vary of what is considered to be an error
and what not, the correctness definition has to be adjusted to the specific sce-
nario. The basic requirement for correctness is the proper termination of all
initiated processes in consideration of langauge requirements (e. g. for a BPEL
component, a reply always has to follow receive for each two-way operation).
Additional requirements might be possible coverage of all branches (i. e. no un-
reachable code), clean termination (i. e. no left-over messages), and compliance
with globally specified policies (e. g. no outside propagation of confidential in-
formation). Specification and integration of policies into SCA and Wombat is
the main focus of our ongoing research.

Controllability is a property of a single component or a SCA module that
interacts to the outside. Besides the absence of internal control flow errors, con-
trollability requires proper communication sequences. Definition: A component
C is called controllable if there is at least one component E (for environment)

Diagnosing SCA Components Using wombat 385

such that the composition C ⊕ E yields a correct module. Remark: If a com-
ponent or a module has no interface and no references, controllability equals
correctness. More details about the implemented verification of correctness and
controllability, the algorithms and the complexity can be found in [5, 13].

Compatibility is a property of a set of components and the necessary condition
for their composition. Definition: Component C1 . . . Cn are called compatible if
the the composition C1 ⊕ . . . ⊕ Cn yields a controllable component or module.
Remark: If the the components C1 . . . Cn are element of a correct SCA mod-
ule, obviously those components are compatible. A detailed discussion on the
verification of compatibility in Wombat can be found in [4].

Consistency is a property of two components and describes similarity of the
components’ observable behavior. One component specifies of the behavior and
the other component has to implement it consistently. Definition: A component
Impl is consistent to a component Spec if each component that is compatible to
Spec is compatible to Impl, as well. Remark: Bidirectional consistency defines
behavioral equivalence. For details on the consistency of BPEL processes see [6].

These four properties define necessary conditions for useful components and
modules. Above that, the formal methods built into Wombat enable the veri-
fication of user defined properties like test for presences of all required and/or
no prohibited execution traces – based on temporal logical formulas. Current
research focusses on the integration of convenient specification techniques.

4 Interpretation

The most crucial part of building an integrated tool was to provide the interpre-
tation of analysis results, i. e. the mapping back into the knowledge sphere of
component designers. As shown in Figure 5, the user starts a verification task
on the SCA module. Under the hood, the module is transformed and analyzed.
Only the processed result is shown to the user – in this case as sequence diagram.

4.1 Simulation

An obvious way of visualizing the analysis results is simulating execution traces
that yield to a desired or problematic states. Wombat provides three different
kinds of simulation such that the user can look at his model from different angles.

Single Component Simulation: Each component model can be simulated
in isolation using the native WID editor. Wombat uses a common mechanism
to annotate the execution state step-by-step. In the state shown in Figure 1,
the component awaits the selection of the account type. Three activities are
running: the outer sequence, Switch on entered PIN, and Pick custermer’s account.
Three activities are completed: Receive PIN has received a message, PIN valida-
tion was successfully executed, and Return PIN has sent a message. The case
branch PIN is valid was selected, and hence the otherwise branch was skipped.

386 A. Martens and S. Moser

Fig. 5. Analysis cycle of ATM example with adapter component

Simulating a component in isolation does not require the user to understand any
additional representation. But, it does not always give an adequate picture of
the distributed state.

Petri Net Simulation: Since each SCA module is transformed into one com-
posed Petri net, Wombat enables the simulation of the whole SCA module at
once – using its Petri net editor. Figure 3 shows a screenshot of Wombat’s
Petri net editor simulating a deadlocking sequence. Since the editor provides
the option to show the block structures only, the graphical representation comes
close to the look of the native editors. The big advantage is that all involved
components are shown at the same time. On the other hand, this makes the
approach less suitable for SCA module with many components.

Message Trace Simulation: The third simulation approach tries also to cap-
ture all involved components at the same time, but without all details. To do
so, it simulates the messages exchanged between the components only. Figure 5
shows the previously discussed SCA module extended by an adapter component
(upper right corner) and the generated sequence diagram of one execution trace.

4.2 Generation

Beside simulation of execution traces, Wombat uses the analysis results to gener-
ate component models. Fully implemented at this time is the generation of BPEL
process template that behaves as communication partner of one component or
a group of components. Based on the hybrid approach [8] that incorporates
the structure of the given components as well as the communication graph, the
generation yields a new component model that is guaranteed to be compatible
to the given components, and that can be further refined.

The most challenging generation task that we are currently working on is
the generation of an adapter component to resolve behavioral incompatibilities
as shown in Figure 3. In Figure 5, a manually designed adapter was added
to the SCA module. The sequence diagram visualizes its behavior: First, it

Diagnosing SCA Components Using wombat 387

receives and acknowledges the account type selection of the ATMClientProcess.
Then, it forwards the PIN to the ATMServerProcess and transmits the stored
account type selection. Finally, it returns the Balance to the client. Obviously,
an adapter between two components has to behave like a compatible partner of
both components at the same time. The key to build an adapter automatically
is to find an interleaving of the messages exchanged with both sides that respects
the semantics of the communication: Some of the messages can be generated by
the adapter, e. g. the acknowledgement towards the client, while other messages
apparently can’t, e. g. the PIN. The idea is use static analysis to discover such
dependency and to provide a convenient way for the user to specify additional
semantic constraints.

5 Conclusion

In this paper, the analysis framework Wombat was presented. It provides effec-
tive algorithms tailored to SOA relevant use cases. A prototype that supports a
subset of the SCA implementation languages (BPEL, state machines and human
tasks) exists as an plug-in to IBM’s WebSphere Integration Developer (WID).
Due to that integration, a user can perform generation/analysis tasks directly on
the SCA modeling view, while the formal methods are hidden in the back-end.
Ongoing research aims to determine the effectiveness in a field test.

In the current state, the verifications of controllability, compatibility and ex-
changeability [5] are largely realized. Moreover, Wombat offers capabilities to
generate a guaranteed compatible BPEL partner processes [8]. The current im-
plementation can handle larger examples, e.g. BPEL processes with more than
hundred activities. Furthermore, Wombat’s usability features include three dif-
ferent ways of presenting a verification result: directly in the SCA view, as an
UML sequence diagram or in the Petri net representation. Upcoming work fo-
cusses on the integration of data aspects. Especially the dependencies between
the content of incoming messages and internal decisions made by the compo-
nents are of major interest. Applying technologies of static program analysis,
it seems possible to achieve a higher level of precision in the mapping of SCA
implementation languages to Petri nets, without loosing the possibility of effi-
cient analysis. Another current field of research is to formalize the semantics of
other SCA implementation languages with the goal of achieving greater language
coverage. The initially implemented generation of an abstract BPEL model for a
given process needs to be completed, especially in terms of tailoring the output
to user’s preferences and to reflect the final specification of abstract BPEL.

In the longer turn, verification of user-defined properties alongside with the
existing verifications is a matter of interest. A user-defined property can be e.g.
a requirement such as if an error occurs, the component always has to return
an error-code. Such properties could be specified e.g. in temporal logic. Finally
there is some room to improve the current implementation, for example, it might
be worth re-implementing parts of the Wombat.Analyzer functionality in C/C++
in order to further increase analysis performance for large interaction scenarios.

388 A. Martens and S. Moser

Also, attaching efficient model checking tools, e. g. [12], to Wombat might help
to increase the performance of computationally expensive analysis steps.

References

1. F. Curbera, D. Ferguson, M. Nally, and M. Stockton. Toward a Programming
Model for Service-Oriented Computing. In Proceedings of the 3rd International
Conference on Service-Oriented Computing, LNCS 3826. Springer, 2005.

2. E. Kindler and M. Weber. The Petri Net Kernel. Software Tools for Technology
Transfer (STTT), 3(4):486–497, September 2001.

3. N. Lohmann, P. Massuthe, Ch. Stahl, and D. Weinberg. Analyzing Interacting
BPEL Processes. In Proc. of Intl. Conference on Business Process Management
(BPM’06), LNCS. Springer, 2006.

4. A. Martens, S. Moser, A. Gerhardt, and K. Funk. Analyzing Compatibility
of BPEL Processes. In Intl. Conf. Internet and Web Applications and Services
(ICIW’06). IEEE Computer Society Press, February 2006.

5. Axel Martens. Analyzing Web Service based Business Processes. In Maura Cerioli,
editor, Proc. of Intl. Conf. on Fundamental Approaches to Software Engineering
(FASE’05), LNCS 3442, Edinburgh, Scotland, April 2005. Springer.

6. Axel Martens. Consistency between Executable and Abstract Processes. In Proc.
of Intl. IEEE Conf. on e-Technology, e-Commerce, and e-Services (EEE’05), Hong
Kong, March 2005. IEEE Computer Society Press.

7. P. Massuthe, W. Reisig, and K. Schmidt. An Operating Guideline Approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics, 1(3):35–43, 2005.

8. S. Moser, A. Martens, M. Häbich, and J. Mülle. A hybrid approach for generating
guaranteed compatible WS-BPEL Partner Processes. In Submitted to 4th Intl.
Conf. on Business Process Management (BPM’06), September 2006.

9. C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. ter Hofstede, and
H.M.W. Verbeek. Formal Semantics and Analysis of Control Flow in WS-BPEL.
Bpm center report bpm-05-13, BPMcenter.org, 2005.

10. Barcia R and J. Brent. Building SOA solutions with the Service Component Ar-
chitecture. IBM WebSphere Developer Technical Journal, 8.7:25–68, October 2005.

11. W. Reisig. Petri Nets. Springer, Berlin Heidelberg New York, 1985.
12. Karsten Schmidt. LoLA – A Low Level Analyser. In Nielsen and Simpson, editors,

Intl. Conf. on Application and Theory of Petri Nets, LNCS 1825. Springer, 2000.
13. Karsten Schmidt. Controllability of Open Workflow Nets. In Enterprise Modelling

and Information Systems Architectures, volume P-75 of Lecture Notes in Informat-
ics (LNI), pages 236–249, Bonn, 2005.

14. BEA Systems, IBM, IONA, Oracle, SAP AG, Siebel Systems, and Sybase. Service
Component Architecture. Whitepaper, November 2005.

15. H. M. W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow
Processes using Woflan. The Computer Journal, 44(4):246–279, 2001.

Verifying Workflows with Cancellation Regions and
OR-Joins: An Approach Based on Reset Nets and

Reachability Analysis

M.T. Wynn1, W.M.P. van der Aalst1,2, A.H.M. ter Hofstede1, and D. Edmond1

1 Queensland University of Technology, Australia
{m.wynn, d.edmond, a.terhofstede}@qut.edu.au

2 Eindhoven University of Technology, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

Abstract. When dealing with complex business processes (e.g., in the context
of a workflow implementation or the configuration of some process-aware in-
formation system), it is important but sometimes difficult to determine whether
a process contains any errors. The concepts such as cancellation and OR-joins
occur naturally in business scenarios but the presence of these features in pro-
cess models poses new challenges for verification. We take on the challenge of
finding new verification techniques for workflows with cancellation regions and
OR-joins. The proposed approach relies on reset nets and reachability analysis.
We present these techniques in the context of workflow language YAWL that pro-
vides direct support for these features. We have extended the graphical editor of
YAWL with these diagnostic features.

Keywords: Workflow verification, Cancellation, OR-joins, Reset nets, YAWL.

1 Introduction

Given that deployed workflows may execute for a long time and may take many actions
that cannot be undone in a simple manner, it is desirable to detect errors at design time.
Workflow verification is concerned with determining, in advance, whether a workflow
exhibits certain desirable behaviours. In [9], verification of workflow nets is discussed
in detail and Petri net analysis techniques are used to detect whether a workflow net
is sound or not. Unfortunately, these results are not straight-forwardly transferable to
situations where languages are involved that use concepts not easily expressed through
Petri nets (e.g., cancellation and OR-joins).

Cancellation captures the interference of an activity in the execution of others in
some circumstances. An OR-join is used in situations when we need to model “wait
and see” behaviour for synchronisation. The OR-join and cancellation are two of the
workflow patterns described in [4]. The workflow language YAWL provides direct sup-
port for all but one of these patterns [3] and in this paper, verification techniques are
proposed in the context of this language. Due to limited space in this paper, we focus
on the correctness notions for YAWL workflows and provide a brief discussion of our
verification approach. A more complete discussion can be found in [11].

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 389–394, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

390 M.T. Wynn et al.

2 Correctness Notions for YAWL Workflows

The workflow language YAWL is a general and powerful language grounded in work-
flow patterns and in Petri nets [3]. The introduction of new concepts such as cancella-
tion regions or OR-joins in workflows requires the adaptation of existing verification
techniques to determine the correctness of a workflow. In addition, it leads to new prop-
erties that need to be analysed. In this paper, we propose four desirable properties for
YAWL workflows: soundness, weak soundness, irreducible cancellation regions, and
immutable OR-joins. Using the notions of coverability and reachability, we will demon-
strate how these properties are formulated and algorithmic approaches are derived.

A YAWL net is formally defined as an eYAWL-net and it is represented by the tuple
(C, i,o, T, F, split , join , rem,nofi) where C is a set of conditions, T is a set of tasks, i
and o are unique input and output conditions, F is the flow relation, split and join spec-
ify the split and join behaviours of each task, rem specifies the cancellation region for
a task and nofi specifies the multiplicity of each task. Formal definitions and notations
for YAWL can be found in [3]. In Figure 1, we present a YAWL net which describes
the “lifecycle” of a student who is required to take an exam and in parallel may al-
ready book a flight to go on holidays after passing the exam. In this “holiday scenario”,
a student decides to reward himself/herself by going on holidays if he/she passes the
exam and cancel the plans if he/she fails the exam. One of the fundamental properties

Initiate

plans

Finalise

plans

Book

flight

Take

exam

Resit

exam

c2

c1

Take

holiday

c3
Cancel

flight

c4

c5

Fig. 1. Holiday scenario

of workflow is the soundness property and the soundness definition for YAWL is based
on the definition for WF-nets [1].

Definition 1 (Soundness). Let N be an eYAWL-net and Mi, Mo be the initial and end
markings. N is sound iff: 1) option to complete: for every marking M reachable from
Mi, there exists an occurrence sequence leading from M to Mo, and 2) proper comple-
tion: the marking Mo is the only marking reachable from Mi with at least one token in
condition o, and 3) no dead tasks: for every task t ∈ T , there is a marking M reachable
from Mi such that t is enabled at M .

The concepts of reachability and coverability are defined using the YAWL semantics as
defined in [3,12]. To detect the soundness property, all reachable markings need to be
generated and it is not possible to generate reachable markings for a YAWL specifica-
tion with infinite state space. Therefore, we propose a weaker property called the weak

Verifying Workflows with Cancellation Regions and OR-Joins 391

soundness property that describes the minimal requirements for the soundness property
and that can be used for a YAWL specification with an infinite state space.

Definition 2 (Weak soundness). Let N be an eYAWL-net and Mi, Mo be the initial and
end markings. N satisfies the weak soundness property iff: 1) weak option to complete:
Mo is coverable from Mi, and 2) proper completion: there is no marking M coverable
from Mi such that M > Mo, and 3)no dead transitions: for every task t ∈ T , there is
a marking M coverable from Mi such that t is enabled at M .

Reducible elements in the cancellation region of a task represent elements that can never
be active and therefore, can never be cancelled by the task. A net has the irreducible
cancellation regions property if all elements in the cancellation regions are necessary
and cannot be reduced.

Definition 3 (Irreducible cancellation regions). Let N be an eYAWL-net. N has a
reducible element x, if there is a task t such that x ∈ rem(t) and x can never be
cancelled when t is being executed. N satisfies the irreducible cancellation regions
property iff for all x ∈ ran (rem), x is not a reducible cancellation element.

Non-local OR-join semantics in YAWL results in expensive runtime analysis. It is there-
fore desirable to determine in advance whether a more appropriate join structure could
be found for a task modelled as an OR-join in a YAWL net.

Definition 4 (Immutable OR-joins). Let N be an eYAWL-net and t be an OR-join task
in N . OR-join task t is convertible to an XOR-join if only one condition in the input set
of t is always marked in the enabling markings of t or to an AND-join if all conditions
in the input set of t are always marked in the enabling markings of t. N satisfies the
immutable OR-joins property iff for all t ∈ T , join(t) = OR implies that t is not a
convertible OR-join.

In this section, we have presented the definitions of four structural properties for YAWL
workflows. For verification purposes, YAWL specifications are divided into those with
OR-joins and those without OR-joins. This distinction is necessary as a different veri-
fication technique is needed in each case. In the next two sections, we briefly describe
how to detect these properties for YAWL nets with and without OR-joins.

3 Verifying YAWL Nets Without OR-Joins

We propose to transform an eYAWL-net (without OR-joins) into an RWF-net (a sub-
class of reset nets) to exploit the analysis techniques available for reset nets. This is
achieved by first abstracting from multiple instances and hierarchy in YAWL and then
applying the transE2WF function to transform an eYAWL-net into an RWF-net [12].
Figure 2 shows the RWF-net corresponding to the YAWL net in Figure 1. We have
formulated the three criteria of the weak soundness property for an RWF-net using the
notion of coverability. As coverability is decidable for a reset net using backwards firing
rule [5,6,7,8], the three criteria of the weak soundness property are decidable. The Cov-
erable procedure described in [12] is used to determine whether a marking is coverable

392 M.T. Wynn et al.

Fend

c1

c2

pE

pF
E

start

B
end

I
start

pI

I
end

c3

B
start

c5

Eend
R

Eend
H

R
start

pR

Rend

Fstart
R

cRF

R
end
F

C Fstart
C

cCF

Fstart
H

cHF

cFC pC

C
start

C
end

pB

pH

H
endH

start

c4

i o

Fig. 2. Holiday scenario - RWF-net (Double-headed reset arcs from c2, c3 and pB to RF
end and

RC
end)

from the initial marking in a reset net. We exploit these results to propose an algorith-
mic approach for deciding the weak soundness property and the irreducible cancellation
regions property of an eYAWL-net without OR-joins.

Observation 1 (Weak soundness is decidable). Given an eYAWL-net without OR-
joins, 1) the weak option to complete can be decided by testing whether Mo is coverable
from Mi in the corresponding RWF-net, 2) proper completion can be decided by testing
whether o + p is not coverable from Mi in the corresponding RWF-net for all p ∈ P ,
and 3) no dead transitions can be decided by testing whether pt is coverable from Mi

in the corresponding RWF-net for all t ∈ T .

Observation 2 (Irreducible cancellation regions is decidable). Given an eYAWL-net
without OR-joins, 1) where a condition c is reducible in a cancellation region of t can
be decided by testing whether c + pt is coverable from Mi in the corresponding RWF-
net, and 2) where a task tx is reducible in a cancellation region of t can be decided by
testing whether ptx + pt is coverable from Mi in the corresponding RWF-net.

As reachability is not decidable for reset nets [6] and its applicability is limited to reset
nets with finite state space. As the soundness property definition relies on reachability
results, the soundness property is only decidable for an RWF-net with a finite state space.
For an eYAWL-net without OR-joins with a finite state space, it is possible to decide the
soundness property by generating a reachability graph for the corresponding RWF-net.

Observation 3 (Soundness is decidable). Given an eYAWL-net without OR-joins and
a finite reachability graph, the soundness property can be decided by testing the three
criteria on the corresponding RWF-netthrough its reachability graph.

4 Verifying YAWL Nets with OR-Joins

Due to the non-local semantics of an OR-join [12], a net with OR-joins cannot be
mapped directly onto a reset net. Hence, we propose to translate all OR-joins into XOR-
joins first. The treatment of OR-joins in the YAWL net as XOR-joins is considered opti-
mistic as it assumes an OR-join can be enabled if there is at least one token in its preset.

Verifying Workflows with Cancellation Regions and OR-Joins 393

Fig. 3. Holiday Scenario with errors

After replacing all OR-joins with XOR-joins, it is now possible to transform the YAWL
net into an RWF-net using the transE2WF function.

Observation 4. Given an eYAWL-net N with OR-joins, let N ′ be the corresponding
eYAWL-net without OR-joins where all OR-joins in N have been replaced by XOR-
joins and RN be the equivalent RWF-net for N ′. The following holds: 1) if RN does
not have weak option to complete then N does not have weak option to complete, 2)
if RN has dead transitions then N has dead transitions, and 3) if RN has proper
completion, then N has proper completion.

For a YAWL net with OR-joins that has a finite state space, we propose to create a
reachability graph by taking into account OR-join semantics and using enabling and
firing rules as defined in [3,12].

Observation 5. Given an eYAWL-net with OR-joins and a finite reachability graph,
soundness, irreducible cancellation regions and immutable OR-joins are decidable.

5 Verification in YAWL

We have extended the YAWL editor to support the verification approach presented in
this paper. The holiday scenario as modelled in Figure 1 satisfies both weak soundness
and soundness properties. Figure 3 describes a slightly modified version that have nei-
ther the weak soundness nor the soundness property. There are two differences: c3 is
not in the cancellation region of Resit exam, and Cancel flight is now an AND-join task.
Consider the case where the student has failed the exam and has to resit, after booking
the flights. The way this process is now modelled, it is possible for task Finalise Plans
to be executed, without performing task Cancel Flight first. A token is left in condition
c3 when a token is put into the output condition o which signals the end of the process.
Therefore, the model does not satisfy the proper completion criterion. This example
highlights how subtle differences in modelling business processes can adversely affect
the correctness of a YAWL specification.

394 M.T. Wynn et al.

6 Conclusion

We have proposed four structural properties for workflows with cancellation regions and
OR-joins together with new verification techniques based on reset nets and reachability
analysis. The only other approach for YAWL verification can be found in [10]. The
proposed approach transforms YAWL nets into Petri nets with inhibitor arcs to decide
the relaxed soundness property. The use of inhibitor arcs instead of reset arcs means
that this approach cannot detect problems in certain specifications with cancellation
features. For example, this approach cannot detect problems in the erroneous holiday
scenario described in Figure 3. On the other hand, approximation of OR-join semantics
enables the verification of nets with OR-joins using invariants.

Acknowledgements. We like to thank Lindsay Bradford and Lachlan Aldred for their
assistance with the integration of the verification techniques in the YAWL editor.

References

1. W.M.P van der Aalst. Verification of workflow nets. Proceedings of Application and Theory
of Petri Nets, volume 1248 of LNCS, pages 407–426, 1997. Springer-Verlag.

2. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

3. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language.
Information Systems, 30(4):245–275, June 2005.

4. W.M.P van der Aalst, A.H.M. ter Hofstede, B.Kiepuszewski, and A.P.Barros. Workflow
Patterns. Distributed and Parallel Databases, 14:5–51, 2003.

5. C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset Nets Between Decidability and Unde-
cidability. Proceedings of the 25th International Colloquium on Automata, Languages and
Programming, volume 1443 of LNCS, pages 103–115, 1998. Springer-Verlag.

6. C. Dufourd, P. Jančar, and Ph. Schnoebelen. Boundedness of Reset P/T Nets. Lectures on
Concurrency and Petri Nets, volume 1644 of LNCS, pages 301–310, 1999. Springer-Verlag.

7. A. Finkel, J.-F. Raskin, M. Samuelides, and L. van Begin. Monotonic Extensions of Petri
Nets: Forward and Backward Search Revisited. Electronic Notes in Theoretical Computer
Science, 68(6):1–22, 2002.

8. A. Finkel and Ph. Schnoebelen. Well-structured Transition Systems everywhere! Theoretical
Computer Science, 256(1–2):63–92, 2001.

9. H.M.W. Verbeek. Verification of WF-nets. PhD thesis, Eindhoven University of Technology,
The Netherlands, June 2004.

10. H.M.W. Verbeek, W.M.P. van der Aalst, and A.H.M ter Hofstede. Verifying Workflows with
Cancellation Regions and OR-joins: An Approach Based on Invariants. Technical Report
WP 156, Eindhoven University of Technology, The Netherlands, 2006.

11. M.T. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Verifying work-
flows with Cancellation Regions and OR-joins: An Approach Based on Reset nets and Reach-
ability Analysis (Revised version). Technical report BPM-06-16, bpmcenter.org, 2006.

12. M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Achieving a Gen-
eral, Formal and Decidable Approach to the OR-join in Workflow using Reset nets. Proceed-
ings of Application and Theory of Petri nets, volume 3536 of LNCS, pages 423–443, 2005.
Springer-Verlag.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 395 – 400, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards a Methodology for Deriving
Contract-Compliant Business Processes

Zoran Milosevic1,2, Shazia Sadiq1, and Maria Orlowska1

1 School of Information Technology and Electrical Engineering
The University of Queensland

Brisbane, Australia
{zoran, shazia, maria}@itee.uq.edu.au

2 Also with Deontik Pty Ltd, Australia
zoran@deontik.com

Abstract. This paper presents a methodology for deriving business process de-
scriptions based on terms in business contract. The aim is to assist process
modellers in structuring collaborative interactions between parties, including
their internal processes, to ensure contract-compliant behaviour. The methodol-
ogy requires a formal model of contracts to facilitate process derivations and to
form a basis for contract analysis tools and run-time process execution.

1 Introduction

Several types of requirements are to be considered in any business process man-
agement activity, be it a process design, process execution or process monitoring.
Internal requirements reflect strategic goals for improving business outcomes, e.g.
an increased efficiency. External requirements reflect constraints from outside
world, e.g. contractual obligations with trading partners or regulatory policies with
which parties need to comply. Future requirements address likely future states of
affairs, e.g. organisational commitments from new contracts. This paper addresses
contract-based requirements, namely how to design contract-compliant processes
between parties.

Section 2 classifies legal statements in contracts into several types of contract con-
ditions, described in a form suitable for translation into a formal contract expression.
One such formalism is briefly discussed and the translation is illustrated by means of
an example. Section 3 presents our methodology for deriving contract-compliant
interactions between parties, covering cross-organisational interactions, internal proc-
esses and supplementary activities. Section 4 provides concluding remarks.

2 Transforming Legal Statements into Formal Representation

A contract is a legally enforceable agreement specifying mutual promises between
legal entities, e.g. Subcontractor and Outback Water (OW) in the Maintenance Ser-
vice Contract example below. Contracts are typically written using legally-centric
contract statements, as illustrated through the following example.

396 Z. Milosevic, S. Sadiq, and M. Orlowska

MAINTENANCE SERVICE CONTRACT

This agreement BETWEEN Outback Water (To be known as the OW) AND OZ
Pumps (To be known as the Subcontractor) governs Maintenance Services (to be
known as Service) subject to the following terms and conditions:

1 Definitions and Interpretations
1.1 Price is a reference to the currency of the Australia unless otherwise stated.
1.2 MTBF is Mean Time Between Failures and MTTR is Mean Time To Repair

2 Commencement and Completion
2.1 The commencement date is scheduled as January 30, 2006.
2.2 The completion date is scheduled as January 30, 2007.
2.3 The (OW) shall notify the (Subcontractor) of possibility of extension for 1 year
by 3rd quarter of the contract

3 Service and QoS Delivery
3.1 The (Subcontractor) shall make its best efforts to ensure that the following QoS
conditions are met:
- not exceed the maximum asset down time on any one asset
- average above the specified MTBF and below the MTTR over a month
The maximum or minimum values are provided in schedule A of the contract.
3.2 (Subcontractor must inform (OW) within 24 hours of any event that might affect
the ability to achieve the quality of service
3.3. The (Subcontractor) shall not re-assign maintenance to another party, i.e. Sub-
Subcontractor
3.4. The (OW) will provide access to all asset sites based on service requirements

4 Reports and notifications
4.1 The (Subcontractor) will submit monthly reports on all preventative mainte-
nance activities and emergency events, including full timing details.
4.2 The (OW) will provide list of assets to be maintained, with clear instructions of
the maintenance cycles required
4.3 The (OW) will provide clear MTBF and MTTR targets
4.4 The (OW) will provide feed back to the subcontractor of any information re-
ceived about problems with the water supply, including emergencies reported by its
customers within 24 hours
4.5 After each of the 1st and 2nd quarters, the (OW) will give guidance to the sub-
contractor on how any shortcomings in the service might be improved.

5 Payment
5.1 The (Subcontractor) shall submit monthly invoices to (OW) for services per-
formed during that period
5.2. The (OW) shall make full payment of (Subcontractor) invoices within 30 days
of receipt

6 Termination
6.1 The (OW) can terminate the contract after three QoS violations

Our analysis of many contracts suggests that legal statements can be classified into
several groups whose structure is amenable for formal representation, namely:

1. The declaration of pre-existing external constraints from the environment which
apply to the contract or to the variables in the contract, such as policies originating
from taxation law or business contracts law (e.g. clause 1.1 in the example);

2. Definitions, explaining meaning of contracts terms (e.g. clause 1.2 in the example);
3. A period of validity when the contract is in effect (e.g. clauses 2 in the example);

 Towards a Methodology for Deriving Contract-Compliant Business Processes 397

4. The statement of core normative policies, i.e. obligations, permissions, prohibitions
that apply to the parties (e.g. clauses 3, 4, 5 and 6); some obligation policies repre-
sent high-level constraints, stating a goal to be achieved (e.g. clause 3.1);

5. Other type of policies used in typical business/legal jargon, which can be reduced
to the core policies; we call these compound normative policies; examples are
rights, liabilities and responsibility (there are no such policies in our example);

6. Actions that cover transfer of normative modalities between principals and agents,
as in delegation statements; we call these policy-transfer actions (e.g. clause 3.3);

7. Events that signify policy violations occurrence or situations potentially leading to
future violations (e.g. clause 3.2 and 4.4); we call them attention events;

8. Second-effect policies to be invoked in cases of violations of any of the above
policies; we call these reparation policies (see [1]), e.g. clause 6.1;

9. Force-majeure conditions, describing circumstances which are beyond control of
either parties; (there are no such policies in our example);

10.A number of structuring constructs, e.g. clause groups 1-6.

We show through the example how the above structures can be mapped onto For-
mal Contract Language (FCL) [1]. FCL statements include triggering conditions for
policy activation (e.g. AccessSiteRequest in clause 4.1) and deontic conditions. The
latter consist of deontic modality (O for obligation, P for permission and F for prohi-
bition) and the subject’s behaviour expression (e.g. O

H
OW, Sub ProvideAccess is OW’s

obligation to ensure Subcontractor’s access). Note that ‘H’ superscript denotes a high-
level policy, while ‘D’ denotes an action of delegation. The contract in FCL is:

2.3: 3rdQuarterEnd,ExtensionYes ⊢ OOW, Sub ExtensionNotification
3.1: ContractStart ⊢ O HSub EnsureBestQoS
3.2: OoSProblemEvent ⊢ OSub,OW InformWithin24hrs
3.3: ContractStart ⊢F DSub, Sub-Sub AssignMaintenance
3.4: AccessSiteRequest ⊢O HOW, Sub ProvideAccess
4.1: ContractStart,BeginMonth ⊢O Sub,OW SubmitMonthlyReport
4.2: ContractStart ⊢O HOW ProvideListOfAssets
4.3: ContractStart ⊢O HOW ProvideMTBFandMTTRTargets
4.4: ProblemOrEmergency ⊢O OW,Sub ProvideFeedback
4.5: EndOfFirstQuarter ⊢O OW,Sub GiveGuidance;
 EndOfSecondQuarter ⊢O OW,Sub GiveGuidance;
5.1: BeginMonth ⊢O Sub,OW SubmitMonthlyInvoice
5.2: InvoiceReceipt ⊢O OW,Sub FullPaymentWithin30days
6.1: ThirdQoSViolation ⊢ POW TerminateContract

The FCL can express predicates such as those included under groups 1, 2 and 3
above, but they are not described in this paper. We plan to extend FCL in future to
support complex contract conditions grouped under groups 5, 9 and 10.

3 Methodology

We exploit FCL contract form in initial steps of our methodology for constructing
contract-compliant business processes (Fig. 1). This methodology is developed to
cover various circumstances surrounding the establishment of contracts, as well as

398 Z. Milosevic, S. Sadiq, and M. Orlowska

subsequent measures for ensuring contract-consistent behaviour. For example, parties
may enter contract afresh, to reflect new collaboration opportunities and without limi-
tations imposed by their established internal processes, policies or commitments to
other parties. But it may be that their existing processes and policy present conflicting
conditions with the new contract. These conflicts may require renegotiation of con-
tract terms or adaptation of the existing processes or policies to align the existing and
new policy spaces. In order to detect such conflicts, the first step is to undertake static
analysis of contracts, possibly involving various types of simulations. Provided the
conflicts are resolved, the problem of ensuring contract-consistent behaviour is re-
duced to first ensuring that each party formulates its collaborative interactions, di-
rectly reflecting contract conditions, and then ensuring that they formulate internal
processes to fulfil contract constraints. Both collaborative interactions and internal
processes may be augmented with supplementary processes that track interaction
progress, detect potential future policy violations and send notifications to the parties
to that effect. The methodology consists of several steps as described next.

In order to derive collaborative interactions, or a contract framing behaviour, di-
rectly reflecting constraints in contract conditions, one can start with the identification
of the primitive actions that each party is required to carry out, as stated in the con-
tract, i.e. obligation modalities. Typically, one would first consider (simple, but no
high-level) obligation modalities in which both subject and beneficiary are explicitly
mentioned. This helps identifying messages to be sent between partners and their
direction. The messages either reflect consideration aspect of contract, or have pur-
pose of sending notifications to the other party, e.g. about progress of some activity or
a warning about likely or an occurring violation. In our example, one would go trough
the FCL version of contract and identify modalities of the form OOW,Sub or OOW,Sub,
followed by the identification of the actions that may result in messages of some
form, e.g. Inform (Within24hrs), SubmitMonthlyInvoice, SubmitMonthlyReport, ProvideFeed-
back. Some messages may be a result of complex internal processes. For example,
SubmitMonthlyReport message can be a result of multiple internal process steps within
the Subcontractor organisation. High-level obligations, e.g. O

H
Sub EnsureBestQoS, can

be refined in terms of specific QoS indicators and the corresponding objectives. Simi-
larly, one would also identify those actions that must not be carried out by the parties,
e.g. F

D
Sub, Sub-Sub AssignMaintenance; (superscript ‘D’ denotes that this prohibition ap-

plies to a delegation action). Note that the prohibition modalities will typically result
in supplementary processes whose purpose is to realise mechanisms to prevent the
occurrence of prohibited behaviour. Additionally, one would also identify compound
normative concepts that have elements of obligations, such as duties and responsibili-
ties and similarly, identify flow of messages or notifications.

Subsequent steps determine candidate internal processes for the parties, compliant
with the contract framing behaviour. To this end, various heuristics can be applied to
reflect different types of contract conditions, as proposed in [2]. Examples of such
condition types are exception conditions, specifying actions to be done when a viola-
tion occurs and quality oriented conditions which imply some inspection stage. The
respective heuristics are introduction of escalation branches in the internal process,

 Towards a Methodology for Deriving Contract-Compliant Business Processes 399

Legalesse -> Formal

Static Analysis

Pre-existing constraints

[inconsistency detected]

[valid]

Conflict Analysis
[yes]

ConflictResolution

[no]

DesignCross-orgBehaviour

InternalBehaviourGuideNeeded?

TrustAnalysis

DesignMonitoringScheme
[low]

[high]

[conflict]

[no conflict]

[yes]

DesignInternalProcesses

ChangeOrStopProcesses?

DeployCross-Org&InternalProcesses

DeployMonitoring

[no]

[monitoring] [no monitoring]

[no]

[yes]

Fig. 1. Methodology for deriving contract-compliant processes

and introduction of loops to check deliverable. Such heuristics will be captured over
time. For some conditions it may be impossible to determine any heuristic. In our
example, the required action of the Subcontractor to send monthly report imply that
the Subcontractor needs to structure own processes to accomplish this, e.g. they may
introduce a Work Order processes, followed by an Assemble Report activity, the
completion of which generates SubmitMonthlyReport event.

Further step is to design supplementary activities for the internal business proc-
esses, e.g. tracking of the progress of internal processes and checking whether there is

400 Z. Milosevic, S. Sadiq, and M. Orlowska

a likelihood of contract violations. The aim is to provide early detection of significant
state of affairs that need further attention about which parties need to be notified.
Lastly, policy checking procedures step can be deployed in run-time to detect existing
violations and activate fallback procedures; depending on the level of trust, this can
be part of parties’ internal processes or using trusted third party monitor.

This section focused on a methodology for creating new processes to be confor-
mant with the contract. In many cases however, a contract will govern existing proc-
esses or augmented versions of those. The FCL formalism is applicable to both cases,
and we expect that much of the methodology presented here can be reused.

4 Conclusions and Future Work

This paper presented a methodology for deriving business process descriptions based
on business contract terms, to assist process modellers in constructing contract-
compliant processes. The methodology provides guidelines for structuring collabora-
tive interactions, internal processes and a number of supplementary processes. There
are only few papers that dealt with links between contracts and business processes [3,
4, 5, 6]. To the best of our knowledge, the area of deriving contract-compliant proc-
esses has not been investigated so far, apart from some initial ideas presented in [2].

We hope that this paper opens new questions and stimulates further development in
the area. Our own plans are to consider specific process specification languages as a
target option for our derivation, in particular BPMN and BPEL, and to revise the
methodology, in particular regarding the derivation of internal processes.

References

1. G. Governatori, Z. Milosevic, Dealing with contract violations: formalism and domain spe-
cific language Proc. of the 9th International Conference on Enterprise Distributed Object
Computing, Enschede, The Netherlands, Sep. 2005

2. R. Tag, Z. Milosevic, S. Gibson, S. Kulkarni, Supporting Contract Execution through Rec-
ommended Workflows, DEXA04 Conference., Zaragoza, Spain, Sept. 2004.

3. W-Jan van den Heuvel, H. Weigand, Cross-Organisational Workflow Integration using
Contracts, Decision Support Systems, 33(3): p. 247-265

4. P. F. Linington, Automating support for e-business contracts, International Journal of Coop-
erative Information Systems, 14(2&3):77-98, September 2005

5. R.M. Lee. A logic model for electronic contracting. Decision Support Systems, 4:27–44,
1988

6. A. Berry and Z. Milosevic. Extending choreography with contract constraints. Int. J. of Co-
operative Inf. Syst., 14, 2005.

An AsmL Executable Model for WS-BPEL with
Orthogonal Transactional Behavior

Luciano Garćıa-Bañuelos�

Universidad Autónoma de Tlaxcala
Calz. a Apizaquito s/n, 90300
Apizaco, Tlaxcala, MEXICO

lgbanuelos@gmail.com

Abstract. The current WS-BPEL specification is based on a textual
description of the semantics of its constructs. This can raise some mis-
understandings and difficults the development of tools for analysis and
verification of WS-BPEL processes. To alleviate this lack, several groups
have proposed formal models for WS-BPEL. Such models comprise more
or less the full semantics in a tightly-coupled approach. We consider
that WS-BPEL needs a more flexible fault handling model. This paper
presents an executable model based on AsmL which allows to seamlessly
add/modify behavior to implement new transaction models.

1 Introduction

WS-BPEL or BPEL for short [1] is the de facto standard for orchestration of Web
Services. By the time of this writting, BPEL is being standardized by an OASIS
committee, but the underlying semantics is described only in a textual document.
This can raise some ambiguous interpretations. To alleviate this problem, some
work has been devoted to provide a formal model for BPEL. All these works
have been successful to some extent. However, the resulting models are tightly
constructed so that it is not easy to modify the default behavior to accomodate
new constructs or concepts.

Based on the ASM model for BPEL proposed in [4,3], we developped a frame-
work written in AsmL [10]. This framework separates the underlying transac-
tional behavior and allows to seamlessly acommodate new behavior to experi-
ment with advanced models. AsmL is a software specification language based on
the ASM (Abstract State Machines) formalism [9]. Specifications on AsmL are
not only descriptive but they can be compiled, executed and used for simulating
the target system.

This paper is organized as follows. Section 2 introduces structural aspects and
process dynamics of BPEL as proposed in [4]. Section 3 presents our approach
to separate the transactional behavior. Section 4 sketches how to extend the
transactional behavior. Section 5 discuses about related work. We conclude and
present future work in Section 6.
� The author thanks Microsoft Research for making available the AsmL workbench.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 401–406, 2006.
© Springer-Verlag Berlin Heidelberg 2006

402 L. Garćıa-Bañuelos

2 BPEL Process Structure and Dynamics

Activities constituting a BPEL process can be structured in a process tree
[3]: each leaf is a basic activity, the root of a non-trivial subtree is a struc-
tured activity. Other constructs, such as scopes and error/exception/event han-
dlers are also included in the tree. The root of a tree will always be a scope
node.

The dynamics of a BPEL process is captured within the process tree. Basic
activities are executed at most once. Structured activities control the execu-
tion of their child activities (e.g. execution order, child instantiation). Control
flow is done by message exchange. For instance, a structured activity starts
the execution of a child by sending it down a signalEnable message. The struc-
tured activity will stay in a running state until every running child activity com-
pletes its execution and there is no other activity to enable. Each child activ-
ity notify its completion to its parent activity by sending it a signalComplete
message.

Two types of control flow are identified in [3]. The positive control flow is
related to message exchange used to control the normal execution of the process.
The negative control flow in turn comprises message exchanges in the occurrence
of a failure or for exception handling.

A distributed ASM (DASM) involves a collection of agents that perform their
computation steps concurrently. BPEL activities can be modelled as DASM
agents. The state of an agent evolves in sequential steps with the invocation to
the execute() method. Agents interact by message interchange, so they provide at
least a method to receive messages. The AsmL code in Figure 1 sketches these
principles. Lines 15-17 allow simulating the system, by non-deterministically
selecting agents and executing their behavior.

 7 sendSignalDown(signal as SIGNALDOWN) 17 agent.execute()

10 skip
 9 override execute()
 8 add signal to channelDown

 1 abstract enumerated class Agent 11 Main()
 2 virtual execute() 12 step
 3 enum SIGNALDOWN 13 var activity = new Activity()
 4 enable 14 activity.sendSignalDown(SIGNALDOWN.enable)
 5 class Activity extends Agent 15 step until fixpoint
 6 var channelDown as Set of SIGNALDOWN = {} 16 forall agent in enum of Agent

Fig. 1. Activities as distributed ASM agents in AsmL

3 Our Approach to Separating Transactional Behavior

Our intend is to separate transaction support from the core behavior of BPEL.
This is done by applying design patterns as shown in the following subsections.

3.1 Design Patterns

We use two Design Patterns to allow flexible compositions of behavior. First, we
separate State and Behavior and use the Facade Pattern [8] to provide a single

An AsmL Executable Model for WS-BPEL 403

entry point. Second, we add/replace behavior by means of an adaption to the
Interceptor Pattern [12].

(1) Facade Pattern. The separation of state and behavior is needed to use the
Interceptor Pattern to seamlessly add behavior. To provide a unified interface
to both state and behavior, we use the Facade Pattern [8]. Lines 1-21 in Figure
2 sketch the application of this pattern.

The State part handles the set of variables which are common to basic and
structured activities (e.g. signalChannelDown). There are some other variables
which are exclusive to structured activities. They are managed by a specialized
class (i.e. StructuredState).

The general behavior for basic activities is enclosed in the Behavior class. For
each type of basic activity there is a class which specializes the base behavior.
There is another class called StructuredBehavior which is in turn extended with
the specific behavior for each type of structured activity.

Lines 34-36 show how to “assemble” an Activity out of a State and a Behavior.
Finally, lines 39-42 show that the resulting activity can be handled with a single
reference.

21 behavior.execute() 42 act.execute()

 1 class State 22 class Interceptor extends Behavior
 2 var signalChannelDown as Set of DOWNSIGNAL = {} 23 var interceptee as Behavior=null
 3 var activityState as ACTIVITYSTATE=disabled 24 setInterceptee(i as Behavior)
 4 sendSignalDown(s as DOWNSIGNAL) 25 interceptee := i
 5 add s to signalChannelDown 26 override execute()
 6 class Behavior 27 WriteLine("Before")

 8 virtual execute() 29 class Activity
 7 var state as State = null 28 interceptee.execute()

 9 if signalEnable in state.signalChannelDown 30 prependInterceptor(i as Interceptor)
10 remove signalEnable 31 i.setInterceptee(behavior)
11 from state.signalChannelDown 32 behavior := i
12 state.activityState := anabled 33 Main()
13 ... 34 step
14 class Activity 35 var act as Activity =

16 var behavior as Behavior 37 step
15 var state as State 36 new Activity(new State, new Behavior)

17 ... 38 act.prependInterceptor(new Interceptor)
18 sendSignalDown(signal as DOWNSIGNAL) 39 step
19 state.sendSignalDown(signal) 40 act.sendSignalDown(signalEnable)
20 execute() 41 step until fixpoint

Fig. 2. Applying Facade and Interceptor Design Patterns

(2) Interceptor Pattern. This pattern [12] enables functionality to be added
seamlessly and transparently to components. Since functionality is added by
delegation, the addition can be performed even at runtime.

The pattern chains a set of interceptors and then passes any request messages
from interceptor to interceptor until it reaches one capable of handling the mes-
sage. The interceptor is itself a specialization of Behavior, so the base behavior
can be reached at the end of the chain. The AsmL sample code for interceptors
is presented in Lines 22-42 within Figure 2.

An interceptor can be attached to an activity by calling the prependInterceptor ()
method to Activity 1. For instance, the interceptor defined in Figure 2 “decorates”
the execute() method of Behavior with a call to a WriteLine() method which will be
executed before the base behavior. The step in lines 37-38 illustrates how to add
the interceptor.
1 AsmL supports complementing class definitions as shown in the example.

404 L. Garćıa-Bañuelos

3.2 BPEL Fault Handling as an Orthogonal Behavior

We claim that the negative control flow can be handled orthogonally with re-
spect to the positive control flow. We found in [3] that the only situation where
there is an overlapping between negative and positive control flow is with the
Terminate activity. Terminate uses the same signalStop message and stopped state
as does the negative control flow. To clarify this situation, we propose to intro-
duce signalTerminate and terminated for their usage by Terminate. Thus, signalStop
and stopped may be exclusively used within the negative control flow.

In the occurrence of a fault, the faulty activity starts the propagation of a
Fault object to its parent activity, and upwards. A skeleton for an interceptor to
modify the base behavior is shown in Lines 1-17 within Figure 3.

17 faultChannelUp.channel += {FaultTriple(ME(),state.getParent(),f.fault)}

 1 structure FaultTriple 1 class FaultChannel
 2 act1 as Activity 2 var queue as Set of FaultTriple = {}
 3 act2 as Activity 3 class FaultIntrV2 extends FaultInterceptor
 4 fault as Fault 4 override propagateFaultsActivity()
 5 class FaultChannel 5 if exists ft in faultChannelUp.queue
 6 var channel as Set of FaultTriple = {} 6 where ft.act1 = ME()
 7 class FaultInterceptor extends Interceptor 7 forall f in faultChannelUp.queue
 8 var faultChannelUp as FaultChannel 8 if f.act1 = ME()
 9 override execute() 9 faultChannelUp.channel +=
10 propagateFaultsActivity() 10 {FaultTriple(f.act1,f.act2,f.fault)}
11 interceptee.execute() 11 remove f from faultChannelUp.queue
12 virtual propagateFaultsActivity() 12 else
13 forall f in faultChannelUp.channel 13 mybase.propagateFaultsActivity()
14 if f.act2 = ME()
15 remove f from faultChannelUp.channel
16 if state.getParent() <> null

Fig. 3. Interceptors for fault handling

Note that faultChannelUp (line 8) is not part of the State class. faultChannelUp is a
process-wide data structure, which is used to communicate faults. It is referenced
explicitly within FaultInterceptor . If such a data structure is not useful for a new
model, it can be easily eliminated.

FaultInterceptor class overrides the default execute() method and calls the
propagateFaultsActivity () method. The latter implements the propagation of any
eventual Fault to the parent activity (lines 12-17).

It has to be noted that a special ME() method is used. This method returns a
reference to the enclosing Activity instance.

To modify the default transactional behavior, the delivery of the Fault object
to the parent of the faulty activity must be delayed. To this end, the fault object
is inserted into a queue. When an interceptor finds a fault in such a queue, it
can process it as needed. If there is not an interceptor to modify the behav-
ior, the fault can follow the default negative control flow, via the faultChannelUp.
FaultIntrV2 in Figure 3 shows an interceptor that copies the fault from the de-
laying queue to the faultChannelUp, with no additional processing.

4 Extending Fault Handling

The default behavior for fault handling in BPEL is to compensate completed
activities in reversal order. However, there are other extended transaction models

An AsmL Executable Model for WS-BPEL 405

that can be applied to BPEL. For instance, the Flexible Transactions model [14]
provides several kinds of activity/transaction (i.e. dummy, retriable, pivot in
addition to compensatable) and allows several alternative execution paths.

As a way of example, let us consider the behavior of a retriable activity.
It supposed that such an activity is guaranteed to complete after retrying a
finite number of times. A straightforward and simplistic way to implement such
a behavior is to use a counter to control the reexecution of the activity. The
specification for the corresponding behavior is presented in Figure 4.

 4 override execute() 11 state.setActivityState(disabled)

 6 where f.act1 = ME() and counter > 0 13 else

 1 class RetriableActInterceptor extends Interceptor 8 if ft.act1 = ME()
 2 var faultChannelUp as FaultChannel 9 remove ft from faultChannelUp.queue
 3 var counter as Integer = 3 10 counter −= 1

 5 if exists f in faultChannelUp.queue 12 state.sendSignalDown(signalEnable)

 7 forall ft in faultChannelUp.queue 14 interceptee.execute()

Fig. 4. Interceptor to implement the retriable behavior

5 Related Work

Some groups propose operational semantics for BPEL using Petri nets as the un-
derlying formalism (see for instance [11,13]). The general approach is to trans-
late each BPEL construct into a subnet, following a set of patterns and then
composing them into a single net. The resulting Petri net can then be ver-
ified for relevant properties by using static analysis and model checking
techniques.

Others use a sort of process algebra to model the behavior of BPEL pro-
cesses. [6] presents a method to translate BPEL processes into LOTOS. Fur-
ther, they discuse about the kind of analysis that can be carried out, such as
temporal logic model checking, simulation and bisimulation. [2] describes the
usage of a process algebra specially designed to model compensation related
aspects.

Based on guarded finite state machines, [7] schetches how to translate BPEL
constructs as well as partner web services into submachines. Then, the set of
submachines for the entire system is composed and can be checked for some
properties. However, this work is still incomplete, lacking for advanced features
such as event and fault handling.

Others use ASM to model BPEL constructs. A complete BPEL process is
modelled as a collection of interacting DASM agents. In this context, there are
two major works: [5] which is still incomplete in some concerns such as Dead-
Path Elimination, and [3] which is quite complete.

Our concern is not to develop a new model for BPEL, but to adapt one
to accomodate extensions to the undelying transactional behavior. Our start-
ing point was the ASM model described in [4,3]. We use AsmL as workbench
to develop an executable specification suitable for simulation. Futher, such a
workbench provides tools we want to explore for model-based testing and
analysis.

406 L. Garćıa-Bañuelos

6 Conclusions and Future Work

We have explored how to develop an executable model for BPEL using AsmL.
This language, which reposes on the ASM theory, provides high-level, object-
oriented constructs that allow us to use some Design Patterns to separate trans-
action behavior from the positive control flow inherent to BPEL. Based on this
framework, we have shown how to modify the default transactional behavior.

Currently, we are completing the specification of the flexible transaction model
so as to extend BPEL. This includes also proposing an extension to the syntax
of the language so as to add means to specify alternative execution paths within
BPEL scopes.

References

1. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services, version 1.1 (2003)

2. Butler, M., Ferreira, C., Ng, M.: Precise Modelling of Compensating Business
Transactions and its Application to BPEL. Journal of Universal Computer Science
(2005)

3. Fahland, D.: Complete Abstract Operational Semantics for the Web Service Pro-
cess Execution Language. Technical report, Humboldt-Universität zu Berlin (2005)

4. Fahland, D., Reisig, W.: ASM-based semantics for BPEL: The negative control
flow. In: Proceedings of Abstract State Machines. (2005)

5. Farahbod, R., Glässer, U., Vajihollahi, M.: Abstract operational semantics of the
Business Process Execution Language for Web Services. Technical Report SFU-
CMPT-TR-2004-03, Simon Fraser University, Canada (2004)

6. Ferrara, A.: Web services: A process algebra approach. Technical Report 17-04,
Università di Roma ”La Sapienza” (2004)

7. Fu, X., Bultan, T., Su, J.: Analysis of Interacting BPEL Web Services. In: Pro-
ceedings of the 13th Inter. Conf. on World Wide Web, ACM Press (2004)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
reusable object-oriented Software. Addison-Wesley (1995)

9. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In: Specification and Valida-
tion Methods. Oxford University Press (1995)

10. Microsoft AsmL research team: (Asml web site) http://www.research.microsoft.
com/foundations/asml/.

11. Ouyang, C., van der Aalst, W.M., Breutel, S., Dumas, M., ter Hofstede, A.H., Ver-
beek, E.: Formal Semantics and Analysis of Control Flow in WS-BPEL. Technical
Report BPM-05-03, BPMcenter.org (2005)

12. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture: Patterns for concurrent and networked objects. Volume 2. Wiley &
Sons (2000)

13. Stahl, C.: A Petri Net Semantics for BPEL. Technical Report 188, Humboldt-
Universität zu Berlin, Institut für Informatik (2005)

14. Zhang, A., Nodine, M.H., Bhargava, B.K., Bukhres, O.A.: Ensuring Relaxed Atom-
icity for Flexible Transactions in Multidatabase Systems. In: Proc. of the 1994
ACM SIGMOD Inter. Conf. on Management of Data, ACM Press (1994)

Optimizing Exception Handling in Workflows
Using Process Restructuring�

Mati Golani1 and Avigdor Gal2

1 Ort Braude College, Israel
matig@ort.org.il

2 Technion - Israel Institute of Technology
avigal@ie.technion.ac.il

Abstract. Exception handling is the process by which a failure in a
process is mitigated. Depending on the specifics of an exception, excep-
tion handers – specifications of exception handling processes – may range
from halting a process, through attempts of activity reactivation, to an
identification of an alternative path to successful completion of a pro-
cess. Designing efficient exception handlers is not a simple task. By their
very nature, exceptions are rare events that may result in poor design
of exception handlers in terms of cost and logic. In this work we aim
at improving exception handling performance in workflow management
systems (WfMSs), a task which has been recognized as a fundamental
component of WfMSs that is critical to their successful deployment in
real-world scenarios. Our approach is based on the observation that when
designing a business process as a workflow, a designer has some degree
of freedom in streamlining actions. Therefore, we propose process model
restructuring as a main tool in reducing the cost of exception handling.
We believe that restructuring of a process model, based on exception effi-
ciency consideration, can increase the overall productivity of the business
process. Although the rarity of exceptions allows amortizing their costs
over time we cannot ignore exception costs altogether. Therefore, we
propose a cost-based approach to prioritize their impact on the work-
flow design. Our main contribution is the provision of a methodology for
exception handling optimization at the workflow design phase.

1 Introduction

Exception handling is the process by which a failure in a process is mitigated.
Depending on the specifics of an exception, exception handling may range from
halting a process, through attempts of activity reactivation, to an identification
of an alternative path to successful completion of a process. Exception handling
is a crucial component in an efficient process management [1, 3] and has great
impact on system performance.

Designing efficient exception handlers – specifications of exception handling
processes – is not a simple task. By their very nature, exceptions are rare events
� We Thank Peter Dadam and Noa Kfir-Dahav for useful discussions.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 407–413, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

408 M. Golani and A. Gal

that do not enjoy the advantages of common processes, which are easily pro-
grammed with much expert information injected into them. Thus, exception
handlers may well be ill-designed, affecting both the correctness and the effi-
ciency of the process. Avoiding their design altogether is also not a valid option.
During runtime, process operators see only a narrow perspective of the process,
and given an exception, will not have sufficient information to effectively manage
it. In those cases in which the operator mitigates the exception, the solution may
be neither optimal nor effective.

Another aspect of exception handling involves the overwhelming amount of
possible exceptions with respect to the “normal” process size. Clearly, for any
“right” way of performing a process, there may be many things that could go
wrong, each possibly requiring its own exception handling. Therefore, the mod-
eling of exception handling routines, combined with the lack of expert support
(due to the rarity of exceptions) would likely result in a poor design of exception
handlers, both in terms of logic and in terms of cost.

In this work we we provide a methodology for exception handling optimization
at the process design phase. As a modeling tool of choice we use workflows, which
fundamental philosophy is to separate the description of a process flow from ap-
plication functions. Workflows define a business process in terms of activities
(also called actions or tasks). Activities, together with temporal constraints on
execution ordering define a business process [6]. Workflow Management Systems
(WfMSs) nowadays serve as the main process-based technology in enterprise
environment, evolving in the past 10-15 years to support the design and execu-
tion of business processes. Efficient exception handling has been recognized as
a fundamental component of WfMSs, critical to their successful deployment in
real-world scenarios [1]. In this work, we formally define an exception handler as
a workflow and discuss its combination with existing workflows.

Our approach is based on three basic observations. First, we observe that when
designing a business process model, a designer has some degree of freedom in
streamlining activities, and the decision on one specific design is typically based
on organizational practices. Therefore, we propose process model restructuring
as a main tool in reducing the cost of exception handling. Secondly, we observe
that exception handling design is typically performed only after the “normal”
process of execution has been designed. Clearly, current methodologies of process
design are not geared towards exception handling. Therefore, restructuring of
a process model, based on exception efficiency consideration, can increase the
overall productivity of the business process. Nevertheless, we do not consider
exceptions to be “first-class citizens.” Our proposed methodology assumes that
process design is indeed done first, followed by exception handler design and
possible restructuring of the original design. Thirdly, it is clear that the rarity
of exceptions requires amortizing their costs over time. This, however, is not
parallel to ignoring exception costs altogether. Therefore, we use a cost-based
approach to prioritize their impact on the process model design.

The rest of the paper is organized as follows: we start with presenting the
workflow graph-based model (Section 2) andexception handlers (Section 3). In

Optimizing Exception Handling in Workflows 409

Section 4 we provide the exception handler optimization methodology. We con-
clude in Section 5 with a short discussion of current achievements and future
work.

2 Workflow Model

A workflow model can be described as a graph (ADEPT WSM net [5]) G(V, E)
(V = (Va ∪ Vd); E = (Ec ∪ Ed ∪ Es)), combined of activity and data nodes,
connected by control,data, and synchronization edges. Synchronizing edge are
quite useful, allowing activities on parallel threads to be synchronized, even
though they are not connected with control edges.

Control edges reflect temporal constraints on the ordering of activities. An
ordering of (ai, aj) may reflect that aj requires the input of ai for its processing.
Alternatively, if ai and aj make use of a common, limited resource, a designer
may decide to avoid collisions by serializing their activation. Finally, such an
ordering reflects the existing business process modeled by the workflow. Recall
that one of our main observations is that when designing a business process, a
designer has some degree of freedom in streamlining activities. Thus, we propose
process model restructuring by possibly changing existing ordering in a workflow.
Clearly, not all orderings are subject to change.

Given a workflow graph G(V, E) we define for an activity a ∈ Va, The Nearest
Xor split point of a (denoted NXSP (a)) as the nearest Xor activity that pro-
vides an alternative path execution for a (path of execution that avoids ai) [3]. In
what follows, and following the WFMC definition (in interface 1) of full-blocked
workflows, we assume the use of well structured processes.

3 Exception Handling

An exception handler is a workflow X(VX , EX), executed in response to an
occurrence of an exception for which it was defined. Given a workflow G(V, E)
and an exception handler X(VX , EX), we define an operator Apply such that by
applying X(VX , EX) to G(V, E) one receives a revised workflow model

G′(V ′, E′) = Apply(G(V, E), X(VX , EX), vs, Ve),

where {vs} ∪ Ve ⊆ V . vs specifies the failing node in G and Ve is a set of nodes
in G from which the normal operation of G will resume. Therefore, in G′ there
will be an edge (vs, root(X)) connecting the failing activity with the exception
handler. Also, any edge (v1, v2) ∈ G′ such that v1 ∈ VX constrains v1 to be
in Ve. An exception handler can be schematically partitioned into two sections,
namely rollback and forward stepping. A rollback section executes compensating
activities and a forward stepping section activates and reactivates activities. For
each exception handler we can define three reference activities. We denote by
asr a start activity, the failing activity. asp is a stop activity, the activity where
the control is returned to the original process. Finally, a target activity (atr) is
the activity where the rollback section ends.

410 M. Golani and A. Gal

There are three types of activities an exception handler can use. The first type
can activate activities in the workflow (for the first time), or reactivate them.
The second type invokes compensation activities, also known as undo activities
and semantic rollback activities [4, 2]. A compensating activity needs to be pre-
defined, is associated with a single or combined set of workflow activities, and is
typically used for reversing the impact of activities that were already performed
for a given instance. Lastly, an exception handler can use activities that are not
defined in the workflow altogether.

To illustrate the notion of exception handling further, we now present two
types of exception handlers. We denote the first type a repeat activation ex-
ception handler. Such an exception handler attempts to repeat the activation
of a subgraph of a workflow model by first applying compensating activities to
the part that was already activated, followed by reactivation of activities. The
second type is denoted an alternative path exception handler which was first
introduced in [3]. Alternative path exception handlers combine the use of com-
pensating activities, reactivation of activities and first-time activity activation.
For an alternative path exception handler asp is always a Xor split point.

Several relationships between asr, asp, and atr warrant further attention. The
case where asr=asp=atr results in a degenerated exception handler, involving
solely the reactivation of the failing activity. When asp=atr, the exception han-
dler has a rollback section only with no reactivation. Finally, asr=atr means
that the exception handler compensates only the failing activity and begins the
execution of alternative activities.

To establish a notion of optimality, we next discuss the various components of a
costmodel of an exceptionhandler.To startwith, theremaybe an initiation cost for
starting a new exception handler instance. Then, given an activity a, we denote by
C (a) the cost of activating/reactivating a. Also, given a′, a compensating activity
of a, C (a′) is similarly defined to be the cost of compensating a using a′.

We distinguish between actual and logical execution in an exception handler.
An actual activation of an activity a involves the invocation of a routine associ-
ated with a or performing a new work item in an item list of some role in the
organization. A logical activation of a requires only recording its activation in
the WfMS without actually activating it. C (a) is set to 0 whenever a requires
only a logical activation. If an actual activation is involved, then C(a) is assigned
with its full cost.

Finally, we assume costs are cumulative. Therefore, we define the cost of
exception handler X to be the sum of costs of all activities in X .

4 Exception Handler Optimization

We now introduce a design time methodology for optimizing exception handler
execution by avoiding possibly redundant activation of activities. Given a work-
flow graph G, and a set of corresponding exception handlers, each tagged with
a frequency, and a cost, we would like to restructure G so as to minimize the
weighted cost of exception handling.

Optimizing Exception Handling in Workflows 411

We can reconstruct the process and reduce the exception handler costs by
eliminating activities from the execution part which is before the target point
activity as well as the execution section after this activity. By restructuring the
process model, we may be able to shorten the rollback stage and minimize the
number of rolled-back activities, and thus reactivated activities. Therefore, we
could reconstruct the graph so that both the target activity and the start activity
are moved as close as possible to the exception handler stop activity. We illus-
trate our approach via an example. A detailed description of our methodology
is deferred to an extended version of this work.

Fig. 1. An example process for propagation

Some of the activities in the exception handler, typically including the tar-
get activity, modify parameters to be used for either reactivation or the selec-
tion of an alternative path. Each such modifying activity must remain within
the exception handler with its compensating activity in the rollback section of
the exception handler. Other activities are candidates for removal. Iteratively,
a modifying activity and its immediate successor are reordered unless there is
a precedence constraint that prohibits this move. This iterative process contin-
ues until (a) reaching the stop activity, (b) reaching a dependent activity that
does not allow reordering, or (c) reaching a sequence of activities that cannot be
separated. A similar process is performed for the start activity, only this time
moving backward and comparing it with its predecessors.

Fig. 2. Propagation into an And block

Given the example in Figure 1, consider an alternative path exception handler
X for activity 13 that consists of compensating activities 13′ − 4′ − 3′ − 2′ − 1′ −
1−2−3. Recall that asr = 13, asp = 3 ,atr = 1. For each required compensating

412 M. Golani and A. Gal

activity a′ in X between atr and asp, we will try to reorder its corresponding
activity a in G (activity 1 in the example), until reaching the stop activity
asp = 3. Activities 1 and 2 are reordered. For each compensating activity a′ in
X between asr and asp, we will try to back-shift the failing activity 13 before
a′ corresponding activity a in G. Thus, activity 13 shifts back until switching
places with activity 4.

Process models may contain blocks. When reaching such a block, instead
of iterating over activities one at a time, we should check the dependencies of
all block members with the propagated activity ap. If there are no precedence
constraints there and if asp is located beyond this block, ap is propagated either
after the join activity of this block or before its split activity.

An illustration for And blocks handling is presented in Figure 2 (assuming
that activity 3 performs as an And split in Figure 1) .Given that all paths are
executed, a propagated activity (activity 2 in Figure 1) is propagated to the
path that contains activity 5 until reaching a dependent block member. If there
is a dependent block memberon on other paths within the block (activity 9), a
synchronization edge (2 → 9) is added.

5 Conclusion

In this paper, we propose a methodology for design time optimization of excep-
tion handlers – in particular, by restructuring the process model. We show how
changes in a process model can reduce the costs related to exception handler
execution. Our goal is to develop an approach that allows interactive (semi-)
automatic exception handler optimization for arbitrarily complex business pro-
cesses, balancing the difficulties faced by current workflow models and the control
of a designer over the business process.

Our specific contribution in this work is twofold. We provide a methodology
for exception handling optimization and we also propose the modeling of an
exception handler as a workflow by itself. The benefits of this approach has been
discussed in this work.

One main avenue for a future research involves multiple exception handler
optimization. We would also like to evaluate our cost heuristics on real-life cases,
estimating the true gain of executing more complex optimizers. We shall also
investigate efficient exhaustive approaches to achieve a better solution to the
optimization problem and evaluate the trade-off between the benefit of optimized
exception handling and the cost of multiple iterations with a designer.

References

1. A. Agostini and G. De Michelis. Improving flexibility of workflow management
systems. In W. van der Aalst and J. Oberweis, editors, BPM: Models, Techniques,
and Empirical Studies, pages 218–234. Springer Verlag, 2000.

2. H. Garcia-Molina and K. Salem. Sagas. In Proceedings of the ACM SIGMOD
Conference on Management of Data, pages 249–259, May 1987.

Optimizing Exception Handling in Workflows 413

3. M. Golani and A.Gal. Flexible business process management using forward stepping
and alternative paths. In et al. W. van der Aalst, editor, Lecture Notes on Computer
Science, 3649, pages 48–63. Springer Verlag, 2005. Proceedings of the Business Pro-
cess Management International Conference, BPM 2005, Nancy, France, September
06-08, 2005.

4. C. Hagen and G. Alonso. Exception handling in workflow management systems.
IEEE Trans. Software Eng., 26(10):943–958, 2000.

5. M. Reichert and P. Dadam. Adeptf lex-supporting dynamic changes of workflows
without losing control. Journal of Intelligent Information Systems (JIIS), 10(2):93–
129, March-April 1998.

6. Workflow management coalition. the workflow reference model (wfmc-tc-1003),
1995. http://www.wfmc.org.

Formalizing Service Interactions

Gero Decker, Frank Puhlmann, and Mathias Weske

Business Process Technology Group
Hasso-Plattner-Institute for IT Systems Engineering

at the University of Potsdam
D-14482 Potsdam, Germany

{decker, puhlmann, weske}@hpi.uni-potsdam.de

Abstract. Cross-organizational business processes are gaining increased
attention these days, especially with the service oriented architecture
(SOA) as a realization for business process management (BPM). In SOA,
interaction agreements between business partners are defined as chore-
ographies containing common interaction patterns. However, complex
interactions are difficult to specify, basically because a formal, common
standard supporting all interaction patterns is missing. This paper mo-
tivates the use of the π-calculus for formally representing service inter-
action patterns.

1 Introduction

Service-oriented architectures (SOA) as a realization for business process man-
agement (BPM) aim at closely supporting business processes within a company
and between business partners [1,2]. Services are employed to perform tasks
within these processes and processes themselves can be exposed as services. It
is distinguished between orchestrations where one business partner enacts a set
of services in a given order and choreographies which represent the interaction
protocols between several business partners [3]. In a setting where the different
business partners encapsulate their business logic as services, service interactions
are at the center of attention. A lot of effort has been undertaken to identify
the most common interaction scenarios from a business perspective, which have
been published as Service Interaction Patterns by Barros et al.[4]. Barros et
al. categorize the patterns according to the number of participants in an inter-
action (bilateral vs. multi-lateral), the maximum number of exchanges (single-
transmission vs. multi-transmission interactions) and whether the receiver of a
response is necessarily the same as the sender of a request (round-trip vs. routed
interactions).

The service interaction patterns are only described textually, together with
business examples and design choices. The authors also come up with implemen-
tation examples using BPEL and other standards from the WS-* stack. However,
the textual descriptions do not allow choreographies to be modeled else than by
using textual descriptions again. The BPEL examples lack support for differ-
ent service interaction patterns, thus leaving the modeler with only a subset

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 414–419, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Formalizing Service Interactions 415

of possibilities. Furthermore, both kinds of descriptions lack support for for-
mal reasoning on interaction properties like conformance, reliability, or deadlock
freedom.

To overcome the limitations of expressiveness in existing notations and to
allow formal reasoning, we propose formal representations of service interaction
patterns. When looking into BPM literature, Petri nets in all their different
flavors dominate the research community. However, Petri nets lack the ability of
easily representing mobility, a key feature for describing dynamic structures as
required in SOA. Instead, we propose the use of a process algebra, π-calculus,
for formalizing service interaction patterns. Interaction and mobility form the
core aspects of π-calculus and are also at the heart of the service interaction
patterns.

The remainder of this paper is organized as follows. It starts by investigating
related work. This is followed by discussing a subset of interesting interaction
patterns in the π-calculus. Finally, a conclusion is drawn and an outlook is
given.

2 Related Work

Recently several papers have been published that deal with formalizing web ser-
vice choreographies, e.g. [5,6], or Busi et al. [7]. All these approaches are based
on process algebras other than π-calculus. Busi et al. argue that mobility, a key
feature of the π-calculus, is not needed for describing service choreographies.
They assume that all interaction participants are known at design-time. Petri
net based approaches from Martens [8] or van der Aalst et al. [9] make the
same assumptions. Moreover, Petri nets already fail in representing all work-
flow patterns [10], leading to the development of a new orchestration language
called YAWL [11]. However, all these publications and standards like WS-CDL
consider only one-way- and simple request-response-interactions. This is heavily
criticized by Barros et al in [3]. Puhlmann and Weske have formalized all the
workflow patterns [10] using the π-calculus [12]. This allows for translating ser-
vice orchestrations into π-processes. Puhlmann et al. have already sketched in
[13] how π-calculus can be used for formalizing service invocations and repre-
sent correlations. There has not been a formalization of the service interaction
patterns so far.

3 Formalizing Interaction Patterns Using Pi-Calculus

At the center of π-calculus are processes that interact with each other. The
communication channels as well as the messages sent over these channels are
called names. Channels can be passed as messages to other processes and be used
for interaction later on. This capability is called link passing mobility. It allows
smart solutions for formalizing the service interaction patterns. The following
subsections introduce how.

416 G. Decker, F. Puhlmann, and M. Weske

3.1 The Pi-Calculus

The π-calculus is an algebra for the formal description and analysis of concurrent,
interacting processes with support for link passing mobility. It is based on names
and interactions used by processes defined according to [14]. The syntax of the
π-calculus processes is given by:

P ::=M | P |P ′ | vzP | !P
M ::=0 | π.P | M + M ′

π ::=x〈ỹ〉 | x(z̃) | τ | [x = y]π .

The informal semantics is as follows: P |P ′ is the concurrent execution of P and
P ′, vzP is the restriction of the scope of the name z to P , and !P is an infinite
number of copies of P . 0 is inaction, a process that can do nothing, M + M ′

is the exclusive choice between M and M ′. The output prefix x〈ỹ〉.P sends a
sequence of names ỹ over the co-name x and then continues as P . The input
prefix x(z̃) receives a sequence of names over the name x and then continues
as P with z̃ replaced by the received names (written as { ˜name/z̃}). Matching
input and output prefixes might communicate, thus leading to an interaction.
The unobservable prefix τ.P expresses an internal action of the process, and the
match prefix [x = y]π.P behaves as π.P , if x equals y. We utilize upper case
letters for process identifiers and lower case letters for names. The abbreviation∑m

1 (M) is used to denote the summation of m choices,
∏m

1 (P) denotes the com-
position of m parallel copies of P , and {π}m

1 denotes m subsequent executions
of π. Furthermore defined processes are used for parametric recursion, that is
A(y1, ..., yn).

3.2 Interactions in the Pi-Calculus

In the pattern representations each interaction participant is modeled as a π-
calculus process. In the case of bilateral interactions we named them A and B, in
the case of multi-lateral interactions A, Bi and P where i = 1, 2, · · · . Since timers
and exception handling are explicitly called for in the patterns, we introduce an
environmental process EX per interaction participant (X = A, B, Bi, P). It is left
open how timeouts and exception handling are implemented. settimerEX 〈timer〉
is supposed to set a new timer where a timeout is thrown by sending on channel
timer. Exceptions can be thrown by sending on channel faultEX .

In the π-calculus a message represented by a name is synchronously sent and
received, resulting in an interaction. I.e. if a process wants to send a message
then it blocks until a receiver actually receives the message. Therefore, the π-
calculus assumes synchronous communication as well as reliable and guaranteed
delivery as the default case. The following subsections present formalizations
for selected service interaction pattern. We omit the termination symbol 0 in
process definitions for simplicity. The pattern descriptions can be found at [4].

Formalizing Service Interactions 417

3.3 Single-Transmission Bilateral Interaction Patterns

Send: A party sends a message to another party. The pattern definition distin-
guishes between blocking send and non-blocking send. In the case of blocking
send the sending process cannot proceed until it can be sure that the message
has been received. As already mentioned above this blocking behavior is inherent
to π-calculus. Blocking send is given by:

A = b 〈msg〉 .A′

B = b(msg).B′ .

This pattern formalization leaves it open if the receiver of the message is
known at design-time or not. If the system is defined as

S = (v b)(A | B)

then A knows the link to B at design-time. If it is defined as

S = (v lookup)(lookup(b).A | (v b)(B | D))

then A would get the link to B at run-time. In this case D could be something
like a UDDI directory where the receiver can be looked up. A′ and B′ represent
the so called continuations mentioned in the pattern descriptions. We continue
with non-blocking send:

A = b 〈msg〉 | A′

B = b(msg).B′ .

Strictly speaking, the formalization for B could be omitted. However, for il-
lustration purposes one possible implementation for B is provided to have a
valid choreography. Most interaction patterns describe the interactions from
the perspective of one single participant. In order to get a minimal choreog-
raphy, several patterns have to be plugged together (e.g. send for A and receive
for B).

3.4 Single-Transmission Multilateral Interaction Patterns

Racing incoming messages: A party expects to receive one among a set of mes-
sages. These messages may be structurally different (i.e. different types) and may
come from different categories of partners. The way a message is processed de-
pends on its type and/or the category of partner from which it comes. Normally
names are not typed in π-calculus. In order to retrieve the type of a message, a
second name representing the type could be used. We opted for a more elegant
way: for each type a channel is created and thus the channel a message is sent
over determines the message’s type. In the following formalization it is assumed
that there are two different types of messages. Each Bi can send messages over
channel a1 if it is of the first type or over channel a2 for the second type. Depend-
ing on the type of the message the continuation for A is either A′

1 or A′
2. The

418 G. Decker, F. Puhlmann, and M. Weske

pattern distinguishes between discarding remaining messages and keeping them
for further interactions. If remaining messages are not discarded, the patterns is
defined by:

A = (a1(msg).A′
1 + a2(msg).A′

2)
Bi = (a1 〈msg〉 .B′

i + a2 〈msg〉 .B′
i) .

Once again the formalization for Bi is just an example. In this case every
Bi can sent messages of every type. If it should be modeled that the con-
tinuation of A depends on the category of the sender, we could define Bi =
a1 〈msg〉 .B′

i and introduce another category Ci = a2 〈msg〉 .C′
i. A generic for-

malization for an arbitrary number of different types/categories would be
A =

∑n
i=1 ai(msg).A′

i.

3.5 Routing Patterns

Request with referral: Party A sends a request to party B indicating that any
follow-up response should be sent to a number of other parties (P1, P2, · · · , Pn)
depending on the evaluation of certain conditions. While faults are sent by default
to these parties, they could alternatively be sent to another nominated party
(which may be party A). While the pattern descriptions talks about a number
of parties Pi, the following formalization only presents the case of one party P
for better readability:

A = (v a)b 〈a, p, req〉 .a(resp).A′

B = (v msg)b(a, x, req).τB .x 〈a, msg〉 .B′

P = p(a, msg).τP .a 〈resp〉 .P ′ .

4 Conclusion and Outlook

In this paper we have shown how a selected subset of the service interaction pat-
terns can be formalized. We investigated new directions based on mobile process
algebra represented by the π-calculus. The concept of mobility is required if the
receiver of a message is not known at runtime. Ten out of thirteen interaction
patterns incorporate sending messages, where the receiver might not be known
at design-time. In an extended research, we were able to express all service in-
teraction patterns in π-calculus processes. Therefore, our final conclusion is that
π-calculus is well suited for expressing the service interaction patterns. The full
range of pattern formalizations as well as a direct comparison to Petri nets can
be found at http://pi-workflow.org.

The formalizations presented in this paper can be the starting point for fur-
ther work on a complete formal grounding of the intersection of the domains ser-
vice oriented architectures and business process management using π-calculus.
The very next step would be to show how the formalizations of the service in-
teraction patterns can be integrated with the formalizations of the workflow
patterns provided in [12]. Once we have both a choreography and corresponding

Formalizing Service Interactions 419

orchestrations available as π-calculus processes we can proceed with introducing
conformance checking, e.g. verifying if the behavior of individual orchestrations
complies to the choreography. Another area of interest is the investigation of
soundness criteria for choreographies.

References

1. IBM: Web Services Architecture Overview (2000) http://www-128.ibm.com/
developerworks/webservices/library/w-ovr/.

2. van der Aalst, W.M.P., ter Hofstede, A.H., Weske, M.: Business Process Manage-
ment: A Survey. In van der Aalst, W.M.P., ter Hofstede, A.H., Weske, M., eds.:
Proceedings of the 1st International Conference on Business Process Management,
volume 2678 of LNCS, Berlin, Springer-Verlag (2003) 1–12

3. Barros, A., Dumas, M., Oaks, P.: A Critical overview of the Web Services Chore-
ography Description Language (WS-CDL). BPTrends Newsletter 3(3) (2005)

4. Barros, A.P., Dumas, M., ter Hofstede, A.H.M.: Service Interaction Patterns. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F., eds.: Business
Process Management. Volume 3649. (2005) 302–318

5. Brogi, A., Canal, C., Pimentel, E., Vallecillo, A.: Formalizing Web Service Chore-
ographies. In: Proceedings of First International Workshop on Web Services and
Formal Methods, Elsevier (2004)

6. Gorrieri, R., Guidi, C., Lucchi, R.: Reasoning About Interaction Patterns in Chore-
ography. In: M. Bravetti et al. (Eds.): Second International Workshop on Web
Services and Formal Methods, LNCS 3670, Springer Verlag (2005) 333–348

7. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
Orchestration: A Synergic Approach for System Design. In: B. Benatallah, F.
Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, Springer Verlag (2005)
228–240

8. Martens, A.: Analyzing Web Service based Business Processes. In Cerioli, M., ed.:
Proceedings of Intl. Conference on Fundamental Approaches to Software Engi-
neering (FASE’05). Volume 3442 of Lecture Notes in Computer Science., Springer-
Verlag (2005)

9. van der Aalst, W.M.P., Weske, M.: The P2P Approach to Interorganizational
Workflow. In Dittrich, K., Geppert, A., Norrie, M., eds.: Proceedings of the
13th International Conference on Advanced Information Systems Engineering
(CAiSE’01), volume 2068 of LNCS, Berlin, Springer-Verlag (2001) 140–156

10. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Pat-
terns. Distributed and Parallel Databases 14(3) (2003) 5–51

11. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage (Revised version. Technical Report FIT-TR-2003-04, Queensland University
of Technology, Brisbane (2003)

12. Puhlmann, F., Weske, M.: Using the π-Calculus for Formalizing Workflow Patterns.
In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F., eds.: Business
Process Management. Volume 3649. (2005) 153–168

13. Overdick, H., Puhlmann, F., Weske, M.: Towards a Formal Model for Agile Service
Discovery and Integration. In Verma, K., Sheth, A., Zaremba, M., Bussler, C., eds.:
Proceedings of the International Workshop on Dynamic Web Processes (DWP
2005). IBM technical report RC23822, Amsterdam (2005)

14. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2003)

Decision Mining in ProM

A. Rozinat and W.M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

{a.rozinat, w.m.p.v.d.aalst}@tm.tue.nl

Abstract. Process-aware Information Systems typically log events (e.g.,
in transaction logs or audit trails) related to the actual business process
executions. Proper analysis of these execution logs can yield important
knowledge that can help organizations to improve the quality of their
services. Starting from a process model, which can be discovered by con-
ventional process mining algorithms, we analyze how data attributes in-
fluence the choices made in the process based on past process executions.
Decision mining, also referred to as decision point analysis, aims at the
detection of data dependencies that affect the routing of a case. In this
paper we describe how machine learning techniques can be leveraged for
this purpose, and we present a Decision Miner implemented within the
ProM framework.

Keywords: Business Process Intelligence, Process Mining, Petri Nets,
Decision Trees.

1 Introduction

Process mining techniques have proven to be a valuable tool in order to gain
insight into how business processes are handled within organizations. Taking a
set of real process executions (the so-called “event logs”) as the starting point,
these techniques can be used for process discovery and conformance checking.
Process discovery [2,3] can be used to automatically construct a process model
reflecting the behavior that has been observed and recorded in the event log.
Conformance checking [1,9] can be used to compare the recorded behavior with
some already existing process model to detect possible deviations. Both may
serve as input for designing and improving business processes, e.g., conformance
checking can be used to find problems in existing processes, and process discovery
can be used as a starting point for process analysis and system configuration.
While there are several process mining algorithms that deal with the control
flow perspective of a business process [2] less attention has been paid to how the
value of a data attribute may affect the routing of a case.

Most information systems (cf. WFM, ERP, CRM, SCM, and B2B systems)
provide some kind of event log (also referred to as transaction log or audit
trail) [2] where an event refers to a case (i.e., process instance) and an activity,
and, in most systems, also a timestamp, a performer, and some additional data.
Nevertheless, many process mining techniques only make use of the first two

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 420–425, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Decision Mining in ProM 421

attributes in order to construct a process model which reflects the causal relations
that have been observed among the activities. In addition, machine learning
algorithms have become a widely adopted means to extract knowledge from vast
amounts of data [7,11]. In this paper we use the well-known concept of decision
trees to carry out a decision point analysis, i.e., to find out which properties
of a case might lead to taking certain paths in the process. Starting from a
discovered process model (i.e., a model discovered by conventional process mining
algorithms), we try to enhance the model by integrating patterns that can be
observed from data modifications, i.e., every choice in the model is analyzed and,
if possible, linked to properties of individual cases and activities.

Clearly, the application of (existing) data mining techniques in the context of
business processes has the potential to gain knowledge, or to make tacit knowl-
edge explicit. Besides data attributes, resource information, and timestamps,
even more general quantitative (e.g., key performance indicators like waiting
time derived from the log) and qualitative (i.e., desirable or undesirable prop-
erties) information could be included in the analysis if available. To directly
support data analysis for business processes we have implemented a Decision
Miner in the context of the ProM framework1, which offers a wide range of tools
related to process mining and process analysis.

The paper is organized as follows. First, the use of machine learning techniques
in the context of the decision point analysis is described in Section 2. Section 3
presents the Decision Miner plug-in of the ProM framework. Finally, related
work is discussed in Section 4, and the paper concludes by pointing out future
research directions.

2 Using Decision Trees for Analyzing Choices

In order to analyze the choices in a business process we first need to identify
those parts of the model where the process is split into alternative branches, also
called decision points. Based on data attributes associated to the cases in the
event log we subsequently want to find rules for following one route or the other.

In terms of a Petri net, a decision point corresponds to a place with multiple
outgoing arcs. Since a token can only be consumed by one of the transitions
connected to these arcs, alternative paths may be taken during the execution
of a process instance. In order to analyze the choices that were made in past
process executions we need to find out which alternative branch was taken by
a certain process instance. Therefore, the set of possible decisions must be de-
scribed with respect to the event log. Starting from the identification of a choice
construct in the process model a decision can be detected if the execution of
an activity in the respective alternative branch of the model has been observed,
which requires a mapping from that activity to its “occurrence footprint” in the
event log. So, if a process instance contains the given “footprint”, this means
that there was a decision for the associated alternative path in the process. For
1 Both documentation and software (including the source code) can be downloaded

from www.processmining.org.

422 A. Rozinat and W.M.P. van der Aalst

simplicity we examine the occurrence of the first activity per alternative branch
in order to classify the possible decisions. However, in order to make decision
mining operational for real-life business processes several challenges posed by,
for example, invisible activities, duplicate activities, and loops need to be met.
Because of the limited space here we refer the interested reader to our technical
report [10], where these issues are addressed.

After identifying a decision point in a business process, the next step is to
determine whether this decision might be influenced by case data, i.e., whether
cases with certain properties typically follow a specific route. The idea is to con-
vert every decision point into a classification problem [7,11,8], where the classes
are the different decisions that can be made. As training examples we use the
process instances in the log (for which it is already known which alternative path
they followed with respect to the decision point). The attributes to be analyzed
are the case attributes contained in the log, and we assume that all attributes
that have been written before the considered choice construct are relevant for
the routing of a case at that point. In order to solve such a classification prob-
lem there are various algorithms available [7,11]. We decided to use decision
trees (such as C4.5 [8]), which are among the most popular inductive infer-
ence algorithms, and which provide a number of extensions that are important
for practical applicability. For example, they are able to deal with continuous-
valued attributes, missing attribute values, and they include effective methods to
avoid overfitting the data (i.e., that the tree is over-tailored towards the training
examples). In [10] we show in detail how the training examples and the inferred
decision rules look for each decision point in the example process.

3 Decision Mining with the ProM Framework

The approach presented in this paper was implemented as a plug-in for the
ProM Framework. The Decision Miner plug-in determines the decision points
contained in a Petri net model2, and specifies the possible decisions with respect
to the log while being able to deal with invisible and duplicate activities in
the way described in [10]. Figure 1(a) shows the Model view of the Decision
Miner, which provides a visualization of each decision point with respect to the
given process model. The example process sketches the processing of a liability
claim within an insurance company, and the depicted decision point relates to
the choice of whether a full check or a policy-only check is to be performed.
Only attributes of the activity “Register Claim” are within the analysis scope
of this decision point. The Attributes view shown in Figure 1(b) allows for the
selection of those attributes to be included in the analysis of each decision point.
During the execution of activity “Register claim” information about the amount
of money involved (Amount), the corresponding customer (CustomerID), and
the type of policy (PolicyType) are provided. We retain all these attributes
2 Note that although only Petri net process models are directly supported by the

Decision Miner, various other process model types (EPC, YAWL, etc.) are indirectly
supported via conversion tools available in ProM.

Decision Mining in ProM 423

Fig. 1. Screenshots of the the Decision Miner in ProM

and set the type of the Amount attribute as numeric. Here the advantage of a
tool suite like ProM becomes visible. The tight integration of further analysis
components available in the framework can be used to add meta data to the event
log before starting the actual decision point analysis. For example, a previous
performance analysis evaluating the timestamps of each log event can provide
additional attributes, such as the flow time and waiting time, to specific activities
or to the whole process instance. These attributes then become available for
analysis in the same way as the initial attributes.

While the Decision Miner formulates the learning problem, the actual anal-
ysis is carried out with the help of the J48 decision tree classifier, which is the
implementation of the C4.5 algorithm [8] provided by the Weka software library
[11]. The Algorithm view offers the full range of parameters that are available
for the used decision tree algorithm from the Weka library. Figure 2(a) shows
the decision tree result for the decision point p0, from which we can now infer
the logical expressions that form the decision rules depicted in Figure 2(b) in
the following way: If an instance is located in one of the leaf nodes of a decision
tree, it fulfills all the predicates on the way from the root to the leaf, i.e., they
are connected by a boolean AND operator; When a decision class is represented
by multiple leaf nodes in the decision tree the leaf expressions are combined via
a boolean OR operator. The discovered rules indicate that the extensive check
(activity B) is only performed if the Amount is greater than 500 and the Pol-
icyType is “normal”, whereas a simpler coverage check (C) is sufficient if the

424 A. Rozinat and W.M.P. van der Aalst

Fig. 2. Interpreting the decision tree result

Amount is smaller than or equal to 500, or the PolicyType is “premium” (which
may be due to certain guarantees from “premium” member corporations).

4 Related Work

The work reported in this paper is closely related to [5], in which the authors
describe the architecture of the Business Process Intelligence (BPI) tool suite
situated on top of the HP Process Manager (HPPM). Whereas they outline the
use of data mining techniques for process behavior analysis in a broader scope, we
show how a decision point analysis can be carried out in conjunction with process
mining, i.e., we do not assume some a priori model. Another important difference,
although not presented in this paper, is that we can also analyze models in the
presence of duplicate and invisible activities. In [6] decision trees are used to
analyze staff assignment rules. Additional information about the organizational
structure is incorporated in order to derive higher-level attributes (i.e., roles)
from the actual execution data (i.e., performers). In [4] the authors aim at the
integration of neural networks into EPC process models via fuzzy events and
fuzzy functions. While this approach may support, e.g., one concrete mortgage
grant decision process, we focus on the use of machine learning techniques as a
general tool to analyze business process executions.

Decision Mining in ProM 425

5 Conclusion

In this paper we have presented a Decision Miner that analyzes the choice
constructs of a (mined) Petri net process model in the context of the ProM
framework. Future research plans include the support of further types of pro-
cess models (such as EPCs), and the provision of alternative algorithms already
available in the data mining field (and related software libraries). For example,
sometimes it is better to directly capture a concept description in rules rather
than in a decision tree. Finally, the application of data mining techniques in the
context of business processes can be beneficial beyond the analysis of decisions
that have been made. A free specification of the learning problem on the available
data can be used to, for example, mine association rules, or to assess potential
correlations to the fact that a case has a throughput time which exceeds some
user-defined threshold value.

References

1. W.M.P. van der Aalst. Business Alignment: Using Process Mining as a Tool for
Delta Analysis. In J. Grundspenkis and M. Kirikova, editors, Proceedings of the 5th
Workshop on Business Process Modeling, Development and Support (BPMDS’04),
volume 2 of Caise’04 Workshops, pages 138–145. Riga Technical University, Latvia,
2004.

2. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

3. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

4. O. Adam, O. Thomas, and P. Loos. Soft Business Process Intelligence —
Verbesserung von Geschäftsprozessen mit Neuro-Fuzzy-Methoden. In F. Lehner
et al., editor, Multikonferenz Wirtschaftsinformatik 2006, pages 57–69. GITO-
Verlag, Berlin, 2006.

5. D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.-C. Shan. Business
Process Intelligence. Computers in Industry, 53(3):321–343, 2004.

6. L. T. Ly, S. Rinderle, P. Dadam, and M. Reichert. Mining Staff Assignment Rules
from Event-Based Data. In C. Bussler et al., editor, Business Process Management
2005 Workshops, volume 3812 of Lecture Notes in Computer Science, pages 177–
190. Springer-Verlag, Berlin, 2006.

7. T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
8. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
9. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit

and Appropriateness of Event Logs and Process Models. In C. Bussler et al., editor,
Business Process Management 2005 Workshops, volume 3812 of Lecture Notes in
Computer Science, pages 163–176. Springer-Verlag, Berlin, 2006.

10. A. Rozinat and W.M.P. van der Aalst. Decision Mining in Business Processes.
BPM Center Report BPM-06-10, BPMcenter.org, 2006.

11. I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and
techniques, 2nd Edition. Morgan Kaufmann, 2005.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 426 – 431, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Managing Process Variants as an Information
Resource*

Ruopeng Lu and Shazia Sadiq

School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, QLD, 4072, Australia

{ruopeng, shazia}@itee.uq.edu.au

Abstract. Many business solutions provide best practice process templates,
both generic as well as for specific industry sectors. However, it is often the
variance from template solutions that provide organizations with intellectual
capital and competitive differentiation. In this paper, we present a modeling
framework that is conducive to constrained variance, by supporting user driven
process adaptations. The focus of the paper is on providing a means of utilizing
the adaptations effectively for process improvement through effective
management of the process variants repository (PVR). In particular, we will
provide deliberations towards a facility to provide query functionality for PVR
that is specifically targeted for effective search and retrieval of process variants.

1 Introduction

It is evident that work practices at the operational level are often diverse, incorpora-
ting the creativity and individualism of knowledge workers and potentially contri-
buting to the organization’s competitive advantage. This diversity needs to be both
encouraged and controlled. A major difficulty in this issue lies in the fact that the
requisite knowledge, that drives the diverse practices at an operational level, is only
tacitly available. This knowledge constitutes the corporate skill base and is found in
the experiences and practices of individual workers, who are domain experts in a
particular aspect. There is significant evidence in literature on the difficulties in
mapping process logic to process models. We believe that this is a limitation in
current solutions, and part of the modeling effort needs to be transferred to domain
experts who make design decisions based on (1) their expertise and (2) case specific
conditions.

In this paper, we utilize a framework for process modeling and deployment [1, 2]
that harnesses successful work practice and provides the ability to build a valuable
information resource from them. The framework consists of: (1) A constraint-based
process modeling approach, namely Business Process Constraint Network (BPCN);
and (2) a repository for case specific process models, called Process Variant
Repository (PVR). It is the last aspect which forms the focus of this paper. The aim of
this paper is to provide an effective approach for structuring and querying PVR.

* This work is partially supported by the Australian Research Council funded Project

DP0558854.

 Managing Process Variants as an Information Resource 427

2 Background

Business Process Constraint Network (BPCN) [1] has been developed to provide
formal underpinning to the notion of process templates. BPCN relaxes rigid process
specification to a set of minimal constraints. It provides the ability to accept a set of
various constraint types; and provides methods for checking constraint network
consistency [2]. These details are not included in this paper, but we will utilize BPCN
concepts as background. We refer to the individually tailored process instances as
process variants, each of which represent the preferred work practice, but are also
valid in terms of process constraints as defined by the BPCN. Although all process
variants satisfy the same set of constraints, they may vary significantly. Over time, the
repository of such process variants can build into an immense corporate resource. We
argue that such a resource can provide valuable insight into work practice, help
externalize previously tacit knowledge, and provide valuable feedback on subsequent
process design and improvement (cf. Fig.1).

Fig. 1. Framework overview

3 Repository for Process Variants

When a process template completes execution, the model corresponding to the process
variant as well as essential execution properties are stored in the PVR. A query is a
statement of information needs, which is formulated according to one or more aspects of
process variants. We are specifically interested in complex (structural) criteria.

The schema of the repository defines the structure according to which process
variants are stored. Confining description of process variants to essential structural
aspect, we can define a process variant V by the process model W, where W = (N, F)
is defined through a directed graph consisting N: Finite Set of Nodes, F: Flow
Relation F ⊆ N × N. Nodes are classified into tasks (T) and coordinators (C), where C
∪ T, C ∩ T = ∅. Task nodes represent atomic manual / automated activities or sub
processes that must be performed to satisfy the underlying business process
objectives. Coordinator nodes allow us to build control flow structures (fork, choice,
loop etc.) to manage the coordination requirements. Since W represents an executed
process instance, coordinator nodes types are limited, i.e. ∀ n ∈ C, CoordType: n →
{fork, synchronize, begin, end}.

428 R. Lu and S. Sadiq

Consider the following collection of process variants in Fig.2 (V1, V2, V3 and V4)
satisfying same constraints, which are: T1 must be performed before T5; T2 and T4
must be done in parallel. PVR can be expected to contain hundreds if not thousands of
such variants for a given process.

Fig. 2. Example Process Variants V1, V2, V3 and V4

We propose to define queries on structural aspect as process fragments, defined
using the graphical language used in W. Let Q be the process (sub)graph that
represents a query, i.e. the criteria for selection of process variants. We define
similarity between Q and a process variant V through two relationships, namely
equivalent and subsume [3]. For example, query graph Q1 as given in Fig.3, is
subsumed by process variants V1 and V2.

Fig. 3. Example Queries Q1 and Q2

In order to determine whether a given variant is in an equivalent or subsume relation-
ship with a specified query, we propose a matching method SELECTIVE_REDUCE,
which uses graph reduction techniques to determine the match. The method is assumed
to be executed on only those variants from PVR where the node set of the variant
is a superset of the node set of a specified query. The basic intuition behind
SELECTIVE_REDUCE is to firstly eliminate from the node set of the variant all task
nodes that are not contained in the node set of the query, and secondly to reduce the
flow relation using three reduction rules [3], namely sequential, adjacent and closed.
Fig.4 illustrates the applications of these reduction rules, where the solid rectangles
represent the relevant tasks required by the query and the hollow rectangles the

 Managing Process Variants as an Information Resource 429

irrelevant tasks. The goal of the original algorithm in [3] is to reduce a process graph
into an empty graph in order to verify structural correctness. In our approach, the
algorithm is modified to reduce a variant that has an equivalent or subsume relationship
with the query, into a structurally identical graph (not empty) as the query. In [4], a
detail description of the algorithm can be found.

Fig. 4. Sequential, Adjacent and Closed Reduction Rules

Applying SELECTED_REDUCE on all variants given in Fig.2 (V1, V2, V3 and PV4)
for query Q1 gives reduced structures PV1, PV2, PV3 and PV4, as illustrated in Fig.5.
V1 and V2 are said to be exact matches with Q1 since the reduced process graphs of V1
and V2 (PV1, and PV2) are isomorphic to query graph Q1. V3 and V4 are termed partial
matches with Q1 as containing the same set of tasks as the query, but the process
graphs are structurally different from Q1.

Fig. 5. Reduced process variants PV1, PV2, PV3 and PV4 against query Q1

430 R. Lu and S. Sadiq

We propose a simple method based on flow (edge) counting to provide further
insight into partial matches [4]. The method finds out the similarity between a
reduced process graph (of partially matched variant) and a query graph by first
comparing the number of matching flows between the two, and the similarity
degree is given by the percentage of matching flows among the total number of
flows in the reduced process variant. The query facility of PVR can potentially
retrieve a very large result, it will be important to provide functionality to further
refine query criteria. Multi-aspect queries will play an important role [5], where
structural search is combined with search on operational properties, e.g. find
process variants that correspond to the structure of query Q1 (Fig. 2) and no test was
performed by a senior engineer.

4 Related Work

Process models have been regarded as an information resource in many aspects of
modern enterprises [6, 7]. The most common way to capture, maintain, manage and
diffuse knowledge associated with the best practices can be found in knowledge-
based systems [8] and Case-Based Reasoning (CBR) based workflow management
[9]. Another predominant technique has been process diagnosis and redesign. The
diagnosis activity referred to as Business Process Analysis (BPA), which is assisted
by various Workflow Mining techniques [10].

5 Summary

This paper provides methods to benefit from a repository of process variants, namely
PVR. The presented methods provide effective means of searching and matching
process variants against a given query (example process structure), and generate result
sets that can be conveniently ranked. The work reported in this paper focuses on
queries on the structural aspect, but can be extended to multi-aspect queries. The
results of the proposed query facility in PVR can provide deep insights into ongoing
work practices, identify areas of process improvement, and contribute to systematic
and well-informed process evolution.

References

1. Lu, R., Sadiq, S., Padmanabhan, V., Governatori, G.: Using a Temporal Constraint
Network for Increased Flexibility in Business Process Execution. In: Proc. Seventeenth
Australasian Database Conference (ADC2006), Hobart, Australia (2006)

2. Sadiq, S., Sadiq, W., Orlowska, M.: A Framework for Constraint Specification and
Validation in Flexible Workflows. Information Systems, Vol.30(5), Elsevier Science
(2005) 349 - 378

3. Sadiq, W., Orlowska, M.: Analyzing Process Models using Graph Reduction Techniques.
Information Systems, 25(2) (2000) 117 – 134

 Managing Process Variants as an Information Resource 431

4. Lu, R., Sadiq, S., On Managing Process Variants as an Information Resource. Technical
Report, No.TR-464, School of Information Technology and Electrical Engineering, The
University of Queensland (2006)

5. Lu, R., Sadiq, S., Governatori, G.: Utilizing Successful Work Practices as an Information
Resource. In: Proc. 9th International Conference on Business Information Systems
(BIS2006), Klagenfurt, Austria (2006)

6. Leymann, F., Altenhuber, W.: Managing Business Processes as an Information Resource.
IBM Systems Journal, 33(2) (1994)

7. Casati, F.: Industry Trends in Business Process Management: Getting Ready for Prime
Time. In: Proc. 16th International Workshop on Database and Expert Systems
Applications (DEXA 2005), Copenhagen, Denmark (2005)

8. Dellarocas, C., Klein, M.: Integrating Process Learning and Process Evolution - A
Semantics Based Approach. In: Proc. 3rd International Conference on Business Process
Management, (BPM 2005), Nancy, France (2005)

9. Madhusudan, T., Zhao, L.: A Case-Based Framework for Workflow Model Management.
In: Proc. International Conference on Business Process Management (BPM 2003)
Eindhoven, The Netherlands (2003)

10. van der Aalst, W. M. P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters,
A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data & Knowledge
Engineering, Vol.47 (2003) 237 – 267

Verification of Business Process Integration Options�

Georg Grossmann, Michael Schrefl, and Markus Stumptner

University of South Australia, Advanced Computing Research Centre, Mawson Lakes,
SA 5095, Adelaide, Australia

{cisgg, cismis, mst}@cs.unisa.edu.au.

Abstract. We propose a meta framework architecture for supporting the be-
haviour based integration of two business processes. The meta level provides ba-
sic integration operators to the domain engineer to create integration options for
specific domains. Based on semantic relationships between nodes of two busi-
ness processes these integration options are executed and transform parts of the
business processes. The outcome of the model transformation is an integrated
business process. Because of the arbitrary combination of basic integration oper-
ators, a potentially infinite set of integration options may be applicable, and some
of these may lead to an incorrect business process. We analyse our framework
according to a set of consistency criteria and propose verification and validation
mechanisms to keep the integrated model consistent.

1 Introduction

Research initiatives such as a special issue of Advanced Engineering Informatics on
Enterprise Modelling and System Support [5] have pointed out the potential of enter-
prise systems to support integration of various functions in an organisation as well as in
value chains and business networks. The implementation, however, is not without prob-
lems and failures can be costly. A variety of models, tools and techniques have been
developed to address this problem by supporting the analysis of business process struc-
ture and performance. Our contribution to this topic is a model driven framework for
behaviour based integration of business processes with an underlying metaclass archi-
tecture [12]. It represents a generic approach where high-level integration operators can
adapt and produce individualized integration options for the integration of processes
from a particular domain.

The framework uses instantiation relationships in a metaclass architecture to im-
plement context-dependent integration patterns. In [3,2] we present integration options
for business processes which share a common domain or a composite-component re-
lationship. In this paper we go one step further and support the individual develop-
ment of integration options for various integration purposes, e.g., creating new virtual
enterprises.

However the development of customized integration options is error-prone and
should not be left without sytem support. The arbitrary definition of integration options
and their application may lead to an incorrect business process. Incorrect can mean

� This research was partially supported by the Australian Research Council under Discovery
Grant DP0210654.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 432–438, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Verification of Business Process Integration Options 433

that the integrated business process is (1) not syntactically correct, (2) not deadlock-
free, or (3) not consistent with its input models. Syntactical correctness of workflows,
rules out invalid constructs such as an edge leading back to the source node [10]. Syn-
tax checking can be handled by using a meta modeling tool which can be used, e.g.,
for specifying Activity State Diagrams. These tools such as DoME or MetaEdit+ [6,7]
support an automated verification of the syntax on the meta level and hence syntax ver-
ification is not discussed further.

In this paper we are going to check the application of integration options against
causing deadlocks. In the Petri net community a deadlock free Petri net is also called a
sound and therefore we refer to this issue as the soundness property [13]. Furthermore
we check the consistency of the integration to its input business processes. This plays an
important role in proofing that the activity execution sequence of the input models is not
changed through the integration. We refer to this aspect as sequence constraint [11,19].

The architecture of the integration framework consists of the meta model level and
the model level. The meta model provides a set of basic integration tools which are
instantiated on the model level. On the meta level, three steps are undertaken to provide
the necessary context for model level integration. On the model level, further four steps
must be performed to lead from two separated models given as input to an integrated
business process:

1. Definition of semantic relationships: On the meta level, the domain engineer de-
fines a set of semantic relationships between element types of a business process.

2. Definition of integration options: The second task of the domain engineer is the
definition of a set of integration options. Several predefined basic integration oper-
ators are available for the development of integration options.

3. Definition of integration choices: The last step on the meta level covers the map-
ping of semantic relationships on integration options in a set of integration choices.

4. Modeling of business processes: On the model level, the software developer cre-
ates or imports two business processes which are to be integrated into one model.

5. Set semantic relationships: The developer subsequently inserts semantic relation-
ship instances between nodes of the two business processes.

6. Choose integration option: According to the integration choices defined on the
meta level each relationship is mapped to an instance of an integration option. If
there exist only one mapping rule then the mapping is done automatically. If there
is more than one rule then the software developer has to choose one.

7. Model transformation: In the last step, the developer executes all integration op-
tions that are related to semantic relationships identified in the second step on the
model level.

Our diagram notation is derived from the UML 2.0 Activity Diagrams (UML-AD)
[9,8], one of the standard representations for software system behaviour. However, we
have adapted activity diagrams to our needs as a result of the experience with our earlier
work in this area and call this diagram type Activity State Diagrams (ASD). First, of the
nodes defined as part of the UML 2.0 AD standard, we use a simplified subset that is suffi-
cient to express business process semantics and preserves or even enhances the underlying
Petri-net-resembling semantics of Activity Diagrams. Instances of an object type which

434 G. Grossmann, M. Schrefl, and M. Stumptner

reside in states or activities are represented by their object identifiers as tokens of a Petri
net. On the other hand, we have made three significant extensions. First, we found that
both “state-biased” or “activity-biased” diagrams impose limitations on the integration
process, and explicitly dealing with states significantly facilitates the clear separation be-
tween the different integration options in a number of cases. States represent the situation
when an object exists between two activities, a state can hold a token which is waiting for
an event that triggers an activity, and states offer the possibility of interrupting a business
process before an activity can start. Therefore we introduce an explicit representation of
states and include the additional node type state. In the diagram a state is represented by
a rectangle and labelled with a name similar to the object notation of UML-AD standard.
Second, on the meta level semantic relationships can be defined which will be instanti-
ated on the model level. They are represented in ASDs by a directed arc with a dotted line
between two nodes of two different business processes and are labelled with their type.
Third, as described in [2], activity edges are not sufficient for modelling composition and
association relationships between business processes, because they always imply passing
of tokens, but situations exist where only checking for token existence should occur. Petri
nets do not support this constructs either and therefore we have introduced a new edge
type, links, to handle this situation: We use the link elements defined for class diagrams
and add them to ASDs to express the sending of messages from one node to another. A
link in our notation cannot accept tokens but can hold them in a state or activity or prevent
them from entering a node. We use 4 different link types which are sufficient for modeling
composite business processes [2]:

invoke: The invoke link is defined as invoke(A, B) where A and B are activities. The
link is directed, i.e., A is the source and B is the destination node which can hold the
instances a and b respectively. The instance a can only leave A if message M was re-
ceived by b in B and b can only enter B if a resides in A. This link is used for triggering
activities, e.g., composite activity A invokes subactivity B.
block: The source and destination node of a blocking link can be either an activity or a
state. It is defined as block(A, B) and has the following behaviour: b cannot leave B if
a has occupied A while b was in B, e.g., in a library system a state “book on loan”(B)
is blocked by activity “borrow book” (A).
finished: A finished link is defined as finished(A, B) and denotes the opposite of a
blocking link. If a resides in A and b was blocked through a block() before b can leave
B after receiving M from a, e.g., in the library system the activity “return book” (A)
releases b in state “book on loan” (B).
enable: The source and destination node of an enable link can be either a state or an
activity. It is defined as enable(A, B) and means that b can only enter B if a entered
A before. In contrast to invoke() a can leave A even if b never occupied B, e.g., in a
library system the state “book is available” (A) enables the activity “borrow book” (B).

2 Related Work

In [15], the authors demonstrate a Petri net based approach for modelling interorgan-
isational workflows. Like in our approach they are facing the problem of integrating
vis-à-vis workflows but it is not possible to model situations in Petri nets where only

Verification of Business Process Integration Options 435

checking for token existence should occur, especially in composition and association
relationships.

The requirements for interorganisational workflows are discussed in [1]. The authors
propose the development of public processes out of cooperative ones which are set
between internal processes and so support flexibility, privacy, and the preservation of
established workflows. Internal and public processes are connected via producing and
consuming cooporative activities where each producing activity is related to a consum-
ing activity. The problem of incompatibilities of cooperative workflows, e.g., the order
of producing and consuming activities do not match as shown in Figure 1(a), is not
discussed further.

An interesting approach of integrating services at the level of Petri nets is shown in
[18]. It discusses the analysis of service interfaces and the detection of service compat-
ibility. Therefore service specifications such as BPEL are mapped to Petri net models.
The same approach could be used by our framework as well to integrate services. How-
ever compared to [18] our integration process is not automatic but semi-automatic with
the advantage that integration options may integrate services even if their public work-
flows are not compatible.

3 Verification and Validation of the Integration Options

During validation we check if the behaviour of the integrated model is consistent to the
input model in regards of sequence constraints. An early detection of these errors is
highly desired because it helps reducing development costs [16]. The earliest stage is
step 2 on the meta level when the integration option is created by the domain engineer.

Verification on meta level: There exist several publications that discuss the verifica-
tion of sound workflows and its implementation in tools [13,14,17]. Most of them are
based on Petri nets and we are going to use them for the verification and validation on
the meta and model level as well. Both issues, the soundness property and sequence
constraints of a workflow, can be checked by analyzing the coverability graph (CG)
which includes all possible transition firings starting from an initial state of a Petri net.
A state is determined by all places that hold a token. To create CG from a ASD diagram
we have to translate ASD diagrams to Petri nets first. The mapping of the elements is
supported by a meta modeling tool, e.g., AToM3 [4]. We do not map links from ASD
diagrams because they cannot accept tokens and there is no equivalent element defined
in Petri nets but consider them later.

The verification consists of mapping the integration options to Petri nets, generat-
ing a coverability graph CG, and analyzing the CG afterwards. Figure 1(b) shows an
integration option for the incompatibility problem of two business processes shown in
Figure 1(a). In this example the views of a travel agency on the public processes of two
airline booking services do not match. Airline 1 demands the destination first and then
the travel date whereas airline 2 demands the data in the opposite order. The submis-
sions of data at both airlines are identical activities defined by the semantic relationship
identity which is represented as a dotted line in Figure 1(a). Identical activities should
be executed only once in the integrated business process as shown in the integration
option in Figure 1(b). The option consist of four parameters, activities A, B, C, and D

436 G. Grossmann, M. Schrefl, and M. Stumptner

where B and C are merged into one activity and D is automated because it reads the
data from datastore which saves the data previously submitted by A. The option can be
applied on the business processes by mapping the activity “submit destination” of air-
line 1 to A, “submit date” of airline 1 to B, “submit date” of airline 2 to C, and “submit
destination” of airline 2 to D. We analyse CG of the integration option by checking if
all paths lead to the final node.

submit destination

destination submitted

submit date

date submitted

airline 1

submit date

date submitted

submit destination

destination submitted

airline 2

identity

identity

(a) Example of incompatible business pro-
cesses.

activity A

activity B,C

A finished

B,C finished

<<datastore>>

activity D

D finished

<<writeTo>>

<<readFrom>>

(b) Example for an integra-
tion option.

Fig. 1. Example of two airline booking services modelled as business processes

Verification and validation on model level: The soundness and sequence constraint
aspect must be verified on the model level. Similar to the verification on the meta level
we are going to use coverability graphs CG to check soundness but in this case we will
also consider links. For validating the sequence constraints we are going to compare the
coverability graphs of the input model with coverability graphs of the integrated model.

First, we describe the verification of soundness. We have to investigate all possible
initial states of the integrated model O. We start from the set of all possible initial states
I of the input models airline 1 and airline 2 and map I to the corresponding set of states
I ′ in O. For each state T in I ′ a coverability graph CG will be created and if CG shows
a deadlock, then T will cause a deadlock in the O. However so far, CG contains all
possible paths of tokens without considering links. Section 1 has explained the seman-
tics of links and how they restrict the behaviour of tokens. We have to investigate paths
where links have an influence on the behaviour. In the following we explain for each
link necessary changes to CG where S is the source and D is the destination place of
the link and places correlates with nodes:

invoke: The invoke link can hold a token either in S or in the preceding places in D
according to the definition in Section 1. We have to check both constraints: (1) If there

Verification of Business Process Integration Options 437

is a state T ∈ CG where S ∈ T and D �∈ T then all following states on that path in CG
have to be recalculated: In every following state of T , S must be included till a token
enters D. This represents the semantics that a token is hold in S till a token enters D.
(2) If the function U = precPlaces(D) returns the set of preceding places U of D and
there exists a state T ∈ CG where U ⊆ T and S �∈ T then the states in that path has
to be recalculated as well: For each new following state after T , U must be included till
S is entered by a token. This ensures that the token in U cannot enter D before a token
has arrived in S.
block: If state V = (S + D) and there is a state T ∈ CG where V ⊆ T then we
have to rebuild the remaining path in CG as follows: The token in D is held as long as
there is no new calculated state T where SF ∈ T , DF ∈ T , SF and DF are source and
destination places of a finished link, and D = DF . This ensures that a token can only
leave D if it is released by a finished link as explained in Section 1.
finished: This link influences the behaviour of tokens only in conjunction with a block
link and need not be investigated further.
enable: If U =prePlaces(D) and there is a state T ∈ CG where U ⊆ T , S �∈ T then
we have to rebuild the remaining path because the tokens are held in U till a state T is
reached which includes S. The calculation of new states is similar to previous explained
situations.

If there is a path in CG which does not lead to the final places then the initial state T
for which CG was created will lead to a deadlock. We can identify the integration option
which was applied on the affected places because of the mapping rules defined by the
integration options and track it back to a semantic relationship because of the integration
choices. The software developer can decide if T is a realistic initial state, choose an
alternative integration option or alternative semantic relationships. Depending on the
decision the steps 5 and/or 6 must be repeated.

The last aspect is the validation of the sequence constraints. We have to check if
the order of activities of the input models have changed during the integration. The
order of activities of the integrated model is represented by CG. For comparing the
order we have to create two views of CG. The first view CGa represents the view
of object a by omitting all states which cannot accept a. The second view CGb is in
perspective of b. By comparing CGa and CGb with the coverability graphs of the input
business processes we can find out if the order has changed. The integration option
and semantic relationship which cause a violation can be identified by the places which
are in a different order. The software developer has two options to solve this violation,
(1) choose an alternative integration option or (2) set a different semantic relationship
between the affected nodes.

4 Conclusion

This paper has described verification and validation of the integration of two business
processes on the different levels of our process integration framework [2]. As correct-
ness criteria we use the soundness of the integrated business process, especially the
prevention of deadlock creation through insertion of links, and the maintenance of the
sequencing constraints imposed by the two business processes used as input. We are

438 G. Grossmann, M. Schrefl, and M. Stumptner

currently developing a meta-modeling tool in DoME [6] supporting our approach and
the verification mechanisms. Acknowledge: Part of the DoME framework modifications
are due to Rajesh Thiagarajan and Wolfgang Mayer.

References

1. Issam Chebbi, Schahram Dustdar, and Samir Tata. The view-based approach to dynamic
inter-organizational workflow cooperation. Data and Knowledge Engineering, 56(2):139–
173, February 2006.

2. Georg Grossmann, Yikai Ren, Michael Schrefl, and Markus Stumptner. Behavior Based
Integration of Composite Business Processes. In Proc. BPM 2005, volume 3649 of LNCS,
pages 186–204, September 2005.

3. Georg Grossmann, Michael Schrefl, and Markus Stumptner. Classification of business pro-
cess correspondences and associated integration operators. In Proc. of eCOMO 2004, volume
3289/2004 of LNCS, pages 653–666, November 2004.

4. Esther Guerra and Juan de Lara. A Framework for the Verification of UML Models. Exam-
ples Using Petri Nets. In VIII Jornadas Ingenierı́a del Software y Bases de Datos (JISBD
2003), pages 325–334, November 2003.

5. Elsevier North Holland. Special Issue on Enterprise Modelling and System Support. Ad-
vanced Engineering Informatics, 18(4):191–253, October 2004.

6. Honeywell Inc. Domain Modeling Environment (DoME). http://www.htc.honeywell.
com/dome2.

7. MetaCase. MetaEdit+. URL: http://www.metacase.com/mep/ (last access 07/03/2006).
8. Object Management Group (OMG). UML Superstructure Version 2.0, August 2005.

http://www.omg.org/uml, 2005-07-04.
9. James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language Refer-

ence Manual, 2nd edition. Object Technology Series. Addison-Wesley, 2004.
10. Wasim Sadiq and Maria E. Orlowska. On Correctness Issues in Conceptual Modeling of

Workflows. In Proc. of ECIS ’97, June 1997.
11. Monique Snoeck. Sequence constraints in business modelling and business process mod-

elling. Enterprise Information Systems, 4:194–201, 2003.
12. Markus Stumptner, Michael Schrefl, and Georg Grossmann. On the road to behavior-based

integration. In Proc. of APCCM 2004, pages 15–22. Australian Computer Society, 2004.
13. W. M. P. van der Aalst. Verification of workflow nets. In Proc. of ICATPN 1997, volume

1248 of LNCS, pages 407–426, London, UK, June 1997. Springer.
14. W. M. P. van der Aalst. The Application of Petri Nets to Workflow Management. Journal of

Circuits, Systems, and Computers, 8(1):21–66, 1998.
15. W. M. P. van der Aalst. Loosely coupled interorganizational workflows: modeling and analyz-

ing workflows crossing organizational boundaries. Information Management, 37(2):67–75,
2000.

16. Kees van Hee, Lou Somers Natalia Sidorova, and Marc Voorhoeve. Consistency in model
integration. Data and Knowledge Engineering, 56(1):4–22, January 2006.

17. H. M. W. Verbeek, T. Basten, and W. M. P. van der Aalst. Diagnosing Workflow Processes
using Woflan. The Computer Journal, 44(4):246–279, 2001.

18. Andreas Wombacher, Bendick Mahleko, and Erich Neuhold. Ipsi-pf: A business process
matchmaking engine. In Int’l IEEE Conference on E-Commerce Technology(CEC’04),
pages 137–145. IEEE Computer Society Press, 2004.

19. S. J. Woodman, D. J. Palmer, S. K. Shrivastava, and S. M. Wheater. Notations for the Specifi-
cation and Verification of Composite Web Services. In Proc. of EDOC 2004. IEEE Computer
Society Press, 2004.

Verifying BPEL Workflows Under Authorisation
Constraints

Zhao Xiangpeng1,2, Antonio Cerone2, and Padmanabhan Krishnan3

1 LMAM and Department of Informatics, School of Mathematics
Peking University, Beijing 100871, China

2 UNU-IIST, Macau SAR, China
3 Centre for Software Assurance, Bond University, Australia

zxp@math.pku.edu.cn, antonio@iist.unu.edu, pkrishna@staff.bond.edu.au

Abstract. Business Process Execution Language (BPEL), or Web Ser-
vices BPEL (WS-BPEL), is the standard for specifying workflow process
definition using web services. Research on formal modelling and verifi-
cation of BPEL has largely concentrated on control flow and data flow,
while security related properties have received little attention. In this
work, we present a formal framework that integrates Role Based Ac-
cess Control (RBAC) into BPEL and allows us to express authorisation
constraints using temporal logic. Using this framework, we show how
model-checking can be applied to verify that a given BPEL process sat-
isfies the security constraints.

Keywords: Workflow, BPEL, RBAC, model-checking.

1 Introduction

The use of workflows based on web services is a current trend in industry. In this
context a workflow can be viewed as a composition of web services which is there-
fore distributed, decentralized and dynamic. BPEL (Business Process Execution
Language) [2] has become the standard for specifying and executing workflow
specifications for web service composition. It has been developed to model busi-
ness processes by describing workflows and interfaces, as well as specifying the
technical infrastructure for carrying out business transactions. However, BPEL
lacks security and so-called “human workflow” support.

As workflow process modelling is a complicated and error-prone procedure, it
is important to ensure that there are no errors when a process definition becomes
operational. Thus, effective process verification in the early modelling phase is
essential. Fu et al. [4] suggest a way to verify BPEL taking into account both
control and data flow. Hinz et al. [5] describe how to transform BPEL into Petri
Nets. However, in their work several details of BPEL, including security, are not
considered. We believe that a new model combining both the web service related
features and security issues is needed. Our goal is the description, outside the
business process, of authorisation constraints that a workflow must satisfy and
their automatic verification.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 439–444, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

440 Z. Xiangpeng, A. Cerone, and P. Krishnan

There are also works that describe injecting authorisation models into work-
flows [9,1], but without any attempts to give formal verification frameworks.
Ribeiro and Guedes [6] use a logic-based method to verify workflows against se-
curity policies. Tan, Crampton and Gunter [8] study the consistency of various
kinds of authorisation constraints and give an algorithm to determine whether
the workflow can be completed under given constraints. However, the authors
assume that the workflow has a very simple structure, i.e. a partial order. We
believe that verification based on such a simple model is not suitable for real-
world workflows. In fact, we want to integrate an authorisation model into BPEL
with the ability to verify that a given BPEL business process can actually be
completed under the restrictions imposed by the model.

In this paper we introduce security restrictions specified using role based ac-
cess control to a workflow and show how to verify whether the workflow can still
be completed under the security constraints.

2 BPEL and RBAC

BPEL is an XML-based language for the composition of executable business
processes based on web services. Since in the business process terminology web
services are usually called tasks, we will always use the term “task” in the fol-
lowing. The behaviour of a business process consists of BPEL activities. We
distinguish between basic activities and structural activities.

There are four basic activities: assign, to assign value to variables; receive
and reply, to describe data communication with the environment of the busi-
ness process; invoke to describe calls to tasks offered by the environment. The
last three activities are called invocation activities ; they all relate to calling of
tasks.

As an example we will describe the process used by a library to acquire a book
(Figure 1). The key activities are as follows. Any individual who is a “fellow” of
the library can apply for ordering a book. An ordering request consists of the ap-
plicant’s id, the book name and the book price, described by the bookData vari-
able. This request is modelled as a receive activity with the name orderEntry.
The book will be eventually ordered only after the request passes three checks
performed by a secretary, an accountant and a manager called inventoryCheck,
creditCheck and evaluation, respectively. The manager has a choice (indicated
by the switch construct) of either purchasing the book (called purchaseBook)
or sending a reject letter to the fellow (called sendRejectLetter).

In invocation activities the name of the web service is described as a tuple
(partnerLink, portType, operation). For example, the inventoryCheck ac-
tivity is a synchronous invocation to the operation check, which belongs to the
secretary partner. It first sends bookData as input to check, and then waits for
the returned result, which will be assigned to variable inventoryCheckResult.

Role Based Access Control (RBAC) provides a flexible approach to model
access control policies. Permissions are assigned to roles, and roles are assigned
to subjects. RBAC is considered as a natural choice in business processes, where

Verifying BPEL Workflows Under Authorisation Constraints 441

<process name="bookRequisition">
<sequence>

<receive name="orderEntry" partnerLink="fellowService"
portType="as:fellowPT" operation="provide" variable="bookData"
... ></receive>

<flow>
<invoke name="inventoryCheck" partnerLink="secretaryService"

portType="as:secretaryPT" operation="check"
inputVariable="bookData"
outputVariable="inventoryCheckResult"></invoke>

<invoke name="creditCheck" ... operation="check" ... ></invoke>
</flow>
...
<invoke name="evaluation" ... operation="evaluate" ... ></invoke>
<switch>
<case condition=

"bpws:getVariableProperty (’evaluationResult’,’Approved’)">
<invoke name="purchaseBook" ... operation="purchase" ... >
</invoke>

</case> <otherwise>
<invoke name="sendRejectLetter" ...
operation="sendRejectLetter" ... ></invoke>

</otherwise>
</switch>

</sequence>
</process>

Fig. 1. BPEL Source Code for the Library Example

the permissions of performing tasks are usually assigned to roles [8]. Role hi-
erarchy defines inheritance relations between roles, which are usually partial
orders. A senior-role is a role that inherits permissions from one or more junior
roles.

We model a BPEL specification using a process algebra. The various activ-
ities are thus modelled as communication over channels [10]. From the BPEL
perspective, partner links can be viewed as roles, and operations as permis-
sions in RBAC. In our framework the assignment of roles to individuals is done
explicitly. An agent, which can be any entity performing a certain operation,
synchronises with the BPEL process (say by examining the role associated with
the partnerLink) and executes the particular task. That is, the agent assumes a
particular role to complete a task. As an agent can have an iterative behaviour, it
can assume various roles within a particular behaviour. Informally, the semantics
of an agent only specifies what the agent is willing to do — not what the agent
is allowed to do. To ensure that the behaviour of an agent is suitably restricted,
we also need to model a controller which checks the basic RBAC constraints.
The entire system is viewed as the composition of the agents (along with the
individual and role assignments) and the controller [10].

3 Authorisation Constraints and Verification

We now describe the specification of authorisation constraints based on RBAC
models. The execution of a task can be associated with a particular individual

442 Z. Xiangpeng, A. Cerone, and P. Krishnan

assuming specific roles. Formally we define the sets Inds (for individuals), Roles
(for roles), Tasks (for tasks). The set of all possible states of computation is
captured by the set of triples, Inds × Roles × Tasks. We let the triple (i, r, t)
be a typical state and call it an allocation for task t. We also support the use of
a role hierarchy, which means that if a given role is authorised to play a task,
then the roles dominating this role will inherit its execution authorisation. The
role hierarchy is a partial order on Roles. In general, we can support a variety of
structures on Roles (e.g., as proposed in W-RBAC [9]). The focus here is not on
properties of the structures associated with such sets; rather it is on how to verify
an assignment of individuals to tasks via their roles in a workflow. Using this
model we can specify some high-level constraints such as separation of duties.

The trace is defined as a possible “run” of the business process, based on the
process definition and the allocation of agents. It captures a specific execution
order of the tasks by particular individuals assuming specific roles. A constraint
is viewed as a predicate on the “trace”. Thus we can use Linear Time Temporal
Logic (LTL) to specify the desired properties. We use the standard modalities
of LTL (♦ for eventually, � for henceforth and © for next).

We introduce two basic predicates: canAssume : Inds × Roles → Bool and
canPerform : Roles × Tasks → Bool. These predicates are motivated by our
semantics which represents the possible options declared by the agents and the
options actually permitted by the controller. We note that these constraints
are static and they do not depend on the execution order of the tasks. The
execution order cannot be decided until the actual execution of the business
process. In order to simplify the verification procedure, we avoid expressing these
basic constraints directly as LTL formulae in the implementation. Instead, we
express them as a predicate allow, which is incorporated within the controller,
allow(i, r, t) = canAssume(i, r) ∧ canPerform(r, t). Every valid trace containing
(i, r, t) must at least satisfy �allow(i, r, t). In general, we use the variables i,
r and t as place holders to denote the individual, role and task respectively.
For instance, the formula ♦(i = i′) denotes that eventually the individual i′

performs some task. More precisely a trace that satisfies the formula must have
the triple (i′, r′, t′) appearing in it for some r′ and t′. In this paper we focus only
on the verification of security related properties, in particular on “whether the
business process can be completed under a set of authorisation constraints”. A
constrained business process is completable under a constraint c if there exists a
trace Tr = 〈(i1, r1, t1), · · · , (in, rn, tn) · · · 〉 of the business process such that Tr
satisfies c. We are effectively verifying if the workflow description, along with the
behaviour of the agents and the controller, actually satisfies the authorisation
constraints. While the above infrastructure allows us to define a wide class of
authorisation constraints, only a few specific examples are developed below.

Separation of duty (SoD) is an authorisation principle used to prevent fraud
and error by requiring that at least two individuals are involved in performing
the business process. SoD is also useful when two agents have to co-operate to
complete a task but neither agent should know all the details.

Verifying BPEL Workflows Under Authorisation Constraints 443

The basic form of SoD states that two given distinct tasks t1 and t2 must be
performed by different individuals. This can be defined as

∀i0 ∈ Inds • ¬
((

♦(t = t1 ∧ i = i0)
)

∧
(
♦(t = t2 ∧ i = i0)

))

That is, the same individual i0 cannot perform both t1 and t2. We can also define
other variations based on the above structure. For example, we can define that
task t1 and task t2 must be performed by different roles as

∀r0 ∈ Roles • ¬
((

♦(t = t1 ∧ r = r0)
)

∧
(
♦(t = t2 ∧ r = r0)

))

In this case the tasks may be performed by the same individual; but they must
be allowed to assume different roles. We can also define an SoD constraint for a
specific agent, e.g., A, which cannot invoke both task t1 and t2 as

¬
((

♦(t = t1 ∧ i = iA)
)

∧
(
♦(t = t2 ∧ i = iA)

))

As we allow LTL formulae with quantifiers, we can also define constraints that
only hold under certain conditions. For instance, we specify below the require-
ment that if task t0 is performed by the individual is, tasks t1 and t2 cannot be
performed by the same individual.(

♦(t = t0 ∧ i = is)
)

⇒ ∀i0 ∈ Inds • ¬
((

♦(t = t1 ∧ i = i0)
)

∧
(
♦(t = t2 ∧ i = i0)

))

That is, the separation of duty only applies if is performs t0 at some time. Such
forms of SoD are dynamic, in the sense that they rely on a particular execution
of the business process.

We now apply the above discussion to the example shown in Section 2. We
have four roles: fellow, secretary, accountant, and manager. We consider a role
hierarchy where the fellow is the least element of the partial order, the secretary
and accountant are higher than the fellow but incomparable with each other,
and the manager is the top element. We have five agents: Alice, Bob, Cathy,
David and Elsa. We allow Alice to assume the role of a manager, (formally writ-
ten as “canAssume(Alice,manager)”), Bob to be a secretary, Cathy to be an
accountant, David to be a fellow and Elsa to be either a secretary or accoun-
tant. For our BPEL specification, we specify that only the manager can execute
evaluation, (formally written as “canPerform(manager,evaluation)”), the sec-
retary to execute inventoryCheck, sendRejectLetter or purchaseBook while
the accountant can only execute creditCheck and the fellow can only invoke
orderEntry.

We introduce the following separation of duty constraints:

∀i0 ∈ Inds • ¬
((

♦(t = orderEntry ∧ i = i0)
)

∧
(
♦(t = creditCheck ∧ i = i0)

))

∀i0 ∈ Inds • ¬
((

♦(t = inventoryCheck ∧ i = i0)
)

∧
(
♦(t = creditCheck ∧ i = i0)

))

which requires orderEntry and creditCheck be performed by different individ-
uals as well as inventoryCheck and creditCheck.

The specifics of the verification and synthesis process have been performed
using SAL (Symbolic Analysis Laboratory), a model-checker designed by SRI [7].
SAL supports special features such as quantifiers, user-defined data types, func-
tions and infinite data types. We translate the BPEL specification into SAL. The
translation is almost straightforward and we only outline the main steps. Chan-
nel communications are converted into state transitions with shared variables.

444 Z. Xiangpeng, A. Cerone, and P. Krishnan

Modules in SAL are distinct transition systems that can be combined together.
Each business process or agent is defined as a module. This allows us to build
different configurations of the system. We can choose particular configurations
to construct the actual system to be verified. Two possible configurations related
to our example are are conf1: {bp, Alice, Bob, Cathy, David} and conf2: {bp,
David, Elsa}. SAL verifies that configuration conf1 is completable whereas con-
figuration conf2 is not. This is because there is no manager in conf2 to perform
the evaluation task. Another configuration conf3: {bp, Alice, David} will also
fail, since the separation of duty cannot be satisfied.

4 Conclusion and Future Work

In this paper, we have presented a verifiable framework for BPEL processes that
addresses authorisation requirements. We provided a systematic method of inte-
grating RBAC information with the BPEL processes. Based on the trace of the
business process, we defined authorisation constraints in temporal logic. Finally,
we presented how the business process can be automatically verified for com-
pletability under given authorisation constraints using the SAL model-checker.
The model-checking procedure is based on the definition of a completable busi-
ness process using RBAC mechanisms and constraints.

Future work includes adding trust and delegation support to the model,
analysing the working draft of BPEL 2.0 [3], and developing efficient transla-
tion mechanisms to reduce the state space for the verification process.

References

1. G. Ahn, R. Sandhu, M. Kang, and J. Park. Injecting RBAC to secure a web-based
workflow system. In Proc. of RBAC ’00. ACM Press, 2000.

2. BPEL. Business process execution language for web services version 1.1.
http://www-128.ibm.com/developerworks/library/ws-bpel/.

3. BPEL 2.0 Working Draft. Web services business process execution language version
2.0. http://www.oasis-open.org/apps/org/workgroup/wsbpel/. 2004.

4. X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web services. In Proc.
of WWW ’04. ACM Press, 2004.

5. S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to Petri nets. In Proc. of
BPM’05, LNCS 3649, 2005.

6. C. Ribeiro and P. Guedes. Verifying workflow processes against organization secu-
rity policies. In WETICE99’. IEEE Computer Society, 1999.

7. SAL. Symbolic analysis laboratory. http://sal.csl.sri.com/.
8. K. Tan, J. Crampton, and C. Gunter. The consistency of task-based authorization

constraints in workflow systems. In Proc. of CSFW’04, 2004.
9. J. Wainer, P. Barthelmess, and A. Kumar. W-RBAC – a workflow security model

incorporating controlled overriding of constraints. International Journal of Coop-
erative Information Systems, 12(4), 2003.

10. X. Zhao, A. Cerone, and P. Krishnan. Modelling and resource allocation planning
of BPEL workflows under security constraints. Technical Report 336, UNU-IIST,
2006. http://www.iist.unu.edu/.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 445 – 450, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Selecting Necessary and Sufficient Checkpoints for
Dynamic Verification of Fixed-Time Constraints in Grid

Workflow Systems

Jinjun Chen and Yun Yang

CITR – Centre for Information Technology Research
Faculty of Information and Communication Technologies

Swinburne University of Technology
PO Box 218, Hawthorn, Melbourne, Australia 3122
{jchen, yyang}@ict.swin.edu.au

Abstract. In grid workflow systems, existing representative checkpoint selec-
tion strategies, which are used to select checkpoints for verifying fixed-time
constraints at run-time execution stage, often select some unnecessary check-
points and ignore some necessary ones. Consequently, overall temporal verifi-
cation efficiency and effectiveness can be severely impacted. In this paper, we
propose a new strategy that selects only necessary and sufficient checkpoints
dynamically along grid workflow execution. Specifically, we introduce a new
concept of minimum time redundancy as a key reference value for checkpoint
selection. We also investigate its relationships with fixed-time constraint con-
sistency. Based on these relationships, we present our strategy which can im-
prove overall temporal verification efficiency and effectiveness significantly.

1 Introduction

In the grid architecture, a grid workflow system is facilitated to support modelling,
redesign and execution of large-scale sophisticated scientific and business processes
[2, 14]. These processes are modelled as grid workflow specifications at build-time
stage which normally contain a large number of computation, transaction or data
intensive activities [11], then instantiated at run-time instantiation stage by an instan-
tiation grid service [5], and finally executed at run-time execution stage by grid ser-
vices [5]. In reality, complex scientific or business processes are often time con-
strained. Consequently, fixed-time constraints are often set in corresponding grid
workflow specifications where a fixed-time constraint at an activity is an absolute
time value by which the activity must be completed [2, 4, 9].

Temporal verification is conducted to check the consistency of fixed-time con-
straints. At build-time and run-time instantiation stages, without any specific execu-
tion times, we need not consider where we should conduct temporal verification as
each fixed-time constraint needs only be verified once statically. At run-time execu-
tion stage however, activity completion durations vary and consequently, we may
need to verify each fixed-time constraint many times at different activities. However,

446 J. Chen and Y. Yang

conducting the verification at every activity is not efficient as we may not have to do
so at some activities. So where should we conduct the temporal verification? The
activities at which we conduct the verification are called checkpoints [6, 13, 15].

Existing representative Checkpoint Selection Strategies (CSS) often suffer from the
limitations of selecting unnecessary checkpoints and ignoring necessary ones. Unneces-
sary checkpoints would result in some unnecessary temporal verification, which eventu-
ally impacts the overall verification efficiency. Ignored checkpoints mean some neces-
sary verification would be omitted, which eventually impacts the overall verification
effectiveness. Clearly, neither is desirable. In this paper, we develop a new strategy that
guarantees checkpoints selected are not only necessary but also sufficient.

2 Related Work and Problem Analysis for Checkpoint Selection

[12] takes every activity as a checkpoint, denoted as CSS1. [15] sets checkpoints at the
start time and end time of each activity, denoted as CSS2. [13] takes the start activity and
each decision activity as checkpoints, denoted as CSS3. [13] also mentions another strat-
egy: user-defined static checkpoints, denoted as CSS4. All of CSS1, CSS2, CSS3 and CSS4
predefine checkpoints before grid workflow execution. However, we may not have to
conduct temporal verification at some of them such as those that can be completed
within allowed time intervals. Therefore, CSS1, CSS2, CSS3 and CSS4 may select some
unnecessary checkpoints. Meanwhile, CSS3 and CSS4 may ignore some checkpoints as
we may need to conduct temporal verification at some other activities.

Our earlier works [6, 7, 10] have attempted to improve this situation, but they still
have some deficiencies. Specifically, [6] selects an activity as a checkpoint when its
completion duration exceeds its maximum duration, denoted as CSS5. [7] selects an
activity as a checkpoint when its completion duration exceeds its mean duration, de-
noted as CSS6. [10] introduces a minimum proportional time redundancy for each
activity and selects an activity as a checkpoint when its completion duration is greater
than its mean duration plus its minimum proportional time redundancy, denoted as
CSS7. However, in Section 6, we will see that CSS5 may ignore some necessary
checkpoints while CSS6 and CSS7 may select some unnecessary ones.

Regarding the above limitations of the representative strategies, we may ask: “Can
we develop a strategy that only selects necessary yet sufficient checkpoints?”. In this
paper, we answer the question positively by presenting such a strategy.

3 Timed Grid Workflow Representation

A grid workflow can be represented by a grid workflow graph, where nodes corre-
spond to activities and edges correspond to dependencies between them [3, 12]. Here,
we assume that the grid workflow is well structured [1]. We denote the ith activity of a
grid workflow as ai. For each ai, we denote its maximum duration, mean duration,
minimum duration, run-time start time, run-time end time and run-time completion
duration as D(ai), M(ai), d(ai), S(ai), E(ai) and Rcd(ai) respectively. If there is a fixed-
time constrain at ai, we denote it as FTC(ai) and its value as ftv(ai). If there is a path
from ai to aj (i≤j), we denote the maximum duration, mean duration, minimum
duration, run-time completion duration between them as D(ai, aj), M(ai, aj), d(ai, aj)
and Rcd(ai, aj) respectively [12, 13]. For convenience, we consider only one execution

 Selecting Necessary and Sufficient Checkpoints for Dynamic Verification 447

path in a grid workflow without losing generality. As for a selective or parallel struc-
ture, each branch is an execution path. For an iterative structure, from start to end, it is
also an execution path. So, we can apply the results achieved in this paper to them.

In addition, four temporal consistency states have been defined in [9]. They are SC
(Strong Consistency), WC (Weak Consistency), WI (Weak Inconsistency) and SI
(Strong Inconsistency). We summarise their definitions for run-time instantiation and
execution stages as our strategy is based on them and is related to those two stages.

Definition 1. At run-time instantiation stage, FTC(ai) is said to be of SC if D(a1, ai) ≤
ftv(ai) - S(a1), WC if M(a1, ai) ≤ ftv(ai) - S(a1) < D(a1, ai), WI if d(a1, ai) ≤ ftv(ai) -
S(a1) < M(a1, ai), and SI if ftv(ai) - S(a1) < d(a1, ai).

Definition 2. At run-time execution stage, at checkpoint ap (p ≤ i), FTC(ai) is said to
be of SC if Rcd(a1, ap) + D(ap+1, ai) ≤ ftv(ai) - S(a1), WC if Rcd(a1, ap) + M(ap+1, ai) ≤
ftv(ai) - S(a1) < Rcd(a1, ap) + D(ap+1, ai), WI if Rcd(a1, ap) + d(ap+1, ai) ≤ ftv(ai)-S(a1) <
Rcd(a1, ap) + M(ap+1, ai), and SI if ftv(ai) - S(a1) < Rcd(a1, ap) + d(ap+1, ai).

4 Minimum Time Redundancy

According to [9], for WI and SI, the corresponding exception handling is triggered to
adjust them to SC or WC. Hence, checkpoint selection is actually focused on selecting
checkpoints for verifying previous SC and WC fixed-time constraints. Correspond-
ingly, minimum time redundancy consists of minimum SC and WC time redundancy.

First, we introduce SC and WC time redundancy from one fixed-time constraint.
At run-time execution stage, considering SC FTC(ai) at ap (p<i), we have Rcd(a1,
ap)+ D(ap+1, ai)≤ftv(ai)-S(a1). We have a time difference: [ftv(ai)-S(a1)]–[Rcd(a1,
ap)+ D(ap+1, ai)]. If the succeeding activity execution can be controlled within this
difference, FTC(ai) can still be kept as SC even if the execution consumes more
time than scheduled. We define this time difference as SC time redundancy of
FTC(ai) at ap, and denote it as TRSC(FTC(ai), ap) (TRSC: SC Time Redundancy). So,
we have Definition 3.

Definition 3 (SC Time Redundancy). At ap (p<i), let FTC(ai) be of SC. Then, SC
time redundancy of FTC(ai) at ap, i.e. TRSC(FTC(ai), ap), is defined as [ftv(ai) - S(a1)]
– [Rcd(a1, ap) + D(ap+1, ai)].

For a WC fixed-time constraint, say FTC(aj), we have Definition 4.

Definition 4 (WC Time Redundancy). At ap (p<j), let FTC(aj) be of WC. Then, the
WC time redundancy of FTC(aj) at ap, i.e. TRWC(FTC(aj), ap), is defined as [ftv(aj) -
S(a1)] – [Rcd(a1, ap) + M(ap+1, aj)].

We now consider multiple SC or WC fixed-time constraints and we have:

Definition 5 (Minimum SC Time Redundancy). Let F1, F2, ... , Fn be n SC fixed-time
constraints and cover ap. Then, at ap, minimum SC time redundancy is defined as the
minimum of all SC time redundancies and is denoted as MTRSC(ap) (MTR: Minimum
Time Redundancy).

MTRSC(ap) = Min{ TRSC(Fs, ap)| s =1,2, ..., n }

448 J. Chen and Y. Yang

Definition 6 (Minimum WC Time Redundancy). Let F1, F2, ... , Fn be n WC fixed-
time constraints and cover ap. Then, at ap, minimum WC time redundancy is defined
as the minimum of all WC time redundancies and is denoted as MTRWC(ap).

MTRWC(ap) = Min{ TRWC(Fs, ap)| s =1,2, ..., n }

According to Definitions 5 and 6, we normally have M(ap) + MTRWC(ap-1) < D(ap) +
MTRSC(ap-1). We can develop a method that can dynamically obtain MTRSC(ap) and
MTRWC(ap), denoted as DOMTR (Dynamic Obtaining of Minimum Time Redundancy).
DOMTR can utilise temporal verification computation results without incurring much
extra computation. Its working steps are omitted here due to the page limit1.

5 Checkpoint Selection Based on Minimum SC and WC Time
Redundancy

We now first investigate the relationships between minimum SC & WC time redun-
dancy and SC, WC, WI & SI. Then, we present our new strategy. The relationships
are shown in Fig. 1. We can further prove why the relationships are as shown in
Fig. 1. Again, due to the page limit, we simply omit the proof.

Fig. 1. Relationships between minimum SC & WC time redundancy and SC, WC, WI & SI

According to Fig. 1, we can decide whether to take ap as a checkpoint. The ap-
proach is: At ap, if Rcd(ap)>D(ap)+MTRSC(ap-1), take it as a checkpoint for verifying
SC, WC, WI & SI of all previous SC fixed-time constraints, and for verifying WC, WI
& SI of all previous WC ones. If M(ap)+MTRWC(ap-1)<Rcd(ap)≤D(ap)+ MTRSC(ap-1),
take ap as a checkpoint for verifying SC, WC, WI & SI of all previous WC only fixed-
time constraints. If Rcd(ap)≤M(ap)+MTRWC(ap-1), do not take ap as a checkpoint.

We denote the above approach as CDA(ap) (Checkpoint Decision-making
Approach at ap). Combining CDA(ap) with DOMTR mentioned in Section 4, we can
derive a new checkpoint selection strategy that selects only necessary and sufficient
checkpoints, denoted as CSSMTR (CSSMTR: Minimum Time Redundancy based

1 In this paper, wherever ‘due to the page limit...’ appears, please refer to [8] for details.

 Selecting Necessary and Sufficient Checkpoints for Dynamic Verification 449

Checkpoint Selection Strategy). Simply speaking, at ap, CSSMTR selects checkpoints
based on CDA(ap) while along grid workflow execution, CSSMTR computes minimum
SC and WC time redundancy based on DOMTR. We can further derive an algorithm
to depict the working process of CSSMTR, but we omit it due to the page limit.

We can rigorously prove that checkpoints selected by CSSMTR are not only necessary
but also sufficient. Again, due to the page limit, we omit the proof. Since a large number
of fixed-time constraints are often needed in grid workflows, the improvement on tem-
poral verification efficiency and effectiveness by our strategy is significant [8].

6 Comparison and Discussion

According to Section 5, all checkpoints selected by CSSMTR are necessary and suffi-
cient. So, by CSSMTR, there is no unnecessary and omitted temporal verification.

According to Section 2, CSS1, CSS2, CSS3 and CSS4 may select some unnecessary
checkpoints and also CSS3 and CSS4 may ignore some necessary ones. Therefore,
CSSMTR is more efficient than CSS1, CSS2, CSS3 and CSS4, and also more effective
than CSS3 and CSS4 for temporal verification.

According to [6], CSS5 takes ap as a checkpoint if D(ap) < Rcd(ap). Compared to
CSSMTR, CSS5 omits the situation where M(ap)+MTRWC(ap-1)<Rcd(ap)≤D(ap), i.e.
CSS5 may ignore some necessary checkpoints. CSS6, according to [7], takes ap as a
checkpoint if M(ap) < Rcd(ap). Compared to CSSMTR, the situation is unnecessary
where M(ap) < Rcd(ap) ≤ M(ap) + MTRWC(ap-1), i.e. CSS6 may select some unneces-
sary checkpoints. CSS7, according to [10], introduces minimum proportional WC
time redundancy to ap-1, denoted as MPTRWC(ap-1). Then, at ap, CSS7 takes it as a
checkpoint if M(ap) + MPTRWC(ap-1)<Rcd(ap). However, according to [10],
MPTRWC(ap-1) is actually part of MTRWC(ap-1). Therefore, by CSS7, the situation is
unnecessary where M(ap) + MPTRWC(ap-1) < Rcd(ap) ≤ M(ap) + MTRWC(ap-1), i.e.
CSS7 may also select some unnecessary checkpoints. In summary, we can say that
CSSMTR is also more effective than CSS5, and more efficient than CSS6 and CSS7 for
temporal verification.

We can conduct a quantitative evaluation. Again, due to the page limit, we omit it.

7 Conclusions and Future Work

Existing representative checkpoint selection strategies often select some unnecessary
checkpoints and ignore some necessary ones, which consequently cause unnecessary
temporal verification and omit necessary temporal verification. To overcome such
shortcomings, we have proposed a new checkpoint selection strategy, named CSSMTR
(Minimum Time Redundancy based Checkpoint Selection Strategy). The checkpoints
selected by CSSMTR dynamically along grid workflow execution are not only neces-
sary but also sufficient. Hence, the unnecessary and omitted temporal verification can
be avoided, which eventually can improve the overall temporal verification efficiency
and effectiveness significantly. With these contributions, we are further working on
how to facilitate timed Petri-Net to reason about checkpoint selection.

450 J. Chen and Y. Yang

Acknowledgements

We are grateful for the fruitful discussion with Professor W.M.P. van der Aalst when
he visited Swinburne University in Dec. 2005. The work reported in this paper is
partly supported by ARC Projects under grant No. LP0562500 and No. DP0663841.

References

1. W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors using Petri-
net based Techniques. LNCS 1806, 161-183, 2000.

2. D.Abramson, J.Kommineni, J.L.McGregor and J.Katzfey. An Atmospheric Sciences
Workflow and its Implementation with Web Services. LNCS 3036, 164-173, 2004.

3. C.Bussler. Workflow Instance Scheduling with Project Management Tools. In Proc. of the
9th Workshop on Database and Expert Systems Applications (DEXA’98), IEEE CS Press,
753-758, Vienna, Austria, Aug. 1998.

4. R.Buyya, D.Abramson and S.Venugopal. The Grid Economy. The Proceedings of The
IEEE, 93(3), 698-714, 2005.

5. D.Cybok. A Grid Workflow Infrastructure. Concurrency and Computation: Practice and
Experience, 2005, to appear.

6. J.Chen, Y.Yang and T.Y.Chen. Dynamic Verification of Temporal Constraints on-the-fly
for Workflow Systems. In Proc. of the 11th Asia-Pacific Software Engineering Conference
(APSEC2004), IEEE CS Press, 30-37, Busan, Korea, Nov./Dec. 2004.

7. J.Chen and Y.Yang. An Activity Completion Duration based Checkpoint Selection Strat-
egy for Dynamic Verification of Fixed-time Constraints in Grid Workflow Systems. LNI,
P-69, 296-310, 2005.

8. J.Chen and Y.Yang. Necessary and Sufficient Checkpoint Selection in Grid Workflow
Systems. Technical Report, Faculty of ICT, Swinburne University of Technology, May,
2006, http://www.it.swin.edu.au/personal/yyang/papers/2006TR-JChen-1.pdf

9. J.Chen and Y.Yang. Multiple States based Temporal Consistency for Dynamic Verifica-
tion of Fixed-time Constraints in Grid Workflow Systems. Concurrency and Computation:
Practice and Experience, 2006, to appear.

10. J.Chen and Y.Yang. A Minimum Proportional Time Redundancy based Checkpoint Selec-
tion Strategy for Dynamic Verification of Fixed-time Constraints in Grid Workflow Sys-
tems. In Proc. of the 12th Asia Pacific Software Engineering Conference. (APSEC2005),
IEEE CS Press, 299-306, Taiwan, Dec. 2005.

11. E.Deelman, J.Blythe, Y.Gil, C.Kesselman, G.Mehta and K.Vahi. Mapping Abstract Com-
plex Workflows onto Grid Environments. Journal of Grid Computing, 1(1), 9-23, 2003.

12. J.Eder, E.Panagos and M.Rabinovich. Time Constraints in Workflow Systems. LNCS
1626, 286-300, 1999.

13. O.Marjanovic and M.E.Orlowska. On Modeling and Verification of Temporal Constraints
in Production Workflows. Knowledge and Information Systems, 1(2), 157-192, 1999.

14. D.R.Simpson, N.Kelly, P.V.Jithesh, P.Donachy, T.J.Harmer, R.H.Perrott, J.Johnston,
P.Kerr, M.McCurley and S.McKee. GeneGrid: A Practical Workflow Implementation for a
Grid Based Virtual Bioinformatics Laboratory. In Proc. of the UK e-Science All Hands
Meeting 2004 (AHM04), 547-554, Sept. 2004.

15. H.Zhuge, T.Cheung and H.Pung. A Timed Workflow Process Model. The Journal of Sys-
tems and Software, 55(3), 231-243, 2001.

Faulty EPCs in the SAP Reference Model

J. Mendling1, M. Moser1, G. Neumann1, H.M.W. Verbeek2, B.F. van Dongen2,
and W.M.P. van der Aalst2

1 Vienna University of Economics and Business Administration
Augasse 2-6, 1090 Vienna, Austria

{jan.mendling, h9950347, neumann}@wu-wien.ac.at
2 Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{h.m.w.verbeek, b.f.v.dongen, w.m.p.v.d.aalst}@tm.tue.nl

Abstract. Little is known about error probability in enterprise models
as they are usually kept private. The SAP reference model is a publically
available model that contains more than 600 non-trivial process models
expressed in terms of Event-driven Process Chains (EPCs). We have
automatically translated these EPCs into YAWL models and analyzed
these models using WofYAWL, a verification tool based on Petri nets, in
order to acquire knowledge about errors in large enterprise models. We
discovered that at least 34 of these EPCs contain errors (i.e., at least
5.6% is flawed) and analyzed which parts of the SAP reference model
contain most errors. This systematic analysis of the SAP reference model
illustrates the need for verification tools such as WofYAWL.

1 Introduction

There has been extensive work on formal foundations of conceptual modeling and
respective languages. However, little quantitative research has been reported on
the actual use of conceptual modeling [3]. Moreover, literature typically dis-
cusses and analyses languages rather than evaluating enterprise models at a
larger scale (i.e., beyond “toy examples”). A fundamental problem in this con-
text is that large enterprise models are in general not accessible for research
as they represent valuable company knowledge that enterprises do not want to
reveal. One case of a model that is, at least partially, publicly available is the
SAP reference model. It has been described in [2,8] and is referred to in many
research papers. The extensive database of this reference model contains almost
10,000 sub-models, most of them EPC business process models [7]. Fig. 1 shows
the EPC model for “Certificate Creation” as an example of one of these models.
The SAP reference model was meant to be used as a documentation for SAP’s
ERP system. It reflects Version 4.6 of SAP R/3 which was marketed in 2000.
Building on recently developed techniques to verify the formal correctness of
EPC models [12], we aim to acquire knowledge about how many formal model-
ing errors can be expected in a large repository of process models in practice,
assuming that the SAP reference model can be regarded as a representative ex-
ample. We will map all non-trivial EPCs in the SAP reference model onto YAWL

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 451–457, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

452 J. Mendling et al.

Customer
requires

certificate

New certificate
to be

created

Certificate
profile

assignment
exists

Certificate
recipient

is to
be created

Customer
requires

certificate

Quality
certificate
is released

for use

Certificate
has to

be created
for delivery

item

Certificate
request
exists

Creation
of a

Quality
Certificate

Certificate
should

be printed
on request

Certificate
Profile

and Profile
Assignment

Further
copy

of certificate
required

Edit
Recipient
of Quality
Certificate

Certificate
creation

for delivery
item

is triggered

Certificate
archived

Certificate
based

on standard
form

Fig. 1. One of the EPCs in the SAP reference model: the “Certificate Creation” process

models [1] and use the WofYAWL tool [12] for the verification (based on the
relaxed-soundness criterion [4]). We have to stress that this analysis yields a lower
bound for errors since some errors may not be discovered by this tool. There-
fore, it has to be expected that there are more errors than those that we actually
identify.

The remainder of this paper is organized as follows. Section 2 describes the
research design. In particular, we discuss the mapping of EPCs from the SAP ref-
erence model to YAWL models, the analysis techniques employed by WofYAWL,
and descriptive statistics that provide a comprehensive inventory of errors in the
SAP reference model. Finally, Section 3 presents related work before Section 4
concludes with a summary of our contribution and its limitations.

2 Research Design and Results

In this section, we present the way we evaluated the SAP reference model. We
use the ARIS XML export of the reference model as input to several transfor-
mation and analysis steps. In a first step, the EPC to YAWL transformation
program generates a YAWL XML file for each EPC in the reference model (see
Sect. 2.1). These YAWL models are then analyzed with WofYAWL that produces
an XML error report of design flaws (see Sect. 2.2). Furthermore, we extract

Faulty EPCs in the SAP Reference Model 453

Input
Condition

Output
Condition

AND
Split
Task

AND
Join
Task

XOR
Split
Task

EPC
Function

EPC
Event

Atomic
Task

no
mapping

XOR
Split
Task

OR
Split
Task

OR
Join
Task

Start Start

OR
Split
Task

End End

OR
Join
Task

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

(j)

Fig. 2. Overview of the EPC to YAWL Mapping

descriptive information such as the number of elements of a certain element
type and whether there are cycles for each EPC model (see Sect. 2.3).

2.1 Transformations of EPCs to YAWL

Several mappings from EPCs to Petri Nets have been proposed in order to verify
formal properties, see e.g. [9] for an overview. In this paper, we use a transfor-
mation from EPCs to YAWL as defined in [10]. The advantage is that each EPC
element can be directly mapped to a respective YAWL element (see Fig. 2).
Even though EPCs and YAWL are very similar in this sense, there are three dif-
ferences that have to be considered in the transformation: state representation,
connector chains, and multiple start and end events.

EPC functions can be mapped to YAWL tasks following mapping rule (a) of
Fig. 2. The first difference between EPCs and YAWL is related to state repre-
sentation. EPC events define pre- and post-conditions of functions. They do not
capture state directly. Therefore, rule (b) defines that events are not mapped
to YAWL taking advantage of the fact that arcs in YAWL represent implicit
conditions if they connect two tasks. In EPCs connectors are independent ele-
ments. Therefore, it is allowed to build so-called connector chains, i.e. paths of
two or more consecutive connectors (cf. Fig. 1). In YAWL there are no connec-
tor chains since splits and joins are part of tasks. The mapping rules (c) to (h)
map every connector to a dummy task with the matching join or split condi-
tion (see Fig. 2). The third difference stems from multiple start and end events.
An EPC is allowed to have more than one start event and more than one end
event. In YAWL there must be exactly one start condition and one end condi-
tion. Therefore, the mapping rules (i) and (j) generate an OR split for multiple
starts and an OR join for multiple ends. Fig. 3 gives the result of applying the
transformation to the “Certificate Creation” EPC of Section 1. Note that con-
nectors are mapped onto dummy tasks. To identify these tasks they are given
a unique label extracted from the internal representation of the EPC, e.g., task
“and (c8z0)” corresponds to the AND-split connector following event “Customer
requires certificate.”

454 J. Mendling et al.

Split
and

(c8z0)

or

(c8yr)

or

(c8z9)

xor

(c8zg)

or

(c91z)

and

(c92k)

and

(c90q)

xor

(c8zy)

and

(c907)

or

(c90e)

or

(c93t)

Out

put

Certificate Profile and Profile

Assignment (c92d)
Creation of a Quality

Certificate (c91h)

Edit Recipient of Quality

Certificate (c939)

Fig. 3. YAWL model obtained by applying the mapping shown in Fig. 2 to the example

2.2 WofYAWL Analysis

After mapping the EPC onto YAWL, we can use our verification tool WofYAWL
[13]. WofYAWL first maps a YAWL model onto a Petri net [11]. Fig. 4 sketches
a small fragment of the Petri net that results from mapping the YAWL model of
Fig. 3. The fragment only considers the dummy tasks resulting from the mapping
of the top four connectors in Fig. 1. Moreover, from the initial OR-split task
“Split” we only consider the arcs connected to these four dummy tasks.

The “happy smileys” in Fig. 4 are used to identify net elements that are in-
volved in so-called “good execution paths”, that is, the execution paths in the
Petri net that lead from the initial state to the desired final state. In Fig. 4,
there exist two such paths, which join at the XOR-join named “xor (c8z9)”.
The “sad smileys” visualize relevant parts in the Petri net that are not cov-
ered by some good execution path. WofYAWL issues respective warnings. These
indicate a problem involving the top four connectors in Fig. 1. Note that the
AND-split connector splits the flow into two paths that join with an XOR-join.
Hence these two paths cannot be involved in a good execution. Moreover, if the
AND-split connector is not allowed to occur, the two OR-joins could as well be
XOR-joins. In our analysis we use transition invariants to avoid constructing
large or even infinite state spaces [12]. Moreover, we have used existing Petri-
net-based reduction rules [11] to further reduce the complexity of the models
without loosing any information. For further details on this approach we refer
to [12].

and (c8z0)

or (c8yr)

or (c8z9)

xor (c8z9)

Fig. 4. Petri net fragment of the converted YAWL model

Faulty EPCs in the SAP Reference Model 455

Table 1. Branches of the SAP Reference Model. The columns Eav., Fav., Cav., Aav.

refer to the mean number of events, functions, connectors, and arcs.

Branch Model % EPC % Eav. Fav. Cav. Aav. Cycle Error %
Asset Accounting 461 4.7% 43 7.1% 13.9 4.0 5.2 23.3 0 7 16.3%
Benefits Administration 50 0.5% 6 1.0% 9.5 3.3 5.8 19.7 3 0 0.0%
Compensation Management 122 1.2% 18 3.0% 7.6 3.4 3.3 13.7 3 1 5.6%
Customer Service 402 4.1% 41 6.8% 16.5 3.6 9.0 29.5 3 1 2.4%
Enterprise Controlling 599 6.1% 22 3.6% 14.3 10.1 6.1 32.1 0 3 13.6%
Environment, Health, Safety 102 1.0% 19 3.1% 3.5 2.7 1.2 7.0 0 0 0.0%
Financial Accounting 614 6.2% 54 8.9% 13.0 4.0 5.1 21.8 0 3 5.6%
Position Management 4 0.0% 0 0.0% 0.0 0.0 0.0 0.0 0 0 n.a.
Inventory Management 184 1.9% 3 0.5% 15.0 7.0 6.0 28.0 2 0 0.0%
Organizational Management 37 0.4% 5 0.8% 12.0 3.0 6.6 24.0 3 0 0.0%
Payroll 541 5.5% 7 1.2% 5.7 3.1 2.1 11.4 0 1 14.3%
Personnel Administration 15 0.2% 4 0.7% 7.3 1.5 4.0 12.3 0 0 0.0%
Personnel Development 60 0.6% 10 1.7% 8.7 2.5 4.4 15.6 3 1 10.0%
Personnel Time Management 87 0.9% 12 2.0% 10.8 3.0 5.3 19.5 1 2 16.7%
Plant Maintenance 399 4.1% 35 5.8% 20.5 4.2 11.4 37.8 9 1 2.9%
Procurement 444 4.5% 37 6.1% 6.7 3.5 2.7 12.4 0 2 5.4%
Product Data Management 366 3.7% 26 4.3% 4.5 5.4 2.2 13.7 0 0 0.0%
Production 296 3.0% 17 2.8% 8.8 3.0 2.9 13.7 0 1 5.9%
Production Planning 194 2.0% 17 2.8% 5.7 2.9 3.0 11.5 0 0 0.0%
Project Management 347 3.5% 36 6.0% 8.5 3.8 2.2 14.0 0 0 0.0%
Quality Management 209 2.1% 20 3.3% 20.5 3.8 11.7 37.8 1 1 5.0%
Real Estate Management 169 1.7% 6 1.0% 12.7 6.5 7.3 27.0 1 1 16.7%
Recruitment 56 0.6% 9 1.5% 7.4 2.6 4.1 13.8 3 0 0.0%
Retail 842 8.6% 1 0.2% 7.0 5.0 2.0 11.0 0 0 0.0%
Revenue & Cost Controlling 568 5.8% 19 3.1% 16.5 10.2 7.9 36.0 1 1 5.3%
Sales & Distribution 703 7.1% 76 12.6% 10.6 3.1 4.3 16.6 0 1 1.3%
Training & Event Management 95 1.0% 12 2.0% 13.0 2.7 6.2 22.2 0 1 8.3%
Travel Management 116 1.2% 1 0.2% 24.0 7.0 16.0 48.0 0 0 0.0%
Treasury 1761 17.9% 48 7.9% 10.5 3.5 4.5 18.1 0 6 12.5%
All 29 Branches 9844 100% 604 100% 11.5 4.0 5.2 20.8 33 34 5.6%

2.3 Descriptive Statistics

The sample of the SAP reference model that was available for this research con-
tains 9844 models, but only a fraction of them represent proper EPCs with at
least one start event and one function. There are 604 of such process models as
listed in the column EPC. Using the transformations and the WofYAWL tool
described in Sect. 2, we discovered that at least 34 models have errors (5.6% of
604 analyzed EPCs). Table 1 summarizes the SAP reference model subdivided
into its 29 branches. It can be seen that the number of EPC models varies sub-
stantially (from none in Position Management to 76 in Sales & Distribution).
Furthermore, the EPCs are of different size indicated by the mean number of
events, functions, connectors, and arcs in columns Eav., Fav., Cav., Aav. respec-
tively. The column Cycle states how many EPCs contain cycles, and Error for
how many models WofYAWL reports an error.

3 Related Research

Work on the verification of process models can roughly be put into three cat-
egories: verification of formal models, i.e. the model with formal executable se-
mantics is correct or not; verification of informal models, i.e. defining subclasses

456 J. Mendling et al.

of informal models that are mapped onto formal models, the model is correct
or not; and verification by design, i.e. the modeling language does not allow for
syntactical errors. Examples are block structured models. For related work for
each category we refer to [5]. Besides these categories, there are some verification
approaches that are a combination of others. For example [6] involves the process
designer in the verification process. Therefore, this approach is not applicable for
the automatic verification of the entire SAP reference model. The approach we
use based on WofYAWL has been introduced in [13]. Yet, it is not complete as
there may be errors left undetected. Still, this paper uniquely combines formal
error detection with a large set of real-world process models. This way, we have
identified a lower bound of 5.6% for errors in the SAP reference model.

4 Contributions and Limitations

This paper provides a lower bound of 5.6% for the number of faulty EPCs in
the SAP reference model. Our automatic verification approach is based on a
mapping from EPCs to YAWL and on the utilization of the WofYAWL tool.
As far as we know, this is the first systematic analysis of the EPCs in the SAP
reference model. Yet, our approach still has some limitations: WofYAWL does
not find all errors and the SAP reference model is only one specific case of
an enterprise model. Therefore, we aim to improve the automatic detection of
errors. Moreover, a analysis of further large enterprise models is needed to better
understand why and when modelers introduce errors.

References

1. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

2. T. Curran and G. Keller A. Ladd. SAP R/3 Business Blueprint: Understanding the
Business Process Reference Model. Enterprise Resource Planning Series. Prentice
Hall PTR, Upper Saddle River, 1997.

3. Islay Davies, Peter Green, Michael Rosemann, Marta Indulska, and Stan Gallo.
How do practitioners use conceptual modeling in practice? Data & Knowledge
Engineering, In Press, 2006.

4. J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes. In K.R.
Dittrich, A. Geppert, and M.C. Norrie, editors, Proceedings of CAiSE 2001, volume
2068 of LNCS, pages 157–170. Springer-Verlag, Berlin, 2001.

5. B.F. van Dongen and M.H. Jansen-Vullers. EPC Verification in the ARIS for
MySAP reference model database. BETA Working Paper WP 142, Eindhoven
University of Technology, 2005.

6. B.F. van Dongen, H.M.W. Verbeek, and W.M.P. van der Aalst. Verification of
EPCs: Using reduction rules and Petri nets. In Conference on Advanced Informa-
tion Systems Engineering (CAiSE 2005), volume 3520 of LNCS, pages 372–386.
Springer-Verlag, Berlin, 2005.

7. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf
der Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des
Instituts für Wirtschaftsinformatik, Heft 89 (in German), Saarbrücken, 1992.

Faulty EPCs in the SAP Reference Model 457

8. G. Keller and T. Teufel. SAP(R) R/3 Process Oriented Implementation: Iterative
Process Prototyping. Addison-Wesley, 1998.

9. E. Kindler. On the Semantics of EPCs: Resolving the Vicious Circle. Data and
Knowledge Engineering, 56(1):23–40, 2006.

10. J. Mendling, J. Recker, M. Rosemann, and W.M.P. van der Aalst. Generating
Correct EPCs from Configured C-EPCs. In Proceedings of the 21th Annual ACM
Symposium on Applied Computing (SAC 2006). ACM Press, 2006.

11. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, April 1989.

12. H.M.W. Verbeek and W.M.P. van der Aalst. On the verification of EPCs using
T-invariants. BPM Center Report BPM-06-05, BPMcenter.org, 2006.

13. H.M.W. Verbeek, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Verifying work-
flows with cancellation regions and OR-joins: An approach based on invariants.
BETA Working Paper WP 156, Eindhoven University of Technology, 2006.

A Hybrid Approach for Generating
Compatible WS-BPEL Partner Processes

Simon Moser1, Axel Martens2, Marc Häbich1,3, and Jutta Mülle3

1 IBM Böblingen Lab, Business Process Solutions,
Böblingen, Germany
smoser@de.ibm.com

2 IBM TJ Watson Center, Component Systems Group,
Hawthorne (NY), USA
amarten@us.ibm.com

3 University of Karlsruhe, Information Systems Group,
Karlsruhe, Germany
muelle@ipd.uka.de

Abstract. The Business Process Execution Language for Web Services
provides an technology to aggregate encapsulated functionalities for
defining high-value Web services. For a distributed application in a B2B
interaction, the partners simply need to expose their behavior as BPEL
processes and compose them. Still, modeling and composing BPEL pro-
cesses can be complex and error-prone. With formal methods like Petri
nets, it is possible to analyze crucial properties (e.g. compatibility) effec-
tively. In this paper, we present a method that automatically generates
compatible partner BPEL processes for a given BPEL processes. Our
hybrid approach makes use of formal methods, but also incorporates the
structure of the original BPEL process model, such that the generated
partner process is easier to understand and manage.

Keywords: Business Process Modeling, Web Service, WS-BPEL, Be-
havioral Compatibility, Tool based Verification, Petri nets.

1 Introduction

The Business Process Execution Language for Web Services BPEL4WS [7] is
becoming the standard for modeling Web Service based business processes. A
BPEL process implements one Web Service by specifying its interactions with
other Web Services (which might be BPEL processes, too). BPEL processes con-
sist of two kinds of activities: Basic activities to communicate to the outside, to
manipulate data or to interfere with the control flow and structured activities to
aggregate other activities, i. e. to build the control structures of the process.

For two BPEL processes to interact, interfaces with operations and message
types have to be defined separately in WSDL [2] and included into a partner link
which specifies the interfaces of any given set of interacting BPEL processes. In
the online shop example (Figure 1), the client process provides two interfaces:
the StartUp Interface towards the initiating component and the Order Client Interface

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 458–464, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Hybrid Approach for Generating Compatible WS-BPEL Partner Processes 459

Receive Login

Premium customer Otherwise

Invoke Delivery

Complex Order Service

Decision on server side

Client-Server
PartnerLink

Receive OrderReceive ToP

Invoke ConfirmInvoke Discount

Receive Payment Receive Order

Invoke Confirm Invoke SBC

Complex Order Client

Reply to Invocation

Receice InvocationInvocation
Invocation

PartnerLink

Invoke Specials

Receive Response

Invoke Login

Premium customer Otherwise

Receive Delivery

Decision on client side

Invoke OrderInvoke ToP

Receive ConfirmReceive Discount

Invoke Payment Invoke Order

Receive Confirm Receive SBC

Receive Specials

Invoke Response

Login

Order

Response

ToP

Payment

Specials

Confirm

Discount

SBC

DeliveryO
rd

er
 C

lie
nt

 In
te

rf
ac

e

O
rder S

erver Interface

S
ta

rt
 u

p
In

te
rf

ac
e

Fig. 1. Online shop example – incompatible BPEL processes of client and server

towards the shop’s service. Moreover, the client requires the online shop’s Web
service to provide the Order Server Interface. Obviously, two BPEL processes can
only be composed iff the provided interface of each process equals the required
interface of the other. But this syntactic compatibility between the interfaces is
not sufficient for the successful interaction of two BPEL processes.

An additional requirement – called behavioral compatibility [6] – is needed to
ensure successful composition. In our example, the client process transmits the
login data and makes a decision whether to act as a premium customer or as a
regular customer, but its decision is not synchronized with that of the server pro-
cess, although it is crucial to the further interaction. In case the client acts as a
premium customer, it sends its order along with its terms of payment (ToP), and
awaits discount information and confirmation. However, the server process might
treat him like a regular customer because his last order was too long ago. In that
case, the server process will acknowledge the order with the standard business
conditions (SBC) and await payment. The concurrent conversation (Invoke Spe-
cials) happens regardless of either party’s decision. In the end, both processes
are waiting and neither can continue on its own - a classic deadlock situation.
Obviously, the behavior of these two BPEL processes is not compatible.

Handing out an abstract process model to the partner so he can model his
process accordingly is one solution to ensure behavioral compatibility, cf. [6].
However, modeling is time consuming and error-prone, and the partner might
need many attempts to build a process that is actually compatible. A more
elegant solution is to create a template of the partner’s process (PP for short)
out of the original process (OP) and to hand out this template instead . Thus, the
partner only needs to refine the template according to his needs while behavioral
compatibility is guaranteed. Similar ideas have been proposed for example in
[4]. In this article, we will present a new approach to automatically generating
guaranteed compatible BPEL PP in a hybrid approach, which combines the
structural and behavioral approaches described in the following.

460 S. Moser et al.

2 Structural Approach

This approach uses the interaction patterns and control structures defined in
BPEL processes. It parses the structure of the OP and reflects it using the du-
ality between two BPEL activities (Table 1). The partner generation aims to
deliver a process template that interacts correctly with the OP, and that has to
be further refined by the partner. Hence, the generation focusses on communi-
cating and structuring activities only, while internal activities of the OP (wait,
assign, empty, . . .) are ignored/mapped to empty. Communication between BPEL
processes is either asynchronous or synchronous, in which case the activity that
calls is blocked until a response has been sent. Structured activities define the
control flow of a BPEL process. Generally, sequential activities in one process can
be mapped to sequential execution within the other. Sometimes the blocking in
synchronous communication requires multiple parallel threads in the generated
PP (cf. [3]). So the most general approach is to map each sequence into a flow
and to express the precedence constraints with flow links. Parallel execution in
one process can always be mapped to parallel execution within the other.

Mapping choices is more complicated. An externally determined choice within
the OP (pick) can be mapped into an internal choice of the PP (switch), where
each case branch exchanges messages w. r. t. the communication style – although
the mapping of onAlarm branches is not clear. The mapping of a switch activity
into pick activity, however, is not possible in general, because there might be no
distinguished messages sent in the case branches at all. Mapping instead a switch
into a switch might lead to unsynchronized decisions of both BPEL processes, cf.
Figure 1. A switch without communicating activities is just an internal activity.
If we see a while activity as a kind of switch that loops in one case and does
nothing in the otherwise case, the same problems apply to while (cf. [3]).

The client process shown in Figure 1 was generated using this approach. Since
the approach is based on static mapping rules, it is very fast, and the generated

Table 1. Conceptual dualities between BPEL activities

Basic process activity partner activity
receive with/without reply synchronous/asynchronous invoke
synchronous/asynchronous invoke receive with/without reply
wait, assign, empty, . . . empty or ignored

Structured process activity partner activity
sequence sequence (flow)
flow flow (sequence)
pick switch

onMessage with/without reply case branch with sync/async invoke
onAlarm N/A

switch pick, switch or empty
while while
scope scope

handler N/A

A Hybrid Approach for Generating Compatible WS-BPEL Partner Processes 461

BPEL to Petri

net mapping

Original
Process
Model

Formal
Process

Model

Formal
Behavior

Model

Formal
Controller

Model

Partner
Process
Model

Hybrid
approach

Behavioral approach

S
tr

u
ct

u
ra

l a
p

p
ro

ac
h

Controllability

analysis

R
ef

le
ct

in
g

of
 B

P
E

L
ac

tiv
iti

es

State machine to BPEL mapping

P
ro

je
ct

io
n

of
 s

ou
nd

 b
eh

av
io

r
(a) Partner generation approaches (b) Communication graph of server process

Fig. 2. Wombat4ws’s formal background

PP’s structure is as simple (or complex) as the OP. In general, this makes the PP
easily manageable/understandable to humans. These are two major advantages.
But a major drawback is that compatibility is not guaranteed if internal decisions
within the OP influence the communication between the parties. Moreover, the
approach does not cover timers, handlers and complex flow link structures.

3 Behavioral Approach

The behavioral approach uses a formal mathematical analysis of the OP model.
It consists of four steps, as shown in Figure 2(a). In the first step, the BPEL OP
is transformed into a formal Petri Net representation, see also [5,1,8]. To keep
the relation to the BPEL process, all Petri net elements are grouped into block
structures, each representing exactly one element of the process. The resulting
formal process model is called BPEL-annotated Petri net (BPN) [6].

However, the BPN is intermediary: In the second step, the communication
behavior of the BPN is analyzed. Martens [1] presents an algorithm for analyzing
the controllability of a BPEL process that generates a communication graph of
the BPN model. This graph is the external, i. e. the partners’, view on the process.
Figure 2(b) shows a subset of the communication graph of the server process from
the initial example. Formally, it is a state machine with two different kinds of
states. A visible state (drawn as a white ellipse) refers to reachable states of the
BPN in which input messages are expected. Each outgoing edge of such a state
is labeled with a message which the BPN is able to receive in this state. A hidden
state (drawn as a filled circle) is of intermediary nature. Each outgoing edge is
labeled with a message the BPN can send in response to the consumed input.

With all possible sequences of input/output messages of the OP, the third step
eliminates those sequences that may produce unwanted situations like deadlocks.
The described behavior of the initial client process, for example, is one such
communication sequence. The projection yields a sub-graph that contains only
sound communication sequences and that represents the controller model for

462 S. Moser et al.

Parse source
structure tree

End

Analyze behavior ,
extract behavioral sub-graph

Treat node in
behavioral mode

Treat node in
structural mode

Start

Structure tree
has more nodes

Node can be mirrored
with model language
means

Sub-graph has
more nodes

Node can be mirrored
with model language
means

Y

N

Y N

N

N

Y

Y

ST
R

U
C

T
U

R
A

L
 C

Y
C

L
E

B
E

H
A

V
IO

R
A

L
 C

Y
C

L
E

(a) The Hybrid Algorithm

Invoke Login

Receive Delivery

Complex Order Client

Invoke ToP

Receive Discount

Invoke Payment

Receive Confirm

OnMessage Confirm OnMessage SBC

Pick decision on server side

Invoke Order

Receive Start

Reply Start

Invocation

Invocation
PartnerLink

Client-Server
PartnerLink

Login

Order

Response

ToP

Payment

Specials

Confirm

Discount

SBC

Delivery

Receive Specials

Invoke Response

O
rd

e
r

C
lie

n
t
In

te
rf

a
c
e

O
rd

e
r S

e
rv

e
r In

te
rfa

c
e

S
ta

rt
 u

p
In

te
rf

a
c
e

(b) Generated compatible client processes

Fig. 3. Hybrid approach for generating behaviorally compatible partner processes

the BPEL OP. Figure 2(b) shows that sub-graph for the server process of the
online shop example. The controller model is transformed into the BPEL PP
model, by mapping each edge to a communicating BPEL activity while the con-
trol flow is built around them w. r. t. the causal order [3]. In contrast to the
structural approach, the behavioral method has been proven to produce a be-
haviorally compatible PP, if there is one possible at all. Still, the main drawback
of this method is that it is computationally expensive and will actually con-
sider all possible sequences of communication activities, e. g. for 12 concurrent
communication activities in the OP, there are 12! = 47, 900, 1600 possibilities to
order them. Hence, the method will often yield a PP that is too complex and
rather hard for the partner to refine, as Figure 2(b) shows. The generation of
the communication graph alone is exponential w. r. t. the size of the OP (cf. [1]).

4 Hybrid Approach

In isolation, both approach have strengths but also drawbacks. The hybrid ap-
proach combines their advantages without inheriting their deficits: it uses the
structural approach whenever possible, to make the transformation fast and the
result less complex, and the behavioral approach whenever necessary, to guaran-
tee behavioral compatibility. The approach combines the hierarchical, tree-like
structure gained by parsing the OP into a structure tree (so structured activities
form intermediate nodes and basic activities form leaf nodes) with the formal
controller model of the OP gained with the behavioral approach.

The hybrid algorithm shown in Figure 3(a) always starts in the structural
mode (Structural Cycle): It parses the structure tree as defined by the OP.
Then, it enters a loop visiting all nodes of that tree. In the so-called mirror
decision, it decides for each node in the structure tree whether it can be mirrored
with BPEL means. If this is true, then on the basis of the conceptual dualities,

A Hybrid Approach for Generating Compatible WS-BPEL Partner Processes 463

a corresponding BPEL activity for the current node is generated, named and
inserted into the result structure tree. If it is false, i. e. if the activity cannot
be reflected by structural means, then the node has to be decomposed into
sub-structures, i. e. the behavior of the current activity is analyzed by zooming
into it and dissecting it into a sub-tree of connected sub-activities. Now, in the
Behavioral Cycle, each node of that sub-graph is classified in a decision: If the
activity can be reflected with structural means, is handed over to the structural
cycle. Else, it is treated in turn according to the formal controller model. Once the
sub-graph has been processed completely, the algorithm loops back to the initial
mirror decision to continue with the next ordinary node. The client process
shown in Figure 3(b) was generated using the hybrid approach.

In short, whenever a pattern occurs that cannot be transformed by simply
reflecting it, e. g. the internal Decision on Server side (cf. Figure 1), the algorithm
switches into behavioral mode to extract information about the pattern’s be-
havior from the communication graph and generates receive or pick, and reply
or invoke activities for all messages in that sub-graph. Finally, it connects these
generated activities by control flow links and/or embeds them into structured
activities. Since the structure tree may impose different operation modes, the
algorithm will switch back and forth between the two modes depending on the
patterns it encounters. For more details see [3].

5 Conclusion

In this paper, a method to automatically generate compatible BPEL partner pro-
cesses was presented. This method had to satisfy three major requirements: (i)
the generated PP had to be a valid BPEL process, (ii) it had to be behaviorally
compatible to the OP, and (iii) it had to be sufficiently compact and simple
enough to be understood and refined by a human process modeler. Neither a
pure structural approach, nor a pure behavioral approach meet those require-
ments completely. On detailed examination of the two approaches, a third, hybrid
approach, was developed, which coupled the advantages while overcoming their
drawbacks. The hybrid approach connects the structural process elements, as
defined by BPEL, with the formal mathematical analysis result (represented by
the communication graph). As demonstrated in this paper, the hybrid approach
couples behavioral compatibility with human readability and manipulability. A
different solution to overcome behavioral incompatibility between two BPEL pro-
cess models is trying to generate a third one which acts as an adapter between
those two. This is the topic of a currently conducted research project.

References

1. A.Martens. Analyzing Web Service based Business Processes. In Maura Cerioli,
editor, Proc. of FASE’05, LNCS 3442, Edinburgh, Scotland, April 2005. Springer.

2. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. WSDL – Web
Services Description Language. W3C, Standard, Version 1.1, March 2001.

464 S. Moser et al.

3. M. Häbich. Reverse Transformation of Petri Net-Based Communication Graphs to
BPEL4WS in Distributed Web Service Environments. Master’s thesis, 2005.

4. S. Haddad, T. Melliti, P. Moreaux, and S. Rampacek. Modelling Web Services
Interoperability. In Proc. of ICEIS04, 2004.

5. R. Hamadi and B. Benatallah. A Petri Net based Model for Web Service Composi-
tion. In Proc. of ADC 2003. Australian Computer Society, Inc., 2003.

6. A. Martens, S. Moser, A. Gerhardt, and K. Funk. Analyzing Compatibility of BPEL
Processes. February 2006.

7. T.Andrews, F.Curbera, H.Dholakia, Y.Goland, J.Klein, F.Leymann, K.Liu,
D.Roller, D.Smith, S.Thatte, I.Trickovic, and S.Weerawarana. BPEL4WS – Busi-
ness Process Execution Language for Web Services. Version 1.1, July 2002.

8. W.M.P. van der Aalst. Modeling and Analyzing Interorganizational Workflows. In
Proc. of CSD’98. IEEE Computer Society Press, 1998.

Towards a Task-Oriented, Policy-Driven
Business Requirements Specification

for Web Services

Stephen Gorton and Stephan Reiff-Marganiec

Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

{smg24, srm13}@le.ac.uk

Abstract. Dynamic assembly of complex software is possible through
automated composition of web services. Coordination scripts identify
and orchestrate a number of services to fulfil a user or business goal.
There exists a need for expressing high level business requirements in
such a way that is accessible by businesses. Current solutions fail to in-
clude specifications at the appropriate level of abstraction. Our approach
defines a graphical notation to depict a business goal in terms of objec-
tives, which are refined by tasks. The specifics of each task as well as
overarching business constraints are expressed by policies.

1 Motivation

The advent of Service-oriented Architecture (SoA) makes software “on demand”
a distinct possibility. The relatively recent introduction of web services means
that automated composition of services can be achieved. Solutions already exist
for service discovery and description, though these may be far from complete.
Composition solutions also exist, with the Business Process Execution Language
(BPEL1) the de facto standard.

Attempts to bridge the gap between the business domain and the service
domain are often made by expressing business logic through composition or
other technologies, but there is a distinct lack of tools which can express precise
requirements specifications at the business level. While existing solutions tackle
aspects such as functionality and sequencing of business activities, none are
complete to encompass all information required at the business level.

The problem that we address in this paper regards business process modelling
and analysis, and our goal is to develop a modelling language to accurately
express a complete set of business requirements, through the use of policies, in
terms of web service usage. One particular aspect is that the notation should be
suitable for use by business users (not IT experts) and that it should be simple
to use to encourage changes when demand arises.

1 http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 465–470, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

466 S. Gorton and S. Reiff-Marganiec

2 Background

Service-oriented Architecture, and its implementation as Web Services, make the
vision of just-in-time assembly of applications a distinct possibility. SoA refers to
a system architecture where a number of independent services can be composed
at runtime into larger applications in order to respond to immediate business
needs or goals. For details about SoA we refer to Alonso et al. [1]. The automatic
composition (i.e. identifying plans for composing services such that they fulfil
some desirable goal) and ways for end-users to express these goals (requirements)
are two aspects that still must be addressed. In this paper we concentrate on
the latter.

We consider the flow of the business process and the description of the business
policies as parts of the requirements specification. Task flow is usually captured
in a way that describes the operative nature of the business by using task maps
or work flow languages. Task flow is obtained through business modelling as
this requires a certain understanding of the business processes involved. Exist-
ing composition technologies such as BPEL can express sequence logic in service
usage, but they are aimed at the IT level. The Business Process Modeling No-
tation (BPMN) [2] addresses the problem of expressing business requirements.
However, the BPMN specification [2] states that it was “constrained to sup-
port only the concepts of modelling that are applicable to business processes”,
thus not supporting organisational structures and resources, functional break-
downs, data and informational models, strategy and business rules. We believe
that BPMN has too many shortcomings to be considered as a complete business
solution for expressing business requirements for a web service-based applica-
tion. In particular, we note that BPMN does not support the expression of
non-functional business requirements.

Business policies on the other hand express rules that are of a more generic
nature; often they do not apply to a specific business process but rather to spe-
cific tasks or the way that the business operates overall. Policies are descriptive
in their nature. Policy description languages [3] have been used to express quality
of service constraints or access control, that is to describe very low level prop-
erties of systems. The Appel policy language [4] has been defined to express
end-user rules in telecommunications systems and we are extending this in our
ongoing work to interact with the task maps discussed in this paper.

Our approach builds on the conceptual ideas of BPMN by using a simpler
graphical notation, but adding policies to express precise business requirements.

3 Overview of Approach

Our graphical notation is intended to act as a modelling agent for businesses who
choose to use web services. The process of requirements elicitation begins with
the specification of the business goal. This goal is broken down into objectives
that are fulfilled by tasks, which represent atomic business activities. The goal is
then expressed in terms of a task map and policies. Now there exists an accurate
model for the business requirements.

Towards a Task-Oriented, Policy-Driven Business Requirements 467

service

data in

data outerror

compensation side effect
(world change)

(a) Service as a computational entity

task
service

control data

control data

ext in error
data

dataerror

compensate side
effect

(b) Services map to tasks

Fig. 1. Services

The task map (and policies) are read by a parsing engine, which searches
Internet directories for web services that satisfy the requirements. Once all ser-
vices have been located, their descriptions are returned. A coordination engine
generates a coordination script according to the descriptions and flows in the
task map.

To define the goal, the business must define the objectives that would satisfy
it and the tasks required to satisfy each objective, along with the execution
sequences of the tasks. A business goal is likely to be defined at a very high
level and thus cannot be easily formalised. Functionality is the core requirement
for each task. Functionality can usually be more accurately expressed at the
atomic task level, whereas non-functional requirements may be expressed at the
composite task level, such that they can propagate through to any subtask. Our
approach uses policies to encode rules describing the operation of the business
as well as the constraints that apply to certain tasks.

A service is a computational entity that maps input data to output data,
respects certain non-functional properties, might change a world condition and
has a compensation action (e.g. undo as in [5]). In Fig. 1(a), we see how a
service is graphically represented, and in Fig. 1(b) how a service maps to a
task (or composite task). Note that the service may be of a composite nature
(i.e. composed of other services).

4 Graphical Modelling Constructs

A task is a business activity that contributes to an objective and thus the wider
business goal. Each task fulfils a functional requirement. Each task must have
a control input and a control output. It has external inputs representing a pol-
icy that affects this particular task. Once control has reached a task’s input,
the task’s triggers are activated. On completion of the task, the control leaves
through its output channel. Composite tasks are task sub-maps, enabling the
designers to separate concerns over aspects of the business goal.

A flow is a sequence of entities (tasks or operators) in the task map and can
either be a control flow or a data flow. All tasks inside a task map are subject to
policies that are centrally specified by the consuming business or governing law
that either restrict the service selection or change the shape of the task map.
An example of the former is that a corporate policy may state that the use of

468 S. Gorton and S. Reiff-Marganiec

control data

ext in
task

control data

(a) Simple task

task
service

control data

control data

ext in error
data

dataerror

compensate side
effect

(b) Composite task

Fig. 2. Tasks

fx.1 fx.2 fx.4 fx.5

fx

fx.3

(a) Flow Split

fx

fx.1 fx.2 fx.4fx.3

n

(b) Conditional Merge

fx

fx.1 fx.2

test

(c) Flow Junction

p1tp.1 tp.2 tp.3

error

(d) Strict Preference

c1tc.1 tc.2 tc.3

error

(e) Random Choice

fx.1 fx.2 fx.4 fx.5

fx

fx.3

(f) Flow Merge

Fig. 3. Operators

a direct competitor’s services is forbidden. An example of the latter is a policy
that requires the obtaining of at least 3 quotes before a purchase can be made.
Note that data and control flow can be independent and we can have partial
data flows.

In addition to tasks and flows, which can express simple sequencing, we define
operators that are functions on control flows. These further enable a business to
accurately model their business goal.

Flow Split. The flow split operator takes a control flow input and produces
a set of control flow outputs. In Fig. 3, the operator is pictured with one in-
put and five output flows. When the active control flow reaches the operator,
control is distributed amongst the outgoing flows such that each flow progresses
simultaneously. For example, in a typical customer-supplier-warehouse example,
a product dispatch may involve simultaneously notifying the customer of the
dispatch whilst ordering a stock replacement.

Conditional Merge. The conditional merge operator takes a set of active input
control flows and, subject to business-defined constraints, merges them with syn-
chronisation to a single output flow. We allow to specify mandatory and optional
flows (the filled or empty circles in the graphical notation). Also, the notation
allows to specify the number of flows that must reach the operator before pro-
ceeding. For example, when looking for airline ticket quotes, one might request

Towards a Task-Oriented, Policy-Driven Business Requirements 469

quotes from three suppliers, including the preferred supplier. Before booking, we
might say that we must have a quote from the preferred supplier, plus one more.

Flow Junction. A flow junction operator diverts the control flow down one of
two possible output routes according to a binary test.

Strict Preference. A strict preference operator attempts to execute a series
of tasks in a defined order, progressing when one of the tasks is completed. The
task with highest priority is attempted first. Each task in the operator specifies
its own output flow which is followed when its parent task is completed.

Random Choice. Choice is similar to preference, but without priorities at-
tached to included tasks. When control reaches this operator, all tasks may be
attempted simultaneously. When a first task reaches a commit stage all others
are cancelled.

Flow Merge. Flow merge is an operator that takes a set of control flow inputs
and maps to a single output flow. In order to preserve synchronisation, we say
that only one flow of the incoming set must be active, with all others inactive.
This may be the result of a prior junction, preference or choice operator.

5 Evaluation

Our approach has been to simplify the requirements specification process for
non-IT experts working in the business domain. Despite the existence of other
methods, we believe that our method has the following advantages when applied
at the business level:

– Expressiveness: Our language is able to express as many or as few require-
ments as is deemed necessary by the business. Task maps are an easy method
to understand and, with the aid of a wizard, policies are easy to construct.
Despite being at a higher level of abstraction, the task map can be automat-
ically mapped into service coordination scripts. We also include operators in
our notation that are non-existent in current notations, e.g. preference, thus
increasing the expressiveness for end users.

– No Binding: All tasks are expressed without the knowledge of services that
are available. The job of matching services to tasks is performed automati-
cally by a search engine, based on ontologies and richer semantic descriptions
of web services, which is out of the scope of this paper (there is active re-
search in this area which has led to some preliminary results; most ideas are
centred around planning algorithms).

– Change: If some aspect of the business goal needs changing to cater for a new or
changed business requirement, it can be done with relative ease by altering the
task map or underlying policies. The service coordination script is generated
automatically, which is subject to any changes made to the specification.

– Technology Compatibility: Though not an immediate aspect of business ver-
satility, our solution is able to take advantage of current solutions that exist,
e.g. BPEL as the coordination script. In this respect, a business always has
the option of altering their executable coordination script before proceeding.

470 S. Gorton and S. Reiff-Marganiec

– Composition Views: We add that our solution can generate different views
that are customized to different stakeholders. In particular, a project man-
ager may be more interested in (composite) task requirements whereas the
IT director may be more interested in the global or business-wide constraints.
Further low level views include control flow views and data flow views.

– Workflows: Our notation is able to support many of the workflow patterns
as described in [6].

The conciseness of this paper does not allow to present details on the issues
of cancellation, negotiation and how standard workflow patterns are supported.

6 Conclusions and Further Work

We have presented a notation for describing business requirements at an abstract
level. A business goal is defined in terms of objectives which are further refined by
tasks. Tasks are organised into a task map. Policies define complete requirements
and specifications for tasks, and are more generic in that they can be used
throughout the task map, providing information to many parts of a business
goal, and even across multiple goals. We firmly believe that this solution is able
to fill the gap between service levels and business levels.

Our further work includes refinement of the ideas presented on policies, based
on the APPEL policy language [4]. We also propose that a workbench be de-
signed to enable designing of task maps and policies through the use of a graph-
ical user interface.

Acknowledgements

This work is funded by the IST-FET IST-2005-16004 project SENSORIA (Soft-
ware Engineering for Service-Oriented Overlay Computers). Further thanks to
Marie-Claude Gaudel for her advice on cancellation and undoing.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraiu, V.: Web Services: Concepts, Architec-
tures and Applications. Springer (2004)

2. Object Management Group (OMG): Business Process Modeling Notation (BPMN)
Specification. (2006)

3. Lupu, E., Sloman, M.: Conflicts in policy-based distributed systems management.
IEEE Trans. Software Eng. 25(6) (1999) 852–869

4. Turner, K.J., Reiff-Marganiec, S., Blair, L., Pang, J., Gray, T., Perry, P., Ireland,
J.: Policy support for call control. Computer Standards and Interfaces (2005)

5. Gaudel, M.C.: Toward undoing in composite web services. LRI, Paris-Sud University
and CNRS, Orsay, France (2004)

6. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Work-
flow patterns. Technical Report FIT-TR-2002-03, Queensland University of Tech-
nology, Brisbane (2002)

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 471 – 476, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Parameterized BPEL Processes: Concepts and
Implementation

Dimka Karastoyanova, Frank Leymann, Jörg Nitzsche,
Branimir Wetzstein, and Daniel Wutke

IAAS, University of Stuttgart, Germany
{karastoyanova, leymann, nitzsche, wetzstein,

wutke}@iaas.uni-stuttgart.de

Abstract. This paper presents the concept of parameterized WS-flows and two
extensions to the BPEL language for enabling it. Another major contribution is
a prototypical infrastructure enacting the execution, monitoring and adaptation
of parameterized BPEL processes. The advantages of parameterized BPEL
processes are the improved flexibility and reusability.

1 Introduction to Parameterized BPEL Processes

A BPEL [CGK+03] process is a collection of activities and control flow and data
dependencies between them. BPEL processes define a business process in an abstract
form, with all participants being WSs. Therefore they inherit the independence of
platforms, programming languages, data formats and transport protocols. Interaction
with partners is defined using partner links where the port types of potential partners
are fixed. In addition the port type and operation names are a part of the interaction
activities’ definitions (e.g. <invoke>) that specify a port type and operation of the
service to interact with, and the data to be exchanged. BPEL is considered a very
flexible model for orchestrating services: process models can be reused with different
configuration settings specified during their deployment. However port types (or
partner links, respectively) and operation names are hard-coded in process definitions,
which limits the loose-coupling and reusability features of processes. Referencing
port types is a major drawback because industries can agree upon and standardize the
types of messages to be exchanged, but it is nearly impossible to standardize the port
types and operations. Thus, process models must be changed to reflect changes of port
types across organizations and domains although the messages exchanged remain the
same. To tackle this drawback in our previous work we have proposed the concept of
parameterized processes ([KHC+05], [KaLB05]). Parameterizing processes
eliminates the dependency of processes on partner idiosyncrasies (operation names
and port types).

Specifying or modifying endpoint selection criteria during process run time is not
yet supported by the existing binding strategies, which limits the process instance
repair possibilities and again process flexibility. The drawbacks resulting from fixed
portTypes and inability to control selection criteria on ports are eliminated by the
concept of parameterized processes.

472 D. Karastoyanova et al.

The goal of this paper is to present prototypical infrastructure implementing this
concept.

Parameterized processes contain parameters substituting the port types and
operations; hence introduce an additional degree of freedom to process models
[KaLB05]. Processes are executable if at run time all partner endpoints are known or
can be calculated. Since partner services and their endpoints in our approach are
unknown prior to process instance execution, we add a metamodel extension element
to supply means of calculating them at run time. The BPEL representation of this
element, the <evaluate> element, is shown in the following listing.

<invoke name=“ " partnerLink=“partnerLink" inputVariable=“…"
portType=“portType" operation=“operation" outputVariable=“…">
 <evaluate activated=“yes|no” changeType =
 "static|prompt|query|fromVariable” substitute="value"/> </invoke>

Listing 1. A BPEL representation of the <evaluate> element

We define four mechanisms for parameter evaluation [KaLB05]: “static”,
“prompt”, “query” and “from variable”, expressed by the changeType attribute of the
element. The element can be activated or deactivated by toggling its activated
attribute (on a per-instance-basis) using external tools (e.g. the monitor in Fig. 1). The
input for the parameter evaluation strategy is a proper value of the substitute attribute:
(1) it contains port type and operation names for the “static” strategy; (2) is empty for
the “prompt” strategy because the strategy requires input from a monitoring tool and
an authorized user; (3) is a query string or a query identifier for the “query” strategy;
(4) a getVariableData() function and a variable name as an argument for the “from
Variable” strategy. The query string format we use in this work is presented in Listing
2. The query strategy is indeed a way to specify functional and non-functional
requirements on partner services in a declarative manner. In addition, a query may
incorporate transition conditions [Wetz06], and so eliminate alternative paths and
reduce complexity of process models [KaLB05]. Note that it is designed to be
independent of any semantic WS technology. Together with the “from Variable”
strategy, the query strategy is executed automatically.

The <evaluate> extension element improves process flexibility because it supports
the two basic approaches to flexibility: (i) “avoid change” because port types remain
unfixed till activity execution and (ii) process instance adaptation because the
extension can be used to modify operations/port types at run time.

For port types selected at run time compliant endpoints have to be discovered. This
is done using dynamic discovery of and binding to WS ports – “find and bind”
mechanism. This mechanism can be used in reaction to a service bus failure and thus
avoid process instance termination. In [KHC+05] we introduce the <find_bind>
element to support this mechanism on per-process-instance-basis.

2 Enabling Infrastructure

The prototypical infrastructure supporting parameterized processes contains a process
execution engine, an instance monitoring tool, and a message broker (Fig. 1). The

 Parameterized BPEL Processes: Concepts and Implementation 473

O
th

er
 m

on
ito

rs

Fig. 1. The Infrastructure Architecture

BPEL engine is an extension to the ActiveBPEL 1.2 engine ([Wetz06], [Wutk06]).
Process instances executed on the extended engine are monitored and adapted using a
monitoring tool [Nitz06]. A JMS implementation serves as a message broker between
engine and monitor.

The process engine handles the creation, execution and management of process
instances, and alarm events. It is responsible for correlating incoming messages to
running instances and their activities or creating new process instances. It schedules
service invocations. A work manager assigns work units to separate threads to ensure
parallel execution of actions. Time and alarm managers deal with timing issues of
process instances (onAlarm events and time-outs). In addition the engine provides an
administration module. The engine has an event framework for signaling and handling
events. Three types of events are signaled by the extended engine: process instance
level events, process activity level events and Model Events. Model events are fired
whenever a modification in the values of port type and operation is made, as well as
upon changes in the attributes of the <evaluate> and <find_bind> extension elements.
The events are detected per process instance and are disseminated by the Controller
module of the engine to external infrastructure components like monitoring tools. The
Controller module (Fig. 1) contains the major extensions to the ActiveBPEL engine
code. It tackles the communication with the message broker (JMS adapter) and
implements managers handling commands from the monitoring tool with respect to
changing extension elements attributes and propagating them to the process instances,
managing monitoring tools registration and setting breakpoints (EvaluateManager,
FindBindManager, MonitorManager, BreakpointManager) (see Fig. 1) [Wutk06].

During process deployment the BPEL processes are transformed into the engine
internal format – the so called definition objects. These objects have been extended to
support the two extension constructs. Definition objects are created once per process
model and are instantiated as many times as many instances of the process model are
created. The engine-internal representation of process instances is in terms of
implementation objects containing instance specific data and reference to the process
model. They have also been extended to support the semantics of the extension
elements.

Whenever <evaluate> and/or <find_bind> elements are present in an activity, their
definition objects are transformed into an instance specific object of the type Evaluate

474 D. Karastoyanova et al.

and FindBind respectively, and are stored into the corresponding implementation
object of the activity. This way all <invoke> activities across all process instances
have their own representation of these extension elements. Hence the extension
element attributes are kept modifiable at run time on a per-instance-basis. Note that
no implementation objects for the two extension elements are created yet.

Process instance execution boils down to executing its implementation objects one
after another according to the process model and in compliance with the operational
semantics of the WS-flows meta-model. Interaction activities utilize an invoke
handler to interact with partner WSs. In this work, alternative invocation handler
implementations have been developed to support the <evaluate> and <find_bind>
elements.

The invocation handler used by an activity containing an <evaluate> element uses
the attributes of the Evaluate object created upon process instantiation to generate an
implementation object for the construct, which in turn references an evaluation
strategy implementation. The result of the evaluation mechanism is an object
(EvaluateResponse) containing the result of the evaluation, namely port type and
operation name [Wutk06], [Wetz06]. The implementation objects for the different
strategies differ not only in their implementation, but also in the parameters they
require (see section 2).

The implementation of the strategy “static” uses the substitute attribute value in the
Evaluate object to determine the return result. The strategy “prompt” requires the
support of a monitoring tool for determining the EvaluateResponse (i.e. the portType
and/or operation name); thus administrators are expected to provide parameter values.
The result of the fromVariable strategy is extracted from the variable specified in the
substitute field of the Evaluate object. The input for the execution of the “query”
strategy is a query string. It enables automatic discovery of candidate service types
and uses semantic web service technologies. The design of the BPEL extension, the
query string format and the engine design and implementation are independent of any
particular semantic WS technology; so far our prototype supports the OWL-S
technology. The query string format is presented in the following listing.

<query><serviceSemantics><semanticsURI uri=""/>* </serviceSemantics>
 <serviceCategories> <serviceCategory name="" value="" code=""/>*
 </serviceCategories>
 <serviceProperties> <serviceProperty name="" value=""
 comparator="" type=""/>* </serviceProperties>
 <servicePolicies> <wsp:Policy>...</wsp:Policy>
 </servicePolicies></query>

Listing 2. The format of the search query in the strategy “query” [Wetz06]

The serviceCategories, serviceProperties and servicePolicies sections are used to
specify non-functional requirements to the services, whereas the serviceSemantics
section describes the functional requirements in terms of semantic WS description.
All these sections may contain conditions similar to transition conditions on
connectors in a process model. Based on the data in process variables different service
properties may be used as selection criteria across the different instances of a process.

The actual search for and invocation of compliant services in the “query” strategy
implementation is delegated to a service broker component [Wetz06], which is

 Parameterized BPEL Processes: Concepts and Implementation 475

Se
rv

ic
e

B
ro

ke
r

Fig. 2. Extended infrastructure implementing the “query” evaluation strategy

integrated with the engine via an adapter (Fig. 2). The adapter is invoked by the
implementation object of an activity containing an <evaluate> construct with
changeType=“query”. The service broker obtains as an input the query string pre-
processed for the particular process instance and the input data (input variable) for the
service invocation (Fig. 2).

The service broker discovers services based on semantic descriptions, selects the
most appropriate endpoint (Discovery Manager) and invokes it (Invocation Manager).
For the discovery of semantically compliant services functional semantics match
suffices. Additional filtering is applied based on non-functional properties. The
invocation manager invokes the service and hands over the resulting output data to the
broker manager. For the actual invocation to take place data transformations may be
necessary if the input and output data types as required by the process model and the
ones used by the invoked service do not match. OWL-S technology supports data
transformations using XSL-transformations in the OWL-S grounding.

The result of the “query” evaluation strategy is either the values for the portType
and operation parameters or the result of invoking a particular WS operation
compliant with the semantic description specified in the query. The former case
requires additionally the execution of a “find and bind” mechanism to discover an
endpoint and invoke the service. The same mechanism is also performed whenever a
<find_bind> element is contained in an interaction activity. It can either be performed
by the broker itself, or by another infrastructure component. More details are
published in [KHC+05] and [Wutk06].

The monitoring tool visualizes process models and the execution status of process
instances. It is also used to modify the attributes of the extension elements and to
provide parameter values for the prompt evaluation strategy on a per-process-
instance-basis. The communication with the engine is handled by the communication
module (Fig. 3), which consumes engine event notifications published by the message
broker and sends messages to the engine’s input queue to induce process instance
modifications [Nitz06]. The process manager is responsible for the monitor-internal
representation and management of process models and instances. All changes in the
data managed by the process manager are reflected by the GUI. All changes in the

476 D. Karastoyanova et al.

Controller

Engine
JMS Queue

activebpel.controller.in

Temp JMS Queue

JMS Topic
activebpel.controller.out

MonitorMessage Broker

MsgRuntimeProcess
MsgRuntimeActivity
MsgRuntimeModel

Message
Handlers

Communication

Process
Manager

GUI

RuntimeActivity

RuntimeProcess

RuntimeModel

MsgPromptResponse
MsgRegisterRequest
MsgRuntimeControl

MsgPromptRequest
MsgRegisterResponse

Fig. 3. Components of the monitoring tool, and its interaction with the process engine

activity or process states are published by the engine via the message broker. These
events are processed by the monitor’s communication module and propagated to the
process manager, which updates the states of the corresponding instances and
activities affected by these changes. This way the representation of processes and
instances in the monitor is synchronized with their state in the engine.

Any modifications (enabled by the GUI) in the extension elements’ attributes and
breakpoint insertion/deletion are propagated to the engine by the monitor
communication module (MsgRuntimeControl). The changes commanded by the
monitor are made visible by the monitor only after the engine has confirmed them.

3 Conclusions and Future Work

The concept of parameterized processes improves the flexibility of WS-flows. To
enable it the BPEL language has been extended. In this paper report on a prototypical
infrastructure implementation supporting flexible BPEL processes. The infrastructure
comprises an advanced features BPEL engine and a monitoring and management tool.
Parameterized processes aim at improving reusability of process models. Our current
and future research work focuses on defining templates for BPEL processes and
building a template modeling tool.

References

[CGK+03] Curbera, F. et al.: BPEL4WS 1.1. 2003
[KHC+05] Karastoyanova, D. et al: Extending BPEL for Run Time Adaptability. EDOC 2005.
[KaLB05] Karastoyanova, D. et al: An Approach to Parameterizing WS-flows. ICSoC 2005.
[Leym05] Leymann, F.: The (Service) Bus: Services Penetrate Everyday Life. ICSoC 2005.
[Nitz06] Nitzsche, J.: Entwicklung eines Monitoring-Tools zur Unterstützung von

parametrisierten Web Service Flows. Diploma Thesis 2388, Universität Stuttgart,
2006.

[Wetz06] Wetzstein, B.: Dynamische semantikbasierte Suche nach Web Services in
parametrisierten BPEL-Prozessen. Diploma Thesis 2372, Universität Stuttgart, 2006.

[Wutk06] Wutke, D.: Erweiterung einer Workflow-Engine zur Unterstützung von
parametrisierten Web Service Flows. Diploma Thesis 2401, Universität Stuttgart,
2006.

Behavioral Technique for Workflow Abstraction and
Matching

Kais Klai1, Nomane Ould Ahmed M’bareck2, and Samir Tata2

1 Technical University Eindhoven
k.klai@tue.nl
2 GET/INT France

{Nomane.Ould ahmed mbarek, Samir.Tata}@int-evry.fr

Abstract. This work is in line with the CoopFlow approach dedicated for work-
flow advertisement, interconnection, and cooperation in virtual organizations. In
order to advertise workflows into a registry, we present in this paper a novel
method to abstract behaviors of workflows into symbolic observation graphs
(SOG). We present in addition an efficient algorithm for SOG matching, which is
used for interconnecting workflows1.

1 Introduction

Research on workflow management has focused on inter-organizational issues and
much has been achieved so far [5,1]. Problems to be encountered on this research in-
clude mainly autonomy of workflow processing, flexibility, and lack of arbitrary work-
flow support. To deal with these issues, we have developed the CoopFlow approach [3]
that consists of three steps: workflow advertisement, interconnection, and cooperation.
In fact, for building an inter-organizational workflow, each organization has to adver-
tise, within a common registry, a description of its offered and required activities within
their workflows. For workflow interconnection, each organization identifies its partners
using a matching mechanism. For matching workflows, we propose in this paper a new
algorithm using symbolic observation graphs (SOG for short) [2]. The rest of this paper
is organized as follows. Section 2 describes our novel method of workflow abstraction
based on SOG. Section 3 presents an algorithm for checking whether two workflows
could cooperate. Using workflow matching, Section 4 shows how inter-organizational
workflow is formed. Finally, the section 5 concludes the paper.

2 Workflow Abstraction

An inter-organizational workflow can be considered as the cooperation of several local
workflows. Each one has two types of activities (transitions): cooperative activities that
interact with other workflows and local activities that perform local actions. In order to
set up cooperation, workflows have to be abstracted to preserve privacy, and advertised
into a registry to be found and interconnected to partners’ workflows. Workflows are
reprenseted by Wf-nets [6]: A WF-net is a Petri net that has one source place and one sink

1 This research has been partially funded by the Netherlands Organisation for Scientific Re-
search (NWO) under FOCUS/BRICKS grant number 642.000.504.

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 477–483, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

478 K. Klai, N.O.A. M’bareck, and S. Tata

place and all its nodes (places or transitions) should be on some path from source to sink.
To define workflow abstraction and matching, we need to introduce some definitions.

Let σ be a sequence of transitions (σ ∈ T ∗). The projection of σ on a set of tran-
sitions X ⊆ T (denoted by σ�X) is the sequence obtained by removing from σ all
transitions that do not belong to X . A sequence σ = t1t2 . . . tn over transitions is
said to be accepted if i (resp. o) is in set of input (resp. output) places of t1 (resp tn)
and σ can be executed by the workflow. The language L(W) of a workflow W is the
set of all accepted sequences and the projection function is extended to L as follows:
L�X = {σ�X , σ ∈ L}.

2.1 Workflow Abstraction Using Symbolic Observation Graphs

In this paper, we originally propose to abstract workflows using the SOG structure in-
troduced in [2] as an abstraction of the reachability marking graph of a given Petri net
within a model checking approach. The building of the SOG is guided by the set of
the cooperative transitions. Such activities are called observed, since they interact with
other workflows, while the other transitions are unobserved. Then, the SOG is defined
as a deterministic graph where each node is a set of markings linked by unobserved
sequences of transitions and each arc is labeled with an observed transition. Nodes of
the SOG are called meta-states and may be represented and managed efficiently by
using Ordered Binary Decision Diagram (OBDD) [7]. The SOG technique is suitable
for abstracting workflows for many reasons: First, the SOG allows one to represent the
language of the workflow projected on the cooperative transitions i.e. the local behav-
iors are hidden. The second reason is that such an abstraction is suitable for checking
whether two workflows represented by their SOG can be interconnected (see section 3).
Finally, the reduced size of the SOG (in general) could be an advantage when one plans
to store and manage a big number of workflows abstractions in a same registry.

2.2 SOG Building Algorithm

We adapt here the SOG technique to our workflow context by representing a workflows
by a finite Wf-net associated to an initial marking m0. A marking description is rep-
resented by a fixed vector of boolean variables. Using the enabling predicate for each
transition of the system and the transformation, the dynamics of the workflow can be
symbolically evaluated by the operation Img(S,t) which returns the set of immediate
successors of the states of the set S by the occurrence of the transition t. The operation
Img is naturally extended to a set of transitions T as follows: Img(S,T)=∪t∈TImg(S, t).
Algorithm 1 builds the SOG related to an initial state m0 and to a partition of the set of
transitions T into two (disjoint) subsets Coop and Local representing sets of observed
(cooperative) and unobserved (local) transitions respectively. The data structures ma-
nipulated by the algorithm are the following ones:

– shared OBDD which contains symbolic representations of subsets of reachable sets,
– a standard graph representation with a set of vertices (V) and a set of edges (E). To

each node v is associated a set of states v.set that are abstracted by v,
– a stack whose items are tuples composed by a node of the graph and a symbolic

subset of states (the interpretation of this set is given below).

Behavioral Technique for Workflow Abstraction and Matching 479

The initialization step of the algorithm 1 allows to compute the first (initial) node of the
SOG and to initialize the graph structure. The initial node of the graph is computed in
two steps: first, starting from the initial marking m0, we compute the set of all states
that are reachable from m0 by execution of local sequences of transitions (Saturate()).
Then, function Reduce(), allows to reduce the obtained set by taking only a subset of
representative states. Briefly, this function allows to keep one representative of each
source strongly connected component in the subgraph abstracted by a node of the SOG
(see [2] for a detailed description of this function).

An iteration of the main loop consists in picking and processing an item 〈v, S〉 of
the stack until the stack is empty. The goal of the iteration is to generate the successors
of the current node in the SOG. The set of states S corresponds to the states reached
by any sequence of cooperative transitions leading from the initial node of the SOG to
v. Thus one successively computes the image S′ of S by each cooperative transition.
If S′ is not empty, it generates a new edge of the SOG labeled by the transition. Now
one must check whether the node reached by this edge is a new one. So we compute
the set attribute of this node. This is done by computing the closure of S′ under the

Algorithm 1 Building of the observation graph
1: BuildOG (state m0, Transitions Coop);
2: set S′; vertex v, v′;
3: Vertices V ; Edges E; stack st;
4: Transitions Local = T \ Coop;
5: S′ = Saturate({m0}, Local);
6: v.set = Reduce(S′, Local, 1);
7: V = {v}; E = ∅; st.Push(〈v, S′〉);
8: repeat
9: st.Pop(〈v, S〉);

10: for t ∈ Coop do
11: S′ = Img(S, t);
12: if (S′ 6= ∅) then
13: S′ = Saturate(S′, Local);
14: v′.set = Reduce(S′, Local, 1);
15: if (∃w ∈ V s.t.w == v′) then
16: E = E ∪ {v

t→ w};
17: else
18: V = V ∪ {v′};

19: E = E ∪ {v
t→ v′};

20: st.Push(〈v′, S′〉);
21: end if
22: end if
23: end for
24: until st == ∅;

25: Saturate(set S, transitions Local);
26: set From,Reach, To;
27: From = S; Reach = S;
28: repeat
29: To = Img(From,Local);
30: From = To \ Reach;
31: Reach = Reach ∪ To;
32: until From == ∅;
33: return Reach;

.

480 K. Klai, N.O.A. M’bareck, and S. Tata

action of the local transitions (via Saturate) and then compute the representative subset
(via Reduce). Finally, we look for an identical node in the graph. If such a node is not
present we add a new node in the graph and push it on the stack with S′. In fact, we
could avoid to push S and retrieve the significant information from v.set but this would
complicate the presentation.

3 Workflow Matching

Given a Wf-net W1 and a registry of potential partners for W1, we discuss in this sec-
tion the selection criteria allowing to choose a Wf-net W2 in the registry as a partner
of W1. Such criteria are based on the observed behavior of W1, i.e. its behavior on the
cooperative transitions, which must match with the observed behavior of W2. Before
presenting the matching conditions, let us introduce some definitions. Each coopera-
tive transition t of Wf-net W is represented by a tuple t = 〈name, type, msg〉 where
t.name is the label associated to t, t.type is a boolean variable saying whether t is sup-
posed to receive a message (t.type = 1), or to send a message (t.type = 0), and t.msg
represents the semantic description of the message (using a common ontology) t has
to send or to receive. In order to check whether there exists a correspondence between
two cooperative transitions t1 and t2 belonging to two different Wf-nets, we need to
compare these transitions with respect to their attributes. Two attributes are taken in
account: type and msg. For instance, if t1 is a reception transition then t2 must be a
sending transition and both transitions have to match on the semantic of the exchanged
message. We denote by t1.msg ≡ t2.msg the fact that messages of t1 and t2 deal with
the same data type and semantics. Now, if t1.type = ¬(t2.type) and t1.msg ≡ t2.msg,
then we say that t1 matches with t2 (and vice versa) and denote this relation by t1 ∼ t2.
The following hypothesis is important for the remaining part of the paper. It says that,
within the same Wf-net W1, if a cooperative transition occur in a Wf-net more than
once then these occurrences are executed in an exclusive way. In this case we denote by
{t} the set of occurrences of a cooperative transition t in a Wf-net. Let 〈W1, m1〉 be a
marked Wf-net and let Coop be its set of cooperative transitions. Then:

∀t1 ∈ Coop, ∀σ = αt1α
′t1, where α andα′ ∈ Coop∗, then σ
∈ L(W1, m1).(H)

3.1 The Cooperation Candidate Property

In this section, we define the cooperation candidate property that will help us to define
formally the fact that a Wf-net W1 can cooperate with a given Wf-net W2. For this issue,
we need to introduce a renaming procedure LW1 . Let W1 and W2 be two Wf-nets and
let Coop1 and Coop2 be their sets of cooperative transitions. The renaming procedure
LW1 associated to W1 is defined as follows:

LW1 (W2) = ∀t2 ∈ Coop2 if ∃t1 ∈ Coop1 s.t. t1 ∼ t2 then t2.name := t1.name.

Now, 〈W2, m2〉, a marked workflow, is said to be a cooperation candidate for
〈W1, m1〉 if for any firing sequence enabled from 〈W1, m1〉, there exists a firing se-
quence enabled from 〈LW1 (W2), m2〉, which both have the same projection on the co-
operative transitions (of W1). In the following, we define such a property. Let 〈W1, m1〉

Behavioral Technique for Workflow Abstraction and Matching 481

and 〈W2, m2〉 be two marked Wf-nets: 〈W2, m2〉 is said to be a candidate for coopera-
tion with 〈W1, m1〉 iff L�Coop1(〈W1, m1〉) ⊆ L�Coop2(〈LW1 (W2), m2〉).

3.2 An Algorithm for Checking the Cooperation Candidate Property

The Wf-net W2 would be an effective candidate to cooperate with W1 if the lan-
guage induced by the SOG of W1 is included in that induced by SOG of LW1(W2).
To check such an inclusion, the SOG of (W1, m1) is synchronized against the SOG of
(LW1(W2), m2). The inclusion test Algorithm 2 works on the fly i.e. the building of the
synchronized product can be stopped at any moment as soon as the inclusion is proved
unsatisfied. When the synchronized product is entirely built, one deduces that the in-
clusion holds. The parameters of this algorithm are the SOGs SoG1 = 〈s0, S1, E1〉
and SoG2 = 〈s′0, S′1, E′1〉 of (W1, m1) and (LW1 (W2), m2) respectively. s0 (resp. s′0)
is the initial meta-state of SoG1 (resp. SoG2), S1 (resp. S2) its set of meta-states and
E1 (resp. E2) its set of arcs. The data structures used by Algorithm 2 are a table Synch

and a stack st. Synch is used to store the states of the synchronized product non com-
pletely treated. An item of st is a tuple 〈s1, s2, f1〉 composed of a reachable meta-state
of (W1, m1), a reachable meta-state of (LW1(W2), m2) and a set of cooperative transi-
tions enabled in both nodes. Moreover, three functions are used in this algorithm. The
two first ones, Out() and Img(), collect information associated to the SOG structure. The
first one is applied to a node of the SOG and return the set transitions labeling its output

Algorithm 2 (L(SoG1 = 〈s0, S1, E1〉) ⊆ L(SoG2 = 〈s′
0, S2, E2〉))?

1: State s1, s2, s′
1, s′

2;
2: Set of transition f1, f2;
3: stack st(〈State, State, T ransSet〉);
4: s1 = s0;
5: s2 = s′

0;
6: f1 = Out(s0),
7: f2 = Out(s′

0);
8: if f1 6= ∅ and f2 6= ∅ then
9: if (Names(f1) 6⊆Names(f2)) then

10: return false;
11: end if
12: end if
13: Synch = {〈s1, s2〉};
14: st.Push(〈s1, s2, f1〉);

15: repeat
16: st.Pop(〈s1, s2, f1〉);
17: for t ∈ f1 do
18: s′

1 = Img(s1, t); s′
2 = Img(s2, t)

19: if 〈s′
1, s

′
2〉 6∈Synch then

20: f1 = Out(s′
1); f2 = Out(s′

2);
21: if f1 6= ∅ and f2 6= ∅ then
22: if (Names(f1) 6⊆ Names(f2))

then
23: return false;
24: end if
25: end if
26: Synch = Synch ∪ {〈s′

1, s
′
2〉};

27: st.Push(〈s′
1, s

′
2, f1〉);

28: end if
29: end for
30: until st == ∅;
31: return true;

.

482 K. Klai, N.O.A. M’bareck, and S. Tata

edges. The second function is applied to a state s1 and a transition t (enabled in this
node) and returns the reached node. The third function is Names() whose parameters
are a set of transitions f returns the set of their names.

4 Workflow Interconnection

In this section, we describe how to interconnect two workflows W1 and W2 such that
W2 satisfies the cooperation candidate property by connecting the cooperative transi-
tions of W1 to those of W2 via a set of buffer places.

Let W1 = 〈P1, T1, P re1, Post1〉 and W2 = 〈P2, T2, P re2, Post2〉 be two Wf-
nets. Let Coopk, for k = 1, 2 be the cooperative transitions of Wk, let ik and ok be
the source and sink places of Wk , and let us assume that W2 satisfies the cooperation
candidate property. Then the interconnection of W1 and W2 leads to the Petri net Σ12 =
〈P, T, Pre, Post〉 defined, for k = 1, 2, as follows:

– P = P1 ∪ P2 ∪ B ∪ {i, o}, where B is a set of buffer places such that: ∃t1 ∈
Coop1, t2 ∈ Coop2 and t1 ∼ t2 iff bt1,t2 ∈ B.

– T = T1 ∪ T2 ∪ {in, out}
– ∀p ∈ P \ {i, o} \ B, ∀t ∈ T \ {in, out}

Pre(p,t)(resp. Post(t,p)) = Prek(p, t) (resp. Postk(t, p)) if (p, t) ∈ Pk × Tk

– ∀bt1,t2 ∈ B Pre(b, tk) = tk.type and Post(tk, b) = tk.type.
– Pre(i, in) = 1, Post(out, o) = 1, Post(in, ik) = 1 and Pre(ok, out) = 1.

The following theorem states an interesting feature of the Petri net obtained by inter-
connecting two Wf-nets: such an interconnection leads to a Wf-net. The proof of the
theorem is trivial since the Wf-net properties are ensured by construction.

Theorem 1. Let W1 and W2 be two Wf-nets and let Σ12 be the Petri net obtained by
the interconnection of W1 and W2. Then Σ12 is a Wf-net.

5 Conclusion

In this paper, we have presented an original approach for abstraction and interconnec-
tion of workflows. To be advertised in a common registry, workflows’ behaviors are ab-
stracted into SOG using the ordered binary decision diagram technique. The abstraction
concept provides a high degree of flexibility for participating organizations, since inter-
nal structures of cooperative workflows may be adapted without changes in the inter-
organizational workflows [4]. To interconnect workflows into an inter-organizational
workflow, we have presented an algorithm for matching their SOGs. If the matching
result is positive, then the workflows are then interconnected. Results of this work guar-
antee that the interconnection of workflows nets leads to a workflow net. Algorithms
we have presented in this paper are implemented within the CoopFlow framework.

References

1. A. Van Dijk. Contracting workflows and protocol patterns. In Proceedings BPM, Eindhoven,
The Netherlands, June 2003.

2. S. Haddad, J-M. Ilié, and K. Klai. Design and evaluation of a symbolic and abstraction-based
model checker. In Farn Wang, editor, ATVA, volume 3299 of LNCS. Springer, 2004.

Behavioral Technique for Workflow Abstraction and Matching 483

3. S. Dustdar I. Chebbi and S. Tata. The view-based approach to dynamic inter-organizational
workflow cooperation. Data and Knowledge Engineering Journal, 56:2, 2006.

4. W. van der Aalst and K. Anyanwu. Inheritance of interorganizational workflows to enable
business-to-business e-commerce. In The Second International Conference on Telecommuni-
cations and Electronic Commerce (ICTEC’99), pages 141–157, Nashville, Tennessee, 1999.

5. W.-M.-P. van der Aalst and M. Weske. The p2p approach to interorganizational workflows.
In Proceedings of the 13th International Conference on Advanced Information Systems Engi-
neering, pages 140–156. Springer-Verlag, 2001.

6. Wil M. P. van der Aalst. The application of petri nets to workflow management. Journal of
Circuits, Systems, and Computers, 8(1):21–66, 1998.

7. I. Wegener. Branching programs and binary decision diagrams: theory and applications.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

Author Index

Al-Ghaiati, Fathi M. 338
Álvarez, Pedro 209
Alves de Medeiros, Ana Karla 129

Bañares, José Ángel 209
Braem, Mathieu 113

Cerone, Antonio 439
Chen, Jinjun 445
Cheung, William K. 274

Dadam, Peter 193
Decker, Gero 414
Dongen, B.F. van 451
Dumas, Marlon 65, 161

Edmond, David 389
Ellis, Clarence A. 49
Eshuis, Rik 97
Ezpeleta, Joaqúın 209

Fabra, Javier 209
Fantinato, Marcelo 290
Felgar de Toledo, Maria Beatriz 290
Ferguson, Donald F. 1

Gal, Avigdor 407
Garćıa-Bañuelos, Luciano 401
Gimenes, Itana Maria de Souza 290
Godart, Claude 257
Golani, Mati 407
Gorton, Stephen 465
Green, Dave 16
Grefen, Paul 97
Grossmann, Georg 432

Häbich, Marc 458
Hammori, Markus 368
Hee, Kees van 225
Herbst, Joachim 368
Hofstede, Arthur H.M. ter 161, 389

Jansen-Vullers, Monique H. 306
Joncheere, Niels 113
Jonckers, Viviane 113

Joosen, Wouter 113
Jurisch, Martin 241

Kaan, Kees 358
Karastoyanova, Dimka 471
Kim, Kwang-Hoon 49
Klai, Kais 477
Kreher, Ulrich 241
Krishnan, Padmanabhan 439

Lassen, Kristian Bisgaard 348
Leymann, Frank 471
Liu, Chengfei 33
Liu, Jiming 274
Lohmann, Niels 17
Lu, Ruopeng 426
Luo, Zongwei 274
Ly, Linh Thao 193

Martens, Axel 378, 458
Massuthe, Peter 17
Mendling, Jan 348, 451
Meyer, Harald 81
Milosevic, Zoran 395
Molen, Peter van der 358
Moser, Michael 451
Moser, Simon 378, 458
Mülle, Jutta 458
Müller, Dominic 368

Netjes, Mariska 306
Neumann, Gustaf 451
Nitzsche, Jörg 471

Oanea, Olivia 225
Orlowska, Maria 395
Ould Ahmed M’bareck, Nomane 477

Pelechano, Vicente 322
Perrin, Olivier 257
Puhlmann, Frank 145, 414

Reichert, Manfred 241, 368
Reiff-Marganiec, Stephan 465
Reijers, Hajo A. 306, 358
Rembert, Aubrey J. 49

486 Author Index

Rinderle, Stefanie 193, 241
Rouached, Mohsen 257
Rozinat, Anne 420
Russell, Nick 161

Sadiq, Shazia 395, 426
Schrefl, Michael 432
Serebrenik, Alexander 225
Sidorova, Natalia 225
Siegeris, Juliane 177
Spork, Murray 65
Stahl, Christian 17
Stegeman, Mark J. 306
Stockton, Marcia 1
Stumptner, Markus 432

Tata, Samir 477
Till, Sven 97
Torres, Victoria 322
Truyen, Eddy 113

van der Aalst, W.M.P. 129, 161,
389, 420, 451

Van Der Straeten, Ragnhild 113

Vanderperren, Wim 113
Verbeek, H.M.W. 451
Verlaenen, Kris 113
Voorhoeve, Marc 225

Wainer, Jacques 49
Wang, Kenneth 65
Wang, Minhong 274
Weijters, A.J.M.M. 129
Weinberg, Daniela 17
Weske, Mathias 81, 145, 414
Wetzstein, Branimir 471
Wohed, Petia 161
Wutke, Daniel 471
Wynn, Moe Thandar 389

Xie, Xiaofeng 274

Yang, Yun 445

Zdun, Uwe 348
Zhao, Xiaohui 33
Zhao, Xiangpeng 439
Zimmermann, Armin 177

	Front matter
	Chapter 1
	Model – Assemble – Deploy – Manage (MADM)
	Model
	Assemble
	Deploy
	Monitor
	Nirvana

	Business Architecture and IT Architecture
	Architecture Overview
	Application Architecture
	Runtime Architecture and Deployment
	Monitoring and Management

	The Role of Standards
	Summary and Future Directions
	References

	Chapter 2
	Chapter 3
	Introduction
	Background
	BPEL
	Open Workflow Nets
	Controllability of oWFNs
	Operating Guidelines for oWFNs

	Example Process: Online Shop
	Translating BPEL to Open Workflow Nets
	Petri Net Semantics for BPEL
	The Tool BPEL2oWFN
	Translating the Online Shop

	Analyzing the Interaction of oWFNs
	The Tool Fiona
	Analyzing the Online Shop Model

	The Online Shop Revised
	Related Work
	Conclusion and Further Work

	Chapter 4
	Introduction
	Requirement Analysis with Motivating Example
	Relative Workflows and Tracking Structures
	Relative Workflow Model
	Representation Matrices
	Tracking Structure
	Rules

	Generating Tracking Structures
	Operations
	Generation Algorithm
	Performing Workflow Tracking

	Conclusion
	References

	Chapter 5
	Introduction
	ICN Meta-model and Framework
	Some Useful Perspectives
	Behavioral Perspective
	Activity Assignment Perspective

	Workflow Discovery
	Order Processing Example
	Workflow Discovery Techniques

	Related Work
	Conclusion and Future Work

	Chapter 6
	Introduction
	Background
	Interface Transformation Algebra
	The Flow Operator
	The Gather Operator
	The Scatter Operator
	The Collapse Operator
	The Burst Operator
	The Hide Operator

	Visual Notation
	Visual Representation of Mapping Expressions
	Mapping Constraints

	Tool Support
	Related Work
	Conclusion and Future Work

	Chapter 7
	Introduction
	Usage Scenario
	Shortcomings of Existing Heuristic Search Algorithms
	A Heuristic Search Algorithm for Service Composition
	Enforced Hill-Climbing
	Extending Enforced Hill-Climbing
	A Heuristic for Extended Enforced Hill-Climbing

	Related Work
	Conclusion

	Chapter 8
	Introduction
	Overview
	Dependency Graphs
	Abstract Dependency Graphs
	Concrete Dependency Graphs
	Constructing Dependency Graphs

	The Algorithm
	Structured Composition Language
	Construction Algorithm
	Concrete Dependencies

	CrossWork Case Study
	Related Work
	Conclusions and Further Work

	Chapter 9
	Introduction
	Separation of Concerns
	Web Service Composition in Telecom

	The Padus Language
	Joinpoint Model
	Pointcut Language
	Advice Language
	Aspect Modules
	Aspect Deployment Language

	The Padus Implementation
	General Architecture
	Pointcut Matching and Document Transformation

	Case Study
	Related Work
	Conclusions and Future Work

	Chapter 10
	Introduction
	Overview of Various Equivalence Notations and Related Work
	Preliminaries
	Multi-sets, Sequences, and Matrices
	Petri Nets

	Naive Approaches
	Equivalence of Processes Based on Their Structure
	Equivalence of Processes Based on Their State Space or Traces

	Equivalence of Processes in the Context of Observed Behavior
	Conclusion

	Chapter 11
	Introduction
	Motivation and Related Work
	Preliminaries
	The π-Calculus
	Business Process Patterns in the Pi-Calculus

	Process Graphs
	Structure
	Semantics

	Structural and Lazy Soundness
	Structural Soundness
	Lazy Soundness

	Tool Support and Discussion
	Tool Integration
	Supported Patterns and Performance

	Conclusion

	Chapter 12
	Introduction
	The Control-Flow Perspective in BPMN
	Basic Control-Flow Patterns
	Advanced Branching and Synchronisation Patterns
	Structural Patterns
	Multiple Instances (MI) Patterns
	State-Based Patterns
	Cancellation Patterns

	The Data Perspective in BPMN
	Data Visibility Patterns
	Data Interaction Patterns
	Data Transfer Patterns
	Data-Based Routing Patterns

	The Resource Perspective in BPMN
	Discussion and Conclusion

	Chapter 13
	Introduction
	Preliminaries
	Composition Techniques
	Composition Via Transition Refinement
	Combinations of Workflows as a Whole
	Combination of WF-Nets Due to Information Exchange
	Parallel Composition with Mutual Use of Restricted Resources

	Conclusion

	Chapter 14
	Introduction
	Semantic Constraints and Semantic Correctness in Adaptive Process Management Systems
	On Preserving Semantic Correctness of Processes
	Semantic Correctness of Process Schemes
	Semantic Correctness After Applying Ad-Hoc Process Changes
	Semantic Correctness for Process Schema Evolution

	On Optimizing Semantic Process Verification
	Background Information
	On Exploiting Process Meta Model Properties

	A Framework for Semantic Constraints
	Related Work
	Conclusion and Outlook
	References

	Chapter 15
	Introduction
	Current Approaches for Web Service Composition and Coordination
	An Infrastructure for Web Service Development and Execution
	High-Level Components of an Architecture for Web Service Execution Environments
	Initial Design Considerations
	The $Nets-Within-Nets$ Paradigm
	Implementation Details

	An Implementation of Horizontal Protocols as Web Services
	Description of a Standard Transaction Service
	Modelling and Implementation of the Involved Entities

	Conclusions

	Chapter 16
	Introduction
	Syntax
	Semantics
	Soundness
	Implementation
	Workflow Patterns
	Conclusions and Future work

	Chapter 17
	Introduction
	On Representing Change Logs
	The Logical View -- On Purging Change Logs
	The Implementation View -- The Delta Layer Concept
	Illustrating Example
	Related Work
	Summary and Outlook

	Chapter 18
	Introduction
	Case Study
	Transforming BPEL into Event Calculus
	Overview of BPEL
	Event Calculus
	Our Approach: BPEL2EC

	EC Checking
	Static Verification
	Dynamic Verification
	Non-functional Requirements Verification
	Example

	Architecture and Implementation
	Related Work
	Conclusion and Future Directions

	Chapter 19
	Introduction
	Constrain Management in E-Service/Process Composition
	Agent-Based E-Service/Process Composition
	Multi-agent Framework
	Agent-Mediated Constraint Management

	Experiments
	Related Work
	Conclusions
	References

	Chapter 20
	Introduction
	Related Work
	Electronic Contracts
	CrossFlow e-Contract Metamodel

	Feature Modeling
	Cardinality-Based Feature Metamodel

	Modeling Web Service e-Contracts Based on Features
	Case Study
	Application Domain
	E-Service Feature Model Elaboration
	Web Service e-Contract Template Creation
	E-Service Feature Model Configuration
	Web Service e-Contract Establishment

	Lessons Learned
	Conclusions and Future Work
	References

	Chapter 21
	Introduction
	Related Work
	Call Centers in Literature
	Redesign Best Practices in Call Centers
	Performance Measurement in Call Centers

	Mapping onto Process Designs
	Case Study: The IT Help Desk
	The Process
	The Characteristics and Parameters

	Simulations
	Simulation Scenarios
	Specialization in a One-Level Design
	Task Composition
	Synchronous Versus Asynchronous Designs
	Generalist-Specialist Dilemma and Flexibility

	Conclusion

	Chapter 22
	Introduction
	Related Works
	Proposal Overview
	The e-Library Example
	The Business Process Model. Defining the BP Example
	Transformation Techniques. Background
	Model-to-Model Transformations. From BPMN to OOWS
	New Navigational Primitives for Business Process Support
	Model-to-Model Transformations Language/Tool Support
	Transformation Rules Definition
	Generated User Interface

	Model-to-Text Transformations. From BPMN to WS-BPEL
	Model-to-Text Transformation Language/Tool Support
	Obtaining Executable BP Descriptions

	Conclusions and Further Work
	References

	Chapter 23
	The Business Problem and Business Case
	Towards a SOA Open Solution and Sustainability
	Proposed Solution Framework
	Philosophy
	The Framework
	Framework Components Overview

	The Solution and Technology
	Where Can Intellectual Property Software Products Fit in This Framework?

	Proposed Framework and Sustainability
	Conclusion

	Chapter 24
	Introduction
	Transformation Strategies for Graph-Based BPM Tools
	Exporting BPEL from a Graph-Based BPM Tool
	Importing BPEL into a Graph-Based BPM Tool

	Case Study
	Related Work
	Conclusion

	Chapter 25
	Introduction
	Case Management
	Concept
	Obtaining the View on Activities
	Modeling
	Tool Support: Activity Manager

	Application
	Related Work
	Conclusion
	References

	Chapter 26
	Introduction
	Release Management Processes
	Requirements for IT Support
	IT Infrastructure
	Process Control
	Process Enactment Support
	Usability

	Evaluation of Current Technology
	Related Work
	Summary and Conclusion

	Chapter 27
	Introduction
	Overview on SCA
	SCA Relevant Use Cases

	Analysis Framework
	Architecture
	Example

	Formalization
	Formal Model
	Properties

	Interpretation
	Simulation
	Generation

	Conclusion
	References

	Chapter 28
	Introduction
	Correctness Notions for YAWL Workflows
	Verifying YAWL Nets Without OR-Joins
	Verifying YAWL Nets with OR-Joins
	Verification in YAWL
	Conclusion

	Chapter 29
	Introduction
	Transforming Legal Statements into Formal Representation
	Methodology
	Conclusions and Future Work
	References

	Chapter 30
	Introduction
	BPEL Process Structure and Dynamics
	Our Approach to Separating Transactional Behavior
	Design Patterns
	BPEL Fault Handling as an Orthogonal Behavior

	Extending Fault Handling
	Related Work
	Conclusions and Future Work

	Chapter 31
	Introduction
	WorkflowModel
	Exception Handling
	Exception Handler Optimization
	Conclusion
	References

	Chapter 32
	Introduction
	Related Work
	Formalizing Interaction Patterns Using Pi-Calculus
	The Pi-Calculus
	Interactions in the Pi-Calculus
	Single-Transmission Bilateral Interaction Patterns
	Single-Transmission Multilateral Interaction Patterns
	Routing Patterns

	Conclusion and Outlook

	Chapter 33
	Introduction
	Using Decision Trees for Analyzing Choices
	Decision Mining with the ProM Framework
	Related Work
	Conclusion

	Chapter 34
	Introduction
	Background
	Repository for Process Variants
	Related Work
	Summary
	References

	Chapter 35
	Introduction
	Related Work
	Verification and Validation of the Integration Options
	Conclusion

	Chapter 36
	Introduction
	BPEL and RBAC
	Authorisation Constraints and Verification
	Conclusion and Future Work

	Chapter 37
	Introduction
	Related Work and Problem Analysis for Checkpoint Selection
	Timed Grid Workflow Representation
	Minimum Time Redundancy
	Checkpoint Selection Based on Minimum SC and WC Time Redundancy
	Comparison and Discussion
	Conclusions and Future Work
	References

	Chapter 38
	Introduction
	Research Design and Results
	Transformations of EPCs to YAWL
	WofYAWL Analysis
	Descriptive Statistics

	Related Research
	Contributions and Limitations

	Chapter 39
	Introduction
	Structural Approach
	Behavioral Approach
	Hybrid Approach
	Conclusion

	Chapter 40
	Motivation
	Background
	Overview of Approach
	Graphical Modelling Constructs
	Evaluation
	Conclusions and Further Work

	Chapter 41
	Introduction to Parameterized BPEL Processes
	Enabling Infrastructure
	Conclusions and Future Work

	Chapter 42
	Introduction
	Workflow Abstraction
	Workflow Abstraction Using Symbolic Observation Graphs
	SOG Building Algorithm

	Workflow Matching
	The Cooperation Candidate Property
	An Algorithm for Checking the Cooperation Candidate Property

	Workflow Interconnection
	Conclusion

	Back matter

