
Naresh Chauhan
Professor and Chairman

Department of Computer Engineering
YMCA University of Science and Technology, Faridabad

PRINCIPLES OF

Operating
Systems

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2014

The moral rights of the author/s have been asserted.

First published in 2014

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-808287-3
ISBN-10: 0-19-808287-8

Typeset in Times New Roman
by Mukesh Technologies Pvt. Ltd., Puducherry 605005
Printed in India by India Binding House, Noida 201301

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2014

The moral rights of the author/s have been asserted.

First published in 2014

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-808287-3
ISBN-10: 0-19-808287-8

Typeset in Times New Roman
by Mukesh Technologies Pvt. Ltd., Puducherry 605005
Printed in India by India Binding House, Noida 201301

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.

Oxford University Press disclaims any responsibility for the material contained therein.

Dedicated to
my wife, Anushree Chauhan

and my loving children, Smiti and Atharv

Preface
An operating system is an interface through which we are able to access and operate the computer
 hardware. Thanks to the operating system, the user need not worry about hardware or interact with different
devices. The operating system, therefore, works in the background without letting us know who is doing
the job. It is the software through which all the hardware devices are managed and utilized. However,
an operating system is much more than just that and encompasses a vast domain. One reason is that an
operating system and computer architecture affect each other and co-evolve. Sometimes, the computer
architecture has forced the operating systems to evolve, and sometimes the operating system demanded
the architecture to change. This has given rise to the operating system concepts in the light of computer
architecture. Another reason is that the technology has shifted from single-processor to multi-processor
technology. This has given birth to so many operating systems, such as multi-processor, distributed,
networked operating systems, and so on. Another development that we have seen in the last 15 years is
the mobile technology. Today, we are living in the world of mobile devices. The mobile technology has
bred various developments in mobile operating systems. Besides this, there is the world of embedded
and real-time systems, which produced yet another category of operating systems—embedded and real-
time operating systems. The list is endless! All these advances have made operating systems a subject
of rich concepts and frequent changes in user applications and technology.

About the Book

This book has been written after reviewing the syllabi of various Indian universities and, therefore, provides a
wide coverage of the subject—operating systems. The target readers of this book are undergraduate students
of computer engineering and IT. The book will also be useful to postgraduate students of MCA and M.Tech.
as it includes many chapters on specialized operating systems as well as several other advanced topics.

Each chapter begins with the learning objectives and ends with a summary containing a quick
 review of important concepts discussed in the chapter. Each chapter provides plenty of solved examples
 in-between the text for a practical understanding of the method or technique. Multiple choice questions,
review questions, and brain teasers provided at the end of each chapter will assist the teaching faculty
to prepare their students for the examinations.

The book covers every aspect of the subject. It describes the development of modern operating
systems, explaining the evolution starting from the mainframe systems. Since operating system is con-
sidered to be a concept-rich subject, this book has focused on each and every concept in depth and
explained the same in a lucid manner. The book also covers the practical aspect of the subject, empha-
sizing shell programming. It has a complete chapter on shell programming, which will help the students
in the operating system laboratory. Case studies of four operating systems, namely, UNIX, Solaris,
Linux, and Windows are presented at the end of Parts I-VI. The different features of various versions
of each operating system are explained. In UNIX, version SVR4; in SOLARIS, version 10; in Linux,
version 2.6; and in Windows, Windows XP are emphasized in the case studies.

Key Features

This book is packed with the following features:
 • Explains how the modern operating system has been developed and discusses different types of

OSs and OS architectures

Preface vii

 • Highlights the hardware issues necessary to understand operating system concepts
 • Contains dedicated chapters on specialized OSs such as distributed OSs, multi-processor OSs,

real-time OSs, mobile OSs (including Android OS), and multimedia OSs
 • Covers every concept in depth and provides numerous solved examples interspersed within the text
 • Provides specially designed brain teasers at the end of each chapter for the students to develop an

analytical approach to problem solving
 • Includes case studies of four OSs, namely, UNIX, Solaris, Linux, and Windows and two real-

time OSs, VxWorks and QNX
 • Contains a separate chapter on shell programming that will be helpful for operating system laboratory

Online Resources

The following resources are available to help the faculty and the students using this text:
For Faculty

 • Chapter-wise PowerPoint Slides
For Students

 • Solved questions for competitive examinations
 • Practical exercises for OS laboratory

Content and Coverage

The book consists of 23 chapters divided into eight parts. A brief outline of each chapter is as follows:

PART I Introduction

Chapter 1 introduces operating systems and explains their goals and functions along with their types.

Chapter 2 discusses the need of hardware support for OSs and explains the hardware components such
as I/O devices, device controllers, magnetic disk, etc. It explains the interrupt-driven nature of OSs along
with the hardware protection mechanisms to implement multi-programming or multi-tasking OSs.

Chapter 3 explains how an operating system functions as a resource manager. Various resource types,
along with the components of resource manager, are also discussed.

Chapter 4 explains the general working of an operating system along with the coverage of various
structures of an operating system.

PART II Process Management

Chapter 5 introduces the basic concepts related to process management along with discussion on pro-
cess life cycle. Further, it explains the implementation of process with various data structures and mod-
ules and various process operations.

Chapter 6 discusses every detail of process scheduling. Types of schedulers and scheduling algorithms
are dealt with in detail.

Chapter 7 introduces the concept of synchronization of processes with the help of various methods.
Solutions to some classical synchronization problems are also discussed.

Chapter 8 introduces the problem of deadlock in multi-programming environment, explaining how to
represent deadlock and various conditions responsible for it. It also explains how to deal with deadlocks.

Chapter 9 introduces the concept of multi-threading and various thread types and its operations.

viii Preface

PART III Memory Management

Chapter 10 introduces the concepts related to basic memory management and explains various con-
cepts like memory allocation, paging, and segmentation.
Chapter 11 explains the importance of virtual memory and its implementation using various methods.

PART IV File Management

Chapter 12 introduces the concept of files, and their types, attributes, and operations along with details
of directories.

Chapter 13 elucidates file system structure and its implementation, data structures, along with the
details of various file operations, file allocation methods, and implementation of directories.

PART V Input–Output Management

Chapter 14 introduces types of I/O, explains various issues related to I/O management, and kernel I/O
subsystem along with the life cycle of an I/O request.

Chapter 15 introduces the need for disk scheduling and various concepts related to disk management.

PART VI Security and Protection

Chapter 16 mainly deals with security issues in operating systems and various types of attacks and
threats.

Chapter 17 explains the protection mechanisms in operating systems to tackle threats and attacks.

PART VII Advanced Operating Systems

Chapter 18 introduces distributed operating systems and its features.

Chapter 19 introduces multi-processor operating systems and various related issues.

Chapter 20 introduces real-time operating systems and explains various issues therein. The chapter
contains case studies on VxWorks and QNX.

Chapter 21 discusses mobile devices and mobile operating systems and explains various issues therein.
A popular operating system, Android OS, is discussed in detail.

Chapter 22 discusses the various concepts in multimedia operating systems.

PART VIII Shell Programming

Chapter 23 introduces various types of shells of UNIX operating systems and explains various
 structures used in shell programming along with some programming examples.

The readers are requested to send their valuable suggestions, comments, and constructive criticism
for further improvement of the book at nareshchauhan19@gmail.com.
 Naresh Chauhan

Brief Contents
Features of the Book iv
Preface vi
Detailed Contents xi

PART I Introduction 1
 1. Introduction to Operating Systems 3
 2. Hardware Support for Operating Systems 35
 3. Resource Management 56
 4. Operating System Architectures 68

 Case Study I: History and Architecture of Operating Systems 89

PART II Process Management 101
 5. Fundamentals of Process Management 103
 6. Process Scheduling 133
 7. Process Communication and Synchronization 178
 8. Deadlocks 224
 9. Multi-threading 251

 Case Study II: Process Management in UNIX/Solaris/Linux/Windows 267

PART III Memory Management 289

10. Basic Memory Management 291
11. Virtual Memory 333

 Case Study III: Memory Management in UNIX/Solaris/Linux/Windows 382

Part IV File Management 395
12. File Systems 397
13. File System Implementation 415

 Case Study IV: File Management in UNIX/Solaris/Linux/Windows 438

PART V Input –Output Management 451

14. Basics of I/O Management 453
15. Disk Management 469

 Case Study V: Input/Output Management in UNIX/Solaris/Linux/Windows 499

PART VI Security and Protection 507
16. Security Issues 509
17. Protection Mechanisms 524

 Case Study VI: Protection Mechanisms in UNIX/Solaris/Linux/Windows 547

PART VII Advanced Operating Systems 551
18. Distributed Operating Systems 553
19. Multi-processor Operating Systems 583
20. Real-time Operating Systems 594
21. Mobile Operating Systems 614
22. Multimedia Operating Systems 630

PART VIII Shell Programming 637
23. Shell Programming and UNIX Shells 639

Bibliography 657

Index 665

Detailed Contents
Features of the Book iv
Preface vi
Brief Contents x

PART I Introduction 1

1. Introduction to Operating Systems 3

1.1 Introduction 3
1.2 The Need for Operating Systems 4
1.3 Evolution of Operating Systems 6

1.3.1 First Generation 6
1.3.2 Second Generation 7
1.3.3 Third Generation 9
1.3.4 Fourth Generation 11

1.4 Types of Operating Systems 14
1.4.1 Batch Processing Systems 15
1.4.2 Multi-programming Systems 15
1.4.3 Multi-user Time-sharing Systems 16
1.4.4 Multi-tasking Systems 18
1.4.5 Network Operating Systems 19
1.4.6 Multi-processor Operating

Systems 20
1.4.7 Distributed Operating Systems 20
1.4.8 Real-time Operating Systems 21
1.4.9 Embedded Operating Systems 22

1.5 Goals of an Operating System 25
1.6 Functions of Operating System 27

1.6.1 User View 27
1.6.2 System View 28

1.7 Operating System’s Generic
Components 30

2. Hardware Support for
Operating Systems 35

2.1 Introduction 35
2.2 Interrupt-driven Operation for Operating

System 35
2.2.1 Types of Interrupts 37
2.2.2 Multiple Interrupts Handling 38

2.3 Input–Output Devices 38
2.3.1 Timers or Clocks 39

2.4 Device Controllers 40
2.5 Device Driver 41
2.6 Problems in the Design of Modern OSs 42
2.7 Need for Protection 43
2.8 Hardware Protection for

Multi-programming/
Multi-tasking 43

2.8.1 Multiple Modes of Operation 43
2.8.2 Input–Output Protection 45
2.8.3 Memory Protection 45
2.8.4 CPU Protection 47

2.9 Input–Output Communication
Techniques 47
2.9.1 Programmed I/O 48
2.9.2 Interrupt-driven I/O 48
2.9.3 Input/Output Using DMA 49

2.10 Magnetic Disks 49
2.10.1 Disk Formatting 51
2.10.2 Disk Partitioning 52

3. Resource Management 56

3.1 Introduction 56
3.2 Functions of a Resource Manager 56

3.2.1 Resource Abstraction/
Transformation 56

3.2.2 Resource Sharing/Multiplexing 57
3.2.3 Resource Scheduling 57

3.3 Resource Types 58
3.3.1 Nature of Resources 59

3.4 Goals of Resource Management 60
3.5 How Resource Manager Works? 61
3.6 Components of Resource Management 62

3.6.1 Process/task Management 62
3.6.2 Memory Management 63
3.6.3 Secondary Storage Management 64
3.6.4 File Management 64
3.6.5 Input–Output Management 65
3.6.6 Security and Protection 65

4. Operating System Architectures 68

4.1 Introduction 68
4.2 General Working of an Operating

System 68
4.2.1 BIOS 68
4.2.2 Booting/Bootstrapping 69
4.2.3 Boot Software/Boot Loader/Bootstrap

Loader 69
4.2.4 Boot Device 69

xii Detailed Contents

4.2.5 Privileged Instructions 69
4.2.6 System Call 69

4.3 System Calls 71
4.3.1 Making a System Call 72
4.3.2 Executing the System Call 72
4.3.3 Types of System Calls 74

4.4 System Programs 76
4.5 System Generation Programs 76
4.6 General Structure of OS 77

 4.7 Monolithic Architecture 78
 4.8 Layered Architecture 79

4.8.1 Grouping of Functions in a
Layer 79

4.8.2 Hierarchy of Layers 80
 4.9 Virtual Machine OS 81
4.10 Client–Server or Microkernel-based OS 83
4.11 ExoKernel 84
4.12 Hybrid Kernel-based OS 86

Case Study I: History and Architecture of Operating Systems 89

PART II Process Management 101

5. Fundamentals of Process
Management 103

 5.1 Introduction 103
 5.2 Terminology 103
 5.3 Implicit/System and Non-implicit/User

Processes 105
 5.4 Relationship Between Processes 106
 5.5 Life Cycle of a Process 106

5.5.1 Process States and State
Transitions 107

5.5.2 Suspended Processes and Their
State Transitions 111

 5.6 Process Control Block 114
 5.7 Implementation of Processes 115
 5.8 Context Switching 118
 5.9 Process Switching 119
5.10 Schedulers 123

5.10.1 Long-term Scheduler 123
5.10.2 Short-term Scheduler 123
5.10.3 Medium-term Scheduler 124

5.11 Process Operations 124
5.11.1 Creation 125
5.11.2 Dispatching 126
5.11.3 Blocking/Wakeup 126
5.11.4 Termination 126

6. Process Scheduling 133

6.1 Introduction 133
6.2 Process Behaviour for Scheduling 133
6.3 Scheduling Decision 134
6.4 Scheduling Levels 136

6.4.1 Long-term Scheduling 136
6.4.2 Medium-term

Scheduling 137
6.4.3 Short-term Scheduling 138

6.5 Scheduling Types 139
6.6 Process-scheduling Goals 140

6.6.1 User-based Scheduling Goals 141
6.6.2 System-based Scheduling

Goals 142
6.7 Scheduling Algorithms 143

 6.7.1 First Come First Served (FCFS) 143
 6.7.2 Priority Scheduling 145
 6.7.3 Round Robin Scheduling 152
 6.7.4 Improved Round Robin

Scheduling 156
 6.7.5 Highest Response Ratio Next (HRRN)

Scheduling 158
 6.7.6 Virtual Round Robin

Scheduling 163
 6.7.7 Multi-level Queue Scheduling 166
 6.7.8 Multi-level Feedback/Adaptive Queue

Scheduling 168
 6.7.9 Fair-share Scheduling 169
6.7.10 Lottery Scheduling 171

7. Process Communication
and Synchronization 178

 7.1 Introduction 178
 7.2 Concurrent Processes 178

7.2.1 Data Access Synchronization 178
7.2.2 Control Synchronization 180
7.2.3 Process Communication 182
7.2.4 Deadlocks 183

 7.3 Critical Section (CS) 184
 7.4 Algorithmic Approach to CS

Implementation 186
7.4.1 Two-process Solution 186
7.4.2 Dekker’s Solution 188
7.4.3 Peterson’s Solution 189

Detailed Contents xiii

 7.5 Semaphores 190
 7.6 Solution of Classic Synchronization

Problems Using Semaphores 194
7.6.1 Solution of Producer–Consumer

Problem Using Semaphore 194
7.6.2 Solution of Reader–Writer Problem

Using Semaphores 196
7.6.3 Solution of Dining-philosopher

Problem Using Semaphores 200
7.6.4 Cigarette Smokers’ Problem 204
7.6.5 Sleeping Barber Problem 206

 7.7 Critical Regions 208
7.7.1 Producer–Consumer Problem’s

Solution with CCR 209
 7.8 Monitors 209

7.8.1 Producer–Consumer
Problem’s Solution with
Monitor 210

 7.9 Protected Objects 211
7.10 Synchronized Methods 212
7.11 Message Passing System 213

7.11.1 Direct Addressing 213
7.11.2 Indirect Addressing 214
7.11.3 Mailbox 214
7.11.4 Synchronization Protocols 215

7.12 Signals 215
7.13 Hardware Support for Process

Synchronization 217

8. Deadlocks 224

8.1 Introduction 224
8.2 Defining Deadlocks 224
8.3 Modelling of Deadlock 227
8.4 Conditions for Deadlock 228

8.4.1 Mutual Exclusion 228
8.4.2 Hold and Wait 228
8.4.3 No Pre-emption 228
8.4.4 Circular Wait 229

8.5 Dealing with Deadlock 230
8.6 Deadlock Prevention 230

8.6.1 Preventing Mutual Exclusion
Condition 230

8.6.2 Preventing Hold and Wait
Condition 231

8.6.3 Preventing No Pre-emption
Condition 231

8.6.4 Preventing Circular Wait 232
 8.7 Deadlock Avoidance 233

8.7.1 Deadlock Avoidance for
Single Instance of Resources 234

8.7.2 Dijkstra’s Banker’s Algorithm for
Deadlock Avoidance in Multiple
Instances of Resources 235

 8.8 Deadlock Detection 239
8.8.1 Deadlock Detection in Multiple

Instances of Resource Types 240
 8.9 Recovery from Deadlock 243

8.9.1 Resource Pre-emption 243
8.9.2 Rollback 244
8.9.3 Abort the process 244

8.10 Practical Approach for Deadlock
Handling 245

8.11 Two-phase Locking 246
8.12 Starvation 246

9. Multi-threading 251

9.1 Introduction 251
9.2 Process and Thread 251
9.3 Multi-tasking vs Multi-threading 253
9.4 Thread Control Block 254
9.5 Usage of Multi-threading 255
9.6 Types of Threads 256

9.6.1 User Threads 257
9.6.2 Kernel Threads 260

9.7 Hybrid Threads 261
9.8 Thread Operations and Other Issues

in Thread Implementation 263
9.8.1 Signal-handling Issues 263
9.8.2 Thread Pooling 263
9.8.3 Thread Scheduling 263

Case Study II: Process Management in UNIX/Solaris/Linux/Windows 267

PART III Memory Management 289

10. Basic Memory Management 291

10.1 Introduction 291
10.2 Basic Concepts 291

10.2.1 Static and Dynamic Allocation 291
10.2.2 Logical and Physical Addresses 292
10.2.3 Swapping 292

xiv Detailed Contents

10.2.4 Relocation 294
10.2.5 Protection and Sharing 295
10.2.6 Fixed and Variable Memory

Partitioning 296
10.2.7 Fragmentation 296

10.3 Contiguous Memory
Allocation 297
10.3.1 Contiguous Allocation with Fixed

Partitioning 298
10.3.2 Contiguous Allocation

 with Dynamic/Variable
Partitioning 301

10.3.3 Compaction 301
10.3.4 Memory Allocation

 Techniques 303
10.4 Buddy System 306
10.5 Non-contiguous Memory Allocation 307
10.6 Paging Concept 307

10.6.1 Paging Implementation and
Hardware Requirements 313

10.6.2 Protection in Pages 316
10.6.3 Shared Pages 317
10.6.4 Fragmentation 318

10.7 Page Table Structures 318
10.7.1 Hierarchical/Multi-level Page Table

Structure 318
10.7.2 Inverted Page Table

Structure 322
10.7.3 Hashed Page Table

Structure 322
10.8 Segmentation 323

10.8.1 Segmentation Implementation and
Hardware Requirements 326

10.8.2 Protection and Sharing 327

11. Virtual Memory 333

11.1 Introduction 333
11.2 Need for Virtual Memory 333
11.3 Principle of Locality 334

 11.4 Virtual Memory System 335
 11.4.1 Demand Loading of Process

Components 335
 11.5 Demand Paging 337
 11.6 Virtual Memory System with Translation

Look-Aside Buffer 340
 11.7 Page-replacement Algorithms 343

 11.7.1 FIFO Page-replacement
Algorithm 345

 11.7.2 Optimal Page-replacement
Algorithm 346

 11.7.3 Least Recently Used Page-
replacement Algorithm 347

 11.7.4 Second Chance Page-
replacement Algorithm 350

 11.7.5 Clock Page-replacement
Algorithm 351

 11.7.6 Modified Clock Page or Not
Recently Used Page-replacement
Algorithm 352

 11.7.7 Not Frequently Used
Page-replacement
Algorithm 355

 11.8 Stack Property of Page-replacement
Algorithms 356

 11.9 Thrashing 360
 11.9.1 Dealing with Thrashing 362
 11.9.2 Working-set-based Page-

replacement Algorithm 363
 11.9.3 WSClock Page-replacement

Algorithm 365
 11.9.4 Page Fault Frequency 367

11.10 Virtual Memory Using
Segmentation 368

11.11 Combined Paging and
segmentation 368

11.12 Design and Implementation Issues 369
 11.12.1 Paging Hardware 370
 11.12.2 Virtual Memory Handler 372

 Case Study III: Memory Management in UNIX/Solaris/Linux/Windows 382

Part IV File Management 395

12. File Systems 397

12.1 Introduction 397
12.2 Files and File System 397
12.3 File Structure 398

12.3.1 Internal Structure and Record
Blocking 399

 12.4 File Naming and File Types 400
 12.5 File Attributes 401
 12.6 File Operations 402

Detailed Contents xv

 12.6.1 Implementation of File
Operations 403

 12.7 File Access 403
 12.8 Directories 405

 12.8.1 Single Level 406
 12.8.2 Two Level 407
 12.8.3 Hierarchical or Tree

Structure 407
 12.8.4 Acyclic Graph Structure and File

Sharing 410
 12.9 File Protection 411
12.10 File System Mounting 412

13. File System Implementation 415

13.1 Introduction 415
13.2 File System Structure 415

13.2.1 Logical File System 415
13.2.2 File Organization Module 415
13.2.3 Basic File System/Physical

Input–Output Level 416
13.2.4 Input–Output Control 416

13.3 Implementation of Data Structures 417
13.4 File Mapping Through FCB 418

13.4.1 Extents 420
13.5 Implementation of File Operations 421

13.5.1 Create a File 421
13.5.2 Open a file 421
13.5.3 Read a File 422
13.5.4 Write a File 422
13.5.5 Close a File 422

 13.6 File Allocation Methods 423
13.6.1 Contiguous File Allocation 423
13.6.2 Linked/Chained File

Allocation 424
13.6.3 Indexed File

Allocation 426
 13.7 Free Space Management 427
 13.8 Directory Implementation 429
 13.9 Backup and Recovery 429

13.9.1 Physical Backup 429
13.9.2 Logical Backup 429
13.9.3 Incremental Backup 429

13.10 File System Inconsistency 430
13.10.1 Superblock Check 430
13.10.2 File Control Block Check 431

13.11 File System Performance Issues 431
13.11.1 Block Size 431
13.11.2 Input–Output Transfer

Time 432
13.12 Log-structured File System 433

Case Study IV: File Management in UNIX/Solaris/Linux/Windows 438

PART V Input–Output Management 451

14. Basics of I/O Management 453

14.1 Introduction 453
14.2 Types of Devices 453
14.3 Types of I/O 454

 14.3.1 Programmed I/O 454
 14.3.2 Interrupt-driven I/O 455
 14.3.3 Input–Output Using DMA 455

14.4 Input–Output Management Issues 456
14.5 Input–Output Software 457

14.5.1 User-level Input–Output
Software 457

14.5.2 Kernel Input–Output
Sub-system 457

14.5.3 Device Driver 459
14.5.4 Interrupt Handling 459

14.6 Kernel I/O Sub-system 460
 14.6.1 Uniform Interface 460
 14.6.2 Input–Output Scheduling 461
 14.6.3 Buffering 461

 14.6.4 Caching 463
 14.6.5 Spooling 463
 14.6.6 Error Handling 464

14.7 Life Cycle of I/O Request 464

15. Disk Management 469

15.1 Introduction 469
15.2 Disk Scheduling 469
15.3 Disk-scheduling Criteria 470
15.4 Disk-scheduling Algorithms 471

15.4.1 FCFS 471
15.4.2 SSTF 472
15.4.3 SCAN 474
15.4.4 C-SCAN 476
15.4.5 F-SCAN and N-step SCAN 476
15.4.6 LOOK and C-LOOK 481

15.5 Rotational Optimization 482
15.5.1 SLTF-scheduling Algorithm 483
15.5.2 SPTF-scheduling Algorithm 483

xvi Detailed Contents

15.5.3 SATF-scheduling Algorithm 483
 15.6 Disk Formatting 483
 15.7 Bad Sectors 484

 15.8 Swap-space/Paging-space
Management 485

 15.9 RAID Structure 487
 15.9.1 RAID Levels 489

Case Study V: Input/Output Management in UNIX/Solaris/Linux/Windows 499

PART VI Security and Protection 507

16. Security Issues 509

16.1 Introduction 509
16.2 Security Objectives 509
16.3 Security Problem 510

16.3.1 Unauthorized Disclosure 510
16.3.2 Deception 510
16.3.3 Disruption 510

16.4 Intruders 510
16.5 Some Standard Security Attacks 511

16.5.1 Denial-of-Service 512
16.5.2 Spoofing 512
16.5.3 Session Hijacking 512
16.5.4 Man-in-the-Middle Attack 513
16.5.5 Replay Attack 513

16.6 Security Levels 513
16.7 Inside System Attacks 514

16.7.1 Trap Door/Back Door 514
16.7.2 Logic Bomb 515
16.7.3 Trojan Horse 515
16.7.4 Login Spoofing 515
16.7.5 Buffer Overflow 515

16.8 Outside System Attacks 516
16.8.1 Viruses 516
16.8.2 Types of Viruses 517
16.8.3 Worms 519
16.8.4 Bots 519
16.8.5 Mobile Code 520
16.8.6 Rootkit 520

17. Protection Mechanisms 524

 17.1 Introduction 524
 17.2 Protection Domains 524
 17.3 Access Control 526

17.3.1 Discretionary Access Control 526
17.3.2 Mandatory Access Control 526
17.3.3 Role-based Access Control 526

 17.4 Access Matrix 527

 17.5 Access Control Lists 531
 17.6 Capability Lists 531
 17.7 Cryptography as a Security Tool 533

17.7.1 Private Key Encryption 533
17.7.2 Public Key Encryption 534

 17.8 Authentication 534
17.8.1 Authentication Using

Passwords 535
17.8.2 Token-based Authentication 537
17.8.3 Authentication Using

Biometrics 537
 17.9 Intrusion Detection System 537

17.9.1 Host-based Intrusion Detection
System 538

17.9.2 Network-based IDS 538
17.10 Worm/Bot/Rootkit Counter

Measures 538
17.11 Dealing with Buffer Overflow

Attacks 539
17.11.1 Writing Correct Code 539
17.11.2 Safe Libraries 539
17.11.3 Use of Type-safe Programming

Language 539
17.11.4 Non-executable Buffers 539
17.11.5 Address Space

Randomization 539
17.12 Dealing with Mobile Code 540

17.12.1 Code Blocking Approach 540
17.12.2 Authentication Using Code

Signing 540
17.12.3 Safe Interpreters 540
17.12.4 Code Inspection 540
17.12.5 Sandboxing 540
17.12.6 Proof-carrying Code 541

17.13 Security Patches 541
17.14 Secure File Systems 541
17.15 Trusted Operating Systems 542

17.15.1 Multi-level Security Models 544

Case Study VI: Protection Mechanisms in UNIX/Solaris/Linux/Windows 547

Detailed Contents xvii

PART VII Advanced Operating Systems 551

18. Distributed Operating Systems 553

 18.1 Introduction 553
 18.2 Characteristics of Distributed

Systems 553
 18.3 Network Operating Systems 554
 18.4 Distributed Operating Systems 555
 18.5 Issues in Distributed Operating

Systems 556
18.5.1 Transparency 556
18.5.2 Global Knowledge 557
18.5.3 Performance 557
18.5.4 Reliability 558
18.5.5 Process Synchronization 558

 18.6 Communication in Distributed
Systems 558
18.6.1 Message-passing Model 559
18.6.2 Remote Procedure Calls 560

 18.7 Clock Synchronization in Distributed
Systems 562
18.7.1 Synchronizing Logical

Clocks 562
 18.8 Global State 564

18.8.1 Chandy–Lamport Consistent State
Recording Algorithm 564

 18.9 Mutual Exclusion 566
18.9.1 Centralized Algorithm 566
18.9.2 Ricart–Agarwala Algorithm 568
18.9.3 Token Ring Algorithm 569

18.10 Deadlock Detection 570
18.10.1 Centralized Deadlock

Detection 570
18.10.2 Distributed Deadlock

Detection 572
18.10.3 Correctness Criteria for Deadlock

Detection Algorithms 572
18.11 Deadlock Prevention 573
18.12 Distributed Process Scheduling 574

18.12.1 Sender-initiated
Algorithms 576

18.12.2 Receiver-initiated
Algorithms 577

18.12.3 Symmetrically Initiated
Algorithms 577

18.13 Distributed File Systems 578
18.13.1 File-sharing Semantics 579

18.14 Distributed Shared Memory 580

19. Multi-processor Operating Systems 583

19.1 Introduction 583
19.2 Multi-processor Systems 583

19.2.1 Multi-processor System
Architecture 583

19.3 Structure of Multi-processor OSs 584
19.3.1 Separate Kernel Configuration 584
19.3.2 Master–Slave Configuration 585
19.3.3 Symmetric Configuration 585

19.4 Process Synchronization 586
19.4.1 Spinlocks 586
19.4.2 Queued Locks 587
19.4.3 Special Hardware for Process

Synchronization 587
19.5 Processor Scheduling 587

19.5.1 Job-blind Scheduling
Algorithms 586

19.5.2 Job-aware Scheduling
Algorithms 586

19.6 Memory Sharing 590
19.7 Process Migration 591
19.8 Fault Tolerance 591

19.8.1 Fault Detection 592
19.8.2 Fault Recovery 592

20. Real-time Operating Systems 594

20.1 Introduction 594
20.2 Real-time Systems 594

20.2.1 Characteristics of a Real-time
System 595

20.2.2 Structure of a Real-time
System 596

20.3 Real-time OS 597
20.4 Real-time Scheduling 598

20.4.1 Rate Monotonic Scheduling
Algorithm 599

20.4.2 Earliest Deadline First Scheduling
Algorithm 602

20.4.3 Precedence Constraints 603
20.5 Mutual Exclusion 604
20.6 Priority Inheritance Protocol 605
20.7 Priority Ceiling Protocol 607
20.8 Case Studies 608

20.8.1 VxWorks 608
20.8.2 QNX 609

xviii Detailed Contents

21. Mobile Operating Systems 614

21.1 Introduction 614
21.2 Introduction to Mobile Devices 614

21.2.1 Personal Digital Assistant 614
21.2.2 Smartphones 615
21.2.3 Tablet PC 615

21.3 Characteristics of Mobile Devices 615
21.4 Mobile OS 616

21.4.1 Power Management 616
21.4.2 Battery Management 617
21.4.3 Thermal Management 618
21.4.4 Memory Management 618
21.4.5 Shortening Boot-up Time 618
21.4.6 Scheduling 618
21.4.7 File System 620
21.4.8 Security 621

21.5 Android OS 622
21.5.1 Power Management 623
21.5.2 Memory Management 625
21.5.3 Scheduling 626
21.5.4 Inter-process

Communication 626
21.5.5 File Management 626
21.5.6 Security 627

22. Multimedia Operating Systems 630

 22.1 Introduction 630
 22.2 Multimedia 630
 22.3 Multimedia OSs 631
 22.4 Process Scheduling 631
 22.5 File System 632

22.5.1 Partitioned File Systems 632
22.5.2 Integrated File Systems 632

 22.6 File Allocation 632
22.6.1 Scattered Allocation 632
22.6.2 Contiguous Allocation 632
22.6.3 Locally Contiguous

Allocation 633
22.6.4 Constrained Allocation 633
22.6.5 Distributed Allocation 633

 22.7 Disk Scheduling 633
22.7.1 EDF Scheduling 633
22.7.2 SCAN-EDF 634
22.7.3 Group Sweeping

Strategy 634
 22.8 Memory Management 634

 22.8.1 Batching 634
 22.8.2 Buffering/Bridging 634
 22.8.3 Stream Merging 634
22.8.4 Prefetching 635

PART VIII Shell Programming 637

23. Shell Programming and UNIX Shells 639

23.1 Introduction 639
23.2 Role of Shell 639
23.3 Types of Shells 639
23.4 File and Directory-related

Commands 640
23.5 Filters 642
23.6 Input/Output Redirection Commands 644
23.7 Communication in UNIX 644
23.8 Shell Meta-characters 644
23.9 Vi Editor 645

23.9.1 Starting the Vi Editor 645
23.9.2 Navigating within a File 645
23.9.3 Editing Files 646
23.9.4 Deleting Characters 647
23.9.5 Copy and Paste

Commands 647
23.9.6 Quitting Vi Editor 647

23.10 Shell Scripts 648
23.10.1 Shell Variables and

Keywords 648
23.11 Programmimg Constructs in Shell 649
23.12 Shell Script Examples 652

Bibliography 657

Index 665

PART I

Introduction

1. Introduction to Operating Systems

2. Hardware Support for Operating Systems

3. Resource Management

4. Operating System Architectures

Case Study I: History and Architecture of
Operating Systems

1.1 INTRODUCTION

The power of computing has changed the lives of common people in the last two decades. Computer
systems have also been through a lot of change. In this information age, everybody is concerned with the
computer and its speed; whether you are surfing the web, booking tickets through the Internet, or accessing
online banking. Mobile phones have also doubled up as mini computers known as smartphones.
 Everyone needs a computer system that will meet their requirements at a great speed. Whether you are
 working on a stand-alone system or transferring your files on the network, the job is done with not much
effort. Have you ever thought how all this works? How does a machine know whether you are working
on a stand-alone system or on the network or a distributed system? Is the machine capable of knowing
all your needs? Do you think that the hardware performs all these functionalities for you? The fact is
that the hardware cannot perform on its own.

There was a time in the history of computer systems when every work was done manually. At that
time we were very close to the machine. But it had a lot of problems and there was no efficiency
in working as we get today. Therefore, a software was designed,
which worked on the hardware to relieve a general user from the
machine view of the system. This software did all the functional-
ities that need to be performed on the hardware on behalf of the
user. This software that operates the computer system is known
as operating system (OS). It acts as a layer between the user and
the hardware. It provides a friendly environment for a user. In the
absence of an OS, a user would have had to be aware of every
configuration of the hardware and how to interact with the devices.
Thanks to the OS, the user does not need to worry about hardware
or interact with the different devices. The OS, therefore, works in
the background without letting us know who is doing the job.

The operating system has also been through a lot of changes
in the past. In fact, with the advancement and technological
changes in the computer architecture, OSs have also been evolved
in parallel. The improvements in computer system have always
impacted the structure of the OS. Sometimes, there is a need to
modify the hardware as there is demand from the OS’s designers.
The design motivation of the OS has also been changed from
time to time. There was a time when CPU was a costly resource
and innovations in OSs were developed to utilize the CPU
 efficiently. As the CPU speed was increased with technological

1 Introduction to
Operating Systems

Learning Objectives
After reading this chapter,
the reader should be able
to understand:
 • The need for an Operating

System (OS)
 • The evolution of OSs
 • Batch processing systems
 • Multi-programming systems
 • Multi-user systems
 • Multi-tasking systems
 • Multi-processor systems
 • Distributed systems
 • Real-time systems
 • Embedded systems
 • Goals of an OS
 • Functions of OSs
 • Generic components of OSs

4 Principles of Operating Systems

advancements, it is not a major design issue. Today, the major issue is user convenience and
response time for the user’s multiple tasks. This is the reason Apple’s Macintosh and Windows
OSs were developed and today we are using their much improved versions.

The aim of this book is to have a basic understanding of the OS and know its components in
detail. This book presents a detailed and systematic discussion of OSs.

1.2 THE NEED FOR OPERATING SYSTEMS

Before discussing or defining OSs, it would be better to first understand why we need OSs.
Let us look at some questions that will help to understand the basic need of OSs as well as its
functionalities:
 • By the time we are ready to learn this subject, we must be conversant in at least one pro-

gramming language. So let us find an answer to the question—while saving and running a
program in file, what is the part of the computer system that allocates memory to this file?

 • How are the files as a logical concept mapped to the physical disk?
 • Today, we are able to open many windows at a time; who is managing all these windows

despite a single processor?
 • Who ensures that the CPU is not sitting idle or busy forever?
 • Sometimes we see some messages like memory error or power failure, connection failure

in network, paper jam in printer, etc. Who is detecting these errors and displaying error
messages?

 • Who manages the limited memory despite the large size of user programs?
 • Our processes can also communicate and cooperate via some synchronization mechanisms.

Who provides the communication and synchronization mechanisms?
 • Who schedules tasks to the CPU for execution?
 • What happens to a task when the CPU is already busy in processing some other task?
 • Despite a single processor, it seems that many jobs are being executed in parallel. How

does this happen?
 • Suppose, some users are working in a LAN (local area network) with a single printer and

more than one user gives a print command. How are the requests of multiple users on a
single printer managed?

 • Who protects one user’s area from unauthorized access by another user’s task?
 • Why is it that sometimes our system hangs?

We always think that a computer system is a hardware and
through the use of programs and other utilities, we are utilizing
the system as shown in Fig. 1.1.

We work on the computer system in different ways: we
write, compile, run the programs in the files or make a word
file, etc. Whatever we do, we need not worry how the file is cre-
ated physically, how much memory the file will take or whether
the program is larger than the present RAM. So, coming back to
the question, who manages and controls all the resources of the
computer system?

There is a software layer between the programs and the
 hardware of the computer that is performing all these functions

User

System and application
programs

Hardware

Fig. 1.1 Computer system

Introduction to Operating Systems 5

(see Fig. 1.2). This software is known as operating
system (OS) and is the answer to all the questions
asked earlier. The OS starts functioning right from the
moment we switch on the computer system and con-
tinues till we shut down the system.

From the earlier discussion, it is obvious that the
OS performs the following functions:
 • Presents an environment for the user so that he or

she can easily work without worrying about the
hardware resources, i.e., the user is not directly in-
teracting with the resources

 • Manages all the resources in an efficient manner
After understanding the role of an OS, there is still

a question: Can we work without the OS? Yes, but
subject to the conditions if all the functions listed earlier
can be performed manually. However, this condition

is not valid due to technological development in computer systems, software, and information
technology. We cannot manually perform the functions of loading, saving, running, debugging,
allocating memory, etc., for large-sized programs. One cannot interact with the hardware
devices manually every time you need to access them. Moreover, we are living in the world
of multi-tasking where users open many windows simultaneously and have a perception
that they are working on all the windows in parallel. So there is no question of having just a
single process for execution. The present scenario on computer systems is of multiple users
with multiple processes to be executed on limited resources (see Fig. 1.3). Suppose, multiple
tasks are open on a system with single CPU. The CPU time needs to be shared among all
these tasks. It seems very difficult to manage CPU time among all the tasks manually. In this
environment, we in fact need a software that manages all this multiplicity and controls it. This
is the reason that we need OS—a software that takes care of any peripheral of the system. A
software that is preparing the environment for the users such that they need not worry about
the hardware details of the system. A software that is managing conflicting requests from
multiple users to be executed on limited resources. A software that is protecting one user
from another so that they do not interfere with one another.

It is clear now that there are certain tasks (from initialization of hardware to management
and control of all the resources) that need to be performed while working on the computer sys-
tem. All these tasks are put together in a single software known as the operating system. The
OS can be defined in the following ways:
 • A software that acts as an interface between the users and hardware of the computer

system
 • A software that provides a working environment for the users’ applications
 • A resource manager that manages the resources needed for all the applications in the

 background
 • A software in which all common functions required to work on the computer system have

been put together

User

System and application
programs

Operating system

Hardware

Fig. 1.2 Computer system with OS

6 Principles of Operating Systems

1.3 EVOLUTION OF OPERATING SYSTEMS

It is necessary to understand the evolution of OSs. Understanding how they were developed
will help us in understanding the functions of OSs we use today. There was a time when a
programmer working on the computer needed to do all the activities from writing the program
to loading the program into the memory, execution, debugging, and printing the output. Every
activity was needed to be performed manually consuming a lot of time and resources. But
today, a programmer is relieved of all other tasks of programming such as loading and linking
and he or she does not care about the actual hardware details also. The programmer is only
 concerned with writing the program in a flexible and friendly editor and debugging it. So once
we understand this, we are able to understand what the OSs mean to us today and get closer to
their real requirements and objectives.

The important point in the evolution of OSs is that their development means parallel
 development in computer systems. As there is advancement in computer system hardware, the
OSs also get updated. Sometimes, there is a demand from the OSs developers to modify the
hardware. So there is influence of one on the other.

Let us have a look at how the OSs have been developed.

1.3.1 First Generation
The first generation of computer systems was the era of vacuum tubes, plug boards, and punched
cards. The programmer used to interact with the machine directly through punched cards and
used to write the programs in machine language. All the tasks for executing a program would
be performed by the programmer only. There was no help like programming language, linker,
loader, etc. Obviously, there was no operating system as we use today.

Computer system

CPU

Memory

Other
resources/
peripherals

User 1

User 2

User n

P1

P2

Pn

P1

P2

Pn

P1

P2

Pn

Fig. 1.3 Multiple users with multiple processes accessing the limited resources

Introduction to Operating Systems 7

1.3.2 Second Generation
In the first generation, the programmers used to perform every task manually. There were no
tools or aids for them. Therefore, in the second generation, many new softwares and hardwares
were developed along with the programming languages, e.g., line printers, magnetic tapes,
assemblers, linkers, loaders, and compilers for the convenience of programmers. Now the pro-
grammer would first write the program in any high-level language. To compile it, the required
compiler would be loaded into the computer by mounting the compiler tape on a tape drive.
Students should note that in this generation there was no hard disk to store compiler in it as we
do today. The only secondary storage available was magnetic tape. But it needed to be mounted
on tape drive first. After this, the program would be read through the card reader. As an output,
the compiler would produce the assembly language output. This assembly language would then
be assembled through an assembler. But for this purpose, it would need to mount another tape
consisting of the assembler. Finally, the assembler would produce the binary object output to
be loaded in the memory for execution. However, this operation of computer systems suffered
from the following drawbacks:
 • Since each programmer or user was allotted a fixed amount of time to execute the program

on the computer system, it meant that the user would need to start all over again if there was
an error at any step. This resulted in wastage of time and further delaying other users.

 • Set-up time for various tasks wasted a significant amount of time of the computer system.
As seen earlier, for execution of a program, there may be the following steps:

 i) Loading the compiler tape of the required compiler
 ii) Reading from card reader
 iii) Running the compiler
 iv) Unloading the compiler
 v) Loading the assembler tape
 vi) Running the assembler
 vii) Unloading the assembler tape
 viii) Loading the object program
 ix) Running the object program

For a single program execution, the loading and unloading of tapes for various purposes
wasted a lot of time and delays other users.

The set-up time delay was not desirable not only for the reason that it delayed the job of users
but also for the impact it had on the utilization of the CPU. In this era, the computer systems
were so expensive that everyone wanted to use the system resulting in high utilization of the sys-
tem. However, owing to time taken to set up, the CPU was idle most of the time. This prompted
efforts towards reducing this idle time.

The solution adopted to reduce the set-up delay was that one operator was hired for loading/
unloading and other tasks as listed earlier. The operator trained in loading and unloading the
tapes reduced the time taken in set-up as compared to an untrained user. But, this solution was
not able to reduce the actual set-up time taken by loading/unloading the tapes. Besides this,
 another problem was that the waiting time for the users was still high. One user had to wait
while the other user executed programs on the system.

The delay in set-up time would increase further if some jobs in queue were of different
requirements. For example, one job is written in FORTRAN, second in COBOL and the third
is again in FORTRAN. This sequential processing of jobs would require more set-up delay as

8 Principles of Operating Systems

loading and unloading the tapes again and again for different jobs would be needed. If the jobs
are known in advance, then we could combine these two FORTRAN jobs and send them for
execution together. This would save time for loading and unloading tapes for the third job in the
queue. As a solution, to reduce the waiting time of users, the jobs of users prepared with same
programming language were batched together. With this solution, it was possible to execute
multiple jobs instead of one and thereby saving set-up time for an individual job. For example,
if there are three FORTRAN written jobs placed at different places in the queue, then a batch of
these three jobs could be prepared and executed with a single set-up time as compared to three.

But in this process, the operator/user would need to check when one job would get finished
and prepare the set-up for next job. So during this manual intervention, again CPU was idle.
This idle time could be reduced if the switching to another job was automated instead of manual
process. But this automation further required the recognition of the tasks like executing the
compiler, executing the assembler, etc.

We can say that this was the turning point in the history of computer systems, when the
automation for the job sequencing was conceived and thus the first operating system was born.
It was thought that there would be a software called monitor program that would perform the
automatic job sequencing. For identifying the tasks to be done for a job, the concept of control
cards was introduced. Control cards contained the directives to tell the software which tasks
to perform for a job. In this way, the software with automatic job sequencing was written that
switched from one job to another. Since all the events were being controlled by the monitor
now, it had to be in the memory forever. Therefore, it was called resident monitor and given
space in the memory (see Fig. 1.4).

Resident monitor would read the control card, and load the appropriate program into the
memory and run it. This process was repeated until all the cards got interpreted. Thus, the first
OS in the form of resident monitor improved the execution on the computer systems. It reduced
the manual intervention needed for set-up and job sequencing.

The monitor read in jobs one at a time from the card reader or tape. The job was then placed
into memory in the user area and control was passed to this job. When the job was complete,
the control was passed to the monitor. But the monitor needed to do several other tasks for a

job. Let us look (see Fig. 1.5) at the structure of a job in the form of
job control language (JCL), a special type of language developed
to provide instructions to the monitor. The meanings of these con-
trol instructions prefixed with ‘$’ are given in Table 1.1. At the time
of executing control instructions, the control was transferred to the
monitor. Otherwise, the control was transferred to the user program.

The batch systems mentioned earlier also faced one problem.
In this generation, input/output (I/O) devices were mostly electro-
mechanical. On the other hand, the CPU was an electronic device.
While reading the input or printing the output, there was a clear
mismatch between the speed of CPU and I/O devices. It was not
possible to cope up with the speed of even a slower CPU that per-
formed thousands of instructions per second. Moreover, in batch
systems, it was required to execute multiple jobs with multiple
control cards quickly. As a solution, it was thought that all the
inputs from the card readers would be read and copied to a mag-
netic tape. The input would be processed in one go using this input
magnetic tape. Similarly, the output, instead of being sent to the

Monitor

User program
area

Fig. 1.4 Memory structure consisting
of resident monitor

Introduction to Operating Systems 9

printer directly, was copied to the magnetic tape to be printed later on
(see Fig. 1.6). This reduced the time taken in online processing, i.e., pro-
cessing the inputs or outputs directly through the CPU. Students should
note that magnetic tapes were of faster speed as compared to card readers
or printers. This concept gave birth to offline operation. The CPU was
now not constrained with the speed of slow I/O devices and was busy in
processing with the I/O on tapes. The offline concept eliminated the need
of processing the I/O operations through the CPU directly.

1.3.3 Third Generation
Batch systems with offline operation continued for a long time in second
generation. But, still there were problems due to the nature of magnetic

tapes. First, the tapes were sequential access devices.
The tape needed to be rewound again and again if
there was a need to write and read in between. Sec-
ond, we needed to carry separate tapes for input and
output as their storage capacity was low. There was
no other option until the disks came into existence.
The disks solved the problem faced with the tapes
as disks were random access devices and of higher
storage capacity as compared to tapes. Now it was
possible to read or write quickly from/to any area on
the disk. The cards were written directly onto the disk

and read and executed the jobs from the disk. Similarly, the outputs were written directly to
the same disk instead of another disk. The output was printed actually after the job is executed
completely.

In this era, due to technological improvements in hardware, the speed of CPU became faster
than the second generation. The result of this technological improvement was that CPU was
more idle. The batch systems with disks improved the performance of the system, but CPU was
still idle. When a job executed, it might need to have input or output, which means it needed to
access devices. And the access to the devices was slow at that time as compared to the speed
of CPU. So while performing I/O operation for a job, there was sufficient time for CPU to sit
idle. If there had been another job, CPU would switch to it. As a solution, it was thought that
instead of one job, there would now be multiple jobs in memory. Consequently, it required the
memory to be partitioned for multiple jobs because till now only single job was in the memory
for execution (see Fig. 1.7). This gave birth to multiprogrammed batch systems. It was now
possible to overlap the I/O of one job with computation of another job. It means when one job
was waiting for its I/O, CPU switched to another job. This was possible only with the disk
systems and the method is called as simultaneous peripheral operation online (SPOOL). Later
on, the process was famous with the name spooling.

$JOB

$FTN

FORTRAN program

$LOAD

$RUN

$ASM

$END

Fig. 1.5 Format of a job in JCL

Table 1.1 Control instructions

$JOB Start of a job

$END End of a job

$ASM Execute the assembler

$FTN Execute the FORTRAN compiler

$LOAD Load the object code from tape to
memory

$RUN Execute the user program

Card
reader CPU

Tape
drive

Tape
drive

Printer

Fig. 1.6 Offline operation

10 Principles of Operating Systems

The process for spooling was very simple. First, the input from
input device would be read to the disk. Whenever the CPU would
be free, the OS loaded the job from the hard disk to the memory and
CPU would execute the job. After executing the job, it would store
the results again to the disk. Later on, the results would be sent to
the output device (see Fig. 1.8). Thus, CPU was busy in compu-
tation of another job while first job was busy in waiting for I/O.
In this way, multi-programming concept came into picture. The
requirements for the multi-programming increased the size of the
OS because now the OS had the components for spooling, memory
management (memory partitioning and keeping the account of jobs
in the memory slots), managing multiple jobs, scheduling of tasks
to CPU, and many more. In fact, this was the point where all other

components of the OS were added. In other words, multi-programming was the basic concept
around which all concepts of modern OS have been developed.

Although multi-programmed systems were able to improve the performance in terms of
CPU time and throughput, still the jobs were batched and, therefore, there was no interaction
of the job and the programmer. In fact, batch systems were not suitable for every type of job.
There are certain jobs that need attention of user, i.e., interactive jobs. Due to batch of jobs,
there was a long gap before the programmer would get the result back. Moreover, if there was a
single error somewhere, the whole cycle of batch processing would get repeated causing further
delays in getting the output. As a result, the debugging process became a time-consuming and
irritating process. It was felt that even first-generation computers were better as they at least
had the machines for a fixed time slot. Thus, the major drawback of multi-programmed batch
systems was lack of user--programmer interaction with their jobs.

The solution found for the interaction between the job and the user was to have the dedicated
dumb terminals for each user connected to the main system having CPU whose time would be
shared among the multiple users. (Students should note that at that time, we did not have per-
sonal computers.) The idea was that user should have a feeling that he/she is using the system
alone. Instead of submitting the job in a batch, the user would directly submit the job to the
system. In this way, the user would be able to interact with his job. But the basic concept, i.e.,
multi-programming was still there. The jobs being submitted to the system would be stored in
the partitioned memory. As the CPU time on the main system was shared among multiple users,
these types of systems were known as time-sharing multi-user systems.

OS

Job n

Job 3

Job 2

Job 1

Fig. 1.7 Memory structure consisting
of multiple jobs

CPUCard
reader

Hard disk

Printer

Fig. 1.8 Spooling

Introduction to Operating Systems 11

One of the earlier time-sharing systems was compatible time-sharing system (CTSS)
 developed at MIT. This system got popular as it supported many interactive users as compared
to the batch systems. With the success of CTSS, it was thought that there should be a power-
ful machine which would support thousands of users at a time. For this type of project, MIT,
Bell Labs, and General Electric came together with a system called MULTiplexed Informa-
tion and Computing Service (MULTICS). But the idea of supporting thousands of users on
Mainframe computers of that time did not work. Due to many reasons, the project could not
be a success. Bell Labs dropped the project. Later on, General Electric also withdrew from the
project and even left the computer business. But the story of time-sharing systems does not end
here. MULTICS, despite the commercial failure, had a great impact on the future development
of operating systems.

One of the scientists, Ken Thompson of Bell Labs, working on MULTICS thought of the
idea of running the single-user version of MULTICS on PDP-7, a discarded minicomputer that
time. With great surprise, Thompson’s idea worked and it started supporting multiple users.
Encouraged with his success, Brian Kernighan, Dennis Ritchie, and his other colleagues joined
the project. Brian Kernighan started calling this project as UNICS (UNiplexed Information
and Computing Service); however, later it was renamed as UNIX. After this, UNIX was ported
to PDP-11/70, PDP-11/45, and PDP-11/70, the other modern computers of that time. These
computers also had the mechanism of memory protection hardware. But the major problem
realized at that time was that porting UNIX on different machines was becoming a tough job
because UNIX was written in assembly language, and new hardware required rewriting of the
code. It was surveyed and found that no language was suitable for making UNIX as a portable
operating system. So it was realized that a new language should be designed for this purpose.
Ritchie developed a language called ‘C’ for rewriting the UNIX. Finally, with the efforts of
Thompson and Ritchie, UNIX was rewritten in ‘C’ high-level language and its portable version
was prepared. In this way, the path of a time-sharing multi-user operating system was paved
that dominated the world for a long time after that.

1.3.4 Fourth Generation
Undoubtedly, UNIX was a major achievement as a time-sharing multi-user OS in the third gen-
eration. Now the users do not need to wait for the response of their jobs for long hours. If there
was an error in the user program, the user could debug it at that time only instead of waiting
for a long time as in the batch systems. Thus, there was an interactive session between the user
and the job. But, still this was a multi-user system which was sharing the processing time of a
single system. It was desired that there should be a single system for a single user, which is not
shared with others, i.e., the demand for personalization of processing time. However, this was
not possible on the minicomputers of third generation.

With a leap of time, hardware technology further advanced and now it was possible to have
 thousands of transistors on a very small area of silicon chip due to LSI (Large Scale Integra-
tion) and VLSI (Very Large Scale Integration) technology. With the result of this success, the
size of computers reduced beyond imagination. Due to this architecture, the processing speed
of CPU further increased. This was the sunrise of microcomputers, later on called as personal
computers (PCs). It was possible now to have a personal computer as compared to Mainframe
or mini computers system shared by many users. Now the question was to design the OS for
personal computers as the others present were not compatible with them. As Intel 8080 was
the first microprocessor for personal computer, there was a need to design an OS for it. Gary
Kildall in Intel designed an OS called ‘CP/M’ (control program for microcomputers). With

12 Principles of Operating Systems

the success of CP/M, Kildall formed his own company Digital Research to support this OS for
other microcomputers like Zilog Z80.

After some years, IBM came into the market with IBM PCs. IBM with Bill Gates
hired Tim Paterson who had written one OS known as disk operating system (DOS). Tim
 modified DOS according to the modifications desired by IBM and came up with Microsoft
DOS (MS-DOS). This OS with PCs revolutionized computing and became very popular
among general users. On one hand, Intel was coming out with many new advancements in
microprocessors like 8086, 80286, 80386, and 80486, and on the other, Microsoft modified
MS-DOS and released many versions as per the microprocessors released. A number of
utilities like dBASE, LOTUS, Wordstar and languages like BASIC, COBOL, C under DOS
were also developed. This made programming and other jobs on the personal computer a
very convenient task for a general user, which was not possible till third generation.

Despite the success of MS-DOS on PC, UNIX was also being modified with many versions
to cater to many features of operating systems. The major and unique success point of UNIX
was still multi-user time-sharing system which no other operating system of that time pro-
vided. Even DOS versions were also being updated as an impression of UNIX, e.g., the hier-
archical file system incorporated in DOS was based on UNIX file system only. Microsoft was
aware of the success of UNIX due to multi-user capability. Intel 80286 and other 80x86 family
microprocessors were very fast in speed and were able to execute the jobs of multiple users.
But MS-DOS on PC was designed only to handle a single-user job. So having the impression
of multi-user feature of UNIX on mind, Microsoft came up with XENIX. After this, IBM also
joined Microsoft for developing an OS known as OS/2 for multi-user feature to be installed
on 80286- and 80386-based systems.

The CP/M and MS-DOS operating systems were based on the commands to be typed by the
user. It means whatever the task we wanted to do on these systems, we need to remember or
refer the appropriate commands first, type them, and then perform the operation. This was be-
coming cumbersome to have so many commands to work with. Moreover, we needed to under-
stand the hierarchical file system to work with the files, which was not user friendly. Thus, there
was now another goal for OS developers—user friendliness and convenience. The research for
this goal was being performed at Stanford Research Institute by Doung Engelbart who invented
GUI (graphical user interface). This GUI concept was adopted by Steve Jobs who was work-
ing with Apple Computer at that time. Jobs’s first attempt as Lisa system failed as it was too
costly. His second attempt as Apple Macintosh was commercially successful not only due to
its cheaper cost but also because of its user friendliness. The convenience and user friendliness
concept relieved the users from command system and was very easy to learn.

Later on, Microsoft also realized the need to have an OS with GUI as impressed with the
success of Apple Macintosh. By this time, Intel came up with 80386- and 80486-based systems
which were faster as compared to the previous ones. This speed factor invented the graphic
displays. Later on, Microsoft designed GUI-based operating system called Windows. But,
 Windows was just a graphical interface running on top of MS-DOS. It was in 1995 only that
Windows 95 was released as a true operating system. After this, Windows has continued to
rule over the world with many evolving versions: Windows 98, Windows NT, Windows NT
4.0, Windows 2000 (Windows NT 5.0), Windows Millennium, Windows XP, Windows Vista,
and Windows 2007. The latest version is Windows 2008.

Intel continued to release the faster microprocessors (80486 and Pentium family), and
 applications of the users were becoming complex. At the same time, users demanded to execute
multiple windows at a time in Windows OS. Every user wanted to open many tasks at a time on

Introduction to Operating Systems 13

the system. This motivated to have an OS which would handle many tasks of a single user. This
was termed as multi-tasking and implemented in many versions of Windows mentioned earlier.

The success of Windows as a user-friendly OS influenced the UNIX developers as it was
lacking GUI. This motivated them to incorporate GUI features and come up with X Windows.
X Windows included only basic window management. Another version having complete GUI
features was released, known as Motif.

Another advancement in the hardware technology was the network system. In a network
system, there were some basic functionalities like file transferring, remote login, etc. To
provide these functionalities to a general user, network interface controller and a low-level
software were required. Therefore, another type of OS was designed, known as network
 operating system. Similarly, distributed systems were developed, and thus distributed operating
systems. The distributed systems were also network systems but there was a difference that
in network systems the users were aware of the network and computer in that network. For
example, if a user is copying a file to another computer through network, then user must have
the address of that destination computer. It means the user has the knowledge of the task and
is aware of the location in the network where the task will be performed. On the other hand, in
a distributed system, the user submits the complex task and gets the result back. He does not
know how the task has been divided among multiple tasks; at which nodes in the network these
tasks have been sent for processing. All these functionalities are performed by a distributed
operating system without the knowledge of the user. Moreover, a distributed system requires
a different operation compared to a centralized system such as distributed scheduling, i.e.,
scheduling of various tasks on various processors, distributed synchronization among tasks,
distributed file systems, etc.
The evolution of all major OSs is given in Table 1.2.

Table 1.2 Evolution of different operating systems

Generation Period Computer architecture Problems and development of OSs

First 1940s–1950s Vacuum tubes based
technology, plug boards
and punched cards, mag-
netic core memories

No operating system

Second 1950s–1960s Transistors based
technology, Mainframe
computers, line printers,
magnetic tapes, assem-
blers, linkers, loaders,
compilers, FORTRAN,
COBOL

Set-up delay problem due to load-
ing and unloading of tapes in earlier
computer systems.

CPU was idle.

Jobs of users prepared with same
programming language were batched
together.

Automated job sequencing

Resident monitor

Batch systems

Mismatch between the speed of CPU
and I/O devices

Offline operation with magnetic tapes

Tapes were sequential access
devices

(Contd)

14 Principles of Operating Systems

Third 1960s–1980s IC-based technology,
Minicomputer

Hard disks came into existence

Spooling

Multi-programming

Multi-programmed batch systems

Lack of user–programmer interaction
with their jobs in multi-programmed
batch systems

Time-sharing multi-user systems

CTSS

MULTICS

UNICS

UNIX

UNIX written in C

Magnetic disk

Fourth 1980s–Present LSI- and VLSI-based tech-
nology, Microcomputer

CP/M for PCs

MS-DOS

Multi user facilities were not there in
DOS

XENIX

OS/2

No user friendliness and convenience
due to command driven and complex
file systems

Apple Macintosh

Windows

Multi-tasking

Multi-threading

X Windows

Motif

Network operating systems

Distributed operating systems

1.4 TYPES OF OPERATING SYSTEMS

We have traced the history of OSs and seen how they have been developed. Today, a variety
of OSs exist according to the project environment and requirements of the user. For daily use,
we use Windows OS as it has become a general-purpose OS today. On the other hand, if the
project is embedded with a real-time system, then Windows will not suffice. Instead, a real-time
OS (RTOS) will be required to meet the requirements of real-time system project. If we are
working on a multiprocessing distributed system, then the OS should be able to distribute the
processes on various processors, coordinate between distributed processes, etc. Thus, OSs are
there to meet our needs. We should identify the requirements and project types and then select
an appropriate operating system. Here we describe various types of OSs.

(Table 1.2 Contd)

Introduction to Operating Systems 15

1.4.1 Batch Processing Systems
The batch processing system was developed as a result of more set-up time for execution
of different types of user programs. But today, we do not have the problems of set-up time.
 However, batch processing can be used for the user jobs which do not want user attention. These
jobs can be combined in a batch and sent for execution without the intervention of the user. Thus,
batch processing systems take a sequence of jobs in a batch and executes them one by one with-
out any intervention of the user. The main advantage of batch processing is to increase the CPU
utilization. The batch processing, obviously, is not meant for a quick response to the users, but
it is still used to quantify the user service turnaround time. The turnaround time of a user job is
the time since the job was submitted to the system to the time when the user gets the result back.

1.4.2 Multi-programming Systems
Multi-programming is a very basic concept today. In evolution of operating systems, it was
described that multi-programming means to place several programs or jobs in the main memory
instead of a single program. It means that now several jobs are ready to be executed, but CPU
can execute only one job at a time. Then how do we execute all the jobs in the main memory?
The idea is switching between the jobs.

There can be two types of instructions in a program: CPU bound and I/O bound. CPU
bound instruction means when CPU has an instruction for processing or computation. I/O bound
instruction means there is a request to an input or output device to read or write. It means dur-
ing the I/O bound instructions, CPU is not doing work and is idle, i.e., the job which CPU was
 executing is now waiting for an I/O service. It has been observed that most of the time in a job is
wasted in waiting for I/O. When there is a single program in memory or in monoprogramming
concept, the CPU sits idle and waits for I/O to complete and then moves to next CPU bound
instruction. Since, due to multi-programming concept there are many jobs ready in the main
memory, the CPU can switch to its second job while the first is waiting for an I/O. If the second
job also reaches an I/O bound instruction, then CPU switches to another job and so on. The CPU
comes back to its previous jobs and executes them in the same fashion. With this concept, the CPU
always has a job to execute and remains busy. For example, see Fig. 1.9; there are two programs

Execute Execute Execute

Execute Execute

Execute
P1

Execute
P2

Execute
P1

Execute
P2

Execute
P1

Program
P1

Program
P2

Multi-programming

Execute

Execute
P2

I/O

I/O I/O

I/O

Fig. 1.9 Multi-programming

16 Principles of Operating Systems

P1 and P2. With monoprogramming, there would be only P1 in the main memory and P2 will ar-
rive in the memory and be executed only after the execution of P1. But with multi-programming,
both programs will be stored in the memory. Suppose if P1 is first sent to CPU for execution, then
after some time if P1 waits for some I/O, then in monoprogramming, CPU will sit idle. But in
case of multi-programming, it will switch to P2 and start executing it. With this arrangement, the
CPU does not sit idle; and in this example, both P1 and P2 will be executed in the same time as
required to execute P1 in monoprogramming. Obviously, there is higher CPU utilization (ideally
in this example, it is 100%) and throughput is doubled. Although this is an example of an ideal
case, there is high CPU utilization and throughput in multi-programming systems.

The major benefits of multi-programming systems are as follows:
 • Less execution time As compared to batch systems, the overall execution time for users’

job is less because of spooling and switching between the jobs frequently by CPU.
 • Increased utilization of memory Instead of storing a single program in the memory as

done before, now more than one program is stored, thereby utilizing the main memory.
 • Increased throughput Since in multi-programming, CPU does not sit idle and switches

between all the jobs, the number of jobs executed in time t is more as compared to batch
systems, thereby increasing the throughput. Throughput may be given as follows.
Throughput = Number of jobs completed per unit time

Throughput is increased if degree of multi-programming is increased. Degree of multi-program-
ming is the number of programs in main memory. As we increase the number of programs in
memory, i.e., increase the degree of multi-programming, throughput also increases. However, this
increase in throughput depends on two factors. First, how much memory for storing programs is
available and second, the type of program. If the programs under multiprogrammed execution are
either CPU bound or I/O bound, the throughput will be low. If there is a proper mix of these two
types of programs, only then the throughput will be improved.

Example 1.1

There are three jobs running in a multi-programming system with the following requirements:
Job 1: Requires disk after every 2 min (device service time including wait and access = 2

min). Total processing time = 6 min.
Job 2: Requires printer after every 5 min (device service time including wait and access = 2

min). Total processing time = 7 min.
Job 3: Requires disk after every 3 min (device service time including wait and access = 2

min). Total processing time = 5 min.
Prepare a timing chart showing the CPU and I/O activities of the jobs. Compute the total time

for execution using mono-programming and multi-programming and then compare the results.
Solution
We represent our jobs with J1, J2, and J3 and the execution of the jobs as E. First see the timing

[Fig. 1.10(a)] with monoprogramming and then [Fig. 1.10(b)] with multi-programming. From
these two diagrams, it is clear that about 30% of time has been saved with multi-programming
and CPU was busy instead of being idle just for waiting the I/O to be completed.

1.4.3 Multi-user Time-sharing Systems
Batch systems and multi-programmed batch systems do not provide immediate response to
the user. If one user submits his/her job, he/she has to wait for the execution of all the jobs in
that batch and then get the output. In this way, waiting time of a user is more and he/she is not

Introduction to Operating Systems 17

in direct touch with his/her job. If something goes wrong in the job, the user needs to correct
it, submit it in another batch, and again wait for a long time to execute the full batch. This
behaviour of batch systems and multiprogrammed batch systems were due to non-interactive
input and output devices. With the invention of interactive devices like keyboard and video
terminals, another paradigm was designed wherein multiple users with their terminals (having
no processors) were connected to a computer system (with processor) to perform their jobs. In
this arrangement, the jobs of multiple interactive users were placed in the main memory instead
of batched jobs. It means that multi-programming was still used here. This system was called
multiuser as it supported multiple interactive users. It was also known as time sharing as CPU
time of main computer system was shared among multiple users to execute their jobs. Thus,
multiuser time-sharing systems are the systems where multiple interactive users connected
through their dumb terminals (for interface only) access the main computer system (with CPU)
to perform their jobs (see Fig. 1.11).

I/OI/OI/OI/OE E E E E E E

0 2 4 6 8 10 15 17 19 22 24 26

J1 J2 J3

(a) For monoprogramming

E E E E E E E

0 2 7 10 12 14 16 18

J1 J1J2 J3 J1 J2 J3

(b) For multi-programming

Fig. 1.10 Timing diagram

Main
system

User 1 User 2 User 3 User n

Fig. 1.11 Multi-user time-sharing system

18 Principles of Operating Systems

As mentioned above, this technique uses multi-programming, and CPU time of main system
is being shared among multiple users. However, due to the processor’s speed, each user has the
impression that the system is dedicated to him/her only. Therefore, CPU switches from one job
to another job on regular intervals to have a fair distribution of its time for the users. For this
fair distribution, a time slice for each user may be fixed. By using this time slice, the users’ jobs
are scheduled in such a manner that each job gets equal chance for computation. In this way, the
major benefit of time-sharing systems over multiprogrammed batch systems is the improved
response time. The response time is the time between submission of a job to the system and its
first reaction/response to the user. The better response time, in turn, improved the productivity
of the user as he/she gets the quick response to his every job.

The major benefits of multiuser time-sharing systems are as follows:
 • Multiuser facility With time-sharing paradigm, it is possible to connect multiple users to

a system where each user presents the job to the system and gets the response.
 • Improved response time The major benefit is the response time for a user’s job which was

not possible in batch systems. The user now is in direct touch of his job and due to easy
interface, he views everything regarding his job.

 • Improved debugging and productivity From the programmer’s point of view, debugging
of the programs is now easy because the user can easily view his mistakes. In this way, he
quickly modifies the program and runs again, thereby increasing the productivity also.

1.4.4 Multi-tasking Systems
In most of the literature, multi-programming and multi-tasking have been used interchange-
ably. In the literary sense of both these terms, they seem to mean the same thing and one may
get confused with these two terms. Similarly, time-sharing and multi-tasking are also used
interchangeably. Let us understand these terms first.

As mentioned above, multi-programming was the basic concept wherein more than one
program were stored in the main memory and first batch systems were developed around this
concept of multi-programming. Due to no interaction of users with their jobs in batch multi-
programming, multiuser time-sharing systems were developed. So it should be noted here that
in history, the term time-sharing was used for multiuser systems. Today time-sharing has been
used as a scheduling technique which should not be confused with any term like multiuser or
multi-tasking. After this, Windows was developed for personal computers such that a single
user working on a PC can open multiple windows. The user can open the web browser and
at the same time, open a Word file to edit (see Fig. 1.12). In this way, the user is able to open
many windows or tasks and work on them. This is known as multi-tasking where a single user
works on multiple tasks on the PC. With the availability of high speed of processor, the user
has the illusion of working in parallel on multiple tasks. But it is the time-sharing scheduling
technique which has made it possible. And we know that time-sharing technique was also used
in multiuser systems. This is the reason that multi-tasking and time-sharing are mixed up. But it
should be made clear that multiuser and multi-tasking are different terms, and time-sharing is the
scheduling technique in both of them. Moreover, the multi-programming technique (more than
one program/task in the main memory) is inherent in both multiuser and multi-tasking systems.

To make it more clear to the readers, let us summarize some definitions:
 • Multi-programming Place more than one job/program/task in the main memory.

Introduction to Operating Systems 19

 • Multiprogrammed batch systems Place
more than one job/program/task in the main
memory of a batch prepared for same type
of jobs, and execute them by switching
between them.

 • Multiuser systems Place more than one
job/program/task in the main memory
of the main computer system. Here jobs
come from the different users who are
connected through terminals to the main
computer. The jobs are scheduled by time-
sharing technique.

 • Multi-tasking systems Place more than one job/program/task in the main memory of the
system. The jobs here are of a single user working on the system. The jobs are scheduled
by time-sharing technique.

1.4.5 Network Operating Systems
The network operating system is the earliest form of operating system that coordinates the
activities on a network system. Network operating system may be considered as loosely cou-
pled operating system software on a loosely coupled hardware that allows nodes and users of
a distributed system to be quite independent of one another but interacts in a limited degree. In
a network, each node has its own local operating system. A user sitting on a node may work as
on the local machine through its local operating system. However, on the network system, there
may be some control operations that may be performed by the user sitting on his/her machine.
In other words, the user working on a node is also able to perform non-local functions. For
example, the user may remotely log on to some other node. Similarly, the user may transfer the
files to another node also. For the functioning of these non-local operations, the operating sys-
tem software is required to coordinate the activities. Here the role of network operating system
starts. The network operating system may be considered as another layer of software on the
operating system on a local machine. This layer works between the user computations and the
kernel on the local machine. The processes of user first contact the network operating system.
If the operation to be performed is local on the node, the network operating system passes the
request to the local operating system on the node. But if the operation to be performed is non-
local, the network operating system contacts the network operating system on the node.

A network operating system also targets the resource sharing across multiple nodes of the
 network where each node has its own local operating system and a layer of network operating
system. Each node on the network is able to perform some control operations that are run locally
as well as on some other node on the network. However, to work on a network system using
network operating system, the user must be aware of the network nodes and their access rights to
perform the control functions. For instance, if a user wants to log on to some other node on the
network, i.e., remote login, he must know the address of the node and must have permission to log
on the system. Similarly, while transferring the files, the user must explicitly transfer the file from
his machine to another one, i.e., he must be aware of where all files are located and where they
will be copied. Thus, in network operating system based system, a user must know where a re-
source is located in order to use it leading to poor transparency of system resources and services.

Task 1 Task 2 Task n

Fig. 1.12 Multi-tasking System

20 Principles of Operating Systems

1.4.6 Multi-processor Operating Systems
In the technological evolution of computer systems, there was a desire for parallel processing
with the help of more than one processor instead of only one. This has been realized through
multi-processor systems. Multiprocessing systems contain more than one processor and share
other resources. These types of systems are very useful for engineering and scientific applica-
tions by processing data in parallel on multiple processors. Another category of application
suitable in multiprocessing environment is mission-critical and real-time systems. Since these
systems are specially designed for defence systems, it is expected that they will continually
work in warfare conditions. Therefore, in these types of systems, besides parallel computation,
there is a high demand of fault tolerance and graceful degradation of services when any of the
processor fails. Thus, multiprocessing systems are most suitable for these applications. Multi-
processing systems offer the advantage of increased throughput due to multiple processors, are
economical to work on, and have increased reliability due to fault tolerance.

It is obvious that for multiprocessing systems, different operating systems are required to
cater to the special requirements. These are called multiprocessing operating systems. These
operating systems have more challenges as compared to single-processor systems. Since in this
environment there are multiple processors, all of them should be busy. The processes should be
distributed on various processors for parallel computation. The process scheduling is another
challenge as it is needed to schedule multiple processes on multiple processors. Moreover, the
coordination of various processes should also be taken care of. Different inter-process commu-
nication and synchronization techniques are required. In multiprocessing systems, all proces-
sors share a memory; therefore, there is a need to check that all processors operate on consistent
copies of data stored in shared memory.

1.4.7 Distributed Operating Systems
Distributed systems are also multi-processor systems but with the following differences:
 • Distributed system works in a wide area network.
 • Each node in a distributed system is a complete computer having full set of peripherals

including operating system.
 • The users of a distributed system have an impression that they are working on a single

machine.
Resource sharing is the main motive behind distributed systems. If we want to take advan-

tage of hundreds of processors, it may not be possible to have all of them on a single board.
But the multiple processors are realized as a single powerful machine in a network system and
this machine is known as a distributed system. In this way, a number of users can share the
resources of all the machines on the distributed system.

Besides the resource sharing, the distributed systems also provide computational speed
up by partitioning a computation into some subcomputations which are distributed and run
 concurrently on various nodes on the system. A distributed system also provides the enhanced
availability of the resources through redundancy and communication paths thereby increasing
the reliability of the system. For example, a distributed file system places files on separate
machines and allows many users to access the same set of files reliably providing the view of
a single file system.

Distributed operating systems have been designed for this special type of system. These
 operating systems providing distributed computing facility employ almost same communication

Introduction to Operating Systems 21

methods and protocols as in network operating systems. But the communication is transparent
to the users such that they are unaware of the separate computers that are providing the service.
The following are some important tasks to be met by distributed operating system:

 • Since distributed systems need to access any resource or transfer any task on any node,
there are three types of migration provided by the operating systems:

 Data migration Transferring the data from one site to another site
 Computation migration Transferring the computation on a particular node
 Process migration The process or its subprocesses may also need to be transferred to

some other nodes due to some reasons like load balancing, computation speed, etc.
 • Distributed OS must provide the means for inter-process communication. Some of the

methods are as follows:
Remote Procedure Call A process on one node may invoke a function or procedure in a

process executing on another node.
Remote Method Invocation Allows a Java process to invoke a method of an object on a

remote machine.
CORBA (Common Object Request Broker Architecture) It is a standardized language

that supports different programming languages and different operating systems for distributed
communication.

DCOM (Distributed Component Object Model) Another standard developed by Micro-
soft included in Windows operating system.
 • Due to multiple processes, synchronization methods should be supported by the operating

system.
 • There may be deadlock when processes distributed over several nodes in a network wait

for the resources not released by other processes. Therefore, deadlock should also be
handled by OS.

1.4.8 Real-time Operating Systems
In time-sharing systems, there was a drawback, i.e., if there was more load on the system, the
response time was more and further increased with the increase in load. But there are some
computations in a system which cannot bear the delay. Therefore, after the development of
time-sharing systems, new kinds of computer systems were developed in 1980s. In these sys-
tems, response to a user request has to be immediate or within a fixed time frame, otherwise
the application will fail. This is known as real-time processing. This type of processing is
largely useful in defence applications which are mission specific, i.e., if there is no timely
response, there might be loss of equipment and even life. Therefore in these systems, there
are deadlines of time which should be met to prevent failures, otherwise the purpose of the
system is lost. For example, suppose there is an electric motor being controlled through a
computer system. The motor running at a speed, if crosses a threshold speed, will burn. The
system is controlling the motor in such a way that if motor crosses the threshold, it will lower
the speed of the motor. Now, when motor is crossing the threshold speed, and system does not
respond in that time period, the motor will burn. So, this is an example of real-time system
which in case of failure results in loss of equipment. Similarly, there are many defence appli-
cations like guided missile systems, air traffic control systems, etc. which in case of failure
may result in loss of life.

22 Principles of Operating Systems

Real-time systems are of two types: hard real-time systems and soft real-time systems. The
systems that have hard deadlines and must be met are called hard real-time systems. All defence
applications are of this type. There is another type known as soft real-time system where missing
of some deadline is acceptable. For example, in a video conferencing system, if some audio or
video data are somehow delayed for a fraction of time, then it may be acceptable and there is no
harm. Thus, digital audio, multimedia systems, virtual reality are all examples of soft real-time
systems. However, missing the deadlines does not mean that they are not real-time systems.
The delay of soft real-time systems must be bounded and predictable and should not be infinite.

Real-time operating systems (RTOS) are there to meet special needs of a real-time system.
They have the major characteristic of providing timely response to the applications besides
other facilities. The major challenge for an RTOS is to schedule the real time tasks. In a real-
time system design, all deadlines requirements are gathered and analyzed. The RTOS schedules
all tasks according to the deadline information and ensures that all deadlines are met. Another
feature of a real time system is to have fault tolerance. Since a real time system must work con-
tinuously in every condition, therefore in case of any hardware or software failure, the system
should not stop working. To achieve this target, fault tolerance is provided by means of redun-
dancy both in hardware and software. For example if one processor fails, another processor in
the standby will take over the charge and the system continues to work. The RTOS must use
some special techniques such that the system can tolerate the faults and continue its operations.
Obviously, with the fault tolerant feature, there is degradation in the performance of the system.
But OS should take care that this degradation is graceful, i.e., no critical functioning should be
stopped or delayed.

1.4.9 Embedded Operating Systems
Embedded systems are specialized systems that tend to have very specific tasks. The last decade
has filled our daily life with embedded systems. From the household systems to defence systems,
the embedded systems are seen everywhere. Either you purchase the toys for your children
or the smartphone for yourself, these systems have dominated every walk of life. Washing
machines, televisions, and cars are other examples where these systems are being used.

Embedded systems have also operating systems but they are not generalized ones. The
user uses these devices without any awareness of operating systems. Embedded operating
systems are there to perform all the basic functionalities in these systems like initialization,
task management, memory management, etc. but with little or no user interface. Thus, in
the embedded systems, there are operating systems but not in the same structure as found
in general purpose computer systems.

A large number of devices categorized as consumer electronics are mobile. They are better
known as mobile devices or hand-held devices. One of the category of mobile devices is per-
sonal digital assistants (PDAs), such as palm top computer, are hand-held devices that combine
elements of computing, telephone/fax, Internet, and networking in a single device. A typical
PDA can function as a cellular phone, fax sender, web browser, and personal organizer. Thus,
these devices allow us to access the email, messaging, web browsing, work on documents, and
much more. The examples for PDAs are Palm Pilot, Toshiba Pocket PC. PalmOS is a well-
known OS for them. The second category is mobile phones and smartphones. Smartphones
combine both mobile phone and hand-held computers into a single device. They allow users
to store information (e.g., e-mail), install programs, along with using a mobile phone in one
device. The examples of operating systems for smartphones are: Symbian OS, iPhone OS,
BlackBerry, Windows Phone, Linux, Palm WebOS, Android, and Materno.

Introduction to Operating Systems 23

Another category of mobile devices is smart cards. Smart cards have the capacity to retain
and protect critical information stored in electronic form. The smart card has a microprocessor
or memory chip embedded in it. The chip stores electronic data and programs that are protected
by advanced security features. When coupled with a reader, the smart card has the processing
power to serve many different applications. Smart cards provide data portability, security, and
convenience. Smart cards are being used in various sectors, such as telephone, transportation,
banking, healthcare transactions, etc. There are two basic types of smart cards: contact and
contact-less smart cards. Contact cards have a 1-cm-diameter gold-plated pad that has eight
contacts on it. These contacts are in turn wired to a microchip underneath the pad. The mi-
crochip can be a memory-only chip or a microprocessor chip containing memory and a CPU.
Memory cards are used mostly as telephone cards, whereas microprocessor cards can be used
for multiple applications on the same card. Although both cards can have stored value and
stored data areas, the microprocessor card can in addition process the data since it contains a
CPU, RAM, and an operating system in read only memory (ROM). Contact-less cards not only
have an embedded microprocessor chip, but also contain a miniature radio transceiver and an-
tenna. They only operate within close proximity to the reader. Instead of inserting the card, we
simply pass the card close to the reader. Contact-less cards tend to be more costly than contact
cards and are best suited for transportation and building access applications

The smart card’s chip operating system (COS) is a sequence of instructions permanently
embedded in the ROM of the smart card. The baseline functions of the COS which are common
across all smart card products include
 • management of interchanges between the card and the outside world, primarily in terms of

the interchange protocol
 • management of the files and data held in the memory
 • access control to information and functions (select file, read, write, and update data)
 • management of card security and the cryptographic algorithm procedures
 • maintaining reliability, particularly in terms of data consistency, and recovering from an error

There are some challenges for the designers of the operating systems for mobile devices.
Some of them are as follows:
 • All the mobile devices have a very small memory. So the memory must be managed efficiently.
 • All the devices have a slow power CPU as faster CPU will require more power and thereby

a larger battery. And larger battery cannot be there in a small mobile device. Therefore, the
operating system should not load the processor with heavy computations.

 • Devices like mobile phones and smartphones have a small screen area. So the contents
should be mapped to the available size of the display screen.
The features of major types of operating systems discussed above are given in Table 1.3.

Table 1.3 Types of operating system

Type of operating
system

Features/benefits Example Applicable to which
type of application

Batch systems More than one job
can be stored in main
memory

FMS (FORTRAN monitor
system), IBM’s operating
system for 7094

Background jobs in
which the user
interaction is not
necessary

(Contd)

24 Principles of Operating Systems

Batches of same
type of jobs can be
executed quickly

Multiuser systems Jobs of different users
who are connected to
a main computer are
executed through the
multi-programming

CTSS by MIT, TSS by
IBM, MULTICS, UNIX

When multiple users
need to share a single
system

Interaction of jobs
with the user is
 possible

Debugging is easy

Multi-tasking
systems

Multiple tasks of a
single user can be
opened on the
system through
multi-programming

Windows When a user wants
to open and work
simultaneously on
many windows on the
system

Network systems The user is able to
connect to another
machine and perform
many operations

Novell Netware, Win-
dows NT, Windows
2000, Windows XP, Sun

When a user wants
to remote log on to
a system, wants to
transfer a file, etc. on
a network system

The user is aware of
the location of the net-
work node where he/
she wants to connect

Solaris

Distributed systems When multiple nodes
of a wide network
realized as a powerful
machine sharing the
resources on the net-
work. The users are
not aware where their
processes are being
sent and executed.

Amoeba, V system,
Chorus

When computational
speed and resource
sharing is required
and implemented
through various full
computer systems in
a network

Real-time systems Used to handle time-
bound responses to
the applications

pSOS, VxWorks,
RTLinux, etc.

Applicable to systems
which require time-
bound response,
i.e., for the real-time
processing systems

Embedded systems Specialized systems
with size, memory
and power restrictions

Palm Pilot, Toshiba
Pocket PC, Palm OS,
Symbian OS, iPhone
OS, RIM’s BlackBerry,
Windows Phone, Linux,
Palm WebOS, Android
and Maemo.

Used in consumer
electronics items,
mobile phones, smart
cards, etc.

(Table 1.3 Contd)

Introduction to Operating Systems 25

1.5 GOALS OF AN OPERATING SYSTEM

We have seen how operating systems have been developed in the past. It can be noticed that as
soon as the concept of multi-programming came into picture, a number of problems started to
occur. The solution of these problems in fact contributed for further development of operating
systems. All these operating systems have been developed keeping in view the convenience of
the user of the system. As discussed, there was a time when all the tasks related to programming
had to be done by the user only, whether it is loading the program in memory or debugging
the program. The journey from multi-programming through multiuser is still continuing with
 multi-tasking and multi-threading. The central theme is the user’s convenience. Either it is the
throughput, i.e. the number of tasks being performed, or the response time of a user’s job, or the
user wants to execute more than one tasks at a time or the environment wherein the user can per-
form the tasks conveniently without worrying about the CPU time, memory partitions, memory
size, etc. All these developments signify that an operating system provides an environment to a
user such that he concentrates on his job instead of being concerned about the hardware.

Another point that we have observed through the development of operating systems is that
operating systems have been designed to utilize the hardware and other resources. For instance,
CPU time had always been the target for its utilization. From the batched multi-programming
systems to multi-tasking systems, CPU time had been the central resource to be utilized. The
goal of CPU usage also changed as the generation of computer systems changed. In initial
operating systems, the goal was the throughput and that CPU should be made busy in executing
more number of jobs. But in the recent operating systems, the goal has changed to response
time, i.e., CPU executes the jobs to provide a user the minimum response time for his jobs
in multi-tasking environment. Another important resource is memory. With the invention of
multi-programming, many jobs started residing in the memory. Therefore, it was necessary to
keep maximum jobs in the main memory and utilize it as much as possible. Even the concept of
virtual memory was given with the help of which the user does not need to worry about the size
of the memory to write a program. In fact, it is possible to have a program larger than the actual
size of memory. There is another concern of utilization—devices utilization. All devices should
be shared and utilized fairly among the tasks. As we will go through the chapters in this book,
we will realize the need of utilization of all the resources being used in the computer system.
Therefore, to meet the needs of resources utilization, an operating system is required. Thus,
the operating system provides an abstraction to the user of a system that he is best utilizing the
resources of the system even without his knowledge.

As a result of resource utilization, another goal for operating system has been added, i.e.,
resource allocation. In multi-programming environment, there is need to allocate resources
to various tasks. For instance, when there are many tasks in the memory, it is required that
one of them will go to the CPU for execution. Someone has to take this decision for process
allocation. The operating system has been designated to perform this function. It uses vari-
ous scheduling algorithms according to the need and chooses one of the tasks in memory
and sends it to CPU for execution. For memory utilization, there is a problem of memory
allocation to a task, i.e., which vacant space should be allocated to a task? Similarly, de-
vices are very limited as compared to the tasks. Therefore, again the operating system al-
locates the devices to the tasks in best possible manner. Thus, another goal in designing the
operating system is to allocate resources to various tasks. Therefore, it is also known as
 resource allocator.

26 Principles of Operating Systems

It should be noted that there is a side effect of multi-programming and multi-tasking. We
know that more than one job resides in the memory in these concepts. Moreover, operating sys-
tem is also loaded in the memory in a separate partition. However, it may be possible that one
user accesses the memory region of another user or even the operating system. Till the develop-
ment of DOS, there was no protection among users’ jobs and operating systems. Therefore, the
next goal for an operating system is to have protection in this form such that no user is able to
access others memory regions and of operating system.

Let us summarize these goals as follows:

Convenience
 The convenience of a user, who performs a job using the computer system, is the prime goal
of an operating system. Let us understand the user requirements. Some of them are as follows:

Hardware abstraction/virtual machine
The user does not want to care for hardware resources and to access the devices because the
details of all the hardware are too complex to work. The details of hardware also hinder the
 thinking process of a programmer. Therefore, operating system provides an abstraction layer
between the user and the hardware so that the user can work on the hardware without actually
knowing it.

Convenient programming environment
The process of program execution includes several steps. We should have a good editor to write
a program, debugger to debug the program, linker, loader, etc. The operating system provides
all these facilities to a programmer so that a convenient environment is present and the user can
concentrate on the programming and nothing else.

Response time
As we know through the evolution of operating systems that there was a time when there was a
gap of hours or even a day between the user’s job submission and its first response of execution.
With the invention of high-speed processors, the user desired to have immediate response from
the job. This desire has resulted in the development of multiuser and multi-tasking operating
systems.

Easy-to-use interface
The users’ convenience has taken another shape when the use of GUI became popular. This
was another goal for an operating system which resulted in Mac OS and Windows OS. The use
of an operating system in the form of GUI makes a user understand the operation he wants to
perform. Moreover, the user is relieved from remembering the commands which needed to be
typed in older UNIX and DOS systems.

Resource Utilization/Management
We know that multi-programming introduced many new challenges for an operating system.
Due to multi-programming, there was a need to partition the memory and allocate memory
to various tasks. So memory partitioning and memory allocation jobs added to the operating
system. As the number of users and tasks increased, there was need to utilize the memory effi-
ciently. Thus, memory management techniques were devised.

Another concern that arose due to multi-programming was CPU utilization. When there was
a single program to execute, there was no issue of memory management and CPU utilization.
But when there are multiple tasks in memory, all compete for execution. Since CPU can execute

Introduction to Operating Systems 27

a single task at a time, others need to wait. So the issue is to schedule the tasks such that CPU
does not sit idle and all the tasks get the CPU time fairly.

Device utilization is another important issue for operating system. As the devices are less
in number as compared to the number of users and tasks, there is need of controlled allocation
to them. For example, if we allow all the users to access a shared printer, then there will be a
chaos. It means we must have some mechanisms to share the devices. This device management
is also supported by the operating system.

Likewise, there are many resources today in the computer system which need to be allocated
and managed in a controlled manner. In this way, operating system’s jobs to manage and utilize
the resources are as follows:

 i) grants access to resource requests from different users
 ii) keeps track of which task is using which resource
 iii) keeps account of usage of the resources
 iv) resolves the conflicting requests from users
 v) utilizes the hardware and other resources in best possible manner

Thus, it can be said that operating system acts as a resource allocator and resource manager
in order to provide an efficient operation on computer system to the user. The efficiency is the
major goal for an operating system which takes care of the best utilization and allocation of
resources on the computer system.

Protection
Due to multi-programming and multi-tasking, there was a challenge that one user should not
be able to access other user area in memory. Similarly, one user should not be able to access
the operating system area in memory. For this purpose, hardware was first modified and then
protection feature was added in the operating system (we will discuss this issue later in detail).
Thus, an operating system should be able to protect the task of one user from another and oper-
ating system from any user.

1.6 FUNCTIONS OF OPERATING SYSTEM

We have understood what an operating system is and broadly what it does. Now it is time to
discuss the various functions being performed by an operating system. The functions can be
categorized as per two viewpoints: user view and system view. The user view is a top-down
view of functions performed by an operating system, whereas system view is bottom-up view
of functions performed by an operating system.

1.6.1 User View
The user view is to execute the user’s task on the computer system. But a user does not want to
be overwhelmed with the complex hardware details of the system. He simply wants an interface
between his application and the hardware. There are many system programs or utilities to help
him in developing his application. The operating system is also a system program developed
to act as an interface between the application and the hardware. He is not concerned how the
application will get resources from the system and get executed. All these jobs will be done
by the operating system. Thus, an operating system does hardware abstraction for the user by
hiding the complex details of the hardware, thereby providing a flexible user-friendly interface

28 Principles of Operating Systems

to the user for developing his application. In other words, operating system acts as a mediator
between the application and the computer system that makes easy use of hardware and other
resources without even knowing. From the user’s point of view, the following are some func-
tions performed by an operating system:

User Interface
The operating system provides the interface to use the computer system. There are two types of
interfaces: command-driven interface and graphical user interface (GUI). As discussed earlier,
in older systems, there was only command-driven interface. But with the invention of Win-
dows, now almost every operating system provides GUI.

Program Development and Execution
For executing a program, there are certain tasks like loading the program in main memory,
initializing and accessing I/O devices and files, scheduling various resources, etc. All these
program executions are performed by the operating system without the knowledge of the user.
Moreover, operating system provides some utilities such as editors, debuggers, etc., which
although are not part of the operating system but are packed with the operating system for the
 convenience of the programmer.

Accessing I/O Operations
If you have written some programs in high-level language, then you write some standard input-
output instructions according to the language being used. For example, in ‘C’ language, for
reading the input the instruction is scanf and for output the instruction is printf. You do not care
for the type of input/output devices and use only standard instructions for any type of devices.
The operating system relieves the user from details of input/output devices and accesses them
on behalf of the user.

Accessing File Systems
A file is a logical concept to store the user’s data or program. A user creates the file using
some editor and saves and retrieves the files conveniently through the operating system’s
interface. But the file as a logical entity is mapped to some physical memory. Operat-
ing system in background keeps track of memory provided to the files and performs all the
operations related to file management.

Error Detection
While working on a computer system, one may encounter different types of errors. Either it
is a hardware error or error in some user program. There may be a memory access failure or
a device failure. A user may give a command for printing a file but there may be no paper in
printer or there is a paper jam. Or the errors may be in user programs such as arithmetic over-
flow, divide by zero error, or accessing an illegal memory location. All these errors must be
identified by the operating system and an appropriate action must be taken and the user should
be notified through a message on the screen.

1.6.2 System View
Beyond the user’s convenience, most of the functionalities are performed in background by the
operating system. These activities are to manage or utilize the hardware and other resources of
the computer system. Therefore, from the computer system’s point of view, the operating sys-
tem is a program that controls the allocation/execution of all the resources in the system. There
are three major functionalities done by the operating system:

Introduction to Operating Systems 29

Resource Manager
The operating system is a program that controls the allocation/execution of all the resources in
the system. In this way, operating system schedules and manages the allocation of all resources
in the computer system. It is best called as a resource allocator and resource manager. If there
are multiple processes, then their creation, deletion, and other operations are handled by the
operating system only. Memory is to be provided to all these processes. It is the job of operating
system to look for the available memory and allocate to the process. When multiple processes are
simultaneously running there may be problems such as how to communicate with other processes
and how to access the shared objects. Therefore, an operating system needs to also handle inter-
process communication and synchronization. It utilizes the resources in the best possible manner.
Users work on the computer using various files. The user sees these files as only a logical con-
cept. The operating system implements the file systems in the physical memory. Similarly, I/O
devices, which are not directly accessible to the user, are given access by the operating system.
Thus, from the system’s viewpoint, process management, file management, I/O management,
memory management, etc., are all the functions performed by the operating system.

Control Program
The operating system acts as a control program in the sense that it protects one user’s program
from another. It is necessary in multi-programming because a user may try to enter other user’s
memory and even in operating systems’ region. Also, it does not allow the users to access any
I/O devices directly as the user may misuse them. It detects any exception in the system if it
happens and informs the user. Thus, operating system acts as a control program that controls
the user activities, I/O access, and all other activities performed by the system.

Virtual Machine Manager
A very different view to see the operating system is as a virtual machine manager. As we know
that operating system acts as an abstraction which hides the complex details of the hardware
from the user and presents a user-friendly environment to him. Even a programmer does not
want to interact directly with the I/O devices. Interacting with I/O devices, memory, and hard
disk is too clumsy and no one can easily work on these hardware details. Due to this fact, oper-
ating system provides a layer on the actual hardware on which it performs the tasks of the user.
And to the user, it seems that all the work done is by the hardware. In other words, there is an
illusion created by the operating system that there is a virtual machine that is performing all the
work. Let us see how a virtual computer is created:

 i) The operating system creates virtual processors by creating multiple processes.
 ii) The operating system creates multiple address spaces out of the physical memory and

allocates to various processes.
 iii) The operating system implements a file system out of the hard disk, i.e., virtualization of

disk space.
 iv) The operating system implements virtual devices out of the physical devices because

it is cumbersome to work with physical devices and virtual devices prepare a simple
interface instead.

In this way, virtual machine or extended machine (in the form of virtual processors, virtual
memory, and virtual devices) is created from the physical computer. On a single physical ma-
chine, multiple virtual computers are created in the form of multiple processes (see Fig. 1.13).
Each user has an illusion that he is using a single machine. Therefore, operating system is also
viewed as a manager of the virtual machine or extended machine.

30 Principles of Operating Systems

1.7 OPERATING SYSTEM’S GENERIC COMPONENTS

In this section, a generic structure of operating system is discussed. The detailed structure and
various types will be discussed later. The emphasis here is to know how the interfaces between
user, operating system, and hardware are in place. The reader should be aware that the user
or programmer cannot access hardware resources directly. Even, in the subsequent chapters a
concept will be established that no user is allowed to perform any I/O operations. Therefore, it
becomes necessary to know the generic structure of an operating system.

In Fig. 1.2, we have seen the computer system where operating system fits therein. We have
seen there that operating system is the interface between user’s applications and hardware.
It means that whatever job a user wants to perform through the hardware of the computer
system will be performed by operating system on behalf of the user. But there is a question

of how to tell the operating system the functions
we want to perform. It means there should be an
interface by means of which user tells the operat-
ing system to perform operations on the hardware.
This interface is the place where the users give the
commands through control statements. There is
a program which reads and interprets these con-
trol statements and passes the signals to operating
system. This program is known as command-in-
terpreter or shell. Thus, there is a clear separation
between the user application, OS, and hardware
as shown in Fig. 1.14. The shells may be in the
graphical form wherein commands are in the form
of mouse-based window and menu system as used
in Windows OSs or commands form wherein
commands are typed in by the user as used in MS_
DOS or UNIX operating systems.

Physical computer/hardware

User
process

User
process

User
process

Operating system
Virtual
machine

Virtual
machine

Virtual
machine

Extended
machine

Fig. 1.13 Operating system as a virtual machine manager

User

System and application
programs

Kernel

Shell

Hardware

Fig. 1.14 Operating system structure with shell and kernel

Introduction to Operating Systems 31

As the requirements have grown, the size of the operating systems has also increased. But
we know that it needs to be loaded into the main memory which is already packed with user
programs. Therefore, the operating system to be loaded into the memory should be of smaller
size otherwise most of the memory will be taken by the operating system only. Therefore, es-
sential modules of the operating system such as task management, memory management, etc.
are only loaded into the memory known as kernel. The kernel is the innermost layer close to the
hardware to get things done. Other modules of operating system are stored in the secondary stor-
age like hard disks and get loaded as and when required. For example, virtual memory module
is not part of kernel but will be loaded if required. In this way, the operating system part is also
divided into two parts: essential part (kernel) and secondary part.

SUMMARY

There was a time when a user on the computer system
used to get the program executed in days because every-
thing for program execution was manual and in fact the
user was close to the machine. But with the advancement
in the technology, a software layer between the user pro-
grams and hardware was added so that the user is relived
from the details of the hardware and all the work related
to machine was done via this software layer. This software
layer is known as operating system. The OSs evolved
with the increase in demands of the user and inventions in
computer hardware and I/O devices. The advancements in
computer architecture have always impacted the develop-
ment of OSs. But sometimes, the researchers of OSs also
demanded to have modifications in the architecture. Thus,
OSs and architecture both have affected each other and
developed in parallel.

Multi-programming is a central concept in operating
systems. The multi-programming, i.e., placing more than
one program in the main memory, has given birth to other
modules of operating system. In fact, the multi-program-
ming originated many problems. As a solution to these
problems, other modules of operating system were de-
veloped. For example, multi-programming demanded that
memory should be partitioned and allocated to the required
processes. All the processes must be protected. Multiple
processes will compete for limited I/O devices. Multiple
processes must communicate and synchronize with each
other. Therefore, memory management, process manage-
ment, process scheduling, device management, process
communication, process synchronization, protection, etc.,
have been developed in response to the problems of multi-
programming. All these concepts are relevant to a designer.
For a system designer, the operating system is a resource
allocator, extended machine manager, and control program.
As a resource manager it allocates and manages the re-
sources in the system. As an extended machine manager, it
acts as an extended machine in support of the actual hard-
ware and seems to a general user that all the facilities have

been provided by the machine hardware only. As a control
program, the operating system protects all the programs
and itself from any malicious job.

However, all these concepts are not related to the user.
A general user’s view is different from the system’s view.
The user wants the convenience while working on the sys-
tem. There are many facets of the user convenience. The
user does not want to indulge into the hardware details. The
user wants the interaction with his job so that he can debug
it. The user does not want to work with the commands. He
wants the GUI based flexibility and convenience. And all
these have been incorporated in the operating systems.
Thus, the prime goal of an operating system is to have the
user convenience so that there is a friendly environment
on the system for the user. The other goal of the operat-
ing system is the utilization of the hardware and all other
resources in the system.

Let us have a quick review of important concepts in this
chapter:

 • An OS is a software that acts as an interface between the
users and hardware of the computer system.

 • An OS is a software that provides a working environment
for the users’ applications.

 • An OS is a resource manager that in background man-
ages the resources needed for all the applications.

 • Multi-programming is the central concept in operating sys-
tem that originates all other concepts of operating system.

 • Multi-programming places more than one job/program/
task in the main memory.

 • Multi-programmed batch systems place more than one
jobs/programs/tasks in the main memory of a batch pre-
pared for same type of jobs and execute them by switch-
ing between them.

 • Multi-user systems place more than one job/program/
task in the main memory of the main computer system.
The jobs are of different users who are connected through
terminals to the main computer. The jobs are scheduled
by time-sharing technique.

32 Principles of Operating Systems

 • Multi-tasking systems place more than one job/program/
task in the main memory of the system. The jobs here
are of a single user working on the system. The jobs are
scheduled by time-sharing technique.

 • The primary goals of operating system are convenience
of the user and best utilization of the hardware.

 • There are two views to look at the functioning of the oper-
ating systems: user view and system view.

 • From the user’s viewpoint, the operating system acts as
an easy interface between the user and computer system
and presents a friendly environment wherein the user can
work efficiently without worrying about any configuration
or details of the hardware.

 • From the system’s viewpoint, the operating system acts
as a resource manager, control program, and virtual ma-
chine manager.

 • As a resource manager, operating system schedules and
manages the allocation of all resources in the computer
system.

 • As a control program, operating system controls the user
activities, I/O access, and all other activities performed
by the system.

 • As a virtual machine manager, operating system provides
a layer on the actual hardware on which it performs the
tasks of the user. And to the user, it seems that all the
work done is by the hardware. In other words, there is an
illusion created by the operating system that there is a
virtual machine which is performing all the work.

 • There are two generic components of operating system:
shell and kernel.

 • Shell is a program which reads and interprets the control
statements entered by the user to perform a task. It is
also known as command interpreter.

 • Kernel is the part wherein only essential modules of the
operating system are placed.

MULTIPLE CHOICE QUESTIONS

 1. Automatic job sequencing is performed by ________.
 (a) operating system (c) job pool
 (b) resident monitor (d) none

 2. Disks were invented in ________ generation.
 (a) first (c) third
 (b) second (d) none

 3. SPOOL is ________.
 (a) simultaneous printer operation offline
 (b) simple peripheral operation offline
 (c) simultaneous peripheral operation offline
 (d) simultaneous peripheral operation online

 4. MULTICS is
 (a) multiplexed information control system
 (b) multiple input control system
 (c) multiplexed information and computing service
 (d) none

 5. PDP-7 was a ___.
 (a) mini computer (c) PC
 (b) Mainframe (d) none

 6. IBM with Bill Gates hired Tim Paterson who had written one
OS known as

 (a) UNIX (c) Windows
 (b) DOS (d) none

 7. Batch systems were developed in ____ generation.
 (a) first (c) third
 (b) second (d) none

 8. Spooling was developed in ____ generation.
 (a) first (c) third
 (b) second (d) none

 9. Time-sharing was developed in ____ generation.
 (a) first (c) third
 (b) second (d) fourth

 10. Multi-tasking/Multi-threading was developed in ____
 generation.

 (a) first (c) third
 (b) second (d) fourth

 11. _______processing is largely useful in defence applications.
 (a) Batch (c) Parallel
 (b) Real-time (d) None

 12. Symbian OS is used in ____.
 (a) smartphones (c) Palm pilot
 (b) smart cards (d) none

 13. When a user wants to open and work simultaneously
on many windows on his system, what OS should be
 chosen?

 (a) Multi-user OS (c) Batch OS
 (b) Multi-tasking OS (d) Networked OS

 14. When a user wants to remotely log on to a system, wants
to transfer a file, etc., on a network system, what OS should
be chosen?

 (a) Multi-user OS (c) Batch OS
 (b) Multi-tasking OS (d) Networked OS

Introduction to Operating Systems 33

 15. When computational speed and resource sharing is
 required and implemented through various full computer
systems in a network, what OS should be chosen?

 (a) Real-time OS (c) Embedded OS
 (b) Distributed OS (d) Networked OS

 16. What OS should be chosen which is applicable to systems
that require time-bound response?

 (a) Real-time OS (c) Embedded OS
 (b) Distributed OS (d) Networked OS

 17. What OS should be chosen which will be used in consumer
electronics items, mobile phones, smart cards, etc.?

 (a) Real-time OS (c) Embedded OS
 (b) Distributed OS (d) Networked OS

 18. Program which reads and interprets these control statements
and passes the signals to operating system is known as

 (a) system programs (c) shell
 (b) system call (d) kernel

 19. _______is the innermost layer close to the hardware to get
things done.

 (a) System programs (c) Shell
 (b) System call (d) Kernel

 20. Apple Macintosh was commercially successful not only due
to its cheaper cost but also because it was_____.

 (a) taking less memory (c) accessing I/O faster
 (b) user friendly (d) none

REVIEW QUESTIONS

 1. What is the need for an operating system?

 2. What are the functions of an OS from user’s viewpoint?

 3. What are the functions of an OS from system’s viewpoint?

 4. What were the difficulties in second generation from OS
viewpoint?

 5. What is a resident monitor?

 6. What is JCL?

 7. What is offline operation?

 8. What is the difference between online and offline operation
on a computer system?

 9. How did the disks solve the problem faced with the mag-
netic tapes?

 10. What is SPOOL? What is the benefit of spooling?

 11. Give a brief overview of development of UNIX?

 12. Explain the difference between DOS, UNIX, Apple Macin-
tosh, and Windows?

 13. Explain the differences between multi-programming, multi-
user, and multi-tasking OSs.

 14. Explain the characteristics of multi-processor and distrib-
uted systems.

 15. What is the differences between network and distributed
OSs?

 16. What is the difference between real-time and embedded
operating systems?

 17. How does operating system function as resource manager?

 18. How does operating system provide protection?

 19. What is a virtual machine? How does operating system
function as a virtual machine manager?

 20. Discuss the role of shell and kernel in operating system.

 21. What are the challenges in designing a multiprocessing/
distributed operating systems?

 22. What is the difference between a smart card and smart-
phone?

BRAIN TEASERS

 1. Can you work without operating system in your computer
system?

 2. The major drawback of multiprogrammed batch systems
was the lack of user/programmer interaction with their jobs.
How can you overcome this?

 3. The response time is the major requirement of a multiuser
time-sharing OS. What are the things that need to be
improved for this requirement from a system designer’s
viewpoint?

 4. Is time-sharing OS suitable for real-time systems?

 5. Examine the following conditions and find appropriate oper-
ating system for them:

 (a) In a LAN, users want to share some costly resources
like laser printers.

 (b) Multiple users on a system want quick response on
their terminals.

 (c) Railway reservation system
 (d) A user wants to work with multiple jobs on his system.
 (e) In a network system you want to transfer file and log

on to some node.
 (f) There are some jobs in the system which does not

want user interaction.
 (g) Washing machine

 6. Explore the features of operating system being used in
recent design of smartphones.

34 Principles of Operating Systems

 7. Do all operating systems contain shell?

 8. Multi-programming is inherent in multiuser and multi-task-
ing systems. Explain how.

 9. There are four jobs running in a multi-programming system
with the following requirements:

job 1: requires disk after every 1 min, device service time in-
cluding wait and access = 3 min, total processing time = 4 min.

job 2: does not require any I/O, total processing time = 7 min.
job 3: requires printer after every 3 min, device service
time including wait and access = 2 min, total processing
time = 9 min.
Prepare a timing chart showing the CPU and I/O activities
of the jobs. Compute the total time for execution using
monoprogramming and multiprogramming and then com-
pare the results.

2.1 INTRODUCTION

The first chapter introduced the basic concepts of an OS. Before we delve into the details of an OS, the
knowledge of computer system architecture is a prerequisite to understand the concepts of an OS. Since
there was a parallel development in computer architecture and the OSs as we have seen in Chapter 1, it
is necessary to understand the relation of architecture with OS. Therefore, some basic concepts that are
related to OS have been discussed in this chapter. Since the modern OSs are interrupt driven, the inter-
rupt mechanism has been explained. The protection among the user jobs and the OS is a major issue to
implement the multi-programming-based concepts in OSs. Therefore, it is necessary to understand how
the protection has been achieved in the hardware. The management of I/O devices is a major area where
the OS plays a great role. All the fundamental issues related to I/O devices such as type of devices,
device controllers, and the device drivers have also been discussed. The magnetic disk is a widely used
secondary storage device and used in many concepts of OS such as scheduling, virtual memory, and so
on. Therefore, the structure of the disk and its related issues have also been discussed.

2.2 INTERRUPT-DRIVEN OPERATION FOR OPERATING
SYSTEM

The modern OSs that support the multi-programming/multi-user/
multi-tasking environment perform interrupt-driven operation,
i.e., everything an OS does is interrupt driven. If there is no event
and no processes to execute, the OS does nothing. It simply waits
for an event. The OS is activated when there are processes to exe-
cute or an event causing the interrupt. Therefore, it is important to
understand what an interrupt is and what happens to the processor
when an interrupt arrives. So, let us discuss the concept of inter-
rupt.
Interrupt is a signal sent by hardware or software to notify the
processor about the occurrence of an event that needs immediate
attention. On the processor hardware, there is an interrupt request
(IRQ) line that the processor senses for any interrupt after execu-
tion of each instruction of the process. If there is no interrupt, it
moves to next instruction to execute. But if there is an interrupt,
the state of the process being executed is saved so that the pro-
cessor can resume its execution from the place where it left off
(see Fig. 2.1).

2 Hardware Support for
Operating Systems

Learning Objectives
After reading this chap-
ter, you should be able to
understand:
 • Interrupts, their types, and inter-

rupt-driven operation of an OS
 • Types of I/O devices
 • Introduction to timers
 • Role of device controllers and

device drivers
 • Multiple mode of protection
 • Input-output protection
 • Memory protection
 • CPU protection
 • Input-output communication

techniques
 • Structure of a magnetic disk
 • Disk partitioning
 • Disk formatting

36 Principles of Operating Systems

After saving the state of the old process, a
program known as an interrupt handler or inter-
rupt service routine (ISR) is executed, which
is a part of microcontroller firmware (such as
ROM-BIOS that provides a small library of
basic input/output functions used to operate and
control the peripherals such as the keyboard,
display, disk, etc.), OS or a device driver. There
is an ISR corresponding to each interrupt gen-
erated. After executing the ISR, the control is
returned to the interrupted program and its
execution is resumed by loading its saved state.

But we do not know the address of an ISR to be executed. The addresses of all ISRs are
placed in a list known as interrupt vector table (IVT). The IVT is generally placed in low
memory. Each interrupt has a unique number and therefore in IVT, corresponding to an
interrupt number, the address of the ISR is stored. Whenever an interrupt is sensed by the
processor, it finds out its number and the address of the ISR in IVT. After finding the address
of the ISR, the control is transferred to the ISR and it is executed. In the x86 architecture,
each address in the IVT is 4 bytes long and supports 256 total interrupts (0-255). To access
the location of an interrupt in IVT, the interrupt number is multiplied by 4 as each address is
4 bytes long. For example, hitting a keyboard generates a hardware interrupt whose number
is 9. It means the address of ISR corresponding to this interrupt will be found on locations
36, 37, 38, and 39.

The steps of the interrupt processing are summarized as follows (see Fig. 2.2):

Interrupt
source

Processor executes
an instruction,

checks the IRQ, and
acknowledges

Save state of the
interrupted

process

Find out the
address of ISR

from IVT

IVT

Load address of
ISR in PC and

control
transferred to

ISR

ISR

ISR executed and
control returned

back to the
interrupted program

Restore state of
the interrupted

process to
resume

Fig. 2.2 Steps of interrupt processing

while (fetch next instruction)
{

Execute the instruction;
If (there is an interrupt)
{

Save the state;
Find address of ISR;
Execute ISR;
Return from ISR and restore the state;

}
}

Fig. 2.1 Interrupt view of processor

Hardware Support for Operating Systems 37

 1. The interrupt is generated from its source (hardware or software).
 2. The interrupt signal generated is pending on the interrupt request (IRQ) line of the processor

hardware.
 3. The processor finishes its current instruction execution and then checks for the interrupt.
 4. The processor determines that there is a pending interrupt request and sends an acknowl-

edgement signal to the source that generated the interrupt.
 5. After the acknowledgement, the source of the interrupt removes the interrupt request

signal.
 6. The processor saves the current state of the process that was interrupted such as pro-

gram status word (PSW), program counter (PC), processor registers, and other data
structures that will be discussed later in the book. These can be pushed onto a control
stack.

 7. The processor finds out the type and number of the interrupt generated and finds the address
of the corresponding ISR in IVT.

 8. The processor loads the address of the ISR in PC and executes it.
 9. After executing the ISR, the control is returned back to the interrupted program and saved

state is loaded again so that the program can be resumed.

2.2.1 Types of Interrupts
There may be various sources of interrupts. In general, there may be two types of interrupts as
follows:

Hardware Interrupts
A hardware interrupt is generated from an external device, which could be either a part of the
computer itself such as a keyboard, disk, or an external peripheral. For example, when we press
a key on the keyboard or move the mouse, the hardware interrupts are triggered, which in turn
causes the processor to read the keystroke or mouse position.

Software Interrupts
A software interrupt may be generated due to the following:
 • There may be conditions caused within the processor that require OS attention. For example,

if there is an arithmetic exception like divide-by–zero during the execution of a process.
 • There are some instructions in the user process which are treated as a request to the OS.

These instructions, known as privileged instructions, are the medium through which a
user process can indirectly interact with hardware through the OS. For example, if the
user process wishes to read input data from the keyboard, then the user process will use
a privileged instruction that will be passed to the OS and treated as a software interrupt.
Thus, the software interrupts are the result of an exceptional condition in the process or

may be caused due to a special instruction in the instruction set that triggers the interrupt
when executed. The exceptional condition is sometimes known as a trap. In general, it is
used for errors or events occurring during the program. The maximum number of hardware
interrupts that can be handled depends on the number of IRQ lines to the processor. However,
the software interrupts are not limited to the number of IRQ lines and therefore can be hun-
dreds in number.

38 Principles of Operating Systems

2.2.2 Multiple Interrupts Handling
It is not so that only one interrupt may arrive at a time. We will see later in the explora-
tion of multi-programming concept that multiple interrupts may also arrive and require the
 processor’s attention. For example, in a multi-programming environment, a printer is print-
ing the output, the keyboard is receiving the input, and the data is read from the disk. All
these events cause interrupts. However, the processor is able to execute one interrupt at a
time. There are two approaches to solve this problem. One is to disable the other interrupts
while the ISR corresponding to one interrupt is being executed. The interrupts arrived during
the execution of the ISR are treated as pending and may be stored in FIFO queue. Once the
ISR execution is over, the other interrupts in the queue are processed. But the disadvantage
of this approach is that some interrupts which need immediate attention and not get serviced
may do some loss. For example, if an ISR is being executed and the keyboard interrupt
arrives that is reading some data. If keyboard interrupt is not processed immediately, the
input data may be lost. Therefore, the second approach—a priority mechanism—is taken
that decides the priority of the interrupts arriving. On the basis of the priority decided, the
interrupts are serviced. If a lower priority ISR is being executed and a higher priority inter-
rupt arrives, the ISR is interrupted and the control is passed to the high priority ISR. After
the execution of this high priority ISR, the control is returned to the older ISR. Even if no
ISR is being executed and two interrupts arrive at the same time, the interrupt with higher
priority is executed first. In this way, the priority based interrupt mechanism is used to
handle multiple interrupts.

2.3 INPUT–OUTPUT DEVICES

Since the OS provides a generic, consistent, convenient, and reliable way to access I/O devices,
a brief introduction of I/O devices is provided in this section. There are various types of devices
available today. They may vary depending on their operation, speed, data transfer, etc. Some
devices may be categorized based on these characteristics. Even within a category the devices
may vary. This is the reason that device management is necessary as part of operating system
function. The devices may be categorized as human readable and machine readable. The human
readable devices are mouse, keyboard, monitor, etc. The machine readable devices are sensors,
controllers, disks, tapes, etc.

The devices may transfer the data as a stream of bytes or in the form of a block. If the
device accepts and delivers the data as a stream of characters/bytes, it is known as character
device. Character-oriented devices are suitable where linear stream of bytes are required.
For example, while accepting input data from the keyboard, a block of characters cannot be
expected in one instance. Therefore, input devices like keyboard, mouse, modems, etc., are all
examples of character devices. Even the output devices of this nature, like printers, are also
character devices. On the other hand, if the device accepts and delivers the data as a fixed sized
block, it is known as block-oriented device. Disk is the example of a block device. Another
criterion is how a device accesses the data. On the basis of accessing data sequentially or
randomly, the devices are called as sequential device such as a tape drive and random access
device such as a disk.

A different type of I/O device is the network device. The network devices differ from
conventional devices like disk in the sense that they need special I/O interfaces to send or
receive data on a network. For example, socket is the major I/O interface used for network
devices.

Hardware Support for Operating Systems 39

There may be two types of I/O devices: blocking and non-blocking. In blocking devices, the
program is blocked with an I/O action and is not allowed to execute the program until the I/O
action completed. For example, the word processor program waits for a key press or a mouse
click (I/O) done by the user and then starts processing. In non-blocking devices, the device is
checked periodically for an I/O. If there is a process that processes the data and displays it on
the screen but needs to check the I/O on keyboard and mouse as well. In this case, the process
periodically checks the keyboard and mouse for I/O while processing and displaying the data.
In another example, the video application reads data from a file and simultaneously decom-
pressing and displaying the data on the screen.

Other criteria to define the types of devices may be based on complexity of control, data
representation, error conditions, etc.

2.3.1 Timers or Clocks
The timer is an important device that is used in the operating system to implement
 multi-tasking and other jobs. It is used to have the current time and elapsed time and to
trigger some operation at a particular time instant. The timers are used for the following
purposes:
 • The periodic interrupts may be generated.
 • It may be used by a scheduler to generate an interrupt when there is need to preempt a

 process when its time slice expires.
 • It may be used by a disk subsystem when there is need to flush the modified cache buffers

to the disk.
 • It may be used to cancel the operations in a network that are causing congestion and therefore

taking a long time to process.
 • It may be used to cancel the operation of a process that is not releasing the processor and

holds it for a long time. It helps in sharing the processor time among multiple tasks and every
task gets fair time and no task holds the processor.
A timer is implemented with a hardware known as up-counter that counts incoming

pulses. A counter acts as a timer when the incoming pulses are at a fixed known frequency.
For example, the programmable interval timer (PIT) hardware is used for the function
of a timer.

A timer consists of the following components:
 • Pre-scaler
 • N-bit timer/counter register
 • N-bit capture register

The pre-scaler component allows the timer to be clocked at the rate we wish. It takes
the basic timer clock frequency (may be the CPU clock frequency or some higher or lower
value may also be taken), divides it by some value, and then feeds it to the timer. The
timer register (an up-counter) reads and writes the current count value and may stop or
reset the counter. The regular pulses which drive the timer are called ticks. Thus, a tick is
a basic unit to express the timer value. When there is some event, the current count value
is loaded in the capture register. Besides these components, a compare register is also
used that holds a value against which the current timer value is continuously compared.
When the value in timer register and the value in compare register matches, an appropriate
event is triggered.

40 Principles of Operating Systems

2.4 DEVICE CONTROLLERS

A device controller, also known as an adapter, is an electronic device in the form of chip or
circuit that controls the communication between the system and the I/O device. It is inserted
into an expansion slot of the mother board. It functions as a bridge between the device and the
operating system, i.e., the operating system deals with the device controller of the device to
which it wishes to communicate. It takes care of low level operations such as error checking,
data transfer, and location of data on the device. Each device controller is designed specifically
to handle a particular type of device but a single controller may handle multiple devices also.

To perform an I/O operation on a device, the processor sends signals to its device
 controller. For example, it may be the case that the data needs to be read from a serial
 device. So the processor sends a command to the device controller of that serial device
first to read the desired bytes of data. In turn, the controller collects the serial bit stream
from the device and converts it into a block of bytes. It may also perform some necessary
error corrections if required. There is a buffer inside the controller that stores the block of
bytes thus obtained. After this, the block of bytes from the buffer of controller is copied to
the memory. Now if these data need to be displayed, the device controller for the display
reads the data from the memory and sends the signal to the CRT to display the data. In this
case, the operating system initializes the device controller with required information such
as address of the bytes to be read, number of characters per line, and the number of lines on
the screen to be displayed.

For the purpose of communication with the processor, each device controller has a set of
following device registers (see Fig. 2.3):
Control Register
These are used by the processor to configure and control the device. This register is meant to
write the data, i.e., the processor can alter but not read them back.
Status Register
These registers provide the status information about an I/O device to the processor. This
 register is meant to be read-only, i.e., the processor can only read the data and is not allowed
to alter.
Data Register
This register is used to read and write data from/to the I/O device.

The operating system performs I/O operations with the use of these registers only by sending
commands to an appropriate register. The parameters of the commands are loaded first into the

Processor

Device
controller

I/O device

Status
register

Data
register

Control
register

Fig. 2.3 Device controller registers

Hardware Support for Operating Systems 41

controller’s registers. When the command is accepted, the control is passed to the controller
by the processor. When the control is passed to the controller, the processor is free to do other
job during this time. When a command has been completed, the controller triggers an interrupt
to inform the operating system that the desired operation has been completed. The operating
system after gaining the control again gets the result of the operation and checks device status
by reading information from the controller’s registers.

2.5 DEVICE DRIVER

The most challenging task for an operating system is to manage the I/O devices in a com-
puter system. It acts as an interface between devices and computer system. This interface
should be simple, easy to use for a user, and preferably same for any type of device. How-
ever, today there are a myriad of input and output devices. Each I/O device has its own detail
and complexity. In this case, operating system needs to be changed to incorporate every
newly introduced device. Therefore, the I/O functionalities should be treated separately in
the operating system so that the other parts of the operating system are not affected. The
software which deals with the I/O is known as I/O software. In I/O software, there are two
types of modules. First module deals with the general functionalities when interfacing with
any type of device, i.e., these functions are common while interfacing with any I/O device
and are known as device-independent I/O software. For example, there should be a general
interface for any type of device. The second module provides device-specific code for con-
trolling it and is known as device driver. The second module in fact takes care of the pecu-
liarity and details of a particular device, i.e., how to read or write data to the device. In this
way, operating system does not need to change its code again and again to incorporate any
new device. Its I/O software takes care of all the I/O devices to be interfaced with the system
without changing the OS code.

Each device needs a device-specific code in the form of device driver for controlling
it. As discussed earlier, each device has a device controller that has some device registers
for performing I/O operations on the device. But the number of device registers and the
 nature of commands for performing I/O operations vary from device to device. Therefore,
to communicate with each type of device controller, a specific code in the form of a device
driver is written, which takes care of the specific device controller registers and the com-
mands. Thus, the device drivers act as a layer that hides the differences among the device
controllers.

The device drivers are part of the operating system, but not necessarily part of the OS kernel.
These are software modules that help the operating system such that there is easy access to the
hardware. They need to be installed on the system for each device we need to use. In general,
the manufacturer of the device supplies the device drivers. However, the device drivers may
differ according to the operating system type and its version.

The device driver communicates with the device controllers and thereby with the device
with the help of interrupt-handling mechanism. When the device controller interacts with
the actual device, the data are transferred between the actual device and the controller
 according to the I/O operation, i.e., the data from the device are written to the controller’s
register in case of input operation or the data from the controller’s register are sent to the
device in case of output operation. After completion of I/O operation at the level of device
and device controller, the device controller generates an interrupt to the device driver

42 Principles of Operating Systems

(see Fig. 2.4). The interrupt service routine is executed in order to handle a specific inter-
rupt for an I/O operation. This routine extracts the required information from the device
controller’s register and performs the necessary actions. After the completion of an ISR, the
blocked device driver is unblocked and may run again.

2.6 PROBLEMS IN THE DESIGN OF MODERN OSs

When the multi-programming concept was introduced, a new generation of OSs was evolved.
The modern OSs have multi-programming as an inherent concept. But when the multi-user
time-sharing and multi-tasking concepts were developed, many problems arose for their imple-
mentation. To implement them, there was no architectural support. For example, the Intel
microprocessor series till 80186 was not able to support the multi-user and multi-tasking con-
cepts. Let us first discuss the problems occurred:
 • Since the multi-programming concept allows the switching between the processes, there

was a need to preserve the state of the process that was stopped temporarily so that it can be
 resumed when the processor switches back to it. Similarly, the state of the process where the
processor switches currently needs to be loaded. In this way, a mechanism is needed to save
and load the state of a process.

 • Since the resources are limited as compared to the number of processes in a system, the
processes need to share them. There are several problems due to this environment. One of
them is that the processes may try to access the devices at the same time. There should be a
mechanism so that the processes have an orderly access to the devices.

 • The multiple processes sometimes may be trapped in a deadlock situation while accessing
the resources. Suppose there are two processes P1 and P2 and two resources R1 and R2 in
a system. P1 is using R1 and needs to have R2 to continue its execution. But R2 is used by
P2 which needs to have R1 to continue its execution. In this situation, both the processes
are waiting for each other to release the resource to continue thereby causing a deadlock
 situation.

 • Another problem in multi-programming environment is that all the processes may try to
 update the contents of a memory location at the same time.

 • Since all the processes and operating system reside in the main memory, a process may try
to access the memory locations of another process or even access the operating system area
in the memory. It may corrupt the operating system or some process.

Device

Device

Device

Device
controller

Device
controller

Device
controller

Device
driver

Device
driver

Device
driver

OS

Interrupt

Interrupt

Interrupt

Fig. 2.4 Functioning of device driver

Hardware Support for Operating Systems 43

 • A process may engage the processor for an infinite time by having such instructions in it and
does not release it. In this case, the other processes will be in wait for that process to release
the processor.

 • A process while accessing any I/O device may do any illegal operation on it thereby dam-
aging the devices. For instance, in disk operating system (DOS), there is no protection
of devices from the user programs. A user may write some virus programs and do some
mischievous operation on the devices, e.g., infecting the boot disk by loading the virus
program in boot sector, jamming the printer, etc.
All the problems discussed earlier were faced in the design of the multi-programming-based

operating systems. The single-user operating systems like DOS were not able to provide the
solutions to these problems.

2.7 NEED FOR PROTECTION

Some of the problems discussed earlier may be solved with the help of software support from
the operating system. For example, the solution to deadlock or accessing the same memory
location is provided by the operating system through deadlock avoidance or detection algorithm
and semaphore, respectively. But there are some issues which may not be implemented without
the architectural support. Since the problems discussed earlier largely address one problem,
i.e., the protection, the processor architecture of that time (e.g., Intel 8086, 8088, 80186) was
not able to provide any kind of protection. Any user was able to write a program that might
access the memory area of operating system and corrupt it. Any user was able to enter in the
memory area of any other user area. These problems initiated the demand for a mechanism that
the processes and even the operating system were not protected as there was no provision to
prohibit the user from illegal accessing of memory area or I/O device. Further, memory areas
divided among various processes and the operating system were not protected.

After this demand for protection, various architectures were developed to incorporate the protec-
tion mechanisms such that the multi-programming-based operating system could be implemented.
Thus, this protection demand emerged from the operating system implementation need and the
 result was the new processor architecture. The Motorola MC68000 family of microprocessors,
AT&T UNIX operating system, and Intel 80286 and its other derivatives are examples of the
 modified processors that considered the protection need in multi-programming operating systems.

2.8 HARDWARE PROTECTION FOR MULTI-PROGRAMMING/ MULTI-TASKING

To address all the problems described, various architectural support/modifications taken are
discussed as follows.

2.8.1 Multiple Modes of Operation
The basic idea in implementing the protection feature is to separate the regions of operating system
and users in order to protect the operating system and hardware devices from damage by any
 malicious user/program. The modern operating systems separate code and data of the operating
system from the code and data of the user processes. This separation was termed as dual mode
operation. This dual mode operation has two modes: the kernel mode and the user mode. The
 processor now can execute in one of the mode at a time, either in the kernel mode or in the user mode.
The contemporary processors implement this by having a mode bit in the program status word

44 Principles of Operating Systems

(PSW) to specify whether the processor is executing in kernel-mode code or user-mode code. The
PSW is a collection of control registers in the processor. The control registers control the opera-
tion of the processor itself. Initially, the mode bit is set to 0, thereby meaning that the control is
with the operating system when the computer system is started. When a user process wants to gain
the control, the mode bit is set to 1 and the user is able to execute in his own area but prevented
all access to the kernel memory space. However, if a user attempts to access any illegal memory
area or instruction, the processor generates an illegal access exception and the mode is switched
to the kernel mode. Similarly, if a user wants to access any hardware, the mode is switched from
the user to kernel mode. The mode switching is shown in Fig. 2.5.

Since the operating system has more priv-
ilege over user processes, the kernel mode
has high privilege as compared to user mode.
This is why the kernel mode is also called
privileged mode. The kernel mode is also
known as system mode, monitor mode, or
 supervisor mode. Thus, the system is booted
first with the kernel mode and the operating
system has all the access to the hardware,
thereby initializing a protected environment.

There are multiple levels of protection
known as privilege rings or levels. For ex-
ample, the MC68000 processor was de-
signed to have two privilege rings as dual
mode. The AT&T UNIX was designed with
three levels: kernel, shell, and the applica-
tion. The kernel here is the innermost level
and the application is on the outermost level.

Mode bit = 1Mode bit = 0

Interrupt/Illegal access

Kernel
mode

User
mode

Set user mode

Boot in system mode, load OS
If there is a user program to run, switch to user mode

When there is an interrupt or illegal access by user
program, switch to kernel mode and jump to OS code

To resume the user program, switch back to user mode
and return to next instruction in user code

User program

Fig. 2.5 Mode switching

Application

Device
drivers

Device
drivers

Ring 0

Kernel

Ring 1

Ring 2

Ring 3

Fig. 2.6 Intel privilege rings

Hardware Support for Operating Systems 45

The Intel modern processors come with four privilege rings (0–3) as shown in Fig. 2.6. In this
architecture, the operating system is in the innermost level (most trusted) having the highest
level of privilege and protected. The outermost level (least trusted) is application level hav-
ing the least privilege. The other two levels are for device drivers having the high privilege as
compared to the application but less privileged than the OS.

2.8.2 Input–Output Protection
The multiple mode operation of the system enhances the security between the user processes
and operating system. But, the users should also be prohibited to access the I/O devices directly.
Therefore, all I/O instructions are privileged and the privilege to access the devices is with oper-
ating system only. It means no user process can access the I/O device directly. To access any
I/O device, the process may request the operating system through a system call. The system
call is a user request to the operating system which is interpreted and executed on the hardware
by the operating system on the behalf of the user. In this way, all I/O instructions are privileged
thereby providing another level of security. In this sense, the instructions are divided into two
parts: privileged instructions and unprivileged instructions. The illegal instructions mentioned
in previous section are unprivileged instructions only. The user process cannot execute privileged
instructions. In fact, whenever there is a system call in the user process, the control switches from
the user mode to the kernel mode thereby transferring the control to the operating system. After
servicing the system call, the mode is again switched back to the user mode and control is with
the user process again (see Fig. 2.7). This privilege mechanism with mode switching ensures that
the user never gains control to access the devices directly, thereby protecting the I/O devices.

The system call being used in a user process is basically a software interrupt. As a result of
this software interrupt, the control is passed to an appropriate interrupt handler and the mode
is switched to the kernel mode. The operating system determines and verifies the details of the
interrupt occurred, executes the interrupt handler, and then returns the control back to the user
by switching mode to user mode.

2.8.3 Memory Protection
Besides the earlier-mentioned protection, a user program can still access the memory region
of some other user process. It means the user processes are not protected from any illegal
access by some process or any malicious process. Moreover, a user process may access the
IVT in memory and may change the address of any interrupt handler and do some illegal
operations on the devices. There should be some mechanism to protect the memory regions
of each process as well as the operating system. For this kind of protection, each process
must know its boundary of execution, i.e., there should be a start address and a limit
address that defines the boundary of each process. This was supported by the architecture
in the form of base register and limit register. Each process has defined limits to its mem-
ory space. The start address of a process is stored in the base register and the maximum
size of the process is stored in the limit register. Whenever a process starts executing and
references some memory location (say, m), it is checked against the base register. If the
memory location being referenced is greater than or equal to the base register and less than
the addition of base address and limit, then only it proceeds for execution; otherwise it is
considered as illegal memory access. In case of illegal access, the control is transferred
to the operating system by switching the mode back to the kernel mode as shown in Fig.
2.8. This check for memory protection is done by the hardware for each process. The base

46 Principles of Operating Systems

Boot the
system

Mode_bit = 0
(kernel mode)

Is there any
user process
to execute?

Mode_bit = 1
(user mode)

Execute the
user process

Is there any system
call/interrupt/illegal
access?

Mode_bit = 0
(kernel mode)

Execute the interrupt
handler/kernel process

Return to the
user process/
abort the
process

Yes

Yes

Wait for an event

No

Wait for an event

No

Fig. 2.7 I/O protection flow

yesyes

no no

m
CPU

Base Limit

m
base

m
base +
limit

Illegal access, control passed to OS

Memory

Fig. 2.8 Memory protection

Hardware Support for Operating Systems 47

and limit registers are updated for every process (which is to be executed) in the kernel
mode by the operating system. This mechanism thus prevents any user process to access or
modify another user process or operating system area.

Example 2.1

Figure 2.9 shows the memory structure of some processes and operating system with their legal
memory addresses. The base and limit registers are loaded with the addresses 1050 and 1000,
respectively. Suppose P1 and P2 reference the memory locations 2040 and 3052, respectively.
Check if the processes will be allowed to execute.

Solution

P1 is first checked against the base register 1050. In this
case, the reference memory location of P1, i.e., 2040, is greater
than base register. Now, P1 is checked against the sum of base
and limit registers, i.e., 1050 + 1000 = 2050. Since it is less
than 2050, it will be allowed to execute.

On the other hand, if P2 references a memory location 3052,
it is not allowed to execute beca use it violates the second crite-
rion, i.e., m < limit + base. So the control is passed to the oper-
ating system as it attempts to access the memory location of P3.

2.8.4 CPU Protection
There may be some situation that a user process gains the control of the processor and has a
set of instructions that are being executed for an infinite time and thereby not relinquishing the
control of the processor. Thus, it leads to the situation when the processor is also not safe and
must be protected from the user processes. There should be a mechanism such that the proces-
sor does not get trapped infinitely in a user process and returns the control back to the operating
system. To achieve this, again the hardware support is required. A timer is used that interrupts
the processor after a specified period of time. The timer is implemented with the clock and
a counter. All the operations related to the timer modification are executed by the operating
system as these are treated as privileged operations. The operating system sets the counter for
a time period. Every time the clock ticks, the counter is decremented and an interrupt is gener-
ated when the counter reaches to 0. On the generation of interrupt, the control is switched to
the operating system. In this way, no user process can hold the processor beyond a limit and
has to relinquish it after a specified period of time, thereby protecting the processor. The timers
are also helpful in implementation of multiuser time-sharing systems. In these systems each
user gets a uniform time to execute his process. This is achieved by setting the timer for a fixed
period of time and interrupt is sent when the time of a user process expires.

2.9 INPUT–OUTPUT COMMUNICATION TECHNIQUES

There are three techniques by which I/O operation can be performed on a device. These
are known as I/O communication techniques. These techniques are used to have a mode
of communication between the user request and the device, taking device characteristics
into account.

P4

P3

P2

P1

0

1050

2050

3050

4050

5050

Operating system

Fig. 2.9 Memory protection

48 Principles of Operating Systems

2.9.1 Programmed I/O
Whenever a process is being executed and the processor finds an I/O instruction, it issues the
commands to the appropriate device controller. The device controller performs the operation
by interfacing to the physical device and then sets the status of the operation in a status reg-
ister. But this is the job of the processor to check whether the operation has been executed or
not. For this purpose, it continually checks the status of the operation until it finds the opera-
tion is complete. Therefore, the process is busy waiting until the I/O operation has not been
performed.

The I/O operation is performed using a processor register and a status register. The device
puts the data in the processor register when input operation is required. On the other hand, the
device reads the data from the register when output operation is required. After completion of
the I/O operation, the status of the operation is written in the status register as a flag. In this
way, the processor executes the instruction in such a way that it is in direct control of the I/O
operation, i.e., sensing a device status, sending read/write command to the device, and transfer-
ring the data.

There is one disadvantage of this technique that the processor is busy waiting for the status
of the operation while the I/O module is performing. At this time, the processor is not execut-
ing other instructions of the same process or any other process and is tied up for only one I/O
operation. For the I/O operations that consume very less time or the systems where the proces-
sor has no other job to do, the programmed I/O is better. But for the multi-tasking environment,
programmed I/O is not a better choice where several processes are in queue waiting for the
processor.

2.9.2 Interrupt-driven I/O
In programmed I/O technique, the processor time is wasted as it continually interrogates
the status of I/O operation. It would be better if the I/O operation is started and the proces-
sor switches to another process to be executed instead of waiting. Therefore, the processor
issues I/O command to the device controller for performing I/O operation and switches to
another processor by calling the scheduler that schedules the process to it. The question
is how the processor knows when the I/O is complete. This is done through the interrupt
mechanism. When the operation is complete, the device controller generates an interrupt
to the processor. In fact, the processor checks for the interrupt after every instruction cycle.
After detecting an interrupt, the processor will stop what it was doing by saving the state
of the current process and resumes the previous process (where I/O occurred) by executing
appropriate interrupt service routine. The processor then performs the data transfer for the
I/O operation.

For example, when a user requests a read operation from an input device, the processor
 issues the read command to the device controller. The device controller after receiving this
command starts reading from the input device. The input data from the device needs to be
stored on the controller’s registers. But it may take some time and this time is sufficient to serve
any other process. Therefore, the processor is scheduled to execute any other process in the
queue. As soon as the data become available in the controller’s register, the controller signals
an interrupt to the processor. The appropriate interrupt handler is run so that the processor is
able to get the data from the controller’s register and save them in the memory.

Since the modern operating systems are interrupt driven, they service the I/O requests using
the interrupt mechanism only.

Hardware Support for Operating Systems 49

2.9.3 Input/output Using DMA
When a user wants to input some data through the keyboard or some data are printed on the
screen after every character to be input or output, the processor intervention is needed to
 transfer the data between the device controller and the memory. Suppose a user inputs a string
of 50 characters length and for every character to input there is 10 millisecond time required.
It means between two inputs there is a 10-ms time duration, thereby having an interrupt. It
causes to have a number of interrupts just to enter 50 characters long string. Thus, when the
data are large, interrupt-driven I/O is not efficient. In this case, instead of reading one character
at a time through the processor, the block of characters is read. This operation is known as
direct memory access (DMA), i.e., without the processor intervention. In DMA, the interrupt
will not be generated after every character input. Rather a block of characters is maintained
and this block is read or written. So when a user wishes to read or write this block, the proces-
sor sends the command to the DMA controller and rest of the responsibility to do I/O operation
for one block is given to this DMA controller. The processor passes the following information
to the DMA controller:
 • The type of request (read or write)
 • The address of the I/O device to which I/O operation is to be carried out
 • The start address of the memory where the data need to be written or read from alongwith

the total number of words to be written or read. This address and the word count are then
copied by the DMA controller in its registers.
Let us suppose, we need to perform a read operation from the disk. The CPU first sends

the information mentioned above to the DMA controller. The information is stored in the disk
controller registers. There are three registers as follows:
 • Memory address register states the address where the read/write operation is to be performed.
 • Byte count register stores the number of bytes to be read or written
 • Control register specifies the I/O port to be used, type of operation, the data transfer unit, etc.

The DMA controller initiates the operation by requesting the disk controller to read
data from the specified address and store in its buffer. The buffer data are then transferred
to the specified memory location. When this write is complete, the disk controller sends
an acknowledgement signal to the DMA controller. The DMA controller increments the
memory location for the next byte and decrements the byte count. The disk controller again
copies the next byte in the buffer and transfers the byte to the memory. This process goes
on until the byte count becomes zero. When the full I/O operation is complete, the DMA
controller sends an interrupt to the processor to let it know that the I/O operation has been
completed.

Thus, in DMA-based I/O, instead of generating multiple interrupts after every character, a
single interrupt is generated for a block, thereby reducing the involvement of the processor.
The processor just starts the operation and then finishes the operation by transferring the data
between the device controller and memory.

2.10 MAGNETIC DISKS

A magnetic disk is a widely used secondary storage device in the computer system. It con-
sists of a set of circular shaped metal or plastic platters coated with magnetic material. Both
the surfaces of each platter are used to store the information on the disk by recording data

50 Principles of Operating Systems

magnetically. To organize the data on
the disk, each platter is logically divided
in a concentric set of rings called tracks.
There may be thousands of tracks per
surface of each platter depending on
the storage capacity of the disk. Each
track is further divided into sectors (see
Fig. 2.10). A sector is the smallest unit
where the actual data are stored on the
disk. Each track may consist of hun-
dreds of a sectors. The size of sector
may be variable or fixed. But in contem-
porary systems, sector size is fixed. The
fixed sector size is 512 bytes. Thus, the
data are transferred to and from the disk
in sectors only.

The older disks store the same number of sectors per track as shown in Fig. 2.10. But, as we
move outward, the number of sectors per track may be increased as there is more space on the
outer tracks as compared to the inner tracks. The modern disks exploit this feature and store
more number of tracks as we move from the innermost track to the outermost track. There can
be various zones of tracks storing different capacities of sectors. For example Zone 1 has three
tracks and each track in this zone stores 90 sectors. Similarly, Zone 2 has four tracks and each
track in this zone stores 120 sectors.

The magnetic disk is mounted on a disk drive consisting of the following components:
Spindle
The part where the disk spins around, i.e., the spindle is a mechanism through which it rotates
the disk.
Read/write head
A device that is able to read from or write to the sectors of a track on one platter surface, i.e.,
to transfer the information it just moves above the surface of a platter. The head may be either
movable or fixed. In fixed-head disk, there is one head per track whereas in movable-head disk,
there is only one head for all the tracks. The movable head moves to all the tracks. In movable-
head, however, the head is separate for both surfaces of a platter, i.e., each platter has two heads.
Disk arm
The head is mounted on an arm that can be extended or retracted for positioning the head on
any track. In case of a movable-head disk, there are multiple arms depending on the number of
platters.

A disk in common use comes with multiple platters and movable read-write head mecha-
nism as shown in Fig. 2.11. The tracks that appear at the same location on each platter form a
cylinder. Whenever we need to store sequentially related information, it should be stored in a
cylinder. This is done by first storing the information on a track of a platter and continuing the
information on the same track of others platters.

There may be some error due to misalignment of the head or interference of magnetic
fields. Due to this reason, some gap (see Fig. 2.12) is required between any two tracks
(inter-track gap) and similarly between any two sectors (inter-sector gap). This gap avoids
any error due to misalignment or the effect of magnetic field on adjacent tracks or sectors.

Tracks

Sectors

Fig. 2.10 Track and sectors on a disk platter surface

Hardware Support for Operating Systems 51

Read/write
head

Spindle

Cylinder

Arm

Disk
arm
assembly

Fig. 2.11 Physical structure of a disk
The disk starts functioning with the

help of a motor. The drive motor spins
the disk at a high speed and the head per-
forms read/write on a portion of the sur-
face of the platter rotating beneath it. The
processor initiates a disk read operation
by first writing a command, then the log-
ical block number from where the data
are to be read, and finally the destination
memory address to a port, which is as-
sociated with the disk controller. To find
the location on the disk, the head first lo-
cates the desired track by moving on it

and then the platter under the head rotates such that the desired sector comes under the head.
Disk controller reads the sector and performs a DMA transfer into the memory. On completion
of the DMA transfer, the controller sends the interrupt to processor for notifying it the comple-
tion of the operation.

2.10.1 Disk Formatting
The disk formatting prepares the raw disk to be used. There are three steps in disk formatting:
low-level formatting, disk partitioning, and logical formatting. The low-level formatting is
performed by the manufacturer and the other two steps are performed by the operating system
and therefore are linked to it. The manufacturer of the disk performs the low-level format-
ting and is able to test the disk and later on use the disk for storage. The purpose of low-level

Inter-track
gap

Inter-sector
gap

Fig. 2.12 Inter-track and inter-sector gap on the disk surface

52 Principles of Operating Systems

formatting is to organize the surface of each platter into entities called tracks and sectors, by
polarizing the disk areas. Tracks are numbered starting from 0, and then the heads polarize
concentrically the surface of the platters.The low-level format thus decides the number of con-
centric tracks, number of sectors on each track, sector size on the track, and the inter-track and
inter-sector gaps. The format of a sector is shown in Fig. 2.13.

The preamble is a bit pattern used to recognize the start of a sector. It consists of the cylin-
der number, sector numbers, and other related information. The low-level format decides the
size of the data field. The data size is in general 512 bytes. Error-correcting code (ECC) that
contains the redundant information used to recover from read errors. The size of ECC field is
decided by the manufacturer. In general it is a 16-bit field. The number of spare sectors are also
reserved at the time of low-level formatting.

Thus low-level formatting reduces the actual space of a disk as some of the space is reserved
for preamble, ECC, inter-track gap, inter-sector gap, and spare sectors. On the average, the disk
capacity reduces by 20% after low-level formatting.

2.10.2 Disk Partitioning
On a disk, separate areas need to be created as per the convenience of the user to keep his
work separate. Thus, disk partitioning is process of dividing the storage space of a hard disk
into separate data areas. These separate data areas are known as partitions. For this purpose,
a partition editor program may be used that creates, deletes or-modifies these partitions. After
creation of different partitions, the directories and the files on various partitions may be stored.
There may be two types of disks on the basis of disk partitioning: basic disk and dynamic disk.

Basic disks are the storage types most often used with Windows. The basic disk contains
partitions, such as primary partitions and logical drives, and these are usually formatted with
a file system to become a volume for file storage. The space can be further added to existing
primary partitions and logical drives by extending them to adjacent, contiguous unallocated
space on the same disk. The provision of multiple partitions on a disk appears to have separate
hard disk drives to the user.

The following operations can be performed only on basic disks:
 • Primary and extended partitions can be created and deleted.
 • Logical drives within an extended partition can be created and deleted.
 • A partition can be formated and marked as active.

The first physical sector on a basic disk contains a data structure known as the master boot
record (MBR). The MBR contains the following:
 • A boot program (up to 442 bytes in size)
 • A disk signature (a unique 4-byte number)
 • A partition table (up to four entries)
 • An end-of-MBR marker (always 0x55AA)

Preamble Data ECC

Fig. 2.13 Format of a sector

Hardware Support for Operating Systems 53

Thus, there may be two types of
partitions based on the above discus-
sion: primary and extended. There
may be multiple primary partitions
but one of the primary partitions
is used to store and boot an operat-
ing system. The primary partition
that is used to boot the system is
set active to indicate that this is the
boot partition. If more than one or
no primary partition is set active, the
system will not boot. The extended
partition is divided into logical drives
and is viewed as a container for logi-
cal drives where data are located.
This partition is formattable and is
 assigned a drive letter.

Another data structure known as
the partition table stores the informa-
tion about each partition such as its
starting sector, size of each partition,
etc. The partition table is also stored at
sector 0 as shown in Fig. 2.14.

Dynamic disks, on the othe hand,
have the ability to create volumes that
span multiple disks. The volumes thus
created are known as dynamic volumes. The volume management is very flexible in case of
dynamic disks as they use a database to track information about dynamic volumes on the disk
and about other dynamic disks in the system. The following operations can be performed only
on dynamic disks:
 • Create and delete simple, striped, mirrored, and RAID-5 volumes (striped, mirrored, and

RAID will be discussed in detail in Chapter 15).
 • Remove a mirror from a mirrored volume or break the mirrored volume into two

volumes.
 • Repair mirrored or RAID-5 volumes.

Another step in disk formatting is logical formatting concerned with the operating sys-
tem. This is also known as high-level format. This operation is performed for each partition.
The logical formatting operation lays down a boot block in the partition and creates a file
system. The initial file system data structures such as free and allocated lists or bitmaps, root
directory, and empty file system are also stored. Since different file systems may be there in
different partitions, the partition table entries will indicate which partition contains which
file system.

Master boot code

First partition
table entry

Second partition
table entry

Third partition
table entry

Fourth partition
table entry

Primary partition 1

Primary partition 2

Primary partition 3

Extended
partition 4

0x55 AA

Master boot
record

Partition
table

Fig. 2.14 MBR partition

54 Principles of Operating Systems

SUMMARY

Let us have a quick review of the important concepts dis-
cussed in this chapter:

 • Everything an operating system does is interrupt driven.
 • Interrupt is a signal to the processor generated by hard-

ware or software indicating an event that needs immedi-
ate attention.

 • On the processor hardware, there is an interrupt-request
(IRQ) line that the processor senses for any interrupt after
each instruction execution of the process.

 • There is a program known as interrupt service routine
(ISR) corresponding to each interrupt generated.

 • The addresses of all ISRs are placed in a list known as
interrupt vector table (IVT).

 • A hardware interrupt is generated from an external
 device, which could be either a part of the computer itself
such as a keyboard, disk or an external peripheral.

 • The software interrupts are caused either by an excep-
tional condition in the process, or a special instruction in
the instruction set which causes an interrupt when it is
executed.

 • Device controller is an electronic device in the form of
chip or circuit that controls the communication between
the system and the I/O device.

 • To communicate with each type of device controller a
specific code in the form of a device driver is written
that takes care of the specific device controller regis-
ters and the commands. Thus, the device drivers act
as a layer that hides the differences among the device
controllers.

 • The modern OSs separate code and data of the OS
from the code and data of the user processes. This
separation is termed as dual mode operation. The dual
mode operation has two modes: the kernel mode and
the user mode.

 • Initially, the mode bit is set to 0, which means the con-
trol is with the OS when the computer system is started.
When a user process wants to gain the control, the mode
bit is set to 1 and the user is able to execute in his own
area but is prevented all access to the kernel memory
space.

 • The Intel modern processors come with four privilege
rings (0-3).

 • All I/O instructions are privileged. To access any I/O
 device, the process may request to the OS in the form
of a system call.

 • The system call is a user request to the operating system
which is interpreted and executed on the hardware by the
operating system on the behalf of the user.

 • In programmed I/O technique, the processor time is
wasted as it continually interrogates the status of I/O
 operation.

 • In DMA-based I/O, instead of generating multiple
 interrupts after every character, a single interrupt is
 generated for a block, thereby reducing the involvement
of the processor.

 • There are three following steps in disk formatting: low
level formatting, disk partitioning, and logical formatting.
The low-level formatting is performed by the manufac-
turer and the other two steps are performed by the OS
and, therefore, they are linked to it.

 • The purpose of low-level disk formatting is to organize
the surface of each platter into entities called tracks and
sectors, by polarizing the disk areas.

 • Disk partitioning is a process of dividing the storage
space of a hard disk into separate data areas. These
separate data areas are known as partitions.

 • Primary partition is a partition that is required to store and
boot an operating system.

MULTIPLE CHOICE QUESTIONS

 1. The modern OSs are .
 (a) programmed-I/O driven (c) software-driven
 (b) interrupt-driven (d) hardware-driven

 2. Interrupt is a signal to the generated by
hardware or software.

 (a) memory (c) processor
 (b) device controller (d) none

 3. IVT is generally placed in memory.
 (a) low (c) disk
 (b) high (d) none

 4. The number of hardware interrupts is limited by the number
of .

 (a) processes (c) IRQ lines
 (b) processors (d) none

 5. is also known as an adapter.
 (a) memory (c) device
 (b) processor (d) device controller

 6. Which of the device controller register is read-only?
 (a) control (c) data
 (b) status (d) none

Hardware Support for Operating Systems 55

 7. Which of the device controller register is write-only?
 (a) control (c) data
 (b) status (d) none

 8. Initially, the mode bit is set to .
 (a) 1 (c) 2
 (b) 0 (d) none

 9. The base and limit registers are updated for every process
in mode.

 (a) user (c) both user and kernel
 (b) kernel (d) none

 10. The first physical sector on a basic disk contains a data
structure known as the .

 (a) partition sector (c) boot record
 (b) basic sector (d) master boot record

REVIEW QUESTIONS

 1. What is an interrupt? What are its types?

 2. What are the tasks to be executed when an interrupt arrives
on the processor?

 3. What is IVT?

 4. What is ISR?

 5. What is a trap?

 6. Provide some examples when software interrupt is
 generated.

 7. Provide some examples when hardware interrupt is generated.

 8. How are multiple interrupts handled?

 9. Differentiate between blocking and non-blocking I/O devices.

 10. What is a timer? Explain its role in operating system.

 11. What is a device controller? How does it work?

 12. What is a device driver? Explain its functioning with device
controller and operating system.

 13. What were the basic problems in multi-programming-based
modern operating systems?

 14. What is the need of a dual mode protection?

 15. What is the need of memory protection?

 16. What is the need of processor protection?

 17. What is the need of I/O protection?

 18. Explain the physical structure of a magnetic disk.

 19. What is a cylinder on a disk?

 20. What is disk partitioning?

 21. Differentiate between primary and extended partitions.

 22. What is MBR?

BRAIN TEASERS

 1. The interrupt number of an hardware interrupt is 8. At what
location in the IVT, its ISR address will be found?

 2. Is nested interrupt possible? If yes, how are they handled?

 3. All I/O instructions are privileged. Then, how does a user
access the devices?

 4. Which of the following instructions should be privileged?
 (a) Switch from user mode to kernel mode
 (b) Updating base and limit register
 (c) Clear memory location
 (d) Set value of timer
 (e) Read a clock
 (f) Interrupts are disabled

 (g) Executing a loop to enter user data
 (h) Load a value in processor register
 (i) Abort a process
 (j) Read input from keyboard
 (k) Send a file to printer to print
 (l) A global variable in the user process reinitialized

 5. Inter-sector and inter-track gaps are used on the disk to
avoid errors. How do these gaps affect storage utilization
on the disk?

 6. Study the DOS and Windows operating systems with refer-
ence to dual mode protection and find out which operating
system provides a better protection in terms of multi-tasking.

3.1 INTRODUCTION

The hardware resources are not easy to interface. There is a lot of complexity in using them. Moreover,
there are very limited resources in the system and multiple processes. Owing to this, there should be
some schedule and management for accessing and using the resources. The OS performs all these func-
tionalities. It schedules the limited resources among multiple tasks and gives an easy interface to I/O
devices. The hardware resources are abstracted or transformed into virtual devices. The virtual devices
are easy to work from the user’s viewpoint. The resources are of three types: hardware, virtual, and
software. In this chapter, responsibilities of the OS as a resource manager are discussed, along with
the types of resources and the goals of resource management. The functions and the components of the
resource manager and all the components of resource management are also discussed. Since all these
components are part of the operating system, all of them, along with other parts, will be discussed in
different chapters of this book.

3.2 FUNCTIONS OF A RESOURCE MANAGER

The OS as a resource manager performs the following functions:

3.2.1 Resource Abstraction/Transformation
As discussed in Chapter 1, it is really difficult to work with
hardware devices. To perform read or write function from I/O
devices, we need to know the structure of every device in the
form of registers: data registers, control registers, and so on.
A user or programmer cannot work efficiently if he or she works
so close to the hardware, since there are numerous details that
need to be taken care of; thus, hardware resources are complex
interfaces to work with. To ease the job of the user, the OS hides
the complex details of the hardware and presents I/O devices to
them in such a form that it is easy to interface with these devices.
In fact, actual hardware devices are simulated in the form of a
program known as virtual device. The user program interfaces
with the virtual device, which, in turn, interfaces with the actual
device. In this way, actual device has been abstracted or trans-
formed into a virtual device and presents the user with an easy
interface.

3 Resource
Management

Learning Objectives
After reading this chapter,
you should be able to
understand:
• Operating system as a resource

manager
• Transformation of hardware

devices into virtual devices
• Time division multiplexing
• Space division multiplexing
• Resource scheduling
• Hardware resources
• Virtual resources
• Software resources
• Nature of resources
• Goals of resource management
• Working of resource manager
• Components of resource man-

agement

Resource Management 57

Besides providing an easy interface to the devices, another benefit of abstraction is that the
concept of virtual devices provides the best utilization of the devices. For example, if multiple
users have requested for printing, a single printer cannot handle all of them simultaneously.
Moreover, it may mix up the output of many users. Therefore, multiple virtual printers can be
created to give the impression to the users that they are using printers exclusively. In this way,
actual single device is converted into multiple virtual devices. Another problem is that while
executing the program, a fast CPU cannot cope up with the slow speed of I/O devices. It cannot
wait to read from a card reader or keyboard or to print on the printer because all I/O devices are
much slower as compared to the speed of a CPU. The third advantage of having virtual devices
is that with the use of these devices, the program can be executed without any speed limit of
I/O devices.

3.2.2 Resource Sharing/Multiplexing
As discussed in Section 3.2.1, since virtual devices will be more as compared to actual devices,
there is a need to share the actual devices among the virtual devices. This is known as resource
sharing or multiplexing. The resource sharing is done by following two methods:

Time Division Multiplexing
In this type of resource sharing, a device is shared by programs at different times. As seen in
time-sharing systems, CPU time is shared by multiple programs. There is a single-processor,
but with the help of virtual processors, single-processor time is shared. Every virtual processor
is given time on the actual CPU. In this way, all virtual processes share the processor at different
times. This is known as time division multiplexing or time-sharing (see Fig. 3.1).

Space Division Multiplexing
In this type of sharing, the actual device or resource is divided into smaller versions, and each
virtual device is allocated a part of the resource. For example, main memory is divided into
 several partitions to accommodate several programs. It means that for every virtual proces-
sor, a virtual memory (VM) is needed, which is provided by dividing the actual memory (see
Fig. 3.2). Similarly, hard-disk space is also divided to accommodate several programs to have

the impression of separate secondary storage of their own. This is
known as space-division multiplexing.

3.2.3 Resource Scheduling
It is a well-known fact that all the resources are limited as compared
to the number of processes. That is why there is a need to schedule
the processes to the limited resources. There are many instances in
the lifetime of a process when scheduling is needed. Whenever a job
is submitted in a batch system, it is first stored in a job pool in the
hard disk. A job pool is maintained in the hard disk for all incoming

Virtual processor
P1

Virtual processor
P2

Virtual processor
P3

Virtual processor
P1

Virtual processor
P2

CPU time slices

Fig. 3.1 Time division multiplexing

Virtual memory N

Virtual memory 3

Virtual memory 2

Virtual memory 1

Fig. 3.2 Space division multiplexing

58 Principles of Operating Systems

jobs entering the system first time. When there is a space in the main memory, a job is brought
from job queue to the ready queue in the main memory. Ready queue is the place where jobs are
fetched from job pool and the jobs wait there for their turn to be executed. The process of bring-
ing a job from job pool to the ready queue is called job scheduling. However, there is no need of
job scheduling in a time-sharing system because jobs directly enter the ready queue instead of a
job queue. Now, in the ready queue, there are multiple processes that are ready and that need to
be executed on a single CPU. There is a need to schedule the processes on CPU as it can execute
only one process at a time. This is known as process scheduling. There may be many process
scheduling algorithms depending on the situation and type of the system. Similarly, limited I/O
devices are needed by a number of processes. There must be a scheduling mechanism for alloca-
tion of these devices to the processes. Likewise, there are memory, virtual memory, hard disk, and
files that need to be scheduled for multiple processes. As students will study more components of
the OS in the book, they will come across some more scheduling concepts.

There are many schedulers needed to perform scheduling. For example, for job scheduling,
there is a scheduler called long-term scheduler. Similarly, for process scheduling, short-term
scheduler is used. The scheduler is the software that selects the job to be scheduled according
to a particular algorithm. We will study in detail all the schedulers and their functioning.

3.3 RESOURCE TYPES

In this section, all the resources available to the OS are described. The OS needs to manage all
these resources, and hence to understand the functioning of an operating system, it is impera-
tive to learn about these resources in detail. There are three types of resources (see Fig. 3.3):
hardware, virtual, and software.

Hardware resources do not require any description. The major hardware resources are
 processors, memory, I/O devices, and hard disk. The hardware resources that have been
 abstracted or transformed into other resources are known as virtual resources. The processes,
virtual memory, logical devices, and files are examples of virtual resources.

The next type of resources includes virtual resources. Since the hardware resources are very
complex in nature for direct usage, there is a need to hide their details such that there is some
abstraction in their use that makes it easy to use and interface them. For example, when there
are multiple users to share a single CPU, they cannot use it. However, if separate processes
are made for each user, then these processes act as virtual processors such that the computa-
tional power of a single CPU is shared among multiple users. Similarly, the physical memory
available cannot accommodate the user programs that are larger than the size of the available
memory. However, with the use of VM concept using hard disk, it is possible to accommodate

Resources in the
operating system

Hardware
resources

Virtual
resources

Software
resources

Fig. 3.3 Resource types

Resource Management 59

the larger size programs in main memory in spite of less memory available. Similarly, hard
disks are very complex if used directly. Therefore, to use them conveniently without taking care
of its internal structure, the concept of files and directories are there. Files and directories are
easily understandable concepts through which a user stores, updates, and retrieves his or her
work on the hard disk. In this way, all hardware devices that are very complex in nature have
been abstracted into virtual devices in such a manner that they do not present complex details
to the user, but instead are very flexible, easy, and understandable (see Fig, 3.4).

Software resources have no direct relation with the hardware resources, that is, they are
 independent of hardware and virtual resources but may be used in managing them. For example,
the starting address of a page (it is a logical entity used to represent the divisions of a process
and is discussed in Chapter 10, Memory Management) will be stored in a page table. So the
pages of a process need to obtain the slots in a page table. Therefore, page-table slot is a
software resource. Similarly, for inter-process communication, messages in a message queue
or mailbox are software resources. There is a resource used for synchronization between the
processes known as semaphore. Semaphore is also a software resource. Other examples of
software resources may be segment-table slot, file allocation table slots, local descriptor table
(LDT) slots, global descriptor table (GDT) slots, and so on. The students become familiar with
these resources as they progress through the chapters.

3.3.1 Nature of Resources
The resources can also be categorized according to their nature. The resources are consumable
or non-consumable. Resources are also categorized based on the fact that when one resource is
in use, whether it can be taken by a process or not. Based on these characteristics, the resources
have been categorized as follows:

Non-consumable Resources
The resources that cannot be consumed but can be used, that is, when one process has used the
resource, another process can use it. For example, memory, CPU, and I/O devices are shared by
the processes. All physical resources are non-consumable resources.

Processes

Virtual level

User

P1 PnP2 P1 P2 Pn Directory
and file
system

Processor Physical memory
Disk

Virtual address space

Physical level

Fig. 3.4 Mapping of virtual resources to hardware Resources

60 Principles of Operating Systems

Consumable Resources
The resources when used by a process are consumed and cannot be used by others. For example,
semaphores, interrupts, signals, and messages when consumed by processes cannot be allo-
cated to others.

Non-pre-emptive Resources
The resources that when allocated to a process cannot be taken away or preempted by others,
that is, the process holding the resource has complete control over it. For example, when a
printer is allocated to some process, it cannot be allocated to other processes until the first pro-
cess finishes its job.

Pre-Emptive Resources
There are situations when resources can be preempted from the process holding it. As explained
in the time division multiplexing, these types of resources need to be shared without completion
of the job of a process and can be allocated to other processes. For example, CPU when allo-
cated to a process in time-sharing environment may be preempted by another process when its
time slice expires. It may be possible that within the time slice, the process holding the resource
has not completed its execution but will be preempted by other processes on the expiry of its
time slice. However, the process will get CPU time again when its turn comes. However, this
is not easy to do. When one process is interrupted, we know that it has to be resumed when its
turn comes. Therefore, the state of one process is required to be saved. Therefore, pre-emption
is achieved with overhead. This will be discussed in detail in process management.

3.4 GOALS OF RESOURCE MANAGEMENT

We discussed various types of resources in Section 3.3. These resources need to be shared among
the multiple processes. While allocating the resources to processes, the resource manager in the
OS should take care of the following goals:

Resource Utilization
As described in the Chapter 1, all the resources must be utilized as there is always a scar-
city of resources in the operating system. For example, CPU should not be idle and must be
utilized. There are many concepts in the OS that originated only from this goal. As we have
already discussed, multi-programming, multi-tasking, and multi-threading (discussed in detail
in Chapter 9) are the concepts in response to keep the CPU busy. Similarly, VM is the concept
to utilize the available physical memory.

Protection
In multi-programming and Multi-tasking environment, processes should not be allowed to
access other processes’ area or operating-system area, as user processes and the OS both are in
the main memory.

Synchronization
Resource manager should not allow the multiple processes to access a resource that is mutually
exclusive. Otherwise, there may be a chaos and the results will be disastrous. For example, if
multiple processes access a shared memory location to read and write simultaneously, then

Resource Management 61

there will be wrong results. It means that synchronization must be provided among processes
by the resource manager.

Deadlock
When multiple processes share the resources, it may be possible that one process P1 is holding
a resource R1 and waiting for another resource R2. However, R2 is held by another process
P2 and P2 is waiting for R1 held by P1. In this situation, both processes are waiting for one
another to release the resource. This situation is called a deadlock, and the processes are in a
deadlocked state. It is the responsibility of the resource manager to check that deadlock condi-
tion never occurs in a system.

Fair Distribution
In some systems, such as in multiuser systems, all processes should get equal time of the CPU.
Therefore, in this case, resources should be allocated to all the processes such that the processes
get a fair distribution.

3.5 HOW RESOURCE MANAGER WORKS?

When a process requests for some resource, there are chances that it does not get it
 immediately because some other process has already acquired it. Therefore, there are queues
where the process waits for its turn. There may be a scheduling criterion for processes in the
queue implemented by the resource manager. The resource manager, therefore, according
to the scheduling criterion, selects the process in the queue and assigns the resource as seen
in Fig. 3.5. However, before assigning the resource to the process, it performs the following
tasks:

Accounting of Resources
The resource manager keeps the account of number of instances of a resource to check which
instance is free and which already allocated. If there are no free resources, then the process is
asked to wait.

Resource
manager

Scheduling

PROCESSES

Accounting

Synchronization

Protection

Allocation

Fig. 3.5 Resource manager functions

62 Principles of Operating Systems

Synchronization
If a process requests a resource, the resource manager first checks whether the resource is
mutually and exclusively accessible or not. If it is not, then it cannot allocate the resource to the
process and waits until it becomes free.

Protection
The resource manager should check the authorization access on a resource. If a resource is only
readable, then a process should not be able to write on that resource. Moreover, if a process
requests to access the memory location of the OS or other users, it should not be allowed to do so.

Scheduling
In a waiting queue, the way the processes are to be retrieved is decided by the resource manager.
This process is known as scheduling.

Allocation
After passing through synchronization and protection checks, and if there is availability of
resource, then the resource is finally allocated to the process.

After allocation of resources, the process uses and returns them to the resource manager so
that other processes can use them.

3.6 COMPONENTS OF RESOURCE MANAGEMENT

In this section, all the components of resource manager are discussed. In other words, the way
all the resources in the OS are managed and utilized is described. Largely, these components
form the operating system. A brief overview of them is given here and will be discussed in
detail in separate chapters throughout the book.

3.6.1 Process/task Management
The terms job, process, or task have been used interchangeably till now, but the meanings of
all these and similar terms have been made clear in further chapters. At this stage, the students
should only understand that there is a task or process to be executed by the user or the operating
system. It means that there are two types of processes: the user and the OS . As discussed,
multi-programming and multi-tasking introduced the concept of multiple jobs in the main
 memory. Therefore, there is not a single job to be executed but many. The first question is
how to create and perform several operations on it. A process will have many states such as
ready, executing, suspended, and terminated. All the operations performed by the user on the
processes are implemented by the operating system. When a process is created, it needs certain
resources such as CPU time, memory, file, I/O devices, and so on. The status of the resources
and the execution of a process need to be stored somewhere in a data structure known as
 process control block (PCB). The PCB is also maintained by the operating system. It is very
useful in various operations on process.

Since there are many processes to be executed in multi-programming environment, all com-
pete for execution by the CPU. There should be some mechanism for the allocation of the CPU to
one process. This is known as process scheduling. Process scheduling should be fair enough to all
processes. The process scheduling job is performed by the operating system.

Resource Management 63

As discussed, the multiple processes have increased the problems and challenges for the
operating system. When there are some shared resources, there is a need to control the access of
resources by the processes such that at a time, only one process should have the control of that
resource, otherwise, there may be inconsistencies. The mechanism to manage the accesses is called
process synchronization. Process synchronization demands that the processes co-operate. For
example, if two processes are sharing a data structure and if both try to access it simultaneously,
there will be a data inconsistency; thus, process synchronization is a complex feature performed
by the operating system. Similarly, co-operating processes need to communicate with each other.
The OS provides an inter-process communication (IPC) mechanism by which the processes
communicate. The importance of inter-process communication facility increases in a distributed
environment where processes reside in geographically separate locations. The message passing
system is a convenient method for this purpose.

Another problem in process management is deadlock as described in Section 3.5. The OS
resolves the deadlock such that the system should be in the safe state and the normal execution
of the system resumes.

To summarize, the OS performs the following process-management functions:

 i) Process creation, deletion, and other operations on process
 ii) Process scheduling
 iii) Inter-process communication
 iv) Process synchronization
 v) Deadlock management

3.6.2 Memory Management
Memory management consists of two parts: main memory and virtual memory. The main
memory is central to any operation done by the system. Whenever we want to execute on the
system, we need to first store it in the main memory. It means that the user process should also
be stored in the main memory first. The multi-programming and multi-tasking concepts require
more than one process to be in the main memory. Therefore, memory must be partitioned first
and allocated to the processes. The OS partitions and allocates the memory to the processes
using some mechanisms. The size of memory partitions can be fixed or varied. The processes
in these partitions can be allocated as contiguous or non-contiguous. The contiguous allocation
means that the space allocated to a process should be contiguous in the memory. If small chunks
of memory are scattered in the memory, then they cannot be allocated to a process due to their
non-contiguous locations. On the other hand, non-contiguous allocation allocates the scattered
memory chunks to the process in the memory. Non-contiguous allocation is implemented as
paging. The OS keeps account of available memory partitions and occupies portions of mem-
ory. It also has an account of memory requirements of each process. In this way, keeping in
view the available memory, the OS allocates the space to the process in the memory. All these
concepts will be discussed in detail in the individual chapters. Based on these criteria, we
have contiguous allocation and non-contiguous allocation methods. It should be noted that all
memory-management mechanisms provided by the OS are supported by the hardware.

There is another concept in the memory management. When a user writes a program larger
than the size of the memory, in normal memory management scheme, this program cannot be
stored in the memory and executed. However, a VM concept has been invented that allows the
programmers to write the programs of very large size, which, in spite of their size, can be stored

64 Principles of Operating Systems

and executed. The OS supports VM mechanism at some cost of secondary memory and speed.
This will also be discussed further in detail.

To summarize, the OS performs the following memory management functions:

 i) Keeps account of the allocated space to the processes and the available space
 ii) Partitions the memory as per fixed partition or variable partition methods
 iii) Allocates the memory to the processes as per contiguous or non-contiguous methods
 iv) Manages VM

3.6.3 Secondary Storage Management
Since the main memory cannot accommodate every program or data, some other mechanism is
required to store them. For this purpose, hard disk as a secondary storage is a widely used device
for storing every program or data. We have already discussed that whenever a job enters the
system, it is first entered in the job queue, which is maintained on the hard disk only. The system
programs like compilers, debuggers, editors, and so on, including a large part of the operating
system, are stored in the hard disk. In VM concept, we need to swap out some pages of the pro-
cess from the main memory for some time. These swapped-out pages are also stored in the hard
disk; thus, secondary storage provides the backup for the main memory to store programs and
data. However, to utilize the hard disk for several purposes, there efficient management of space
on it is required. There should be mechanisms for managing the free space on the hard disk, as
it is necessary to know which part of the disk is free to be allocated to some program. Then, it
must be decided how to utilize the available space in the best manner, that is, storage allocation
methods should be devised. Swap space for VM should be allocated and reserved only for this
purpose. Disk as a device may have queue of the processes to be accessed. Therefore, disk-
scheduling techniques should be there for a better utilization of the hard disk.

To summarize, the OS performs the following secondary storage-management functions:

 i) Free space management of secondary storage
 ii) Allocation on secondary storage
 iii) Disk scheduling
 iv) Swap space management on secondary storage

3.6.4 File Management
Whenever we work on the computer system, the files are the entities where we store our work.
Either we write a Word file or a C program, files are there to store the work. Basically, files are
logical concepts similar to the physical files where we store or place our related work at one
place. Logically, we understand files very well. We save a file after writing program into it,
 compile it, run it, debug it, and, later on, retrieve it. However, have you thought how these files
have been implemented in the system? The operating system presents a very convenient way of
representing the files to a user but implements the file system with the help of some physical
medium such as magnetic tapes or disks. The files containing the data are stored on the physical
media through the related physical devices. For example, for magnetic tapes, there are tape
drives, and for disks, there are disk drives. A logical file is mapped to physical memory by the
operating system, and a table is maintained for the location of each file in the storage known
as file allocation table. There are many allocation methods to allocate space to a file on the
 physical medium such as hard disk. These methods are known as file-allocation methods. The

Resource Management 65

OS implements the allocation method that will take less space, and a file can be retrieved quickly.
Before allocating space to a file on the disk, the OS must be in a position to have the account
for free space on it. Therefore, the OS manages a free space list that records all free disk blocks.

When a user requests for a file operation, the OS retrieves the required file from its physical
medium location and presents it to the user. The OS also provides a directory system under which
related files can be arranged and stored for the convenience of the user. The directory contains
information about the files, for example, its name, location, size, access rights, and so on.

A file is considered a resource of the system. Therefore, multiple processes may share
the files or access the same file at the same time. It means that the protection of files is also
 necessary as a controlled access to the users. The OS also defines the access rights to the users
for a file such as read, write, execute, and so on.

To summarize, the OS performs the following memory-management functions:

 i) File operations such as creation, deletion, and so on.
 ii) Directory creation and deletion
 iii) File-allocation methods
 iv) File-retrieval methods
 v) Free-space management
 vi) File protection

File management will be discussed in detail in Chapter 13.

3.6.5 Input–Output Management
The most challenging task for an OS is to manage the I/O devices in a computer system. It acts
as an interface between devices and other computer systems. This interface should be simple,
easy to use for a user, and preferably same for any type of device. However, today, there are
myriad I/O devices. Each I/O device has its own detail and complexity. In this case, the OS
needs to be changed to incorporate every newly introduced device. Therefore, the I/O function-
alities should be treated separately in the OS so that the other parts of the OS are not affected.
The software that deals with the I/O is known as I/O software or I/O subsystem. In I/O soft-
ware, there are two types of modules. First module deals with the general functionalities when
interfacing with any type of device, that is, these functions are common while interfacing with
any I/O device and are known as device-independent I/O software. For example, there should
be a general interface for any type of device. The second module provides device-specific code
for controlling it and is known as device driver. The second module in fact takes care of the
peculiarity and details of a particular device, that is, how to read or write data to the device. In
this way, the OS needs not to change its code again and again to incorporate any new device. Its
I/O software takes care of all the I/O devices to be interfaced with the system without changing
the code of it. I/O management will be discussed in detail in Chapter 14.

3.6.6 Security and Protection
In this age, various types of confidential information are being stored either on computer systems
or transmitted over the Internet. However, the information/data are not safe from the security
breaches. The OS must be able to secure the computer system from outside attacks. In general,
it is done by providing passwords. Moreover, as a resource manager, the OS should also protect
the resources either from the inside users or outside hackers if they are successful in entering
the system. Therefore, the OS must prohibit the processes or users from accessing the resources

66 Principles of Operating Systems

if they are not authorized for them. Each object, either hardware (CPU, memory, disk, printers,
etc.) or software (processes, files, databases, etc.), has a set of operations that can be performed
on it. These set of permitted operations corresponding to an object are known as rights. These
rights can be viewed as a kind of permission to access an object. When a process or user tries
to access an object, its rights must be checked first. If the user tries to access the resources he or
she has been authorized, then only the access will be granted, otherwise, it is denied. The pair of
object and its rights is known as a domain. The OS provides the protection in the form of these
domains. Security and management will be discussed in detail in Chapters 16 and 17.

SUMMARY

Operating systems primarily are resource managers. The
hardware resources such as the CPU, memory, I/O devices,
secondary storage devices, and so on are managed only
by the OS, and this management includes not only using
the resources but also utilizing them properly. As a resource
manager, the OS also hides the unnecessary details of
the hardware resources from the user and abstracts the
resources in such a manner that the user does not worry
about the configuration of the hardware resources. For
 example, the user only knows the process but not the CPU.
Of course, the process will be executed on the CPU, but
the user is not aware of the execution details of its process,
that is, when the process will be sent to the CPU, how the
process has been scheduled for how much time. These
issues are not concerned with the user. Therefore, the OS
abstracts the hardware resources into virtual resources.
Besides the hardware and virtual resources, there are also
some software resources that again need to be managed
by the operating system. A message in message queue to
be consumed by a process is a software resource; thus, the
OS manages three types of resources: hardware, virtual,
and software. Moreover, the resources can be classified
based on their nature. Some resources can be consumed
and preempted. Based on this, the resources can be non-
consumable, consumable, preemptive, and non-preemptive.

The management of these resources is not an easy job.
In a multi-programming and multi-tasking environment, the
resources need to be shared by the processes, and in case of
non-consumable resources, there is a need to keep account of
which resource is free and which resource has been allocated.
Further, in case of pre-emptive resources, when the process
is preempted its state, it must be saved so that it can be
resumed again. There are many issues regarding the resource
management. In this chapter, all the resource types, resource-
management goals, working of resource manager, including
the components of resource manager, have been discussed.

Let us have a quick review of the important concepts in
this chapter:

 • There are three types of resources: hardware, virtual,
and software.

 • The hardware resources that have been abstracted or
transformed into other resources are known as virtual re-
sources. The processes, virtual memory, logical devices,
and files are examples of virtual resources.

 • Software resources are the resources that have no
 direct relation with the hardware resources. It means
that they are independent of hardware and virtual re-
sources but may be used in managing them. For ex-
ample, messages in a message queue or mailbox are
software resources.

 • The OS abstracts the hardware devices into virtual
 devices.

 • The OS allows the resource sharing by two methods:
time division multiplexing and space division multiplexing.

 • Time division multiplexing means to share the mutual
 exclusive resource at different times by the processes,
for example, the CPU.

 • Space division multiplexing means to share the resource
at the same time. For example, memory can be partitioned
and allocated to different processes at the same time.

 • The OS schedules the resources according to a
 scheduling algorithm, that is, a criterion by which the
resource is shared. For example, the CPU is scheduled
among different processes according to first come first
served criterion.

 • The main goals of resource management are re-
source utilization, protection, synchronization, deadlock
 prevention, and fair distribution.

 • The resource manager is responsible for accounting of
resources, synchronization among processes, protection
of processes, scheduling of processes, and allocation of
resources.

 • The resources can be classified based on their nature.
Some resources can be consumed and preempted.
Based on this, the resources can be non-consumable,
consumable, pre-emptive, and non-pre-emptive.

 • Main components of resource management are process/
task management, memory management, secondary
 storage management, file management, I/O management,
and security and protection.

Resource Management 67

MULTIPLE CHOICE QUESTIONS

 1. The processes, VM, logical devices, and files are examples of
 (a) hardware resources (c) software resources
 (b) virtual resources (d) none

 2. ____are the resources that have no direct relation with the
hardware resources.

 (a) hardware resources (c) software resources
 (b) virtual resources (d) none

 3. All physical resources are _____ resources.
 (a) non-consumable (c) pre-emptive
 (b) consumable (d) none

 4. Printer is a ______resource.
 (a) non-pre-emptive (c) pre-emptive
 (b) consumable (d) none

 5. The CPU is a ______resource.
 (a) non-pre-emptive (c) pre-emptive
 (b) consumable (d) none

 6. The status of the resources and the execution of a process
need to be stored somewhere in a data structure known as

 (a) status block (c) PCB
 (b) resource block (d) none

 7. Non-contiguous memory allocation is called
 (a) memory partitions (c) demand paging
 (b) paging (d) none

 8. Which of the following is a memory-management function
performed by the operating system:

 i) Keeps account of allocated space to the processes and
available space

 ii) Partitions the memory as per fixed partition or variable
partition methods

 iii) Allocates the memory to the processes as per
 contiguous or non-contiguous methods

 (a) i and ii (c) i and iii only
 (b) i only (d) all

 9. Swap space for VM should be allocated and reserved in
______.

 (a) main memory (c) ROM
 (b) logical memory (d) disk

 10. The OS provides a ______ system under which related
files can be arranged and stored for the convenience of the
user.

 (a) file (c) directory
 (b) disk (d) none

BRAIN TEASERS

 1. Is it true that the role of IPC mechanisms will increase in
real-time systems?

 2. What is the cost incurred in resource abstraction?

 3. Is it possible to implement time division multiplexing on a
system with multiple processors?

 4. If VM is not there, what will be the effect on performance of
the system?

REVIEW QUESTIONS

 1. What is resource abstraction? Explain with an example.

 2. What are the benefits of resource abstraction?

 3. What is the difference between time division multiplexing
and space division multiplexing?

 4. Give examples of hardware, software, and virtual resources.

 5. How are hardware resources mapped into their virtual
 resources?

 6. Explain various resource-management functions.

 7. What is the difference between (a) consumable and
non-consumable resources and (b) pre-emptive and
nonpre-emptive resources

 8. Give examples of the resources asked in Question 7.

 9. Name the resource type of the following: process,
 semaphore, memory, VM, file, and page table

 10. What is a deadlock?

 11. What is process synchronization?

 12. What are the methods to allocate a process in memory?

 13. What is VM?

 14. What is free-space management?

 15. What is disk scheduling?

 16. What is swap space management?

 17. What is a file system?

 18. What is the purpose of file allocation table?

 19. What is I/O subsystem?

 20. What is a device driver?

4.1 INTRODUCTION

In this chapter, the basic working of an OS and related terminologies is presented. Booting is the start
process of an OS through which it sets up its environment and starts working. After booting, the OS
begins its initial process and hands over the control to the user process. Since a user is not allowed to
perform any I/O operation, all these are performed by the OS. However, a user needs to request the
OS for all I/O operations. System call is the medium through which a user sends the request. The OS
works on the hardware on behalf of the user and provides the results back to the user. Thus, system call
execution and its types are fundamental for understanding the working of the OS. After a discussion
of the details of the working, various architectures developed have been discussed in this chapter. The
architectures have been evolved over time, catering to the needs of various requirements and keeping
pace with technological advancement in computer hardware.

4.2 GENERAL WORKING OF AN OPERATING SYSTEM

The role of an OS starts as soon as the computer system is switched
on and lasts till it is shut down. But where is the OS in the computer
system? How does the OS get loaded in the system? How does
it start? These are some questions addressed here in this section.
Before delving into the working of an OS, there are some basic
definitions/concepts that need to be understood.

4.2.1 BIOS
Basic Input-output System (BIOS) is a software that basically
consists of input-output functions. These functions are low-level
routines that the OS uses to interface with different I/O devices,
such as keyboard, mouse, monitor, ports, and so on. This is the
reason that this software is named as such (BIOS). However, the
meaning of BIOS was extended beyond this functioning. Since
the OS is on the hard disk, it needs to be loaded onto the main
memory to start the functioning of the system. So the problem is
to find a way to tell the microprocessor to load the OS. It needs
some instructions that, when executed, load the OS. These instruc-
tions are provided by the BIOS. In this way, along with providing
the basic input-output low-level routines, it also provides the

4 Operating System
Architectures

Learning Objectives
After reading this chapter,
you should be able to
understand:
 • General working of an OS
 • Booting of the OS
 • System calls, their execution,

and types
 • System programs
 • System generation programs
 • General structure of OS
 • Monolithic architecture
 • Layered architecture
 • Virtual machine OS
 • Microkernel architecture
 • Exokernel architecture
 • Hybrid architecture
 • System generation

Operating System Architectures 69

initializationfunction.ThisisthereasonthattheBIOSisembeddedintheROMorflash-RAM
sothatwheneverthesystemisswitchedon,theinitialinstructionsgetexecutedautomatically
andtheprocessofloadingtheOSinitiates.However,itwasfoundthatBIOSwasinefficientfor
OSssuchasLinuxandWindowswrittenfor32-bitCPUs.Therefore,withtheadventofnew
CPUarchitectureanddevelopmentinOSs,BIOSisgettingreplaced.Forexample,since2008
inx86Windowssystems,ExtensibleFirmwareInterface(EFI)bootingisbeingsupported.The
EFIismoreflexibleinaccessingdevices.Inthisway,today,BIOSisprimarilyusedforloading
theOSandinitializationpurposesandotherwisenotused,asduringthegeneraloperationofthe
system.InsteadofcallingBIOS,OSsusedevicedriversforaccessingthehardware.

4.2.2 Booting/Bootstrapping
Whenasystemisswitchedonthefirsttime,itdoesnothaveanOS.WeneedtogettheOS
readyfromtheharddiskorothersecondarystorageontothememory.Asetofsequenceof
operationsisneededtoloadtheOS.ThisprocessofplacingtheOSinmemoryisknownas
bootingorbootstrapping.

4.2.3 Boot Software/Boot Loader/Bootstrap Loader
Thesetofinstructionsneededforbooting,thatis,toloadtheOSinRAMisknownasboot
software/boot loader/bootstrap loader.

4.2.4 Boot Device
TheOSisoriginallystoredinanon-volatilesecondarystoragesuchasharddisk,CD,andthe
like.Intheprocessofbooting,thereisaneedtosearchthisstoragedevice,whereanOSis
stored,toloaditontotheRAM.ThedevicethatstorestheOSiscalledboot device.

4.2.5 Privileged Instructions
Therearesomeoperations,provided in the formof instructions, thatneed to interactwith
hardwaredevices.Butauserisnotallowedtoaccessthedevicesdirectly.Theinstructionsare
firstpassedontotheOS,andtheOStheninteractswithdevicesonbehalfoftheuser.Thus,
theinstructions,whicharenotdirectlyexecutedbytheuserbutneedtobepassedtotheOS,
areknownasprivileged instructions.

4.2.6 System Call
All privileged instructions, that is, instructions, which need to interact with hardware and
otherresources,andthereforepassedontotheOSforexecution,areknownassystem calls.
Forexample,whentheuserneedstowritesomethingonthescreen,he/shewritestheoutput
instructionintheappropriateformat.Thisinstructionintheprogramissystemcall.

ThegeneralworkingofanOSisdiscussedinthefollowingsteps:

Initialization
ItwasdiscussedthattheOSactsasaresourcemanager,soitmusthavetheinitializedset
ofdevicesinthesystem.Therefore,wheneverthecomputerisswitchedon,thecontrolis
transferredtotheBIOSintheROMbythehardware.ThefirstjobfortheBIOSistoinitial-
izeandidentifysystemdevicessuchasthevideodisplaycard,keyboardandmouse,hard

70 Principles of Operating Systems

disk, CD/DVD drive, and other hardware. This initialization job is known as power on self
test (POST). It is a built-in diagnostic program that initializes and configures a processor and
then checks the hardware to ensure that every connected device is present and functioning
properly. In other words, it tests the computer to make sure it meets the necessary system
requirements and that all the hardware is working properly before starting of the system.
There may be some errors while the execution of POST. These errors are stored or reported
through auditory or visual means, for example, through a series of beeps, flashing LEDs, or
text on a display.

Booting
 (a) After the execution of POST, the BIOS determines the boot device, for example, floppy,

CD, or hard disk.
 (b) BIOS contains a program that loads the first sector of the boot device called boot sector.
 (c) The boot sector contains a program. The program in boot sector, when loaded onto the

 memory and executed, first examines the partition table at the end of the boot sector to
determine which partition is active.

 (d) In the partition, there is a boot loader/bootstrap loader, which is now loaded onto the
 memory by the boot sector program (see Fig. 4.1). The area where the boot program/loader
is stored is called boot block of the boot device.

 (e) Boot loader contains the instructions that, when executed, load the OS onto the main
 memory (bootstrapping) and the control is passed on to the OS by setting bits, correspond-
ing to the privileged mode. It means that whenever the system boots, the control is with the
OS, that is, the CPU is in privileged mode.

Start the Operation
 (a) After being loaded and executed, the OS first queries the BIOS to get the configuration

 information.
 (b) For each device, it checks the corresponding device driver. After confirming all the device

drivers, it loads them into the kernel.
 (c) The OS initializes its tables, creates needed background processes, and kicks off the start-

up of the first process, such as the login program.
 (d) The user programs are loaded onto the memory as the users log in. The control is transferred

to the scheduler that selects a user program from the memory and transfers control to the
selected program by setting bits corresponding to the user mode, that is, the CPU is now in
user mode.

1. Load the boot sector
2. Boot sector program examines the active
 partition at the end of the boot sector
3. Boot sector program loads the boot loader
4. Boot loader loads the OS4

1

3

2
Memory

Boot device

CPU

Fig. 4.1 Booting sequence

Operating System Architectures 71

 (e) Given the interrupt-driven nature of the OS, it waits for an event. When there is an event
signalled by the interrupt from the hardware or software, it starts responding. The hardware
interrupts are triggered by sending a signal to the CPU on the system bus. Software inter-
rupts are triggered by executing a special operation or control instruction called a system
call. For instance, when a user wants to access an I/O device, he/she will send a request
to the OS in the form of a system call, which, in turn, executes a software interrupt and
 transfers the control to the OS.

 (f) These system calls are handled by the system call handler that identifies the cause of
 interrupt by analyzing the interrupt code and transfers control to the corresponding
 interrupt-handling routine/event handler in the OS. For example, if there is an I/O inter-
rupt, then control is passed on to the I/O interrupt handler. Thus, the OS has many event
handlers that are invoked through the system calls.

4.3 SYSTEM CALLS

The role of system calls is important for understanding the operation of the OS. It is clear
now that there are two modes in the operation of the system, that is, user mode and system
mode. In the user mode, all user processes are executed and in system mode, all privileged
operations are executed. The user programs and kernel functions are being executed in
their respective spaces allotted in the main memory partitions. But it is obvious that user
mode programs need to execute some privileged operations, which are not permitted in the
user mode but allowed in the system mode. Since the processor prevents direct access to
kernel-mode functions, user-mode programs must use an interface, which forms the only
permitted interface between user mode and kernel mode. This interface is called system
call. It means that the system call is an interface between the user programs and the OS.
System calls expose all kernel functionalities that user-mode programs require. In other
words, system call is an instruction that requests the OS to perform the desired opera-
tion that needs hardware access or other privileged operations. Whenever the user uses
privileged instructions in the program, he/she uses system calls. For instance, when the
user wants access to some hardware operations or resources like files and directories or

communication with other processes, he/she uses
system calls.

But it should be clear here that a system call does
not perform the operations itself. System call, in fact,
generates an interrupt that causes the OS to gain con-
trol of the CPU. The OS then finds out the type of the
system call and the corresponding interrupt-handler
routine is executed to perform the operations desired
by the user through the system call. Therefore, sys-
tem call is just a bridge between user programs and
the OS for executing the privileged operations as
shown in Fig. 4.2.

System calls are inherently used for security rea-
sons. Due to the use of system calls, a user program
is not able to enter into the OS or any other user’s
region. Similarly, I/O devices are also safe from any
misuse by the user. Thus, through the use of system

User

Application programs

OS

Hardware

System
call

Fig. 4.2 System call interface

72 Principles of Operating Systems

User
program

Kernel

System calls

User
space

Kernel
space

User
program

User
program

Fig. 4.3 Kernel space and user space in main memory

calls, kernel, other user programs, and I/O devices are safe and secure from malicious user
 programs (see Fig. 4.3).

4.3.1 Making a System Call
It is obvious that system calls for executing privileged operations or system operations, are
used in a process while writing its code. System calls are generally available in the form of
assembly language instructions. But with the introduction of system programming in high
level languages like C or C++, system calls are directly available and used in high level lan-
guages. Therefore, it has become easy to use system calls in a program. For a programmer,
system calls are same as calling a procedure or function. System calls demand nothing extra
and the format is similar to that of a normal function call. The only issue is that these system
calls should be available in the form of a library. The difference between a system call and
a normal function call is that a system call enters the kernel but a normal function call does
not. Another difference is that a system call itself does not execute anything but generates an
 interrupt that changes the mode to system mode and passes control on to the OS.

4.3.2 Executing the System Call
As discussed earlier, a system call is not a general function call. There is a sequence of steps to
execute a system call. For execution of system call, there is the need to pass various parameters
of system call to the OS. For passing these parameters to the OS, three methods are used, as
follows:

 1. Register method, wherein the parameters are stored in registers of the CPU.
 2. If parameters are more in number, compared to the size of registers, a block of memory is

used and the address of that block is stored in the register.
 3. Stack method, wherein parameters are pushed onto the stack and popped off by the OS.

Another parameter to be passed on to the OS is the code of the system call being used in the user
process. There is a code or system call number that is to be placed in the processor register. This
is, in fact, performed by the mechanism of a system call table. A table consisting of system calls
and their numbers are maintained. The numbers may differ according to different processors

Operating System Architectures 73

and OSs. When a user uses a system call in his/her program, the number of that system call is
retrieved from the system call table and placed in the processor register. However, the user or
programmer who writes the program does not need to worry about all these system call num-
bers. The library function being called in response to the system call retrieves the system call
number and places the same in the processor register. The set of library functions are included
with the compiler of the high-level language that makes a run-time support package.

The kernel retrieves the system call number of the system call and needs to execute the
corresponding system call handler. For this purpose, it uses the system call dispatch table that
stores the system call number and the location of its system call handler. After finding the
 address, it dispatches to execute the handler.

The following is the sequence in which a system call is executed (Fig. 4.4):
 1. In the user program when the system call is executed, first of all, its parameters are pushed

onto the stack and later on saved in the processor registers.
 2. The corresponding library procedure for the system call is executed.
 3. There is a particular code for every system call by which the kernel identifies which system

call function or handler needs to be executed. Therefore, library procedure places the system
call number in the processor register.

 4. Then the library procedure traps to the kernel by executing interrupt instruction. With this
 interrupt execution, the user mode switches to kernel mode by loading Program Status Word
(PSW) register to 0.

System call (a, b, c);

Library
procedure

1

2

3

4

5

Dispatch

System call
handler

System call
handler

System call
handler

6

8

7

Processor
User program

User space

Kernel space

Fig. 4.4 Steps to execute a system call

74 Principles of Operating Systems

 5. The hardware saves the current contents of CPU registers, so that after executing the system
call, the execution of the rest of the program can be resumed.

 6. The kernel identifies the system call by examining its number and dispatches the control to
the corresponding system call handler.

 7. The system call handler executes.
 8. On completion of system call handler, the control is returned to the user program and it

resumes its execution.

4.3.3 Types of System Calls
Since a user needs to access many resources, the type of system calls depends on the use of
these resources. For example, the user needs to have system calls related to process control
and management, such as creating a process, putting a process in wait, exiting a process.
Similarly, for file management, we must have system calls such as creating a file, deleting a
file, opening and closing a file, reading a file, writing to a file, and so on. In this section, let
us have a look at some important system calls. Basically, there are five broad categories of
system calls.

Process Control System Calls
As discussed in Chapter 3, a process is a basic entity in the system. The processes in the system
need to be created, deleted, and aborted. Besides these, many operations are required on the pro-
cesses for their management. All these operations are performed by system calls (see Table 4.1).

File Management System Calls
A file is also a basic resource accessed by a user. Every work the user performs and stores is as
files. Therefore, there is a need to access this resource through system calls. Creation, deletion,
opening, closing, reading, and writing are some of the general operations on files. Similarly,
for organizing files, there is a directory system and thereby system calls for managing them
(Table 4.2).

System call UNIX example

Create a process: Creating a new process fork()

Terminate a process: When a process executes its operation, it exits normally. exit()

Terminate a process abnormally: There may be situations in which you need to
 terminate the process in between; for example, there is hang situation, program has
been stuck in an indefinite loop, and the performance of system has been affected
such that no processing is being performed.

kill()

Increase the priority of a process: Some processes have got more importance than
others. So their execution must get priority over others. This is done by setting and
increasing the priority of the process.

Nice()

Suspend the process: There may be situations in which a process needs to be
 suspended but not terminated. It will resume again after receiving some signal.

pause()

Cause the process to sleep: A process may need to wait for I/O devices. In that
period of time, the processor switches to some other process and the current process
is blocked to wait or sleep for some time.

wait()

Table 4.1 Process control system calls

Operating System Architectures 75

Table 4.2 File management system calls

System call UNIX example

Create a file: Creating a new file. Creat()

Open a file: Opening a file that is already created. Open()

Close a file: Closing a file that has been opened earlier. Close()

Read a file: Reading a file that has been opened earlier. Read()

Write a file: Writing into a file that has already been opened. Write()

Change the position of the read-write pointer: There is a need to access any part of
a file randomly. File pointer indicates the current position in the file. This call changes
its position as desired.

Lseek()

Give another name to a file: This call allows a file to appear in different directories
with different names. But the copy of the file is single. It means that if there is change
in the file, it is visible in all the directories wherever it appears. This is done through
the unique ID of the file (known as i-number), which is an index into a table of entries
known as i-nodes. These entries in the table store the information of a file, such as who
owns the file, its disk blocks, etc. So, the i-number is same for all entries of the file in
 different directories. However, there is a single file; only the name is different under
different directories. The file is accessible through either name.

Link()

Delete a file in a directory: This call removes the entry of a file in one directory. Unlink()

Make a directory: Create a new directory. Mkdir()

Remove a directory: Delete an existing directory. Rmdir()

Change the directory: When you are working in a directory, you can move to some
other directory by using this call.

Chdir()

Change the mode: There are various modes and groups of users who will use the
files. For a particular group, there may be different access permissions (modes) such
as read, write, or execute. This call changes the access permissions of a file to the
specified mode.

Chmod()

Change ownership of file: Changes the owner and group of the indicated file. Chown()

Device Management System Calls
The user cannot work without accessing the I/O devices. However, accessing them directly
is not possible. Therefore, system calls are there for accessing the devices. The general com-
mands related to this category are request of the device, release of the device, read and write
operations, and so on. Since files are treated as virtual devices, most of the system calls related
to file systems are used for device access also.

Information Maintenance System Calls
Some of the system calls are for accounting and providing information to the user. This infor-
mation can be about a process, memory, device, computer system, OS, disk space, and so on
(Table 4.3).

Communications System Calls
There is a need for communication among the processes in the system. All communica-
tion operations are also performed through system calls. The general operations in this cat-
egory are opening and closing the connection, sending and receiving messages, reading and

76 Principles of Operating Systems

 writing messages, and so on. These system calls
may be related to the communication between
 processes either on the same machine or between
processes on different nodes of a network. Thus,
 inter-process communication is provided by the
OS through these communication-related system
calls (Table 4.4).

4.4 SYSTEM PROGRAMS

These are some utilities programs above the layer of the OS, that is, programs that help a user
in developing and executing his/her applications. System programs should not be confused
with system calls. System programs are utilities programs that help the user and may call
further system calls. For example, creating a file is a system program, which helps in creat-
ing a file, and this system program calls the system call for doing this. Thus, system call and
system programs are not the same. Some examples of system programs are: file management
programs (create, delete, copy, print, and so on), compilers, assemblers, debuggers, inter-
preters, loaders, editors, communication programs (establishing connections, sending email,
browsing web pages, and so on), and status information programs (date, time, disk space,
memory, and so on).

4.5 SYSTEM GENERATION PROGRAMS

Although the general architectures of a computer system and OS are the same for all machines,
there may be some differences of configuration. For example, machines may differ in processor
speed, memory size, disk size, I/O devices available in the system, and so on. Therefore, the OS
must be configured according to the specifications available on the system on which it has to
run. For this purpose, the detailed description of the configuration of the machine is stored on a
file, or the hardware is directly probed at the time of booting. The description of the configura-
tion may be in terms of the following:
 • The processor type and its options selected
 • Disk formatting information, its partitions
 • Size of memory
 • CPU scheduling algorithm

Table 4.3 Information maintenance system calls

System call UNIX example

Get process identification number: Every process has a unique identification num-
ber. If the user wants to see the same, this call is used.

Getpid()

Get status information of a file: The information regarding a file such as the file type
and its permissions, size, time of last access, and so on.

Stat()

Set the system date and time Stime()

Get statistics about a file system: Gets the statistics about a file system such as
 number of free blocks, file system name, and so on.

Ustat()

Table 4.4 Communications system calls

System call UNIX example

Sending a message Msgsnd()

Receiving a message Msgrcv()

Operating System Architectures 77

 • Disk scheduling algorithm
 • I/O device type and model, its interrupt number

The system generation program takes the input from the file of description about the config-
uration details and generates the OS accordingly. In system generation, it basically selects some
code modules from the system generation library as per the hardware details and compiles and
links these modules to form the OS.

4.6 GENERAL STRUCTURE OF OS

It is clear now that the OS resides in the main memory. However, as
the size of the OS increased, there was the problem of keeping it in the
limited memory. Therefore, the OS was structured into two parts: Resi-
dent part or kernel and Transient part (see Fig. 4.5). The resident part
contains programs that are crucial and needed always. Therefore, they
must reside in the memory forever. Thus, this makes up the resident
part. The transient part is based on programs that are not always needed
and, therefore, need not be in the memory forever. Therefore, this part
is loaded only when needed, thereby reducing the memory require-
ment. In this way, the resident- and transient-part programs structure
the OS.

The decision to put programs or data structures in resident or transient
part depends on its frequency of use in the OS. If the function is inherent
and used every time in the operation of the OS, it must be included in the
resident part. Otherwise, it should be in the transient part.

The resident part may contain the following programs or data structures:

Resource Allocation Data Structures
The data structures related to the allocation of various resources must be in the resident part. A
device, if allocated to some process, needs to be checked before being allocated to some other
process. Therefore, this data structure is important for smooth allocation of resources.

Information Regarding Processes and their States
Every process contains some information such as its ID, priority, state, and so on. This infor-
mation is useful while switching from one process to another. The switching operation is
quite frequent in multi-programming OSs. Thus, this data structure should also be in the
resident part.

System Call Handler
Since the user uses system calls frequently in his/her programs, there is a need to handle these
system calls by the OS. Therefore, system call handler must be in the resident part.

Event Handlers
Some event handlers are also necessary for the working of the OS, that is, they are in frequent
use. For example, the memory handler or disk I/O handler is required for almost every operation .

User program
area

Resident

Transient

Fig. 4.5 Resident and transient
parts of an OS
in the memory

78 Principles of Operating Systems

Scheduler
This is a frequently used program in the OS whose job is to select the jobs in the queue and
send it for dispatching. As we know, in a multi-programming system, there always are jobs to
be executed in the queue. Therefore, there is a need to schedule them as well. So, this program
should also be in the resident part.

4.7 MONOLITHIC ARCHITECTURE

In the evolution of the OS, it was demonstrated that it was developed in response to the various
requirements realized. Keeping the CPU busy, multiple jobs in batch system, multiple jobs in
multi-user environment expecting immediate response, user friendliness, and so on, were some
of the motivation points against which OSs were designed. In this journey of OS development,
one can easily realize that the development was not planned and the initial architecture of OSs
was not efficient. The OSs were developed in the same way as in programming, where we keep
on developing the program in one file or adding some functions and calling each other without
any boundary between them. Initially, the OS consisted of very few modules, due to limited
functionality. Therefore, all the functionalities were added in the kernel only. The advantage
of this type of architecture was that intercommunication between the modules of the OS was
efficient, as all the modules were in the kernel together (Fig. 4.6).

Later on, due to multi-programming and its extended concepts, the size of the OS grew
 beyond limit. This resulted in a complex structure of OS because every module in the OS
 accessed hardware directly. Thus, programming effort was high because there is a large
gap between the meaning of operations required by the user and the meaning of operations
 performed by the hardware. This gap is known as semantic gap between the user applica-
tion and bare hardware. When a user creates a process, one process or task is being created
for the user. For the OS, it is a collection of some algorithms like allocating the memory for
the process, scheduling the process, and so on. But at the hardware level, these operations are
 performed at the level of machine instructions. Therefore, there is a large gap in understanding
the operations at OS level and machine level as shown in Fig. 4.7.

User
applications

Bare hardware

OS

User mode

Kernel
mode

Modules

Fig. 4.6 Monolithic architecture

Operating System Architectures 79

Due to all functionalities merged in a single layer, it was difficult to do modifications in a
module. This is because, as a result of a lot of interfacing among modules, it is hard to imagine
which module may be affected due to a single change in a module. Consequently, debugging
in the modules of the OS became a difficult job. Another disadvantage of this architecture was
that there was no protection. Since in this structure, there is unrestricted access of any module
to the system and among them, therefore, there was the danger of malicious code. A user job
can enter into the area of another job or even of the OS.

Monolithic systems were not suitable for multi-programming/multi-tasking environments
due to unprotected behaviour of the system. Any user’s job can corrupt any other user’s job
and even OS. For example, in DOS, any user job has direct access to BIOS device drivers.
Therefore, there it is possible to change the functionality of any device driver. The DOS, initial
architecture of UNIX, and Linux are some examples of monolithic structures.

4.8 LAYERED ARCHITECTURE

With the advancement in OSs, monolithic structures became complex and then obsolete after
some time. There was the need to design the OS such that there is no single layer consisting of
all the functionalities. This resulted in layered architectures (see Fig. 4.8). This architecture is
based on the following two points of design:

4.8.1 Grouping of Functions in a Layer
The functions related to a category are grouped together and made into a layer of that
 category. For example, process creation, deletion, saving the context of a process, and so on,
may be grouped together and named as process management layer. The topmost layer pro-
vides the interface to applications of the users. The lowest layer interacts with the underlying
hardware.

Create a process

Process
management

Memory
management

Device
management

Machine instructions

OS

Bare hardware

User User mode

Kernel
mode

Semantic
gap

Fig. 4.7 Semantic gap between the OS and hardware

80 Principles of Operating Systems

4.8.2 Hierarchy of Layers
The hierarchy of layers is maintained in this architec-
ture to reduce the complexity of interfacing among all
the layers. It means that any layer cannot interface with
any other layer. There is a proper hierarchy between the
layers. Each layer can communicate with only layers
immediately below or above it. Moreover, a layer uses
the services of the layer below it. It means each lower-
level layer provides the functionalities to its higher level.
Thus, only adjacent layers communicate.

The layered architecture of OS came into existence
due to this design. The layered architecture consists of
many layers of different functionalities identified in a
design. These layers have pre-defined hierarchy, and
interfacing among them is simple when compared to
monolithic architecture. This design has simplified the
architecture of OSs. The limited interface among the
layers has resulted in a simple architecture. The layered
architecture provides the modularity wherein there is a
defined layer for each group of functionality. Therefore,
if there is a need to change a module or debug an error,
it becomes easy because changes or debugging an error

are localized to only one layer. It means changes made in one layer do not affect the other lay-
ers. Similarly, if we want to find some error in one layer, we are concerned with only that layer.
Debugging is easy due to this localization of errors.

Another advantage in this architecture is that there is protection among different modules of
different layers. Due to limited interface among layers and a proper hierarchy, no module can
enter into others’ area, thereby giving protection among layers and their modules. For instance,
the upper layer can invoke a module only of the lower layer and does not know the addresses
of data and instructions of that module. It means implementation and interfaces of a module
have been separated. The upper layer needs to know how to interface with the lower module
or what modules of the lower layer is to be called but need not know how those modules have
been implemented. Thus, this design prevents a malicious code and corruption of data from
one layer to another.

There are also some disadvantages in layered architecture. In this design when a system
call appears, it needs to pass through all the layers for getting the functionality of the requested
resource. Since there is hierarchy of layers and limited interaction between them, it will take
some time to execute a system call due to time taken in getting the system call request from the
topmost layer to the lower layer and then to the actual resource. Thus, this design may suffer
from efficiency problems if there is a large number of layers. The increasing number of lay-
ers may again lead to a complex architecture. Another problem in the layered architecture is
to group the modules in a layer such that the upper layer is able to invoke the modules of the
lower layer. It may be difficult sometimes to isolate functionalities from one another. Then in
this case, the decision of placing the modules in a fixed layer or defining the roles of each layer
may be difficult.

User
applications

OS

Layer m

Layer 3

Layer 2

Layer 1

User
mode

Kernel
mode

Bare hardware

Fig. 4.8 Layered architecture

Operating System Architectures 81

4.9 VIRTUAL MACHINE OS

A user may have different types of requirements to execute jobs. Some jobs are batch oriented,
that is, these jobs do not need attention or any interaction of the user. Some jobs require
 immediate attention and quick response. However, the OS structure is either batch oriented or
time-sharing. It means that the same structure of the OS cannot be used for different types of
requirements for executing jobs. The same happened to OS/360, which was a batch system.
But users also demanded to have a time-sharing environment in the system. IBM then devel-
oped Time-Sharing System/360 (TSS/360), which was big and slow and, in turn, abandoned.
It means the same structure of OS would not be suitable for providing different requirements.
Later on, the system was redesigned and called Control program/Conversational monitor sys-
tem (CP/CMS). Later this was renamed as Virtual Machine Facility/370 (VM/370).

The solution adopted in VM/370 to support different types of requirements of the user
was to have different types of OSs. These different types of OSs would support the different
 functionalities desired by the user. The different OSs were realized through virtual machine
concept (see Fig. 4.9). It means these OSs will run on virtual machines. If there are three virtual
machines, then it means three different OSs can be supported. But these virtual machines are not
extended machines as discussed in Chapter 1 but are exact copies of the bare hardware machine.
Each virtual machine has the same architecture as the actual hardware. A virtual machine will
have a virtual processor, memory, and I/O devices. The OSs on these virtual machines have
facilities as of normal OSs on actual machines such as user/system mode, interrupt processing,
and the like. However, the configuration of the virtual machine may not be the same as that of
actual hardware. For instance, the size of memory will be smaller in the virtual machine. To
implement the virtual machine, in fact, they are mapped on to the bare hardware machine. The
services of various OSs, running on their virtual machines, are also required. This is done by the
host OS, which is running on the bare hardware. The host OS multiplexes the virtual proces-
sors onto the actual CPU of the host computer. The host OS decides which OS to run next. This
is just like how the normal OS performs scheduling of jobs on the CPU. The host OS switches

Host

Bare hardware

Virtual machine

OS

Virtual machine Virtual machine

OS OS

User
program

User
program

User
program

Fig. 4.9 Virtual machine architecture

82 Principles of Operating Systems

the control between various OSs running on virtual machines in the same fashion as done for
different jobs. In this way, the host OS maps the virtual machine onto the bare hardware and
the functionality of the OS running on that virtual machine is achieved. Thus, different virtual
machines may run different OSs as required. This architecture of the OS is known as virtual
machine OS. The obvious advantage of virtual machine OS is that the same hardware is being
shared to run different execution environments, that is, multi-programming, time-sharing can
be on a single machine. Another advantage of these OSs is that all virtual machines are isolated
and, thus, protected. Similarly, host OSs running on bare hardware are protected from virtual
machines. For example, a virus in the host OS may corrupt it but cannot corrupt guest OSs.

The virtual machine concept in OSs can be seen in various systems. Some of them are dis-
cussed here. As discussed earlier, VM/370 was a virtual machine-based OS. Other versions
of this system are VM/SP and z/VM. The host OS in this system (see Fig. 4.10) is a control
program known as hypervisor or, generally, VM-CP. It runs on the bare hardware and creates
the virtual machine environment by coordinating among various virtual machines. The VM-CP
implements the virtualization of the actual hardware, including all I/O and other privileged
operations. It performs the system’s resource sharing, including device management, dispatch-
ing, virtual storage management, and other traditional OS tasks. Each user views the system as
having a separate machine, the virtual machine. All virtual machines have their own address
spaces, I/O, interrupts, and so on, just like the real machine has. Thus, virtual machines are not
extended machines but limited versions of exact hardware.

The OS running on the virtual machines, sometimes called guest OSs, is known as Conversa-
tional Monitor System (CMS), which is a single-user interactive system. But any other mainstream
OS can also run on virtual machine. These guest OSs are prevented from using privileged instruc-
tion by the hypervisor. However, the hypervisor simulates privileged instruction on their behalf.

Another use of virtual machines has been made in Pentium machine. On this machine, along
with Windows, MS-DOS programs can be run. Intel provided a virtual 8086 mode on this Pen-
tium architecture and in this mode, DOS programs are started up.

VM-CP (Hypervisor)

Bare hardware

Virtual machine

CMS

User
program

Virtual machine

CMS

User
program

Virtual machine

CMS

User
program

Fig. 4.10 VM/370 architecture

Operating System Architectures 83

4.10 CLIENT–SERVER OR MICROKERNEL-BASED OS

As the computer architecture improved over time and demands from an OS increased, the
size of kernel expanded beyond limit. Larger-sized kernels were more prone to errors and
difficult to maintain. Whatever the architecture; the large kernel size became unmanage-
able and suffered from the difficulty of extensibility, efficiency, and reliability. A number
of new devices have appeared and many of them have already disappeared. There is a need
to add or delete their support in the OS. But due to the monolithic or layered structure of
kernel, it was not easy to add or delete the modules, because there was dependency among
modules or layers. In layered architecture, as the number of layers increased with more
demands in the functionality of the kernel, the OS started to perform badly as compared to
previous architectures. Due to this reason, Windows NT with layered architecture gave bad
performance as compared to Windows95. Due to the more integrated nature of layers or
modules, if one component fails, then the whole OS goes down. It decreases the reliability
of the system.

To remove heavy functionalities from the kernel, it was thought that some essential func-
tionality will remain inside the kernel known as essential core of the OS code. The kernel,
consisting of essential core, is called microkernel. The components of the essential core may
be process management, inter-process communication, low-level memory management, and
so on. The other OS modules, which were considered as non-essential, were moved up in the
user space. In this way, microkernel was designed to manage the large-size kernel by dividing
it into two parts: kernel space code and user space code. The only difficulty in microkernel is
to decide the essential core of the kernel. Developers have discussed features to be included
inside the kernel and features to be incorporated in the user space.

The modules implemented outside the kernel in user space are called server processes. The
 application programs of the user (client programs) communicate with the server processes as
shown in Fig. 4.11. The server processes provide various services like file system management,
process scheduling, device management, networking, and so on. The communication between

Server processes

Application

File system Networking Process
scheduler

Kernel

Process
management

Inter-process
communication

Memory
management

User
mode

Kernel
mode

Fig. 4.11 Microkernel architecture

84 Principles of Operating Systems

the client applications and server processes is through the message-passing communication
method, called as Inter-process Communication (IPC). This is the reason this architecture is
also known as client-server architecture of OSs. The microkernel facilitates this message-pass-
ing communication by validating the messages, passing them on to various modules and giving
access to hardware. Thus, IPC is the basic mechanism in microkernel through which a service
is provided. Any service is obtained by sending an IPC message to a server, and obtaining the
result in another IPC message from the server. The server processes are like any other program
that allows the OS to be modified simply by starting and stopping these server programs. For
example, in a machine, if networking support is not required, then the server module supporting
networking is not started without any further change in the OS. But if this is the case in other
architectures of OSs, then the kernel needs to be recompiled after removing the networking
module. Therefore, the microkernel structure is more adaptable as compared to others. Simi-
larly, if a server module fails, it can be stopped, rather than crashing the kernel itself. In this
way, microkernel is more robust and reliable.

The extensibility feature of microkernel architecture can be used for developing various
types of OSs, using the same microkernel. For example, Mach microkernel has been used to
develop several OSs like True64 UNIX and SPIN.

Microkernel architecture has been used in many systems. Mach was the first OS designed
with this approach. Mach, developed in the 1980s, was the most successful microkernel and
has been used in various commercial systems. For example, True64 UNIX and SPIN were
built on Mach microkernel. The microkernel has been evolved over several generations. The
first-generation microkernels (Mach, L3, and so on) were slower in nature due to IPC used
for communication between kernel and servers. This inefficiency was removed in later gen-
erations of microkernel. Some examples of the latest generation, which are now faster than
the first-generation microkernels, are L4, SPIN, and QNX. ‘PARAS’ developed by Centre
for Development of Advance Computing (C-DAC), India, is another example of microkernel
architecture.

4.11 EXOKERNEL

There may be the case that the performance of an application being developed is affected due
to the architecture of the OS. Although, there are various options of OSs to be selected for
various types of applications, it may not be possible sometimes that the required feature is
available in the selected OS. For example, a file system that does not leave old data on the disk
may be suitable for security-oriented application but not for a reliability-oriented application.
The reason behind this is, that in the original concept of OS, the hardware has been at such
high abstraction level to application developers that they, in fact, do not know about the actual
hardware. They work in a convenient environment, provided by the OS, without worrying
about the bare hardware details. In all the structures of the OS, it has been ensured that the
developers need not worry about the configuration and limits of the hardware. This is because
the OS is there for all these tasks and provides a convenient and friendly environment to the
user. The OS provides a conceptual model through processes, threads, schedulers, file system,
paging, virtual memory, sockets, and so on, on which a developer works. But, researchers at
MIT realized that giving so much abstraction to the developer affects the performance of the
application being designed on the system. It would be better for a developer if he/she decides
on his/her own about what to do with resources instead of following the abstractions provided

Operating System Architectures 85

by the OS. In this way, performance of an application, not bounded by the abstractions and
policies of the OS, may perform better.

To implement this idea, control of the resources need to be provided to the developers.
One way is to program directly on the hardware and remove the kernel as we did in the past,
without the OS. But this idea is to return to the past and we have seen how difficult life was
without OSs. The compromising idea is to use a kernel with minimum functionality and
providing access of resources to the developer as well. This kernel is called exokernel. The
exokernel performs the job of allocation and synchronizing of resources with user jobs. But
the way in which the application makes use of resources will be decided by the developer.
In other words, the exokernel works as an executive for application programs such that
it ensures the safe use of resources and allocates them to the applications. It means that
the developer can implement the customized abstraction on the resources. The applications
implemented in this way are known as library OSs. Library OSs (see Fig. 4.12) may request
the exokernel to allocate resources like some disk blocks, memory addresses, CPU, and so
on, and use these resources the way it suits the application best. In this way, the exokernel
also provides the efficiency, because now there is no need to map the resources from the
conceptual model provided by the conventional OS to the physical model. For example, in
the MIT Exokernel Project, the Cheetah web server stores pre-formatted Internet Protocol
packets on the disk, the kernel provides safe access to the disk by preventing unauthorized
reading and writing, but the method in which the disk is abstracted is up to the application
or the libraries the application uses.

Though the concept of exokernel has been in use since 1994, and MIT has developed two
exokernels, namely Aegis and XOK, this concept has not been used in any commercial OS and
research is still going on.

Exokernel

Library OS Library OS Library OS

User program

User
mode

Kernel
mode

Bare hardware

Fig. 4.12 Exokernel architecture

86 Principles of Operating Systems

4.12 HYBRID KERNEL-BASED OS

In microkernel architecture, there was a cost involved in IPC for context switching from user
mode to kernel mode and vice versa. Context switching will be elaborated in Chapter 5. In a
component like networking, the overhead of context switching is too high. Therefore, some
kernels were designed to bring back some of the components inside the kernel. Moreover, the
advantages of a layered approach were also merged with microkernel architecture. This type
of kernel, having the mixed approach of various structures, is known as hybrid kernel. Various
OSs have been designed using hybrid kernels. For example, the architecture of Windows NT
and Windows 2000 has been designed with the hybrid approach, taking advantage of layered
as well as microkernel approaches. In order to reduce the cost of IPC in microkernel, the mod-
ules that were in the user space have been brought back inside the kernel. But these modules
are still not inside the microkernel. It means the kernel’s non-essential functionalities and core
essential functionalities are still separate. This has been achieved by the layered concept. There
are separate layers of kernel functionalities called as the executive layer and below this layer is
the microkernel layer. There are basically three layers: executive layer, microkernel layer, and
hardware abstraction layer. The executive layer includes high-level kernel functionalities like
object management, IPC, virtual memory management, and so on. The microkernel layer pro-
vides minimal kernel functionality such as process synchronization, scheduling, and the like, as
discussed in microkernel architecture. Hardware abstraction layer provides easy portability to a
number of hardware architectures. In this way, a hierarchy of layers to separate the microkernel
from other functionalities of kernel has been designed. But both microkernel and executive
 layers are in kernel mode, thereby reducing the context switch overheads.

Hardware abstraction layer

Microkernel

Executive

Win32 OS/2 POSIX

Win32
application

OS/2
application

POSIX
application

Environmental
sub-systems

Bare hardware

User
mode

Kernel
mode

Fig. 4.13 Windows hybrid architecture

Operating System Architectures 87

SUMMARY

The very first architecture of an OS was monolithic. With
the introduction of multi-programming, it was evolved to lay-
ered architecture due to some constraints like security, de-
bugging, and so on. The layered architecture provides the
modularity wherein there is a defined layer for each group of
functionality. Therefore, if there is a need to change a mod-
ule or debug an error, it becomes easy to do so because
changes or debugging an error are localized to one layer
only. It means changes made in one layer do not affect the
 others. Another architecture known as virtual machine OS
was designed to cater to the different needs of a user. As the
computer architecture improved over time and demands from
an OS increased, the size of the kernel expanded beyond
limit. Larger-sized kernels were more prone to errors and
difficult to maintain. Therefore, another architecture was de-
signed, known as Microkernel-based OS. Since the OS ab-
stracts the hardware to a user and hides the complex details
of the hardware, it was realized that the performance of the
application being developed may be affected somewhere, as
all the decisions regarding the resources in the system are
with the OS. In response to this, exokernel architecture was
developed, giving some access of resources to the user. Fi-
nally, a hybrid architecture combining the merits of some OS
architectures was designed.

Let us have a quick review of important concepts dis-
cussed in this chapter:

 • BIOS is a software that consists of input-output func-
tions. These functions are low-level routines that the OS
uses to interface with different I/O devices like keyboard,
screen, ports, and so on.

 • The set of instructions needed for booting, that is, to load
the OS in RAM is known as Boot software/Boot loader/
Bootstrap loader.

 • The instructions, which are not directly executed by the
user but need to be passed to the OS, are known as privi-
leged instructions.

 • All the privileged instructions, that is, instructions that need to
interact with hardware and resources, and therefore passed
on to the OS for execution, are known as system calls.

 • POST is a built-in diagnostic program that initializes and
configures a processor and then checks the hardware
to ensure that every connected device is present and is
functioning properly.

 • The difference between system call and a normal function
call is that a system call enters the kernel but a normal
function call does not. Another difference is that the sys-
tem call itself does not execute anything but generates an
interrupt, which changes the mode to system mode and
passes the control over to the OS.

 • System programs help a user in developing and execut-
ing his/her applications. System programs should not be
confused with system calls. System programs are utilities
programs, which help the user and may call for further
system calls.

 • System generation is the process of configuring the OS
according to the hardware and other specifications on a
particular machine.

 • Monolithic systems were not suitable for multi-program-
ming/multi-tasking environments due to the unprotected
behaviour of the system. Any user job can corrupt another
user’s job and even the OS.

 • Layered architecture provides the modularity wherein
there is a defined layer for each group of functionality.
Therefore, if there is a need to change a module or debug
an error, it becomes easy because changes or debug-
ging an error are localized to one layer only.

 • The advantage of the virtual machine OS is that same hard-
ware is being shared to run different execution environments,
that is, multi-programming and time- sharing can be on a sin-
gle machine. Another advantage of these systems is that all
virtual machines are isolated and, thus, protected.

 • Exokernel works as an executive for application pro-
grams such that it ensures the safe use of resources
and allocates them to the applications. It means that the
 developer can now implement the customized abstrac-
tion on the resources.

 • Hybrid architecture combines the features of microkernel
and layered architectures.

MULTIPLE CHOICE QUESTIONS

 1. All the privileged instructions, that is, the instructions, which
need to interact with hardware and other resources, and,
therefore, passed on to the OS for execution, are known as

.
 (a) OS procedures (c) system calls
 (b) kernel functions (d) none

 2. POST is a built-in that initializes and
 configures a processor and then checks the hardware

to ensure that every connected device is present and
 functioning properly.

 (a) system program (c) system call
 (b) diagnostic program (d) none

 3. Boot loader contains the instructions, which, when executed,
load the OS in the main memory called .

 (a) bootstrapping (c) system program
 (b) POST (d) none

88 Principles of Operating Systems

 4. The BIOS contains a program that loads the first sector of
the boot device called .

 (a) boot loader (c) boot program
 (b) boot sector (d) none

 5. System call is just a bridge between user programs and
 for executing privileged operations.

 (a) system programs (c) OS
 (b) users (d) none

 6. What is the UNIX command for terminating a process
 abnormally?

 (a) fork (c) suspend
 (b) kill (d) none

 7. What is the UNIX command for increasing the priority of a
 process?

 (a) priority (c) nice
 (b) lseek (d) none

 8. What is the UNIX command for suspending a process?
 (a) sleep (c) pause
 (b) wait (d) none

 9. What is the UNIX command for causing a process to sleep?
 (a) sleep (c) pause
 (b) wait (d) none

 10. What is the UNIX command for changing the position of
read/write pointer?

 (a) sleep (c) link
 (b) lseek (d) none

 11. must reside in the memory forever.

 (a) resident (c) OS
 (b) transient (d) none

 12. DOS is an example of .
 (a) layered architecture (c) exokernel
 (b) monolithic architecture (d) none

 13. The OS running on virtual machines, sometimes called
guest OSs, is known as

 (a) CMS (c) VMS
 (b) TMS (d) none

 14. The modules implemented outside the kernel in user space
in microkernel architecture are called

 (a) servers (c) special modules
 (b) clients (d) none

 15. architecture is also known as client-server
architecture.

 (a) layered architecture (c) microkernel
 (b) monolithic architecture (d) none

 16. TRUE64 UNIX is an example of .
 (a) layered architecture (c) microkernel
 (b) monolithic architecture (d) none

 17. PARAS is an example of .
 (a) layered architecture (c) microkernel
 (b) exokernel architecture (d) none

 18. Aegis and XOK are examples of .
 (a) layered architecture (c) microkernel
 (b) exokernel architecture (d) none

REVIEW QUESTIONS

 1. Define the following terms:
 (a) BIOS (b) Booting
 (c) Boot loader (d) Boot device

 2. Explain all the steps of the general working of an OS.

 3. What is the need of a system call? With the help of example,
explain how it is executed.

 4. What is the difference between a system call and a function
call?

 5. Explain all types of system calls using some examples.

 6. What is the difference between a system call and system
program?

 7. What is the need of a system generation program?

 8. What are the two parts in the general structure of an OS?

 9. What are the shortcomings of monolithic architecture?

 10. What are the advantages and disadvantages of layered
 architecture?

 11. Explain the architecture of VM/370.

 12. Explain the architecture of microkernel-based OS.

 13. What is the idea behind the development of exokernel?

 14. What are the good features of a hybrid-based archi
tecture?

BRAIN TEASERS

 1. Would microkernel architecture work well for design of an
object-oriented OS? Justify your answer.

 2. Design a format of message in message-passing system of
microkernel architecture.

 3. How is reliability increased in microkernel architecture?

 4. Explore some research issues in designing an exokernel.

 5. What steps would you suggest while designing an OS in
order to reduce the semantic gap between user application
and bare hardware?

 6. Explore how UNIX has been modified to support protection.

PART II

Process Management

5. Fundamentals of Process Management

6. Process Scheduling

3. Process Communication and Synchronization

8. Deadlocks

9. Multi-threading

Case Study II: Process Management in
UNIX/Solaris/Linux/Windows

5.1 INTRODUCTION

Process is a basic term to understand the operation of an operating system. Since there are a number of
user and system processes, there is a need to manage them. A running process may be interrupted at any
time. Due to this concept, the processes are not in the same state forever. They change state according
to an event in the system. Moreover, the state of an interrupted process needs to be saved so that it can
resume its work. If a process is interrupted, another process is scheduled to be dispatched to proces-
sor for execution. Besides this, processes also need to communicate and synchronize with each other.
Therefore, it is critical to manage the processes in the system from the view point of their state change,
scheduling, dispatching, process switching, communication, synchronization, and so on. In this chapter,
we will study these basic concepts regarding the management of processes in the system.

5.2 TERMINOLOGY

To perform a computation on the computer system, we must have
a unit of work or execution for the user computation. Basically, we
need a term to call all CPU activities performed by the operating
system. Various terms are in use interchangeably. First of all, we
take two terms: Program and Job. These two terms were in use
when the batch systems developed. The term ‘Program’ was very
common at that time and also used frequently today. A program
can be considered a set of instructions in the form of modules.
Thus, program is a classic term used for user’s computation. Since
in a batch system, there was a requirement to load and unload the
magnetic tapes for various activities such as compiling, linking,
loading, and so on, the term ‘job’ was used for performing the
execution of a program through the execution of those activities.
These activities were termed as a sequence of job steps as shown
in Fig. 5.1. For example, the job is to execute a C program and the
execution of compiler, linker, and loader programs are job steps.
These job steps are in sequence, that is, loading is meaningless
without the execution of linking program. Thus, job is a sequence
of single programs. However, the terms ‘job’ and ‘program’ were
used interchangeably and are also popular today as generic terms
for unit of execution.

5 Fundamentals of
Process Management

Learning Objectives
After reading this chapter,
you should be able to
understand:
• Difference between job, pro-

gram, task, and process
• Implicit and non-implicit pro-

cesses
• Process environment
• Life cycle of a process with its

states and state transitions
• Implementation of processes

with process control block
• Context switching
• Process switching
• Process schedulers
• Various operations on pro-

cesses

104 Principles of Operating Systems

The term ‘task’ was used when there was a
need to have concurrent execution on a single
processor, that is, more than one program of a
single user. For example, when a user works in
Windows environment, he or she is able to open
and work on multiple windows such as Word file,
email, web browser, and so on. To distinguish it
from the multi-programming and multiuser, the
term ‘task’ was used and that is why it is called
multi-tasking. Therefore, the term is used in the
sense of multi-tasking.

The term ‘process’ is different from the terms ‘job’ or ‘program.’ We need to understand
the nature of a program and process for this difference. A program is a set of instructions
the user/programmer has written and stored somewhere. It means that a program is a
passive entity and continues to exist at a place. On the other hand, when a program is ready
for the execution, it becomes active and is known as a process. In other words, a program
in execution is called a process. Thus, a process is an active entity with a limited span of
time as compared to a program. The term ‘task’ is also sometimes used interchangeably
with the term ‘process’.

When a program is ready to execute or, in
other words, when it becomes a process, it means
that now it is able to compete for resources. Since
there may be many processes ready at one time,
the process needs to compete for the resources
such as CPU time, memory, I/O devices, and so
on. Thus, a process is eligible to compete for re-
sources, whereas a program is not. When a pro-
cess needs to execute, that is, when it gets the
CPU time, it has a program counter (PC) value
(initialized with process’s address) also for mov-
ing to the next instruction while executing along
with a code section or program code. Moreover,

a data section and a stack are also allocated to a process along with other resources. When a
process starts executing, the data may be stored in some CPU registers. Therefore, CPU regis-
ter values are also attached to processes that are null (blank) before execution. In this way, all
these together make a process’s environment as shown in Fig. 5.2.
Consider an example for the difference between a program and a process (see Table 5.1). In
multiuser environment, many users may open a Word program. When a user tries to open the
Word file, the OS loads the Word program into memory, creating a process for the user. Now
this process has separate set of resources as mentioned in Section 5.1 for execution. The process
is then scheduled for execution. If another user opens the Word file, the OS again creates and
schedules a separate process for the editor program. In this way, the same editor program can be
invoked as separate processes. It means that there are multiple processes sharing the text editor

Job: Execute a C program

Compile Link Load

Fig. 5.1 Job as a sequence of programs

Code section Data section

Stack Program
counter value

CPU register
values

Fig. 5.2 Process environment

Fundamentals of Process Management 105

code section, but the data section, stack, program counter, and resources of each process will be
different. Thus, each process has its own address space consisting of code section, data section,
and stack section. The code section stores the program code. The data section consists of global
variables. The stack stores local variables, parameters in a module call, and return addresses.

5.3 IMPLICIT/SYSTEM AND NON-IMPLICIT/USER PROCESSES

While working on the computer system, processes must be defined to execute the jobs. These
processes also need to be initialized. There are two types of processes depending on how they
are defined and initialized. If the OS defines a process, it is called an implicit or system process.
If the process is defined by the programmer, then it is an explicit or user process. Sometimes,
there is a requirement that processes be defined by the OS itself. However, for the reasons of
efficiency and control, some processes need to be defined by the programmer. Therefore, both
types of processes exist in the system.

In general, implicit processes are created when multi-programming and multi-tasking envi-
ronment are implemented. For example, when a user submits his or her program in multiuser
time-sharing environment, the OS creates a process for each user program. In this case, the OS
is responsible for initializing the process attributes. Similarly, the batch job submitted to the
system may also be divided into several processes. For example, to execute a C program (job),
the OS will create processes for compiling, linking, and loading programs. In this way, the im-
plicit processes may be created for single programs as independent processes or a job may be
divided into multiple processes by the operating system.

It is not necessary that the OS created processes, that is, implicit processes will provide the
efficiency in executing the jobs on the computer system. Sometimes, the programmer needs
to divide a job into processes according to his or her convenience and wants control of these
processes with him or her, not the operating system. In this case, the programmer may divide
the jobs into processes as per the need and create explicit processes. The explicit processes may
also be initialized by the programmer during development or at runtime. Moreover, the control
of some of the attributes of the processes is also with the programmer. For example, in Real-
time systems, the division of processes is a critical work and is performed by the programmer.
There are some processes with higher priority that must be executed even if a lower priority
process is executing then. The higher priority process will preempt the lower priority process
and gain the excess of processor. A process responsible for accepting the sensor data and up-
dating the data accordingly will get the higher priority over other processes. It means that the
control of process priority should be with the programmer. The programmer will initialize the

Program Process

Passive/Static Active/Dynamic

Cannot compete for resources Competes for resources

Has a code section Has a code section, data section, stack, and pro-
gram counter

Table 5.1 Difference between program and process

106 Principles of Operating Systems

priority of every process according to its priority, and the priority of the process is determined
on the basis of its functionality. The critical real-time functionality process will get the higher
priority. In real-time systems, there may be the case when the priority of the process needs to be
changed to reduce the starvation of lower-priority processes. Therefore, the dynamic priority is
provided to the process. Thus, explicit processes with dynamic priority are under control of the
programmer. In this way, there may be other attributes of the processes that can be initialized
and are under control of the programmer.

5.4 RELATIONSHIP BETWEEN PROCESSES

In Section 5.2, a process was discussed as a program in execution in the context when a pro-
gram is executed sequentially. The program may consist of a set of procedures or functions, but
each of them executes in a sequence. This program when executed becomes a single process
consisting of all procedures inside the program. However, there may be some procedures or
functions in a program that can be executed simultaneously, that is, there is no sequence of
order of execution between them. In this case, the program when executed consists of many
processes. This type of program is known as concurrent program. In general, there are some
processes (created out of a program or concurrent program) whose executions overlap in time.
These processes are known as concurrent processes.

In a multi-programming system, processes are interleaved to be executed efficiently on a
single processor. These processes are concurrent processes. Concurrent processes may be in-
dependent of each other and are known as independent processes. However, they may also
interact with each other. They may share a data, send a message to each other, or send signals
to coordinate their activities. These are known as interacting or cooperating processes. Coop-
erating processes are very critical and important in the system. These processes are critical in
the sense that if they will not cooperate with each other, a chaos may occur in the system. The
problems related to concurrent processes will be discussed in Chapter 7.

Another relation between processes is the parent–child relationship. It means that when a pro-
cess creates its sub-processes, the parent–child relation exists between the parent process and its
sub-processes. A child process may further create another child process. In this way, the parent–
child relationship between processes gives rise to a tree structure.

5.5 LIFE CYCLE OF A PROCESS

Since a process is an active entity as discussed in Section 5.4, it changes its state with time.
A process from its creation to termination passes through various states. A process when cre-
ated is in a new state as a program/job. Whenever a new job is entered into the system, it is
stored in the job pool/queue maintained in the hard disk (see Fig. 5.3) in case of a batch system.
In the job queue, a job waits for its turn to be moved to the main memory. When a job is selected
to be brought into the main memory, it is called job scheduling. When a job is loaded into the
memory, it becomes a process and is stored in a waiting queue where all processes wait for their
turn to be sent to the CPU for execution. This waiting queue is called ready queue. A process in
ready queue becomes ready for execution as it can compete for the CPU and resources.

A new job is stored in the ready queue in case of a time-sharing system. Therefore, there is
no need of job scheduling in these systems. The processes in ready queue are then selected for
the next execution called process scheduling or CPU scheduling. After this, the selected pro-
cess is sent for execution called process dispatching. After getting the CPU time, the running

Fundamentals of Process Management 107

process executes its full code and terminates. The scheduling and dispatching functions are
performed by the scheduler and dispatcher, respectively. These are the modules of the operat-
ing system, which will be discussed later in this chapter.

This may not be the case always. A process may be interrupted while executing, or it may
transition to wait state while trying to access an I/O device. Thus, a process as an active entity
is not in a static state but changes its state with time. Let us now discuss the states a process can
have and how it transitions from one state to another.

5.5.1 Process States and State Transitions
The state of a process is an effective way to manage the processes in a multi-programming envi-
ronment. A process may be running and another process may be waiting for an I/O device at
the same time. Therefore, through the states of the processes, the situation of every process at a
given time is identified and every process is managed such that it gets a uniform execution. Vari-
ous events happening in the system cause a process to change its state. Thus, a process moves
through a series of discrete states. The states of a process are depicted as follows (see Fig. 5.4):

New State
Whenever a job/program enters the system, it is put into a job queue in case of a batch system.
In the job queue, the process is in its new state. It means that the process is still in the secondary
storage as a program and not admitted to the main memory. However, the control information
regarding the new process is being updated and maintained in the memory.

Running

New

Ready

Blocked

Terminated

Admit
Dispatch

Interrupt

Exit

I/O access or
event wait

I/O access or
event

completion

Fig. 5.4 Process state diagram

Job
scheduling

Program

Job
queue

Ready
queue

CPU
Process

scheduling/
dispatching

Disk
storage

Main memory

Fig. 5.3 Job scheduling and process scheduling

108 Principles of Operating Systems

Ready State
When program in job queue is scheduled and brought to the main memory in the ready queue,
the state of the process is ready. The process in ready state is called ready because now it is
ready for execution but not executing. The ready means that the process is now able to compete
for the resources and is waiting for execution. A process may enter in ready queue after getting
its execution for various reasons, which will be discussed very shortly.

Running State
A process in the ready queue when selected by the scheduling mechanism for execution and
dispatched to the CPU becomes a running process. The CPU executes the instruction in the
code of the process. A process while running does not mean that it will hold the CPU until it
terminates. It can either be interrupted or its allotted time expires.

Blocked State
A process while executing may reach an instruction where it has to wait for some I/O devices
or some other event. In this case, the processor will be taken away from the running process
and may be given to another ready process. Therefore, the current running process becomes a
blocked process. A blocked process will wait for the I/O device and its access or the other event
to happen. The blocked process waits for the event only in the main memory but in a separate
queue known as blocked queue. When the I/O access or the other event is over, the process is
now again ready to execute further. However, now, it cannot be given the processor because
some other process may be executing at that time. Therefore, the blocked process after its wait
will move again to the ready queue for its turn to execute.

Terminated State
A process executed completely till its end and terminated becomes a terminated process. There
may be some other reasons also for terminating a process, for example, when a process is not
able to recover from an error or some other process aborts it in between for some reasons. The
terminated process will release all the resources that have been allotted to it.

The process changes its state when there is an event causing a state transition. The events
can be of the following types:
 • A new process is created
 • The process makes a resource request
 • Resource is released
 • The process requests an I/O device
 • An I/O device is released after access
 • The allocated time slice for a process is over. In this case, system timer sends a timer

interrupt
 • A higher-priority process appears in the ready queue. In this case, the running

 lower-priority job is pre-empted by a newly arrived higher-priority process
 • The process reaches its end of execution or is aborted
 • Any hardware interrupt is generated
 • An error or exception condition is generated in the current running process

The OS looks for an event, and when an event happens in the system, the processes affected
with the recent event are determined. After this, the OS changes the states of processes if required.
Thus, events cause state transitions of the processes from one state to another. For example, if
a running process reaches an instruction or system call where it needs to access an I/O device.

Fundamentals of Process Management 109

If the device requested cannot be granted immediately, the process needs to wait on the device
queue of the device requested. Now, there is a need to change the state of process because the
processor will be taken away from this process and given to some other process in the ready
queue. Thus, the state of this process will be changed from running to blocked or sleep. Simi-
larly, when the event happens such that the requested device is released, this blocked process will
be awakened and its state will be changed from blocked to ready. In this way, events become the
source of state transitions of the processes and help in managing the processes (see Table 5.2).

Admit (New " Ready)
This event takes place when there is a need to increase the degree of multi-programming in the
system. It means that a process can be accommodated in the memory. Therefore, admit event
allows fetching one job from the job pool to the main memory and the process is admitted to
ready queue. In this way, the state of the process changes from new to ready.

Dispatch (Ready " Running)
The dispatch event sends a process to the CPU for execution after selection. The state of the
process changes from ready to running due to this event. How the process is selected for dis-
patching depends on a scheduling algorithm, which will be discussed later on.

Exit (Running " Terminated)
When a running process reaches its completion or aborts due to any reason, the exit event
changes its state from running to terminated.
Interrupt (Running " Ready)
The running process may also be pre-empted from execution by some other process. It may
 happen due to several reasons. For example, in a time-sharing multi-user system, a fair distribution
is done of the processor time to provide equal amount of processor’s time to each process.

Event Current state New state OS actions

A new process is
created.

 -- NEW Assigns an ID to the process
and some other related
information.

Process makes a
resource or an I/O
request.

RUNNING BLOCKED Schedules the next process
from ready queue and dis-
patches it to the processor.

The resource or
an I/O device is
released.

BLOCKED READY (If the resource
or I/O device released
is what the BLOCKED
process requires)

Schedules the next process
from ready queue and dis-
patches it to the processor.

An interrupt is gener-
ated by another
process or due to
any other reason.

RUNNING READY Schedules the next process
(interrupting process if the
interrupt has come from this
process) from ready queue
and dispatches it to the
processor.

Process reaches its
end of execution or
is aborted.

RUNNING TERMINATED Schedules the next process
from ready queue and dis-
patches it to the processor.

The state transitions occur due to various events, which are listed as follows:

Table 5.2 Event handling in OS

110 Principles of Operating Systems

Therefore, in this case, a fixed time slot is given to each process for execution. On the expiry
of this time slot, interrupt will stop the execution of this process for the time being and changes
its state to ready again. In another case, in real-time systems, every process is provided a prior-
ity for execution. The highest-priority process has the privilege to execute first. Therefore, if a
lower-priority process is executing and a higher-priority process arrives, it will send the interrupt
and cause the running process to stop the execution, changing the state of the running process to
ready. Whenever interrupt event changes the state of a running process to ready again, the process
that has been interrupted will enter the ready queue once again and will compete for the processor.
I/O or Event Wait (Running " Blocked)
A running process reaches an instruction in the code that it needs to wait for some access. For
example, the instruction may be to access an I/O device; in this case, the process must wait for
the device on its device queue if the device is busy then. In this way, a process may need to wait
for an event or request that cannot be granted immediately. Therefore, this wait event causes
change of state from running to blocked. A blocked process will wait for the event to happen
or the request to be granted.
I/O or Event Wait Completion (Blocked " Ready)
The blocked-process wait is over when the event-wait completion happens. It means that the
process has accessed the device, or the request for which it was waiting has been serviced. The
blocked process can then again resume its operation for which it needs the processor. How-
ever, it cannot be granted the processor immediately as some other process is executing then.
Therefore, this process will move to the ready queue causing the state transition from blocked
to ready. In the ready queue, the process will again wait for its turn to get the processor.

Example 5.1

Consider Example 1.1 of Chapter 1 illustrate the state transitions for all the processes in the system.

Solution

The state transitions for all the processes are as follows:

Time J1 J2 J3 Event State
transitions

OS actions

0 RUNNING -- -- -- -- --

2 BLOCKED RUNNING -- J1 requests
I/O

J1: Running
to Blocked

Puts J1 to Blocked
queue.

Schedules the
process J2 from
ready queue and
dispatches it to the
processor.

7 -- BLOCKED RUNNING J2 requests
I/O

J2: Running
to Blocked

Puts J2 to Blocked
queue.

Schedules the
process J3 from
ready queue and
dispatches it to the
processor.

(Contd)

Fundamentals of Process Management 111

10 RUNNING -- BLOCKED J3 requests
I/O

J3: Running
to Blocked

Puts J3 to Blocked
queue.

Schedules the
process J1 from
ready queue and
dispatches it to the
processor.

12 BLOCKED RUNNING -- J1 requests
I/O

J1: Running
to Blocked

Puts J1 to Blocked
queue.

Schedules the
process J2 from
ready queue and
dispatches it to the
processor.

14 -- TERMI-
NATED

RUNNING J2 Exits J2: Running
to Terminated

Schedules the
process J3 from
ready queue and
dispatches it to the
processor.

16 RUNNING -- TERMI-
NATED

J3 Exits J3: Running
to Terminated

Schedules the
process J1 from
ready queue and
dispatches it to the
processor.

18 TERMI-
NATED

-- -- J1 Exits J1: Running
to Terminated

--

5.5.2 Suspended Processes and Their State Transitions
This is understood now that the processes change their states when there is an event. As per the
knowledge of multi-programming, when a process waits for an I/O device, that is, when the
process is blocked, another process from the ready queue is scheduled. However, there may be
the case that all the processes need I/O devices, that is all the processes at a particular instant of
time are blocked and are waiting for some event to happen and no process is under execution,
that is, in the running state. In this case, no useful work is being done by the processor. There-
fore, it is necessary to bring in some process that is ready for execution. However, there may be
a situation that there is no space so that a new process may be swapped in. Therefore, we need
to create the memory space for this purpose. Since blocked processes cannot be executed unless
their I/O devices are released, some blocked process may be swapped out.

The swapped-out process is known as suspended process and the queue where it waits is called
suspended queue in the secondary storage such as disk. The state of the process then changes
from blocked to suspended. In this way, sometimes, there is a need to have this suspended state
also in consideration to manage the processes in this situation. The question arises that when
these suspended processes will come back to the ready queue. Since the suspended process was
in blocked state, it was waiting for an I/O device before suspension. Therefore, when the wait
for an I/O device is over, the suspended process can be brought back to the ready queue. In fact,

(Table Contd)

112 Principles of Operating Systems

whenever the suspended process is swapped out in the disk, there are two choices for bringing in
a process that is ready for execution. First is a suspended process from the suspend queue whose
waiting event is now over, that is, it is now ready for execution. Second, a new process from the
job queue can be scheduled in the ready queue. However, the new job from the job queue will
increase the load of the system. The second choice is only valid if we want to increase the degree
of multi-programming of the system, otherwise the first choice is preferred.

Two more states for suspended processes can be added to the previous model of process
behaviour. These are as follows (see Fig. 5.5):

Blocked–Suspended
The blocked process waiting in blocked queue in the memory is suspended and moved
to suspended queue in disk. The state of the process is called blocked–suspended. The
blocked–suspended process is still waiting for its desired event to happen but in the disk.

Ready–Suspended
When the event for which the blocked–suspended process was waiting has occurred, its state
changes. The state is ready because now it is ready to be executed. However, yet, it cannot be
executed as it is still in the disk. Therefore, its state is called ready-suspended.

The new transition states are as follows (see Fig. 5.5):

Suspend (Blocked"Blocked-Suspend)
This event takes place when a process is in blocked state and is waiting in blocked queue in
the memory. After this event, the blocked process from the queue is taken away and placed in
suspended queue in the disk. Now, the process will wait for its desired event in the disk instead
of the memory. The state of the process changes from blocked to blocked–suspended.

I/O or Event Wait Completion (Blocked-Suspend"Ready-Suspend)
This event takes place when the I/O wait for a blocked–suspended process is over, changing the
state of the process from blocked–suspended to ready–suspended. The new status is ready–sus-
pended because the process is now ready to be executed, but it cannot get the processor because
it is still in the suspended queue.

I/O access or
event
completion

Running

New

Ready

Blocked

Terminated

Admit
Dispatch

Interrupt

Exit

I/O access or
event wait

Blocked–
suspended

Ready–
suspended

Suspended

I/O access or
event
completion

Activate

Fig. 5.5 Process state diagram with suspended states

Fundamentals of Process Management 113

Activate (Ready-Suspend"Ready)
This event takes place when there are no processes in the ready queue or the priority of the
ready–suspended process is higher than the process in ready queue. Therefore, this event moves
the ready–suspended process from the suspended queue to the ready queue, changing the state
of the process from ready–suspended to ready. Now, the process that was originally blocked
and then suspended is ready for execution in the ready queue.

The case of suspended processes has been discussed when there is a need to swap out some
processes. There may be some other reasons also for suspending the processes. Some are dis-
cussed as follows:
 • Imagine that there are processes in ready queue and some processes are blocked. However,

it may be the case that we need to suspend some process to have a free memory block.
Which process should be suspended? In general, blocked process is suspended because
ready queue processes are ready to execute as compared to blocked processes that are still
waiting for an I/O device. However, this is not the case always. A ready process may also
become a candidate process for suspension. Some of the reasons may be

 1. That the large memory space that we require may be available only when a ready process is
suspended

 2. The blocked process is of higher priority as compared to all ready processes
 3. And that there are too many processes in the system causing performance degradation

In such cases, it would not be feasible to suspend a blocked process; rather, a ready process
should be suspended.

To implement the suspension of a ready process, there is a need to have another transition
state from ready state to ready–suspended as follows:

Suspended (Ready"Ready-Suspend)
This event takes place when a process is in ready state and is waiting in ready queue in the
memory. After this event, the ready process from the queue is taken away and placed in sus-
pended queue in the disk. Now, the process will be there until it is activated and called again in
the ready queue. The state of the process changes from ready to ready–suspended (see Fig. 5.6).

I/O access or
event

completion

Activate

Interrupt

Suspend

Running

New

Ready

Blocked

Terminated

Admit
Dispatch

Exit

I/O access or
event wait

Blocked–
suspended

Ready–
suspended

Suspended
I/O access or

event
completion

Fig. 5.6 Process state diagram with ready to ready–suspended transition

114 Principles of Operating Systems

 • There are many background processes that are of very low priority or utility processes that
may be suspended in case there is no need or when memory space is required for other
critical processes

 • If the OS detects a deadlock, then the process causing the deadlock may be suspended for
some time so that the deadlock situation is removed

 • A parent process may also suspend its child process if there is an error in its execution

5.6 PROCESS CONTROL BLOCK

The process environment discussed in Section 5.5 consists of program (code), data section,
and stack. However, this is not sufficient to control a process. The OS needs some attributes
associated with the processes to implement and control them. The attributes are stored in the
data structure known as process control block (PCB) or process descriptor. The collection of
user program, data section, stack, and the associated attributes is called the process image as
shown in Fig. 5.7.

The PCB is created for every process whenever a new process is created in the system. Simi-
larly, it is also deleted as the process is terminated. The PCB contains all information about the
process needed for its control. For example, for the identification of the process, there must be an
ID for it. At a particular instant, the current state of the process and its PC value must be known.
Whenever, there is process switching, the state of the process in PCB must be changed. At the
same time, the processor register values for the current process must be saved so that it can
resume the execution again. Some processes are more important than others. For this purpose,
a priority of every process is maintained. Therefore, priority is also one field in the PCB. Since
the process will be stored somewhere in the memory, the address information where the process
image will be stored is also a part of the PCB. The information related to resources held by the
process and accounting information such as CPU time used, disk used, and so on will also be
stored in the PCB. Thus, there is a lot of information associated with a process stored in its PCB.
The information stored in the PCB basically provides control over the execution of the process.
The following are the fields associated with a PCB (see Fig. 5.8):

PID
It is a unique identification number of the process.

PC
Indicates the address value at which the next
instruction of the process will be executed by
the processor.

Registers
CPU registers are used for the execution of a pro-
cess. While the process is in execution, data regis-
ters, address registers, control, and status registers
are used for executing and controlling the process.
The registers information must be saved when
there is a state change of the process so that it may
resume its execution when its next turn comes.

Code section Data section

Stack

Process control
block

Fig. 5.7 Process image

Fundamentals of Process Management 115

State
A process has a number of states in its life. For scheduling the pro-
cesses, the current state of a process must be known.

Priority
The priority number can be assigned to a process to give preference
to it over other. In general, the lowest number means the highest pri-
ority, for example, the process with Priority 1 will have the highest
priority over all other processes. However, the priority scheme may
be changed depending on the OS that we select.

Event information
This is the event for which a blocked process is waiting. If the
awaited event is over, the information regarding this event must be
stored in this field so that the status of the blocked process is changed
to ready.

Memory-related information
Memory-management component of the OS uses many registers
and tables. The information regarding all this memory-related
information linked to a process is also mentioned in the PCB, for
example, the values of the base and limit register of the process,
page tables, segment tables, and so on. All these tables will be

discussed in Memory Management chapter. The information is necessary while de-allocating
the memory of the process.

Resource-related information
The resources allocated to a process are listed here. For example, all files opened by this pro-
cess are listed in this field. The information is necessary to release the resources on the termi-
nation of the process. For example, all opened files must be closed on the termination of the
process. Moreover, the information regarding the utilization of the resources may also be stored
here. For example, the processor utilization may be required by the schedulers.

Scheduling-related information
A process will be executed according to a scheduling algorithm. The scheduling-related infor-
mation of a process is also stored such as the time the process has waited, the amount of time
the process executed the last time it was running.

Pointer to parent process
If a process is a child process, then the pointer to its parent process is stored here.

Pointer to child process
If a process has some child processes, then the pointer to its child processes is stored here.

Pointer to address space of the process
This is the pointer to the process’s data and instructions in the memory.

5.7 IMPLEMENTATION OF PROCESSES

Now we can discuss the implementation of processes in the operating system. Using the knowl-
edge of process states, process image, and the PCB, the implementation of processes can be
explained. The OS manages and controls the resources by having a table. The tables are impor-

PID

PC and CPU registers

Process state

Process priority

Event information

Memory-related
information

Resource-related
information

Scheduling-related
information

Various pointers

Fig. 5.8 PCB

116 Principles of Operating Systems

tant data structures to store information about every process and resource. This is the reason
the OS maintains memory tables, I/O tables, file tables, and process tables. The processes are
implemented by the means of process tables. The process tables store the ID of every process
and, corresponding to it, the pointer to its PCB as shown in Fig. 5.9.

Process table

1

2
3

n

PCB1
PC

Registers
State

Priority

PCB2
PC

Registers
State

Priority

PCBn
PC

Registers
State

Priority

Fig. 5.9 Process table and the PCB
At the time of creation of a new process, the OS allocates a memory for it, loads a process

code in the allocated memory, and sets up data space for it. In this way, process environment is
created for a process. Further, the PCB for the process is created to have a control on it through-
out its execution. The state of the process is stored as ‘New’ in its PCB. Whenever this process
moves to the ready queue, its state is changed to ‘Ready’. Similarly, when it is dispatched to the
CPU, its state is changed to ‘Running’ in its PCB. When a running process needs to wait for an
I/O device, its state is changed to ‘Blocked’. The various queues used here are implemented as
linked lists. There are mainly the following queues:
 • Ready queue for storing the processes with state ready
 • Blocked queue for storing the processes that needs to wait for an I/O device or a resource
 • Suspended queue for storing the blocked processes that have been suspended
 • Free-process queue for the information of empty space in the memory where a new PCB

can be created
All these queues store a particular process’s PCB only for the sake of search efficiency. If
there is a process with the state ready, then its PCB is stored in the ready queue. Therefore, as
soon as the state of a process is changed, its PCB is moved to its appropriate queue. All these
queues are implemented as linked lists. Each PCB has a pointer that points to the next PCB.
There is a header for each type of queue. The header stores the information about the first
and the last PCBs in that queue. For example, there is a ready-queue header that provides the
information about the first and the last PCBs in the queue (see Fig. 5.10). Similarly, there is
a blocked-queue header. There is one more header giving the information about the running
process information; however, there is no queue of running processes because there is only one

Fundamentals of Process Management 117

running process in the system. One more queue having the information of a process’s area,
which is free after the termination of a process, will release the memory after its termination.
This memory area can be used for a new process. Therefore, the free process queue is a linked
list of the free areas where the upcoming new processes can be stored. The free process queue
also has a header. All the headers provide information about the address of the first and the
last PCBs in that queue. Only running header gives the address of only one running process
because there is a single running process in the system. Let us see one example (see Fig. 5.11)
for the implementation of PCBs, queues, and their corresponding headers. As a notation, we
are representing one PCB in the memory as one rectangle having two smaller rectangles inside
it. The top rectangle represents the process ID, and the bottom rectangle represents the address
of the next PCB in the queue. All the headers have been shown below the representation of all
PCBs in the memory. In the bottom rectangle, symbol ‘E’ represents the end of the queue. The
running process header shows in this example that Process 5 is running. The ready-process
header shows that in this queue, Process 8 is the first and Process 10 is the last. Looking at the
rectangle shaped PCB that starts with PCB Number 8, the next PCB is Number 1. When we
move to the rectangle shaped PCB that starts with PCB Number 1, its next PCB number is 4.
In this way, by observing the chain in the figure, we can say that Processes 8, 1, 4, and 10 are
in the ready queue. Similarly, Processes 3 and 6 are in the blocked queue and 2, 7, and 9 are in
the free-process queue.

Besides changing the state of a process, the PCB of this running process needs to be saved at
this time so that the process can resume its execution from where it left off. Since all informa-
tion of a running process is in its PCB, the PCB must be saved for this purpose. Initially, the
process’ program counter, program status word, registers, and other information are stored on
the stack. After this, the stack information is stored in the corresponding PCB of the process.
Once the current status of the process is saved in its PCB, the process can resume its execution
when it will get the chance to be in the ready queue. This saving of the status of the running
process in its PCB is called context saving.

Process table
Running
Ready

Blocked

PC
Registers

State
Priority

PC
Registers
Priority

PC
Registers

Priority

PC
Registers

Priority

PC
Registers
Priority

PC
Registers

Priority

PC
Registers

Priority

Fig. 5.10 Separate queues for different states of the processes

118 Principles of Operating Systems

Free process
header

Blocked process
header

Ready process
header

Running process
header

5 8 10 3 6 2 9

1

4 7

2 3

6

4

10

5

5

6

E E9

8

1

97 10

E

Fig. 5.11 PCB queues in memory

After saving the context of a process, the appropriate event-handling function is executed.
For example, if the process needs to wait for an I/O device, then it is sent to the queue of the
blocked processes. After this, there is requirement that another process be dispatched to the
CPU because the current process has been interrupted. Therefore, scheduler is called to sched-
ule a process from the ready queue. After selecting the process from the ready queue, its PCB
is loaded and dispatched to the CPU for execution. In this way, the processes are implemented
by saving their contexts in PCBs and making state change possible.

5.8 CONTEXT SWITCHING

The context saving as discussed in Section 5.7 is necessary whenever a running process is inter-
rupted or waits for an I/O device. It means that the current context of a process always resides in
its PCB. Therefore, whenever the running process stops, its context is saved in its PCB and the
context of other scheduled process from its PCB is loaded. This is known as context switching.
However, saving the context of the current process takes some time. It is obvious that saving
the registers and other information will consume some time. Similarly, loading the context of
other process also takes some time, which is known as context switch time. However, during
this context switch time, what is the processor doing? Since the current process is not running
and no new process has been scheduled for execution, the processor is idle during the context
switch time. Therefore, the context switch time is a pure overhead for a multi-programming/
multi-tasking environment because CPU is not doing any execution during this time. In the
lifetime of a process, a process may either wait for an I/O device or be interrupted many times.
Thus, the context switch time is proportional to the frequency of processes being stopped. For
example, two processes in a multi-tasking environment will have the context switch time in
saving the context of one process and in loading the context of another.

Fundamentals of Process Management 119

Example 5.2

Consider Example 1.1 of Chapter 1. In this example, we have seen the timing diagram of multi-
programming without considering the context switch time. If we consider the context switch
time of 1 unit time between two processes, then what will be the total execution time of three
processes?

Solution

The timing diagram after considering the context switch time of 1 unit time between two pro-
cesses is shown as follows:

The total execution time in this case is 24, whereas it was 18 without context switching
(refer to Example 1.1). This example shows that the context switch time between the processes
is pure overhead and no actual execution by the processor is being done.

E C
S E C

S E EC
S

C
S E E EC

S
C
S

0 2 3 8 9 12 13 15 16 18 19 21 22 24

J1 J2 J3 J1 J1J2 J3

Save
context
of J1

and load
context

of J2

Save
context

of J2
and load
context

of J3

Save
context
of J3

and load
context

of J1

Save
context
of J1

and load
context

of J2

Save
context

of J2
and load
context

of J3

Save
context

of J3
and load
context

of J1

CS: Context switch time

5.9 PROCESS SWITCHING

When a running process is interrupted and the OS assigns another process to it and transfers
control to it, it is known as process switching. Process switching occurs due to an event in
the system. The events can be of any type as described in Section 5.4.1. However, only the
events that interrupt the execution of the currently running process trigger the process switch-
ing. There are following broad categories of interrupts:

System Calls
The system calls used by a process always cause an interrupt. The system call
requests the kernel to execute a request. For example, if a process has the system
calls for reading or writing from/to a device, then it causes the interrupt.

Exceptional Conditions
There can be some instructions in the process that when executed cause some
exceptions that need attention of the kernel. Arithmetic exceptions, reference to an
illegal address, and so on are some examples that cause the interrupt.

120 Principles of Operating Systems

I/O Completion
When an I/O device completes the read/write operation with a process, an interrupt is
generated so that the process waiting for that device may use it.

External
Any external unit connected with the system may also generate an interrupt. For
example, timer clock on completion of a time slice may send an interrupt.
As soon as an interrupt is generated due to events, the following actions are performed (see Fig.
5.12 and 5.13):

 1. Since the current running process has been interrupted, its execution context must be saved.
The execution context of a process includes PSW, processor’s registers, and program coun-
ter (PC). Therefore, the processor pushes the PSW and the PC onto system control stack to
save the execution context.

 2. When the interrupt arrives, the interrupt hardware analyzes the cause of the interrupt and
forms a code corresponding to this interrupt. The interrupt vector area in the memory is
accessed corresponding to this interrupt code, and information from the interrupt vector is
loaded into the PSW. Since the interrupt vector contains the address of the interrupt service
routine (ISR) in the kernel to handle the interrupt, the PC is loaded with the address of this
ISR.

 3. The processor mode is switched from the user to the kernel, and control is transferred to ISR
in the kernel.

 4. The PSW and the PC have been saved onto system stack as described in Step 1. However,

Event

Interrupt

Save the context

Process the event

Schedule another
process

Dispatch the
selected process

Fig. 5.12 Sequence of
activities dur-
ing process
switching

the processor’s registers at the time of interrupt of the interrupted
process have not been saved yet. The ISR does the remaining work
of context saving of the interrupted process. The context-saved
sub-function in the ISR locates the PCB of this process. After this,
it saves the processor’s registers, the PSW, and the PC from the
stack in the PCB. It also changes the state of the process as the
case may be. For example, if the interrupted process has been pre-
empted by a higher priority, then the state of this process will be
changed from ‘running’ to ‘ready’. Besides this, there may be some
other fields that need to be updated in the PCB such as account-
ing information related to interrupted information. For example,
how much the processor time has been used by the process? Since
the OS maintains the queue for various types of processes (ready,
blocked, and suspended queues), the PCB of the interrupted pro-
cess is moved to one of these queues according to its updated state.

 5. After saving all information related to the interrupted process, the
ISR proceeds to process the interrupt. The corresponding event-
handling function is executed to service the generated interrupt.

 6. After processing the interrupt, the next step in process switching
is to schedule a process for execution as there is no process to ex-
ecute. Therefore, a scheduler function is called that selects a pro-
cess from the ready queue. However, if there is an event such that
the running process has requested time or date or a resource such

Fundamentals of Process Management 121

as memory that can be granted immediately, then there is no state change. In this case, the
scheduler function will select the same process for execution.

 7. After this, a dispatcher function is called to prepare the process for the execution. It locates
the PCB of the selected process and loads the saved PSW and CPU registers of the process
onto the CPU registers from the PCB to resume the process from where it left off when
last interrupted. The state of the selected process is also changed to running. These actions
thereby set up the environment of the selected process for execution.

10

9.A

8

7.C

7

7.B

System
Stack

5

4

3 PSW

CPU

PCM IC ..

Process A

Process B

1

2

Interrupt vector
area

6

ISR

PCB A

PCB B

7.A.1

7.A.2

Event-handling
functions

Scheduler

Dispatcher

Memory

9.B

 1. Initially process A is running and an Interrupt comes to the CPU.
 2. PSW saved on system stack.
 3. Interrupt hardware analyzes the type of interrupt and generates interrupt code in IC of PSW.
 4. Corresponding to interrupt code, interrupt vector area is searched and information about the address

of the ISR is retrieved.
 5. Address of ISR is stored in PC field of PSW.
 6. Mode is switched to kernel, i.e., mode bit M in PSW is set to 0 for kernel mode.
 7. Processor starts executing ISR.
 7.A Calls context saving function.
 7.A.1 Save the processor’s registers in the PCB A.
 7.A.2 Copy the PSW containing PC from the system stack in PCB A.
 7.A.3 Changes the state of the process from running to the blocked or appropriate state according to

interrupt code.
 7.B Calls event handling function (or interrupt processing function).
 7.C Passes control to the scheduler.
 8. Scheduler selects a process from the ready queue and control is passed to dispatcher.
 9. Dispatcher
 9.A Finds the PCB of the process selected by scheduler, e.g. it is Process B.
 9.B Loads the PSW containing PC and other registers from its PCB to CPU.
 9.C Changes the state of the process to running in its PCB.
 9.D The mode bit M in PSW is changed to 1 for user mode.
 10. As soon as the PC in PSW is loaded the process B starts executing by the processor.

Fig. 5.13 Detailed steps of process switching

122 Principles of Operating Systems

Some of the possible events that trigger the interrupt, along with their event-handling func-
tions, are listed in Table 5.3. These event-handling functions are basically interrupt-processing
functions in the kernel. In this table, only events and their corresponding event-handling func-
tions have been shown. It should not be misunderstood here that in response to an event, an
event-handling function is executed. The sequence will be same as shown in Fig. 5.12. In
response to every event, the interrupt will be generated, and in response to every interrupt, con-
text save functionality is executed. After this, the event-handling function is executed and then
the scheduler and the dispatcher are called for their appropriate functions.

Table 5.3 Event-handling functions

Event Event processing

A new process is created. Create the process. Add it to the ready queue
and Pass the control to Scheduler.

The process makes a resource request. If the resource can be granted immediately, then
Allocate resource. Otherwise Block the process.

Pass the control to Scheduler.

A resource is released. If there is any blocked process waiting for the
resource (in the resource queue), which has
been released recently, Unblock the process
and send it to ready queue.

If there is any blocked–suspended process
waiting for the resource (in the hard disk), which
has been released recently, Unblock the pro-
cess and send it to ready-suspend queue.

Pass the control to Scheduler.

The process requests an I/O device. If the I/O device can be granted immediately,
then Allocate device. Otherwise Block the pro-
cess.

Pass the control to Scheduler.

An I/O device is released after access. If there is any blocked process waiting for
the I/O (in the device queue) which has been
released recently, Unblock the process and
send it to ready queue.

If there is any blocked–suspended process
waiting for the I/O device (in the hard disk),
which has been released recently, Unblock the
process and send it to ready-suspend queue.

Pass the control to Scheduler.

The allocated time slice for the process is
over. In this case, system timer sends a timer
 interrupt.

Send the process to the ready queue.
Pass the control to Scheduler.

A higher-priority process appears in the ready
queue. In this case, the running lower-priority
job is pre-empted by the newly arrived higher-
priority process.

Send the process to the ready queue.
Pass the control to Scheduler.

(Contd)

Fundamentals of Process Management 123

The process reaches its end of execution or
is aborted.

If the process is a parent having some child pro-
cesses, then terminate all child processes.

Pass the control to Scheduler.

Any hardware interrupt is generated. Process the interrupt according to its type.

Pass the control to Scheduler.

An error or exception condition is generated in
the current running process. Some examples:

Terminate the process.

The process requires more memory than
allowed.

Pass the control to Scheduler.

The process tries to access a resource or
an I/O device or memory location that is not
allowed to use.

The process attempts an arithmetic opera-
tion that is not allowed, for example, divide by
zero.

5.10 SCHEDULERS

The process-scheduling procedure needs to be invoked as soon as a running process is interrupted
after saving its context so that the CPU has one process to be executed. However, there are other
instances also when scheduling is required. For this purpose, there are various types of sched-
uler modules in the OS that execute at their appropriate time. The classification of schedulers is
based on the frequency of their use in the system. If the use is after a long time, then it is called
a long-term scheduler. Similarly, when a scheduler is invoked very frequently, it is known as a
short-term scheduler. The following are the types of schedulers used in an OS (see Fig. 5.14):

5.10.1 Long-term Scheduler
This scheduler is invoked when there is a need to perform job scheduling, that is, when a job
from the job pool is selected to be sent to the ready queue. Since a job entering the system
needs to be a process in the ready queue, this scheduler is invoked whenever there is a need to
increase the degree of multi-programming in the system. However, this type of scheduling does
not happen very frequently because a process needs some time in the system to be executed.
If there are no slots in the ready queue for a new process to be accommodated, then there is
no need to increase the degree of multi-programming and, hence, of the long-term scheduler.
The long-term scheduler is needed only in case of a batch processing and is absent in multi-
user time-sharing systems. In time-sharing systems, the jobs are directly entered into the ready
queue as processes.

5.10.2 Short-term Scheduler
This scheduler is invoked when there is a need to perform process scheduling, that is, when a
process from the ready queue is to be selected for dispatching to the CPU. There are various
instances in the system when this type of scheduling is needed. We have studied in previous
sections about various types of events that cause interrupt. Whenever there is an interrupt, the
running process stops, and the short-term scheduler is invoked every time to select another
process for execution. That is why this scheduler is called a short-term scheduler.

(Table 5.3 Contd)

124 Principles of Operating Systems

5.10.3 Medium-term Scheduler
This scheduler is invoked when there is a need to swap out some blocked processes. It can hap-
pen in the case when all processes are blocked for some I/O devices and there is no ready pro-
cess to execute. Moreover, there is no space for any other process. In this case, some blocked
processes need to be swapped out from the main memory to the hard disk. There is another
queue called blocked–suspended queue for this purpose in the disk. The task of swapping the
processes from the blocked queue to the blocked–suspended queue is performed by another
type of scheduler known as medium-term scheduler. Further, when there is a signal of comple-
tion of an I/O device for which the process is blocked and presently in the blocked–suspended
queue, the process changes its state to ready–suspended and moves to the ready–suspended
queue. This task of moving a process from the blocked–suspended to the ready–suspended
queue is also performed by this medium-term scheduler.

5.11 PROCESS OPERATIONS

As seen in the process state diagram, there are various operations performed on a process. The
processes need to be created, deleted, suspended, blocked, and so on. The OS must have the
mechanisms for all these operations. Let us see all these operations.

Wait for I/O

Program

Ready
queue

CPU

Main memory

Process
scheduling/
dispatching

Job
scheduling

Long-term
scheduler

Short-term
scheduler

Dispatcher

Blocked–
suspended
queue

Ready–
suspended

queue

Medium-term
scheduler

Blocked
queue

Disk
storageJob

queue

Fig. 5.14 Long-term, medium-term, and short-term schedulers

Fundamentals of Process Management 125

5.11.1 Creation
There may be various reasons for creation of a process in a system. It can be a part of a batch
of jobs or whenever a user logs on the system or a process executes a process creation system
call. The OS may also create a system process to provide a service. For example, when a user
wishes to print a file, the operating system, on behalf of the user program, will create a process
that will control the printing task. At the time of booting, there are several processes that run
in the background known as daemon processes; for example, a process to accept an incoming
request to host a web page on a web server machine.

On the creation of a process, the process identification (process ID) and its priority are as-
signed. The memory and other resources required by the process are allocated to it. After this,
the code is copied in the code area, thereby setting the process environment. The OS looks for
a free PCB space in the free-process queue for the newly created process and initializes all its
fields.

The process creation is not limited to this only. An existing process may also create another
process. This is known as process spawning. When a process spawns another, the process
creating the other process is called parent process and the created process is known as a child
process. A child process may also become a parent by further creating new processes, thereby
forming a tree structure. In Fig. 5.15, P1, P3, and P6 are parent processes, whereas P3 and P6
are also child processes. There may be many child processes of a parent process. There is a hi-
erarchy between these processes in the tree structure. All child processes at one level will have
one parent process, and they work only under the control of this parent process. For example,
in Fig. 5.15, Processes P2, P3, and P4 are child processes of Process P1, and all these processes
work under the control of the parent P1. This tree structure has one parent root process and
other processes at the other levels as child processes. In UNIX, there is one parent process
called init(), and other system processes are created from this process. However, this process
hierarchy is not necessary as seen in Windows operating system. This OS does not have any
hierarchy of processes and treats all processes at same level. Though there is a provision of hav-
ing parent and child processes, the parent of a child process can be changed, thereby violating
the process-hierarchy concept.

One obvious question is that what functionality a
child process will perform. Therefore, the creation
of child processes should be logically justified, that
is, the functionality of every child process should
be defined and there should be communication and
cooperation between them. The functionality of a
child process depends on the application where a
process has created it. For example, if a complex
process creates its child process to divide its work,
then the code of the child process will be differ-
ent from the parent process. In another example, a
web server needs to create a child process when-
ever there is a client connecting to it. In this case,
the child functionality is same as the parent and
therefore, the address space of the parent and the
child processes is same. All these details related to
a child-process creation differ in various operating

P1

P2 P3 P4

P5 P6

P7 P8

Fig. 5.15 Process hierarchy

126 Principles of Operating Systems

systems. For example, in UNIX, after the fork() command, a new child process is created hav-
ing the same environment, resources, and so on as the parent process, that is, the new process
has the copy of the address space of the parent process. Both parent and child processes con-
tinue to get execution. However, the copy of address space in the child process does not mean
that there is sharing of the address space. Both address spaces are different and non-sharable
except some shared resources such as files. If the child process wishes to have a separate code,
then another system call execlp() needs to be executed. This command loads the new program
in the memory replacing the old parent’s program. On the other hand, Windows and VMS OS
does not have the provision of duplicating the address space while creating a child process. In
these operating systems, at the time of the creation of a child process, a new program is loaded.
Windows NT supports both types, that is, the parent process may duplicate the address space or
a new program for the child process may be loaded.

The child process may get all or a subset of resources its parent has. It depends on the availability
of resources and the number of child processes. A parent may allow sharing its resources among mul-
tiple child processes. The child process may also get some initialization data from its parent process.

5.11.2 Dispatching
This operation starts when there is a need to schedule a process from the ready queue. The
scheduler according to scheduling policy of the system selects a process from this queue. Now
this process will be sent to the processor for execution. For this purpose, the process environ-
ment must be set up, that is, its code must be loaded in the memory and data and stack must be
initialized. After this, the PCB must be located and the saved fields (if the process has executed
partially before) must be loaded in the processor’s registers and initialized appropriately. The
dispatcher performs all these functions resulting in start of the execution of this selected process.

5.11.3 Blocking/Wakeup
When a running process executes an instruction that requires a resource or an I/O device that
cannot be fulfilled immediately, the process is not able to execute further as it needs to wait
for that resource or I/O device. Since this process needs to wait, there will be no useful work
by the processor; therefore, another process is scheduled and the process that is waiting for a
resource or an I/O device is moved to a queue where it can wait. This operation is called block-
ing of the process. The blocking operation requires some overhead. First, the process should be
maintained in a queue known as a blocked queue where all processes that need to wait for their
resources or I/O devices reside. There is another question regarding the blocked process that
how this process would come to know when a resource or an I/O is available. There is a field in
the PCB known as event information, which stores the I/O device or the resource for which the
blocked process is waiting. When a resource or an I/O device is released in the system, the OS
must scan the event information field of all the blocked processes in the blocked queue. If the
processes match, it means that their wait is over and they are unblocked, that is, they are sent
to the ready queue. This operation is known to wake up the process that was blocked earlier.

5.11.4 Termination
The process that has started and executed its work must also finish its execution. It means
that the process will terminate after execution of its assigned task. When a process reaches
the execution of its last statement, a system call is executed to tell the OS that the process is

Fundamentals of Process Management 127

terminating. For example, in UNIX, exit(), system call is executed after the execution of the
last statement in the process. In fact, this is necessary to tell the OS about a process’s termina-
tion because the resources held by the process need to be released. Therefore, when a process
terminates, the occupied memory, open files, and other resources are taken away from it.

However, this is not the only reason for the termination of a process. As a process is created
when a new user logs on or a new window is opened, the same way when a user logs off or a
window is closed, the corresponding process is terminated. Another reason for the termination
of a process may be some error or exception generated in the execution of the process. It may
be the case that the process may
 • require more memory than allowed
 • reference a memory location out of its limits
 • try to access a resource or an I/O device that is not allowed to use
 • attempt an arithmetic operation that is not allowed, for example, divide by zero
 • find an error while accessing an I/O

The termination of a child process in the process-hierarchy tree structure may not be as simple
as that of an independent process because it is dependent on its parent process. In case of child-
process termination, there are different rules in various operating systems. The only require-
ment is that the parent process must have the knowledge of its child processes. When a child
process is created, its ID is created and returned to its parent. This ID is used by the parent
process while taking the decision to terminate the child processes. A parent process may termi-
nate its child process at any time. The parent process looks after the state of its child process.
If there is any error or exception, it may terminate the child. The problem occurs when a parent
process is to be terminated while its children processes exist. In this case, the parent process
needs to wait for the execution of its children. For example in Fig. 5.15, if Process P3 needs to
be terminated, it cannot be because it has two children processes, P5 and P6. It needs to wait
for the termination of P5 and P6 and then only it can be terminated.

SUMMARY

The first important component of the OS is process manage-
ment. Process management is to handle various user and
system processes. The basic terminology and concepts
regarding process management have been discussed in
the chapter. The process set up includes an environment
consisting of code section, data section, stack, PC values,
and other processor register values. The PCB is another
data structure used to control the execution of processes
in a multi-programming environment. Since in a multi-pro-
gramming environment, there is a need to switch between
processes, it becomes necessary to save the context of one
process before switching to another process. The PCB helps
in saving the context of a process. This arrangement of pro-
cess switching works with the interrupt-driven nature of the
operating system. With an event in the system, an interrupt
is caused to the running process that stops the execution of

the current process. At this moment, the context of this inter-
rupted process is saved in its PCB. The next step is process
scheduling, that is, to select another process from the ready
queue to send it to the CPU for execution. After this, dis-
patching function loads the context of the selected process
from its PCB. In this way, process execution is managed
through interrupt handling, process switching, scheduling,
and dispatching.

Let us have a quick review of important concepts dis-
cussed in this chapter:

 • A program in execution is called a process.
 • Each process has its own address space consisting of

code section, data section, and stack section.
 • If the OS defines a process, then it is called an implicit

process. If the process is defined by the programmer,
then it is an explicit process.

128 Principles of Operating Systems

 • Various types of schedulers are activated at different sce-
narios in the system as follows:

 • When a job from the job queue is selected and moved to
the ready queue, it is known as job scheduling.

 • When a job arrives in the ready queue, it becomes a pro-
cess.

 • When a process in the ready queue is selected for execu-
tion, it is known as process scheduling.

 • When a scheduled process is sent to the processor for
execution, it is known as dispatching.

 • The PCB is a data structure used to store various attri-
butes related to it. The PCB is created for every process
whenever a new process is created in the system. The
PCB information is used for controlling and managing the
processes in the system.

 • Whenever there is an interrupt to the running process, the

process stops and its current status is saved in its PCB.
This is known as context save operation.

 • The process of saving the status of an interrupted process
and loading the status of the scheduled process is known
as context switching.

 • Context switching is a pure overhead from viewpoint of
processor time because during context switching no ex-
ecution is being done.

 • When a running process is interrupted and the OS assigns
another process to the running process and transfers con-
trol to it, it is known as process switching.

 • A scheduler is a component of the OS that performs the
job of scheduling at various levels. There are three types
of schedulers:

 • A process has seven states: new, ready, running, blocked,
blocked–suspended, ready–suspended, and terminated.

 • The process changes its state when there is an event
causing a state transition.

 • The state transitions are admit (new to ready), dispatch
(ready to running), I/O wait (running to blocked), sus-

pended (blocked to blocked–suspended), I/O complete
(blocked to ready or blocked–suspended to ready–sus-
pended), activate (ready–suspended to ready), and exit
(running to terminated).

 • There are many queues used for process management.
These are as follows:

Type Purpose

Long-term scheduler Performs job scheduling.

Short-term scheduler Performs process scheduling.

Medium-term scheduler. Some processes need to swap out from the main memory and swap in
at some appropriate time. These swap-in and swap-out functions are
performed by this scheduler.

Queue Purpose

Job queue It is in the hard disk for storing the new jobs when first entered in the
system.

Ready queue It is in the main memory for storing processes. The jobs when brought
from the job queue to the ready queue become processes.

Blocked queue It is in the main memory for storing processes that need to wait for a
resource or and I/O.

Suspended queue It is in the hard disk for storing processes that have been suspended or
kicked out of the main memory.

Fundamentals of Process Management 129

Short-term scheduling

Blocked
queue

Suspend
queue

Job queue
Ready
queue

Processor Exit

Resource
or I/O wait

Resource
or I/O

completes

Time slice
expired

Create a
child process

High-priority
process appears

Hardware
interrupt

Error/exception
in the process

Long-term scheduling

Medium-term
scheduling

 • A dispatcher is a component that locates the PCB of the
process selected by a scheduler, loads its context, and
passes the control to the processor for execution.

 • At the time of booting, there are several processes that
run in the background known as daemon processes.

 • Process spawning is to create a child process by a parent
process.

MULTIPLE CHOICE QUESTIONS

 1. Program in execution is called
 (a) a process (c) a job
 (b) a task (d) none

 2. Program is a ____ entity while process is ___.
 (a) passive, active (c) both active
 (b) active, passive (d) both passive

 3. Whenever a new job is entered into the system, it is stored in the

 (a) ready queue (c) suspended queue

 (b) job queue (d) none

 4. When a job is selected to be brought in the main memory, it
is called

 (a) process scheduling (c) job scheduling
 (b) CPU scheduling (d) none

130 Principles of Operating Systems

 5. When a job is fetched in the memory, it becomes a
 (a) task (c) job
 (b) process (d) none

 6. A process in _____becomes ready for execution.
 (a) ready queue (c) suspended queue
 (b) job queue (d) none

 7. When the processes in the ready queue are selected for the
next execution, it is called

 (a) process scheduling (c) disk scheduling
 (b) job scheduling (d) none

 8. A process in the ready queue when selected by the sched-
uling mechanism for execution and dispatched to the CPU
becomes a

 (a) ready process (c) waiting process
 (b) running process (d) none

 9. A process while executing may reach an instruction where
it has to wait for some I/O devices or some other event. Its
state becomes

 (a) wait state (c) blocked state
 (b) running state (d) none

 10. The swapped out process from a blocked queue is known
as

 (a) swapped process (c) blocked process
 (b) suspended process (d) none

 11. The blocked process waiting in the blocked queue in mem-
ory is suspended and moved to the suspended queue in the

 (a) disk (c) ROM
 (b) memory (d) none

 12. When the event for which the blocked–suspended process
was waiting has occurred, its state changes to

 (a) blocked–suspended (c) ready
 (b) ready–suspended (d) suspended

 13. The collection of user program, data section, stack, and the
associated attributes is called the

 (a) PCB (c) process environment
 (b) process image (d) none

 14. The context switch time is a ___for multi-programming/

multi-tasking.
 (a) useful (c) used for scheduling
 (b) pure overhead (d) none

 15. When a running process is interrupted and the OS assigns
another process to the running process and transfers con-
trol to it, it is known as

 (a) context switching (c) interrupt handling
 (b) PCB switching (d) process switching

 16. When an I/O device completes the read/write operation with
a process, ___ is generated so that the process waiting for
that device may use it.

 (a) trap (c) interrupt
 (b) system call (d) none

 17. The classification of schedulers is based on the
 (a) frequency of their use in the system
 (b) number of processes in the system
 (c) number of schedulers in the system
 (d) none

 18. ______ scheduler is invoked when there is need to perform
job scheduling.

 (a) Long-term (c) Medium-term
 (b) Short-term (d) none

 19. _______ scheduler is invoked when there is need to per-
form process scheduling.

 (a) Long-term (c) Medium-term
 (b) Short-term (d) none

 20. _____scheduler is invoked when there is need to swap out
some blocked process.

 (a) Long-term (c) Medium-term
 (b) Short-term (d) none

 21. An existing process may also create another process. This
is known as

 (a) process spawning (c) process switching
 (b) process creation (d) none

 22. There is a field in the PCB known as _______, which stores the
I/O device or resource for which the blocked process is waiting

 (a) resource information (c) event information
 (b) PCB information (d) none

REVIEW QUESTIONS

 1. Differentiate between job, program, and task.

 2. What is the difference between a program and a process?

 3. What is the difference between an implicit and a non-implic-
it process? Provide examples.

 4. Define:
 (a) PCB
 (b) Process environment
 (c) Process image

 5. What is the difference between
 (a) co-operating and independent processes?
 (b) job scheduling and process scheduling?
 (c) process scheduling and process dispatching?
 (d) process scheduling and process switching?
 (e) process switching and mode switching?

 6. Explain the roles of different queues used in process man-
agement.

Fundamentals of Process Management 131

 7. Explain the process state diagram considering the sus-
pended processes.

 8. What is the main cause that a process changes its state?

 9. What are the steps to be followed for process management
when an interrupt comes to a running process?

 10. How is the context switching implemented?

 11. What is context switch time? What is its disadvantage?

 12. How is the process switching implemented?

 13. How is the process scheduling implemented?

 14. How is the process dispatching implemented?

 15. What is process spawning?

 16. What is the difference between a scheduler and a
 dispatcher?

 17. Discuss various types of schedulers.

 18. What is the need of swapping in and swapping out a pro-
cess?

 19. What are the situations when process scheduling is re-
quired?

 20. What are the situations when a process needs to be termi-
nated?

 21. What are the situations when a process needs to be sus-
pended?

 22. What are the situations when a process needs to be
spawned?

 23. What are the steps performed by an OS to create, termi-
nate, block, and suspend a process?

BRAIN TEASERS

 1. In a large operating system, if there is a single queue for main-
taining the blocked processes, it will be inefficient to search a
required process that needs to be awakened on occurrence
of an event. What can be the remedies for this inefficiency?

 2. In a large operating system, if there is a single ready queue
for maintaining the ready processes, it will be inefficient to
search a required process for scheduling. What can be the
remedies for this inefficiency?

 3. Can a process switch from ready to terminated or blocked
to terminated?

 4. What can be the reasons for suspending a process other
than mentioned in the chapter?

 5. Is it necessary that every event causing interrupt will
change the state of the running process?

 6. The suspended queue is maintained on the hard disk
and therefore, I/O operations are required with it. Does it
have any impact on the performance of process manage-
ment because all other queues are managed in the main
memory?

 7. How does a blocked or blocked–suspended process know
about the completion of the I/O device or the resource for
which it is waiting?

 8. What event handler would be executed in the following
cases:

 (a) The running process has finished its execution before
completion of its time slice

 (b) The running process tries to access a memory location
that it is not allowed to access

 (c) If there is failure in reading or writing an I/O device
 (d) A process is ready to execute but there is no space in

the main memory

 (e) A periodic process is idle waiting for its next time slot to
be executed

 (f) A background process has caused a problem

 9. Multi-programming/Multi-tasking was developed so that
there would be no processor idle time. However, there still
may be some situation when the processor is idle. Explore
these situations.

 10. What will be the effect on performance of process man-
agement if there is a majority of CPU-bound or I/O-bound-
processes in a system?

 11. A parent process needs to be terminated but has two child
processes: One child process is waiting for an I/O, and the
other is executing. How will you terminate the parent process?

 12. How will you design the device queues where processes
are waiting to access them? Can the priority of a process
be incorporated here?

 13. Context switch time is a pure overhead. What can be the
factors that can increase this overhead?

 14. Consider Brain-Teaser Problem 9 in Chapter 1 and
illustrate the state transitions for all the processes in the
system.

 15. Again consider Brain-Teaser Problem 9 in Chapter 1. As-
sume that there is context switch time of 2 minutes and then
prepare a timing chart showing the CPU and I/O activities of
the jobs in multi-programming with this context switch time.
Compute the total time for execution.

 16. In a system, Process A is running and Processes B
and C are in a blocked state. An I/O-completion signal
arrives for Process B. The priority of Process B is the

132 Principles of Operating Systems

 highest. Describe the sequence of actions in the operat-
ing system.

 17. In a system, Process A is running and Processes B and
C are in a blocked state. Process D is ready to execute
but not in the ready queue as there is no space. What will
you do to accommodate this ready process D? Describe the
sequence of actions in the operating system.

 18. In a system, Process 5 is running and Processes 2, 4, and 7
are in a blocked state. Processes 1, 3, and 6 are in a ready
state. Show the PCBs and process headers of all these pro-
cesses in the memory.

 19. Can a process switch from a blocked–suspended to a
blocked state?

6.1 INTRODUCTION

Process scheduling is an important component of process management. Its role starts in a
multi-programming environment and expands to multi-user and multi-tasking environments. In fact,
there is a difference in performance requirements of various environments. While some mainframes
still demand batch processing of processes, a multi-user environment expects a minimum response time,
so that every user feels that he/she is using a single system. Similarly, on multi-tasking systems, a user
expects that he/she should be able to open many windows and every window should respond within a
minimum period of time. On the other hand, in real-time systems, the processes are executed according
to their defined priorities. A higher-priority process must always pre-empt the lower one. Moreover, in
processing, there are deadlines which should be met, otherwise it may have adverse effects on the system.
In this way, to meet the requirement of every type of system, scheduling mechanisms are needed to select
the right process from the ready queue. Besides this, they have some general goals like processor utiliza-
tion, throughput, context-switch time, and so on. Also discussed in this chapter are the various scheduling
algorithms for different types of requirements and the keeping of various goals in consideration.

6.2 PROCESS BEHAVIOUR FOR SCHEDULING

When a process starts executing, the processor or CPU, starts
working. However, in the execution of a process, apart from com-
putations, some I/O operations may also be involved. A process
may need to take input from an input device or send output to an
output device. During an I/O operation, the CPU does not do any-
thing and sits idle. When a process has long computations to be
executed by the processor, it is then known as CPU-burst, and on
the occurrence of I/O operation, it is known as I/O burst. If there
is a process with intensive CPU-bursts, that is, longer CPU cycles
and a low number of I/O bursts, then it is known as a CPU-bound
process. If the process has a large number of frequent I/O bursts
within the smaller CPU-bursts, then it is known as an I/O-bound
process (see Fig. 6.1).

If there is a large number of CPU-bound processes, it may be
difficult to achieve multi-programming. I/O wait slots are places
where process switching occurs. If these are not there, then multi-
programming will not give good performance. On the other hand,

6 Process Scheduling

Learning Objectives
After reading this chapter,
you should be able to
understand:
 • CPU-bound and I/O-bound

processes
 • When to schedule a process
 • Long-term scheduling
 • Medium-term scheduling
 • Short-term scheduling
 • Non-pre-emptive scheduling
 • Pre-emptive scheduling
 • Scheduling goals
 • Scheduling algorithms
 • Multi-level scheduling algo-

rithms
 • Fair-share scheduling
 • Lottery scheduling

134 Principles of Operating Systems

CPU -
BURST

Printf("enter the three variables x,y,z");
scanf("%f %f %f",&x,&y,&z);
if(x>y)
{

if(x>z)
printf("x is greatest");

else
printf("z is greatest");

}
else
{

if(y>z)
printf("y is greatest");

else
printf("z is greatest");

}
getch();

CPU-Burst

I/O-Burst

I/O-Burst

I/O-Burst

I/O-Burst

I/O-Burst

CPU-Burst

Fig. 6.1 CPU burst and I/O burst in a process

if there is a large number of I/O bound processes, then process execution will not happen in a
multi-programming environment. Thus, for the scheduling of processes in a multi-programming
environment, there should be a proper mix of CPU-bound and I/O bound processes. Otherwise,
scheduling of processes will not be proper, thereby affecting the performance of the system.

6.3 SCHEDULING DECISION

If there is only a single process to be executed by the processor, then scheduling is not required.
Since in multi-programming, there are multiple processes running at all times, scheduling is used.
But scheduling does not happen when a process finishes. As process switching is another feature

Ready
queue

Processor Exit

Fig. 6.2 Scheduling reason: Running process exits

Ready queue

Processor

Resource
or I/O

Fig. 6.3 Scheduling reason: Running process enters
in a wait

of multi-programming, it is not necessary that a
process will execute completely for scheduling
to take place. Due to process switching, when a
process is interrupted, there is need to schedule
another process from the ready queue. The fol-
lowing events can become the reason for sched-
uling:

 1. When an executing process finishes its ex-
ecution and exits, then another process is
required for execution (Fig. 6.2).
If there is no process in the ready queue,

then scheduling is done on the job queue to se-
lect a job and send it to the ready queue.

 2. When the executing process needs to wait
for an I/O or resource, it is blocked. There-
fore, there is need to select another process
for execution (see Fig. 6.3). Therefore, the

Process Scheduling 135

scheduler is called for scheduling another
process from the ready queue, which is
further sent for execution.

 3. When an I/O or resource being used by
any process is released, then the blocked
process, waiting for the I/O or resource,
goes back to the ready queue (see
Fig. 6.4). At this moment, there is need
to perform scheduling, in order to give
chance to the recently admitted process.

 4. In a multi-user time-sharing environment,
a fixed time period/time slice is allotted to
every process, so that there is uniform re-
sponse to every process. When a process
finishes its allotted time slice, it moves
back to the ready queue (see Fig. 6.5).

 5. When an executing process creates its
child process, then scheduling is per-
formed to give the newly created process
a chance for execution (see Fig. 6.6).

 6. When a newly added process in the ready
queue has higher priority compared to that
of the running process, there is need to
temporarily stop the execution of the run-
ning process and scheduling is performed,
so that the higher priority process gets the
chance to execute (see Fig. 6.7).

 7. If there is an error or exception in the process
or hardware, then the running process may
need to be stopped and sent back to the ready
queue. After this, scheduling is performed to
select another process (see Fig. 6.8).

Ready queue

Resource
or I/O is
released

Processor

Fig. 6.4 Scheduling reason: I/O or resource is
released

Ready queue

Processor

Time slice
finishes

Fig. 6.5 Scheduling reason: Time slice of running
process finishes

Ready queue

Processor

Child
process is

created

Fig. 6.6 Scheduling reason: Running process creates
a child process

Ready queue

Processor

Higher priority
process is

created

Fig. 6.7 Scheduling reason: Higher priority process arrives

136 Principles of Operating Systems

 8. If all the processes are waiting for
any resource or I/O, there is need to
suspend some blocked process and
make space for a new process. In this
case, all schedulers are needed. To
suspend a blocked process, a medi-
um-term scheduler is needed. Then
the long-term scheduler is called to
send a job from the job queue to the
ready queue, and finally a short-term
scheduler is called to dispatch this
process to the processor.

6.4 SCHEDULING LEVELS

In Chapter 5, types of schedulers were discussed. There is no single scheduler in the system, but
depending on the specific events, there are three levels of scheduling to be performed by different
schedulers. A job entered in the system passes through various types of scheduling. First of all,
a job needs to wait in a job queue. Then it is scheduled by a long-term scheduler and sent to the
ready queue. After entering the ready queue, it may be scheduled either by a medium- or a short-
term scheduler, depending on the event. The scheduling levels are discussed in the following list.

6.4.1 Long-term Scheduling
When a job enters into a batch or multi-programming system, it may need to wait for space
in the memory, if there is no available slot. Therefore, keeping this situation in consider-
ation, the OS has been designed in a way that a job entering the system first needs to wait in
a job queue or job pool. When there is space in the memory, this job must be moved from
the job queue to the ready queue in the memory. This is done by the long-term scheduler
and is known as long-term scheduling. The job becomes a process in the ready queue and
we say that a process is created. This is now able to compete for resources. The newly
created jobs need to be moved to the ready-suspend queue in the swap space of the disk.
The long-term scheduler sends these jobs from the job queue to the ready-suspend queue,
as shown in Fig. 6.9. In this way, long-term scheduling can be performed in either way,
depending on the system in use.

The long-term scheduling has a direct relationship with the degree of multi-programming.
The degree of multi-programming can be defined as the number of processes which can be

Ready queue

Processor

Error or
exception
in process
or hardware

Fig. 6.8 Scheduling reason: Error or exception in
process/hardware

Ready-suspend queue

Job queue Ready queue

Fig. 6.9 Long-term scheduling

Process Scheduling 137

accommodated in the memory and is ready for execution. It means when a process finishes its
execution, its memory space is released. This can be used by any other process. Thus, long-
term scheduling is performed at this time and the scheduler brings another job from the job
queue to the ready queue. The long-term scheduler is also requested when the CPU is idle for
more than a threshold time. This idleness of the CPU may be due to unavailability of a pro-
cess or other reason. At this time again, the long-term scheduler brings another process to be
executed. In this way, the degree of multi-programming can be controlled through the use of
long-term scheduling.

In a multi-user time-sharing environment, however, the users want quick response. There-
fore, there is no provision for waiting in a queue for new users. Every user, when connected to
the system, will get space in the memory. Thus, there is no role of long-term scheduler in these
types of systems. But there will be a maximum limit, allowing the number of users to connect to
the system, that is, the number of user processes that would be accommodated in the memory.
When this limit is crossed, a new user is not allowed to connect.

Long-term scheduling is not frequent. After allowing a limited number of processes in the
memory, there is no need to perform scheduling, because the admitted processes are busy in
executing through the use of multi-programming concept. The criteria used to perform schedul-
ing, such as to increase the degree of multi-programming and when a process finishes is not so
frequent. Hence the name, long-term scheduling.

6.4.2 Medium-term Scheduling
In some systems, there is provision for medium-term scheduling. It is not necessary that a pro-
cess in the ready queue will get the CPU. If its requirement of resources is known in advance,
and if it cannot be fulfilled immediately, it would be better to send the process on the disk to
optimize memory requirements. There may also be the case that at a particular instant of time
in the system, all the processes need I/O, that is, all the processes are blocked and are wait-
ing for some event to happen, and no process is under execution. In this case, it is necessary
to bring in some process that is ready for execution. But if there is no space in the memory,
space is to be freed, so that a new process can enter. The best way is to swap out a blocked
process. The swapped-out processes are known as suspended processes. There is another queue
called blocked-suspend queue, for this purpose in the disk. The task of swapping the pro-
cess from blocked queue to blocked-suspend queue is performed by a medium-term scheduler
(see Fig. 6.10). The memory manager takes the decision to swap-out a process from memory.

When there is a signal of completion of an I/O, for which the process is blocked and presently
is in the suspend queue, the state of process is changed to ready-suspend and moved to the

Blocked-suspend
queue

Ready-suspend
queue

Ready queue

Blocked queue

Fig. 6.10 Medium-term scheduling

138 Principles of Operating Systems

ready-suspend queue. This task of moving a process from blocked-suspend queue to ready-
suspend queue is also performed by the medium-term scheduler. Hence, the task of performing
swap-out and swap-in is known as medium-term scheduling.

Whenever the suspended process is swapped out on the disk, there are two choices for bring-
ing in a process, which is ready for execution. First is a suspended process from the suspend
queue, which is now ready for execution. Second, a new process from the job queue can be
scheduled and sent to the ready queue. However, the new job from the job queue will increase
the load of the system. The second choice is only valid if we want to increase the degree of
multi-programming of the system, otherwise, the first choice is preferred.

The frequency of this type of scheduling is not as low as that of long-term scheduling, and
is not as frequent as that of short-term scheduling. A process may travel through phases of
blocking, suspension, and execution very frequently. Therefore, in the multi-programming en-
vironment, if there is a single chance of a process being blocked and suspended, even then the
frequency of this type of scheduling will be more as compared to long-term. This is the reason
that this type of scheduling is known as medium-term scheduling.

6.4.3 Short-term Scheduling
This is the last level of scheduling. When the processor has no process to execute and there
are several processes ready, waiting in the ready queue, then the type of scheduling performed
to select a process and dispatch it to the processor is known as short-term scheduling (see
Fig. 6.11). The scheduler, after selecting the process from the ready queue, passes the informa-
tion about this process on to the dispatcher function. The dispatcher, after finding the location
of PCB of the process, loads the PSW and other registers in the processor and execution of this
process starts. Due to loading of these registers, the process may resume its work from the point
where it was blocked, or suspended, or its time slice expired in the past and could not complete
its execution.

Short-term scheduling is very frequent. A process goes through many events as discussed in
Chapter 5. These events do not allow it to complete its execution in one go. Therefore, the pro-
cess is stopped temporarily from execution and is sent to the ready queue again. So, it needs to
compete for the processor again and wait for its execution. In this way, a process is interrupted
many times and it goes back to the ready queue again and again. This is the reason behind the
high frequency of short-term scheduling. Obviously, the frequency of this type of scheduling is
very high as compared to the other two types of scheduling. This is why this type of scheduling
is called short-term. There are many instances which lead to short-term scheduling. Some of
them are shown in Fig. 6.12.

Since short-term scheduling is performed in response to various events, which cause inter-
ruption to a running process, the scheduling decision cannot be the same. The scheduling deci-
sion is based on the event occurrence and the data structures associated with a process. The
scheduling mechanisms by which a process is selected from the ready queue are called schedul-
ing algorithms. These algorithms will be discussed later.

Ready
queue

ProcessorDispatcher

Fig. 6.11 Short-term scheduling

Process Scheduling 139

6.5 SCHEDULING TYPES

The scheduling of processes is based on two broad categories. When a process is assigned to
the processor, it is allowed to execute to its completion, that is, a system cannot take away the
processor from the process until it exits. In that case, it is called non-pre-emptive scheduling.
In this type of scheduling, the process may also voluntarily release the processor, for example,
when the process needs to wait for an I/O. Thus, a new process will be allocated to the proces-
sor, only if the running process completes its execution or gets blocked due to a resource or I/O.

On the other hand, if a running process is interrupted in between, even if it has neither vol-
untarily released the processor nor exited, it is known as pre-emptive scheduling. In this type of
scheduling, the system may stop the execution of the running process and after that, the context

Blocked
queue

Suspend
queue

Ready
queue

Processor Exit

Resource
or I/O
wait

Resource
or I/O

completes

Time slice
expired

Create a
child

process

High priority
process
appears

Hardware
Interrupt

Error/exception
in the process

Fig. 6.12 Short-term scheduling decisions

140 Principles of Operating Systems

switch may provide the processor to another process. The interrupted process is put back into
the ready queue and will be scheduled sometime in future, according to the scheduling policy.
Pre-emption can be done in the following situations:

 i) When a new process with higher priority, as compared to the running process, arrives in the
ready queue.

 ii) When a resource or I/O is released, interrupt occurs, and due to this, a blocked process ar-
rives in the ready queue.

 iii) A timer interrupt occurs. The timer interrupt may be used for two purposes. One is a periodic
timer to implement a multi-user time-sharing system to give response to every user. The other
timer interrupt may be for a process which maliciously or accidentally holds the processor.

Pre-emptive scheduling is helpful in systems like real-time systems, where a high priority pro-
cess needs the processor immediately, failure of which may cause a catastrophe. However, the
success factor for pre-emptive scheduling in real-time systems is the assignment of priorities to
various processes. Higher priorities must be given only to critical modules so that the critical
processes will only pre-empt the running process, otherwise the purpose of the real-time system
is lost. Similarly, pre-emptive scheduling is used in multi-user time-sharing systems, where
every user wants a quick response. As discussed above, it needs a timer interrupt, implemented
with the help of a timer clock, which sends the interrupt to a running process after a fixed period
of time, so that every user process gets a fixed execution time.

Pre-emptive scheduling is better than non-pre-emptive scheduling, because it provides bet-
ter management of processes and does not allow the processes to hold the processor for a long
time. However, it incurs the cost in its implementation. Besides the requirement of timer clock,
it needs to perform context switching many times. While saving the context of the interrupted
process and loading the context of a new process, the processor is idle. Thus, a high number
of context switches in a system may degrade the performance of the system. Another factor in
the implementation of pre-emptive scheduling is that a running process may be interrupted in
between data modification. At this time if we save the context, and the uncompleted modified
data are used by other processes, there may be chaos. For this purpose, the OS must be designed
in such a way that the interrupt should not be serviced, unless the interrupted process has not
completed its critical work, like modification of data.

6.6 PROCESS-SCHEDULING GOALS

After studying the basics of process-scheduling, now it is time to design various scheduling
algorithms, according to which a process will be scheduled from its queue and dispatched to
the processor. Here, the question that arises is the reason why we need to design an algorithm
for the scheduling. The process could be selected on the basis of the order as they arrive in
the queue. But that would not suffice, keeping in view the system’s performance. In general,
we want to optimize the behaviour of the system. And this behaviour may depend on various
general factors such as throughput, response time, and so on. Some are also based on environ-
mental factors such as real-time response in real-time environment. So, first we need to look at
a set of criteria which decide the objectives or goals for design of scheduling algorithms. Once
these criteria are fixed, these algorithms may be evaluated.

The goals of scheduling may be categorized as user-based scheduling goals and system-
based scheduling goals. User-based goals are the criteria that benefit the user. A user has some
expectation while working on a system. For example, a user in a multi-user environment expects

Process Scheduling 141

the system to give quick response to the job. System-based goals are the criteria that benefit
the system, that is, performance of the system. For example, how much the processor is being
utilized in processing the processes. Let us discuss these two categories of scheduling goals.

6.6.1 User-based Scheduling Goals
Let us discuss some of the user-based scheduling goals in detail:

Turnaround Time
The time elapsed between the submission of a job and its termination is called the turnaround
time. Turnaround time includes all time periods, such as time spent in waiting for getting entry
in the ready queue, waiting time in the ready queue, execution time, waiting time for any
resource or I/O, and so on. It is the sum of all these time periods. In other words, turnaround
time of a process is

t
r
 = wt + x

where tr is turnaround time of a process,
wt is waiting time of the process in the ready queue,
and x is the total service or execution time of the process
The scheduling algorithm should be designed such that the turnaround time is minimum, so

that a process need not wait long in the system and performs its functions on time.
If turnaround time is divided by the execution time of the process, it becomes weighted or

normalized turnaround time.
Wt

r
 = t

r
/x

Where Wt
r
 is weighted or normalized turnaround time.

Wt
r
 is the indication of the service a process is getting. The minimum possible value of Wt

r

is 1, which means that the process does not wait and gets the execution immediately. Increas-
ing values indicate the delay in getting the processor or poor service. Thus, Wtr should also be
minimized while designing the scheduling algorithm.

Waiting Time
A process spends its time in the ready queue and gets execution as per the scheduling policy.
Waiting time is the total time spent in the ready queue by a process. It includes all the time
periods, starting from its arrival in the ready queue to its completion. The scheduling policy
should be such that the waiting time is less, so that it does not wait too much in the ready queue
and gets execution.

Response Time
In multi-user and multi-tasking systems, the user processes are of interactive nature, that is,
they need attention immediately. Thus, response time is another important criterion from the
user’s viewpoint. It may be defined as the time period between the time of submission of a
process and the first response given by the process to the user. The scheduling algorithm must
be designed such that the response time is within an acceptable range.

Predictability
While working on the system, the human mind is able to predict the processing of some pro-
cesses. But sometimes, a process takes a long time due to loading or some other reason. The
scheduling algorithm should take care that a process does not take too long in processing as
compared to the predictable behaviour of the processes.

142 Principles of Operating Systems

Deadlines
Predictability is a feature based on which a user expects a process behaviour. But in real-time
systems, there are fixed deadlines for completing the processing by a process. So a user knows
very well, quantitatively, that a process would complete its work in a specific time period. If a
process is not able to complete its work within the deadline, then the purpose of the real-time
system is lost. For example, if a process in a system is handling RADAR data received from
sensors and is not able to complete the processing of signals within its deadlines, then RADAR
data will be lost. Consequently, the system which is supposed to work on this data will not
work as a real-time system. So the scheduling algorithm must be designed such that real-time
processes will execute within their deadlines.

6.6.2 System-based Scheduling Goals
Some system-based scheduling goals are discussed in detail in the following list:

Throughput
This is a general metric used to measure the performance of two systems or a single system over
a time period. Throughput is the number of processes completed in a unit time. It indicates how
much work has been finished and what is left. Though throughput may be affected due to the
length of the processes, it is also affected by scheduling algorithms. So the process-scheduling
should be designed in a way such that throughput in a system is maximized. For example, the
performance of a system which completes four processes in one hour, is better than a system
which completes two processes in the same time-period..

CPU Utilization
The fundamental goal of scheduling is that the processor should be busy all the time. Multi-
programming, multi-tasking, and other concepts of OSs have been developed for specific
achievement of this objective. CPU utilization is the percentage of time that the CPU is busy in
executing the processes. Due to architectural development today, the CPU is very fast. It may
not be an important goal for some systems, but it may be important for a shared system, where
a processor and other resources are shared.

Fairness
One system objective in process-scheduling is that all processes should be treated in the same
way, unless there is some preference or priority for a specific process. Even if a priority scheme
is implemented in the system, the processes with lower priority should not be ignored. Other-
wise, the lower priority process may suffer from starvation. So the scheduling algorithm should
not allow any process to starve.

Balance
As we discussed in CPU utilization, there should be utilization of every resource in the sys-
tem. It should not be the case that some resources are underutilized and some resources are
busy. At a particular instant of time, all resources should be used in balance. For this purpose,
a good mix of CPU-bound and I/O-bound processes will help. If there are only CPU-bound
processes, then all I/O-processes will be idle. If all I/O-bound processes are selected, then

Process Scheduling 143

the processor will be idle. A proper mix of CPU-bound and I/O-bound processes ensures that
if a process executes and needs to wait for I/O, the system will switch to another process,
utilizing both processor and I/O devices. Some scheduling decisions can also be based on
the utilization of resources. For example, if there is only one slot empty for a process in the
memory, then the long-term scheduler will send one process to the memory, so that memory
is not underutilized.

6.7 SCHEDULING ALGORITHMS

After discussion of scheduling objectives, we now know the desired properties of a scheduling
algorithm. In general, a scheduling algorithm selects a process from the ready queue and the
dispatcher sends this process to the CPU for execution. The various scheduling algorithms
are discussed in the following sub sections. Gantt chart is used for showing the execution
of all the processes in the system at a timeline. The timeline depicts the start time and end
time of the execution of every process. Thus, it helps in judging the performance of every
process in the system.

6.7.1 First Come First Served (FCFS)
There is always a simple approach to maintain a queue, that is, the item that comes first will be
served first. It is in tune with this natural justice that people waiting in a queue will be served
according to their position in the queue. The person in first position will be served first. The
ready queue can also be maintained with this approach. The arriving process is added onto
the tail of the queue and the process at the head of the queue is dispatched to the processor
for execution. In this way, a ready queue is implemented as a linked list wherein the order
of arrival of the processes is maintained with the simple logic of first in, first out (FIFO). A
running process, if interrupted, is moved back to the ready queue and added onto the end/tail
of the queue. It means a process that has been interrupted by any means does not maintain its
previous order in the ready queue. Once it has been dispatched to the processor, it has no arrival
order. If it comes back in the queue, it acquires the last position. This scheduling policy is non-
pre-emptive because the process which has arrived first will be executed first to its completion.
Obviously, this scheduling policy is useful in batch systems, where the jobs of users are ordered
and executed as per their arrival time.

Let us take an example to understand how the processes are added and deleted from the
queue. Suppose there are four processes in the ready queue and they have arrived in the order
P1, P2, P3, and P4 (see Fig. 6.13). Now when the processor is free, the short-term scheduler
will select the process P1 in the queue to dispatch it to the processor, because it is the first pro-
cess at the head of the queue. So P1 will get the processor and start executing. Now there are
three processes in the system P2, P3, and P4 (see Fig. 6.14). Now suppose the running process
is interrupted and goes back to the ready queue. At this time, since P1 has been interrupted,
there is no process to execute. Therefore, the scheduler will take another process P2 from the
head of the queue (see Fig. 6.15). Since P1 has been placed in the ready queue again, so ac-
cording to the rule of FIFO queue, the arriving process will be added onto the tail of the queue.
Therefore, P1 will get the last place after P4, at the end of the queue.

Now let us illustrate the execution of this scheduling algorithm with the following example.

144 Principles of Operating Systems

Example 6.1

Consider the following scenario of processes in a system:

Process Arrival time Execution time

P1 0 5

P2 2 4

P3 3 7

P4 5 6

Draw a Gantt chart for the execution of the processes, showing their start time and end time,
using FCFS algorithm. Calculate turnaround time, normalized turnaround time, and waiting
time for each process, and average turnaround time, average normalized turnaround time, and
average waiting time for the system.

Solution

Let us illustrate the execution of these processes in the Gantt chart as given in the following
space.

P1 P2 P3 P4

 0 5 9 16 22

P3 P4 P1 Null

TailHead

Fig. 6.15 Ready queue of processes: P1 interrupted, P2 gets execution and P1 moves
back at the end of the queue

P2 P3 P4 Null

Head Tail

Fig. 6.14 Ready queue of processes: P1 gets execution

P1 P2 P3 P4

Head Tail

Null

Fig. 6.13 Ready queue of processes

Process Scheduling 145

The process P1 arrives at time 0 and completes at time 5. Therefore, its turnaround time is 5.
Similarly, for the process P2, it arrives at time 2 and finishes at time 9, since it waits for the
execution of P1 to complete. Hence, its turnaround time includes its wait time (3 units) and
processing time (4 units), making its turnaround time 7. In this way, turnaround times for all
processes and average turnaround time are shown in Table 6.1. Similarly the normalized turn-
around time for all the processes is also shown.

Another performance metric for the system is waiting time. For process P1, waiting time is
0 as it arrives at time 0 and gets processor at the same time. Similarly, waiting time for process
P2 is 3 unit time as it arrives at time 2 and gets processor at time 5. In this way, waiting time
for all processes and average waiting time for the system are shown in Table 6.1. Though FCFS
algorithm is simple to understand and implement, it may not be a good choice for multi-user or
real-time systems, where quick response is expected. Example 6.1 shows that short processes
also have high turnaround and high normalized turnaround times. Similarly, the waiting time for
shorter processes is also high. It is obvious that short processes suffer due to long processes. It
may also be the case that some important processes arriving late may suffer, as the processor is
busy executing some unimportant process, which has arrived earlier. Thus, it can be said that
FCFS algorithm may be better for longer processes as compared to shorter processes.

6.7.2 Priority Scheduling
In a computer system, all processes cannot be treated equally with FCFS policy. In some sys-
tems like real-time systems, each process is well defined with its functionality. It has a priority
in the system, according to the importance of its functionality. It means the arrival of the pro-
cesses does not matter. If a process with higher priority has arrived late or at its defined time,
then it will be executed first according to its priority. For example, consider a process with low
priority, whose job is to compute some data. At this time, a process which brings sensor data
will pre-empt the first process, because if the sensor data are not processed at the right time,
data are lost, and so will be the purpose of a real-time system.

The question is how to give priority to the processes. In real-time systems, the priorities are
defined as a number associated with a process. This number scheme is also different in vari-
ous OSs. Some systems follow lower numbers as higher priorities and others follow higher
numbers as higher priorities. In general, lower numbers are considered as high priorities. For
example, there are three processes as: P1 with priority 1, P2 with 6 and P3 with 8. In this case,
P1 has the highest priority and P3 has the lowest priority.

Table 6.1 Performance metrics for Example 6.1

Process Arrival
time

Execution
time (x)

Turnaround
time (tr)

Normalized turn-
around time (tr/x)

Waiting
time

P1 0 5 5 1 0

P2 2 4 7 1.75 3

P3 3 7 13 1.85 6

P4 5 6 17 2.84 11

Average
turnaround
time = 10.5

Average normalized
turnaround time = 1.86

Average
waiting
time = 5

146 Principles of Operating Systems

There can be other methods to attach priorities to the processes. For example, processes can
be prioritized based on their execution time. The drawback of FCFS scheduling can be mitigated
using this priority scheme. The processes with shorter execution times will be executed first. Simi-
larly, another priority scheme can be to give preference to those processes which have the shortest
remaining execution time. All these priority schemes are discussed in the subsequent sections.

Priority Number-based Scheduling
In this type of scheduling, preference is given to the processes, based on a priority number
assigned to it. This scheduling scheme is generally used in real-time systems and is of pre-
emptive nature. It can be non-pre-emptive as well, but in real-time systems it makes no sense.
We will follow the priority number scheme as low number means high priority and pre-emptive
version of this type of scheduling. Let us understand this algorithm with an example.

Example 6.2

Consider the following scenario of processes with their priority:

Process Arrival time Execution time Priority

P1 0 5 2

P2 2 4 1

P3 3 7 3

P4 5 6 4

Draw the Gantt chart for the execution of the processes, showing their start time and end time,
using priority-number based scheduling. Calculate turnaround time, normalized turnaround
time, waiting time for each process, and average turnaround time, average normalized turn-
around time, and average waiting time for the system.

Solution

Let us illustrate the execution of these processes in the Gantt chart as shown in the following
space.

P1 P2 P1 P3 P4

 0 2 6 9 16 22

Table 6.2 Performance metrics for Example 6.2

Process Arrival
time

Execution
time(x)

Priority
number

Turnaround
time (tr)

Normalized
turnaround
time (tr/x)

Waiting
time

P1 0 5 2 9 1.8 4

P2 2 4 1 4 1 0

P3 3 7 3 13 1.85 6

P4 5 6 4 17 2.84 11

Average
turnaround
time = 10.75

Average nor-
malized turn-
around time
= 1.87

Average
waiting
time =
5.25

Process Scheduling 147

The process P1 arrives at zero and executes until P2 arrives at time 2. Since P2 has higher prior-
ity, P1 is interrupted and P2 gets execution. After the completion of P2 at time 6, execution of
P1 is continued and it finishes at time 9 Hence, its turnaround time is 9. For P2, the turnaround
time is 4. In this way, turnaround of all processes can be calculated as shown in Table 6.2. The
waiting time for P1 is 4. For calculating this, consider the starting time of the last execution of
the process. Now subtract the finishing time of the previous execution of the process, if any, and
its arrival time. For P1, the starting time of last execution is 6, the previous execution is from 0
to 2 and its arrival is at 0. Therefore, its waiting time is 6 – 2 – 0 = 4. Similarly for process P2,
wt = 2 – 0 – 2 = 0. See Table 6.2 for all the calculated metrics.
Example 6.3

Consider the following scenario of processes with their priority:

Process Arrival time Execution time Priority number

P1 0 3 3

P2 2 7 4

P3 3 5 1

P4 5 9 2

Draw the Gantt chart for the execution of the processes, showing their start time and end time,
using priority-number based scheduling. Calculate turnaround time, normalized turnaround
time, waiting time for each process and average turnaround time, average normalized turn-
around time, and average waiting time for the system.

Solution

Let us illustrate the execution of these processes in the Gantt chart as shown in the following
space.

P1 P3 P4 P2

 0 3 8 17 24

In this example, process P1 appears first in the system and starts executing. During its execu-
tion, P2 arrives at time 2, but it does not get the processor because its priority is low compared
to that of P1. After the full execution of P1, at time 3, P3, having the highest priority, arrived
and therefore, gets the execution. By the time, P3 completes its execution, P4 has also arrived.
Now all the processes except P1, compete for the processor. They get the execution according
to their priority numbers.

All calculated performance metrics are shown in Table 6.3.

Shortest Process Next (SPN)
Another way to prioritize the processes is to run the processes with shorter execution times.
This policy will overcome the drawback of FCFS that favoured long processes. In this algo-
rithm, at an instant of time, the processes are compared based on their execution times.
The process with the shortest execution time is executed first. This is a non-pre-emptive
scheduling algorithm. This means that if a process with the shortest execution time appears,
even then it cannot pre-empt a process with longer execution time. Since the preference is
based on the execution time of processes, the shorter processes will be executed earlier,

148 Principles of Operating Systems

thereby increasing the response time of processes. In comparison with FCFS, more number
of processes will start responding and therefore, the performance of the system, in terms of
response time, will increase.

One problem in the implementation of this algorithm is that we must know the
execution time of every process in advance, so that comparison of processes can be
done. But it is not possible practically. We will discuss this problem in the next schedul-
ing algorithm.

Let us understand this algorithm with an example.

Example 6.4

Consider the following scenario of processes:

Process Arrival time Execution time

P1 0 5

P2 2 4

P3 3 7

P4 5 6

Draw the Gantt chart for the execution of the processes, showing their start time and end time,
using SPN scheduling. Calculate turnaround time, normalized turnaround time, waiting time
for each process and average turnaround time, average normalized turnaround time, and aver-
age waiting time for the system.

Solution

Let us illustrate the execution of these processes in the Gantt chart as shown in the following
space.

P1 P2 P4 P3

 0 5 9 15 22

P1 starts at 0 and P2, which appears at 2, is of shorter execution time. But it cannot start
until P1 finishes, since SPN is a non-pre-emptive scheduling algorithm. During this period,
P3 and P4 have also appeared. It means now there are three processes P2, P3, and P4 in the

Table 6.3 Performance metrics for Example 6.3

Process Execution
time (x)

Arrival
time

Priority
number

Turnaround
time (tr)

Normalized
turnaround
time (tr /x)

Waiting
time

P1 3 0 3 3 1 0

P2 7 2 4 22 3.14 15

P3 5 3 1 5 1 0

P4 9 5 2 12 1.34 3

Average
turnaround
time = 10.5

Average
normalized
turnaround
time = 1.62

Average
waiting
time = 4.5

Process Scheduling 149

ready queue. But P2 will be executed first at time 5, as it has the shortest execution time
among all the processes. After P2 finishes the execution at 9, P4 gets preference over P3,
as shown in the Gantt chart. All calculated performance metrics are shown in Table 6.4.

Shortest Remaining Time Next (SRN)
This algorithm also considers the execution time of processes as in SPN. But it is a pre-emptive
version of SPN. It means, here, we can pre-empt a process based on the execution time. The
process with the shortest execution time will always pre-empt other processes. Since the pro-
cesses may not be able to complete their execution as they may be pre-empted, the preference
for pre-emption will be based on the remaining execution time of processes. Let us see one
example of this scheduling.

Example 6.5

Consider the following scenario of processes:

Process Arrival time Execution time

P1 0 9

P2 1 5

P3 2 3

P4 3 4

Draw the Gantt chart for the execution of the processes, showing their start time and end time,
using FCFS, SPN, and SRN scheduling. Calculate turnaround time, normalized turnaround
time, waiting time for each process and average turnaround time, average normalized turn-
around time, and average waiting time for the system.

Solution

FCFS
P1 P2 P3 P4

 0 9 14 17 21

Table 6.4 Performance metrics for Example 6.4

Process Execution
time (x)

Turnaround
time (tr)

Normalized turnaround
time (tr /x)

Waiting time

P1 5 5 1 0

P2 4 7 1.75 3

P3 7 19 2.7 12

P4 6 10 1.67 4

Average
turnaround
time = 10.25

Average
normalized turnaround
time = 1.78

Average
waiting
time = 4.75

150 Principles of Operating Systems

SPN

P1 P3 P4 P2

 0 9 12 16 21

SRN

Process P1 gets the execution as it arrives first. At time 1, P2 arrives, and its execution time is
less than that of P1. Therefore, P2 pre-empts P1 and gets the execution. Similarly, P3 pre-empts
P2 as the execution time of P3 is less than that of P2. P3 completes its execution as its execu-
tion time is less than others. At time 5, there are two processes P2 and P4 having execution
time 4. In this case, we adopt FCFS scheduling. Therefore, P2 is given chance to execute. After
completion of P2, P4, and then P1, get execution.

P1 P2 P3 P2 P4 P1

 0 1 2 5 9 13 21

Table 6.5 Performance metrics for Example 6.5 (FCFS)

Process Arrival
time

Execution
time (x)

Turnaround
time (tr)

Normalized turn-
around time (tr /x)

Waiting
time

P1 0 9 9 1 0

P2 1 5 13 2.6 8

P3 2 3 15 5 12

P4 3 4 19 4.75 14

 Average
turnaround
time = 14

Average normal-
ized turnaround
time = 1.86

Average
waiting
time = 8.5

Table 6.6 Performance metrics for Example 6.5 (SPN)

Process Arrival
time

Execution
time (x)

Turnaround
time (tr)

Normalized turn-
around time (tr /x)

Waiting
time

P1 0 9 9 1 0

P2 1 5 20 4 15

P3 2 3 10 3.34 7

P4 3 4 13 3.25 9

Average
turnaround
time = 13

Average normal-
ized turnaround

time = 2.89

Average
waiting

time = 7.75

Process Scheduling 151

Table 6.7 Performance metrics for Example 6.5 (SRN)

Process Arrival time Execution
time (x)

Turnaround
time (tr)

Normalized turn-
around time (tr /x)

Waiting time

P1 0 9 21 2.34 12

P2 1 5 8 1.6 3

P3 2 3 3 1 0

P4 3 4 10 2.5 6

Average
turnaround
time = 10.5

Average normal-
ized turnaround

time = 1.86

Average
waiting time

= 5.25

SRN is provably the best scheduling algorithm. In the above example, we can see that the aver-
age turnaround time and waiting time are reduced as compared to FCFS, thereby, increasing
the performance of the system. But again, we need to know in advance, the execution time of
every process as in SPN. Therefore, despite being the optimum scheduling algorithm, we can-
not use it. The only solution to this problem is to estimate the execution time for a process from
its past history of execution. Thus, this scheduling algorithm can be used if we have past data
of execution time of the processes, so that the next CPU burst of a process can be estimated.
While calculating, the recent past values must be given high weights as compared to older val-
ues, because recent values will reflect closer value of the actual burst time.
If recent observed burst time for a process is t

0
 , then its next estimated burst value will be

	 	 a t
0
 + (1-a) t

1

where
	 a = weighting factor
 t

1
 = older burst value of the process.

If a = 0.4, then successive estimates will be
t
0
, 2t

0
/5 + 3t

1
/5, 4t

0
/25 + 6t

1
/25 +…

So we can say that
 S

n +1 = at
n
 + (1-a) at

n -1 + ….
Based on the past values on time series, the exponential average formula for predicting the next
CPU burst value of process may be given as:

 S
n +1 = at

n
 + (1-a) S

n

where
 S

n +1 = predicted value of next CPU burst
 t

n
 = value of nth CPU burst, that is, recent information

 S
n
 = past history information

 a = constant weighting factor, and 0 ≤ a ≤ 1
In this equation, through the choice of a, we can quickly choose to forget the past data, or retain
the same for a longer time. For example if a = 0, then

S
n +1 = S

n

It means that the recent information has no effect, and we are considering past data.
Similarly if a = 1, then

S
n +1 = t

n

152 Principles of Operating Systems

It means, only recent information is relevant and past data are ignored.
To have a balance between past data and recent data, we choose a	= 1/2.
That is, S

n+1 = (1/2)t
n
 + (1/2)S

n

Example 6.6

What will be the exponential average for predicting the next CPU burst value of a process, if
constant weighting factor is 0.2 and 0.7? Mention their significance as well.

Solution

Since S
n +1 = a tn + (1-a) a tn-1 + ….

Putting a = 0.2, we get
Sn +1 = 0.2tn + 0.16tn -1 + 0.128tn-2 + 0.1024tn-3….

This equation indicates that the exponential average is distributed over some past values, that
is, past data are considered.
Putting a = 0.7, we get

Sn +1 = 0.7tn + 0.21tn-1 + 0.063tn-2 + 0.0189tn-3….
This equation indicates that the exponential average considers two recent values, and other past
data are given less weightage or are ignored.

6.7.3 Round Robin Scheduling
In multi-user time-sharing systems or multi-tasking systems, the requirement of scheduling is
different. In these systems, response time is the most important objective. It is quite obvious
that FCFS cannot be used for these systems, because it does not care about the response of
processes, and they are processed according to their arrivals. It may be possible that a process
arriving late may not get response for a long time, if processes arriving earlier are of long
processing times. Shortest process next or shortest remaining time next algorithms can be
beneficial sometimes, but not always, because they also suffer from starvation. Long processes
may need to wait for a long period, again resulting in no response from the process. Thus, the
above discussed algorithms cannot be applied for systems, where quick response time is a
highly desirable feature.

Since the concept of multi-user and multi-tasking systems is to share the processor time
among processes, we can design the algorithm such that each arriving process gets the same
amount of time for execution. If each process gets same processor time, the response will be
equally good for all the processes, and neither the short nor long process will suffer from starva-
tion. But how will you design the ready queue then? The ready queue can be of the same pattern
as that of FCFS, that is, FIFO queue. The only issue is that when one process is executing and
its fixed allotted time finishes, it must be temporarily stopped, and the processor must be given
to the next process in the queue. In this way, every process gets equal time for execution, and
no process can hold the processor for a long time.

But what happens to a process which has been stopped, because its time period has expired
but its execution has not been completed. There are some design issues which must be resolved.
These are discussed with the functioning of the algorithm:

 i) The ready queue is maintained as a FIFO queue.
 ii) A fixed time period is allotted to every arriving process in the queue. This fixed time period

is known as time slice or time quantum.

Process Scheduling 153

 iii) The first arriving process is selected and dispatched to
the processor. But if it is not able to complete its execu-
tion within its time slice, then an interrupt is generated
with the help of the timer.

 iv) As soon as the timer interrupt arrives, the running process
is stopped temporarily, and is placed back in the ready
queue at the end of the queue (see Fig. 6.16). The context
of the interrupted process is saved, so that it can resume
when its turn comes in the future.

 v) The scheduler selects another process from the queue
and dispatches it to the processor. It is executed until the
allotted time slice expires.

 vi) In this way, scheduling is done in a round robin fashion, such that processes are executed
for a fixed time slice again and again, unless all the processes are finished with their execu-
tion as shown in the figure.

Sometimes a process may finish its execution before the time slice expires. Will the timer
complete its full time slice and then send the interrupt signal? No, it does not happen that way.
There is time wastage in this design if a timer completes its time slice, even when a process
has finished earlier than the time slice. Therefore, the design is such that whenever a process
finishes before the time slice expires, the timer will stop and send the interrupt signal, so that
the next process can be scheduled.

The RR scheduling is simple and the overhead in decision-making is very low. It is the best
scheduling for achieving good and, relatively evenly, distributed terminal response time.

Let us understand this algorithm with some examples.

Example 6.7

Consider the following scenario of processes with time quantum = 2:

Process Arrival time Execution time

P1 0 9

P2 1 5

P3 2 3

P4 3 4

Draw the Gantt chart for the execution of the processes, showing their start time and end time,
using round robin scheduling. Calculate turnaround time, normalized turnaround time, waiting
time for each process and average turnaround time, average normalized turnaround time, and
average waiting time for the system.

Solution

Let us illustrate the execution of these processes in the Gantt chart as shown in the following
space.

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P1 P1

 0 2 4 6 8 10 12 13 15 17 18 20 21

P1

P2

P3

P4

P5

Time quantum
q for every
process is
equal

Fig. 6.16 Round robin scheduling

154 Principles of Operating Systems

Every process gets time slice of 2 unit times and hence, every process gets pre-empted after 2
unit times. At time 12, P3 is left with only 1 unit time execution, so it completes its execution
at time 13. Then, the timer sends the interrupt signal and P4 starts execution.

All calculated performance metrics are shown in Table 6.8.

Example 6.8

Consider the following scenario of processes with time quantum = 2:

Process Arrival time Execution time

P1 0 5

P2 2 3

P3 3 2

P4 5 7

Draw the Gantt chart for the execution of the processes, showing their start time and end
time, using round robin scheduling. Calculate turnaround time, normalized turnaround time,
waiting time for each process and average turnaround time, average normalized turnaround
time, and average waiting time for the system.

Solution

Let us see the execution of these processes in the Gantt chart as shown in the following
space.

P1 P2 P3 P4 P1 P2 P4 P1 P4 P4

 0 2 4 6 8 10 11 13 14 16 17

The time quantum used in the round robin scheduling plays an important role in its perfor-
mance. If the time quantum chosen is very large, it will be as good as the FCFS algorithm. The
rule is that 80% of CPU bursts should be smaller than the time quantum. On the other hand,

Table 6.8 Performance metrics for Example 6.7

Process Arrival
time

Execution
time (x)

Turnaround
time (tr)

Normalized turn-
around time (tr /x)

Waiting
time

P1 0 9 21 2.34 12

P2 1 5 17 3.4 12

P3 2 3 11 3.67 8

P4 3 4 12 3 8

Average
turnaround
time = 15.25

Average normal-
ized turnaround

time = 3.10

Average
waiting

time = 10

Process Scheduling 155

if it is too small, then there will be a large context switch time because after every time quan-
tum, process switching will occur. The context switch time should not be more than the time
quantum. Therefore, time quantum should be selected such that context switch time is a small
fraction of time quantum. For example, if there are six processes of burst time of 1 unit time and
time quantum is 1, then there will be five context switches. If time quantum is two, then there
will be two context switches. In this way, the size of time quantum affects the performance of
the system, if context switch time increases.
It can be concluded that we cannot choose time quantum as too large or too short, because in
both cases the performance of the algorithm will be degraded. Thus, it should be selected in a
balanced range, keeping in view the two rules:

Rule 1: 80% of the CPU bursts should be smaller than the time quantum.
Rule 2: Context switch time is nearly 10 % of time quantum.

If the time quantum is selected optimally, then besides the context switch time reduction, the
processes need not wait long for their execution and get more service as compared to a bad
choice of time quantum. Therefore, it results in reduction of turnaround time, normalized turn-
around time, and waiting time. In Example 6.8, if we take time quantum as five instead of two,
then it reduces context switches as well as turnaround time, normalized turnaround time, and
waiting time. Let us again solve Example 6.7 with time quantum five.

Example 6.9

Consider the following scenario of processes with time quantum = 5:

Process Arrival time Execution time

P1 0 9

P2 1 5

P3 2 3

P4 3 4

Table 6.9 Performance metrics for Example 6.8

Process Arrival
time

Execution
time (x)

Turnaround
time (tr)

Normalized turn-
around time (tr /x)

Waiting
time

P1 0 5 14 2.8 9

P2 2 3 9 3 6

P3 3 2 3 1.5 1

P4 5 7 12 1.7 5

 Average
turnaround
time = 9.5

Average
normalized
turnaround
time = 2.25

Average
waiting
time =
5.25

156 Principles of Operating Systems

Draw the Gantt chart for the execution of the processes, showing their start time and end time,
using round robin scheduling. Calculate turnaround time, normalized turnaround time, and
waiting time for each process and average turnaround time, average normalized turnaround
time, and average waiting time for the system.

Solution

Let us illustrate the execu-
tion of these processes in
the Gantt chart as shown in
the following space.

Example 6.10

If there is n number of processes in a system and t is the time quantum, what is the maximum
time a process needs to wait for its execution?

 Solution

Suppose t = 2
 n = 5
Let us take P1. After first execution of P1, it needs to wait for all four processes to complete,
that is, 8 time units. For P5, it needs to wait for 8 time units for its first execution. It means, in
this example, waiting time of every process cannot be more than 8 time units.
We can generalize that the maximum waiting time of a process in round robin is
 w = (n-1) * t

6.7.4 Improved Round Robin Scheduling
Round robin scheduling was developed to provide a uniformly-distributed execution time
to every process, so that all of them respond equally. But in this scheduling, waiting time of
processes, and thereby, average waiting time of the system increases. A long process needs
to wait for more time. Moreover, a process with very short execution time, but more than
the time quantum, may also wait for a complete cycle of execution. It means that both long
and short processes may suffer from this type of scheduling. If we know the total estimated

P1 P2 P3 P4 P1

 0 5 10 13 17 21

P1 P2 P3 P4 P5

Table 6.10 Performance metrics for Example 6.9

Process Arrival
time

Execution
time (x)

Turnaround
time (tr)

Normalized turn-
around time (tr /x)

Waiting time

P1 0 9 21 2.34 12

P2 1 5 9 1.8 4

P3 2 3 11 3.67 8

P4 3 4 14 3.5 10

 Average turn-
around time

= 13.75

Average normalized
turnaround time

= 2.82

Average
waiting time

= 8.5

Process Scheduling 157

executiontimeforeachprocess,wecancalculatetheratioofactualCPUtimeconsumedby
theprocesstothetotalestimatedtimeallowedtotheprocess.

CPUconsumptionratio=ActualCPUtimeconsumed/totalestimatedexecutiontime

Thisratiowillprovideusthescenarioaboutwhichlongprocessesneedattention,thatis,their
waitingtimeneedtobereduced.Sotheprocess,whichhasminimumCPUconsumptionratio,
willbeselectednextforthescheduling.Theschedulingintervalwillbethesameasthatof
roundrobin,thatis,aftereverytimequantum.Butwhatabouttheshortprocesses?TheCPU
consumptionratioofshortprocesseswillbehighverysoon.Sotheywillnotbescheduledand
needtowaitforalongtime.Toaccommodateshortprocesses,weneedtotakeanothercondi-
tionintoconsideration.IfCPUconsumptionratioofaprocessisgreaterthan0.6,itwillbe
selectednext.Thus,thecombinedruleforschedulingbecomes:
Schedule a process if its CPU consumption ratio is greater than 0.60, else schedule a pro-
cess whose CPU consumption ratio is minimum.
Letusseewithanexamplehowithasimprovedtheresponsetimeandthewaitingtimeofthe
process.

Example 6.11

Consider the following scenario of
processeswithtimequantum=2.
DrawtheGanttchartfortheexecution
of the processes, showing their start
time and end time, using improved
roundrobinscheduling.Calculateturn-
around time, normalized turnaround
time,andwaitingtimeforeachprocessandaverageturnaroundtime,averagenormalizedturn-
aroundtime,andaveragewaitingtimeforthesystem.Compareallthemetricswithroundrobin
scheduling.

Solution

TodrawGantt chart of this example,weneed to calculate theCPUconsumption ratio and
decidewhichprocesswillbeselectedaftereveryinterval.Table6.11showstheCPUconsump-
tionratioandthenextprocessselected.

Process Arrival time Execution time

P1 0 9

P2 1 5

P3 2 3

P4 3 4

Table 6.11 CPU consumption ratio for Example 6.11

Time Actual CPU time consumed/CPU time entitled Process selected
for next execution

P1 P2 P3 P4

0 – – – – P1

2 2/9 = 0.23 0 0 – P2

4 2/9 = 0.23 2/5 = 0.4 0 0 P3

6 2/9 = 0.23 2/5 = 0.4 2/3 = 0.67 0 P4

8 2/9 = 0.23 2/5 = 0.4 2/3 = 0.67 2/4 = 0.5 P3

9 0.23 0.4 3/3 = 1 0.5 P1

(Contd)

158 Principles of Operating Systems

Now we can draw the Gantt chart, using the information from Table 6.11.

P1 P2 P3 P4 P3 P1 P2 P2 P1 P1 P1 P4

 0 2 4 6 8 9 11 13 14 16 18 19 21

The performance metrics calculated are shown in Table 6.12. This table shows the improve-
ment in waiting time.

6.7.5 Highest Response Ratio Next (HRRN) Scheduling
This is another algorithm that can reduce the shortcomings of round robin scheduling. As dis-
cussed earlier, round robin may favour short or long processes. Since in multi-user and multi-
tasking systems, each process must respond equally well, the idea is to consider the response
time in the scheduling decision. Let,
Response ratio = Time elapsed in the system / CPU time consumed by the process
This response ratio will be able to indicate how much service a process has received. Higher the
ratio, better will be the service received by the process. Therefore, scheduling decision will be:
Schedule a process which has the highest response ratio.
For a newly arrived process, response ratio will be high and it will be able to get the attention
of the processor. A process is allowed to execute until the response ratio of another process is
the highest. When a process is executing, other processes are waiting. It means the time spent

(Table 6.11 Contd)

11 4/9 = 0.45 0.4 – 0.5 P2

13 0.45 4/5=0.8 – 0.5 P2

14 0.45 5/5 = 1 – 0.5 P1

16 6/9 = 0.67 – – 0.5 P1

18 8/9 = 0.89 – – 0.5 P1

19 9/9 = 1 – – 0.5 P4

21 9/9 = 1 – – –

Table 6.12 Performance metrics for Example 6.11

Process Arrival
time

Execution
time (x)

Turnaround
time (tr)

Normalized turn-
around time (tr /x)

Waiting
time

P1 0 9 19 2.12 10

P2 1 5 14 2.8 8

P3 2 3 9 3 4

P4 3 4 21 5.25 14

 Average
turnaround
time = 15.75

Average normal-
ized turnaround

time = 3.10

Average
waiting
time = 9

Process Scheduling 159

by them in the system is increasing, thereby increasing the response ratio. Therefore, they will
also get the attention of the processor. In this way, this algorithm will be able to distribute the
processor time more fairly as compared to simple round robin scheduling algorithm. Let us
understand this algorithm with an example.

Example 6.12

Consider the following scenario of
 processes with time quantum = 1.
Draw the Gantt chart for the execution
of the processes, showing their start
time and end time, using RR and HRRN
scheduling. Calculate turnaround time,
normalized turnaround time, and wait-
ing time for each process and average
turnaround time, average normalized turnaround time, and average waiting time for the system.
Compare all the metrics with round robin scheduling.

Solution

Round Robin
Let us illustrate the execution of these processes in the Gantt chart given in the following space:

P1 P1 P2 P3 P3 P4 P4 P5 P1 P2 P4 P5 P2 P4

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HRRN
To draw Gantt chart of this example, we need to calculate response ratio and decide which
process will be selected after every interval. Table 6.14 shows the response ratio and the next
process selected.

Process Arrival time Execution time

P1 0 3

P2 2 3

P3 3 2

P4 5 4

P5 7 2

Table 6.13 Performance metrics for Example 6.12 (RR)

Process Arrival
time

Execution
time (x)

Turnaround
time (tr)

Normalized turn-
around time (tr /x)

Waiting time

P1 0 3 9 3 6

P2 2 3 11 3.67 8

P3 3 2 2 1 0

P4 5 4 9 2.25 5

P5 7 2 5 2.5 3

 Average
turn-

around
time = 7.2

Average normal-
ized turnaround

time = 2.484

Average
waiting

time = 4.4

160
Principles of O

perating System
s

Table 6.14 Response ratio for Example 6.12 (HRRN)

Time Response ratio = Time elapsed in the system/CPU time consumed by process
Process
selected
for next

execution
P1 P2 P3 P4 P5

0 undef – – – – P1

1 1/1=1 – – – – P1

2 2/2=1 undef – – – P2

3 3/2=1.5 1/1 undef – – P3

4 4/2=2 2/1=2 1/1 – – P1

5 5/3=1.67
(completed)

3/1=3 2/1=2 undef – P4

6 – 4/1=4 3/1=3 1/1=1 – P2

7 – 5/2=2.5 4/1=4 2/1=2 undef P5

8 – 6/2=3 5/1=5 3/1=3 1/1 P3

9 – 7/2=3.5 6/2
(completed)

4/1=4 2/1=2 P4

10 – 8/2=4 – 5/2=2.5 3/1=3 P2

11 – 9/3=3
(completed)

– 6/2=3 4/1=4 P5

12 – – – 7/2=3.5 5/2=2.5
(completed)

P4

13 – – – 8/3=2.67 – P4

14 – – – 9/4
(completed)

–

Process Scheduling 161

Let us see the execution of these processes in the Gantt chart:

P1 P1 P2 P3 P1 P4 P2 P5 P3 P4 P2 P5 P4 P4

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table 6.15 Performance metrics for Example 6.12 (HRRN)

Process Arrival
time

Execution
time (x)

Turnaround
time (tr)

Normalized turn-
around time (tr /x)

Waiting
time

P1 0 3 5 1.67 2

P2 2 3 9 3 6

P3 3 2 6 3 4

P4 5 4 9 2.25 5

P5 7 2 5 2.5 3

 Average
turnaround
time = 6.8

Average normal-
ized turnaround

time = 2.484

Average
waiting
time = 4

Example 6.13

Consider the following scenario of processes with time quantum = 4:

Process Arrival time Execution time

P1 0 18

P2 1 3

P3 2 4

P4 3 5

P5 4 3

Draw the Gantt chart for the execution of the processes, showing their start time and end time,
using FCFS, RR, improved RR, and HRRN scheduling. Calculate turnaround time, normalized
turnaround time, and waiting time for each process and average turnaround time, average nor-
malized turnaround time, and average waiting time for the system.

Solution

FCFS

P1 P2 P3 P4 P5

 0 18 21 25 30 33

162 Principles of Operating Systems

RR

P1 P2 P3 P4 P5 P1 P4 P1

 0 4 7 11 15 18 22 23 33

Table 6.17 Performance metrics for Example 6.13 (RR)

Process Arrival
time

Execution
time (x)

Turnaround
time (tr)

Normalized turn-
around time (tr /x)

Waiting
time

P1 0 18 33 1.84 15

P2 1 3 6 2 3

P3 2 4 9 2.25 5

P4 3 5 20 4 15

P5 4 3 14 4.67 11

 Average
turnaround
time =16.4

Average normal-
ized turnaround

time = 2.952

Average
waiting

time =9.8

Improved RR

Table 6.16 Performance metrics for Example 6.13 (FCFS)

Process Arrival
time

Execution
time (x)

Turnaround
time (tr)

Normalized turn-
around time (tr /x)

Waiting time

P1 0 18 18 1 0

P2 1 3 20 6.67 17

P3 2 4 23 5.75 19

P4 3 5 27 5.4 22

P5 4 3 29 9.67 26

 Average
turnaround
time =23.4

Average normal-
ized turnaround

time = 5.689

Average
 waiting

time = 16.8

Table 6.18 CPU Consumption ratio for Example 6.13 (Improved RR)

Time
Actual CPU time consumed/CPU time entitled

Process
selected
for next

execution
P1 P2 P3 P4 P5

0 Undef - - - - P1

4 4/18=0.23 Undef undef undef - P2

(Contd)

Process Scheduling 163

6.7.6 Virtual Round Robin Scheduling
RR scheduling performs well and provides a uniformly distributed response time. However,
this might not always be true. If all processes are CPU-bound, then RR performs well, but

(Table 6.18 Contd)

7 0.23 3/3
(completed)

undef undef Undef P3

11 0.23 – 4/4
(completed)

undef undef P4

15 0.23 – – 4/5=0.8 undef P5

18 0.23 – – 0.8 3/3
(completed)

P4

19 0.23 – – 5/5
(completed)

– P1

23 8/18 – – – – P1

27 12/18 – – – – P1

31 16/18 – – – – P1

33 18/18 – – – – P1

Table 6.19 Performance metrics for Example 6.13 (Improved RR)

Process Arrival
time

Execution
time (x)

Turnaround
time (tr)

Normalized turn-
around time (tr /x)

Waiting
time

P1 0 18 33 5.5 15

P2 1 3 6 2 3

P3 2 4 9 2.25 5

P4 3 5 16 3.2 11

P5 4 3 14 4.67 11

 Average
turnaround
time =15.6

Average normal-
ized turnaround
time = 3.524

Average
waiting
time =9

HRRN

164 Principles of Operating Systems

Table 6.20 Response ratio for Example 6.13 (HRRN)

Time
Response ratio = Time elapsed in the system/CPU time consumed by pro-

cess

Process
selected
for next

execution
P1 P2 P3 P4 P5

0 undef – – – – P1

4 4/4=1 undef Undef undef undef P2

7 7/4= 1.75 6/3=2
(completed)

Undef undef undef P3

11 11/4=2.75 – 9/4
(completed)

undef undef P4

15 15/4=3.75 – – 12/4=3 undef P5

18 18/4=4.5 – – 15/4=3.75 com-
pleted

P1

22 22/8=2.75 – – 19/4=4.75 – P4

23 23/8=2.875 – – 20/5
completed

– P1

27 27/12 – – – –

31 31/16 – – – –

33 33/18 – – – –

Table 6.21 Performance metrics for Example 6.13 (HRRN)

Process Arrival
time

Execution
time (x)

Turnaround
time (tr)

Normalized
turnaround
time (tr /x)

Waiting
time

P1 0 18 33 4.125 15

P2 1 3 6 2 3

P3 2 4 9 2.25 5

P4 3 5 20 4 15

P5 4 3 14 4.67 11

 Average
turnaround
time = 16.4

Average
normalized
turnaround
time = 3.409

Average
waiting

time = 9.8

P1 P2 P3 P4 P5 P1 P4 P1

 0 4 7 11 15 18 22 23 33

Process Scheduling 165

this is not practical. We have a mix of CPU-bound and I/O-bound processes. Since I/O-bound
processes have very small executions in between the long I/O accesses, these processes are
not able to consume their time quantum in comparison with CPU-bound processes. I/O-bound
processes, after executing for a very short period (less than the time quantum), are put into
I/O waiting queues. After I/O operation, they get back to the ready queue, but at the end of it.
Therefore, after every I/O, they need to compete with all other CPU-bound jobs. In this way,
they are not able to consume their time quantum, while CPU-bound processes consume their
full time quantum. It results in the starvation of I/O-bound processes over CPU-bound pro-
cesses, because of the poor performance of I/O-bound processes. Moreover, no one can predict
the response time of these processes, that is, the variance of response time is increased. Finally,
due to this strategy, there is poor utilization of I/O devices.

To reduce this starvation of I/O-bound processes, a virtual round robin scheduling is adopted.
In this scheduling, CPU-bound processes are executed in the same fashion as discussed in RR
scheduling. Whenever this type of process reaches the head of the ready queue, it starts execu-
tion and consumes its time quantum. If it is not able to complete its execution within the time
quantum, it releases the processor, and is put back at the end of the ready queue, where it waits
for its next selection. But there is a difference in the working of I/O-bound processes. When
an I/O-bound process gets execution, it uses its time quantum partially and initiates an I/O. It
releases the processor and waits in an appropriate device queue for its I/O access. As soon as
its I/O access is finished, it is put back at the end of the ready queue in RR scheduling. But here
in virtual RR scheduling, the process is not put back at the end of the ready queue, but at the
end of another queue called auxiliary queue. Auxiliary queue is the place where it will wait for
its next selection of execution. It means, now there are two queues: ready queue and auxiliary
queue. Auxiliary queue has been introduced so that I/O-bound processes, after completing
their I/O, need not compete with other processes. They will get preference over other processes
(see Fig. 6.17). It means, first of all, we need to provide priority-based scheduling among the
queues. The priority of auxiliary queue is higher, such that a process in this queue will get pri-
ority over a process in the ready queue. In this way, I/O-bound processes are not starved, and
there is fair distribution of processor time among all types of processes.

I/O queue

Ready queue

Time slice
finishes

Processor

I/O
request

I/O
completes

Auxiliary queue

Fig. 6.17 Virtual round robin scheduling

166 Principles of Operating Systems

The process at the head of the auxiliary queue gets the processor and runs till it finishes its
remaining time quantum. For example, if in a system, the time quantum is t milliseconds and
an I/O-bound process uses its n milliseconds of time quantum, it initiates an I/O and waits on
the device queue. After getting a place in the auxiliary queue and consequently the processor,
it executes for t-n milliseconds.

6.7.7 Multi-level Queue Scheduling
Virtual RR scheduling can be generalized further as multi-level queue scheduling. The basic
idea behind multiple queues is that all processes are not of the same nature. For example, we
have seen in virtual RR that there are two types of processes, namely CPU-bound and I/O-
bound. Also that I/O-bound processes will suffer, if we treat both type of processes in the same
way and store them in a single ready queue. In this way, every process has a different nature
and different requirement of execution. For example, an interactive process needs immediate
attention and cannot wait. Therefore, this type of processes requires quick response time and
should be at the highest priority. Some processes are less important than interactive, but are of
short duration, so they must not wait for a long process. It means all processes have different
requirements of processing as well. The various categories of processes can be:
 • Interactive processes
 • Non-interactive processes
 • CPU-bound processes
 • I/O-bound processes
 • Foreground processes
 • Background processes

Thus, it can be concluded that all processes are not of the same nature, and so, should not
be stored in the same ready queue. Therefore, the idea of multi-level queue scheduling is to
partition the original ready queue into various queues and store every process according to its
category. Instead of designing a single ready queue storing all the processes, there is need to
design multiple queues with different levels. The different levels mean that the priority of each
queue is different. There are two types of scheduling in multi-level queue scheduling:
 • Scheduling among the queues.
 • Scheduling between the processes of the selected queue.

The queues can be designed according to the order of their priorities. Let us understand with
an example how multiple queues are designed and scheduled.
 • Interactive processes demand very quick response time and have high priority. Therefore,

they are stored in the first queue.
 • Some I/O-bound processes have short execution time, but are less important than the pro-

cesses in the first queue. These processes are stored in a second queue.
 • There are some background processes which have long execution time and do not need any

interaction. These processes are of lowest priority and are stored in a third queue.
In this way, there are three queues designed in the system, based on their nature and processing
requirements, as shown in Fig. 6.18. Each queue has an absolute priority over the one after it.
It means, if there is a process in the first queue, any process of the second queue cannot execute
until the first queue is empty. Similarly, a process in the third queue cannot start until all the

Process Scheduling 167

processes in the second queue have finished their execution. If an interactive process appears in
the system, when there is one background process running, then the new process will pre-empt
the background process, as it belongs to the higher priority queue. This is how scheduling is
performed among the queues.

Once a queue is selected, the second type of scheduling is done between the processes of
this queue. Any type of scheduling can be taken for this purpose, depending on the type of
queue. For example, round robin scheduling can be performed for first and second queues in
our example, as they expect equal response time and service. Since background processes in the
third queue have no such requirement of response time, they can be scheduled in FCFS order
(see fig. 6.18).

The scheme given for the set of queues in our example is just as per the needs of the pro-
cesses. Another scheme for the queue scheduling is to perform round robin scheduling in each
queue. It means every queue will get a fixed time slice for its processes, so that lower priority
processes do not starve. The time quantum for each queue may vary as per the requirement

FCFS

Time quantum = 2

Time quantum = 1

Background process queue

I/O-bound process queue

Interactive process queuePriority 1

Priority 2

Priority 3

Fig. 6.18 Multi-level queue scheduling

Time quantum = 15

Time quantum = 10

Time quantum = 5

FCFS

Time quantum = 2

Time quantum = 1

Background process queue

I/O-boundprocess queue

Interactive process queue

Fig. 6.19 Round robin scheduling among multi-level queues

168 Principles of Operating Systems

and type of the processes in the queue. For example, in queue 1 and queue 2, the time quantum
should be short as compared to the third one, as shown in Fig. 6.19.

6.7.8 Multi-level Feedback/Adaptive Queue Scheduling
Multi-level queue scheduling is one of the practical approaches that can be adopted in process-
scheduling. It favours short processes and I/O-bound processes. These suffer a lot in other
scheduling schemes, where a single ready queue is maintained and all types of processes reside.
Multi-level queue scheduling can solve the problems of starvation of some processes. How-
ever, the efficiency of multi-level queue scheduling is dependent on the categorization of pro-
cesses, based on their nature. It means we need to categorize the processes before they enter
into the system. We cannot judge the behaviour of any process before its execution, therefore,
we cannot categorize the processes in different queues.

In multi-level feedback queue scheduling, categorization is done on the basis of the feed-
back obtained from process behaviour. Here, the priority is decided based on the past execution
time. Each queue will be given a time quantum. The higher priority queue will get the shortest
time quantum, that is, the process entering the higher priority queue will get the shortest time
quantum. If the process is able to complete its execution within the time quantum allotted,
it is considered an interactive or I/O-bound or short process and resides in that queue only.
Otherwise it means it is not a short process and requires more time to finish. In that case, it
 is moved to the next queue, where time quantum is more as compared to the first queue. If it
is able to complete its execution, then it is considered a process of medium priority and resides
in that queue only. But again if it is not able to complete its execution, it is moved to the next
queue that is the third queue, where the time quantum is more as compared to the second queue.
In this way, the process is demoted to the lower queue until it reaches the last queue designed
in the system. The CPU-bound long processes get equal response time, because initially they
get the processor in higher priority queues, and then get more time quantum in lower queues
after the execution of short processes. In this mechanism, the following events may happen at
every queue (see fig. 6.20):

FCFS

Time quantum = 4

Time quantum = 2

Queue 1

Queue 2

Queue n

Processor

Processor

Processor

Fig. 6.20 Feedback/Adaptive queue scheduling

Process Scheduling 169

 • A process consumes its time quantum and finishes its execution.
 • A process releases the processor when it either initiates an I/O or is pre-empted by a higher

priority process. In case of I/O, it is moved to the I/O queue and then to the end of its
queue . And in case of pre-emption, it is moved back to the end of its queue.

 • A process consumes its time quantum, but is not able to complete its execution within that
time, and therefore, it is moved to the next lower queue.
As in multi-level queue scheduling, the scheduling of queues can be based on fixed priority

or the time quantum. And the scheduling of processes in the queues may be based on the RR
scheduling, providing time quantum to each process. The time quantum is inversely propor-
tional to the priority of the queue: the lower the priority, the higher the time quantum.

One drawback in this mechanism is that if there are new processes arriving in the system
which are of short execution time requirement, they will always pre-empt other processes,
especially long processes which are residing in lower priority queues. Therefore, there are
chances that these processes may starve for execution. Another problem here is that processes
may change their behaviour. It is not necessary that a long CPU-bound process will always re-
main the same; it may become an I/O-bound process. A background process may also become
a short process which requires priority over others. Therefore, another modification required in
feedback queue scheduling is that a process can not only be demoted to lower priority queues,
but can also be promoted to higher priority queues based on the change in their behaviour. If a
process in a lower priority queue becomes I/O-bound, but still does not get the processor as it is
in the lower priority queue, then it should be moved to the upper high priority queues where it
can get the processor. Thus, instead of permanently assigning the queues to a process, the pro-
cesses should be moved between the queues (either to lower or higher), so that they are in the
appropriate queue according to their recent behaviour. But this incurs an overhead of maintain-
ing the information about these processes. For example, we need to keep track of the waiting
time of a process in the lower priority queue. Based on its waiting time, it will be promoted to
the next higher queue. Similarly, there may be many parameters to be stored, based on which,
a decision is taken about the promotion or demotion of a process. In this way, a feedback about
the behaviour of a process is taken and the scheduling mechanism is adapted, according to its
changing behaviour in the system.

6.7.9 Fair-share Scheduling
In our scheduling algorithms discussed so far, it has been assumed that corresponding to one
user, there is a single process. Therefore, they consider one process for one user and divide
the processor time considering this strategy. However, this is not true in practical situations.
In a multi-user environment, there are multiple users (or groups of users) sharing a system, or
a single user with multiple processes for running an application. But the process-scheduling
algorithms designed so far are not capable of these situations. So we need to consider the issues
of a user with multiple processes and groups of users.

Before we discuss what fair-share scheduling is, let us consider an example. Suppose there
are two groups of users accessing a system. First group, having multiple users, is responsible
for accessing only general information, which requires very short time. On the other hand, the
second group, having one or two users, is responsible for accessing some critical data and per-
forming some decisions, requiring longer time as compared to the first group. Algorithms like
RR would give most of the processor time to the first group and the second group may starve for
the execution. Therefore, previously discussed scheduling algorithms would not suffice for a

170 Principles of Operating Systems

user with multiple processes and group of users, which is quite a practical situation. Moreover,
the large number of users in the first group may affect the performance of the second group. So
we need to design algorithms which consider the needs of a user or group of users and distribute
the processor time not among the individual processes, but among the users or group of users as
the case may be. These algorithms are known as fair-share scheduling algorithms.

To implement fair-share scheduling, we need to know how much share of processor or re-
sources a user or a group of users require in the system. Therefore, a share-weightage is nec-
essary to be provided to the users or group of users. The fair-share scheduler will use this
share-weightage to provide fair share of resources to every user or group of users. The users’
share indicates the measure of their entitlement to work on the system. The more share a user
has, the greater their entitlement. If a user x has 30% more shares than user y, then it means user
x needs to work 30% more than y.

For example, in a system, there are two users U1 and U2. U1 has processes P11, P12, P13,
and P14 and U2 has processes P21, P22, P23, and P24. Suppose U2 has to perform some criti-
cal computation-intensive job, which requires more time as compared to U1. Let the weightage
fixed to U2 and U1 be 75% and 25 %, respectively. If conventional round robin scheduling is
performed, then the execution sequence may be:

P11, P21, P12, P22, P13, P23, P14, P24…..
As we can see, U2 is not getting much time to complete its application, due to fixed time slice
for every user. Now, if we apply fair-share scheduling, then the sequence of execution may be:

P11, P21, P22, P23, P12, P24, P21, P22, P13, P23, P24, P21, P14…..
Fair-share scheduling provides 75% time of the CPU to U2, thus providing the user time to per-
form its critical work in time and not starve due to a large number of processes in U1. Likewise,
we can extend the scheduling for a group of users.

In the above example, we have already assumed that U1 consumes 25% and U2 consumes
75% processor time. But it may not be possible every time to predict the share of every user
or group of users. Therefore, we need to generalize this concept of fair-share, such that every
process of the user or every user in a group gets the required share of processor, depending on
its need. We can calculate the priority of a process based on the following factors:
 • Processor utilization by an individual process
 • Processor utilization by a user or group of processes
 • Weight assigned to a user or group of users
 • Original base priority of the process

In this way, the priority of every process of a user or a group of users can be calculated,
considering its past history of execution and the weight provided to it. The only overhead with
this is that the priority needs to be calculated, say once per second.

A normalized share is calculated, considering processor utilization, which is a decayed mea-
sure of the work that the user has done and the weight assigned to the user. With the consump-
tion of normalized share by the user, the response time from the system increases. This is in
accordance to the philosophy of fair-share scheduling. The scheduler increases the response to
users who have used their normalized share, so that other users can use their share. Thus, the
response time to a user is directly proportional to the usage of their fair-share. The scheduler for
this purpose decays each user’s usage and updates the usage of all active users at a particular
time periodically. Based on all the factors mentioned, the priority of a process is calculated and
the process with the highest priority is scheduled next.

Process Scheduling 171

6.7.10 Lottery Scheduling
There are some drawbacks in fair-share scheduling. It is possible for a user to monopolize the
processor by creating multiple processes so that he gets most of the share of the processor time.
Another drawback is that for controlling execution rates, there is computation overhead for cal-
culating the priority of a process, that is., there is no way to directly control relative execution
rates, and therefore, we cannot directly conclude that one user should get this much proportion
as compared to another.

Lottery scheduling is another mechanism through which these drawbacks can be mitigated.
In lottery scheduling, the idea is based on lottery tickets. Every user is provided tickets based on
their required share of processor execution. When there is need to perform scheduling, a lottery
is held by executing a program for generating a random number from the set of tickets provided
to all users. The user holding the winning ticket is allowed to execute. In this way, a user runs in
proportion to the number of tickets it holds. Thus, lottery scheduling is a randomized resource
allocation mechanism, wherein resource rights are represented by lottery tickets.
There are two good features possessed by this scheduling. They are:
 Ticket transfers If a user who needs to wait for some resources like I/O or is blocked for
any other reason and is not able to use his/her share, then he/she can temporarily transfer his
tickets to a single user or multiple users who may be in need.
Ticket inflation A user can escalate resource rights by creating more lottery tickets. But ticket
inflation should be rarely used, because any user can monopolize the processor by creating a
large number of tickets.

SUMMARY

The processes in a multi-programming environment cannot
be managed, if they are not scheduled in a proper man-
ner as per the demands of various systems. If process-
scheduling is not there, all processes will compete for the
processor in a random order, which may result in chaos
in the system and no process would be able to finish.
Thus, process-scheduling is important to manage pro-
cesses. There are various mechanisms for scheduling
processes which have been discussed in this chapter.
Every scheduling algorithm has an appropriate use in a
particular system. FCFS scheduling is used in batch sys-
tems. Round robin is appropriate in a multi-user environ-
ment. However, these algorithms are very basic in nature
and cannot be applied in practical OSs. This is because
these algorithms consider the scheduling of a process as
an individual, but processes in multi-user environment may
belong to a user or group of users. Therefore, schedul-
ing algorithms consider processes of users or of group of
users. Multi-level queue scheduling and feedback queue
scheduling are used for this purpose. Another problem in
scheduling is that the requirement of a user and a group
of users may be different. But every user or group of
users must get the required share of processor execution.

Fair-share scheduling and lottery scheduling algorithms
are used for distributing processor time to every user
fairly.

Let us have a quick review of important concepts dis-
cussed in this chapter:

 • The processes may be CPU-bound or I/O-bound, but
there should be a good mix of both for good scheduling.

 • There are three levels of process-scheduling: long-, me-
dium-, and short-term scheduling.

 • Long-term scheduling is the first level where a job from
the job queue is selected to be sent to the ready queue.

 • Medium-term scheduling is done to select a process from
the ready queue to be sent to processor.

 • Short-term scheduling is done to select a process from
the ready queue, suspend it for some time by swapping it
out from the memory and swap-in at an appropriate time.
Long-term scheduling has a direct relationship with the degree
of multi-programming. The degree of multi-programming can
be defined as the number of processes which can be accom-
modated in the memory and made ready for execution.

 • The short-term scheduler, after selecting the process
from the ready queue, passes the information to the dis-
patcher function. The dispatcher, after finding the location

172 Principles of Operating Systems

of PCB of the process, loads the PSW and other registers
in the processor, and the execution of this process starts.

 • The scheduling mechanisms, by which a process is se-
lected from the ready queue, are called scheduling al-
gorithms.

 • When a process is assigned the processor, it is allowed
to execute to its completion, that is, the system cannot
take away the processor from the process until it exits.
Then it is called non-pre-emptive scheduling.

 • If a process is not allowed to execute to its completion,
and is interrupted in between by another process, it is
known as pre-emptive scheduling.

 • Turnaround time is the total time spent by a process in
the system.

 • The turnaround time of a process is tr = wt + x, where wt
is waiting time of the process in the ready queue, x is the
total service or execution time of the process.

 • If turnaround time is divided by the execution time of the
process, it becomes weighted or normalized turnaround
time.

 • The waiting time is the total time spent by a process in
the ready queue.

 • Response time is the time period between the time of
submission of a process and the first response given by
the process to the user.

 • Predictability is the expected behaviour of a process.
 • Throughput is the number of processes completed in a

unit time.
 • CPU utilization is the percentage of time that the CPU is

busy executing the processes.
 • A process should be scheduled such that there is mini-

mum turnaround time, minimum weighted turnaround
time, minimum waiting time, minimum response time,
maximum predictability, maximum throughput, and maxi-
mum CPU utilization.

 • FCFS works on FIFO queue and is suitable for batch
systems.

 • Priority scheduling is based on the idea of providing prior-
ity to the processes. Its types are:

i) Priority number-based scheduling: where a priority
number is provided to every process, according to its
importance in the system

ii) Shortest process next: where the shortest process in
terms of its execution time is scheduled, but with non-
pre-emption

iii) Shortest remaining-time next: pre-emption version of

SPN, where the remaining time of a process, in terms
of its execution, is the criterion for priority.

 • Round robin scheduling algorithm provides equal chance
to every process to run, by periodically providing a time
quantum to every process.

 • If the time quantum chosen is very large, RR algorithm
will be as good as FCFS algorithm.

 • If the time quantum chosen is too small, then there will
be large context switch time, because after every time
quantum process, switching will occur.

 • Two rules must be followed while choosing the time
quantum:

 • Rule 1: 80% of the CPU bursts should be smaller than
the time quantum.

 • Rule 2: Context switch time is nearly 10% of the time
quantum.

 • The maximum waiting time of a process in round robin is
 • w = (n-1) * q, where n is the number of processes and q

is the time quantum.
 • CPU consumption ratio = Actual CPU time consumed/

total estimated execution time.
 • In improved round robin scheduling, the rule is to sched-

ule a process, if its CPU consumption ratio is greater than
0.60, or else, schedule a process whose CPU consump-
tion ratio is minimum.

 • Response ratio = Time elapsed in the system / CPU time
consumed by the process.

 • Highest response ration next (HRRN) scheduling also
improves the round robin in terms of response time, and
schedules a process which has the highest response
ratio.

 • Various scheduling algorithms, according to their na-
tures, can be distinguished as follows:

Scheduling
algorithm

Nature

FCFS Non-pre-emptive
Favours longer processes

Priority
number-based

Both pre-emptive and
non-pre-emptive
Favours highest priority
processes

Shortest pro-
cess next

Non-pre-emptive
Favours short processes
Good response time

(Contd)

Process Scheduling 173

MULTIPLE CHOICE QUESTIONS

 1. If there is a large number of , then it may be
difficult to achieve multi-programming.

 (a) I/O devices (c) I/O-bound processes
 (b) CPU-bound processes (d) none

 2. Long-term scheduling has a direct relationship with the de-
gree of

 (a) processes (c) multi-programming
 (b) devices (d) none

 3. When a process is assigned the processor, it is allowed to
execute to its completion. This is called

 (a) Dispatching
 (b) Scheduling
 (c) Non-pre-emptive scheduling
 (d) Pre-emptive scheduling

 4. If a process is not allowed to execute to its completion and
is interrupted in between, such that it has neither voluntarily
released the processor nor has it exited, it is known as:

 (a) Dispatching
 (b) Scheduling
 (c) Non-pre-emptive scheduling
 (d) Pre-emptive scheduling

 5. The higher number of in a system may de-
grade the performance of the system.

 (a) context switches (c) devices
 (b) processes (d) none

 6. The minimum possible value of normalized turnaround time is
 (a) 0 (c) 2
 (b) 1 (d) 3

 7. The total time spent by a process in the system is called
 (a) turnaround time (c) response time
 (b) waiting time (d) none

 8. The total time spent by a process in the ready queue is called
 (a) turnaround time (c) response time
 (b) waiting time (d) none

 9. FCFS is scheduling algorithm.
 (a) Pre-emptive (c) Both
 (b) Non-pre-emptive (d) none

 10. Priority is scheduling algorithm.
 (a) Pre-emptive (c) Both
 (b) Non-pre-emptive (d) none

 11. SPN is scheduling algorithm.
 (a) Pre-emptive (c) Both
 (b) Non-pre-emptive (d) none

 12. SRN is scheduling algorithm.
 (a) Pre-emptive (c) Both
 (b) Non-pre-emptive (d) none

 13. Round robin is scheduling algorithm.
 (a) Pre-emptive (c) Both
 (b) Non-pre-emptive (d) none

 14. HRRN is scheduling algorithm.
 (a) Pre-emptive (b) Non-pre-emptive
 (c) Both (d) none

 15. FCFS favours processes.
 (a) short (c) both
 (b) long (d) none

 16. SRN favours processes.
 (a) short (c) both
 (b) long (d) none

 17. Which algorithm is best suited to real-time systems?
 (a) FCFS (c) Round robin
 (b) SPN (d) Priority

(Table Contd)

SRN Pre-emptive
Favours short processes
Good response time
Reduced turnaround time
and response time

Round robin Pre-emptive
Good response time

 • Multi-level queue scheduling divides the ready queue into
multiple queues, according to various categories of pro-
cesses, and favours short-term and I/O-bound processes.

 • The behaviour of processes cannot be judged before
executing the processes. Therefore, a feedback is taken
from every process after executing it for some time, and
is then put to the appropriate queue. This is known as
multi-level feedback queue scheduling.

 • Fair-share scheduling considers the needs of a user or
group of users, and distributes the processor time among
users or group of users.

 • Lottery scheduling is a randomized resource allocation
mechanism, wherein resource rights are represented by
lottery tickets.

174 Principles of Operating Systems

 18. Which algorithm is best suited to multi-user systems?
 (a) FCFS (c) Round robin
 (b) SPN (d) none

 19. Which algorithm is best suited to batch systems?
 (a) FCFS (c) Round robin
 (b) SRN (d) none

 20. Which algorithm is best suited to I/O-bound processes?
 (a) FCFS (c) Round robin
 (b) SRN (d) none

 21. If time quantum is too short in RR scheduling, then it suffers
from

 (a) high waiting time
 (b) high turnaround time
 (c) high context switch time
 (d) none

 22. If time quantum is too large in RR scheduling, it becomes
 (a) FCFS (c) SPN
 (b) SRN (d) HRRN

 23. Which is true regarding selection of time quantum in RR
scheduling?

 (a) 50% of the CPU bursts should be smaller than the time
quantum.

 (b) 70% of the CPU bursts should be greater than the time
quantum.

 (c) 80% of the CPU bursts should be smaller than the time
quantum.

 (d) none

 24. Which is true regarding selection of time quantum in RR
scheduling?

 (a) Context switch time is a large fraction of time quantum
, nearly 60 %.

 (b) Context switch time is a small fraction of time quantum,
nearly 10 %.

 (c) Context switch time equals time quantum.
 (d) none

 25. Which one is true regarding response time?
 (a) CPU time consumed by the process/ Time elapsed in

the system
 (b) Time elapsed in the system / CPU time consumed by

the process
 (c) Time elapsed in the ready queue / CPU time consumed

by the process
 (d) none

 26. Auxillary queue is used in scheduling.
 (a) FCFS (c) Improved RR
 (b) RR (d) Virtual RR

 27. In scheduling, the needs of a user or group
of users are considered, and the processor time is distrib-
uted, not among the individual processes, but the users or
group of users, as the case may be.

 (a) Improved RR (c) Feedback queue
 (b) Multi-level queue (d) Fair-share

 28. If a user x has 50% more shares than user y, user x needs
to work than user y.

 (a) 50% more (c) 100% more
 (b) 50% less (d) none

 29. scheduling is a randomized resource alloca-
tion mechanism, wherein resource rights are represented
by tickets.

 (a) FCFS (c) Lottery
 (b) RR (d) HRRN

 30. The provision that a user can escalate his resource rights
by creating more lottery tickets, is called

 (a) ticket transfer (c) ticket deflation
 (b) ticket inflation (d) none

REVIEW QUESTIONS

 1. What is the meaning of CPU-burst and I/O-burst? How do
they affect the performance of multi-programming?

 2. Explain the situation when scheduling needs to be per-
formed.

 3. Differentiate between long-, medium-, and short-term pro-
cess-scheduling.

 4. Differentiate between non-pre-emptive and pre-emptive
types of scheduling.

 5. Define: turnaround time, waiting time, response time,
weighted turnaround time, predictability, deadlines,
throughput, CPU utilization, fairness, and balance.

 6. How do you implement FCFS scheduling algorithm?

 7. What is priority scheduling? What are the methods for giving
priority to a process?

 8. Explain the mechanism of priority number-based scheduling.

 9. Explain the mechanism of shortest process next scheduling.

 10. Explain the mechanism of shortest remaining-time next
scheduling.

 11. Explain the mechanism of round robin scheduling.

 12. What are benefits and drawbacks of round robin scheduling?

 13. What are the rules for selecting a time quantum?

 14. What is the need of virtual round robin?

Process Scheduling 175

 15. What is the need of improved round robin scheduling?

 16. What is the need of highest response ratio next scheduling?

 17. Explain the mechanism of virtual round robin scheduling.

 18. How do you implement improved round robin scheduling?

 19. How do you implement HRRN?

 20. What is the need of multi-level queue scheduling?

 21. What is the drawback in implementing multi-level queue
scheduling?

 22. How do you implement feedback queue scheduling?

 23. What is the benefit of fair-share scheduling?

 24. How do you implement fair-share scheduling?

 25. What is the drawback of fair-share scheduling?

 26. How do you implement lottery scheduling?

 27. What are the scheduling algorithms which may cause star-
vation? How do you reduce it if there is?

 28. What will be the exponential average for predicting the next
CPU burst value of a process, if constant weighting factor is
0, 0.5, and 0.9? Mention their significance as well.

 29. Using a = 1/2, what will be the prediction of the next CPU
burst time, if five runs from oldest to most recent values of
execution time are 30, 15, 40, 40, 20?

BRAIN TEASERS

 1. Why does FCFS tend to favour long processes?

 2. Why does FCFS tend to favour CPU-bound processes over
I/O bound ones?

 3. Which of the following events will cause process-scheduling
and of which type? Explain what happens to the current
running process:

 (a) Process creates its child.
 (b) Process executes a computation statement.
 (c) Process executes a read statement.
 (d) A resource is released for which no process is waiting.
 (e) A resource is released for which a blocked process is

waiting.
 (f) A new job enters the job-queue.
 (g) A new process enters the ready-queue.
 (h) A process enters the blocked-queue.
 (i) A process enters the blocked-suspend queue.
 (j) An attached I/O fails.
 (k) An illegal instruction is executed in the process.
 (l) There is no process in the ready queue.
 (m) Some process need to be brought into the ready queue,

but space in memory is not available.
 (n) A blocked process is suspended.
 (o) Process exits.
 (p) A process is dispatched from the ready queue.
 (q) A high priority process appears in the ready queue.
 (r) A lower priority process appears in the ready queue.
 (s) Process calls a module from library.

 4. Demonstrate that a short quantum will increase the number
of context switches in the system in RR scheduling.

 5. Demonstrate that a long time quantum will lead RR schedul-
ing to FCFS scheduling.

 6. Can there be a situation in which a running process is se-
lected again for execution?

 7. What is the significance of normalized turnaround time? If it
increases, what will be the effect on a scheduling algorithm?

 8. Suggest an appropriate scheduling algorithm for the follow-
ing software systems:

 (a) Online entrance examination system
 (b) Inventory control system
 (c) Missile tracking system
 (d) Railway reservation system
 (e) Traffic control system

 9. What will be the effect on execution time estimation, if a
simple averaging method is chosen, as compared to expo-
nential averaging in SRN scheduling?

 10. In interactive systems, the goal should be to minimize vari-
ance in response time as compared to minimizing the aver-
age response time. Explain the reason for this statement.

 11. SRN is provably the best scheduling algorithm. Demonstrate.

 12. Why can SRN not be used directly in practice?

 13. If there are 7 processes in a system and 4 is the time quan-
tum, what is the maximum and minimum time a process
needs to wait for its execution?

 14. A process changes its behaviour randomly. What kind of
scheduling will you perform on this process?

 15. A client process sends a message to a server requesting
something, and then blocks itself. If scheduling is to be
done, so that chances of running the server process next
are to be increased, then which type of process-scheduling
will you prefer?

 16. A web server serves some audio files to its clients through
various processes, which run at different frame rates. How
will you ensure that scheduling of these server processes
will serve clients perfectly?

176 Principles of Operating Systems

 17. There is a centralized system which is accessed by multiple
groups. The first group accesses the general information for
a very short time and there are 15 users in this group. Sec-
ond group accesses the system for critical computation in-
tensive work and there are only 2 users in this group. Which
scheduling algorithm will suit this environment and how?

 18. Consider the following scenario of processes with time
quantum = 2.

Process Arrival
time

Execution
time

P1 0 5

P2 1 9

P3 2 7

P4 3 2

P5 4 4

Draw the Gantt chart for the execution of the processes,
showing their start time and end time using FCFS, RR, im-
proved RR, and HRRN scheduling. Calculate turnaround
time, normalized turnaround time, and waiting time for each
process and average turnaround time, average normalized
turnaround time, and average waiting time for the system.

 19. Consider the following snapshot of the processes:

Process Burst
time

Arrival
time

Priority

P1 8 0 1

P2 20 1 3

P3 3 2 2

P4 6 3 5

P5 12 4 4

Draw the Gantt chart for the execution of the processes,
showing their start time and end time using FCFS, prior-
ity number-based scheduling (pre-emptive), SRN (without
considering the priority), RR (with time quantum=5), im-
proved RR, and HRRN scheduling. Calculate turnaround
time, normalized turnaround time, and waiting time for each
process and average turnaround time, average normalized
turnaround time, and average waiting time for the system.

 20. Consider the following scenario of processes with time
quantum = 1 and 3.

Draw the Gantt chart for the execution of the processes,
showing their start time and end time using FCFS, RR, im-
proved RR, and HRRN scheduling. Calculate turnaround

time, normalized turnaround time, and waiting time for
each process and average turnaround time, average nor-
malized turnaround time, and average waiting time for the
system.

Process Arrival
time

Execution
time

P1 0 9

P2 2 20

P3 4 2

P4 7 14

P5 8 4

 21. Consider the following scenario of processes with their
 priority.

Process Arrival
time

Execution
time

Priority

P1 0 12 5

P2 2 25 1

P3 3 3 3

P4 5 9 4

P5 6 13 2

Draw the Gantt chart for the execution of the processes,
showing their start time and end time, using priority num-
ber-based scheduling. Calculate turnaround time, normal-
ized turnaround time, and waiting time for each process and
average turnaround time, average normalized turnaround
time, and average waiting time for the system.

 22. Consider the following scenario of processes.

Pro-
cess

Arrival
time

Execu-
tion time

P1 0 9

P2 1 3

P3 1 14

P4 1 1

Draw the Gantt chart for the execution of the processes,
showing their start time and end time, using SPN and SRN
scheduling. Calculate turnaround time, normalized turn-
around time, and waiting time for each process and aver-
age turnaround time, average normalized turnaround time,
and average waiting time for the system.

Process Scheduling 177

 23. Consider the following scenario of processes with time
quantum = 1 and 2.

Process Arrival
time

Execution
time

P1 0 9

P2 1 1

P3 2 7

P4 3 1

P5 4 6

Draw the Gantt chart for the execution of the processes,
showing their start time and end time using FCFS, RR, im-
proved RR, and HRRN scheduling. Calculate turnaround
time, normalized turnaround time, and waiting time for each
process and average turnaround time, average normalized
turnaround time, and average waiting time for the system.

 24. Which is the best non-pre-emptive scheduling algorithm?
Prove it, taking an example set of processes.

 25. Consider the following scenario of processes with time
quantum = 3 ms.

Process Arrival
time

Execution
time

P1 0 9

P2 1 5

P3 2 3

P4 3 4

Process P1 requires I/O after every 1 millisecond. P2 re-
quires I/O after every 2 millisecond, and P4 after every
3 ms. The access of every I/O takes 2 milliseconds. The
context switch time for every process switching is 1 millisec-
ond. If RR scheduling is performed, what will be the CPU
utilization in the system?

7.1 INTRODUCTION

Multi-programming environment poses many challenges.
Some of them have been covered in the preceding chapters. As
discussed in Chapter 5, there are concurrent processes that are
natural outcomes of a multi-programming system. Independent
processes are easy to implement than the interacting processes.
Interacting processes may access shared data, produce deadlock
while competing for resources and may starve for resources in
some conditions. Moreover, they need to communicate some infor-
mation among themselves. Therefore, there is a need to synchro-
nize the activities of interacting processes and provide mechanisms
through which they can communicate. This chapter discusses all
the problems associated with interacting processes and their solu-
tions. It provides some popular methods of process communica-
tion as well.

7.2 CONCURRENT PROCESSES

Independent processes are easier to manage, since they do not share
any resources among them. The problem arises when the processes
are interacting, that is, when they share some data structures or need
to communicate. The root problem here is the concurrent process-
ing. The concurrent access of some resources by these processes
may cause problems in the system if not resolved. Therefore, there
should be mechanisms to synchronize the processes so that they
coordinate with each other, otherwise, multi-programming cannot
be achieved. Moreover, the interacting processes must cooperate
with each other and that is why they are known as co-operating
 processes. Let us discuss the issues related to concurrent processing:

7.2.1 Data Access Synchronization
While writing the code of processes, it is a general practice to
take global variables that are shared by more than one process.

7 Process
Communication and
Synchronization

Learning Objectives
After reading this chapter,
the reader should be able
to understand:
•• Concurrent processes and

their problems
•• Defining Critical section (CS)

as a protocol for synchro
nization

•• Algorithmic approach to CS
implementation

•• Semaphore as a synchroniza
tion tool and its implementation

•• Highlevel language con
structs for synchronization:

•• critical region,
•• conditional critical region

(CCR),
•• monitors, and
•• protected objects
•• Solution of classic synchroni

zation problems:
•• producer–consumer problem,
•• reader–writer problem,
•• diningphilosophers problem,
•• cigarette smokers problem,

and
•• sleeping barber problem
•• Hardware support for process

synchronization

Process Communication and Synchronization 179

In a multi-programming environment, it may be possible that there is a concurrent access of a
global variable by more than one process. However, this concurrent execution may not give the
desired result. Let us see this with an example.
There are two processes, P1 and P2, sharing common variable shared. Suppose, P1 updates
shared as

shared = shared + 3

and P2 updates shared as
shared = shared − 3.
If both processes reach the statement where shared is being updated and one process is inter-

rupted in between and control switches to another process, then results may be wrong. Let us
elaborate this problem.

At the time of implementation of the processes in a machine, the statements of a process
are further broken down into a low-level language. Therefore, the two statements referred in
P1 and P2 can be broken down as follows:

Process P1:
 1. Load the value of shared in a register of the CPU

A1. reg1 = shared
A2. reg1 = reg1 + 3
A3. shared = reg1 2. Add 3 to the value of the register

 3. Load the new value of the register in shared

Process P2:
 1. Load the value of shared in a register of the CPU B1. reg2 = shared

B2. reg2 = reg2 − 3
B3. shared = reg2

 2. Subtract 3 from the value of the register
 3. Load the new value of the register in shared

The single statements both in P1 and P2 have been divided into three equivalent statements.
Suppose, P1 starts first and executes the Statements A1 and A2. At this time, P1 is interrupted
and the execution is stopped. Then, P2 starts executing and completes all the statements, that is,
B1, B2, and B3. After this, P1 is resumed and completes the execution of A3.

Suppose, the initial value of shared is 4; then after the execution of P2, the value of shared is 1;
and after the execution of P1, it is 7. In fact, if Process P2 has completely updated the shared
variable, then P1 will not get the correct result ever. This happens because P1 cannot update the
new value of shared as it has already executed first two statements and only A3 is remaining.
Here, the value of shared may be depending on the interleaved execution of the sequence
of statements. The correct value cannot be predicted because there may be many combinations
of execution of all the six statements of P1 and P2. This problem arises because both processes
have been allowed to update the global variable at the same time. This leads to inconsistency
of data, and the problem increases further if one process takes a decision or action based on the
updated data. Let us elaborate this problem with an example.

Example 7.1

A web server services its clients by creating processes when it receives a client’s request. All
the processes are same in their function, that is, they are identical and each process updates a
common data used to count the number of clients serviced. Thus, as soon as a client’s request
is received by a process, it updates the count.

In this example, it may be possible that when one process is updating the count, another cli-
ent’s request is received and another process is created. The new process will also update the
count, making the data inconsistent.

180 Principles of Operating Systems

Let us take the data variable as count_client and its current value as 4, that is, four clients
have been serviced by the server. Now, a Client x requests and, corresponding to it, a Process
x has been created. Process x then starts updating the count_client. While x is updating the
count_client, another Client y requests and, corresponding to it, another Process y is created.
Process y also starts updating the count_client. We can reverse this situation, that is, Process
y starts first followed by x. The executions of both the cases are shown in the following table.
In both the cases, the final count_client is 5, whereas the desired result is 6. It means that if we
allow both the processes to update count_client concurrently, one client will not be counted
leading to inconsistency of data.

The statements for two processes:

Process x

x.1 reg1 = count_client
x.2 reg1 = reg1 + 1
x.3 count_client = reg1

Process y

y.1 reg2 = count_client
y.2 reg2 = reg2 + 1
y.3 count_client = reg2

Time Case 1 Case 2

Process x Process y Current
values

Process x Process y Current
values

1 x.1 reg1 = 4 y.1 reg2 = 4

2 x.2 reg1 = 5 y.2 reg2 = 5

3 y.1 reg2 = 4 x.1 reg1 = 4

4 y.2 reg2 = 5 x.2 reg1 = 5

5 y.3 count_client
= 5

y.3 count_client
= 5

6 x.3 count_client
= 5

x.3 count_client
= 5

Now we can generalize that when more than one processes access and update the same data
concurrently and the result depends on the sequence of execution of the instructions, the situ-
ation is known as a race condition. The two cases shown in Example 7.1 are examples of race
conditions. Processes x and y are in a race to update the data first, and the result is incorrect in
both the cases. Thus, race conditions lead to data inconsistency and, thereby, to wrong results.
Data access synchronization is required when race conditions arise due to the execution of
concurrent processes. It becomes necessary in database systems, where frequent queries and
updating of data are required, that processes are not allowed to update global data concurrently.
Therefore, these systems must adopt a mechanism through which data access synchronization
is achieved.

7.2.2 Control Synchronization
If processes are interacting, it may be possible that one process needs an input from the other.
In this case, the first process needs to wait until the required input is received from the other
process. It means that the first process is dependent on the other. However, if there is no con-
trol on the execution of these interacting processes, then they will not be able to perform their

Process Communication and Synchronization 181

functions in a correct manner. To have desired results, there should be a control over a process
such that it is forced to wait until the execution of another process has been finished from which
some data or information is expected. For example, there are two processes, A and B. The state-
ment in A expects some information from B, which is possible only after the execution of the
statement in B. Therefore, A needs to wait until the execution of the statement in B has been
completed. This is known as control synchronization in interacting processes where the order
of the execution of processes is maintained.

Example 7.2

There is a buffer in an application maintained by two processes. One process is called a
producer that produces some data and fills the buffer. Another process is called a consumer
that needs data produced in the buffer and consumes it. In this application, both the processes
need control synchronization because they are dependent on each other. If the buffer is empty,
then a consumer should not try to access the data item from it. Similarly, a producer should not
produce any data item if the buffer is full. To track whether the buffer is empty or full, there
should be a counter that counts the data items in the buffer. This counter variable will be shared
between the two processes and updated by both. The consumer process before consuming the
items from the buffer must check the value of the counter. If the counter is greater than or equal
to 1, it means that there is some data item in the buffer. It starts executing for consuming it and
updates the counter by decrementing it by one. Similarly, the producer process before adding
the items to the buffer must check the value of the counter. If the counter is less than its maxi-
mum value, it means that there is some space in the buffer. It starts executing for producing the
data item and updates the counter by incrementing it by one.

Let max be the maximum size of the buffer. There may be a situation that the buffer is full,
that is, counter = max, and the consumer is busy executing other instructions or has not been al-
lotted its time slice yet (see Fig. 7.1). At this moment, the producer is ready to produce an item
in the buffer. Since the buffer is full, it needs to wait until the consumer consumes an item and
updates the counter by decrementing it by one, that is, counter = max − 1. This is the control
synchronization between the two processes, that one waits for the other and the sequence of
processes needs to be maintained, otherwise, new item produced by the producer will be lost
as the buffer is full.

Producer

Consumer

Ready to produce data but cannot, so
waiting for the consumer

Busy

counter = max

Fig. 7.1 Producer–consumer problem: Buffer is full

182 Principles of Operating Systems

Another situation may be that the buffer is empty, that is, counter = 0 (Fig. 7.2), and the pro-
ducer is busy executing other instructions or has not been allotted its time slice yet. At this
moment, the consumer is ready to consume an item from the buffer. Since the buffer is empty,
it needs to wait until the producer produces an item and updates the counter by incrementing it
by one, that is, counter = 1. This is the control synchronization between the two processes, that
one waits for the other and the sequence of processes needs to be maintained, so that there is no
inconsistency in the normal functioning of the processes.

7.2.3 Process Communication
In both the cases of synchronization discussed in Examples 7.1 and 7.2, the processes are inter-
acting or communicating. There is a shared variable through which they communicate, that is,
they are not aware of the existence of each other but coordinate with each other in the execu-
tion. In this way, there is an indirect communication through shared memory. It can be realized
in both the cases of communication and synchronization that a shared variable is necessary to
have a proper synchronized execution of the processes.

However, there may be the case that the processes need to share data not required for data
access synchronization or control synchronization but for reading purpose. In this case, there
is no need to maintain a shared data as it incurs the cost of accessing. The processes can also
communicate through messages and be explicitly aware of the existence of each other. This
type of communication known as message passing is used where shared memory communica-
tion among the processes is not necessary or not possible in some systems such as distributed
systems, where processes reside at different nodes. Message passing is a simple system where
processes explicitly know each other and exchange messages through system calls. One sys-
tem call is used for sending the message and another for receiving it. The message has a fixed
format consisting of a message and the name of its sender or receiver process. The process
wishing to communicate a message with another process copies the message in its mes-
sage structure with the specific name of the receiver. Similarly, when the receiver receives
the message, it copies the message into its local variable and starts executing. Therefore, if
there is no requirement to update the message concurrently, there is no need to maintain a

Producer

Consumer

Ready to consume data but cannot, so
waiting for the producer

Busy

counter = 0

Fig. 7.2 Producer–consumer problem: Buffer is empty

Process Communication and Synchronization 183

shared variable; hence, a message-passing system is more appropriate. Due to its simplicity,
a message-passing system can be implemented in distributed systems as well as in shared-
memory systems.

The synchronization is also needed in a message-passing system. When a sender sends a
message, it is not necessary that the receiver is ready to receive it. In this case, the sender will
be blocked and the message will be copied to a buffer. It is activated only when the intended
receiver will execute its system call for receiving the message. The message from the buffer
is then sent to the process. Similarly, when a process is ready to receive a message, it is not
necessary that the sender be ready to send it. In this case, the receiver will be blocked and
activated only when the intended sender will send the message to it. Thus, there should be
synchronization between the sender and the receiver process. The message-passing system is
discussed in detail in Section 7.11. First, let us see an example of a message-passing system.

Example 7.3

Consider again Example 7.2, where producer and consumer processes communicate with each
other. In this problem, both the processes need to know the maximum size of the buffer, denoted
as max. Both the processes use max in their code but do not modify it; they use it only for
knowing the size of the buffer. Therefore, there is no need to define max as a global variable.
There can be one process or main () that can send the information about the size of the buffer to
both the processes through a message passing system. Here, main () is the sender process and
the producer and the consumer are the receiving processes.

Although shared memory and message passing systems are effective process-communica-
tion mechanisms, they are not suitable for emergency conditions. If a child process dies or is
suspended, and this information is communicated through a message passing system, it may be
possible that the parent process may not receive this message or receives it at the time when it
has no relevance in the system. Similarly, if an arithmetic fault or illegal instruction has been
executed in a process, it must be notified about this error by the kernel immediately. It means
that there are some exceptional conditions and alarms that while occurring in the system must
be communicated to the processes immediately without any delay. It becomes more important
in the real-time systems because if a faulty process is not signaled at the right time, then the
system may fail or behave erratically. It is worth mentioning here again that these kinds of
exceptional notification messages cannot be communicated through message passing systems
as they may not reach the desired process at the right time. Therefore, there should be another
mechanism that catches the attention of the process to which the emergency message is to
be passed. This form of process communication is known as a signal. Since communication
should be established immediately without any delay, the receiving process must also respond
to it by suspending what it was doing and execute the appropriate action. Therefore, the design
of a signal-communication mechanism is just like an interrupt. Signals perform in a manner
similar to the interrupts suspending the execution of a process. The only difference is that sig-
nals have no priority: All the signals are treated equally. The implementation details of signals
will be discussed in detail later in this chapter.

7.2.4 Deadlocks
If there is no control on the competing processes for accessing multiple resources, then it can
lead to a severe problem in the system. For example, a Process P1 is accessing a Resource R1
and needs another Resource R2 to complete its execution, but at the same time, another Process

184 Principles of Operating Systems

P2 is holding a Resource R2 and requires R1 to proceed. Here, both the processes are waiting
for each other to release the resources held by them. This situation is called a deadlock. There
can be many situations like this causing deadlock problems in the system. Deadlocks will be
discussed in detail in Chapter 8.

7.3 CRITICAL SECTION (CS)

An OS must be able to ensure co-operation among the processes such that the different speeds of
the execution of concurrent processes do not cause any problems. If more than one co-operating
process is sharing a data, then it must be protected from multiple accesses as discussed in data
access synchronization. Similarly, when a process is given access to a non-shareable resource
such as printer, another process cannot be given the access at the same time; otherwise, output
of two processes will be mixed up and no process will get the desired result. This requirement
is known as mutual exclusion. Mutual exclusion ensures that the processes do not access or
update a resource concurrently.

The issues identified in the execution of concurrent processes lead to the design of a protocol
that enforces mutual exclusion and does not cause race condition problem. The protocol
demands that the code of a process where it modifies the data or accesses the resource be
protected and not be allowed to be executed by concurrent processes simultaneously.
Therefore, the first thing in the protocol is to identify a section of the code that must be pro-
tected. This section is known as a critical section. To protect the critical section, there should
be some conditional criteria that a process must pass before entering the critical section. Only
one process at a time is allowed to enter its critical section. If another process requests at this
time, then the access will be denied so that mutual exclusion is maintained. The criteria for
entering the CS are known as entry criteria. The protocol should also define that when one
process has finished its execution, the other waiting processes must be informed so that one of
them can enter the critical section. The criteria for exiting the CS are known as exit criteria
(see Fig. 7.3).

Example 7.4

We have seen in Example 7.1 that Processes x and y produce
race condition if they try to update the global data count_cli-
ent. The critical sections in this example are the instructions
where the count_client is updated. According to the proto-
col designed to reduce race condition, both the processes
cannot enter their critical sections at the same time. If Pro-
cess x has entered its critical section, then Process y will
have to wait until x exits. In this way, the process waiting to
enter its CS will use the updated value of count_client and
thus, there will be no data inconsistency. Both the cases of
Example 7.1 have been shown again in table but with the
critical section. No process is allowed to enter its CS unless
the other process has exited. In both the cases the count_cli-
ent is now equal to 6, which is correct as the two processes
have been added.

Process P ()
{
do {

} while (true);

Entry criteria

Critical section

Exit criteria

Fig. 7.3 Protocol for critical section

Process Communication and Synchronization 185

Time Case 1 Case 2

Process
x

Process
y

Current
values

Status of
process

Process
x

Process
y

Current
values

Status of
process

1 x.1 reg1 = 4 Process x
appears first

y.1 reg2 = 4 Process y
appears
first

2 x.2 reg1 = 5 Process x
continues

y.2 reg2 = 5 Process y
continues

3 x.3 count_
client = 5

Process y
appears but
is not allowed
to enter its
critical section,
that is, it could
not update
count_client

count_cli-
ent = 5

Process x
appears
but is not
allowed to
enter its
critical sec-
tion, that
is, it could
not update
count_
client

4 y.1 reg2 = 5 Process x
exits and
Process y is
allowed to
enter its CS
and starts
updating
count_
client with new
value 5

x.1 reg1 = 5 Process y
exits and
Process x
is allowed
to enter
its CS
and starts
updating
count_
client with
new value
5

5 y.2 reg2 = 6 Process y
continues

x.2 reg1 = 6 Process x
continues

6 y.3 count_
client = 6

Process
y updates
count_client

x.3 count_cli-
ent = 6

Process
y updates
count_
client

The solution for CS problems should satisfy the following characteristics of protocol:

Mutual exclusion

The protocol should not allow more than one process at a time to update a global data.

Progress
 The implementation of this protocol requires that the track of all the processes wishing to enter
their critical sections be kept. If there are some processes in the queue waiting and, currently, no
process is executing inside the critical section, then only the waiting processes must be granted
permission to participate in the execution, that is, the CS will not be reserved for a process that
is currently in a non-critical section.

186 Principles of Operating Systems

Bounded wait
 A process in its CS remains there only for a finite time because, generally, the execution does
not take much time, so the waiting processes in the queue need not wait for a long time.

No deadlock
 If no process is executing inside the CS and there are processes in the queue waiting for the
execution but are not allocated the CS yet, then there may be a deadlock in the system. Therefore,
the protocol must ensure that all the waiting processes are allotted the critical section.

7.4 ALGORITHMIC APPROACH TO CS IMPLEMENTATION

Initially, the CS was implemented through an algorithmic approach, that is, complex logical
checks to implement mutual exclusion among processes. This section discusses some of them.

7.4.1 Two-process Solution
Let us take two processes, P1 and P2, and implement synchronization between them. Each
process has a CS and needs to wait for the other if one of them has entered its critical section.
The two-process solution has been implemented with a shared variable process_turn for
providing mutual exclusion between the two (see Fig. 7.4). The variable is used to indicate
which process is now able to enter its critical section. Here, the while statement acts as an
entry criterion. P1 and P2 cannot enter the CS until the value of process_turn is one and two,
respectively. If process_turn = 1, P1 will be allowed to execute in its critical section. At this
time, if P2 is ready to enter its critical section, then it will not be granted permission since it
does not meet its entry criterion, that is, process_turn = 2. After P1 completes its execution,
it initializes process_turn as 2; hence, P2 will finally be able to execute. In this way, the two-
process solution maintains mutual exclusion.

Let us now examine whether this algorithm follows other properties of the protocol. Suppose
P1 is inside its CS and P2 is in its non-critical section. When P1 exits, it initializes process_turn
as 2. However, P2 is still in its non-critical section and does not want to execute. On the other

Process P1
{

int process_turn;

process_turn = 1;
do {

while (process_turn ! = 1);

process_turn = 2;

} while (true);

Critical
Section

Process P2
{

do {

while (process_turn ! = 2);

process_turn = 1;

} while (true);

Critical
Section

Fig. 7.4 Twoprocess solution: Attempt 1

Process Communication and Synchronization 187

hand, P1 enters the wait state again. However, it cannot enter its CS since process_turn = 2.
This is a violation of the protocol because the property of progress is not observed here.

The problem with this algorithm is that it does not save the state of the executing process.
To store the state of the process, two more variables, namely, state_flag_P1 and state_flag_P2
are taken (see Fig. 7.5). If a process enters its critical section, it first sets this state flag to zero,
and after exiting, it sets it to one. It indicates that if a process is using its CS, then the other
process must wait until the state flag becomes one, that is, when the CS is available. In this way,
the state flag variables eliminate the problem of progress observed in the first attempt of the
algorithm. It can be seen in the second attempt that if a process is ready to enter its CS again,
it may do so (Fig. 7.5).

This algorithm suffers from other problems as well. In the beginning, when no process
is executing, both P1 and P2 will try to enter the critical section. This violates the mutual
exclusion property of the protocol. To remove this problem, we should consider setting
state_flag_P1 and state_flag_P2 to 0 before the while loop. This will solve the problem of
mutual exclusion, but there still is one problem. Suppose, at the moment P1 starts and executes
its first statement as state_ flag_P1 = 0, P2 interrupts and gets the execution and executes its
first statement, state_ flag_P2 = 0. In this situation, if P2 continues and executes its while loop,
then it will not be able to proceed as it is waiting for P1 to set state_ flag_P1 to 1. Similarly,
if P1 gets the execution and executes its while loop, then it will not be able to continue as it is
waiting for P2 to set state_ flag_P2 to 1. Both the processes are waiting for each other, thereby
causing deadlock in the system.

This deadlock can be eliminated if a process before entering the CS checks whether the other
process is ready or not. P1 checks whether state_ flag_P2 = 0, then it sets state_ flag_P1 = 1.
Similarly, P2 checks whether state_ flag_P1 = 0, then it sets state_ flag_P2 = 1(see Fig. 7.6).

This solution for eliminating the deadlock causes another problem. It may be possible that
both the processes are waiting for each other to execute and no process is proceeding. This
situation is known as livelock. This situation arises because the variable process_turn has been
ignored in this attempt of the algorithm.

Process P1
{

int state_flag_P1, state_flag_P2

state_flag_P1 = 1;

do {

while (state_flag_P2 ! = 1);
state_flag_P1 = 0;

state_flag_P1 = 1;

} while (true);

Critical
Section

Process P2
{

int state_flag_P1, state_flag_P2

state_flag_P2 = 1;

do {

while (state_flag_P1 ! = 1);
state_flag_P2 = 0;

state_flag_P2 = 1;

} while (true);

Critical
Section

Fig. 7.5 Twoprocess solution: Attempt 2

188 Principles of Operating Systems

7.4.2 Dekker’s Solution
If both the turn and the state of a process are taken into consideration, the algorithm will not
suffer from all the problems discussed in Section 7.4.1. The solution for the CS problem was
given by Dekker (Fig. 7.7).

Process P1
{

int state_flag_P1, state_flag_P2

state_flag_P1= 1;

do {
state_flag_P1= 0;
if (state_flag_P2== 0)

state_flag_P1= 1;
while (state_flag_P 2 ! = 1);

state_flag_P1= 1;

} while (true);

Critical
Section

Process P2
{

int state_flag_P1 , state_flag_P2

state_flag_P2 = 1;

do {
state_flag_P2= 0;
if (state_flag_P1== 0)

state_flag_P2= 1;
while (state_flag_P1! = 1);

state_flag_P2 = 1;

} while (true);

Critical
Section

Fig. 7.6 Twoprocess solution: Attempt 3

Process P1
{

int state_flag_P1,
state_flag_P2,
process_turn ;

state_flag_P1 = 1;
process_turn = 1;
do {
state_flag_P1= 0;
while (state_flag_P 2 ! = 1)
{

If (process_turn== 2)
{

state_flag_P1= 1;
while (process_turn == 2);
state_flag_P1= 0;

}
}

process_turn = 2;
state_flag_P1= 1;

} while (true);

Critical
Section

Process P2
{

int state_flag_P1,
state_flag_P2;
process_turn ;

state_flag_P2 = 1;
do {
state_flag_P2 = 0;
while (state_flag_P1! = 1)
{

If (process_turn== 1)
{

state_flag_P2= 1;
while (process_turn == 1);
state_flag_P2= 0;

}
}

process_turn = 1;

state_flag_P 2 = 1;

} while (true);

Critical
Section

Fig. 7.7 Dekker’s solution for twoprocess synchronization

Process Communication and Synchronization 189

This algorithm satisfies all the rules of the designed protocol. Both the processes will not try
to enter simultaneously due to the variable, process_turn and will satisfy the mutual exclusion
property. If P1 starts first and finds that state_ flag_P2 = 0, that is, P2 wants to enter the CS, it
will allow P2, only when process_turn = 2. Otherwise, it will wait for state_ flag_P2 to be one
so that P1 can enter its CS. If state_ flag_P2 = 1 initially, then P1 will skip the while loop and
straightway enter the CS. In this way, there will not be any deadlock or livelock. Moreover, the
chance is given to only those processes that are waiting in the queue to enter the CS.

7.4.3 Peterson’s Solution
The two-process solution for CS proposed by Peterson (Fig. 7.8) is an easier method compared
to Dekker’s solution. In this solution, process_turn takes the value zero for Process P1 and
one for Process P2. For the process flag, a Boolean array process_ flag[] is taken that consists
of two values, zero for P1 and one for P2. The variable process_turn maintains the mutual
exclusion and process_ flag[] maintains the state of the process. Initially, both the processes
make their flags true but to maintain the mutual exclusion, the processes before entering their
critical sections allow other processes to run. The process that satisfies both the criteria, that
is, its process_ flag is true and its process_turn maintains mutual exclusion, is allowed to enter
its critical section. After exiting the critical section, the process makes its flag false so that the
other process can start if it wants. For example, P1 starts and executes process_ flag[0] = true.
At this time, P2 interrupts and gets execution and executes process_ flag[1] = true and
 continues with process_turn = 0. At this time, if P1 is able to get the execution, then it can
continue because P2 has given P1 another chance to execute by making process_turn = 0. If P1
 continues, then it is able to enter the critical section. While P1 is inside the critical section, and
P2 interrupts, it is not able to enter the CS unless P1 exits and makes process_ flag[0] = false.

In this way, in this algorithm, processes do not wait for each other, thereby eliminating dead-
lock. There can be no situation that both the processes defer to each other. If one is deferring the
other, then one of the processes is able to continue; therefore, there will be no livelock.

Process P1
{

int process_turn;
boolean process_flag[2];

do {
process_flag[0] = true;
process_turn= 1;

while (process_flag[1] &&
process_turn==1);

process_flag[0] = false;

} while (true);

Critical
Section

Process P2
{

do {
process_flag[1] = true;
process_turn = 0;

while (process_flag[0] &&
process_turn==0);

process_flag[1] = false;

} while (true);

Critical
Section

Fig. 7.8 Peterson’s solution for twoprocess synchronization

190 Principles of Operating Systems

A process cannot enter its CS while the other process is already in it, thereby maintaining the
mutual exclusion. Obviously, there is also a bounded wait for every process.

The algorithmic implementation of critical-section solution poses many problems as we increase
the number of processes for synchronization. If there are n number of processes, the status flags of
the processes need to be maintained. Further, it must be known how many processes wish to enter
their critical sections. The check for deadlock, livelock, and mutual exclusion becomes complex
in case of n number of processes. There is a limitation to the algorithmic approach performed
by the programmers. Programmers who have been hired to develop the software system are
engaged in synchronizing the processes. Thus, it is not feasible that programmers provide the
solution for CS in the system. There must be support from the hardware or the OS system to
provide synchronization and communication among the processes. The operating-system and
hardware-support mechanisms for synchronization will be discussed in succeeding sections.

7.5 SEMAPHORES

The problem of race conditions is avoided by not updating a global variable by more than one
process at a time. The operations that cannot be overlapped or interleaved with the execution of
any other operations are known as indivisible or atomic operations. It means that if the opera-
tions are made indivisible, then there will be no problem of race condition and this method can
be implemented at the level of programming language and operating system.
Semaphore is a very popular tool used for process synchronization. Before understanding its
implementation or physical structure, let us first understand its concept. The semaphore is used
to protect any resource such as global shared memory that needs to be accessed and updated
by many processes simultaneously. Semaphore acts as a guard or lock on the resource. The
prerequisite for semaphore is that processes follow this guard to avoid any problem. Whenever
a process needs to access the resource, it first needs to take permission from the semaphore. If
the resource is free, that is, if no other process is accessing or updating it, the process will be
allowed, otherwise permission is denied. In case of denial, the requesting process needs to wait
until semaphore permits it, that is, when the resource becomes free. Semaphores can also be
understood with our daily-life analogy. Let us take an example of a classroom where teachers
take classes for students. A guard is sitting outside the room. Whenever a teacher comes to
take the class, he or she asks the guard for permission to enter the class. The guard will allow
the teacher only if the room is free, otherwise permission is denied. Thus, the room is used in
mutually exclusive manner with the help of a guard. The semaphore works in the similar way.

The semaphore is implemented as an integer variable, say as S, and can be initialized with
any positive integer values. The semaphore is accessed by only two indivisible operations
known as wait and signal operations, denoted by P and V, respectively, after the Dutch nota-
tions. The simple implementation of these operations is shown in Fig. 7.9.

The implementation of a semaphore guarding the CS is shown in Fig. 7.10. Whenever a
process tries to enter the critical section, it needs to perform wait operation. The wait is an entry
criterion according to the designed protocol. If the CS is free or no other process is using it,
then it is allowed, otherwise denied. The count of semaphore is decremented when a process
accesses the available critical section; hence, the count of semaphore tells us the availability
of the critical section. Initially, the count of semaphore is 1. If it is accessed by a process, then
the count is decremented and becomes zero. Now, if another process tries to access the critical
section, then it is not allowed to enter unless the semaphore value becomes greater than zero.
When a process exits the critical section, it performs the signal operation, which is an exit

Process Communication and Synchronization 191

criterion. In this way, the solution to CS using semaphore
satisfies the designed protocol. The semaphore whose value
is either zero or one is known as binary semaphore. A re-
source having a single instance and which is to be used in
a mutually exclusive manner can use binary semaphore for
synchronization.

The semaphore can take any positive value as discussed
in Section 7.4. Suppose, if there are three memory locations
and each need to be updated in a mutually exclusive man-
ner (see Fig. 7.11), then the semaphore is taken to guard
all the three memory locations with value 3. It means that
three processes at the same time can access the semaphore.
After giving the access to the third process, the value of
semaphore becomes 0. It will not allow any other process
unless one of the running processes exits. This type of sema-

phore that takes a value greater than one is known as counting semaphore.
There is one more type of binary semaphore known as mutex, that is, in a binary semaphore,

the CS locked by a process may be unlocked by any other process. However, in mutex, only the
process that locks the CS can unlock it.

There is one problem in the implementation of such a semaphore. When a process does not
get access to the critical section, it loops continually waiting for it. This does not produce any
result but consumes CPU cycles, thereby wasting the processor time. This busy waiting is a
problem in a multi-programming system where processor time is shared among the processes.
This type of semaphore is known as a spinlock, since the process spins while waiting for the lock.

To save the processor time, the process that is not able to get the resource should be blocked.
Since there may be many waiting processes, a queue is needed to store them. Therefore, a
queue is maintained for storing all the waiting processes. A process is awakened from this
queue when another process releases the resource and the semaphore allows it to enter its
critical section. However, this solution incurs the cost of context switching as the process state
needs to be switched from running to blocked, blocked to ready, and, then, ready to running.
Therefore, when the busy waiting is of very short time compared to context switch time, there is
no need to block the waiting process. In multi-processor systems also, there is no need to block

the process due to multiple processors.
To incorporate this design, the implementation of the sema-
phore needs to be changed. Along with the integer value of
semaphore, we need to take a queue or list storing the pro-
cesses so that we can take a record or structure storing both
of these elements. See this implementation in Fig. 7.12.

Example 7.5

There are three processes, P1, P2, and P3, sharing a
 semaphore for synchronizing a shared variable. The
 semaphore is guarding the CS of the processes where
they update the shared variable. Initially, the value of the
 semaphore is one. P1 needs to access the CS and update
the variable, so it accesses the semaphore first. It gets

Operation Wait

P(S)
{

while (S <= 0);
S = S − 1;

}

Operation Signal

V(S)
{

S = S + 1;
}

Fig. 7.9 Wait and signal operation in a sema
phore

do {

wait (Semaphore)
{

}

signal (semaphore)

}

Critical
Section

Fig. 7.10 Semaphore implementation: Attempt 1

192 Principles of Operating Systems

 permission as no one is using it, thereby making the value of the semaphore zero. After this,
P2 needs to access its CS but is not allowed as the value of the semaphore is zero; hence, P2 is
blocked and placed in the waiting queue. All other sequences of events and statuses are shown
in the table. One point to be noted here is that the negative value of the semaphore tells us how
many processes are waiting in the queue.

Memory
location 1

Memory
location 2

Memory
location 3

Semaphore

P1 P2 P3 P4

Fig. 7.11 Counting semaphore

Struct {
int sem_value;
queue sem_q;

} semaphore;

semaphore S;

Operation Wait

P(S)
{

S.sem_value = S.sem_value –1;
if (S.sem_value < 0)
{

Add the process to S.sem_queue;
Block the process;

}
}

Operation Signal

V(S)
{

S.sem_value = S.sem_value + 1;
if (S.sem_value <= 0)
{

Remove the process from S.sem_queue;
Wakeup the process;

}
}

Fig. 7.12 Semaphore implementation: Attempt 2

Process Communication and Synchronization 193

Time
Current

value of the
semaphore

Needs of process
Modified

value of the
semaphore

Current status

1 1 P1 needs to access. 0 P1 enters its critical section.

2 0 P2 needs to access. −1 P1 continues and one
process (P2) is waiting in
the queue.

3 −1 P3 needs to access. −2 P1 continues and two
processes (P2 and P3) are
waiting in the queue.

4 −2 P1 exits the critical
section.

−1 P2 is waked up and enters
its critical section. P3 still
waits in the queue.

5 −1 – −1 P2 continues and P3 still
waits in the queue.

6 −1 P2 exits the critical
section.

0 P3 is waked up and enters
its critical section. The
queue is empty now.

7 0 P3 exits the critical
section.

1 No process is now using its
CS and the queue is empty.

 Example 7.6

Let S be the semaphore between three processes for mutual exclusion with an initial value one.
Consider their executions in time instants in the following table and find out the final value of S.

Time Process P1 Process P2 Process P3 Value of S
Processes in

the queue of the
semaphore

0 P(S) – – 0 –

1 – P(S) – −1 P2

2 V(S) – – 0 –

3 – V(S) – 1 –

4 P(S) – – 0 –

5 – – P(S) −1 P3

6 – P(S) – −2 P3,P2

The final value of S is −2, that is, two processes are waiting in the queue. The change in value
of S and the corresponding queue status, along with timeline, is depicted as follows:

P2

P2 P3

P3

P3

194 Principles of Operating Systems

wait(S)

wait(S)

wait(S)

signal(S)

signal(S)

wait(S)

wait(S)

S = 1

S = 0

S = −1

P2

S = 0

S = 1

S = 0

S = −1

P3

S = −2

P3 P2

C
S

C
S

C
S

7.6 SOLUTION OF CLASSIC SYNCHRONIZATION PROBLEMS USING SEMAPHORES

There are some classic synchronization problems in computer science. Programmers will face
these synchronization problems during development of any application. The semaphore is the
solution for all of them, for example, producer–consumer problem discussed in Examples 7.2
and 7.3. The synchronization among the processes can be obtained using semaphores. There are
several synchronization problems such as these that are discussed in the subsequent sections.

7.6.1 Solution of Producer–Consumer Problem Using Semaphore
In the OS and in computer science in general, the problem of producer–consumer synchro-
nization is common. For example, compilers and assemblers can be thought as producer and
consumer processes, respectively. A compiler as a producer produces the object code and an
assembler as a consumer takes the object code. Similarly, the process that gives command
for printing a file is a producer process, and the process for printing them on the printer is a
consumer process.

To solve the producer–consumer problem using semaphore, the following requirements
should be met:

 1. The producer process should not produce an item when the buffer is full.

Process Communication and Synchronization 195

 2. The consumer process should not consume an item when the buffer is empty.
 3. The producer and consumer processes should not try to access and update the buffer at the

same time.
 4. When a producer process is ready to produce an item and the buffer is full, the item should not be

lost, that is, the producer must be blocked and must wait for the consumer to consume an item.
 5. When a consumer process is ready to consume an item and the buffer is empty, it must be

blocked and wait for the producer to produce the item.
 6. When a consumer process consumes an item, that is, a slot in the buffer is created, the

blocked producer process must be signaled about it.
 7. When a producer process produces an item in the empty buffer, the blocked consumer pro-

cess must be signaled about it.
The producer–consumer problem can be solved by placing a semaphore on the buffer.

However, after analyzing these requirements, it is clear that we also need to check the status
of the empty and the full buffer for the producer and the consumer, respectively. Moreover, the
producer process after inserting the item in the buffer slot must increase the value of the full
buffer to indicate that one slot of the buffer is filled. Similarly, the consumer process after taking
the item from the buffer must increase the value of the empty buffer to indicate the empty slot
in the buffer. For example, the three items have been produced by the producer, but nothing has
been consumed by the consumer process. The empty and full pointers, along with their current
values, are shown in Fig. 7.13. If the algorithmic solution mentioned for the checks is adopted,
then again busy waiting will be there. The producer will be busy waiting for checking whether
the buffer is empty. Similarly, the consumer will be busy waiting for checking whether the buffer
is full. Instead of that, two more semaphores can be taken, which will count the number of empty
slots and full slots in the buffer. Before accessing the buffer, the processes need to check its sta-
tus. Therefore, the processes first wait on the semaphores used for status and then on the sema-
phores used for accessing the buffer. Thus, there are three semaphores to be used in the solution:
 • Empty semaphore initialized to n, where n is the number of empty slots in the buffer
 • Full semaphore initialized to zero
 • Buffer_access semaphore initialized to one

Producer

Consumer

Empty

cba

Full

Empty = n-3
Full = 3

Fig. 7.13 Producer–consumer problem’s solution with semaphores

196 Principles of Operating Systems

The producer process after producing the item waits on the empty semaphore because it needs
to check whether there is an empty slot in the buffer. If there is a slot, the semaphore allows it
to go further. Once it passes this condition, it waits on the Buffer_access semaphore to check
whether any other process is accessing it. If any other process is already accessing it, then the
semaphore will not allow it. After getting the permission, the process starts accessing and stor-
ing the item in the buffer. After storing, it signals the Buffer_access so that any other process
in wait can access the buffer. Moreover, it also signals the full semaphore to indicate that the
buffer now contains one item. In this way, the producer stores the item in the buffer and also
updates the status of the buffer. Similarly, the algorithm of the consumer can be understood.
Both the algorithms are given in Fig. 7.14.

7.6.2 Solution of Reader–Writer Problem Using Semaphores

There are several instances while designing a software system, for example, there is a data area
shared among many processes. Some processes read the data item from the memory, that is, readers
and some processes update the data item or write into the memory location, that is, writers. For
instance, in an airline reservation system, there is a shared data where the status of seats is main-
tained. If a person needs to enquire about the reservation status, then a reader process will read
the shared data and get the information. On the other hand, if a person wishes to reserve the seat,
then a writer process will update the shared data. The first thing to check here is whether there are
multiple readers and writers. The next thing is to check where the synchronization problems may
occur between them. If multiple readers are considered to access the shared data, then there is no
problem. However, if multiple writers are given access to it, then there will be a synchronization
problem. It means that when one writer is writing, other writers must wait. Moreover, if a writer
is writing, a reader is not allowed either. However, this synchronization cannot be solved by sim-
ply providing mutual exclusion on the shared data area because it will lead to a situation where a
reader will also wait while another reader is reading. Since multiple readers are allowed, the pure
mutual exclusion solution would not work. The people enquiring only the reservation status may
be given simultaneous access, otherwise there will be unnecessary delays.

Another point here to consider is that which process will get the priority over others? If a
writer is writing and multiple readers and writers are waiting, which process will get the prior-
ity? This may depend on some situations in the system. If a writer is critical, then all the writers

Producer()
{

do {

Produce an item;
P(Empty); //Wait on empty semaphore
P(Buffer_access);
// Wait on buffer_access semaphore
Add item to buffer;
V(Buffer_access);
// Signal the buffer_access semaphore
V(Full);
// Signal the Full semaphore
} while true;

Consumer()
{

do {

P(Full); //Wait on Full semaphore
P(Buffer_access);
// Wait on buffer_access semaphore
Consume item from buffer;
V(Buffer_access);
// Signal the buffer_access semaphore
V(Empty);
// Signal the Empty semaphore
} while true;

Fig. 7.14 Algorithms for producer–consumer problem’s solution with semaphores

Process Communication and Synchronization 197

must get the priority; otherwise, the readers may also be given a chance to read. Let us consider
both the cases: When readers have the priority and when the writers have the priority.

Although mutual exclusion is not a good solution to the reader–writer problem, it is used
here in the form of critical section. This is because when a writer is writing, a reader should not
be allowed to access. Similarly, when a reader is reading or accessing, a writer should not be
allowed to update. Therefore, a CS needs to be designed where the shared data will be accessed
or updated, but not simultaneously.

Case 1: Readers have the priority
The priority to readers means that if a reader has gained the access to CS and there are multiple
readers and writers waiting, then readers will be allowed to access the CS first. The writers will
be allowed only after all the readers have finished accessing. It is obvious that we will use one
semaphore for mutual exclusion between the readers and the writers. There may be the follow-
ing scenarios on this semaphore:

 1. A reader is inside the CS and multiple writers arrive, then they must wait on the semaphore.
 2. A writer is inside the CS and multiple readers arrive, then they must wait on the semaphore.
 3. A reader is inside the CS and multiple readers arrive, then they need not wait on the sema-

phore.
 4. A writer is inside the CS and multiple writers arrive, then they must wait on the semaphore.

We need to count the number of readers also because writers, if waiting, will not be allowed
unless all readers have accessed. Therefore, a counter is taken to count the number of readers
arriving in the system. However, the processes should not be allowed to cause busy waiting to
check the status of this counter and update this variable because this will be a shared variable
among all readers. Therefore, another semaphore is used. The following semaphore and coun-
ter will be used in the solution:

ReadCount: integer variable as counter for readers; initialized as zero.
Sem_ReadCount: semaphore for ReadCount; initialized as one.
 Sem_ReadWrite: semaphore for mutual exclusion between readers and writers; initialized
as one.

See the algorithms for reader and writer in Fig. 7.15.

Reader()
{

while(true) {
wait(Sem_ReadCount);
ReadCount++;
If(ReadCount = = 1)
 wait(Sem_ReadWrite);
signal(Sem_ReadCount);

Perform the read operation;
wait(Sem_ReadCount);
ReadCount--;
If(ReadCount = = 0)
 signal(Sem_ReadWrite);
signal(Sem_ReadCount);

}
}

Writer()
{

while(true) {
wait(Sem_ReadWrite);
Perform the write operation;
signal(Sem_ReadWrite);

}
}

Fig. 7.15 Algorithms for reader–writer problem’s solution with semaphores: readers have the priority

198 Principles of Operating Systems

Case 2: Writers have the priority
Case 1 gives priority to readers. Writers cannot start unless all readers are finished. This may
cause starvation of the writers. In fact, a writer is considered important as compared to a reader
because it updates the data and the updating of data must be done in the system as soon as possi-
ble. Thus, writers must get priority over readers. The readers will also be served but only when
there is no writer waiting. However, the solution to this case becomes complex as the readers
need to be prevented from queuing on Sem_ReadWrite because if there is a long sequence of
readers, then the system is forced to serve them first. Therefore, a solution must be designed
such that a long queue of readers is not allowed where writers are waiting. For this purpose, let
us consider one more semaphore, Sem_Restrict, which will restrict the readers from entering
the queue. Only one reader is allowed in the queue of this semaphore. The following scenarios
may arise in this case:

 1. If no writer is accessing the CS currently, and a new writer arrives, then it will also wait on
the Sem_Restrict so that readers do not monopolize and writers can also start.

 2. Once a writer enters the CS and there are writers and readers waiting, then only writers will
be allowed to access. The reader will start only after all the waiting writers are finished.

 3. After all the writers finish their work, if a reader appears and then a writer, the reader will
be given access first.

Another point to ponder here is where will the multiple readers wait when the writers have
gained access to critical section? In addition, it is constrained that only one reader can queue on
Sem_Restrict. In that case, if more than one reader is appearing, then they need to wait some-
where. Therefore, one more semaphore, Sem_ReaderWait, is needed.

Sem_ReadWrite will be used to provide mutual exclusion on the shared data. All the
writers must queue on Sem_ReadWrite for mutual exclusion. However, if there is no writer
waiting and multiple readers are there, then once a reader gains access, others need not wait on
Sem_ReadWrite because multiple readers are allowed simultaneously.

Reader()
{

while(true) {
wait(Sem_ReaderWait);
wait(Sem_Restrict);
wait(Sem_ReadCount);
ReadCount++;
If(ReadCount = = 1)

wait(Sem_ReadWrite);
signal(Sem_ReadCount);
signal(Sem_Restrict);
signal(Sem_ReaderWait);
Perform the read operation;
wait(Sem_ReadCount);
ReadCount--;
If(ReadCount = = 0)

signal(Sem_ReadWrite);
signal(Sem_ReadCount);

}
}

Writer()
{

while(true) {
wait(Sem_WriteCount);
WriteCount++;
If(WriteCount = = 1)

wait(Sem_Restrict);
signal(Sem_WriteCount);
wait(Sem_ReadWrite);
Perform the write operation;
signal(Sem_ReadWrite);
wait(Sem_WriteCount);
WriteCount--;
If(WriteCount = = 0)

signal(Sem_Restrict);
signal(Sem_WriteCount);

}
}

Fig. 7.16 Algorithms for reader–writer problem’s solution with semaphores: Writers have the priority

Process Communication and Synchronization 199

Besides, all these semaphores, the readers, and the writers need to be counted in this
solution. Obviously, one more semaphore, WriteCount, is required to update the count for
writers.

The following semaphore and counters will be used in the solution:
ReadCount: integer variable as counter for readers; initialized as zero.
Sem_ReadCount: semaphore for ReadCount; initialized as one.
 Sem_ReadWrite: semaphore for mutual exclusion between readers and writers; initialized
as one.
WriteCount: integer variable as counter for writers; initialized as zero.
Sem_WriteCount: semaphore for WriteCount; initialized as one.
Sem_Restrict: semaphore to restrict the readers; initialized as one.
Sem_ReaderWait: semaphore where more than one reader appears; initialized as one.
See the algorithms for readers and writers in Fig. 7.16.

Case 3: No priority
Cases 1 and 2 consider the priority and are therefore not fair in the sense that the processes are
not served in the sequence they appear in the system. Although a writer process must be given
preference because it updates the value and thus the updated value is available to next pro-
cesses, sometimes fair service to the processes is also required. Let us consider the following
semaphores and counters used for the solution (see Fig. 7.17):

ReadCount: integer variable as counter for reader processes; initialized as zero.
 Sem_Count: semaphore for mutual exclusion between ReadCount and WriteCount; initial-
ized as one.
 Sem_ReadWrite: semaphore for mutual exclusion between reader and writer processes;
initialized as one.
WriteCount: integer variable as counter for writer processes; initialized as zero.

Reader()
{

while(true) {
wait(Sem_Count);
If((WriteCount > 0) OR

ReadCount = = 0)
{

signal(Sem_Count);
wait(Sem_ReadWrite);
wait(Sem_Count);

}
ReadCount++;
signal(Sem_Count);
Perform the read operation;
wait(Sem_Count);
ReadCount--;
If(ReadCount = = 0)

signal(Sem_ReadWrite);
signal(Sem_Count);

}
}

Writer()
{

while(true) {
wait(Sem_Count);
WriteCount++;
signal(Sem_Count);
wait(Sem_ReadWrite);
Perform the write operation;
wait(Sem_Count);
WriteCount--;
signal(Sem_Count);
signal(Sem_ReadWrite);

}
}

Fig. 7.17 Algorithms for reader–writer problem’s solution with semaphores: No priority

200 Principles of Operating Systems

7.6.3 Solution of Dining-philosopher Problem Using Semaphores
This is a classic problem posed by Dijkstra to understand the synchronization among processes
in an environment when there is insufficient number of resources. In this problem, there are five
philosophers sitting around a round dining table. There is a bowl of rice placed in the centre
of the table. Each philosopher gets a plate to eat and infinite supply of rice. Their work is to
think and eat, whenever they are hungry. To eat, they must make use of two spoons, but there
is scarcity of spoons with which they will eat (Fig. 7.18). The two conditions that need to be
noted here are:

 1. There are only five spoons available, each placed between two philosophers.
 2. Philosophers can start eating only when they have two spoons. They cannot eat even if they

have a single spoon. It means that every philosopher takes one spoon from his or her left
and another from his or right and start eating. After eating, they have to put down both the
spoons.

The problem here is obvious that all the philosophers cannot eat together as there are only five
spoons, whereas there is a demand for 10 if all of them eat together. The solution should be such
that if one philosopher is eating with two spoons, the adjacent philosopher must wait even if he
or she is able to get one spoon. If all the philosophers pick up one spoon at the same time, then
this leads to deadlock, since every philosopher is waiting for the other to release the spoon but
no one is releasing. Therefore, a philosopher should not hold a spoon if he or she is not able to
get the other. The philosopher must check the availability of both the spoons first and then pick
up them. It is possible only when either of the neighbour philosophers is not eating.

The following conditions must hold for the solution of this problem:
 • Only one philosopher can hold a spoon at a time.
 • It must be impossible for a deadlock to occur.
 • It must be impossible for a philosopher to starve waiting for a spoon.
 • It must be possible for more than one philosopher to eat at the same time.

Let every philosopher be denoted by n and numbered from one to five. Similarly, spoons
are numbered from one to five so that a philosopher n has a spoon n on the left and n + 1 on

Fig. 7.18 Diningphilosopher problem

Process Communication and Synchronization 201

the right. However, in general how does a philosopher get spoons from either side? On his or
her left, he or she gets a spoon by having number n and on his or her right, he or she gets it
by calculating (n +1)% 5. Since a spoon is mutually exclusive, consider a semaphore called
Sem_Spoon to protect each spoon. We take an array of five elements of this semaphore type as

Semaphore Sem_Spoon[5];
The algorithm with this solution is given in Fig. 7.19.
The solution ensures that only one philosopher holds a spoon at a time. However, it is prone

to deadlocks and livelocks. As discussed earlier, if all the philosophers hold the spoons on their
left at the same time or hold the spoons on their right at the same time, it leads to deadlock.
It may also be the case that all philosophers put down their spoons letting others to hold the
spoons and try later. It may cause livelock. Thus, in any of these cases, the system will not
progress.

To eliminate the deadlock, the root of the problem must be known. When five philosophers
start picking up the spoons at the same time, it will always lead to a deadlock or livelock.
If we allow only four philosophers to participate, then the deadlock will not happen. If four
philosophers start at the same time, there is one spoon remaining on the table. Therefore, one
of the philosophers will find this spoon on his or her one side and can start eating. Moreover,
the philosopher after eating will put down both the spoons. Consequently, one of the adjacent
philosophers will be able to start eating and so on. In this way, controlling the number of
philosophers avoids deadlock.

To implement this solution, the fifth philosopher must be prevented from sitting with other
four philosophers at the table. A semaphore, Sem_Philosopher, is required with an initial value
of four because at the most, four philosophers must be allowed at a time. Philosophers must
take their place at the table through this semaphore and after eating, they must leave the table.
The solution is given in Fig. 7.20.

Another solution to the dining-philosopher problem to overcome deadlock is an asymmetric
approach that states that there should be at least one left-handed and at least one right-handed
philosopher at the table. Here, all five philosophers will participate but with the above condi-
tion. In this solution, there will not be any deadlock and one philosopher will be able to eat
and eventually, all others will. In Fig. 7.21, two philosophers are left-handed and three are
right-handed. There is one spoon available between the second and the third, even if they all

do{

 wait (Sem_Spoon[n]);
 wait (Sem_Spoon[(n + 1) % 5]);

 eat();

 signal (Sem_Spoon[n]);
 signal (Sem_Spoon[(n + 1) % 5]);

 think();

} while (true);

Fig. 7.19 Diningphilosopher problem’s solution: Attempt 1

202 Principles of Operating Systems

picked up one spoon at the same time. Either the second or the third can start eating. When the
philosopher finishes eating, another can start and eventually, progress will be there.

In the line of asymmetric solution, there can be one more solution with the restriction that
odd-numbered philosophers will first pick up spoons on their left and then the right one and
even numbered philosophers will first pick up spoons on their right side and then the left one.
In Fig. 7.22, all odd-numbered philosophers are able to pick up their first spoon that is on
their left. In this case, all even-numbered philosophers are not able to pick up their first spoon
on their right. Two spoons are free on the table, so Philosopher 1 and 3 can start eating. The
 solution algorithm given in Fig. 7.23 assumes that all the philosophers and the spoons have
been numbered.

do{

 wait (Sem_Philosopher);
 wait (Sem_Spoon[n]);
 wait (Sem_Spoon[(n+1) % 5]);

 eat();

 signal (Sem_Spoon[n]);
 signal (Sem_Spoon[(n + 1) % 5]);
 signal (Sem_Philosopher);

 think();

} while (true);

Fig. 7.20 Diningphilosopher problem’s solution: Attempt 2

4

3

2

5

1

Fig. 7.21 Diningphilosopher problem’s solution: Attempt 3

Process Communication and Synchronization 203

4

3

2

5

1

1

2

3

45

Fig. 7.22 Diningphilosopher problem’s solution: Attempt 4

do{

 if (n % 2 ! = 0) // philosopher number is odd
 {
 wait (Sem_Spoon[n]);
 wait (Sem_Spoon[(n + 1) % 5]);

 eat();

 signal (Sem_Spoon[n]);
 signal (Sem_Spoon[(n + 1) % 5]);
 }
 else // philosopher number is even
 {
 wait (Sem_Spoon[(n + 1) % 5]);
 wait (Sem_Spoon[n]);

 eat();

 signal (Sem_Spoon[(n + 1) % 5]);
 signal (Sem_Spoon[n]);
 }

 think();

} while (true);

Fig. 7.23 Diningphilosopher problem’s solution algorithm: Attempt 4

Another solution for dining-philosopher problem was given by Tanenbaum. He defines the states
of a philosopher. The possible states are thinking, eating, and waiting (hungry). A semaphore
is taken for all the philosophers, on which they wait to start eating. The philosophers can start

204 Principles of Operating Systems

eating only if neither of their neighbours is eating. The state of a philosopher is checked and
updated; therefore, another semaphore is used for this purpose. Assume that the state of all the
philosophers is thinking and all semaphores for the five philosophers are initialized as zero. The
following are the data structures:

int state[5];
Semaphore Sem_State = 1;
Semaphore philosopher [5];
The left and right neighbour of a philosopher are defined as

#define LEFT (n + 5 − 1) % 5 // number of left neighbour of nth philosopher
#define RIGHT (n + 1)%5 // number of right neighbour of nth philosopher

The solution algorithm for Tanenbaum’s solution is given in Fig. 7.24.

void philosopher(int n)
{

do {
think();
get_spoons(n);
eat();
put_spoons(n);

} while (true);
}

void get_spoons(int n)
{

wait (Sem_State);
state[n] = Hungry;
test_state (n);
signal (Sem_State);
wait (philosopher[n]);

}

void put_spoons(int n)
{

wait (Sem_State);
state[n] = Thinking;
test_state (LEFT);
test_state (RIGHT);
signal (Sem_State);

}

void test_state (int n)
{

if (state[n] == Hungry && state[LEFT] ! = Eating && state[RIGHT]!= Eating)
{

state[n] = Eating;
signal (philosopher[n]);

}
}

Fig. 7.24 Diningphilosopher problem: Tanenbaum’s solution

7.6.4 Cigarette Smokers’ Problem
This is another classic synchronization problem posed by Suhas Patil. The problem consists of
three smokers S1, S2, and S3. All smokers prepare a cigarette themselves and smoke continu-
ously with the help of three ingredients: tobacco, wrapping paper, and a match. Each smoker
has infinite supply of only one ingredient. However, a smoker needs two more ingredients to

Process Communication and Synchronization 205

prepare and smoke. For supplying the other two ingredients, there is a supplier having three
vendors. Vendor V1 supplies tobacco and paper, V2 supplies paper and matches, and V3
supplies tobacco and matches. Every vendor supplies two ingredients to the smokers at random.
Depending on the ingredients supplied, the smoker with the complementary ingredient takes
them and prepares the cigarette. The smoker smokes it and signals to the supplier to supply the
next lot of ingredients. For example, S1 has tobacco, S2 has paper, and S3 has matches. If a
supplier offers paper and match, then S1 will take these two ingredients, prepare the cigarette,
and smokes it.

Here, the supplier is the OS system and smokers are applications that require resources to
execute. The problem is that if resources are available, then the OS system must provide these
resources to the appropriate processes. Only the process that can be satisfied with the available
resources should be woken up. In the example, if the ingredients are provided to S2, then it is
of no use because the smoker cannot prepare a cigarette.

Let us discuss its solution now. All three vendors should not supply the materials at the same
time. Therefore, a semaphore, Sem_Supplier is needed so that only one vendor supplies the
materials and others wait. Three semaphores are required on three types of ingredients. There
must be a mechanism for waiting and releasing the ingredients, so three semaphores for each
ingredient are Sem_Tobacco, Sem_Paper, and Sem_Match. The algorithms for all vendors and
smokers are given in Fig. 7.25. The semaphores are initialized as

Sem_Supplier = 1,
Sem_Tobacco = 0,
Sem_Paper = 0,
Sem_Match = 0;

Vendor V1()
{
 wait (Sem_Supplier);
 signal (Sem_Tobacco);
 signal (Sem_Paper);

Smoker with Tobacco()
{
 wait (Sem_Paper);
 wait (Sem_Match);
 signal (Sem_Supplier);

Vendor V2()
{
 wait (Sem_Supplier);
 signal (Sem_Paper);
 signal (Sem_Match);

Smoker with Paper()
{
 wait (Sem_Tobacco);
 wait (Sem_Match);
 signal (Sem_Supplier);

Vendor V3()
{
 wait (Sem_Supplier);
 signal (Sem_Tobacco);
 signal (Sem_Match);

Smoker with Match()
{
 wait (Sem_Tobacco);
 wait (Sem_Paper);
 signal (Sem_Supplier);

Fig. 7.25 Cigarette smoker problem’s solution: Attempt 1

206 Principles of Operating Systems

Problems, however, do exist in this solution. Suppose Vendor V1 supplies tobacco and
paper. Since the smoker with matches is waiting for tobacco and paper, it might be unblocked,
but the smoker with tobacco is waiting for paper, so it may also be unblocked. In such cases,
one smoker will wait on paper and the other on matches. First, it is a wrong solution because
only one smoker should start at a time. Second, if more than one smokers start, then there is a
possibility of deadlock.

David Parnas provided the solution to these problems. He suggested three pushers that will
respond to the signals from three vendors, keep track of the available ingredients, and signal
the appropriate smoker. Suppose there are three Boolean variables to keep track of three ingre-
dients and three more semaphores to signal the appropriate smokers. The smoker with tobacco
will be signaled by one of the pushers. One more semaphore is needed so that all the pushers
should not check and modify the status of Boolean variables at the same time. The additional
data structures are

isTobacco = isPaper = isMatch = False
Semaphore Sem_Pusher_tobacco = 0,
Sem_Pusher_paper = 0,
Sem_Pusher_match = 0,
Sem_BooleanUpdate = 1;
Keeping the vendor algorithms same, the algorithms of each pusher and smoker are shown

in Fig. 7.26. Suppose V1 supplies tobacco and paper, then Pushers A and B are activated.
Pusher A first runs and finds that paper and match are not there yet. It makes is Tobacco =
True. Then Pusher B runs and finds that paper and tobacco are there, signaling the smoker with
matches. Similarly, the other pushers are activated.

7.6.5 Sleeping Barber Problem
This problem is related to synchronization between a barber and his or her customers. In
a barber shop, there is one barber chair that the barber uses to sleep when there are no
customers. A customer, who enters the shop, wakes up the barber and gets a haircut. If the
barber is already busy with a customer and more customers arrive, they wait in the free

Pusher A()
{

wait (Sem_Tobacco);
wait (BooleanUpdate);
if(isPaper)
{

isPaper = False;
signal (Sem_Pusher_match);

}
elseif (isMatch)
{

isMatch = False;
signal (Sem_Pusher_paper);

}
else

isTobacco = True;
signal (BooleanUpdate);

Pusher B ()
{

wait (Sem_Paper);
wait (BooleanUpdate);
if (isTobacco)
{

isTobacco= False;
signal (Sem_Pusher_match);

}
else if (isMatch)
{

isMatch = False;
signal (Sem_Pusher_tobacco);

}
else

isPaper= True;
signal (BooleanUpdate);

Process Communication and Synchronization 207

chairs in the shop. If all the chairs are occupied, they leave the shop. When the barber is
finished with one customer, he or she calls one of the waiting customers and starts hair
cutting. If there are no customers waiting, the barber goes back to his chair and sleeps
until a customer comes and wakes him up. This process continues. The problem here is
to synchronize the activities of the barber and customers with predefined waiting chairs.
It may be possible that the barber could end up waiting for a customer and the customer
waiting for the barber, resulting in a deadlock. Alternatively, customers may not approach
the barber in an orderly manner, leading to process starvation as some customers will not
get a haircut even though they have been waiting. If two customers arrive at the same time
when the barber is busy and there is only one chair vacant, then how will they synchronize
with each other?

The solution needs two semaphores: Sem_Customer for customers and Sem_Barber for
the barber. Sem_Customer is needed so that all customers wait properly and signal the bar-
ber that a new customer has arrived. Similarly, Sem_Barber is needed so that the barber
waits for a customer and signals the customer when free. There are n chairs in the shop for
waiting customers. On the basis of the number of occupied chairs, the number of custom-
ers waiting is estimated. Since the count of customers waiting needs to be updated, there
should be one more semaphore, Sem_CountWaitingCustomers. The following are the data
structures needed:

int NumberofCustomers = 0;
Semaphore Sem_Customer = 0,

Pusher C ()
{

wait (Sem_Match);
wait (BooleanUpdate);
if(isPaper)
{

isPaper = False;
signal (Sem_Pusher_tobacco);

}
else if (isTobacco)
{

isTobacco= False;
signal (Sem_Pusher_paper);

}
else

isMatch= True;
signal (BooleanUpdate);

Smoker with Tobacco ()
{

wait (Sem_Pusher_tobacco);
PrepareCigarette();
Smoke();
signal (Sem_Supplier);

}

Smoker with Paper()
{

wait (Sem_Pusher_paper);
PrepareCigarette ();
Smoke ();
signal (Sem_Supplier);

}

Smoker with Match ()
{

wait (Sem_Pusher_match);
PrepareCigarette ();
Smoke ();
signal (Sem_Supplier);

}

Fig. 7.26 Cigarette smoker problem’s solution: Attempt 2

208 Principles of Operating Systems

Barber()
{

wait (Sem_Customer);
signal (Sem_Barber);
cuthair ();

}

Customer ()
{

wait (Sem_CountWaitingCustomers);
if (NumberofCustomers == n + 1)
{
signal

(Sem_CountWaitingCustomers);
leave the shop;

}
NumberofCustomers++;
signal (Sem_CountWaitingCustomers);
signal (Sem_Customer);
wait (Sem_Barber);
wait (Sem_CountWaitingCustomers);
NumberofCustomers;
signal (Sem_CountWaitingCustomers);
gethaircut () ;

}

Fig. 7.27 Sleeping barber problem’s solution

Sem_Barber = 0,
Sem_CountWaitingCustomers = 0;
The algorithms for customer and barber are given in Fig. 7.27.

7.7 CRITICAL REGIONS

The semaphore is an efficient tool for providing synchronization among processes as described
in Section 7.6. However, in the solution of some complex problems, managing the sema-
phores is dangerous. If any sequence of wait and signal operations of a semaphore is missed or
exchanged, it may lead to data corruption and deadlock. The programmer’s effort is consumed
in managing the semaphores instead of developing the application. Therefore, some high-level
language constructs have been developed to make waiting and signaling operations much
simpler as compared to semaphores. One of them is known as critical region.

In critical region, a global variable, shared, is used and accessed within a CS only. The CS is
defined with the keyword region. If a shared variable S needs to be used among many processes
inside a critical section, then the code should be written as shown in Fig. 7.28. Once S has been
taken as a shared variable, it should be accessed inside a region, that is, critical section. If it is
used somewhere else in the code, the compiler of high-level language will detect this as an error.

The critical region construct, however, is prone to busy waits
because it is not able to block a process if it does not continue
in a critical section. The next process in CS starts, but the previ-
ous process needs to loop to check whether the region is free
to access. Therefore, the critical region is supported with one
more keyword, await (B). Whenever a process tries to enter
a critical region, the Boolean expression B is evaluated. If B is
true, then it is allowed to access the shared variable inside the
region, otherwise the process is blocked until B becomes true.
This type of critical region is called conditional critical region
(CCR). The code given in Fig. 7.28 can be modified as given
in Fig. 7.29. The Edison language for embedded applications
 supports CCRs.

shared <type> S = <initial value>

while (true) {
 region S do
 {

 }

}

//Critical section
//Access shared
variable S here

Fig. 7.28 Critical region

Process Communication and Synchronization 209

7.7.1 Producer–Consumer Problem’s Solution with CCR
The producer–consumer problem can be solved with the help of CCR construct. We need to
take some global variables as shared variables. The data structure is given by

Shared Struct {
Item buffer[n]; // buffer that stores items of type Item in n-sized buffer
int buffer_size = n;
int full = 0; // counter that keeps track of buffer items
} Bounded_buffer.
The producer produces an item in the buffer with the await condition that the buffer is

not full, and similarly, the consumer consumes item with the await condition that the
buffer is not empty. The algorithms for producers and consumers are given in Fig. 7.30.

7.8 MONITORS
The CCR can be dispersed throughout the program. The more structured critical regions are
provided by monitors. The monitor is another high-level language construct used for shared

shared <type> S = <initial value>

while (true) {
region S do
{

await (B);

}

}

//Critical section
//Access shared
variable S here

Fig. 7.29 Conditional critical region

Producer ()
{

while (true) {
region Bounded_buffer do
{

await (full < buffer_size);
produce (); // produce the item
full++;

}
}

}

Consumer ()
{

while (true) {
region Bounded_buffer do
{

await (full > 0);
Consume (); // consume the item
full− −;

}
}

}

Fig. 7.30 Producer–consumer problem’s solution with CCR

210 Principles of Operating Systems

data and process synchronization. The concept similar
to encapsulation used in object-oriented languages for
data hiding is applied in monitors. A monitor is same
as a class type; like objects of a class are created, the
variables of monitor type are defined. The monitor
defines not only the shared data but also the operations
that can operate on this data. The critical regions are
written as procedures and encapsulated together in a
single module. All procedure calls are mutually exclu-
sive. In this way, monitors are superior to CCR and

are more reliable to use in large concurrent systems because they provide data abstraction,
control abstraction, and procedural abstraction through encapsulation. Modula-1, Concur-
rent Pascal, and Mesa are some languages that support monitors. The format of a monitor
is shown in Fig. 7.31.

The synchronization among the processes is provided through the monitor entry procedures.
There may be many processes that wish to enter the monitor at the same time, but it enforces
mutual exclusion. Only one process will be allowed within the monitor; others will be blocked
and made to wait at its boundary. Data inside a monitor may be shared among the processes or
the local data of the procedure. However, the shared data cannot be accessed outside the bound-
ary. Moreover, the wait and signal introduced in semaphores are also implemented in monitors
through the use of condition variables. A process inside a monitor may wait till a specific condi-
tion occurs. This is known as blocking of the process on the condition. The first process in the
queue is activated when the condition becomes true, which is explicitly signaled by the process
inside the monitor. Thus, wait and signal are implemented inside the monitor through condition
variables to enforce mutual exclusion and synchronization. Condition variables are different
from normal variables because each of them has an associated queue. A process calling wait on
a particular condition is put into the queue associated with that condition variable. It means that
the process is waiting to enter a CS guarded by the monitor. A process calling the signal causes
the waiting process in the queue to enter the monitor. The condition variable’s declaration with
wait and signal operations is defined as

Condition <name of variable>;
wait (condition variable);
signal (condition variable).
If the signaling process is still inside the monitor, then the waiting process in the queue

cannot enter the monitor. To force the process to exit immediately after the signal operation,
signal-and-exit monitor is used. However, in some cases, if the signaling process needs to be
inside the monitor for some more time after signaling, then signal-and-continue monitor is
used. It means that the signaling has been done by the process, but it still maintains a lock on
the semaphore. Java programming language implements the signal-and-continue monitor.

7.8.1 Producer–Consumer Problem’s Solution with Monitors
Let us revisit the producer–consumer problem to solve it with the help of monitors; buffer_full
and buffer_empty have been taken as condition variables; and produce_info and consume_info
are two monitor entry procedures through which synchronization between two processes is
achieved. The algorithm is given in Fig. 7.32.

type <name of monitor type> = monitor

monitor entry <name and its parameters>
{

}

Fig. 7.31 Format of a monitor

Process Communication and Synchronization 211

7.9 PROTECTED OBJECTS

Protected objects are another high-level constructs to implement monitors in Ada language.
In this language, the data items are encapsulated into a protected object. The access to these
data items is provided only via protected sub-programs on protected entries. Further, these
sub-programs and entries are executed such that the data are mutually exclusively updated.
Sub-programs are of two types: protected procedures and protected functions. The role of a
protected procedure is to provide mutually exclusive read/write access to the encapsulated
data. On the other hand, the protected functions provide concurrent read-only access to the
encapsulated data. A protected entry is also a protected procedure having same features to
update encapsulated data mutually exclusively and read/write access to the encapsulated data.
However, the protected entry is guarded by a Boolean expression known as barrier. The barrier
is inside the body of the protected object. While the entry call is made and barrier value is
false, the calling function is suspended (queued) until the barrier value becomes true and there
should be no other active task inside the protected object. Thus, the protected objects are used

type Bounded_buffer = monitor
Item buffer[n]; // buffer that stores items of type Item in n-sized buffer
int full = 0;
Condition buffer_full;
Condition buffer_empty;

monitor entry produce_info ();
{

If (full = n)
wait (buffer_empty);

produce ();
full++;
signal (buffer_full);

}
monitor entry consume_info ();
{

if (full = 0)
wait (buffer_full);

Consume ();
full− −;
signal (buffer_empty);

}

Producer ()
{

Bounded_buffer B;

while (true)
{

B.produce_info ();
}

}

Consumer ()
{

Bounded_buffer B;

while (true)
{

B.consume_info ();
}

}

Fig. 7.32 Producer–consumer problem’s solution with monitors

212 Principles of Operating Systems

to implement conditional synchronization. In this way, protected objects make use of good
points of both monitors and CCR. The method of defining the protected objects in Ada has
been shown in Fig. 7.33. Since the protected object interface must provide all the information
required by the compiler to allocate the required memory in an efficient manner, the state of the
object is placed in the private part of the specification.

To call a protected object, the process names the object and the required sub-program or
entry. For example, to call a protected entry the syntax is

Object_Name.Entry_Name (Parameters)

The barrier is thus executed on the call of a protected procedure or entry. On the completion of
a protected procedure or entry, all barriers are re-evaluated. Barrier evaluation, protected-object
queuing, and protected-object execution are collectively known as protected actions.

7.10 SYNCHRONIZED METHODS

This is a Java language construct to implement a monitor. A lock is associated with an object by
the keyword synchronized. When a method is labeled with the synchronized modifier, access
to it can be gained once the lock associated with the object has been obtained (see Fig. 7.34).

protected type <Name of protected object> is
entry <Name of protected entry>;
procedure <Name of protected procedure>;
function <Name of protected function>;

return <return type>;
private

Open : Boolean := False;
end <Name of protected object>;

protected body <Name of protected object>is

entry <Name of protected entry> when Open is
begin

Open := False;
end <Name of protected entry>;

procedure <Name of protected procedure> is
begin

Open := True;
end <Name of protected procedure>;

function <Name of protected function>
return <return type>is

begin
return Open;

end <Name of protected function>;

end <Name of protected object>;

Fig. 7.33 Format of protected objects in Ada

Process Communication and Synchronization 213

Java also has the facility of making a block of statements as
synchronized. The synchronized keyword takes an object as a
parameter whose lock it needs to obtain before it can continue.
The keyword this is used for obtaining the current object (see
Fig. 7.35).

The conditional synchronization implementation is obtained
with the following methods in Java:
 1. public void notify (): This method releases an object

and sends a notification to a waiting process.
 2. public void notify All (): This method sends notifi-

cation to all processes once the object is available.
 3. public void wait (): makes a process wait for the

object till it receives a notification.

7. 11 MESSAGE PASSING SYSTEM

The message passing system allows processes to communicate
through explicit messages as introduced earlier in process com-
munication. In a message passing system, a sender or a source

process sends a message to a known receiver or destination process. The message has a pre-
defined structure through which the sender sends the message. In general, a message passing
system is implemented through two system calls: send and receive. The general format of these
two is given by

send (name of destination process, message);
receive (name of source process, message).
In these calls, the sender and receiver processes address each other by names. The addressing

or mode of communication between two processes can take place through two methods. They
are discussed in Sections 7.11.1 and 7.11.2.

7.11.1 Direct Addressing
In this type of communication, the two processes need to name each other to communicate.
This becomes easy if they have the same parent. For example, Processes A and B communicate
with each other through a message passing system. If Process A sends a message to Process B,
then in this case, the format is

send (B, message);
receive (A, message).

In send () call, the sender process names the Recipient B, and at the same time, in receive
() call, the receiver process names the Sender A. In this way, a link is established between
A and B. Here, the receiver knows the identity of destination of message in advance. This type
of arrangement in direct communication is known as symmetric addressing. The symmetric
addressing is useful in concurrent processes where sending and receiving processes cooperate
with each other. However, this type of addressing is not valid everywhere. For example, a print
server receiving requests from many unknown processes may not be able to know the name
or ID of the sending process in advance. For this purpose, another type of addressing known

Synchronized void <name of method>
{

..

..
}

Fig. 7.34 Synchronized methods

void <name of method>
{

synchronized (this)
{

..

..
}

..

..
}

Fig. 7.35 Synchronized method with this

214 Principles of Operating Systems

as asymmetric addressing is used. Here, the sending process’s name is not mentioned in the
receive call, but it possesses a value returned by a sending process when the receive operation
has been completed.

7.11.2 Indirect Addressing
Another way of communication is indirect addressing where the processes need not name each
other and send the messages directly. In contrast, the messages are sent to a shared area known
as mailbox, which stores them. A mailbox can be regarded as an object where messages can be
stored or removed by the processes. The receiver process that is not in synchronization with the
sending process may receive the message after some time from the mailbox. The sender and
receiver processes should share a mailbox to communicate (Fig. 7.36).

The following types of communication link are possible through mailbox:
One-to-one link: One sender wants to communicate with one receiver; a single link is estab-

lished between two processes. No other processes can interfere in between.
Many-to-one link: Multiple senders want to communicate with one receiver. For example,

in a client-server system, there are many client processes and one server process. The mailbox
here is known as port.

One-to-many link: One sender wants to communicate with multiple receivers, that is, to
broadcast a message.

Many-to-many link: Multiple senders want to communicate with multiple receivers.

7.11.3 Mailbox
A mailbox created among processes has a unique identity as there may be multiple mailboxes
depending on the communication needs of the processes in the system. The mailbox implemen-
tation also has some design issues. The first issue is regarding its creation. Since the mailbox
is a shared area, it needs to be created by a process. The kernel provides the system calls to
create a mailbox. Another issue is about the ownership of a mailbox. The process that creates
it becomes the owner, that is, the receiving process, by default. However, the ownership rights
can also be transferred to other processes. In general, any process that knows the identity of
a mailbox can send messages to it. However, there are some mechanisms to be provided by
the kernel through which senders and receivers share a common mailbox to communicate.
The mailbox can be deleted, or it gets terminated when its owner process terminates. In both the
cases, the sending processes associated with the mailbox must be notified about it.

The assignment of a mailbox to the processes may not always be static. In case of one-to-one
relationship, the mailbox assigned between the two processes are permanent. However, if there
are multiple senders, then there will be dynamic assignment of the mailbox.

Since the mailbox is meant for storing messages, it has a queue to store them. In general, the
message queue is implemented as first-in-first-out, but for some preferred messages, the queue
may also be prioritized.

Mailbox
Sender
process

Receiver
process

Fig. 7.36 Mailbox

Process Communication and Synchronization 215

7.11.4 Synchronization Protocols
The communication among processes need some type of synchronization between them. This
synchronization is governed by rules known as synchronization protocols. The following are
the two common protocols:

Blocking Protocol
In this protocol, both the sender and receiver are blocked until the message is delivered to the
receiver. The advantage here is that the sender is ensured about the delivery of the message to
its receiver. However, there is unnecessary delay in processing of the sender. When both the
sender and receiver follow blocking protocol, they are said to be in rendezvous.

Non-blocking Protocol
In this protocol, both the sender and receiver are non-blocking, that is, they resume their
operation without waiting for the message to get delivered. The advantage here is that the
processing of the sender is not delayed, but it cannot ensure the delivery of the message to
its receiver.

7.12 SIGNALS

Signals can be defined as the inter-process communication mechanisms that notify a process
about any event but do not exchange the data as in message passing. For example, if a child
 process terminates or suspends, then this event should be notified to the parent process as a
signal. Likewise, if a parent process wants to terminate its child process, then the signal about
its termination will be sent. Signals can also be used to notify I/O completion. In this way,
some signals are received by the running processes from other processes asynchronously.
However, there are some events that when executed within the running process must be noti-
fied to it by the kernel synchronously. For example, a process tries to execute an illegal
instruction, an invalid system call, or exceed file size limit, and so on. Thus, signals can be
used either for process to process communication or kernel to process communication. Thus,
a signal may notify a running process synchronously and asynchronously. Based on this con-
cept, there are two types of signals: synchronous and asynchronous. A synchronous signal
occurs due to an instruction executed by the process itself and is passed to this process by
the kernel. An asynchronous signal occurs due to an external event and is passed from one
process to another. The external event in an asynchronous signal is unrelated to any execution
in the receiving process.

When a signal occurs, it is the job of the OS system to determine the process for which
the signal is meant and the way the receiving process will respond to the signal. Generally, a
process responds through a procedure known as signal handler. In other words, the exception
generated in the form of a signal is caught by the process. Sometimes, a signal may be ignored
by the process. In this case, the OS system takes some default action and executes a default
signal handler. The default action may be to abort or suspend the process. The process may also
mask or block a signal, which may be required if the process is already servicing another signal.
The process of masking may be different in various operating systems.

The implementation of signals is similar to that of interrupts. The process receiving the
signal is interrupted. The state of the process is saved before attending the signal handler so
that it can resume its work after the execution of the signal handler. The process executes the

216 Principles of Operating Systems

signal handler for servicing the signal as interrupt service routine is executed for servicing
the interrupt. After the execution, the process resumes its work from where it was inter-
rupted. In fact, the signals are interrupted as a system call. The system call signal consists of
two parameters: One is the address of the destination process and another is the type or the
number of the signal to be sent (Fig.7.37). Since the signal is a system call, the parameters
of signal call are stored in CPU registers and an event-handling routine is executed. This
event-handling routine extracts the information about the destination process and the signal
type. It passes the signal to the destination process after which the control is passed to the
signal handler. However, for this purpose, event-handling routine must know the address of
the signal handler.

To know the address of the signal handler of a signal type, the process receiving the signal
must initialize the signal before it receives the actual signal. The receiving process executes
a system call for this initialization. The system call init signal is used for this purpose
(see Fig. 7.38). The parameters of init signal are signal type and the address of its signal
handler. When this system call is executed, the kernel enters the address of the signal handler
in the signal vector area of the kernel. The signal vector area is similar to interrupt vector
area and will be different for every process. It contains the addresses of the signal handlers

Signal(address of
destination process,
signal type)

Fig. 7.37 Signal received by a process

Init signal (signal_type, address_of_signal_handler)

Signal
vector area

PCB
PC
Registers
State
Signal
Info

1

2

Process area

Kernel area

 1. Address of the signal handler corresponding to its type is added in the
signal vector area.

 2. In the PCB of the process, Signal Info field is added and the address of
the signal vector corresponding to the process is copied here.

Fig. 7.38 Preparation for signal implementation

Process Communication and Synchronization 217

corresponding to all the signals a process supports. Therefore, by executing init signal call,
a process can store addresses of all the signal handlers in its signal vector area. For this
implementation, the PCB will be modified to have a new field signal info containing the
address of the signal vector area of the process.

When an event-processing routine corresponding to a signal system call is executed and
sends the signal to its destination process, it locates the corresponding PCB. From the PCB,
the address of the signal vector area is searched and then the address of the signal handler is
searched in this signal vector area. Once the desired address is found, the control is passed to
the signal handler and thereby it is executed. If the destination process is blocked, then the
kernel may put it into a ready state and after executing the signal handler, it is moved back to
its original state (see Fig. 7.39).

7.13 HARDWARE SUPPORT FOR PROCESS SYNCHRONIZATION

The CS implementation for avoiding race condition and thereby synchronizing the processes
can be achieved if the hardware architecture support is there. In a uni-processor system, a
process will continue to execute unless it is interrupted by a system call or an interrupt. If any
system call or interrupt can be prevented, then the execution of a process in the CS will be
mutually exclusive (see Fig. 7.40).

Signal(address of
destination process,
signal type)

PCB
PC
Registers
State
Signal
Info

Signal
vector area

Signal
handler

1

2

3
4

5

1. The sender sends the signal to the receiver. The process is interrupted.
2. The PCB of the receiver is searched and signal info field is searched for the

address of its signal vector.
3. The address of signal handler is retrieved from signal vector and control is passed

to the signal handler.
4. The signal handler is executed.
5. After executing the signal handler, the control is again passed to the receiver.

Fig. 7.39 Signal implementation

218 Principles of Operating Systems

However, interrupt disabling cannot be always
adopted in a multi-programming environment.
The first problem is that the system’s efficiency is
degraded as other processes are not allowed to be
interleaved. Another problem is that this will only
disable interrupts on a single processor; other pro-
cessors may still allow the interrupts, and disabling
interrupts on all processors may be time consum-
ing and degrade the system efficiency. In addition,
the kernel would not be able to update its data
structures causing race conditions. Thus, it can be
summarized that disabling interrupts is not a good
choice for implementing critical section.

Let us discuss the solution in terms of software
for a moment. Consider a variable lock that can
take values zero and one. When the value of lock
is one, it is said to be locked. A process, wishing
to enter the critical section, first checks the value
of the lock. If it is zero, then it can enter and set the
lock’s value to one, otherwise it loops. Similarly,
when the process exits the CS after the execution,
it sets the lock’s value to zero. In this way, the pro-
cesses will execute in a mutually exclusive manner.
However, it is important to interleave the instruc-
tions for checking, setting, and resetting the value
of lock variable. This is where hardware support
is needed. If these instructions are indivisible, the
mutual exclusion will be implemented inside the
critical section. This idea is adopted by many sys-
tems. In IBM/370 systems, there is an indivisible
instruction called Test-and-Set (TS). TS instruction
performs two actions: First, it tests the value of a
memory byte (for lock variable) to check whether
it is zero or one. If it is zero, then it performs the
second operation, that is, sets the byte to one. The
initial value of a lock is zero. Now, to make these
two operations indivisible, the processor executing
these instructions locks the memory bus so that no
other process may request to access the memory at
this time. In this way, the indivisible operations are
implemented using special machine instructions
(see Fig. 7.41).

Compare-and-swap and Exchange are some other examples of hardware-supported indivis-
ible instructions that have been implemented in systems such as x86, IA32, IA64, and so on.

Process P ()
{
do {

} while (true)

Disable interrupts

Enable interrupts

Critical section

Fig. 7.40 Interrupt disabling for critical section

Process P ()
{
do {

} while (true)

Test and set the lock

Reset the lock

Critical section

test: if (lock = = 1)
goto test;

lock = 1;

lock = 0;

Critical section

 Fig. 7.41 Special instruction for critical section

Process Communication and Synchronization 219

SUMMARY

Interacting processes need to synchronize in various ways.
The chapter discusses various classic synchronization prob
lems and their solutions. Semaphores are one of the effective
solutions to synchronization problems. However, in complex
problems, semaphores may become difficult to implement.
Therefore, some other methods, such as highlevel language
constructs, hardware support, and so on, are used. Synchroni
zation among interacting processes also need to communicate.
Shared memory, message passing systems, and signals are
some of the means of communication discussed in the chapter.

Let us have a quick review of important concepts dis
cussed in this chapter:

 1. Concurrent processes may need to communicate data
and information among themselves. Therefore, there
should be some mechanisms for synchronizing the pro
cesses.

 2. Data access synchronization is used to synchronize
the concurrent processes so that they do not update a
shared variable at the same time.

 3. When more than one processes access and update
the same data concurrently and the result depends on
the sequence of execution in which it takes place, it is
known as race condition.

 4. Control synchronization is used to synchronize the se
quence of execution of two processes where a process
needs to wait for input from the other process.

 5. When every process is holding a resource and waiting
for another resource held by another process, the situ
ation is known as deadlock in the system.

 6. A section of code in the process where the shared data
is accessed and updated is known as CS.

 7. Critical section consists of three parts: entry criteria, CS
code, and exit criteria.

 8. When processes in a system are giving chance to one
another and no process is proceeding, this situation is
known as livelock.

 9. The semaphore is a processsynchronization tool that
protects any resource such as global shared memory that
needs to be accessed and updated by many processes.

 10. The semaphore is accessed with only two indivisible
operations known as wait and signal operations. The
wait and signal operations are also denoted by P and V,
respectively, after the Dutch notations.

 11. The semaphore whose value is either zero or one is
known as binary semaphore.

 12. A semaphore that may take values greater than one is
known as counting semaphore.

 13. In mutex semaphores, the process that locked the CS
can only unlock it.

 14. When a process does not get access to the resource, it
loops continually waiting for it and wastes CPU cycles.
This type of semaphore is known as a spinlock.

 15. Process communication may take place in three ways:
shared memory, message passing, and signals.

 16. In shared variable communication, there is a shared
variable among processes through which they commu
nicate, that is, they are not aware of existence of each
other but coordinate with each other in the execution.

 17. The processes can also communicate through mes
sages and be explicitly aware of the existence of each
other. This type of communication is known as mes-
sage passing.

 18. A message passing system is implemented through
two methods: direct addressing and indirect address
ing. The classification of a messagepassing system is
given by

 19. The direct addressing based communication demands
that the sender and receiver processes know each
other and explicitly name them.

 20. Direct addressing is of two types: symmetric and asym
metric.

 21. In symmetric addressing, both the sender and receiver
know the names of each other in advance and use
them for communication.

 22. In asymmetric addressing, the sender knows the name
of the receiver but the receiver does not know the name
of the sender.

 23. In Indirect addressing, the processes need not name
each other and send the message directly to a shared
area that stores them. This shared area for storing the
messages is known as a mailbox.

 24. The communication link through a mailbox is of the fol
lowing types:

 (a) onetoone (b) onetomany
 (c) manytoone (d) manytomany

220 Principles of Operating Systems

 25. Exceptional notification messages cannot be communi
cated through messagepassing systems as they may
not reach the desired process at the right time. Therefore,
there should be another mechanism that catches the
attention of the process to which this emergency mes
sage is to be passed. This mechanism is known as a
signal.

 26. The operations that cannot be overlapped or interleaved
with execution of any other operations are known as
indivisible or atomic operations.

 27. The highlevel language constructs for implementing
process synchronization are summarized as follows:

Message passing system

Direct addressing Indirect addressing

Symmetric Asymmetric Mailbox

One-to-one One-to-many Many-to-one Many-to-many

High-level lan-
guage constructs

High-level
language

Conditional critical
region

Edison

Monitor Modula-1, Concurrent
Pascal, Mesa

Protected objects Ada

Synchronized
methods

Java

MULTIPLE CHOICE QUESTIONS

 1. The situation where more than one processes access and
update the same data concurrently and the result depends
on the sequence of execution in which it takes place is
known as

 (a) critical section (c) deadlock
 (b) race condition (d) none

 2. Which one of the following is not a process communication

method?
 (a) message passing (c) signal
 (b) shared memory (d) none

 3. Which of the following is not a part of process synchroniza
tion protocol?

 (a) entry criteria (c) signal
 (b) exit criteria (d) critical section

Process Communication and Synchronization 221

 4. When every process is waiting for the other to execute and
no process is proceeding, the situation is known as

 (a) deadlock (c) critical section
 (b) livelock (d) none

 5. The operations that cannot be overlapped or inter
leaved with execution of any other operations are
known as

 (a) atomic operations (c) messages
 (b) system calls (d) none

 6. The semaphore whose value is either zero or one is
known as

 (a) binary semaphore (c) guard
 (b) counting semaphore (d) none

 7. The semaphore that takes value greater than one is
known as

 (a) binary semaphore (c) mutex
 (b) counting semaphore (d) none

 8. In a _____, the process that locks the CS will only unlock it.
 (a) binary semaphore (c) mutex
 (b) counting semaphore (d) none

 9. When a process does not get access to the resource, it
loops continually for the resource and wastes CPU cycles.
It is known as

 (a) deadlock (c) spinlock
 (b) livelock (d) none

 10. A section of code in the process where the shared data is
accessed and updated is known as

 (a) critical section (c) critical procedure
 (b) critical region (d) none

 11. _____is a process synchronization tool that protects any
resource such as global shared memory that needs to be
accessed and updated by many processes.

 (a) message passing system (c) semaphore
 (b) signal (d) none

 12. In ____, a global variable is used with the keyword shared
and accessed within a CS only.

 (a) message passing system (c) critical region
 (b) Critical section protocol (d) none

 13. Which one of the following languages does not support
monitors?

 (a) C (c) Modula1
 (b) Java (d) concurrent Pascal

 14. Which highlevel language construct uses the keyword
await (B)?

 (a) critical region (c) monitor
 (b) conditional critical region (d) synchronized method

 15. Which language uses protected objects for synchronization?
 (a) C (c) Java
 (b) C++ (d) Ada

 16. A protected entry is guarded by a Boolean expression
called ____ inside the body of the protected object.

 (a) protected region (c) barrier
 (b) monitor (d) critical region

 17. Which language uses synchronized methods for
synchronization?

 (a) C (c) Java
 (b) C++ (d) Ada

 18. In which type of link, a mailbox is known as a port?
 (a) onetoone (c) manytoone
 (b) onetomany (d) manytomany

 19. When both the sender and receiver follow blocking protocol
in a message passing system, they are said to be in

 (a) concurrency (c) rendezvous
 (b) control (d) none

 20. ___ can be defined as the interprocess communication
mechanisms that notify the exceptional conditions and
alarms.

 (a) A message passing system
 (b) A signal
 (c) A semaphore
 (d) none

REVIEW QUESTIONS

 1. What are concurrent processes? What are the problems
associated with them?

 2. What is a race condition? Write a program that shows the
data access synchronization problem.

 3. Write a program that shows the control synchronization
problem.

 4. Explain the shared memory method for process communi
cation.

 5. Explain the message passing system for process communi
cation. What types of system is suitable for this method?

 6. Explain the signal system for process communication. What
types of system is suitable for this method?

 7. Distinguish between deadlock, livelock, and spinlock.

 8. Write a program that demonstrates a CS and its entry and
exit criteria.

 9. What are the characteristics of a protocol for having mutual
exclusion in the form of critical section?

222 Principles of Operating Systems

 10. Explain the algorithms for twoprocess synchronization
solution with shortcoming of every attempt.

 11. What is the difference between Dekker’s solution and
Peterson’s solution for twoprocess synchronization solution?

 12. What is the difference between interleaved operations and
indivisible operations? Explain with some program examples.

 13. What is a semaphore? Explain its initial implementation.

 14. What are the problems in initial implementation of a
semaphore? How do you modify it?

 15. Which type of systems a spinlock is useful for?

 16. What is the difference between a binary semaphore, a
counting semaphore, and a mutex?

 17. What is the difference between symmetric and asymmetric
solution of diningphilosopher problem using semaphore?

 18. What is a critical region?

 19. What is a CCR?

 20. What is a monitor?

 21. What are protected objects meant for?

 22. What is a synchronized method?

 23. What is the difference between a CCR and a monitor?

 24. What is the difference between direct addressing and indi
rect addressing for the implementation of a message pass
ing system?

 25. What is the difference between symmetric and asymmetric
addressing?

 26. What is a mailbox? How is it used?

 27. What is the difference between a blocking and a non
blocking protocol for the implementation of a message
passing system?

 28. What is a signal? What is the difference between a synchro
nous and an asynchronous signal?

 29. Define signal handler, signal vector area, and signal info for
the implementation of signals.

BRAIN TEASERS

 1. Prove that all the CS protocol requirements are satisfied in
Dekker’s solution for process synchronization.

 2. Prove that all the CS protocol requirements are satisfied in
Petorson’s solution for process synchronization.

 3. Is nesting of critical sections possible in the system?

 4. Is the reader–writer problem same as the producer–
consumer problem?

 5. Prove that there is a starvation problem in Tanenbaum’s
solution to the diningphilosopher problem.

 6. Can you implement semaphores using monitors? If yes,
write the code.

 7. What are the problems faced by programmers in the imple
mentation of a semaphore?

 8. There are four processes sharing a semaphore for syn
chronizing a shared variable. The semaphore is guarding
the CS of the processes where they update the shared
variable. Initially, the value of the semaphore is three. The
actions taken by the processes in time sequence are given
below:

Time Process Operation

1 P1 P(S)

2 P2, P(S)

P3 P(S)

3 P4 P(S)

4 P1 V(S)

P3 V(S)

5 P2 V(S)

P1 P(S)

6 P2 P(S)

P3 P(S)

Show and explain the current and updated value of a semaphore
at every time instant and the processes in the wait queue.

 9. A buffer has 10 slots. The initial value of empty = 10 and full
= 0. What will be the value of empty and full in the following
conditions?

(a) The producer has inserted five items and the consumer is
not able to consume.

(b) The producer has inserted five more items and the con
sumer is not able to consume.

(c) The producer has produced three more items but cannot
insert as the buffer is full.

 (d) The consumer has consumed five items.

 10. A system with three concurrent processes has a shared print
er. Write a program to implement synchronization between
the processes using a semaphore, a monitor, and a CCR.

 11. Rendezvous is a point of synchronization where two pro
cesses wait for each other and neither is allowed to proceed
until both have arrived. For example, see the Processes A
and B in the following diagram. It needs to be confirmed that

Process Communication and Synchronization 223

A1 happens before B2 and B1 happens before A2. Write a
solution for this rendezvous with semaphore. Can the solu
tion be expanded to more than two processes?

Process A
A1;
A2;

Process B
B1;
B2;

 12. The generalization of rendezvous mentioned in Problem 11
is in the form of a barrier. The synchronization requirement
here is that no process executes a critical point until all the
processes have executed the rendezvous. In other words,
no process would execute the CS until all the processes
have reached the barrier point. If there is any process left,
all the other processes at the barrier point will be blocked.
When all the processes reach at this point, they are allowed
to execute. Can you provide a general solution for imple
menting this barrier?

 13. There are two processes, oxygen and hydrogen. For a
complete water molecule, two processes of hydrogen and
one process of oxygen are required. To assemble these
two processes in water molecules, a barrier is needed
that makes each process wait until a complete molecule is
ready to proceed. In other words,
(a) when an oxygen process arrives at the barrier, and no

hydrogen process is there, it needs to wait for two pro
cesses of hydrogen;

(b) when a hydrogen process arrives, and no other pro
cess is there, it has to wait for one process of hydrogen
and one process of oxygen.

Similarly, there may be other combinations. Provide a
general solution to assemble the processes to prepare a
water molecule.

 14. There is a unisex salon where both males and females can
get the salon service. However, there is a condition that
males and females cannot come to the salon at the same
time. The second condition is that there cannot be more
than three persons in the salon at a time. Give a synchroni
zation solution using semaphores.

 15. There is a dining hall of capacity of 10 people at the most
in a restaurant where families come to enjoy delicious food.
On weekends, however, there is a great crowd in the res
taurant. A person would be entertained only if there is a
vacant chair. If all the seats are full, it means that there is
a single family of 10 members enjoying the dinner. In this
case, the person has to wait until the family leaves. Write a
synchronization solution using semaphores for the custom
ers entering and leaving the dining hall.

 16. A working couple has three babies. The babies cannot be
left unattended: Any one from the couple must be present
at home for the babies. Write a solution for synchronizing
the parents with the babies.

 17. The passengers wait for a bus at a bus stop, and when the
bus arrives, they board the bus. A passenger, who arrives
when the bus is leaving, has to wait for the next bus. The
capacity of the bus is 30. If there are more than 30 pas
sengers waiting, only 30 will be allowed to board and others
will have to wait for the next bus. Write a synchronization
solution to this problem.

8.1 INTRODUCTION

In the previous chapter, the problem of deadlock was introduced during the discussion of concurrent
processes and their synchronization problems. In this chapter, deadlock will be discussed in detail.
Deadlock is another critical problem in concurrent processes, and therefore, it must be known why it
occurs in a system. There are some necessary conditions that give rise to a deadlock. If all of them hold
true, the deadlock will certainly occur. If any one of the necessary conditions is prevented, the prob-
ability of deadlock becomes less. Some deadlock prevention methods have been discussed, but they are
not always applicable. Deadlock avoidance is another approach to deal with deadlocks. Avoidance algo-
rithms have been developed in order to have advance information about occurrence of deadlock. For
that, it requires to know the maximum resource requirement of processes in advance, which is impracti-
cal. Therefore, this algorithm has low importance in practice. Deadlock detection is the method that a
system must adopt if it is not able to prevent or avoid the deadlock. Finally, once a deadlock has been
detected in a system, recovery methods are used. In this chapter,
all these approaches have been discussed in detail.

8.2 DEFINING DEADLOCKS

The computer system uses several types of resources, such as con-
sumable or non-consumable, and pre-emptable or non-pre-emptable.
In a multi-programming environment, the problem starts with
 non-pre-emptable resources. These resources have to be used in a
mutually exclusive manner. But the problem is that resources are
always limited, compared to the number of processes. In this case,
when the concurrent processes request the resources, a deadlock
occurs.
Before defining a deadlock, let us understand how the resource
 allocation is done in a system. In general, the OS follows a
 protocol to use non-pre-emptive resources. The protocol consists
of the following three events:
1. Request: Before using a resource, a process must request for it.

This request is in the form of a system call, and it is passed on
to the kernel. This uses a data structure resource table to store
the information about all the resources in the system. When-
ever the request is received, it checks the status of the resource.

8 Deadlocks

Learning Objectives
After reading this chapter,
you should be able to
understand:
 • Definition of deadlock
 • Resource allocation graph

(RAG)-based representation
of deadlock

 • Wait-for graph-based repre-
sentation of deadlock

 • Conditions for occurrence of
deadlock

 • Deadlock prevention methods
 • Deadlock avoidance methods
 • Banker’s algorithm for dead-

lock avoidance
 • Deadlock detection methods
 • Recovery from deadlock
 • Two-phase locking
 • Starvation

Deadlocks 225

If the resource is free, the requesting process will get it. Otherwise, the requesting process
will be blocked, and it must wait until the resource is free.

 2. Use: If a process gets the resource, the kernel changes the status of resource to allocated and
the state of process to ready, if it has been blocked earlier. The process uses the resource in
a mutually exclusive manner.

 3. Release: After its use, a process releases the resource again through the use of a system call.
The kernel can now allocate this resource to any blocked process or change the status of the
resource to free.
The use of a non-pre-emptive resource may also follow the protocol of a critical section,

which consists of the following criteria:
 1. Entry criteria: The resource should be free while requesting, otherwise the requesting pro-

cess must wait.
 2. Mutual exclusion: The use of resource must be mutually exclusive.
 3. Exit criteria: There must be some criteria for releasing the resources.

A semaphore can help the resources satisfy the above
criteria. It will guard a resource and help in using it in a
mutually exclusive manner (see Fig. 8.1).

Let us consider a system with two concurrent
processes A and B, and with two resources such as one
CD drive and one printer. Both the resources can be
guarded using two semaphores (see Fig. 8.2).
As we know, in a multi-programming environment,
there may be interleaving of concurrent processes. In
this example of Fig. 8.2, if process A starts first and
holds the CD, then process B will not be able to start,
as the CD is held by A. Thus, A will use both resources without any interruption. However, if
there is a little change in the sequence of the instructions, the concurrent access of resources
may not be as simple as shown in the figure.

It may be possible that B changes the sequence of requesting and releasing of the resources
(see Fig. 8.3). It first requests the printer, and then the CD. It releases the CD first, and then
the printer. With this change in the code sequence, there will be conflicting demands of both
processes. In this scenario of concurrent processes, there may be interleaving of instructions as
given in the following space:

1, 1’, 2, 2’.

Process A
{
semaphoresem_resource;

wait(sem_resource);
use the resource; //CS
signal(sem_resource);
}

Fig. 8.1 Using resource with semaphore

Process A
{
semaphoresem_CD;
semaphoresem_Printer;

1 wait(sem_CD);
2 wait(sem_Printer);
3 use the resources; //CS
4 signal(sem_Printer);
5 signal(sem_CD);

}

Process B
{
semaphoresem_CD;
semaphoresem_Printer;

1’ wait(sem_CD);
2’ wait(sem_Printer);
3’ use the resources; //CS
4’ signal(sem_Printer);
5’ signal(sem_CD);

}

Fig. 8.2 Guarding two resources with two semaphores

226 Principles of Operating Systems

Here, process A has held the CD, and process B has the printer. Then A requests for the
printer and is blocked. Similarly, Process B requests for the CD and is blocked. Thus, both
 processes hold one resource and are waiting for another resource held by the other process.
It can be realized here that the system will not progress because both processes wait for an
infinite time. This situation is known as a deadlock.

A deadlock can be defined as a situation when a set of concurrent processes in a system
request for the resources in such a conflicting manner that there is an indefinite delay in
resource allocation. In other words, every process in the system is blocked, and is waiting for
the resources held by the other blocked processes. In this manner, no process is releasing any
resource and cannot be awakened; therefore, the system is in a deadlock.

Deadlocks may occur with non-pre-emptable consumable resources as well. The consumable
resources, like messages once received by a process, are considered as consumed. Fig. 8.4
shows the semaphore as a consumable resource. Another example with messages causing
deadlock is shown in Fig. 8.5.

When a set of concurrent processes are in a deadlock situation, the degree of multi-
programming in the system decreases. This affects the performance of a system. In turn, it

Process A
{
semaphoresem_CD;
semaphoresem_Printer;

1 wait(sem_CD);
2 wait(sem_Printer);
3 use the resources; //CS
4 signal(sem_Printer);
5 signal(sem_CD);

}

Process B
{
semaphoresem_CD;
semaphoresem_Printer;

1’ wait(sem_Printer);
2’ wait(sem_CD);
3’ use the resources; //CS
4’ signal(sem_CD);
5’ signal(sem_Printer);

}

Fig. 8.3 Guarding two resources with two semaphores: Request and release sequence changed

Process A
{
semaphoresem_CD;

1 wait(sem_CD);
2 use the resource; //CS
3 signal(sem_CD);

}

Process B
{
semaphoresem_CD;

1 wait(sem_CD);
2 use the resource; //CS
3 signal(sem_CD);

}

Fig. 8.4 Deadlock using semaphores

Process A
{

Receive_msg(B);

Send_msg(B, message);
}

Process B
{

Receive_msg(A);

Send_msg(A, message);
}

Fig. 8.5 Deadlock using Messages

Deadlocks 227

causes resource starvation because resources are tied up with deadlocked processes. Thus,
deadlock situations are not favourable for a system. Moreover, deadlocks occur not only with
user processes, but with OS processes as well. Thus, it becomes essential to identify and handle
deadlock situations, whenever they occur, either with user processes or system processes.

It is obvious from the above examples that the problem is in the program, designed for the
concurrent processes. Therefore, a careful approach for concurrent programming may avoid
deadlocks. A proper ordering of allocation of resources to the processes may also help. There
are many ways of handling deadlocks. However, let us first discuss how to model a deadlock,
and also the conditions that cause a deadlock in a system.

8.3 MODELLING OF DEADLOCK

The deadlock situation becomes complex when there are multiple processes. It is difficult to
find out which process has caused the deadlock. Therefore, a system needs to be represented
using the processes and the state of resources in the form of a directed graph. This directed
graph, known as a resource allocation graph (RAG), is a useful tool to represent the deadlock
situation in a system. The RAG follows the following notations and rules:
 • The processes are represented as circular nodes.
 • The resources are represented with a rectangle node.
 • The resource node contains some dots to represent the

 number of instances of that resource type. The number
 of dots is equal to the number of instances.

 • An edge, from a process to a resource, indicates that the
process has requested this resource but it has not been
allocated. This is known as a request edge.

 • An edge, from a resource node dot (resource instance)
to a process, indicates that one instance of this re-
source type has been allocated to the process. This is
known as an assignment edge.

In Fig. 8.6 there are four processes and two resources. R1 has two dots, that is, there are two
instances of R1. Similarly, R2 has a single instance. P1 has requested R1, and P3 has requested
R2. One instance of R1 has been allocated to P2 and another one to P3. One instance of R2 has
been allocated to P4.

R

P

R

R

P

PR

R1

R2

P1

P2

P3

P4

Fig. 8.6 Resource allocation graph

228 Principles of Operating Systems

Example 8.1

In a system, the following state of processes and resources are given:
P1→R1, P2→R3, R2→P1, R1→P3, P4→R3, R1→P4
Draw the RAG for the system.

Solution

R1

R3

R2

P1

P2

P3

P4

8.4 CONDITIONS FOR DEADLOCK

It is not necessary that a deadlock will always occur in concurrent process environments.
In fact, there are certain conditions that give rise to a deadlock. The following are the
conditions:

8.4.1 Mutual Exclusion
The resources which require only mutually exclusive access, may give rise to a deadlock. These
resource types cannot allow multiple processes to access it at the same time. For example, a
memory location, if allocated to a process, cannot be allowed to some other process. A printer
cannot print the output of two processes at the same time. Therefore, a printer, if allocated to a
process, cannot be allocated to another.

8.4.2 Hold and Wait
When all the processes are holding some resources and waiting for other resources, a deadlock
may occur.

8.4.3 No Pre-emption
The resources in a deadlock situation are of non-pre-emptable nature, as discussed above. If a
resource cannot be pre-empted, it may lead to a deadlock.

Deadlocks 229

8.4.4 Circular Wait
These three conditions together give
rise to a fourth condition. A chain of
processes may be produced, such that
every process holds a resource needed
by the next process. In this way, a
circular chain of processes is built
up in the system, due to mutually-
exclusive and non-pre-emptable nature
of resources. The RAG shown in Fig.
8.7 depicts a deadlock.
In this way, the four conditions
mentioned above, are necessary for a

deadlock to occur. In fact, the policies inherent in the first three conditions cause the fourth
condition, circular wait.

Example 8.2

In a system, the following state of processes and resources are given:
R1→P1, P1→R2, P2→R3, R2→P2, R3→P3, P3→R4, P4→R3, R4→P4, P4→R1, R1→P5

Draw the RAG for the system and check for deadlock condition.

Solution

R4R1 R3R2

P1 P2 P3 P4

P5

In this scenario, processes P1, P2, P3, and P4 are holding one resource each, and requesting
for one more resource, which is held by the next process. From the RAG drawn above, it can be
seen that there is a cycle, in the form of circular wait in the graph, thereby, causing a deadlock
situation.

In Example 8.2, all the resource types have only a single instance, except R1. There is a
possibility that P5 may release the instance of R1, because it does not want any other resource
type. In that case, it will be allocated to P4. Consequently, the cycle will break and there will
be no circular wait. It means the circular wait is a necessary, but not a sufficient, condition for
a deadlock. If there are more than one instances of resource and there is a circular wait, there

R1 R3R2

P1 P2 P3

Fig. 8.7 RAG with deadlock

230 Principles of Operating Systems

may or may not be a deadlock. Moreover, if each resource type consists of only single instance,
and there is a cycle in the graph, then the deadlock will occur.

In general,
Fact 1: There are four necessary conditions for the occurrence of a deadlock: Mutual exclusion,

hold and wait, non-pre-emption, and circular wait.
Fact 2: The circular wait, along with the other three conditions, becomes the necessary condi-

tion for a deadlock, but not a sufficient, condition.
Fact3: The necessary and sufficient condition for a deadlock is that a cycle must be present in

the RAG, that is, a circular wait is there, and all the resource types in the system have
only one instance.

8.5 DEALING WITH DEADLOCK

After characterizing the deadlocks, the question is how to deal with them. Every system may
be prone to deadlocks in a multi-programming environment, with few dedicated resources. To
deal with the deadlock, the following three approaches can be used:
Deadlock Prevention: This method is very idealistic. It is based on the fact that if any of the
four necessary conditions is prevented, a deadlock will not occur. Although it is very difficult
to achieve this kind of prevention, this method is better, in the sense that the conditions for
deadlock will not be allowed to arise in the system. Moreover, a principle is established that
a discipline is maintained, while the processes request for the resources. Deadlock prevention
will be discussed in Section 8.6.
Deadlock Avoidance: Deadlock prevention is not always possible. Another method to deal
with the deadlock is to avoid it. But avoidance is possible when there is complete knowledge
in advance, about which resources will be requested and used by the processes. At any instant
of time, information such as, how much resources are available, how many are allocated to the
processes, and what the future requests are, must be known. With this information, a process
may be delayed, if its future request may produce a deadlock. In this way, the deadlock may be
avoided. Deadlock avoidance will be discussed in Section 8.7.
Deadlock Detection and Recovery: If a system does not employ either prevention or avoid-
ance methods, then a deadlock may occur. In this case, it becomes necessary to detect the
deadlock. At least, it must be known that a deadlock has occurred in the system. The processes,
due to which the deadlock has occurred, should also be known. We should have a mechanism
to detect the deadlock in the system and resolve it, that is, recover from the deadlock situation.
Deadlock detection and recovery methods will be discussed in Section 8.8.

 8.6 DEADLOCK PREVENTION

The deadlock prevention method is based on the philosophy-‘prevention is better than cure’.
The advantage of this method is that, it avoids the cost of detecting and resolving deadlocks
because this method will make any of the four conditions false and hence, prevent the deadlock.
Let us see one by one how any one of the conditions can be prevented.

8.6.1 Preventing Mutual Exclusion Condition
Non-sharable resources require mutually-exclusive access. It would be wrong to think that the
mutual exclusion condition can be prevented! Rather, sharable resources should be examined.
The reason for this is that, mutual exclusion is an inherent nature of a resource, which cannot

Deadlocks 231

be changed. If we have to use a resource among multiple concurrent processes, it has to be used
in a mutually-exclusive manner. Otherwise, no process would be able to get the desired output.
So, it is impossible to prevent mutual exclusion, but we can recognize resources which are
sharable that can help us prevent the deadlock situation in the system. For example, read only
files do not require mutually-exclusive access; any process can read this type of file. So, basi-
cally mutual exclusion cannot be prevented, but the idea here is to recognize and use sharable
resources as much as possible.

8.6.2 Preventing Hold and Wait Condition
To prevent the hold-and-wait condition, two protocols can be used. The first protocol is that,
instead of requesting a resource on a need basis, each process should request all its resources at
one time, and in advance. No process will be allowed to execute until it gets all of its declared
resources. In this way, there will not be any conflict, pertaining to the requesting of resources,
and no hold-and-wait condition will be generated in the system. However, this protocol suffers
from the following disadvantages:

 1. A process may be idle for a long time, waiting for all the resources. This may decrease the
degree of multi-programming.

 2. Resource utilization will be reduced because all the resources are not used throughout the
execution of the process. For example, a process copies some data from the CD to the hard
disk and then sends the same for printing. In this case, it needs three resources, that is, the
CD drive, hard disk space, and the printer. But if this process gets all the resources alto-
gether, then the printer will be idle most of the time, because it will be used only at the end
of the execution.

 3. Some frequently-used resources will always be held up with a process, resulting in starva-
tion of other processes.

The second protocol is that a requesting process should not be holding any resource. If a pro-
cess needs another resource, it must first release the resource it is currently holding. This pro-
tocol may reduce the drawbacks of the first protocol to some extent.

8.6.3 Preventing No Pre-emption Condition
This condition is necessary to break because sometimes deadlock can be prevented easily by
pre-empting the resources. In this method, if a process, holding some resources already, wants
additional resources that are not free, then it should not wait. Rather, it should pre-empt all its
resources, so that a deadlock situation can be avoided. After some time, when the resources are
free, the process may request all its resources altogether and start the execution. However, there
is a disadvantage. Imagine a situation, where a process is using a printer and the printer needs
to be pre-empted in between. The problem with this method is that when a process releases its
resources, it may lose all its work. Thus, this prevention method should be used with care and
with the following guidelines:

 1. The pre-emption is based on the execution of the processes. Suppose there are two processes,
A and B. Each of them is holding a resource and needs another resource held by the other.
This will give rise to a deadlock, if we do not pre-empt any of the resources. If A is about
to complete its execution, while B has just started, the resource of B should be pre-empted,
such that A finishes its execution without a deadlock.

232 Principles of Operating Systems

 2. The pre-emption is based on the priority level of the processes. If process B is of higher
priority, the resource of process A should be pre-empted, and B should be allowed to
 complete first.

This method is costlier, in the sense that a process loses all its work and needs to start again.
However, it is better and is applied in rare cases only.

8.6.4 Preventing Circular Wait
Since circular wait condition is the consequence of the other three conditions, it can be
prevented, if any of these three conditions is prevented. The circular wait can be prevented
independently also through resource-ranking or ordering. Resource ordering is a method,
in which every resource type in the system is given a unique integer number as an identi-
fication. Whenever a process requests a resource, it is checked whether it holds any other
resource. If it does, IDs of both resource types are compared. If the ID of a requested
resource is greater than the ID of the resource it holds, the request is valid. Otherwise, it is
rejected. Thus, following this resource-ordering, the processes can request resources in an
increasing order of their IDs. This specific ordering of requests will not allow the circular
wait condition to arise. We can represent resource-ordering as a one-to-one function, given
in the following space:

F: R→ I
where, R is the set of resource type and I is the set of natural numbers for IDs.

This protocol implies that if a process wants to request a resource type with lower ID as
compared to the ID of resource type it holds, it must release all its resources.
The protocol is good enough for preventing the circular wait condition, but at the same time,
it is very difficult to implement it practically. Most of the resources are non-pre-emptable,
and if they are released in between, in order to acquire other resources, a process will lose its
work. The process then needs to acquire these released resources again. In this way, this pro-
tocol may lead to a degraded performance of the processes. Some guidelines that may help in
implementing this protocol are:

 1. The ordering of resource types should be done depending on its use in the system. For
 example, if a system is using a CD drive and a printer, the printer should be given a higher
ID as compared to the CD drive, as it will be used at the end of the processing. Thus, careful
numbering of resource types may help.

 2. All processes should request the resources with lower ID, in the beginning itself.

Example 8.3

A system uses three types of resources: hard disk, CD drive, and printer. Each of the resource
types are allocated an ID, as shown in Fig. 8.8, and processes can request the resources in an
increasing order of their IDs, if they are already holding a resource.

In this example, processes P1, P2, and P3 hold and request resources, as shown in the
figure. If P3 requests the CD drive or hard disk, the request will be denied, as the ID of
these resources is less than the ID of the printer. This will generate a cycle or circular
wait condition in the system, thereby, producing a deadlock situation. The problem can be
resolved by following the guidelines listed in Section 8.6.4. Thus, this example illustrates
that circular wait can be prevented by allocating to resource types and IDs in an increas-
ing order, with the condition that processes will request resources only in an increasing
order of their IDs.

Deadlocks 233

 8.7 DEADLOCK AVOIDANCE

Deadlock prevention is used to prevent any of the conditions that cause deadlock. However, it
results in degraded system efficiency and low device utilization. Therefore, this method cannot
always be implemented.

Another mechanism for avoiding deadlocks is deadlock avoidance, which checks in
 advance, the condition that may give rise to a deadlock. It indicates the state of a system, such
that if the request of a process for a resource gives rise to a deadlock condition, it is denied, and
must wait. In this way, the deadlock is avoided. If the state of the system is such that it does
not lead to a deadlock, then it is known as a safe state. The converse, that is, deadlock state is
known as an unsafe state. The algorithm is run to check whether the requested resource changes
the state of the system. If the resource will lead to an unsafe state, the request must wait, and
if it does not affect the safe state, the request is granted. The deadlock avoidance algorithm, in
the form of safe state protocol, must be run dynamically, whenever allocating a resource to a
process. In this way, deadlock avoidance approach is better than deadlock prevention, because
it does not constrain the resources or processes, and there is no system performance degradation
or device underutilization.

The avoidance approach requires the knowledge of the maximum demand of all processes,
all the resources available, the resources allocated presently, and the future requests of the
 processes. Whenever a resource request arrives, it is checked for its feasibility. A resource
request is feasible, only if the total number of allocated resources of a resource type does not
exceed the total number of that resource type in the system. For example, say, the maximum
available instances of a resource type are 4. Suppose the current allocated resources are 3. If
a request for the resource arrives, it can be granted. However, if another request for the same
resource type arrives, it will exceed the total available instances of that resource type, and there-
fore, this request must be rejected.

With the advance knowledge of system resources and process requests, it is possible to
 define a safe state, which allows process requests without deadlock. However, if there is no pos-
sible safe state, the process is not allocated the resource, and it waits until there is a safe state in
the system. For example, in a system there are three processes P1, P2, and P3. There are three
resources, the CD drive, the hard disk, and the printer. P1 requires the CD drive and the printer.
P2 requires the hard disk and the printer, and P3 requires all three resources. If the sequence of
resources and releases for each process is known, the system can be maintained in a safe state.

ID = 1 ID = 7ID = 5

P1 P2 P3

Hard
disk

CD
drive

Printer

Fig. 8.8 Preventing circular wait

234 Principles of Operating Systems

Example 8.4

Consider a system with four processes that use resource R1, whose instances are 15. Each pro-
cess declares its maximum demand of resources in advance, as shown in the following space.
What will be the situation in the system at time instants t1, t2, and t3?

Process Maximum demand Demand at time instants

t1 t2 t3

P1 9 6

P2 4 2 3

P3 6 3 1

P4 8 2

Solution

At time instant t1, all processes can be allocated the resources, because each process does not
exceed its maximum demand, and the sum of their demands is less than the total number of
instances, that is, 15. Further, the system will be in a safe state, because the remaining resource
demands of all the processes can be satisfied in a safe sequence P2, P1, P3, P4. At t1, after
 allocating the current demands, the remaining numbers of instances are 2. So, only P2 can be
satisfied at this moment. However, after allocating 2 instances to P2, the process execution will
be finished and it will release all 4 instances. So we now have 4 instances, and P1 or P3 can be
satisfied. Similarly, the process goes on for other processes, and finally all the processes can be
allocated instances of resource without any delay.

At time instant t2, there is a request of 3 more instances from P2. But this will exceed the
declared total number of maximum demand of P2. So it is not a feasible request and hence, it
would be rejected.

At time instant t3, there is a request for one more instant from P3. This is a feasible request,
but the remaining demands cannot be satisfied, and may lead to a deadlock. Since after allocat-
ing the demands of resources at t2, we have remaining one instance with which no process can
be satisfied, the system may be in a deadlock state.

This example illustrates the fact that some resource request may convert a safe state into an
unsafe state. So the idea is to check the state of the system, whenever a process requests for a
resource. This will be dealt with in detail, in subsequent sections through deadlock avoidance
algorithms. However, one point to be noted here is that an unsafe state does not always lead
to a deadlock situation. In the above example, it may be possible that P2 does not demand its
remaining resources, but releases all the resources it is holding. In this case, other processes
may continue to execute, and there will be no deadlock. This happens only if the processes do
not demand the maximum resources required and release their resources for the time being.
Therefore, an unsafe state does not always cause a deadlock. But from the system’s viewpoint,
resources are not allocated to the processes that cause an unsafe state, and they need to wait
until there is a safe state.

8.7.1 Deadlock Avoidance for Single Instance of Resources
To avoid a deadlock in a system, where every resource type has a single instance of resource,
the RAG can be used again, but along with a new edge, known as claim edge. The claim

Deadlocks 235

edge is the same as request edge drawn from a process to a resource instance, but this does
not mean that the request has been incorporated in the system. It is drawn in dotted lines. The
RAG can be used in such a way that when a process requests for a resource, a corresponding
claim edge is drawn, and the graph is checked before converting it to a request edge. That is,
a process request will not be entertained until the cycle check has been done. After the cycle

check, if it is confirmed that there will be no circular
wait, the claim edge is converted to a request edge.
Otherwise, it will be rejected. In this way, the dead-
lock is avoided.
In Fig. 8.9, it can be seen, that if there is a request
from P3 for R2, a claim edge is drawn. However, it can
be observed that if this request is considered, a cycle
will be generated and deadlock will occur. Hence, the
request will be denied.

8.7.2 Dijkstra’s Banker’s Algorithm for Deadlock Avoidance in Multiple Instances of
Resources

The RAG-based cycle check cannot be applied when there are multiple instances of resources,
because in this case, it is not for certain that deadlock will occur. Therefore, an algorithm
is designed to check the safe state, whenever a resource is requested. Dijkstra designed an
algorithm, known as the banker’s algorithm. The algorithm takes analogy of a bank, where
customers request to withdraw cash. The banker has some data, based on which, cash is lent
to a customer. The banker cannot give more cash than what a customer has requested for, and
the total available cash. Similarly, to design the algorithm for checking the deadlock, some
data structures are maintained, such that whenever a resource is requested, it can be checked
whether the request maintains the safe state of the system. If it does, the request can be granted;
otherwise, the process must wait until there are sufficient resources available.

The banker’s algorithm has two parts. The first part is a Safety Test algorithm that checks
the current state of the system for its safe state. The second part is resource request-handling
algorithm that verifies whether the requested resources, when allocated to the process, affect the
safe state. If it does, the request is denied. In this way, banker’s algorithm avoids the deadlock.

Data Structures

 1. Total resources in a system
It stores the total number of resources in a system. Let us denote it as
Total_Res[i] = j
 It means, there are j instances of resource type R

i
 in the system. Thus, this is a vector of

length r, that is, there are r numbers of resource types.
 2. Maximum demand of a process

 Whenever a process enters the system, it declares its maximum demand of resources, which
is stored in this data structure. Let us denote it as,
Max[i,j] = k
 It means, process P

i
 has a total demand of k instances of resource type R

j
. Thus, this data

structure is a p × r matrix, where p is the number of processes, and r is the number of resource
types.

R1 R2 R3

P1 P2 P3

Fig. 8.9 RAG with claim edge

236 Principles of Operating Systems

 3. Current allocation of instances of each type of resource
 It indicates the current allocation status of all resource types to various processes in the
system. Let us denote it as,
Alloc[i,j] = k
It means, process Pi is allocated k instances of resource type R

j
. Thus, this is also a p × r matrix.

 4. Number of available resources
 This data structure stores the current available instances of each resource type. Let us denote it as,
Av[i] = j
 It means, j instances of resource type R

i
 are available. Thus, this is a vector of length r, that

is, there are r numbers of resource types.
 This data structure is, in fact, the difference between the total resources and the allocated
resources, that is,
Av[i] = Total_Res[i] – ∑

all processes
Alloc[i] where i is the resource type R

i
.

 5. Current need of a process
 This data structure indicates the current remaining resource need of each process. Let us
denote is as,
Need[i,j] = k
 It means, process P

i
 may require k more instances of resource type R

j
, so that it can com-

plete its execution. Thus, this is a p x r matrix.
 This data structure is, in fact, the difference between the maximum demand of a process and
the available resources, that is,
 Need[i,j] = Max[i,j] – Alloc[i,j]

 6. Request for a process
 Request

i
 is the vector to store the resource request for process P

i
. Let us denote it as

Req
i
[j] = k

It means, process Pi has requested k instances of resource type R
j
.

Safety Test Algorithm
Let Current_Avail and Marked be two vectors of length n and p, respectively. Safe String is
an array to store the process IDs.

The algorithm is given by:

 1. Current_Avail = Av
 2. Initialize Marked as:

for(i=1; i<=p;i++)
 Marked [i] = false;

 3. Find a process Pi such that
Need

i
≤ Current_Avail and Marked[i] =false

 4. if(found)
{
Current_Avail = Current_Avail+ Alloc

i

Marked [i] = true
Save the process number in SafeString[]
go to step 3.
}

Deadlocks 237

 5. if(Marked[i] == true) for all processes, then the system is in safe state.
Print SafeString.
Otherwise, the system is not in safe state, and is in deadlock.

Resource Request Handling Algorithm
Let Req

i
 be the vector to store the resource request for process P

i
.

if(Req
i
Need

i
)

the request is not a feasible request and is rejected.
elseif (Req

i
>Av)

Resources are not available, so the process must wait.
Otherwise,
 {
Z that the requested resource has been allocated to the process and update the state as:
Av = Av – Req

i

Alloc
i
 = Alloc

i
 + Req

i

Need
i
 = Need

i
 − Req

i

Execute the Safety Test Algorithm, assuming the state has been changed.
if (state is safe)
 Change the state in actual and the resource will be allocated to the process.
Otherwise,
 Keep the state unchanged and do not allocate the resource to the process.
}

Example 8.5

Consider a system with the following information. Determine whether the system is in safe
state.
Total_Res

R1 R2 R3

15 8 8

Process Max Alloc

R1 R2 R3 R1 R2 R3

P1 5 6 3 2 1 0

P2 8 5 6 3 2 3

P3 4 9 2 3 0 2

P4 7 4 3 3 2 0

P5 4 3 3 1 0 1

With the information given above, let us find the available resources. The number of available
resources is calculated by:
Av[i] = Total_Res[i] – ∑

all processes
Alloc[i], where i is the resource type R

i

Hence, the available resources are:
Av

238 Principles of Operating Systems

R1 R2 R3

3 3 2

Next, let us find the Need matrix by subtracting Alloc from Max as given in the following space:
Process Max Alloc Need(Max – Alloc)

R1 R2 R3 R1 R2 R3 R1 R2 R3

P1 5 6 3 2 1 0 3 5 3

P2 8 5 6 3 2 3 5 3 3

P3 4 8 2 3 0 2 1 9 0

P4 7 4 3 3 2 0 4 2 3

P5 4 3 3 1 0 1 3 3 2

Now let us execute the Safety Test algorithm to find whether the new state is safe.
Current_Avail = Av = [3 3 2]

Marked

P1 false

P2 false

P3 false

P4 false

P5 false

The sequence of processes should be such that each process satisfies the criteria, Need≤Current_
Avail. A process, after finishing its execution, must release all the resources it is holding, so that
the next process can avail them as per its need. The following table shows the process found,
new value of Current_Avail, and SafeString. Repeat the procedure until all the processes com-
plete their execution.

Process found Current_Avail SafeString [] Marked []

P5 [3 3 2] + [1 0 1] = [4 3 3] P5 Marked[P5] = true

P4 [4 3 3] + [3 2 0] = [7 5 3] P5, P4 Marked[P4] = true

P1 [7 5 3] + [2 1 0] = [9 6 3] P5, P4, P1 Marked[P1] = true

P2 [9 6 3] + [3 2 3] = [12 8 6] P5, P4, P1, P2 Marked[P2] = true

P3 [12 8 6] + [3 0 2] = [15 8 8] P5, P4, P1, P2, P3 Marked[P3] = true

From the table, it can be observed that the Marked value for all processes is true. Therefore,
the system is in safe state. The Safe String of processes is {P5, P4, P1, P2, and P3}, that is, the
processes can be scheduled in this order, to have a safe state in the system.
Example 8.6

Consider the Example 8.5and assume that the system is in safe state. At this moment, if P4
requests two more instances of R1 and two instances of R3, will the system still be in safe state?
According to the requests made by P4, we have the request vector as:

Req4 = [2 0 2]
Now let us execute the resource request-handling algorithm, to find out whether the request can
be granted.
First check that Req

4
 is less than Need

4
. We find that [2 0 2]<[4 2 3].

Deadlocks 239

Next, check that Req
4
is less than Av. We find that [2 0 2]≤[3 3 2].

So, we pretend that we allocate these resources and update the following:
Av = Av – Req

4
 = [3 3 2] – [2 0 2] = [1 3 0]

Alloc
4
 = Alloc

4
 + Req

4
 = [3 2 0] + [2 0 2] = [5 2 2]

Need
4
 = Need

4
 – Req

4
 = [4 2 3] – [2 0 2] = [2 2 1]

With the updated data structures, the state will be as given in the following space:
Av

R1 R2 R3

1 3 0

Process Max Alloc Need

R1 R2 R3 R1 R2 R3 R1 R2 R3

P1 5 6 3 2 1 0 3 5 3

P2 8 5 6 3 2 3 5 3 3

P3 4 9 2 3 0 2 1 9 0

P4 7 4 3 5 2 2 4 2 3

P5 4 3 3 1 0 1 3 3 2

Now let us check again whether the system is in a safe state.
Current_Avail = Av = [1 3 0]
There is no process whose Need≤Current_Avail. Therefore, no process can be started, and thus,
this state would be unsafe, if the request for P4 is granted. The unsafe state may lead to dead-
lock, so the OS should not grant the resources requested by P4, until the system is in a safe state.

Deadlock avoidance is a wonderful algorithm, as it alerts the system in advance that the
system is switching from safe state to unsafe state, and that there may be a deadlock situation.
But is it really possible to implement this algorithm? The answer is no. One reason is that it
is almost impossible to have the knowledge of maximum demand of each process in advance.
Without this information, the algorithm cannot be implemented. However, with some analysis
on a stable system, the maximum demand of processes for resources can be estimated, and
therefore, the deadlock avoidance algorithm can be implemented. Another reason is that in a
 multi-programming system, the number of processes is not fixed. In a time-sharing system, the
processes are dynamic in nature; hence it may not be possible to have all the data structures
required for deadlock avoidance algorithm. Another practical problem is the unavailability
of resources at the required time. It is important that the resources must be available when a
process requests for them, otherwise the algorithm cannot be implemented, even if the system
knows in advance the total resources required by the process. Thus, the algorithm, due to these
practical reasons, is rarely implemented. There is a lot of scope for researchers to investigate
the problems inherent in this algorithm and make possible its implementation in order to avoid
the deadlock.

8.8 DEADLOCK DETECTION

Despite its strength to avoid the deadlock, deadlock avoidance algorithm cannot be imple-
mented, due to practical reasons. Thus, if a system is not able to implement neither dead-
lock prevention nor a deadlock avoidance algorithm, it may lead to a deadlock situation.

240 Principles of Operating Systems

However, sometimes it is necessary to detect
whether there is a deadlock in the system,
and if there is, then which process is causing
it. It is better to find the deadlock process, as
it helps in recovering from the deadlock. The
recovery process is the consequent action of
deadlock detection, which will be discussed in
the next section.

Deadlock detection algorithm also has two
parts, such as avoidance, that is, detection of
single instance of resource and detection for
multiple instances of resources. Let us first dis-

cuss detection algorithm for single instance. But before dis-
cussing it, we need to have some modification in the RAG.
We will use RAG for detecting the cycle as done in avoid-
ance algorithm. It becomes difficult to store the information
of request edge and assignment edge, as it is required to
store all these information, in order to make a RAG detect
a cycle in it. Therefore, in the graphical representation of
RAG, some modification is done and a new graph, known
as wait-for graph, is formed. In fact, RAG is optimized in

wait-for graph by eliminating the resource nodes, and there are only edges between the pro-
cesses. In Fig. 8.11, the wait-for graph has been shown, corresponding to the RAG shown
in Fig. 8.10. There is an edge from P1 to P2, because P1 waits for R1, and R1 is held by
P2. Therefore an edge exists between the processes, only if one process waits for another.
For example, an edge P

a
 → P

b
 exists in wait-for graph only if there are edges P

a
 → R

i
 and

R
i
→P

b
 in RAG.

To detect the deadlock, it is checked whether the wait-for graph contains a cycle. If it does,
there is certainly a deadlock in the system (see Fig. 8.11). In this way, this cycle detection can
be done periodically or when required to detect a deadlock in the system.

8.8.1 Deadlock Detection in Multiple Instances of Resource Types
When there are multiple instances of resource types, then cycle detection is not sufficient to
detect deadlock in a system. An algorithm, similar to the banker’s algorithm, is designed. This
will check the system state with some data structures maintained and signal whether the system
is in deadlock. The data structures used to detect deadlock are almost the same as in avoidance
algorithm. The following data structures are used:

 1. Total resources in system
It stores the total number of resources in the system. Total_Res[i] = j

 2. Current allocation of instances of each type of resource
 It indicates the current allocation status of all the resource types to various processes in the
system.
Alloc[i,j] = k

 3. Number of available resources
This data structure stores the current available instances of each resource type.
Av[i] = j
Av[i] = Total_Res[i] – ∑

all processes
Alloc[i], where i is the resource type R

i
.

R1 R2 R3

P1 P2 P3 P4

Fig. 8.10 RAG example

P1 P2 P3

P4

Fig. 8.11 Wait-for graph for Fig. 8.10

Deadlocks 241

 4. Request of each process

This data structure stores the current request of each process in the form of p×r matrix,
where p is the number of processes and r is the number of resource types. Let us denote it as
Req[i,j] = k
It means, process P

i
 is requesting k instances of resource type R

j
.

Detection Algorithm
Let Current_Avail and Marked be two vectors of length n and p respectively. Safe String is
an array to store the process IDs.

 1. Current_Avail = Av
 2. For all i = 1 to p,

 Initialize Marked as Marked [i] = false;
 If (Alloc

i
 = 0)

 Initialize Marked as Marked [i] = false;
 3. Find a process P

i
 such that

Req
i
≤Current_Avail andMarked [i] =false

 4. if (found)
 {
Current_Avail = Current_Avail + Alloci
Marked [i] = true
Save the process number in Safestring[]
go to step 3.
 }

 5. if (Marked[i] == true) is for all processes, then the system is not in deadlocked state.
Print Safe String.
Otherwise, the system is in deadlock caused by Process P

i
.

Example 8.7

Consider a system with the following information. Determine whether the system is in dead-
lock situation.
Total_Res

R1 R2 R3

5 6 4

Process Alloc Req

R1 R2 R3 R1 R2 R3

P1 1 0 2 1 0 0

P2 1 1 0 4 0 2

P3 1 1 0 0 1 2

P4 0 2 1 2 1 0

P5 1 2 0 3 1 4

With the information given above, let us find the available resources. The total number of
 available resources is calculated by:

242 Principles of Operating Systems

Av[i] = Total_Res[i] – ∑
all processes

Alloc[i], where i is the resource type Ri
Hence, the available resources are:

 Av

R1 R2 R3

1 0 1

Now let us execute the detection algorithm.
Current_Avail = Av = [1 0 1]

Marked

P1 False

P2 False

P3 False

P4 False

P5 False

The sequence of processes should be such that each process satisfies the criterion, Need≤Current_
Avail. A process, after finishing its execution, must release all the resources it is holding, so
that the next process can avail them as per its need. The following table shows the process
found, new value of Current_Avail, and SafeString. Repeat the procedure until all the pro-
cesses complete their execution.

Process found Current_Avail SafeString [] Marked []

P1 [1 0 1] + [1 0 2] = [2 0 3] P1 Marked [P1] = true

P3 [2 0 3] + [1 1 0] = [3 1 3] P1, P3 Marked [P3] = true

P4 [3 1 3] + [0 2 1] = [3 3 4] P1, P3, P4 Marked [P4] = true

P5 [3 3 4] + [1 2 0] = [4 5 4] P1, P3, P4, P5 Marked [P5] = true

P2 [4 5 4] + [1 1 0] = [5 6 4] P1, P3, P4, P5, P2 Marked [P2] = true

From the table, it can be observed that Marked value for all the processes is true. Therefore,
the system is not in a deadlock state. The SafeString of processes is {P1, P3, P4, P5, and P2},
that is, the processes can be scheduled in this order, and therefore, there will be no deadlock.

Example 8.8

In Example 8.7, if the process requests one additional instance of resource type R2, find out
whether the system is in a deadlock state.
Let us see the changed state of the system, with additional request for the resource by P4.

Process Alloc Req

R1 R2 R3 R1 R2 R3

P1 1 0 2 1 0 0

P2 1 1 0 4 0 2

P3 1 1 0 0 1 2

P4 0 2 1 2 2 0

P5 1 2 0 3 1 4

Deadlocks 243

Everything being same as in previous example, let us find the Safe String

Process found Current_Avail Safe String [] Marked []

P1 [1 0 1] + [1 0 2] = [2 0 3] P1 Marked [P1] = true

P3 [2 0 3] + [1 1 0] = [3 1 3] P1, P3 Marked [P3] = true

P4 - - Marked [P4] = false

P5 - - Marked [P5] = false

P2 - - Marked [P2] = false

It can be observed that after P3, no process request can be satisfied. Therefore, the system is in
deadlock situation, due to processes P4, P5, and P2.

Deadlock detection is a costly algorithm to implement, as it incurs the cost of detecting the
state of a system and affects system performance as well. Therefore, it is always a question of
how often the algorithm should be run to detect the deadlock. It can be periodic, at regular in-
tervals of time, or at arbitrary times, depending on the system’s requirements, such as, if there
is a decrease in CPU utilization. If the deadlocks are frequent in a system, it is necessary to
run the algorithm periodically, otherwise it can be run on the demand of the system. Deadlocks
generally occur when a request cannot be granted immediately. Therefore, it would be a good
alternative if the detection algorithm is invoked, every time a process requests for a resource.
The detection algorithm checks which process caused the deadlock. However, this solution is
expensive, as it increases the overhead of computation time.

 8.9 RECOVERY FROM DEADLOCK

The consequent action of deadlock detection is recovery from it. The aim of deadlock detec-
tion is to find out which process has caused the deadlock and resolve it, so that the system can
resume its work. Imagine two cars approaching each other on a narrow bridge, through which
only one car can pass at a time. If no car is ready to move back, then of course there will be
deadlock situation forever. This is same as in a no pre-emption condition. So the only solution
for resolving the deadlock is for one of the cars to move back (rollback) and allow the other car
to pass through the bridge, thereby resolving the deadlock. An OS handles the deadlock in the
same way. There should be pre-emption of resources from one process, so that the other process
can continue and the deadlock is removed. Another solution is to abort the processes which
cause the deadlock. There are various solutions, but each one should be adopted with a lot of
care. Rollback or aborting a process cannot be implemented always, as there is a cost incurred
in each solution. There are some factors which guide us to choose a particular recovery method.
The following are some recovery methods:

8.9.1 Resource Pre-emption
Resource pre-emption is one of the methods with which to break a deadlock. In this method,
resources are pre-empted from a process, which has caused the deadlock. These resources are
then given to other processes, such that other processes execute their completion and in this
way, the deadlock is removed. In other words, no pre-emption condition for deadlock must be
broken, wherever applicable. However, there are various issues while adopting this solution.
The first issue is to choose a process whose resources can be pre-empted and given to other
processes. This decision is driven by the following cost factors:

244 Principles of Operating Systems

Number and type of resources a deadlocked process is holding
 If the number of resources is less compared to the requirement of other processes to break the
deadlock, or if the process is not holding the desired type of resource, then those resources need
not be pre-empted.
Execution span of a process
The process with the longest execution span should be pre-empted first. It may be possible
that execution of a process is near completion, but it is in deadlock, due to shortage of just
one resource instance. In this case, it is not feasible to pre-empt the process. A process, whose
execution has just started and requires many resources to complete, will be the right victim for
pre-emption.
Starvation of process
Based on the factors above, it may be possible that the same process is always chosen for resource
pre-emption, resulting in a starvation situation. Thus, it is important to ensure that the process will
not starve. This can be done by fixing the number of times a process can be chosen as a victim.
After resource pre-emption of a deadlocked process, what happens to this process? The process
is not able to retain its position in execution, and cannot continue. This process either has to be
rolled back or be aborted and restarted. The decision depends on the situation of the processes
in the system. Both approaches involve cost. The abort solution involves the cost of execution
of the process from the start. Rollback involves the cost of maintaining the checkpoints in the
system and rollback to a safe state through the checkpoint.

8.9.2 Rollback
Checkpoints are also a good solution to recover from a deadlock, apart from using it in the
resource pre-emption. The checkpoints save the state of a system at specified point in time.
The resource state is saved in a separate file, along with the memory image. When a deadlock
is detected, the state is analyzed and the deadlock process is detected. Further, the needed
resource, which can break the deadlock, is also detected. The process, holding that resource, is
rolled back to a safe checkpoint. After allocating the resource to the desired process, the system
continues, thereby, recovering from the deadlock. The process, which was rolled back, restarts
from the checkpoint.

There is another advantage of using the roll back method. The processes can be rolled back
to a safe checkpoint and restarted from that point, such that, there is no deadlock.

8.9.3 Abort the process
 Another method to recover from the deadlock is to abort some process, such that there is no
deadlock in the system. However, it is a costly solution in terms of process computation. Al-
ternatively, one process can be aborted at a time. After aborting a process, run the deadlock de-
tection algorithm to confirm whether the deadlock still exists. Like resource pre-emption, here
too, a victim process is chosen. Of course, the victim process should be such that the system is
the least affected and runs without deadlock. There may be many factors to decide the victim
process, which are as follows:
Number and type of resources a deadlocked process is holding
If the number of resources is less compared to the requirement of other processes to break
the deadlock, it would be a waste, if we abort this process. Similarly, if the desired type of
resource is not held by the process to be killed, then there is no use to kill it. Thus, this method
is dependent on the number and type of resources the deadlocked process is holding.

Deadlocks 245

Execution span of a process
If a process is just near completion, and is in deadlock, due to requirement of only one resource
instance, it is not good to kill this process. A process, which has just started, or requires many
resources to complete its execution, will be the right victim for termination. Thus, the execution
span of a process may determine the victim process.

Process priority
If the process is of high priority, there is danger in aborting it.

Type of process
Aborting of interacting processes may affect the system’s performance, as it will not able to
interact with the user. Hence, it is always better to choose batch processes as victim.

8.10 PRACTICAL APPROACH FOR DEADLOCK HANDLING

All the methods, discussed above, can be employed in a system. However, the practical
approach for handling deadlocks is to ignore it. Why? All the deadlock-handling strategies
are costly to implement. The prevention methods, as discussed, are not applicable on every
resource type. Only circular wait condition can be broken. The avoidance algorithm is also
limited, because it is not possible to predict the maximum resources required by the processes
in advance. The detection algorithm, employed in a system where there are too many processes,
incurs cost. Thus a system, which is not mission-critical or business-critical, will ignore the
deadlock, instead of employing any of the methods discussed.

However, the deadlock-handling methods have their importance in real-time systems. Real-
time systems, where the system must work continuously, cannot afford to ignore the deadlock.
Like a PC or any other system, a real-time system cannot reboot or restart, because it may result
in data loss. Therefore, all deadlock methods are employed in a real-time system with modifica-
tions. Distributed database systems and web systems also require deadlock-handling methods,
because they handle a large number of records of various users and websites.
No single method can be employed to handle the deadlock, instead an integrated strategy can
be prepared for it. Some steps are given in the following space:
 • Assign a resource to a process only when it is needed, that is, a process should not claim

the resources in advance. This will reduce resources which need mutually-exclusive ac-
cess. Mutual exclusion of some devices can also be handled with the help of creation of
virtual devices. For example, spooling is used for making a virtual printer, and thereby,
preventing the mutual exclusion condition.

 • Apply the resource pre-emption, wherever possible. Some of the resources are pre-
emptable by nature, for example, memory is a pre-emptable resource. In case of non-pre-
emptable resources, depending on the nature of job of a process, there can be a forced
pre-emption. For example, if a deadlocked process is using a printer, but the amount of job
done by this process is very little, then we can pre-empt the printer forcibly and give it to
some other process, so that the deadlock is broken.

 • Always use a linear ordering of resource types, so that there is no circular wait, when pro-
cesses request the resources. It is better to request the resources in an increasing order of
their IDs, as discussed in Section 8.6.4.

 • Deadlock detection is always a better choice in comparison with avoidance algorithm.

246 Principles of Operating Systems

8.11 TWO-PHASE LOCKING

Two-phase locking is a concurrency control method in database deadlocks. In a database sys-
tem, several processes need to lock the records, and then update them. In this environment, a
deadlock may occur very easily. To avoid this type of deadlock, two-phase locking is used. This
is done in two phases. In the first phase, known as growing or expanding phase, a process tries
to lock all the records it needs, one at a time. After locking all the records, in the second phase,
that is, the shrinking phase, it starts updating the records and releases the locks. If the process
is unable to lock any of the records in the first phase, it releases all the records it has locked so
far. It may start its first phase again and continue the procedure. In this way, two-phase locking
and updating avoids the deadlock situation in database systems.

8.12 STARVATION

Starvation has been discussed at many points while discussing concurrent processes. In concur-
rent processes, starvation is another problem, which is closely related to deadlocks. It results
when a process is not able to execute, as it is lacking enough resources due to process-scheduling
or resource-scheduling. For example, if a high-priority process always gets the execution over
a low-priority process, it causes the low-priority process to starve. To recover from a deadlock,
as discussed earlier, the process can be aborted or rolled back repeatedly. This may again cause
starvation in the system. Hence, starvation may occur in a system in many ways.

As in deadlocks, when the processes are not able to execute, it is the same case with starva-
tion. The difference is that in deadlock, there is no future execution sequence that can get them
out of it. But in case of starvation, there exists some execution sequence that is favorable to
the starving process, although there is no guarantee it will ever occur. Thus starvation is not a
deadlocked situation, but an indefinite postponement of getting the resources to the processes.

One solution to the problem of starvation in processes with priorities may be to temporarily
increase the priority of a low-priority process gradually, so that it may also get the execution.
This is known as aging. Aging helps lower-priority processes get rid of starvation. In case of
starvation resulting from deadlock recovery methods, a complete detail, regarding processes,
should be traced, for example, which process was last aborted or rolled back. The same process
should not be aborted or rolled back again and again, to avoid its starvation.

SUMMARY

Deadlocks, if not detected properly, can harm a
 multi-programming system. The four necessary conditions
have been discussed in this chapter to understand deadlocks
completely. A deadlock is represented through a resource al-
location graph (RAG) and wait-for graph. Both graphs have
their importance in algorithms designed for deadlock handling.
Circular-wait is the most important necessary condition for
deadlock occurrence. In fact, it is the result of the first three
conditions. If we are able to break the circular wait condition,
the deadlock will not occur. A RAG representation easily de-
tects a deadlock through cycle detection, where all resource
types have a single instance. In case of multiple instances of
resource types, there are other algorithms. Deadlocks can be

handled through prevention methods, that is, to prevent any of
the four necessary conditions from occurring. But it may not
be possible every time to prevent the necessary conditions.
Another method to deal with a deadlock is deadlock avoid-
ance algorithms. It requires information about the resources,
processes, and demands of processes in advance and with
this knowledge, it indicates whether a deadlock will occur.
This approach is not practical, as it is not possible to know in
advance the maximum resources required by a process in a
system. The third approach to handle the deadlock is to detect
it at an appropriate time, and recover from it. The detection
algorithm is beneficial, if the system is able to recover from it.
If there is no recovery, the system cannot proceed further, and

Deadlocks 247

MULTIPLE CHOICE QUESTIONS

 1. When a set of concurrent processes are in a deadlock
situation, the degree of multi-programming in the system

 (a) increases (c) unaffected
 (b) decreases (d) none

 2. RAG is a useful tool to represent a in a
 system.

 (a) deadlock (c) resource allocation
 (b) race condition (d) none

 3. An edge from a process to a resource in RAG is known as
 (a) assignment edge (c) claim edge
 (b) request edge (d) none

 4. An edge from a resource instance to a process in RAG is
known as

 (a) assignment edge (c) claim edge
 (b) request edge (d) none
 5. The method based on future knowledge of process

 requests, is known as
 (a) deadlock prevention (c) deadlock detection
 (b) deadlock avoidance (d) none

 6. A mechanism, by which we try to constrain the conditions
for deadlocks, is known as

 (a) deadlock prevention (c) deadlock detection
 (b) deadlock avoidance (d) none

 7. Which one of the following is not true?
 (a) Safe state means there is no deadlock.
 (b) Unsafe state always leads to a deadlock.

 (c) There are four necessary conditions for a deadlock.
 (d) All resources are not pre-emptable.

 8. Which one of the following is correct?
 (a) Need[i,j] = Av[i,j] – Alloc[i,j]
 (b) Need[i,j] = Max[i,j] – Alloc[i,j]
 (c) Need[i,j] = Alloc[i,j] – Max[i,j]
 (d) None

 9. To detect deadlock in single instance of resource types,
which graph is used?

 (a) RAG (c) Directed graph
 (b) Wait-for graph (d) None

 10. Which one of the following is not a deadlock recovery method?
 (a) Resource pre-emption (c) Rollback
 (b) Abort the process (d) Hold and wait

 11. Deadlock may occur with
 (a) consumable resources
 (b) non-pre-emptable resources
 (c) non-pre-emptable and non-consumable resources
 (d) all of the above

 12. Deadlock may occur with
 (a) system processes
 (b) user processes
 (c) both system and user processes

(d) none of the above

 13. Deadlock prevention is ___possible.
 (a) always (c) sometimes
 (b) not always (d) none

is, therefore, useless. Therefore, the information acquired from
the detection algorithm helps in recovering from the deadlock.
The last method is to ignore the deadlock. All the methods
discussed for deadlock handling are costly in terms of the
 system’s performance.

Let us have a quick review of important concepts
 discussed in this chapter:

 • Deadlocks can be defined as a situation in a system,
in which a set of concurrent processes request the
 resources in such a conflicting manner, that there is an
indefinite delay in resource allocation.

 • Resource allocation graph (RAG) is a directed graph
 consisting of nodes and edges that represent the
 resources requested and held by the processes.

 • The four necessary conditions for occurrence of a
 deadlock are: Mutual exclusion, hold and wait, no
 pre-emption, and circular wait.The necessary and suf-
ficient condition for a deadlock is that a cycle must be

present in the RAG.
 • Deadlock prevention is a set of mechanisms, by

which at least one of the four necessary conditions can-
not hold.

 • Deadlock avoidance algorithm indicates whether the
state of the system is safe or unsafe. An unsafe state
means the deadlock may occur, if the resource request is
granted, otherwise it is safe.

 • An unsafe state does not always lead to a deadlock
 situation.

 • Deadlock detection algorithm is used to detect deadlocks
in the system and the deadlock process.

 • RAG is optimized in wait-for graph, by eliminating the
resource nodes, and the edges are drawn between
 processes only.

 • Recovery from deadlock can be done through resource
pre-emption, roll back, and abortion of the process.

248 Principles of Operating Systems

REVIEW QUESTIONS

 1. Give examples of deadlocks with every type of resource.

 2. What is the effect of deadlock in a system?

 3. What is a RAG? Explain all its components.

 4. What are the necessary conditions for occurrence of a
deadlock?

 5. What is the necessary and sufficient condition for
occurrence of a deadlock?

 6. Explain all the methods for preventing a deadlock.

 7. What is the difference between deadlock prevention and
avoidance?

 8. How do you use deadlock avoidance with a single instance
of resource type?

 9. How do you use deadlock avoidance with multiple instances
of resource types?

 10. What is a claim edge in RAG? What is its use in deadlock
avoidance?

 11. Explain all the steps in the banker’s algorithm.

 12. What is the difference between deadlock avoidance and
detection?

 13. What is the drawback of deadlock avoidance algorithm?

 14. What is wait-for graph? Where is it used?

 15. How do you use deadlock detection algorithm with a single
instance of resource type?

 16. How do you use deadlock detection algorithm with multiple
instances of resource types?

 17. What are the factors which must be considered in resource
pre-emption method for recovery from deadlock?

 18. What is rollback? What is its importance?

 19. What are the guidelines to be followed while rolling back a
process?

 20. How do you select a victim process to abort a process, while
recovering from a deadlock?

 21. What is the practical approach for deadlock handling?

 22. What is two-phase locking?

 23. What is the difference between starvation and deadlock?

BRAIN TEASERS

 1. ‘Deadlocks are not always deterministic’. Comment on this
statement.

 2. Prove that circular wait condition may be produced, if all the
other three necessary conditions of a deadlock are present
in a system.

 3. How many operations are required to detect a cycle in a
RAG, assuming that there are p number of processes in the
system?

 4. How many operations are required to check a safe state in
banker’s algorithm, assuming there are p numbers of pro-
cesses and r numbers of resources?

 5. A system consists of three processes P1, P2, and P3.
There is a single resource type Printer but with four instanc-
es. Each process declares the maximum resource demand
of 3 instances. Is deadlock possible in this situation?

 6. Can there be a deadlock in the main memory?

 7. Demonstrate, with an example, how a safe state may be-
come unsafe.

 8. Does an unsafe state always lead to a deadlock? Demon-
strate your answer with an example.

 9. Name the deadlock handling method that can be applied for
the following resource types:

 a) Tape drives b) Files c) Main memory d) Semaphores
d) Disk space

 10. Check whether a deadlock is present in the following:
 a) Two processes with two files
 b) Two processes access and lock database records
 c) Three processes with CD drive, printer, plotter

 11. There is no practical use of deadlock avoidance approach.
How can we benefit from this algorithm?

 12. In a multi-programming and multi-user environment, the
processes are dynamic, that is, the new users, and there-
fore, their processes log in and log out frequently. Does it
affect the implementation of deadlock detection algorithm?

 13. How do you recover a process from deadlock through roll-
back, if it has updated some data in a website?

 14. In a system, the following state of processes and resources
is given:
 R2→P1, P1→R2, P2→R3, R1→P2, R3→P3, P3→R4,
P4→R3, R4→P4, P4→R1, R1→P5

 Draw a RAG and wait-for graph for the system, and check
the deadlock condition.

 15. Consider a system with the following information. Deter-
mine whether the system is in safe state.
Total_Res

R1 R2 R3 R4

10 5 7 8

Deadlocks 249

Process Max Alloc

R1 R2 R3 R4 R1 R2 R3 R4

P1 4 2 0 2 4 2 0 2

P2 1 0 0 0 1 0 0 0

P3 3 1 2 1 0 1 3 1

P4 1 0 2 0 0 0 0 0

P5 0 1 1 3 1 0 1 2

Determine whether the system will be in safe state, if a request arrives from the following processes:
a) P1 requests two instances of R2, and one of R4.
b) P3 requests one instance of each resource type.
c) P5 requests one instance of R1, two instances of R3, and one instance of R4.

 16. Consider a system with the following information. Determine whether the system is in a deadlock situation.
Total_Res

R1 R2 R3

8 5 7

Process Alloc Req

R1 R2 R3 R1 R2 R3

P1 1 0 2 1 0 0

P2 0 0 0 0 1 1

P3 2 1 1 2 0 0

P4 1 1 0 1 0 1

P5 2 2 2 1 1 0

 17. Five processes are competing for resources R0, R1, R2, and R3 where (R1, R2, R3, R4) = (6, 4, 4, 2). The maximum claim of
these processes and the initial resources allocated to these processes, are given in the following space:

Processes Max Alloc

R1 R2 R3 R4 R1 R2 R3 R4

P1 3 2 1 1 2 0 1 1

P2 1 2 0 2 1 1 0 0

P3 1 1 2 0 1 1 0 0

P4 3 2 1 0 1 1 1 0

P5 2 1 0 1 0 0 0 1

Does this initial allocation lead to a safe state? Explain with reason.
If P2 requests two instances of R1, one instance of R3, and one instance of R4, check whether the system is still in safe state.
If it is, find out the safe sequence of process execution.

250 Principles of Operating Systems

 18. Explain the deadlock and starvation problems in dining-philosophers’ problem.

 19. Why can deadlock not happen in two-phase locking?

 20. Two-phase locking can lead to starvation. How?

 21. What will be the consequences of a deadlock in a real-time system?

 22. What are the strategies that can be employed to handle deadlock in a real-time system?

9.1 INTRODUCTION

In Chapter 1, many basic concepts of operating systems were discussed. The process concept described
in previous chapters always contains a single thread. However, a process may also contain several
threads giving rise to the concept of multi-threading. Multi-threading is implemented in modern operat-
ing systems for fast responsiveness and better efficiency. In this chapter, the difference between a pro-
cess and a thread has been explained keeping in view why threads are required. All the issues related to
the thread implementation have been discussed throughout the chapter.

9.2 PROCESS AND THREAD

In chapter 5, while learning the basic concepts of process management, it was established that the context
switch time is proportional to the frequency of interrupted processes. If a running process is interrupted,
theOS must save the context of that process and load the context of the next scheduled process. This
 context switch time incurs overhead in terms of the system’s performance as no useful work is performed
by the processor during this time. If the processes are interrupted frequently, the context switch time
increases, thereby giving rise to a high overhead. This was the
reason that in round robin process scheduling, the time quantum
was not chosen as too short. A small time quantum will interrupt
the processes very frequently causing more context switches of
processes and thereby resulting in high overhead.

Besides the frequent process switching, there is another factor
that adds to the overhead. The factor is that a process is considered
not only a unit of computation but also a unit of resource
 scheduling, resource accounting, and so on. The state saved in the
PCB related to resource ownership increases the size of the PCB,
thereby increasing the overhead. The more the information in the
PCB the more time it will take in saving and restoring it. Thus, the
context switch time is a problem in process management.

The context switch time can be reduced by reducing the
 information stored in the PCB. However, it is not possible to
 ignore the information for the sake of reducing the overhead.
There is another solution. To elaborate the solution, let us take an
example of a web server and client system. A web server needs
to provide service to multiple clients concurrently. To meet this

9 Multi-threading

Learning Objectives
After reading this chapter,
you should be able to
understand:
 • Difference between a process

and a thread
 • Difference between Multi-tasking

and Multi-threading
 • Thread control block and its

fields
 • Usage of multi-threading concept
 • User threads
 • Kernel threads
 • Hybrid threads
 • Thread Recycling
 • Thread Pooling

252 Principles of Operating Systems

requirement, web server runs as a single process and then creates multiple processes that accept
the clients’ requests. Whenever a request is received by the server, it creates a new process.
In this multi-programming environment, there are multiple processes serving various users
 accessing the web server, and there is process switching, which causes context switch overhead.
The saved context of the current process and the restored context of the next scheduled process
differ in the least. Both contexts differ only in their contents of CPU registers, PC value, and
stack. Other information in both the processes is same. The reason is that all the processes have
been created by the server process and share the code section, data section, and other resources.
If the code and data section of two processes are same, then it is redundant to store and restore

the same thing. This type of redundancy leads to high
context switch overhead. If this is eliminated, then the
context switch time can be drastically reduced.

To implement this solution, the concept of the thread
is used. A process when scheduled for execution has
a control thread known as thread of execution. Each
process has a single thread of execution as shown in
Fig. 9.1. When a client process requests the web server,
the server creates its child processes. Every child pro-
cess has same code section and data section as that of
the parent process shown in Fig. 9.2. This way, the con-
currency is achieved through multiple processes, but
this process model has a high overhead as discussed in
Section 9.2. In this sense, a process is also known as a
heavy weight process.

CS DS RES

Registers Stack

CS: Code section
DS: Data section
RES: Resources

Fig. 9.1 Process as a single thread of execution

CS DS RES

Registers Stack

Fig. 9.2 Web server process divided into child processes

Multi-threading 253

If the functions of various child processes of
web server are implemented as multiple threads
of execution under a single (parent) process, then
saving and restoring the redundant information can
be avoided. In other words, threads of the same
process share the code, data, and resources of the
process. Therefore, a thread is a unit of concur-
rency within a process because it implements the
various functions of the process and shares the ad-
dress space as shown in Fig. 9.3. Therefore, when-
ever there is a need to switch between the threads
of the same process, the context of a thread will
be saved and restored in the form of its PC, CPU
registers, and stacks, that is, code and data section
are not part of the context of a thread. In this sense,
a thread is known as a light weight process (LWP).
There is no need to save or restore the code sec-

tion, data section, or state of the resources. The code, data, and resource state is with the process
only, but execution of a process is in the form of threads. This drastically reduces the context
switch overhead.

The process concept is unaffected by the implementation of threads within it. A process still
exists with its environment with code, data, stack, CPU registers, and PC. In addition, it has
multiple threads that perform their designated tasks sharing the code section, global data, and
resources of the process. Every thread consists of the following information that is not shared
with a process:

Processor registers
Every thread works on its designated processor registers. Therefore, when there is a thread switch,
these must be saved and restored.

Stack
Every thread has its own stack. Each frame of the stack stores local variables and returns ad-
dress of the procedure called by the thread. It may be user stack or kernel stack depending on
the type of the thread.

 PC
Every thread has unique program counter value so that they execute independently.

Other info
The thread has some other unique information such as its state, priority, and so on.

9.3 MULTI-TASKING VS MULTI-THREADING

The concept of implementing multiple threads to achieve concurrency within a single process
is known as multi-threading. This term should not be confused with multi-tasking or multi-user
systems. Multi-user and multi-tasking, as discussed in Chapter 1, are similar as they both are
implemented at the level of a process. Multi-threading, on the other hand, is implemented at the
thread level. This is the major difference between multi-tasking and multi-threading. However,

CS DS RES

Registers

Stack

Registers Registers

Stack Stack

PC PC PC

Other info Other info Other info

Fig. 9.3 A process divided into three threads of execution

254 Principles of Operating Systems

multi-threading works the same way as multi-tasking, that is, the processor switches back and
forth among the threads as with the processes and provides the illusion that threads are running
in parallel. In other words, the original concept of multi-threading (switching to another thread
when one thread needs to wait for an I/O) is similar to that of multi-programming.

9.4 THREAD CONTROL BLOCK

Just like the PCB, in multi-threading, there is a thread control block (TCB) to save and restore
the context of a thread in case of thread switching. The only difference is that the information
in the TCB is lesser as compared to the PCB. The fields associated with a TCB are

 1. Thread ID (TID)
It is a unique identification number of the thread.

 2. PC
 Indicates the address value at which the next instruction of the thread will be executed by
the processor.

 3. Registers
 CPU registers are used for the execution of a thread. While the thread is in execution, data
registers, address registers, control registers, and status registers are used for executing and
controlling the process. The information in registers must be saved when there is a change
in the state of the threads so that it may resume its execution in its next turn.

 4. State
 A thread also has a number of states just like a process. For scheduling the threads, the
 current state of a thread must be known.

 5. Priority
 A priority number may be assigned to a thread as provided to a process.

 6. Event information
 This is the event for which a blocked process is waiting. If the awaited event is over, the
information regarding this event must be stored in this field so that the status of the blocked
process is changed to ready.

 7. Information related to scheduling
 The information related to schedul-
ing of a thread, such as the waiting
time and the execution span of the
thread the last time it was running, is
also stored.

 8. Pointer to owner process
 The thread will be created within a
process and it needs to access the
execution environment of its owner
process. Thus, the TCB contains a
pointer to this information.

 9. TCB pointer
 This is a pointer to another TCB that
is used to maintain the scheduling
list.

Stack Stack Stack

TCB TCBTCB

PCB Address space

Stack

Fig. 9.4 Process’s threads each with their stack and TCB

Multi-threading 255

In a multi-threaded process environment, the process image is same as described in Chapter 5,
but every thread within the process consists of its stack and TCB. Let us take an example.
Suppose there are three threads in a process. Each thread contains its stack and TCB as shown
in Fig. 9.4. The process has its address space, stack, and PCB as discussed in process image.
It means that the process and its data structures are unaffected by the introduction of multiple
threads but by the advantage that now there is no need to switch between various processes
because the functions of these processes have been implemented within the process through
the multiple threads.

9.5 USAGE OF MULTI-THREADING

The following are the usages of multi-threading:
 1. Low context switch overhead

 This is the primary benefit of implementing multi-threading. In thread switching, the
 information to be saved and retrieved is less as compared to the process switching. Low
context switch overhead increases the degree of concurrency and thereby improves the
 performance of the system.

 2. High computation speed up
 Due to less information in the TCB and low context switch overhead, there is a tremendous
increase in computation speed. As compared to the single-threaded process model, the
 computation speed up is high, even on a uni-processor system. On a multi-processor system,
the concurrency can be increased further if the threads are executed in parallel.

 3. No need of IPC
 Unlike the processes in a multi-programming environment, the threads in a multithreaded
process do not require system calls to communicate with each other. This is because they
share the code and data section of the process. Thus, it saves cost and time resulting in a
high speed up.

 4. Decreased response time
 As a consequence of the increased computation speed, the response time to a user de-
creases inspite of the execution of many other tasks. For example, in a multithreaded web
server, every client gets immediate response due to a dedicated thread corresponding to
each client.

 5. Sharing of resources
 All the threads share the resources allocated to their owner process. Since the state of
 resources is maintained by the process, limited resources are utilized without maintaining
their state.

 6. Efficient management
 It is easy and economical in terms of memory and speed to create and destroy a thread as
compared to a process. Some examples are as follows:

 (a) In UNIX, thread creation is 10 times faster than process creation. Similarly, it takes less
time to terminate a thread as compared to a process termination.

 (b) In Solaris 2, thread creation is 30 times faster than process creation.

It is easy to manage multiple activities within a process in the form of threads at a very
low cost as compared to multiple-process creation because multi-threading comes with the
advantage of low context switch overhead, no IPC, and zero state management of code and
global data.

256 Principles of Operating Systems

It may seem that a process and a thread have same effect in the system. In the case of a web
server, either processes or threads can be used to serve the clients. Therefore, to a programmer,
it is not clear when to use the multiple threads within a process. The following guidelines help
to decide when multi-threading is to be used:

 (a) The application will obviously be first divided into multiple processes. However, in the
next stage, observe closely whether some or all the processes are using the same code and
data section and their functions are same in the application. This guideline is similar to the
 example of the web server application discussed earlier. The web server needs to serve vari-
ous clients for which it creates various processes whenever a client connection is established.
Here, it can be observed that each process will use the same code and data section of the web
server process and has the same function: to serve the clients’ requests. For this type of appli-
cations, it is costly to create multiple processes as there will be high context switch overhead
and more time will be taken to manage them. On the other hand, multiple threads within the
web server process share the code section, data section, and resources of the process.

 (b) There are several tasks inside a process, which if performed by a single thread of control,
may affect its performance. These tasks if executed in parallel will enhance the speed of
computation of the whole process. For example, a web browser performs several tasks:
 accepts request from the user, communicates with the server, displays an image on the
screen, and so on. If the browser is a single-threaded process, some functions will be
 delayed. If the browser is currently displaying an image, and at the same time the user tries
to enter his or her request, either the image will not be displayed or the response to the re-
quest will be delayed. Thus, if there are multiple functions in an application that can be run
in parallel, multiple threads should be used.

 (c) Some applications are highly interactive. If these applications are designed as a single-
threaded process, the response time will be longer. To provide user with a quick response,
the application must be designed as multithreaded. In a single-threaded process, only one
user request can be served at a time, thereby delaying the response time. The Word or
spreadsheet applications where the user expects a quick response should be designed as
multithreaded. In Word application, while the user is typing the text, one thread should be
there to accept the keyboard commands and text so that the user is able to see what he or
she is typing. Another thread, known as spell checker, checks the typed texts for spelling.
Similarly, there is a reformatting thread to perform functions such as deleting or changing
the document setup. If any of the tasks is missed or delayed, the user will not get the desired
performance from the application. This is the reason that all these tasks must be performed
in the form of threads so that they can be performed concurrently.

As discussed, each thread has its own purpose in the application. Not all the threads are
 interactive. For example, in Word application, one thread serves the purpose of saving the
contents of the Word file, that is, periodically saving the contents from RAM to disk. However,
according to the guideline, the application with more interactive functions must be designed as
a multithreaded application.

9.6 TYPES OF THREADS

As with the process model, threads can also be of two types:
 1. User threads
 2. Kernel threads

Let us discuss these in detail.

Multi-threading 257

9.6.1 User Threads
The user threads are are managed by the application in user space. By default, an application
starts running with a single thread of control, that is, as a process managed by the kernel.
 However,, the application may spawn new threads based on the requirements of the process.
These threads are created and managed through a thread library provided by the OS so that
application programmer need not write the routine for thread management. The thread library
or thread package consists of the following functions related to the thread management:
 • Thread creation and deletion
 • Assigning priorities to the threads
 • Thread scheduling
 • Thread synchronization
 • Communication between the threads
 • Saving and restoring contexts of the threads
 • Blocking and resuming the threads

These procedures need to be invoked by a procedure call, and the control is passed to the
called procedure. However, these library procedures cannot directly execute privileged instruc-
tions or access kernel primitives. The thread management is quite similar to process manage-
ment. A user thread, as discussed, is managed through the library functions. First of all, a
process spawns a thread by calling a procedure. The thread-related data structures are then
stored in the TCB. The process needs to keep track of all the threads within it. Therefore, just
like the process table discussed in Chapter 5, a thread table is maintained. The thread table
contains entries as a pointer to the TCB of each thread. Thus, each process in the application
has its own thread table as shown in Fig. 9.5. Now, suppose a thread is running and it comes
across an instruction for waiting for some resource. In this case, the library procedure is called
that puts the running thread into a blocked state by saving its context in its TCB. The scheduling

User space
Thread library

Kernel space
Process table

Thread table
Process P1

Process P2

Fig. 9.5 User threads

258 Principles of Operating Systems

is performed among ready threads and the context of the selected thread is loaded and it starts
 running. One can easily realize that all the functionalities related to thread management are
same as that of process management.

The library procedures invoked for thread management in user threads are local procedures.
There is no need to interface with the kernel, which is timeconsuming, and scheduling consumes
less time to call and execute the local procedures. Moreover, the context of a thread to be saved
and restored is lesser as compared to a process. Thus, creating and managing user threads are
easy and much faster compared to a process and a kernel thread. Kernel threads will discussed
in Section 9.6.2.

The point to be noted here is that all the thread-management activities are run in user space,
that is, the kernel is not aware of them. It is concerned with the management of processes
within the application as shown in Fig. 9.5. The kernel schedules and manages these processes
in the kernel space without knowing the existence of multiple threads within each process.
Therefore, the OS provides a single execution context to all the threads instead of each thread.
This user-level thread implementation is known as many-to-one mapping as the OS maps all
threads in a multithreaded process to a single execution context. Due to this, the process will get
blocked as soon as a thread gets blocked. The multithreaded process consisting of user threads
is responsible for maintaining thread-state information, scheduling threads within the process
and synchronizing them as well.

Since the threads are part of a process, there will be some relation between process scheduling
and thread scheduling. Suppose there are three processes, P1, P2, and P3, in an application.
Each process consists of two threads. Some of the events in scheduling are shown in Table 9.1.

It is clear from Table 9.1 that the thread scheduling is application-specific. Taking the
 advantage of this concept, the scheduling algorithms can be tailored according to the need of the
application without affecting the kernel scheduler. Therefore, it is not necessary that a thread
scheduler will work only on one algorithm. One application may adopt round robin, whereas
another may run priority-based scheduling algorithm. In fact, user threads can run on any type
of OS. User threads do not require any support or modification in the underlying OS. The rea-
son is that there is a thread library (shared by all applications) using which all the functions
related to thread management can be run. User threads are portable due to their nature as they
do not require any support from the kernel, making them independent of a particular OS.

One should also understand the execution relations between a process and its threads. When
the context of a new thread is loaded and dispatched, the state of the process becomes running.
It means that the state of the running thread becomes the state of the process and the stack
pointer of the process is set such that the thread’s stack would be used as the stack for the
 process. It is quite natural to do this because the process itself is not running but executing in
the form of its threads. Therefore, whenever one thread starts running, its stack pointer is set to
run the thread’s stack. If all the threads are in a ready state, the process’s state will also be ready.
If any of the thread blocks, the process state will also be blocked, that is, all the other threads are
blocked and will not be scheduled until the cause of that thread blocking is removed. Therefore,
user threads should be used with great care such that they should not use frequent system calls
that blocks them, which consequently blocks the other threads and finally the process. Due to
this nature of user threads, multithreaded applications cannot be executed on multi-processor
systems, that is, multiple threads of a process cannot be executed on multiple processors.

Inspite of the disadvantages, multit-hreading must be chosen over multiple process model
as it does not have high context switching time. One solution to the disadvantage of user thread
is to convert a blocking-system call executed by a thread into a non-blocking call. Instead of

M
ulti-threading

259

Event Process P1 Process P2 Process P3

Process
state

Thread1
state

Thread2
state

Process
state

Thread1
state

Thread2
state

Process
state

Thread1
state

Thread2
state

Process P2
is scheduled
and starts
executing.
Thread1 of
P2 is sched-
uled to run
by the thread
scheduler.

Ready Ready Ready Running Running Ready Ready Ready Ready

Thread1 of
P2 executes
an I/O
instruction,
thereby
causing it
to wait for a
resource.

Ready Ready Ready Blocked Running Ready Ready Ready Ready

Since P2 is
blocked in
the previous
event, sched-
uler selects
next ready
process, that
is, P1, and
thread sched-
uler selects
thread2 of. P1

Running Ready Running Blocked Running Ready Ready Ready Ready

Time slice of
P1 expires.

Ready Ready Running Blocked Running Ready Ready Ready Ready

Table 9.1 Relation between process scheduling and thread scheduling

260 Principles of Operating Systems

directly calling a system call, an I/O routine known as jacket routine is called from the thread
library. This jacket routine checks whether the I/O device is busy. If it is, then it becomes a
blocking call. Therefore, it will not be executed and the control is passed to another thread
within the process so that it is not blocked. If the device is not busy, then the system call
is executed and the process is not blocked. This technique of checking the status of devices
through an application-level jacket routine is known as jacketing or wrapping.

9.6.2 Kernel Threads
The kernel threads are managed by the kernel. Unlike user threads, there is no library routine facil-
ity. Kernel threads, implemented in the kernel space, are managed through system calls. Opera-
tions such as thread creation, deletion, context saving and restoring, synchronization, and so on
are implemented through system calls. It is obvious that threads are implemented within a process,
but there is no separate thread table corresponding to each process as in user threads. Here, all
the threads are managed through a single thread table maintained in the kernel space as shown
in Fig. 9.6. The thread table stores the same information as described for user threads. Thus, the
kernel maintains a thread table in the kernel space, along with the process table to keep track of the
processes. This concept eliminates the drawback of many-to-one mapping in user threads because
the OS maps each thread to its execution context. Thus, there is a one-to-one mapping in kernel
threads as shown in Fig. 9.7. The OS, to implement this type of mapping, provides each user
thread with a kernel thread that it can dispatch. The user process requests a kernel thread using
a system call and in turn the OS creates a kernel thread that executes user thread’s instructions.

Since both process table and thread table are in the kernel space, there is a difference in
thread scheduling of each kernel thread. The scheduler in the kernel schedules a thread on
occurrence of an event. It is not necessary that the thread will be scheduled from the same
process; it may be scheduled from any other process. The kernel checks whether the selected
thread belongs to the same process as that of the interrupted thread or to a different process.
If the thread is of the same process, then there is no issue and the kernel dispatches the thread
for execution. However, if the thread belongs to a different process, then it saves and loads the
context of the process to which the selected thread belongs and then dispatches it.

Kernel space
Process table

Process P1

Process P2

User space

Thread table

Fig. 9.6 Kernel threads

Multi-threading 261

It can be realized that kernel threads are like processes because they interact with kernel
as processes do. The kernel threads use system calls for any I/O requirement similar to the
processes. Whenever there is a thread switching, the control is transferred from one thread to
another by the kernel at the cost of a context switch. Thus, kernel threads make use of system
calls and incur context switch overhead in thread switching within the same process. This
increases the operational latencies of kernel threads, thereby making them slower compared
to user threads. Thus, comparing processes, user threads, and kernel threads in terms of their
operation latencies, it can be concluded that user threads have the lowest latency, followed by
kernel threads and the processes are slower compared to both the types of threads.

 Due to the design of kernel threads, the kernel is now able to schedule multiple threads of
the same process on a multi-processor system. The OS recognizes each thread individually
as the thread table is managed only by the kernel. Therefore, each thread can be prioritized
 depending on its service type. If a thread is interactive in nature, it should be given high priority
compared to other threads. Thus, the OS may assign priority number to each of its threads. In
addition, if a thread is blocked, it is possible to schedule another thread of the same process, that
is, blocking a thread does not block the process. This improves the interactivity and efficiency
of applications. Thus, kernel threads overcome the disadvantages of user threads.

9.7 HYBRID THREADS

After studying both types of threads, the question is how to select a type.
Let us first discuss the differences between user threads and kernel threads:

 1. Due to short latencies, user threads are faster to execute. Kernel threads, on the other hand,
are slower to execute.

 2. Unlike kernel threads, user threads do not support priority-based scheduling. Therefore, if
one user thread blocks, then the whole process blocks. The scheduler will not select another
thread from that process even if it is of higher priority and may select a lower-priority thread
from another process.

 3. Since user threads do not support priority scheduling, it cannot be employed in a real-
time system. A real-time system demands execution of all the high-priority processes and
threads, whatever be the case.

Process P1

User space

Kernel space

Fig. 9.7 One-to-one mapping in kernel threads

262 Principles of Operating Systems

 4. Kernel threads are less efficient due to involvement of kernel and less portability.
 5. One-to-one mapping in kernel threads consumes more resources and memory than many-to-

one mapping in user threads.
 6. The number of kernel threads is larger than user threads. The multithreaded application in

this case needs to check the scalability of the OS in memory management and scheduling
techniques. Thus, high cost is incurred in creating and deleting the kernel threads.

One approach to cut down the cost incurred in kernel threads is to employ thread recycling.
Thread recycling does not destroy the data structures of a thread when it is deleted but instead
marks them as deleted. When a new thread is required, instead of creating one, a marked thread
is activated, thereby saving the overhead time in creating a new thread.

In this way, it can be remarked that there are advantages as well as disadvantages in both the
threads. A critical look at these two types of threads indicates that it may not be possible to imple-
ment them in their pure sense in an application. Therefore, the idea is to have a hybrid of both the
threads that combines the good features of both of them. In other words, instead of having many-
to-one (user threads) or one-to-one thread mapping (kernel threads), it is better to have a combina-
tion of both, that is, many-to-many thread mapping. However, it depends on the nature of threads
designed in an application to decide which mapping should be used. Threads that cannot be used
concurrently should use many-to-one mapping because only one execution context is needed.
Similarly, the threads that exhibit concurrency may use one-to-one mapping because separate ex-
ecution context per thread is needed. In this combined approach, the application specifies the
number of kernel threads required. For example, in Fig. 9.8, Processes P1 and P2 need two kernel
threads and P3 needs only one. However, note that two threads, T1 and T2, of Process P1 have
been mapped to a single-kernel thread. This decision about where the thread should be mapped
depending on its purpose is taken by a programmer. P1 has many-to-one as well as one-to-one
thread mapping, P2 has one-to-one mapping, and P3 has many-to-one mapping. Thus, multiple
user-level threads of an application can be mapped to some or all kernel-level threads, taking the
advantage of both the types of thread mapping. The overall advantage is that some threads may run
in parallel on multi-processor systems and there is no need to block the whole process if one thread
blocks. Moreover, due to the reduction in the number of kernel threads, less memory is consumed.

User space

Kernel space

P1 P2 P3

T1T1
T1

T2T2T2
T3

Fig. 9.8 Hybrid threads

Multi-threading 263

9.8 THREAD OPERATIONS AND OTHER ISSUES IN THREAD IMPLEMENTATION

The thread operations correspond to process operations. All operations, such as create,
 terminate, suspend, resume, and so on, are also used in thread implementation. However, due to
the differences in implementation of a process and a thread, the thread creation and termination
are always faster when compared to process creation and termination.

A process or a thread may be terminated prematurely. There may be several reasons for
 cancellation of a thread, for example, illegal memory reference causing an exception is
 cancelled or a user wants to stop loading a web page. In general, a thread can be cancelled by
 asynchronous cancellation method, that is, the thread is cancelled immediately. However, if
a thread that is modifying a shared variable is cancelled, then it may give an erroneous result.
Therefore, for thread cancellation, some OSs choose another alternated method known as
 deferred cancellation. In this method, a target thread to be cancelled may periodically check
when it should be cancelled. For this purpose, the target thread masks the cancellation signals
except the abort signal while it is performing an operation that should not be interrupted.

9.8.1 Signal-handling Issues
Another issue in a multi-threading environment is signal handling. The signal handling in
 processes (single-threaded) has already been discussed in Chapter 7. It is difficult to handle
signals of multiple threads. In case of synchronous signals, the signals are delivered to the
thread that is executing at that time. However, in case of asynchronous signals, it is not clear
which thread of the process will receive the signal. There are some options that are adopted
by different OSs. The options may be to deliver the signal to all the threads, selected threads,
or only one thread. The threads mask and accept only selected signals. In this way, signals are
handled by the threads. However, the first thread that accepts the signal will execute its signal
handler. Another option is to have a thread assigned by the process that will receive the signals.
This thread in turn sends the signal to the first thread of the process that does not mask it.

9.8.2 Thread Pooling
The implementation view of user threads and kernel threads has given us an idea that creating
and destroying threads incur cost. If there is a multi-threaded web server, then each time a client
requests, a new thread is created. This thread is then destroyed after serving the web request.
Moreover, if all the concurrent threads are allowed, then it may consume all the system resources.

To handle these issues, a fixed number of kernel threads are created in a pool. If there is a
client request, the kernel thread is called to service from the pool. After serving the client, the
thread is not destroyed but returned to the pool through thread recycling. In this way, the time
taken to create and destroy the threads can be saved and at the same time, the system resources
are not exhausted due to unlimited creation of threads in the system. On the application side, the
response time of request decreases, thereby providing a better service to the clients.

9.8.3 Thread Scheduling
Thread scheduling differs according to the types of threads, that is, scheduling of kernel threads
and scheduling of user threads. Since the kernel is not aware of the user-level threads, the
scheduler works only for the processes. It means that multiple threads are not scheduled within
a process. A scheduler schedules the threads as it does for processes. The thread scheduler is

264 Principles of Operating Systems

implemented through the thread library. However, the thread scheduler cannot allot time slice
to the threads as there are no clock interrupts to stop it. Therefore, a thread may continue until
it finishes or if it uses full quantum of its process. In this case, the kernel will select another
process to run. Another method is to use a thread call known as thread-yield. On execution of
this call, the running thread voluntarily gives up the processor so that other threads may run.
This is an alternative solution to implement time sharing between the threads. Like this, other
thread calls can be implemented so that a thread does not consume the full time quantum of a
process and let other threads also share the processor time.

On the other hand, in case of kernel threads, the scheduler picks up a thread instead of
a process. A thread may be given a time quantum. Thus, threads of different processes are
 scheduled. Threads can be scheduled in round robin fashion or according to the priority num-
bers assigned for them. However, the scheduler must consider the thread switching costs. The
thread switching from one process to another will be costly as compared to thread switching
within the same process. Therefore, a scheduler must consider all these factors while scheduling
the kernel threads.

SUMMARY

The high context switch overhead in process switching has
given rise to the multi-threading concept. an application that
has multiple threads, responds quickly, and executes fast.
The two types of threads, namely, user threads and ker-
nel threads, have been discussed with their pros and cons.
Another type of threads—hybrid thread—has also been
explained keeping in view the advantages of both types of
threads. Most of the issues regarding thread implementa-
tion and management (such as thread states, scheduling
algorithms, and so on) are same as that of a process. Some
of the differences in implementation of a thread and a pro-
cess have also been discussed in the chapter.

Let us have a quick review of important concepts dis-
cussed in this chapter:

 • Multi-threading is to have multiple concurrent paths of
 execution in the form of various threads of control within
a single process.

 • A thread is a unit of concurrency within a process
 because threads implement the various functions but
share the address space of the process.

 • Whenever there is a need to switch between the threads
of the same process, the context of a thread will be saved
and restored in the form of its PC, CPU registers, and
stack: Code and data section are not the part of the con-
text of a thread.

 • Multi-threading works the same way as multi-tasking,
that is, the processor switches back and forth among the
threads as with the processes and gives the illusion that
threads are running in parallel.

 • The TCB saves and restores the context of a thread in
case of thread switching.

 • Threads are of two types: user threads and kernel threads.
 • User threads are are only managed by the application in

user space.
 • Kernel threads implemented in the kernel space are

 managed through system calls.
 • User threads are created and then managed through a

thread library provided by the OS.
 • A thread table is maintained for user threads. The thread

table contains entries as a pointer to the TCB of each
thread.

 • Creating and managing a user thread is easier and much
faster as compared to a process and a kernel thread.

 • User threads are more portable due to their nature as
they do not require the support of a kernel, making them
 independent of a particular OS.

 • User-level thread implementation is known as many-to-
one mappings as the OS maps all threads in a multi-
threaded process to a single-execution context.

 • Kernel threads are managed through a single-thread
table maintained in the kernel space.

 • There is one-to-one mapping in kernel threads that pro-
vides each user thread with a kernel thread that it can
dispatch.

 • Thread recycling is the concept that does not destroy
the data structures of a thread when it is deleted but is
marked as deleted and not runnable. When there is a
requirement of a new thread, instead of creating a new
thread, this marked old thread is activated from the
thread pool, thereby saving the overhead time in creating
a new thread.

Multi-threading 265

MULTIPLE CHOICE QUESTIONS

 1. Each process has at least threads of execution.

 (a) one (c) three

 (b) two (d) none

 2. A process is also known as .

 (a) heavy weight process (c) thread

 (b) light weight process (d) none

 3. A thread is also known as .

 (a) heavy weight process (c) process

 (b) light weight process (d) none

 4. Whenever there is a need to switch between the threads of
the same process, the context of a thread will be saved and
restored in the form of

 (a) code, data, and stack

 (b) code, CPU registers, and stack

 (c) PC, CPU registers, and stack

 (d) none

 5. The information in the TCB is as compared to the
PCB.

 (a) lesser (c) much larger

 (b) larger (d) none

 6. Low context switch overhead the degree of
 concurrency.

 (a) increases (c) no effect

 (b) decreases (d) none

 7. User threads are created and managed through .

 (a) kernels (c) shells

 (b) thread library (d) none

 8. User threads can be as compared to kernel threads.

 (a) slower (c) not comparable

 (b) faster (d) none

 9. Which type of mapping is implemented in user threads?

 (a) one-to-one (c) many-to-one

 (b) many-to-many (d) one-to-many

 10. Which type of mapping is implemented in kernel threads?

 (a) one-to-one (c) many-to-one

 (b) many-to-many (d) one-to-many

 11. Which type of mapping is implemented in hybrid threads?

 (a) one-to-one (c) many-to-one

 (b) many-to-many (d) one-to-many

 12. In may-to-one mapping, if a thread blocks, the whole
 process

 (a) blocks (c) sleeps

 (b) keeps running (d) none

 13. Multithreaded applications with threads cannot be
 executed in multi-processor system.

 (a) user (c) hybrid

 (b) kernel (d) none

 14. Which type has the lowest operational latency?

 (a) kernel threads (c) processes

 (b) user threads (d) none

 15. Kernel threads consume resources as compared to
user threads.

 (a) more (c) equal

 (b) less (d) none

REVIEW QUESTIONS

 1. What is the difference between a process and a thread?

 2. What is the need to create a thread?

 3. What is the difference between multi-tasking and multi-
threading?

 4. What is a TCB? Explain all its fields.

 5. What is the difference between a PCB and a TCB?

 6. Explain the benefits of the multi-threading concept.

 7. Explain the implementation of user threads.

 8. Explain the implementation of kernel threads.

 9. What is wrapping?

 10. What is the difference between one-to-one and many-to-
one thread mapping?

 11. What is the difference between a process table and a thread
table?

 12. List out the advantages and disadvantages of both user
and kernel threads.

 13. What is a thread library?

 14. What are hybrid threads?

 15. What is thread pooling?

 16. How can a thread be cancelled?

 17. Explain signal-handling methods in multi-threading.

 18. What is a thread-yield?

266 Principles of Operating Systems

BRAIN TEASERS

 1. What are the key factors to be considered while choosing
multi-threading for an application?

 2. ‘A multithreaded application with user threads cannot take
the advantage of multi-processor systems.’ Comment on
this statement.

 3. Why should user threads not use system calls frequently?

 4. If a multithreaded process creates its child process, then
will the child process get the same number of threads as
the parent process?

 5. Why is there no need of kernel for communicating between
threads of the same process?

 6. Explain how multi-threading can be implemented in a
spreadsheet application.

 7. If a thread opens a file with read privileges, then will another
thread within the same process be able to read from that
file?

 8. You cannot afford to have an infinite number of threads for
serving the clients’ requests in a multithreaded web server.
How do you limit the number of the threads?

 9. How can scheduling be application-specific in case of user
threads?

PART III

Memory Management

10. Basic Memory Management

11. Virtual Memory

Case Study III: Memory Management in
UNIX/Solaris/Linux/Windows

10.1 INTRODUCTION

The multi-programming concept of an OS gives rise to another issue known as memory management.
Process management needs the support of memory management. Memory, as a resource, needs to be
partitioned and allocated to the ready processes, such that both processor and memory can be utilized
efficiently. It is partitioned into two parts; one for the OS, and the other for the user area. Besides this, the
user area needs to be divided into multiple parts for various user processes. This division of memory for
processes needs proper management, including its efficient alloca-
tion and protection. Memory management needs hardware support
also, therefore, the management technique also depends on the
hardware available. The memory management issue extends from
basic memory management techniques to virtual memory manage-
ment, in order to meet the challenge of huge memory requirements
of processes, since the size of the main memory is not sufficient.
Therefore, there are two types of memory management: real mem-
ory (main memory) and virtual memory. This chapter discusses all
the issues related to real memory management.

10.2 BASIC CONCEPTS

To understand memory allocation and other memory management
schemes, some basic concepts are discussed in this section. These
will be used throughout this chapter.

10.2.1 Static and Dynamic Allocation
Memory allocation is generally performed through two methods:
static allocation and dynamic allocation. In static allocation, the
allocation is done before the execution of a process. There are two
instances when this type of allocation is performed:
1. When the location of the process in the memory is known at

compile time, the compiler generates an absolute code for the
process. If the location of the process needs to be changed on
the memory, the code must be recompiled.

2. When the location of the process in the memory is not known at
compile time, the compiler does not produce an actual memory

10 Basic Memory
Management

Learning Objectives
After reading this chap-
ter, you should be able to
understand:
 • Static and dynamic memory

allocation
 • Basic concepts for memory

management: logical and phys-
ical addresses, swapping, relo-
cation, protection and sharing,
fragmentation

 • Fixed and variable memory
partitioning

 • Contiguous memory allocation
 • Memory partition selection

techniques: First fit, best fit,
worst fit

 • Non-contiguous memory
 allocation

 • Paging concept
 • Paging implementation with

associative cache memory
 • Page table and its structures
 • Segmentation concept
 • Hardware requirements for

segmentation

292 Principles of Operating Systems

address but generates a relocatable code, that is, the addresses that are relative to some known
point. With this relocatable code, it is easy to load the process to a changed location and there
is no need to recompile the code. In both cases of static allocation, size should be known before
start of the execution of the process.

If memory allocation is deferred till the process starts executing, it is known as dynamic
 allocation. It means the process is loaded in memory initially with all the memory references in
relative form. The absolute addresses in memory are calculated as an instruction in the process
executed. In this way, memory allocation is done during execution of a program. Dynamic
 allocation also has the flexibility to allocate memory in any region.

10.2.2 Logical and Physical Addresses
To accommodate the multi-programming concept of modern OSs, dynamic memory allocation
method is adopted. In this method, two types of addresses are generated. Since in dynamic
allocation, the place of allocation of the process is not known at the compile and load time, the
processor, at compile time, generates some addresses, known as logical addresses. The set of
all logical addresses generated by the compilation of the process is known as logical address
space. These logical addresses need to be converted into absolute addresses at the time of
execution of the process. The absolute addresses are known as physical addresses. The set of
physical addresses generated, corresponding to the logical addresses during process execution,
is known as physical address space. There are now two types of memory: logical memory
and physical memory. The logical memory views the memory from 0 to its maximum limit,
say m. The user process generates only logical addresses in the range 0 to m, and a user thinks
that the process runs in this logical address space. But the user process, in the form of logical
address space, is converted into physical address space with a reference or base in memory.
The memory management component of the OS performs this conversion of logical addresses
into physical addresses. Thus, when a process is compiled, the CPU generates a logical address,
which is then converted into a physical address by the memory management component, to
map it to the physical memory.

10.2.3 Swapping
Swapping was introduced in Chapter 5 in concern with suspended processes. Swapping plays
an important role in memory management. There are some instances in multi-programming
when there is no memory for executing a new process. In this case, if a process is taken out of
memory, there will be space for a new process. This is a good solution, but the following factors
matter during the implementation.
 • Where will this process reside?
 • Which process will be taken out?
 • Where in the memory will the process be brought back?

For the first question, the help of any secondary storage (generally, hard disk) known as
backing store, is taken, and the process is stored there. The action of taking out a process from
memory is called swap-out, and the process is known as a swapped-out process (see Fig.10.1).
The action of bringing back the swapped-out processes into memory is called swap-in. A sepa-
rate space in the hard disk, known as swap space, is reserved for swapped-out processes. The
swap space should be large enough such that a swapped out process can be accommodated. The
swap space stores the images of all swapped out processes. Thus, whenever a process is selected

Basic Memory Management 293

by the scheduler to execute, the dispatcher checks whether or not the desired process is in the
ready queue. If not, a process is swapped out of memory and the desired process is swapped in.

For the second question, some of the processes that can be swapped-out are:
 • In round robin process-scheduling, the processes are executed, according to their time

quantum. If the time quantum expires and a process has not finished its execution, it can be
swapped-out.

 • In priority-driven scheduling, if a higher-priority process wishes to execute, a lower-priority
process in memory will be swapped out.

 • The blocked processes, which are waiting for an I/O, can be swapped out.
For the third question, there are two options to swap in a process. The first method is to

swap-in the process at the same location, if there is compile time or load time binding. How-
ever, this may not be possible every time and it is inconvenient. Therefore, another method is
to place the swapped-in process anywhere in the memory where there is space. But this requires
the relocation, which is discussed in the next section.

Swapping incurs the cost of implementation. As discussed above, the swap space should be
reserved in the secondary storage. It should be large enough to store images of the processes
which are swapped out. Another cost factor is swap time, which is time taken to access the hard
disk. Here, the transfer time from the hard disk matters. There is already some latency in data
transfer from the hard disk, as compared to memory. So the swap time increases the transfer
time. The transfer time is also affected by the size of the process to be swapped out from the
hard disk. Hence, larger the size of the process, larger the transfer time.

Example 10.1

A process of size 200 MB needs to be swapped into the hard disk. But there is no space in
memory. A process of size 250 MB is lying idle in memory and therefore, it can be swapped
out. How much swap time is required to swap-in and swap-out the processes if:
Average latency time of hard disk = 10 ms
Transfer rate of hard disk = 60 MB/s

Swap-in

Swap-out

User program
area

OS

Hard disk

Swap space

Fig. 10.1 Swapping

294 Principles of Operating Systems

Solution

The transfer time of the process to be swapped into hard disk = 200/60 = 3.34 s. = 3340 ms
Therefore, the swap time of 200 MB process = 3340 +10 = 3350 ms
The transfer time of the process to be swapped-out from memory = 250/60 = 4.17 s. = 4170 ms
Therefore, the swap time of 250 MB process = 4170 +10 = 4180 ms
Total swap time = 3350 + 4180 = 7530 ms

10.2.4 Relocation
In a multi-programming environment, the memory is shared among multiple processes. Due
to this, it may not be possible to know in advance which processes will reside in the memory
and their locations. Therefore, static allocation may be difficult. Moreover, the processes may
be swapped out and swapped in many times. It may not be possible to swap in the processes
in the same location in the memory from where it was swapped out. It forces us to manage the
memory in such a way that a static allocation cannot be given to a process. It should be possible
to relocate the process to a different memory area where it gets space. The relocation process
should be able to provide a new location to the process and translate all the memory references
(either data reference or branch instructions) found in the process code into physical addresses,
according to the current location in the memory. To translate all the memory references of the
process, there must be an origin or base address in the memory. All relative addresses generated
are added in this base address to get the new location in the memory.

To implement relocation, some hardware support is required. There should be a processor
register which holds the base address. This register is known as the base register or relocation
register. Base register holds the starting address in the main memory from where the process
needs to be relocated. Along with the base register, there should be a register that stores the end-
ing location of the process, that is, the knowledge of the limit of the process in the memory. The
limit is stored in a limit or bounce register (see Fig. 10.2). Thus, with the help of base and limit
registers, the process may be dynamically loaded or relocated. As soon as a process is loaded
or swapped into the memory, these registers must be set by the OS.

Base register

OS

Process P1

Process P2

10200

10600

10400

10200

Limit register 10400

Fig. 10.2 Relocation with base and limit register

Basic Memory Management 295

PA<LR Address

PA>LR Address

PA LA
Processor Adder

BR

10200

Comparator

LR

10400

Memory

Interrupt to OS
LA: Logical address

PA: Physical address

BR: Base register

LR: Limit register

Fig. 10.3 Memory mapping using base and limit registers

When the process starts executing, relative or logical addresses are generated by the CPU.
These relative addresses are first added in the base register to produce an absolute address
or physical address (see Fig. 10.3). Next, the address is compared with the address stored in
the limit register. If the address is less than the limit register address, the instruction execu-
tion continues. It is clear that adder (to add the base and relative address) and comparator (to
compare the generated physical address with the limit register address) are also required in the
hardware of a Memory Management Unit (MMU). In this way, the MMU, with the help of
base and limit registers, performs the memory mapping, by converting logical addresses into
physical addresses.

Example 10.2

A process is to be swapped-in at the location 20100 in memory. If logical addresses generated
by the process are 200, 345, 440, and 550, what are the corresponding physical addresses?

Solution

The relocation register will be loaded with the address 20100. So adding the logical addresses
to the relocation register, the corresponding physical addresses are as follows:

20100 + 200 = 20300
20100 + 345 = 20445
20100 + 440 = 20540
20100 + 550 = 20650

10.2.5 Protection and Sharing
In a multi-programming environment, there is always an issue of protection of user processes,
such that they do not interfere with others and even the OS. Therefore, it is required that the
process should not be able to enter the memory area of other processes or the OS area. Each
process should execute within its allocated memory. It means whenever a process executes,
all the address generated must be checked, so that it does not try to access the memory of other
processes. The base and limit registers serve this purpose. In protection terminology, some-

296 Principles of Operating Systems

times base and limit registers are also known as lower-bound and upper-bound registers,
respectively. Each relative address, generated by the process during its execution, is added
to the address in the base register, and its physical address is calculated. This physical
address generated must be less than the address in the limit register. This provides protection
to other processes, because no process can cross its boundaries set by the base and limit
registers. If, somehow the physical address is more than the address in the limit register,
a memory protection violation interrupt is generated. When this interrupt is processed, the
kernel may terminate the process. Furthermore, protection is provided to base and limit
registers also, so that they cannot be loaded or updated by any user process. The loading of
these registers with addresses is a privileged operation, and is performed by the kernel only.

From the protection viewpoint, it is clear that each process has its own boundaries in the
memory for its execution. However, to have a better utilization of the memory, sometimes
sharing of memory spaces is also required. Although sharing is contradictory to protection,
protection should not be compromised at all. Sharing of memory is predefined among the
processes, but why is sharing of memory important? For instance, if some processes are using
the same utility in their execution, it would be wastage of memory, if same kind of utility
is given space in the memory for each process. Therefore, the better idea is to have a single
copy of that utility in the memory and processes will share it, when required. Thus, memory
management techniques must consider memory-sharing, but with protection.

Example 10.3

A process has relocatable code of size of 900 K. The relocation register is loaded with 40020 K
and the limit register contains the address 41000 K. If the processor generates a logical address
990, where will it be located in the physical memory?

Solution

The physical address corresponding to logical address 990
 = relocation register address + logical address
 = 40020 + 990 = 41010
But the process will not be allocated, because it is greater than the address in the limit register,
hence, violating the criterion for protection. Consequently, an interrupt will be generated.

10.2.6 Fixed and Variable Memory Partitioning
The memory space is divided into fixed or variable partitions, which will be described in detail
in the subsequent sections. Fixed partitioning is a method of partitioning the memory at the
time of system generation. In fixed partitioning, the partition size can be of fixed size as well
as variable, but once fixed, it cannot be changed. Variable partitioning is not performed at the
system generation time. In this partitioning, the number and size of the memory partition vary
and are created at run time, by the OS.

10.2.7 Fragmentation
When a process is allocated to a partition, it may be possible that its size is less than the size of
partition, leaving a space after allocation, which is unusable by any other process. This wastage
of memory, internal to a partition, is known as internal fragmentation.

Basic Memory Management 297

User program
area

OS

Fig. 10.4 Single partition in memory

Multiple

partitioning

OS

User

processes Process P1

Process P2

Fig. 10.5 Multiple partitioning of memory

While allocating and de-allocating memory to the processes in partitions through various
methods, it may be possible that there are small spaces left in various partitions throughout the
memory, such that if these spaces are combined, they may satisfy some other process’ request.
But these spaces cannot be combined. This total memory space fragmented, external to all the
partitions, is known as external fragmentation.

10.3 CONTIGUOUS MEMORY ALLOCATION

In older systems, memory allocation is done by allocating a single
contiguous area in memory to the processes. When there was multi-
programming or a multi-user system, memory was divided into two
partitions, - one for the OS, and the other for the user process (see Fig.
10.4). The user process in its partition has a single contiguous region
of memory.

After the invention of multi-user and multi-programming systems,
more processes need to be accommodated in the memory (see Fig. 10.5).
Multiple processes are accommodated by having multiple partitions in
the memory. However, multiple partitioning has an effect on the OS
partition. It is still present in the memory. The OS area is generally
placed in the lower memory addresses. It can be in high memory also,
but interrupt vector is often in lower memory addresses.

The contiguous allocation method was implemented by partitioning
the memory into various regions. The memory can be partitioned,
using either fixed memory or variable memory partitioning.

298 Principles of Operating Systems

In this method, a process is allocated a contiguous memory in a single partition. Thus, the
memory partition, which fits the process, is searched and allocated. The memory partition,
which is free to allocate, is known as a hole. Thus, an appropriate hole is searched for allocat-
ing it to a process. When the process terminates, the occupied memory becomes free and the
hole is available again. Initially, all the holes are available. When all the holes are allocated to
the processes, the remaining processes enter wait state. As soon as a process terminates, a hole
 becomes free, and is allocated to a waiting process.

10.3.1 Contiguous Allocation with Fixed Partitioning
Fixed partitioning is a method of memory partitioning at the time of system generation. The parti-
tion can be of fixed as well as variable size, but once fixed, it cannot be changed. If there is a need
to change the partition size, the OS must be generated again with modified partitions. It means,
the partitions, once fixed, are static in nature. To allocate memory to the processes in partitions,
the OS creates a table to store the information, regarding the partitions in the memory. This table
is called the partition description table (PDT). The structure of the table is shown in Table 10.1.

The contiguous allocation method with fixed partitioning was adopted by earlier systems like
IBM mainframe OS/360, which was called OS/MFT (Multi-programming with Fixed number
of Tasks). In this method, the long-term scheduler performs job scheduling, and decides which
process is to be brought into the memory. It then finds out the size of the process to be loaded
and requests the memory manager to allocate a hole in the memory. The memory manager uses
one of the allocation techniques (discussed later) to find a best match for the process. After
getting a hole, the scheduler places the process in the
allocated partition. Next, it enters the partition ID in
the PCB of the process, and then PCB is linked to the
chain of the ready queue. Memory manager marks
the status of the partition as ‘Allocated’. Initially, the
status of all memory partitions is ‘Free’. As soon as a
process terminates, the OS updates the allocation sta-
tus (in the PDT) of the partition, where the terminated
process resided. Thus, with the use of PDT, a list of
available holes is obtained, and holes are allocated to
the processes, based on their memory requirements.

What should be the size of the memory partitions?
One approach is memory partitions, which are of equal
size, as shown in Fig 10.6. But there are disadvantages
to this approach. One is that a process may be too big
to fit into the partition. Another is that a small process,
occupying the entire partition, leads to the problem of
internal fragmentation.

Table 10.1 Partition description table

Partition ID Starting address Size Allocation status

OS

2M

2M

2M

Fig. 10.6 Fixed equal sized partitioning
based contiguous memory
allocation

Basic Memory Management 299

Example 10.4

Three processes P1, P2, and P3 of size 21900, 21950, and 21990 bytes, respectively, need space
in the memory. If equal-sized partitions of 22000 bytes are allocated to P1, P2, and P3, will
there be any fragmentation in this allocation?

Solution

After allocating the partitions to the processes, the leftover space in each partition is estimated
by the difference between partition size and process size. Hence,
The leftover space in the first partition = 22000 – 21900 = 100 bytes
The leftover space in the second partition = 22000 – 21950 = 50 bytes
The leftover space in the third partition = 22000 – 21990 = 10 bytes.
This leftover space in each partition is nothing but internal fragmentation, as shown in the
following figure:

0

OS

22000 bytes

22000 bytes

22000 bytes

100 bytes

50 bytes

10 bytes

P3

P1

P2Internal
fragmentation

Example 10.5

Three processes P1, P2, and P3 of size 67000, 65000, and 60000 bytes, respectively, need space
in the memory. If partitions of equal size, that is, 70000 bytes, are allocated to P1, P2, and P3,
will there be any fragmentation in this allocation?

Solution

After allocating the partitions to the processes, the first, second, and third partitions are left with
3000 bytes, 5000 bytes, and 10000 bytes, respectively. This leftover space in each partition is
internal fragmentation, as shown in the figure.

In the above two examples, fixed memory partitioning, with equal partitioning size, leads
to wastage of a large space in the memory. The second approach is to use unequal-sized
partitions in the memory. Unequal-sized partitions can be chosen, such that smaller to bigger
size processes can be accommodated, thereby, wasting less memory, as shown in Fig. 10.7.
Keeping in view the average size of the processes, the size of partitions in the memory can
be fixed.

300 Principles of Operating Systems

Although the second approach has improved the performance
of memory allocation, overall fixed partitioning suffers from
disadvantages, due to which this method has become obsolete
today. The following are some drawbacks of this method:
 • The degree of multi-programming is limited by the number

of partitions fixed.
 • There may be some processes whose memory require-

ment is not known in advance. In this case, unequal-size
partitioning may also cause internal fragmentation. More-
over, due to internal fragmentation, there may be memory
space scattered in various partitions. If these memory
spaces are combined, it can be allocated to a process. But
it is not possible in fixed partitioning method. This results
in external fragmentation also. Thus, fixed partitioning
method suffers from both types of fragmentation.

Example 10.6

Three processes P1, P2, and P3 of size 19900, 19990, and 19888 bytes, respectively, need space
in memory. If partitions of equal size, that is, 20000 bytes, are allocated to P1, P2, and P3, will
there be any fragmentation in this allocation? Can a process of 200 bytes be accommodated?

Solution

After allocating the partitions to the processes, the first, second, and third partitions are left with
100 bytes, 10 bytes, and 112 bytes, respectively. This leftover space in each partition is internal
fragmentation.

The total space left = 100 + 10 + 112 = 222 bytes
Process of 200 bytes cannot be accommodated, even if the total space left is more than 200
bytes. This is because the space left is not contiguous. Hence, this partitioning also leads to
external fragmentation.

Internal
fragmentation

0

OS

70000 bytes

70000 bytes

70000 bytes

3000 bytes

5000

bytes

10000 bytes

P3

P1

P2

OS

2M

4M

1M

6M

Fig. 10.7 Fixed unequal-sized
partitioning-based contiguous
memory allocation

Basic Memory Management 301

10.3.2 Contiguous Allocation with Dynamic/Variable Partitioning
Contiguous allocation with fixed partitioning suffers from drawbacks, as discussed above. To
overcome these drawbacks, contiguous allocation with variable partitioning was devised. It is
also known as dynamic partitioning. Instead of having static partitions, the memory partition
will be allocated to a process dynamically. In other words, the number and size of partitions
are not fixed at the time of system generation. They are variable and are created at run time
by the OS. The procedure for memory allocation in this method is the same as fixed partition-
ing. The only difference is that partitions for processes are created at run time, when they are
brought to the ready queue. PDT is maintained in variable partitioning as well. In the same way
as discussed in fixed partitioning, a hole is searched for in the process. Initially, there is only a
single large hole, that is, a partition allocated to user processes. The first process is allocated the
required memory, out of this large hole, and the rest of the memory is returned. It means there
are two partitions of the original hole: one allocated to the process and the other partition, which
is available. In this way, the processes are allocated the required space in the hole and variable-
sized partitions are produced. Two contiguous free holes can be combined into a single partition.

The IBM mainframe was developed as Multi-programming with Variable number of Tasks
(OS/MVT). The advantage in variable partitioning is that the process is given exactly as much
space as it requires, reducing the internal fragmentation faced in fixed partitioning. Although
variable partitioning reduces memory wastage, it can still cause fragmentation. Eventually,
there are small holes in the memory partitions. These holes cannot be allocated to any process,
because they are not contiguous, and hence, cause external fragmentation.

Example 10.7

Let us understand dynamic partitioning with an example. Consider three processes P1, P2, and
P3, as shown in Fig. 10.8. Initially, 120M hole is available in the memory. P1 of 30M consumes
memory from the first hole and leaves 90M space. Similarly, P2 and P3 are allocated 40M and
48M of memory, respectively, leaving a hole of 2M. In Fig. 10.8(e), P2 releases the memory,
leaving a hole of 30M. In Fig. 10.8(f), P4 arrives and acquires 28M, leaving a hole of 2M. In
Fig. 10.8(g), P3 releases the memory, leaving a hole of 48M. In Fig. 10.8(h), P1 arrives again,
and now requires 30M space. Since P4 resides in the space, which was earlier allocated to P1,
it will consume 30M from the hole left by P3.

10.3.3 Compaction
External fragmentation in dynamic partitioning can be reduced, if all the small holes formed
during partitioning and allocation, are compacted together. Compaction helps to control mem-
ory wastage, occurring in dynamic partitioning. The OS observes the number of holes in the
memory and compacts them after a period, so that a contiguous memory can be allocated for a
new process. The compaction is done by shuffling the memory contents, such that all occupied
memory region is moved in one direction, and all unoccupied memory region in the other direc-
tion. This results in contiguous free holes, that is, a single large hole, which is then allocated to
a desired process.

Compaction, however, is not always possible. One limitation is that it can be applied, only
if the memory is relocated dynamically at the execution time, so that it is easy to move one
process from one region to another. Another limitation is that compaction incurs cost, because
it is time consuming and wastes CPU time.

302 Principles of Operating Systems

120
M

OS

(a) (b) (c) (d)

(e) (f) (g) (h)

90M

30M

OS

P1

40M

50M

30M

OS

P1

P2 40M

48M

30M

OS

P1

P2

P3

2M

40M

48M

30M

OS

P1

P2

P3

2M

2M

40M

48M

28M

OS

P4

P2

P3

2M

2M

40M

48M

28M

OS

P4

P2

P3

2M

2M

40M

30M

28M

OS

P4

P2

P1

2M

18M

Fig. 10.8 Variable partitioning

Basic Memory Management 303

Example 10.8

Fig. 10.9(a) shows the state of three processes in memory. Here, the wastage of memory is 6M
+ 2M + 2M = 10M. No process can be allocated to this space. However, through compaction,
that is, by merging these memory spaces, 10M space can be obtained contiguously, and can be
used for the allocation of a process, which is less than or equal to 10M (see Fig. 10.9 (b)). For
compaction, the processes should be relocated to different addresses. This may consume time,
thereby making this method costly.

The contiguous allocation method, with fixed as well as variable partitioning method, suffers
from fragmentation and wastes memory, as discussed above. The alternate method is non-
contiguous partitioning, which will be discussed later.

10.3.4 Memory Allocation Techniques
Memory allocation techniques are algorithms that satisfy the memory needs of a process: they
decide which hole from the list of free holes must be allocated to the process. Thus, it is also
known as partition selection algorithms. In fixed partitioning with equal-sized partitions, these
algorithms are not applicable, because all the partitions are of the same size and therefore, it
does not matter which partition is selected. These algorithms, however, play a great role in
fixed-partitioning with unequal-sized partitions and in dynamic partitioning, in terms of system
performance and memory wastage. There are primarily three techniques for memory allocation.

First-fit Allocation
This algorithm searches the list of free holes and allocates the first hole in the list that is big
enough to accommodate the desired process. Searching is stopped when it finds the first-fit
hole. The next time, searching is resumed from that location. The first hole is counted from this
last location. In this case, it becomes the next-fit allocation. The first-fit algorithm does not take
care of the memory wastage. It may be possible that the first-fit hole is very large, compared to
the memory required by the process, resulting in wastage of memory.

2M

2M

6M

25M

6M

22M

OS

P1

P2

P3

P1

10M

25M

6M

22M

OS

P1

P3

P2

P1

 (a) (b)

Fig. 10.9 Compaction

304 Principles of Operating Systems

Best-fit Allocation
This algorithm takes care of memory storage and searches the list, by comparing memory size of
the process to be allocated with that of free holes in the list. The smallest hole that is big enough
to accommodate the process is allocated. The best-fit algorithm may be better in terms of wastage
of memory space, but it incurs cost of searching all the entries in the list. This is an additional
overhead. Moreover, it also leaves small memory holes, causing internal fragmentation.

Worst-fit Allocation
This algorithm is just reverse of the best-fit algorithm. It searches the list for the largest hole.
This algorithm in its first perception seems that it is not a good algorithm, in terms of memory.
But it may be helpful in dynamic partitioning, because the large holes, leftover due to this
algorithm, may be allocated to the processes that fit. However, this algorithm incurs overhead
of searching the list for the largest hole. It may also leave small holes, causing internal frag-
mentation.

Example 10.9

Consider the memory allocation scenario as shown in Fig. 10.10. Allocate memory for addi-
tional requests of 4K and 10K (in this order). Compare the memory allocation, using first-fit,
best-fit, and worst-fit allocation methods, in terms of internal fragmentation.

Solution

First-fit allocation: It allocates the first hole in the list that is big enough. Hole of 10K is allo-
cated to the process of 4K, leaving a hole of 6K in memory. The next request is of 10K. So, the
next hole in the list is of 5K and it cannot accommodate the process. Hence, the next available
hole of 15K is allocated, leaving a hole of 5K (see Fig. 10.11). It leaves fragmentation of 6K
+5K = 11K.
Best-fit allocation: It allocates the smallest hole that is big enough. Hole of 5K is allocated
to the process of 4K, leaving a hole of just 1K. The next request is of 10K. After comparing
the size of all the holes, hole of 10K is allocated. It leaves fragmentation of 0K +1K = 1K
(see Fig. 10.12).
Worst-fit allocation: It allocates the largest hole in the list. For the process of 4K, the largest
hole of 22K is allocated. This leaves a hole of 18K in the memory. The next request is of 10K.

OS

10K 25K 5K 20K 15K 15K 22K

Hole Occupied by a process

Fig. 10.10 Example memory allocation scenario

Basic Memory Management 305

Comparing the size of all holes, the 18K hole is the largest hole in the list. Hence, it is allocated
to the process. It leaves fragmentation of 22K − 4K − 10K = 8K (see fig. 10.13).

By comparing all the algorithms on the basis of internal fragmentation, the best-fit allocation
is the best method, as it wastes least memory. The worst-fit is better than the first-fit allocation,
as it provides more holes of appropriate sizes for future requests. Also, memory wastage is
comparatively less.

5K

OS

4K 25K 5K 20K 10K 15K 22K

Hole Occupied by a process

6K

Fig. 10.11 First-fit allocation for Example 10.9

OS

10K 25K 4K 20K 15K 15K 22K

Hole Occupied by a process

Fig. 10.12 Best-fit allocation for Example 10.9

OS

10K 25K 5K 20K 15K 15K 4K

Hole Occupied by a process

10K 8K

Fig. 10.13 Worst-fit allocation for Example 10.9

306 Principles of Operating Systems

 10.4 BUDDY SYSTEM

Both types of memory partitioning have drawbacks. Buddy system is a technique that
is developed as a compromise. A buddy system allocates memory from a fixed-size
block of memory. The allocated block will be of power-of-two size. Therefore, if there
is a request of size s for memory allocation, the smallest block, greater than or equal
to s, is allocated. Initially, the segment is considered as a single block, and may be
allocated, if the request can occupy the whole segment. The block will be allocated,
if the wastage of space is very less. If the request is of small size, then the segment is
first divided into two parts, known as buddies. One of the buddies is then considered
for allocation. If the size of the buddy is large, compared to the request, then this buddy
is again divided into two buddies. This process goes on, until the smallest buddy or
block, enough to satisfy the request, is generated. In this way, the request for a block
is satisfied, by dividing the segment into buddies of power-of-two sizes. When the
memory is released by a process, a buddy can be combined with another buddy, if it is
free. This is known as coalescing, that is, merging the buddies, which are unallocated,
forming a larger block or buddy. For example, in Fig. 10.14, initially, there is a fixed-
size segment of 512K. A request for 100K block is received. Therefore, 512K segment
is split into two buddies, A and B, of 256K each. Then, one of the buddies, say A,
is further divided into two more buddies, C and D, of 128K each. In this way, block
 C is allocated to the request. After this, suppose a request of 240K block is received.
B is allocated for this request, as its size is 256K. After some time, A releases the
memory. Another request of 240K block is fulfilled by coalescing A (128K) and B
(128K), making a larger block to accommodate the new request.

The buddy system is efficient, compared to fixed and variable partitioning. The
good feature of this method is coalescing of blocks. UNIX kernel memory allocation
is done using the buddy system. However, this is not used in any contemporary OS,
as this may also suffer from fragmentation, if the system rounds up the size of a block

512 K

256 K (A) 256 K (B)

128 K (C) 128 K (D) 256 K (B)

128 K (D) 256 K (B)

Request
100K

Request
240K 128 K (C)

128 K (C) 128 K (D) 256 K (B)A released

256 K (B)256 K
Request
240 K

Fig. 10.14 Buddy System

Basic Memory Management 307

to the next higher power of 2. For example, a request for 65K, which cannot be satisfied with a
block of size 25, will be satisfied with a block of 26, but there will be a large wastage of memory.
Therefore, for any modern OS, paging and segmentation are used for memory allocation. These
methods will be discussed later in this chapter and the next chapter.

10.5 NON-CONTIGUOUS MEMORY ALLOCATION

Contiguous memory allocation method suffers from many drawbacks. Both types of this
method cause internal as well as external fragmentation. Moreover, the fragmentation is also
in the secondary storage, where the swapped-out processes of variable sizes need space. Thus,
the contiguous allocation method wastes a lot of memory space. These drawbacks lead us to
the non-contiguous allocation method. In this method, the holes do not need to be contiguous.
They may be scattered in the memory, and can be allocated to a process. The non-contiguous
memory allocation is also classified as fixed partitioning and variable partitioning. The former
is known as paging, and the latter is known as segmentation. These are discussed in the subse-
quent sections.

10.6 PAGING CONCEPT

The first non-contiguous allocation method is paging, where memory is divided into equal-size
partitions. The partitions are relatively smaller, compared to the contiguous method. They are
known as frames. Since the idea is to reduce external fragmentation, the logical memory of a
process is also divided into small chunks or blocks of the same size as frames. These chunks
are called pages of a process. In this way, whenever a frame in memory is allocated to a page, it
fits well in the memory, thereby eliminating the problem of external fragmentation. Moreover,
the hard disk is also divided into blocks, which are of same size as frames. Thus, paging is a
logical concept that divides the logical address space of a process into fixed-size pages, and is
implemented in physical memory through frames. All the pages of the process to be executed
are loaded into any available frame in the memory.

Let us understand the paging concept in detail and the benefits of a non-contiguous method
with an example.

Example 10.10

In Fig. 10.15(a), it is given that there are 10 free frames in the memory. There are four processes
P1, P2, P3, and P4, consisting of three, four, two, and five pages, respectively. All three pages
of P1 have been allocated to frames (see Fig.10.15 (b)). Similarly, all the pages of P2 and P3
have been allocated, as shown in Fig. 10.15 (c) and 10.15 (d). Now only one frame is free in
the memory, whereas P4 requires 5 frames. After some time, P2 finishes its execution and
therefore, releases memory. Therefore, frames 3 to 6 are free now, making the total number of
free frames as five. These five frames, though non-contiguous, are allocated to P4. Four pages
are allocated frames 3, 4, 5, and 6 and one page gets frame 9 (see Fig 10.15 (f)). Suppose after
some time, P1 releases page 1, P4 releases page 2, and P3 releases page 1, as shown in (see
Fig. 10.15(g)), as they are swapped out into the disk. At this time, another process, say P5, is
introduced in the system with five pages, but needs only three pages to be accommodated in the
memory. As shown in the figure, three non-contiguous frames are available. These will be then
allocated to P5 (see 10.15 (h)), through paging.

308 Principles of Operating Systems

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

(a) (b) (c)

(f) (g) (h)

(d) (e)

P1.0

P1.1

P1.2

P2.3

P2.0

P2.1

P2.2

P1.0

P1.1

P1.2

P2.3

P3.0

P3.1

P2.0

P2.1

P2.2

P1.0

P1.1

P1.2

P1.0

P3.0

P3.1

P1.1

P1.2

P4.0

P4.1

P4.3

P3.0

P3.1

P4.4

P4.2

P1.1

P1.2

P1.0 0

1

2

3

4

5

6

7

8

9

P4.0

P4.1

P4.3

P3.0

P4.4

P1.2

P1.0 0

1

2

3

4

5

6

7

8

9

P4.0

P4.1

P4.3

P3.0

P5.2

P4.4

P5.1

P5.0

P1.2

P1.0 0

1

2

3

4

5

6

7

8

9

Fig. 10.15 Paging concept example

One can realize that a logical address in the paging concept has two parts: a page number
and its displacement or offset in the page. Consequently, this logical address is converted into
a physical address. For that, the start address of the page in the memory, that is, address in the
base register, must be known. In this way, every page will have one start address in the memory.
But a single base register will not suffice for this purpose, unlike contiguous allocation. Instead
of a base register for every page, the start addresses of pages are stored in the form of a table,
known as a page table. A page table is a data structure used to store the base addresses of each
page in the process, that is, the entry in the page table indicates the frame location of pages in the
memory. Thus, the paging concept involves the logical memory division into pages, page table
to keep the base addresses of pages, and physical memory divided into frames (see Fig. 10.16).

Example 10.11

Design page tables for all the processes at the time instant of Fig. 10.15(h).

Basic Memory Management 309

0

On disk

2

0

1

2

PT of
process P1

7

On disk

PT of
process P3

3

4

On disk

6

9

PT of
process P4

1

5

8

PT of
process P5

0

1

0

1

2

3

4

0

1

2

Solution

After reaching the start location of a page, its displacement or offset is added to map the com-
plete logical address into physical address and then, the particular instruction in a page can be
executed. Thus, the processor, in case of paging, generates the logical address in the form:
 (Page number p, Offset d)

The logical address is converted into a physical address by the MMU. The hardware must
be updated such that it must know how to access the page table for conversion. The steps for
logical to physical address conversion (see Fig. 10.17) are as under:

 1. The processor generates a two dimensional logical address, (p, d).
 2. The page number p is extracted from the logical address, and is used as an index in the page

table.
 3. The base address b, corresponding to the page number, is retrieved.
 4. b is added to the offset d to get the corresponding physical address.

Page 0

Page 1

Page 3

Page 4

Page 2

Page 5

Base address of page 0

Base address of page 1

Base address of page 2

Base address of page 3

Base address of page 4

Base address of page 5

0

1

2

3

4

5

Page 0

Page 5

Page 3

Page 1

Page 2

Page 4

6

5

4

3

2

1

0

7

Logical memory

Page table

Physical memory

Pages Frames

Fig. 10.16 Paging concept

310 Principles of Operating Systems

Logical address

CPU p d

b

b d+

Page table

Physical memory

Fig. 10.17 Address translation in paging

Example 10.12

A program’s logical memory has been divided into five pages and these pages are allocated
frames, 2, 6, 3, 7, and 5. Show the mapping of logical memory to physical memory.

Solution

2

6

3

7

5

0

1

2

3

4

Logical memory

Page table

Page 3

Page 1

Page 4

Page 2

Page 0

6

5

4

3

2

1

0

7

Physical memory

Page 0

Page 1

Page 3

Page 4

Page 2

Pages
Frames

Example 10.13

A program’s logical memory has been divided into four pages. The pages are allocated frames
5, 3, 1, and 2. Assume that each page size is 4 bytes. Show the mapping of logical memory to
physical memory in bytes.

Basic Memory Management 311

Solution

Since the page size is of 4 bytes, the frame size will also be the same. Therefore, a logical
address needs to be converted accordingly. Suppose the logical address is (2, 2) (page number =
2 and offset = 2). After the page number is used to index into the page table, page 2 is in frame
1. The actual location of frame 1 is at 1 × 4 = 4th byte in physical memory. So the logical address
will map to 4 + 2 = 6th byte in physical memory. Similarly the logical address page number = 0
and offset = 3, will map to (5 × 4) + 3 = 23rd byte in the memory.

o

p

e

r

a

t

i

n

g

s

y

s

t

e

m

s

g

s

y

s

t

e

m

s

a

t

i

n

o

p

e

r

0

1

2

3

4

5

6

7

8

9

11

12

13

14

15

16

17

18

19

20

21

22

23

Logical memory

5

3

1

2

0

1

2

3

Page table

Physical memory

Page 1

Page 2

Page 3

Page 0

The logical address will not be generated as two-dimensional address by the processor. The pro-
cessor generates only a simple single-dimensional binary address, but the page number and offset
is separated out from the bits of the logical address. Some lower bits (rightmost) are for offset and
higher bits (leftmost) are for page number. The question is how many bits in the address should be
fixed for the page number and offset. This is decided by the page size. If a process is of size 65536
bytes (216) and the page size is taken as 1024 bytes (210), then the number of pages will be 64 (26).
It means the page number has 6 bits (leftmost) and the remaining 10 bits (rightmost) are for offset.
In this way, the page size decides the division of the logical address into a page number and offset.
Thus, if the size of a logical address space is 2a, and the page size is 2b, then the high-order bits
(a-b) indicates the page number and the low-order bits b gives the page offset (see Fig. 10.18).

312 Principles of Operating Systems

But this scheme is only possible if page size is taken as power of 2. Otherwise, it is not pos-
sible to divide the logical address in this fashion. The page size, as power of 2, also convention-
ally facilitates the conversion of the logical address into a physical address.. After extracting
the page number from the logical address, it is used as an index in the page table, and the base
address of that page is retrieved. This base address is then appended to the offset and there is no
need to calculate their sum. Thus, the computation is also reduced with this method.

Let us illustrate this method using an example

Example 10.14

In a paging scheme, 16-bit addresses are used with a page size of 512 bytes. If the logical
address is 0000010001111101, how many bits are used for the page number and offset? Com-
pute the page number and offset as well. What will be the physical address, if the frame address
corresponding to the computed page number is 15.

Solution

Logical address space = 216

Page size = 512 = 29

Number of bits required for the page number = 16 - 9 = 7
Number of bits required for offset, b = 9
Page number is obtained by considering the leftmost 7 bits of the logical address
 i.e., Page number = (0000010)2 = 2
Offset is obtained by considering the rightmost 9 bits of the logical address
 i.e., Offset = (001111101)2 = 125
Frame address corresponding to the second page in bits = (15)10 = 0001111
Appending the frame address to the offset, we get
the physical address = 0001111001111101

0 0 0 0 0 1 0

Page number

0 0 1 1 1 1 1 0 1

Offset

0001111

0

1

2

3

4

0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1

16 bit physical address

Page number (p) Offset (d)

b bitsa - b bits

Fig. 10.18 Logical address format in paging

Basic Memory Management 313

Example 10.15

There are 128 pages in a logical address space, with a page size of 1024 bytes. How many bits
will be there in the logical address?

Solution

The logical address space contains 128 pages i.e., 27 pages.
That means the number of bits required for the page number, p = 7
Page size, 2b = 1024 bytes = 210

That means the number of bits required for the offset, b = 10
 p = a − b
 7 = a – 10
 a = 17
Therefore, 17 bits are required in the logical address.

Example 10.16

There is a system with 64 pages of 512 bytes page size and a physical memory of 32 frames.
How many bits are required in the logical and physical address?

Solution

Given, page size = 512 bytes = 29 i.e., b = 9
No. of pages = 64 = 26 i.e., p = 6
Since p = a – b, a = 15
Therefore, 15 bits are required in the logical address.
Since the number of bits required for offset, b = 9 and
The number of bits required to address 32 (25) frames = 5
Therefore, after appending the number of bits required for the frame size to the offset, 14 bits
are required in the physical address.

10.6.1 Paging Implementation and Hardware Requirements
To implement the paging concept, the memory management component of the OS maintains
a list of status of all the frames in the memory. Initially, all the frames are empty in the user
area of the memory. As soon as a process loads its pages, the empty frames are allocated, and
their status is marked as allocated. As the pages are loaded to the frames, the page table of
that process is also updated correspondingly. The frame address of a page, where it has been
allocated, is entered in the page table. In this way, a page table must be updated as soon as the
frame address of a page changes. Furthermore, the address of a page table, where it is stored
in the memory, is also stored in the PCB of the process. This information is useful at the time
of execution of a process. As soon as a process is scheduled for execution, its appropriate page
table is referred for execution, if there is a page table address entry in its PCB.

It is clear from the above discussion that paging will incur cost and increase the access
time, because the page table will also be stored in the memory. To reduce the access time,
some systems (like DEC PDP-11) were developed, with the help of fast access registers at the
hardware level. These registers were used to store the page table entries. These registers were

314 Principles of Operating Systems

developed with very high-speed logic, so that address translation in paging is efficient and
does not affect the access time. However, this register-based page table entries method could
not be successful, because such entries increased (more than million entries) with the later
architecture of the system. The large number of page table entries was not feasible to imple-
ment with fast access registers. Therefore, the page table is stored in the memory only in any
contemporary OS. The hardware support needed in this case is to have a register just like the
base register, so that the page table address can be stored. This base register is known as Page
Table Base Register (PTBR). So, whenever a process is scheduled to be executed, the page
table address from its PCB is loaded into PTBR, and the corresponding page table is accessed
in the memory. Thus, a page table per process, along with one PTBR in hardware, is sufficient
to implement the paging concept. When the current process is suspended or terminated, and
another process is scheduled to execute, then the PTBR entry is replaced with the page table
address of a new process.

Another problem in paging is an increased number of memory accesses. To execute an
instruction in a page of a process, first its page table is accessed in the memory to find the frame
address of the desired page. This frame address is then combined with the offset, and then the
actual frame is accessed in the memory for the operation. Therefore, there are two memory
accesses that slow down the execution.

Total memory access time = Time to access page table + Time to access memory
location

This problem can be reduced if some of the page table entries are cached in a high-speed
cache memory. High speed associative cache memory known as Translation Look-aside Buf-
fer (TLB) is used for this purpose. The TLB consists of some recently-used page table entries
with page number (p) and its corresponding frame address (b). Whenever the CPU generates a
logical address, TLB is first searched for the page frame address. If the page number is found in
the TLB, it is known as a TLB hit, otherwise it is a TLB miss. This type of memory mapping
through TLB is known as associative mapping. In case of a TLB hit, the frame address of the
desired page number is retrieved from the TLB, and there is no need to access the page table,
thereby reducing to one memory access. However, in case of a TLB miss, the page table must
be searched for the frame address, and then the physical address is mapped. Furthermore, this
page table entry must be entered in the TLB as well, so that the next reference to this page num-
ber can be found in the TLB. In this way, the solution to reduce the two-memory accesses in
paging with TLB may be costlier, if the TLB miss ratio is high. To make it successful, the TLB
hit ratio must be high, otherwise Effective-memory Access Time (EAT) will increase further
(see Fig. 10.19). The total access time, in this case of a system with TLB, will be increased as
compared to that without TLB as in the following:

Total memory access time = Time to access TLB + Time to access page table + Time
to access memory location

The effective memory access time can be calculated, if TLB is used for paging address trans-
lation. It is calculated, based on the probability of TLB hit or miss, as in the following:

Effective memory access time (EAT) = P(H) × (Time to access TLB + Time to access
the memory location) + [(1 – P(H)) × (Time to access TLB + 2 (Time to access the
memory location))]
where P(H) is TLB hit ratio.

If the hit ratio is high, the EAT is reduced. So, there should be a mechanism, such that
the hit ratio is high, in order to have a low EAT. The performance of the system with TLB
is highly dependent on the high value of hit ratio, otherwise its performance will be worse

Basic Memory Management 315

than the system without TLB. Therefore, the TLB entries should be designed to have the
most frequent page table entries. Associative registers can also be added to have more
number of frequent page table entries.

Example 10.17

In a paging system with TLB, it takes 30 ns to search the TLB and 90 ns to access the memory.
If the TLB hit ratio is 70%, find the effective memory access time. What should be the hit ratio
to achieve the effective memory access time of 130 ns?

Solution

Time taken in case of TLB hit = Time to access TLB + Time to access memory
 = 30 + 90 = 120 ns
Time taken in case of TLB miss = Time to access TLB + Time to access page table + Time to
access memory

= Time to access TLB + 2(Time to access the memory location)
= 30 + 2 (90) = 210 ns

Logical address

CPU p d

b

b d+

Page table

Physical memory

p b

TLB

Fig. 10.19 Paging implementation with TLB

316 Principles of Operating Systems

Effective memory access time (EAT) = P(H) × (Time to access TLB + Time to access
the memory location) + [(1−P(H)) × (Time to access TLB + 2(Time to access the
memory location))]
 = 0.70 x 120 + 0.30 x 210
 = 147 ns

Next, let us calculate the hit ratio when EAT is 130 ns.

130 = P(H) x 120 + ((1-P(H)) x 210)
130 = P(H) x 120 + 210 – 210 x P(H)
90 P(H) = 80
 P(H) = 0.89
 P(H) = 89%

Therefore, to reduce EAT to 130 ns, the hit ratio should be increased to 89%.

10.6.2 Protection in Pages
In a paging environment, every page has separate access rights. A page may be read-only,
write-only, or read-write. This kind of protection, associated with a page, can be implemented
with the help of a page table. The entries of a page in the page table may also contain its pro-
tection bits. These protection bits are known as access protection bits. The read, write, and
execute bits can be set or reset as desired for a page, so that when that page is referred to, its
access rights will be there. If an execution tries to violate the access rights in access protection
bits, an interrupt is generated by the OS (see Fig. 10.20). However, access protection bits are
only useful when a programmer knows in advance, which page is to be protected, and that is
difficult. For this, the module should be mapped to the pages, which need to be protected.

It may be possible that a process in its lifetime does not use all its pages. Some of the
pages, at a given time, may not be valid. However, the page table entries for these invalid
pages are still there, and therefore, may be accessed. To make these pages invalid, another
protection bit known as valid-invalid bit can be added to the page table. This bit is used in the
page table to mark a page as valid or invalid. Valid means the page is being referred by the
process, and invalid means the page is not in use by the process and it is illegal (see Fig. 10.21).
Another method to have protection against these invalid pages is to have a Page Table Length
Register (PTLR), just like the PTBR. Any access beyond the PTLR causes an interrupt in the
OS. However, it would be a waste to have page entries of those pages, which are not in use. As
page tables consume space in the memory, it is not recommended to have these invalid pages
in the page table entries.

Base address of page 0

Base address of page 1

Base address of page 2

Base address of page 3

Base address of page 4

Base address of page 5

0

1

2

3

4

5

Access protection bits

Fig. 10.20 Page table with access protection bits

Basic Memory Management 317

Example 10.18

In Example 10.12, assume that page 4 is invalid, page 0 is read-only, page 2 is read-write, and
other pages have read, write, and execute permissions. Draw the page table, incorporating the
protection bits for the pages.

Solution

The page table is given by:

Base Address Read Write Execute Valid/Invalid bit

2 1 0 0 1

6 1 1 1 1

3 1 1 0 1

7 1 1 1 1

5 1 1 1 0

10.6.3 Shared Pages
In a multi-user time-sharing environment, different users may need to use the same software.
However, this does not mean that each user has copies of the desired software. To save memory
space, there should be a single copy of the software in the memory, instead of multiple copies.
Paging can be used here by means of shared pages. Suppose, if a compiler consuming 1500 KB
memory is shared between two users, then all the pages, related to the compiler, can be shared
among all users. In the memory, there will be only one copy of the compiler. The page table
corresponding to all user processes will map the compiler to the same location in the memory,
except the data page of the process (see Fig. 10.22). If each user process uses a separate copy
of the compiler, 3000 KB memory will be consumed, whereas with shared pages concept, only
1500 KB memory will be consumed, thereby, saving the memory space.

However, not all the pages can be shared. The data areas of processes cannot be shared, as
the processes will need separate data areas to run the same software. Moreover, the sharable
code page should be of re-entrant type. A re-entrant code never changes during execution, and
thus can be shared easily by multiple users. Thus, all the processes, sharing the same software,
can execute the same code in the memory in the form of shared pages, and each process has its
own copy of registers and data storage in the memory as non-sharable pages. The page table of
each process maps to the same location in the memory for the shared pages.

Base address of page 0

Base address of page 1

Base address of page 2

Base address of page 3

Base address of page 4

Base address of page 5

0

1

2

3

4

5

Access protection bits

Valid-invalid bits

Fig. 10.21 Page table with valid-invalid bits

318 Principles of Operating Systems

10.6.4 Fragmentation
The paging concept was developed to reduce external fragmentation. However, it suffers from
internal fragmentation, as it may leave some bytes of memory, if the process does not fit in a
page size. If the size of a process is an exact multiple of the page size chosen, there will not
be any internal fragmentation, because each frame will be utilized completely. In practice, it
may not be possible that process size is an exact multiple of page size. Therefore, there will be
some internal fragmentation. Paging eliminates external fragmentation, because even if there is
sufficient space that is non-contiguous in the memory, it will be allocated to a process utilizing
the memory space.

10.7 PAGE TABLE STRUCTURES

The page tables in the paging concept may have various page table structures, depending on
different requirements.

10.7.1 Hierarchical/Multi-level Page Table Structure
Modern computer architecture supports a larger address space, such that a page table
consisting of page entries, consumes a large memory, even in megabytes. Most of the sys-
tems are of 32-bit logical address space. If the page size is 4 KB (212), and a page table entry

Compiler page 0

Compiler page 1

Compiler page 2

Compiler page 3

Compiler page 0

Compiler page 1

Compiler page 2

Compiler page 3

2

6

3

7

0

1

2

3

Page table for
process1

2

6

3

7

0

1

2

3

Page table for
process2

Data1

Data2

54

14

Page 3

Page 1

Data1

Page 2

Page 0

Data2

6

5

4

3

2

1

0

7

Physical memory

Logical memory
for process1

Logical memory
for process2

Fig. 10.22 Shared pages

Basic Memory Management 319

consumes 4 bytes, then the page table will consume 4 MB of memory. Thus, if a single
page table, corresponding to a single process, consumes memory in megabytes, a large space
is required to accommodate page tables of all the processes in the system. It is obvious that
this much space cannot be accommodated in the memory contiguously. The solution is to
allocate the memory to page tables as non-contiguous. The page table of a process may
also be scattered in the memory, if it does not find contiguous space. Another table must be
maintained to keep the record of the page table, where it occupies the space in the memory.
It means the page table is also paged and is called two-level paging. Furthermore, if this
second level page table also cannot be accommodated in a contiguous space, it may again be
divided and memory is allocated non-contiguously. In this way, there may be several levels
to manage the page tables in the memory. This is known as multi-level or hierarchical page
table structures.

Let us discuss in detail how the multi-level page structures are implemented. In a two-level
page table structure, the page table is paged, such that its entries are scattered in the memory
and allocated non-contiguous memory. But another table is maintained that will contain the
entries of the page table, where these are stored in the memory. This table is known as outer
page table or directory of page table (see Fig.10.23).

To implement a two-level page table structure, the logical address needs to be modified, in
order to have the outer page table entries. To perform an operation in the process’ page, first
the outer page table will be searched for the address of a page table, and then the page table is
searched for the address of the page. So, the page number field in the logical address is divided
into two parts: one for the outer page table and another for the page table. The modified logical
address is shown in Fig. 10.24 for a 32-bit logical address space. Using this modified logical
address, the address translation starts from the outer page table bits p1, and then continues using
p2 and offset d, as shown in Fig. 10.25.

Base address of page 0

Base address of page 1

Base address of page 2

Base address of page 3 6

5

4

3

2

1

0

7

Outer page table
(contiguous) in
memory

Scattered page table in
memory (non-contiguous)

Physical memory

Frames

Fig. 10.23 Two-level page table structure

320 Principles of Operating Systems

10 bits for
outer page

table

10 bits for
page table

12 bits for
offset

1 10 20 32

p1 p2 d

Fig.10.24 32-bit Logical address corresponding to two-level page table structure

Example 10.19

A system with 32-bit logical address uses a two-level page table structure. It uses page size of
210. The outer page table or directory is accessed with 8 bits of the address.

 i) How many bits are required to access the page table?
 ii) How many entries are there in the directory?
 iii) How many entries are there in the page table?

Solution

 i) Since the page size is 210, therefore, 10 bits are required for the offset. It is given that
8 bits are required to access the outer page table, so bits required to access the page table
= 32 – (10 + 8) = 14.

1 10 20 32

p1 p2 d

Outer page table
(contiguous) in memory

p1

p2

d

Scattered page table in
memory (non-contiguous)

Physical memory

Fig. 10.25 Address translation using two-level page table structure

Basic Memory Management 321

 ii) Since directory is accessed with 8 bits,
 It can have 28 = 256 entries
 iii) Since page table is accessed with 14 bits.
 It can have 214 = 16, 384 entries

Example 10.20

A system with 32-bit logical address space uses 512 bytes page size. A page table entry takes
4 bytes. If a multi-level scheme is to be used for the page table structure, how many levels are
required?

Solution

Page size = 512 = 29

Therefore, page offset requires = 9 bits
The page number required = 32 – 9 = 23 bits

A single-level page table can handle 9 of 23 bits. That means three levels are required: Divid-
ing 23 bits into 9 for the first level, 9 for the second level, and 5 for the third level, page table at
the first level and second level will have 29 entries each, and the third level will have 25 entries.

The two-level paging may not be valid for 64-bit systems. The directory or outer page table
entries may be too large, such that these entries cannot be allocated contiguously. Therefore,
the directory should also be divided so that these entries are allocated non-contiguous space as
available. This results in three-level paging. To implement three-level paging, logical address
needs to be modified to accommodate another outer page table. In this paging, there will
be two outer page tables and one page table (see Fig.10.26). In this way, multiple levels can
be formed, if the size of page table entries is high, resulting in hierarchical or multi-level page
table structures.

The disadvantage of hierarchical or multi-level paging is that it increases the memory
accesses. As the number of levels increases, the number of memory accesses also increases.
There are two memory accesses in a simple page table implementation, as discussed earlier.
If there is a two-level paging structure, there are three memory accesses. Similarly, if
there is a three-level paging structure, there are four memory accesses, and so on. Multi-
level paging, though, manages the memory non-contiguously; and the number of memory
 accesses is large. However, this number of accesses can be reduced with the help of asso-
ciative mapping, by having TLB as associative memory, and the performance of execution
can be increased.

32bits for
second outer
page table

10 bits for
outer page

table

10 bits for
page table

1 32 42 52 64

p1 p2 d

12 bits for
offset

Fig. 10.26 64-bit Logical address corresponding to three-level page table structure

322 Principles of Operating Systems

10.7.2 Inverted Page Table Structure
The page table size is a serious issue for an OS designer. The page table size is directly pro-
portional to the virtual address space. There is another way to design it: using an inverted table
structure. In this design, instead of a virtual page, a real page frame is taken as the page table
entry. In other words, an inverted page table has one entry for each real page frame of memory.
Each entry consists of the virtual address of the page stored in the real memory location. It
consists of information about the process that owns the page. Since the process and page infor-
mation is stored together in one entry, there is no need to prepare a separate process table for
each process. There is a standard page table for all the processes that contains only one entry
for each physical page frame of the memory. This saves memory space, but inverted page table
structures are not appropriate for shared pages, as there is more than one virtual address for one
physical page frame.

The inverted page table is indexed by the page frame number of the physical memory, rather
than the virtual page number. The logical address in this page table structure consists of process
ID (pid), page number (p), and the displacement (d): (pid, p, d) (see Fig. 10.27). Once the logi-
cal address is generated, the inverted page table is then matched for the required pid and p. As
soon as a match is found, the frame address is obtained, which is then merged with the offset to
get the physical mapping address.

10.7.3 Hashed Page Table Structure
Inverted page table is efficient in memory saving, but searching the table for a match of process
ID and page number is a disadvantage. Searching the inverted page table may adversely affect
the performance of paging in the system. Therefore, hashing is used to speed up the page table
lookup. An appropriate hash function is used and applied on the page number of the virtual
address to locate the page table entry. The hash function on the page number results in a value

Logical address

CPU ppid

pid, p

b d+

Page table

Physical memory

d

Fig. 10.27 Address translation in paging using inverted page table

Basic Memory Management 323

that is used as an entry number for the page table to be searched and mapped. If this entry
 contains the page table, its frame address is used to map the virtual address. Otherwise, the
 system checks the value of the chaining pointer, as the chaining mechanism is used with hash-
ing. If the chaining pointer is null, it means the page is not in memory, and therefore, it is a page
fault. Otherwise, there is a collision at that page table entry.

10.8 SEGMENTATION

A programmer writes programs not in terms
of pages, but modules, to reduce the problem
complexity. There may be many modules:
main program, procedures, stacks, data, and
so on. So, it would be better if memory man-
agement is also implemented in terms of these
modules. Segmentation is a memory manage-
ment technique that supports the concept of
modules. The modules in this technique are
called segments. Now the memory manage-
ment is implemented in the form of segments,
instead of pages (see Fig.10.28). The segments
are logical divisions of a program, and they
may be of different sizes, whereas pages in the
paging concept are physical divisions of pro-
gram, and are of equal size.

Managing memory in the form of segments has two obvious advantages: one is that, seg-
ments as logical memory are closer to a programmer’s way of thinking, and the other is that
the segments need not be of the same size, compared to pages. All the modules or segments in
the programs are of different sizes. Therefore, it is advantageous to divide the logical address
space into blocks of different sizes as required. This division of logical address space into
variable-sized segments eliminates the problem of internal fragmentation that occurred in the
paging concept. Thus, segmentation can be defined as a memory management technique, where
the logical address space is divided into variable-sized segments, as required. Each segment is
identified by a name and its length. The logical address is in two parts: the segment name and
its offset, in order to know the location within a segment. There are three major segments in an
executable program: code segment, data segment, and stack segment. Each of these segments
might use another segment. For example, a program may use segments for precompiled library
routines and for any other sub-routines. The segmentation does not require a programmer to
specify the segments and their sizes.

The logical address in segmentation has two parts: segment number (segment name is
replaced by segment number for the convenience of implementation), and offset in the segment.
Consequently, this logical address is converted into physical address. To convert it into physi-
cal address, the starting address of segment in the memory, that is, address in the base register,
must be known. The starting addresses of all the segments are stored in a table, known as seg-
ment table, as shown in Fig.10.29. The compiler/linker creates the segments at the time of
compilation/linkage, numbers them, builds a segment table, and finally an executable image
is produced by assigning two-dimensional addresses. In segmentation, there is a need to know

Logical address space

Main
program

Procedure

Procedure

Procedure

Library
routine

Stack

Fig. 10.28 Logical address space divided into segments

324 Principles of Operating Systems

the length of each segment, as every segment may be of a different size. Therefore, another
field known as limit, is added to the segment table to check the length of the segments. Thus, a
segment table is a data structure used to store the base addresses of each segment in the process,
along with their limits. After reaching the start location of a segment through the segment
table, its offset is added to it in order to map the complete logical address onto the physical
address, and the instruction in a segment can be executed. The processor, in case of segmentation,
generates the logical address as:

 (Segment number s, Offset d)

The logical address in segmentation is generated by the compiler, unlike in paging. In pag-
ing, the two-dimensional address is extracted from a single dimensional address generated by
the compiler, as the page size is always to the power of 2. But in segmentation, the size of a
segment varies, and the compiler itself has to generate the two-dimensional address.

The logical address in segmentation is converted into a physical address by MMU. The
hardware must be updated, such that it must know how to access the segment table for conver-
sion. The steps for logical to physical address conversion (see Fig. 10.30) are as under:

 1. The processor generates a two-dimensional logical address that consists of s and d.
 2. The segment number s is extracted from the logical address, and is used as an index of the

segment table.
 3. After reaching the desired segment number in the segment table, its offset d is checked with

the limit of the segment. If d ≤ length, then go to the next step. Otherwise, an interrupt is
generated to indicate that the address in the segment is not valid.

 4. The base address, corresponding to the segment number, is retrieved.
 5. The base address is added to d to get the physical address.

0

1

2

3

4

5

Seg 0

Seg 5

Seg 3

Seg 1

Seg 2

Seg 4

6

5

4

3

2

1

0

7

Physical memory

Segment table

Base Length
Logical address space

Fig. 10.29 Segmentation concept

Basic Memory Management 325

Example 10.21

A program has been divided into five
modules. Their lengths and base addresses
are stored in the segment table, as depicted
in the following space:

Show the physical memory mapping
for the segments. What will be the physi-
cal memory address for the following
logical addresses?

Solution

The physical mapping of all the segments, along with the segment table,
is shown in the following space:

The physical addresses of logical addresses are shown in the following
space:

s d Physical address

1 665 1000 + 665 = 1665

3 906 Not a valid address, as offset is larger than the length of the segment.

4 770 2700 +770 = 3470

Segment table

No

Logical address

CPU s d

Segment table

Physical memory

Length Base

d £ length?

Yes

Interrupt to OS

b d+

Fig. 10.30 Address translation in segmentation

Segment number Length Base address

0 200 4100

1 700 1000

2 400 3700

3 900 1800

4 1000 2700

s d

1 665

3 906

4 770

326 Principles of Operating Systems

10.8.1 Segmentation Implementation and Hardware Requirements
To implement segmentation, the memory management component of an OS maintains a list of
status of all the holes in the memory, as done for the paging concept. The only difference is that
the OS needs to check the sizes of holes as well, as there is a different memory requirement for
various segments. As soon as a process loads its segments, the holes are allocated, and their
status is marked as ‘allocated’. As the segments are loaded, the segment table of that process
is also updated correspondingly. The base address of a segment, where it has been allocated,
is entered into the segment table. In this way, a segment table must be updated as soon as the
base address of a segment changes. When a program is compiled, the compiler keeps the seg-
ment table address and the maximum number of segments of the segment table in the header
of the executable file of the program. The address of the segment table, where it is stored in
the memory, and the maximum limit of the segments are copied to the PCB of the process at
the time of process creation. This information is useful at the time of execution of a process.
As soon as a process is scheduled for execution, the appropriate segment table is referred for
execution, if there is a segment table address entry in its PCB. The segment table address is
retrieved from the PCB and needs to be stored somewhere, so that during the execution, its
segment table can be referred to. The hardware support needed for this purpose is to have a
register to store the segment table address. This register is known as a Segment Table Base
Register (STBR). Similarly, to check the validity of a segment number, another register known
as a Segment Table Limit Register (STLR) is used (see Fig 10.31). So, whenever a process is
scheduled to be executed, its segment table address from its PCB is loaded to the STBR, and
the limit of the segment table is stored in the STLR. When the process starts executing, the logi-
cal address, consisting of a segment number and its offset, is generated. But the validity of this
segment number is first checked against the value of the STLR. If the segment number is less
than, or equal to, the value of STLR, the processing continues, otherwise interrupt is generated
to the OS. Thus, a segment table per process, along with one STBR and STLR in hardware, is
sufficient to implement the segmentation concept. When the current process is suspended or

0

1

2

3

4

Physical memory

Base

4100

1000

3700

1800

2700

Segment table

Length

200

700

400

900

1000

Logical address space

Segment 1
1000

1700

1800
Segment 3

2700
Segment 4

3700
Segment 2

4100
Segment 0

4300

Basic Memory Management 327

terminated, and another process is scheduled to execute, then the current STBR is replaced with
the segment table address of the new process.

Interrupt to OS

Yes

Segment table

No

Logical address

CPU s d

b d+

Segment table

Physical memory

Length Base
addres

s

d<= length?
Yes

Interrupt to OS

STBR

PCB
STLR

s <=STL
R?

No

Fig. 10.31 Hardware requirements for address translation in segmentation

10.8.2 Protection and Sharing
In a segmentation environment as well, every
segment may have separate access rights,
like paging. A segment may have permission
to read, write, execute, or append. There can
be many combinations of these access rights,
such as read-only, write only, read-write, and
so on. This kind of protection is again imple-
mented using the segment table. Every entry
of a segment in the segment table may have its
access protection bits as well. If an execution
tries to violate the access rights in access pro-
tection bits, an interrupt is generated in the OS (see Fig.10.32). In segmentation, a programmer
knows, in advance, which segment is to be protected, unlike paging and therefore, it is easy to
implement protection on segments.

Like pages, segments also help in memory optimization. Owing to this, they can also be
shared. Sharable segments are prepared with the help of a re-entrant code. The segment table of
each process should map to the same location in the memory, so that the segment table of every
process maps to the same segment, which needs to be shared.

Access
protection bits Length Base

Fig. 10.32 Segment table with access protection bits

328 Principles of Operating Systems

SUMMARY

Memory management techniques of two types were discussed:
contiguous memory allocation and non-contiguous memory
allocation. The older systems were designed with contiguous
method, where the processes are allocated contiguous space.
However, the contiguous allocation suffers from fragmentation,
and the processes cannot be allocated, in spite of memory
space available that are not contiguous. Compaction is one
solution to this problem, but it incurs the cost. Therefore, the
non-contiguous method, where the fragmented space can also
be allocated to the processes, is designed to avoid memory
fragmentation. The paging concept is as a non-contiguous
method, which became very popular in earlier systems.
The segmentation, however, provides a natural memory
management technique, compared to paging. Thus, paging
and segmentation are basic memory management techniques.

Let us have a quick review of important concepts
discussed in this chapter:

 • Memory allocation is generally performed through two
methods: static and dynamic allocation.

 • In static allocation, the allocation is done before the
execution of the process. If the memory allocation is
deferred till the process starts executing, it is known as
dynamic allocation.

 • When a process is compiled, the CPU generates a logical
address, which is then converted into a physical address,
by the memory management component, to map it to the
physical memory.

 • The action of taking out a process from the memory is
called swap-out, and the process is known as a swapped-
out process. Similarly, the action of bringing back a
swapped-out process is known as swap-in. Protection
among process areas is done with the help of base and
limit registers.

 • Fixed partitioning is the method of partitioning the mem-
ory at the time of system generation. The partition size
can be of fixed as well as variable size, but once fixed, it
cannot be changed.

 • In variable partitioning, the number and size of the memory
partition are variable, and are created at run-time by the OS.

 • The memory partition that is free to be allocated, is
known as a hole.

 • To allocate memory to the processes in partitions, the OS
creates a table to store information, regarding the parti-
tions, known as partition description table (PDT).

 • Fixed partitioning method suffers from both types of frag-
mentation: external and internal.

 • Variable partitioning method suffers from external
 fragmentation.

 • Compaction method is used to reduce memory wastage
in variable partitioning.

 • The memory allocation techniques are the algorithms that
satisfy the memory requirement of a process of size n,
out of the list of available free holes; they are known as
partition selection algorithms. There are primarily of three
types: first-fit, best-fit, and worst-fit.

 • Paging is a logical concept that divides the logical ad-
dress space of a process into fixed-sized partitions,
known as pages, and is implemented in physical memory
through frames.

 • A page table is a data structure used to store the base ad-
dress of each page in the process, that is, the page table
entry of a page will indicate the frame location in the memory.

 • Hardware support for the paging concept is provided by
the PTBR and the PTLR.

 • Whenever a process is scheduled to be executed, its
page table address, from its PCB, is loaded in to the
PTBR and the corresponding page table is accessed in
the memory.

 • There are two memory accesses in paging, which are
reduced with the help of high-speed associative cache
memory, known as Translation Look-aside Buffer (TLB).

 • Every entry of a page in the page table may also have its
protection bits. These protection bits are known as ac-
cess protection bits.

 • The valid-invalid bit is used in the page table to mark a
page as valid or invalid. Valid means the page is being
referred to by the process, and invalid means the page is
not in use by the process and is illegal.

 • A re-entrant code is that which never changes during
execution, and thus, can be shared easily by multiple us-
ers. Thus, all the processes sharing the same software
can execute the same code in the memory, with the help
of shared pages.

 • The huge size of a page table is handled with the hierarchi-
cal page table structure or inverted page table structure.

 • Segments are logical divisions of a program, and
therefore, may be of different sizes, whereas pages in
the paging concept are physical divisions of the program,
and are of equal size.

 • Segmentation can be defined as a memory management
technique, where a logical address space is divided into
variable sized segments, as required.

 • A segment table is a data structure used to store the base
address of each segment in the process, along with their
limits.

 • Hardware support for segmentation is provided by the
STBR and the STLR.

 • Whenever a process is scheduled to be executed, its seg-
ment table address from the PCB is loaded to the STBR,
and the limit of segment table is stored in the STLR.

Basic Memory Management 329

MULTIPLE CHOICE QUESTIONS

 1. The swap space is reserved in .

 (a) The main memory (c) any secondary storage

 (b) The hard disk (d) none

 2. A memory management unit performs memory-mapping by
converting a logical address into a physical address, with
the help of .

 (a) base registers (c) base and limit registers

 (b) limit registers (d) none

 3. Fixed partitioning is a method of partitioning the memory at
the time of .

 (a) system generation (c) run-time

 (b) compilation (d) none

 4. In fixed partitioning, the partition size can be of

 (a) fixed size (c) fixed as well as variable

 (b) variable size (d) none

 5. The OS is generally in the memory
addresses in the memory.

 (a) higher (c) any fragmented space

 (b) lower (d) none

 6. Fixed partitioning method suffers from frag-
mentation.

 (a) internal (c) both internal and
external

 (b) external (d) none

 7. Pages and frames are in size.

 (a) unequal (c) none

 (b) equal

 8. is a data structure used to store the base
address of each page in the process.

 (a) PDT (c) Frame table

 (b) Page table (d) none

 9. A page table entry provides

 (a) offset (c) limit address

 (b) base address (d) none

 10. A page table must be updated as soon as the
address of a page changes.

 (a) frame (c) virtual

 (b) logical (d) none

 11. What is the minimum number of memory accesses needed
in paging?

 (a) Three (c) Four

 (b) Two (d) Five

 12. Memory mapping through TLB is known as .

 (a) associative mapping (c) TLB mapping

 (b) physical mapping (d) none

 13. TLB hit ratio must be to decrease the effec-
tive memory access time.

 (a) low (c) no effect

 (b) high (d) none

 14. The -related areas of processes cannot be
shared.

 (a) code (c) page table

 (b) data (d) none

 15. If the size of a process is an exact multiple of page size
chosen, there will not be any fragmentation.

 (a) internal (c) internal and external
both

 (b) external (d) none

 16. If there is a two-level paging structure, there are
 memory accesses.

 (a) four (c) three

 (b) two (d) none

 17. Rather than having the page table entry for a virtual page,
 is taken as a page table entry in the inverted

page table.

 (a) process number (c) PTLR

 (b) PTBR (d) real page frame

 18. The paging concept context switch time.

 (a) decreases (c) no effect

 (b) increases (d) none

 19. Which of the following decreases the overhead of processing?

 (a) paging (c) compaction

 (b) segmentation (d) none

 20. A buddy system is a compromise between .

 (a) internal and external fragmentation

 (b) paging and segmentation

 (c) fixed and dynamic partitioning

 (d) none

330 Principles of Operating Systems

REVIEW QUESTIONS

 1. Distinguish between:

 (a) Static and dynamic allocation

 (b) Logical and physical addresses

 (c) Swapping and paging

 (d) Fixed and variable partitioning

 (e) Internal and external fragmentation

 (f) Contiguous and non-contiguous allocation

 (g) Page, frame, and segment

 2. What are the advantages and disadvantages of contiguous
allocation with fixed partitioning?

 3. What are the advantages and disadvantages of contiguous
allocation with variable partitioning?

 4. What is the requirement of relocating the processes?

 5. How do unequal-sized fixed partitions improve the perfor-
mance of memory allocation? Explain with an example.

 6. What is the use of PDT?

 7. Explain contiguous allocation with variable partitioning with
an example.

 8. Discuss the disadvantages of contiguous memory alloca-
tion. What are its solutions?

 9. Discuss the performance of all memory partition selection
algorithms.

 10. What is a buddy system? Explain its role in memory alloca-
tion with an example.

 11. A process is to be swapped-in to the location 40100 in the
memory. If the logical addresses generated by the process
are 100, 245, 140, and 350, what are the corresponding
physical addresses?

 12. A process has relocatable code of size 700 K. The reloca-
tion register is loaded with 30010 K and the limit register
contains the address 31000 K. If the processor generates
logical addresses, 990 and 1020, where will they be located
in the physical memory?

 13. Illustrate the paging concept with an example.

 14. Discuss the role of PTBR and PTLR in the implementation
of paging.

 15. How does the paging concept increase memory accesses?

 16. How do you reduce two-memory accesses in paging?

 17. Discuss the role of access protection bits in paging? Where
do you implement these bits?

 18. Does paging support sharing?

 19. How does paging eliminate external fragmentation?

 20. Discuss the address translation in the two-level page table
structure.

 21. Discuss the address translation in the inverted page table
structure.

 22. What is the need for segmentation?

 23. Discuss the address translation in segmentation concept.

 24. What are the hardware requirements in the implementation
of segmentation?

BRAIN TEASERS

 1. A process of size 300 MB needs to be swapped-in from
the hard disk. But there is no space in the memory. After
observing the memory, it was found that two processes of
size 150 MB and 200 MB are lying idle, and therefore, can
be swapped out. How much swap-time is required for swap-
in and swap-out of the processes, if the following is given:

 Average latency time of the hard disk = 10 ms
 Transfer rate of the hard disk = 60 MB/s

 2. Three processes P1, P2, P3, and P4 of size 18900,
19500, 19990, and 20990 bytes, respectively, need
space in memory. The equal partitions of size 20000
bytes are allocated to P1, P2, P3, and P4. Is there any

 fragmentation in this allocation? Can a process of 600
bytes be accommodated?

 3. Design an example of variable partitioning that reduces in-
ternal fragmentation, and then analyze the situation when it
may cause external fragmentation.

 4. Analyze the costs associated with compaction.

 5. Assume the memory allocation scenario, as in the follow-
ing, and allocate memory for additional requests of 10K and
20K (in this order). Compare the memory allocation using
first-fit, best-fit, and worst-fit allocation methods, in terms of
internal fragmentation.

Basic Memory Management 331

 6. Design a scenario that illustrates that the worst-case
allocation may prove to be a good algorithm for dynamic
partitioning.

 7. A program’s logical memory has been divided into 7 pages,
and these pages are given frame numbers, 4, 10, 3, 7, 6,
8, and 2. Show the logical memory mapping to the physical
memory.

 8. In a paging scheme, 16-bit addresses are used with page size
of 256 bytes. If the logical address is 0011010101110101,
how many bits are used for the page number and offset?
Also, compute the page number and offset. What will be the
physical address, if the frame address corresponding to the
computed page number is 20?

 9. There is a system with 232 bytes of memory and fixed par-
titioning of size 65536 bytes. What is the minimum number
of bits required for an entry in the process table to store the
partition to which a process has been allocated?

 10. On a system with 1MB of memory that uses a buddy sys-
tem, show a diagram that illustrates the following requests:

 (a) P1 requests 256 K (e) P2 releases

 (b) P2 requests 210 K (f) P1 releases

 (c) P3 requests 50 K (g) P5 requests 410 K

 (d) P4 requests 60 K

 11. In Problem 10, after allocating memory to P5, how much is
the internal and external fragmentation?

 12. How many bits are there in a logical address in a paging
system with 232 bytes of physical memory, 512 pages of
logical address space, and a page size of 28 bytes?

 13. Analyze the searching efficiency of first-fit, next-fit, best-fit,
and worst-fit algorithms.

 14. The address of a block under current allocation in a buddy
system is 011011000011. If the block is of size 16, what is
the binary address of its buddy?

 15. How many bits are there in a logical address, where page
size is of 210 bytes and 256 pages are there in the logical
address space?

 16. A system with 32-bit logical address uses a two-level page
table structure. It uses page size of 26. The outer page table
or directory is accessed with 10 bits of the address.

 i) How many bits are required to access the page table?

 ii) How many entries are there in the directory?

 iii) How many entries are there in the page table?

 17. A program has been divided into four modules. Their
lengths and base addresses are stored in the segment
table, as depicted in the following space:

Segment number Length Base

0 400 200

1 100 3000

2 700 1400

3 300 800

 Show the physical memory mapping for the segments.
What will be the physical memory address for the following
logical addresses?

 (a) 1, 200 (c) 0, 134

 (b) 2, 345 (d) 3, 453

 18. There is a system with a two-level paging scheme. It has 210
bytes page size and 32-bit virtual addresses. If the first level
page table uses first 10 bits of the address to specify a page
table entry, then

 (a) How many bits are required to specify the second-level
page table?

 (b) How many pages are there in the first level page table?

 (c) How many pages are there in the second level page
table?

 (d) How many pages are there in the virtual address
space?

 19. In a paging system with TLB, it takes 40 ns to search the
TLB and 70 ns to access memory. If the TLB hit ratio is
50%, find the effective memory access time. What should

OS

5K 30K 5K20K 15K 15K 22K

Hole Occupied by a process

332 Principles of Operating Systems

be the hit ratio to achieve an effective memory access time
of 220 ns?

 20. Design a page table that illustrates the behaviour of an
inverted page table structure. Analyze its performance
compared to the general page table structure.

 21. Design a page table that illustrates the behaviour of a
hashed page table structure. Analyze its performance com-
pared to the general page table structure.

 22. Study the architecture of some recent OSs and analyze
how the large size of the virtual address space and page
table is handled.

 23. A system with 32-bit logical address supports 26 bytes
page size and 220 bytes of physical memory. How many
page table entries are there in a single level and inverted
page table?

 24. There is a system with 64 pages of 512 bytes page size and
physical memory of 24 frames. How many bits are required
in the logical and physical addresses?

11.1 INTRODUCTION

In Chapter 10, basic memory-management techniques were discussed. The discussion was based on the
real (main) memory. However, the main memory extends to the concept of virtual memory.

Virtual memory targets the organization of the memory when the process size is too large to fit in the
real memory. Therefore, a virtual memory is created that does not limit the size of the real memory and
a programmer is free to write a large-size program. This is a general method of memory management
used in today’s OSs. In virtual memory, combined approach of paging and segmentation is used. The
virtual memory implementation is complex as compared with real memory. It needs the assistance of
hardware support known as paging hardware. Moreover, OSs have a module known as virtual memory
handler (VM handler) that takes care of various algorithms needed to implement the virtual memory.
The implementation and management of a virtual memory system, along with paging hardware and VM
handler will be discussed in detail in this chapter.

11.2 NEED FOR VIRTUAL MEMORY

Paging and segmentation are two basic memory-management tech-
niques that require an entire process to reside in the main memory
before its execution. However, in modern systems that require
a high degree of multi-programming, this becomes a limitation.
The increase in the degree of multi-programming means that more
number of processes should be accommodated in the memory.
Consequently, the degree of multi-programming is limited with
the size of the memory. This limitation may lead to several prob-
lems. There may be a situation where a demand to increase the
number of processes in the memory is unable to be fulfilled due
to the limit of memory size. Another situation may be that a pro-
grammer writes a process that is too large to fit in the memory. It
may not be executed due to its large size. If there is no size limit,
then maximum number of processes can be accommodated in the
memory and a programmer need not worry about the size of the
process.

Is it necessary to have the whole process in the main memory
before execution? If the execution of some real programs is
 observed closely, it can be noticed that the processes are not
required entirely in the main memory. Only certain portions of a

11 Virtual Memory

Learning Objectives
After reading this chapter,
you should be able to
understand:
 • Need of virtual memory
 • Virtual addresses and virtual

address space
 • Implementation of VM system

through demand loading
 • Demand paging
 • Page-replacement algorithms
 • Stack property of page-

replacement algorithms
 • Thrashing and its solutions
 • Paging hardware and its

 components
 • VM handler and its components

334 Principles of Operating Systems

process are required for its execution. While declaring the variables, a large memory is allocated,
which is never used. An array of 100 memory locations may not be used for all 100 locations.
Some code in a process is reserved for some exceptional conditions that may not be used every
time the process is executed. There may be some portion devoted for initialization, which is
necessary only at the start of an execution. If a process is divided into several portions and
only one portion is required in the memory, then there is no need to load the entire process in
the main memory. Therefore, more number of processes can be accommodated in the memory.

This solution was adopted many years ago in the form of overlays. An overlay is a portion
of a process. A program is first divided into many overlays and stored in the disk. A program
containing overlays is called an overlay structured program. This program consists of a set of
overlays and a permanently resident portion known as root. Overlays are identified as mutually
exclusive modules of a program as they do not call each other and thus, need not be loaded
simultaneously in the memory. The root is first loaded in the memory and control is passed to
it for execution. As the root executes, the overlays are loaded as and whenever required. The
 required overlays are swapped in the memory and later on swapped out when the memory is
full. The loading of an overlay overwrites a previously loaded overlay with the same load ori-
gin. This benefits the memory management by reducing the memory requirements of a program.
Although the swapping was done by the system only, the division of process into overlays was
done by the programmer. It is a difficult task for a programmer to divide a process into small
overlays. Moreover, today, overlay is an obsolete technique. This gives rise to the concept of
virtual memory in modern systems. Virtual memory is a method that manages the exceeded
size of larger processes as compared to the available space in the memory. It means that the
degree of multi-programming can be increased without worrying about the size of the memory.
Further, a programmer is relieved from the tight constraints of memory size when writing a
process. A large process will be accommodated in the memory. Suppose, a system has 2-MB
size memory and a programmer writes 8-MB size process. A VM system carefully divides the
process into 2-MB portions and loads the appropriate portion into the memory for execution.

11.3 PRINCIPLE OF LOCALITY

In virtual memory, the entire process is not loaded in the memory. Instead, only required portions
of the process are loaded. This is also supported with the principle of locality. The principle of
locality of reference states that during the course of execution of a program, memory references
by the processor tend to cluster. This is true for both instructions and data in a program. Over
a long period of time, the cluster of memory references changes, otherwise, the same set of
instructions is repeated. The memory references cluster due to the following reasons:

 i) Most of the time, the program execution is sequential except for branch and call
 instructions, and the ratio of these branch and call instructions is lesser as compared
to sequential instruction. For example, GOTO instruction in various languages is rarely
used and its use in programming is often discouraged. The frequency of call instruction
is also very less.

 ii) The loop constructs in a program consist of very small set of instructions that are repeated
many times. During the loop execution in a program, the processor generates memory
 references confined to a small contiguous portion of a program.

 iii) The nesting depth of loops in a program is also confined to a small level in structured
 programs. The moral of good programming is to have a very small nesting depth of loops
that again causes the clustering of memory references.

Virtual Memory 335

 iv) When performing operations on data structures in a program, it has been observed that it
involves access to a clustered set of data locations. When an array or table is accessed, then
its data locations are accessed in sequence resulting in fixed clustered references.

Analyzing these facts of programming, locality of reference can be observed at two levels:
temporal locality and spatial locality. Temporal locality means that the recently referenced
memory locations are likely to be referenced again. In this way, loops, subroutines, and data
variables used to count or for summation are all examples of temporal locality. Spatial locality
means that nearby memory locations are also referenced. In this way, all sequential statement
execution and array traversal are examples of spatial locality. Both the types of locality tend to
generate clustered-memory references.

The principle of locality of reference thus promotes the idea of virtual memory implementation
and concludes that only a few portions of a process are needed over a period of time in its
 execution. The programmer must learn the structured programming techniques, otherwise,
 frequent changes in clusters of memory references may be harmful for the system.

11.4 VIRTUAL MEMORY SYSTEM

On the light of principle of locality of reference, it is now possible to implement a system with
virtual memory. The system with virtual memory is known as virtual memory (VM) system.
The implementation of a VM system requires both hardware and software components. The
 software implementing the VM system is known as VM handler. Virtual memory may be
 realized with paging or segmentation as it requires a non-contiguous memory allocation
method. The simple paging and segmentation concepts have been discussed in Chapter 10.
All the basics of these concepts are also applicable to VM systems. The logical address here
is known as virtual address, and the logical address space is known as virtual address space.
The address translation using paging and segmentation is applied in the same way as discussed
Chapter 10. The only difference of applying paging and segmentation in relation to virtual
memory is that there is no need to load all the pages or segments of a process into the main
memory. The VM system requires only those pages or segments of a process in the memory
that are needed at a certain time of execution. This approach benefits a large process that does
not fit within the limited size of the memory. Even the process that can fit into the memory is
not entirely loaded. Thus, the approach of VM system is to load only those pages or segments
of a process in the memory that are required for execution at an instant of time. Therefore, there
will be space for loading components of other processes. This approach is known as demand
loading of process components.

11.4.1 Demand Loading of Process Components
From the observation of location of reference, it would be wasteful to load all the components
of a process into the memory. A process can be executed without loading all its components.
Thus, in a VM system, only required components are loaded first in the memory. The other
components are loaded as and whenever required. The thumb rule of demand loading is that
never load a component of a process unless it is needed. The components of a process that
are present in the memory are known as resident set of the process as shown in Fig.11.1.
The execution of a process takes place smoothly as long as the logical address generated by
the processor is in the resident set of the process. However, a situation may occur when a
 component (page or segment) corresponding to a generated logical address is not in the resident

336 Principles of Operating Systems

set of the process. Therefore, to execute the process, the components that are not in memory
need to be brought in. Where are these components stored then? For this, a secondary storage,
generally a hard disk is used. The components that are not in the memory are stored in the
hard disk in a separate area. If the processor generates a logical address that is not found in the
memory after address translation, a memory-access-fault interrupt is generated. It means that
a component corresponding to the generated logical address is not present in the memory at
that time. The process being executed is interrupted and is put into a blocked state by the OS.
To resume its execution, the component needs to be swapped in the memory. For this, the OS
issues a disk I/O read request and dispatches another process to run while the disk I/O read
operation is being performed. As soon as the disk I/O read operation is finished, an I/O interrupt
is issued and the control is passed to the OS. The OS then puts the blocked-state process back
into the ready state so that it can be executed again.

The issues related to the implementation of demand loading in a VM system are as follows:

 i) How will one recognize which component is in the memory and which one is not?
 ii) How many processes will be resident in the memory?

This is related to the degree of multi-programming. The low degree as well as high degree
of multi-programming may cause problem to the VM system. If there are only a few
 processes, then it may be possible that all the processes are blocked. On the other hand, if
there are too many processes, then the resident set of each process will get very less space,
and most of the time, components will be replaced for bringing in the desired components.

 iii) How much main memory is allocated to a process?
A fixed or variable number of frames may be allocated to the process depending on many factors.

 iv) When a required component from the hard disk is to be brought into the memory, it may be
possible that there is no free frame to be allocated. Where will this component be stored in
the memory then? The idea is to replace some component already stored there and make
room for the new component. In this way, an already existing component is swapped out
and a new one is swapped in. This is known as component replacement. However, what

Swap in

Swap out

Resident set

6

5

4

3

2

1

0

7 Logical memory

Physical memory

Pages/segments
Frames

Swap space

Fig. 11.1 Demand loading

Virtual Memory 337

will be the strategy for replacing a component? The strategies are known as component
replacement algorithms discussed later in the chapter.

 v) The VM system realizes a huge memory only due to the hard disk. With the help of the
hard disk, the VM system is able to manage larger-size processes or multiple processes
in the memory. For this purpose, a separate space known as swap space is reserved in the
disk. The components of the processes are swapped in and swapped out of this swap space.
Swap space requires a lot of management so that the VM system woks smoothly. This is
known as swap space management, which will be discussed later.

11.5 DEMAND PAGING

As discussed in Section 11.4, a VM system can be implemented using either paging or segmen-
tation. In this section, virtual memory implementation with paging concept is discussed. All the
details discussed in this section with reference to paging are also applicable to segmentation.
To understand this, demand loading of a component is renamed as demand paging. The concept
is same as discussed in demand loading of components, but it has been specified in terms of
virtual address space. In demand paging, only pages that are needed at an instant of the time of
execution are loaded. The benefit is that some pages corresponding to some exception-handling
or error-handling code, which may not be executed, are not loaded. It results in efficient utili-
zation of memory and efficient execution in terms of time. Paging system with swapping was
discussed in Chapter 10. Demand paging is also the same except that an entire process is not
swapped in or swapped out. Rather a lazy swapper is used here that loads only those pages that
are needed. The swapper term is used for swap-in and swap-out. Here, the term pager will be
used. The swapping operations will hence be known as page-in and page-out operations.

Like demand loading, demand paging also has some issues related to its implementation.
The first issue with demand paging is how to recognize whether a page is present in the mem-
ory. The page table with valid–invalid bit can be used for this purpose. In demand paging, a
valid bit means that the page is in the logical address space of the process and is in memory at
the time. Similarly, an invalid bit means that the page is either not valid or not present in the
memory. The page table entry for a valid bit (1) will contain the frame address of the page. In
case of an invalid bit (0), the page table entry will not contain any frame address (see Fig. 11.2).

The second issue with demand paging is the situation when a process execution does not
get a page in the memory. A situation will occur in demand paging when the page referenced
is not present in the memory. This is known as a page fault. Consequently, the page fault must
be noticed by the system and be serviced appropriately. Paging hardware while translating the
address through the page table notices that the page-table entry has an invalid bit. It causes a
trap to the OS so that a page fault can be noticed.

Base address of page 0

Base address of page 1

Base address of page 2

Base address of page 3

Base address of page 4

Base address of page 5

0

1

2

3

4

5

Valid–invalid bit

Fig. 11.2 Page table with valid–invalid bit

338 Principles of Operating Systems

The page fault once detected must be handled immediately. The page fault handling is to page
in a page from the disk known as a paging device. However, for a page-in operation, a free frame
should be available in the memory. If the free frame is there, a disk operation to read the desired
page is initiated. When the desired page is paged into the memory, the page-table entry must
also be updated as valid as the page is now in the memory. The process can now be executed
again without a page fault. The demand paging with page-fault handling is shown in Fig. 11.3.

Example 11.1

A logical address in a paging system generates the page number 5. After looking at the page-table
entry, it is found that its invalid entry is 0. After passing the control to the OS, it is found that the
page is legal on the paging device. This is a page fault as the required page number is not in the
memory. The page number 5 from the disk is then paged-in as depicted in the following diagram.

Page-in

0

1

2

3

4

5

CPU p d

5

3

1

2

Page table

1

1

1

1

0

0

Page fault

Valid–invalid bitFrame address

Physical
memory

5

4

3

2

1

0

Swap
space

Paging
device

Page-in

Page-out

Resident set

6

5

4

3

2

1

0

7 Logical memory

Physical memory

Pages
Page frames

Swap space

Paging device

Fig. 11.3 Demand paging

Virtual Memory 339

Third issue is that there may be a situation when there is no free frame. In this case, to make
room for the page to be paged in, the existing page in the memory needs to be paged-out. In
other words, the existing pages may be replaced so that a page can be paged-in from the disk.
However, which page will be replaced is another issue? A strategy must be devised that will
guide the page replacement. Page-replacement strategies are known as page-replacement algo-
rithms. The page-replacement algorithms may affect the performance of the system. Therefore,
these algorithms must be optimized and chosen carefully. Page-replacement algorithms will be
discussed later in this chapter.

Example 11.2

Consider Example 11.1: If there are no free page frames in the memory as all the frames are
 occupied with other pages, then any of the page frames needs to be replaced so that page
number 5 can be paged-in. Here comes the need of page-replacement algorithm that chooses a
victim page frame out of the resident set as depicted as follows.

6

Page-in

0

1

2

3

4

5

CPU p d

5

3

1

2

Page table

1

1

1

1

1

0

0

Page fault

Valid–invalid bitFrame address

Physical
memory

5

4

3

2

1

0

Swap space

Paging
d evice

4 1

5

The sequence of operations in demand paging, along with page fault handling, is summa-
rized in the following steps (see Figs 11.4 and 11.5):

 1. Extract the page number from the generated logical address.
 2. Check the page table and look for the corresponding page-number entry in the page table.
 3. If the corresponding valid–invalid bit corresponding to the page number is 1, then the

 desired page is in the memory and the address translation unit of paging hardware translates
it into a physical memory as described earlier.

 4. If the corresponding valid–invalid bit corresponding to the page number is 0, then an
 interrupt is generated and the control is passed to the OS.

 5. The OS saves the registers and state of the process and checks whether the page is in the
legal boundary. If not, then the process may be terminated.

 6. If the page is found to be in the logical memory, then it is a page fault and a page-fault
 handler module of the VM handler is invoked to tackle the page fault.

 7. The page-fault handler reads the disk address of the page number stored in the page table
and locates the required page on the paging device.

 8. The page-fault handler checks whether there is a free frame through a free frame list that
maintains the status of all the free frames in the memory. If the memory is full and there is
no free frame, then a page-replacement algorithm is run to select a victim page frame so that
the desired page from the paging device can be paged-in.

340 Principles of Operating Systems

 9. The page-replacement algorithm will select a page frame. If the selected page frame is
occupied with a page that has not been modified, then it can be replaced directly. If the
page has been modified, then it needs to be paged-out first on the paging device. There-
fore, a disk-write operation is performed. The page-modification information is maintained
through a modify bit (M-bit) in the page table (discussed in detail in Section 11.7)

 10. When the page frame has been made free, the page-fault handler starts a disk-read operation
to page-in the desired page.

 11. After the page has been paged into the memory, its page-table entry is updated by marking
the corresponding valid–invalid bit as 1 and adding frame address of the page indicating
that the page resides in the memory.

 12. The instruction is restarted from the logical address where the page fault has happened.
 It is to be noted that during every read/write operation on disk, there may be a queue of waiting
processes that need access to the device. While waiting for the device in the queue, the CPU
may switch to another process and the current process is blocked. As soon as the disk I/O
read/write request is finished, an I/O interrupt is issued and the OS gets the control back. The
blocked process is moved back into the ready state so that it can be executed again. In this way,
page-fault-service time will be increased due to the device-waiting time.

11.6 VIRTUAL MEMORY SYSTEM WITH TRANSLATION LOOK-ASIDE BUFFER

VM system also uses TLB to reduce the memory accesses and increase the system performance.
The hardware implementation is the same as discussed in Chapter 10. The only difference is
the software mechanism in the OS by which a page fault is generated if the desired page is not

Page-in11

3

6

0

1

2

3

4

5

CPU p d

5

3

1

2

Page table

1

1

1

1

1

0

0

Page fault

Valid–invalid bitFrame address

Physical
memory

5

4

3

2
1

0

Swap
space

Paging
device

4 1

1 2

OS 4

5

Terminate
the process

Page-fault
handler

6

7

Free-
frame
list 8, 9

10

12

Fig. 11.4 Demand-paging steps

Virtual Memory 341

Page-number
extraction

Change the valid–invalid bit
of the page to 1

Page number

Check valid–
invalid bit in
page table?

Valid–invalid bit = 1
Map to the
physical memory

Valid–invalid bit = 0

Generate an
interrupt. pass
the control to OS

OS:
Saves the process state

Check page is in
logical memory?

No Terminate
the process

Yes

Pass the control
to page-fault
handler (PFH)

PFH:
Locates the page

on disk,

Is there any
free frame in
the memory?

No

Execute the
page-
replacement
algorithm and
find the page to
be replaced

Disk-read
operation and
page-in the page

Is M bit
of page
= 1?

Yes

Disk-write
operation

Yes No

Restart the
process

Fig. 11.5 Flow of sequence of events in demand paging

342 Principles of Operating Systems

in the memory and page-fault handling function is invoked. It means that whenever a virtual
address is translated into a physical address, there is a reference to a page-table entry that may
be in the TLB, memory, or disk. Thus, the performance of a system is affected by demand
paging as the time to service a page fault is also added, if there is a page fault.

A VM system cannot be free of page faults. Due to the nature of the demand-paging system,
there will be page faults. However, the higher the number of page faults the poorer will be
the performance of the system. Therefore, the number of page faults should be few. Thus, the
effective memory access time in case of demand paging is directly affected by the page fault
rate. If P is the probability of a page fault, then

Effective memory access time (EAT) = P(page fault) × page fault service time + [(1 – P(page
fault)) × (time to access memory location)]

Example 11.3

In a demand-paging system, the paging device has an average latency of 4 ms, seeks time of
4.5 ms, and transfers time of 0.06 ms. The disk has a queue of waiting processes. Therefore, it
has an average waiting time of 5 ms. If memory access time is of 180 ns and the page fault rate
(PFR) is 9%, then what will be the effective access time for this system? If the PFR increases
to 20%, then what will be effect on the effective access time?

Solution

Page fault service time = 4 + 4.5 + 0.06 + 5 = 13.56 ms
Memory access time = 180 ns = 0.00018 ms
EAT for 9% PFR = (0.09 × 13.56) + [(1 − 0.09) × 0.00018]

 = 1.2204 + 0.0001638
 = 1.2205638 ms

EAT for 20% PFR = (0.2 × 13.56) + [(1 − 0.2) × 0.00018]
 = 2.712 + 0.000144
 = 2.712144 ms
It can be seen that EAT increases with an increase in the page fault rate. Thus, there is a

direct relation between the two.

Example 11.4

In a demand-paging system, it takes 250 ns to satisfy a memory access when the requested page
is in the resident set. If it is not in the resident set, then the request takes 10 ms if a free frame is
found or the page to be replaced is not modified. Such requests are 3% of all the accesses. Other-
wise, if there is no free frame and the page to be replaced is modified, then it takes 20 ms. Such
pages are 7% of all the accesses. If the PFR in the system is 10%, then what will be the EAT?

Solution

EAT = 0.9 × 0.00025 + 0.03 x 10 + 0.07 × 20
 = 0.000225 + 0.3 + 1.4
 = 1.700225 ms

Example 11.5

In a demand-paging system, it takes 180 ns to satisfy a memory access when the requested page
is in the resident set. If it is not in the resident set, then the request takes 7 ms. What will be the

Virtual Memory 343

EAT if the PFR is 8%? What would be PFR to achieve an EAT of 400 µs? Convert all the units
to microseconds.

Solution

Case I
EAT = 0.92 × 0.18 + 0.08 × 7000

 = 0.1104 + 560
 = 560.1104 µs
 = 0.5601104 ms

Case II
EAT = 400 = (1 − PFR) × 0.18 + PFR × 7000
400 = 0.18 − PFR × 0.18 + PFR × 7000
400 = 0.18 + 6999.82 × PFR
399.82 = 6999.82 × PFR
PFR = 5.7%

11.7 PAGE-REPLACEMENT ALGORITHMS

Due to the concept of demand paging, the degree of multi-programming can be increased, that
is, more number of processes can be allocated in the memory as compared to the simple paging
concept. If there are five processes with five pages each, but only four pages of all processes are
used, then it makes room for another process with five pages to be accommodated. However,
the memory will be over-allocated in this case. Moreover, the memory is used not only for
holding pages but also contains page tables, buffers for I/O, and so on. Therefore, when a page
fault occurs during the execution of a process, a page needs to be paged into the memory from
the disk. However, it may be the case that there is no free frame in the memory. In such case, an
already existing page should be replaced so that there is room for a page that needs to be paged.
This is known as a page replacement. A page replaced randomly may affect the performance
of the system. Suppose a page is used frequently during the execution of a process. If this page
is replaced by a random approach, then it may be needed very soon and need to be paged-in
again resulting in more page faults and degrades the performance of the system. Thus, instead
of replacing any page, the use of pages in the memory is to be observed and a page should be
replaced such that the effect on performance of the system is the least. The strategy to choose
the best page to be replaced in the memory is called a page-replacement algorithm.

The page replacement increases the overhead because
there are two page transfers: page-in and page-out. There-
fore, these two page transfers will increase the page-fault
service time, thereby increasing the overhead. This over-
head can be reduced if it is known whether a page has
been modified. It is not necessary that all the pages in the
memory have been modified at a certain instant of time.
Some pages may have been modified and some may not
be. Moreover, some pages may be read-only. If a page
has not been modified and is chosen as the victim page,
then there is no need to replace it. It can simply be over-
written by another page because its copy is already on

Base address of page 0

Base address of page 1

Base address of page 2

Base address of page 3

Base address of page 4

Base address of page 5

0

1

2

3

4

5

Valid–Invalid Bit M-bit

Fig. 11.6 Page table with valid–invalid and M-bits

344 Principles of Operating Systems

the disk. In this way, one page-transfer time can be reduced. This is implemented by including
a an M-bit) or a dirty bit with each page (see Fig.11.6) or frame in the hardware. Whenever
there is a change in a page, the modify bit is set by the hardware. If the modify bit is set, then it
indicates that the page has been modified since it was read in the memory. If the modify bit is
not set, then it means that the page has not been modified. It need not be paged-out for replace-
ment and can be overwritten. This mechanism reduces the page-fault service time.

How does one select a page-replacement algorithm? The evaluation criterion for the
 algorithm is to have the lowest PFR. The algorithm that will produce less page faults will
be considered a good page-replacement algorithm. To select an algorithm, consider which
memory reference has caused the page fault during the execution of a process. Therefore, to
evaluate an algorithm, it is a must have a particular string of memory references. A string of
memory references is known as a reference string. The algorithm will be run on this string. The
reference string can either be generated artificially or a snapshot can be taken from an actual
running process. However, the reference string in the form of actual memory addresses will be
inconvenient for the evaluation of the algorithm. Therefore, the memory reference is consid-
ered in the form of a page. The page number containing the memory reference is taken in the
reference string. In this way, it is easy to know the page number where the memory reference
has produced a page fault.

For a page-replacement algorithm experimental evaluation, it is important to know the
 number of page frames available in the memory. The number of page frames plays an important
role in producing the number of page faults and in the performance of the system. The more
the number of page frames the less is the probability of page faults and increased performance
of the system. This is because with the increase in the number of page frames, more number of
required pages can be accommodated in the memory. Therefore, the required pages will be in
the memory most of the times, thereby reducing the number of page faults. Thus, in general, it
is expected that as the number of page frames increases the number of page faults decreases to
a minimum level as shown in Fig. 11.7.

A page replacement algorithm must satisfy the following requirements:

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7

Number of frames

N
um

be
r

of
 p

ag
e

fa
ul

ts

Fig. 11.7 Relation between PFR and the number of page frames

Virtual Memory 345

 • The algorithm must not replace a page that may be referenced in the near future. This is
known as non-interference with the program’s locality of reference.

 • The PFR should not increase with an increase in the size of the memory.

11.7.1 FIFO Page-replacement Algorithm
This strategy is used very often in daily life. Let us take an analogy of a shelf, which is used
to keep several things. When there is no place in the shelf to keep a new item, the oldest item
is replaced. The same strategy known as first-in first-out (FIFO) is also used for page replace-
ment. According to FIFO, the oldest page among all the pages in the memory is chosen as the
victim. The question is how to know the oldest page in the memory. One approach may be to
attach the time while storing a page in the memory. However, an easier approach is to store all
the pages in the memory in a FIFO queue. The page at the head of the queue will be paged-out
first and a new page will be inserted at the tail of the queue. Let us understand this algorithm
with some examples.

Example 11.6

Calculate the number of page faults for the following reference string using FIFO algorithm
with frame size as 3.

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 5

Solution

5 5

0

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 5

5

0

2

1

0

2

1

3

2

1

3

0

2

3

0

2

4

0

2

4

3

0

4

3

0

2

3

3

2

1

3

0

1

3

0

5

0

2

1

Initially, all the three frames are empty. Page number 5 is first referenced, and it is a page fault.
After handling the page fault, the page is brought into the memory in one of the frames. Similarly,
Page numbers 0 and 2 occupy the other two frames. Next, Page number 1 is referenced but
there is no free frame. Here, the FIFO algorithm comes into the picture and replaces the page
that was brought first, that is, Page number 5. The next referenced Page number 0 is already in
the memory; therefore, it will not fault. After this, the next referenced page number is 3, which
is a page fault. Therefore, Page number 0 is replaced. This process goes on resulting in 15 page
faults. All the page references causing page faults have been circled to show the page faults.

Example 11.7

Calculate the number of page faults for the following reference string using FIFO algorithm
with frame size as 4.

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 5

Solution

Eleven page faults occur in the same reference string as in the previous example. The
 difference is in the number of frames in the memory. With frame size 4, the number of page

346 Principles of Operating Systems

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 5

5 5

0

5

0

2

5

0

2

1

3

0

2

1

3

4

2

1

3

4

0

1

3

4

0

2

1

4

0

2

1

3

5

2

1

3

0

2

faults decreases as discussed earlier that the number of page faults will decrease with an increase
in the number of page frames.

Example 11.8

Calculate the number of page faults for the following reference string using FIFO algorithm
with frame size as 3 and then as 4.

4 3 2 1 4 3 5 4 3 2 1 5

Solution

The page faults with frame size as 3 are 9 as shown as follows:

4 3 2 1 4 3 5 4 3 2 1 5

4 4

3

4

3

2

1

3

2

1

4

2

1

4

3

5

4

3

5

2

3

5

2

1

The page faults with frame size as 4 are 10 as shown as follows:

4 3 2 1 4 3 5 4 3 2 1 5

4 4

3

4

3

2

4

3

2

1

5

3

2

1

5

4

2

1

5

4

3

1

5

4

3

2

1

4

3

2

1

5

3

2

Belady’s Anomaly
In Example 11.8, with frame size 3, the number of page faults is 9, whereas with frame size 4, it is
10. This is contradictory to the established principle that the number of page faults decrease with
an increase in the number of frames in the memory. This anomaly was observed by a researcher,
Belady, and is known as Belady’s anomaly that shows the unexpected behaviour of FIFO page-
replacement algorithm. This unexpected behaviour is seen in some of the reference strings but not
always. This anomaly therefore decreases the reliability of the replacement algorithm. Moreover,
it will soon be discussed that this algorithm produces a large number of page faults compared to
other algorithms. Thus, this algorithm cannot be a good choice for page replacement.

11.7.2 Optimal Page-replacement Algorithm
The FIFO algorithm produces a large number of page faults. Moreover, it suffers from Belady’s
anomaly as discussed in Section 11.7.1. An algorithm is required that produces the least num-
ber of page faults and does not suffer from Belady’s anomaly. An optimal policy is formed

Virtual Memory 347

 according to which a page that will not be referenced for the longest time will be replaced.
This policy produces a minimal number of page faults. Let us understand this algorithm with
an example.

Example 11.9

Calculate the number of page faults for the following reference string using optimum algorithm
with frame size as 3.

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 5

Solution

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 5

5 5

0

5

0

2

1

0

2

3

0

2

3

0

4

3

0

2

3

0

1

5

0

1

The Page numbers 5, 0, and 2 are page faults as shown earlier. The next page reference is 1,
which is a page fault. At this moment, it is observed which page out of 5, 0, and 2 will not
be referenced for a long time in the reference string. This is Page number 5. Therefore, Page
number 5 will be replaced in the memory. The next reference Page number 0 is not a page fault.
Page number 3 is again a page fault. Again, it is observed which page out of 1, 0, and 2 will not
be referenced for a long time. This is Page number 1. Therefore, Page number 1 is replaced.
The process goes on resulting in 9 page faults. The number of page faults in this algorithm is
very less compared to FIFO algorithm.

Although the optimal page-replacement algorithm provides the minimum number of page
faults, it cannot be implemented. The reason is that there is no provision in the OS to know
the future memory references. Thus, this algorithm has no practical use in page replacement.
However, it can be used to measure the performance of an algorithm in comparison with this
algorithm. A new algorithm, although may not be optimal, can be compared with the minimum
number of page faults found in this algorithm. In this way, the efficiency of an algorithm can
be assessed.

11.7.3 Least Recently Used Page-replacement Algorithm
The optimal algorithm is not realizable as discussed in Section 11.7.2. The optimal algorithm
was designed to replace a page that will not be referenced for the longest time. In other words,
this was meant to have a low number of page faults. This algorithm may also be approximated
with another view. The idea is to predict future references based on the past data, that is, a page
that has not been referenced for a long time in the past may not be referenced for a long time
in the future either. In this way, LRU page-replacement algorithm replaces a page that has not
been used for the longest period of time in the past. Let us understand this algorithm with an
example.

Example 11.10

Calculate the number of page faults for the following reference string using LRU
 page-replacement algorithm with frame size as 3.

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 5

348 Principles of Operating Systems

Solution

5 5

0

5

0

2

1

0

2

1

0

3

2

0

3

2

0

4

2

3

4

0

3

4

0

3

2

1

3

2

1

3

0

1

5

0

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 5

The page references 5, 0, and 2 will result in page faults. The next page reference 1 needs
page replacement. Out of 5, 0, and 2, Page number 5 has not been used in the past. Therefore,
it will be replaced. This process goes on resulting in total 13 page faults, which is again less
compared to FIFO page-replacement algorithm.

Since in LRU, there is a need to have information about the page that has been the least
recently used, its implementation incurs some cost. There should be some mechanism to find
out a page that has not been used for the longest time. Some of them are discussed as follows:

Stack Implementation
To implement LRU, a linked list of all the pages in the memory can be maintained. The list
can be structured as a stack such that whenever a page is referenced, it is placed at the top of
the stack. This way, the most recently used page will always be at the top and consequently,
the least recently used page will be at the bottom of the stack. This implementation requires
 removing one entry from the middle and placing it at the top of the stack. Thus, the stack needs
to be updated with every memory reference, which incurs a cost. However, the advantage is that
only the bottom of the stack needs to be searched for this purpose, which saves time.

Example 11.11

A page reference string is given by
5 0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 5
The stack implementation that records the most recent reference at the top and the least-used

page reference at the bottom of the stack. The following figure shows the state of the stack after
the first reference of Page number 3 in the reference string.

5

0

5

2

0

5

1

2

0

5

0

1

2

5

3

0

1

2

Counter Implementation
The stack implementation is costly because of constant updating of data in the linked list. If
it is possible to note the time when a memory reference was made, then the time when a page
was referenced can be known. For this purpose, a counter is taken in hardware, which is incre-
mented after every memory reference. Further, the contents of this counter should be copied
to the page table. For this, there must be another column, say counter, in the page table (see
Fig. 11.8). Therefore, whenever there is a reference to a page, the counter (time of the last use)
is incremented and the value of counter is copied into the counter field in the page-table entry
for that page. In this way, the time of the last reference of a page is obtained. Whenever a page
fault occurs, the page table is searched for the smallest value of the counter. The page with the

Virtual Memory 349

smallest value is replaced according to LRU policy. Counter implementation requires hardware
assistance for counter, page table searching, and a write operation to the memory for copying
the counter value into the page table.

Matrix Implementation
In this implementation, a matrix of n × n is maintained, where n is the number of page frames
in the system. All the entries in the matrix are initialized to 0. Whenever a page, say m, is
 referenced, all the entries of mth row in the matrix are set to 1 and all the entries of mth column are
then set to 0. This process is repeated with every memory reference. The page corresponding to
the least binary value of the row is the least recently used page. This implementation, however,
needs hardware assistance: All the matrix operations are implemented in hardware.

Example 11.12

A page reference string is given by
0 2 1 0 3 0 2 3 0 3 2 1 3 0 1
The matrix implementation of this string for some of the page references is shown in Fig. 11.9.

Base address of page 0

Base address of page 1

Base address of page 2

Base address of page 3

Base address of page 4

Base address of page 5

0

1

2

3

4

5

Valid–invalid bit M-bit Counter

Fig. 11.8 Page table with counter

0

0

0

0

0

1

2

3

0 1 2 3

1

0

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

1

2

3

0 1 2 3

1

0

1

0

0

0

0

0

1

0

1

0

0

1

1

0

0

1

2

3

0 1 2 3

0

0

0

0

0

1

0

0

1

1

1

0

(a) (b) (c)

0

0

0

0

0

1

2

3

(d) (e) (f)

0 1 2 3

1

0

0

0

1

1

0

0

1

1

1

0

0

0

0

1

0

1

2

3

0 1 2 3

1

0

0

1

1

1

0

1

0

0

0

0

0

0

0

0

0

1

2

3

0 1 2 3

1

0

0

1

1

1

0

1

1

0

0

0

Fig. 11.9 Matrix implementation of LRU

350 Principles of Operating Systems

In Fig. 11.9(a), the first page reference in the string, that is, Page number 0 is considered.
The entries corresponding to the 0th row are made 1, and then, the entries corresponding to
the 0th column are made 0. For the next page reference, that is, Page number 2, the matrix of
Fig. 11.9(a) is used resulting in Fig. 11.9(b). At any step, the least recently used page can be
 obtained. For example, after the second page reference, the binary value of Page number 2
(1101) is more than the binary value of Page number 0 (0101). Therefore, 0 is the least recently
used page. This process is repeated with all the page references, and the least recently used page
to be replaced can be easily obtained using matrix implementation.

LRU algorithm is considered as the best algorithm due to less number of page faults
 compared to FIFO algorithm. Moreover, it does not suffer from Belady’s anomaly. However,
the implementation of LRU demands hardware assistance. Moreover, there is a need to update
the clock or stack for every memory reference. This slows down every memory reference in the
system. Thus, inspite of being good in performance, LRU is difficult to implement and incurs
overhead. Therefore, some other algorithms are required for page replacement. The research-
ers have tried to approximate the nature of the LRU and developed some other algorithms
that incur the least overhead or require the least hardware assistance. These algorithms are
discussed in the subsequent sections.

11.7.4 Second Chance Page-replacement Algorithm
This algorithm is a modification of FIFO algorithm. The FIFO algorithm inspite of its poor perfor-
mance is a low-overhead algorithm. The major drawback of this algorithm is that even if a page
is in use, it may be replaced due to its arrival time. It means that there is no consideration of the
use of a page in FIFO algorithm. The performance of FIFO algorithm can be increased and can be
approximated to LRU if information regarding how much a page is in use in the system is added.
For this purpose, some additional bits are required to keep the information. A reference bit or use
bit is used to give information regarding whether the page has been used (see Fig. 11.10). This
information is entered into the page-table entries. Initially, all the reference bits of the pages are set
to 0 to indicate that the page is not in use. As the page is referenced, the status of the reference bit
of the corresponding page is changed to 1 to indicate that the page is in use. In other words, when-
ever a page is loaded in the memory, its reference bit is 0. It is set only when the page is referenced.

With the help of a reference bit with each page frame, an algorithm is designed to give a
second chance to a page that is in use. In other words, a page whose reference bit is 1 will not be
replaced and will be given a second chance to be in the memory. In this way, a page that is being
frequently used will not be replaced. The implementation of this algorithm is done by resetting

Base address of page 0

Base address of page 1

Base address of page 2

Base address of page 3

Base address of page 4

Base address of page 5

0

1

2

3

4

5

Valid–invalid bit M-bit Counter Reference
bit

Fig. 11.10 Page table with reference bit

Virtual Memory 351

its reference bit to 0 and arrival time to the current time. Thus, a page that is given a second
chance will not be replaced until all the other pages have been replaced. Generally, FIFO list is
maintained through a queue. Therefore, this page is appended at the end of the queue of pages
by the OS. If a page is being frequently used, then its reference bit is always set to 1 and will
never be replaced. There may be a situation when all the pages in the memory are in use, then
this algorithm degenerates into pure FIFO algorithm. In this case, it scans all the pages once
and reaches to the first page again.

Example 11.13

Calculate the number of page faults for the following reference string using second-chance
algorithm with frame size 3 and compare the result with FIFO algorithm.

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 5

Solution

5 5

0

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3

5

0

2

1

0

2

1

0

3

2

0

3
1

2

0

4
1

3

0

4
1

3

0

4
1

1

0

2

1

0

3

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

3

0

4
1

3

0

2
1

1

0

2
1

1

3

2
1

0 1 5

1

3

0
1

1

3

0
1

1

5

0
1

t16 t17 t18

The page whose reference bit is 1 has been shown in grey color, otherwise, the reference bit
of the page is 0.

If we compare the number of page faults here as compared to FIFO in Example 11.6, then
second-chance algorithm is better as there are only 13 page faults in the second chance as
 compared to 15 in FIFO.

11.7.5 Clock Page-replacement Algorithm
Implementation of the second-chance algorithm in the form of a queue may be inefficient as
it incurs the cost of moving the pages with reference bit 1 at the end of the queue. Therefore,
the pages are moved around in the queue unnecessarily. A better approach is to have a circular
queue instead of a general queue. The circular queue will store all the pages with their status
bits as before, but now, there is a hand (a pointer) that indicates the next page in the circular
queue. This circular queue is known as a clock. Whenever there is a page fault, the page indi-
cated by the hand of the clock is inspected. If the reference bit of the page being inspected is 1,
then it is reset to 0, that is, the page is given a second chance and the position of the hand is

352 Principles of Operating Systems

advanced to the next page in the clock. Otherwise, if the reference bit is 0, the page is replaced
with the new one. The reference bit for this page is set to 1, and the hand is advanced to the next
page in the queue. It may be possible that the reference bit of all the pages is set as 1. In that
case, the hand scans all the pages one by one and resets all of them to 0. Finally, it reaches the
first page in the clock where it started, but this time, the reference bit is 0. Therefore, the first
page can be considered for the replacement.

Example 11.14

The circular queue implementation as a clock has been shown for some pages in the queue
with a hand (see Fig.11.11(a)). Currently, the hand points to frame 1 containing Page number
4 and its reference bit R is set as 1. The clock algorithm is executed. Since the R bit is 1, the
page cannot be replaced but its R bit is set as 0. The hand is advanced to the next frame. The
next frame contains the Page number 12 and its R bit is 0. This page can be replaced with an
 incoming page. Suppose the page to be brought in is the Page number 14. Therefore, Page
number 12 is replaced with Page number 14 and its R bit is set as 1 as shown in Fig. 11.11(b).
Further, the hand is positioned to the next frame and the process continues.

11.7.6 Modified Clock Page or Not Recently Used Page-replacement Algorithm
The clock page-replacement algorithm can be made more powerful and efficient if the M-bit is
combined with the reference bit. For the page replacement, these two bits should be combined
together and an algorithm can be designed such that a page, which is neither used recently
nor modified, is not replaced. This algorithm is known as modified clock page-replacement
algorithm or not recently used algorithm (NRU). The modified page considered for the page
replacement needs to be written to the disk so that changes done in the pages are saved. The
combination of reference bit and M-bit can be exploited to have the effect of both page access

Page 2
R = 1

Page 4
R = 1

Page 12
R = 0

Page 9
R = 1

Page 7
R = 1

Page 11
R = 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 0

Fig. 11.11 (a) Circular queue clock page replacement

Virtual Memory 353

and page modification. The combination of the bits is shown in Table 11.1, where R is reference
bit and M is M-bit. R and M bits are set by the hardware. When a page is referenced, the R bit
is set, and if the page is modified, its M bit is set.

For page replacement, a page that has been recently used or modified will not be consid-
ered. Therefore, the Classes 2 and 3 in Table 11.1 are invalid for page-replacement algorithm.
Therefore, the Classes 0 and 1 can be considered. In these two cases, Class 0 is more suitable
because it has not been used recently and is not modified. Thus, the clock algorithm is
 designed such that the hand scans the pages in the clock and replaces the first page with R = 0
and M = 0. Note that the R bit of any page is not modified in this step. If such a page is found,
then the algorithm executes fast as there is no need to transfer the page to be replaced to the
hard disk, thereby reducing the I/O time required. On the other hand, if the desired page is
not found, then the hand scans the clock again, but this time the strategy is changed, that is,
R = 0 and M = 1. If such a page is found, then replace it; otherwise, R bit is reset and the
hand is advanced to the next page. This process continues until the desired page is obtained.
If not, then scan the queue again; this time, a page that satisfies either of the two strategies,
as discussed earlier, will be found. In this modified-clock algorithm, multiple sweeps of the
circular queue may be needed to perform that may improve the performance of the algorithm.
The algorithm is shown in Fig. 11.12.

Page 2
R = 1

Page 4
R = 1

Page 14
R = 1

Page 9
R = 1

Page 7
R = 1

Page 11
R = 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 0

Fig. 11.11 (b) Clock page replacement

Table 11.1 R bit and M bit combinations

Class R M Meaning

0 0 0 Page is not being used recently and is unmodified.

1 0 1 Page is not being used recently and is modified.

2 1 0 Page is being used recently and is unmodified.

3 1 1 Page is being used recently and is modified.

354 Principles of Operating Systems

As given in Table 11.1, is it possible that a page has not been recently referenced but modified?
This is possible. Suppose, a page is found pointed by the hand R = 1 and M = 1. According to the
algorithm given in Fig. 11.12, the status of the R bit is changed to 0 to differentiate between the
recently referenced and the earlier ones. Therefore, it may be possible that whenever the hand of
the clock comes back to this page, its R bit is 0 whereas M bit is still 1. This is because the status
of the R bits is only changed in the algorithm and M bit is untouched. Therefore, it is possible that
one page is with R bit set to 0 and M bit as 1.

Example 11.15

A circular queue shown in Fig. 11.13 (a) uses R bit as well as M bit. The hand is positioned
 currently on the Page number 4 whose R bit and M bit are set as 1. Therefore, this page cannot
be replaced. According to the algorithm, the R bit of this page is set to 0 and the hand is

Page 2
R = 1
M = 1

Page 4
R = 1
M = 1

Page 12
R = 1
M = 1

Page 9
R = 1
M = 1

Page 7
R = 1
M = 1

Page 11
R = 1
M = 1

Frame 1

Frame 2

Frame 3

Frame 4

(a)

Frame 5

Frame 0

Fig. 11.13 NRU example

Step 1: Find out the current position of hand in the clock.

Step 2: Scan the page. If a page with R = 0 and M = 0 is found, replace

it. Otherwise, move to the next page. Repeat this step till the end of the

queue. (Do not change the status of any bit in this step.)

Step 3: Scan the queue again. If a page with R = 0 and M = 1 is found,

replace it. Otherwise, change the status of reference bit of the page and

move to the next page. Repeat this step till the end of the queue. Go to

Step 1.

Fig. 11.12 NRU algorithm

(a)
(Contd)

Virtual Memory 355

advanced to the next frame. Coincidently, all the frames in the queue have R and M bits set
as 1. Therefore, one round of the algorithm does not find any page to be replaced. However, in
the next round, all pages have R bits reset to 0. Therefore, the first page, that is, Page number
4, can be chosen for the replacement as shown in Fig. 11.13(b).

11.7.7 Not Frequently Used Page-replacement Algorithm
Another approximation for LRU algorithm is not frequently used (NFU) algorithm. In this
algorithm, one counter is taken with every page frame. The counter variable is used to count
how many times the page has been used. R bit is also considered as used before, that is, it is set
or reset according to its use. The counter for each frame is initially 0. At each clock interrupt,
the OS scans all the pages. The R bits (either 0 or 1) of all the pages are added to their cor-
responding counters. If a page is used, then its R bit is set as 1. Therefore, its counter will be
incremented by 1. If a page is not used during a clock tick, then its counter will be unchanged
as its R bit is 0. This is done for all the page frames in the memory. Thus, the counter value for a
page frame indicates how many times a page has been used. When a page fault occurs, the algo-
rithm chooses a page with the lowest value of counter, that is, the page that has been used least.

This algorithm suffers from a problem. it does not take into account the time span of the
pages being used. It may be possible that in a particular time frame, some pages are frequently
used and therefore, their counter will provide a high count. These pages will not be replaced
even though in another time frame, they are not frequent and have a low count. Similarly, in-
spite of their heavy use in the current time frame, the new pages that are useful for execution
may be replaced due to their low counter value in the previous time frame.

This algorithm can be modified to rule out the problem. The solution is called aging. The
first modification is to shift all the counters to right by 1 bit after the clock interval and before
adding the R bit. The second modification is to add the R bit to the leftmost position of the
corresponding counter rather than the rightmost. These two modifications in the counter value
help to indicate not only the frequency but also the time span of reference of a page frame. Let
us illustrate this with an example.

Page 2
R = 0
M = 1

Page 4
R = 0
M = 1

Page 12
R = 0
M = 1

Page 9
R = 0
M = 1

Page 7
R = 0
M = 1

Page 11
R = 0
M = 1

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 0

(b)

(Fig. 11.13 Contd)

(b)

356 Principles of Operating Systems

Example 11.16

Using the NFU with aging, the following set of page frames in Fig. 11.14, along with their
counters and R bits, has been shown for clock ticks 0, 1, and 2. The counter has been assumed
to be of 8 bits. After clock tick 2, Page number 4 or 5 can be replaced as its counter value is
the lowest.

11.8 STACK PROPERTY OF PAGE-REPLACEMENT ALGORITHMS

The Belady’s anomaly observed in FIFO page-replacement algorithm forced researchers
to analyse the page-replacement algorithms. Their investigations resulted into a property
known as stack property of page-replacement algorithms. An algorithm that satisfies this
 property does not suffer from the Belady’s anomaly. The property considers the execution
of an algorithm with two different page-frame sizes, say m and n where n < m. At an
instant of time, all the pages that are in the memory when the page-frame size is n would
also be in the memory when the page frame size is m. In other words, the set of pages when
the page-frame size is n is a subset of the set of pages when the page-frame size is m as
follows:

{page_seti}
t
n
 ⊆ {page_seti}

t
m

where n < m, t is the time instant
{page_set

i
} is set of pages in memory of process i

The implication of stack property is that the number of page faults in page-frame size n
is more compared to that of m. It means that it holds the page fault characteristic, that is, the
 number of page faults decreases as the page-frame size increases.

Example 11.17

Using the following page-reference string and frame size as 3 and 4, show whether FIFO,
optimal, LRU, and second-chance algorithm satisfy the stack property of page-replacement
algorithms:

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 5

Compare the performance of algorithms with both the frame sizes based on the PFR.

10000000

00000000

10000000

10000000

00000000

00000000

0

1

2

3

4

5

1

0

1

1

0

0

Counter R

11000000

10000000

11000000

10000000

10000000

00000000

0

1

2

3

4

5

1

1

1

0

1

0

Counter R

11000000

11000000

11100000

11000000

10000000

10000000

0

1

2

3

4

5

0

1

1

1

0

1

Counter R

Clock tick 0 Clock tick 1 Clock tick 2

Fig. 11.14 Implementation of NFU algorithm

Virtual Memory 357

Solution

5 5

0

5

0

2

1

0

2

1

3

2

1

3

0

2

3

0

2

4

0

2

4

3

0

4

3

0

2

3

3

2

1

3

0

1

3

0

5

0

2

1

Frame size = 3
FIFO

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 55 0 2 1 0 2 4 3 0 2 1 3 0 1 5

t1 t2 t3 t4,t5 t6 t7 t8 t9 t10 t11,t12 t13 t14 t15 t16,t17 t18

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 5

5 5

0

5

0

2

5

0

2

1

3

0

2

1

3

4

2

1

3

4

0

1

3

4

0

2

1

4

0

2

1

3

5

2

1

3

0

2

t1 t2 t3 t4,t5 t6,t7,t8 t9,t10 t11,t12 t13 t14 t15,16,17 t18

Frame size = 4

In FIFO, at time instants t9 and t18, the page_set in execution with page-frame size = 3 is
not the subset of page_set in execution with page-frame size = 4. Thus, this algorithm does not
satisfy the stack property.
Optimal

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 5

5 5

0

5

0

2

1

0

2

3

0

2

3

0

4

3

0

2

3

0

1

5

0

1

t1 t2 t3 t4,t5 t6,t7,t8 t9,t10,t11,t12 t13 t14,t15,t16,t17 t18

Frame size = 3

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 5

5 5

0

5

0

2

5

0

2

1

3

0

2

1

3

0

2

4

3

0

1

4

3

0

1

5

Frame size = 4

t1 t2 t3 t4,t5 t6,t7,t8 t9,t10,t11,t12,t13 t14,t15,t16,t17 t18

358 Principles of Operating Systems

Here, in optimal algorithm, at every instant of time, the page_set in execution with page-
frame size = 3 is the subset of the page_set in execution with page-frame size = 4. Thus, this
algorithm satisfies the stack property.

LRU

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 5

5 5

0

5

0

2

1

0

2

1

0

3

2

0

3

2

0

4

2

3

4

0

3

4

0

3

2

1

3

2

1

3

0

1

5

0

t1 t2 t3 t4,t5 t6,t7 t8 t9 t10 t11,t12 t13 t14,t15 t16,t17 t18

Frame size = 3

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 5

5 5

0

5

0

2

t1 t2 t3 t4,t5 t6,t7,t8 t9,t10,t11,t12, t13 t14,t15,t16,t17 t18

5

0

2

1

3

0

2

1

3

0

2

4

3

0

2

1

3

0

5

1

Frame size = 4

Here, in LRU algorithm, at every instant of time, the page_set in execution with page-frame
size = 3 is the subset of the page_set in execution with page-frame size = 4. Thus, this algorithm
satisfies the stack property.

Second-chance algorithm

5 5

0

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3

5

0

2

1

0

2

1

0

3

2

0

3

2

0

4

3

0

4

3

0

4

1

0

2

1

0

3

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

3

0

4

3

0

2

1

0

2

1

3

2

0 1 5

1

3

0

1

3

0

1

5

0

t16 t17 t18

Frame size = 3

Virtual Memory 359

5 5

0

5 0 2 1 0 3 0 2 4 3 0 3 2 1 3

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

0 1 5

t16 t17 t18

5

0

2

5

0

2

1

5

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

4

3

0

2

4

3

0

2

4

3

0

2

4

3

0

2

4

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

5

1

Frame size = 4

Similarly, in second-chance algorithm, at every instant of time, the page_set in execution
with page-frame size = 3 is the subset of the page_set in execution with page-frame size = 4.
Thus, this algorithm also satisfies the stack property.

The performance comparison of all the algorithms is as follows:

Algorithm No. of page faults with
frame size = 3

No. of page faults with
frame size = 4

FIFO 15 11

Optimal 9 8

LRU 13 8

Second chance 13 8

15

9

13 13

11

8 8 8

0

2

4

6

8

10

12

14

16

Frame size

N
um

be
r

of
 p

ag
e

fa
ul

ts

Frame size = 3
Frame size = 4

FIFO

OPT

LRU

Second
chance

Fig. 11.15 Performance comparison of page-replacement algorithms

360 Principles of Operating Systems

The comparison shows that the number of page faults decrease with increase in the frame
size in the memory. Further, it may be seen in Fig. 11.15 that FIFO when modified as second
chance becomes as good as LRU in performance.

11.9 THRASHING

Virtual memory implementation in a paging environment faces one problem. It may be possible
that a process does not get enough frames in the memory to execute. Consequently, page faults
will occur to bring in the desired pages of the process. If there is no free frame in the memory
and all the pages currently in the memory are referenced frequently, then an active page will
be replaced to bring in the desired pages. When an active page is replaced, it will be needed
again, right away resulting in a page fault. After some time, the processes will try to replace
the active pages of another process to get a free frame in the memory causing a large number
of page faults. This results in a high PFR known as high paging activity, and this high paging
activity is known as thrashing. A process is said to be thrashing if most of the time is consumed
in paging rather than in its execution.

The process of thrashing can be understood with the help of the relation between the num-
ber of page frames and that of page faults as described earlier in Fig. 11.7. This relation is
reproduced in Fig. 11.16 by showing two zones in the graph. One zone is where the processes
execute with low number of page faults, and another is where the processes execute with high
number of page faults. The former is a desirable zone where low paging activity occurs. On
the other hand, in the latter case, processes are in high paging situation where they are busy in
paging activity rather than execution.

It should be clear that accessing the disk may take a few milliseconds compared to the instruction
execution that takes few nanoseconds. When there are a number of page faults and, consequently,
page replacements, the processes need to queue up on the hard disk because one page transfer to
and from the secondary storage takes time. Most of the processes are in waiting queue of the hard
disk and the main memory starts emptying as shown in Fig. 11.17. When a process page faults, it is
blocked. Therefore, most of the processes in high-paging activity are in blocked states, that is, wait-
ing for the hard disk for its service (page-in or page-out). Consequently, the average service time
for a page fault increases due to longer queue on the paging device. Therefore, no useful work other
than page-in or page-out is being done by the processor. In other words, CPU utilization decreases.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7

Number of frames

N
um

be
r

of
 p

ag
e

fa
ul

ts

Desirable
zone

Fig. 11.16 Desirable zone for PFR

Virtual Memory 361

The long-term scheduler observes the low CPU utilization and therefore, increases the degree
of multi-programming by pushing a new process from the job queue to the ready queue. As soon
as a new process arrives in the ready queue, it causes page fault because being a new process it
demands frames for its pages. This further decreases the CPU utilization instead of increasing
it. The scheduler may try to further increase the degree of multi-programming, thereby causing
more page faults. In this situation, there is a tremendous increase in the number of page faults
and all the processes are busy paging rather than executing. The system throughput is reduced
to almost zero, and this is the point of thrashing. At this time, it must be understood that if
CPU utilization does not increase inspite of increasing the degree of multi-programming and
drops down, then the degree of multi-programming should be decreased instead of increasing
because thrashing point in the system has been reached. In Fig. 11.18, the normal behaviour of
CPU utilization can be seen, that is, CPU utilization increases with the increase in the degree
of multi-programming. However, it may be possible that the CPU utilization suddenly starts
dropping with the increase in the degree of multi-programming. It means that the thrashing

Paging device
queue

Physical
memory

5

4

3

2

1

0

Swap space

Paging
device

5

For any R/W
operation, the
process needs to
wait on this queue

Fig. 11.17 Paging device queue

Thrashing point

Degree of multi-programming

CPU
utilization

Fig. 11.18 Thrashing

362 Principles of Operating Systems

point has reached in the system and the degree of multi-programming must be decreased to stop
thrashing in the system. Thus, it can be said that thrashing is a situation of coincidence of high
paging activity and low CPU utilization.

11.9.1 Dealing with Thrashing
Let us discuss how to deal with the thrashing problem. It is clear that thrashing is caused due
to shortage of page frames in the memory. If there are enough page frames in the memory for
execution of a process, then thrashing may not occur. However, it may not be possible most of
the time that all the pages will be allocated frames in the memory. Therefore, the idea is to guess
how many pages may be referenced for a process at a particular instant of time. With this guess,
some space can be allocated to the required number of pages. Therefore, if the number of pages
to be referenced is known, then required space can be allocated to those pages and loaded. The
set of pages a process is using is known as a working set. The working set is a set of m, that is
the most recent page references. If a page is in use, then it will be in the working set, otherwise,
it will be dropped from it at a particular instant of time.

Let m =10, that is, the working set has 10 most recent page references. At a particular instant
of time, look for the recent 10 page references. The pages that are in use in these recent 10 refer-
ences will be the part of the working set. The duplicate entries are omitted.

Example 11.18

A process executes with the following page reference string:
1 3 4 3 2 3 4 2 0 3 4 3 1 2 3 7 2 8 7 4 7 2 7 2 7 0 2 7 2 0 7 0 2
Taking the working set window size as 10, what will be the working set for the time instant

t1, t2, and t3?

Solution

1 3 4 3 2 3 4 2 0 3 4 3 1 2 3 7 2 8 7 4 7 2 7 2 7 0 2 7 2 0 7 0 2

t1 t2 t3

The working set for the time instant t1,
WS = {0,1,2,3,4}

The working set for the time instant t2,
WS = {1,2,3,4,7,8}

The working set for the time instant t3,
WS = {0,2,7}
The working set theory discussed earlier is used to guess which pages will be needed in

the program execution when it will be restarted after its last stop. The reason behind using the
recent working set for guessing the next page references is that the working set varies slowly
with time. This is because the processes reference only a small subset of pages and the pages
being referenced tend to cluster according to the principle of locality discussed earlier. There-
fore, it is easy to analyse which pages are being referenced currently. This information can be
used to know in advance which pages are needed by a process. With this knowledge, the total
number of required frames can be calculated. If NumFrame is the number of frames required
by a process, then the total demand for the frames by all processes in the system are

Virtual Memory 363

n
TotalFramesDemand = ∑ NumFrame

i

i = 1
where n is the number of processes.
Let TotalFramesAvail be the number of frames available. If TotalFramesDemand is larger

than TotalFramesAvail, then thrashing may occur as some processes do not have enough
frames that cause chain of page faults. The OS observes the working set of each process while
executing and allocates the number of frames required by it. If there are enough frames, then
another process in the system must be allowed to execute. Otherwise, if the TotalFrames
Demand is larger than TotalFramesAvail, then a process is selected to suspend. The pages of
the process thus chosen are paged-out and frames are allocated to other processes that are short
of frames. In this way, the system does not allow all the processes in the ready queue to execute
and keep a limit on them to prevent thrashing; hence, working set strategy not only prevents
thrashing but also keeps the CPU utilization high.

The working set strategy needs to keep track of the number of pages in the working set.
This can be implemented through a shift register of length m that shifts the register left by one
position with every memory reference and inserts the most recently referenced page number on
the right. The set of m page numbers in the shift register represents the working set. However,
maintaining and updating the shift register with every memory reference is quite expensive.
Therefore, this technique is not used in practice. Another technique is to use a time interval
instead of the number of memory references. In other words, the working set will not be based
on the number of memory references but on a time interval. The set of pages being referenced
during the time interval is the working set. This can be implemented through a fixed-interval
timer interrupt.

11.9.2 Working-set-based Page-replacement Algorithm
The working set theory can also be used for page replacement. The strategy to replace a

page in the memory is to find a page that is not in the working set and replace it. This algorithm
needs two items of information in the page table. Therefore, a page table must use the follow-
ing, along with its other items (see Fig. 11.19):

 (a) reference bit R
 (b) time of last use (TLU)

It must be noted that on each interrupt, the reference bits of the pages in the memory are set
to 0 and the pages that are in the working set being referenced are set to 1. According to this

Base address of page 0

Base address of page 1

Base address of page 2

Base address of page 3

Base address of page 4

Base address of page 5

0

1

2

3

4

5

Valid–invalid bit M-bit Counter Reference
bit

TLU

Fig. 11.19 Page table with R bit and TLU

364 Principles of Operating Systems

algorithm, on every page fault, the page table is scanned to find a page whose R bit is not
1 and that is in the memory. If the R bit of the page is 1, then the current value of time is
written into the TLU field of the page table. It indicates that the page was in use when the
page fault happened. This page has been obviously referenced recently during the current
clock interrupt. It is in the working set and cannot be replaced. On the other hand, if the R
bit of a page is 0, then the page has not been referenced recently and is in the memory and
can be considered for replacement. Nevertheless, there are further conditions to check for
its replacement.

Let t be the time frame of the working set, that is, the number of pages being referenced
during past t seconds.

Cur_time = Current time in the system
TLU = Time of last use
Using these parameters, calculate the age of a page whose R bit is 0 as the following:
Age = Cur_Time − TLU
There may be two cases in the algorithm:

Case I:
If Age is greater than t, then the page is no longer in the working set and can be replaced with
the new page.
Case II:
If Age is less than or equal to t, then the page is still in the working set.

If a suitable page is found in Case I, then the pages found in Case II may be ignored for
replacement. However, if no page is found in case I and there are some pages in Case II,
then the page with the greatest Age is replaced, that is, the page with the smallest TLU is
replaced.

The algorithm for working-set-based page replacement is given in Fig. 11.20.

Example 11.19

In the following table, if a page is to be replaced on a page fault, which page will it be?

On every Page_fault
{

while (page table entry)
{

If R bit = 1
TLU = Cur_time

Else
{

If Age > t
Replace the page

Else if Age <= t
Store its Age

}
}

If no page is found for replacement and there
are pages with R = 0 and Age <= t

Replace the page with the greatest Age
}

Fig. 11.20 Algorithm for working-set-based page replacement

Virtual Memory 365

Solution

On scanning the page table, for all the entries with
R =1, TLU is replaced with Cur_time.

For the entries with R = 0,
Age = Cur_time − TLU
i.e., Age for page 3 = 1200 − 1020 = 180 and
Age for page 4 = 1200 − 1102 = 98
Given, t = 60
Therefore, Page number 3 has Age > t, that is,

180 > 60, and therefore, the page can be replaced.

11.9.3 WSClock Page-replacement Algorithm
The working-set-based page replacement algorithm is good but expensive to implement as the
whole page table needs to be searched for a suitable page. The scanning of the entire page table
takes time. The working-set-based algorithm can be modified according to the clock-based
algorithm and thus can be implemented efficiently. Therefore, the modified clock algorithm
when implemented along with working set information is known as WSClock page-replace-
ment algorithm. As discussed in clock algorithm, the pages are stored in the circular queue as
they are loaded in the memory. The difference is that each entry in the queue for a page consists
of the following information:

 i) R bit
 ii) M bit
 iii) TLU

Along with these fields of information in the queue, the algorithm also uses Age and t. The
hand position in clock is used to start the algorithm. The R bit of the page being examined is
checked first. If the R bit is 1, then it means that the page has been referenced recently and
therefore, cannot be used for replacement. Therefore, the page is not replaced and the hand is
positioned to the next page after resetting the R bit of the current page as 0. On the other hand,
if the R bit of a page is 0, then Age is checked. If Age of the page is greater than t, then it is not
in the working set. Further, the M bit of the page is also checked. If M bit is 0, it means that the
page has not been modified and its copy is already there on the disk and therefore, need not to
be transferred to the disk. Thus, a page whose Age is greater than t and M bit is 0 is the best
 to be replaced because it is the oldest and can be replaced immediately without transferring it
to the disk. However, if the M bit is 1, then it means that the page has been modified and there-
fore, needs to be saved on the disk. The write-to disk is scheduled to save the modifications in
the page and the hand is positioned to the next page to find a suitable page in the queue. There
may be a worst case that all the pages in the queue have been modified. It may lead to high disk
traffic as all the pages need to be saved on the disk. Therefore, a limit must be put on the pages
to be written back to the disk. Further, it may be possible that the hand comes back to the first
position in the clock. It means that either there is no page with R = 0 or there is a page with
R = 0 but not with M = 0. In the former case, all the pages are in the working set; therefore, no
page can be replaced. In the latter case, the page found is not in the working set but has been put
on the disk queue to be written back. Thus, by the time the hand comes back to the first position
in the queue after completing one cycle around the clock, it may be possible that the write-to

Page number TLU R bit

0 1002 1

1 1100 1

2 980 1

3 1020 0

4 1102 0

5 990 1

Cur_time = 1200

t = 60

366 Principles of Operating Systems

operation scheduled for the page has been completed and thus, can be chosen for replacement
after making its M bit as 0. The algorithm for WSClock page-replacement algorithm has been
shown in Fig. 11.21.

Example 11.20

Which page will be replaced in the clock shown in the following daigram with Cur_time =
1210, t = 50 using WSClock page-replacement algorithm?

Solution

 1. The clock hand is positioned on Frame 1. Here, R = 1. Therefore, it is reset to 0 and the hand
is moved to the next frame.

 2. The R bit of Frame 2 is also 1. Again, the R bit is reset and the hand is moved to the next
frame.

 3. The R bits of all the pages are 1. Therefore, in the first round through the clock, they are
reset to 0.

 4. In the second round, on the first frame, now, the R bit is 0. The Age is 1210 − 1008 = 202,
which is greater than t. But the M bit is 1, that is, the page has been modified and needs to
be written to the disk. Therefore, the hand is moved on to the next frame.

 5. On Frame 2, R = 0, M = 0, and Age = 1202 − 1160 = 42. Again, the page cannot be replaced
as Age is less than t. The hand is moved to the next frame.

On every page fault
{

while (page table entry)
{

If R = 1
{

R = 0
Position the clock hand to the next page in the queue

}
Else
{

If (Age > t)
{

If (M = 0)
Replace the page

Else
{

Schedule the disk writeoperation
Position the clock hand to the next page in the queue

}
}
Else if Age <= t

Store its Age
}

}
If no page found for replacement and there are pages with R = 0 and Age <= t

Replace the page with the greatest Age
}

Fig. 11.21 Algorithm for WSClock page replacement

Virtual Memory 367

 6. Again, in this round, no page can be replaced because now, all the pages have M = 1.
 7. On the next round, again search for a page to be replaced. For the first frame, the page was

scheduled to be written to the disk. Therefore, if the write operation has been finished by
this time, then the M bit will be 0. Therefore, this page can be chosen for replacement. If the
write operation has not been finished yet, then the hand advances to the second frame and
the page can be chosen for replacement as a last option.

11.9.4 Page Fault Frequency
Another method in dealing with thrashing is to measure the page fault frequency. The idea
behind measuring the page fault frequency is to establish an upper bound of page faults as
well as a lower bound (see Fig. 11.22). The limits in the form of page fault bound help to
know the status of the PFR. An upper bound is a limit of the PFR, which is too high and

Page 2
R = 1
M = 1
TLU = 998

Page 4
R = 1
M = 1
TLU = 1008

Page 12
R = 1
M = 0
TLU = 1160

Page 9
R = 1
M = 1
TLU = 890

Page 7
R = 1
M = 1
TLU = 1200

Page 11
R = 1
M = 1
TLU = 1005

Frame 1

Frame 2

Frame 4

Frame 5

Frame 6

Frame 3

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7

Number of frames

N
um

be
r

of
 p

ag
e

fa
ul

ts

Lower bound

Upper bound

Fig. 11.22 Page fault frequency

368 Principles of Operating Systems

unacceptable for the system. Similarly, a lower bound is defined where the PFR is just negli-
gible. The significance of upper limit in the prevention of thrashing is that it indicates whether
the PFR of a process is approaching the upper bound. If it is, then it provides the page frames
to this process so that the page fault decreases. Similarly, if a process is approaching the lower
bound of the PFR, then its page frames can be allocated to other processes. Thus, the page fault
 frequency keeps a check such that thrashing does not happen.

11.10 VIRTUAL MEMORY USING SEGMENTATION

As indicated earlier, the VM system can also be implemented with segmentation concept. All
the details of the segmentation concept discussed in Chapter 10 are also used to implement a
VM system. The address translation for a virtual address is same as with the main memory
system. Each process has a segment table loaded into the memory as discussed for the page
table. To implement segmentation in a virtual memory system, all the segments are not loaded
into the memory to support the lazy swapping concept. The concept here is known as demand
segmentation. A segment that is not present in the memory at an instant of time and require-
ment for execution results into a segment fault similar to the page faults. Similarly, segment
replacement algorithms are needed to replace a segment in the memory to make room for a
segment to be brought into the memory. All the bits added to the page table are also applicable
to the segment table, namely valid–invalid bits, M-bits, and protection bits.

11.11 COMBINED PAGING AND SEGMENTATION

Both paging and segmentation have advantages and disadvantages. The paging concept, being
transparent to the programmer, divides the logical memory into pages and avoids external
 fragmentation, thereby providing an efficient memory-management strategy. However, it may
result into internal fragmentation. Moreover, it is not a natural division done by the programmer.
Segmentation, which is visible to the programmer, avoids internal fragmentation and supports
natural modularity, along with sharing and protection. However, pure segmentation further leads
to external fragmentation. Moreover, if a segment is too large to keep it in the memory, then it
is better to load only some portions of it. Thus, either pure paging or pure segmentation cannot
be adopted in practical. Therefore, to have the advantages of both the memory-management
 techniques, they are combined. Segments are partitioned into pages to have the benefits of
both pure segmentation and pure paging. The idea of dividing the segments into pages is
called paged segmentation system or combined paging/segmentation system, which has been
adopted in many significant OSs.

In this combined system, the system still exploits the benefits of segmentation, that is, avoids
the fragmentation due to dynamic change in segment size by having the logical address in the
form of a segment number and offset. It means that the logical address is still in its original form
as in pure segmentation system. However, from the system’s view point, the segment is managed
with the paging concept as discussed in pure paging system because a segment is divided into a
fixed number of pages. Therefore, now, the logical address is implemented in the form of a page
number and offset for a page within the specified segment. Thus, each segment is divided into a
number of pages and memory management is performed with the help of the paging concept. The
page faults, working set, and other issues are managed in terms of pages rather than segments.
However, the protection is implemented at the level of segments only by including protection
bits as discussed earlier in the segment table. This combined mechanism provides the benefits

Virtual Memory 369

of pure segmentation or paging because only required portion of a segment is retained in the
memory, thereby utilizing the memory and making it a better memory-management technique.

In the combined segmentation/paging system, there is a segment table with each process as in
pure segmentation but with many page tables, because now, every segment of the process consists
of a page table. If a process has five segments, then this process consists of one segment table and
five page tables—one per segment. The virtual address in this system is of the following form:
(Segment number s, page number p, offset d)

When a process executes, the STBR holds the starting address of the segment table for that
process as discussed in pure segmentation system. After getting the location of the segment
table, the processor uses the segment number to index into the segment table to find the page
table for that segment. After this, the page number p in the virtual address is used to index into
the page table of the segment and get the address of the page. Finally, the address of the page
thus found is used with offset in the virtual address to get the physical address in the memory.
In this way, paged segmentation system maps a virtual address to a physical memory as shown
in Fig. 11.23 using two levels of address translation: the first level when the segment table is
referenced and the second when the page table is referenced. This address translation involves
three memory references as segment table and page table both are in the memory. This slows
down the address translation process. To speedup, TLBs can be used for frequent entries in both
the segment table and page table.

11.12 DESIGN AND IMPLEMENTATION ISSUES

As discussed earlier, a VM system is composed of both hardware and software components.
The design of a VM system is not easy to implement, and therefore, this section is devoted
to various design and implementation issues to have a better understanding. The following
 sections will discuss issues related to the paging hardware and OS–VM handler.

Base
address
for page

Page no

Page
table
address

Seg no

STBR

Logical address

CPU

s p

b d+

Segment table

Physical memory

d

+

Page table

Fig. 11.23 Address translation in paged segmentation

370 Principles of Operating Systems

11.12.1 Paging Hardware
The following are some components or design issues related to paging hardware:

Address translation
 A generated virtual address needs to be mapped into a physical address. This is done by the
hardware unit known as memory management unit or address translation unit that maps the
virtual memory into physical memory. Since a page table (stored in the memory) per process
is used for implementing the address translation, there are two memory references for locating
a memory location. Therefore, it is necessary to reduce the 2-memory access time. This can be
achieved by using a TLB to reduce the memory access time.

Another design issue is to support the address translation in a multi-programming/time-
sharing system. This is achieved through the PTBR register. Whenever a process is scheduled to
be executed, the page table address from its PCB is loaded into the PTBR and the corresponding
page table is accessed in the memory. Thus, a page table per process, along with one PTBR in
hardware, is sufficient to implement paging concept for a time-sharing system. When the cur-
rent process is suspended or terminated, and another process is scheduled to execute, the PTBR
entry is replaced with the page table address of a new process.

Page size
 The size of a page is pre-defined in the architecture of a computer system, which in turn
determines the number of bits required to represent the word in a page. The paging hardware
implicitly uses this hardware information to implement the paging in a virtual system. In virtual
memory using paging concept, however, the page size is a major design issue. The page size
cannot be taken as random but decided carefully depending on various factors. The page size if
not chosen appropriately may affect the performance of the system. In general, the page size is
taken as power of two varying from 212 to 222. If it is too small, then a process will have more
number of pages and therefore, more number of entries in a page table that will consume more
memory. Thus, a larger page size causes smaller page table as there will be less number of page-
table entries in the page table. Therefore, there is an inverse relationship between the page size
and page-table size. A larger page table is too difficult to store in the memory and the searching
time increases. A smaller page size will also increase the number of page faults.

Small page size increases the number of pages in the logical memory. Therefore, I/O time re-
quired to read or write pages also increases with the increase in the number of pages, as each page
demands separate seek, latency, and transfer time. On the other hand, large page size may cause
memory-space wastage. It is not necessary that a process always fits exactly on the boundary of
a page. Some space remains unused on the last page while allocating memory to a process in the
form of pages. Therefore, the larger the page size the more will be the wastage causing larger inter-
nal fragmentation in the system. On average, the last page would be half empty causing fragmenta-
tion. Thus, there is a direct relationship between page size and internal fragmentation. Further, it
may be possible that as the size of a page increases, the whole page may not be in the execution
but only a small part of the page that is in execution. Therefore, the page size chosen should not be
too large such that it does not appropriately cover the locality of a page. Thus, the page size cannot
be chosen as too small or large but is decided depending on the memory space and process size.

The page size also affects the PFR. The number of pages in the memory will be increased
if the page size is reduced. The more the number of pages the less the PFR, as the most of
the memory references will be found in the memory. On the other hand, if the page size is in-
creased, then the number of pages will be decreased causing more page faults as the memory

Virtual Memory 371

references may not occur in the pages present in the memory. Thus, there is an inverse relation-
ship between page size and PFR, already shown in Fig. 11.7.
Support for page replacement
 As discussed in page-replacement algorithms, it is necessary to have information when a page
was last used to select a page to be replaced. This information is then collected by the paging
hardware and provides the same to the VM handler, so that an appropriate page replacement
algorithm can be implemented.
Support for memory protection
 A valid–invalid bit is used in the page table to see whether a page exists in the logical address
space. The address translation unit checks for an illegal logical address, that is, a page number
generated in the address may not be in the current logical address space. In this case, this unit
checks the page number in the logical address generated against the PTBR and PTLR. It raises
a memory protection interrupt if the page number exceeds the PTLR to protect the processes
from one another. Another case may be that a process violates its access privileges stored in
accessprotection bits. Again, the address translation unit checks the access of the process with
its allowed access protection bits. If these do not match, then a memory protection interrupt is
raised to protect the page against any misuse.
Paging device
 Another issue in implementation regarding hardware is the selection of a paging device, which
is, in general, a disk. The paging device may affect the performance of a VM system as the disk
access is much slower as compared to the memory. Moreover, there may be a number of page-in
and page-out operations in the system depending on the PFR, thereby increasing the device access
time, if the data transfer rate of the device is low. Therefore, the paging device selected should be
of high speed and also of high capacity to have a larger portion of swap space.
 Each process is allocated a fixed space in the disk reserved as swap space. The process table
contains the disk address for each process. The page offset of a process is added to this disk
address to write a page in the swap space. It means that the pages of a process are allocated
contiguous space in the swap space. The pages in the memory have a shadow copy in the disk.
However, this copy may be outdated if the pages have been modified since being loaded and
therefore, must be updated before replacing it in the memory.
Page-frame allocation
 A minimum number of page frames ensures good performance of the system as the PFR in-
creases with a decrease in the number of page frames. Therefore, it becomes necessary that
processes are allocated a minimum number of page frames. One method is to allocate the pro-
cesses equal number of frames. This is known as an equal allocation. However, this strategy
may not be appropriate where there is a large variation in process sizes. Some processes may be
small compared to other processes. For example, a process of size 10 KB may not need many
frames as compared to a process of size 150 KB. Therefore, it is obvious not to allocate frames
to the processes using the equal allocation method, but use a proportional method according
to the sizes of the processes. This is known as proportional allocation. Using this method, the
number of frames allocated is calculated as
Alloc_frames (Pi) = (P_Sizei / S) × n
where i is the ith process,
P_Size is memory size of ith process
S is the total memory size, which is sum of size of all processes
n is the total number of available frames

372 Principles of Operating Systems

Example 11.21

In a system, there are three processes, P1, P2, and P3, divided into 32, 189, and 65 pages,
 respectively. If there are 115 frames in the memory, then calculate the proportions in which the
frames will be allocated to the processes.

Solution

n = 115
S = 32 + 189 + 65 = 286
Alloc_frames (P1) = (32 / 286) × 115 = 12.86 = 13
Alloc_frames (P2) = (189 / 286) × 115 = 75.99 = 76
Alloc_frames (P3) = (65 / 286) × 115 = 26.13 = 26

11.12.2 Virtual Memory Handler
As discussed earlier, VM handler is the software part that implements the VM system. This VM
handler is only a part of the OS. It starts functioning right from the process creation time till its
exit. Its main design issue is the PFR. All the components of a VM handler are designed with
the goal that the PFR should be the least because all the performance-related issues become
complex when the PFR becomes high. The following are components/design issues of a VM
handler:
Logical address space manager
 This component of VM handler starts functioning at the time of a process’s creation. When a
process is created, it first determines how large the process and its initial data will be. Based
on this, it creates a page table for the process, and consequently, space is allocated to it in the
memory. Similarly, the space for the process is allocated on the disk as swap space. After this,
the logical address space of the process is initialized with the process’s text and data on this
swap space so that when the new process starts getting page faults, the pages can be paged-in
from the disk. When a page fault occurs, the page is paged-in and its status is modified in the
page table. Similarly, when there is a need to replace a page in the memory, the selected page
is paged-out and again, its status is modified in the page table. Thus, the logical address space
manager maintains the page table and performs the page-in and page-out operations.
Physical memory manager
 This component keeps track of free page
frames in the memory. It uses a data
structure known as frame table (FT). FT
consists of status and page ID of the page
of a process as shown in Table 11.2. The
status of a free frame is simply marked as
0, and when a page is loaded, it is marked
as 1.
Protection initializer
 This module is used to initialize the protection information as required to implement the protec-
tion among various processes. First, it stores the access privileges of all the pages of a process
in the page table. This information remains there until the process is terminated. After this, the
protection hardware is initialized by loading the page table start address and size information in

Table 11.2 Frame table

Page_ID (process no, page no) Status

P1,3 0

P2,5 1

P3,2 1

P4,4 0

Virtual Memory 373

the PTBR and the PTLR, respectively, while dispatching the process. In this way, the hardware
is reset after initializing according to the new process. The TLB is also flushed so that there is
no trace of the previous process.
Page fault handler
 This module acts when a page fault occurs. It reads out the hardware registers to determine
which virtual address and, hence, page has caused the page fault. After this, it checks whether
it is a valid address. Then, its access privileges are checked out. If the page is not valid or access
privileges do not match, then a memory protection interrupt is generated. On the other hand,
if it is valid and access privileges are matching, then the module checks whether a page frame
is free in FT. If not, the page-replacement algorithm is run and a page is selected as the victim.
The page-replacement algorithm may need to access R bits of the page table. The M bit of the
selected page is then checked to determine whether it has been modified. If it is, then it is sched-
uled to be transferred to the disk, that is, the page is paged-out to save its changed contents.
Since this page-out operation is an I/O operation and the disk needs to be accessed, there are
process switching and scheduling of another process. It means that the page fault handler for
the current process is blocked. If the page is not modified, then it means that the page frame is
ready to accomodate the required page. Therefore, this module looks up the disk address where
the required page is stored in the swap space and the page-in operation is scheduled. Again, this
being an I/O operation, the process is blocked. When the process is waked up, the page table is
updated to make it a valid page.
Prepaging
 Due to the nature of demand paging, a number of page faults occur when a process starts ex-
ecuting to load the initial required pages in the memory. Similarly, when a swapped-out process
is restarted, it results in many page faults. Therefore, to load the initial locality of a process,
the pages are loaded from the disk, thereby increasing the number of page faults in the system
in the beginning of execution. It would be better if the page faults due to the nature of demand
paging can be reduced. Pre-paging is the solution for this. Loading the initial required pages
in the memory before execution of a process is known as pre-paging. The question is how to
determine which pages will be required so that they can be loaded in the memory in advance.
The working set theory may help here. It is kept along with each process. Whenever a process
is swapped out, its working set is saved. When it is swapped in again for execution, its work-
ing set is retrieved, and all the required pages are first loaded in the memory and then it starts
executing.
Page-replacement policy
 When a page is replaced as discussed in page-replacement algorithms, there are two choices. One
is that a page to be replaced is chosen from the set of page frames allocated only to the running
process. This is known as local page-replacement policy. Another approach is to choose the page
from the set of page frames of any of the processes. It means that a process may take up the page
frames of any other processes. This is known as global page-replacement policy. Suppose, there
are three processes in the system and they have been allocated the pages in the memory as shown
in Fig. 11.24(a). If the process A is executing and it needs to page in A3, then according to the
local page-replacement policy, only pages allocated to the running process A can be replaced.
Therefore, A4 is selected as the victim page for replacement (see Fig. 11.24(b)). If the replace-
ment policy is global, then the whole set of page frames in the memory will be considered for the
page replacement. Suppose the victim page in this policy is C2, then it will be evicted from the
memory (Fig. 11.24(c)), even though A is executing.

374 Principles of Operating Systems

The global policy of allocating frames is better compared to local policy because there is a
constrained set of frames in local policy, whereas there is a large set of page frames in global.
The local policy is not appropriate when the working set size varies over a period of time in the
system. Thrashing may occur in case of local policy when the working set size increases even if
there are free page frames, and the memory is wasted if the working set size decreases. On the
other hand, global policy works fine in both the cases because there is no restriction in choosing
the page frame. A higher-priority process can take advantage of this global policy by taking the
frames of a lower-priority process to execute smoothly without any page faults. Since a process
can use the frames of other processes, the performance of a process depends on the paging behav-
iour of other processes. The process execution time may vary in two executions of the same pro-
cess due to change in page frames of other processes, affecting the global allocation of a process.
Page-frame locking
 According to the page-replacement policy, any page can be replaced. However, some pages if re-
placed cause problems in the system. These pages can be I/O buffers, kernel pages, key control struc-
tures, and so on. The locking is implemented by adding a lock bit in the page table corresponding to
the page frame. When the lock bit of a page is set to 1, it cannot be replaced. The locking bit can be
used in some critical situation. For example, it can be used where higher-priority process preempts
a lower-priority process and replaces the pages again and again. The pages of the lower-priority
process can be locked until it executes and is unlocked after the execution.
Page-frame cleaning
 It has been discussed that whenever a page fault occurs, the required page is brought into the
memory, and if there is no space in the memory, then a page is chosen to be replaced. However,
it is always better to have in advance, sufficient page frames to handle the situation of page
faults. In this approach, the page fault service time decreases and no time is wasted in finding
a free page frame in the memory. For this purpose, a background process is designed that pe-
riodically inspects the state of the memory. This process is known as paging daemon. A limit
is fixed for the number of page frames. If the number of page frames available in the memory
is less than this limit, then the process starts evicting pages from the memory using the page-
replacement algorithms. If the pages have been modified, then they are written back to the disk.

C2

C1

B3

B2

A7

A4

A1

(a) Memory allocation

C2

C1

B3

B2

A7

A1

(b) Local policy

C1

B3

B2

A7

A1

(c) Global policy

Fig. 11.24 Page-replacement policy

Virtual Memory 375

In this way, paging daemon cleans up the memory so that enough page frames are available to
service the page fault and provide space to the incoming pages.
Page buffering/page caching
 It has been observed in page-replacement algorithms that an active page should not be replaced,
otherwise, it page faults again and again. In some situations, a replaced page should not be moved
out of the memory. Similarly, the cost of performing page-out operation on a modified page
is costlier. In this case also, modified page should not be moved out of the memory. For these
situations, a buffer or cache is optimized to store the replaced pages. In fact, the pages are re-
placed according to the page-replacement policy or algorithms but are not removed from the
memory: Their entries in the page tables are deleted. The page has been shown to be replaced,
but in actual, it resides in the memory in the form of a buffer or cache. This buffer or cache
is implemented as a list. The list is of two types: free page list and modified page list. The
free page list stores the pages that have not been modified. This list can be used for reading
the pages. In this way, when an unmodified page ID is replaced, it is added to the tail of the
free page list. Similarly, the modified page list stores the pages that have been modified.
The page that has been modified and replaced is added to the tail of this list. Thus, these two lists
act as a cache of pages. The cache is useful where the page is active and is referenced after re-
placement. In this case, the page is returned to the resident set of the process at less cost because
the cost of page-in and page-out operations is saved. Another use of the modified page list is that
after having a number of pages in this list, all can be paged out so that their modified copy can be
saved on the disk. The advantage is that pages are written out in a cluster rather than one at a time.
It greatly reduces the I/O operations and disk-access time.
Load control
 Whenever the working set of all processes exceed the total system memory, thrashing may
occur. The page fault frequency method indicates if the processes are page faulting too high. In
this case, each process is in need of page frames so that the page fault reduces. In this situation,
if no remedy is taken, then the system thrashes. On the other hand, if we control the load, that
is, allocate the page frames to a limited number of processes, then thrashing can be handled.
The solution is to get rid of some processes so that the number of competing processes for
page frames decreases and the page fault reduces. The processes are swapped out to the disk
and their page frames are shared among processes in need. The processes can be swapped out
one by one. For example, if one process is swapped out, then its page frames are shared among
other processes and it is checked for thrashing. If not, then another process is swapped out and
checked for thrashing again. This process is repeated until the thrashing stops. In this way,
swapping is used along with paging to reduce the demand for page frames, thereby removing
the thrashing situation in the system. The only question in this method is which process will be
the victim to be swapped out. This may depend on many factors such as priority, its nature of
CPU bound or I/O bound, and so on.
Shared pages
 Shared pages, discussed in Chapter 10, have some design issues in their implementation. Since
there is a single address space allocated to both code and data, the pages need to be identified
for the code portion that are to be shared and for the data portion that cannot be shared. There-
fore, it would be easy if there are separate address spaces for code and data. These separate
address spaces are known as I-space (instruction-space) and D-space (data-space). Both the
address spaces can be further paged and each one has its own page table. An instruction is refer-
enced through the I-space page table, and similarly, data is referenced through the D-space page
table. The processes share pages using the same I-space page table but have different D-space

376 Principles of Operating Systems

Page-replacement algorithm Features/imple mentation Advantage/disadvantage

FIFO The oldest page is chosen. Page fault rate is high.

Implemented through a FIFO
queue.

Suffers from the Belady’s
anomaly.

Optimal The page that will not be
 referenced for the longest
time is replaced.

No way of knowing the future
memory references and
therefore cannot be imple-
mented.

LRU Replaces a page that has
not been used for the longest
period of time in the past.

Provides less number of
page faults.

page tables. Each process has two pointers in its page table: one for the I-space page table and
another for the D-space page table.
 Another design issue with shared pages is that the pages being shared should not be allowed to
be paged out simply because of one process that needs to be suspended. For example, two pro-
cesses, x and y, share the pages of a utility. Suppose, x needs to be removed from the memory,
then its pages may also be evicted from the memory. However, this will cause y to page fault.
Therefore, shared pages should not be allowed to be evicted or selected for replacement when
one of the processes needs to be removed from the memory.

SUMMARY

The VM system is implemented through paging/segmentation
hardware and VM handler. The demand loading is the key
concept behind virtual memory. However, it gives rise
to many other issues. Since all the pages or segments
of a process are not loaded in the memory, the memory
 allocation to processes becomes difficult. Further, page
faults occur when the pages or segments are not found
in the memory. Therefore, the page fault must be handled
 appropriately. Consequently, the page to be brought into
the memory should get a free frame. It may need to replace
an existing page. Thus, many page/segment-replacement
algorithms have been discussed in detail. The VM system
gives rise to thrashing problem when there is high paging
activity. Similarly, various issues related to paging hardware
and VM handler, as well as their solutions, have also been
discussed.

Let us have a quick review of important concepts
 discussed in this chapter:

 • Virtual memory is a method that manages the exceeded
size of a larger process or processes as compared to the
available space in the memory.

 • The principle of locality of reference states that during the
course of execution of a program, memory references by
the processor tend to cluster.

 • Temporal locality means that the recently referenced
memory locations are likely to be referenced again.

Spatial locality means that nearby memory locations are
referenced.

 • The system with virtual memory is known as a virtual
memory (VM) system. The software implementing the
VM system is known as VM handler.

 • VM system requires only those pages or segments of a
process in the memory that are needed at a certain time
of execution.

 • The thumb rule of demand loading is that never load a
component of a process unless it is needed.

 • The components of a process that are present in the
memory are known as resident set of the process.

 • Demand paging is to load only those pages in the memory
that are needed at an instant of time of execution.

 • A pager term is used in connection with demand paging
 concept as compared to swapper. The swapping operations
are renamed as page-in and page-out operations as com-
pared to swap-in and swap-out.

 • In demand paging, when the page referenced is not in the
memory, it is known as a page fault.

 • A strategy to replace an existing page so that a page that
causes page fault can be paged in is known as page-
replacement algorithm.

 • The various page-replacement algorithms with their
 features are as follows:

(Contd)

Virtual Memory 377

Implemented through a stack/
counter/matrix.

Difficult to implement and
incurs overhead.

Second chance A page that is being frequently
used will not be replaced and
given a second-chance.

When all the pages in the
memory are in use, this algo-
rithm degenerates into pure
FIFO algorithm.

Implemented through a FIFO
queue and reference bit.

Incurs the cost of moving the
pages with reference bit 1 at
the end of the queue.

Clock Another implementation of
the second-chance algorithm.

Implemented through a circu-
lar queue.

Modified clock or not recently
used (NRU)

modify bit is combined with
reference bits.

Not frequently used (NFU) One counter is taken with
every page frame to count
how many times the page is
used. The algorithm chooses
a page with the lowest value
of counter.

 • Belady’s anomaly is observed in the FIFO algorithm that
violates the general page fault behaviour: The number of
faults does not decrease with the increase in the number
of page frames.

 • An LRU can be implemented with three approaches:
stack, counter, and matrix.

 • According to stack property, the set of pages when the
page-frame size is n is a subset of the set of pages when
the page-frame size is m, where n < m.

 • A process is said to be thrashing if it spends maximum
time in paging rather than its actual execution.

 • The working set is a set of m most recent pages a
 process references.

 • The working set theory is used to guess which pages
will be needed in the program execution when it will be

 restarted after its last stop.
 • The OS observes the working set of each process while

executing and allocates the number of frames required
by it.

 • Another method to deal with thrashing is to measure the
page fault frequency. The idea behind measuring the
page fault frequency is to establish an upper bound and
lower bound of page faults.

 • Segments are partitioned into pages to have the benefits
of both pure segmentation and pure paging. The idea of
dividing the segments into pages is called paged seg-
mentation system or combined paging/segmentation
system.

 • The page table may consist of various fields as depicted
in the following table:

Reference
bit

Time of
last use

Valid–invalid Bit M-bit Counter

Base address of page 0

Base address of page 1

Base address of page 2

Base address of page 3

Base address of page 4

Base address of page 5

0

1

2

3

4

5

Protection
bits

Lock bit

(Table Contd)

378 Principles of Operating Systems

 • A larger page size causes smaller page table as there
will be less number of page-table entries in it. Therefore,
there is an inverse relationship between the page size and
page-table size.

 • Smaller page size increases the number of pages in the log-
ical memory. I/O time required to read or write pages also
increases with the increase in the number of pages as each
page demands separate seek, latency, and transfer time.

 • The larger the page size the more the wastage causing
larger internal fragmentation in the system.

 • The number of frames allocated to a process is
Alloc_frames (Pi) = (P_Sizei / S) × n

where i is the ith process,
P_Size is memory size of ith process
 S is the total memory size, which is sum of size of all

processes
n is the total number of available frames

 • Loading the initial required pages in the memory before
execution of a process is known as pre-paging.

 • When the victim page to be replaced is chosen from the
set of page frames allocated to the running process, it is
known as local page-replacement policy. When it is cho-
sen from the set of page frames of any process, it is known
as global page-replacement policy.

MULTIPLE CHOICE QUESTIONS

 1. The degree of multi-programming is limited with the size of
the

 (a) disk (c) processes
 (b) memory (d) none

 2. Loops, subroutines, and data variables that are used to
count or for summation are all examples of

 (a) spatial locality (c) temporal locality
 (b) principle of locality (d) none

 3. All sequential statement execution and array traversal are
examples of

 (a) spatial locality (c) temporal locality
 (b) principle of locality (d) none

 4. VM system’s implementation requires
 (a) hardware
 (b) software
 (c) both hardware and software
 (d) none

 5. The software implementing the VM system is known as

 (a) pager (c) virtual software
 (b) swapper (d) VM handler

 6. Virtual memory may be realized with
 (a) paging only
 (b) segmentation only
 (c) combined paging and segmentation only
 (d) paging or segmentation

 7. is to load only those pages in the memory
that are needed at an instant of time of execution.

 (a) Paging (c) Pre-paging
 (b) Demand paging (d) None

 8. The effective memory-access time in case of demand pag-
ing is directly affected by the

 (a) degree of multi-programming (c) PFR
 (b) number of pages (d) size of the memory

 9. The overhead of a page-replacement algorithm can be re-
duced with

 (a) R bit (c) counter
 (b) M bit (d) none

 10. Which of the following algorithms suffers from Belady’s
anomaly?

 (a) LRU (c) FIFO
 (b) Optimal (d) Second chance

 11. Which of the following algorithms does not satisfy the stack
property?

 (a) Second chance (c) Optimal
 (b) LRU (d) None of the above

 12. The optimal algorithm is impractical because it is impos-
sible to know

 (a) the future memory references
 (b) the page size in advance
 (c) the page fault frequency
 (d) none

 13. Which of the following bits of a page table is used by the
second-chance page-replacement algorithm?

 (a) R bit (c) Both R and M bits
 (b) M bit (d) None

 14. Clock page-replacement algorithm is another implementa-
tion of .

 (a) LRU (c) FIFO
 (b) optimal (d) second chance

 15. Which of the following bits of a page table is used by NRU
page-replacement algorithm?

 (a) R bit (c) Both R and M bits
 (b) M bit (d) None

 16. Which of the following bits of a page table is used by NFU
page-replacement algorithm?

 (a) R bit (c) Both R and M bits
 (b) M bit (d) TLU

Virtual Memory 379

REVIEW QUESTIONS

 1. What is the need of a virtual memory?

 2. What is an overlay structured program?

 3. What is the principle of locality? What are temporal and
 spatial localities?

 4. What is the thumb rule for demand loading?

 5. How do you implement demand paging?

 6. When does a page fault occur? What are the steps to han-
dle a page fault?

 7. What is a free frame list?

 8. What is a paging device?

 9. What is the role of valid–invalid bits in a page table?

 10. What is the difference between resident set and working
set?

 11. What will be the effect of adopting a TLB in a VM system?

 12. What is the relation between effective access time and
PFR?

 13. How do you reduce the 2-page transfers during the page
replacement?

 14. What is the relation between memory size and PFR?

 15. What is Belady’s anomaly? Give an example of a page ref-
erence string that illustrates this anomaly.

 16. What is the problem in implementing optimal page-replace-
ment algorithm?

 17. Discuss the implementation of LRU page-replacement
algorithm using a counter, a stack, and a matrix using an
example.

 18. Demonstrate that LRU does not suffer from Belady’s
anomaly.

 19. Compare the performance of second-chance algorithm with
FIFO.

 20. Show the stack implementation of LRU on the following
string:

1 0 5 1 1 3 5 1 5 3 4 5 2 1 3 0 1 4 0 5

 21. Show the matrix implementation of LRU on the following
string: 0 1 0 0 2 0 3 3 2 1 1 2 2 3 2 1 3

 22. Show that a page-replacement algorithm that satisfies the
stack property cannot suffer from Belady’s anomaly.

 23. How do you implement a clock page-replacement algo-
rithm?

 24. Discuss the implementation of NRU algorithm with an ex-
ample.

 25. How many types of data structures are used by a VM han-
dler?

 26. What are various functions performed by a VM handler?

 27. What is stack property of page-replacement algorithms?

 28. What is the relation between the degree of multi-program-
ming and CPU utilization?

 29. What is thrashing? Why does it occur?

 30. Using the NFU with aging, the set of page frames, along
with their counters and R bits, has been shown as follows
for clock tick 0. Calculate the value of page frames after
clock tick 3.

Clock tick 0

Counter R

0 0000000 1

1 00000001 0

2 110000000 1

3 00000000 1

4 00000011 0

5 10000000 0

 31. Discuss the solutions for handling the thrashing.

 32. How is a working set theory developed in the page-replace-
ment algorithm?

 33. Explain the algorithm for working-set-based page-replace-
ment algorithm.

 17. Which of the following bits of a page table is used by work-
ing-set-based page-replacement algorithm?

 (a) R bit (c) Both R and M bits
 (b) M bit (d) TLU

 18. Which of the following bits of a page table is used by
 WSClock page-replacement algorithm?

 (a) R bit (c) TLU
 (b) M bit (d) All of the above

 19. Page fault frequency may be used to keep a check on

 (a) paging (c) thrashing
 (b) segmentation (d) none

 20. A larger page size causes page table.
 (a) smaller (c) no effect
 (b) larger (d) none

 21. Larger the page size will be the memory
wastage.

 (a) the more (c) no effect
 (b) the less (d) none

380 Principles of Operating Systems

BRAIN TEASERS

 1. Prepare some guidelines of structured programming using
the principle of locality that helps in avoiding the thrash-
ing.

 2. In a demand-paging system, it takes 150 ns to satisfy a
memory request while the page is in the memory. Other-
wise, it takes 8 ms if the free frame is available or page
to be replaced is unmodified. However, the request takes
20 ms if the free frame is not available and the page to be
replaced is modified. The chances that the page has been
modified are 50%. What is the effective access time if the
PFR is 12%? If the PFR increases to 16%, then what will be
the effect on effective access time?

 3. In a demand-paging system, the paging device has an
average latency of 10 ms, seek time of 5 ms, and transfer
time of 0.15 ms. The disk has generally the queue of wait-
ing processes. Therefore, it has an average waiting time
of 10 ms. If memory-access time is 200 ns and the PFR
is 9%, then what will be the effective access time for this
system?

 4. In a demand-paging system, it takes 220 ns to satisfy a
memory access when the requested page is in the resident
set. If it is not in the resident set, then the request takes 10
ms. What will be the EAT if the PFR is 10%? What would be
the PFR to achieve an EAT of 350 µs? Convert all the units
to microseconds.

 5. Design a scenario in a virtual memory wherein all the fields
of page table mentioned in the chapter are used. Analyze
the performance of the system using all these fields.

 6. Calculate the number of page faults for the following refer-
ence string using FIFO, optimal, LRU, and second-chance
algorithm with frame size as 3 and 4.

 1 0 5 1 1 3 5 1 5 3 4 5 2 1 3 0 1 4 0 5
 Which algorithm performs better in terms of the PFR?

Which of the algorithm satisfies the stack property?

 7. Consider the following page table. If a page is to be
replaced on page fault, then which page will it be?

Page number TLU R bit

0 1020 0

1 950 1

2 1230 0

3 1000 1

4 878 1

5 990 0

Cur_time = 1278

t = 50

 8. Which page will be replaced in the following page
table with Cur_time = 1278, t = 50 using WSClock page-
replacement algorithm? The clock hand is presently at
frame 2.

Frame
number

Page
number

R bit M bit TLU

1 12 1 0 1020

2 3 1 1 950

3 4 1 1 1230

4 9 1 1 1000

5 7 1 1 878

 9. What is the effect of paging on the context switch time?

 10. Why is the page size always taken as power of 2?

 11. Do you find a VM system suitable for a real-time system?

 12. The size of a working set may increase or decrease with the
execution of a program. How?

 13. In a system there are five processes divided into 23,117,
45, 8, and 98 pages. If there are 200 frames in the memory,
calculate the proportion in which the frames will be allocat-
ed to the processes.

 34. How is a working-set-based algorithm modified into
 WSClock page-replacement algorithm?

 35. Explain the algorithm for WSClock page-replacement
algorithm.

 36. How does the combined approach of paging and segmenta-
tion work? Explain the address translation in this combined
system.

 37. How are page frames allocated to different processes?

 38. Explain the functions of a page fault handler.

 39. What is pre-paging? What is its use?

 40. Explain the two types of page-replacement policy with
examples.

 41. What is the need of locking a page frame?

 42. What is a paging daemon process?

 43. What is page buffering?

 44. What are the issues in the design of shared pages?

Virtual Memory 381

 14. Check whether second-chance algorithm suffers from
 Belady’s anomaly.

 15. A system uses 64-bit virtual address space with 2K page
size. If a single-level page table is used, then what problem
would one face? What is the remedy for this?

 16. The optimal page size should be lesser than 1K. However,
computer systems tend to use larger page size of the order
of 1K bytes. What is the reason for this?

 17. Is it possible to design FIFO, optimal, and LRU segment-
replacement algorithms similar to page-replacement
algorithms?

 18. Based on the two parameters in the following table, when
should be the degree of multi-programming increased?
Which case will give rise to thrashing?

CPU
Utilization

Paging-device
utilization

80% 3%

7% 78%

8% 14%

 19. Write a program that reads the page reference string from
a file and calculates the number of page faults using FIFO,
optimal, LRU, and second-chance page-replacement
algorithms. The user should be asked to choose a page-
replacement algorithm. The program should be able to
graphically compare the performance of all the algorithms.

 20. Write a program to implement LRU using stack and matrix
methods.

 21. Write a program that implements the second-chance
 algorithm using the circular queue.

 22. Write a program that simulates the NRU page-replacement
algorithm.

 23. Write a program that simulates the NRU page-replacement
algorithm with aging.

 24. Write a program that simulates the working-set-based
page-replacement algorithm.

 25. Write a program that simulates the WSClock page-
replacement algorithm.

 26. Write a program that maps the virtual address to physical
address in paged segmentation.

PART IV

File Management

12. File Systems

13. File System Implementation

Case Study IV: File Management in UNIX/
Solaris/Linux/Windows

12.1 INTRODUCTION

Disks are used as a primary storage medium for information. The file system provides a convenient mechanism
to store and retrieve the data and programs from this medium. In fact, files are used as a collection of related
information, the meaning of which is defined by its creator. These files are mapped to the disks or other
storage media by the OS. Files themselves are organized in the form of a directory. This chapter discusses
files and the file system concept, along with details about the internal structure of a file and directory.

12.2 FILES AND FILE SYSTEM

A file is the most obvious thing used in computers. Through the
use of files, a convenient environment is created that allows one
to write, read, save, and retrieve the program and data on any
type of storage media. Moreover, the file concept is independent of
the type of device. In other words, a user or programmer need not
be worried about the hardware complexities of the device while
writing a program or data in a file. A file, thus, is a collection
of related information that is mapped on to a secondary storage.
The information stored in a file is in bits, bytes, lines, or records,
and so on. The meaning of the content is specified by its creator.

However, as a logical concept, a file is not stored on perma-
nent media. Therefore, after saving all the work, a file needs to
be mapped on to the storage device. This is the background work
which is not seen by a user. The user only sees the logical view of
the files. The system views all the work required to map the logical
file to the secondary storage. In other words, a file is used to store
the programs and data on the secondary storage. The benefit of stor-
ing files on the secondary storage is the facility provided by the file
system: to create, store, and retrieve the information in the form of
files. The OS abstracts the actual storage of the program and data
from the user, and provides a logical and convenient file concept.

A user may want some files to be sharable among the members
of a group. The file system also provides explicit sharing of files
when the user wants. The files can be organized by the way they
are accessed, for example, sequential, direct, and so on. Moreover,

12 File Systems

Learning Objectives
After reading this chap-
ter, you should be able to
understand:
 • The logical concept of file and

file system
 • Internal structure of a file
 • Record blocking
 • File-naming conventions
 • Various types of files
 • Various attributes of a file
 • Different operations performed

on a file
 • How files are implemented
 • Methods in which a file can be

accessed
 • The concept of directory
 • The logical structuring of

directories
 • How files can be shared
 • File protection issue
 • The concept of file system

mounting

398 Principles of Operating Systems

they may be structured in a hierarchical manner. Thus, file organization and structure are also
the constituents of a file system. The following are the primary constituents of a file system:
 • File Management

It manages how the files are stored, referenced, shared, and secured.
 • File Allocation

It provides the methods to allocate files on the disk space.
 • File Access Methods

It provides the methods to access stored files.

12.3 FILE STRUCTURE

The basic element of data, field, is a single valued item, for example, name, date, employee ID,
and so on. Obviously, it is characterized by its length and data type. When multiple fields are
combined to form a meaningful collection, it is known as a record. For example, a student’s
information (see Fig. 12.1) can be one record, consisting of fields such as roll number, name,
qualification, and so on. When such similar records are collected, it is known as a file. File has
also a name similar to a field or record. Thus, a file is treated as a single entity that may be used
by a programmer or application.

The files can also be flat in the form of an unstructured sequence of bytes, that is, the structure has
no fields or records. Thus, a file, composed of bytes, has no fields or records, and is looked upon as
a sequence of bytes by the programs that use it. UNIX and Windows use this kind of file structure.

Nevertheless, the OS must support a required structure for a certain type of file. For exam-
ple, an executable file must have a defined structure, so that the OS can determine the location
in the memory to load the file and locate the first instruction to be executed. Some OSs support
a single file structure, but may opt for multiple file structures as well. In the latter case, the size
of the OS increases, as it needs to support multiple file structures.

.

.

.

Student’s roll no

Student’s name

Class

Address

Student’s roll no

Student’s name

Class

Address

Fields

Records

Fi le

Fig. 12.1 File structure

File Systems 399

12.3.1 Internal Structure and Record Blocking
Locating an offset within a logical file may be difficult for an OS. Since the logical file will be
mapped to the secondary storage, it is better to define the internal structure of a file in terms
of the units of secondary storage. In general, the disk is used for secondary storage and hence,
block is a unit taken for the storage. The block unit needs to be mapped to the logical file struc-
ture as well. For example, a file is considered a stream of bytes in UNIX. Each byte in the file
can be found having a start address of the file. Consider the logical record size as 1 byte. Now,
assume the packing of some bytes or records in the file into the disk blocks. For example, a
group of 512 bytes is packed into one block of disk. In this way, a file may be considered as a
sequence of blocks, and therefore, all basic I/O functions are performed in terms of blocks. This
is known as record blocking. The larger the size of a block, the more number of records will be
mapped on to the block of disk. In turn, larger number of bytes will be transferred in one I/O
operation. This is more advantageous, in case the file is searched sequentially, thereby, reducing
the number of I/O operations as well.

Another issue regarding record blocking is whether the blocks should be of fixed- or variable size.
Based on this issue, there are three methods of blocking (see Fig. 12.2):

Fixed Blocking
In this blocking, fixed sized records
are used. Therefore, there may be
a mismatch between the sizes of a
record and block, leaving some unused
space in the last block. This causes
internal fragmentation. In Fig. 12.2(a),
R1, R2, and R3 fit in the fixed blocks
but R4 does not, leaving some space in
the last block. The space may be left
unused, if there is not enough space
to allocate a block at the end of the
track of the disk space, as shown in the
figure. This method is advantageous
when sequential files are used.

Variable-length Spanned Blocking
In this blocking, variable length records may be considered instead of fixed size. Therefore, some
records may span more than one block in continuation. It happens when one block is smaller in
size as compared to the size of records. In this case, the records, after consuming this block, may
continue in another block. For example, R3 spans two variable-sized blocks in Fig. 12.2(b). This
method of blocking will not cause any fragmentation.

Variable-length Unspanned Blocking
In this blocking, records of variable lengths are used, but spanning is not considered in case
of small-size blocks. A small-size block is left unused, causing wastage of memory space,
and the records are allocated to a bigger block. In Fig. 12.2(c), R3 does not fit in a small
block and therefore, it is allocated to the next block, which is bigger. It causes wastage of
block space.

R1 R2 R3 R4

(a) Fixed blocking

R1 R2 R3 R3 R4

(b) Variable-length spanned blocking

R1 R2 R3 R4

(c) Variable-length un-spanned blocking

Fig. 12.2 Methods of blocking

400 Principles of Operating Systems

12.4 FILE NAMING AND FILE TYPES

A file needs to be named, so that a user can store and retrieve the information from the storage
device. Through the name of a file, the work, which was saved on the disk, can be recognized
and retrieved easily, without knowing the actual storage details on the hardware. There are
rules for naming the files, which may vary from system to system. Some systems distinguish
between uppercase and lowercase letters, while some do not. Some systems support length of
file names as long as 255 characters. In some conventions of file naming, some special charac-
ters are also allowed.

In general, the file name has two parts, separated by a period (.). The first part is the name of
the file, defined by the user, and the second part is known as an extension. The extension part
usually indicates what type of file has been created. Some of the extensions have been shown
in Table 12.2. The extension part is generally composed of three letters, as in MS-DOS. Some-
times there may be two or more extensions in the file name as in UNIX.

An OS must recognize the type of the file, because the operations performed on it depend on
its type. For example, a zip file cannot be printed. Based on the extensions of a file name, there
are several types of files, such as the following:
 • Source code file

 It is used to write a program in the language chosen. For example, C language program will
be written in a file with name filename.c, where filename is the name given to the file by its
user, but essentially with extension as .c. It is recognized as a source program file, only if it
has .c extension in its file name.

 • Object file
 It is a compiled or machine language format-based, file when the source code file has been
compiled successfully. Its extension may be .obj or .o.

 • Executable file
 When an object file has been linked properly and is ready to run, it is known as an executable
file. Its extension may be .exe, .com, .bin, etc.

 • Text file
 A general text format-level document is known as a text file. Its extension is .txt or .doc.

 • Batch file
 • It is a file consisting of some commands to be executed and given to command interpreter.

Its extension is .bat.

Table 12.2 Different Extensions in a file name

Extension Meaning

.c C source file

.cpp C++ source file

.jpg Picture file encoded with JPEG standard

.pdf Portable document format file

.ps Postscript file

.txt Text file

.zip Compressed file

.bak Backup file

File Systems 401

 • Archive file
 When a group of files is compressed in a single file, it is known as an archive file. It exten-
sion may be .zip, .rar, and so on.

 • Multimedia file
 It is a file containing audio or video information. Its extension may be .mpeg, .mov, .mp3,
.jpg, etc.
Many other types of files may also exist today, depending on the necessity and support

 provided by the OSs. But in general, files are of the following types:
 • Regular

 Regular files contain the user information. The internal structure of the file type may be of
any type, as we discussed in file structures. Regular files may be either of ASCII or binary
type. The advantage of ASCII format is that they can be displayed and printed as it is, and
can be edited, using any text editor. On the other hand, binary files need to have an internal
structure, otherwise, they cannot be displayed or printed in their right form.

 • Directory
 Directory is a file type used to organize the list of files in a group, that is, it organizes the
files in a hierarchy. Directory file is an ordinary file which can be read by any user, but write
operation is permitted in file system only. A created file is entered in a directory.

 • Special
 A special file contains no data but provides a mechanism that maps physical devices to
file names, that is, these are used to access I/O devices. There are two types of special files
namely, character special files to map serial I/O devices like terminals, printers, and so on,
and block special devices to model devices like disks.

12.5 FILE ATTRIBUTES

Besides name and data, a file has other attributes as well. These attributes also vary from system
to system. But some of the attributes are very common in every system, for example, data and
time of creation of a file. Some of the attribute types are as the following:
 • General information

 Some attributes of a file are general for example. name, type, location, size, time, and date
of creation.

 • Protection-related attributes
 A file may be enabled with access protection. Users cannot access it in their own way.
Before accessing, they must know its access rights, for example, read, write, and execute
permissions. Password of the file and creator/owner of the file also contribute to protection
attributes.

 • Flags
 Some flags control or enable some specific property of the file. Some of them are:

 i) Read-only flag: It is used for making a file read-only. It is 0 for read/write and 1 for read-
only.

 ii) Hidden flag: It is used to hide a file in the listing of the files. It is set for hiding the file,
otherwise, the file is displayed.

 iii) System flag: It is used to designate a file as system file. It is set for making a file a system
file, otherwise, the file is a normal one.

402 Principles of Operating Systems

 iv) Archive flag: It is used to keep track of whether the file has been backed up or not. The OS
sets it whenever a file is changed. The flag is 0, when the changed file has been backed up.

 v) Access flag: It is used to convey how the file is accessed. It is set when the file is accessed
randomly, otherwise, the file is accessed sequentially.

 • Time of last change and last access
It is used to provide information about the time when the file was last modified, and when it
was last accessed.

12.6 FILE OPERATIONS

Because a file is of an abstract data type, the kind of operations that can be performed on it must
be known. The OS provides system calls for each operation to be implemented on the file. The
following are some operations that are performed on a file:
 • Create a file

 It is a file creation operation. The OS must look for the space needed to create the file, and
the related attributes are set or created.

 • Write a file
 The write operation needs the name of the file, wherein the data are to be written. The OS must
have a pointer in the file for reading or writing. This is known as current position pointer. If
the pointer is at the end of the file, the size of the file increases. If the pointer is in between, the
contents of the file are overwritten with the data to be written.

 • Saving a file
 The contents of the file must be saved on the disk. For this, the OS must look for space on
the disk, and then save it. The appropriate entry in the directory, where the file is created, is
also done.

 • Deleting a file
 When the file is not needed, it can be deleted. Now, the OS has some free space after deleting it.
The entry in the directory is also removed.

 • Open a file
 Before a process uses a file for any operation, the file must first be opened. The OS fetches
its attributes and list of disk addresses into the main memory for rapid access to open the file.

 • Close a file
 A file, when not needed, for any access may be closed. The close operation frees memory
space for attributes and disk addresses, and the file is updated on the disk. But closing a file
does not mean deleting it, because the file has not been removed from the disk. A process
may open many files at a time, consuming space in the memory. Therefore, a limit is put on
a process to open multiple files.

 • Read a file
 The read operation also needs the name of the file and the pointer, from where the bytes will
be read. The current position pointer is maintained for this operation as well. After reading
the data, the pointer is updated to the position where the last read finished.

 • Append a file
 This is another version of the write operation. The only difference here is that the write
 operation is performed only at the end of the file. The OS locates the end of the file, using
the pointer, and then appends the data to be written in the file.

File Systems 403

 • Repositioning the current position pointer
 The current position pointer used to read and write in the file can be repositioned to any
desired position. The general system call for this operation is seek in some OSs. Therefore,
it is also known as seek operation.

 • Get/Set attributes
 The attributes of a file can be read, or even changed by a user, if necessary. A user may need
to look when the file was last changed or created. Similarly, the user might want to change the
access permission of a file. The system calls of an OS help to get/set the attributes of a file.

12.6.1 Implementation of File Operations
Although the implementation of file systems will be discussed in the next chapter, let us just go
through its basics. To perform any operation on a file, the file needs to be opened. The following
data structures are used for opened files:

Open File Table
 Since the open operation fetches the attributes of the file to be opened, the OS uses a data
structure known as open file table (OFT), to keep the information of an opened file. When an
operation needs to be performed on the file, it is specified via an index into this table, and there-
fore, it need not be searched in its directory entry every time. OFT is maintained per process
basis, that is, it maintains the detail of every file opened by a process. OFT stores the attributes
of the opened file. Thus, each process has an OFT for this purpose. The OFT, per process, may
help in an environment, where several processes open files simultaneously. The OFT maintains
a counter known as open_count that keeps the count of opened files. Each open operation in-
crements this counter, and similarly each close operation decrements this counter. When the
counter reaches zero, the file is no longer in use, and is closed.

System-wide Open File Table
 System-wide open file table (SOFT) is another data structure, which is used to maintain the status of
open files, but on the system basis rather than the process. The status of the open files is now counted
for the system. An entry in the OFT points to a SOFT, where the process-independent information
about the open file is maintained, for example, location of a file on the disk, file size, and so on. Thus,
once a process opens a file, the file gets entry in both OFT and SOFT.

Address of the File on Disk
 The address of the file, where it resides on the disk, may be needed every time the file is opened.
Therefore, to avoid reading the address from the disk again and again, its address is kept in the
memory.

12.7 FILE ACCESS

The files stored on the disk are required to be retrieved by the user. But there are many ways
to access a file. The file access depends on the blocking strategy on the disk and the logical
structuring of records. The following are some file access methods:

Sequential File Access
 The file is accessed sequentially, that is, the information in the files is accessed in the order it
is stored in the file. This is a simple and commonly-used access method. The sequential ac-
cess is possible only when there are fixed-length records consisting of fixed set of fields in a

404 Principles of Operating Systems

particular order. There is a key field, usually the first field in the record, by which the sequential
order is maintained (see Fig. 12.3). To read or write on such a file, a file pointer is maintained.
Whenever there is a request for a read or write operation, the current position of the file pointer
is seen, and advanced to the next position after the read or write operation. The pointer can be
reset to the beginning of the file by assigning zero value to it.
 Sequential access of a file is not suitable for all types of applications. If the application is a
batch type and need to process all the records, then sequential access is a good option, as it
will be beneficial for batch processing. On the other hand, if the application is of interactive
type, then access and additions may be difficult. A sequential file access needs a proper match
of the key field in every record, resulting in considerable processing time and delay, especially
when the size of a sequential file is large. The sequential file is best suited to sequential access
devices, like tapes.

Indexed Sequential File Access
 Another approach for accessing a file is indexed sequential. In this type, a key field is main-
tained just like the sequential file access, that is, records are organized in a sequence, based on
a key field. Instead of locating a record sequentially, a random access approach is followed here
by incorporating an index. The index stores the key field and a pointer on the main file (see Fig.
12.4). To find a specific field, the index is searched for the highest key value, equal to or less
than the desired value. The search is continued in the main file, after getting the pointer from
the index. In this way, the index takes the pointer to the vicinity of a desired record, and reduces
the number of lookups in the main file. The average search length may be reduced from mil-
lions to thousands. The advantage of the indexed sequential access is that the sequential nature
of a file is not modified. The file stored is still sequential, and by this access method, the time to
search a record is greatly reduced. If the index file is too large for the main file, it will be better
to have a second-level index file. The second-level index will have pointers to the first level
index, and the first level index will have pointers to the actual record in the main file.

Example 12.1

A file, consisting of students’ records, each occupying 16 bytes, is stored on a disk. The block
size on disk is 512 bytes. Therefore, each block can have 32 records. A file of 80,000 records
would occupy 2,500 blocks. If a particular record is to be retrieved on a sequential access file,
thousands of records need to be searched. Instead of this, an index can be defined, consisting of
last name of the students (each 10 bytes), and the logical record number, as a pointer to various
blocks in the file. The index will be sorted on the basis of last name. To search a student record,
the index with the last name, can be searched for the file pointer. The pointer will point to the
required block and the block can be searched sequentially.

File pointer

Start

End

Fig. 12.3 Sequential access

File Systems 405

Indexed File Access
It is not necessary to store the data in a file sequentially and to search a record by its key field.
There may be other attributes by which a user wants to find a record. Thus, when the sequential
nature and a single key field for searching are not required, the sequential and indexed sequential
accesses are not found suitable. For this purpose, indexed file access is considered. The idea
here is to prepare multiple indexes, each for an attribute, by which the user wants to search a
record in the main file. There is no restriction of placing the records in sequence and they can be
of variable lengths as well. There are two types of indexes: exhaustive index and partial index.
The exhaustive index will contain one entry for every record in the main file. The partial index
consists of entries of the records indexed by a particular attribute.

Direct File Access
Direct access is meant for a random structure of secondary storage, like in disks. This type
of file is most suitable for disks to access a particular record randomly. It is not necessary to
store and access the records in sequence, but they must be of fixed-length. Since the block is
a unit on a disk, the key field, as in case of sequential and indexed sequential, may also be the
block number. Thus, by having a block number, the block can be accessed directly, instead of a
sequential access. The direct access method is suitable for applications, where rapid access of
data from large amount of information is required.

12.8 DIRECTORIES

The directories are used to maintain the structure of a file system. A user, if working in a flat file
system, may not be able to sort different tasks. One task may have 10 files, but all scattered in
the file system. Similarly, other tasks may have multiple files, but cannot be grouped together.
Thus, there is a need to group files related to a category or task. If a user performs different
tasks, then each file must move in its related task group. In this way, different groups, accord-
ing to the tasks, are obtained. These groups are known as directories or folders. The directory
is also a file, but it lists all the files stored in it. The listing displays various attributes that may
vary from system to system. The general attributes displayed may be name of the file, its loca-
tion, its access rights, its date and time of creation, and so on.

Directories are convenient for users, as they can separate their work into different directories,
related to different tasks. For example, if a student works on two projects, A and B, then he/she
can make separate directories for Project A and Project B, such that the files related to a project
will only be stored in the related directory. The directories also give flexibility such that files can

A..

B..

Index
File

Fig 12.4 Indexed sequential File

406 Principles of Operating Systems

have same names in different directories. Thus, the name of every file need not be unique. In a
folder, however, every file must have a unique name. The same name facility in different direc-
tories is implemented by having a master directory associated with the file system. The master
file directory stores the pointer to every directory the user has made. For example, Project A and
Project B are two different directories of a user. He can give same name, say Init, to the files
in both directories. In this case, the file system will use master directory, storing the pointers of
both directories, as shown in Fig. 12.5. There is no conflict in the name Init, because when the
desired file is referred to, the file system will search the pointer in its corresponding directory.

The logical structuring of directories can be done in many ways, according to the require-
ments of a user. These are discussed in the following sections.

12.8.1 Single Level
The first logical structuring of directories can be done in a very simple manner that is, having
a single level of directory structure under which all the files will be stored. It means there is
a single directory in the system, known as root director, and all the files are stored only under
this directory (see Fig. 12.6). It is easy to work under this structure as searching a file is easy.
This kind of structure was used in earlier systems when there was no concept of multi-users.
A single-level directory, therefore, is not suitable for multi-user systems, because of duplicate
naming of file. If a user by mistake takes the same name of an existing file, it will be overwrit-
ten, and the old contents of the file are lost forever. If a user writes programs in many languages,
it is not possible to have separate directories for each language in a single level directory
structure. Thus, this structure is not used in modern systems. It may be applicable in the system
where the number of files is less, as in case of an embedded system.

Project
directory

Directory
pointer

Project A

Project B

File
name

Attributes

Init

File
name

Attributes

Init
Master directory

Directory
project A

Directory
Project B

Fig. 12.5 Naming freedom through master directory

Files Files Files Files Files Files

Root level
directories

Fig. 12.6 Single-level directory

File Systems 407

12.8.2 Two Level
The disadvantage of duplicating file names by different users in a single-level directory gives
rise to the idea of having separate directories for each user, or for each task. In the two-level
directory, there are two levels: master directory and user directory (see Fig. 12.7). The master
directory stores the user ID and its address. The user directory is simply a list of files, as seen
in a single-level. When a user starts, the system’s master directory is searched for the entries
of this user, through user name or account number. After searching the appropriate entry, the
address of its user directory is retrieved. It means, when a user refers to a particular file, its own
user directory is searched in the master directory. Thus, different users may have files with the
same name in their respective directories, as seen before. The addition and deletion of a file also
require searching of the file in the user directory, therefore, a file with the same name in other
user directories cannot be deleted.

12.8.3 Hierarchical or Tree Structure
In a two-level directory structure, a user is limited to have a single personal directory. What
will happen if a user wants more levels to divide the work in more than one group and
access other users’ files? In that case, the two-level structure is not suitable. An extended
design of two-level structure allows a user to have sub-directories, so that the work can
be divided among these sub-directories. Thus, a directory, where there is no limit on sub-
directories of a single user, is known as a tree-structure directory. Thus, a large set of files
can be further divided, and then grouped into sub-directories, as shown in Fig. 12.8. In the
tree-structure directory, there is a root or master directory, consisting of user directories.
Each user directory can be further divided into sub-directories, or it may have files. Thus, a
directory has both sub-directories and files. The primary advantage of this structure is that
a user can access another user’s files. This facility is provided by a pathname. A pathname
is a sequence of one or more path components in the tree structure that uniquely identifies a
file. The pathnames, thus, can be used to access another user’s file and to uniquely identify
files with same names in different directories.

Files Files Files Files Files Files

Master
directories User1 User2 User3

Files Files

User
directories

Fig. 12.7 Two-level directory

408 Principles of Operating Systems

Paths
There are two types of paths in a tree structure: absolute path and relative path. An absolute
path is a path that always starts from the root directory, and follows the path descending to
the specified file in a particular directory. To define a relative path, first let us define a term
known as current directory or working directory. A current directory is a directory, where
a process or user normally works. Any file specified by a user is first searched in its current
directory. If the user wishes to access a file, which is not in the current directory, then a path
must be provided to access it. However, it is not necessary that the path is absolute. The
path provided may be relative to the current directory, that is, the path starts from the current
directory, instead of the root. This is known as a relative path. Although the relative path is
more convenient, as the absolute path need not be specified every time, it does exactly what
an absolute path does.

The relative path does not work every time. A user may be at his/her current directory, such
that the file to be accessed cannot be specified, using a relative path. In this case, the path of
the file to be accessed must be specified using an absolute path. Absolute path always works,
because it is an unambiguous way of referring to a file in the tree-hierarchy. A user, however,
may feel inconvenient to specify the absolute path every time, if the number of files to be
accessed is more. In this case, the user may change the current directory explicitly and specify
the relative path. Whenever a process or user changes its current directory, it must know its
location in the tree structure of the file system.

Files Files Files Files

Root/Master
directory

Files

User
directories

Files Files Files Files Files Files Files

Files Files

Fig. 12.8 Tree directory

File Systems 409

Example 12.2

CProj CPP Unix Internet Music Data

Student record Sort ABC Struc

Root/Master
directory UserA UserB UserC

CPP Excel

ABC

User
directories

G1 G2 G3

Result
Files Files Files

UnitA UnitB UnitC

Btree
Files Files

Chap1 Chap2

Btree
Files

The tree-directory structure, shown above, consists of files having identical names. But the files
can be easily accessed using pathnames. Both user A and user C consist of a file named ‘Btree’.
The files, however, can be distinguished and accessed using the following path names:

 UserA/CPP/G2/Chap1/Btree
 UserC/CPP/UnitA/Btree

Since the pathnames are unique to both files, the same name is allowed in the tree structure.
If the working directory of a user is G2 and the user wants to access any file in the hierarchical
structure below it, then an absolute path need not be specified. The relative path, Chap1/Btree,
is sufficient to access the Btree file.

Operations
Considering the directory as a tree structure, there are a number of operations that can be per-
formed through commands or system calls. Some of them are as the following:
 • Create a directory

This allows the user to create a directory, according to the tree-hierarchy.

410 Principles of Operating Systems

 • Delete a directory
This allows the user to delete a directory. There are certain rules for deleting it in most OSs.
The general rule is that a directory cannot be deleted, until all the files and directories under
it are deleted. Thus, a directory to be deleted must be empty.

 • List the directory
This operation lists all the files and directories under a desired directory.

 • Change the directory
This allows the user to change its current directory. A user may move anywhere in the tree-
hierarchy. For example, a user may move one step above in the hierarchy or even move up
to the root directory.

 • Copy the files
This allows the user to copy a file from one directory to some specified directory.

 • Move the files
This allows the user to move a file physically from one directory to some specified directory.

12.8.4 Acyclic Graph Structure and File Sharing
The tree structure does not allow the sharing of a file or directory among various user direc-
tories. It means two users cannot have a same file or sub-directory in their directories. Con-
sider two programmers who are working on the same project. They may want to share a file
or sub-directory required for the project. Thus, the directory structure must allow sharing of
files or sub-directories. Note that sharing must not be confused with accessing of the file or
sub-directory through the pathname, as discussed above in the tree structure or to copy the
files of a directory. Sharing means having the same file or sub-directory in the directory of
the concerned user directories. In other words, if there is a change in the contents of a shared
file, then it must be visible to all the shared users, because there is only one copy of the shared
file. The implementation of this type of sharing in the directory structure violates the tree-
structure. This type of structure is not a tree structure, but a graph. It is known as an acyclic
graph (see Fig. 12.9).

An acyclic graph structure is implemented through a pointer, known as a link. A link is a
pointer that points to a file or directory. If a directory entry is marked as a link, the real file
information is in the link. The link is implemented as a pathname of the shared file. Thus,
when a file is needed, the directory entry is searched. If the directory is found as a link, then
the link is resolved to have the access of the real file. This is known as a symbolic link or
soft link. In UNIX, file-sharing is done with the help of link and unlink commands. The link
system call is specified with two parameters: the existing file name and the pathname as a link.
It creates a link between the existing file and the file specified in the link. Similarly, an unlink
system call is used to remove the link between two files. However, unlink does not affect the
shared file in any way. It just removes the symbolic link between the files. Symbolic links can
also be used to link to files on any machine in the network, by providing the network address
and pathname of the machine.

There are, however, some problems in implementation of the symbolic linking. It may be
possible that a file has multiple absolute paths referring to the same file. The problem also
occurs when the structure needs to be traversed for some purpose, like copying all files for
backup. The problem in traversing the structure is that, it results in duplicate copies of the same
file. Another problem is that symbolic links incur an extra overhead. Since the symbolic link

File Systems 411

 execution requires reading of path in link, parsing of path, and following the path step by step,
the overhead includes both time and disk space, as extra disk accesses and space are required.
Contrary to soft links, a directory entry may have an entry that specifies the location of a file
on the storage device. In this case, the file is accessed by directly accessing the physical blocks
that are being referenced to. This is known as a hard link. But a hard link needs to be updated,
whenever there is a change in physical addresses on the disk.

File sharing is of two types: sequential sharing and concurrent sharing. Sequential sharing
allows a file to be shared by multiple users but one by one in a sequence. On the other hand,
concurrent sharing allows multiple users to share a file over the same period of time. Sequen-
tial sharing is implemented with the help of a lock system, known as file-locking. File-locking
restricts the access to a file by allowing only one user at a time.

12.9 FILE PROTECTION

The file-sharing discussed in the last section poses a protection problem. The file-sharing
facility in the system does not mean that any user can access the file and modify it. There
may be a file-system that prohibits any sharing of files among users. On the other hand,
some file-systems may allow access to all users. But both kinds of systems represent two
extremes of file protection. Instead of having total prohibition or full flexibility of access,

CProj CPP Unix Internet Music Data

Student record

Root/Master
directory UserA UserB UserC

CPP Excel

User
directories

G1 G2 G3

File
Files

UnitA UnitB UnitC

Btree
File

Chap1 Chap2

File

Fig. 12.9 Acyclic graph-based directory structure

412 Principles of Operating Systems

access rights must be defined for each user. Before discussing the types of file access rights,
let us discuss the various types of users.
 • Individual user/owner: An individual user or the owner of a file, who created the file.
 • User group: A set of users who share a file and require same type of access.
 • All: Any user who has access to the file system.

The following are some access rights that may be exercised by any type of users discussed above:
 • Reading The user can read the file.
 • Writing The user can write, modify, and delete any content of the file.
 • Appending The user is able to write at the end of the file only.
 • Deleting The user can delete the file from the system.
 • Execution The user can load and execute a program, but cannot copy it.
 • Listing The user is able to display the name and attributes of the file.

There may be different requirements of every user during access to a file. Therefore, there
must be a mechanism through which the OS will be able to know the specific access right a
specified file requires. For this, an Access Control List (ACL) is used, which specifies the ac-
cess rights associated with a file. Whenever a user requests access to a file, the OS checks its
ACL, and allows access, if the request and ACL matches; otherwise, access is denied, as it is
a violation of the protection scheme. The disadvantage of this scheme is the length of ACL as-
sociated with the file. There are some general access rights that all users require. For example,
reading a file is a general operation and all users may require it. So implementing this general
read access in ACL is not worthwhile. Instead of this, general access should be given by de-
fault, and if there is any file which should not be given any access or the restricted accesses
should be implemented through ACL. Moreover, access rights can be combined with each type
of user, resulting in a standard scheme for access protection. This will result in more restricted
protection, having only three fields of protection. Each field may be of several bits, represent-
ing access protection. For example, in UNIX, there are three fields: owner, group, and all. Each
field has three bits, specifying read, write, and execute access permissions. Thus, only 9 bits
are required per file.

Example 12.3

A leader of a group on a project wants all group
 members to be able to read and write, but not delete
data on the project directory. Other users may be
allowed only to read the files under the project
 directory. Besides this, the project leader should have all access rights. So the mapping of every
type of user in the project with their access rights is as depicted in the following space:

12.10 FILE SYSTEM MOUNTING

There are several types of storage devices like CD-ROMs, hard disks, USB storage and so on.
Hard disks may have several partitions as well. In Windows, the devices and/or partition can be
accessed by opening My Computer on the desktop. The hard disk partitions are D: and E: and
other devices may be represented as F:, G:, and so on. It means that it is possible to access these
devices. On the other hand, in case of a Linux or UNIX OS, the CD or hard disk partitions cannot be
accessed. The reason is that the user needs to mount all the devices or hard disk partitions explicitly,

Type of user Permissions

Owner All

Group Read and write

All Read only

File Systems 413

whereas in Windows, the OS does the mounting of all attached devices and partitions of the hard
disk; every file-system is accessible in the root directory of the system. Therefore, every storage
device/partition must be attached to the root directory of the system, before they can be used.
This attaching of the device is known as mounting, and the directory where the device is
attached, is known as a mount point. Similarly, unmounting is done to remove the device from
the mount point. To mount a device, the OS requires the name of the device and the mount
point. The OS then reads the device directory and verifies that the directory has a valid file-
system. After this, it records the entry of a new device directory in its directory structure at the
desired mount point.

SUMMARY

The fundamental issues of the file structure and directory
structure, along with their implementations have been dis-
cussed in this chapter.

Let us have a quick review of important concepts dis-
cussed in this chapter:

 • A file may be considered as a sequence of blocks, and
therefore, all basic I/O functions are performed only in
terms of blocks. This is known as record blocking.

 • The larger the size of a block, the more number of records
will be mapped to the block on the disk.

 • There are three types of files: regular, directory, and special.
 • Regular file is one that contains the user information.
 • Directory is a file type used to organize the list of files in a

group, that is, it organizes the files in a hierarchy.
 • Special file contains no data, but provides a mechanism

that maps physical devices to file names, that is, these
are used to access I/O devices.

 • To implement the file operations, there are three major
data structures:
open file table (OFT) to keep the information of an
opened file,
System-wide open file table (SOFT) to maintain the sta-
tus of an opened file, but on the system basis, rather
than the process,
Address of the file on disk.

 • The files may be accessed through:

Sequential file access where the file is accessed
sequentially, that is, the information in the files is
accessed in the order it is stored in the file.
Indexed sequential file access where random access
approach is followed by incorporating an index. The
index stores the key field and a pointer to the main file.
Indexed file access prepares multiple indexes, each for
an attribute, by which a record is searched in the main file.
 Direct file access is meant for the random structure of
secondary storage, like a disk.

 • The logical structuring of the directories can be done
through single level, two level, and tree structure.

 • There are two types of paths in a tree structure: absolute
path and relative path.

 • An absolute path is a path that always starts from the root
directory, and follows the path descending to the speci-
fied file in a particular directory.

 • A current or working directory is a directory, where a pro-
cess or user normally works.

 • A relative path is relative to the current directory, that is,
the path, instead of starting from the root, starts from the
current directory only.

 • A tree structure does not allow sharing of a file or sub-
directory among various user directories.

 • Acyclic graph allows the sharing of files or sub-directories
among different users.

MULTIPLE CHOICE QUESTIONS

 1. When multiple fields are combined to form a meaningful col-
lection, it is known as a _______.

 (a) file (c) record
 (b) block (d) none

 2. The larger the size of a block, ______ number of bytes will
be transferred in one I/O operation.

 (a) smaller (c) zero
 (b) larger (d) none

 3. When the object files have been linked properly and are
ready to run, they are known as __________.

 (a) archive files (c) batch files
 (b) object files (d) executable files

414 Principles of Operating Systems

 4. A file consisting of some commands to be executed and
given to command interpreter, is known as ______.

 (a) archive files (c) batch files
 (b) object files (d) executable files

 5. When a group of files is compressed in a single file, it is
known as _______.

 (a) archive files (c) batch files
 (b) object files (d) executable files

 6. ______ file contains the user information.
 (a) Regular (c) Special
 (b) Directory (d) none

 7. _____ is a file type used to organize the list of files in a
group.

 (a) Regular (c) Special
 (b) Directory (d) none

 8. _______ contains no data, but provides a mechanism that
maps physical devices to file names.

 (a) Regular (c) Special
 (b) Directory (d) none

 9. ________ in a file attribute is used to keep track of whether
file has been backed up or not.

 (a) Hidden flag (c) Access flag
 (b) System flag (d) Archive flag

 10. Multiple indexes are prepared in a _____.
 (a) Sequential file (c) Indexed file
 (b) Indexed sequential file (d) Direct file

 11. Sharing of a file or directory is allowed in a ____ directory
structure.

 (a) single level (c) tree
 (b) two-level (d) acyclic

REVIEW QUESTIONS

 1. What are the constituents of a file system?

 2. What is a record blocking? Explain its types.

 3. Explain various formats of a file.

 4. Define regular, directory, and special types of a file.

 5. Explain different types of flags used in a file’s attribute.

 6. What are the various operations that can be performed on a
file?

 7. Distinguish between OFT and SOFT.

 8. Explain different types of file-accessing methods.

 9. Explain the ways by which the logical structuring of a
directory can be done.

 10. What is the concept of a working directory?

 11. Distinguish between an absolute and a relative path in a
tree-directory structure.

 12. Distinguish between a tree and an acyclic graph directory
structure.

 13. What is symbolic linking?

 14. What is an access control list?

 15. What is the purpose of file -system mounting?

BRAIN TEASERS

 1. Sunil and Rajesh are working on Project A and B, respectively,
by maintaining separate directories. However, there is a utility
which may be used by both. Which type of directory structure
would be the best for this case?

 2. The Projects A and B need to have a file named “Utility”, but
with different contents. Can both projects use the same file
name? If yes, which directory structure would be the best
for this case?

 3. Can a two-level directory structure be considered as a tree-
structure directory?

 4. In a LAN environment, some users are working on a proj-
ect. The project leader, with his four members working on
the project, wants that all group members should be able
to read and write on the project directory, but should not
be able to delete it. Other users may be allowed only to
read and execute the files under project directory. Besides
this, the project leader should have all the access rights.
Prepare a file access protection scheme for this.

13.1 INTRODUCTION

The fundamentals of the files and file system were discussed in Chapter 12. In this chapter, the imple-
mentation details of the file system have been described. The file system accepts the user request for any
disk I/O and sends it to the device through various intermediate layers. Various data structures are used
on disk as well as in the memory for implementation of the file system. The implementation details of
various file-related operations and how the files are allocated on the disk are discussed in this chapter.
Besides this, some issues regarding the file system, such as backup and recovery of critical data, file
system inconsistencies, and some performance issues have also been discussed.

13.2 FILE SYSTEM STRUCTURE

The file system is structured in various layers to incorporate vari-
ous operations. Each layer uses the operation of its lower layer. The
various layers as depicted in Fig. 13.1 are discussed as follows:

13.2.1 Logical File System
The logical file system is concerned with the logical structure of
the file. This module manages all the information about file attri-
butes. The file structure is maintained in a data structure gener-
ally known as a file control block (FCB). This layer manages the
directory structure where a file is located and provides information
about the file location to the file organization module.

13.2.2 File Organization Module
This module knows about the logical blocks of the file and translates
them to physical blocks so that the basic file system gets the physical
blocks and proceeds further. For this translation, it needs to know the
location of the file and its allocation type. The file is allocated the
disk space in some specified manner known as file allocation meth-
ods, which will be discussed later in this chapter. Further, it also must
know which blocks are free. This information is provided by the free
space manager that tracks unallocated blocks and provides them to
the file organization module so that the translation of logical blocks
can be performed. Free space manager will be dealt in detail later.

13 File System
Implementation

Learning Objectives
After reading this chapter,
you should be able to
understand:
 • Layered structure for file system
 • On-disk file system implemen-

tation data structures
 • In-memory file system imple-

mentation data structures
 • File mapping on disk
 • Implementation of file-related

operations
 • File allocation methods: con-

tiguous, linked, indexed
 • Free space management
 • Directory implementation
 • Backup and recovery methods

for file system
 • File inconsistencies and the

checks against them
 • File system performance issues
 • Log structured file system

416 Principles of Operating Systems

13.2.3 Basic File System/Physical Input–Output Level
The basic file system issues the generic commands to the device drivers of the corresponding
devices to read and write physical blocks. The physical blocks are identified with their disk
addresses. The blocks are first allocated in a buffer. When there is an I/O request, the blocks are
transferred either to the disk or the memory and buffer becomes free. The buffer management
is also done at this level.

13.2.4 Input–Output Control
This is the lowest level in the layered design of the file system. This module communicates
with the actual device (disk or tape drive), starts operation on the device, and processes the I/O
request. It consists of device drivers and interrupt handlers to transfer information between the
main memory and the device.

The benefit of layered structure of a file system is that the code of one layer can be used by
different file systems. For example, the basic file system or I/O control module can be reused
by various file systems. On the other hand, the number of layers should be decided wisely. If it
is large, then there is a possibility of decreased performance. Thus, the number of layers may
affect the performance of an OS.

User application

Logical file
system

File
organization

module

Basic file
system

I/O control

Device driver Device driver Device driver

Device Device Device

Fig. 13.1 Layered structure of the file system

File System Implementation 417

13.3 IMPLEMENTATION OF DATA STRUCTURES

The file system implemen-
tation involves various data
structures to manage its
data and meta-data. Since
the secondary storage used
for the file system implementation is generally a disk, some of these data structures are on-disk
or in-memory. The on-disk data structures are organized by dividing the disk into blocks of some
size: The disk space is partitioned into a series of blocks. In general, the block size is 4KB. Most
of the disk space, that is, the blocks are reserved for storing the data. These blocks are known as
data blocks. Some of the blocks are reserved for on-disk data structures. Although the data struc-
tures may vary as per the implementation of different OSs, the general on-disk data structures are
discussed as follows (see Fig. 13.2):

 1. Boot block
 Every partition on the disk starts with the boot block. The program in the boot block loads
the OS in that partition.

 2. File control block
 It is required to track the information such as which data blocks comprise a file, and the
file’s size, owner, access rights, date of creation, access or modification, and so on. All this
information is stored in FCB, which is an array of data structures per file. It is also known as
Inode (Index node). It contains all the accounting information and the information to locate
all the disk blocks that hold the file’s data.

 3. Super block/volume control block
 It stores the key information about the file system on every partition (or volume) of the disk,
which is read into memory after the system is booted, protecting the integrity of the file
system. Thus, when mounting a file system, the OS will first read the superblock to initial-
ize various parameters and then attach the volume to the file-system tree. When files within
the volume are accessed, the system will thus know exactly where to look for the needed
on-disk structures.
The superblock consists of the following information:

 • File system identifier: It is also known as a magic number that uniquely identifies
the file type

 • Number and size of data blocks in the file system
 • Addresses of the free blocks
 • Free block count
 • Free FCB count
 • Addresses of the FCB
 • Address of the root directory
 • Date and time of last modification to the file system

 4. Free list
 It is used for tracking unallocated blocks. It points to the first free block, which then points
to the next free block and so forth.

 5. Files and directories

 To organize the files, the directory structure on each file system is used. It may consist of file
names and their corresponding FCB.

Boot block Super block I-nodes Files and directories

Fig. 13.2 Disk layout implementing the file system

418 Principles of Operating Systems

Some data structures reside in memory instead of disk. These data structures may be used at the
time of mounting or for updating a file system required during the file operations. The follow-
ing are some in-memory data structures (see Fig. 13.3):

 1. Mount table
It stores the information about each mounted file system on each partition.

 2. Directory-structure cache
It stores the information about the recently accessed directories.

 3. SOFT
As discussed in Chapter 12, it maintains the information about the open files in the system.
It keeps the copy of the FCB of each opened file for this purpose. Since this is a process-
independent system-wide data structure, it has a count of the times a file has been opened
by various processes. This count is incremented every time a specific file is opened. The
structure of the SOFT is shown in Table 13.1.

 4. OFT
As discussed in Chapter 12, an OFT maintains the detail of every file opened by a process
and an entry in the OFT points to a SOFT wherein the process-independent information
about the open file is maintained. An OFT is a data structure maintained per process basis.
When a process accesses a file, the access position of the file may change. The next time
when the same process opens the file, it must resume its access from the last position.
Therefore, a current position pointer is maintained for every process in this table so that a
process can read or write from where it accessed the last time. The access rights for a file are
also stored in this table such that a file can be granted permission for appropriate operations.
The structure of the OFT is shown in Table 13.2.

 5. Buffer area
This is a temporary storage area in the memory that is used to hold the data while perform-
ing any I/O operation with the disk.

13.4 FILE MAPPING THROUGH FCB

A logical file is a continuous stream of bytes, but the file data inside the blocks may not be con-
tiguous on the disk. The file system uses the logical position in a file stored by the FCB to map

Mount
table

Directory-
structure
cache

SOFT OFT
Buffer
area

Fig. 13.3 In-memory data structures implementing the file system

Table 13.1 Structure of the SOFT

File name FCB Open_count

C:/admin/dbase/fileA.doc File permissions

File access dates

File owner

File size

Address of file on disk

File System Implementation 419

it to a physical location on the disk as shown in Fig. 13.4. The FCB contains a list of blocks of
a file and their corresponding disk block addresses. Thus, to retrieve the data at some position
in a file, the file system first translates the logical position to a physical location in the disk.
After this, the request is made to transfer that mapped location (block) in the disk and the data
is passed to the user after retrieving the block from the disk.

An FCB stores between 4 and 16 direct block references. However, if we keep on storing
large number of block references in it, then the FCB needs more memory space as it needs to
be copied in the memory for every file to be opened. Thus, there is trade-off between the size
of the FCB and the amount of data it can map. This limitation does not allow us then to have a
file of a bigger size. To overcome the space constraints for storing block addresses in the FCB,
it can use indirect blocks. An indirect block contains pointers to the blocks that make up the
data of the file as shown in Fig. 13.5. Through the use of indirect blocks, the FCB instead of
storing the block addresses of the data blocks now stores the block address of the indirect block.
The use of indirect blocks allows the FCB to extend the amount of data a file can address.
The number of data blocks an indirect block can refer is given as,

File system block size/size of disk block addresses
Given a block size of 1024 bytes and the disk block address size of 8 bytes, the number of data
blocks an indirect block can refer is 128.
Although indirect blocks increase the amount of data a file can access, they are limited to a few
bytes in size.

The idea of indirect blocks can be extended further to accommodate files of even bigger
sizes. Another level of indirect blocks when extended is known as double indirect blocks.

Table 13.2 Structure of per-process OFT

Process
name

File name
Current
position
pointer

Access
rights

Other
information

Pointer to
the SOFT

Process A C:/admin/dbase
/fileA.doc

D: /admin /cpp
/fileB.doc

0

1024

2048

3072

File attributes

Mapping information

0-1023 Block 4
1024-2047 Block 6
2048-3072 Block 1

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6Logical file

FCB

Disk blocks

Fig. 13.4 File mapping through FCB

420 Principles of Operating Systems

In double indirect blocks, the FCB contains the address of double indirect block (see Fig. 13.6)
and, in turn, double indirect block contains pointers to indirect blocks. The indirect blocks con-
tain pointers to the data blocks of the file. This can be extended further to the third level called
triple-indirect blocks, if required.

13.4.1 Extents
Instead of using multiple levels of indirect blocks, extents can be used to support a large-sized
file. The extent is also a simple list of block addresses, but the difference is that each address
in the list is not for a single block rather for a range of blocks. In other words, one address in
the list will represent the multiple blocks of the disk. Thus, an extent is a compact way to refer
to large amounts of data represented in the form of pointer-length pair where the pointer is the
address to the start address of the range of blocks and length is the number of blocks. Although
the size of an extent is larger than the block address as used in the simple block address list, it is
able to map a larger number of consecutive blocks onto the disk. Moreover, they allow disk I/O
in units of multiple blocks if storage is in consecutive blocks. For sequential access, multiple
block operations are considerably faster than block-at-a-time operations.
However, if the blocks on the disk are fragmented, the extent cannot address them. In this case,
the indirect blocks are the only solution. Therefore, extents with indirect blocks can also be

File attributes

Double indirect
block address

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

FCB

Disk blocks

Double indirect
block

…
Indirect block address 1
Indirect block address 2

Indirect block address n

Data block address
Data block address
Data block address

Data block address
Data block address
Data block address

Data block address
Data block address
Data block address

Indirect blocks

Fig. 13.6 File mapping through double indirect block

File attributes

Indirect block address

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

FCB

Disk blocks

Data block address 1
Data block address 2

Data block address n

Indirect block

Fig. 13.5 File mapping through indirect block

File System Implementation 421

implemented. Another limitation in using the extent list is that searching a particular position
in the file requires starting at the first extent and scanning through all of them until the desired
location is found.

13.5 IMPLEMENTATION OF FILE OPERATIONS

In Chapter 12, we saw that various operations can be performed on the files. On the light of the
file system basics and the data structures, let us discuss how various file-related operations are
implemented.

13.5.1 Create a File
To create a new file, a system call is passed to the logical file system. It reads the appropriate
directory structure where the new file will be created. For this, it calls the file organization
module to map the directory information to its corresponding block. After that, the basic file
system issues the disk read operation to the disk device driver. I/O control layer implements
the read operation on the disk and copies the result in the memory. In this way, the disk read
operation is performed for directory read operation. After reading the directory structure, it
needs to be updated for the new file. For this, the new file name and its corresponding FCB
are added in the directory structure. The FCB block is assigned by the free space manager.
The directory structure is then finally written to the disk in the same hierarchy as used for
disk read operation.

13.5.2 Open a File
The system call for opening an existing file is passed to the logical file system. The logical file
system searches the SOFT to find out whether this file is already in use by another process or
not. If it is, then an entry in the OFT is created pointing to the SOFT. If the file is not found in
the SOFT, then the FCB of that file is read in the memory. However, at this moment, the file
system has only the path of the desired file. To locate the FCB of the desired file, the FCB of the
directory is required wherein the file resides. Therefore, the FCB of the directory is read in the
memory. However, it may be possible that this directory again lies inside some other directory
or the root directory. In this case, the FCB of the previous directory or the root directory is
located. In this way, the FCBs of all the directories or sub-directories are searched until the
desired FCB is found. Once it is found, it is copied to the SOFT in the memory. An entry in
OFT pointing to the entry in SOFT is also created. After checking the file permissions, the file
system returns a pointer to the appropriate entry in the OFT. This pointer is known as a file
descriptor or file handle.

Example 13.1

A file is to be opened whose full path is given as C:/project/code/system.c. Assuming
that there are no FCBs in the memory except the superblock, the following operations are
performed:

 (a) Search the SOFT to find an entry of the file.
 (b) If found, create an entry in OFT pointing to the entry in the SOFT. Otherwise, move to the

next step.
 (c) Read the FCB of the root directory from the disk.

422 Principles of Operating Systems

 (d) Read the data blocks of the root directory from the disk.
 (e) Read the FCB of the Project sub-directory.
 (f) Read the data blocks of the Project sub-directory.
 (g) Read the FCB of the Code sub-directory.
 (h) Read the data blocks of the Code sub-directory.
 (i) Read the FCB of the system.c file.
 (j) Create an entry of the FCB by copying it to the SOFT.
 (k) Create an entry in the OFT pointing to the entry in the SOFT.

In this way, to read in the FCB of the desired file, we need to perform six read operations
on the disk. These read operations may affect the performance of the system. Therefore, the
FCB of root directory and other subdirectories including the file may be cached in memory
if the file is frequently in use. In this way, many disk I/O operations can be saved and the
system performs quickly.

13.5.3 Read a File
For reading a file, it must be opened. After that, the file can be read by using the file handle in
OFT and the FCB in SOFT. The block to be read in the file is known with the help of the FCB.
After read operation, the current position pointer in the OFT is updated so that the next read/
write operation can be performed.

13.5.4 Write a File
There are two cases in write operation. One is to update the existing file. Second case is that
the file is appended to an existing file or a new file is written. For the first case, the procedure
is same as for reading a file. Therefore, the desired block is read in the memory, updated, and
then written back to the disk. In the second case, new blocks are required to be allocated to the
new file or to append a file. Since a bit map is used to track free and allocated blocks, it must be
first read to know which new block can be allocated. When the block is allocated, the status of
the bit map is modified and updated on the disk. After this, the newly allocated block is written.
After the write operation, the current position pointer in the OFT is updated so that the next
read/write operation can be performed.

Example 13.2

In Example 13.1, suppose the file contents are being written and one additional block is required.
In this case, bit map is read into the memory to check which block can be allocated to this file.
After checking the status in bit map and allocating the new block to the file, the bit map needs
to be modified to change the status of the block allocated. The modified bit map is then updated
on the disk. Thus, two additional disk I/O operations are required to write in a file. The third
disk I/O operation is, of course, the actual writing in the file.

13.5.5 Close a File
For closing a file, OFT entry is removed and the count in SOFT, discussed earlier, is decre-
mented. When all the processes have closed the file, SOFT entry is removed and any updates
on the file are written back to the disk. It is obvious that I/O operations are very less in the file
closing as compared to other file operations.

File System Implementation 423

13.6 FILE ALLOCATION METHODS

It is clear now that files as a logical concept will be mapped into the secondary storage such
as disk. While mapping the file, the desired number of blocks is required to store the whole
file. The file system is responsible to allocate the blocks to the file. The files may be allocated
in two ways: static allocation and dynamic allocation. The static allocation is to allocate
the maximum size of a file in advance when it is created. The dynamic allocation allocates
the blocks as per requirement. Obviously, the dynamic allocation is better as there is space
wastage in static allocation.
The files need to be stored on the hard disk as part of their implementation. However, the file
allocation must ensure that there is quick access to the contents of the file and storage space is
utilized efficiently. There are three methods of file allocation.

13.6.1 Contiguous File Allocation
This type of file allocation allocates contiguous blocks on the disk at the time of file creation.
In contiguous file allocation, there is no or minimum head movement when a job is accessing
the blocks of the file. On the disk, suppose a file is stored on one track but continues on the
next track. To access a block on a different track, head movement is needed only from one
track to the next. Thus, seek time will be minimal. Consequently, access time of a file and I/O
performance by reading in multiple blocks can be improved.

The contiguous allocation is implemented through a file allocation table (FAT) that defines the
start address and length of a file. The start address is the address of the block where the file
starts and the number of blocks thereafter defines the length of a file. Since the file allocation
is contiguous, the length is sufficient to indicate how many blocks will be required to store
the file.

Example 13.3

FAT

File name Start address Length

C:/project/OS/FileA 2 5

C:/project/OS/FileB 10 3

C:/project/OS/FileC 18 7

C:/project/OS/FileD 7 3

To implement the file as shown above in its FAT, the contiguous allocation can be seen in
Fig. 13.7. FileA starts from the block address 2 and since its length is five, it consumes Block
number 3, 4, 5, and 6 in continuation. Similarly, FileB consumes the Blocks 11, 12, and 13 and
similarly, all other files consume contiguous space on the disk.

The contiguous file allocation is simple to implement. There is only one disk-seek required
for the start address of the file and after that, there is no seek or latency to find the next block
and the whole file can be read from the disk in one operation. Thus, contiguous allocated file is
suitable for sequential as well as direct access files. It is easy to access the next block sequen-
tially as the file system has an entry for the last block referenced. For direct access, the start
address and the block number are required. To access the nth block whose start address is s,
block s + n can be accessed.

424 Principles of Operating Systems

The contiguous allocation is a pre-allocation strategy. The problem is to decide how much
space is required for a file. The file owner, in fact, does not know the size of the file. There may
be two cases: The allocated space for the file may be too small or too large. In the first case, the
user may not be able to execute the program, and in the second case, there will be wastage of
space resulting in fragmentation. Moreover, there may be some space in the form of external
fragmentation that will not suffice as a contiguous space for storing a file. The fragmentation
can be reduced through compaction method, but it is a costly affair.

Example 13.4

In Fig. 13.7, if FileD is deleted, the blocks consumed by it will be free, that is, Blocks 7, 8,
and 9 as shown in Fig. 13.8. Suppose another file needs to be created whose length in blocks
is nine. Although the required number of blocks on the disk are available (Block number 0–1,
7–9, 13–17), they cannot be allocated to the new file as the blocks are not contiguous leading
to fragmentation. However, if compaction is done, then the blocks on the disk become contigu-
ous and can be allocated to the new file as shown in Fig. 13.9. However, in this case, the start
address of the files should be changed in the FAT of every file.

13.6.2 Linked/Chained File Allocation
In linked allocation, two strategies are followed: dynamic allocation and non-contiguous
allocation. In the first strategy, the blocks are allocated as per the requirement of the files.
In the second strategy, non-contiguous blocks are allocated, saving the space created by the
fragmentation as in case of contiguous allocation. To implement this allocation, each entry of
the FAT corresponding to a file has a pointer (initialized to nil) to the first disk block and the
length of the file. As the file grows, a free block on the disk is found and this block is linked
to the end of the file. In this way, one block points to another block resulting in a chained
allocation for the file. The linked allocation eliminates the drawbacks of the contiguous file
allocation. Now, there is no need to declare the size of a file in advance, and since any free block
on the disk can be allocated, there will not be any problem of external fragmentation either.

File A File B

File C File D

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Fig. 13.7 Contiguous file allocation

File System Implementation 425

Example 13.5

Suppose a disk has been fragmented and there are some free blocks on the disk as shown in
Fig. 13.10. A new file, whose length is seven, needs to be allocated on the disk. In this case, the
linked allocation will be appropriate as the non-contiguous free blocks can be linked together
and allocated to the new file.

The linked allocation supports sequential access files but is not suitable for direct access
files. We cannot access the nth block efficiently as in contiguous allocation because the blocks
are scattered on the disk. Each access of a block consumes some time in disk-read and disk-
seek. The lookup starts from the first address following the pointers for the next disk-read until
the nth block is found. This results in multiple block reads, slowing down the random access of
disk blocks. Thus, the linked-allocation is not suitable for direct-access files.

0 1 2 3 4

5 6 7

15 16 17

8 9

10 11 12 13 14

18 19

20 21 22 23 24

Fig. 13.9 Compaction

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Fig. 13.8 Fragmentation in contiguous file allocation

426 Principles of Operating Systems

There is another drawback of this allocation. Since the linked-allocation uses pointers to point
to the next disk block and each pointer consumes some bytes to be stored, the data storage of
each block is wasted in storing the pointers. This storage wastage can be eliminated with the
help of FAT. Instead of having pointers to the disk blocks, the FAT has entry for each disk block
and is indexed by the block number. The entry in the FAT contains the block number of the next
block. The directory entry for the file contains the block number of the first block of the file.
The first block points to the next block and the chaining continues within the FAT. In this way,
pointer storage is consumed in the memory instead of the disk. The benefit here is that the ran-
dom access performance of the file can be improved as now the disk block addresses can only
be read from the FAT in the memory.

13.6.3 Indexed File Allocation
In this allocation, each file is allocated an index block. An index block consists of block addresses
of the file. In this way, all the pointers of a file are brought together into the index block. The
index block is one separate disk block allocated to the file. The FAT entry will contain only the
address of the index block of the file. The ith entry in the index block is the ith block of the file.
In other words, to retrieve the ith block in the file, the ith pointer in the index block is retrieved.
When a file is created, a block is found from the free space and the address of that block is writ-
ten in the ith index block. In this way, an index block contains information of all the disk blocks
of the file, and hence, supports both sequential as well as direct access of the files.

Example 13.6

The file shown in Fig. 13.11 has been allocated Block number 14 as index block that contains
the addresses of the blocks that makes the file. In this case, the Block numbers 8, 2, 12, 18, 19,
and 23 have been allocated to the file. However, instead of having pointers in each block, the
index block contains the addresses of all the blocks.
The problem with indexed file allocation is in deciding the size of an index block. In general,
the index block will be one disk block. The pointer entries in the index block are too small or
too large in number. When there are only two or three entries in the index block, the space of

File name
Start

address
Length

C:/project/OS/FileE 1 7

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

FAT

Fig. 13.10 Linked file allocation

File System Implementation 427

a disk block is wasted. On the other hand, if entries are large in number, then one disk block is
not sufficient to store all the entries. In that case, a mechanism is required that can store all the
entries in the index block. For example, the size of an index block can be increased by linking
one disk block to another.

13.7 FREE SPACE MANAGEMENT

Since the file allocation methods find a free disk block for the file, it is important to keep track of
free space. It is necessary to have an account of the location of a free disk block. Therefore, a data
structure known as free space list is required to store the information of free or unallocated disk
blocks. After allocating a free disk block to a file, the entry corresponding to that block is removed
from the free space list. When a file is deleted, its disk blocks are added to the free space list.
The free space list can be implemented as a bit map or bit table. The status of a disk block is
represented with binary value, that is, zero or one. When a disk block is free, it is zero, other-
wise, when the block is allocated to a file, it is one. The bit table is easy to access for sequential
access file or direct-access file. However, the space required to store the bit map may be too
large (may be in MBs). If the bit map is stored on the disk, then the large space required to man-
age the free space may not be affordable for the system. For a free block, the bit map is accessed
first. It increases the I/O required to access the disk. Due to this reason, it may be inefficient to
put the bit map on the disk. It would be better if it was in the memory. However, if the disk is of
high capacity, then the bit map will be huge in size. Moreover, it would be very time consuming
to search a large-sized bit map in the memory.

File name

Index

block

address

C:/project/OS/FileF 14

8
2
12
18
19
23

Block 14
0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Fig. 13.11 Indexed file allocation

428 Principles of Operating Systems

Example 13.7

Give the bit map for the disk shown in the figure.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Solution

The bit map for the given disk would be:

1010111010111101110111101
Another method to manage the free space is linked list implementation. In this, all the free blocks
are linked together so that there is no need to maintain a bit map separately. A special pointer on
he disk is reserved that points to the first free disk block. The first free block points to the second
free block, the second block points to the third one, and so on (see Fig. 13.12). In this way, every
free block will contain a pointer to the next free block on the disk. However, this implementation
will incur the cost of storing the pointers, and accessing the linked list involves substantial I/O time.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Fig. 13.12 Linked list implementation for free space management

File System Implementation 429

13.8 DIRECTORY IMPLEMENTATION

As discussed in Chapter 12, a file system uses directory to provide a way to name and organize
multiple files. The primary purpose of directory is to manage a list of files and to connect the
name in the directory with the associated file. There is a handler associated with each file name in
the directory that refers to the contents of that file. The directory therefore stores both the name of
the file and the pointer to the FCB of the file. Since the FCB stores the meta-information about the
file and pointer to the actual contents of the file, it becomes the handler of the file in the directory.
To look for a file in a directory, the directory searches its name as key and the FCB is a reference
that allows the file system to access the contents of the file and other meta-data of the file.
The simplest technique to implement a directory is to have a linear list. However, unsorted
linear list containing directory entries may become inefficient when there are large numbers of
file names as it needs to have a scan of entire directory, thereby consuming a significant lookup
time. In spite of the drawbacks of linear list implementation, it is used widely due to its simplicity.
Keeping in view the drawbacks of the linear list to store the directory entries, the data structure
chosen must fulfil the following:
 • It should perform efficient lookups on the list.
 • It should have reasonable cost for insertions or deletions in the list.

Therefore, the directory implementation can be better done with B-tree, hash tables, or radix
sorting methods.

13.9 BACKUP AND RECOVERY

There may be several reasons for data loss; disk crash is one of them. Therefore, it becomes
necessary to backup data such that they can be recovered in case of any data loss. There are
three types of backups discussed as follows.

13.9.1 Physical Backup
This is the simplest type of backup. The copying of data on backup medium is done bit by
bit without any interpretation of where the file belongs. In other words, there is no meta-data
information about the files or logical structure of the file system. Since the logical structure of
the backup data is not known, the selected data cannot be restored while recovering from the
backup. The entire file system needs to be restored. Moreover, the backed-up data may be in
corrupted form or the backed-up block may not contain any data.

13.9.2 Logical Backup
This type has the interpretation of the files that need to be backed-up. For example, it inspects
the directory structure for the files. Since the logical structure of the file system is known
here, the selected files may be restored while recovering the data from the backup.

13.9.3 Incremental Backup
It is not necessary that the information or data changes every day. The incremental backup does
not support the backup of whole data either for physical or logical backup. It takes the backup
of only those data that have been changed since the last backup. How much data changes in
which duration can be surveyed. For example, the data changes weekly. In this case, a weekly
backup of the data that have changed since last week is done. Thus, the incremental backup is
fast as less data need to be backed-up.

430 Principles of Operating Systems

13.10 FILE SYSTEM INCONSISTENCY

The file system maintains some data structures that get updated on the file-related operations,
or the data blocks of a file get updated. However, the changes are done in a buffer as described
earlier, and the disk is updated asynchronously. It means that the state of the file system on
the disk lags behind what it represents in the buffer. If the data are not updated properly, the
file system will result into some inconsistencies that may lead to wrong file operations or no
operation. Some of the file system inconsistencies are described as follows:
 • In case of delayed write operation, if the modified blocks are still in the cache and if the

system crashes at that moment, then the file system will result into an inconsistent state
as the modified blocks have not been written on the disk. This problem of inconsistency
increases if these modified blocks are directory blocks, free-list blocks, and so on.

 • Several file-related operations update multiple data structures and if there is a system
crash in between, then it will cause inconsistency. For example, while creating a new
file, an FCB is created by allocating space for it. After this, the appropriate directory
is read in the memory, updated for the new file name and its FCB, and written back to
the disk. Now, if the system crashes due to any reason in between these operations for
creating a new file, then it may be possible that the file is created but not shown in the
directory, leading to inconsistency. In another example, if a data block is allocated for a
growing file, then its bit map also needs to be updated. However, if the system crashes
after allocating the data block, then its bit map will not be updated and will again, lead to
inconsistency in the system.

 • If a system is not shut-down properly, then it may also cause inconsistency in the file system.
 • Inconsistencies may also result due to defective hardware. It may be the case that blocks are

damaged on the disk drive or a disk controller is not functioning properly.
In the light of this discussion, it can be said that inconsistencies in the file system may result

in some catastrophic situations in the system. Therefore, there must be some checks against
these inconsistencies and action must be taken if they are found. There are some tools that can
perform this function. These tools can check for the consistency of files and blocks while the
system is booted. Some of the checks are as follows:

13.10.1 Superblock Check
Since the superblock is a data structure used to store the key information regarding a file system,
it gets updated with every operation on the files. For example, if a file is allocated a new data
block, the free block count field of the superblock should be decremented. Similarly, the date/
time of the last modification field should also be updated. If these are not updated, then there
may be several inconsistencies in the file system. The superblock may be checked for all the
static parameters mentioned in it such as:
 • number and size of data blocks in the file system
 • number of FCBs and
 • free FCB count.

Further, any of the free blocks should not be claimed by any file as it also leads to inconsis-
tency. Therefore, free block count is also checked.

File System Implementation 431

13.10.2 File Control Block Check
The FCB may also be checked for many parameters that may cause inconsistency if these are
changed somehow. When a file system is created, a fixed number of FCBs are created but not
allocated to any file. They are allocated as per the needs of a file created. An FCB that has not
been allocated must be checked for whether it is pointing to any file or directory. It is possible
that due to some hardware failure, some bad data may get written into the FCB. Therefore,
a check is required here. The following types of checks can be done in an FCB to avoid
inconsistency:
 • A file may get an entry in multiple directories due to hard links. Therefore, there is a count

in FCB that indicates its entry in multiple directories and must be checked for consistency.
It is possible that the FCB count differs from the count of directories a file has entered.
For example, the FCB count is four but in actual, the file has entries in three directories.
This happens when a file has been deleted in a directory but the FCB has not been updated
accordingly.

 • The FCB contains the pointers to the blocks that make a file. It may be possible that a
block is claimed by two FCBs resulting in duplicate block allocation. Therefore, each block
number must be checked that only a single FCB claims it. Similarly, inconsistencies may
happen when the FCB contains indirect blocks.

 • The FCB can also be checked for bad blocks allocated to a file. If the block pointed by
the FCB lies within the range supported by the file system, then there is no inconsistency;
otherwise, the block number is a bad one.

 • The FCB also contains a field for count of data blocks it points to. This must be also checked
for consistency. If the count in an FCB does not match with actual number of blocks, then it
means that it has not been updated since deletion in a file.

13. 11 FILE SYSTEM PERFORMANCE ISSUES

Since the file system performance is critical to the user and resources, several issues must be
considered while designing and running the file system. Some of the issues are discussed as
follows:

13.11.1 Block Size
The block size on the disk is one of the issues that affect the performance of the file system.
If the block size is too large, then the smaller files (say, 1KB in size) will waste much space
in the block. On the other hand, if the block size is too small, then the file system will need
more number of disk blocks to store the file. This in turn increases seek time, rotational
delay, and so on, increasing the access time of a file. Thus, smaller block size will affect
the performance of a file system. Thus, there is a conflict between performance of the file
system and space utilization on the disk. Therefore, the designer who decides the size of
a block must keep in mind the average size of a file in an environment and should take a
medium size such that space wastage and access time are minimal. In general, the block
size used is 4KB.

432 Principles of Operating Systems

13.11.2 Input–Output Transfer Time
It is a known fact that a disk access is slower (generally measured in milliseconds) as compared
to the memory access that corresponds to several millions of clock cycles spent waiting for
data to be fetched from the disk. If there is too much usage on file system to access data from
the disk, then the system gets slow. To handle this, first, it needs to be identified where and
how much is the dependence of the file system. The aim is to prevent heavy usage of the file
system, that is, to reduce the disk I/O time. For this purpose, the system is checked to know
whether there is a heavy use of file-system-related system calls. There are tools available that
point out the places of heavy use of these system calls. After recognizing the problem area, an
appropriate remedy can be found out. For example, a slow application reads some data from
a server. In this case, rather than reading from the server each time, the desired data may be
cached in the memory. The tools are helpful in detecting redundant file operations, discovering
which files are being used by the user application, consuming much time in reading, and so on.
The following are some methods through which the number of I/O transfers can be reduced:

Cache
 One of the methods to reduce I/O transfer is to use buffer cache. It would be better if the fre-
quent disk block accesses were placed in the memory as cache and retrieved from the memory
itself to increase the performance of the file system. Whenever there is a requirement to access
the file contents from the disk, the cache will be searched first. If it is not in the cache, then
only the contents will be retrieved from the disk. Therefore, care should be taken in designing a
cache such that only frequently accessed contents are stored in it, thereby making hit ratio high.
The performance will be degraded if the hit ratio is very low. Another issue in cache design is
to update the cached data blocks (on the disk) that have been modified. There may always be a
possibility that the system crashes while the critical updated data is still in the cache. Therefore,
a policy can be established to update any block on the disk immediately or to update the data
blocks periodically. The file system can also reserve data blocks to be allocated on the disk but
are stored in buffer cache for some time. A virtual extent can be prepared in the memory for the
reserved blocks. In this way, the I/O transfers with the disk are reduced. To flush out the buffer,
the real blocks on the disk are allocated to the virtual extent.

The cache implemented for disk blocks is implemented as page cache by some systems.
The page cache is implemented with paging memory management. The VM system implements
a page cache, and the file system uses this facility to cache files. Thus, it uses VM techniques
to cache file data as pages rather than file data blocks.

Optimal Buffer Size
 A buffer is needed to store the data read from the disk after which, the data is processed.
The size of the buffer plays an important role in reducing the I/O transfer. If buffer size is very
small, say 1K, and a large file is to be read from the disk, then it would require larger number
of disk-reads to read the entire file. On the other hand, if the size of the buffer is large, then it
would take less number of disk-reads. In this way, several smaller I/O transfers can be grouped
into one large transfer. Thus, an optimal buffer size should be chosen such that a larger file
should not consume much time in data transfers.
Some OSs use multiple read-ahead buffers to increase the parallel accessing of disk contents.

Sequential Reads
 Another way to reduce I/O transfers is to perform sequential reads wherever possible. If there
are small amounts of data scattered on the disk, then it would take much time in reading them

File System Implementation 433

as more number of I/O transfers are needed. On the other hand, if all these small data are com-
pacted in one place and accessed sequentially in one or more transfers, then it will increase the
system’s performance. The future need for pages of a file can be predicted by observing the pat-
tern in which a process accesses the file. Suppose if a process accesses two successive blocks of
the file, the file system may assume that the process will continue to access the file sequentially
and therefore, schedule the additional sequential reads.

Deferred I /O
 When a disk space is allocated to a file, there is a possibility that contents of the new file
will get mixed with the previous file that has been deleted now. To avoid this, the space
allocated to the new file is filled with zeros to prevent interloping of data leftover from a
previously deleted file. However, this will increase unnecessary write operations on the
disk, decreasing the performance. The solution is to delay these write operations. When a
file is read, the file system should write zeros to new areas only when there is an attempt to
read from that area or when the file is closed. In this way, the delayed disk-write operations
will help in reducing the I/O transfers for some time. The advantage here is that any I/O op-
eration can be deferred until the time the application actually needs it. At some instances,
if the I/O on a disk is delayed, contiguous range of blocks on the disk can be obtained and
the file can be stored contiguously, which in turn increases the file system performance.

13.12 LOG-STRUCTURED FILE SYSTEM

The methods or tools chosen to check and repair the file system inconsistency may have
limited use. It may be possible that the problem of inconsistency identified by the checker
need not be repaired by it. Even the checker may miss some fields to check, thereby losing the
file, directory, or any other data.

From another perspective, there are some technical problems with the traditional file sys-
tems some of which are described as follows:
 • The memory sizes have been increased, increasing the buffer cache size for read-ahead

purpose. Consequently, this will increase the traffic load on disk-write operation when there
is time to flush out the cache contents and update the changes to the disk. However, the disk
access and transfer bandwidth have not improved much in the years of time as the memory
size has been increased or the processor has become so fast. Therefore, disk-write operations
are sometimes very slow due to heavy load on the system.

 • The traditional file systems spread the data on the disk such that the random accesses to them
become slow. Further, the FCB and the file contents may be at some wide locations on the
disk. This increases disk-seek and I/O time.

 • The traditional file systems tend to write synchronously, that is, the changes are updated to
the disk at the same time. This may affect the performance of the application in the system.
Keeping such problems in view, another file system known as log-structured file sys-

tem (LFS) was devised. The LFS aims to improve the disk-write performance by writing all
modifications to disk sequentially in a log structure, thereby avoiding all disk-seeks. A log is a
sequential structure on the disk to store the last updates and an LFS stores data permanently in
the log. The log consists of a series of segments where each segment contains file data and its
meta-data information, and it also contains indexing information so that the files can be read
back efficiently.

434 Principles of Operating Systems

An LFS gathers a segment worth of data in the memory and appends the segment at the end
of the log. For an LFS to operate efficiently, it must ensure that there are always large portions
of free space available on the disk so that the recent updates can be maintained in the log.
Initially, the log is allocated a single contiguous space on the disk but after some time, the free
space may get fragmented into many small holes corresponding to the files that were deleted
or overwritten. A segment cleaner is used to combine the holes and compact the file system
allowing large extents of free blocks to be found. There are two methods for cleaning: threading
and copying. In threading, the holes are not combined physically; rather, some data structure is
used to note the location of the holes in free extents. However, this method is not feasible for
the log as the fragmented holes will again add the cost in writing as in normal disk-write opera-
tion. In copying, the blocks are compacted together to form a large extent of free blocks. The
compaction brings the holes together as sequential blocks.

As discussed earlier, when the system crashes while updating the disk, it may leave the
system in an inconsistent state. It is very difficult to find where the last changes were made in a
traditional file system. Since the recent updates are at the end of the log in an LFS, it is easy to
determine the last changes. Thus, an LFS also helps in faster crash recovery by examining the
most recent portion of log instead of scanning the entire disk to restore consistency after a crash.

The layout of an LFS consists of a superblock and a series of segments. Each segment at
its start location has a data structure known as segment summary to identify the blocks in that
segment as shown in Fig. 13.13. A segment may contain inodes (discussed in Section 13.3) as
well as data blocks.

In an LFS, inodes are written to the log as compared to a fixed location on the disk. An
inode map is used to maintain the current location of an inode corresponding to a file. Thus, for
a given file, inode map is indexed to give the disk address for the inode of that file. The inode
map is also written to the log as a file known as inode map file.

When a file is created, the new blocks are written at the end of the log. The sequence of
writing is as follows: data blocks and inode blocks, directory data blocks, and inode map file
blocks. While appending something to an existing file, new data blocks are added at the end of
the log, and the corresponding meta-data are updated accordingly.

The superblock in an LFS consists of the following information:
 • Number of allocated inodes in the system
 • Block address for inode map file
 • Block number of the next segment
 • Segment size

The segment summary includes the following information:
 • Number of blocks in the segment
 • Data blocks in the segment
 • Inode blocks in the segment

Super
block

Segment
summary

Inode/
data
blocks

Inode/
data
blocks

Inode/
data
blocks

Segment
summary

Inode/
data
blocks

Inode/
data
blocks

Segment Segment

Fig. 13.13 General layout of an LFS

File System Implementation 435

MULTIPLE CHOICE QUESTIONS

 1. ______ layer manages the directory structure where a file is
located and provides the information about the file location
to its lower layer.

 (a) File organization module (c) Logical file system
 (b) I/O control (d) Basic file system

 2. _____ layer knows about the logical blocks of the file and
translates them into physical blocks so that basic file sys-
tem gets the physical blocks and processes further.

 (a) File organization module (c) Logical file system
 (b) I/O control (d) Basic file system

 3. _____ layer issues the generic commands to the device
drivers of the corresponding devices to read and write
physical blocks.

 (a) File organization module (c) Logical file system
 (b) I/O control (d) Basic file system

 4. ____ layer consists of device drivers and interrupt handlers
so that the information between the main memory and the
device can be transferred.

 (a) File organization module (c) Logical file system
 (b) I/O control (d) Basic file system

SUMMARY

All the implementation-related issues have been discussed
in the chapter. The required data structures to implement
the file system, along with the techniques of mapping the
files on the storage, are given in detail. The file system
needs to allocate the files on the secondary storage. The
file allocation methods with their implementation have also
been discussed. In contrast to traditional file systems, the
LFS improves the disk-write performance.

Let us have a quick review of important concepts dis-
cussed in this chapter:

 • The layered structure of the file system consists of four
layers: logical file system, file organization module, basic
file system, and I/O control.

 • The FCB is an on-disk data structure that tracks the infor-
mation such as which data blocks comprise a file, the size
of a file, its owner and access rights, date of its creation,
its access or modification, and so on.

 • An extent is a simple list of block addresses wherein each
address in the list is for a range of blocks.

 • An extent is a compact way to refer to a large amount
of data represented in the form of a pointer-length pair
where the pointer is the address to the start address of
the range of the blocks and the length is the number of
blocks.

 • The file system returns a pointer to the appropriate entry
in the OFT known as file descriptor or file handle.

 • The files may be allocated in two ways: static allocation
and dynamic allocation. The static allocation is to allocate
the maximum size of a file in advance when it is created.
The dynamic allocation allocates the blocks as per the
requirement.

 • Contiguous file allocation is based on the fact that a file
will be allocated contiguous blocks of storage on the disk
at the time of its creation. It is suitable for both sequential
as well as direct access files.

 • In linked file allocation, any free block on the disk can be
allocated, eradicating the problem of external fragmenta-
tion. It supports sequential access file.

 • In indexed file allocation, each file is allocated an index
block. An index block consists of block addresses of
the file. In this way, all the pointers of a file are brought
 together at one place in the index block. This allocation is
suitable for both sequential as well as direct access files.

 • A free space list is a data structure that stores the infor-
mation of free disk blocks.

 • The bit map is a data structure used to implement the
free space list by showing the status of a disk block with
binary values.

 • There are three types of backup: physical, logical, and
incremental.

 • In physical backup, the copying of data on backup
 medium is done without any interpretation of where the file
belongs. In other words, there is no meta-data information
about the files or logical structure of the file system.

 • Logical backup has the interpretation of the files that
need to be copied as backup.

 • Incremental backup takes the backup of only those data
that have been changed since the last backup.

 • If the block size is too large, then the smaller files will
waste much space in the block. On the other hand, if the
block size is too small, then the file system will need more
number of disk blocks to store the file.

 • Caching frequent disk block accesses in memory and
retrieving them from memory increase the performance
of the file system.

 • An optimal buffer size should be chosen such that a large
file should not consume much time in data transfers.

 • An LFS aims to improve the disk-write performance by
writing all modifications to the disk sequentially in a log
structure, thereby avoiding all disk-seeks.

436 Principles of Operating Systems

 5. ______ tracks the information such as which data blocks
comprise a file, the size of a file, its owner and access
rights, and so on.

 (a) Superblock (c) Free list
 (b) FCB (d) File system identifier

 6. _____ stores the key information about the file system on
every partition (or volume) of the disk and is read into the
memory after the system is booted, thereby protecting the
integrity of the file system.

 (a) Superblock (c) Free list
 (b) FCB (d) File system identifier

 7. ______ is also known as a magic number that uniquely
identifies the file type.

 (a) Superblock (c) Free list
 (b) FCB (d) File system identifier

 8. _____ is a process-independent data structure.
 (a) The SOFT (c) The FCB
 (b) The OFT (d) None

 9. When using an indirect block, the FCB stores the block
 address of (i.e., a pointer to) _____.

 (a) data blocks (c) the FCB
 (b) indirect block (d) none

 10. _____ is a compact way to refer to large amount of data
represented in the form of pointer-length pair.

 (a) The FCB (c) Extent
 (b) Indirect block (d) None

 11. The file system returns a pointer to the appropriate entry in
the OFT. This pointer is known as

 (a) file handle (c) indirect pointer
 (b) file descriptor (d) none

 12. There is minimum disk head movement in _____ file
allocation.

 (a) contiguous (c) indexed
 (b) linked (d) none

 13. The contiguous allocation is a ____ strategy.
 (a) post-allocation (c) random
 (b) pre-allocation (d) none

 14. Which of the file allocation methods is suitable for both
 sequential as well as direct access files?

 (a) Contiguous only (c) Indexed only
 (b) Linked Only (d) Contiguous as well as

indexed

 15. In the indexed allocation, all the pointers of a file are brought
together at one place in the___.

 (a) data block (c) index block
 (b) indirect block (d) none

 16. In ______ backup, the copying of data on backup medium
is done without any interpretation of where the file belongs.

 (a) a logical (c) an incremental
 (b) a physical (d) none

 17. ____ backup has the interpretation of the files that need to
be copied as backup.

 (a) Logical (b) Physical
 (c) Incremental (d) none

 18. ______ backup takes the backup of only those data that
have been modified since the last backup.

 (a) Logical (c) Incrementall
 (b) Physica (d) none

REVIEW QUESTIONS

 1. Discuss all the layers in the layered structure of a file
 system.

 2. Suppose a new file needs to be created. Discuss the role of
all layers in this case.

 3. Define the following:
 (a) Boot block (b) Data block
 (c) Superblock (d) Inode

 4. Discuss and compare the roles of the SOFT and the OFT in
file system implementation.

 5. Discuss the file mapping on the disk using indirect blocks.

 6. What is an extent? How is it different from the indirect
block?

 7. Explain various on-disk data structures while opening a file.

 8. Explain various in-memory data structures while writing a
file.

 9. Explain and compare different file allocation methods.

 10. What is a free-space list? How do we implement it?

 11. What are the issues in implementing a directory?

 12. What are the various ways for the backup of a file
system?

 13. Explain various types of superblock checks for file system
inconsistencies.

 14. Explain various types of FCB checks for file system incon-
sistencies.

 15. How should the designer choose the block size in a file
 system?

 16. How should the designer choose the buffer size in a file
system?

 17. How can cache reduce the I/O transfer time?

 18. How can sequential reads reduce the I/O transfer time?

 19. How can deferred I/O reduce the I/O transfer time?

 20. What is an LFS? Discuss its general layout.

File System Implementation 437

BRAIN TEASERS

 1. What should be the inconsistency check against the bit-
map?

 2. In a file system, the bitmap itself consumes large space,
(in megabytes). Moreover, the searching for the status of a
disk block in bitmap is slow due to its large size. What can
be the remedy for this problem and to increase the search
efficiency?

 3. Which file allocation method is appropriate for a long file
that is accessed sequentially?

 4. Which file allocation method is appropriate for a long file
that is accessed randomly?

 5. Which file allocation method is appropriate for a short file
that is accessed sequentially?

 6. How many disk I/O operations are required to read into the
FCB of the following file? Assume that the memory does not
have the FCB of root directory.

 D:/OS/kernel/FS/fileA.c

 7. Following is a bitmap in a file system:

Block no. 0 1 2 3 4 5 6 7 8

Bitmap 0 0 0 1 0 0 1 1 1

 Due to system crash, there is some inconsistency in the bitmap. The tool that checks inconsistency found the following bitmaps.
Explain the meaning of these inconsistencies in the bitmaps.

 (a)

Block no. 0 1 2 3 4 5 6 7 8

Bitmap 0 0 0 0 0 0 1 0 1

 (b)

Block no. 0 1 2 3 4 5 6 7 8

Bitmap 0 0 2 1 0 0 1 0 1

 8. Explain the meaning of the following file system inconsis-
tencies found when checked with a tool:

 (a) FCB count for a file is found to be six but in actual, the
file has entry in only four directories.

 (b) The FCB for FileA and the FCB for FileB point to the
same data block.

 (c) The count of data blocks in the FCB is found to be six
while the FCB points to only four blocks.

 9. In what circumstances does compaction will be advanta-
geous to eliminate the fragmentation in contiguous file
 allocation?

 10. The linked file allocation eliminates the drawbacks of the
contiguous file allocation. However, the linked allocation
may consume more time as compared to the contiguous
allocation. How can it be improved?

 11. What can be the worst case in the performance of a system
in the indexed file allocation?

PART V

Input–Output Management

14. Basics of I/O Management

15. Disk Management

Case Study V: Input/Output Management in
UNIX/Solaris/Linux/Windows

14.1 INTRODUCTION

The most challenging task for an OS is to manage the I/O devices in a computer system. It acts as an
interface between devices and other computer systems. This interface should be simple, user-friendly,
and preferably, same for any type of device. However, today there are myriad input and output
devices. Each I/O device has its own detail and complexity. In this case, the OS needs to be changed
to incorporate every newly-introduced device. Therefore, the I/O operations should be treated sepa-
rately in the OS, so that the other parts of the OS are not affected. The software which deals with the
I/O, is known as I/O software. In I/O software, there are two types of modules. The first module deals
with general functionalities when interfacing with any type of device, that is, these functions are com-
mon while interfacing with any I/O device and are known as device-independent I/O softwares. For
 example, there should be a general interface for any type of device. The second module provides device-
specific code for controlling it and is known as device driver. The second module, in fact, takes care of
the peculiarity and details of a particular device, that is, how to read or write data to the device. In this
way, the OS need not change its code again and again to incorporate any new device. Its I/O software
takes care of all the I/O devices to be interfaced with the system,
without changing the OS code.

In this chapter, some basic concepts related to device manage-
ment, such as various types of devices, how the I/O requests are
 implemented on devices, and so on, have been reviewed. To manage
the devices, a layered structure has been discussed. It consists of two
parts: I/O software and I/O hardware. The I/O software consists of
user I/O software, kernel I/O sub-system, and device driver. Kernel
I/O sub-system primarily provides the device independence, along
with other functions, such as I/O scheduling, buffering, and so on.
Device driver acts as an interface with the hardware consisting of
device-specific functionalities. I/O hardware consists of two parts:
device controller and the hardware device. The chapter discusses
how the system call, as an I/O request, is implemented through the
hierarchical layers on the devices.

14.2 TYPES OF DEVICES

There are various types of devices available today. They may
vary depending on their operation, speed, data transfer, and so on.
Some devices may be categorized based on these characteristics.

14 Basics of I/O
Management

Learning Objectives
After reading this chapter,
you should be able to
understand:
 • Various types of devices
 • The need of device management
 • Layered structure for I/O software
 • The need of kernel I/O sub-

system
 • How the kernel I/O sub-system

provides device independence
 • Role of buffering in device

management
 • Types of buffering: single

 buffering and double buffering
 • Role of caching in device

management
 • Life cycle of an I/O request

454 Principles of Operating Systems

Even within a category, the devices may vary. This is the reason that device management is
necessary as part of OS function. Some of the criteria, by which the devices are classified, are
the following:
 • Human-readable and machine-readable: The human-readable devices are mouse, keyboard,

monitor, and so on, and the machine-readable devices are sensors, controllers, disks, tapes,
and so on.

 • Transfer of data: The devices transfer the data as a stream of bytes or in the form of a block.
On the one hand, if the device accepts and delivers the data as a stream of characters/bytes, it
is known as character-oriented device. Character-oriented devices are suitable where linear
stream of bytes are required. For example, while accepting input data from the keyboard, a
block of characters cannot be expected in one instance. Therefore, input devices like key-
board, mouse, modems, and so on, are all examples of character devices. Output devices of
this kind, like printers, are also character devices. On the other hand, if the device accepts
and delivers the data as fixed-size blocks, it is known as block-oriented device. Disk is the
example of a block device.

 • Type of access: On the basis of accessing data sequentially and randomly, the devices are
called sequential device such as a tape drive, and random access device, such as a disk,
respectively.

 • Network device: Network devices, unlike conventional devices such as disk, need special
I/O interfaces to send or receive data on a network. For example, a socket is a major I/O
interface used for network devices.

 • Complexity of control, data representation, error conditions, and so on.

14.3 TYPES OF I/O

There are three techniques by which an I/O operation can be performed on a device. These
are known as I/O communication techniques. These techniques are used to have a mode of
 communication between the user request and the device, taking device characteristics into account.

14.3.1 Programmed I/O
Whenever a process is being executed and the processor finds an I/O instruction, it issues the
commands to the appropriate device controller (discussed in Chapter 2). The device controller
performs the operation by interfacing with the physical device, and then sets the status of the
operation in a status register. But it is the job of the processor to check whether the operation
has been done or not. For this purpose, it continually checks the status of the operation, until
it finds that it is complete. Therefore, the process is busy waiting, until the I/O operation has
been performed.

The I/O operation is performed using a processor register and a status register. On the one
hand, when input operation is required, the device puts the data in the processor register. On the
other hand, when output operation is required, the device reads the data from the register. After
completion of the I/O operation, the status of the operation is written into the status register as a
flag. In this way, the processor executes the instruction in such a way, that it is in direct control
of the I/O operation, that is, sensing a device status, sending read/write command to the device,
and transferring the data.

There is one disadvantage of this technique. During the I/O operation, the processor is not
executing other instructions of the same process or any other process, and is being tied up for
only one I/O operation. Programmed I/O is better for I/O operations that consume little time

Basics of I/O Management 455

or systems where the CPU has no other job to do. However, for a multi-tasking environment,
where there are several processes in queue waiting for the processor, it is a time-consuming
procedure.

14.3.2 Interrupt-driven I/O
In programmed I/O technique, the processor time is wasted, as it continually interrogates the
status of an I/O operation, while waiting. It would be better if the processor switches to another
process to be executed, instead of waiting for the I/O operation to complete. Therefore, the
processor issues an I/O command to the device controller for performing the operation, and
switches to another processor by calling the scheduler that schedules the process to it. Then
how does the processor know when the I/O is complete? This is done through an interrupt
mechanism. When the operation is complete, the device controller generates an interrupt to
the processor. In fact, the processor checks for the interrupt after every instruction cycle. After
detecting an interrupt, the processor will stop what it was doing by saving the state of the current
process and resumes the previous process (where I/O occurred), by executing the appropriate
interrupt service routine. The processor then performs the data transfer for the I/O operation.
For example, when a user requests a read operation from an input device, the processor issues
the read command to the device controller. The device controller, after receiving this command,
starts reading from the input device. The input data from the device need to be stored in the
controller’s registers. But it may take some time, and this time is sufficient to serve any other
process. Therefore, the processor is scheduled to execute any other process in the queue. As
soon as the data become available in the controller’s register, the controller signals an interrupt
to the processor. The appropriate interrupt handler is run, so that the processor is able to get the
data from the controller’s register, and save the same in the memory.

I/O management takes the help of interrupt-driven I/O. Modern OSs are interrupt driven,
that is, they service the I/O requests, using the interrupt mechanism.

14.3.3 Input–Output Using DMA
When a user wants to input some data through the keyboard or some data are printed on the
screen, after every character to be input or output, the processor intervention is needed, to
 transfer the data between the device controller and the memory. Suppose, a user inputs a string
of length 50 characters, and to input each character, a time period of 10ms is required. It means,
between two inputs, there is a gap period of 10ms, causing an interrupt. It results in a number
of interrupts, just to enter a 50 characters-long string. Thus, when the data are large, interrupt-
driven I/O is not efficient. In this case, instead of reading one character at a time through the
processor, a block of characters is read. This operation is known as direct memory access
(DMA), that is, operation done without processor intervention. In DMA, the interrupt will not
be generated after every character input; rather, a block of characters is maintained, and this
block is read or written. So, when a user wishes to read or write this block, the processor sends
the command, and rest of the responsibility to do I/O operation for one block to the DMA
 controller. The processor passes the following information to the DMA controller:
 • The type of request (read or write)
 • The address of the I/O device to which I/O operation is to be carried out
 • The start address of the memory, where the data need to be written or read from, along

with the total number of words. The DMA controller then copies this address and the word
count to its registers.

456 Principles of Operating Systems

Therefore in DMA-based I/O, instead of generating multiple interrupts after every character,
a single interrupt is generated for a block; reducing the involvement of the processor. The
 processor just starts the operation and then finishes the operation, by transferring the data
 between the device controller and memory.

14.4 INPUT–OUTPUT MANAGEMENT ISSUES

Since there are various types of devices available today, I/O management becomes difficult. Let
us first understand the issues in I/O management.

 System Response
 A user interacts with the devices, that is, it provides input to the computer system and expects
output from it. Therefore, the system must respond within a stipulated time. Thus, in this case,
an interrupt-driven I/O, or programmed I/O, is required to implement communication between
the user and the devices.

 Transfer of Information
 Some devices cannot be interfaced on a character basis, as in the case of a keyboard. For exam-
ple, the disk cannot be read character by character. Therefore, the information is transferred in
the form of blocks. A block is read or written from/to the device.

 Uniform Interfacing
 All the devices are not same in structure or provide/access the same information. For example,
a disk is different from a CD, and it is different from a tape drive. But a user is unaware of the
hardware details of the devices it is accessing. For the user, read is a general operation required
for every device, that is, the user will give the read command to the device, irrespective of its
type or version. Therefore, uniform interfacing is an issue in I/O design. There should be a mech-
anism by which the user can issue some general commands to the device and interface them.

 Device Independence
 With the introduction of new varying devices, it is not possible to modify the OS code fre-
quently. Therefore, I/O should be device-independent, such that the OS need not be modified.
However, the kernel cannot achieve this. Therefore, I/O is designed as a layered structure that
hides the hardware details in lower layers, and the user processes, and some upper layers access
the I/O devices, using some general functions like read, write, and so on. In this way, the I/O
function can be divided into two parts: general and the device-specific or device-dependent.
This hierarchy will abstract the general functions of the kernel separate from the device-specific
details, and changes will be done only in those layers.

 Speed Mismatch
 Despite the availability of different types of I/O devices, they are still slower than the processors
and the main memory that are available today. This affects the performance of I/O operations.
Suppose a user is reading from the disk and processing the data. The data, accessed from the
disk, are processed quickly by the processor, and it waits for the next data. However, the device
has not accessed the data yet. In this case, the process needs to wait and the processor sits idle,
decreasing the efficiency of the system. To resolve this issue, buffering is used.

Basics of I/O Management 457

 Multi-tasking
In a multi-tasking environment, there may be multiple tasks assigned to a device. There must
be some mechanism to order their requests and schedule them such, that performance of the
system is not affected. The system should not allow a device to hold a process for a long time,
or a slow-speed device to execute a critical process. For this purpose, various I/O requests are
maintained in the device queue. For example, to serve the I/O requests on the disk efficiently,
disk scheduling is done.

 Communication Medium
The network devices available today are faster, and demand better management of commu-
nications traffic across the network. But the types, characteristics, and performance issues of
the network devices are different from the general block or character-oriented devices. For
example, the read() or write() system call, used for accessing the conventional devices, cannot
be used to access the network devices. In UNIX, the I/O interface is in the form of sockets.
Moreover, the wireless devices need to have different mechanisms for different I/O operations.
Thus, either wired networking devices or wireless networking devices demand that the OS
must negotiate with the medium to communicate. The I/O design, in this case, depends upon
the nature of the medium being used.

 Protection
The most important issue in I/O design is the protection of I/O devices. They must be protected
from any illegal use, and in case of any error, they must be notified. Moreover, the resources
that have been shared must be protected from concurrent use, by multiple tasks.

14.5 INPUT–OUTPUT SOFTWARE

Keeping in view the goal of I/O to be device-independent, it needs to have a layered design to
incorporate its functionality; such that there is no change in the kernel code with the introduction
of new devices. I/O is designed as a hierarchical layered structure, wherein different layers
 perform I/O functions. Each layer has its own specified function, provides its services to its
next higher layer, and conceals the details of services provided by its lower layer. The design of
the layers is defined in such a way, that changes in one layer do not affect the other layers. The
functions of the layers and the interfaces may differ from system to system. A general layered
structure of I/O is shown in Fig. 14.1.

14.5.1 User-level Input–Output Software
 This is a part of the I/O software situated in the user space (see Fig. 14.1). When the user
requests an I/O through a system call in a program, there is a library routine corresponding to
the system call. The library routine, when called, is linked to the program, and becomes a part
of the object program in the memory. Thus, all the library routines are part of the I/O software.
In fact, there is a standard I/O library, consisting of a number of routines for I/O.

14.5.2 Kernel Input–Output Sub-system
 This part of the I/O software is provided in the kernel space. The user interacts with this layer
to access any device. Since the user does not know the hardware details of the devices or its

458 Principles of Operating Systems

controllers, this layer provides uniform interfacing to all devices. The user need not worry
about the devices, the device drivers, or controllers. So through the system call for a specific
I/O function, the user is able to interact with the device. It has another advantage by which I/O
devices are protected from any illegal I/O request. Since the device is referenced through a
symbolic name, instead of its hardware configuration, thereby hiding its hardware details, the
I/O software takes care of mapping the symbolic names to their actual hardware.

Besides being device-independent, it is also responsible for providing access control to I/O
devices. A device cannot perform all the I/O operations. So the I/O software needs to check
the type of access a device provides, thereby providing operational control. After providing the
right access to the device, it may be possible that multiple processes are waiting to access the
same device. Therefore, there may be a queue on the device. In this case, the device is busy, and
the processes in wait must be scheduled in some order, such that the efficiency of the system
increases. This is known as device scheduling. Thus, the kernel I/O sub-system must also check
the device status to find whether it is busy or available.

To avoid mismatch between the speed of the processor and access speed of I/O devices,
some methods are necessary for accessing I/O devices, and hence increase performance of the
system. These methods include buffering, caching, spooling, and so on. For example, to cope
with the slow access speed of the device, one buffer is introduced between the process and the
device, to store the input or output data. It is then sent to the process (for input data) or to the
device (for output data) asynchronously.

It is possible that some errors may prevent the access to I/O devices. These errors must be
notified and handled properly by I/O software, so that the system runs properly.

Thus, the kernel I/O sub-system performs all the necessary functions to access the I/O
 devices, but the hardware details of the devices are not shown or required here. As we move
down the hierarchy of the layers, as shown in Fig. 14.1, we will find that hardware devices
comprise the lower layers.

User-level I/O software

Kernel I/O sub-system

Device drivers

Interrupt handler

Device
controller

Device
controller

Device Device

Kernel space

User space

I/O software

Application

I/O hardware

Fig. 14.1 Layered structure of I/O

Basics of I/O Management 459

14.5.3 Device Driver
Each device needs a device-specific code for controlling it, and this code is known as the device
driver of that device. Each device has a device controller that has some device registers for per-
forming I/O operations on the device. But the number of device registers and the nature of com-
mands for performing I/O operations vary from device to device. Therefore, to communicate
with each type of device controller, a device driver is written. This takes care of the specific
device controller registers and the commands. Thus, the device drivers act as a layer that hides
the differences among the device controllers.

The first function of a device driver is to accept the I/O requests from the kernel I/O sub-system.
It checks the input parameters provided in the I/O requests. If there is something wrong with
the parameters, such as invalid parameter, it may generate an error. Otherwise, it translates
the logical address to the actual hardware details. For example, for a disk read, a logical block
 number is converted into the disk address in the form of a cylinder, track, and sector.

Before starting an I/O operation, the device driver also needs to check the availability of a
device and informs the same to its upper layer, that is, kernel I/O sub-system. If the device is
busy, the request is queued on the device queue. The device may not be available to the system,
due to some failure or other reason. An error code is returned, if the device is not available. If
the device is available, the device driver starts the operation. The scheduling of I/O requests, in
case of busy device, is performed according to the scheduling algorithm chosen by the kernel
I/O sub-system. Once the device is scheduled, the device driver can start the I/O operation after
initializing the device, if there is such a need.

The next function of the device driver is to control the I/O operation. To perform an
I/O operation, there may be more than one command. The sequence of these commands is
 determined according to the operation required to be performed. After fixing the commands’
sequence, the device driver interfaces with the device controller and writes the sequence
of commands to its registers, one by one. After writing one command, the device driver
checks to see whether the device controller is able to accept it or not. If it is ready, other
commands follow. Otherwise, the device driver waits and blocks itself, until an interrupt
unblocks it. If the commands are written to the device controller, I/O operation is performed
by interacting with the actual device. There may be some data, as a result of I/O operation,
which the device driver may retrieve again, from the controller’s registers, and send them
to the layer above it.

It may be possible that many applications need to interact with various devices, which are
of the same type. For this purpose, all such devices have a common device driver. In this case,
the device driver must know which application needs to interface with what device. Therefore,
it uses a mapping table that keeps track of which application uses what device. In this environ-
ment, the common device driver may use more than one resource. Therefore, it needs to keep a
track of use of the resources. Sometimes, it may desire to have a mutually-exclusive access to a
resource. Therefore, the device driver uses a resource table that keeps track of which resources
are being used by the device driver. Thus, the common device driver uses two data structures-
mapping table and resource table- to select an appropriate I/O through an I/O channel, as
shown in Fig. 14.2. An I/O channel is primarily a small computer, basically used to handle the
I/O from multiple sources. It ensures that I/O traffic is smooth.

14.5.4 Interrupt Handling
The device driver communicates with the device controllers, and then the device, with the help
of the interrupt-handling mechanism. The last layer in this I/O software hierarchy is, therefore,

460 Principles of Operating Systems

the interrupt handler. When the device controller interacts with the actual device, the data are
transferred between the actual device and the controller, according to the I/O operation; that is,
the data from the device are written to the controller’s register, in case of an input operation,
or the data from the controller’s register are sent to the device, in case of an output operation.
After the completion of the I/O operation at the level of device and device controller, the device
controller generates an interrupt to the device driver. The Interrupt Service Routine (ISR) is
executed in order to handle a specific interrupt for an I/O operation. This routine extracts the
required information from the device controller’s register and performs the necessary action.
After the completion of an ISR, the blocked device driver is unblocked, and it may run again.

14.6 KERNEL I/O SUB-SYSTEM

The different functions of the kernel I/O sub-system are discussed in the following subsections.

14.6.1 Uniform Interface
The kernel hides all the hardware details of the devices, and then presents the OS interface to
its lower layer, that is, device drivers as a uniform interface. It means when the system call
from the first layer is passed to this layer, it requires interfacing with the device driver of the
desired device. Since there are different device drivers for various devices, the code of the
kernel needs to be changed for every interface with the device drivers. There may be different
driver functions available for the system to call, and different kernel functions that the driver
needs to interface with. In this case, there will be no uniform interface and therefore, it will
require changing the kernel code, according to the available device drivers. To avoid this, the
device-independent I/O software layer attempts to make uniform the interface, such that all the
drivers interface through a common interface. The layer uses the fact that not all the devices

User application User application User application

Kernel I/O sub-
system

Device driver
Mapping

table
Resource

table

I/O channel

Device Device Device

Fig. 14.2 Device driver interface

Basics of I/O Management 461

are different. There are some common functions or devices which belong to the same type.
Although the exact system call to access the device may differ in various OSs, the device types
are standardized based on the common functions.

By identifying a few general types of devices, a uniform interface for a specific type can be
designed. The differences in the devices are encapsulated in the device drivers of the devices.
Since this layer is independent of the hardware details, the OS designer need not worry about
the device’s actual details. The hardware manufacturers of the device also benefit from this,
as they design new devices that are compatible with the existing interface type or they write
 device drivers to interface the new devices to popular OSs. In this way, new devices can be
easily supported by the system, without changing its kernel code.

The user, who requests access to a device, does not know its location or its device control-
ler. The request is made through a symbolic name. In this way, there is a uniform naming
scheme, by which the application is interfacing with the devices. However, the symbolic
names must be mapped to their respective device drivers and device controllers. The mapping
to devices and their controllers is done by the device-independent layer, so that the uniform
symbolic naming is visible to the user, hiding the details of where it will be mapped to the
actual device. For example, in DOS, the filename starts with the disk symbolic name. C:/ rep-
resents the hard disk. It is defined in the OS that ‘C’ represents the primary hard disk. The ‘C’
symbolic name is then mapped to its port address through a device table. Similarly, in UNIX,
there is a mount table, consisting of the names of the devices. These names also have the form
of a name in file system name space. The inode for the special files for these devices provides
two numbers: the major and minor device numbers. The major device number locates the de-
vice driver to handle the I/O on this device. The minor device number is passed to the device
driver that uses this number to index into a device table, which locates the corresponding
device controller.

14.6.2 Input–Output Scheduling
Since the speed of I/O device access is slow, as compared to the memory, or the execution
speed of the processor, the order of I/O requests can be changed to increase the efficiency of
the system. For this purpose, a device queue is maintained for every blocking I/O request. This
device queue indicates how many requests are pending on that device. But the question is how
to schedule the requests from the device queue, such that performance of the system, due to
slow access speed of the device, is compensated. An FCFS order for serving the requests can be
used, but that may degrade the system’s performance. Therefore, some scheduling algorithms
should be devised, keeping in view the structure of the I/O device, so that the efficiency and
performance can be enhanced. For example, in case of disk, it matters where the disk arm is
presently positioned. If the disk arm is near the end of the disk, it would be beneficial to access
the request that wants the block near the end. Thus, an I/O scheduler schedules the I/O requests,
according to the selected I/O scheduling algorithm and orders them. It not only increases the
efficiency of the system, but also decreases its response time to the user. Before allocating the
device to the I/O request in the device queue, the status of the device is checked. If the device
is idle, it can be allocated, otherwise, it remains in the queue.

14.6.3 Buffering
Buffering is done for several reasons. Some of them will be discussed in this section. Before
detailing the I/O buffer, let us first discuss the issues that lead to the concept of buffering.

462 Principles of Operating Systems

When an I/O operation starts, the process waits for the result, that is, for reading the data
from the device or writing the data to the device. This is due to the speed mismatch as discussed
in I/O management issues. Suppose, a process needs to read the data from the disk, it issues a
read system call, and then blocks, to wait for the data from the disk. But in this case, if a byte
arrives, an interrupt is generated. The corresponding ISR unblocks the user process, and pro-
vides the byte to it. The process stores this byte somewhere in the memory, and reads another
byte from the disk, and blocks again. This causes another interrupt. The ISR is executed, the
process is unblocked, and the byte is handed to it, and this process is continued. Since the speed
mismatch is too large between the user application and the devices, and even transfer between
the devices, starting the user process for reading or writing a byte becomes a slow and tedious
job using the interrupts.

Another problem is the availability of memory space. The memory locations in the memory
area of a user process must be available, while data are being transferred. However, if the page
containing the target locations is swapped out during the transfer time, the data being trans-
ferred are lost. One remedy to this problem is to lock the page containing the target locations for
data transfer. But, there may be many processes locking the pages, and therefore, the number of
available pages will reduce, resulting in poor performance. Thus, this approach of I/O transfer
will interfere with virtual memory decisions.

An I/O buffer is a memory area where data are stored temporarily during an I/O operation.
The problems discussed above can be resolved using buffers. A buffer is an area where the data,
being read or written, are copied in it, so that the operation on the device can be performed
with its own speed. Where in the memory will this buffer occupy space? If it is stored in the
user memory (see Fig. 14.3(a)), the page containing the buffer needs to be locked. Therefore,
the buffer should be given space in kernel memory. The buffer in the kernel space solves the
 problem of I/O transfers. When a user process initiates an I/O operation, the OS assigns a buffer
in the kernel (see Fig. 14.3(b)). Now the data, to be read or written, are first copied to the buffer
at the speed of the device. In this case, now the process is not blocked every time the byte is
read or written from/to the device. Once the buffer is full, the buffer is copied to the user area in
the memory. For example, if data are to be read from the disk, these continue to be stored in the
buffer, until it is full. Once the buffer is full, these are copied to the user area, and then executed.
Thus, the I/O operation is performed in one operation, instead of several operations, while there
is no buffering, thereby increasing the performance of the system. Depending on the nature of
the devices, buffers can be used to hold the bytes or lines, in case of a stream-oriented device,
or a block, in case of a block-oriented device.

User process

Kernel I/O deviceBuffer

Fig. 14.3 2 (a) Buffering in user space

User process
Kernel

I/O deviceBuffer

Fig. 14.3 (b) Buffering in kernel space

Basics of I/O Management 463

While the buffer is full during an I/O operation, the full buffer is copied to the user space.
However, when the buffer is being copied, I/O operation is continued. In that case, what will
happen to the data that are still arriving? Obviously, those will be lost. Therefore, another buf-
fer should be there, so that when one full buffer is being copied to the user area, the operation
continues with the second one (see Fig.14.3(c)). This method is known as double buffering,
and the earlier approach, wherein a single buffer is used, is known as single buffering. Double
buffering, thus, smoothes out the flow of data between I/O devices and a process. The number
of buffers may be increased, if needed, in case a process processes rapid bursts of I/O. How-
ever, this comes at the cost of maintaining the information by the OS to keep records of the
buffers that are allocated to the processes.

14.6.4 Caching
While performing I/O operations, cache may be used between the devices and user application,
to improve the efficiency of the operations. For example, some frequently-accessed data from
the disk, which are stored in the cache, need not be read from the disk. In this way, a slower
disk-to-memory operation is replaced with a faster memory-to-memory operation. Caching is
also performed by the device-independent I/O software.

Cache memory is different from the buffer. A buffer is used to hold the data received from
any input or output device, until they are flushed out to the process for reading or writing;
a cache contains the copy of frequently-accessed data (that is already in the secondary storage)
on a faster storage to be accessed quickly. Although caching and buffering are different, they
can be merged for improving the I/O efficiency. When a disk-read operation is performed, the
contents are first checked in the cache. If not found, the contents are read through the buffer,
but must be copied to the cache also, such that the next read operation will find the contents in
cache itself. Sometimes the buffer and cache share the same memory area, known as a buffer
cache. The buffer cache is used for both buffering, as well as, caching. When a disk-read op-
eration is initiated, the kernel will first check the buffer cache (used as a cache). If found, the
operation can be performed, otherwise the data from the disk are read into the buffer cache
(used as a buffer). Similarly, in case of a disk-write operation, the data to be written to the disk
are accumulated in the buffer cache for a long time, but not written to the disk. Meanwhile, if
there is a disk-read operation for the contents presently in the buffer cache, but not written to
the disk, the buffer cache provides the contents. In this way, the buffer cache may be used for
write operations also, using the delayed-write concept. Thus, the common memory area acts as
both buffer as well as cache.

14.6.5 Spooling
The kernel I/O sub-system also performs the spooling function. It may be possible that many
user requests arrive simultaneously for a shared resource. For example, multiple users send print
requests concurrently. In this case, the kernel I/O sub-system queues up all the print requests

User process
Kernel

I/O deviceBuffer1

Buffer2

Fig. 14.3 (c) Double buffering

464 Principles of Operating Systems

and schedules each request through spooling. A spool area is used, where the output to be
printed is stored separately in a file. In this case, a user does not need to wait for the printer to
be available, and moves to the next job, after giving the command for printing. The documents
are then printed through the spool area, one by one. The OS provides a control interface for this
spooling process, where a user can have a look at how many jobs there are in the queue. The
user may further suspend or delete the print job, if he/she wishes to do so.

14.6.6 Error Handling
The I/O functions, when performed, may sometimes result in errors. Though the device-spe-
cific errors are appropriately handled by the device drivers, the strategy to handle them is
device-independent. Therefore, they are handled by device-independent I/O software, during
I/O processing. There are two types of errors:

Transient Errors
 These are temporary reasons that cause any I/O processing to fail. For example, there could be
a problem in the network, due to which the packet could not be delivered to its destination. The
problem is temporary, and the packet is delivered, as soon as the problem is eliminated.

Permanent Errors
 These are permanent errors, due to the failure of any device or wrong I/O request. For example,
if a disk is defective, no I/O operation can be performed on it.

The major task for the kernel I/O sub-system here is to handle I/O related errors, such that
after knowing a specific error, it should be reported to the user process. Sometimes, the device-
specific error is handled by the device driver. But, if the device driver does not handle the same,
it is again passed on to the device-independent I/O software layer. It reports back to the user
and gives options (retry, ignore, or cancel) for the next action. Sometimes it is not sufficient
to display an error message to the user, but some action must also be taken as part of error
handling. For example, in case of a corrupted root directory, an appropriate error message is
displayed, and the system is also terminated.

14.7 LIFE CYCLE OF I/O REQUEST

Based on the layered structure of I/O software, the life cycle of an I/O request, from the software
to the hardware level, is discussed in the following list (see Fig. 14.4):

 1. A user issues an I/O system call in the program.
 2. The shell part of the kernel receives it, checks its parameters for correctness, and interprets it.
 3. The kernel I/O sub-system blocks the calling process, and maps the symbolic name of the

device, mentioned in the I/O request, to its actual hardware.
 4. If the system call is for an input data, the kernel I/O sub-system will check the contents of

buffer cache. The data, if found, will be returned to the calling process and the I/O request
is serviced.

 5. If the input data are not found in the buffer cache, or the request is for an output, the I/O
sub-system initializes the corresponding device driver of the device to be communicated,
and sends the I/O request to it.

 6. Kernel I/O sub-system checks the status of the device to find out whether it is busy or not,
through the device driver. If it is busy, the I/O request is queued on the device queue, and
scheduled accordingly.

Basics of I/O Management 465

 7. Once the I/O request is scheduled on the device, the device driver processes the request,
translates it into the device controller’s specific commands, and writes them into its
 device-controller registers.

 8. The device controller, in turn, interfaces with the actual device, and performs the data
 transfer. The data, from the device, are written to the controller’s register, in case of input
operation, or the data from the controller’s register are sent to the device, in case of output
operation.

 9. The device controller, on completion of the data transfer, interrupts the device driver.
 10. The device driver receives the interrupt and passes the control to an appropriate interrupt

handler.
 11. The interrupt handler extracts the required information from the device controller registers

and stores the data in the buffer.
 12. The device driver determines which I/O operation has been completed, in case there are

multiple I/O requests pending, and signals the kernel I/O sub-system about it.
 13. The kernel I/O sub-system unblocks the process that issued the system call and refreshes its

status as ready, by moving it from the blocked queue to the ready queue.
 14. The kernel I/O sub-system transfers the data from the buffer to the address space of the

process, in case of input operation.

9

Interrupt

5,6

5,6

4
Output
request

Input request

3

2

1

System call

User
application

Shell

Kernel

Buffer
cache

Device driver

Input not found

Device controller

Device

8

7
Interrupt handler

10

11

11

12

13,14

I/O software

Device controller
commands

I/Oh

Fig. 14.4 Life cycle of an I/O request

466 Principles of Operating Systems

MULTIPLE CHOICE QUESTIONS

 1. For a multi-tasking environment, is not a better
choice.

 (a) Programmed I/O (c) DMA

 (b) Interrupt-driven I/O (d) None
 2. is not efficient in case of large data transfer.

 (a) Programmed I/O (c) DMA

 (b) Interrupt-driven I/O (d) None

 3. Device independence is achieved through the .

 (a) Device driver (c) Device controller

 (b) Kernel I/O sub-system (d) none

 4. The device-specific code is written into the .

 (a) Device driver (c) Device controller

 (b) Kernel I/O sub-system (d) none

SUMMARY

Let us have a quick review of important concepts discussed
in this chapter:

 • I/O acts as an interface between devices and the system.
 • Character-oriented devices are suitable, where the linear

stream of bytes is required.
 • If the device accepts and delivers the data as a fixed-size

block, it is known as block-oriented device.
 • There are three techniques to perform I/O operation on a

device: programmed, interrupt-driven, and DMA.
 • In programmed I/O, the processor continually waits for an

I/O operation, and does not perform any operation.
 • The interrupt-driven method relieves the processor from

a wait loop, and the interrupt is generated by the device
controller, after the I/O operation is completed.

 • In DMA-based I/O, instead of generating multiple
 interrupts after every character, a single interrupt is
 generated for a block, thereby reducing the involvement
of the processor.

 • I/O is designed as a hierarchical-layered structure,
wherein different layers perform different I/O functions.

 • I/O operation is divided in two parts: I/O software and I/O
hardware.

 • I/O software consists of the layers: Use-level I/O
 software, Kernel I/O sub-system, device drivers, and
 interrupt handlers

 • I/O Hardware consists of the layers: Device controllers
and devices.

 • Kernel I/O sub-system provides the following functions:
 (a) Uniform interfacing to all the devices.
 (b) Access control to the I/O devices.
 (c) I/O scheduling.
 (d) Buffering, caching, and spooling.
 (e) Error handling.
 (f) Configuring and initializing the device driver.

 • The device-specific code is known as a device driver of
that device. It acts as a layer that hides the differences
among the device controllers.

 • The device driver performs the following functions:
 (a) Accepts the I/O requests from the kernel I/O sub-

system.
 (b) Checks the input parameters provided in the I/O

requests.
 (c) Translates logical address to the actual hardware

de tails.
 (d) Checks the availability of a device and informs the

same to its upper layer.
 (e) Returns an error code, if the device is not available.
 (f) Initializes the device to be interfaced.
 (g) Controls the I/O operation.
 (h) Checks to see whether the device controller is able to

 accept the commands.
 (i) Waits and blocks itself, until an interrupt comes to

 unblock it.
 (j) Retrieves data from the controller’s registers, and

sends them to the upper layer.
 • Device driver uses a mapping table that keeps track of

which application uses what device.
 • Device driver uses a resource table that keeps track of

which resources are being used by the device driver.
 • An I/O buffer is a memory area where data are stored

temporarily during an I/O operation.
 • To cope with the slow speed of devices in data transfer, a

buffer, known as single buffering, is used.
 • When one full buffer is being copied to the user area, the

data may be lost, if coming continuously. In this case,
 another buffer is used to hold the data when the first
 buffer is emptied out. This is known as double buffering.

 • The buffer cache is used for both buffering, as well as,
caching.

 • The kernel must notify the user about errors, and take
further action as well.

Basics of I/O Management 467

 5. translates the logical address to the actual hard-
ware details.

 (a) Device driver (c) Device controller

 (b) Kernel I/O sub-system (d) none

 6. generates an interrupt after the I/O operation.

 (a) Device driver (c) Device controller

 (b) Kernel I/O sub-system (d) none

 7. uses mapping table and resource table data
 structures.

 (a) Device driver (c) Device controller

 (b) Kernel I/O sub-system (d) none

 8. takes care of mapping the symbolic names of the
 devices to their actual hardware.

 (a) Device driver (c) Device controller

 (b) Kernel I/O sub-system (d) none

 9. acts as a layer that hides the differences among
the device controllers.

 (a) Device driver (c) Device controller

 (b) Kernel I/O sub-system (d) none

 10. increases the I/O performance of the system,
through buffering, caching, and spooling.

 (a) Device driver (c) Device controller

 (b) Kernel I/O sub-system (d) none

 11. is a memory area, where data are stored tempo-
rarily, during an I/O operation.

 (a) cache (c) RAM

 (b) buffer (d) none

 12. waits and blocks itself, until an interrupt unblocks it.

 (a) Device driver (c) Device controller

 (b) Kernel I/O sub-system (d) none

 13. notifies and handles errors properly, so that the
system runs properly, despite errors

 (a) Device driver (c) Device controller

 (b) Kernel I/O sub-system (d) Interrupt handler

 14. , on completion of the data transfer, interrupts the
device driver.

 (a) Device driver (c) Device controller

 (b) Kernel I/O sub-system (d) Interrupt handler

 15. checks to see whether the device controller is
able to accept the commands.

 (a) Device driver (c) Device controller

 (b) Kernel I/O sub-system (d) Interrupt handler

 16. extracts the required information from the device
 controller registers and stores the data in buffer.

 (a) Device driver (c) Device controller

 (b) Kernel I/O sub-system (d) Interrupt handler

REVIEW QUESTIONS

 1. Differentiate between character- and block-oriented
 devices.

 2. Differentiate between caching and buffering.

 3. When should we adopt the DMA approach for I/O operations?

 4. Explain various types of techniques used to perform an I/O
operation.

 5. Explain various functions of an I/O software.

 6. What is the need of a kernel I/O sub-system?

 7. What is the device-independent feature for an I/O software?

 8. How does a device driver interact with devices?

 9. How does a device driver interact with the kernel I/O sub-
system?

 10. What is the role of mapping table and resource table in the
functioning of a device driver?

 11. What is an I/O channel?

 12. How does kernel I/O sub-system provide a uniform inter-
face?

 13. What is the need of buffering? Discuss ingle- and double-
buffering.

 14. How does a cache, introduced in kernel I/O sub-system,
improve the I/O efficiency?

 15. What is a buffer cache?

 16. Suppose a user wishes to perform write operation on the
disk. Explain the steps, using life cycle of an I/O request.

468 Principles of Operating Systems

BRAIN TEASERS

 1. Interrupt-driven I/O is a better approach for I/O handling.
However, this approach incurs the cost of context switching.
Is it possible to replace this approach with programmed
I/O? Explain with reason.

 2. While the device driver is busy reading from a device, a
user suddenly removes the device. What will happen to the
current I/O transfer and the pending requests on the device
queue?

 3. Suppose a user has used a local machine to log on to his/
her machine, remotely. In this case, the data entered on the
local machine must be transported to the remote machine
through the network devices. Will this network I/O increase
the context switches?

 4. Frame the guidelines for designing an I/O-scheduling
 algorithm?

 5. If a process performs rapid bursts of I/O, double buffer-
ing will not suffice. Is it feasible to have more number of
 buffers? What would be the limit on the number of buffers?

 6. Name the layer where the following function will be
 implemented:

 (a) Converting a logical block address to a physical disk
configuration, that is, track, sector, and so on.

 (b) Checking an invalid operation defined by the user in the
program.

 (c) Checking the access permissions to a file.

 (d) Checking if the input data are in buffer cache.

 (e) Processing the interrupt after I/O operation.

 (f) Checking the status of a device.

 (g) Reading or writing in a buffer.

15.1 INTRODUCTION

In Chapter 14, the basics of device management were discussed.
Efficiency is a major concern while accessing any I/O device due to
speed mismatch between the processor and the devices. This chapter
discusses some efficiency and performance issues of the disk as it is
a widely used I/O device. Disk scheduling is one of the major parts
of disk management that schedules the I/O requests arriving on the
disk. This chapter explains various disk-scheduling algorithms, disk
formatting, and bad sectors. The discussion extends to swap-space
management and RAID structures.

15.2 DISK SCHEDULING

Disk scheduling schedules the I/O requests arriving on the disk. There
are several reasons disk scheduling is important for I/O operations.
 • In a multi-programming environment, many processes may

send I/O requests for the disk. Since the processor can service
only one I/O request at a time, others may need to wait on the
disk queue. When the current request is finished, another request
from the disk queue is scheduled to be serviced.

 • While accessing a particular location on the disk, the current
position of the disk arm matters. If the next request is far from
the current position, then the seek time is more as compared to
other requests having less seek time.

 • When the disk storage becomes a bottleneck, disk scheduling
may help loading a large request on small set of disks.

 • Random requests from the users may also need disk scheduling
so that various types of requests of different users are serviced.
For example, in case of web servers and data base servers, the
users may request smaller to larger data in size. Moreover, the
requests may not be on the same cylinder.

Keeping in view such facts, there is a need to schedule the re-
quests on the disk to improve the performance of the system. In this
 direction, various scheduling algorithms have been developed.

15 Disk Management

Learning Objectives
After reading this chapter,
you should be able to
understand:
 • Disk scheduling criteria
 • FCFS disk-scheduling

algorithm
 • Shortest seek time first

(SSTF) disk-scheduling
algorithm

 • SCAN disk-scheduling
algorithm

 • Circular scan (C-SCAN) disk
scheduling algorithm

 • Freeze-SCAN (F-SCAN)
 disk-scheduling algorithm

 • N-SCAN disk-scheduling
algorithm

 • LOOK disk-scheduling
algorithm

 • C-LOOK disk-scheduling
algorithm

 • Rotational optimization
 • Disk-scheduling algorithms

based on rotational
 optimization

 • Disk formatting
 • Bad sectors
 • Swap space management
 • Redundant array of

 independent disks (RAID)
structure

470 Principles of Operating Systems

15.3 DISK-SCHEDULING CRITERIA

Disk I/O operation is a major aspect of the computer system. Since it is dependent on the
 movement of the disk arm, the disk scheduling is performed such that the arm movement is
utilized to service more I/O requests efficiently. For accessing the disk, the logical blocks are
converted into the disk physical blocks. However, the disk physical block address is in the form
of cylinder, track, and sector: First, the cylinder is identified, then track within the cylinder, and
finally, sector within the track.
Thus, before discussing the scheduling algorithm, let us look at the criteria of disk-scheduling
algorithms.

Seek Time
Seek time is the time taken by the disk head to move from one cylinder to another. It is therefore
dependent on the seek length, that is, the length between the current and the next position of
the head. For example, if the disk head is currently at Cylinder number 13 and it has to move
to 34. The seek length in this case is 21, that is, to reach its target, the head needs to pass
21 cylinders. The average seek time can be calculated if the average time to move from one
 cylinder to another is estimated. Based on the mechanical characteristics of the disk, the seek
time is affected by two factors: mechanical settling time and acceleration factor. The seek time
is thus given as
Seek(n) = 0 if n = 0

 = a + bn if n > 0,
where n is the seek distance, a is the mechanical settling time, and b is the acceleration factor.
Thus, seek time may affect the performance of the system. The scheduling algorithm that
 provides the minimum average seek time is better.

Rotational Latency
Rotational latency is the time taken by the addressed sector of the track to rotate into a position
such that read/write head is accessible to it, that is, the sector comes under the head. The disk-
scheduling algorithm that provides minimum rotational latency is better.

Transfer Time
Transfer time is the time for data transfer. For example, if it needs to read some data from the
disk, then the transfer time is the time taken to transfer the data from the disk to the application.
It depends on the rotational speed of the disk and the number of bytes to be transferred.

Disk Access Time
It is the time to perform any operation on the disk. It is the sum of seek time, rotational latency,
and transfer time.

Disk Bandwidth
It is the total number of bytes transferred divided by the total time between the first request of
the service and completion of the last transfer of the data. The scheduling algorithm should
provide a high bandwidth.

Disk Management 471

Throughput
It is the total number of disk requests serviced per unit time. A scheduling algorithm must
 provide maximum throughput.

Response Time
It is the average time spent by a request in waiting. A request must be serviced within a
 predictable response time; otherwise, it may have adverse effects on the application. There are
two parameters in response time: One is the average response time that shows the response
time of the whole system, and another is variance of response time. Variance of response
time is the measure of how individual requests are serviced relative to the average system
 performance. If the variance is low, then it means that most of the requests are serviced after
waiting for a similar amount of time. In this way, the variance is a parameter for measuring the
fairness and predictability. To avoid irregularity in service time of the requests, the scheduling
algorithm should minimize the variance of response time.

The time parameters of the disk are illustrated in Fig. 15.1.

15.4 DISK-SCHEDULING ALGORITHMS

This section discusses the various types of disk-scheduling algorithms.

15.4.1 FCFS
It is the simplest scheduling algorithm, as seen in case of CPU scheduling. The requests are
scheduled in the order they arrive in the disk queue. Thus, every request gets a fair chance to be
executed and indefinite postponement of requests does not occur.

This may, however, not be a good choice for a scheduling algorithm. It may be possible
that the first request in the queue is very far from the current position of the disk head. In
this case, the seek time will be high and throughput will be low. The algorithm may be good
in performance when the load on the disk is low and the requests are uniformly distributed.
However, as the load on the disk increases, FCFS provides poor performance as it increases the
average response time. However, the FCFS will provide low variance of response time due to
random seek, that is, the arriving disk requests cannot get ahead of already pending requests.

Example 15.1

Consider a disk queue with I/O requests on the following cylinders in their arriving order:
54, 97, 73, 128, 15, 44, 110, 34, 45

The disk head is assumed to be at Cylinder 23. Calculate and show with diagram the disk
head movement using FCFS-scheduling algorithm.

Disk queuing delay Seek time Rotational iatency Data transfer time

Disk access time

Disk response time

Fig. 15.1 Disk I/O performance time factors

472 Principles of Operating Systems

Solution

According to FCFS, the head at Position 23 will move to 54, then to 97, and keeps on moving
till it reaches the last cylinder as shown in Fig. 15.2. The head movement details are shown in
Table 15.1. The head movement is more in this algorithm as it moves from 73 to 128 and 128
to 15 illustrating the inefficiency of this algorithm.

0 15 23 34 44 45 54 73 97 110

Fig. 15.2 FCFS disk scheduling for Example 15.1

Table 15.1 FCFS head movement for Example 15.1

I/O request for
cylinder

Head movement Total head movement
for the request

54 23–54 31

97 54–97 43

73 97–73 24

128 73–128 55

15 128–15 113

44 12–44 32

110 44–110 66

34 110–34 76

45 34–45 11

Total head movement = 451

15.4.2 SSTF
In this algorithm, the request with the shortest seek time will be executed first. Therefore, it
calculates the seek time of all the requests in the queue, selects the appropriate request, and
schedules it for the execution. In this way, the requests that are near to the current head position
get serviced first, thereby improving the performance of the system. This will increase the
throughput of the system and decrease the average response time as compared to FCFS.

Since it needs to calculate the seek time from the current disk head position, it will also incur
the cost of computation. Another drawback in this algorithm is that a request very far away
from the current head position will not get scheduled if the arriving requests have less seek time
compared to this request. In this case, the request will starve.

Disk Management 473

Since the algorithm services the requests whose seek time is less, the requests that are
 concentrated in one region will be served the most. This may cause in low response times for
the requests whose seek time is high, that is, the track for the request is at the other end of the
disk. Further, it may be difficult to predict the response time as the algorithm favours only some
requests. Thus, it causes high variance of the response time.

The SSTF algorithm may be best suitable for batch-processing systems where high throughput
and average response time are required. However, it may not be efficient for interactive and
online systems where high response time and its predictability are required.

Example 15.2

Calculate and show with diagram the disk-head movement using SSTF-scheduling algorithm
in Example 15.1.
Solution

Since in SSTF, the head movement is based on the shortest seek time, calculate the shortest
 distance that a head needs to move. From the current position, the next request whose movement
distance is the shortest is serviced, as shown in Table 15.2 and Fig. 15.3.
Table 15.2 SSTF head movement for Example 15.2

Head movement Total head movement
for the request

23–15 8

15–34 19

34–44 10

44–45 1

45–54 9

54–73 19

73–97 24

97–110 13

110–128 18

Total head movement = 121

0 15 23 34 44 45 54 73 97 110 128

Fig. 15.3 SSTF disk scheduling for Example 15.2

474 Principles of Operating Systems

The total head movement drastically reduces in the SSTF algorithm compared to FCFS. More-
over, the head does not change its direction of movement frequently as was seen in case of
FCFS. This shows that this algorithm increases the performance of the system as the head
movement is reduced by following the shortest seek length.

Example 15.3

In Example 15.2, suppose when the head is processing request at Cylinder 73, a request at
 Cylinder 75 arrives. Since the new request will have the shortest seek length, the head will
move to it and service the request. After this, the head will move to Cylinder 97 and processes
the request. While processing, two new requests arrive at Cylinders 99 and 100. Again, these
new requests have the shortest seek lengths, the head will move to Cylinder 99 and then to 100.
This will make some requests in the queue such as 110 and 128 to starve if more requests whose
seek lengths are short continue to arrive in the system.

15.4.3 SCAN
This algorithm uses the property that the disk arm after reaching the end of the disk moving in
one direction, that is, the outermost or the innermost cylinder, reverses its direction. It services
the requests in the direction of its head movement and continues until it reaches the end of
the disk or the last cylinder. After this, it reverses the direction and services the requests in
its path. According to this algorithm, the preferred direction of the head movement has to be
found first and all the requests in that direction will be serviced. It may be possible that some
requests appear while processing a request. If these new requests are in the path of the preferred
 direction of movable disk head, then these requests will also be serviced. However, if they
arrive just behind the head, then they will have to wait until the head reverses its direction
and services them. In this way, the head moves back and forth across the disk and services
the requests in its path. Hence, the algorithm is also known as elevator algorithm taking the
 analogy of an elevator that continues in one direction servicing each floor as per the requests
and reverses its direction after reaching the top or ground floor.

Since the behaviour of this algorithm is similar to SSTF, it also provides high throughput and
average response time. Moreover, it will provide low variance of response time as compared
to SSTF as it services all requests in a given direction. In this algorithm, the requests at the
 midrange will be visited more as compared to outer or inner tracks. Moreover, if the new
 requests are arriving in front of the head, then they will be serviced and the other pending old
requests (behind the head) will have to wait, causing starvation of some requests.

Example 15.4

Consider a disk queue with I/O requests on the following cylinders in their arriving order:
6, 10, 12, 54, 97, 73, 128, 15, 44, 110, 34, 45

The disk head is assumed to be at Cylinder 23 and moving in the direction of decreasing
number of cylinders. The disk consists of total 150 cylinders. Calculate and show with diagram
the disk head movement using SCAN-scheduling algorithm.
Solution

Since the disk head is at Position 23 and moving in the direction of decreasing number of
 cylinders, it will first service the requests 15, 12, 10, and 6 and move towards the end of the
disk, that is, Cylinder 0. Then it reverses its direction and services other requests in its path till

Disk Management 475

it reaches Cylinder 150 as shown in Fig. 15.4. The total head movement in this algorithm is
23 + 150 = 173. However, in this algorithm, the disk movements from Cylinders 6 to 0 and from
Cylinders 128 to 150 are unnecessary as there are no requests in these paths.

Example 15.5

In Example 15.4, suppose some new requests arrive at Cylinders 60, 65, and 70 while the
disk head is processing Cylinder 54. What will happen to these new requests according to the
SCAN-scheduling algorithm?
Solution

Since the new requests arrived are in the preferred direction of disk-head movement, all these
requests will be serviced just after the processing at Cylinder 54 as shown in the highlighted
portion in Fig. 15.5. However, due to arrival of these new requests, the waiting time of pending
requests in the queue increases.

0 610 12 15 23 34 44 45 54 73 97 110 128 150

Fig. 15.4 SCAN disk scheduling for Example 15.4

60 65 700 610 12 15 23 34 4445 54 73 97 110 128 150

Fig. 15.5 SCAN disk scheduling for Example 15.5

476 Principles of Operating Systems

15.4.4 C-SCAN
In SCAN, the head reverses its direction when it reaches the end of the disk. After reversing its
direction, it scans the path for the requests that have already been scanned and serviced. Two
situations that may arise in case are as follows:
 • Zero or very few requests pending.
 • Many requests waiting on the other end of the disk. This happens when more and more

 requests arrive just behind the head while processing.
These drawbacks can be overcome by using C-SCAN algorithm. In this, the head, instead

of reversing its direction, returns to the beginning of the disk without serving any request in its
path and scans and services the requests again in the earlier direction. In this way, this algorithm
considers the line of cylinders as a circular queue such that it scans them repeatedly in one
 direction. This is the reason this algorithm is known as C-SCAN-scheduling algorithm.

Since C-SCAN is a modification SCAN algorithm, it maintains its basic nature of providing
high throughput. Further, it provides the low variance in response time as compared to SCAN
algorithm as the pending jobs on the other side of the disk may get chance to be executed and
centre cylinders are not favoured. However, the starvation may still occur as in SCAN algo-
rithm if more and more new requests arrive on the same cylinder or in front of the head.

Example 15.6

Solve Example 15.4 using C-SCAN-scheduling algorithm.
Solution

The disk head after reaching Cylinder 0 reverses its direction, and starts scanning from Cylinder
150 and services the requests in its path as shown in Fig. 15.6. The total head movement in this
algorithm will be reduced to 139 as compared to 173 of SCAN algorithm.

15.4.5 F-SCAN and N-step SCAN
In all the algorithms discussed earlier, if new I/O requests arrive while the disk head is
 processing one request, then some requests may starve and are denied fair chance to be serviced.
To resolve this problem, some variants of scan algorithm have been developed: F-SCAN and
N-step SCAN.

0 610 12 15 23 34 44 45 54 73 97 110 128 150

Fig. 15.6 C-SCAN disk scheduling for Example 15.6

Disk Management 477

FSCAN: It maintains two queues. One queue is for storing the requests that have arrived and
another queue is initially empty. The disk arm starts servicing the requests from the first queue.
However, if there are any new requests arriving while old requests from the first queue are
being processed, then they will reside in the second queue; they will not be allowed to enter the
first queue and thereby change the order of the queue. In this way, the new requests are deferred
until all the pending old requests have been processed. However, this freezing of requests is
for the period till the disk head reaches the end of the disk. As the disk head reaches the last
cylinder and changes its direction, the second queue is merged with the first queue and sorted
for optimum service. The disk head now starts servicing the requests according to this new
queue of the requests.

N-step SCAN: The idea here is to serve the requests at the interval of n in the queue in
a sweep when the head is moving in one direction. For example, if n is four, the first four
 requests are serviced first. When the sweep is complete, the next four requests in the queue are
considered for service. In this way, a large queue is divided into subqueues, each containing n
requests. When a new request appears while a subqueue is being processed, it will be added at
the end of the original queue. This helps to avoid starvation, thereby guaranteeing the service
of the requests. The value of n should be chosen carefully for the maximum performance of the
algorithm. If value of n = 1, then it becomes a first-in-first-out (FIFO) algorithm. On the other
hand, if the value of n is very large, then it is as good as SCAN algorithm.

Neither of the variants of SCAN algorithms therefore postpones the service of any old
 pending requests and thereby reduces the variance of the response times as compared to SCAN
algorithm. The F-SCAN may prove to be better as compared to N-SCAN algorithm. N-SCAN
algorithm may decrease the throughput as it adds the new arriving requests at the end of request
queue and these cannot be serviced until all sub-queues have been serviced. However, F-SCAN
algorithm considers the new requests in its original queue after every sweep when the disk head
changes its preferred direction. The following are the benefits of F-SCAN over N-SCAN:
 • High throughput
 • Low variance of the response time
 • Good average response time
 • Reduced starvation

Example 15.7

Consider a disk queue with I/O requests on the following cylin-
ders in their arriving order:
54, 97, 73, 128, 15, 44, 110, 34, 45

The disk head is assumed to be at Cylinder 23 and moving in
the direction of decreasing number of cylinders. The disk consists
of total 150 cylinders. Suppose when the head is processing at 15,
a new request arrives at Cylinder 10. Similarly, when the head is
processing request at 73, a request on Cylinder 75 arrives. While
processing at 97, new requests arrive at Cylinders 35, 99, and
100. Apply the F-SCAN algorithm for this situation.
Solution

F-SCAN
Using F-SCAN, two queues are maintained as shown in Fig. 15.7.

Empty
queue

110

34

45

44

15

128

73

97

54

Fig. 15.7 F-SCAN initial queues
for Example 15.7

478 Principles of Operating Systems

When the head processes at 15, a request arrives at Cylinder 10. However, this will not be
processed as the original queue is frozen and hence, it is added to the second queue. As the
head reaches the end of the disk, that is, at Cylinder 0, it reverses its direction. At this point, the
original queue is merged with the second queue and sorted in the ascending order as shown in
Fig. 15.8. This sorted queue is now the original queue.

When the head processes at 73, a request arrives at Cylinder 75. The request is added in the
second queue. Further, while processing at 97, new requests arrive at Cylinders 35, 99, and
100. The requests are again added in the second queue. The new status is shown in Fig. 15.9.
However, no new requests present in the second queue will be processed as the head has not
reached the end of the disk.

As soon as the head reverses its direction, the original list is merged with the second queue
and sorted and processed again. The statuses of the queues are shown in Fig. 15.10.

54

97

73

128

15

44

110

34

45

10
10

34

44

45

54

73

97

110

128

Original
queue

Second
queue

Merged
queue

Fig. 15.8 F-SCAN first pass for Example 15.7

75

Original
queue

Second
queue

10

34

44

45

54

73

97

110

128

99

100

35

Fig. 15.9 F-SCAN status of queues after first pass for Example 15.7

Disk Management 479

75

Original
queue

Second
queue

10

34

44

45

54

73

97

110

128

99

100

35

110

128

99

100

73

75

97

10

34

35

44

45

54

Merged
queue

Fig. 15.10 F-SCAN second pass for Example 15.7

Since in our example, all the requests are serviced in the original queue, the second queue is
the remaining queue that needs service. This queue is sorted and then serviced as shown in
Fig. 15.11.

Example 15.8

Consider a disk queue with I/O requests on the following cylinders in their arriving order:
6, 10, 12, 54, 97, 73, 128, 15, 44, 110, 34, 45

0 1015 23 34 35 44 45 54 73 75 97 99 100110 128 150

Fig. 15.11 F-SCAN disk scheduling for Example 15.7

480 Principles of Operating Systems

The disk head is assumed to be at Cylinder 23 and moving in the direction of decreasing num-
ber of cylinders. The disk consists of total 150 cylinders. Suppose when the head is at 15, a
request arrives at Cylinder 11 and when it is at 73, a request arrives at Cylinder 75. While at
97, new requests arrive at Cylinders 35, 99, and 100. Apply the N-SCAN algorithm for this
situation for n = 4.

Solution

Since the n = 4, the first four requests in the queue, that is, 6, 10, 12, and 54 are considered for
processing. Now, the head is presently at 23 and moving towards 0. Therefore, it processes the
requests 12, 10, and 6 in its scan towards 0 and then reverses its direction for the next sweep.
The request 54 though is in the consideration but could not be serviced as it was not found in
its previous sweep. Therefore, it is considered in the next sub-queue. The next four elements
in the sub-queue, 54, 97, 73, and 128, are serviced. When the head was processing request at
73, a request for Cylinder 75 arrived. Although it was in the path of the last sweep, it could
not be serviced as the algorithm does not allow and was added at the end of the queue. Simi-
larly, while processing at 97, new requests arrived for Cylinders 35, 99, and 100 but could not
be processed. These are also added at the end of the original queue. The head again reverses
its direction. The next sub-queue having the elements 15, 44, 110, and 34 is serviced. When
the head was servicing at 15, a new request for Cylinder 11 appears. However, it was not
 considered for service and was added at the end of the original queue. In this way, the next sub-
queue consisting of 45, 75, 35, and 99 is serviced. Finally, we have only two requests, 100 and
11, in the queue, which are serviced as shown in Fig. 15.12.

0 6 10 1112 15 23 34 35 44 45 54 73 75 97 99 100 110 128 150

Fig. 15.12 N-SCAN disk scheduling for Example 15.7

Disk Management 481

15.4.6 LOOK and C-LOOK
In SCAN and its variants, the disk head moves to the last cylinder and then reverses its direction.
In this case, the head moves unnecessarily, thereby increasing the delay. Therefore, another
modification is made in these algorithms such that the head moves in one direction only till the
last request in that direction. LOOK algorithm solves this deficiency. According to this, the disk
head looks ahead in its direction of movement for the last request. It moves to the last request
and changes its preferred direction there without moving to the last cylinder and continues
servicing the request in the other direction. Thus, it eliminates unnecessary seek operations and
hence decreases the average response time and lowers the variance of response time.

Like SCAN algorithm, LOOK can also be designed as C-LOOK that treats the request queue
as circular. It is similar to C-SCAN except that the head moves till the last request instead of
last cylinder. Thus, C-LOOK achieves the benefits of both C-SCAN- and LOOK-scheduling
 algorithms. C-LOOK lowers the variance of the response time as compared to LOOK algorithm
but incurs cost of reduced throughput. It may increase the average response time also.

Example 15.9

Consider a disk queue with I/O requests on the following cylinders in their arriving order:
6, 10, 12, 54, 97, 73, 128, 15, 44, 110, 34, 45

The disk head is assumed to be at Cylinder 23 and moving in the direction of decreasing
number of cylinders. The disk consists of total 150 cylinders. Calculate and show with diagram
the disk head movement using LOOK-scheduling algorithm.

Solution

Since the disk head is at Position 23 and moving in the direction of decreasing number of
 cylinders, it will first service the requests at 15, 12, 10, and 6. It reverses its direction at 6
and services other requests in its path as shown in Fig. 15.13. The head stops at 128 without
 continuing to the last cylinder and reverses its direction, if there are any new requests pending.
The total head movement in this algorithm is 139.

0 6 10 12 15 23 34 44 45 54 73 97 110 128 150

Fig. 15.13 LOOK disk scheduling for Example 15.9

482 Principles of Operating Systems

Example 15.10

Apply C-LOOK-scheduling algorithm in Example 15.9.

Solution

The head will first service the requests 15, 12, 10, and 6 and changes its direction. Then it
moves to the other end of the disk but looks for the first request there, that is, 128. At Cylinder
128, it reverses its direction and services the requests in its path as shown in Fig. 15.14. The
total head movement in this algorithm will be reduced to 111 as compared to 139 of LOOK
algorithm.

Another variant of LOOK algorithm is S-LOOK. The shortest-LOOK (S-LOOK) algorithm
is an extension of the LOOK algorithm to handle the cases where the disk head is located among
the far-end requests. The algorithm decides which direction should be served first instead of
only continuing to seek in the same direction before the new requests have arrived. It calculates
the total seek distance for the requests on its both sides. After calculating the seek distances in
both directions, it continues to service the requests in the direction where the total seek distance
is minimum. Thus, S-LOOK provides better average seek time than LOOK algorithm.

15.5 ROTATIONAL OPTIMIZATION

The disk-scheduling algorithms discussed till now focus on optimization of seek time. However,
another parameter for disk scheduling worth considering is the rotational latency. Since after
reaching a particular cylinder after calculating seek time, the rotational latency of the disk
may also affect the performance of the system. If some sectors are very near to the current
 position of the head, then this request should be serviced first. The rotational latency might not
affect if the data to be accessed on the disk is large and sequential. However, if they are small
and scattered on the disk, then the rotational latency will surely affect the performance of the
 system. Therefore, in disk-scheduling algorithms if we consider the rotational optimization
along with seek optimization, then the disk-scheduling algorithm will serve better. Some of the
algorithms devised for rotational optimization are discussed in subsequent sections.

0 6 10 12 15 23 34 44 45 54 73 97 110 128 150

Fig. 15.14 C-LOOK disk scheduling for Example 15.10

Disk Management 483

15.5.1 SLTF-scheduling Algorithm
After the disk head has been positioned on a cylinder, there may be requests on many sectors.
A request queue is maintained for the requests that will store the sector numbers so that the
rotational optimization can be performed. The shortest latency time first (SLTF) algorithm first
examines all the requests in the queue and selects the request having the shortest rotational
delay. In other words, the requests whose sectors are positioned neart the head are serviced first.

15.5.2 SPTF-scheduling Algorithm
This algorithm considers the seek time as well as rotational latency. It means that for a disk
address in a request, both seek time and rotational latency are calculated and added together
to obtain irts positioning time. Thus, for each request, a positioning time is calculated and the
shortest one is selected for the service. This algorithm results in higher throughput and good
average response time but may cause starvation as in case of SSTF.

15.5.3 SATF-scheduling Algorithm
In SPTF algorithm, the throughput may be increased if data transfer time is also taken into
 consideration along with positioning time. The positioning time and data transfer time form the
total access time for a request. In this way, the total access time is calculated for each request
and the one with the shortest time is scheduled first. This algorithm increases the throughput as
compared to SPTF but suffers from the starvation problem as requests on outermost and inner-
most cylinders may be postponed for servicing the requests on the cylinders lying between them.

SPTF and SATF disk-scheduling algorithms, however, are dependent on the knowledge of
disk characteristics. For example, to calculate the transfer time, rotational speed, size of the
disk, and so on must be known. The major problem is that the modern disk drives do not pro-
vide the actual details of the disk configuration. For instance, the sectors on the disk may not
be contiguously allocated. Sometimes bad sectors are also allocated space from the reserved
sectors. Therefore, the rotational optimization-based disk-scheduling algorithms are dependent
on the availability of disk configuration and other details.

15.6 DISK FORMATTING

The disk formatting prepares the raw disk to be used. There are three levels in disk formatting:
low-level formatting, disk partitioning, and logical formatting. The low-level formatting is
performed by the manufacturer and the other two steps are performed by the OS and therefore
are linked to it. The manufacturer of the disk performs the low-level formatting and is able to
test the disk and later on use it for storage. The low-level format may decide the sector size on
the track. The second step is disk partitioning, where the disk is divided into multiple partitions.
The OS treats each disk partition as a separate disk. In most of the systems, Sector 0 contains
the master boot record containing boot code. The partition that contains the boot code is known
as boot partition. The disk that contains the boot partition is called a boot disk or system disk.
The information regarding each partition is stored in a data structure known as partition table.
The partition table stores the information such as starting sector, size, and so on. The partition
table is also stored at Sector 0. More than one OS may also be loaded on the system by making
use of partitions. Suppose there are three partitions in a disk. Two partitions may be used for
Windows and one partition for Linux.

Another step in disk formatting is logical formatting, which is concerned with the OS. This is
also known as high-level formatting. This operation is performed on each partition. The logical

484 Principles of Operating Systems

formatting operation lays down a boot block in the partition and creates a file system. The
 initial file system data structures, such as free and allocated lists or bitmaps, root directory, and
empty file system are also stored. Since different partitions contain different file systems, the
partition table entries will indicate which partition contains which file system.

15.7 BAD SECTORS

While working with disks, there may be many types of errors or failures. The mechanical parts
used in disk and disk controller cause some failures. For example, disk crash is a common
failure. It occurs when the disk head touches the disk surface. The remedy to this problem is to
replace the faulty disk with a new one. Another frequently occurring error is read error, that is,
the disk head is not able to read a sector. This may be a transient error occurring due to presence
of some dust particles under the head. It may be possible that this type of error does not appear
if given a second chance to read. However, sometimes these read errors become permanent.
Inspite of several attempts to read, the error remains there. This error is of permanent nature and
indicates that a particular sector is not readable or writable. These kinds of sectors are known as
bad sectors or bad blocks. The sectors may become bad sectors due to manufacturing defect,
improper write, virus, or errant program. These types of sectors can be repaired with some
 programs (Norton Disk Doctor, etc.), or a low-level format. A low-level format will remove
all the data from the drive. Bad Sectors can also be reported if there is a noise in the data from
faulty cables or other components, but they may also be of transient nature.

It may be possible that only some bits of a sector are erroneous, that is, the error is very
small. In this case, the error-correcting code (ECC) will correct it. However, if many bytes of
a sector are defective, then the sector must be designated as a bad sector so that some remedy
must be taken. The remedy to bad blocks can be done at two levels: either at disk-controller
level or at the OS level. Whatever it may be, it is kept completely transparent to the user.
While the disk is tested by the manufacturer at the time of low-level formatting, a list of bad
sectors is maintained on the disk by the disk controller. For each bad sector, a substitution is also

Spare sectors

9 8
7

6

5

4

3

2

117

11
12

13

14

102019 22

16

18

15

0

Bad sector
(b)

Spare sectors

9 8
7

6

5

4

3

2
117

11
12

13

14

212019 22

16

18

15

0

Bad sector

(a)

Fig. 15.15 Sector sparing

Disk Management 485

given. In fact, some predefined spare sectors are provided to be given as substitution. The disk
controller maps the bad sector to the spare sector. This is known as sector sparing or forwarding.
For example in Fig. 15.15(a), Sector 10 is found as bad sector by the disk controller. The Sec-
tors 21 to 22 are reserved as spare sectors. The disk controller maps the bad sector with Sector
21 as substitution as shown in Fig. 15.15(b).

Instead of mapping the bad sector to the spare sector provided in the reserved area, we
can ignore the bad sector and continue the storage from the next sector onwards. For this,

we can just shift all the sectors to bypass the bad one.
This is known as sector slipping. Sector 10, instead
of mapping into Sector 21, can be continued from the
next sector after the bad sector as shown in Fig. 15.16
by shifting all the sectors by one. In this way, the last
 Sector 20 will occupy the position in spare sector.
The advantage of the sector slipping is that the per-
formance of the system will increase as the work is
performed in one rotation of the track only. Compar-
ing with the previous approach, the head will move
to Sector 21 for bad sector and again move back to
Sector 11. This will increase the delay in reading the
sectors. Therefore, sector slipping may enhance the
performance. However, this is achieved at the cost
of re-mapping the sectors that have been shifted by
one. Another problem is that it is implemented only
if the spare sector is on the same track as the bad sec-
tor so that the work is completed in one rotation. If
the spare sector is on a different track, then shifting
method does not gain any performance factor.

The sector sparing or slipping requires separate sectors on each cylinder or sometimes even a
spare cylinder. This is because any unused sector cannot be used as spare sector, as this may cause
problems in memory management. Therefore, separate sectors or cylinder are reserved for sparing.
Thus, the disk controller will map the bad sectors from the space reserved for only sparing.

The sectors may also become defective during the normal operation. At the first instance,
the ECC may correct the error. However, if the error repeats again and again on a sector, then
that sector must be declared as a bad sector. In that case, the disk controller maps init to a spare
sector using sector sparing or sector slipping.

At the OS level, the disk can also be tested and a list of bad sectors can be obtained. Further,
the sector sparing and sector slipping discussed earlier can also be implemented by the OS. The
OS must ensure that bad sectors do not occur in any file or the free list. A separate file may be
prepared that consists of all bad sectors and should not be included in the file system.

15.8 SWAP-SPACE/PAGING-SPACE MANAGEMENT

As discussed in Chapter 11, the implementation of virtual memory (VM) is done by reserving
some space on the disk where a process or its pages can be swapped-out or paged-out and
retrieved back when required. Thus, swap space can be defined as a temporary storage location
on the disk to implement the VM when system’s memory requirements exceed the size of

9 8
7

6

5

4

3

2

117

1011

12

14

20

Spare sector

19

16

18

15

0

13

Fig. 15.16 Sector slipping

486 Principles of Operating Systems

available main memory. In main memory, a process is swapped-out or swapped-in, but in VM,
the process is divided into pages and therefore, the pages are paged-in or paged-out. Hence,
the term paging space is used for the space reserved for the page-in and page-out operations.

The use of swap space may decrease the performance of the system. This happens when
there is frequent transfer between the main memory and swap space on the disk, that is, when
the program repeatedly accesses more VM than is available in the main memory. As the number
of page faults increases, the performance decreases. At one instant of time, it leads to thrashing
due to high paging frequency. Therefore, there should be a balance between usage of the main
memory and swap space/paging space.

How much space must be reserved for swap space? The amount of swap space to be reserved
out of the disk space depends on how much VM is needed to support the OS. The amount of
swap space estimated may be overestimated or underestimated. If it is overestimated, then it
may lead to wastage of space on the disk, whereas underestimation may cause the process to
abort or the system to crash itself. Hence, overestimation is better compared to underestimation
as there will be no chance of abortion of any process or system crash.

There are many factors that decide the swap-space size. The most important of all
is the application size being used on the system. If a large-sized application such as
 computer-aided-design simulators, database-management products, or geologic analysis
 systems is used, then it may require swap space equal to or more than the size of the main
 memory. In this case, the application’s minimum swap-space requirement must be checked
 before running it on the system. This requirement is generally specified in the application
 software manuals. Some OSs such as Solaris takes the swap-space size same as that of the main
memory. However, with the increase in size of the memory, the swap space may not be as large
as the memory but some percentage of it. For example, if the memory is of 2 GB, then 30% of the
memory may be taken as swap space. The number of concurrent applications may also require
some additional space in the swap space. Moreover, some trivial applications, light-weight
applications, and heavy-weight applications must also be considered for estimating the size of
swap space. Another requirement to be considered is the space for crash dumps resulting from
fatal system failures. A crash dump is a copy of the kernel memory of the computer at the time
of a fatal system error. The OS generates the crash dump and by default stores it to the swap
space on the disk to know the cause of the system error. Kernel memory holding the crash dump
accounts for around 20% of total memory. For example, if we have 1 GB of memory, then 256
MB of space must be reserved or added in the swap space for crash dumps.

Where should the swap space be allocated? A fast local disk is chosen for swap space, if
available. If the swap space is allocated on a disk of remote computer, then it may affect the
 performance of the system while implementing VM. On a local disk, it may be implemented out
of the existing file system or in a separate disk partition. In the separate-disk-partition method,
the disk partition is taken as a raw partition, that is, no file system is implemented on this
 partition. This disk partition is known as swap partition. From the raw partitions, the blocks
are allocated or de-allocated for swap-space management, that is, the blocks are allocated to
store pages in the swap space or the blocks are de-allocated when there is no requirement to store
the pages. Thus, the efficiency to access the blocks on the swap space increases as compared to
the file system implementation since swap partition will use direct reads and writes to the disk
and there is no overhead for accessing inodes, indirect blocks, and so on.

What will happen if more swap space is required? The swap space is implemented as a large
file known as swap file if sliced out of the file system. All the file system commands such as
create the swap file, space allocation, delete the swap file, and so on are used for the swap-space

Disk Management 487

creation and management. For example, a swap file is created using mkfile command in some
OSs. However, the access to the swap space using the swap-file implementation may be slow
as it needs to access the directory structure and other data structures related to the file system.
Therefore, the swap-file method is not generally recommended but it would be useful as a
 temporary solution if more swap space is required.

Through the installation program, swap space is initially configured during software
 installation. However, due to changes in system configurations and installation of some
new software packages, more swap space is added using the commands provided in the OS.
 Alternatively, the existing disk can be repartitioned or another disk may be added.

15.9 RAID STRUCTURE

Although the disk is widely used for storage purposes, its slow access as compared to the
 processor and memory is a critical factor in overall computer system performance. There has
been a performance gain in the disk access in the last few years, but this is not sufficient
 compared to the access speed of processor and memory. To bridge this gap, an idea was coined
by a group of researchers at the University of California; they considered the concept of parallel
processing in disk management. Patterson et al. suggested the use of an array of disks instead
of one that could be accessed simultaneously to improve the speed as well as reliability. These
multiple disks may operate independently and in parallel. With multiple disks, it was possible
to organize the data in various ways and redundancy of data helps in increasing the reliability.
The researchers named this new I/O as RAID. The idea of this multipledisk database design
was accepted by the industries but changed the ‘inexpensive’ to ‘independent’. This structure
then became popular as RAID.

The RAID structure is a set of physical disk drives, and RAID controller (instead of a disk
controller). However, the RAID structure is a single logical drive for the OS. The RAID structure
is organized in seven levels (zero to six) of disk arrays. These levels do not represent any
 hierarchical organization but are different design architectures proposed by the researchers. In
RAID, the data is distributed among various disks such that the data is accessed simultaneously
from multiple drives, thereby having quick access. While designing the RAID structure, the
following two aims are set:

Increased performance
 Multiple disks can be accessed in parallel. Therefore, a file may be organized in such a way
that the data is spread across multiple disks. Therefore, a file stored on RAID structure is
 accessed from multiple disks simultaneously, thereby improving the traditional disk accesses.
Suppose, if two requests belong to two different disks, they can be served in parallel. In this
way, more number of requests can be serviced as compared to a single-disk system, increas-
ing the throughput of the system. Moreover, the response time in accessing a large data is
reduced.

Increased reliability
 In some applications such as database design or real-time system design, reliability is a critical
requirement in the system. In these types of systems, the data loss cannot be afforded. Here,
the design of RAID can utilize the multiple disk drives to improve the reliability by putting
redundant copies of the data. Moreover, the use of multiple drives increases the probability of
failure. So the RAID addresses the redundancy issue effectively so as to reduce the chance of
loss of data.

488 Principles of Operating Systems

Improvement in performance and reliability is achieved via the following:
Data striping
 In RAID, the data is stored on separate disks as a strip. A strip may be a fixed size block on
the disk. A file is viewed as an array of contiguous strips, that is, the file data is split among
multiple disks in the form of strips. The contiguous strips of a file are stored on separate disks
at the same location. The set of strips stored on the disks in the array is known as a stripe. In
this way, a file is stored in the form of strips across multiple disks along a stripe. Thus the OS
views the array of multiple disks as a logical/virtual single disk. The file data can be processed
in parallel depending on the length of the stripe, that is, the number of disks participating. If
there are three disks in a stripe, the speed of accessing the data may increase by three times as
the file data can be accessed simultaneously as shown in Fig. 15.17.

The strip size may affect the access time, throughput, and data transfer time. If the strip size
is small, then the number of participating disks in the stripe will be increased. The smaller-
sized strips are known as fine-grained strips. Fine-grained strips will reduce the access time
as compared to a single disk and thereby increase the throughput and data transfer rate. If we
increase the strip size, then it may be possible that a request will map only one or two strips.
These large-sized strips known as coarse-grained strips, therefore, service more requests but
may reduce the data-transfer rate.
Disk mirroring
 As discussed earlier, the RAID structure provides redundancy of data in some systems where
the failure of access or loss of data cannot be afforded. The redundancy is provided through
the disk-mirroring concept where the duplicate of a strip is placed on a separate disk such that
every disk has a mirror copy. If one of the disks fails, then the mirrored copy is accessed. How-
ever, mirroring will reduce the storage capacity on RAID structure.
RAID controller

 Since the RAID structure consists of multiple disks, a normal disk controller is not able to
handle this structure. Instead, RAID controllers are used to manage the disks. They perform
data stripping and disk mirroring and maintain redundancy as necessary. For example, if a read
request consists of three consecutive strips, then the RAID controller will break this request into
three different read commands, mapping them on three disks so that they can be read in parallel.

Stripe

Strip1 Strip2 Strip3

Strip1 Strip2 Strip3

RAID Controller

File

Fig. 15.17 Data striping

Disk Management 489

15.9.1 RAID Levels
The various RAID levels are discussed as follows:

RAID Level 0 (Striping)
It is the simplest form of RAID structure wherein the data is distributed across all the disks in
the form of strips. RAID is like a logical disk that is divided into strips. These strips are mapped
into an array of consecutive disks in round robin manner, that is, the first n logical strips are
stored as the first strip on each of the disks, and the next n logical strips are stored as the second
strip on each disk and so on, forming multiple stripes as shown in Fig. 15.18.

However, this structure does not provide any redundancy. If one of the disks in the array
is not accessible, then the data or strips in that disk are lost. Consequently, all the other data
retrieved from other disks may become unusable if they are related to a single request or the
lost data. Due to this reason, this level is not considered as a true member of RAID structure.

RAID level 0 is simple to implement as it does not incur any cost for redundancy. Moreover,
it increases the performance of disk access by the factor n where n is the number of disks in the
disk array. This structure is more appropriate for the applications that do not require reliability
but performance and low cost.

RAID Level 1 (Mirroring)
This structure includes striping as well as redundancy. The redundancy is achieved via disk
mirroring, as shown in Fig. 15.19. When there is a read request, the disk with the shortest
seek time and rotational latency can be accessed, thereby having the advantage of distributing

Strip 1

Strip 4

Strip 7

Strip 2

Strip 5

Strip 8

Strip 3

Strip 6

Strip 9

Fig. 15.18 RAID level 0

Strip 1

Strip 3

Strip 5

Strip 2

Strip 4

Strip 6

Strip 1

Strip 3

Strip 5

Strip 2

Strip 4

Strip 6

Data disks Redundant disks

Fig. 15.19 RAID level 1

490 Principles of Operating Systems

the load over more drives. In case there is a write request, every strip needs to be updated.
 However, this write operation on various strips can be done in parallel. Thus, the efficiency is
not affected in write operation.

This structure incurs the cost of having redundant copies of the data on backup disks, thereby
reducing the storage capacity. The cost per unit storage, thus, is twice than in RAID level 0.
Therefore, applications with critical data must use this structure. For these applications, the
fault tolerance is quite good as the data may be recovered from the backup disk in case of any
disk failure.

RAID Level 2 (Fine-grained Striping and ECC Parity)
This structure uses fine-grained strips. Another modification in this structure is that instead
of disk mirroring, an ECC scheme is implemented, thereby reducing storage overhead and
cost. ECC is used to detect and correct the errors on the data. Hamming ECC is used for this
 purpose. Hamming code is calculated across corresponding bits on each disk. It uses parity bits
to check for errors in data transmission from disks and possibly corrects them. The parity bits
of the hamming code are stored in separate disks. For example, there is a data of four bits to
be written and each strip stores one bit. In this case, the stripe consisting of four bits is written
on four separate data disks where each strip stores one bit. RAID structure then calculates the
parity bits corresponding to the data stored in the stripe and then stores them in separate parity
disks as shown in Fig. 15.20. Thus, this structure reduces data storage, but even then, it is very
less as compared to RAID level 1. The increase in number of parity disks is proportional to the
log of number of data disks.

In case of a read operation, all the disks need to be accessed as the request data is spread
over all the disks and moreover, the hamming code is calculated and compared with the values
retrieved from the parity disks. Similarly, in case of a write operation even on a single strip, all
the disks including data and the parity disks must be accessed to calculate the Hamming code
and then write the data. Therefore, this structure may degrade the performance. Due to this
reason, multiple requests cannot be serviced in this structure. Some systems therefore relax the
condition of calculating the Hamming code in write operation but not on the read operation.

The RAID level 2 is applicable where more disk errors appear. However, today, the modern
disk drives come with fault-tolerance mechanisms or with built-in error-detection such as
 Hamming code. Therefore, this level is not used nowadays.

Strip 1

Strip 3

Strip 5

Strip 2

Strip 4

Strip 6

P(Strip 1)

P(Strip 3)

P(Strip 5)

P(Strip 2)

P(Strip 4)

P(Strip 6)

Data disks Redundant disks

Fig. 15.20 RAID level 2

Disk Management 491

RAID Level 3 (Fine-grained Striping and Single-parity Disk)
This structure is also based on bit-level or byte-level striping. However, instead of Hamming
code, it uses XOR ECC. The XOR code exploits the exclusive-OR operation to compute the
parity of each strip. Suppose, a strip X = {1010}, the parity bit is 0 as there are even number
of 1s. Suppose X = {1110}, the parity bit here is 1 as there are odd number of 1s. The parity
for the ith strip on each data disk is calculated by applying XOR operations on the contents of
ith strip of each disk. In case of a disk failure, the data on the disk can be reconstructed from
the contents of the corresponding strips on remaining disks in the disk array by applying XOR
operation on the strips. This structure uses only single-parity disk to store the parity of strips,
thereby reducing the redundant storage space as shown in Fig. 15.21. Since the strip size is very
small, the data transfer rate is high as parallel access on separate disks is possible especially in
large files, but, multiple requests in parallel cannot be serviced.

Example 15.11
There are three data disks D1, D2, and D3, each consisting of a strip of single bit. The parity bit
of ith strip is stored on the separate parity disk D4 and can be calculated as
D4(i) = D3(i) D2(i) D1(i).

Suppose, disk D2 fails and the data on it is lost. In this case, the data of D2 can be regenerated
as follows:
D2(i) = D4(i) D3(i) D1(i)

RAID Level 4 (Block Level XOR ECC Parity)
This structure uses large-sized strips and the data is striped as fixed-sized blocks, generally
larger than a byte. In effect, each strip stores more data, thereby allowing multiple I/O requests
to be serviced in parallel. The drawback is that the data-transfer rate becomes slow due to
coarse-grained strips. It uses exclusive-OR ECC as used in RAID level 3. The parity bit for
the strip on each disk is calculated and stored on the parity disk. Since the parity calculation is
required for all read and write operations, the parity calculation can be eliminated for multiple
read requests so that they can be accessed faster. However, it cannot be ignored in case of
write operations. The large data read or write operations are fast in this structure as parallel
access is possible. However, a small data read or write access may become slow due to parity
bit calculation. Any write operation needs to read the old data block, update it, and then write
the new data block. This read-update-write cycle may affect the performance of the system.

Stripe 2

Stripe 1

Stripe 3

Strip 1

Strip 3

Strip 5

Strip 2

Strip 4

Strip 6

P(Stripe 1)

P(Stripe 2)

P(Stripe 3)

Data disks Parity disk

Fig. 15.21 RAID level 3

492 Principles of Operating Systems

Moreover, the old parity block is read and then modified after recalculating the new parity bit.
Thus, any write operation involves two reads for old blocks and two writes for the new blocks.
Therefore, in case of small write requests, the overhead increases, thereby reducing the
 performance. Further, in case of multiple write requests, either small or large, the parity disk
becomes a bottleneck as each write request needs to write on the disk for new parity bit.

RAID Level 5 (Block Level Distributed XOR ECC Parity)
In this structure, the parity bits are not stored in a single devoted disk. Rather each disk in the disk
array participates to store the parity strip in a round robin fashion as shown in Fig. 15.22. This
reduces the bottleneck seen in RAID level 4, and now the parity bits can be updated in parallel.
However, the read-update-write cycle still exists for each write operation. There are different
methods to reduce this overhead. One method is to cache the recently accessed data and parity
strip. Second method is to store only the difference between the old parity and new parity bits in
the memory. This is known as parity logging. The third method is to reduce the I/O operations
during write operation to defer the parity generation in case of multiple small write operations at
once and perform parity calculation only when the system load is light. This technique is known as
A Frequently Redundant Array of Independent Disks (AFRAID). This structure is frequently
used RAID level due to its balanced features of reliability, performance, and cost.

RAID Level 6 (Block Level Dual Parity)
This structure enhances the reliability by including two types of parity calculations. One of
them is XOR as used in previous structures. The other calculation method is based on an algo-
rithm that is independent of data stored on the disks, providing higher reliability on the disks
failure. The two types of parity strips (say, P1 and P2) calculated are stored on two separate

Strip 1

Strip 3

P1(Strip 6–7)

Strip 2

P1(Strip 3–4)

P2 (Strip 6–7)

P1(Strip 1–2)

P2(Strip 3–4)

Strip 6

P2(Strip 1–2)

Strip 4

Strip 7

Fig. 15.23 RAID level 6

Strip 1

Strip 3

Strip 6

Strip 2

Strip 4

P (Strip 6–8)

Strip 3

P(Strip 3–5)

Strip 7

P(Strip 1–3)

Strip 5

Strip 8

Fig. 15.22 RAID level 5

Disk Management 493

disks (see Fig. 15.23), thereby increasing the redundant storage. Thus, RAID level 6 may suffer
in performance due to two parity disks for a single write operation.
To obtain better features of different RAID levels, RAID levels are combined. For example,
RAID levels 0 and 1 have been combined to obtain RAID 0 + 1. It gives better performance
and reliability. In this scheme, a set of n disks are striped, and then the stripe is mirrored on n
redundant disks. The other structure that is available is RAID 1 + 0. The difference in 0 + 1 is
that each data disk is first mirrored on the redundant disk and then the data disk, as well as the
mirrored disk, is striped. The advantage in 1 + 0 is that in case of failure of a single disk, the
mirror copy of the whole disk is available, while in case of 0 + 1, only mirrored strip of the
failed disk is available. Therefore, RAID 1 + 0 provides better reliability. Other RAID levels
such as 0 + 3, 0 + 5, and 1 + 5 have also been developed.

SUMMARY

Let us have a quick review of important concepts discussed
in this chapter:

 • The seek time is the time taken by the disk head to move
from one cylinder to another.

 • The rotational latency is the time taken by the addressed
sector to rotate into a position such that it comes under
the head.

 • The transfer time is the actual time when the data to be
read or written is transferred. The transfer time depends
on the rotational speed of the disk and the number of
bytes to be transferred.

 • Disk bandwidth is the total number of bytes transferred
divided by the total time between the first request of the
service and completion of the last transfer of the data.

 • Throughput is the total number of disk requests serviced
per unit time.

 • Response time is the average time spent in waiting by a
disk request.

 • Variance of response time is to measure how individual
requests are serviced relative to average system
 performance. If the variance is low, then it means that most
of the requests

 • are serviced after waiting for a similar amount of time.
 • The desired disk performance parameters are summarized

as follows:

Parameter Desired performance

Seek time Minimize

Rotational
latency

Minimize

Transfer time Minimize

Bandwidth Maximize

Throughput Maximize

Average
response time

Minimize

Variance of
response time

Minimize

 • The various disk-scheduling algorithms with their criteria
and pros and cons are summarized as follows:

Algorithm Criteria Pros/cons

FCFS the requests are scheduled in the
order as they have arrived in the disk
queue.

Fair
Low throughput
High average response time
Low variance
High seek time

SSTF the request whose seek time is the
shortest will be executed first.

Reduced seek time
High variance
High throughput
Starvation
Unfair

(Contd)

494 Principles of Operating Systems

SCAN services the requests in the direction
of its head movement and continues
until it reaches the end of disk

Good average response time
Low variance
High throughput
Starvation

C-SCAN considers the queue of cylinders as a
circular queue such that after reach-
ing the last cylinder, it starts scanning
again from the first cylinder.

High throughput
Low variance
Starvation

F-SCAN the new requests are deferred until
all the pending old requests in the
queue have been processed.

High throughput
Good average response time
Low variance

N-SCAN serves the n requests in the queue in
a sweep when the head is moving in
one direction.

High throughput but low as com-
pared to F-SCAN
Good average response time
Low variance

LOOK the disk head looks ahead in its
direction of movement for the last
request, moves to the last request,
and changes its preferred direction
there only and continues servicing
the request.

Reduces seek time
High throughput
Low variance
Good average response time

C-LOOK Combines the features of LOOK and
C-SCAN algorithm.

Low variance as compared to
LOOK
High throughput but low as com-
pared to LOOK
Reduces seek time
Good average response time

 • Rotational optimization is to consider the effect of rotational
latency on the performance of the I/O operation on the
disk. The various disk-scheduling algorithms that take into
consideration the rotational optimization are summarized
as follows:

Algorithm Criteria Pros/cons

SLTF examines all the requests in the
queue and finds out the request
having the shortest rotational
delay.

Reduces the rotational
latency
High throughput
 Starvation

SPTF considers the seek time as well as
rotational latency.

Reduces the rotational
latency High throughput
Starvation

SATF the total access time is calculated
for each request and the shortest
one is scheduled first.

(Table Contd)

Disk Management 495

 • The rotational optimization-based disk-scheduling al-
gorithms are dependent on the availability of disk
 configuration and other details.

 • There are three steps in disk formatting: low-level format-
ting, disk partitioning, and logical formatting.

 • Instead of mapping the bad sector to the spare sector, just
shift all the sectors to bypass the bad one. This method is
known as sector slipping.

 • The sector sparing and sector slipping can also be
 implemented by the OS.

 • The rotational optimization-based disk-scheduling algo-
rithms are dependent on the availability of disk configura-
tion and other details.

 • There are three steps in disk formatting: low-level format-
ting, disk partitioning, and logical formatting.

 • The low-level formatting is performed by the manufacturer
and the other two steps are performed by the OS.

 • The partition that contains the boot code is known as boot
partition.

 • The low-level formatting is performed by the manufacturer
and the other two steps are performed by the OS.

 • The partition that contains the boot code is known as boot
partition.

 • The disk that contains the boot partition is called a boot
disk or system disk.

 • The information regarding each partition is stored in one
data structure known as a partition table. The partition
table stores the information about each partition such as
its starting sector, size of each partition, and so on.

 • The logical-formatting operation lays down a boot block in
the partition and creates a file system.

 • The disk controller maps the bad sector to the spare one
out of pre-defined spare sectors. This is known as sector
sparing or forwarding.

 • Swap space can be defined as a temporary storage
 location on the disk to implement the VM when system’s
memory requirements exceed the size of available main
memory.

 • The multiple disks operate independently and in parallel to
organize the data in various ways, and redundancy of data
increases the reliability. This is known as RAID.

 • In RAID, the data is stored on separate disks as a strip. A
strip may be a fixed size block on the disk.

 • The set of strips at the same location on each disk in
the array is known as a stripe. The small-sized strips are
known as fine-grained strips, whereas the large-sized
strips are called coarse-grained strips.

 • The RAID structure is organized in seven levels (zero to
six) of disk arrays, which are summarized as follows:

RAID level Description Pros/cons Disks
required

0 Striped Non- redundant Simple to implement High
data transfer High I/O
request rate

n

1 Mirrored Redundant Increases data transfer
capacity for read operation
but not for write operation.
Increases I/O request rate
twice for read but not for
write.

2n

2 Fine-grained striping
Redundancy through
Hamming ECC

Highest data transfer
capacity Increases I/O
request rate twice

n + m

3 Fine-grained striping
Single-parity disk
Redundancy through
XOR ECC

Highest data transfer
capacity Increases I/O
request rate twice

n + 1

4 Coarse-grained
striping
Single-parity disk
Redundancy through
XOR ECC

Low data transfer capacity
Low I/O request rate

n + 1

(Contd)

496 Principles of Operating Systems

MULTIPLE CHOICE QUESTIONS

 1. is the time taken by the disk head to move
from one cylinder to another one.

 (a) Seek time (c) Transfer time
 (b) Rotational latency (d) None

 2. is the time taken by the addressed sector of
the appropriate track to rotate into a position such that read/
write head is accessible to it.

 (a) Seek time (c) Transfer time
 (b) Rotational latency (d) None

 3. depends on the rotational speed of the disk
and the number of bytes to be transferred.

 (a) Seek time (c) Transfer time
 (b) Rotational latency (d) None

 4. Which algorithm is better when the load on the disk is low
and the requests are uniformly distributed?

 (a) SCAN (c) FIFO
 (b) LOOK (d) SSTF

 5. algorithm may be best suitable to batch-
processing systems where high throughput and average
response time are required.

 (a) SCAN (c) FIFO
 (b) LOOK (d) SSTF

 6. will provide low variance of response time
due to random seek.

 (a) SCAN (c) FIFO
 (b) LOOK (d) SSTF

 7. is also known as elevator algorithm.
 (a) SCAN (c) FIFO
 (b) LOOK (d) SSTF

 8. eliminates unnecessary seek operations
and thereby increases average response time.

 (a) SCAN (c) FIFO
 (b) LOOK (d) SSTF

 9. C-LOOK achieves the benefits of both

 (a) SCAN and LOOK (c) C-SCAN and LOOK
 (b) SCAN and FCFS (d) C-SCAN and SSTF

 10. The information regarding each partition is stored in one
data structure known as

 (a) partition table (b) boot partition
 (c) bad partition (d) None

 11. formatting operation lays down a boot block
in the partition and creates a file system.

 (a) High-level (c) Both high-level and low-level
 (b) Low-level (d) None

 12. formatting is performed by the manufacturer.
 (a) High-level (c) Both high-level and low-level
 (b) Low-level (d) None

 13. While the disk is tested by the manufacturer at the time of
low-level formatting, a list of bad sectors is maintained on
the disk by

 (a) manufacturer (c) the OS
 (b) disk controller (d) none

 14. The set of strips at the same location on each disk in the
array is known as a

 (a) strip queue (c) striping
 (b) stripe (d) none

 15. Which of the following does not provide redundancy?
 (a) RAID level 0 (c) RAID level 2
 (b) RAID level 1 (d) RAID level 4

 16. Block level XOR ECC parity is used in
 (a) RAID level 1 (c) RAID level 5
 (b) RAID level 4 (d) RAID level 6

 17. Block level distributed parity is used in
 (a) RAID level 1 (c) RAID level 5
 (b) RAID level 4 (d) RAID level 6

 18. Block level dual parity is used in
 (a) RAID level 1 (c) RAID level 5
 (b) RAID level 4 (d) RAID level 6

5 Coarse-grained
striping
Distributed parity Redun-
dancy through
 XOR ECC

Low data transfer capacity
Low I/O request rate

n + 1

6 Coarse-grained
striping
Dual distributed parity

Low data transfer capacity
Low I/O request rate

n + 2

(Table Contd)

Disk Management 497

REVIEW QUESTIONS

 1. Discuss the system parameters that decide the need for
disk scheduling.

 2. Define seek time, rotational latency, transfer time, response
time, and variance of response time.

 3. Explain the criteria and situation where the following disk-
scheduling algorithms will perform better:

 (a) FCFS (f) F-SCAN
 (b) SSTF (g) LOOK
 (c) SCAN (h) C-LOOK
 (d) C-SCAN (i) S-LOOK
 (e) N-SCAN

 4. Differentiate between the following:
 (a) SCAN and C-SCAN (e) LOOK and S-LOOK
 (b) SCAN and N-SCAN (f) S-LOOK and C-LOOK
 (c) SCAN and F-SCAN (g) N-SCAN and F-SCAN
 (d) LOOK and C-LOOK

 5. What is rotational optimization?

 6. Explain the criteria and situation where the following disk-
scheduling algorithms will perform better:

 (a) SLTF (c) SATF
 (b) SPTF

 7. Define the following:
 (a) boot partition (b) bad sector
 (c) paging space (d) swap partition
 (e) data striping

 (f) coarse-grained and fine-grained striping
 (g) disk mirroring (h) RAID controller
 (i) parity logging (j) AFRAID

 8. Differentiate between the following:
 (a) sector sparing and sector slipping
 (b) seek optimization and rotational optimization
 (c) low-level and high-level disk formatting

 9. What are transient and permanent errors on disk?

 10. What is the role of disk controller and the OS in reference to
bad sectors?

 11. What are the factors that decide swap-space size?

 12. What is RAID? Explain its various levels.

 13. What is the difference between RAID 0 + 1 and 1 + 0?

 14. Compare and contrast F-SCAN- and N-SCAN-scheduling
algorithms.

 15. What is XOR ECC?

 16. How many I/O operations are required for a write operation
in RAID level 4?

 17. How does RAID level 5 reduces the bottleneck of single
parity disk for write operations?

 18. What are different methods to reduce the read-update-write
cycle overhead for write operations?

BRAIN TEASERS

 1. Is the rotational latency same for each disk access?

 2. What will be the criteria or situations to choose
 seek-optimization-based and rotational-optimization-based
disk-scheduling algorithms?

 3. What will be the requirement for average response time and
variance of response time in the case of a web server that
serves multiple user requests frequently?

 4. FCFS is considered to be a fair algorithm and reduces
 variance of response time. Then why is it not a preferred
algorithm?

 5. The overhead in SSTF is proportional to the number of
 requests in the queue. Explain how.

 6. SCAN performs unnecessary seek operations. Explain how.

 7. SCAN is a biased scheduling algorithm. Is it true? Explain.

 8. Both SSTF and SCAN may cause indefinite postponement
of the requests. Which one of the two is better in this regard?

 9. F-SCAN is an improvement over SCAN algorithm. However,
it may lead to lower throughput. Explain how.

 10. C-LOOK is an improvement over LOOK-scheduling
 algorithm. However, it may lead to increased average
 response time and lower throughput. Explain how.

 11. Consider a disk queue with I/O requests on the following
cylinders in their arriving order: 37, 56, 98, 32, 108, 78, 44,
78, 67, 69, 100

The disk head is assumed to be at Cylinder 40 and moving
in the direction of decreasing number of cylinders. The disk
consists of total 150 cylinders. Calculate and show with
diagram the disk head movement using FCFS-, SSTF-,
SCAN-, F-SCAN-, N-SCAN- (n = 3), LOOK-, and C-LOOK-
scheduling algorithms.

 12. In Problem 11, suppose some new requests arrive as given

 (a) Requests on Cylinders 60, 85, and 90 arrive while
 processing at 37.

 (b) Requests on Cylinders 70, 40, and 130 arrive while
 processing at 78.

What will happen to these new requests according to all the
scheduling algorithms?

498 Principles of Operating Systems

 13. Consider a disk queue with I/O requests on the following
cylinders in their arriving order:

67, 12, 15, 45, 48, 50, 109, 89, 56, 59, 34, 88, 130, 24,
109, 22

The disk head is assumed to be at Cylinder 80 and moving
in the direction of increasing number of cylinders. The disk
consists of total 150 cylinders. Calculate and show with
diagram the disk head movement using FCFS-, SSTF-,
SCAN, F-SCAN-, N-SCAN- (n = 3), LOOK, and C-LOOK-
scheduling algorithms.

 14. In Problem 13, suppose some new requests arrive as given

 (a) Requests on Cylinders 60, 85, and 90 arrive while
 processing at 50.

 (b) Requests on Cylinders 70, 40, and 128 arrive while
 processing at 130.

What will happen to these new requests according to all the
scheduling algorithms?

PART VI
Security and Protection

16. Security Issues

17. Protection Mechanisms

Case Study VI: Protection Mechanisms in
UNIX/Solaris/Linux/Windows

16.1 INTRODUCTION

Security is the most important and unavoidable parameter in the computer system in today’s world.
With increase in dependency on online systems today, there is an increase in the demand of the system’s
security. Hacking, of either stand-alone systems or online systems, has become the socio-technical
problem of the world. In this chapter, the objectives of the security, required on any type of system, are
discussed. Breaching the security objectives result in threats and attacks. Some of them have also been
discussed. The security objectives can be fulfilled, only if we are able to devise some mechanisms to
protect the systems. The protection mechanisms have been discussed in the next chapter.

16.2 SECURITY OBJECTIVES

A system is secure if its resources are used and accessed, as intended under all circumstances. Let us see
what the expectations from a secure system are. The basic security concepts that need to be covered by
system security are discussed in the following list:
 • Confidentiality

This concept refers to the protection against disclosure of
information to any unauthorized entity.

 • Integrity
 This concept refers to the protection against the altered
 message in transit or by other than the originator of the
information.

 • Authentication
 This concept deals with establishing the validity of a
 transmission, message, or originator. In other words, the
 information received by a receiver has been originated from a
 specific known source.

 • Authorization
 This concept refers to the process, through which a requester
is allowed to receive a service, or perform an operation.

 • Availability

 This concept refers to the assurance that information and
 communications services are available for use, when needed.

16 Security Issues

Learning Objectives
After reading this chapter,
you should be able to
understand:
 • Security objectives
 • Threats to security objectives
 • Role of intruders in security-

breaching
 • Standard security attacks
 • Security levels
 • Some security attacks that

appear inside the system
 • Some security attacks that

appear from outside the
 system

510 Principles of Operating Systems

16.3 SECURITY PROBLEM

The effects of security breaches could be extensive and can cause loss of information,
corruption of information, misinformation, privacy violations, denial-of-service, and so on.
The security breaches can be of two categories: malicious and accidental. Malicious breaches
are the intentional misuse of the system resources, and accidental breaches are unintentional
hardware, software, or human errors or any natural calamity.

Any security breach is a result of vulnerability in the system. Vulnerability is a weakness
in the system that might be exploited to cause loss or harm. If a system does not provide
password facility before accessing, it is considered as a vulnerability of the system. A threat
to a computing system is a set of circumstances that has the potential to cause loss or harm,
exploiting the vulnerability of the system. An attack is an attempt by an intruder to break the
security. Both threat and attack are results of vulnerabilities in the system.

Some of these threats and their corresponding attacks are discussed in the subsequent
sections.

16.3.1 Unauthorized Disclosure
It is a threat to the confidentiality of a system. An unauthorized user may disclose critical data,
leading to loss or harm. The consequent attacks of this threat are:
 • Sensitive data are exposed to an unauthorized entity. For example, passwords, credit card

numbers, and so on.
 • In communication, an unauthorized node receives the sensitive data that are supposed to be

between two authorized parties. It is known as interception.
 • An unauthorized entity may infer the information, by observing the traffic in a network, or

from a database, and disclose the same. It is known as inference.

16.3.2 Deception
It is a threat to the integrity objective. An authorized entity receives some false/unauthorized
data and believes those to be true/authorized. The consequent attacks of this threat are the fol-
lowing:
 • An unauthorized entity may pose to be an authorized one and attempt to gain access to the

system. This attack is known as Masquerade.
 • A file or database may be altered or some data may be replaced with false data. This attack

is known as falsification.
 • A user may deny that he has sent or received data. This attack is known as repudiation.

16.3.3 Disruption
It is a threat to the availability objective. It interrupts or prevents the correct operation of the
system. For instance, a system receives so much data that the communication system is not
able to handle them, thereby, interrupting the operation on the system. This attack is known as
denial-of-service (DoS).

16.4 INTRUDERS

The entity or a person, who tries to break the security objectives, is known as an intruder.
According to the Anderson report published in 1980, there are three classes of an intruder:

Security Issues 511

 • Masquerader
 It is an individual who does not have any authority to access a computer system, but gains
the access control, to exploit a legitimate user’s account. For an instance, a person somehow
steals or breaks the password of a system and uses it.

 • Misfeasor
 This type of intruder is an authorized user on the system, but misuses his/her privileges on it.
For example, a person who is authorized to access a system may leak some secret informa-
tion or password to someone else.

 • Clandestine User
 This type of user somehow gains the supervisory control of the system by exploiting its
vulnerabilities, and tries to elude the access control mechanisms implemented in the system,
in order to gain administrative privileges to a computer resource.

There may be different behaviours of an intruder, based on the intention of intruding upon a
system. Based on this behaviour, there may be two types of intruders:
 • Hackers

 The intruders, who break into the system just for fun, or to pose a challenge, are known as
hackers. Today, there is a big community of hackers who are motivated by these reasons.
Hackers can also be hired Internet security experts, who find vulnerabilities in systems.
These hackers are also known as white hat hackers.

 • Criminals
 These are intruders, who work in organized groups to break the system for profits, and
thereby, results in a business, but in an unethical way. These criminal hackers work sys-
tematically not just for fun or challenge, as hackers do, but with specific targets of gaining
profits.

An intruder, once logged into a computer system, starts harming the system. These attacks
are known as insider attacks. But there are a large number of attacks being faced externally
by a system connected to the Internet. These attacks are known as outsider attacks. Another
category of intruders is based on the type of damage they do. An intruder may silently observe
the network traffic or retrieve the system’s data, but does not modify anything. This type of
intruder is known as passive intruder. The passive intruders do not harm at the moment, but
exploit the retrieved information to harm in the future. An intruder, who modifies the data on
the network or a system, is known as an active intruder.

A large variety of intrusion has been in practice through the use of malicious software by the
attackers. The malicious software, also known as malware, is a program or set of programs that
may infect the user’s system in such a way, that this malicious program is hidden on the system
and gets activated, according to some condition, or corrupts the files/data on the system, or the
system is not available to use. In other words, the malicious software may harm the system in
any way, and the consequences may be disastrous for the user. Some of the malicious software
will be discussed later.

16.5 SOME STANDARD SECURITY ATTACKS

In this section, some standard attacks have been discussed that are in common use by the
intruders. Intruders may use one or the other attack, or combination of some of the attacks, to
attack on a computer system or a network system.

512 Principles of Operating Systems

16.5.1 Denial-of-Service
This type of attack is attempted by an intruder to make a system’s resource unavailable to its
authorized and intended users. In general, DoS attacks are implemented, by either forcing the
host computer to reset, or consuming all of its hardware or software resources, such that it can
no longer provide its intended service. For instance, an intruder may flood a target machine
with external communication requests, such that it responds slowly or even cannot respond to
legitimate traffic. DoS mostly attacks websites or services, such as banks, credit card payment
gateways, and so on. Some basic types of DoS attacks are:
 • Consumption of computational resources, such as bandwidth, disk space, processor time,

and so on.
 • Disruption of configuration information like routing packet information.
 • Disruption of state information like resetting of TCP sessions.
 • Obstruction of the communication media.

16.5.2 Spoofing
In this type of attack, an intruder pretends to be a valid host in a communication by breaching
the authentication, and then gains access for which they are not entitled. The following types of
spoofing are in common use by intruders:

IP Spoofing
The attacker makes use of header of IP packets in this type of attack. Since the header contains
the source and destination address, the attacker puts a forged source address in it, such that, to
the receiver, it appears that the packet is from a different machine, hiding the true source. The
receiver that receives this packet responds to the forged source address. IP spoofing can be used
with DoS attacks as well.

Identity Spoofing
In this spoofing, an attacker gets passwords and login information, by using fictitious digital
certificates or authorization prompts. Identity spoofing has effects, ranging from mild displea-
sure to extreme danger. A stolen identity may lead to accessing bank accounts and other per-
sonal information.

Web Spoofing
In this type of attack, the intruder first copies web pages of a website. A copied web page is
then created and displayed on the web, when a victim user opens the same web page. The user
opens the spoofed page, instead of the actual web page, and is led to believe that he/she is com-
municating with the real server.

Email Spoofing
In this technique, an email address is used, under false authentication or web spoofing, where
domains are ‘hijacked’ or faked. It occurs when a person receives an email that appears to have
originated from one source, but actually was sent from a fake source. It is an attempt to trick
the user into releasing confidential information such as passwords, banking details, telephone
numbers, and so on, to cause damage.

16.5.3 Session Hijacking
In this type, when two nodes in a communication network enter into a session, at the same
time, the intruder enters into the communication; intercepts the traffic and carries on the session

Security Issues 513

in the name of any one of the two nodes. This is known as session hijacking as the session
 established between the two nodes has been hijacked by the intruder. For instance, the intruder
may intercept the credit card details while online shopping.

16.5.4 Man-in-the-Middle Attack
In this type of attack, a malicious user observes the communication between the sender and
receiver, and leaks any information being sent. The intruder intercepts the network traffic, col-
lects the data, and then forwards it to the destination, which the user was originally intending
to visit (see Fig. 16.1).

16.5.5 Replay Attack
In this attack, the attacker sends a data packet, which was earlier sent by some other user, in the
hope of reproducing the effect. These attacks are like man-in-the-middle attacks that involve
intercepting data packets and replaying them, that is, resending them to the receiving server.

16.6 SECURITY LEVELS

While considering the security of a computer system, there are various assets to be protected
like hardware, software, data and communication lines, in case of a network system, and so on.
In all these assets, there may be the possibility of a security threat. Hardware is most vulnerable
to attack; it is prone to accidental or intentional damage or theft. It leads to the non-availability
of the hardware, which is a major threat to the computer system.

Software also needs protection, as there may be several security problems, like the following:
 • It can be deleted, leading to non-availability.
 • It can be altered, such that it cannot be used, leading to non-availability.
 • It can be modified in such a way, that it is working but behaving in a different manner,

leading to threat to authenticity/integrity.
 • The malicious software like viruses, Trojan horse, worms, and so on, attack the legal

 software, leading to some kind of threat to it.
 • Unauthorized copying of software, resulting in software piracy.

 The data on a computer system are also prone to attacks, as there may be several security
 problems, such as the following:
 • The data files can be damaged, either accidentally or intentionally, leading to non-avail-

ability.

New connection

Sender

Original connection

Man-in-the-middle

Receiver

Intruder

Fig. 16.1 Man-in-the-middle attack

514 Principles of Operating Systems

 • The data files/databases can be read in an unauthorized way, and analysis of data can be
done, such that the data may be used to disclose personal information, leading to non-
confidentiality.

 • The modification of data files may lead to integrity threats.
In network systems, the security attacks are increasing day by day. Much of the computer sys-
tem data travel through network communication in many ways, such as LAN, WAN, Internet,
wireless, and so on. Today, data interception through the network is the most common attack,
leading to several security problems, such as the following:
 • An intruder may view the contents of an email message, a file being transferred, and so on,

leading to non-confidentiality.
 • An intruder may analyze the network traffic in order to attack in future.
 • An intruder may modify the data being transmitted, for example, replay attack, leading to

non-integrity.
 • When one intruder entity pretends to be another, like spoofing, it leads to non-authentication.
 • DoS attacks lead to non-availability of the system.

It is evident from the discussions so far, that it is necessary to have security measures for the
computer system. The security measures, in general known as protection mechanisms, will be
discussed in the next chapter. But it is necessary here to understand at which levels security can
be provided. The four security levels are:
 • Physical level

 The computer systems must be protected physically, in any case. They must be protected
from theft, accidental damage, intentional damage, and natural disasters like storm, rain,
and so on.

 • User level
Only authorized persons should be allowed to access the computer systems.

 • OS level
 The intruders attack on the system by finding out the vulnerabilities of the system at OS
level. DOS attacks, stack overflow attacks, and so on are examples of OS-level security
breaches. The system, thus, must be protected at the OS level.

 • Network level

 As discussed, these days, a network system is highly prone to attacks, as we are more
dependent on online systems. Any kind of information leakage, DoS attacks, modification
of messages, masquerading, and so on, may occur in a network, thereby increasing the se-
curity need at this level as well.

This book aims to discuss security at the OS level. But the security and protection measures at
the hardware level and user level must be maintained, so that appropriate protection measures
can be designed at the OS level. For example, the hardware protection mechanisms, such as
memory protection, dual mode, and so on, are needed to protect the system at the OS level.

16.7 INSIDE SYSTEM ATTACKS

This section discusses some of the inside system attacks that are in common use by the intruders.

16.7.1 Trap Door/Back Door
This is a code inserted in a program, in order to have a secret backdoor entry into it. Since the
testing and debugging may take time, and due to this, the system programmers get irritated

Security Issues 515

when they need to pass the authentication procedures again and again, to gain access to the
program. This backdoor entry enables them to enter into the system, without passing through
the normal security access checks, so that they can debug and test the programs. Originally the
backdoors were used for debugging and testing purposes. However, the problem may start if
the program is released with this backdoor code. The intruder may observe this backdoor as
vulnerability in the program, and use it to have an illegitimate entry into the system. At the OS
level, there cannot be any countermeasures, but backdoors can be avoided if there is proper
code review before releasing the software.

16.7.2 Logic Bomb
It is a malicious code embedded in a legitimate program and is programmed to get activated,
when some particular condition or some event occurs. The triggering of the logic bomb into
computer systems or network may cause some kind of damage that the creator of logic bomb
has desired for. The logic bomb is a predator of viruses and worms. In other words, the logic
bombs are ancestors of viruses and worms used today by the intruders. The conditions or the
events used for triggering the logic bombs may be a particular day of week, absence of a par-
ticular person’s password entry, absence or presence of a file, and so on. Cleaning the hard disk,
erasing or encrypting some files, and so on, are some of the havocs created by logic bombs.

16.7.3 Trojan Horse
The term Trojan horse has originated from Greek mythology about the Trojan War. In the soft-
ware environment, the Trojan horse is a seemingly innocent program, but contains code that
performs an unexpected and undesirable function. For instance, the intruder/hacker will create
a game (Trojan horse) and place it on the Internet to attract users. Whenever the game pro-
gram is executed, the Trojan horse code will also be executed. This may harm a user’s system,
without breaking into the computer system. Thus, Trojan horse codes are hidden inside useful
programs and get activated as soon as the program containing them is executed. Trojans can
also create backdoors, which can give unauthenticated users access to the system.

16.7.4 Login Spoofing
It is a technique used to steal login credentials through a fake screen presented to the user.
Suppose, the user wishes to log in to a system. The attacker is active, and presents the user a
screen that looks similar to the login screen of the system. The user, mistaking it as the original
login screen, enters login ID and password on the fake screen. The intruder captures the entered
information and attacks the system.

16.7.5 Buffer Overflow
Buffer is a temporary area in the main memory. Buffer overflow occurs, when the size of
information written into the memory allocated to a variable, exceeds the size allocated to it at
compile time. For instance, arrays used in ‘C’ language have no upper bound checks, that is, if
the data stored in the buffer are larger than the size fixed for it, no message will be displayed
for the overflow situation. Overflow results in overwriting of memory area. The memory area,
being overwritten by the junk data, may result in chaos. For example, a program A is being
executed. Its data variables are stored in the stack area of the memory. Suppose, the program
A calls a function X. To start execution of the function X, the return address of the main
 program is stored in the stack. The data variables of X are also stored in the stack below the

516 Principles of Operating Systems

data variables of the program A. If there is an array being used in the function X and data to be
stored in this array crosses its boundary, the array will overflow and this overflown data will
be overwritten in other parts of the stack (see Fig. 16.2). The possibility may be that the return
address of the program A will get overwritten with some junk value. A will not be able to start,
as its actual return address has been modified.

The intruders may use this buffer overflow method to attack the system by intentionally
inputting some data that are too long to fit in the array of the program. Moreover, this long data
will consist of the address of a module and the address will be overwritten in the return address
of the program. This will lead to execution of the module, which may harm the system in a way
the intruder wishes.

16.8 OUTSIDE SYSTEM ATTACKS

This section discusses some of the outside system attacks that are in common use by the intruders.

16.8.1 Viruses
A computer virus is a malicious software program that is loaded into someone’s computer with-
out his/her knowledge. Like a human virus, the computer viruses are of different types. Some
of them can cause only mild effect, but some can be dangerous. The special thing about a virus
is that it can replicate itself. Even a simple virus can be dangerous, because the multiple copies
of the virus can quickly use all the available memory of the computer and bring the system to
a halt. The more dangerous viruses are capable of transmitting themselves over the network.
Some can even damage all the computer software, hardware, and the files.
A virus has, in general, three parts:

 1. Infection mechanism or infection vector: The mechanism by which it replicates or spreads.
 2. Trigger: It is an event or condition, on the occurrence of which, the virus starts damage.
 3. Payload: The damage action a virus performs.

A virus has various phases in its life, from its initiation to execution. The virus, when hidden
in a program but sitting idle, is in the dormant phase. It may be possible that a virus does
not have any dormant phase. When a virus starts infecting other programs, it is known as the
 propagation phase. In this phase, a virus replicates itself to have multiple infected copies.
When the trigger of a virus that is in the dormant phase activates, it is known as the triggering
phase. When the virus starts its payload, it is known as the execution phase.

SP

Data variables of
program A

Program A

Data variables of
program A

Program A

Return address of A

Data variables of
function X

SP

Stack

Fig. 16.2 Buffer overflow

Security Issues 517

16.8.2 Types of Viruses
Some types of viruses in common use are as the following:

Appending Virus
It is a type of virus that adds its malicious code at the end of a host program. Its goal is not to
destroy the host program, but to slightly modify it, by appending itself to hold the virus code,
and then be able to run itself.

Polymorphic Virus
It is a type of virus that changes its binary pattern or its signature every time it replicates,
and thereby, may infect a new file, making it undetectable by antivirus software. Polymorphic
infections are thus difficult to be detected by antivirus detection programs, because one poly-
morphic virus could have thousands of variants.

Macro Virus
There are many types of software like, Word, Excel, and programming languages, which pro-
vide the functionality of a macro that groups several commands to be executed later with a
single keystroke. The viruses can be attached within a macro, resulting in a macro virus. This
macro virus may affect a chain of events executed by an application.

Companion Virus
It is a type of virus that does not infect the program, that is, does not inject its code into a file,
but executes when the actual program is supposed to run. This virus is created with a file name
that has the same name as of the actual program, but with different extension. For example,
there is a program with the name copy.exe. The creator of the virus prepares the virus file with
the name copy.com. When a user starts running the copy program, the virus file copy.com is
first executed, and after its completion, the actual program copy.exe is executed. Since the
actual program is running, the user is unaware that a virus file has been already executed on
the system. This is how a companion virus works. The target of companion viruses are very
commonly-used files, such as startup files in the system.

Memory Resident Virus
The types of viruses discussed till now execute and exit, that is, they are not in the memory
after their execution, and run, only if the infected file is executed. But there are large numbers

of viruses that stay resident in the memory, even after
their execution, and perform mischievous actions.
Such a virus must find a place in the memory to hide
itself. This is because, on the execution of any system
call, an interrupt is generated, and the corresponding
 interrupt handler from BIOS is executed
(see Fig.16.3). The memory resident virus takes
advantage of this concept. This type of virus captures
IVT in the memory, c opies the address of an interrupt
to a temporary location, and replaces the actual
interrupt address with its own address (see Fig. 16.4).

It results in the execution of a virus, whenever a system call, corresponding to the replaced
 interrupt address, is executed. Thus, this virus hooks the execution of a code flow to itself.

IVT

Program

BIOS

Interrupt

Fig. 16.3 IVT before virus attacks

518 Principles of Operating Systems

Boot Sector Virus
This type of virus takes the advantage of the booting process: BIOS reads the boot sector from
the disk, loads it in the memory, and executes to determine the partition-related information.
The virus overwrites the boot sector program to load its own program in the memory. The boot
sector virus first copies the actual boot sector on the disk and replaces its code with its own
code. After the virus program has been loaded in the memory, it again puts the actual boot
sector program in its place, so that the system can be booted. In this way, the virus has copied
itself in the memory to infect other files, and the system has also booted, so that the user has no
impression of any virus.

File/Executable Program Viruses
These viruses attach themselves to regular program files. The viruses may be attached at vari-
ous locations in the file, by inserting their code, such that malicious part of the file inserted
by the virus is executed, while accessing the file. The EXE files are usually the target of these
viruses. But the file of the type COM, SYS, OBJ, and BAT can also be infected by these viruses.
File viruses are typically memory-resident and wait in the memory, until the user runs another
program.

A virus file, which overwrites an executable file with itself, is known as an executable virus.
Whenever this executable file is executed or opened, the virus file gets activated, and it starts
infecting other files. The executable viruses are so dangerous, that they can disable antivirus
programs or may result in slowing down the system performance.

Encrypted Virus
This type of virus replicates itself with the help of encryption. A portion of virus generates a
random encryption key, and using this key, it encrypts the remainder portion of the virus. The
key is stored with the virus. When an infected program is executed, the virus decrypts the virus
program, and is replicated with a different random key for encrypting and decrypting next time.
Since the larger portion of the virus is encrypted with a different key every time it replicates, it
is very difficult to observe the pattern of this virus.

Stealth Virus
This type of virus is designed such that it tries to hide itself in entirety from any detection. Some
of the types of stealth virus, based on their techniques to hide themselves, are as the following:
Directory/Semi-stealth virus
 The virus code is installed in the memory. The virus intercepts functions of a file and starts
infecting the file, by modifying it. Due to the changes in the file, the size of this infected file

IVT

Program

Virus

BIOS

Interrupt

Fig. 16.4 IVT after virus attacks

Security Issues 519

will change and must be reflected in the directory. But, the virus does not show the change in
file size in the directory. In this way, the virus remains hidden in the system.
Read stealth virus

 This type of stealth virus is based on the content simulation technique. It intercepts seek/read
functions and simulates the content of a file. For example, boot sector virus discussed above is
a type of read stealth virus. It reads the boot sector and stores it somewhere, such that it boots
the system. It retains the actual boot sector, but infects it at the same time (see Fig. 16.5). In this
way, the virus is hidden, as the system boots properly.

16.8.3 Worms
It is a special type of virus that has the property of replicating itself in seconds, on every
machine it can gain access to, across network connections. Unlike a virus, a worm cannot attach
itself to other programs. It takes advantage of the computer network to travel. A worm can cre-
ate hundreds or thousands of copies of itself, creating a huge destructive effect. It first finds out
the vulnerabilities in the system in order to gain an unauthorized access, and then spreads to the
connecting machines, thereby, infecting these machines.

An example of a worm infection is to send a copy of the worm through email systems. The
worm replicates and sends itself out to every address listed in each of the receiver’s address
book, and this replication continues down the line. Worms consume too much system memory
and network bandwidth, causing web servers, network servers, and individual computers to
stop working. They can even use remote login facility in the networks to spread themselves.

16.8.4 Bots
Bots are just like Internet worms that unknowingly take over a system connected on the
Internet and use that system to spread infection. The difference between a bot and worm is
that a bot is controlled from a central coordinator known as botnet, while worms are able to
propagate and activate themselves. Using the bots, an attacker is able to control the host system
remotely through a communication channel. The channel can be Internet Relay Chat (IRC),
Peer-to-peer (P2P), or Hypertext Transfer Protocol (HTTP). Using these channels, the
communication, between a control module and the bot on a remote system, is established. After
that, the control module remotely issues commands to the bot remotely.

IVT

Program

Stealth
virus

BIOS

Interrupt

Original Boot
sector stored
somewhere else

Fig. 16.5 Stealth virus

520 Principles of Operating Systems

16.8.5 Mobile Code
There are various types of malware that are intentionally unleashed into a system, as discussed.
However, there may be some code that is executed by the application, despite not being a part
of it. This type of code is known as mobile code. Mobile code is a process that migrates and
executes at remote hosts. In other words, it is a capability between a process code and the loca-
tion where it executes. Mobile code process may migrate to any node in a network, and execute
on any one of the destination nodes. However, it is dangerous and against security norms, to
allow a foreign process to be executed on a host. The mobile code may contain virus that could
infect the host on its execution.

Today, the risk of mobile code has increased, with the advent of Internet- and web-based
programs, as applications can be written independent of the underlying machine architectures.
The mobile code can be written in JAVA, JAVASCRIPT, VBSCRIPT, and so on. The mobile
code can also be downloaded willingly or unwillingly by the user on the Internet. For instance,
while downloading a web page, the associated applet programs are also downloaded and ex-
ecuted. With increase in usage of mobile code, the risk of welcoming the malicious code is also
increasing.
There may be two types of mobile code, as discussed in the following list:
 • One-hop agents

 This type of code is sent from a server to a client on demand and executed, thereby, having a
weak mobility. After execution, the results of agent execution or agent itself are returned to
the owner of the agent that sent it. Applet is an example of this type of mobile code.

 • Multi-hop agents

 These types of agents are sent on the network without any client demand, and are free to
move to any node on the network. They perform a series of tasks and return the result to
their owner, but it is not necessary that the agents will also return. These agents also have
the capability to communicate with other agents and coordinate among themselves. Mobile
agents are examples of this type of mobile code.

Mobile code security has two aspects like the following:
 • Protection from malicious host: The malicious host can harm the code as well as data

associated with a crawling agent. So the mobile agent must be protected from the attack of
malicious host. Denial of service, interception, and alteration of the agent are some of the
main security attacks caused by a malicious host.

 • Protection of host from unauthorized agent: An unauthorized entity can act as a mobile
agent and can harm an agent-enabled host. So the hosts must be protected from such un-
authorized agents. Denial-of-service and improper use of resources are two main security
attacks caused by an unauthorized agent.

16.8.6 Rootkit
Rootkit is a set of programs that provides administrator access to a system. After gaining access
to the root of a system, an intruder installs the rootkit, and thereby, gains access to all functions
of the system. In other words, now the intruder has complete control of the system and may
change, add, or delete the user and system files, processes, and so on, in order to stealthily alter
its normal functionality. Thus, through the rootkit, an intruder is able to have a direct attack on
a system, while hiding its intrusion and maintaining its privileged access. A rootkit does not
spread on other systems, like viruses, but it can be installed by a virus or Trojan horse.

Security Issues 521

SUMMARY

Let us have a quick review of important concepts discussed
in this chapter:

 • The security breaches can be of two categories: Malicious
and accidental. A malicious breach is the intentional
misuse of system resources and an accidental breach is an
unintentional hardware/software/human error or any
natural calamity.

 • Vulnerability is a weakness in the system that might be
exploited to cause loss or harm.

 • A threat to a computing system is a set of circumstances
that has the potential to cause loss or harm, exploiting the
vulnerabilities in the system.

 • An attack is an attempt, by an intruder, to break the se-
curity.

 • Both threat and attack are the result of vulnerabilities in
the system.

 • In communication, an unauthorized node receives the
sensitive data that are supposed to be between two au-
thorized parties. It is known as Interception.

 • An unauthorized entity may infer the information from a
database or by observing the network traffic, and dis-
close the same. It is known as Inference.

 • An unauthorized entity may pose to be an authorized one
and attempt to gain access to the system. This attack is
known as Masquerade.

 • A file or database may be altered or some data may be
replaced with false data. This attack is known as Falsi-
fication.

 • A user may deny that he has sent or received data. This
attack is known as Repudiation.

 • An intruder, called masquerader, is an individual who
does not have any authority to access a computer sys-
tem, but gains access control to exploit a legitimate user’s
account.

 • An intruder, called misfeasor, is an authorized user on
the system, but he/she misuses his/her privileges on it.

 • An intruder, called clandestine, is a user who somehow
gains the supervisory control of the system, by exploiting
its vulnerabilities, and tries to elude the access control
mechanisms implemented in the system, in order to gain
administrative privileges to a computer resource.

 • The intruders, who break the system just for fun, or to
pose a challenge, are known as hackers.

 • The intruders, known as criminals, work in organized
groups and break the system with the motivations of
profit, and thereby, results in a business, but in an unethi-
cal way.

 • Insider attacks are attacks on a system which maybe
from inside the system, while outsider attacks may be
from outside the system.

 • A passive intruder silently observes the network traffic or
retrieves the system’s data, but does not modify anything.

 • An active intruder modifies the data on the network or a
system.

 • Malware is a program or set of programs that may infect
the user’s system in such a way, that malicious program
is hidden on the system and this gets activated, accord-
ing to some condition, or corrupts the files/data on the
system, or system is not available to use.

 • Denial-of-Service (DoS) attacks are implemented, by ei-
ther forcing the host computer to reset, or consuming all
of its hardware or software resources, such that it can no
longer provide its intended service.

 • When an intruder pretends to be a valid host in a com-
munication, by breaching the authentication, and then
gains access for which they are not entitled, it is known
as spoofing.

 • IP spoofing is carried out when an attacker sends a mes-
sage to a computer with an IP address, indicating that the
message is from a trusted and authenticated host.

 • In identity spoofing, an attacker gets passwords and login
information, by using fictitious digital certificates or autho-
rization prompts.

 • When an intruder displays a spoofed web page to mis-
lead the user to believe that he/she is communicating
with the real server, it is known as web spoofing.

 • In email-spoofing, an email address is used under false
authentication or web spoofing, where domains are ‘hi-
jacked’ or faked.

 • When the session established between the two nodes
has been hijacked by the intruder, it is known as session
hijacking.

 • When a malicious user sits between the sender and re-
ceiver, intercepts the traffic coming from the computer,
collects the data, and then forwards the same to the des-
tination, which the user was originally intending to visit, it
is known as man-in-the-middle-attack.

 • In replay attacks, the attacker simply sends a data pack-
et, which was previously sent by some other user, in the
hope of reproducing the effect.

 • Logic bomb is a malicious code embedded in a legitimate
program, programmed to get activated when some par-
ticular condition, or some event, occurs.

 • Trojan horse programs are hidden inside useful programs
and get activated as soon as the program containing
them is executed.

 • Login spoofing is a technique used to steal a user’s pass-
word through a fake screen, presented to the user.

 • A computer virus is a malicious software program that is
loaded into someone’s computer, without his/her knowledge.

522 Principles of Operating Systems

MULTIPLE CHOICE QUESTIONS

 1. ____ is a security measure which protects against the dis-
closure of information to unauthorized parties.

 (a) Confidentiality (c) Authentication
 (b) Integrity (d) Authorization

 2. ____ is the process of determining that a requester is al-
lowed to receive a service or perform an operation.

 (a) Confidentiality (c) Authentication
 (b) Integrity (d) Authorization

 3. ____ is a measure intended to allow the receiver to deter-
mine whether the information it receives has not been al-
tered in transit.

 (a) Confidentiality (c) Authentication
 (b) Integrity (d) Authorization

 4. ____ is a measure, designed to establish the validity of a
transmission, message, or originator.

 (a) Confidentiality (c) Authentication
 (b) Integrity (d) Authorization

 5. Any security breach is a result of _____ in the system.
 (a) Threat (c) Attack
 (b) Vulnerability (d) none

 6. A ____ to a computing system is a set of circumstances that
has the potential to cause loss.

 (a) Threat (c) Attack
 (b) Vulnerability (d) none

 7. ___ is an attempt by an intruder to break the security.
 (a) Threat (c) Attack
 (b) Vulnerability (d) none

 8. ___ is an individual, who does not have any authority to
access a computer system, but gains the access control to
exploit a legitimate user’s account.

 (a) Masquerader (c) Clandestine user
 (b) Misfeasor (d) None

 9. ____ somehow gains the supervisory control of the system
by exploiting its vulnerabilities.

 (a) Masquerader (c) Clandestine user
 (b) Misfeasor (d) None

 10. ___ is an authorized user on the system, but he/she mis-
uses his privileges on it.

 (a) Masquerader (c) Clandestine user
 (b) Misfeasor (d) None

 11. ____ are Internet security experts hired to find vulnerabili-
ties in systems.

 (a) Hackers (c) Criminals
 (b) White hat hackers (d) none

 12. _____ are implemented, by either forcing the host com-
puter to reset, or consuming all of its hardware or software
resources, such that it can no longer provide its intended
service.

 (a) Spoofing (c) Man-in-middle-attack
 (b) DoS (d) none

 13. When an intruder pretends to be a valid host in a com-
munication, by breaching the authentication, and then
gains access for which they are not entitled, it is called
___________.

 (a) Spoofing (c) Man-in-middle-attack
 (b) DoS (d) none

 14. In ___ type of attack, a malicious user sits between the
sender and receiver, and sniffs information being sent.

 (a) Spoofing (c) Man-in-middle-attack
 (b) DoS (d) none

 15. Originally the ____ was used for debugging and testing pur-
poses.

 (a) Logic bomb (c) Trojan horse
 (b) Backdoor (d) none

 • A virus has three parts:
Infection mechanism: mechanism by which it spreads
 Trigger: an event or condition, on the occurrence of
which, it starts its action
Payload: the damage action a virus performs

 • A virus when hidden in a program, but sitting idle, is said
to be in the dormant phase.

 • When a virus starts infecting other programs, it is known
as the propagation phase.

 • When a triggering event happens on a virus that is in the
dormant phase, it is known as the triggering phase.

 • When the virus starts its payload, that is, damage action,
it is known to be in the execution phase.

 • Worm is a special type of virus that has the property of
replicating itself in seconds, on every machine it can gain
access to, across network connections, but cannot attach
itself to other programs.

 • Bots unknowingly takes over a system that is connected
on the Internet, and uses that system to spread infection,
but is controlled by botnet.

 • Mobile code is a process that migrates and executes at
remote hosts.

 • There may be a virus attached with the mobile code that
could infect the host on its execution.

 • Rootkit is a set of programs that provides an intruder ad-
ministrator access to a system.

Security Issues 523

 16. ____ is hidden inside useful programs, and gets activated,
as soon as the program containing them is executed.

 (a) Logic bomb (c) Trojan horse
 (b) Backdoor (d) none

 17. A ___ is a malicious code embedded in a legitimate pro-
gram, programmed to get activated, when some particular
condition or some event occurs.

 (a) Logic bomb (c) Trojan horse
 (b) Backdoor (d) none

 18. ___ is a type of virus that changes its binary pattern or its
signature, every time it replicates.

 (a) Macro (c) Polymorphic
 (b) Companion (d) Stealth

 19. ____ is a type of virus that does not infect the program file,
but executes when the actual program is supposed to run.

 (a) Macro (c) Polymorphic
 (b) Companion (d) Stealth

 20. ____ virus is designed, such that it tries to hide itself in en-
tirety from any detection.

 (a) Macro (c) Polymorphic
 (b) Companion (d) Stealth

 21. ___ is a special type of virus that has the property of repli-
cating itself in seconds on every machine it can gain access
to, across network connections.

 (a) Encrypted virus (c) Worm
 (b) Stealth virus (d) none

REVIEW QUESTIONS

 1. What are the security objectives to secure a computer
system?

 2. Differentiate between vulnerability, threat, and attack.

 3. What is the difference between hackers and criminals?

 4. What is malware?

 5. How is a DoS attack implemented?

 6. What is spoofing? Explain its various types.

 7. What is session hijacking?

 8. Differentiate between a logic bomb, Trojan horse, and a
virus.

 9. How does an attacker use buffer overflow to attack the
system?

 10. What is a memory resident virus? Explain its types.

 11. How does a boot sector virus attack?

 12. What is a stealth virus?

 13. Differentiate between virus, bots, and worms.

BRAIN TEASERS

 1. What kind of attacks are possible on the following systems:
 (a) Railway reservation system
 (b) A company having LAN system
 (c) A company having a LAN system, but is connected to

the Internet as well..
 (d) A wireless system being used in warfare conditions
 (e) Mobile phone of a general user

 2. Search engines also use mobile code in the form of web
crawlers. The crawlers either visit the websites to down-
load the web page, or deploy mobile agents for the same.

What can be the security issues on these web crawlers or
mobile agents?

 3. Make a list of some common viruses that attack the wireless
systems.

 4. Make a list of some common viruses that attack the network
systems.

 5. Make a list of some common stealth viruses.

 6. Make a list of some common viruses that take help of Trojan
horses or vice versa.

17.1 INTRODUCTION

In Chapter 16, various security issues have been discussed. Various protection mechanisms are adopted
in response to reduce or nullify the intruder attacks on the system. The protection mechanisms are
driven by two principles. One is known as ‘Need to know principle,’ which states that unless a user
has a specific reason to access a piece of information, the permission to access is denied. It means that
the information or part of it is not accessible to anyone. The second principle is ‘Principle of least
privilege,’ which states that a process or user must be able to access information or resources that are
necessary for its legitimate purposes. All the protection mechanisms discussed in this chapter follow
these two rules.

17.2 PROTECTION DOMAINS

There are various types of resources as discussed in Chapter 3.
These resources are identified as objects. Thus, there are hard-
ware, software, and virtual objects in a system. Each object needs
a protection mechanism in a multi-programming environment.
To have a protection mechanism, each object is distinguished
and identified with its unique name and a finite set of operations.
These operations are in fact the rights that can be exercised on an
object. For example, a file can have read, write, and execute oper-
ations. A CD ROM can have only read operation. Some objects
along with their corresponding operations have been listed in
Table 17.1.

A process may not access all the resources all the time. A process
should be authorized to access only those resources that it needs.
Further, the resources may be restricted to access only required op-
erations of a resource. For example, a process may be allowed to
read a file but not for write operations. Therefore, there should be
a mechanism that prohibits processes from accessing the resources
for which they have no authorization. For this purpose, the con-
cept of domain has been introduced. A domain is a set of object
and right pairs (see Fig. 17.1). Each pair in the domain consists of
object with its permitted operations that can be performed on it. In
other words, a protection domain is a collection of access rights.

17 Protection
Mechanisms

Learning Objectives
After reading this chapter,
you should be able to
understand:
 • Protection domains
 • Access control mechanisms
 • Access control lists
 • Capability lists
 • Cryptography as a security

tool
 • Authentications and its

methods
 • Intrusion detection system
 • Worm/bot/rootkit

countermeasures
 • Dealing with buffer overflow

attacks
 • Dealing with mobile code
 • Security patches
 • Secure file systems
 • Trusted OSs

Protection Mechanisms 525

For example, in Fig. 17.1, there are two domains, Domain1 and Domain2. Domain1 consists
of two resources R1 and R2. In this domain, the access rights of R1 and R2 are read and write
and execute, respectively. Similarly, Domain2 consists of R3 and R4 with their corresponding
access rights.

It is not necessary that all domains will have separate resources. A resource may be present
in multiple domains with same or different access rights. For example, in Fig. 17.2, it can be
seen that read and write operations can be performed on R1 in Domain1 while R1 can be only
read in Domain2.

Further, a resource can be shared by multiple domains. For example, a single printer may be
shared by the domains as shown in Fig.17.3.

Using the domain structure, a process may specify a protection domain that specifies the
resources that it wishes to access. In this way, a process is restricted to use only those resources
and thereby, their corresponding operations that are mentioned in the protection domain.
A process, however, may also switch the domains depending on its requirements. Thus, the
relation between a domain and process may not be static but can be dynamic.

R1(read, write)
R2(execute)

R3(read)
R4(execute)

Domain1 Domain2

Fig. 17.1 Protection domains

R1(read, write)
R2(execute)

R1(read)
R4(execute)

Domain1 Domain2

Fig. 17.2 Protection domains: a resource in multiple domains

Table 17.1 File operations

Object Operations

Program file Create, read, write, execute, delete, open, close

Data file Create, read, write, delete, open, close

Processor Execute

Memory Read and write

Semaphore Wait and signal

Tape drive Read, write, rewind

Cd/DVD ROM Read

526 Principles of Operating Systems

R1(read, write)
R2(execute)

Domain1

Domain2

R3(read)
R4(execute)R1(execute),

Domain3

R5(print)

Fig. 17.3 Protection domains: shared resource in multiple domains

17.3 ACCESS CONTROL

Access control models can be formed using the protection domain discussed in Section 17.2.
All these models will have the following elements:
 • Domain/Subject

As discussed earlier, the domain or sometimes called subject is the entity that exercises the
access rights. Any user process gains control of an object only through the domain.

 • Object
Any resource for which an access control is necessary is an object. For example, files, mem-
ory, disk drives, and even domains may become the object.

 • Access rights
The permissions given to a subject to access objects are the access rights.

The access control policies are grouped into three following categories:

17.3.1 Discretionary Access Control
Discretionary access control (DAC) is for restricting access to objects based on the identity of
subjects or domains corresponding to the objects with permitted access rights. Moreover, the
control is discretionary such that the subject having an access right for an object may pass this
permission to any other subject or domain, that is, the permissions can be transferred to other
subjects. In this sense, there is an owner of an object that creates the object. Any subject may
be the owner of an object and only this owner has the right to transfer the permission to other
subjects.

17.3.2 Mandatory Access Control
Mandatory access control (MAC) is governed by a central policy to restrict the users to gain
access to objects. Moreover, in contrast to DAC, this policy does not allow to further transfer
the access rights to any subject. MAC has rigid security constraints and is therefore developed
in response to military requirements.

17.3.3 Role-based Access Control
Role-based access control (RBAC) does not provide access rights to users of domains/subjects
directly but to the ‘roles’ that have been assigned to a user in a system. It means that a user does
not get the access rights on the basis of identity; rather, it is based on the role assigned to the

Protection Mechanisms 527

user in an organization. In RBAC, the roles are first assigned to the users/subjects, and then all
the permissions are assigned as in DAC.

There can be many relationships between role, user (subject), and access rights. Some of
them are as follows:
 • A user can be assigned multiple roles.
 • Multiple users can be assigned the same role.
 • A role can have multiple access rights.

17.4 ACCESS MATRIX

Another protection model that is used to store information about access rights within domains
is access matrix. The rows of this matrix represent the domains, whereas columns represent
the objects. The intersection of row and column, that is, the cell of matrix contains the access
rights. With the help of access matrix, the system is now able to check the permissions of a
resource in a domain and thereby, can control the processes.

Let us illustrate some examples for further understanding the concept of access matrix.

Example 17.1

The access matrix shown in the following table has three domains consisting of various access
rights of four resources. In Domain1, File A can be read, whereas in Domain2, it can be read
as well as written, and Printer1 can be used. In Domain3, there are access rights of read, write,
and execution for File B, and that of print for Printer2 can be used.

Domain/Object File A File B Printer1 Printer2

Domain1 Read

Domain2 Read
Write

Print

Domain3 Read
Write
Execute

Print

Since a process may switch its domain, there should be permissions whether a switch from
one domain to another is allowed or not. The access matrix may also provide provision for this
purpose by realizing the domains as objects and incorporating domains among the objects in
the matrix. The operation corresponding to domain switching is called switch. This provision
in the access matrix will control the domain switching. A process will switch its domain from
domaini to domainj if there is an entry switch in the access matrix.

Example 17.2

The access matrix in the following table illustrates that domains can also become objects to
incorporate domain switching in the access matrix. A process is able to switch its domain
from Domain1 to Domain3, from Domain2 to Domain1 and Domain3, and from Domain3 to
Domain2 only. No other domain switching is allowed.

528 Principles of Operating Systems

Domain/Object File A File B Printer1 Printer2 Domain1 Domain2 Domain3

Domain1 Read Switch

Domain2 Read
Write

Print Switch Switch

Domain3 Read
Write
Execute

Print Switch

The contents of a cell in the access matrix can be changed. However, these changes should
also be controlled as an access matrix is a protected entity. There are three operations for this
purpose: copy, owner, and control.

The copy operation is to copy an access right from one domain to another. However, this
right is only valid for an object that has the permission. In other words, the access right is cop-
ied in the same column of the access matrix. The copy operation is denoted with an asterisk (*)
appended after the access right.

Copy right has two variants. One of the variants is transfer operation. In this, the access right
after copying to other domain is removed from the original domain. In this sense, this is a trans-
fer of operation. Another variant is the limited propagation of copy operation. In this, the copy
right is not allowed, that is, the copy privilege is not copied to the domain where the access right
is copied. It means that the domain where the access right is being copied is without asterisk.

Example 17.3

The access matrix in the following table indicates that for object File C, copy operation is
allowed. It means that a process executing in Domain2 can copy the read access right in other
domains also.

Domain/Object File A File B File C Printer2

Domain1 Read

Domain2 Read
Write

Read*

Domain3 Read
Write
Execute

Print

If the access right in Domain2 is copied to Domain3, then the access matrix will be given
as follows:

Domain/Object File A File B File C Printer2

Domain1 Read

Domain2 Read
Write

Read*

Domain3 Read
Write
Execute

Read Print

Protection Mechanisms 529

If the transfer variant is chosen, then after the copy operation in Domain3, the access right
from Domain2 will be removed and the access matrix will be as given as follows:

Domain/Object File A File B File C Printer2

Domain1 Read

Domain2 Read
Write

Domain3 Read
Write
Execute

Read Print

Suppose the propagation of copy right is not allowed. The access right in Domain3 is with-
out asterisk as the copy privilege in Domain2 is not transferred.

Domain/Object File A File B File C Printer2

Domain1 Read

Domain2 Read
Write

Read*

Domain3 Read
Write
Execute

Read Print

Another right for access matrix is owner. The owner is necessary to provide privilege to a
domain such that it is able to add or delete any access right for an object. The owner right is
also specified in a domain in the access matrix. The process in that domain can add or delete
any valid access right for the object where the owner right is specified. If the owner right is
specified in access matrix(i,j), then a process in a domain

i
 can add or delete any valid entry in

the column j of the access matrix.

Example 17.4

The access matrix in the following table illustrates that Domain1 is the owner of File A and
Domain3 is the owner of File C.

Domain/Object File A File B File C Printer2

Domain1 Owner
Read

Domain2 Read
Write

Read*

Domain3 Read
Write
Execute

Owner Print

The processes in Domain1 and Domain3 can add or delete any access right for Files A and C,
respectively, as shown in the following table in the modified access matrix. In the modified access
matrix, the owner of File A has deleted the access right write in Domain2. Similarly, the owner
of File C has added one access right write in Domain1.

530 Principles of Operating Systems

Domain/Object File A File B File C Printer2

Domain1 Owner
Read

Write

Domain2 Read Read*

Domain3 Write Read
Write
Execute

Owner Print

There should be a provision to also modify the entries in a row of the access matrix. For this
purpose, another right for access matrix is control. The control is necessary to provide privilege
to a domain such that it is able to add or delete any access right for all the objects in a domain.
The control right is also specified in a domain in the access matrix. The process in that domain
can add or delete any valid access right for all the objects where the control right is specified.
If the owner right is specified in access matrix(i,j), then a process in a domain

i
 can add or delete

any valid entry in the row i of the access matrix.

Example 17.5

The access matrix in the following table shows that Domain1 has been given the control privi-
lege and therefore, it has added two new access operations, that is, write operation for File C
and print operation for Printer2.

Domain/Object File A File B File C Printer2

Domain1 Read
Control

Write Print

Domain2 Read
Write

Read*

Domain3 Read
Write
Execute

Read Print

Example 17.6

The access matrix in the following table illustrates that the control privilege is provided at
Domain2 and Domain3.

Domain/
Object

File A File B Printer1 Printer2 Domain1 Domain2 Domain3

Domain1 Read Switch

Domain2 Read
Write

Print Switch Switch
Control

Domain3 Read
Write
Execute

Print Switch

Protection Mechanisms 531

The Domain3 using its control operation has now deleted entries for File B in Domain3 row
as shown in the following table:

Domain/
Object

File A File B Printer1 Printer2 Domain1 Domain2 Domain3

Domain1 Read Switch

Domain2 Read
Write

Print Switch Switch
Control

Domain3 Read Print Switch

17.5 ACCESS CONTROL LISTS

It may be possible that an access matrix becomes large in size and sparse. In this case, finding a
particular privilege of an object becomes difficult and time consuming. Moreover, the disk space
used to store the access matrix is wasted as it also contains the empty entries. Therefore, it would
be better to store only non-empty entries in the matrix. This approach will store column-wise
entries for an object. Thus, storing only non-empty entries as access rights for objects is known as
access control lists (ACL). Each column is then implemented as an ACL in the access matrix. The
advantage of an ACL is that it reduces the space storage and increases the search efficiency as well.
When an operation is to be performed on an object, its ACL is first searched to know the access
right for the domain. If it is found in the ACL, only then the permission for the operation is granted.

There may be two types of privileges or access rights for an object: generic and object-
specific. The object-specific access rights are defined in ACL, and the generic access rights are
the rights that are by default all objects or an object category may exercise. Therefore, there
must be another ACL for the generic access rights, which is called generic ACL. Generic ACL
consists of all the access rights that all objects or an object category may have. While search-
ing for the access rights for an object, first, the generic ACL is searched, and then the ACL for
object-specific access rights is searched to increase the search efficiency.

Example 17.7

The access matrix shown in Example 17.5 can be reduced to ACL for various objects as follows:

Domain/Object File B

Domain3 Read write execute

Domain/Object File A

Domain1 Read control

Domain2 Read write

Domain/Object File C

Domain1 Write

Domain2 Read*

Domain3 Read

Domain/Object Printer2

Domain1 Print

Domain3 Print

17.6 CAPABILITY LISTS

In the ACL, column-wise non-empty entries of an access matrix are stored. Similarly, row-wise
entries can also be stored. In this case, all the access rights for a domain are stored. These
row-wise entries are known as capability lists or C-lists. Thus, a capability list for a domain

532 Principles of Operating Systems

is a list of objects with their allowed operations that the domain can have. Each row is then
implemented as a capability in the access matrix. The space and efficiency advantages are also
applicable in case of capability lists. When an operation is to be performed for a process in a
particular domain, its capability list is first searched to know the objects that can be accessed
in the domain. If the desired object is found, then the allowed access rights are observed in the
C-list. After checking the required permissions, the permission for the operation is granted.

Example 17.8

The access matrix shown in Example 17.5 can be reduced to capability lists for various domains
as follows:

Domain/Object File A File C Printer2

Domain1 Read
Control

Write Print

Domain/Object File A File C

Domain2 Read
Write

Read*

Domain/Object File B File C Printer2

Domain3 Read
Write
Execute

Read Print

Since a capability list is associated with a particular domain, it should be protected and
should not be accessible by a user process executing in that domain. Therefore, the capability
list is considered a protected object and maintained by the OS. The OS does not allow any
 direct access to it to avoid user tampering. Some methods are required for C-list protection.
The idea is to distinguish a C-list from other objects. Therefore, a tag is associated with every
object that will indicate whether the object is in C-list or not. For this purpose, a hardware or
firmware support is required wherein each memory word has an extra tag bit to indicate the
C-list. The tag bit is modified only by the processes running in kernel mode and cannot be used
by any arithmetic or other ordinary instructions.

The next way of protection is to provide space in kernel memory only, that is, the C-lists
are kept inside the kernel space. Since the C-list is inside the kernel space, no user process can
modify it, thereby providing protection. The capabilities to a running process may be copied to
it but not allowed to change as C-list within the process table is inside the kernel space.

The third method for protecting C-list is to keep the C-list in the user space only but crypto-
graphically so that it cannot be modified by the user processes.

The C-list is implemented as a unique object identifier considering the C-list as an object.
This identifier may be implemented as a pointer to the desired object where the object is stored.
This is known as pointer-based C-list. For example, a file is opened by a user process with its
allowed access rights as

int fd fopen(“/abc/text.c”, O_RDWR).
The variable fd containing the index of a file descriptor in the process’ file descriptor table

is a capability.

Protection Mechanisms 533

Another method to implement the unique identifier for C-list is to use tokens. A token is a
unique bit sequence as a name for an object as shown in Table 17.2. This is known as token-
based C-list. The random bit pattern provides more protection as compared to the first method.
According to this method, while creating the capability, a random bit pattern is created. After
this, the bit pattern encodes it to an object name and stores it in the C-lists, along with its access
rights. However, this method does not specify the location of the object in the memory. How-
ever, the object’s initial address must be known when the C-list is first used.

As described for ACL, there may also be two types of privileges or access rights for an
 object in C-lists: generic and object-specific. The generic access rights are the rights that are by
default all objects or an object category may exercise.

17.7 CRYPTOGRAPHY AS A SECURITY TOOL

Cryptography is a technique to hide the message using encryption. Encryption is a formal name
for scrambling the data in a message. The unscrambled state of the data in message is called clear
text or plain text, which is then transformed so that an outsider will not be able to see the message
contents. The transformed data is called as cipher text. Thus, encryption is simply a process of
encoding a message so that its meaning cannot be easily understood by unauthorized people. Since
the intended receiver of the encrypted message needs to see the actual text message, the encrypted
message is transformed back to plain text. This process is known as decryption (see Fig.17.4).

In a cryptosystem (shorthand for ‘cryptographic system’), the encryption and decryption
may be denoted as

C = E (P)
P = D (C),
where C is Cipher text
E is encryption rule
P is Plain text
D is Decryption mechanism

17.7.1 Private Key Encryption
In this type of cryptosystem, a private or secret key is an encryption/decryption key, which
is known only to the parties that exchange secret messages. In this method, a key is shared
between the two communicating parties so that each one can encrypt and decrypt the messages
(see Fig. 17.5).

Table 17.2 Token-based C-list

Object name Access rights Random bit pattern

Cipher text
Plain textEncryption DecryptionPlain text

Fig. 17.4 Encryption and decryption

534 Principles of Operating Systems

Cipher text Plain text

Encryption

Plain
text

Decryption

Private key Private key

Fig. 17.5 Private key encryption

Cipher text
Encryption Decryption

Public key Private key

Plain text Plaintext

Fig. 17.6 Public key encryption

17.7.2 Public Key Encryption
In this type of cryptosystem, public and private keys are related in such a way that only the public
key can be used to encrypt messages and only the corresponding private key is used to decrypt
the encrypted message. It is virtually impossible to deduce the private key (see Fig. 17.6).

17.8 AUTHENTICATION

When a user logs into a computer, the OS needs to determine the identity of the user. This pro-
cess is called user authentication.

The user authentication has two steps:
 • Identification

In this step, a unique identifier is specified to the user to authenticate.
 • Verification

In this step, the verification of a user is performed against the unique identifier, that is, it
confirms the binding between the user and the identifier.

Most of the methods of authenticating the users when they attempt to log in are based on the
following principles:

 1. Something the user knows such as password, PIN, and so on.
 2. Something the user has such as key, token, smartcard.
 3. Something the user is (static biometrics) such as recognition by retina, fingerprint, and so on

of a user.
 4. Something the user does (dynamic biometrics) such as recognition by handwriting analysis,

voice patterns, and so on of a user.
By following these principles, there may be different authentication schemes with different

complexities and security properties. However, some authentication schemes may be weak and
others may be strong. Some of the authentication schemes are discussed as follows:

Protection Mechanisms 535

17.8.1 Authentication Using Passwords
Passwords are widely used authentication mechanisms against unauthorized users. All systems,
either standalone or online systems, opt for this type of authentication wherein a user provides
a username and a password. Then the system compares that password to a previously stored
password for that particular user ID, which is maintained in a system’s password file.

The user ID determines whether the user is authenticated and authorized to gain access to
a system. It determines the privileges given to the user. Some of the users have ‘super user’
status that enables them to perform functions that are especially protected by the OS. Some of
the users have guest accounts that have limited privileges than others.

The password authentication mechanism, however, is prone to attacks. The hackers may be
able to guess the passwords sometimes. One method of guessing is based on the information
about the user. If the hacker is able to get some information about the user, then the password is
breakable. Many users set their passwords as their spouse names, date of birth, and so on. Another
way to guess the password is based on the brute force method, that is, trying all possible combina-
tions of the password characters. In this case, the shorter passwords are more easily guessed as
compared to longer passwords. Thus, the users should not use the obvious information as their
passwords. Moreover, they should select passwords of more and more characters and mixture of
alphabets (small and caps both), numerals, and special characters (if allowed).

Besides the guessing, the passwords may also be exposed accidentally if written somewhere
to remember. They may also be transferred to some unauthorized users.

Encrypted Passwords
The password file being used in authentication process may not be safe as once an intruder
manages to break into the system where the password file is stored, all the passwords are
exposed. Thus, there is a requirement to keep these passwords secret in the system. One tech-
nique is to use encrypted passwords. As soon as the user enters his or her password, it is stored
in an encrypted form. The encryption is done with the help of a simple but hard to deduce func-
tion. On the password, the function is applied and the encrypted password is obtained. These
encoded passwords are only stored in the password file. Whenever the user logs into the system
and enters the password, it is encoded, and this encoded password is compared with the already
stored encoded password. The advantage of this encrypted password is that not even a super
user is able to see the passwords in the password file. Therefore, the intruder, who is able to
break into the system and get the password file, will not be able to see the original password.

Hashed Passwords
The encrypted passwords, however, can be attacked by the intruders. To reduce the possibility
of the attacks, another method was devised that associates an n-bit random number with each
password. This n-bit random number is known as a salt value as it helps in delaying the attacker
to break the password. The password, along with the salt value, is fed to a hashing-based
encryption algorithm that produces a fixed-length hash code. This encryption is thus based on
cryptographic hash function. This hash function is an algorithm that takes an arbitrary block of
data and returns a fixed-size bit string, that is, the cryptographic hash value. The advantage of
this hash-encrypted password is that it is infeasible to modify a message without changing the
hash code. Moreover, there cannot be two different messages with the same hash value.

The hash-encrypted password thus obtained (see Fig. 17.7) in the form of hashed code
 further slows down the attack of an intruder. Thus, corresponding to a user ID, the hashed code,

536 Principles of Operating Systems

along with its salt value, is stored in the password file, thereby forming a hashed-password file
(see Table. 17.3).

Authentication using hash-encrypted password method is secure against a lot of security
attacks. When a user tries to log into a system, the user provides a user ID and a password.
The OS indexes into the password file with the User ID and retrieves the salt value and the
hashed-encrypted password. The salt value is combined with the user-supplied password and
then applied to hash-based encryption algorithm. The encrypted password thus obtained is
 compared against the already stored encrypted password corresponding to that user ID in the
password file (see Fig. 17.8).

Password

Hash
function

Salt value
Encrypted
password

Fig. 17.7 Hash-encrypted password

Salt
value

Stored hashed
password

User-supplied
password

Hash function

Password file

Do they
match?

Compare the
two passwords

Valid user

Not a valid
user

Yes

No

Fig. 17.8 Algorithmic flow for hash-encrypted password

Table 17.3 Hashed-password file

User ID Salt value Encrypted password

Protection Mechanisms 537

One-time Passwords
To maintain the secrecy about the passwords, another method is to use a set of paired passwords.
When a user logs into the system, the system randomly selects one part of a paired password
and presents to the user. The user is then expected to enter the other part of that password.
If the other part of the password matches with the stored one, then the login will be successful.
The advantage is that every time a user wishes to log into the system, it will be challenged
with a new password and the user has to respond with the correct another part of the password.
In this way, the secret of a password is maintained by having paired passwords.

17.8.2 Token-based Authentication
The tokens are the objects that a user possesses for the purpose of user authentication. Two
types of tokens that are widely used are

 1. Smart card (already discussed in Chapter 1)
 2. Memory card

Memory Card
A memory card is an electronic-flash data-storage device used for storing digital information.
Memory cards are small, re-recordable, and able to retain data without power. However, these
cards are not able to process data. The most common example of a memory card is a bank card
with a magnetic stripe on its back. The magnetic stripe stores a security code to be read by the
card reader. To identify an authentic user on a system, these cards are used with a password or
a PIN. This combination of memory card, along with the password/PIN, provides significantly
greater security.

17.8.3 Authentication Using Biometrics
Biometrics means ‘life measurement’. Biometric measures and analyzes biological data.
It refers to the technology that analyzes physiological characteristics to identify an individual.
To authenticate a user’s identity, a number of biometric traits are used, for example, face,
fingerprints, retina, and so on. This authentication requires that the person to be identified be
present physically at the time of identification procedures, thereby increasing the authenticity
of the method. Moreover, there is no requirement of remembering the passwords as needed
in other authentication methods. Thus, authentication using biometrics is a pattern recogni-
tion system, which is implemented by determining the authenticity of a specific physiologi-
cal or behavioural characteristic possessed by the user. In this authentication, the samples of
biometric traits are captured with the help of a sensing device such as camera, scanner, and
so on and stored in a storage medium, which are then used for comparison purposes while
authenticating a user.

17.9 INTRUSION DETECTION SYSTEM

Intrusion Detection System (IDS) is a security service that may be used along with other secu-
rity suites such as a firewall and a good anti-virus. The idea of IDS is to have a system that
monitors and analyzes system events such that there is no attempt to access the system in an
unauthorized way. In other words, effective IDS can serve as a way to prevent intrusions.

538 Principles of Operating Systems

There are two types of IDS:

17.9.1 Host-based Intrusion Detection System
In this type, a software is set-up on the system, which has to be monitored. This software makes
use of log files in the form of sources of data. Host-based IDSs function as a specialized layer
of security software to vulnerable or sensitive systems. They monitor as well as analyze a sys-
tem’s internals. Thus, the primary job of a host-based IDS is to detect intrusions, log suspicious
events, and send alerts.

Host-based IDSs follow one of two general approaches to intrusion detection:

Anomaly Detection
This approach is based on the fact that intrusion may induce anomalies in the system. There-
fore, in this detection, anomalous behaviour within a system is observed. Then statistical tests
are applied to observed behaviour to determine whether it is genuine or not.

Signature Detection
In this approach, a set of rules or attack patterns is defined. The system input or network traf-
fic is then examined with reference to these rules or behavioural patterns. Virus detection is an
example as virus detection software examines the system input for known viruses only.

17.9.2 Network-based IDS
In this type of IDS, the network traffic of a network is observed and analysed for any unau-
thorised access on the network. This IDS scans network packets at the router or host level,
analyses them and logs the suspicious packets in a separate file known as special log file. Thus,
a network-based IDS is a system that monitors and analyses network traffic to detect any unau-
thorised access. The analysis is performed based on signatures. For example, the port signature
is used wherein well-known ports are observed and analysed to detect an attack. Similarly,
header signatures are used to detect an additional text with packet headers.

17.10 WORM/BOT/ROOTKIT COUNTER MEASURES

Worms can be detected by signature detection. The technique generates a certain signature for
worms. Using only these signatures, worms’ entry/exit is detected. This technique is very effec-
tive in detecting worms, but the only limitation is that it is slow. Therefore, it is only suitable
for detecting slow-spreading worms but not effective for fast-spreading worms as no signature
is available by the time the machines are already infected.

Another way to stop worms is network filtering. In this technique, the network packets that
are used for worm spread are filtered-out. The source for these types of packets causing worm
spread is blacklisted. This function can also be assigned to the existing firewall.

Since the botnet works in a coordinated manner, it is essential to detect and disable the
 botnet while they are being formed.

Once the rootkits are installed on the system, it is difficult to detect them even with the help
of an anti-virus as they are in stealth mode and modify the scanning results to hide themselves.
An alternative and effective method to check the presence of a rootkit on the system is to
boot it from a trusted and clean OS source and scan the system. The rootkit at this time is not

Protection Mechanisms 539

 active and therefore, can be checked for its existence. The files will be found while scanning.
 Otherwise, the utilities/drivers may be compared with its clean copy. If they do not match, then
the rootkits may be present. Chkrootkit and rkhunter are some of the tools that check for the
 presence of rootkits and also worms in a system.

17.11 DEALING WITH BUFFER OVERFLOW ATTACKS

As discussed in Chapter 16, buffer overflow may be used as a vulnerability by the intruders.
There are some techniques through which this can be dealt. The techniques are as follows:

17.11.1 Writing Correct Code
Since the buffer overflow attack occurs due to a lack of poor programming practices, there is a
lot of scope to deal with it. One way is to improve the way programming is done. The common
problem of languages such as ‘C’ is that safe use of data structures and variables cannot be
guaranteed as programmers may commit mistakes while programming. For instance, if there is
no array-bound checking, then the attacker may exploit this vulnerability to attack the system.
Therefore, the programmer must check the limits of the array; otherwise, the program is open to
attacks. The programmer needs to check every read/write operation on the array being used in
the program to ensure that that all are within range. This can be done with the help of automation
tools, such as Compaq C Compiler, gcc patch developed by Jones & Kelly, Purify, and so on.

17.11.2 Safe Libraries
Another common problem in C language is that some library functions are not safe either and
may invite attacks. For example, the library routine strcpy(), sprintf, and so on are not safe as
they are not compiled with bound checking. In this case, it is better to replace these library
functions with safer variants. This may include some new functions in place of old functions.

17.11.3 Use of Type-safe Programming Language
The other way is to choose modern programming language, for example, the code can be writ-
ten in a type-safe language such as Java, that is, the type-safe operation can only be performed
on a given variable. Such languages are safe from buffer overflow vulnerabilities as their com-
pilers include additional code that takes care of bound checking.

17.11.4 Non-executable Buffers
Another defence against buffer overflow is to make the stack segment of the victim program’s
address space non-executable and preserve compatibility. To implement this feature, it requires
support from the processor’s memory management unit (MMU). To facilitate this, the MMU
will tag virtual memory (VM) pages as non-executable. Since this type of protection is able to
defend against many types of buffer overflow attacks, it is adopted in many OSs.

17.11.5 Address Space Randomization
The attacker predicts the approximate location of buffer and in turn uses this location to deter-
mine a suitable return address and thereby, transfers the control to the malicious code. If it is
possible to manipulate the location of stack segment, then the buffer overflow attacks can be
thwarted. Since the address range on modern processor is large, the stack memory region can

540 Principles of Operating Systems

be shifted randomly for every process so that the intruder is not able to predict the approximate
location of the buffer. Similarly, the same approach can be used for standard library functions
that are typically loaded at the same address by the same program. For the standard library
routines, the security extension program randomises the order of loading standard libraries and
their VM address locations.

17.12 DEALING WITH MOBILE CODE

As discussed in Chapter 16, mobile code may not be safe for the system. There are some tech-
niques through which a malicious mobile code can be dealt. The techniques are discussed as
follows:

17.12.1 Code Blocking Approach
This approach is based on blocking the code on the system. The blocking may be implemented
by disabling the application (switching off Java in Java-enabled browsers), filtering (firewalls
to filter out web pages containing applets), and so on.

17.12.2 Authentication Using Code Signing
In this approach, a list of trusted sources is maintained, which is based on digitally signed code
assurance obtained from the source of code. When a mobile code is received, it is verified
against the list that it has been signed by an authenticated source of code. The authentication
ensures that the mobile code is trusted and has not been tampered. Digital signatures are created
using public-key-based signature algorithms. This public key algorithm uses two parts: One is
the public key known to all and the other is the private key known only to its user. However,
these algorithms are inefficient to sign long documents. Therefore, another method is used
wherein the hash of mobile code is signed and distributed along with the signed code. This
method also checks the integrity as a single bit change in the code will change the hash code.
At the host machine where the code has been received, the client computes the hash code and
compares it with the copy sent with the signed code.

17.12.3 Safe Interpreters
Instead of using compiled executables, an interpreter is used that interprets the mobile code.
Since the interpreter enforces the security policy, an instruction is executed only if it satisfies
the security policy being enforced.

17.12.4 Code Inspection
The mobile code is intercepted, and inspection is done to check whether it is malicious or not;
the code is checked against a known list of malicious codes. It may also validate digital certifi-
cates and hash values.

17.12.5 Sandboxing
Sandboxing is a technique that contains mobile code in such a way that it does not damage its
executing environment. It is an idea to confine the mobile code to a limited range of virtual
addresses. In fact, the range of virtual address is divided into equal-sized regions known as
sandboxes. Each mobile code, such as applet, is allocated two sandboxes: one for code and

Protection Mechanisms 541

another for data. Thus, sandboxing allows a foreign mobile code to execute but in a constrained
manner. The mobile code in a sandbox can be controlled efficiently by allowing monitored
access to the host machine resources. It means that the sandbox guarantees that a mobile code
does not jump outside its code sandbox or reference data outside its data sandbox. In this way,
no mobile code may try to modify its code while executing, thereby running in a constrained
environment and cannot harm the system in any way.

The Sun’s Java interpreter implements the sandbox idea and is found inside Internet browsers.
There are three main components that secure the Java interpreter:

Class Loader
It is a special Java object that converts remote byte codes into data structures representing Java
classes. The operations are classified by the class loader as safe and harmful. Only safe opera-
tions are allowed but harmful ones cause an exception and defer the decision to the security
manager.

Verifier
It checks the mobile code before it is loaded to verify that the mobile code does not forge any
pointers or access arbitrary memory locations.

Security Manager
The security manager consists of security policies that define the extents, rules, and restriction
for execution of a mobile code. The security manager is invoked when a method is attempted
to execute that is restricted by the security policy.

17.12.6 Proof-carrying Code
Since the mobile code to be executed on the host machine should not damage the host machine
in any way and it does not use too many resources of host machine, the technique of proof-
carrying code (PCC) is adopted by which the host establishes a set of safety rules that guaran-
tees safe behaviour of mobile-code execution. The host uses a simple and fast-proof validator
that checks the behaviour of the code such that the code is safe to execute.

17.13 SECURITY PATCHES

Intruders exploit system vulnerabilities to attack the system. Therefore, it is necessary to iden-
tify and close the vulnerabilities as soon as possible. The modifications done in response to the
open vulnerabilities in the OS or any other critical software is known as a security patch. The
security patches thus address the security flaws in the software, thereby providing security to
a system. To reduce the chance of exploiting the software or OS vulnerabilities, the organiza-
tion or software developers must discover the vulnerabilities, address them by notifying the
concerned users, and provide the security patches as soon as possible.

17.14 SECURE FILE SYSTEMS

The files and other resources on the system can be protected using access control list as discussed
earlier. However, these control policies may not protect the data stored when it is accessed by
a different OS. Therefore, there is a need to protect the data irrespective of the mode of access-
ing the system. The idea is to protect the files in a file system using encryption. Thus, the file

542 Principles of Operating Systems

systems that secure their files through access control as well as encryption are known as secure
file systems (SFS) or encrypted file systems (EFS). In Microsoft Windows, EFS was intro-
duced in version 3.0 of NTFS. The EFS is implemented with a symmetric key known as file
encryption key (FEK). The large amounts of data can be encrypted and decrypted with the
help of symmetric encryption algorithm. The FEK is then encrypted with a public key. The
encrypted FEK thus obtained is stored in a data stream of encrypted file.

17.15 TRUSTED OPERATING SYSTEMS

A trusted system is the system that has formally stated security requirements and meets these
requirements. In trusted systems, the objects such as processor, memory, I/O devices, and so
on are surrounded by access control mechanism as discussed in the chapter, which incorporate
technology to address both features and assurance. To design a trusted OS, a security kernel is
designed such that it provides the security interfaces between the hardware, the OS, and other
parts of the system, that is, security kernel is responsible for enforcing security mechanism for
the entire OS. This will prevent any intruder to enter the system. The security kernel is designed
on top of hardware. It monitors all OS hardware accesses and checks any illegal access, thereby
performing all protection functions (see Fig. 17.9).

To enforce the security policy, there is a trusted computing base (TCB) acting as a shell
(see Fig. 17.10) that protects the system. The TCB has access to most of the hardware (proces-
sor, memory, registers, and I/O devices) and OS functions (process creation, process switching,
memory management, file management, and I/O management) that must be now a part of TCB.
It seems that the TCB encompasses most of the OSs, but it is only a small sub-set and separate
from the rest of the OS. The separate and small size of TCB also facilitates verification of its
correctness and faster execution. It monitors the security sensitive information such as change

Security kernel

Hardware

User

System and application
programs

Operating
system

Fig. 17.9 Separate security kernel

Protection Mechanisms 543

of the process control block (PCB) fields when a process changes its state, memory references,
and so on. In this way, all security-related codes are located in one place. To ensure the security
effectiveness, the TCB must be run in a protected state, and that is why it is implemented in the
kernel space.

Inside the TCB, there is a part known as reference monitor. The reference monitor is a part
that controls accesses to objects, that is, all system calls accesses are now with security. It may
consist of several modules consisting of access control for files, devices, memory, IPC, and so
on. The reference monitor must be invoked whenever there is a request to access any object.
When the request reaches the reference monitor, it decides whether to process after checking
the authenticity of the request. The access control information is stored in a database. The
security events are stored in an audit file (see Fig. 17.11). Thus, all the security checking is

User
process

OS kernel

Kernel space

TCB

Reference monitor

User
space

Fig. 17.10 Trusted computing base

Audit
file

ObjectsSubjects

Access
control

database

Reference
monitor

Fig. 17.11 Reference monitor

544 Principles of Operating Systems

done only at one place and therefore, there is no compromise with the security. It should func-
tion correctly as it is the part enforcing security in the kernel. However, the correctness may
decrease as the complexity and size of the reference monitor increases. Therefore, it must be
designed as a small, simple, and understandable module.

17.15.1 Multi-level Security Models
Since the trusted OS enforces security, there must be a security policy that defines the security
expected from the system. The security policies on the basis of which the security models
have been developed are military policy and some commercial policies such as Clark–Wilson
security policy, Chinese wall security policy, and so on. These security models are multi-level
as there are multiple levels of security defined within them. Two security models have been
discussed in this section.

Bell–La Padula Security Model
The Bell–La Padula (BLP) security model is a formalization of the Military Security Model.
This model was initially designed for handling military security but now is also available to
other organizations. It is a formal description of the allowable paths of information flow in a
secure system. It defines security requirements for systems that concurrently handle data at
different sensitivity levels. The BLP addresses confidentiality. As there are multiple security
levels in this model, it is also called multi-level security system.

The classification at multiple levels: {U, C, S, TS}
where U = unclassified
C = confidential
S = secret
TS = top secret
The classifications are ordered as TS > S > C > U.

The BLP model is based on a subject–object paradigm. The system is described as a set
of subjects S and objects O. Subjects are active elements of the system that execute actions.
Objects are passive elements of the system that contain information. Subjects act on behalf of
users who have a security level associated with them. The following are two properties to char-
acterize the secure information of flow:
 • Simple security property (no read-up): A subject S may have read access to an object O

only if L(O) ≤ L(S), that is, a process running at a security level L can read only the objects
at its level or at a level below it.
 • The *-Property (no read-down): A subject S that has read access to an object O may have

write access to an object w only if L(O) ≤ L(w), that is, a process running at a security level L
can only write objects at its level or at a level above it.

*Star property means that an untrusted subject may

 i) append if object security dominates subject security
 ii) write if object security equals subject security
 iii) read if object security is less than subject security

If these two properties are enforced in a system, then no information can leak out from a
higher-security level to the lower-security level. However, in this model, the processes can read
and write the objects but cannot directly communicate with each other.

Protection Mechanisms 545

Biba Model
Biba security model was developed to address a weakness in the BLP model. The BLP model
addresses only confidentiality, but it does not ensure integrity. The Biba model addresses integ-
rity, that is, deals with inappropriate modification of data and therefore, sometimes is known as
counterpart of BLP. Two goals of maintaining the integrity are

 1. To prevent unauthorized users from making modifications in data.
 2. To maintain internal and external consistency of data.

The Biba model uses objects and subjects like the BLP model. The objects and subjects are
classified according to integrity levels instead of security levels. The following are the security
rules of this model:
 • Simple integrity property (no write-up): A subject at a given level of integrity can only

write objects at its level or a lower level. A subject is permitted a write access only if the
access class of the object dominates the access class of the subject.

 • The *- property (no read-down): A subject at a given level of integrity must not read an
object at a lower-integrity level, that is, a subject is allowed a read access to an object only
if the access class of the object dominates the access class of the subject.

SUMMARY

Let us have a quick review of important concepts discussed
in this chapter:

 • A domain is a set of objects and right pairs.
 • The matrix containing the information of access rights of

the resources within a domain is known as access matrix.
 • Storing only non-empty entries as access rights for

objects is known as ACL. Each column is then imple-
mented as an ACL in the access matrix. The advantage
of an ACL is that it reduces the space storage and in-
creases the search efficiency as well.

 • A capability list for a domain is a list of objects with their
allowed operations that the domain can have.

 • Passwords are widely used authentication mechanisms
against unauthorized users.

 • Authentication using hash-encrypted password method
is secure against a lot of security attacks.

 • Authentication using biometric system compares a reg-
istered biometric sample against a newly captured bio-
metric sample.

 • An IDS) is a security service that may be used along with
other security suites such as a firewall and a good anti-
virus.

 • A trusted system is the system that has formally stated
security requirements and meets these requirements.

 • To design a trusted OS, a security kernel is designed
such that it provides the security interfaces between the
hardware, the OS, and other parts of the system

 • The security kernel is designed on the top of hardware.
It monitors all OS hardware accesses and checks any
illegal access, thereby performing all protection functions

 • To enforce the security policy, there is a TCB acting as a
shell that protects whatever in the system needs protection.

MULTIPLE CHOICE QUESTIONS

 1. In _____, the subject having an access right for an object
may pass this permission to any other subject or domain.

 (a) DAC (c) RAC
 (b) MAC (d) none

 2. _____ does not provide access rights to users of domains/
subjects directly.

 (a) DAC (c) RAC
 (b) MAC (d) none

 3. ____ is governed by a central policy to restrict the users to
gain access to objects.

 (a) DAC (c) RAC
 (b) MAC (d) none

546 Principles of Operating Systems

 4. Storing only non-empty entries as access rights for objects
is known as

 (a) access matrix (c) capability list
 (b) ACL (d) none

 5. ____ for a domain is a list of objects with their allowed
operations that the domain can have.

 (a) Access matrix (c) Capability list
 (b) ACL (d) none

 6. ____ are small, re-recordable, and able to retain data with-
out power but are not able to process data.

 (a) Passwords (c) Smart cards
 (b) Memory cards (d) none

 7. ____ has the processing power to serve many different
applications.

 (a) Password (c) Smart card
 (b) Memory card (d) none

 8. ___ is a technique that contains mobile code in such a way
that it does not damage its executing environment.

 (a) Code inspection (c) Sandboxing

 (b) Code signing (d) none

 9. The security kernel is designed on the top of ____.
 (a) the OS (c) hardware
 (b) user programs (d) none

 10. In the design of a trusted OS, ____ must be invoked when-
ever there is a request to access any object.

 (a) kernel (c) shell
 (b) security kernel (d) reference monitor

 11. In the ____ model, the processes can read and write the
objects but can not communicate with each other directly.

 (a) BLP (c) commercial security
 (b) Biba (d) none

 12. The _____ model addresses confidentiality.
 (a) BLP (c) commercial security
 (b) Biba (d) none

 13. The _____ model addresses integrity.
 (a) BLP (c) commercial security
 (b) Biba (d) none

REVIEW QUESTIONS

 1. Define protection domain.

 2. What are the various policies of access control mechanisms?

 3. What is an access matrix? What type of operation can be
done on it?

 4. Explain the variants of copy operation on access matrix.

 5. Explain the owner access right on access matrix.

 6. Explain the control access right on access matrix.

 7. What is an ACL? What are its advantages?

 8. What is a generic ACL?

 9. What is a C-list? What are its advantages?

 10. Why C-lists are kept inside the kernel space?

 11. What is token-based C-list?

 12. Explain how password authentication is prone to attacks.

 13. What are encrypted passwords?

 14. What are hashed passwords?

 15. What are one-time passwords (OTPs)?

 16. What is token-based authentication?

 17. What is biometric-based authentication?

 18. What is an IDS? Explain the various types of IDS.

 19. What are the methods to counter-measure the worms?

 20. How do you deal with mobile code?

 21. How do you deal with buffer-overflow attack?

 22. What is sandboxing?

 23. What is a security kernel? How is it designed?

 24. Explain and distinguish BLP and Biba security models.

BRAIN TEASERS

 1. Access matrix, access list, and C-list are three types of
protection. Which is the most efficient from implementation
viewpoint?

 2. Design a hashed password to protect an online web
application.

 3. There are mobile software agents that travel from node to
node on the network. There can be two situations. One is
that mobile agent code may not be authenticated. The other
issue is that mobile agent may not be safe on the node on
which it is executing. What kind of protection mechanisms
can be there for these situations?

PART VII

Advanced Operating Systems

18. Distributed Operating Systems

19. Multi-processor Operating Systems

20. Real-time Operating Systems

21. Mobile Operating Systems

22. Multimedia Operating Systems

18.1 INTRODUCTION

Distributed systems make a convenient medium to share resources, speed up computation, and improve
data availability and reliability. Distributed computing is provided by a distributed OS. This chapter dis-
cusses the characteristics of a distributed system, along with the
differentiation between network and distributed OSs. However,
the achievement of distributed computation is difficult. There are
several issues in the distributed environment. There is no global
clock or global state. The distributed system poses many chal-
lenges in terms of this constrained distributed environment. The
issues discussed for the single-processor machine, such as mutual
exclusion, deadlocks, process-scheduling, and so on, introduce
numerous difficulties for implementation of distributed computa-
tion. All these are discussed in this chapter.

18.2 CHARACTERISTICS OF DISTRIBUTED SYSTEMS

Distributed systems are multi processor systems, but with the fol-
lowing differences:
 • Distributed system works in a wide-area network, involving

much more communication as compared to computation.
 • Each node in a distributed system is a complete computer,

having a full set of peripherals, including memory, commu-
nication hardware, possibly different OS and different file
system, and so on.

 • The users of a distributed system have an impression that they
are working on a single machine.
Thus, a distributed system is a loosely-coupled architecture,

wherein processors are inter-connected by a communication net-
work. The processors and their respective resources for a specific
processor in a distributed system are remote, while its own re-
sources are considered as local. The distributed system is a network
of workstations, wherein the system might have a single file sys-
tem that facilitates all the files accessible from all the machines in
the same way. A user, working on the distributed system, provides

18 Distributed Operating
Systems

Learning Objectives
After reading this chap-
ter, you should be able to
understand:
 • Characteristics of a distributed

system
 • Differentiation between a net-

work and a distributed OS
 • Various issues in a distributed OS
 • IPC methods in a distributed OS
 • Concept of global clock and

logical clock
 • Lamport’s logical clock algo-

rithm for synchronization
 • Global distributed system state
 • Achieving global state through

Chandy–Lamport algorithm
 • Resolving mutual exclusion

problem through:
 • Centralized algorithm
 • Ricart–Agarwala algorithm
 • Token-ring algorithm
 • Deadlock detection through cen-

tralized and distributed algorithms
 • Deadlock prevention through

wait-die and wound-wait algo-
rithms

 • Distributed process-scheduling
algorithms

 • Distributed shared memory

554 Principles of Operating Systems

commands to it and gets the result. He/she is not aware whether the task has been divided into
smaller tasks, and which task has been completed on which node of the system. In other words, a
distributed system, as a whole, may look and act like it is a single-processor time-sharing system,
and the user working on it has the perception that the work is being done on a single machine.

The major motivations/advantages behind the development of a distributed system are listed
as the following:
 • Economy

Distributed systems, comprising micro-processors, have a better price performance ratio as
compared to a single centralized system of the mainframe type. A number of cheap proces-
sors together, resulting in a distributed system, provide a highly cost-effective solution for a
computation-intensive application.

 • Resource sharing
It is the main motive behind distributed systems. If we want to take advantage of hundreds
of processors, all of them have to be on a single board, which may not be possible. But the
multiple processors are realized as a single powerful machine in a network system, and the
resulting machine is known as a distributed system. In this way, a number of users can share
the resources of all the machines on the distributed system.

 • Computational speed-up
Besides resource sharing, distributed systems also provide computational speed-up, by
 partitioning a computation into sub-computations, which are distributed and run concurrently
on various nodes on the system. It results in higher throughput and provides rapid response
time in computing user tasks. Thus, a distributed system enhances the performance of a system.

 • Reliability
Since a distributed system may utilize an alternative path in the network, in case of any fail-
ure, it provides reliable services and resources. A distributed system also provides enhanced
availability of resources through redundancy of resources and communication paths, thereby
increasing the reliability of the system. For example, a distributed file system places files on
separate machines and allows many users to access the same set of files reliably, providing
the view of a single file system.

 • Communication
The users in a distributed system are able to exchange information at geographically-distant
nodes, and may collaborate on a project with various communication facilities.

 • Incremental growth
The computational power of a distributed system is dynamic. It may be increased with the
introduction of any new hardware or software resources. Thus, modular expandability is
possible in the distributed system.

18.3 NETWORK OPERATING SYSTEMS

The distributed system discussed above will need an OS software layer that will coordinate all
activities to be performed on the network system. The network OS is the earliest form of OS
that coordinates the activities on a network system. Thus, a network OS may be considered as
a loosely-coupled OS software on a loosely-coupled hardware that allows nodes and users of
a distributed system to be independent of one another, but interacts in a limited degree. In a
network, each node has its own local OS. A user sitting on a node may work as on the local

Distributed Operating Systems 555

machine through its local OS. However, on the network system, there may be some control
operations that may be performed by the user, working on the machine. In other words, the
user working on a node is also able to perform non-local functions. For example, the user may
remotely log on to some other node. Similarly, the user may transfer the files to another node
as well. For the functioning of these non-local operations, the OS software is required to coor-
dinate the activities. The role of network OS starts here. The network OS may be considered as
another layer of software on the OS on a local machine. This layer works between user compu-
tations and the kernel on the local machine. First, the processes of the user contact the network
OS. If the operation to be performed on the node is local, the network OS passes the request to
the local OS on the node. But if the operation to be performed is non-local, the network OS on
that node contacts the network OS on the node, which needs to be contacted for the operation.

A network OS also targets the resource-sharing across multiple nodes of the network, where
each node has its own local OS and a layer of network OS (see Fig. 18.1). Each node on the
network is able to perform some control operations that are run locally as well as on some other
node on the network. However, to work on a network system using network OS, the user must
be aware of the network nodes and their access rights, to perform the control functions. For
instance, if a user wants to log on to some other node on the network, that is, perform remote
login, he/she must know the address of the node and must have permission to log into the sys-
tem. Similarly, while transferring files, the user must be explicitly aware of where all the files
are located and where they will be copied. Thus, in a network OS-based system, a user must
know where a resource is located, in order to use it, leading to poor transparency of system
resources and services.

18.4 DISTRIBUTED OPERATING SYSTEMS

Distributed OSs are tightly-coupled OS software on loosely-coupled hardware, that is, distributed
system. These OSs, providing distributed computing facility, employ almost same communica-
tion methods and protocols, as in network OSs. But the communication is transparent to the
users, such that they are unaware of the separate computers that are providing the service. A
distributed OS has control of all the nodes in the system. When a user starts working on a node,
the control functions like process creation, resource allocation, and so on, are performed on
behalf of the distributed OS. With the facility of distributed OS, a complex user computation
may be divided into sub-computations. Each sub-computation may be allocated different nodes

Network OS
layer

Local OS

Network OS
layer

Local OS

Node1 Node2

Fig. 18.1 Network operating system

556 Principles of Operating Systems

for computation. The user does not need to log into any other node for computation. The user
will get the result on his/her own node, where the job was initiated, without knowing the details
of sub-computation or their respective computation on various nodes. Similarly, when a user
needs a resource, it can be allocated to it without the user having to know the location from
where it has been provided. This is known as a single-system image or virtual uni-processor
to the users. Thus, the users in a distributed OS are not aware of the identities of nodes and
locations of various resources in the system. It is possible only due to the unified control of the
distributed OS.

The following are some important tasks to be performed by a distributed OS:
 • Since distributed systems need to access any resource or transfer any task on any node,

there are three types of migration provided by the OSs:

 i) Data migration: transferring the data from one site to another site
 ii) Computation migration: Transferring the computation on a particular node
 iii) Process migration: The process or its sub-processes may also need to be transferred to

some other nodes, due to some reasons like load-balancing, computation speed, and so on.

 • Distributed OS must provide the means for inter-process communication. Some methods are:
Remote Procedure Call: A process, on one node, may invoke a function or procedure in a
process executing on another node.
Remote Method Invocation: This allows a Java process to invoke a method of an object on
a remote machine.
Common Object Request Broker Architecture (CORBA): It is a standardized language that
supports different programming languages and different OSs for distributed communication.
Distributed Component Object Model (DCOM): This is another standard developed by
Microsoft, included in the Windows OS.

 • Due to multiple processes, synchronization methods should be supported by the OS.
 • There may be a deadlock, when processes distributed over several nodes in a network wait

for resources not released by other processes. Therefore, deadlock should also be handled
by the distributed OS.

18.5 ISSUES IN DISTRIBUTED OPERATING SYSTEMS

In a distributed system, the resources and computations are distributed across various nodes in
the system. If there is an imbalance of these two on the nodes, it may affect the performance of
the system. Therefore, to protect the features of the distributed system, and for the convenience
of the users, the following design issues must be implemented:

18.5.1 Transparency
The most important feature of a distributed system is that it should have a single system or uni-
processor image. The implementation of this feature comes in the form of transparency. The
transparency is to hide the distribution and location details from the user. The transparency can
be implemented in the following forms:

Location Transparency
In this type, the users are not aware of where the hardware or software components are located.
The user will know only the name of the resource and the name should not be able to reveal its
location in the system.

Distributed Operating Systems 557

Migration Transparency
Along with the location transparency, the users must not be affected, if the location of resources
is changed in the system. But the name of the resources must not be changed. This is known as
migration transparency.

Replication Transparency
The OS may take the decision of making additional duplicate copies of the files and other resources,
for the sake of fault tolerance in the system. But this replication of files and other resources is not
visible to the user. The user may request for a file to the system and is not bothered from which
server it has been retrieved. In this case, many servers may have replicated directory structure,
containing the files. So on the request of a user for a file, the file can be retrieved from one or the
other server. But the user is not aware of the location of the file being retrieved.

Concurrency Transparency
Since multiple users may be allowed to work on a distributed system, it may be possible that
more than one user may try to access the same resource at the same time. In this case, the mutual
exclusion must be provided, such that if one has gained the access to the resource, access must
not be granted to the other. This facility must be provided by the distributed OS. But this should
again be hidden from the user. The user must know the details about which resource is held cur-
rently by which user, how the mutual exclusion has been implemented on one resource, and so
on. This is known as concurrency transparency.

Parallelism Transparency
Since the computation of a user task may be divided into multiple sub-computations, each of
these sub-computations can be computed in parallel, on various nodes of the system. But all
these details of division of the computation and their execution on various nodes are transpar-
ent to the user. The user will only submit his task, and be able to see the result on his machine,
where he submitted the task.

18.5.2 Global Knowledge
Since in a distributed system, each node is a complete computer system, there is no global
memory, and even no global clock. Moreover, there are unpredictable message delays. There-
fore, it becomes difficult to have up-to-date information about the global state of a distributed
computing system. Therefore, in the design of a distributed OS, the design of some efficient
techniques to implement system-wide control in distributed systems is required. Moreover, in
the absence of a global clock, it is difficult to order all the events that occur at different times
at different nodes in the system.

18.5.3 Performance
In a distributed system, while designing, various performance parameters should be consid-
ered. Communication is typically quite slow in the distributed computing system, due to mes-
sage communication among nodes. If we are distributing the computation over multiple nodes
in the system, then the number of message communication also increases, thereby, causing
slow communication. Therefore, the need is to minimize the number of messages. This depends
on the grain size of computations. If there are multiple but small computations known as
fine-grained computations, which have been distributed over the nodes and interact highly
among themselves, then the distributed system will behave poorly. In contrast, if multiple but

558 Principles of Operating Systems

large computations, known as coarse-grained computations, are distributed over the nodes and
their interaction rate is too low, then the distributed system will perform much better. Thus,
coarse-grained based parallelism enhances the performance of a distributed computing system.

Another performance factor may be the load-balancing in the system. Since the computa-
tions are distributed on the nodes of the system, there may be the case that some nodes are heav-
ily loaded, while some nodes may have only few computations. This imbalance of nodes may
also cause poor performance of the system. Thus, load-balancing is required, such that all the
nodes in the system are equally loaded. To improve the performance, migration techniques must
be implemented. There are three types of migration provided by distributed OSs:

 i) Data migration: transferring the data from one site to another site
 ii) Computation migration: Transferring the computation on a particular node
 iii) Process migration: The process or its sub-processes may also need to be transferred to some

other nodes, due to some reasons like load-balancing, computation speed, and so on.

Thus, the distributed OS must be able to do process/computation migration as well as data
migration, for the better performance of the system.

If the size of the distributed system increases, there may be some issues of increased delays and
overheads. The number of users, and thus, the overheads may increase. But these issues should not
degrade the performance of the system, that is, a distributed system must be scalable.

18.5.4 Reliability
Since the reliability is a major goal behind designing a distributed system, as compared to a central-
ized system, the distributed system must take care of reliability issues also. Reliability is achieved
through two properties of data: availability and reliability. Availability means resources must be
available, despite the failure of some components in the system, thereby, increasing the reliability
of the system. The availability may be achieved through fault tolerance techniques. Fault toler-
ance is the demand of many systems, for example, real-time systems. It is implemented through
redundancy, that is, software/hardware components and communication links are made redundant,
having multiple copies. In case of failure of one component or communication link, another in the
standby takes charge and the system continues to function. The consistency of data must be taken
care of while designing fault tolerance techniques. If replicated data are to be modified, then the
consistency must be maintained on all the copies of data.

18.5.5 Process Synchronization
Since there is no shared memory in the distributed systems, it is difficult to synchronize the pro-
cesses executing at different nodes of the system. The distributed OS must be able to synchronize
various processes when they try to access a shared resource concurrently, that is, mutual exclusion
must be there while one process accesses the shared resource. Since in a distributed system, the
processes may request and release resources locally or remotely, the sequence of their request and
release may not be known in advance. This may lead to deadlocks in the system. The deadlocks
must also be removed as soon as possible, otherwise, the system’s performance may degrade.

18.6 COMMUNICATION IN DISTRIBUTED SYSTEMS

It was easy to have inter-process communication in a uni-processor environment, since it
has shared memory. However, since, there is no shared memory in a distributed system;
it becomes difficult to implement inter-process communication, as the processors are on

Distributed Operating Systems 559

different nodes in the system. So, there must be some other ways, through which processes
can communicate. Message-passing model and remote procedure calls are the two
 communication methods implemented in distributed OSs.

18.6.1 Message-passing Model
The communication in a distributed system may be implemented through the use of Transmission
Control Protocol/Internet Protocol (TCP/IP) or Open Systems Interconnection (OSI) connec-
tion-oriented protocols, but the overhead in these protocols becomes more, especially in a Local
Area Network (LAN)-based system. Instead, a connection-less request/reply protocol, known
as client-server protocol, is used. The client-server model adopts the simple message-passing
mechanism for communication between processes. The main advantage is its simplicity, in which
a client sends a request and receives a reply from its server machine. Another advantage is that
due to its simplicity, that is, protocol stack being shorter (only physical layer, data link layer, and
request/reply layer), it becomes efficient as well. Thus, the distributed OS uses two system calls,
only for inter-process communication,that is, one for sending the message, and another for receiv-
ing the message. A client process requires some service and sends a message for the request to the
appropriate server process. The server process receives the request, honours it, and sends the mes-
sage back with the reply. The send primitive specifies a destination of the server process and the
message contents. The receive primitive says from whom the message is desired, and a buffer is
maintained, where the incoming message is stored. The client and server processes take the help
of a message-passing module for send/receive primitives and the message content (see Fig. 18.2).

When the distributed message-passing system is used, there are several design issues related to it.
These are as follows:

Blocking vs Non-blocking
When a client process sends a message to its destination, the sending process is blocked,
and the process is not allowed to execute further, until the message has been completely sent
or an acknowledgement has been received. Similarly, when the receive call from the server
or receiving process is made, it does not return control, until a message has actually been
received completely or placed in the message buffer. It means when the send/receive primi-
tives are being called, the processes are blocked, and are not allowed to execute further. This is
known as blocking or \ synchronous primitive. On the contrary, when the sending or receiv-
ing processes during send/receive primitives are not blocked, it is known as non-blocking
or asynchronous primitives. The send primitive returns control to the process immediately

Client

Sending
process

Message-
passing
module

Message-
passing
module

Server

Receiving
process

Destination
address

Message

Fig. 18.2 Message-passing protocol

560 Principles of Operating Systems

after the message has been queued for transmission, and thus, the sending process is able
to compute in parallel to the message transmission. Similarly, the receive primitive does
not block the receiving process. However, there must be provision for telling it that the
message has been received. For this purpose, the receive process may periodically check for the
arrival of the message or the OS must notify it upon the arrival of the message. Thus, the non-
blocking or asynchronous primitives are advantageous, in the sense that send/receive processes
have the flexibility to compute and communicate in the order they want.

Reliability vs Unreliability
When a client process sends a message, there is no guarantee that the message has been
sent. The message may be lost even. Thus, there may be the requirement that in the distributed sys-
tem, the reliable message must be sent. However, there may be a trade-off between reliable and un-
reliable communication. There may be different cases for providing reliability. The first case may
be that the send primitive is unreliable. The second case may be that an acknowledgement must
be sent to the sender. The receiving machine kernel sends the acknowledgement to the sending
machine kernel. Similarly, when the reply message has been sent by the receiver process, it must
be acknowledged again between two kernels. This case may be treated as a fully reliable solution.
However, it may be improved in the way that there is no need to acknowledge the send message
by the receiver process. Instead, when the receiver process sends the reply to the sender, the reply
will itself act as an acknowledgement. The reply may be acknowledged again by the sender. But
this acknowledgement may be ignored, depending on the request.

However, it may be the case that the requests made by the client are critical, and acknowl-
edgements are necessary. In this case, another optimization may be done, such that when a
request on the server machine arrives, a timer is started. If the server sends the reply before the
timer expires, the reply functions as an acknowledgement. Otherwise, if the timer expires, a
separate acknowledgement will be sent.

18.6.2 Remote Procedure Calls
Since the message-passing system in client server model makes use of send and receive primi-
tives, these primitives are engaged in I/O operations. However, the idea in the distributed system
is to make distributed computing look like it is done on a single machine. This is a programming
language feature, designed for distributed computing, and it is intended to have the same semantics
of a procedure call as in a programming language. This will allow programs on different machines
to interact as various procedures are called and returned on a single machine. In other words, the
simple procedure call is used for accessing remote services. Today, the RPC is a widely-accepted
common method for communication in a distributed system. The general syntax of RPC is:

Call <proc_id> (<message>
where proc_id is the identification of a remote procedure and the message is a list of param-

eters to be passed to the remote node.
The RPC is implemented as a blocking protocol, that is, when a process on node A calls a

procedure on node B, the calling procedure is blocked, and execution of procedure on node B is
started. Further, the RPC is implemented as a client-server relationship, because the procedure
on a remote node may be called by many nodes.

There are two issues while implementing RPC. The first issue is to find the location of a remote
procedure, which has been called by a process. This is done with the help of a name server. All the
procedures, which may be invoked, must be registered with this name server. When a process calls
a remote procedure, the name server is first contacted to get the location of the remote procedure.

Distributed Operating Systems 561

Another issue is how to pass the parameters in a heterogeneous environment, where hardware
and software architecture of the remote node may be different. In this case, the RPC must per-
form appropriate conversions of value parameters and must construct system-wide capabilities for
reference parameters, which need to be passed along with the message to the remote node.

However, the client-server architecture viewed in the RPC mechanism may not be sufficient
to implement the parameter conversion and get results over the network, as the RPC implemen-
tation must be syntactically and semantically similar to that of a conventional procedural call.
For this purpose, we need to have some more components. Since the caller procedure on client
node will not be able to call the remote procedure directly, we need some additional functional-
ity for this purpose to implement RPC. There are two procedures for this purpose namely, client
stub and server stub. Whenever a process on a node calls a remote procedure on another node
on the network, the client process first calls the client stub with its parameters (see Fig. 18.3).
The client stub, after preparing the message, calls the server stub. The RPC, with the help of
client stub and server stub, is implemented in the following steps:

 1. The client process calls the client stub with the parameters, through the normal procedure
call. Obviously, according to the protocol, the client process is blocked until the procedure
call is completed.

 2. The client stub, after being called, collects the parameters, and converts them to a machine-
independent format. Next, it prepares the message consisting of the converted parameters.

 3. The client stub, after resolving the name of the remote procedure, that is, the address of the
node where the remote procedure exists, traps to the kernel.

 4. The client kernel sends the message to the remote kernel.
 5. The remote kernel sends the message to the server stub.
 6. The server stub receives the message sent by the kernel, unpacks the parameters, and con-

verts them to a machine-specific format that is suitable to that node.
 7. After conversion, the server stub calls the procedure with the converted parameters, that is,

a local procedure call on the server, through the server process, is executed.
 8. The server process, as a result of procedure call, returns the result to the server stub.
 9. The server stub, after receiving the result, converts them into a machine-independent form.
 10. The converted results are then put in the message form and then they trap to the remote kernel.
 11. The remote kernel sends the message to the client kernel.
 12. The client kernel sends the message to the client stub.
 13. The client stub converts the result into the machine-specific format and returns to the

client process.

Message transport over the network

Kernel

Client
process

Client
stub

Sever
stub Sever

process

Kernel

Client
node

Server
node

Fig. 18.3 Implementation of RPC

562 Principles of Operating Systems

18.7 CLOCK SYNCHRONIZATION IN DISTRIBUTED SYSTEMS

A computer system contains a real-time clock, which may be accessed through an instruction
meant for it. The user processes may access the clock to get the time of day, using a system
call. The OS uses the clock to have a record at what instant of time an event happened in the
system. Since in a distributed system, there are various nodes, there should be a global clock,
which can be accessed from all the nodes of the system. But the concept of a global clock is
not possible, due to communication components in the system. Due to unpredictable com-
munication delays, the requests for time will be different for the processes on various nodes.
There can be local clocks at each node of the system and all are synchronized to give the
illusion of a global clock. However, this is also not achievable as all the local clocks may not
show identical times. The reason is that the local clocks may work at different rates as all the
crystals corresponding to the clocks may not run exactly at the same frequency; hence, they do
not run synchronously. Thus, it is difficult to maintain the synchronization between different
local clocks.

However, Lamport suggested that it is not necessary that absolute clock synchronization is
required. If two processes on different nodes do not interact, it will not cause any problem, if
the clocks of two nodes are not synchronized. Further, he added that it is not necessary to have
the processes synchronized according to the real-time clock, but what is the order of events
among the processes matters the most. Thus, there may be some cases when internal consis-
tency of the clocks is required, but how close or equal they are to the real-time clock is not that
important. In other words, it may be possible to ascertain the order in which two or more events
occur. The order of events is not based on the real-time clock, but on the behaviour exhibited
by the underlying computation. Since this concept does not have any relation to the real-time
clock, this is known as logical clock.

18.7.1 Synchronizing Logical Clocks
To order the sequence of events among the processes, the logical clocks must be synchronized.
For this purpose, Lamport defined a relation, known as Happens-before relation. This relation
is basically for capturing the underlying dependencies between events. It may be denoted as
x → y. There may be following two situations for this relation:
 • If x and y are events in the same process and x occurs before y.
 • If x is the message-sending event by one process and y is the message-receiving event by

another process, then x will always precede y.
 • Happens-before relation is a transitive relation, that is,

If x → y, y → z, then x → z.
In distributed systems, it is better to know the sequence of events using this relation,

and ascertaining the order of events helps in designing, debugging, and understanding the
sequence of execution in distributed computation. It is clear that when one event changes
the system state, it may affect its related future events that will happen after this. This influ-
ence among causally-related events satisfying the Happens-before relation, are known as
causal affects.

If the two events hold the following conditions:
 • x /→ y, i.e., x → y is not true.
 • y /→ x, i.e., y → x is not true.
 • There is no transitive Happens-before relationship between x and y.

Distributed Operating Systems 563

Then these two events are known as concurrent, that is, it cannot be decided when one of the
two events happened or which of the two happened first.

Lamport’s Logical Clock Algorithm for Synchronization
To implement the logical clock, Lamport introduced the concept of time-stamp to be attached

with each process in the system. The time-stamp may be a function that assigns a number T
i
(x)

to any event x to process P
i
. But these time-stamps have nothing to do with the actual real-time

clock. Now, as per the time-stamp, the following conditions must be met:
 • For any two events x and y in a process P

i
, if x → y , then,

T(x) < T(y)
 • If x is the message-sending event in process P

i
 and y is the message-receiving event in

process P
j
 then

T
i
(x) < T

j
(y)

 • The time-stamp value T must always be increasing and never decreasing. Thus, for the
implementation, the clock is incremented between any two suc-
cessive events always with a positive integer d, that is,

T
i
(y) = T

i
(x) + d, where d > 0

Using all the conditions mentioned above, we can
assign time-stamp to all events in the system, and thereby, provide
a total ordering of all the events in the system.

Example 18.1

Consider there are two processes P1 and P2, running on different
nodes of a distributed system. Each node has its own clock running
at its own speed. This is why when the clock in process P1 has
ticked 4 time units, the clock on process P2 has ticked 6 time units
as shown in Fig. 18.4(a). The value of d in process P1 is 4 while it
is 6 in P2.

It can also be seen that at time 8 in P1, it sends a message M
to P2. In P2, it arrives at 18. The message M1 carries with it the
time-stamp of P1, that is, 8. So it can be said that it took 10 ticks
for the transmission delay. Further, a message M2 from process
P2 is sent to P1. But M2 leaves at 30 and reaches at 24. This is
 undoubtedly impossible. The situation like this must be prevented
in order to have synchronization between the processes. Lamport
suggested the solution for this type of situation as:

When a message arrives from one node to another and the re-
ceiver’s node clock shows a value prior to the time the message
was sent, the receiver node must fast forward its clock to be one
more than the sending time-stamp.

Thus, in Fig. 18.4(b), we can see that the M2 arrives now at 25,
which is a possible value.

M2

M1

0

4

8

12

16

20

24

28

30

0

6

12

18

24

30

36

44

50

P2P1

Fig. 18.4(a) Distributed clock scenario
 for Example 18.1

M1

M2

0

4

8

12

16

20

25

29

33

0

6

12

18

24

30

36

44

50

P1 P2

Fig. 18.4(b) Lamport’s logical clock
algorithm for synchroniza-
tion in Example 18.1

564 Principles of Operating Systems

18.8 GLOBAL STATE

An up-to-date state of the full system is required for a system’s behaviour, debugging, fault
recovery, synchronization, and so on. However, a distributed system does not have a global
memory. Hence, the state of an entire system will not be available to the process, even if it
wants to know. In the absence of a global clock and global memory, a coherent global state of
the system is difficult to achieve. Chandy and Lamport worked in this direction and designed an
algorithm known as Chandy–Lamport Consistent State Recording algorithm. This algorithm
works on the following assumptions:

 1. The channels being considered for communication are unidirectional.
 2. All the channels are managed through FIFO.
 3. All the channels have unbounded capacity to store messages.

Let us discuss the algorithm.

18.8.1 Chandy–Lamport Consistent State Recording Algorithm
To record a consistent global state, Chandy–Lamport algorithm uses the concept of a record-
ing message, known as a marker. To begin with, a process first records its state, and then
sends a marker to all its neighbouring processes, if not already sent. This process sends the
marker before it sends any messages to other processes. Each process receiving the marker
records its state, if not recorded earlier, records the state of the channel over which it received
the message as an empty sequence, and sends the marker message to its other neighbours.
This process continues, until all the processes have recorded their states, and the states of
all the channels have been recorded. If a process receiving the marker has recorded its state
earlier, it records the state of the channel, as the sequence of messages received along it dur-
ing the last recorded state of the process and the time when it received the marker.

Let P
s
 be the process that initiates the state recording. C is denoted for the channel over which

messages are communicated. There are the two rules of this algorithm. One is marker-sending
rule and another is marker-receiving rule. The algorithms of both rules are shown in Fig. 18.5.

Marker sending rule for a process Ps

1. Ps records its state.
2. for (i=1; i =n; ++i)
3. {

If marker not sent to Ci

Ps sends a marker on each outgoing Ci

}

Marker receiving rule for a process Q

1. Process Q receives the marker message through a Ci.
2. If Q has not recorded its state earlier

Call marker sending rule to record its state and
to send the marker to each channel

else
Record the state of the channel as sequence of
messages received after Q’s state was recorded
and before Q received the current marker.

Fig. 18.5 Chandy–Lamport consistent state recording algorithm

Distributed Operating Systems 565

Example 18.2

Consider there are four processes, P1, P2, P3, and P4 at nodes N1, N2, N3, and N4, respectively.
At time t = 0 (see Fig. 18.6 (a)), P1 has sent message M1 to P4. M1 presently exists in channel
C14, where C14 is the channel between N1 and N4. At t = 1, P2 sends message M2 to P3. At t = 2,
P1 decides to record the state of the system. It records its own state and sends marker messages
on its outgoing channels. Fig. 18.6 (b) shows the situation at t = 2+. M1 is still in channel C14
and M2 is in C23. The square along these channels indicates that the messages are still in chan-
nels. The triangle at N1 indicates that the state of process P1 has been recorded.

The process P4 at N4 receives the marker message along the channel C14. At t = 3, P4
records its own state and the state of C14 as empty. At t = 4, process P2 sends message
M3 to P3 and P2 receives the marker along C12 at t = 5. P2 now records its state and state
of C12 as empty and sends the marker along C23. The situation at t = 5+ has been shown in
Fig. 18.6(c).

At t = 6, the process P3 receives the messages M2 and M3 and it sends the message
M4 to P4. At t = 7, P3 receives the marker and records its own state, and sends the
marker along C34. The situation at t = 7+ has been shown in Fig. 18.6(d), where all
the states of all the processes have been recorded.

At t = 8, P4 receives the marker, but its state and others have already been recorded,
it only records the state of the C34, as M4 is there in C34. The recorded state of all the
processes and channels are shown in Table 18.1.

M2N3

P3

N2

P2

N4

P4

N1

P1

(b)

M3

N3

P3

N2

P2

N4

P4

N1

P1

(c)

N3
P3

N2
P2

N4
P4

N1
P1

M4

(d)

Fig. 18.6 Chandy–Lamport consistent state recording algorithm Example 18.2

N3

P3

N2

P2

N4

P4

N1

P1

M

(a)

1

566 Principles of Operating Systems

Table 18.1 Chandy–Lamport consistent state recorded states Example 18.2

Entity Recorded state

P
1

Message M
1
 has been sent, no message has been received.

P
2

Messages M
2
 and M

3
 have been sent, no message has been received.

P
3

Messages M
2
 and M

3
 have been received and message M

4
 has been sent.

P
4

No messages have been sent or received.

C
12

Empty

C
14

Empty

C
23

Empty

C
34

Contains message M
4
.

18.9 MUTUAL EXCLUSION

In a distributed environment, the shared resources are distributed and there is no shared
memory concept. Therefore, it becomes difficult to achieve mutual exclusion to share a
resource. We achieved mutual exclusion between the processes on a single-computer system
through the use of shared memory, semaphore, and so on. But all these solutions may not be
valid in the distributed systems, due to lack of global state, global clock, and shared memory.
Moreover, communication delay is also a factor affecting the message-passing system. Many
algorithms help the distributed system to achieve mutual exclusion. These algorithms will be
discussed in the subsequent sections.

18.9.1 Centralized Algorithm
This algorithm simulates the critical section solution implemented on a single-computer system.
In this algorithm, a process on one of the nodes of the distributed system is assigned as the
coordinator to manage the mutual exclusion problem. Suppose S is a distributed system and C(S)
is its coordinator process. Whenever a process wishes to enter its critical section, it needs to send
a request message to C(S). Now C(S) grants the permission, only if no other process has already
entered that critical section. Thus, the process wishing to enter its critical section needs to obtain per-
mission from C(S). If there is already a process in that section, the C(S) will not allow the requesting
process to enter the critical section. The requesting process at this time is blocked and waits in a
queue, designed for this purpose. When the process, which is presently in the critical section, exits,
it sends a message to C(S), releasing the exclusive access of critical section. The C(S) then wakes up
the first process in the queue waiting for that critical section, and grants the permission.

Example 18.3

Consider there are four processes on various nodes of a distributed system. The processes may
need to access a critical section common to all. One of the processes, say P3, is designated as
C(S). If now P2 requests C(S) to gain control of its critical section, the permission is granted, as
there is no other process accessing the critical section, as shown in Fig. 18.7(a).

After this, if process P1 requests the C(S) for critical section, it will not be permitted and get
blocked. P1 will wait in the queue, as shown in Fig. 18.7(b). If after some time, P2 exits and leaves
the critical section, it sends the release signal to C(S). C(S), in turn, takes off the first process in the
queue, that is, P1, and gives the permission to enter the critical section, as shown in Fig. 18.7(c).

Distributed Operating Systems 567

Request

C(S)

P1

P2

P3 P4

(a)

C(S)

P1

P2

P3 P4

P1 Request

(b)

C(S)

P1

P2

P3 P4

P1

Release

(c)

Fig. 18.7 Centralized algorithm for mutual exclusion Example 18.3

The centralized algorithm is able to control the mutual exclusion, as seen in the above
example. Moreover, it is fair enough to maintain the sequence of requesting processes that wish
to enter the critical section. However, the centralized algorithm has some disadvantages as
well. If the process designated as the coordinator fails, then the whole system may crash in the
absence of coordinated mutual exclusion. Moreover, the performance of the coordinator node
may degrade as the load on it increases.

568 Principles of Operating Systems

18.9.2 Ricart–Agarwala Algorithm
Keeping in view the disadvantages of centralized algorithm for mutual exclusion, a fully-
distributed algorithm was developed by Ricart and Agarwala. According to this algorithm, a
process wishing to enter its critical section sends a time-stamped request message to all other
processes, and waits. The format of a message is as follows:

M (Name_CS, Process_ID, TS)
Where, Name_CS is the name of the critical section,

Process_ID is the process identification of the sending process
TS is the time-stamp, that is, the time when the message is being sent
If all the processes, in turn, send to it the OK message, it starts executing inside the criti-

cal section. The purpose of sending this time-stamped message is to check whether any other
process is executing inside its critical section or not. A process receiving the message will send
back the OK message, if it is not executing inside that critical section. Otherwise, it adds the
requesting process to its pending request queue, which is maintained by every process. When
the process executing inside the critical section exits, it sends the OK message to all of the pro-
cesses in the pending request queue. There may be a case that the process receiving the time-
stamped message has also sent a request to all other processes. In this case, the time stamps of
both the processes can be compared and the process having lower time-stamp value is allowed
to enter the critical section. The algorithm is shown in Fig.18.8.

Ricart-Agarwala Algorithm for Mutual Exclusion

1. A process Pi wishing to enter its critical section CS sends a message
M(Name, Process_ID, TS) to all other processes, that is, n − 1 in the
system; where n is the number of processes in the system.

2. When a process Pj receives the message M from Pi, the following actions
may be taken:

If Pi is not inside CS
Send OK message to Pi.

Else
{
If Pj has sent Mto other processes

{
If (TSi < TSj) // Compare the time-stamps of Pi and Pj.

Send OK message to Pi.
Else
Add the Pi ‘s request to Pending_request_queue.

}
Else
{

If Pj is inside the CS
Add the Pi ‘s request to Pending_request_queue.

}
}

3. The process, if receives n − 1 OK messages from the processes, gets the
permission to enter its CS, and starts executing inside it.

4. If the process Pj exits its CS
{
If items are there in Pending_request_queue

Send OK message to all the processes inside the
Pending_request_queue

}

Fig. 18.8 Ricart–Agarwala algorithm for mutual exclusion

Distributed Operating Systems 569

Example 18.4

Consider there are three processes P1, P2, and P3
as shown in Fig. 18.9(a). P3 is executing inside the
 critical section CS1. P1 sends a request message for
CS1 to P2 and P3. P2 also sends a request message
to P1 and P3 for the same CS1. Implement Ricart–
Agarwala algorithm for this scenario.

Solution

Both P1 and P2 do not get reply from P3, as it is
executing inside CS1. Since both of them have sent
the request message to P1, their time-stamps will be
compared. As the time-stamp of P1 (that is, 6) is less
than the time-stamp of P2 (that is, 8), P2 will send
the OK message to P1, as shown in Fig. 18.9(b).

Since the process P3 is busy inside CS1, it queues the
incoming requests in its pending_request_queue.

As soon as P3 exits CS1, it removes all the processes
from its queue, and sends OK message to all the processes,
as shown in Fig. 18.9(c). Since P1 has received OK mes-
sages from all other processes, it starts executing inside
CS1.

Ricart–Agarwala algorithm is fair enough as a distrib-
uted algorithm for mutual exclusion, but there may be
multiple points of failures as compared to a single-point
failure in a centralized algorithm. If any of the process
fails and does not send OK message to a requesting pro-
cess, the requesting process may interpret it as a denial of
permission. Hence, the receiver process must always reply,
either granting or denying the request. Otherwise,
after sometime, the requester may time out. Another

disadvantage is that, the permission sought from all the
processes to enter inside its critical section, may slow
down the performance of the system.

18.9.3 Token Ring Algorithm
This algorithm assumes a logical structure of all
the processes in a ring, that is, all the processes are
connected together in a ring sequence, and every process is
aware of the next process in that sequence, as shown in Fig.
18.10. To initialize, a token is given to the first process in
the ring. In the figure, the token is represented by a black
square. This token serves the purpose of permission to gain
the access inside the critical section. So the process, having
the token, has the permission to enter inside its critical sec-
tion, but only once, that is, the same token does not allow the

M(CS1, P1, 8)

M(CS1, P1, 8)M(CS1, P1, 6)

M(CS1, P1, 6)
P1 P2

P3

Executing
inside CS 1

(a)

OK

P1 P2

P3

Executing
inside CS 1

P1

P2

(b)

OK

OK

P1 P2

P3

Exits CS1

OK

(c)

Fig. 18.9 Ricart–Agarwala algorithm for
mutual exclusion Example 18.4

570 Principles of Operating Systems

process to enter another critical section. After using the token, it exits and passes the token to its
next process in the ring sequence. In this way, the token is circulated among every process, turn
by turn. If a process does not wish to enter its critical section, it passes the token to the next pro-
cess without using it. If no process is interested in using the token, it is still passed among all the
processes. This is known as token ring algorithm. Thus, the mutual exclusion is achieved in this
algorithm, as only one process having the token can enter inside its critical section. Moreover,
each process gets its chance to execute inside the critical section.

However, there may be some shortcomings of this algorithm. They are:
 • The token being circulated may get lost. But there is no way to know, if it is lost or still

being used by some process.
 • If a process receiving the token crashes, the token may get lost. There may be a provision

that the process receiving the token must acknowledge it, so that the token does not get lost
and is passed to the process next to the failed one.

18.10 DEADLOCK DETECTION

The deadlocks may appear in distributed systems also, even worse than in single-processor
systems. In distributed systems, deadlocks are more difficult to prevent, avoid, or even detect,
as the information on various processors are scattered, and no node has the current state of the
system. Moreover, every communication between two nodes has finite, but unpredictable delay.
The only method to handle the deadlock in distributed systems is to detect it. Let us discuss the
deadlock detection in distributed systems.

18.10.1 Centralized Deadlock Detection
Like mutual exclusion, the deadlock may also be detected by having a centralized system,
that is, a process is assigned as the central coordinator, which will maintain the resource
allocation state of the entire system. The central coordinator maintains a central wait-for graph,
 combining wait-for graphs of all the processes at one place. This central wait-for graph will
provide a complete view of the processes and their resources. Periodically, all the processes
at various nodes send their updated information about the resources, so that the coordinator
can update the central wait-for graph. The central coordinator will detect any cycles in the
wait-for graph for deadlock detection in the system.

1

3

4

5

6

7

8 2

Process having token

Fig. 18.10 Token-ring algorithm for mutual exclusion

Distributed Operating Systems 571

Example 18.5

Consider the following scenario in a
distributed system (see Fig. 18.11 (a)):

 1. At node N1, P1 requests R1
 2. At node N2, P2 holds R1 and

 requests R2 and R3.
 3. At node 3, R2 is held by P3.
 4. At node N4, P4 requests R1.

Discuss the centralized deadlock detec-
tion method for this scenario.

All processes at various nodes will send the status of resources to the central coordina-
tor node, say N5. This coordinator node will combine the scenario of all the processes and
prepare a combined RAG and wait-for graph, as shown in Fig. 18.11(b) and Fig. 18.11(c),
respectively. It can be seen that there is a deadlock in the resultant wait-for graph (see
Fig. 18.11 (c)).

There is one problem that may occur in central deadlock detection algorithm. It may be
possible that the message sent by a process to the central coordinator, after receiving the

resource, may not reach at the right time, due to
communication delay. During this time, to resolve
the deadlock, one of the processes may be killed or
some other method will be adopted. Thus, a situation
like this may lead to false deadlock. The solution to
this may be to add the time-stamp with the message
about the resource. Moreover, before taking any
action to resolve the deadlock, the coordinator
node must send a message to all the nodes asking

to send any update.

R1

P4

R2

P3

R2

P2

R1 R3R1

P1

Fig. 18.11(a) Distributed system RAG for Example 18.5

R1 R2 R3

P1 P2 P3 P4

Fig. 18.11(b) RAG for Example 18.5

P1 P2 P3

P4

Fig. 18.11(c) Wait-for graph for Example 18.5

572 Principles of Operating Systems

18.10.2 Distributed Deadlock Detection
In distributed deadlock detection algorithms, all the nodes in the system collectively cooper-
ate to detect a cycle. Some of the distributed deadlock detection algorithms are such as the
following:

Path-pushing Algorithm
In this algorithm, a global wait-for graph is maintained for each node of the distributed system.
At each node, whenever a deadlock computation is performed, its local wait-for graph is sent
to all neighbouring nodes. After the neighbouring node receives the wait-for graph, it updates
its wait-for graph, combining the information that was received. Then this updated wait-for-
graph is sent to all its neighbouring nodes, and the procedure continues until some node has
a sufficiently complete view of the global state, such that a deadlock can be detected, if there
is one. However, this algorithm may not be correct as wait-for graphs, as all the nodes have
been formed at different instants of time and therefore, the global state information may be
inconsistent.

Edge-chasing Algorithm
In this algorithm, a special fixed-size short message, called probe, is propagated along the
edges of wait-for graph to detect a cycle in a distributed system. These probe messages are not
the same as the request and reply messages, and they are not meant for executing processes. If
these executing processes receive them, they discard them, and continue their execution. Only
those processes, which have been waiting for some resource held by some other process, propa-
gate probe messages along their outgoing edges. The structure of a probe message consists of
the following fields:
 • The process number that has just blocked, that is, waiting for the resource.
 • The process number sending the probe message.
 • The process number to which the message is being sent.

According to the algorithm, any process that receives the probe message, first checks
whether it itself is blocked or not. If it is blocked, it updates the probe message, keeping
the first field of the message same, replacing the second field by its own number, and the
third one by the process number for which it is waiting. The message is then sent to the
process for which it is waiting. If this process is waiting for multiple processes, then the dif-
ferent messages are sent to all these processes. The algorithm is followed for all the resources,
whether local or remote. If a message goes all the way around and reaches back to the
original sender, it means a cycle exists. In other words, the deadlock has been detected.

Example 18.6

Consider the wait-for graph for a distributed system showing various processes and their de-
pendencies, in the form of wait for resources in Fig. 18.12. All the probe messages have been
shown in various nodes. The last probe message shows that there is a deadlock in the system.

18.10.3 Correctness Criteria for Deadlock Detection Algorithms
The deadlock detection algorithms discussed above must satisfy the following two conditions:

Distributed Operating Systems 573

 1. The deadlock detection must be performed within a finite time. Once all wait-for graphs are
generated, it should give its decision, based on the current situation, and should not wait for
any other event to occur.

 2. The algorithm should not detect any false deadlocks.

18.11 DEADLOCK PREVENTION

The deadlocks can be prevented, using all the methods that were explained in Chapter 8. The
most suitable prevention method is to provide ordering of all the resources, that is., a unique
number in increasing order, is provided to each resource in the system. The processes will
require acquiring them, only in their increasing order. This scheme will not allow the cycles to
exist and therefore, no deadlock will be present.

However, due to constraints of global time and state in distributed systems, some other al-
gorithms to prevent the deadlocks are necessary. These algorithms are based on the concept of
ranking provided to the processes. There may be various criteria for providing ranks. One of
them is to use the time-stamp of the process. Each process in a distributed system is assigned a
time-stamp, when it is created. The algorithms are as follows:

Wait-Die Algorithm
Let a process, say A, request for a resource, currently held by process B. The time-
stamps of both processes are compared. If process A has time-stamp smaller than
B, it is allowed to wait for the resource. On the other hand, if process B requests the
 resource currently held by A, the process B dies. The older process is allowed to wait
for a younger process, but a younger process dies, if it tries to wait for an older process
(see Fig. 18.13). The killed process is restarted after some time in the future. In this way,
in this algorithm, the processes will always request in their increasing order of ranks,
thereby, making cycles impossible.

156

123 112
1 2

134
3 4

5

167
7 6

135

171

Fig. 18.12 Edge-chasing algorithm Example 18.6

574 Principles of Operating Systems

Wound-Wait Algorithm
Suppose process A requests for a resource, currently held by process B. The time-stamps
of both processes are compared. If process A has time-stamp smaller than B, it pre-empts
the process B and B’s current transaction dies. On the other hand, if process B requests
the resource currently held by A, it waits for the resource. In this algorithm, the older
process pre-empts the younger process, but if the younger one requests, it is allowed to wait (see
Fig. 18.14).

18.12 DISTRIBUTED PROCESS SCHEDULING

In a distributed system, various processors execute several processes. But to maximize the
performance of the system, there must be a balanced distribution of the computational load. It
may be possible that some computation-intensive processes are executing on only one processor,
while other nodes either do not have any process or have some light processes; some processes
on a node are executing very slowly, while on other nodes, the processes are being executed

pre-empts

dies

waits

waits

Process A
time-stamp = 20

Process B
time-stamp = 30

Process B
time-stamp = 30

Process A
time-stamp = 20

Fig. 18.13 Wait-die algorithm

pre-empts

Process A
time-stamp = 20

dies

waits

Process B
time-stamp = 30

Process B
time-stamp = 30

Process A
time-stamp =
20

Fig. 18.14 Wound-wait algorithm

Distributed Operating Systems 575

quickly. All this will cause unbalance in the system, leading to poor performance. The primary
goal of process-scheduling in the distributed system is similar to that of a single-processor
 system, that is, processor utilization. Therefore, processors must be compared to understand the
load distribution scenario and load-balancing may be performed, if required. Load-balancing is
performed by transferring some processes from a heavily-loaded node to a lightly-loaded node.
This is known as process migration. For characterizing the computational load at a node, vari-
ous parameters, such as processor utilization at the node, the number of processes existing at
the node, length of ready queue at the node, and so on, are considered.

Some issues faced while implementing distributed process scheduling are such as the
following:
 • Process migration policy

The process migration policy decides if a process on one node should be migrated in a pre-
emptive or non-pre-emptive manner. According to the pre-emptive policy, the executing
process to be migrated is first suspended, and its code and current state are transferred from
the current node to the node where it has to be migrated. Its execution is resumed at the new
node. This policy needs extensive support from the kernel. In a non-pre-emptive policy, the
process will be created on the new node only.

 • Transfer policy
This policy decides when the computational load must be transferred to another node. The
simple policy for this may be to consider the load threshold on a node in the system. When-
ever a process needs to be created or transferred to a node, the threshold load value of this
node must be checked. If the load value exceeds the threshold value (overloaded node), then
the process must be transferred to another node. In terms of threshold value, a node may be
designated as a sender node, if the load value exceeds the threshold. Otherwise, it is called
a receiver node. However, this policy may not be optimal, as it is considering only local in-
formation of a node. It would be better if global state information is taken into consideration
to decide the transfer policy.

 • Selection policy
The selection policy selects a process that needs to be transferred. One of the methods is to
select a newly-created process that has caused the node to exceed its threshold load value.
The criterion for selecting a process among the existing processes is less overhead in transfer.

 • Location policy
The location policy decides where the selected process should be transferred. There may be
two methods for finding out a suitable node for load-sharing. One method is that the node
may poll another node to find out whether that node is suitable or not. Another method is to
broadcast a query about whether any node is suitable for load-sharing. These two methods
are sender-initiated, that is, the sender nodes are finding out receiver nodes. There can be
receiver-initiated methods also. The receiver nodes may also announce that they have less
or no computation to do.

 • Information policy
The information policy is to collect information about the states of all other nodes in the
system by a node. The policy decides when to collect this information. The common meth-
ods are: demand-driven and periodic. In a demand-driven method, when a node becomes a
sender or receiver, it becomes a suitable node to collect information about other nodes for
load-sharing. In a periodic method, the node exchanges information periodically.

576 Principles of Operating Systems

The process-scheduling is performed at two levels. The first is scheduling the processes on
various nodes in the system. Second is to schedule the processes on a node locally. On a local
node, time slices are given to the process in order to achieve certain goals, such as response
time, fairness, and so on. Thus, there are two types of schedulers: One is a local scheduler that
schedules the processes on a node locally and another is global load scheduler that balances
the load of various nodes in the system (see Fig.18.15). The global load scheduler decides the
process migration, depending on the following factors:
 • The number of processes on a processor
 • Average waiting time of the processes in the ready queue of a node
 • How many processors are available in the system
 • Average response time of the processes on a node

Global load scheduler is of two types: static and dynamic. Static scheduler assigns the processes
to processors only at their compile times while dynamic scheduler assigns the processors when the
processes start execution. Static scheduler takes the decision only on information regarding pro-
cesses such as expected execution time of processes, their I/O requirements, and so on. Moreover, it
considers the static system characteristics such as processing power of processor, network configu-
ration, and so on. On the other hand, dynamic scheduler takes its scheduling decisions, based on
the current state of the system such as workload on a node, the queue length on a node, and so on.

Some of the scheduling algorithms adopted by global load scheduler are as follows:

18.12.1 Sender-initiated Algorithms
In this type of scheduling algorithms, the scheduling of a process is initiated by an overloaded node.
The scheduling by a sender node may be done in various ways. The first method is random, that is,

Node 1 Node 2 Node n

Global load scheduler

Local
scheduler

Ready processes

Processor

Local
scheduler

Ready processes

Processor

Local
scheduler

Ready processes

Processor

Distributed system

Fig. 18.15 Global load scheduler

Distributed Operating Systems 577

the sender node transfers the process to a random node. The drawback in this approach is that there
may be many transfers if the randomly-selected node is not a receiver node. Another scheduling
algorithm is based on the threshold. The threshold decides the criteria whether a node is receiver or
not, based on their processor queue length. The sender node may poll a node, asking whether it is
a receiver node or not. If the node is a receiver, then the process is transferred to the selected node.
The threshold-based algorithm may be optimized if the processor queue lengths of the processors
are available for comparison. Then, the processor having the shortest queue length is selected.
Thus sender-initiated algorithms are categorized into three types: random-scheduling algorithm,
threshold-based scheduling algorithm, and shortest queue length-based scheduling algorithm.

The sender-initiated algorithms are not effective at high system loads, causing instability in
the system. The reason is that at high loads in the system, the probability of finding a receiver
node is very low. The sender node continuously polls the nodes in search of a receiver node.
Eventually, a time is reached where the cost of polling exceeds the benefit of load-sharing. Most
of the processor cycles are wasted in unsuccessful polling, thereby, lowering the system’s serv-
ing capacity. In turn, this causes the instability in the system.

18.12.2 Receiver-initiated Algorithms
Instead of the sender initiating the scheduling, an under-loaded receiver can also initiate the
scheduling. Whenever a process finishes on this node, it checks its load value. If it is below the
threshold, it randomly goes to the various highly-loaded nodes on the system, requesting for
work. If it does not get any work, it finishes its work already in the queue, and starts probing
the nodes again, after some time. The advantage of receiver-initiated algorithm is that all nodes
will have balanced load, when the system is heavily loaded. Also, these algorithms do not cause
instability in the system, because at high system loads, there is high probability of finding a
sender node within a few polls. In turn, there will be very little wastage of processor cycles.
However, these algorithms are expensive, as they make use of pre-emptive migration policy.
This is because, a receiver node will migrate the processes only when a node has become the
receiver. During this time, many sender nodes may receive a new process and start its execu-
tion. Therefore, when the receiver node starts migrating already-executing processes, there is
cost involved in saving their states and resuming their executions on receiver node.

18.12.3 Symmetrically Initiated Algorithms
Symmetrically-initiated algorithms are designed to incorporate the benefits of both sender-,
as well as receiver-initiated algorithms. In these algorithms, both sender and receiver nodes
search for their respective nodes. At low system load, sender-initiated is more successful; while
at high system loads, receiver nodes are able to find sender nodes. However, the drawbacks of
both algorithms still exist. To reduce the drawbacks of both algorithms and make use of their
advantages, a stable symmetrically-initiated algorithm is used. In this algorithm, the informa-
tion gathered during polling by both types of nodes is utilized, and the nodes are classified as
sender/over-loaded, receiver/under-loaded, and OK nodes. A data structure at each node is
maintained to save the states of nodes. Thus, the data structure at each node has a sender list,
a receiver list, and an OK list. The benefit of using these lists, with maintained states, is that
the future sender-initiated polls are prevented and the component is deactivated at high sys-
tem loads, thereby, having only a receiver-initiated component. Similarly, a receiver-initiated
component is deactivated during low system loads. Moreover, within a moderate range, both
sender- as well as receiver-initiated, components are activated.

578 Principles of Operating Systems

18.13 DISTRIBUTED FILE SYSTEMS

In a distributed system, files can be stored and the computation can be done at any node.
Thus, it may be the case that a node may require to access a file that is residing on some other
remote node. The distributed file system implements remote accessing of files, but the user
is unaware of the location of files distributed all over the system, giving the impression of a
single-processor machine.

In a distributed system, some nodes are dedicated to store the files only. These nodes
perform the storage and retrieval operation on the files, and are known as file servers. The
other nodes used for computational purposes are known as clients. The client nodes request
any remote file access from the file servers. To design a distributed system, the following
goals should be fulfilled:

 • Access transparency
The clients are unaware that files are distributed over the network, and they can access them
in the same way as on a single-processor file system.

 • Location transparency
There is a consistent name space, consisting of local as well as remote files. The name of a
file to be specified by a client does not require the information about its location.

 • Concurrency transparency
All clients view the same state of the file system. If a file is being modified, then other pro-
cesses in the network will observe the modification in a coherent manner.

 • Heterogeneity
There may be heterogeneous hardware and OS platforms in the network. But the file ser-
vices must be provided across all the nodes, irrespective of their heterogeneity.

 • Replication transparency
To have the availability of certain files with file servers, the system may replicate these files.
But the users are not aware of the replication of the files.

 • Migration transparency
The users are unaware of migration of the files from one node to another.

Now there are two services being used in a distributed system. The first is the mapping of
logical file names, specified by the client node to physically-stored objects, such as files and
directories. This is performed by a process known as name server. Whenever a process refer-
ences a file name for the first time, the name server maps the file name to its stored object.
The second service is to reduce the network communication delay in accessing the remote
files. Since files are dispersed at various locations in a distributed system, every time a file is
accessed, there will be a certain delay, due to network communication. Therefore, file caching
is used to reduce this delay. Once the files are accessed from the file servers, they are cached
at client node only. The subsequent accesses are now performed locally through the file cache.
For this purpose, a process known as cache manager is used, which implements file caching.
The caching may be used at file server nodes also. To reduce the disk I/O while accessing
the remote files from file servers, the file cache stored in the main memory is used. Thus, cache
managers may be present as client as well as servers. If multiple clients access the same file

Distributed Operating Systems 579

and store in their respective caches, and update it, the multiple copies of the same file become
inconsistent. To avoid this problem, the cache manger coordinates the file access and caching,
such that there is no inconsistency.

To discuss the files system in distributed systems, it is important to differentiate between the
two terms: file service and file server. The primitives of the file system and their parameters,
and what actions they perform, are described in the file service. But to implement this file ser-
vice, there should be a process running on a machine that implements the file service. Thus, file
server is that process. A system may have one or several file servers on different nodes of the
system. But the client is unaware of the distribution of file servers and has an impression that
he/she is working on a single-processor system.

A distributed file system has two components: file service and directory service. The details
regarding the file service like file operations, file types, file attributes, and so on, are same as that
of single-processor systems. In distributed systems, there are some files which can be created,
but cannot be changed. These files are known as immutable. Immutable files are easy to cache
and replicate across various file servers, as it is guaranteed that their contents will not change.

18.13.1 File-sharing Semantics
The manner, in which the results of file operations performed by the concurrent users are visible
to one another, is known as file-sharing semantics. There are two methods of file sharing. One
is sequential sharing, that is, the users access the shared file one after another. Second method
is concurrent sharing, that is, multiple users share the file over the same period of time.

Let us suppose that a client modifies its cache copy of a file F, and at the same time an-
other client accesses F from the file server. The second client will get the old copy of F. This
is because sequential semantics are not valid in distributed file systems. It will be valid only
if there is only one file server and when file caching is not used. However, this leads to poor
performance of the system.

The following semantics may be used for a distributed file system:
 • Immutable file semantics

Whenever an immutable file is being shared, none of the sharing processes can modify it.
 • Session semantics

A session here means a group of clients processing a file. In a session, all the clients share
a single mutable image of file F. Similarly, there may be another session where the image
of the same file F is distinct. Thus, the idea of session semantics is that the write operation
on F, performed by a client, can be observed by the clients of the same session, but it is not
visible to the clients of other sessions. The session semantics, thus, support multiple images
of mutable files. Each image represents one version of F. Whenever a client wishes to open
the file, the distributed system decides which version of F to open.

 • Transaction semantics
According to this semantics, accessing a file or performing an operation on it are considered
as atomic transactions. Whenever a client starts accessing a file or performing operations on
it, a begin transaction primitive is executed first, to signal that all future operations will be
done indivisibly. Once the operation is finished, end transaction primitive is executed, to
signal the end of the atomic transaction. Thus, only a single version of the file is maintained,
and only a single client can access it at a time. The advantage is that the file will always be
in a consistent state.

580 Principles of Operating Systems

18.14 DISTRIBUTED SHARED MEMORY

The only communication method in early distributed systems was message-passing. However,
it was realized that a single-paged virtual address space can be created for a distributed system
in exactly the same way as virtual memory can be implemented on single-processor systems.
The pages here in the distributed shared memory are on different nodes. The data reside on disk
or main memory of various nodes. Each node can own data, stored in the shared address space.
Whenever there is reference to a data in shared address space, those need to be mapped to their
actual physical location. For this purpose, there is a mapping manager, which may be imple-
mented in the kernel, or as a run-time library routine. It may be possible that after mapping, it
is found the data to be retrieved is local, that is, on the same node. In some cases, however, the
data may be on a remote node. In this case, it will be considered as a page fault. This page fault
then traps the OS. The OS then sends a message to the remote node to find the desired page.
The page fault is thus serviced, and the desired page from the remote node is retrieved. But the
user is unaware about all the mapping or dispersed pages on the network, and has the impres-
sion of using a single share memory. The transfer of pages from one node to other increases the
network traffic, and due to this reason, there may be a delay while a user tries to access a shared
memory data. It also incurs cost.

SUMMARY

Let us have a quick review of important concepts discussed
in this chapter:

 • A distributed system is a loosely-coupled architecture,
wherein processors are inter-connected by a communi-
cation network.

 • Network OSs are loosely-coupled OS software on a
loosely-coupled hardware that allows nodes and users
of a distributed system to be quite independent of one
another, but interacts in a limited degree.

 • Distributed OSs are tightly-coupled OS software on
loosely-coupled hardware, that is, distributed system.

 • Since in a distributed system, each node is a complete
computer system, there is no global memory, and even
no global clock.

 • The distributed OS must be able to do process/compu-
tation migration as well as data migration for the better
performance of the system.

 • IPC in distributed systems is implemented through
 message-passing and remote-procedure-call.

 • RPC is a programming language feature designed for
distributed computing and is intended to have the same
semantics of a procedure call as in a programming
 language.

 • To provide mutual exclusion among processes in distrib-
uted system, the following algorithms are used:

 (a) Centralized algorithm: In this algorithm, a process,
on one node of the distributed system, is assigned
as coordinator to manage the mutual exclusion
problem.

 (b) Ricart–Agarwala algorithm: It is a fully-distributed
 algorithm. According to this algorithm, a process, wish-
ing to enter its critical section, sends a time-stamped
request messages to all other processes, and waits.

 (c) Token-ring algorithm: This algorithm assumes the
logical structure of all the processes as a sequential
ring. Every process knows the next process in that
sequence. Only the process, having the token, is per-
mitted to enter inside its critical section, but only once.

 • To provide deadlock detection in distributed system, the
following algorithms are used:

 (a) Centralized algorithm: In this algorithm, a process is
assigned as a central coordinator that will maintain
the resource allocation state of the entire system.

 (b) Distributed algorithms: All the nodes in the system
collectively cooperate to detect a cycle.

 • To provide deadlock prevention in distributed system, the
following algorithms are used:

 (a) Wait-die algorithm: The older process waits for a
younger process, but a younger process is killed, if
it tries to wait for an older process

 (b) Wound-wait algorithm: The older process pre-empts
the younger one, but if the younger one requests, it is
allowed to wait.

 • To perform distributed process-scheduling, load-balanc-
ing is performed by transferring some processes from
a heavily-loaded node to a lightly-loaded node. This is
known as process migration.

Distributed Operating Systems 581

 • There are two types of schedulers. One is local sched-
uler that schedules the processes on one node locally.
Another is global load scheduler that balances the load of
various nodes in the system.

 • Global load scheduler is of two types: static and
dynamic. Static scheduler assigns the processes to
processors at their compile time only, while dynamic

scheduler assigns the processors when the processes
start execution.

 • In a distributed system, to have a distributed file system,
some nodes are dedicated to store only files. These
nodes perform the storage and retrieval operation on
the files, and are known as file servers. The other nodes,
used for computational purposes, are known as clients.

MULTIPLE CHOICE QUESTIONS

 1. are loosely-coupled OS software on a
loosely-coupled hardware.

 (a) Distributed OS (c) Real-time OS
 (b) Network OS (d) none

 2. are tightly-coupled OS software on a loose-
ly-coupled hardware.

 (a) Distributed OS (c) Real-time OS
 (b) Network OS (d) none

 3. is a programming language feature,
designed for distributed computing, and is intended to have
the same semantics of a procedure call as in a program-
ming language.

 (a) RPC (c) MPC
 (b) IPC (d) none

 4. The RPC is implemented as a protocol.
 (a) blocking (c) Internet
 (b) non-blocking (d) none

 5. Happens-before relation is a relation.
 (a) transitive (c) binary
 (b) non-transitive (d) none

 6. Which of the following is a mutual exclusion algorithm?
 (a) Path pushing (c) Wait-die
 (b) Ricart–Agarwala (d) none

 7. Which of the following is a deadlock detection algorithm?
 (a) Path pushing (c) Wait-die
 (b) Ricart–Agarwala (d) none

 8. Which of the following is a deadlock prevention algorithm?
 (a) Path pushing (c) Wait-die
 (b) Ricart–Agarwala (d) none

 9. Which of the following is true for wait-die algorithm?
 (a) The older process waits for a younger process, but a

younger process dies, if tries to wait for an older process.
 (b) The older process pre-empts the younger one, but if the

younger one requests, it is allowed to wait.
 (c) The older process waits for the younger one, but if the

younger one requests, it dies.
 (d) none

 10. Which of the following is true for wound-wait algorithm?
 (a) The older process waits for a younger process, but a

younger process dies, if tries to wait for an older process.
 (b) The older process pre-empts the younger one, but if the

younger one requests, it is allowed to wait.
 (c) The older process waits for the younger one, but if the

younger one requests, it dies.
 (d) None

 11. policy decides if a process on one node
should be migrated pre-emptively or non-pre-emptively.

 (a) Transfer (c) Selection
 (b) Migration (d) Location

 12. policy decides when the computational load
must be transferred to another node.

 (a) Transfer (c) Selection
 (b) Migration (d) Location

REVIEW QUESTIONS

 1. What are the motivations behind developing a distributed
system?

 2. Differentiate between network OS and distributed OS?

 3. What types of transparencies are required in designing a
distributed OS?

 4. Why does a distributed system not have a global clock and
global system state?

 5. What are the performance issues in designing a distributed OS?

 6. How is message-passing protocol implemented in distrib-
uted OSs?

 7. How is RPC implemented in distributed OSs?

 8. Why is it difficult to maintain synchronization between differ-
ent local clocks?

 9. What is a logical clock?

 10. Explain Happens-before relation algorithm for synchronizing
the logical clocks?

 11. Explain Chandy–Lamport Consistent State Recording
 algorithm.

 12. Explain the implementation of the following algorithms for mu-
tual exclusion. Discuss their advantages and disadvantages.

582 Principles of Operating Systems

 (a) Centralized algorithm
 (b) Ricart–Agarwala algorithm
 (c) Token-ring algorithm

 13. Explain the implementation of the following algorithms for
deadlock detection. Discuss their advantages and disad-
vantages.

 (a) Centralized algorithm
 (b) Path-pushing algorithm
 (c) Edge-chasing algorithm

 14. What is false deadlock?

 15. Explain the implementation of wait-die and wound-wait
algorithms for deadlock prevention.

 16. What are the issues faced while performing distributed
process-scheduling?

 17. What is a global load scheduler?

 18. Explain the types of global load scheduler.

 19. What is a sender and receiver node in distributed systems?

 20. What are various criteria adopted by sender-initiated
scheduling algorithm?

 21. The sender-initiated algorithms are not effective at high
system loads. Why?

 22. The receiver-initiated algorithms are expensive. Why?

 23. Explain Symmetrically-initiated Scheduling algorithms.

 24. What are various goals while designing a distributed file
system?

 25. How is a distributed file system implemented?

 26. Why could sequential file semantics not be implemented in
a distributed file system?

 27. What are various file-sharing semantics implemented in a
distributed file system?

 28. What is distributed shared memory?

BRAIN TEASERS

 1. Why does Chandy–Lamport algorithm require channels to
be FIFO?

 2. In a fully-distributed mutual exclusion algorithm, if n is the num-
ber of processes in the system, how many messages have to
be exchanged before a process can enter the critical section?

 3. What is the effect of session semantics on file caching
implementation?

 4. File caching can be done at the file server’s main memory.
Since main memory is smaller as compared to the disk,

some algorithm is needed to determine which files or part
of files should be kept in cache. Design this algorithm that
must solve the following problems:

 (a) Does the cache manage the whole files or disk
blocks?

 (b) What is to be done when the cache fills up and some-
thing must be evicted?

 5. ‘Client caching may introduce inconsistency into the sys-
tem.’ Check the correctness of the statement.

19.1 INTRODUCTION

Multi-processor systems are specialized OSs different from desktop OSs. The major feature of this OS is
to exploit parallel computation in multi-processor systems. The types of multi-processor OSs have been
discussed in this chapter along with the synchronization and scheduling issues faced in these systems. The
memory sharing, process migration, and fault detection and recovery topics have also been discussed.

19.2 MULTI-PROCESSOR SYSTEMS

In the technological evolution of computer systems, there was a desire of parallel processing with the help
of more than one processor. This has been realized through multi-processor systems. Multiprocessing
systems contain more than one processor and share other resources. These types of systems are very
useful for engineering and scientific applications by processing data in parallel on multiple processors.
Another category of application suitable in multiprocessing environment is mission-critical and real-
time systems. Since these systems are specially designed for defence systems, it is expected that they
will continually work in warfare conditions. Therefore, in these types of systems, besides parallel
 computation, there is a high demand of fault tolerance and graceful degradation of services when any
of the processor fails. Thus, multiprocessing systems are most suitable for these applications. These
systems offer the advantage of increased throughput due to multiple processors, are economical to work
on, and have increased reliability due to fault tolerance.

Unlike the distributed systems, the multi-processor systems are
tightly coupled systems that share a common physical memory. All
the processors operate under the control of a single OS. However,
the users working on these systems have the perception of a single
powerful system. The various processors, their coordination among
themselves, and computation, all are transparent to the user.

19.2.1 Multi-processor System Architecture
There are three types of multi-processor architectures as the
 following:

Uniform Memory Access Architecture
In uniform memory access architecture (UMA), the main memory
to be shared is placed at a central location such that all the
 processors are able to access the memory with the same speed,
that is, it is equidistant in terms of access speed.

19 Multi-processor
Operating Systems

Learning Objectives
After reading this chapter,
you should be able to
understand:
 • Structure of multi-processor

OSs
 • Synchronization methods

used by multi-processor OSs
 • Scheduling methods used by

multi-processor OSs
 • Memory sharing
 • Process migration methods
 • Fault tolerance

584 Principles of Operating Systems

Non-uniform Memory Access Architecture
In non-uniform memory access architecture (NUMA), the memory is physically partitioned and
the partitions are attached with different processors but all the processors share the same address
space, thereby being able to access any memory partition directly. However, the access time to access
 memory partition attached with other processors is high as compared to the processor’s own partition.

No Remote Memory Access Architecture
In no remote memory access architecture (NORMA), the memory is physically partitioned
and the partitions are attached with different processors but no processor is able to access the
 partition directly. The way to access a memory partition is to send messages over the intercon-
nected network to exchange information.

19.3 STRUCTURE OF MULTI-PROCESSOR OSs

It is obvious that for multiprocessing systems, a different OS is required to cater to the special
requirements. These OSs are called multiprocessing OSs and have more challenges as compared
to single-processor systems. Since in this environment there are multiple processors, all of
them should be busy. The processes should be distributed on various processors for parallel
 computation. The process scheduling is another challenge as it is needed to schedule multiple
processes on multiple processors. Moreover, the coordination of various processes should
also be taken care of. Different inter-process communication and synchronization techniques
are required. In multiprocessing systems, all processors share a memory; therefore, there is a
need to check that all processors operate on consistent copies of data stored in shared memory.
Thus, the multi-processor OSs are more complex as compared to single-processor OSs.

Since all the processors in multi-processor systems are under the control of a single OS, there
is one design issue regarding the processor that should execute the OS code. Should this privilege
be given to some selected processor or should all the processors share it. Based on this design
issue, there are three structures for multi-processor OS, which are discussed as follows:

19.3.1 Separate Kernel Configuration
The simplest design of a multi-processor OS is to statically partition the resources in the system
into different domains of control and assign these domains to various processors in the system.
Each processor executes its own OS (see Fig. 19.1). Each processor has its own I/O devices and
file system. Thus, there is very little interdependence among the processors. A process started
on a process runs to completion on that processor only. However, there are some global OS
data structures for interaction among processors, such as list of processes known to the system.
These global data structures must be protected using some synchronization mechanisms such
as semaphores.

Processor 1

OS

Processor 2

OS

Processor n

OS
Memory I/O

Fig. 19.1 Separate kernel configuration

Multi-processor Operating Systems 585

Since the resources are distributed among the individual OSs, there is minimal contention over
OS resources. Another benefit of this organization is its fault tolerance. If a single processor
fails, there is no system failure as another processor may take over the charge. The fault toler-
ance becomes easy as there is little coupling between the processors. The disadvantage of this
organization is that parallel execution of a single task is not possible, that is, a single task cannot
be divided into sub-tasks and distributed among several processors, thereby losing the advan-
tage of computational speed-up. Moreover, there may be the case that some processor is sitting
idle in the absence of a task while other processors are heavily loaded. Similarly, the resources
cannot be utilized properly due to static partition of resources among processors.

19.3.2 Master–Slave Configuration
This configuration assigns one processor as master and other processors in the system as slaves.
The master processor runs the OS and processes while slave processors run the processes only
(see Fig. 19.2). The master processor is connected to all I/O resources in the system. Any inter-
rupt generated is directed to the master only. It performs interrupt handling, resource allocation
and I/O management and also decides which process to be executed on which slave processor,
that is, the process scheduling is also performed by the master processor. Since in this configu-
ration, there is a single data structure that keeps track of ready processes, the parallel process-
ing is possible as a task can be broken down into sub-tasks and assigned to various processors.
All the processors may have fairly distributed load, and it cannot be the case that one processor
is heavily loaded and another is idle.

In this configuration, the limitation is that the slave process can execute only processor-bound
processes efficiently. Since the system calls are handled by the master processor only, in case
of I/O-bound processes, the slave requires frequent services of master processor only. Thus, it
affects the computation capability of the system. Another drawback is from the fault-tolerance
viewpoint, that is, if the master processor fails, the system fails. Since all the OS functionalities
required on the slave processors are handled by a single OS on the master processor, it becomes
a bottleneck sometimes as the slave processors generate interrupt and wait for the master to
handle them. Thus, the slave processors may saturate the master processor whose most of the
time is spent in handling the system calls. The situation worsens if the number of processors is
increased.

19.3.3 Symmetric Configuration
In master–slave configuration, there was an asymmetry as the master processor has the central
control and other processors are treated as slaves. In the symmetric configuration, symmetry is

Processor 1

OS

Processor 2

User
processes

Memory I/O

Processor 3

User
processes

Master
processor

Slave
processor

Slave
processor

User
processes

Fig. 19.2 Master-Slave multi-processor configuration

586 Principles of Operating Systems

established by same treatment to all the processors. All the processors are able to execute the
OS in this configuration. However, there is only one copy of OS shared among all the processors
(see Fig. 19.3). Any processor can access any device and can handle any interrupts generated
on it. Thus, the system calls generated on a processor are serviced on the same processor only.
Thus, the overheads, delays, and unreliability caused in these two structures are eliminated here.
A processor when receives an interrupt can start executing the kernel. This configuration is very
flexible and parallel execution of a single process is possible. It makes efficient use of resources
and in case of failure, degrades gracefully.

Any processor can execute the OS but there is only a single copy of it. It may be the case that
multiple processors start executing the OS concurrently. In this case, the shared data structures
of the kernel must be protected and their access needs to be controlled to maintain integrity.
Thus, mutual exclusion must be enforced such that only one processor is allowed to execute the
OS at one time. However, this arrangement may produce a long queue of processors waiting for
the OS code that has been made a critical section. It prevents the concurrency of the processes
then. The solution to this is that many parts of the OS are independent of each other such as
scheduler, file system call, page fault handler (PFH), and so on. Therefore, the OS is divided
into independent critical section such that the data structures inside them are accessible to only
one process but more than one critical sections can be accessed by more than one processor as
they are independent.

19.4 PROCESS SYNCHRONIZATION

Most of the process synchronization methods adopted for single-processor systems do not work
in multi-processor systems. Therefore, other methods to synchronize are required. These are
discussed as follows:

19.4.1 Spinlocks
Spinlocks were discussed in Chapter 7 while discussing the semaphore for single-processor
systems. For single-processor systems, the spinlocks were not suitable as they waste
 processor cycles that may be used for other process’ execution. In multi-processor systems,
spinlocks are useful. A process wishing to enter its critical section must wait on the semaphore
or lock. It continuously loops to check whether the lock is free. If there is any other process to
execute, it can be put to other processor. Therefore, spinlocks are useful in the case when the
number of processes is less than the number of processors in the system.

As discussed in Chapter 7, to reduce the time wasted in continuous looping in spinlocks, the
process is blocked. However, this solution incurs the cost of context switching as the process

Processor 1

OS
Memory I/O

User
processes

Processor 2

Shared
OS

User
processes

Processor 3

Shared
OS

User
processes

Fig. 19.3 Symmetric multi-processor configuration

Multi-processor Operating Systems 587

state needs to be switched from running to blocked, blocked to ready, and then ready to run-
ning. Therefore, when the waiting is of very short time comparable to context-switch time, then
there is no need to block the waiting process and spinlocks are useful. Another factor for using
the spinlocks in multi-processor systems is response time. If the busy waiting time is short, it
is better to be in busy waiting because the process gets the lock as soon as it is released by the
process holding it, thereby minimizing the response time of the process in the system.

19.4.2 Queued Locks
Another lock that may be used is queued lock, which is the same as conventional lock described
as the solution of spinlock in Chapter 7. The idea is to block a process that requests the lock
to access a shared item but does not get the access. In this case, the process does not perform
busy waiting and relinquishes the processor. A global queue is maintained where all waiting
processes reside. When the process holding the lock releases it, the process in the queue is
woken up.

19.4.3 Special Hardware for Process Synchronization
Spinlocks may put traffic on the memory bus and the network. Similarly, queued locks may
not provide the desired response time to the user. Therefore, a special hardware is designed for
avoiding all these problems and achieving mutual exclusion. An example of this is system link
and interface controller (SLIC) chip. A SLIC chip contains 64-bit registers and the registers of
various processors are connected over the specially designed SLIC bus. Each bit in the register
represents a spinlock. Therefore, each SLIC chip supports 64 locks. When a processor wishes
to set a lock, it attempts to set the corresponding bit in the SLIC register. If it is already set, then
it means that a process is already in the critical section. The advantage here is that a processor
spins on a local lock, thereby avoiding memory and network traffic.

19.5 PROCESSOR SCHEDULING

Since in multi-processor environment, parallel processing is possible, there may be several
tasks. These tasks must be assigned to various processors in the system to maximize the
 performance of the system. However, these tasks may be of a single program or from different
programs. Furthermore, they need to cooperate and communicate among themselves via
shared memory or message passing. Therefore, the processor scheduling is a difficult task in
 multi-processor systems. The task of scheduler here is complex as it has to decide which task
of a program will execute on which processor. Thus, scheduling is two dimensional: One, to
decide which process to schedule and the other where to schedule.

Many multi-processor scheduling algorithms maintain a global run queue where they store
their processes or threads. The global run queue contains processes or threads that are ready
to execute. Each processor may also use its own ready queue known as per-process run queue.
However, it is suitable to only those algorithms when processes are attached with a specific
processor only.

There are various factors to be considered while scheduling the processes in multi-processor
systems. The most important factor to be considered is the parallelism, that is, to run processes
simultaneously to get advantage of multi-processor architecture.

Another factor is cache corruption. If the processes come from different programs and are
executed by a processor successively, there are chances that a big portion of data needed by
one process is stored in the cache of that processor. If another process is to be executed on that

588 Principles of Operating Systems

processor, that data must be purged from the cache so that new data of the current process is
brought into the cache. However, this will cause high miss ratio while a process tries to access
the cache. This high miss ratio is known as cache corruption that leads to bad performance of
the system. In this case, the working set data of a process needs to be loaded in the cache.

The context switch as described for single-processor systems also becomes a bottleneck for
the performance of multi-processor systems. While scheduling, the context-switch time must
also be considered so that this overhead is reduced, thereby having minimal time wastage.

The processor-scheduling algorithm in multi-processor systems is generally divided into the
following categories:

19.5.1 Job-blind Scheduling Algorithms
The job-blind scheduling algorithms schedule processes on any processor without considering
any parallel computation of processes or any other preferences. The FCFS, SPN, SRN, round-
robin scheduling algorithms as discussed in Chapter 6 for single-processor systems are all
examples of job-blind scheduling type as no process parallelism or other factors are considered.

19.5.2 Job-aware Scheduling Algorithms
The job-aware scheduling algorithms consider various factors while scheduling the processes or
threads. Largely, three factors are considered: parallelism, cache corruption, context-switch time.

Let us discuss some job-aware scheduling algorithms.

Time-sharing Scheduling
Since one of the objectives of scheduling is to maximize parallelism in multi-processor system,
this type of scheduling considers the independent processes of a program to be executed in
parallel. In this algorithm, a global data structure for ready processes is maintained wherein
the processes are stored with their priorities. As soon as a processor finishes its current work or
becomes idle, the process with highest priority is selected from this global data structure and
assigned to that processor.

Since all the processes are unrelated, the scheduling in this way shares the time of processors.
Moreover, it balances the load in the system as no processor is idle while there is some ready
process in the global data structure.

Example 19.1

See Table 19.1 wherein the processes according to their priorities
have been shown. Processes P3 and P5 are of the highest priority.
As soon as a processor becomes available, it first selects these
processes to execute.

Affinity-based Scheduling
For this purpose, another scheduling algorithm is used known as
affinity-based scheduling. In this type of scheduling, a process is
scheduled to be on the same processor where it last executed. In

other words, if a process has shown affinity to a processor, it is scheduled to be executed on the
same processor. This scheduling will increase the hit ratio to access the cache as the working set
data of the process is already in the cache. However, this will restrict the load balancing in the
system as the scheduler will not be able to schedule the process on some other idle processor
creating an imbalance in the system.

Priority Processes

4 P3, P5

3 P0, P5

2 P2, P4

1 P1

0 P6

Table 19.1 Processes with their priority

Multi-processor Operating Systems 589

Space-sharing Scheduling
This type of scheduling is for the related
 processes. Or the case may be that a pro-
cess creates its multiple threads. A program
 consisting of related processes or a process
consisting of related threads is the same thing.
Scheduling multiple processes or threads at the
same time across multiple processors is known
as space sharing. When a group of related
processes or threads is created, the scheduler
looks for available processors. If the number
of processors available is equal or more than
the number of processes, then the processes are
scheduled on different processors. Otherwise,
no process is started until enough number of
 processors is available. Each process executes
on the same processor till its termination. If a process blocks on an I/O, it continues to hold the
processor. According to this scheduling, at an instant of time when there is need to schedule
related processes on the processors, a static partition can be done such that a group of related
processes is assigned to one partition of the processors (see Fig. 19.4). The number and size of
partitions, however, may change with time as the number of processes appear and get executed.
In Fig. 19.4, there are two partitions. One partition is of 10-processor partition and second is of
6-processor partition. The remaining processors are not part of any partition and are therefore
unassigned.

The advantage of space-sharing algorithms is that there is no context-switch time as there is
no multi-programming on the processors. However, there is disadvantage of time wasted when
a process or thread blocks and the processor sit idle.

Gang Scheduling
This scheduling takes the benefits of both time sharing as well as space sharing. This is helpful
especially in scheduling the processes of same program or the multiple threads of a process.
These processes or threads need to communicate with each other. When we consider only
time sharing or space sharing, it may be possible that these threads are not able to synchronize
their communication. When one sends some message, the other thread has not even started or
received the message. To overcome this problem, gang scheduling is used. In this algorithm,
a group or gang of threads from the same process is scheduled as a unit, that is, all the threads
in the gang are scheduled at the same time and start to run on the processors. A global run
queue is maintained wherein all the threads are stored. The threads of the same process are
stored contiguously. The scheduler maintains a window whose size is equal to the number of
 processors in the system. The scheduler schedules a gang of threads on the window in round-
robin fashion, that is, on the processors in first time quantum. All the processors in the window
are scheduled synchronously. All threads in a window start executing in parallel on different
processors in the window. After expiry of the time quantum, another gang in the global run
queue is scheduled in the window. All the processors in the window are re-scheduled with a
new thread. If sufficient number of threads of a process are not there to fit in the window, then
the threads of another process may also be scheduled in the same window.

0 1 2 3

5 6 7 8

10 11

12 13

4

9

14
15 16

17 18 19
20 21

22 23 24

Fig. 19.4 Space sharing

590 Principles of Operating Systems

Since all the threads of a process start simultaneously, the communication between the
threads is possible now. Since the algorithm takes the round robin approach, all the gangs
consisting of threads get the chance for execution. The parallel computing of multiprocessing
systems is also possible with this scheduling.

Example 19.2

Consider there are five processors in a multiprocessing system. There are three processes A, B,
and C consisting of various threads. The window size here is five and the global run queue is
as shown below.

A1 A2 A3 A4 A5 B1 B2 B3 C1 C2

When the gang scheduling is applied, the gangs of processes A, B, and C are made and sched-
uled accordingly in round robin fashion shown as follows:

A1 A2 A3 A4 A5 First time quantum

B1 B2 B3 C1 C2 Second time quantum

A1 A2 A3 A4 A5 Third time quantum

B1 B2 B3 C1 C2 Fourth time quantum

Smallest Number of Threads First Scheduling
This algorithm adopts the criterion of scheduling a process that has the smallest number of
threads in the system. In this way, a program gets the priority based on its number of threads.
The larger the number of threads in the process, the least is its priority.

19.6 MEMORY SHARING

Since the processors in a multi-processor system share a common memory, there may be the
problem of memory or cache coherence. A memory is considered to be coherent if the data
item read from the memory is always updated. However, this may not always be the case in
multi-processor systems since each processor accesses data from the shared memory and may
store its copy in its local memory or cache. If this data item is modified, then each copy of this
data item in the shared memory or in the cache or local memory of other processors must be
updated or the data item on other processors’ local memory or cache must be removed. Thus,
the memory or cache coherence is complicated here as each processor has its private cache.

For NUMA multi-processors, a home node is assigned. Each physical memory address is
associated with this home node. The home node is responsible to store the data item with that
main-memory address. If a processor wishes to modify the copy of data item in its cache, then it
gains exclusive permission from the home node. Similarly, a recent copy of the data item if it is
not in a processor’s cache is requested through home node. If a processor faces a cache miss, it
contacts the home node. If the data item is clean, that is, no other processor has modified it, then
the home node forwards this copy of data item to the requester processor’s cache. Otherwise,
it forwards the request to the processor that has recently modified it. The processor that has

Multi-processor Operating Systems 591

recently modified the data item sends the modified copy of data item to the requester processor
and home node. In this way, memory coherence is maintained because for every new read and
write, every processor first contacts the home node.

19.7 PROCESS MIGRATION

Process migration can also be done in multi-processor systems as discussed in distributed
 systems. The node from which the process is to be migrated is called sender node. The node
where the process is migrated is known as receiver or remote node. The process migration can
be done for various reasons. In case of failure of a processor, the processes being executed
on it are migrated on some other processors. Thus, process migration helps in fault tolerance.
In case there is a processor that has no load or very less load, some processes from heavily
loaded processor may be migrated to it. Thus, process migration helps in load balancing. This
will in turn increase the throughput of the system and reduce the response time of a process.
While migrating a process from one node to another, its residual dependency, that is, process
 dependency on its former node, must be checked. The residual dependency decides the strategy
for process migration as discussed further.

The simple strategy to migrate a process is to transfer all its state information and pages to
the receiver node. This is known as eager migration strategy. This enables the process to be
 executed efficiently on the receiving node as it performed on the sender node. However, trans-
ferring all pages related to the process may delay the process to be started on the receiver node
and requires more bandwidth. Moreover, in case the process on the receiver node does not access
most of its address space, the delay and required bandwidth become overhead in this strategy.

To reduce the drawbacks of eager migration strategy, another strategy to migrate is to
 transfer only dirty pages, that is, modified pages. This strategy is known as dirty eager
 migration strategy. In this strategy, it is assumed that there is a common secondary storage
that may be accessed by any node in the system. Any clean page required by the receiver node
is then accessed from the secondary storage. This strategy reduces the initial time required for
 transferring the process information and eliminates residual dependency.

If the residual dependency is high, then the receiving node where the process is being migrated
must communicate with the sending node while executing the migrated process. However, this
IPC between the two nodes will increase the network traffic and the performance of the system
is degraded due to high latencies. In case there is high residual dependency of a process, the lazy
migration strategy is adopted. According to this, the process is migrated with minimum required
pages. At the receiving node, the migrated process can be started early without migrating all
the required pages from the sender node. Only the process state information is migrated. The
process pages are migrated only when the migrated process gets started on the receiver node and
references the process pages that are still on the sender node. However, for each access to a page
that is on the sender node, a memory reference must be initiated. However, due to these memory
accesses, it may degrade the performance of an application on the system.

19.8 FAULT TOLERANCE

A multi-processor system has the inherent benefit of reliability and fault tolerance due to the
multiplicity of processors. However, the OS designed for multi-processor systems must also
support reliability and fault-tolerance features. There are several issues for the OS to take care.
It needs to detect a failure, restructure the system, and recover it with low overhead. The fol-
lowing issues and their solution are discussed:

592 Principles of Operating Systems

19.8.1 Fault Detection
The multi-processor OS must detect the failure quickly and also take measures to isolate it.
If the failure is not isolated to the failed component, then it may harm others. For an instance, if
a component fails, then it may corrupt the shared memory and, consequently, other processors
may also fail. There are several ways to detect a failure. Various error-detecting codes may be
used for this purpose but the cost of logic hardware for the generation and detection of error-
detecting codes may sometimes be very high. Therefore, it would be better if we duplicate the
component itself. The operations are executed on both original and duplicated component and
compared to detect any discrepancy. Another way to detect fault is protocol monitoring. There
is a sequence and timing of the communication between the two components. If one component
is waiting for another component that has failed, then the component will wait forever. Thus,
we can check the violation in sequence and timing of the protocol through protocol monitoring.

19.8.2 Fault Recovery
When a fault has occurred, it is important to recover it. For recovery, the system should be able
to reconstruct a consistent state of all the affected processes due to failure such that the system
can resume working. The common technique used for recovery in both hardware and software
is redundancy. We can have redundant stand-by copies of hardware as well as software. In
case of failure of the original component, the stand-by component takes charge and the system
continues working.

SUMMARY

Let us have a quick review of important concepts discussed
in this chapter:

 • Multiprocessing systems offer the advantage of increased
throughput due to multiple processors, are economical
to work on, and have increased reliability due to fault
 tolerance.

 • There are three structures for multi-processor OSs: sepa-
rate kernel configuration, master-slave configuration, and
symmetric configuration.

 • There are various factors to be considered while
 scheduling the processes in multi-processor systems:

 (a) to run processes simultaneously
 (b) cache corruption
 (c) context-switch time

 • There are two types of scheduling algorithms:

 (a) Job-blind scheduling algorithms that schedule pro-
cesses on any processor without considering any paral-
lel computation of processes or any other preferences.

 (b) The job-aware scheduling algorithms that consider
various factors while scheduling the processes or
threads.

 • Some job-aware scheduling algorithms are as follows:
 (a) Time-sharing scheduling

 This type of scheduling considers the independent
processes of a program to be executed in parallel.

 (b) Affinity-based scheduling
 If a process has shown affinity to a processor, then it
is scheduled to be executed on the same processor.

 (c) Space sharing
 Scheduling multiple processes or threads at the
same time across multiple processors is known as
space sharing.

 (d) Gang scheduling
 A group or gang of threads from the same process
is scheduled as a unit, that is, all the threads in the
gang are scheduled at the same time and start to run
on the processors.

 (e) Smallest number of threads first scheduling
 Schedules a process that has the smallest number
of threads in the system.

 • While migrating a process from one node to another, its
residual dependency must be checked beforehand.

Multi-processor Operating Systems 593

MULTIPLE CHOICE QUESTIONS

 1. In type, the main memory to be shared is placed at
a central location such that all the processors are able to
access the memory with the same speed.

 (a) NORMA (c) NUMA

 (b) UMA (d) none

 2. In type, the memory is physically partitioned and the
partitions are attached with different processors but all the
processors share the same address space.

 (a) NORMA (c) NUMA

 (b) UMA (d) none

 3. In type, the memory is physically partitioned and the
partitions are attached with different processors but no pro-
cessor is able to access the partition directly.

 (a) NORMA (c) NUMA

 (b) UMA (d) None

 4. algorithms schedule processes on any processor
without considering any parallel computation of processes
or their any other preferences.

 (a) Job scheduling (c) Job-blind scheduling

 (b) Job-aware scheduling (d) None

 5. algorithms consider various factors while scheduling
the processes or threads. Largely, three factors are consid-
ered: parallelism, cache corruption, and context-switch time.

 (a) Job scheduling (c) Job-blind scheduling

 (b) Job-aware scheduling (d) None

 6. In type of scheduling, a process is scheduled to be on
the same processor where it last executed.

 (a) time-sharing (c) affinity-based

 (b) space sharing (d) none

 7. type of scheduling considers the independent pro-
cesses of a program to be executed in parallel.

 (a) times-haring (c) affinity-based

 (b) space sharing (d) none

 8. Scheduling multiple processes or threads at the same time
across multiple processors is known as scheduling.

 (a) times-haring (c) affinity-based

 (b) space sharing (d) none

 9. Process migration helps in in multi-processor systems.

 (a) load balancing (c) a and b

 (b) increase the throughput (d) none

 10. In case there is high residual dependency of a process, the
 migration strategy is adopted.

 (a) dirty eager (c) eager

 (b) lazy (d) none

REVIEW QUESTIONS

 1. Explain three types of multi-processor system architectures.

 2. Explain various structures for multi-processor OSs.

 3. Explain the role of spinlocks in achieving synchronization in
multi-processor systems.

 4. What are the advantages of SLIC chip?

 5. What are the various scheduling criteria considered in multi-
processor scheduling?

 6. What is cache corruption?

 7. What is residual dependency?

 8. What is the difference between job-blind and job-aware
scheduling algorithms?

 9. What is affinity-based scheduling?

 10. What is gang scheduling?

 11. What are the various process-migration strategies used in
 multi-processor systems?

BRAIN TEASERS

 1. In a system, the processes have longer critical sections.
Which type of synchronization mechanism between them is
suitable?

 2. In multi-processor systems, when multiple processes wait
for the spinlock to be released, indefinite postponement
may occur. How do the OSs resolve this?

20.1 INTRODUCTION

Real-time systems are the most critical systems for which special software and hardware need to
be designed. These systems are deadline-driven. Real-time OSs (RTOSs) adopted for these systems
demand unique features that must be met in order to have deadlines in the system. All the features
required in RTOSs have been explained in this chapter. The other important issues in this type of
systems are scheduling and synchronization. The scheduling algorithms and synchronization-related
issues have been discussed in detail.

20.2 REAL-TIME SYSTEMS

A real-time system is one whose logical correctness depends on both the correctness of the outputs and
their timeliness. The timeliness factor makes these systems different from other systems. Real-time
systems are the systems in which data need to be processed at a regu-
lar and timely rate. The tasks in the system must meet their defined
deadlines for a specified time interval, otherwise the purpose of the
system is lost or the system performance is degraded. In one sense,
the general-purpose systems may also be considered as real-time.
For example, we are able to echo a character on the screen typed
on the keyboard within a specified time. But it does not mean that a
general-purpose system is a real-time system. The real-time systems
are not general in nature, but are designed for a specific application
and are embedded. Another point of difference is that consequences
of the failure are more drastic in real-time systems as compared to
general-purpose systems. The real-time systems are largely use-
ful in defence applications, which are mission specific; that is, if
there is no timely response, there might be loss of equipment, and /
or even life. Therefore in these systems, deadlines should be met
to prevent failures; else, the purpose of the system is lost. For
 example, there is an electric motor being controlled through a com-
puter system. If the motor running at a speed crosses a threshold
speed, it will burn. The system controls the motor in such a way that
if it crosses the threshold, it will lower the speed of the motor. Now,
say, the motor is crossing the threshold speed, and the system
does not respond in that time period, the motor will end up burning.

20 Real-time Operating
Systems

Learning Objectives
After reading this chapter,
you should be able to
understand:
 • Characteristics of a real-time

system
 • Structure of a real-time system
 • Characteristics of a real-time

OS
 • Rate-monotonic scheduling

algorithm
 • Earliest deadline first schedul-

ing algorithm
 • Priority inversion problems that

occur during mutual exclusion
implementation

 • Priority inheritance protocol
 • Priority ceiling protocol

Real-time Operating Systems 595

This is an example of a real-time system, which, in case of failure, results in loss of equipment.
Similarly, there are many defence applications like guided missile systems, air traffic control
systems, and so on, which, in case of failure, result in loss of equipment/life.

However, real-time systems are affecting every walk of our lives without us even knowing it.
Today real-time systems are meant not only for applications such as nuclear reactors or aircrafts
but also are playing a huge role in airline reservation systems, consumer electronics (music
systems, air-conditioners, microwaves, etc.), card verifiers in security systems, control systems,
industry automation, and so on.

20.2.1 Characteristics of a Real-time System
As discussed earlier, real-time systems are deadline driven. The timing constraints are in the
form of period and deadline. The period is the amount of time between iterations of a regularly
repeated task. Such repeated tasks are called periodic tasks. The deadline is a constraint of the
maximum time limit within which the operation must be complete.

Real-time systems can be characterized as hard real-time systems and soft real-time sys-
tems. The systems that have hard deadlines and must be met for certain are called hard-real-time
systems. All defence applications are of this type. Hard real-time systems are those in which
one or more activities must never miss a deadline or timing constraint, or else, the system
will fail. A failed system implies that the purpose of designing the system is lost. The failure
includes the damage to the equipment or injury, or even death to users of the system. For
example, let us consider a system that has to open a valve within 30 milliseconds, when the
humidity exceeds a particular threshold. If the action is not carried out within the deadline, a
catastrophe may occur. Thus, hard real-time systems are those in which disastrous or serious
consequences may happen if deadlines are missed. These systems must have deterministic
guarantees to meet deadlines. There is another type known as soft real-time systems, in which
a missed deadline may be acceptable. For example, in a video conferencing system, if some
audio or video data are somehow delayed for a fraction of time, and there is no harm, then it
may be acceptable. Thus, digital audio, multimedia systems, virtual reality, and so on, are all
examples of soft real-time systems. However, missing deadlines does not mean that they are
not real-time systems. The delay of soft real-time systems must be bounded and predictable,
and should not be infinite. The hard and soft real-time systems can be depicted in a real-time
system spectrum as shown in Fig. 20.1.

Real-time systems are deterministic in the sense that deadlines and other assertions involv-
ing time are exact or fixed values. The terms ‘aggregate’ or ‘average’ are not meant for these
systems. A real-time system is predictable. Its timing behaviour is always within the acceptable
range. The behaviour is specified on a system-wide basis such that all tasks will meet deadlines.
To become a predictable system, the period, deadline, and worst case execution time of each
task need to be known.

Fig. 20.1 Real-time system spectrum

Computer
simulation

User
interface

Internet
video

Consumer
devices

Controlling
appliances

Industrial
manufacturi
ng control

Biomedical
instruments

Space
navigation
and
guidance

Weapon
delivery
systems

Nuclear
reactor
controller

Non-real -time Soft real-time systems Hard real-time
systems systems

596 Principles of Operating Systems

Real-time systems are such that they have to handle inherent physical concurrency that is
part of the external world to which they are connected. Multiple input sensors are there that can
 generate simultaneous inputs, which, due to timeliness constraints, must be handled concurrently.

Another characteristic connected to real-time systems is fault tolerance. Fault tolerance is
concerned with the recognition and handling of failures. While handling failures, the graceful
degradation of the system is essential. We need to adopt several methods in order to accomplish
the fault tolerance of the system. The main idea behind the fault tolerance in a real-time system
is that even in worst conditions, the system must continue to work. For example, the systems
used in defence applications being used in warfare conditions must continuously work despite
failures that may have occurred in the system.

20.2.2 Structure of a Real-time System
In general, a real-time system consists of two parts: controlling system (computer) and a controlled
system (environment). The controlling system interacts with its environment, based on informa-
tion available about the environment. The real-time computer controls a device or process through
sensors that provide inputs at periodic intervals, and the computer must respond by sending signals
to the actuators. There may also be irregular events, which must receive a response as well. But
in any case, periodic or aperiodic, there will be a time limit within which the response should be
delivered. Thus, a real-time system consists of the following components (see Fig. 20.2):

Computing Hardware
It includes the processor, memory, and communication networks.

Sensors and Actuators
The sensors are used to determine the state of the physical world relevant to the software.
They sense the status of the system. Actuators are used to actuate the system according to the
 current status of the system. The output of the whole real-time system is fed to the actuators
and displays.

Real-time Software
The software is the embedded part of the real-time system that interacts with sensors and actuators. It
also interacts directly with the computing hardware. It consists of the tasks and real-time OS.

Sensors

Real-t ime software

RTOS

Task Task

Processor Memory

Communication network

Actuators

Displays

Fig. 20.2 Structure of a real-time system

Real-time Operating Systems 597

20.3 REAL-TIME OS

Real-time operating systems (RTOSs) are there to meet the special needs of a real-time system.
To support multiple tasks in a real-time system, the RTOS must be multi-tasking. Being dead-
line driven in nature, the tasks in a real-time system have priorities depending on its design.
To execute a higher-priority task, the scheduler in the RTOS must be able to pre-empt a low-
priority task. Thus, to meet the deadline requirements of real-time systems, the kernel must be
pre-emptive. The RTOS must have sufficient priority levels to support priority-based schedul-
ing. The priority assigned to the tasks depends on how quickly a task has to respond to the
event. Based on the facilities provided by the RTOSs, there can be three broad levels of priority:

Interrupt level At this level, the tasks that require very fast response, are considered.

Clock level At this level, the tasks that require repetitive processing and accurate timing, are
considered.

Base level At this level, the tasks that are of low priority and have no deadlines, are considered.
Apart from providing other facilities, the major characteristic of RTOS is to provide timely

response to applications. The major challenge for an RTOS is to schedule the real-time tasks. In a
real-time system design, all deadline requirements are gathered and analysed. The RTOS schedules
all tasks according to the deadline information and ensures that all deadlines are met. Since the
behaviour of a real-time system is predictable, RTOS should also have predictable behaviour under
all system load scenarios. Further, it is important to have inter-process communication (IPC) that
has predictable delays and is controllable. The RTOS must have the algorithms to control this IPC.

Since a real-time system responds to external events in the environment, it is event driven in
nature. The real-time system waits for an event to occur in real time. When the event occurs, the
system must respond to it quickly. The latencies associated with the event processing, however,
may delay the processing. There are two types of such latencies: the interrupt latency, that is,
the time elapsed between the last instruction executed on the current interrupted task and start
of the interrupt handler; and the other is dispatch latency, that is, the time to switch from the
last instruction in the interrupt handler to the next task that is scheduled to execute. The RTOS
must be selected in a way such that these latencies are minimal.

Another feature of a real-time system is to have fault tolerance. Since a real-time system
must work continuously in every condition, in case of any hardware or software failure, the
system should not stop working. To achieve this target, fault tolerance is provided by means of
redundancy, both in hardware and software. For example, if one processor fails, another proces-
sor in standby will take over and the system will continue to work. The RTOS must use some
special techniques such that the system can tolerance the faults and continue its operations.
Obviously, with the fault tolerant feature, there is degradation in the performance of the system.
But the OS should take care that this degradation is graceful, that is, no critical functioning
should be stopped or delayed. This is known as fail-soft operation. It is the ability of a system
to maintain stability, so as to preserve as much capability of the system as possible.

Based on the earlier characteristics, an RTOS is different as compared to other OSs. An RTOS
must have the capability to respond quickly to external interrupts. The context switch time must
be very low. Commercial RTOSs are characterized by deterministic response times, ranging
from milliseconds to microseconds. The size of RTOSs is also an issue for providing quick
responses to external events. Therefore, an RTOS does not come with all modules. RTOSs
come with their minimal functionalities, and if there is any need, other modules can be loaded.
In general, an RTOS occupies 10 KB to 100 KB size, as compared to other OSs consuming

598 Principles of Operating Systems

several megabytes. The RTOS with minimum functionality must include task management,
including task scheduling, task synchronization, memory management (excluding virtual mem-
ory management), and timers.

The RTOS is neither loaded from the disk nor is already available, as we see in case of
desktop OSs. Since the real-time system is embedded in most applications, the RTOS with
the software and board-support package (BSP) is bundled into a single executable file that is
burnt onto a boot-ROM or flash memory. Board-support package is the component that is used
to provide board/hardware-specific details to the OS. Through BSP, RTOS will interact with
the hardware present on the board. It is highly specific, both to the board and the RTOS. The
BSP start-up code is the first to be executed while starting the system in order to initialize the
 processor and memory. It sets up the clock and various components, such as cache.

20.4 REAL-TIME SCHEDULING

The following are the scheduling criteria in a real-time system:
 • The timing constraints of the system must be met.
 • In case of simultaneous access of shared resources and devices, the processes must be prevented.
 • The cost of context switches, while pre-empting, must be reduced.

The scheduling in real-time systems may be performed in the following ways: pre-emptively, non-
pre-emptively, statically, and dynamically. The RTOS should allocate and schedule tasks on proces-
sors in order to ensure that deadlines are met. Some basic terms related to scheduling are as follows:

Periodic, Aperiodic, and Sporadic Tasks
 In real-time systems, many tasks are repetitive. For example, sensor data need to be collected
at regular intervals of time. These tasks are known as periodic tasks. In contrast, there are some
tasks that occur occasionally. These tasks are, in fact, actions in response to some event. Con-
sider for example, the closing of a valve when the level of liquid in a tank reaches a threshold.
These are known as aperiodic tasks. These tasks are, in general, used to indicate alarm condi-
tions. Sporadic tasks are also real-time tasks, which are activated irregularly like aperiodic
tasks, but with some known bounded rate, which means that a minimum inter-arrival period is
known for these tasks.

Release Time
 Release time of a task is the time instant at which the task becomes available for execution. The
task can be scheduled and executed at or after its release time.

Absolute Deadline
The absolute deadline of a task is the instant of time by which it must complete its execution.

Relative Deadline
 It is the maximum allowable response time of a task. The absolute deadline of a task is, in fact,
the sum of its relative deadline and release times.

Offline Scheduling
 Since the period of arrival of periodic tasks is known in advance, an offline schedule can be
prepared of the operation. This may provide the information about when the periodic tasks will
run, including the slots for aperiodic and sporadic tasks.

Real-time Operating Systems 599

Online Scheduling
In online scheduling, the tasks are scheduled as they arrive in the system.

Static Scheduling
The static scheduling algorithm has complete knowledge of the following:

 i) Task set and its constraints
 ii) Deadlines
 iii) Computation times
 iv) Release times

For example, in a simple process control application, static scheduling is appropriate.

Dynamic Scheduling
 In dynamic scheduling, there is complete knowledge of tasks set, but new arrivals are not
known. Therefore, the schedule changes over the time. For example, dynamic scheduling is
appropriate in all defence applications.

Schedulability Analysis
 It is an analysis to know whether a schedule of tasks is feasible or not. A set of tasks is sched-
ulable only if all the tasks in the task set meet their timing constraints. For this, we can have an
offline scheduling that produces a schedule. The tasks are then scheduled and dispatched at run
time, using static or dynamic scheduling.

The short-term scheduler in RTOS must ensure that all hard real-time tasks are completed
by their deadline, and that as many as possible soft real-time tasks are also completed by their
deadline. In real-time systems, pre-emptive priority-based schedulers are used in order to ac-
commodate the high-priority real-time tasks.

20.4.1 Rate Monotonic Scheduling Algorithm
Rate monotonic(RM) scheduling algorithm is one of the most widely used real-time schedul-
ing algorithms executed on a uni-processor environment. It is a static priority-based pre-emptive
scheduling algorithm. The base for scheduling in this algorithm is to take the task that has the
shortest period, that is, the task that has the highest frequency rate of arrival. The task with the
shortest period will always pre-empt the executing task. If we plot the priority of the tasks as a
function of their frequency rate of arrival in the system, there is a monotonically increasing graph
(see Fig. 20.3). Thus, the priority of a task is inversely proportional to its period. The following are
the assumptions during the execution of this scheduling algorithm:

 • There is no such region in any task that is
non-pre-emptable.

 • The cost incurred in pre-emption is negligible.
 • All tasks are independent, that is, there is

no precedence constraint among them.
 • All tasks in the task set are periodic.
 • The relative deadline of a task is equal to

only its period.

The schedulability test for this algorithm is
based on the total utilization of the processor.

Rate (Hz)

Priority

Fig. 20.3 Priority of tasks vs frequency of arrival

600 Principles of Operating Systems

The utilization in our case is e/p, where e is the execution time and p is the period of the task.
Thus, to meet all the deadlines in the system, the following must be satisfied:

e1/p1 + e2/p2 + ….. + en/pn ≤ 1

where, n is the number of tasks to be scheduled in the system.
The equation indicates that the sum of the processor utilizations of the individual tasks

cannot exceed a bound. The bound value 1 is for a perfect scheduling. However, the bound
may also be lower. The worst case processor utilization for scheduling processes may
be given as the following:

e1/p1 + e2/p2 + ….. + en/pn ≤ n(21/n – 1)

If the number of tasks in a system tends towards infinity, the earlier equation will be ln
2 = 0.693. It means this scheduling algorithm is able to schedule all tasks in general, if the
processor utilization is 69.3%.

Example 20.1

Consider a real-time system in which there are three tasks. Their period and execution time are
as follows:

Task Execution time, e Period, p

T1 35 100

T2 10 50

T3 30 150

Check whether the tasks are RM schedulable.

Solution

The upper bound schedulability in this case is equal to
3 * (21/3 -1) = 0.779
Now calculate the utilization for each task as follows:

Task Execution time, e Period, p Utilization, (e/p)

T1 35 100 0.35

T2 10 50 0.2

T3 30 150 0.2

The total utilization of processor U = u1 + u2 + u3 = 0.75
Since the U is less than the upper bound, that is, 0.75 < 0.779, all tasks are RM schedulable.

Example 20.2

Explain the RM scheduling of the tasks in Example 20.1. Also, show the tasks on timing diagram.

Solution

We assume that all three tasks are released at time 0. Since the period of T2 is shortest, it is
allowed to execute first. After that, T1 starts executing as its period is smaller as compared to
T3. T1 finishes at 45 and finally T3 starts executing. But when T3 has just completed 5 time

Real-time Operating Systems 601

units, T2 reappears as its next period starts. So it starts executing and completes its execution
till 60 time units. After that, T3 resumes and completes its execution at 85. At this time, there
is no task to be executed and therefore the processor is idle till 100. At this point, T1 reappears
as its next period starts, and so on. All the tasks complete their execution within their deadlines
as shown in the following diagram.

T2 T1 T3 T2 T3

0 10 45 50 60 85 100

RM schedulability condition discussed here is a sufficient but not necessary condition. This
is because there may be task sets with a utilization greater than n(21/n – 1) that are schedulable
by this algorithm. The next example demonstrates this fact.

Example 20.3

Consider a real-time system in which there are three tasks with their period and execution time
as follows:

Task Execution time, e Period, p

T1 20 100

T2 30 145

T3 68 150

Check whether the tasks are RM schedulable?

Solution

The upper bound schedulability in this case is equal to
3 * (21/3 - 1) = 0.779
Now calculate the utilization for each task as follows:

Task Execution time, e Period, p Utilization, (e/p)

T1 20 100 0.2

T2 30 145 0.206

T3 68 150 0.454

The total utilization of processor U = u1 +u2 + u3 = 0.86
Since U is greater than the upper bound, that is, 0.779 < 0.86, all tasks are not RM schedulable.

However, if we see the execution of the tasks on the timing diagram, all tasks are schedulable, as
they complete their execution within their deadlines as shown in the following diagram.

T1 T2 T3 T1 T3

0 20 50 100 120 138 145

For the condition for schedulability, we need to find a time t such that the tasks complete
their execution, and, if possible, the iteration of a task, if started, must be completed within that
time t. Suppose, in a system of three tasks, task T1 is schedulable, if e1 ≤ P1. Now for T2, we
need to see how many iterations (t/P1) of T1 have been released over [0, t]. All these iterations
must be completed within [0, t] and e2 must be available to execute T2. Thus,

602 Principles of Operating Systems

t = (t/P1 * e1)+ e2

We must find this t such that t € [0, P2].
Similarly for T3, we must have

t = (t/P1 * e1)+(t/P2 * e2)+ e3

such that t € [0, P3]. Thus, we can check the schedulability of all tasks in this manner.

Example 20.4

The schedulability of the tasks in Example 20.3 can be checked as in follows:
T1: e1 ≤ 100 (true)
T2: e1 + e2 ≤ 100 (true)

or

 2e1 + e2 ≤ 145 (true)
T3: e1 + e2 + e3 ≤ 100 (false)

or

 2e1 + e2 + e3 ≤ 145 (true)

or

 3e1 + 2e2 + e3 ≤ 100 (false)

20.4.2 Earliest Deadline First Scheduling Algorithm
Earlier deadline first (EDF), also known as least time to go, is a uni-processor priority-driven
scheduling algorithm, in which the tasks need not be periodic. The scheduling criterion here
is based on the absolute deadline of the tasks. The task whose absolute deadline is earlier, is
scheduled first, that is, the earlier the deadline, the higher the priority of the task. It is a dynamic
priority scheduling algorithm, as the deadlines are computed at run-time. The task priorities
are not fixed as well, and may change, depending on the closeness of their absolute deadlines.
When a process is able to run, it must declare its deadline requirements. Priorities at this time
may need to be changed in order to adjust the deadline of new runnable tasks. The following
are the assumptions while executing this scheduling algorithm:
 • There is no such region in any task that is non-pre-emptable.
 • The cost incurred in pre-emption is negligible.
 • All tasks are independent, that is, there is no precedence constraint among them.

Example 20.5

Consider the following set of tasks in a real-time system:

Tasks Release time Execution time Absolute deadline

T1 0 4 40

T2 2 7 15

T3 5 10 20

Perform EDF scheduling on this task set.

Real-time Operating Systems 603

Solution

T1 is the first task to arrive, so it starts executing. After 2 time units, T2 arrives, whose
deadline is shorter than T1. Therefore, it pre-empts T1 and T2 starts executing. After 5 time
units, T3 arrives but T2 continues, as absolute deadline of T3 is more than T2. Therefore
T2 continues and completes its execution. After this, now there are T1 and T3 tasks that
need the processor. Since T3 has a less absolute deadline, it starts executing and completes
execution. Finally, T1 resumes and completes its execution. The tasks on the timing diagram
are as follows:

T1 T2 T3 T1

0 2 9 19 21

20.4.3 Precedence Constraints
In the scheduling methods discussed earlier, it has been assumed that the processes are indepen-
dent, and have no precedence constraints. However, the processes of a real-time system depend
on one another. Therefore, precedence constraints must be taken into account while scheduling
and determining deadlines. For this purpose, a process precedence graph (PPG) is typically
used. The nodes of this graph represent processes with their execution times. The execution
time is written inside the node and the process number is outside the node. The edges between
the nodes show the precedence constraints. For example, the PPG in Fig. 20.4 shows that P2
can be initiated only after P1 and P4 can be initiated, only after P2 and P3 complete.

It is assumed that each process is CPU-bound and is executed in a non-pre-emptable manner.
The deadline of a task Pi can be calculated as follows:
Di = Dapplication − ∑ k€descendent(i) Xk

where, Dapplication is the deadline of the application under consideration and k€descendent(i) is the
set of descendants of Pi in PPG, that is, a set of tasks which lie on some path between Pi and
exit node of PPG. Thus, deadline of a task is such that all tasks, which directly or indirectly
depend on it, can also finish by the overall deadline of the application. Let us suppose that
deadline of an application is 40 s, the deadlines of the tasks are shown in Table 20.1.

Table 20.1 Deadlines of tasks

Process Finishing deadline

P1 23

P2 31

P3 31

P4 35

P5 35

P6 40

Deadline scheduling policy needs to incor-
porate several other constraints as well. One important constraint while calculating deadlines is
I/O time in a task. If I/O of one task is overlapped with execution of some independent tasks,

2

3 5

4

5 6

P1

P2 P3

P4

P5
P6

Fig. 20.4 PPG of a system

604 Principles of Operating Systems

the deadline of its predecessors in PPG can be relaxed by the amount of I/O overlap. In the
example PPG shown earlier, P2 and P3 are independent tasks. If execution of P2 includes one
second of I/O time, the deadline of P1 is 24, instead of 23.

20.5 MUTUAL EXCLUSION

The mutual exclusion in real-time tasks is implemented through binary semaphores and moni-
tors. But with the use of binary semaphore, a problem arises. In this section, the idea is to
discuss this problem and solutions to overcome it. The problem is that a low-priority task may
block a higher-priority task in the real-time system. Suppose, a lower-priority task gets access
to its critical section through the semaphore. At this time, a higher-priority task appears and
wishes to access the critical section. But being a higher-priority task, it will not be allowed to
execute until the lower-priority task finishes, and is blocked. This problem is known as priority
inversion. The priority inversion may result in some unpleasant side effects on the system. In
1997, NASA’s Rover Robot (Path finder) on Mars project failed due to such a priority inver-
sion problem.

Example 20.6

Consider two tasks T1 and T2 in a real-time system. T1 has the higher priority and T2 the lower
priority. T1 and T2 share a critical section CS. Suppose, T2 is released at time 0 and starts
execution. At time 5, it needs to access the CS and enters it, as there is no other task that wishes
to enter the CS. At time 8, T1 appears and being the higher priority task, it pre-empts T2 and
starts execution. At time 14, T1 needs to access the CS and tries to gain access, but it cannot
get access as the CS is already locked by T2. So T1 is blocked and T2 resumes its execution in
the CS. The problem of priority inversion has occurred here at this point such that the higher-
priority task has been pre-empted by the lower-priority task. T2 releases the CS at 20 and T1
gains access and continues its execution.

T1 is blocked for the time period that is required to execute inside critical section by T2.
Thus, the time period for blocking of T1 can be determined. Therefore, this type of priority
inversion is called bounded priority inversion (Fig. 20.5).

Waiting to enter CS

t

0 2 5 8 14 20 35 40 45 50

T1

T2 t

CS

Fig. 20.5 Bounded-priority inversion

Real-time Operating Systems 605

Example 20.7

Consider there are three tasks T1, T2, and T3 in a real-time system. T1 has the highest priority and
T3 has the lowest priority. T1 and T3 share a critical section CS. Suppose, T3 is released at time 0
and starts execution. At time 5, it needs to access the CS and enters it as there is no other task that
wishes to enter the CS. At time 8, T1 appears, and being the highest-priority task, it pre-empts T3
and starts execution. At time 14, T1 needs to access the CS and tries to gain access, but it cannot
get access as the CS is already locked by T3. So T1 is blocked and T3 resumes its execution in
the CS. The problem of priority inversion has occurred here at this point, such that higher-priority
task has been pre-empted by the lower-priority task. At time 20, T2 appears and starts execution,
pre-empting T3. At time 35, T2 finishes its execution. This is another case of the priority inversion
problem, such that T2, being the lower-priority task as compared to T1, gets the execution. At time
35, T3 resumes and releases the CS at time 40. At only this time, T1 is able to access the CS. It
executes inside the CS, releases it at time 45, and completes its execution at time 50.

In this example, we can see that T1 execution is being further delayed for an intermediate
task, that is, T2. It may be possible that some other intermediate tasks may appear and get the
same execution as that of T2. In this case, the blocked period of T1 is unbounded, that is, it can-
not be determined. Therefore, this type of priority inversion problem is known as unbounded
priority inversion, as shown in Fig. 20.6.

There are two protocols for solving priority inversion problem:
 1. Priority inheritance protocol (PIP)
 2. Priority ceiling protocol (PCP)

Let us discuss these protocols.

20.6 PRIORITY INHERITANCE PROTOCOL

When the priority inversion problem occurs, the higher-priority task is blocked by the lower-
priority task. Therefore, in this protocol, a provision is made such that when a higher-priority
task attempts to lock a semaphore owned by a lower-priority task, the priority of the owning
task is raised to the priority of the blocked task. When the owning task releases the lock, its
original priority is restored. This temporary increase in the priority eliminates the effect of
unbounded priority inversion.

Waiting to enter CS

t

t

0 2 5 8 14 20 35 40 45 50

T 1

T 2

T 3 t

Fig. 20.6 Unbounded priority inversion

606 Principles of Operating Systems

Example 20.8

Consider there are three tasks T1, T2, and T3 in a real-time system. T1 has the highest priority
and T3 has the lowest priority. T1 and T3 tasks share a critical section CS. Suppose, T3 is
released at time 0 and starts execution. At time 5, it needs to access the CS and enters it as there
is no other task that wishes to enter the CS. At time 8, T1 appears and, being the highest-priority
task, it pre-empts T3 and starts execution. At time 14, T1 needs to access the CS and tries to
gain access, but it cannot get access as the CS is already locked by T3. So T1 is blocked and T3
resumes its execution in CS. The problem of priority inversion has occurred here at this point,
such that the higher-priority task has been pre-empted by the lower-priority task.

According to PIP, at time 14, the priority of T3 is raised to that of T1. Thus, both are now at
equal level. But T3 still owns the semaphore, and it resumes its execution in CS and releases
it at time 25. At time 20, T2 appears but does not get the execution, as its priority is lower
as compared to both T1 and T3. At time 25, T1 gets the access into the CS and completes its
 execution till time 35. Only after this, T2 gets the execution. Thus, unbounded priority inver-
sion has been converted into bounded one. This has been shown in Fig. 20.7.

There are some problems in the implementation of this solution. The first problem is
that the PIP may lead to deadlocks. Consider two tasks T1 and T2, using two critical sec-
tions CS1 and CS2. At time t1, T2 starts execution and locks CS2. At t2, T1 appears, and
being the highest-priority task, pre-empts T2. At t3, T1 locks CS1. After this, it tries to ac-
cess CS2 but cannot, and is blocked. Now, according to the PIP, T2 inherits the priority of
T1 and starts executing. After some time, it tries to access CS1 but cannot and is blocked.
In this case, both tasks are waiting for each other to release the desired locks. Thus, a
 deadlock situation arises.

Another problem in PIP is chained blocking. Although PIP helps in bounded blocking
duration, it can be substantial if the highest-priority task is chain-blocked. Consider task T3
of lowest-priority, executing inside CS, locking CS1. After some time T2, being of higher-
priority than T3, appears and pre-empts it. It executes by locking CS2. After this, T1 being
the highest-priority task, appears and pre-empts T2. It wishes to execute CS1 and CS2
 sequentially. But it cannot as it is blocked for the duration of two critical sections. This results
in chained blocking.

Waiting to enter CS

t

t

0 2 5 8 14 20 25 35 50

T1

T2

T3
t

Fig. 20.7 Priority inheritance protocol

Real-time Operating Systems 607

20.7 PRIORITY CEILING PROTOCOL

The idea behind PCP is to prevent deadlocks and chained blocking. PCP assigns to each sema-
phore, a priority ceiling, which is equal to the highest-priority task that may use this semaphore.
According to this protocol, it allows a task to start a new critical section only if the task’s
 priority is higher than all priority ceilings of all the semaphores locked by other tasks.

Example 20.9

Consider three tasks T1, T2, and T3 in a real-time system. T1 is the highest-priority and T3 is
the lowest-priority task. There are three critical sections guarded by three semaphores S1, S2,
and S3. The sequencing of tasks is as follows:

T1 = {…., P(S1), ….., V(S1)…..}
T2 = {….,P(S2),…, P(S3), …, V(S3),…, V(S2)…}
T3 = {…, P(S3),…, P(S2),…, V(S2),…, V(S3)…}

Since T2 and T3 access S2 and S3, the priority ceiling of S2 and S3 equals to T2.
At time t0, T3 is initiated, begins execution, and locks S3. At t1, T2 is initiated and thereby

pre-empts T3. At time t2, task T2 tries to enter its critical section by executing P(S2). Since
T2’s priority is not higher than priority ceiling of locked semaphore S3, T2 is blocked.
T3 inherits the priority of T2 and executes. At time t3, task T1 is initiated and pre-empts T3.
It tries to lock S1. Since priority of T1 is higher than priority ceiling of S3, T1 is able to lock
S1. After some time, at t4, T1 has unlocked S1 and completes its execution. At this time, T3
resumes its execution, since T2 has been blocked by T3. T3 continues its execution and locks
S2. At t5, task T3 releases S2. At t6, T3 releases S3 and resumes its original priority. After this,
T2 is signalled and T2 resumes its execution by pre-empting T3. T2 locks S2 and then locks
S3, executes, and unlocks S3, and then S2. At t7, T2 completes its execution and T3 resumes.
At t8, T3 completes its execution. The PCP has been shown in Fig. 20.8.

Critical section guarded by S1 Critical section guarded by S2 Critical section guarded by S3

t0 t1 t2 t3 t4 t5 t6 t7 t8

T1

T2

T3

Fig. 20.8 Priority ceiling protocol

608 Principles of Operating Systems

20.8 CASE STUDIES

20.8.1 VxWorks
VxWorks is a high-performance RTOS designed by WindRiver Systems. It is supported on
almost all popular architectures such as x86, PowerPC, ARM, MIPS, and so on. VxWorks is a
flexible OS that may be configured as a minimal kernel having some minimal kernel functional-
ities, which may be extended by adding some custom components. It has a highly scalable hard
real-time kernel, wind, which provides the basic multi-tasking environment. The kernel main-
tains the current state of each task in the system through the TCB. There are four task states.
A newly created task enters the system through suspended state. After activation, the task
enters the ready state. The state of the task, when it waits for a resource, is known as Pend. The
task may also enter the state delayed if it waits for a fixed time.

Priority-based pre-emptive scheduling algorithm is the default algorithm to allocate ready
tasks to the processor. But there is also a provision with which round robin scheduling can be
selected in case there is requirement of the same. In general, round robin scheduling is used
for tasks having the same priority. The kernel has 256 priority levels, numbered from 0 to 255.
Priority number 0 is considered as the highest and 255 as the lowest. As a task is created in the
system, its priority is assigned, based on the design of the system.

The wind scheduler can be explicitly enabled and disabled as per the requirement of a task.
A pre-emption lock is used for this purpose. When the scheduler is disabled by a task, no
 priority-based pre-emption can take place while the task is running. But after some time, if that
task blocks, the scheduler selects the next higher priority task to execute. When the blocked
task unblocks and begins execution again, the scheduler is disabled again. The pre-emption
locks can be used for mutual exclusion, but for the duration of pre-emption locking, that is,
disabling the scheduler must be for a short duration.

There is an exception handling package that takes care of exceptions produced in the system
due to errors in program code or data. The default exception handler suspends the task that
caused the exception and saves the state of the task when exception occurs. The kernel and
other tasks continue uninterrupted.

VxWorks provides many methods for inter-task communication and synchronization.
One of them is shared memory. Another is semaphore. VxWorks semaphores are highly optimized
and provide the fastest inter-task communication mechanism. Three types of semaphores are pro-
vided: binary, mutual exclusion, and counting. The mutual exclusion-based semaphore is identi-
cal to the binary semaphore, but is used only for mutual exclusion, that is, it is released only by
the task that locked it. There can be the problem of priority inversion in mutual exclusion-based
semaphore. Therefore, it has the option of enabling PIP algorithm that assures the resolution of
the priority inversion problem. There can be another problem in this semaphore. A task, while
executing inside the critical section, may be deleted. Deleting the task unexpectedly may corrupt
the resource and make it unavailable to other tasks. To avoid this situation, the mutual exclusion-
based semaphore provides the option that enables the task not to be deleted while it is inside its
critical section. Another mechanism for inter-task communication is message queue. Message
queues allow a variable number of messages, each of variable length, to be queued. Any task can
send or receive messages from the message queue. The send and receive primitives use timeout
parameters. On the one hand, when sending the message, the timeout specifies the number of
ticks to wait for the buffer space to become available. On the other hand, while receiving the
message, the timeout specifies the number of ticks to wait for the message to become available.
There may be some urgent messages. These messages may be added at the head of the queue.

Real-time Operating Systems 609

In VxWorks, across the network, inter-task communication is provided through sockets.
When a socket is created, the Internet communication protocol (ICP) needs to be specified.
VxWorks supports TCP and UDP. VxWorks also supports signal facility, which is more appro-
priate for error and exception handling as compared to other IPC methods.

Since interrupt handling is a major issue in real-time systems, as the system is informed of
external events only through these interrupts, ISRs in VxWorks run in a special context outside
of any task’s context. Thus, interrupt handling incurs no context switch. VxWorks has a mecha-
nism of watchdog timer. It allows any C function to be connected to a specified time delay. It is
maintained as part of system clock ISR.

To have an overview of VxWorks kernel, some important system calls are listed in
Table 20.2.

Table 20.2 System calls in VxWorks

S. No. System call Description

 1 kernelTimeSlice() Time slice used in controlling round-robin scheduling

 2 taskPrioritySet() Changes the priority of a task

 3 taskLock() Disables scheduler

 4 taskUnlock() Enables scheduler

 5 taskSpawn() Creates a new task

 6 taskInit() Initializes a new task

 7 taskActivate() Activates an initialized task

 8 taskPrioityGet() Returns the priority of a task

 9 taskTcb() Returns the pointer to TCB of task

10 taskSuspend() Suspends a task

11 taskResume() Resumes a task

12 semBCreate() Allocates and initializes a binary semaphore

13 semMCreate() Allocates and initializes a mutual-exclusion semaphore

14 semCCreate() Allocates and initializes a counting semaphore

15 msgQCreate() Allocates and initializes a message queue

16 msgQSend() Sends a message to a message queue

17 msgQReceive() Receives a message from a message queue

18 wdCreate() Allocates and initializes a watchdog timer

20.8.2 QNX
QNX is one of the first commercially successful microkernel-based OSs that has been adopted
in medical instruments, cars, nuclear monitoring systems, military communications, and mobile
phones. It is supported on almost all popular architectures such as x86, PowerPC, ARM, MIPS,
and so on. QNX is a multi-tasking priority-driven real-time OS that provides fast context
 switching. The microkernel contains only scheduler, IPC, interrupt handling, and timers. The
other modules run in the user mode, including a special process called proc that performs

610 Principles of Operating Systems

process creation and memory management functions in conjunction with the microkernel. The
priorities assigned to the processes range from 0 to 31. Priority number 0 is considered as the
lowest and 31 as the highest priority. The default priority for a new process is inherited from
its parent.

QNX provides three types of scheduling, depending on the needs of various applications:
FIFO, round robin, and adaptive scheduling. When processes have the same priority, FIFO,
and round robin are used. In adaptive scheduling, if a process consumes its time slice, its
priority is reduced by 1. This is known as priority decay. It is used in environments where
 potentially computation-intensive background processes are sharing the processor with
 interactive processes. Adaptive scheduling is used in order to give sufficient processor time
to these processes.

QNX uses the message passing method as the fundamental means of implementing IPC.
Message passing is used not only to communicate between processes, but also to synchronize
them. Three primitives are used for message passing: send, receive, and reply. Suppose pro-
cess A sends a message to process B, issuing a request. Process B issues a receive message.
After completing the processing associated with the message it received from process A,
process B issues the reply message. The synchronization between A and B also happens in
the sense that as process A issues a send request, it is unable to resume execution, that is, it is
blocked. This is known as send-blocked state. Similarly, we have reply-blocked and receive-
blocked states.

Another IPC mechanism in QNX is the proxy. Proxy is a non-blocking message that is
suitable only for event notification, and the sending process does not wish to interact with the
receiving process. In the proxy, the sending process does not expect any reply or acknowledge-
ment from the receiver process. A proxy may be used in the following situations:
 • A process wishes to notify another process about the occurrence of an event. But it cannot

afford to send a message for this purpose.
 • A process wishes to send data to another process, but does not expect any reply or acknowl-

edgement.
 • An interrupt handler wishes to inform a process that some data are available for processing.

A proxy can be triggered more than once. It sends a message each time it is triggered. A
proxy process can queue up to 65535 messages for delivery.

QNX also supports the signals as a traditional method of asynchronous communication and
semaphores for the synchronization. Sometimes, it is necessary to block a signal temporarily
without any change in the method of its delivery when it is delivered. QNX provides a set of
functions that helps in blocking of signals.

The IPC across the network in QNX is implemented through virtual circuits. The virtual
circuits enable a QNX application to communicate with another process on another node in the
network, just as if it were another process on the same node. These are paths to transmit mes-
sages, proxies, and signals across the network.

QNX has the provision that interrupts are fully enabled almost all the time, making interrupt
latency insignificant. However, some critical sections of code need to disable the interrupts
temporarily. The maximum disable time defines the worst case interrupt latency. This worst
case interrupt latency in QNX is very small. Similarly, scheduling latency is also kept very
small in QNX. However, the scheduling latency is larger than interrupt latency.

Real-time Operating Systems 611

QNX maintains a system timer for time management. A process can also create timers
with the time interval as absolute or relative. The absolute time interval is the time relative to
zero hours, zero minutes, zero seconds, 1 January 1970. The relative time interval is the time
relative to the current clock value.

To have an overview of VxWorks kernel, some important system calls are listed in
Table 20.3.

Table 20.3 System calls in QNX

S. No. System call Description

1 Send() Sends message to a process

2 Receive() Receives message from a process

3 Reply() Reply is sent to the sending process

4 Qnx_proxy_attach() Creates a proxy message

5 Trigger() Causes the proxy to deliver its predefined message

6 Qnx_vc_attach() Sets up the virtual circuit between two processes

7 Sem_wait() The process waits on the semaphore

8 Sem_post() The process releases the semaphore

9 Getprio() Determines the priority of a process

10 Setprio() Sets the priority of a process

11 Getscheduler() Determines the scheduling method for a process

12 Setscheduler() Sets the scheduling method for a process

13 Spawn() Creates a new process

14 Timer_create() Creates timer

15 Timer_delete() Removes timer

SUMMARY

RTOSs have been discussed in details keeping in view
the nature of real-time systems. The features of an RTOS
such as deadlines, predictability, fault tolerance and so on,
have been discussed in the chapter. Two important sched-
uling algorithms used, that is, rate monotonic scheduling
and earliest deadline first scheduling algorithms have been
discussed. While implementing the mutual exclusion in the
real-time systems the problem of priority inversion occurs.
The priority inversion problem has been discussed in detail,
along with their solution in the form of two protocols: priority
inheritance protocol and priority ceiling protocol.

Let us have a quick review of important concepts dis-
cussed in this chapter:

 • A real-time system is one whose logical correctness
 depends on both the correctness of the outputs and their
timeliness.

 • The tasks in the real-time system must meet their defined
deadlines for a specified time interval, otherwise the pur-
pose of the system is lost or the system performance is
degraded.

 • The real-time systems are not general in nature, but are
designed for a specific application and are embedded.

 • Hard-real-time systems are those in which one or more
activities must never miss a deadline or timing constraint,
otherwise the system fails.

 • Soft-real-time systems are those where missing some
deadline is acceptable.

 • Real-time systems are deterministic in the sense that
deadlines and other assertions, involving time, are exact
or fixed values.

 • The systems, which have hard deadlines and must be
met, are called hard-real-time systems.

612 Principles of Operating Systems

 • The systems, in which missing some deadline is accept-
able, are called soft-real-time systems.

 • Real-time operating systems (RTOS) must be
 multi-tasking, pre-emptive, and deadline-driven in nature.

 • The RTOS must have sufficient priority levels to support
priority-based scheduling.

 • RTOS must have minimum interrupt latency, dispatch
latency, and context switch time.

 • In real-time systems, the repetitive tasks, which occur at
regular period of interval, are called periodic tasks.

 • The tasks that occur occasionally are known as aperiodic.
 • Release time of a task is the time instant at which the task

becomes available for execution.
 • Absolute deadline of a task is the instant of time by which

it must complete its execution.
 • Relative deadline is the maximum allowable response

time of a task.
 • The short term scheduler in RTOS must ensure that all

hard real-time tasks are completed by their deadline, and
that as many as possible soft-real-time tasks are also
completed by their deadlines.

 • Rate monotonic (RM) scheduling algorithm schedules the
task which has the highest frequency rate of arrival.

 • In RM scheduling, the worst case processor utilization for

scheduling processes may be as the following:
e1/p1 + e2/p2 + ….. + en/pn ≤ n(21/n – 1)
 where, e is the execution time, p is the period of the
task, and n is the number of tasks to be scheduled in
the system.

 • Earliest deadline first (EDF) scheduling algorithm sched-
ules the task whose absolute deadline is earlier, that is,
the earlier the deadline, the higher the priority of the task.

 • Implementing mutual exclusion through semaphores in
real-time systems cause a problem known as priority-
inversion, wherein a lower-priority task is able to block
the higher-priority task.

 • There are two solutions to the priority inversion: priority
inheritance protocol and priority ceiling protocol.

 • In PIP, a provision is made such that when a higher-
priority task attempts to lock a semaphore owned by a
lower-priority task, the priority of the owning task is raised
to the priority of the blocked task.

 • PIP suffers from two problems: deadlock and chained
blocking.

 • PCP assigns a priority ceiling to each semaphore, which
is equal to the highest priority task that may use this
semaphore.

MULTIPLE CHOICE QUESTIONS

 1. ____ is a constraint of the maximum time limit at which the
operation must be complete.

 (a) Period (c) Iteration
 (b) Deadline (d) None

 2. Which of the following is the characteristic of a real-time
system?

 (a) Multi-tasking (c) Priority-driven
 (b) Deadline-driven (d) All of the above

 3. The interrupt latency and dispatch latency in real-time sys-
tem must be

 (a) Maximum (c) No effect
 (b) Minimum (d) None

 4. The context switch time in a real-time system must be
 (a) Maximum (c) No effect
 (b) Minimum (d) None

 5. ______ are also real-time tasks, which are activated irregu-
larly like aperiodic tasks, but with some known bounded
rate.

 (a) Periodic (c) Sporadic
 (b) Aperiodic (d) None

 6. In a simple process-control application, _______ schedul-
ing is appropriate.

 (a) Static (c) Online
 (b) Dynamic (d) Offline

 7. In ______ scheduling, there is complete knowledge of tasks
set, but new arrivals are not known.

 (a) Static (c) Online
 (b) Dynamic (d) Offline

 8. In ______ scheduling, the tasks are scheduled as they
 arrive in the system.

 (a) Static (c) Online
 (b) Dynamic (d) Offline

 9. RM is ____ scheduling algorithm.
 (a) Static (c) Online
 (b) Dynamic (d) Offline

Real-time Operating Systems 613

 10. EDF is ____ scheduling algorithm.
 (a) Static (c) Online

(b) Dynamic (d) Offline

 11. In RM, the priority of a task is inversely proportional to its ____.
 (a) Period (c) Iteration
 (b) Deadline (d) None

REVIEW QUESTIONS

 1. List out the characteristics of a real-time system?

 2. Which kind of applications are applicable for a real-time
system?

 3. Explain the structure of a real-time system.

 4. What is an RTOS? Explain its characteristics.

 5. Differentiate between periodic, aperiodic, and sporadic
tasks.

 6. Differentiate between
 (a) Absolute and relative deadlines.
 (b) Static and dynamic scheduling
 (c) Online and offline scheduling

 (d) Hard- and soft-real-time system

 7. Explain RM scheduling algorithm.

 8. What is the necessary and sufficient condition for schedula-
bility in RM scheduling?

 9. Explain EDF scheduling algorithm.

 10. What is priority inversion?

 11. Explain PIP. What are the problems in its implementation?

 12. Explain PCP. How does it remove the problems of PIP.

 13. Explain the major features of VxWorks.

 14. Explain the major features of QNX.

BRAIN-TEASERS

 1. Why is it important to minimize the context switch time in
real-time scheduling?

 2. Can we adopt non-pre-emptive scheduling in real-time
systems?

 3. Can there be a case that higher-priority tasks cause starva-
tion on lower -priority tasks in real-time systems? What is
the remedy for it?

 4. Consider a real-time system, in which there are three tasks,
with their period and execution times as the following:

Task Execution time e Period p

T1 25 70

T2 20 50

T3 10 100

Check whether the tasks are RM schedulable. If yes, explain
the RM scheduling of the tasks and show the tasks on timing
diagram also.

 5. Consider the following set of tasks in a real-time system:

Tasks
Release

time
Execution

time
Absolute
deadline

T1 0 5 30

T2 3 9 20

T3 4 8 30

T4 5 10 20

Perform EDF scheduling on this task set.

 6. Linux has a real-time version known as RTLinux. Survey
the features of this RTOS on the basis of the following
points:

 (a) Type of RTOS (Hard or Soft)
 (b) Structure (layered/microkernel)
 (c) Scheduling type
 (d) Synchronization type

21.1 INTRODUCTION

We are living in a world of mobile devices such as smartphones, laptops, and tablets. These mobile
devices are different as compared to general desktop systems. These are designed and run in very
restricted environment/resources. Therefore, the OSs, for these devices cannot be the same as those
for desktop systems. The mobile OSs have been designed for each category of mobile devices. This
chapter explores the types and characteristics of mobile devices and then discusses the mobile OSs.
Since mobile OSs pose many new challenges such as power management, as power is a critical issue in
mobile devices, all such issues have been discussed in detail. Finally, the most popular mobile OS today,
that is, Android has been discussed in detail.

21.2 INTRODUCTION TO MOBILE DEVICES

Mobile devices are multifunctional devices serving both consumer and business use. In consumer
 electronics market, these devices have a wide range of products today. Furthermore, these devices have
emerged as an extension to the conventional computer as most of the activities we do on a computer are
possible now on these mobile devices. While we work conveniently on these mobile devices irrespective
of place or time, the same can be synchronized with our work on the PC itself. For example, we use
smartphones and tablets for e-mail, instant messaging, web browsing, chatting, working on official
documents, and lots more. In general, a mobile device consists of the following hardware:
• Microprocessor
• Memory (volatile and non-volatile)
• Radiofrequency communication capability
• Input-output units such as keypad, LCD screen
• Power source, i.e., battery
Let us discuss some mobile devices as follows:

21.2.1 Personal Digital Assistant
Personal digital assistants (PDAs) are electronic organiz-
ers that are also able to share information with our computer.
A typical PDA manages well our daily-life activities such as
 contact list and task planner. These are also known as hand-held
or palm-top devices. Today, PDAs with the advancement of
 technology are equipped with more advanced features. For
example, they are able to connect to the Internet,

21 Mobile Operating
Systems

Learning Objectives
After reading this chapter,
you should be able to get
acquainted with:
 • Types of mobile devices
 • Characteristics of mobile devices
 • Characteristics of mobile OSs
 • Design issues of mobile OSs
 • Design features of Android OS

Mobile Operating Systems 615

support multimedia software applications, and so on. Thus, a typical PDA functions as a
cellular phone, web browser, personal information organizer, and so on.

21.2.2 Smartphones
The conventional cellular phone was not equipped with all modern features and it was in use as
a phone only. With the advancement of technology, the concept of smartphones emerged with
integration of the PDA features on the mobile phone. Later on, new features kept on adding in
smartphones. Some features are ability to access digital media, digital cameras, pocket video
games, GPS navigation, high resolution touch screens, Internet access, and so on.

21.2.3 Tablet PC
Tablet PC is a mobile computer with all its components placed in a single unit. Tablets do not
use the conventional input device such as mouse or keyboard. Primarily, these devices are
 operated with touch screens and are equipped with camera, microphone, buttons to control
basic features like volume, ports to communicate, and so on. The size of tablets is in general
larger than a PDA or smartphone. For a longer battery life, they use ARM processor.

21.3 CHARACTERISTICS OF MOBILE DEVICES

Mobile devices are different as compared to other computing devices. These devices require
very limited hardware configuration as these are portable. Some of their characteristics are as
follows:

Limited Processing Power
The processing speed is in accordance with the power of battery. The processors used are of
low processing power normally in the range of 50 MHz to 100 MHz. If high-power processors
are used, then they need high-power batteries and high-power batteries cannot be adopted in
mobile devices due to limitation of space.

Small Screen Size
The mobile devices have a very limited screen area due to limited space available on the device.

Limited Keypad
The input keys on the keypad available are also designed to utilize the space available. All the
keys present on normal keyboard are not available on the mobile devices.

Limited Memory
There are two types of memories in mobile devices as well: read only memory (ROM) and
random access memory (RAM). ROM is for the OS and pre-installed programs and RAM is
for user data. Due to processing power and space limitations, RAM is of low capacity. Mobile
devices use flash memory as non-volatile memory instead of hard disk.

Limited Battery Capacity
The mobile devices are based on secondary batteries connected to them. These batteries are of
low power as they cannot be of high power due to space limitations.

The battery power cannot be increased beyond a limit as it demands more space in the
mobile device. Consequently, the processing speed is limited due to limited power of battery.

616 Principles of Operating Systems

Therefore, power management for the mobile devices is a big challenge. In case of any power loss,
the data safety must also be provided. Some mobile devices demand that the device shoul always
be on. For example, mobile phone is always on and therefore must be functional forever. Thus,
mobile phone functionality is always at the highest priority and therefore mobile devices have
 • constrained physical characteristics;
 • less battery life; and
 • limited computing and communication capabilities.

21.4 MOBILE OS

Since the mobile devices are different as compared to conventional desktop systems, they need
different OSs too. These are known as mobile OSs. Depending on the capabilities of the mobile
devices and what they support, mobile OSs may also differ. For example, the mobile OS for a
PDA is different from that of a smartphone. Since in mobile devices some tasks are real-time
driven , that is, must be handled within the deadline, a mobile OS utilizes a real-time operat-
ing for embedded systems including drivers for peripheral devices, communication software,
and libraries shared between applications. The application software is placed on top of these
mobile OSs. The mobile OS is designed keeping in view the physical and other limitations of
the mobile devices. Moreover, the features of mobile devices and their types keep on changing.
Therefore, an efficient OS is needed to support all these existing and upcoming new features.
Let us discuss some design issues for a mobile OS.

21.4.1 Power Management
Since a mobile device gets operating power through a battery only, it is important that limited
battery power be utilized efficiently. It is helpful in lower heat dissipation also, which con-
sequently reduces the effect on environment. However, due to advancement of technology,
the modern mobile devices consume more battery power as compared to earlier generations.
For example, smartphones are being used for phone calls, accessing Internet, making video
recording, writing e-mails, and much more of what the user does on the desktop. Therefore,
power management has never been an important issue to give users more battery life. On the
traditional desktop computers, power management is handled within the BIOS only. However,
the BIOS-based power management is dependent on static hardware configurations and needs
to be ported on specific platforms that are being supported. Moreover, it was difficult to update
the firmware once the BIOS is shipped in a product. This results in minimal support for power
management.

To have better power-management features, BIOS must take the cooperation of OS. In this
direction, an application programming interface (API) known as advanced power management
(APM) was developed by Intel and Microsoft. An APM has the APIs that allow the OS to
make policy decisions and make calls into the BIOS to initiate power-management controls.
However, later on, it was realized that APM has added complexity and only BIOS controls
power management. Microsoft support for APM in Windows Vista was therefore dropped.
Another abstract interface between the OS and the hardware to move the power-management
controls into OS was designed by HP, Intel, Microsoft, Phoenix, and Toshiba. This interface is
known as advanced configuration and power interface (ACPI). The idea is to gather power-
management information from users, applications, and the hardware together into the OS that
will enable better power management due to the following reasons:

Mobile Operating Systems 617

 • Power management function is not restricted to the hardware and BIOS level but is available
on every machine on which the OS is installed.

 • The BIOS does not retain much information as the OS manages it.
 • The hardware vendors do not provide any power-saving mechanisms. Integrating power

management in the OS itself will help in reducing the conflicts between hardware and
firmware, thereby increasing the reliability.
Thus, ACPI was developed to have an OS-directed device configuration and power manage-

ment (OSPM). Thus, the goal to have an OSPM through ACPI stresses on the concept that systems
should conserve energy in an optimized way. Although ACPI has been designed for every class of
computers, this specification is much suitable for mobile devices where optimization of power has
become a necessary requirement. This is the reason that mobile OSs must support ACPI.

System Power Management
The OS must collect the information from devices so that the device that is not being used can
be turned off. The OS may collect the information from application and user settings so that
the system as a whole may be put into a low-power state. For system-power management, the
following power states may be implemented:

Working
 In this state, the device is in running state. If devices and processor are not in use, they are put
into low-power state. However, these devices can be turned on depending on the type and its
use of the device.

 Sleeping
 When the device is not in use or the user has pressed power button, the OS must put the device
in the sleeping state. The nature of a sleeping state may differ on how an event can change the
state to working and how much time it takes.

Device Power Management
To manage the power of all the devices, the OS may use standard methods specified in ACPI to
send commands to the devices. The standard methods specify the following:
 • The operations that can be used to manage power of devices
 • The power states the devices may put into

The OS tracks the information about the state of all the devices on the bus. After having the
current device requirements on that bus, it puts the bus in a particular power state accordingly.
If all the devices do not require power presently, the OS sends a command to bus control chip
to remove power from the bus.

Processor Power Management
The power can also be saved if the processor power is managed. When the OS enters in its idle
state, it first determines how much time will be spent in idle loop with the help of ACPI power-
management timer. After determining the idle time, the OS puts the processor in low-power
state, thereby saving the power.

21.4.2 Battery Management
The OS collects the information about the state of the batteries in the mobile device and, through
the user interface, notifies/warns the user about the low-power state of the device. In case of

618 Principles of Operating Systems

battery discharge, the OS must perform an emergency shutdown. However, in this shutdown,
the damage to the mobile device integrity must be minimized.

21.4.3 Thermal Management
As the mobile devices operate with batteries, heat dissipation is also an issue. Therefore, ther-
mal management is also mentioned in the ACPI where OS may reduce the power consumption
of devices at the cost of performance to reduce the temperature of the mobile device.

21.4.4 Memory Management
The mobile OS should consume very less space in the memory, that is, it should have a small
footprint of about 100KB along with plug-in modules if any. However, to avoid RAM space,
the kernel code, application, and libraries should be directly executed in ROM area instead
of copying into the RAM area. This is known as execute-in-place mechanism. However, this
increases the ROM space and the access in ROM is slower as compared to RAM. Thus, to
reduce the memory space, the kernel and libraries should be customized to utilize the memory
space. The microkernel structure of mobile OS may also help in reducing the memory.

The OS should be able to manage memory automatically. For example, when memory is low
at one instant of time, it must make space for the application or process by killing a process that
is inactive for a long time.

The application running on the mobile devices must free the unused objects in it and,
thereby, memory used by them. If unused objects are not freed, the memory footprint grows
and the performance degrades. The OS must handle all allocation and de-allocation of memory
properly to avoid the memory leakage. Memory leakage is a state when there is possibility that
applications may not return the memory after being allocated and occupy unnecessary memory.
There may be two cases: a running application continuously being allocated new memory and
an application after being closed still occupying the memory.

Memory leakage is a serious issue in mobile devices as it can affect the performance of a
mobile device. There may be several reasons for memory leakage in mobile devices. The OS
with the help of some utility must be able to monitor the memory leaks. For example, a data
structure named live bytes can show memory currently being used by active applications. If
this data structure continues to grow as the user uses application, there is a memory leakage.

The OS may have a provision that allows multiple processes to run where the same code
chunk is used for each of the processes. This reduces RAM usage.

21.4.5 Shortening Boot-up Time
The boot-up time in mobile devices must be managed to be short such that initializing time for
the devices is short. Some of the following solutions will help in reducing the boot-up time:
 • Small footprint as discussed in memory management helps in shortening the boot-up time.
 • If initialization of device drivers can be deferred for some time, the boot-up time is reduced.
 • The structure of OS should be microkernel.

21.4.6 Scheduling
Since the mobile devices may need real-time response, the OS should have pre-emptive sched-
uling mechanism. These devices are required to meet specific time deadlines for the tasks to
occur. However, pre-emptive task scheduling requires interrupting the low-priority tasks when

Mobile Operating Systems 619

high-priority tasks appear. However, pre-emption may take long time. When an external inter-
rupt arrives, the interrupt handler executes in the corresponding device driver in the kernel
and sends the data to the corresponding user process. Finally, the process is pre-empted. This
increases interrupt latency and, thereby, reduces system responsiveness. Similarly, the sched-
uling and dispatching may take a long time. Thus, interrupt latency and dispatch latency must
be minimized in mobile OSs. For mobile device, the desired interrupt latency is in several
microseconds.

The reason for increased interrupt latency is that in an interrupt processing, there is a
substantial amount of work. Some part of this work is done in the context of interrupt and
the rest is passed to the kernel context for further processing. The interrupt handler runs in
interrupt context. In interrupt context, some or all interrupts are disabled during this time,
thereby increasing the latency. Therefore, it is desirable to minimize the work done in the
interrupt context and pushing the rest in kernel context. Therefore, in interrupt processing,
there are two parts: top-half and bottom-half. Device data to a device-specific buffer are
saved in the top-half that exits after scheduling its bottom half. During the execution of the
bottom-half, all interrupts are enabled. Therefore, the bottom-half is the part of the ISR that
must be executed at a safer time and can be executed with a delay. This provision enables the
top-half to start servicing another interrupt while the bottom half is still working.

One solution to reducing the interrupt latency is to use deferrable functions. The deferrable
functions are the mechanisms through which we delay the execution of functions that are not
time critical (e.g., awaken the process, start servicing another I/O request, etc.) in interrupt
handlers. Taking the example of a network interface, when a new packet arrives, there is an
interrupt. The interrupt handler, which is in the top-half, retrieves the data and pushes it up in
the hierarchy of protocol layer. However, the actual processing of the packet in bottom half may
be done with a delay.

In Linux kernel, many deferrable functions have been used. Some of them are tasklets, Softirqs,
taskqueue, and work queue. Here, we discuss tasklets. Tasklets are the implementation of the
bottom-half adopted in Linux kernel used by the device drivers in kernel to schedule a function
some time in future. Tasklets are thus special functions that may be scheduled in interrupt context
to run at a system-determined safe time. An interrupt handler in interrupt context is secure that a
tasklet will not start executing until the interrupt handler has finished. However, during the execu-
tion of a tasklet, another interrupt can be serviced. The tasklets may either be enabled or disabled.
For example, if a device driver is handling an exceptional situation and requires that a tasklet not
execute during this handling, then the tasklets may be disabled.

The scheduler on its invocation incurs overhead and provides different execution time
depending on the input such as number of processes in the system. It would be a kernel sched-
uling design point that if we are able to design a scheduler that is not dependent on its input
but provides a constant time of execution. Therefore, the scheduler must be a completely fair
scheduler that schedules the processes within a constant amount of time irrespective of the
number of the processes in the system.

All these functions required in the kernel are related to the real-time performance of the
mobile devices. The real-time performance can be gained with the 2-CPU solution. This solu-
tion consists of two processors. On one processor, the normal OS runs for the application and,
on other real-time OS, runs for the real-time tasks.

Thermal management in mobile devices may be combined with a scheduler. Through tem-
perature sampling, hot processes may be identified in the system based on past power dissipa-
tion history. The idea is to provide reduced time quantum to a process due to which temperature

620 Principles of Operating Systems

rises above a certain threshold. Furthermore, the processes that are likely to generate more
heat will be penalized more in terms of their reduced quantum time. For this purpose, the
scheduler needs to be executed in two modes. In the normal mode, the scheduler runs as usual
and the process that gets scheduled is allocated a fixed time quantum. In the second mode, the
scheduler allocates varying time quanta based on the heat dissipation by the processes.

21.4.7 File System
On mobile devices, there may be inconsistencies in the file system due to the following reasons:
 • The power supply of battery may stop suddenly in a very short time
 • The user may remove the battery
 • The battery is dead

This is the reason that flash file systems are used in mobile devices. The mobile devices use
flash memory as a persistent memory that may be recorded and erased. Flash memory devices
offer a fast-read access. There are two types of flash memories: NAND-based and NOR-based.
NOR-based flash memories provide low-density, fast-read, and slow-write operations. On the
other hand, NAND-based flash memories provide low-cost, high-density, fast-write, and slow-
read operations. Flash memory device is divided into one or more sections of memory known
as partitions. This multi-partition architecture has the advantage that system processor may
read from one partition while writing or erasing in another partition. The partitions are further
divided into blocks. When the blocks are of same size, it is known as symmetrically blocked
architecture; otherwise, it is asymmetrically blocked architecture. Flash memory devices
allow programming values from ‘1’ to ‘0’ as the initial value is ‘1’. However, we cannot pro-
gram from value ‘0’ to ‘1’. It means that when any data is to be edited, it must be written to a
new location in flash memory and the old data is invalidated. Consequently, the invalidated data
is reclaimed as a background process.

The data recorded in flash memory must be in a structured way such that it is easy to organize,
search, and retrieve the desired data. However, there must be flash file systems designed to
cater to the needs of flash memory as traditional file systems cannot be applied for the same.
Therefore, OSs must support these file systems. The log-based file systems are suitable for flash
memory devices.
A flash file system is required for the following reasons:
 • The traditional file systems have been designed with the aim to reduce the seek time on disk

but there is no such seek time on the flash memory.
 • Repeated over-writing of a single block tends to wear out the flash memory device, which

means that each block on the flash memory has a limited number of erase–write cycles.
Therefore, the files systems are required that are designed to spread out writes and erases
evenly on the flash memory to maintain a wear level of each block.

 • Editing to a data is done by writing it to a new location in the memory and the old data
is invalidated. However, this invalid data must be cleaned up at regular intervals. This
cleaning up of invalid data is known as reclaim or garbage collection. After completion
of reclaim process, the old block is erased to make it available as a new spare block. The
reclaim process is in general a low-priority background process. However, if there is a situ-
ation when the file system does not have free space on the memory, it will call a state of
emergency and convert the reclaim process into a high-priority foreground process.

 • Many flash devices are with multi-partition each of which is capable of performing read and
write operations independent of each other.

Mobile Operating Systems 621

 • More than one flash memory devices may be stacked together to have a larger memory
configuration required for an application such that stacked flash memories appear as a contig-
uous memory. In this case, the flash file system must be able to map the contiguous memory.

 • Flash memory devices can be used to store both code and data. In general, when we want to
execute the code, it is first stored into RAM and then executed. However, in flash devices,
code can be directly executed from it without copying the code into RAM. The flash file
system must support writing code to flash in a contiguous and sequential address space. The
file system may also support code compression to reduce the amount of space allocated for
code on a flash device.

 • On the flash devices, there may be power loss during program and erase as well. If there is
power loss during read operation, the read operation does not happen. However, the file system
must be able to recover during write and erase operation if power loss happens. During write
operation, it needs to return to a last good state of the file system. The data and file-system data
structures must not be corrupted. Similarly, during erase operations, there must be a recovery
mechanism so that the erase is completed. Furthermore, there may be power loss while recov-
ering from the first power loss. This is known as double power loss. The file system must be
able to recover from single as well as double power loss.

 • There may be bad blocks that are unusable. These bad blocks may be shipped with the de-
vice and blocks may become bad during the operation. The flash file system must be able to
recognize and account for both types of bad blocks. Moreover, the incomplete operation in the
second type of bad blocks must be completed in some other good blocks. The file system should
also track the number of bad blocks such that they do not exceed the maximum number.
Since the flash file system is used in most of the mobile devices, the performance of the

device must not be compromised. The response time is one measure of performance on these
devices. The flash file system must be optimized to ensure acceptable performance. The devices
such as smartphones may contain a variety of files from system files to large multimedia files.
The file system should support all these file types and operations on them. The factors that may
affect the performance are read–write speed, reclaim, initialization time, file operations such as
create, open–close, and delete. The file system should adopt
 • the memory management techniques that minimize the fragmentation problem,
 • caching techniques, and
 • intelligent reclaim techniques.

21.4.8 Security
Since mobile devices incorporate all the features of a computer system, the challenges in these
devices are also becoming same as of traditional OSs. One of the major issues is security. These
devices can also be infected with worms, Trojan horses, or other viruses. They in turn may
compromise user’s security and privacy. Due to advancements in mobile-network technolo-
gies, malicious contents can easily be spread out. This may cause mobile OS to compromise,
thereby enabling malicious applications to access other devices, intercept messages, or gain
location information. This is another instance that these security breaches may compromise the
user’s privacy.

The attacker may have the following goals on mobile devices:
 • Since the mobile devices today are the rich source of personal information, the attackers

target the confidentiality and integrity of stored information. This enables the attacker to read

622 Principles of Operating Systems

SMS and MMS, read and forward e-mails, access the personal organizer and calendar, and
so on. Furthermore, if the user is able to tap into a mobile phone’s basic hardware features,
additional data from the surroundings can be collected. For example, by utilizing the voice
recording hardware or camera, the attacker can misuse the device as a listening device or
take photos or videos. Furthermore, the user’s privacy can be compromised by exploiting the
location information using GPS.

 • Since the mobile devices are equipped with high-frequency processor and high-capacity
memory, the attackers also exploit the raw computing power along with the broadband
network access. The high-speed Internet links are also used to deploy the botnets.

 • The attacker sometimes aims at performing harmful malicious actions on the mobile devices.
The actions may result in loss of data, draining the device battery, generating network
 congestion, disabling the device completely, and so on.
Thus, the mobile devices, especially smartphones are prone to attacks any time. The mobile

OS therefore must provide the security mechanisms to address the security issues.

21.5 ANDROID OS

Android is a software stack including mobile OS that has been primarily designed for touch-
screen-based mobile devices. It was originally developed by Android Inc. and was later sold to
Google in 2005. Android consists of the following components (see Fig. 21.1):

 1. Linux kernel: It is as an underlying OS interface. It acts as an abstraction hardware layer
for Android. The Linux kernel provides memory management, networking, and other basic
OS facilities.

 2. Native libraries: These are hardware-specific shared libraries developed in C/C++ language
and are pre-installed on the device by vendor.

 3. Android runtime: It includes Dalvik Virtual Machine (DVM) code (that runs the Java pro-
grammed applications) and core Java libraries.

 4. Application framework: It consists of classes used in writing Android-based applications.
 5. Android applications: It is the highest level layer that provides the end-user applications

including the applications shipped with Android and the applications that can be downloaded
by the user. These applications run on DVM just like Java Virtual Machine (JVM). DVM is
tailor-made according to the require-
ments of mobile devices. Moreover, it
runs on a relatively smaller RAM and
slower processor.

Our concern here is to discuss only the
OS part of Android. Android OS is a low-
cost, customizable, and light-weight OS
that not only has become the world’s best
environment for smartphones but also
has been integrated in microwaves, digi-
tal cameras, refrigerators, smart watches,
media players, robots, set-top box, and so
on. The first version of Android appeared
in 2008 and has gone through several ver-
sions till now (see Table 21.1).

Linux kernel

Libraries

Application framework

Applications

Android runtime

Fig. 21.1 Android architecture

Mobile Operating Systems 623

Table 21.1 Android versions

S. No. Android version

1 Android 1.0

2 Android 1.1

3 Android 1.5 Cupcake

4 Android 1.6 Donut

5 Android 2.0 Éclair

6 Android 2.0.1 Éclair

7 Android 2.1 Éclair

8 Android 2.2–2.2.3 Froyo

9 Android 2.3–2.3.2 Gingerbread

10 Android 2.3.3–2.3.7 Gingerbread

11 Android 3.0 Honeycomb

12 Android 3.1 Honeycomb

13 Android 3.2 Honeycomb

14 Android 4.0–4.0.2 Ice Cream Sandwich

15 Android 4.0.3–4.0.4 Ice Cream Sandwich

16 Android 4.1 Jelly Bean

17 Android 4.2 Jelly Bean

18 Android 4.3 Jelly Bean

19 Android 4.4 KitKat

The main hardware platform on which Android runs is the ARM architecture. It is based on
Linux kernel version 3.x. However, Android Linux kernel has been modified to include some
enhancements in the form of additional drivers supported in Android platform. Some of these
enhancements are the following:
 • Binder: It provides the IPC facilities in the system.
 • Power-management driver: It facilitates the power-management issues.
 • Low-memory killer: It frees up memory by killing off the inactive processes.
 • Logger: It is an extended kernel-logging facility.
 • Android alarm: It provides timers used to wake the sleeping devices.

Let us discuss various issues related to Android OS.

21.5.1 Power Management
The Android power management has been designed on top of Linux power management that
uses APM and ACPI. However, Linux power management is not directly suitable for mobile
devices. Therefore, some modifications have been done to cater to the needs of mobile devices
in Android power management that adopts a more aggressive policy to manage and save
power. The philosophy in power management is that a processor should not consume any
power if applications or services in fact require no power. The Android power management
has been designed as a wrapper to Linux power management implementing a light-weight

624 Principles of Operating Systems

ACPI driver. Android uses the concept of wakelocks and timeout mechanism to switch the
state of system power to decrease the power consumption. Through the wakelocks, Android is
able to dynamically power down while the system is still running. Any application or service
requests processor resources with wakelocks through Android application framework. By
default, Android puts the system into a sleep or suspend mode as soon as possible. If there
is no active wakelock, that is, no application is running, then processor will be turned off.
The running application needs to gain the wakelock with a timeout so that within that time
period the application is active. Furthermore, there is a concept of partial wakelocks. The types
of wakelocks available are as follows:

 • partial wakelock
In this case, the processor is running but the screen and keyboard are turned off.

 • screen dim wakelock
 In this case, the screen is on but the keyboard back light is turned off and the screen back
light is made dim.

 • screen bright wakelock
In this case, the screen is on with full brightness but the keyboard back light is turned off.

 • full wakelock
In this case, the full device including screen and keyboard with backlight is on.
A finite state machine of the power management in Android can be designed (see Fig. 21.2)

that works as follows:
 • When a user application is active (E1) or touch screen/keyboard is pressed (E2), it acquires

full wakelock and the machine is in the state AWAKE.
 • If timeout occurs for an activity or the power key of the device is pressed (E3), the machine is

in the NOTIFICATION state. Moreover, if there are any partial wakelocks (E4), the machine
will be in this state only.

 • When all partial wakelocks are released (E5), the machine will be in the SLEEP state.
 • When the resources are awake, the machine will transit to AWAKE (E6).

E3

AWAKE

NOTIFICATIONSLEEP

E1/E2

E2

E5

E6

E4

Fig. 21.2 Android power management

Mobile Operating Systems 625

21.5.2 Memory Management
The inactive applications are suspended in memory automatically in Android. However,
the suspended application is still considered open but not consuming any resources, bat-
tery life, processing power, and so on. If we close the application, it needs to be re-opened
from scratch consuming the time in closing and re-opening the application again and
again. Thus, the suspended applications in the background increase the responsiveness
of the applications. This management reduces the memory requirements also utilizing the
other resources.

In case of low memory, the system needs to accommodate the processes. Android selects
the victim applications and starts killing them according to the priority provided to them.
The process with lowest priority is killed first. In Android, there are various types of processes
maintained and given priority as follows:

 • Foreground/Active processes
 These are the processes that interact with the user and are responsible to maintain
responsiveness to the user. Only few processes at a given time exist in the system but are
of the highest priority and will be killed only if there is no other low-priority process to
be killed.

 • Visible processes
 These are not the foreground processes, that is, the user is not interacting but these processes
host the activities that are visible to the user. Visible processes are also important and, there-
fore, get the next to the foreground processes in priority.

 • Service processes
 These are the processes that are not responsible directly to the user but support services that
have been started by the user and should continue without a visible interface, for example,
playing a song in the background, downloading data on the network, and so on.

 • Background processes
 These are the processes that are neither interacting with the user nor visible and do not support
any service. There are a number of background processes in the system that get the lower prior-
ity as compared to all other processes.

 • Empty processes
 These are the processes that do not have any active application component but are used for
caching purposes.

The empty processes are first victims selected for killing and then the background pro-
cesses. In general, the victim applications may be inactive applications that have not been
active for a long time. However, the user is unaware of this memory management and is
performed automatically.

The priority assigned to a process depends on the components currently active in it. If a
process has more than one component, then the process will have the highest priority as of the
component. For example, if a process has two components: visible and background, then the
process is assigned the priority as of visible process.

For utilizing the small capacity of RAM, Android uses some new ways of allocating mem-
ory to the kernel. The two methods are anonymous/Android shared memory (ASHMEM) and
physical memory (PMEM) described as follows:

ASHMEM: It is a shared-memory block that can be shared across multiple processes.
PMEM: It provides physically contiguous memory blocks to drivers and libraries.

626 Principles of Operating Systems

21.5.3 Scheduling
Every application runs as a single process. The pre-emptive priority-based scheduling is performed
by Linux. It uses O(1) scheduling algorithm according to which every scheduling is guaranteed to
execute within a certain constant time irrespective of the number of tasks in the system. The Linux
kernel 2.6.8.1 has the scheduler that consists of two data structures: run queues and priority arrays.
These two data structures help in achieving O(1) time. The time for finding a process to execute
does not depend on the number of processes but on the number of priorities and number of priori-
ties is fixed. This is the reason that scheduling has constant execution time. The run queue is a list
of runnable processes on a given processor. It also contains the processor-scheduling information.
The run queue maintains two priority arrays: active and expired array of processes. Each priority
array references all processes with the given priority. The active array contains the processes asso-
ciated with the run queue with remaining time slices. When a process on the active array uses all of
its time slices, its time slice is re-calculated and is moved to the expired array. When each process
has its time slice as zero, the pointers for the active and expired arrays are swapped, thereby mak-
ing the expired priority list the active one. There are three classes of scheduling:

 1. First-in-first-out (FIFO) for real-time tasks
 2. Round robin for real-time tasks
 3. Time-sharing for all non-real-time tasks

There are 140 priority levels and a separate run queue is maintained at each priority level. Prior-
ity levels 0 to 99 are fixed for real-time processes with static priority and priorities 100 to 139
are for normal processes with dynamic priority. The priorities of normal processes are adjusted
based on time run and priority class. The priority class for instance may be that I/O-bound
processes get higher priority and CPU-bound processes get lower priority. Each process here is
having an initial priority known as nice value.

21.5.4 Inter-process Communication
Android supports all traditional IPC mechanisms provided by the Linux kernel: mechanisms
such as pipes, shared memory, message queues, and signals that are not used by OS libraries
and platform APIs to perform IPC. Therefore, as discussed in the Android architecture, binder
is the component that facilitates the IPC in Android OS. Its implementation runs under Linux
and extends the existing IPC mechanisms. Binders provide a low overhead RPC utility for syn-
chronous communication among processes.

Binders can be used in two ways: direct and indirect. In direct use of binder, a client is able to com-
municate with a server. When a successful connection is established between a client and a server,
the client receives a proxy object to the server. The binder uses this object for object mapping and
referencing to know which object belongs to what process. In this way, the binder sends notifications
to the clients to inform about the presence of server or service. Furthermore, the binder wakes up
sleeping client or server if they are sleeping during any request, acknowledgement, or notifications.

In indirect use of a binder, it becomes a security token. As a security token, it will not allow
certain services to certain clients.

21.5.5 File Management
There are three parts of file system in Android:

 1. System partition: It contains the entire Android OS including the pre-installed applications,
system libraries, and so on.

Mobile Operating Systems 627

 2. SD card: This is the area where files can be written and read.
 3. User data partition: This is the area used to store user data, both pre-installed and down-

loaded.

21.5.6 Security
Since Android has rich application-development framework, it is prone to security issues, such
as applications stealing private data and malicious disruption of an application or even the OS
by another application. Therefore, to handle the security issues, Android provides a permis-
sion-based security model. This model isolates the applications in a sandbox environment. This
environment restricts each application to execute in its own environment and does not allow an
application to affect or modify other applications. Android utilizes Linux standard access-control
mechanisms for this purpose. Each application is assigned a unique ID. One application can
access files of other applications as per the permissions granted to an application. However, it
will be useful from the application viewpoint to access some critical resources such as network
services and camera. In this case, the Android provides flexibility in the form of shared user ID
and permissions. With shared user ID, applications can share data and components of other appli-
cations. However, for shared user ID, the two applications must sign a digital certificate with the
same private key. Furthermore, Android provides four types of permissions described as follows:

 • Normal permissions: These are isolated application-level permissions. Since these permissions
do not affect any user’s privacy or application, there is no security risk.

 • Dangerous permissions: These permissions give access to private data and some critical
systems. Since these permissions have a high security risk, permissions must be confirmed.

 • Signature permissions: These permissions are granted when two applications need to share
data and other components by signing same digital certificate. This is refinement of shared user
ID. Care must be taken when giving these permissions.

 • Signature-or-system permissions: Signature permissions when extended by allowing to ac-
cess Android system applications become signature-or-system permissions. Care must be
taken when giving these permissions.

SUMMARY

Mobile OS characteristics to cater to the needs of mobile de-
vices have been explained in the chapter. The mobile OSs
have very different design issues as compared to general
OSs. The major issues such as power management, battery
management, thermal management, and flash file system
have been discussed in detail. After this, the Android OS has
been discussed in the light of issues of mobile OSs.

Let us have a quick review of important concepts dis-
cussed in this chapter:

 • The mobile devices are different as compared to other
computing devices. These devices require very limited
hardware configuration as these are portable.

 • Since the mobile devices are different as compared to
conventional desktop systems, they need different OSs
known as mobile OSs.

 • Since a mobile device gets operating power through a
battery only, it is important that limited battery power be
utilized efficiently.

 • ACPI was developed to have an OSPM. The goal to have
an OSPM through ACPI stresses on the concept that sys-
tems should conserve energy in an optimized way.

 • The OS must collect the information from devices so that
the device that is not being used can be turned off.

 • The OS tracks the information about the state of all devic-
es on the bus. Based on the current device requirements
on that bus, it puts the bus in a power state accordingly.

 • When the OS enters its idle state, it first determines
how much time will be spent in idle loop with the help
of ACPI power-management timer. After determining the
idle time, the OS puts the processor in low-power state,

628 Principles of Operating Systems

MULTIPLE CHOICE QUESTIONS

 1. ______ has the APIs that allow the OS to make policy
decisions and make calls into the BIOS to initiate power-
management controls.

 (a) CPM (c) ACPI
 (b) APM (d) None

 2. An abstract interface between the OS and the hardware
to move the power-management controls into OS designed
by HP, Intel, Microsoft, Phoenix, and Toshiba is known as
____.

 (a) CPM (c) ACPI
 (b) APM (d) none

 3. To avoid RAM space, the kernel code, application, and li-
braries should be directly executed in ROM area instead of
copying into the RAM area. This is known as ____.

 (a) direct execution (c) execute-in-place
 (b) ROM execution (d) none

 4. The _____ saves device data to a device-specific buffer,
schedules its bottom half, and exits.

 (a) top-half (c) Context-half
 (b) bottom-half (d) none

 5. _____ is the part of the ISR that must be executed at a

safer time and can be executed with a delay.
 (a) top-half (c) context-half
 (b) bottom-half (d) none

 6. The ____ functions are the mechanisms through which we
delay the execution of functions that are not time critical.

 (a) non-critical (c) deferrable
 (b) delay function (d) none

 7. ____ are special functions in Linux kernel that may be
scheduled in interrupt context to run at a system-deter-
mined safe time.

 (a) tasklets (c) workqueue
 (b) taskqueue (d) none

 8. ___ based flash memories provide low-density, fast-read,
and slow-write operations.

 (a) NAND- (c) XOR-
 (b) NOR- (d) AND-

 9. ____ based flash memories provides low-cost, high-densi-
ty, fast-write, and slow-read operations.

 (a) NAND- (c) XOR-
 (b) NOR- (d) AND-

REVIEW QUESTIONS

 1. What are the characteristics of a mobile device?

 2. What is a mobile OS? How is it different from traditional
desktop OS?

 3. Define the following: APM, ACPI, and OSPM

 4. Explain the power states for system power management.

 5. What is thermal management in mobile devices?

 6. What is execute-in-place mechanism?

 7. In the context of interrupt processing, explain the following:
interrupt context, top-half, bottom-half.

 8. What is a deferrable function?

 9. What is a tasklet?

 10. What is 2-CPU solution?

thereby saving the power.
 • The OS collects the information about the state of the

batteries in the mobile device and, through the user inter-
face, notifies the user about any warning about the low-
power state of the device.

 • The mobile OS should consume very less space in mem-
ory, that is, it should have a small footprint.

 • Memory leakage is a serious issue in mobile devices as it
can affect the performance of a mobile device.

 • The boot-up time in mobile devices must be managed
to be short.

 • Since mobile devices may need real-time response, the
OSs should have pre-emptive scheduling mechanism.

 • Interrupt dispatch latency must be minimized in mobile
OSs.

 • One solution in reducing the interrupt latency is to use
deferrable functions. The deferrable functions are the
mechanisms through which we delay the execution of
functions that are not time-critical in interrupt handlers.

 • Mobile devices use flash memory as a persistent memory
that may be recorded and erased.

 • Flash file systems are designed to cater the needs of
flash memory as traditional file systems cannot be ap-
plied for the same.

 • Mobile devices can also be infected with worms, Trojan
horses, or other viruses.

Mobile Operating Systems 629

 11. Why is a flash file system required?

 12. What is double power loss?

 13. How does Android perform power management?

 14. Explain the types of processes and their priorities in An-
droid.

 15. Explain the following: ASHMEM and PMEM

 16. What is O(1) scheduling?

 17. What is the mechanism used for IPC in Android and how
does it work?

BRAIN TEASERS

 1. What is the reason that the boot-up time in mobile devices
must be managed to be short?

 2. Explain some programming tricks that may help in reducing
the memory leakage.

 3. Study the log-structured file systems in relation to flash
file systems.

 4. Study some more mobile OSs and investigate how various is-
sues (as discussed for Android) have been resolved in them.

22.1 INTRODUCTION

To make a user file attractive, multimedia has opened up many new ways with a long host of features
such as graphics, video clips, audio, sound effects, animation, and so on. Multimedia systems demand
large bandwidth to transmit files high processing power. The general OS may not be able to cope
with these high requirements. Therefore, OSs that support multimedia features must be designed.
In this chapter, all issues regarding multimedia OSs have been discussed.

22.2 MULTIMEDIA

Today, multimedia contents in applications today are increasing continuously. Multimedia is the
field that integrates text, graphics, images, videos, animation, audio, and any other media and repre-
sents, stores, transmits, and processes every type of information digitally. Multimedia applications
largely consist of audio, video, and animation, in addition to traditional media. Movies, video clips,
songs, webcasts of events, and so on, are all examples of multimedia applications. Thus, multimedia
data are stored in the file system like any other data but captured by distinct devices. For example,
digital video can be created using cameras or recorded from broadcasts. Compared to regular files,
 multimedia files have two unique characteristics. First, multimedia files are accessed at a specific
rate. For example, to view a video, a series of images are displayed in rapid succession. In general, a
video is displayed at 25 or 30 frames per second. The higher the rate at which these are displayed, the
finer the video appears to the user. The same is the case with audio
files. These are also known as continuous media data. The sec-
ond unique feature of multimedia files is the need of real-time
 delivery when delivered on the network. In the sense of real-
time delivery, multimedia files are of two types: live streaming
and on-demand streaming. In live streaming, multimedia
contents are delivered as the event occurs, for example, the
lecture delivery of a person through video-conferencing.
On the other hand, in on-demand streaming, the delivery of con-
tents is from stored systems, for example, on-demand movies
from the cable television operator. In on-demand streaming, the
event is not actually taking place when it is being delivered. In
multimedia, the files are considerably large in size. To resolve
the issue and reduce the files to acceptable sizes, the files need
to be compressed.

22 Multimedia Operating
Systems

Learning Objectives
After reading this chapter,
you should be able to
understand:
 • Multimedia system
 • Multimedia OSs
 • Process and disk scheduling

in multimedia OS
 • Memory management in

multimedia OSs
 • File management in

multimedia OSs

Multi-processor Operating Systems 631

A multimedia system should have the following desirable features:
 • It should run on a system having very high processing power.
 • The file system should support multimedia files.
 • The system should support efficient and high I/O.
 • The system should support high capacity storage.
 • The system should have network support.

22.3 MULTIMEDIA OSs

Since multimedia applications require soft-real-time response and consist of continuous media
data, a general OS cannot fulfil specific rate and timing requirements. Therefore, multimedia
OSs are designed to support multimedia applications. The requirements of specific data rate and
timing requirements of continuous media in multimedia OSs are known as quality of service
(QoS) guarantees. The following are some features that must be supported by these specialized
OSs:
 • There may be multiple scheduling requirements. Besides the traditional scheduling, there

may be requirement of both hard-real-time and soft-real-time scheduling. Thus, the sched-
uler must guarantee hard and soft deadlines through tasks with certain priorities. Each real-
time task has a timing constraint and resource requirements.

 • In multimedia applications, frames have a deadline and the system cannot afford to drop
any frame or have any delay.

 • In multimedia applications, audio and video files that are different as compared to general
text files having an internal structure. Moreover, these files are captured as well as played
back by different devices.

 • A file in a multimedia application may consist of sub-files, for example, a digital movie file
may consist of video file, audio files, text files, and so on. Thus, the file system must keep
track of multiple sub-files per file and these multiple sub-files must be synchronized with
each other. The audio and video files cannot be out of synchronization, or else the viewer
will not be able to enjoy the movie.

 • There should be low latency and high responsiveness. There must be some acceptable
ranges within which the delay or other parameter is confined. For example, end-to-end
delay for audio streams should be below 150 ms for most multimedia applications.

 • Since multimedia streams tend to be periodic and consistent, schedulability consideration
is much easier.

 • To cope with the high bandwidth requirement, compression and lower resolution may be
used.

22.4 PROCESS SCHEDULING

The multimedia scheduling algorithm must allocate resources used by different tasks so that
all deadlines are met. For example, while running a movie, all frames must be displayed at the
right times. Since multimedia systems have the requirement of traditional scheduling and soft-
as well as hard-real-time scheduling, they adopt multiple scheduling algorithms.

One scheduling algorithm adopted in multimedia systems is the proportional share sched-
uling. In this scheduling, resource requirements are specified by the relative share of the
 resource. The resource is allocated on the basis of share of the competing requests (fair-share

632 Principles of Operating Systems

scheduling, as discussed in Chapter 6). Another criterion is to have a combination of more than
one scheduling algorithms that support any type of scheduling (real-time and non- real-time)
requirement in a hierarchy. For example, round robin or proportional share scheduling is
 combined with real-time scheduling algorithms such as EDF or RM. In any case, the real-time
tasks need to be prioritized.

There may be a situation in multimedia systems when the total load is difficult to predict and
execution times of individual applications vary considerably. For this issue, the scheduler must
have the feedback controller that may dynamically adjust processor utilization.

22.5 FILE SYSTEM

The access speed of storage devices has not been much improved as compared to the
exponentially increased performance of processors and networks. Since multimedia files
are too large in size, it is difficult for general file systems to handle multimedia data. More-
over, the real-time playback and retrieval of multimedia data require intense bandwidth
on the storage device. Thus, general file systems are not designed to meet the real-time
performance requirement of the audio and video data retrieval. To cope with this issue, the
following are required:
 • The physical bandwidth of the disk must be exploited effectively.
 • The disk fragmentation must be avoided by tailoring the file system layout, meta data

structure, file organization, file allocation, and so on.
 • The time to locate the data blocks on disk must be minimized.

The following file systems are used for multimedia systems:

22.5.1 Partitioned File Systems
 This file system consists of multiple sub-file systems. Each sub-file system targets handling
of a specific data type. It also has one integration layer that provides transparent access to
the data handled by different sub-file systems.

22.5.2 Integrated File Systems
 These systems multiplies all available resources in the system among all multimedia data.

22.6 FILE ALLOCATION

Since multimedia files demand very high storage space, general file allocation may not be
 suitable. The following methods are being used for allocating files in multimedia OSs:

22.6.1 Scattered Allocation
 In this method, blocks are allocated at arbitrary locations on the disk. The random placement is
beneficial for mixed-media workloads in multimedia systems.

22.6.2 Contiguous Allocation
 The data blocks in this method are allocated successively on the disk. It is better when com-
pared to scattered allocation, but this causes external fragmentation. This allocation works well
in case a video server is preloaded with movies that will not change afterwards.

Multi-processor Operating Systems 633

22.6.3 Locally Contiguous Allocation
 In this method, a file is divided into fragments. All blocks of a fragment are then stored contigu-
ously. However, fragments can be scattered. This method causes less external fragmentation as
compared to contiguous allocation.

22.6.4 Constrained Allocation
 This method puts the constraint of distance measured in tracks for a finite sequence of block
allocation, that is, the allocation is for finite blocks measured in finite number of tracks.

22.6.5 Distributed Allocation
 This is applicable to systems where multiple storage devices exist. These multiple storage
devices, say disks, can be used to store multimedia data. One simple method is to use one
full file on only a single disk. For instance, one full movie is stored on a single disk A.
Another movie is stored on disk B. One disk may also contain more than one full movie. But
the drawback of this method is that if one disk fails, one or more full movies are lost. Moreover,
the load on the disks is not distributed.

Data striping may be implemented to have a large logical sector by accessing many physi-
cal sectors from multiple disks. One method is to stripe each movie on multiple disks. Here
the assumption is that all frames are of same size, so that a fixed number of bytes from a
movie are written to disk A and the same number of bytes are written to disk B, and so on.
One drawback in this method is that all movies start on the first disk only, thereby increasing
the load on this disk. To balance the load among disks, staggered striping may be used, wherein
the starting disk is staggered every time. Another way to balance the load is to use random
 striping, wherein each file may be randomly allocated.

The assumption of all frames with same size cannot be implemented every time. For example,
in MPEG-2 movies, different frames are of varying sizes. So the idea is to stripe by frame. In
frame striping, the first frame of a movie is stored on disk A. The second frame goes to disk B
and so on. This striping will not help in increasing the accessing speed but will help in spreading
the load among disks in a better way. Another method may be block striping. In this method,
fixed-size units are written on the disks as blocks. Each block may contain one or more frames.

22.7 DISK SCHEDULING

General disk scheduling algorithms target to optimize the seek time. But multimedia OSs,
along with the seek time, must target the QoS guarantees also. The following are some disk
scheduling processes for multimedia OSs:

22.7.1 EDF Scheduling
 Since multimedia data need to be delivered in real-time consideration, sorting the disk requests
based on deadlines is a good idea. The EDF discussed in real-time scheduling may be adopted
here. This will help in processing disk requests in deadline order and minimize the chance
of missing deadlines. In this scheduling, a block request with nearest deadline is served first.
However, it has been observed that pure EDF may cause low throughput and high seek times.

634 Principles of Operating Systems

22.7.2 SCAN-EDF
 EDF can be combined with other scheduling algorithms in order to increase the throughput and
lower the seek time. SCAN algorithm, when merged with EDF, gives the desired result. The requests
are first ordered as per EDF, and SCAN is applied when multiple requests have same deadline.

22.7.3 Group Sweeping Strategy
 In this scheduling, the requests of continuous media are first split into multiple groups or frag-
ments. Within a group, SCAN algorithm is applied. Among the groups, round robin scheduling
is used. For example, if each group has one request, the scheduling is just like round robin. This
method may be modified by providing a constant time to each fragment. This time is an upper
limit for play out duration of each fragment, representing as the length of one round. These
algorithms are known as work-ahead-augmenting algorithms.

22.8 MEMORY MANAGEMENT

The memory for multimedia data can be managed cost effectively in the following manner:

 22.8.1 Batching
When several clients request the same multimedia data, for example, batching can be done in
case of a movie. In this case, the video transmission will start only when there is a batch of
clients who want to watch the same movie.

 22.8.2 Buffering/Bridging
It uses cache for repeated disk requests. The general caching techniques may not be applicable to
multimedia data. This is because, in general, we keep the data in cache which is to be frequently
used in future. But in case of multimedia data, a block is unlikely to be used a second time. For
example, while playing a movie, the same block will not be used if the movie starts and is played
sequentially. But in some different manner, we can use caching. The idea is to use the predictable
nature of multimedia data. The system may know in advance that if there is more than one user
who wants the same data. For example, it may know if there is more than one user who wishes
to watch the same movie on demand. But it may not be possible that all start watching the movie
at the same time. There may be some time gap in between the instants the users start watching
the same movie. Caching can be used if the time gap is known. Let one user start watching the
movie at time t and the second user starts at t+4. In this case, the blocks played for the first movie
till t+4 can be cached, and then played back for the second user. This is known as block caching.

 22.8.3 Stream Merging
The memory space can be saved for caching also. As explained for block caching, there may
be some time delay in between the instants in which the users start watching the same movie.
Instead of caching technique, the video clips of the first user can be displayed at some slower
rate so that both users can catch up with each other after some time and the same movie can
be shown to both of them without any extra cost of memory. This is known as stream merging
or adaptive piggybacking. Another method to implement stream merging is to have content
insertion wherein some additional video clips, say advertisements are inserted in between the
movie played to the second user, so that both users’ viewing can be synchronized.

Multi-processor Operating Systems 635

MULTIPLE CHOICE QUESTIONS

 1. Multimedia files are accessed at a specific rate. Therefore,
multimedia data are also known as

 (a) continuous media data (c) specific data
 (b) real-time data (d) none

 2. Multimedia systems should have ____ processing power.
 (a) very low (c) medium
 (b) very high (d) none

 3. There should be ____ latency and _____ responsiveness
in multimedia OSs.

 (a) high, low (c) low, low
 (b) low, high (d) high, high

 4. Since multimedia streams tend to be periodic and consis-
tent, schedulability consideration is _____.

 (a) impossible (c) much easier
 (b) difficult (d) none

 5. Multimedia OSs must have ____ process scheduling algorithm.
 (a) single (c) three
 (b) two (d) multiple

SUMMARY

Multimedia systems are different in nature and demand
resources in high capacity. Therefore, multimedia OSs
are designed in order to cope with the specialized
 requirements of multimedia data.

Let us have a quick review of important concepts
 discussed in this chapter:

 • Multimedia applications largely consist of audio, video
and animation in addition to traditional media. Movies,
video clips, songs, webcasts of events, and so on, are
all examples of multimedia applications.

 • Multimedia files are accessed at a specific rate.
 • The multimedia files are of two types: live streaming and

on-demand streaming. In live streaming, the multimedia
contents are delivered as the event is occurring. In
 on-demand streaming, the delivery of contents is from
some stored systems.

 • The requirements of specific data rate and timing require-
ments of continuous media in multimedia OSs are known
as quality of service guarantees.

 • Since multimedia systems have the requirement of
 traditional scheduling and soft as well as hard real-time
scheduling, they adopt multiple scheduling algorithms.

 • Since multimedia files are too large in size, it is difficult to
handle multimedia data by the general file systems.

22.8.4 Prefetching
To support continuous playback of time-dependent multimedia data, the data are fetched in
advance from the disk to memory. Prefetching is the mechanism by which data are preloaded
from slow and high-latency storage devices such as disk, to faster storage like memory. It results
in reduced response time of a data read request and further increases the storage I/O bandwidth.
In multimedia systems, it is easy to predict that the data to be retrieved are sequential. In this
case, the data are prefetched.

REVIEW QUESTIONS

 1. Differentiate between:
 (a) continuous media and real-time data
 (b) live streaming and on-demand streaming

 2. What are the desired features of multimedia OSs?

 3. The general file systems are not able to cope with
multimedia files. Discuss the guidelines of how multimedia

file systems must be designed, considering the nature of
 multimedia files.

 4. Explain the distributed file allocation method.

 5. Explain the GSS disk scheduling method.

 6. What is stream merging?

PART VIII
Shell Programming

23. Shell Programming and UNIX Shells

23.1 INTRODUCTION

This chapter gives an overview of the UNIX shells and how to perform shell-programming exercises.
The shell programming is as simple as we do in any high-level language. The only difference is the
syntax of the commands used in the shell. Therefore, the prerequisite for this chapter is that the reader
should be well aware of any high-level language constructs. This chapter introduces various UNIX
shells and the related programming constructs with the help of programming examples.

23.2 ROLE OF SHELL

UNIX or Linux shell is a command line interpreter that handles users’ interactions with the computer
system. It is a command-programming language that acts as an intermediate between the user and the
kernel. Its features include control-flow primitives, parameter passing, variables, and string substitution.
A shell allows you to easily create a new program with all the privileges of any other UNIX program.

There are various types of a shell that have come into the market
since its inception. These shells share many similarities but each
shell also has its own set of recognized commands, syntax, and
functions that are important for advanced users.

23.3 TYPES OF SHELLS

There exist various types of shells in UNIX and UNIX-like systems.
In this section, some important ones are discussed.

sh: It was developed by Stephen Bourne, of AT&T Bell
 Laboratories and is also known as Bourne shell after his name.
The binary program of the Bourne shell is located at/bin/sh on
most UNIX systems and provides a user interface to a huge num-
ber of UNIX utilities. It is good for I/O control but not well-suited
for interactive users. Its default command prompt is denoted as $
sign.

ash: Almquist shell, also known as A shell or ash, is a high-speed,
POSIX-compatible UNIX shell designed to replace the Bourne shell
in later BSD distributions. Its initial versions did not support com-
mand history feature. Its recent versions support UNIX text-editing
programs, such as emacs and vi modes.

23 Shell Programming
and UNIX Shells

Learning Objectives
After reading this chap-
ter, you should be able to
understand:
 • Shell and its types
 • File- and directory-related

commands in UNIX
 • Filters and related commands
 • Input/Output redirection and

related commands
 • Communication-related

commands in UNIX
 • Shell meta-characters
 • Vi editor and its various

commands
 • Shell scripts
 • Shell programming constructs
 • Shell script examples

640 Principles of Operating Systems

bash: Standing for Bourne shell, bash is a UNIX shell written for the GNU Project. It was
created in 1987 by Brian Fox. Bash is the default shell on most Linux systems as well as on Mac
OS X and can be run on most UNIX-like OSs.

dash: Debian Almquist shell (dash) is a POSIX-compliant UNIX shell, much smaller and
faster than bash. The advantage of this shell is that it takes less disk space and the drawback
is that it has fewer features. This shell was included in Linux by Herbert Xu in early 1997. As
compared to bash, this shell depends on fewer libraries. It is believed to be more reliable in case
of upgrade problems or disk failures.

fish: The name of this shell is an acronym for friendly interactive shell. This shell provides
the user with numerous powerful features in a way that are easy to discover, remember, and use.

ksh: Standing for Korn shell, this shell is a UNIX variant that was developed by David Korn
of AT&T Bell Laboratories in the early 1980s. It is backwards compatible with the Bourne shell
and includes many features of the C shell as well, like a command history. Its differentiating
feature from other shells is its ability to be used as a programming language.

csh: The C shell (csh) is a UNIX shell developed by Bill Joy for the BSD UNIX system.
As the name suggests, syntax of this shell is modeled after the C programming language. This
shell is upward compatible with Bourne shell, adding many new features to it such as aliases
and command history.

tcsh: TENEX C (tcsh) shell is a UNIX shell based on and compatible with the C shell
(csh). It is essentially the C shell with (programmable) filename completion, command-line
editing, and a few other features.

es: This shell works like a fully functional programming language as a UNIX shell. It
was majorly developed in the early 1990s. Unlike other modern shells, es does not have job
control. Patches to provide job control have been offered, but the currently available ones have
memory-leak problems.

scsh: Scheme shell (scsh) is a POSIX application programming interface (API) limited
to 32-bit platforms. It is layered on top of the Scheme programming language (a programming
language used to write OSs, optimizing compilers, text editors, graphics packages, etc.) in a
manner to make the most of the scheme’s capability for scripting.

23.4 FILE AND DIRECTORY-RELATED COMMANDS

UNIX is a very powerful OS and its strength lies in its huge set of commands. Table 23.1 shows
the list of various file- and directory-related commands.
Table 23.1 File- and directory-related commands

S. No. Syntax of
command

Options (if any) Description

1. $ touch file-
name

This command creates a file
of size zero bytes. We can
create several empty files
quickly.

2. $ cat>filename $ cat>filename To store something in a file
after pressing enter and
escape key via ctrl + d.

$ cat filename To display content of a file.

(Contd)

Shell Programming and UNIX Shells 641

$ cat filename f2
name> f3 name

To concatenate contents of
two files and store them in a
third file.

$ cat fname
>>fname

To append to a file without
overwriting its contents.

3 $ cp file1 file2 This command copies the
content of one file to other.

4 $ rm $ rm file1 Removes given file.

$ rm –i file1 Removes file interactively;
you are asked before delet-
ing file.

$ rm-r dir1 Recursively removes all con-
tents of dir1 and dir1 itself.

5 $ mv file1 file2 Renames file file1 to file2.

6 $ ls $ ls Gives directory listing or lists
contents of current or speci-
fied directory.

$ ls-a Displays hidden files in addi-
tion to its regular contents.

$ ls b* Interprets presence or
absence of any number or
characters.

$ ls[char]* This indicates first character
of filename to be listed, must
be any one of the letters
given in square brackets.

$ ls-l Used for long listing.

7 $ ln file1 file2 Establishes one more link to
a file file1 in the form of file2.
Default link to a directory is 2
and to a file is 1.

8 $ umask Sets permission of all files
or directories at the time
of creation, unmask value
is subtracted from default
value, which for file is 606
and directory is 777.

Internal weightage

Read-4

Write-2

Execute-1

(Table 23.1 Contd)

(Contd)

642 Principles of Operating Systems

9 $ chmod [per-
mission] f1

For setting permissions other
than at the time of creation.

10 $ lf Used to differentiate various
types of files. It puts a * after
all executable files and ‘/’
after all sub-directories pres-
ent in current directory.

11 $ pwd Prints the absolute pathname
of present working directory.

12 $ logname
user1

Prints login name of user
user1.

13 $ uname To find the name of UNIX
system.

14 $ tty To find out name of the ter-
minal.

15 $ who Lists all the users on systems
with terminal names, data,
and login names.

16 $ who am i Lists the details of the cur-
rent user.

17 $ pwd Gives the details of the direc-
tory in which the user is cur-
rently working.

18 $ mkdir $ mkdir –p direc-
tory/f1

This command is used to
create a file f1 by creating all
the parent directories speci-
fied in the path.

19 $ wc filename Counts the number of lines,
words, and characters in
specified files or file.

$mkdir –m [per-
missions] newdir

Creates the directory newdir
with the specified permis-
sions.

20 $ rmdir $ rmdir dir1 Removes directory dir1.

$ rmdir –p dir1/
dir2/f1

Removes the file recursively,
that is, if on removing file f1,
dir2 gets empty it removes
dir2, and so on

21 $ cd newdir It is used for changing over to
a new directory.

23.5 FILTERS

When a program takes its input from standard input, performs some operation on that input,
and writes the result to the standard output, it is referred to as a filter. Table 23.2 shows some
of the most commonly used filters.

(Table 23.1 Contd)

Shell Programming and UNIX Shells 643

Table 23.2 Filter-related commands

S.
No.

Syntax of
command

Options
(if any)

Description

1. $ wc filename - Counts the no. of lines, words, and
characters in specified files or file.

-l Allows user to obtain number of lines.

-w Allows user to obtain number of
words.

-c Allows user to obtain number of
characters.

2. $ sort filename For sorting the contents of file.

(i) (ii) (iii) (iv)

where ‘-’ stands for standard input,
i.e., keyboard

-o Instead of displaying sorted output on
screen, we can store it in a file.

-u Allows output in unique lines.

–m Combines contents of the file with
input from keyboard and then does
sorting.

- where ‘-’ stands for standard input,
i.e., keyboard

3. $ grep ‘string’ filename Stands for ‘globally search a regular
expression and print it’

Returns number of matches without
quoting text

(iv) Suppresses error message

Returns lines that do not match the
text

-i Makes it case sensitive

-n Returns line number and text itself

.

–c Returns number of matches without
quoting text

-s Suppresses error message

-v Returns lines that do not match the
text

4. $ cut –f x,y filename (i) –d It cuts and picks up given number of
characters or fields from the file

(i) It cuts and picks up

 ‘ allow us to set the delimiter’

5. $ head filename Displays first 10 lines in a file

6. $ tail –x filename Displays last 10 lines in a file

644 Principles of Operating Systems

23.6 INPUT/OUPUT REDIRECTION COMMANDS

This section provides a description of I/O-related commands. Numerous UNIX
commands take their input from standard input stream and write both the output and
error to standard output stream. By default, standard input is connected to the termi-
nal keyboard and standard output and error to the terminal screen. However, both stan-
dard input and standard output can be changed temporarily. This technique is known
as I/O redirection and piping. The form of a command with standard input and output
 redirection is as follows:

% command -[options] [arguments] input file > output file
Characters that help the user to perform I/O redirection and piping are shown in Table 23.3.

23.7 COMMUNICATION IN UNIX

Anyone on a shared UNIX system may communicate with other users who are logged in at the
same time. There are several UNIX utilities that are useful for users computing in a networked
and distributed environment. The various commands for communication in UNIX are shown
in Table 23.4.

23.8 SHELL META-CHARACTERS

Certain characters in a shell have been assigned special meanings. These characters are called
shell meta-characters. These characters are classified on the basis of the tasks they do as shown
in Table 23.5.

Table 23.4 Communication-related commands

S. No. Syntax Description

1 $ write user The write command is a basic communication-related command
used by the user sitting on his machine to write something on
someone else’s machine, provided communication is permitted.

2 #/etc/wall The command can only be used by the superuser. ‘wall’ enables
the superuser to ‘write to all’.

3 $ news Whenever we log in, if any fresh news has come in, it is dis-
played on our terminal. To see/read the particular news, this
command is used.

4 $ mail To send the mail to user.

Table 23.3 Characters used in I/O redirection and piping

Character Action

> Redirect standard output from regular monitor to the specified destination

>& Redirect standard output and standard error

< Redirect standard input from keyboard to the specified file or pipe

| Redirect standard output to another command (pipe)

>> Append standard output in the existing file

>>& Append standard output and standard error in the existing file

Shell Programming and UNIX Shells 645

Table 23.5 Shell meta-characters

S. No. Type Meta-characters

1 Filename substitution ? * [...] [!...]

2 I/O redirection > < >> << m> m>&n

3 Process execution ; () & && ||

4 Quoting meta-characters \ “ “ ‘’ ’’

5 Positional meta-characters $1.....$9

6 Special meta-characters $0 $* $@ $# $! $$ $-

23.9 Vi EDITOR

Standing for visual editor, it is a screen editor that is available on almost all UNIX systems.
It, however, differs from traditional editors as it has no menus but instead uses combinations
of keystrokes to accomplish command. The commands given in this editor are case
 sensitive and have two modes of execution, each of which is briefly defined as follows:

Command Mode
 • The mode users are in when they start (default mode) and in which all keystrokes are

 interpreted as commands.
 • This mode enables the user to perform administrative tasks such as saving files, executing

commands, moving the cursor, cutting (yanking) and pasting lines or words, and finding
and replacing.

 • Most commands do not appear on the screen as the user types them.

Insert (or Text) Mode
 • The mode in which text is created, edited, and/or replaced.
 • Everything that is typed in this mode is interpreted as input.

23.9.1 Starting the Vi Editor
Vi editor can be started in many ways as can be seen in Table 23.6.

23.9.2 Navigating within a File
To navigate within a file without affecting the text, the user must be in command mode. Some
of the navigation-related commands that can be used to move around one character at a time
are shown in Table 23.7.

Table 23.6 Vi editor start commands

Command Description

vi filename Creates a new file if it already does not exist, other-
wise opens existing file.

vi –R filename Opens an existing file in read only mode.

View filename Opens an existing file in read only mode.

646 Principles of Operating Systems

Table 23.7 File-navigation commands

Command Description

K Moves the cursor up one line

J Moves the cursor down one line

H Moves the cursor to the left one character position

L Moves the cursor to the right one character position

$ Positions cursor at end of line

W Positions cursor to the next word

B Positions cursor to previous word

(Positions cursor to beginning of current sentence

) Positions cursor to beginning of next sentence

E Move to the end of Blank delimited word

{ Move a paragraph back

} Move a paragraph forward

[[Move a section back

]] Move a section forward

n| Move to the column n in the current line

1G Move to the first line of the file

G Move to the last line of the file

nG Move to nth line of the file

:n Move to nth line of the file

Fc Move forward to c

Fc Move back to c

H Move to top of screen

nH Moves to nth line from the top of the screen

M Move to middle of screen

L Move to bottom of screen

nL Move to nth line from the bottom of the screen

:x Colon followed by a number would position the cursor
on line number represented by x

23.9.3 Editing Files
To edit a file, the user must be in insert mode. There are various ways to enter insert mode from
the command mode as shown in Table 23.8.
Table 23.8 File editing commands

Command Description

I Inserts text before current cursor location

I Inserts text at beginning of current line

A Inserts text after current cursor location

A Inserts text at end of current line

O Creates a new line for text entry below cursor location

O Creates a new line for text entry above cursor location

Shell Programming and UNIX Shells 647

23.9.4 Deleting Characters
The important commands that are used to delete characters and lines in an opened file are
shown in Table 23.9.

Most commands in vi can be prefaced by the number of times we want the action to occur.
For example, 2x deletes two characters under the cursor location and 2dd deletes two lines the
cursor is on.

23.9.5 Copy and Paste Commands
The copy and paste commands are shown in Table 23.10.

23.9.6 Quitting Vi Editor
Vi editor allows us to quit both with or without saving the work done. To exit, the user must
be in command mode (press Esc to enter the command mode). The user can exit the editor in
various ways from the command mode (see Table 23.11).

Table 23.9 Characters for deletion operations in a file

Command Description

X Deletes the character under the cursor location

X Deletes the character before the cursor location

Dw Deletes from the current cursor location to the next word

d^ Deletes from current cursor position to the beginning of the line

d$ Deletes from current cursor position to the end of the line

D Deletes from the cursor position to the end of the current line

Dd Deletes the line the cursor is on

Table 23.10 Copy and paste commands

Command Description

Yy Copies the current line

Yw Copies the current word from the character the lowercase
w cursor is on until the end of the word

P Puts the copied text after the cursor

P Puts the yanked text before the cursor

Table 23.11 Quit from Vi editor commands

Command Description

ZZ Write (if there were changes), then quit

:wq Write, then quit

:q Quit (will only work if file has not been changed)

:q! Quit without saving changes to file

648 Principles of Operating Systems

 User-defined Variables
These variables are defined by the user and are used broadly by shell programmers. They can
also be made to have a constant or fixed value using the keyword ‘read only’.

23.10 SHELL SCRIPTS

Shell script is a short program or a sequence of instructions/commands given to UNIX kernel.
A typical shell script integrates the power of commands with the versatility of programming
language. In addition, no separate compiler is required to execute a shell program. The shell
itself interprets the commands in the shell program and executes them. Shell scripting can be
used to perform a variety of jobs such as the following:
 • Make the work environment tailor-made
 • Automate repetitive tasks
 • Automate daily tasks

23.10.1 Shell Variables and Keywords
Like any other programming language, shell variables store and manipulate information within
a shell program. Any number of variables can be created and destroyed as per the requirement
of the program.

A valid shell variable is one that follows one or more of the following rules:
 • It is a combination of alphabets, digits, and underscore (‘_’) with the first character being

either an alphabet or an underscore.
 • No commas or blanks are allowed within a variable name.
 • Variable names are case-sensitive.

Shell variables are of two types:

 UNIX-defined/System-defined Variable
These are standard variables to which shells provide the values. These variables are mostly
used by the system itself.
However, just like an ordinary variable, these variables can be customized according to the user
preferences. Table 23.12 shows some of the most common system variables used in UNIX and
UNIX-like systems:

Table 23.12 Variables used in UNIX

Variable Meaning

IFS Defines the internal field separator (IFS), which is a space,
tab, or a newline

LOGNAME Stores the login name of the user

PATH Defines the path the shell must search to execute any com-
mand or file

SHELL Defines the name of the default working shell

TERM Defines the name of the terminal on which the user is working

HOME Stores the default working directory of the user

MAIL Defines the path of the file where the mail of the user is stored

Shell Programming and UNIX Shells 649

Table 23.13 List of keywords in UNIX

S. No. Keyword Its task

 1 Echo To display the output

 2 Read To read input

 3 Set Assign values to positional parameters

 4 Unset

 5 Shift Shifts the value of positional parameters

 6 If Begins the decision control structure block

 7 Else Contains the instruction(s) to be executed when the exit status of con-
trol command is one

 8 Fi Ends the decision control structure block

 9 While Begins the loop control structure block

10 Do Contains the instructions that are executed till the exit status of control
command remains true

11 Done Ends the decision control structure block

12 Break Passes the control to the first statement after the loop

13 Umask Contains the value that decides which three permissions should be
denied to a file

Shell keywords or ‘reserved words’ are special variables whose meaning is already explained
to the shell; hence, they cannot be used as ordinary variable names. Table 23.13 shows the list
of keywords available in Bourne shell.

Example of a shell script

FIRST INTERACTIVE SHELL SCRIPT
filename : f1

echo What is your name \?
read name
echo Hell $name

In this example, echo displays the contents on the screen. read is used to store the value in
the variable (name here).

23.11 PROGRAMMING CONSTRUCTS IN SHELL

Like a regular programming language, shell scripts also make use of control instructions to
specify the order in which the various instructions in the program are executed. There are three
types of control instructions in a shell. They are as follows:

 Decision Control Instructions
These constructs help in selecting between the two given options (selection among multiple
options can be done using nesting of these constructs).

 Loop Control Instructions

These constructs help in performing a given task for a specified number of times.

650 Principles of Operating Systems

Case Control Instructions
These instructions help in selecting from the n given options.

The following are the constructs that help in performing one or more of these tasks:
 1. if-then-else

The syntax of the if-then-else construct is
if (expr) simple-command

or
if (expr) then
commandlist-1
[else
commandlist-2]
endif

The expression expr is evaluated. If it is found true, then the commandlist-1 is executed. else
the commandlist-2 is executed. The portion of the construct enclosed in ‘[‘ and ’]’ is optional

Example

if [$counter -lt 10]
then
number=0$counter
else
number=$counter
fi

 2. while loop
The syntax of while loop construct is
while (expr)
commandlist
end
The commandlist will be executed until the expr evaluates to false.

Example

while sleep 60
do
if who | grep -s $1
then
echo “$1 is logged in now”
fi
done

 3. for loop
for x [in list]
do
...
done
The loop executes once for each value in list. List is a string that is made up of words where

each word is separated from the other using the characters specified in the IFS variable. Since
IFS is a system variable, it is generally set to space, tab, and newline (the whitespace characters).

Shell Programming and UNIX Shells 651

The part [in list] is optional. If [in list] is omitted, it is substituted by positional parameters. The
value of x is accessed by $x.

Example

for file in *.cpp
do
echo -n “$file “
wc -l $file | awk ’{printf “\t”$1”\n”}’
done

 4. case statement
case value in
pattern1) commands1 ;;
pattern2) commands2 ;;
.
.
.
*) commands for default ;;
esac
– Patterns can contain file-generation meta-characters/wildcards
– Multiple patterns can be specified on the same line by separating them with the | symbol.

Example

case $m in
[jJ]an*) m=1 ;;
[fF]eb*) m=2 ;;
[mM]ar*) m=3 ;;
[aA]pr*) m=4 ;;
[mM]ay*) m=5 ;;
[jJ]un*) m=6 ;;
[jJ]ul*) m=7 ;;
[aA]ug*) m=8 ;;
[sS]ep*) m=9 ;;
[oO]ct*) m=10 ;;
[nN]ov*) m=11 ;;
[dD]ec*) m=12 ;;
[1-9] | 0[1-9] | 1[0-2]) ;; # numeric month
*)
esac

 5. until loop
until condition
do
commands
done

652 Principles of Operating Systems

Example

until who | grep -i $1
do
sleep 90
done
if [$?]
then
echo “$1 is logged in now”
fi

23.12 SHELL SCRIPT EXAMPLES

Example 1

This shell script displays the date, time, username, and current directory.
Display today’s date and the list of all the users who are currently logged in
echo “the date today is:”
date
echo
echo “the various users logged in now are: \n”
who

Example 2

This script determines whether the number entered through the keyboard is even or odd.
echo “enter the number”
read a
result = ‘expr $a % 2’
if [result –eq 0]
echo “it is an even number”
else
echo “it is an odd number”
fi

Example 3

This script displays a pattern for n lines.
Print a pattern of asterisks(*) for the number of lines being entered by the user.
Echo “Enter the number of lines for which you want the pattern”
Read n
a=0
while [“$a” –lt n] # this is loop1
do
b=”$a”
while [“$b” -ge 0] # this is loop2
do echo -n “* “
b=`expr $b - 1`

Shell Programming and UNIX Shells 653

done
echo
a=`expr $a + 1`
done

Example 4

This script demonstrates the use of for loop.
Prints the list of fruits according to the choice made.
fruitlist=”Apple Pear Tomato Peach Grape”
for fruit in $fruitlist
do
if [“$fruit” = “Tomato”] || [“$fruit” = “Peach”]
then
echo “I like ${fruit}es”
else
echo “I like ${fruit}s”
fi
done

Example 5

This script counts and reports the number of entries present in each sub-directory mentioned
in the path that is supplied at the command-line argument.

To count the number of entries present in each sub-directory.
pathname = $1
oldifs = “$IFS”
IFS =/
flag=no
set $pathname
for dir in S*
do
if [! –d $dir]
then
echo $ dir is not a directory
flag = yes
break
else
num = ‘ls | wc –l’
echo $dir has $num entries
fi
done
if [flag = yes]
then
echo Abrupt end of for loop
fi
IFS = $olfifs

654 Principles of Operating Systems

Example 6

This script counts the number of lines supplied at the standard input.
Prints the no. of lines in a given file where filename is supplied at command line.
if [$# -eq 0]
then
echo “No filename available”
else
exec< $1
flag = 1
fi
numlines = 0
while read line
do
numlines = ‘$expr $ numlines + 1’
set --$line
done
echo “Number of lines = $numlines”
if [“$flag” = 1]
then
exec<$terminal
fi

Example 7

This script prints prime numbers from 1 to a given value.
#This script finds prime numbers.
echo Enter range
read range
echo 2
j = 3
while test $j –le -$range
do
i= 2
x= ‘expr $j -1’
while test $i –le $x
do
if [expr ‘$j % $i ‘ –ne 0]
then
i= ‘expr $i +1’
else
break
fi
done
if [$i –eq $j]

Shell Programming and UNIX Shells 655

then
echo $j
fi
j= ‘expr $j +1’
done

Example 8

This script determines whether the file has read, write, and execute permissions associated
with it.

Prints the permissions associated with a file.
echo “Enter any filename \c”
read filename
if [-z “$filename”]
then
[!-z “$filename”]
then
if [-r “$filename” –a -w “$filename” –a -x “$filename”]
then
echo the user has read write and execute permissions to the desired file
else
echo Permissions denied
fi
else
echo Improper filename
fi

SUMMARY

This chapter discussed the basics of UNIX shell pro-
gramming. Shell programming includes the knowledge of
shell, the various commands that can be run on it, and
its programming constructs. The reader using these con-
structs can write shell programs and thus do programming
exercises.

Let us have a quick review of the important concepts
discussed in this chapter:

 • UNIX or Linux shell is a command-line interpreter that
handles users’ interactions with the computer system.

 • UNIX shell is a command programming language that
acts as an intermediate between the user and the kernel.

 • When a program takes its input from standard input, per-
forms some operation on that input, and writes the result
to the standard output, it is referred to as a filter.

 • Certain characters in shell have been assigned
 special meanings. These characters are called shell
 meta-characters.

 • The Vi editor is a screen editor used on almost all UNIX
systems. It has no menus but instead uses combinations
of keystrokes to execute commands.

 • Shell script is a short program or a sequence of instruc-
tions/commands given to UNIX kernel.

 • Like a regular programming language, shell scripts also
make use of control instructions to specify the order in
which the various instructions in the program are ex-
ecuted.

 • There are three types of control instructions in a shell: de-
cision control instructions, loop control instructions, and
case control instructions.

656 Principles of Operating Systems

SHELL PROGRAMMING EXERCISES

 1. Write a shell script to read marks of 10 students in a particu-
lar subject (say chemistry) and calculate the average result
of that class in that particular subject.

 2. Write a script to print the Fibonacci series upto the number
entered by the user.

 3. Write a script to list the details of all the C++ (*.cpp) files in
the current directory.

 4. Write a shell script that displays only those lines that contain
the word of in the file supplied as argument to this script.

 5. Write a shell script to read temperature value and convert it
from degrees to Celsius.

 6. Write a menu-driven script that has the following options:
•	 Circle
•	 Triangle
•	 Rectangle

 The program calculates the area of the geometric figures
that the user selects. Make use of case statement.

REVIEW QUESTIONS

 1. Explain various types of shells in UNIX.

 2. Give the syntax and meaning of the following command:
 (a) touch (f) grep
 (b) cat (g) cut
 (c) cp (h) head
 (d) rm (i) tail
 (e) who

 3. What is I/O redirection?

 4. Explain various communication-related commands in UNIX.

 5. What are shell meta-characters?

 6. What is Vi editor? Explain various commands to use it.

 7. What is a shell script?

UNIX

UNIX is a multi-user multi-tasking OS. It was first developed in the 1960s and has been under constant
development ever since. As discussed in Chapter 1, UNIX was developed initially from the MULTICS
project that began in the mid 1960s as a joint effort by General Electric, Massachusetts Institute of Tech-
nology (MIT), and Bell Labs. Through continuous development, Ken Thompson in the University of
California at Berkeley, along with his two graduate students, wrote the first Berkeley version of UNIX,
which was distributed to students. This resulted in the source code being worked on and developed by
many different people. The Berkeley version of UNIX is known as Berkeley Software Distribution
(BSD). The BSD supported Vi editor, C shell, virtual memory (VM), and TCP/IP.
 Table CS1.1 summarizes the decade wise growth of UNIX since its inception.
Table CS1.1 Decade-wise growth of UNIX

1969–1979 The first decade initially witnessed the origin of UNIX as a joint venture by Dennis Ritchie,
Ken Thompson, and others at MIT. Later, the First Edition was developed, which was used
for text processing of patent documents. Thereafter, UNIX was rewritten in C. It was termed
as Fourth Edition and proved to be a major milestone for an OS’s portability among different
systems. Version 6 was also developed in this decade, which was the first to be widely avail-
able outside Bell Labs. It became the basis of the first Berkeley version of UNIX developed
at the University of California, Berkley. Finally, the Seventh Edition was developed, in which
the kernel was more than 40 KB.

1980–1990 Xenix was introduced by Microsoft. Later, AT&T’s UNIX System Group (USG) developed
System III, the first public release outside Bell Labs. Henceforth, Computer Research Group
(CRG), USG, and a third group together formed Unix System Laboratories. In the later
years, the University of California at Berkeley released 4.2BSD, which included TCP/IP, new
signals, and much more. Thereafter, System V Release 2 (SVR2) came in, which introduced
demand paging, copy on write, and so on. Subsequently, 4.3BSD released, which included
Internet name server. It had separated machine-dependent and independent code and
introduced the implementation of OSI network protocol stack and virtual memory system.
The next year in succession witnessed the origin of SVR3. It had file system switch (FSS),
virtual file system (VFS) mechanism, shared libraries, and transport layer interface. Towards
the end of this decade, SVR4 brought with itself TCP/IP, socket support, VFS, and network
file system NFS. The last year marked the launch of XPG3 Brand by X/Open System

1992–2001 The third decade began with the launch of SVR4.2. In the subsequent year, 4.4BSD was
released by Berkeley. It had TCP/IP, socket support, and so on. The Single UNIX Specifica-
tion was introduced, which separates UNIX trademark from any other stream. Later on, Ver-
sion 2 of Single UNIX Specification was introduced. This version includes real-time support,
threads, and 64-bit processor support. Furthermore, Version 3 of Single UNIX Specification
was released.

Case Study I: History
and Architecture of
Operating Systems

(Contd)

90 Principles of Operating Systems

2002–2009 The core volumes of Version 3 of the Single UNIX Specification were approved as an inter-
national standard.

Architecture of UNIX OS
UNIX was initially developed in monolithic structure. Many modules and interfaces were
added over the years in this structure only. The classic architecture of UNIX is divided
into layers with the hardware and application programs existing at the extreme ends. The
 structure of UNIX is shown in Fig. CS1.1. It consists of two parts: kernel and system pro-
grams. The kernel was evolved into a series of interfaces and device drivers. The kernel
architecture supports the key requirements of UNIX that fall into two categories, namely,
functions for file management (files include device files) and functions for process manage-
ment. Process management entails allocation of resources including the CPU and memory,
and offers services that processes may need. The file management in itself involves handling
all the files required by the processes, communicating with device drivers, and regulating
transmission of data to and from peripherals.

Later on, UNIX was modified as microkernel architecture. True64 is the microkernel-
based UNIX version. The latest versions of UNIX including SVR4 and Solaris are based on a
modular and dynamic architecture. The modular architecture design is based on object-oriented
programming techniques that help in creating a modular kernel. The kernel in this architecture
has a core kernel that is always resident in memory along with the modules that can be linked

to the core kernel either during boot time or
run time without any kernel re-configuration
or compilation. This is why these modules are
also known as dynamically loadable modules.
The object-oriented approach helps in loading
the modules dynamically and links them
to the core kernel, thereby running them in
kernel mode. The advantage of this modular
architecture is that any module can be replaced or
added without affecting the rest of the structure.
Due to this dynamic architecture, it may evolve
to accommodate new modules (for new devices
and services) without even rebooting. Since the
modules are loaded on demand, the memory
footprint is also reduced.

SOLARIS

Sun Solaris is a UNIX variant OS that was originally installed on SPARC computers. It is a
complete operating environment built on a modular and dynamic kernel. Solaris primarily runs
on SPARC and Intel x86 processors.

The growth of this OS, since its inception, is summarized in Table CS1.2.

Application programs

Kernel

Hardware

Shell
and library routines

Fig. CS1.1 UNIX structure

(Table CS1.1 Contd)

Case Study I: History and Architecture of Operating Systems 91

Table CS1.2 Growth of Solaris

Year Release Notes

1982 Sun Unix 0.7 First version of Sun’s UNIX, based on 4.BSD from UniSoft

1983 SunOS 1.0 Sun-2 workstation, 68010 based

1985 SunOS 2.0 VFS and vnode framework allows multiple concurrent file sys-
tem types

1988 SunOS 4.0 New virtual memory system and dynamic linking was added

1990 SunOS 4.1 OpenWindows graphics environment

1992 SunOS 4.1.3 Asymmetric multiprocessing (ASMP) for sun4m systems
(SPARCstation-10 and -600 series MP (multi-processor servers)

1992 Solaris 2.0
and
Solaris 2.1

Solaris 2.x is born, based on a port of SVR4.0.
It was only a uni-processor system
Later version supported 4-way SMP.

1993 Solaris 2.2
and
Solaris 2.3

It had larger than 2GB support

This version supported 8-way SMP

1994 Solaris 2.4 20-way SMP

New kernel memory allocator (slab allocator) replaces SVR4
buddy allocator

Caching file system (cachefs)

1995 Solaris 2.5 Large-page support for kernel and System V shared memory
NFS Version 3

1996 Solaris 2.6 Supported file system larger than 2GB

Dynamic processor sets

Dynamic re-configuraton

1998 Solaris 7 64-bit kernel and process address space

Priority paging memory algorithm

2000 Solaris 8 Supports IPv6 and DNS

2001 Solaris 9 Support for disks more than 1 TB

2005 Solaris 10 Supports Zettabyte file system (ZFS),

Dynamic trace

2011 Solaris 11 Supports cloud computing, network virtualization

Architecture of Solaris and Its Key Features
The modular design of kernel in Solaris OS permits it to link into itself additional services
either during boot time or run time. The Solaris kernel is composed of a core system that is
always resident in memory. Some of the core kernel components include the following:
 • System calls
 • Scheduler

92 Principles of Operating Systems

 • Memory management
 • Clocks and timers
 • Interrupt management
 • Boot and startup
 • Trap management

There are several components in the kernel of the Solaris system that are loadable dynami-
cally (Fig. CS1.2). Some of these are as follows:

 • Scheduler classes
 • File systems
 • System calls
 • Loaders for executable file formats
 • STREAMS module

The detailed view of the architecture of Solaris 10 and its distinguishing components are
described as follows (Fig. CS1.3).

Processor-specific and Platform-specific Code
As seen in the diagram, this layer is the closest to the hardware and enables Solaris software to
easily support different processors and system architectures.

Device Drivers
Like any other OS, device drivers in Solaris too provide access to I/O devices such as disks,
tapes, CD drives, serial ports, and networks. Above these device drivers, software is layered
to support device-specific functions. The device drivers in Solaris, however, are written using
stable interfaces that do not change from release to release.

Loaders for
executable file

formats
(ELF, COFF)

System calls
(shared memory,

semaphores,
messages)

Scheduler
classes

(Time-share,
Real-time,
interactive)

Miscelllaneous
modules

(IPC)

Device
drivers

(PCI, SCSI)

STREAMS
module

(stream pipes)

File systems
(UFS,NFS etc.)

Solaris
kernel

Fig. CS1.2 Solaris Kernel and its various loadable modules

Case Study I: History and Architecture of Operating Systems 93

File Systems and Volume Management
This module helps to manage large number of disks as a single volume. It provides
 facilities for integration of various file systems such as NFS, Sun StorEdge™ SAM-FS file
 system, Sun StorEdge QFS file system, PC file system (PCFS), and VERITAS file system
(VxFS).
 ZFS Solaris also supports a dynamic file system known as ZFS. The major features of this
file system are its almost unlimited data capacity and data-protection mechanisms. It also uses a
storage pool that manages multiple disk devices and provides a virtual storage interface to file
systems. Due to this, file systems can be extended while the system is operational.

Solaris Cryptographic Framework
This framework provides the API that has both kernel and user-based cryptographic functions.

Resource Scheduler
As the name suggests, this component provides supports for scheduling. Solaris 10 supports
fair share scheduling.

U
N
I
X

A
P
I

S
o
l
a
r
i
s

k
e
r
n
e
l

Solaris native
libraries Open source libraries

Java virtual machine

Solaris user
applications

Java applications Linux user
applications

X86 Linux
native
libraries

Containers

Device drivers

TCP/IP
stack

File system

Volume
management

Device drivers

Virtual
memory

framework
Z
F
S

Crypto
framework

System call
handler

Resource
schedulerStreams

Platform-specific code Processor-specific code

D

y

n

a

m

i

c

t

r

a

c

e

Fig. CS1.3 Architecture of Solaris 10

94 Principles of Operating Systems

Solaris Containers
These containers use the built-in virtualization feature wherein software applications and ser-
vices are isolated using flexible, software-defined boundaries. The containers support multiple
isolated environments that appear to processes as their own unique instance of the OS.

Tcp/Ip Stack
This module provides support for network applications.

STREAMS Framework
The STREAMS framework increases flexibility in the use of devices so that new and custom
protocols and line disciplines can be configured using the same underlying physical device.
They allow various modules to be pushed onto a stack dynamically.

Linux System Call Handler
Linux system call handler handles system calls issued by Linux applications and dispatches the
equivalent Solaris kernel functions to handle the requests. If kernel-level support is provided
for Linux applications, Solaris can run the same without any recompilation on x86 ystems.

UNIX APIs
These APIs provide public interfaces to the Solaris kernel.

Dynamic Trace
Dynamic trace or Dtrace is an analysis tool designed specially for enterprise servers. It enables
extraction of the relevant information and works alongside OSs on the server without interrup-
tion and with minimum performance degradation. It helps the user to monitor and understand
the operational state, detailed system behaviour, and system problems on the server. Forty thou-
sand trace points available in Solaris 10 spare the users from writing their own debug programs.
They also let the user obtain relevant records close to the fault site. This ensures faster detection
of cause of faults and swift resolution of application and system bottlenecks. In addition, since
the user can filter out irrelevant trace points, good system performance can be maintained.

LINUX

Linux originated as an attempt by a Finnish student, Linus Torvalds, to create a free OS kernel.
Linux came into origin when Linus and his friends realized that there was a need of an OS that
could take into account users’ comments and suggestions for improvements. The first source
code of Linux was released in 1991.

It is important to mention here that Linus developed only the kernel. It was later combined
with another OS, GNU, which had developed most of the parts of the OS. This is the reason
why Linux is most of the time called as GNU/Linux.

The growth of Linux along with its versions is briefly described in Table CS1.3.
Linux is originally a monolithic kernel but has been enhanced as a modular architecture of
UNIX and Solaris (described earlier). Linux is also a collection of modules that can be loaded
and unloaded dynamically. Since a kernel module contains an object code, it is dynamically
linked to the kernel when loaded. For this purpose, there is a kernel sub-system known as
kmod. When the kernel requires access to a module, it issues the request to kmod. The kmod
first checks any dependencies to load the requested module. If there are, it first loads these
modules and then the requested one.

Case Study I: History and Architecture of Operating Systems 95

Loadable kernel modules in Linux are loaded with the help of command modprobe. These
modules are located in file, /lib/modules. Version 2.6 onwards, they have the extension as. ko
(kernel object). The modules can also be listed out also with the command lsmod.

WINDOWS

Windows OS was developed in response to command-based OS like DOS to provide GUI to a
user. The GUI was an interesting and convenient feature at that time that attracted a lot many
users. This OS has also gone through various versions since its inception with more and more
features in every version. The journey of Windows has been shown in Table CS1.4.

The structure of Windows has been evolved from layered to hybrid. At one time, Windows
NT was designed with layered architecture. However, later on, Windows was first modified to
microkernel and then to hybrid architecture. As a hybrid structure, it has all the advantages of
layered, microkernel, and modular approach. Windows 2000 onwards, Windows has adopted
hybrid structure. Let us discuss Windows XP architecture.

Table CS1.3 Growth of Linux

Year Development

1991 Linux kernel was introduced.

1992 Linux kernel was relicensed under the GNU general Public License (GPL).

1994 Linux Version 1.0 was released. It was published by the companies Red Hat
and SUSE

1996 Version 2.0 of the Linux kernel was released. This kernel can now serve sev-
eral processors at the same time.

1998 Work for developing the GUI for Linux began.

1999 Work on another graphical environment for Linux, i.e., GNOME started to
make it a free replacement of KDE.

2001 Linux Version 2.4 was released by Linus. This new version had improved net-
work support, improved performance for memory transactions and extended
hardware support.

2004 Linux kernel 2.6.4 was released. This year also marked the release of Ubuntu.

Table CS1.4 Growth of Windows

Version Release year Feature

Windows
1.0

November
1985

Windows Paint, Notepad, Windows Write, clock, calculator,
etc.

Windows
2.0

December
1987

Excel, Word for Windows, Corel Draw, etc.

Windows
3.0

May 1990 Virtual memory, icon based program manager, sound card,
Multimedia extension, etc.

Windows
3.1

April 1992 Microsoft Mail, network mail package, workgroup scheduler

Windows
NT3.1

July 1993 First release of Microsoft Windows NT server and business
desktop OSs.

(Contd)

96 Principles of Operating Systems

Architecture of Windows XP
Windows XP comprises various layers such that lower layers provide functionalities to higher
layers. Therefore, it may be called a layered structure. However, it is not pure layered as some-
times, non-adjacent layers communicate. It also incorporates microkernel features as it provides
base services inside the kernel. However, again, it is not pure microkernel as some components
like file system are in kernel mode instead of user mode. Windows XP has the features of
modular architecture as the kernel has been designed with object-oriented approach and all the
OS entities are in the form of objects. The modular architecture provides the flexibility to adopt
or delete any module in the kernel. Thus, Windows XP is a hybrid structure incorporating other
structures.

Windows XP has been divided into the following layers (Fig. CS1.4):
 1. Hardware abstraction layer (HAL)
 2. Kernel layer
 3. Executive layer
 4. Sub-system and service layer

Largely, the functionality of the OS has been divided into two modes: kernel and user modes.
The first three layers work in kernel mode and the last layer operates in user mode.

Windows
95

August 1995 Built-in Internet support, dial-up networking, new plug and
play capabilities to install software and hardware, integrated
networking, etc.

Windows
98

June 1998 To support DVD discs and USB devices

Windows
Me/2000

September
2000

System Restore, Windows Movie Maker tools to digitally
edit, save, and share videos

Windows
XP

October 2001 Active Directory Domain, Remote Desktop Server, Internet
Information Services (IIS) Server, and advanced networking
features

Windows
Vista

November
2006

Windows Smart Security, Windows DVD Maker, IE 7, and
Media Player 11, available in 35 languages

Windows
Server

February 2008 Advanced in technological and security concerns

Windows
7

October 2009 Fast booting, device stage, Windows Power Shell, multi-
touch

Windows
Home
Server
2011

April 2011 Web-based media functionality and ‘add ins’ feature with an
app store

Windows
Thin PC

February 2011 In-place installation available, cloud computing in a business
network

Windows
8 (current
version)

October 2012 Redesigned user interface for touchscreen users

(Table CS1.4 Contd)

Case Study I: History and Architecture of Operating Systems 97

Kernel Layer
This layer provides the basic kernel functionalities such as thread scheduling, process switch-
ing, exception and interrupt handling, and low-level processor synchronization, and therefore
consumes very less space in the kernel space. This layer abstracts architecture specific differ-
ences between different systems. Thus, kernel layer and HAL together make Windows XP
portable.

Hardware Abstraction Layer
This layer abstracts the hardware-specific details and isolates the OS from them. In other words,
it is a software module that interfaces between the hardware and the OS. The OS need not have
the specific hardware details. This provides the convenience of portable OS. The OS accesses
the hardware through HAL whenever it wants. The HAL interacts with device components
directly and also with device drivers to support access to devices.

Executive

I/O manager

Graphic
device
drivers

Hardware

Hardware abstraction layer

Kernel
Device
drivers

Object manager Process manager

Local
procedure
call
facility

Cache manager VM manager PnP manager

Configuration
manager Power

manager

Security
reference
monitor

Native API

Environment sub-systems

Special
system
processes

Service
processes

User
applications

User
space

Kernel
space

Fig. CS1.4 Windows XP architecture

98 Principles of Operating Systems

Executive Layer
This layer provides functions responsible to administer the OS sub-systems, such as process
management and memory management. The executive layer provides a set of services in the
form of APIs to be used by sub-systems in user mode. These APIs are known as native APIs.

The functionalities in this layer are as follows:

Object manager
 Since the kernel of Windows has been designed using object-oriented concept, various entities
such as files, processes, threads, semaphores, timers, and so on. are represented in the form of
objects. Objects are used where data are needed to be accessed in user mode or required to be
shared. The object manager is the component that creates and manages all objects and also creates
an object handle to be used by the user mode code to access the object.

Process/thread manager
 This component of the executive layer performs various operations and manages the process
and thread objects.

Local procedure call facility
 There are many services/features in the Windows that are implemented through client-server
model. The services to reduce the memory footprint are clubbed into few processes. These
processes on a single machine communicate through local procedure call (LPC) facility. In
particular, LPC is used to request services from various sub-systems in user mode.

I/O manager
 Since the device drivers are the software connection between the devices and the OS, I/O man-
ager manages the communication between applications and the interfaces provided by the de-
vice drivers. To cope with the varying access speed of devices, this component communicates
with the device drivers with the help of I/O request packet (IRP). The IRPs are passed from this
component to specific driver. The device drivers in Windows work in a layered driver model also
known as I/O stack wherein the device drivers for a device are stacked. The IRPs from I/O man-
ager go from one driver to another in I/O stack to facilitate communication. The I/O manager
implements all I/O-related APIs and also manages buffers for I/O requests.

Cache manager
 Cache is managed as a centralized facility in Windows by the cache manager component of the
executive layer. Caching is done on the basis of files rather than raw blocks. The cache manager
provides caching for all components under I/O manager.

Virtual memory manager
 Windows uses a page-based virtual memory management scheme. Virtual memory manager
manages the virtual addresses, physical memory allocation, and paging-related issues.

Power manager
 The power management activities are performed by this component. It reduces power
 consumption by suspending idle processes, puts the processor to sleep, and so on. Windows XP
power management schemes are user based only, that is, the power scheme changes as per the
current user or the new user who logs on. The entire system has only one active power scheme
and that is based on the power configuration of the user who last logged in.

Case Study I: History and Architecture of Operating Systems 99

 Plug and play manager
 Plug and play (PnP) manager recognizes any new hardware configuration and adapts accord-
ingly. After recognizing the new installed devices, it determines which device drivers are
required to support a particular device. Once the device drivers are identified, it loads them.

Security reference monitor
 Windows OS uses a uniform security mechanism for every user-accessible entity in the system.
Since the object-oriented design of the OS enforces the uniform security, the security reference
monitor (SRM) uses the same routines for access validation and audit checks. To examine the
access validation, it checks each process’ security token and access control list of objects. Some
users may require the permission to perform backup or debug the processes. For this, SRM
provides special privileges in security tokens. It also logs the security audit events.

Configuration manager
 The configuration information is stored in a database known as registry database. It is called
a hive. Separate hives are there for various types of configuration information, such as system
information and default user preferences. Since the system hive is required to boot the system,
the configuration manager is implemented in the executive layer.

Sub-system and Service Layer
As discussed within executive layer topic, the native APIs are used by user processes. How-
ever, most user processes do not call native APIs directly but the APIs given by user-mode
 system components. These system components are called environment sub-systems. These are
user-mode processes inserted between the executive and the user space. For example, Win32
and POSIX are environment sub-systems. It means the processes in Win32 or POSIX call func-
tions are defined in Win32 or POSIX. The Win32 or POSIX then translates these function calls
into system calls in the native APIs. Windows XP allows user mode processes to call native APIs
directly. Besides environment sub-systems, there are some special system processes. These
processes are required to manage the system, such as managing the sessions, authentication,
and logon process. There are some service processes also in this layer to provide various ser-
vices, for example, printer spooler, event logger, network services, and so on. To make use of
the system, the users require some DLLs and EXEs known as user applications. These user
applications are also present in this layer.

UNIX

In UNIX kernel, processes correspond with each other and rest of the UNIX entities via system calls.
Every UNIX process (except process 0 or boot process) is created when another process executes the
fork system call. The initiator process is called the parent process, and the initiated process is known
as the child process. A single parent process can initiate multiple child processes. The child process
receives a copy of its parent’s address space.

States of a Process
A typical UNIX process switches between various states according to well-defined rules. The various
states are shown in Table CS2.1.

Table CS2.1 Various states of a process in UNIX

State Explanation

User running Process executes in user mode.

Kernel running Process executes in kernel mode.

Ready to run in memory Process waits to be scheduled by short-term scheduler.

Asleep in memory Process is in a sleep state in memory.

Ready to run, Swapped Process waits for the swapper to swap it inside the memory so that the kernel
can schedule it for execution.

Sleep, Swapped The process is in the sleep state and has been swapped out to the secondary
storage device.

Pre-empted The kernel pre-empts it and does a context switch to schedule another pro-
cess.

Created The process is newly created and is in a transition state.

Zombie The process executed the exit system call. Zombie state is the final state of
the process.

Case Study II:
Process Management
in UNIX/Solaris/
Linux/Windows

268 Principles of Operating Systems

Figure CS2.1 shows a state transition diagram of a process that describes various states and the
events that cause the transition from one state into another.

The major features in process states of a process in UNIX are as follows:

 • Two ready states When there is enough memory, the state is ready in memory.
When there is not enough memory, the process is not in memory but waiting for swapper
to swap it in memory.

 • Two running states These include running in user mode and running in kernel mode.
 • Basically, ready in memory and pre-empted are same as indicated by a dotted line in Fig.

CS2.1. In UNIX, however, the distinction has been made between these two states. When a
process running in kernel mode completes its execution and is ready to return control to the
user process, it enters the pre-empted state. Thus, pre-emption occurs only when a process
switches from kernel mode to user mode.

Context of a Process
Since UNIX is a multi-tasking OS, switching between various processes takes place very
 frequently. It first involves saving the information of the currently executing process and then
transferring the control to the called process. The context in the realm of UNIX is amalgamation
of the user-, register-, and system-level context.

Table CS2.2 summarizes the contents of these three contexts.

Table CS2.2 Process context in UNIX

User-level context Text of the process

Data of the process

User stack

Shared memory

Reschedule
process

Pre-empt

Return to user

Return

System call,
Interrupt

Interrupt,
interrupt return

Exit
Sleep

Fork

Swap-in

Wakeup Wakeup

Swap-out

Created

Ready
(memory)

Ready
(swapped)

Asleep
(memory)

Sleep
(swapped)

Swap-out

Pre-empted

Kernel
running

Zombie

User
running

Fig. CS2.1 Process state transition diagram

(Cont)

Case Study II: Process Management in UNIX/Solaris/Linux/Windows 269

Register-level context Program counter

Process status (PS) register

Stack pointer

General purpose register

System-level context Process table entry

User area

Per-process region table

Kernel stack

The user-level context contains the basic elements of a user’s program. It contains the
 executable machine instructions of the program and the data content. While the process is
executing, the processor uses the user stack area for procedure calls and returns and parameter
passing. The shared memory area is a data area that is shared with other processes.

The register-level context refers to various registers that contribute during the course of pro-
cessing, for example, the program counter contains the address of the next instruction the CPU
will execute, whereas the process status register specifies the hardware status of the machine
as it relates to a process.

The system-level context is related to OS that it needs to manage a process. It consists of two
parts: static and dynamic. The static part is fixed in size and stays with a process throughout its
existence. It contains the following:
 • The process table entry in the process table consisting of the following information:

– current state of the process
– pointers to user area (U-area) and process memory area
– process size
– user identifiers (to determine various process privileges)
– event descriptor(valid when the process is in the sleeping state)
– scheduling parameters
– signal (lists the signals sent to a process but not yet handled)
– timers
– process table pointer

 • The U-area stores the process control information required by kernel in the context of a process.
 • Per-process region table is used by the memory management system to define the mapping

from virtual to physical addresses, thereby indicating the permission to a process for read/write/
execute, and so on.

The system-level context as a dynamic part consists of kernel stack. This stack is used when
the process is executing in kernel mode and contains the information that must be saved and
restored as procedure calls and interrupts occur.

Implementation of Processes
When a user writes a command on the shell prompt, a new process is created using the fork()
system call. This newly created process has associated with it its data structures along with
the code. The values for two data structures associated with each process, that is, process table
entry and U-area are being filled largely from the parent process of the currently executing
‘child’ process. The child is then given a PID (process ID), its memory map is set up, and it
is given shared access to its parent’s files. Then its registers are set up, and it is ready to run.
Formally, a UNIX program can have one of the following statuses:

(Table CS2.2 Contd)

270 Principles of Operating Systems

 Foreground
Associated with one window, there can be one foreground process that can accept input from
the keyboard and write its output to the screen.

 Background
There can be multiple processes running in the background. These processes are also known
as daemons and can be made to execute even when the user is not logged in or at some speci-
fied interval of time.

Scheduling of Processes
Like any other OS, UNIX too uses both long-term scheduler (to load processes from disk to
memory) and short-term scheduler (to select among processes residing in memory). UNIX fol-
lows round robin scheduling with multi-level feedback to schedule multiple processes residing
in memory, that is, the kernel allocates the CPU to a process for a given time slice, pre-empting
the one that exceeds the quantum and feeds it back to one of the several priority queues. A typi-
cal UNIX process can execute both in user mode as well as kernel mode, and the two modes
follow different criteria for scheduling processes for example, in user mode, the process that
has recently used the CPU will be the last one to get it again. Thus, it will have the lowest
priority value. The processes in this mode thus keep on moving among various priority values
(Fig. CS 2.2). On the other hand, in kernel mode, processes with higher priority values are the
ones that are not interruptible, whereas those with low priority values are interruptible.

Fair-share Scheduler
This type of scheduling is based on the fact that in a multi-user environment (i.e., an organization),
the administrator is more concerned with determining which set of processes has completed its
job rather than how many processes have been executed. The jobs are organized into pools by
fair-share scheduler. The scheduler then shares the resources across all pools. A separate pool
is allocated to each user by default.

In this scheduler, each user is assigned a weight of some sort that defines the user’s share
of system resources as a proportion of total usage of those resources. Scheduling is performed
based on the following parameters:
 • Base priority of process (the highest numerical value means the lowest priority).
 • Recent processor usage by process.
 • Recent processor usage of the group to which the process belongs.

The following formulas apply for each process in various groups:
Current processor usage = (Processor usage)/2
Current processor usage in group = (Processor usage in group)/2
Priority (process) = (Current processor usage/2) + base level priority,

where,
Processor usage is number of times a clock handler interrupts a processor;
Base level priority is threshold priority between kernel and user mode.
In case of the group utilization, the average is normalized by dividing by the weight of

that group. The greater the weight assigned to the group, the less its utilization will affect its
priority.

Let us see an example of fair-share scheduling (Fig. CS2.3). There are two groups of pro-
cesses. Process A belongs to the first group whereas Processes B and C belong to the second

Case Study II: Process Management in UNIX/Solaris/Linux/Windows 271

Swapper

Waiting for disk I/O

Waiting for buffer

Waiting for inode

Waiting for TTY input

Waiting for TTY output

Waiting for child exit

User level 0

User level 1

|

|

|

|

User level n

Kernel mode
priorities

Not
interruptible

Interruptible

Threshold
priority

User mode
priorities

Priority levels

Processes

Fig. CS2.2 Process scheduling

group. Each group has a weighting of 50 per cent. We assume the following with regard to this
example:
 • All processes are processor-bound and are ready to run
 • All processes have a base priority of 90.
 • Periodically, the processor is interrupted 60 times per second.

Whenever there is an interrupt, the data structures, like processor usage related to present run-
ning process, and corresponding group are updated. The priorities are also recalculated after each
interrupt, that is, after every second. As seen in Fig. CS2.3, Process A gets the processor first.
 However, it is pre-empted after 1 second. At this moment, Processes B and C have the higher
 priority. Therefore, Process B is next to run. After 1 s, Process B gets the processor. In this
 manner, the processor is allocated to processes of both the groups. The sequence of processes
getting the processor in this example is as follows: A, B, A, C, A, B, and so on.

272 Principles of Operating Systems

Inter-process Communication and Synchronization
UNIX allows several types of IPC mechanisms described as follows:

 Pipe
This mechanism permits a stream of data acting as output to one process to act as input to
 second process. This method works in collaboration with I/O redirection concept. The method
of piping can be extended to more than two processes depending upon the program need.
It follows (FIFO) structure, that is, data are read in the order that it was written to the pipe

Time
Process A Process B Process C

Priority CPU Group Priority CPU Group Priority CPU Group

0 90 0 0
1 1
2 2
. .
. .
. .

60 60

90 0 0

1 120 30 30 90 0 0
1
2
.
.
.

60

2 104 15 15
16 16
17 17
. .
. .
. .

75 75

105 0 30

3 126 37 37 97 0 15
1 16
2 17
. .
. .
. .
60 75

4 108 18 18
19 19
20 20
. .
. .
. .

78 78

123 30 37

5 128 39 39

90 0 0

90 0 0
1 1
2 2
. .
. .
. .

60 60

120 30 30

104 15 15
16
17
.
.
.
75

111 7 37

100 3 18 106 15 18

Fig. CS2.3 Process scheduling example

Case Study II: Process Management in UNIX/Solaris/Linux/Windows 273

and the system allows no deviation from that order. There are two types of pipes: named and
 unnamed. Only related processes can share unnamed pipes, whereas either related or unrelated
processes can share named pipes. It is implemented via the system call:

Pipe (fildes)
Int fildes [2]

Pipe returns a read and write file descriptor (fildes[0] and fildes[1], respectively).

 Messages
There are four system calls for messages: msgget, msgctl, msgsnd, and msgrcv. Each of them
is described in Table CS2.3.

Table CS2.3 Messages-related system calls in UNIX

Syntax of system call Explanation

msgqid = msgget (key,flag) Returns a message descriptor that designates a message
queue for use in other system calls.

msgctl (id,cmd,buf) Allows process to set or query the status of the message
queue ID or to remove the queue according to the value of
cmd.

msgsnd (msgqid,msgp,size,flag) Sends a message of size bytes in the buffer msgp to the
msgqid.

msgrcv (id,msgp,size,type,flag) Receives messages from the queue identified by ID.

Shared Memory
The system calls used for manipulating shared memory are shown in Table CS2.4.

Table CS2.4 Shared-memory system calls in UNIX

Syntax of system call Explanation

Shmid = shmget(key,flag,size) Creates a new region of shared memory or returns an existing
one. Here, size is the number of bytes in the region.

Virtaddr = shmat(id,addr,flags) Logically attaches a region to a virtual address space of the
process.

Shmdt(addr) Opposite to the previous system call, it detaches a region to a
virtual address space of the process.

Shmctl(id,cmd,shmstatbuf) Manipulates various parameters associated with the shared
memory.

 Signals
Each signal may be represented with an integer number or a symbolic name. Processes may send
each other signals or the kernel may send signals internally. A signal is delivered by revising
a field in the process table entry for the process to which the signal is being sent. The signal is
processed in either of the following situations:

 1. A process wakes up to run.
 2. A process prepares itself to return from a system call.

274 Principles of Operating Systems

A process responds to a signal by performing some default action, ignoring the signal, or call-
ing the signal handler.

 Semaphores
In UNIX, the operations involving semaphores are achieved by using three system calls shown
in Table CS2.5.

Table CS2.5 Semaphore-related system calls in UNIX

Syntax of system call Explanation

semctl(id,num,cmd,arg) It does the specified cmd on the semaphore queue
indicated by ID. Here, num gives the number of
semaphores in the set to be processed.

 Semget(key,nsems,flag) It is used to initialize the semaphore set.

 Semop(id,ops,num) It does the set of operations (ops) on the sema-
phores identified by ID.

Translation tableProcess A

Translation table

Translation table

Process B

Process C

Physical memory

Physical memory addresses

Shared
segment

memory pages

Fig. CS2.4 (a) Non-ISM shared segment

Intimate Shared Memory
Intimate shared memory (ISM) is a data-sharing technique which that helps to implement
inter-process communication (IPC) in an optimized manner. This technique is being used
in System V release of UNIX and Solaris 2.2 onwards. Extending the concept of just
sharing the actual physical memory pages, this technique involves sharing of virtual-to-
physical address translation for shared-memory pages. It is achieved by means of a data
structure known as translation tables. Figure CS2.4 shows the difference between ISM
and non-ISM shared segments

Intimate shared memory also provides a provision to lock the shared pages in memory that
would never be paged out. This feature was added for the relational database management
system (RDBMS) vendors. Solaris implements memory page locking by setting some bits in the
memory page’s structure. Every page of the memory has a corresponding page structure that con-
tains information about the memory page. Page sizes vary across different hardware platforms.

Case Study II: Process Management in UNIX/Solaris/Linux/Windows 275

Process A

Process B

Process C

Translation table

Physical memory
addresses

Shared
translation
tables

Shared
segment
memory pages

Physical memory

Fig. CS2.4 (b) An ISM shared segment

SOLARIS

The Solaris kernel in comparison to UNIX has been extended as multi-threaded to allow con-
currency across multiple processors. Within a single process, multiple threads of execution are
allowed wherein each thread shares process’ state. Furthermore, in Solaris, there is a two-level
thread model, that is, thread abstractions are provided at the kernel and user level. Within a user
process, thousands of threads can be created with a minimum overhead in kernel. The multi-
threaded process model has the advantage that it can provide fine-grained application concur-
rency with less OS overhead that was high in UNIX as the concurrency was implemented with
processes instead of threads.

In Solaris, each process has two kernel-level thread abstractions that are part of the two-
level thread model. These abstractions in the process’ address space are known as lightweight
process (LWP) and kernel threads (kthreads; Fig. CS2.5). Lightweight process allows each
kernel thread within a process to make system calls independent of other kernel threads
within the same process. It consists of most information related to support system calls and to
maintain hardware context information. If LWP is not there, only one system call is possible
at one time. Each LWP has a stack to be used to place registers when a system call is made
by a thread.

The kernel data structures implement these two kernel-level abstractions and link to the pro-
cess structure. This model is able to isolate the kernel from user threads, that is, not visible to
kernel. The user threads are distinct from LWP and kthreads. However, to execute a user thread,
an LWP is required, which is created when a user thread is created. But this creation of LWP
is not automatic and the user thread creation call explicitly asks the kernel to create the same.
Every LWP has a corresponding kthread. In Solaris, the kernel itself is multi-threaded having
multiple kernel threads.

The kthreads change state more frequently as compared to processes. Several kthreads be-
longing to the same process may be in different states. The following are the process states in
Solaris (Fig. CS2.6):
 • SIDL—process is being created.
 • SRUN—process is runnable, waiting to be executed.
 • SONPROC—process is running on a processor.

276 Principles of Operating Systems

Exit

syscall

Debugger activitySIDL

SZOMB

SRUN SONPROC

SSLEEP

SSTOP

Wait()

fork()

Fork complete

pre-empted

wakeup

Fig. CS2.6 Process state transition diagram

Process

LWPs

Dispatcher

Hardware layerProcessors

Process 1 Process 2 Process 4

User
threads

Kernel
threads

Unattached

kernel thread

Process 3

Fig. CS2.5 Multi-threaded process model

 • SSTOP—process is stopped, typically because of debugger activity.
 • SZOMB—process is in a zombie state.
 • SSLEEP—process is in a sleeping state (i.e., waiting for an event).

Case Study II: Process Management in UNIX/Solaris/Linux/Windows 277

Scheduling in Solaris
In Solaris, the kthreads instead of processes are put on the dispatch queue and get scheduled.
The kthreads are prioritized with the help of various scheduling classes. For each scheduling,
there is a dispatcher table to be used by the dispatcher to run a thread. To implement schedul-
ing, dispatcher decides which kernel thread will execute next. It supports the concept of pre-
emption. The kernel itself is pre-emptable. There are 170 global priorities ranging from 0 to
169 with the highest number being the highest priority. This priority-based scheduling is also
adopted in UNIX SVR4.

The various scheduling classes are described as follows (Table CS2.6):

Time Share
The time-share (TS) scheduling class is the default class for processes and all the kthreads with-
in the process. It uses the priority range from 0 to 59. The process priorities may be changed
with the criteria of recent processor usage so that resources can be evenly allocated to the
threads.

Time sharing scheduling governs the process priorities and time quanta at each clock tick or
during wake up after sleeping for an I/O.

Interactive
Interactive (IA) is an enhanced TS class. It boosts up priority of threads within the window
under focus. The priority range of this class is the same as that of TS class.

 System
This class is for system threads. Its priority range is from 60 to 99. The threads in this class are
known as bound threads as there is no time quantum, that is, they run until they get blocked.

 Real Time
This class is for real-time threads. It uses fixed priority and fixed time quantum scheduling. Its
range is from 100 to 159. The threads in the RT class have a higher priority over kthreads in
the SYS class.

The interrupt priority levels shown in Table CS2.6 are available to be used by only interrupts.
These have been placed in the priority scheme only to indicate that interrupts have priority over
all other. The interrupts in the priority class scale have been placed in the range 100 to 109 if
there are no real-time threads. Otherwise, they get placed in the range 160 to 169.

Table CS2.6 Scheduling priority classes

Priority range Scheduling class

160–169 Interrupts, if there are real-time threads

100–159 Real time

100–109 Interrupts if there are no real-time threads

 60–99 System class

 0–59 TS/IA

278 Principles of Operating Systems

Inter-process Communication

Solaris supports four different groups of IPC: basic IPC, System V IPC, POSIX IPC, and
advanced Solaris IPC. In this section, Solaris specific method is described.

Solaris uses a new, fast, and lightweight mechanism for calling procedures between
 processes known as doors. The client and server processes are known as door client and
door server, respectively. There is a thread in door server that sleeps waiting for an invoca-
tion from the door client. Thus, the client makes call to the server through doors along with a
small (16 KB) payload. As soon as a door client makes a call to a door server, the scheduling
control is passed to the thread in the door server. Once the door server has finished handling
the request, it passes the control and responds back to the calling thread. This IPC mechanism
has a low-latency turnaround as the client does not wait for the server thread to be scheduled.

LINUX

Process States
In Linux, both processes and threads are known as tasks and both are represented by a single
data structure. A process in Linux may have the following states:

• Running
• Ready
• Suspended/waiting
• Zombie
• Stopped
The suspended/waiting states in Linux have been elaborated in two states: interruptible and
uninterruptible. Interruptible is a blocked state wherein a process is waiting for an event. In an
uninterruptible state, the process is waiting directly on for hardware conditions and, therefore,
not waiting for an event or signal.

The details of other states are same as we discussed for UNIX/Solaris OSs.
In Linux, the threads are created with the cloning method besides fork method used in UNIX

as discussed earlier. The Linux allows creation of clone of a process having duplicate address
space in each clone. However, there is a difference. The clone processes are able to share the
context with their parents. The process and its clone may have the following in sharing:

 • Address space—share code and data segment.
 • File system control information—share same root and current directories.
 • Open file descriptor—share same open file descriptor.
 • Process identifier—share the process number.

In clone method, there is an option to select exactly which elements are to be shared between the
parent and the child process and which elements are to be copied. However, the process and its
clone have separate stack and may be distinguished by their processor register values. Moreover,
the access rights of clone are not shared. Since, a single copy of task management data structure
is needed in Linux, the Linux threads simplify kernel code and reduce overhead.

When the fork method is used to create a thread, the kernel will create an identical copy of
the parent process for the child. It results into the consumption of memory and time. This is
reduced by copy-on-write (COW) method that prevents all the data of the parent process from
being copied and instead, only page tables are copied. The copying of memory pages is delayed
as long as possible, thereby saving time and memory.

Case Study II: Process Management in UNIX/Solaris/Linux/Windows 279

Once a thread has been created using cloning method, it is placed in a run queue. All ready
tasks are organized in a red-black tree (a binary search tree) as time-ordered, essentially with
respect to their waiting time. In this tree, the leftmost entry is filled with the task that has been
waiting for the CPU for the longest time and will be considered next by the scheduler. Tasks
that have been waiting less long are sorted on the tree from left to right. The run queue is a pro-
cessor’s data structure that contains references to all the tasks competing for the execution on
that processor. Like a multi-level feedback queue, the run queues assign tasks to priority levels,
thereby forming a priority array of run queues. The priority array consists of pointers to a list
of tasks. Each run queue has two priority arrays: active and expired. The active array consists
of tasks whose time quantum has not been consumed. The expired array contains all the tasks
for which time quantum has been expired. To avoid starvation of any process in the run queue,
each process is run for an epoch having has fixed time duration at least once where an epoch is
fixed time duration.

In Linux, processes adopt a hierarchical scheme wherein each process depends on a parent
process. For instance, the kernel first starts the init process and then displays the login.

Process Scheduling/ Priority Levels
Since the Linux has pre-emptive process-scheduling mechanism, all processes are not of equal
importance. The kernel serves two types of processes in the order of their priorities. The two
classes of processes are real-time and normal. Real-time processes get priority over normal
processes. There are 40 distinct priority levels recognized by Linux ranging from -20 to 19.
As in UNIX, the smaller value indicates the higher priority. Whenever a task is created, it is
assigned a static priority known as its nice value. This static priority, however, can be changed
in the following two cases:

 1. Static priority can be boosted by decrementing it for some I/O bound tasks so that they are
able to get a processor before their time quantum expires. This modified priority of task is
known as its effective priority. The effective priority also determines the level of the prior-
ity array in which a task is placed. Thus, the task that gets priority boost will get the place
in priority array at a lower level.

 2. The static priority can also be increased for some processor-bound processes so that other
tasks with smaller effective priority can be run.

Schedulers, thus, compute time slices for each process in the system according to its wait time
in the run queue and allow them to run until their time slice is used up. According to this policy,
the task with great need of CPU time is scheduled. When a process forks off a child, the current
static priority will be inherited from the parent.

The effective priority of the child is set to the normal priority of the parent.
The priority classes in the kernel range from 0 to 139. The lower values indicate higher pri-

orities again. In this range, real-time processes range from 0 to 99. The nice values are mapped
in this scale from 100 to 139 as shown in Fig. CS2.7. Real-time processes thus always have
higher priority over normal processes.

Real-time processes Normal processes

0 13999 100

 Fig. CS2.7 Scheduling classes in Linux

280 Principles of Operating Systems

The Linux kernel has been updated recently in terms of process scheduling. The Linux
Version 2.5 onwards and later versions consisting of O(1) scheduler have been adopted. This
scheduler is able to schedule the processes in constant time, that is, scheduling is independent
of the number of processes. Furthermore, another scheduler known as completely fair sched-
uler was adopted from Version 2.6.23. This scheduler is same as fair scheduler studied earlier.
The completely fair scheduler is used for scheduling normal processes. In case of soft real-time
processes, round robin and FIFO-scheduling algorithms are used.

SMP Scheduling
Since in multi-processor systems, load balancing is the major issue, Linux augments the
run queue with one migration thread. The migration requests can be posted to this thread
for which it maintains a migration queue. The kernel balances run queues periodically.
Linux uses load_ balance function for load balancing. This function distributes multiple
tasks from the busiest run queues to the current processor but not beyond a limit speci-
fied by the function max_load_move. The load_balance function works as follows:

 1. It identifies which queue has the most work to do. Another sub-function known as
find_ busiest_queue is called for this purpose. This sub-function iterates over the queues
for all processors and identifies the busy queues by comparing their load weights. The fac-
tor that determines the load weight is the average length of each run queue. The idea is to
reduce the imbalance between the queues.
While selecting the tasks from a run queue, it is checked whether a task is cache-cold or
cache-hot. A cache-cold task does not contain much of the data in the processor’s cache,
whereas cache-hot task contains most of its data in the processor’s cache. Therefore, migra-
tion of a cache-hot task may affect the performance of the task. Therefore, only cache-cold
tasks are migrated from a run queue.

 2. After finding the busy queue, its tasks are migrated to the current queue. The tasks from the
larger queue are removed until the difference between the two queues has been halved.

Lazy Floating-point Unit Mode
The Linux uses lazy floating-point unit (FPU) mode to reduce the context switch time in the
system. While saving the state of a task, floating-point registers (and other extended registers
not used by the kernel, e.g., the SSE2 (Streaming SIMD [Single Instruction, Multiple Data]
Extension 2) registers on IA-32 platforms) are not saved unless they are actually used by the
application and are not restored unless they are required. This is known as the lazy FPU tech-
nique. Moreover, the contents of the floating-point registers are not saved on the process stack
but in its thread data structure.

Synchronization
Linux provides the following methods for task communication among tasks:
 • wait queues
 • signals
 • pipes
 • sockets
 • shared memory

Case Study II: Process Management in UNIX/Solaris/Linux/Windows 281

 • semaphores
 • reader/writer locks

Linux provides the following methods for task synchronization among tasks:
 • spinlocks
 • reader/writer locks
 • semaphores

Wait queue is a linked and circular list of descriptors. Each descriptor contains the address
of a process descriptor and a pointer to the next element in the queue. The wait queues are
 manipulated by the functions add_wait_queue and remove_wait_queue.

Spinlocks are the mechanisms of synchronization on multi-processor systems for shorter
 durations. However, on a single-processor system, semaphores are used to lock the kernel.
Semaphores are also useful in the case the lock needs to be held for a longer duration.

The details of other methods of synchronization and communication are the same as dis-
cussed for UNIX/Solaris.

WINDOWS

Windows processes are implemented as objects and any process may contain at least one thread
of execution. A process in Windows has the following resources:

Security Access Token
 This token is created by the OS when a user first logs on. The token consists of a security ID for
the user. The OS validates the user accessibility to secured objects with the help of this token.
The copy of this token is passed to every process created or run by this user.

Virtual Address Space
There is a series of blocks defining the virtual address space assigned to the process.

Object Table
 The process may use some objects such as file and thread. So there must be object handles
known to it. Therefore, the process has an object table consisting of object handles.

Threads are actual units of execution. A thread executes a part of process’ code using the
process’ resources. A thread has its own execution context including its run time stack, state of
registers, and attributes like scheduling priority.

The following data structures are maintained in Windows regarding process management:

Executive Process Block
 It stores information that executive layer uses while manipulating a process object. It includes
process ID, a pointer to the process’s handle table, a pointer to the process’ access token, and
working set information used for page faults.

Kernel Process Block
 It stores process information used by the microkernel. Since the microkernel manages thread
scheduling and synchronization, this data structure stores the process base priority, default
quantum for each of its threads, spinlock, and so on.

Process Environment Block
 It is stored in the process’ address space. This block is pointed by the executive process block.
It stores information regarding user processes.

282 Principles of Operating Systems

Executive Thread Block
 It stores information that the executive layer uses while manipulating a thread object. The
 information includes the ID of the thread’s process, its start address, its access token, and so on.

Kthread Block
 It stores thread information used by the microkernel. It includes thread’s base and current prior-
ity, its current state, and so on.

Thread Environment Block
 It stores information about a thread in the address space of its process. This block is pointed by
the kthread block. This block stores information such as thread ID, critical section owned by
the thread, and so on.

Thread Local Storage
To maintain a thread data, a local storage known as thread local storage (TLS) is used.

In Windows, the parent and the child processes are completely independent, that is, a child
process has a completely new address space. Therefore, when a child process terminates, the
parent process is unaffected and vice versa. When all the threads of a process terminate, the
process terminates. All the processes in the user context are terminated when a user logs off
the system.

Fibers
Windows has the provision of creating further lightweight threads known as fibers. The fibers
are created by the thread and scheduled by the thread that creates them. Thus, a fiber runs in
the context of a thread. A single thread may schedule multiple fibers. The thread that creates
a fiber specifies the starting address of the code that the new fiber is to execute. The starting
address may be a user-supplied function in the code. The same function may be executed
by more than one fiber. The difference between threads and fibers is that threads support
pre-emptive multi-tasking whereas fibers use co-cooperative multi-tasking. The fibers also
maintain their states such as process and thread. The state of a fiber is stored by the thread
only. Fibers are user-level units of execution and are not visible to the kernel. Thus, the
context switching between multiple fibers of a thread is fast in user mode. Like TLS, the
fiber also has fiber local storage (FLS) to maintain its own data. A fiber can also access its
thread’s TLS.

The advantage of fibers is that they facilitate the porting of code written for other OSs to
Windows. Otherwise, they are not advantageous over well designed multi-threaded application.

Thread Pooling
Thread pools are advantageous in case an application is highly parallel and can start a large
number of small work items. These applications may create threads that spend much time
in sleeping state, waiting for an event to occur or some threads to be awakened periodically.
Thread pooling is the technique to manage threads efficiently by providing with a pool of
worker threads managed by the system. The status of all wait operations is queued to the thread
pool and is monitored by a thread. On the completion of a wait operation, a worker thread from
the pool executes the corresponding function. A worker thread executes functions queued by
user threads. In the absence of a request to be serviced, the worker thread is in sleep mode.

Case Study II: Process Management in UNIX/Solaris/Linux/Windows 283

Unblock

Resources
available

Unblock but resources
unavailable

Block/suspend

Selected to run

Initialized

Ready

Standby

Running

WaitingTransition Terminated

Creation

Execution

Exit

Pre-empted

Fig. CS2.8 Thread state

At the time of a process creation, the thread pool is empty. It is allocated space as soon as the
process queues its first request.

Thread States
The following are the states in which a thread can be in Windows (Fig. CS2.8):

Initialized
The thread when created is in initialized state.

Ready
The threads waiting in the queue to be executed are in this state.

Standby
 When a thread has been selected by dispatcher and is waiting to be executed until the processor
is made available, it is in a standby state. For example, Thread A is executing currently and
Thread B has been selected to execute next. In this case, Thread B is in standby. If the prior-
ity of Thread B is high, it may pre-empt Thread A. However, it will be in standby state until
Thread A’s context will be saved and Thread B’s context will be loaded.

Running
The thread starts execution.

Terminated
After the thread has finished its execution, it is put in terminated state. However, this thread
object may be used by other threads in the system and, therefore, cannot be deleted. Otherwise,
the threads may crash due to the object removed from the system. For this purpose, the object’s
reference count is maintained. The object manager does not delete a terminated thread until a
thread object’s reference count has become zero.

284 Principles of Operating Systems

Waiting
 When a running thread waits on an object handle or a thread suspend is suspended by another
thread or system, the thread is in the waiting state.

Transition
 A thread in wait state when becomes ready to execute but cannot start execution as the resources
are not available is put in transition state. For example, kernel stack has been paged out of the
memory. The thread therefore cannot start execution and is in transition state. As soon as the
stack is paged into the memory, the thread becomes ready.

Unknown State
 Due to an error, if the system is unable to know the state of a thread, it is placed in unknown state.

Thread Scheduling
Windows XP does not have a specific scheduler component. The scheduling has been merged
with the dispatcher. This dispatcher performs both scheduling and dispatching work. Windows
XP uses a quantum (round robin) and priority-based pre-emptive scheduling algorithm. Threads
are scheduled rather than processes. The Windows XP scheduler ensures that the higher-priority
thread will always run. Since the pre-emptive priority algorithm is implemented with multiple
queues, it can also be considered a multiple feedback-queue algorithm. The pre-emption can
occur for any of the following reasons:
 • Higher-priority thread becomes ready.
 • Thread terminates.
 • Time quantum of thread expires.
 • Thread performs a blocking system call, such as for I/O, in which case it leaves the ready

state and enters a waiting state.
The dispatcher uses a 32-level priority scheme (denoted by integers from 0 to 31 and 0 being
the lowest priority) to determine the order of thread execution. Each thread has a base priority
defining the lower limit that it may occupy. In case of a user-defined thread, the base priority of
the thread is affected by its process’ base priority and the thread’s priority level. The process’
base priority class defines a narrow range so that the process’ thread can be assigned a base
priority. There are two broad categories of base priority classes:

Variable or Dynamic Class
 This category encompasses priority levels 0 through 15. This category is known as variable or
dynamic as the priority of thread is not static and can be altered by OS. This category is further
divided into the following types:

 1. Idle
 2. Below normal
 3. Normal
 4. Above normal
 5. High

Real-time Class
 This category encompasses priority levels from 16 to 31, (plus a thread at Priority 0 managing
memory). This category has static priorities to the threads.

Case Study II: Process Management in UNIX/Solaris/Linux/Windows 285

Each scheduling priority has a separate queue of the corresponding processes. The dispatcher
uses a queue for each scheduling priority and traverses the set of queues from the highest to the
lowest until it finds a thread that is ready to run. The running thread is always one with the high-
est priority level. If no ready thread exists, the idle thread is run. When a thread’s time quantum
runs out, its priority is lowered, but is never less than its base priority. When a thread becomes
ready after waiting, it is given a priority boost to execute it. Depending on the category of the
process being run, the priority is boosted. For an instance, any thread of the process associated
with the foreground process class is given a priority boost. The dispatcher scans the list of ready
threads and boosts the priority of dynamic threads. It may also avoid starvation in case any
lower-priority thread is indefinitely postponed.

Processes are assigned priorities belonging to normal priority class. There is also a special
idle thread that is scheduled when no other threads are ready. Windows XP identifies the fol-
lowing seven priority levels within each priority class:

 1. Idle
 2. Lowest
 3. Below normal
 4. Normal
 5. Above normal
 6. Highest
 7. Time critical

The combination of base priority class and level maps to a specific base priority is to be assigned
to a thread.

Thread Synchronization
It is necessary to synchronize access by multiple threads, and the interdependent code is exe-
cuted in the right sequence. The following are the thread-synchronization methods:

Dispatcher Objects
In Windows, there are dispatcher objects used for the synchronization. Each dispatcher object
instance can be in two states: signaled and unsignaled. In an unsignaled state, a thread can be
blocked. In signaled state, the thread is released. In general, a thread issues a wait request to
the executive component of Windows using the handle of dispatcher object. When an object
enters the signaled state, the executive releases one or all of the thread objects that are waiting
on that dispatcher object. The following are some of the dispatcher objects:
Event objects
 Threads may be synchronized with an event such as user I/O by using an event object. Using
this method, the object notifies that an event has happened. When the events happen, the object
manager sets the event object in the signaled state. The object is unsignaled when one or all
threads awaken.
Mutex objects
 These objects provide the synchronization for shared resources as discussed in ‘binary
semaphores’.
Semaphore objects
 These objects provide the synchronization for shared resources as discussed in ‘counting
semaphores’.

286 Principles of Operating Systems

Waitable timer object
 Some threads may perform operations at regular intervals of time or at some fixed specific time.
For this purpose, Windows provides waitable timer objects. These objects become signaled
when the specified amount of time has elapsed.

Kernel Mode Locks
Kernel mode locks are the mechanisms to provide synchronization for shared-kernel data
structures. Spinlock is one example of this type of locks. Windows provide queued spinlocks
that enforce FIFO ordering of requests. A queued spinlock is more efficient than a spinlock
because the processor to memory bus traffic associated with spinlock is reduced. In spinlock,
the continual looping for lock is executed on the memory line, thereby creating bus traffic
on the processor to memory bus. Instead of this, in queued spinlock, a thread after releasing
the lock notifies the next thread in the queue. In this mechanism, the fairness through FIFO
ordering is increased.

Slim Reader/Writer Locks
In Chapter 7, various types of reader/writer synchronization problems were discussed,
wherein it was difficult to provide access to reader and writer threads with synchronization
mechanisms such as critical section and mutex. Therefore, to access the shared resources by
the threads of a single process, slim reader/writer (SRW) lock was introduced in Windows
Vista. This lock is called slim because it consumes very less memory as of a pointer-sized.
Due to this, it is fast to update the state of lock. Slim reader/writer lock has two modes to
access a shared resource:
Shared mode
 In this mode, read-only access to multiple reader threads is granted. Due to this, multiple reader
threads are enabled to read data from shared resource concurrently.
Exclusive mode
 In this mode, only one writer thread at a time is granted access. Once the access has been
granted to one writer thread, no other thread can access the shared resource.

Wait Functions
These are specialized functions that allow a thread to block its own execution. These func-
tions do not return until a specific criterion has been met. The thread that calls this function
enters a wait state until the specific criterion has been met or a specified timeout interval
elapses.

Barriers
Windows uses synchronization barriers to enable multiple threads to wait until all threads reach
a particular point of execution.

Condition Variables
These are synchronous primitives that enable a thread to wait until a particular condition
occurs. These variables are user-mode objects that are not sharable across processes. With the
help of a condition variable, threads can release a lock and may enter the sleeping state. These
variables may be used with critical sections or SRW locks. However, Windows XP does not
support condition variables.

Case Study II: Process Management in UNIX/Solaris/Linux/Windows 287

Deadlock Detection
In Windows, there is driver-verifier component that monitors Windows kernel-mode drivers to
check the presence of any illegal function call or any action that might corrupt the system. In
this driver verifier, there is an option known as deadlock detection. With this option enabled,
the driver verifier monitors the driver’s use of resources that need to be locked. It further detects
code logic to check in advance that the code has the potential to cause a deadlock. This dead-
lock detection has been supported in Windows XP and later versions.

UNIX

UNIX memory-management policies have evolved from simple swapping process to a more efficient
demand paging process, which is being implemented from Berkeley Software Distribution (BSD)
Version 4 onwards. As in any other OS, demand paging in UNIX frees the process from the size con-
straints of physical memory, that is, the process need not be bound to the size of physical memory.
Demand paging is generally implemented by machines that have page-based memory architecture and
whose CPUs have instructions that can be restarted. Demand paging is transparent to the user programs
except for the virtual size permissible to a process.

Data Structures for Demand Paging
For the purpose of implementing demand paging, memory has to maintain various kinds of information
such as the page mappings for a particular process (the page table; PT), the location of swapped pages
on disk, and the state of the actual physical pages in memory. Memory in UNIX thus maintains four
major data structures to implement demand paging. Each of them is described as follows:

Page Table Entry
This data structure is used to map the virtual address to physical address. The various fields and their
descriptions are given in Table CS3.1.

Table CS3.1 Page table entry fields

Field name Description

Frame number It refers to the frame in physical memory.

Age This is the time period that a page has been in the memory without
being referenced.

Copy on write Used when a page is being shared by more than one processes. If
any of the processes writes into the page, a separate copy of the
page must first be made for all other processes that share the page.

Modify It indicates that the page has been modified.

Reference It indicates that the page has been referenced.

Valid A valid page is in main memory, an invalid one is swapped out.

Protect It contains the permission information for the page and is also hard-
ware dependant.

Case Study III:
 Memory Management
in UNIX/Solaris/
Linux/Windows

Case Study III: Memory Management in UNIX/Solaris/Linux/Windows 383

Disk Block Descriptor
This data structure contains the information mapping a virtual page to a spot on disk. The OS
maintains a table of descriptors for each process. Its fields are shown in Table CS3.2.

Table CS3.2 Disk block descriptor fields

Field name Description

Swap device number It is basically a pointer to the disk that this page was swapped to.

Device block number It is the actual block that the page is stored on. This is why most
UNIX systems prefer to have a separate swap partition, so that
the block size can be set to the page size.

Type of storage It indicates that the storage may be a swap unit or an execut-
able file.

Page Frame Data Table
Also known as pfdata table, the page frame data table holds information about each physical
frame of memory (indexed by frame number). This table is of primary importance for the page-
replacement algorithm. Its fields are shown in Table CS3.3.

Swap Use Table
This data structure contains an entry for every page on the swap device. Its fields are shown in
Table CS3.4.

Figure CS3.1 shows the relationship between the various data structures described in Tables
CS3.3 and CS3.4. A virtual address of 5678K of a process maps into a page table entry (PTE)
that points to a Physical page 123. The disk block descriptor for the PTE shows that the copy
of the page exists at Disk block no. 4554 on Swap device 1. The pfdata table entry for Physical
page 123 also shows that a copy of the page exists at the same block on the same swap device
and its in-core reference count is 1. The swap use count for the virtual page is 1, meaning that
one PTE points to the swap copy.

Table CS3.3 Page frame data table fields

Field name Description

Page state It indicates whether the frame is available or not or has an associated page
(i.e., whether it has been allocated to a process or not).

Reference count It holds the number of processes that refer to this page.

Logical device It contains the device number of the disk that holds a physical copy of the page

Block number It holds the block number on that disk where the page data is located.

pfdata pointer It points to other pfdata table entries.

Table CS3.4 Swap use table fields

Field name Description

Reference count It holds the number of page table entries that point to the
page on the swap device.

Page/storage unit number It is a page identifier on storage unit.

384 Principles of Operating Systems

Disk block descriptor

Page no. 123

Virtual address Page table entry

Swap Dev 1 Block no. 4554 5678 K

Page frame 123

Ref count 1

Swap Dev 1

Block no. 4554

Ref count 1

Swap use

Swap device block 4554Physical page 123

Fig. CS3.1 Relationship of data structures for demand paging

Page Replacement
UNIX System V uses the page stealer process as a solution to page replacement. The page
stealer is a kernel process that swaps out memory pages that are no longer part of the work-
ing set of a process. The kernel creates the page stealer when the system boots and invokes it
throughout the lifetime of the system when it lacks free pages. For this purpose, the kernel sets
two threshold values for the number of free frames:
 • minimum number of free frames
 • maximum number of frames

As soon as the number of free frames is less than the minimum number of free frames, the
kernel awakens the page stealer to swap out the eligible pages on the swap space of the disk.
On the other hand, when the number of free frames is higher than the maximum threshold, the
page stealer goes to sleep. The two threshold values can be configured to reduce thrashing by
system administrators.

When the page stealer process is activated, it looks for the age of the page. If a particular
page is not referenced by any process since, say, last n examinations done by the page stealer
process, its age field in the PTE is subsequently increased. When the value of the age field
reaches the predefined threshold, it is considered to be ready for swapping. Table CS3.5 shows
the interaction between process accessing a page and examinations by the page stealer process.
Here, the page stealer process makes three rounds of examination. As shown in the table, if the
page is referenced during examination by the page stealer process, its age field is set to zero.
Otherwise, it is incremented, and when it reaches the threshold, the page is swapped out.
When the page stealer process decides to swap out a page, it considers whether its copy exists
on the swap device. There are three possibilities as follows:

 1. If no copy of the page is on a swap device, the kernel swaps the page. The page stealer
process thus places the page on a list of pages to be swapped. When the list of pages to be
swapped reaches a limit (dependent on the capabilities of the disk controller), the kernel
writes the pages to the swap device.

Case Study III: Memory Management in UNIX/Solaris/Linux/Windows 385

 2. If a copy of the page is already on
a swap device and no process had
modified its in-core contents (the
PTE modify bit is clear), the kernel
clears the PTE valid bit, decrements
the reference count in the pfdata
table entry, and puts the entry on the
free list for future allocation.

 3. 1f a copy of the page is on a swap
device but a process had modified
its contents in memory, the kernel
schedules the page for swapping
and frees the space it currently oc-
cupies on the swap device.

Another page replacement policy is
two-handed clock algorithm imple-
mented in System V Release 4 (SVR4) version. This is a modified form of clock-based replace-
ment algorithm implemented by the pageout daemon process. It uses the reference bit in the
PTE to select a page to be swapped out. This bit is zero when the page is first brought in the
memory. Furthermore, it is set to 1 on its reference for read or write. The hands in this algorithm
are fronthand and backhand. The fronthand sweeps through the set of eligible pages in the list
and sets the reference bit to zero on each page. After some time, the second clock hand, that is,
backhand, sweeps through the same list and finds out which pages have not been referenced in
the time span between the first scan by fronthand and the second sweep by backhand, that is,
whose reference bit is still zero. These pages are then moved to the list of pages that need to
be swapped out. The algorithm depends on two parameters: scan rate and hand spread. Scan
rate determines the rate at which two hands scan through the page list. Hand spread is the gap
between the two hands.

The scan rate varies with the amount of free memory. There are two system parameters for
this purpose known as lotsfree and minfree. If the amount of memory is approaching minfree,
it means that there are very less few numbers of pages. In this case, the clock hand moves more
rapidly, that is, the scan rate is high. Similarly, the scan rate becomes low as the amount of
memory approaches lotsfree. The page daemon process has the responsibility to check whether
there is sufficient number of free frames available. Periodically, it runs every 250 ms with the
coordination of lotsfree and minfree parameters. However, the page daemon process should not
consume more than 10 per cent of the processor time.

SOLARIS

The linear virtual address space in Solaris kernel is represented as segments. There is a segment for
each type of memory area in the address space. For instance, there are separate segments for process
binary and scratch memory (known as heap space). Each segment manages the mapping for the vir-
tual address range mapped by that segment and converts that mapping into MMU pages. The MMU
then maps these pages into physical memory with the help of translation tables.

Each process is divided into segments, so that each part of the address space can be treated
differently. For example, machine-code portion of the executable binary is mapped by the kernel

Table CS3.5 Example of aging a page

Page state Time Last reference

In memory 0

1

2

0 Page referenced

1

0 Page referenced

1

2

3 Page swapped out

Out of memory

386 Principles of Operating Systems

Stack

Heap

Executable data

Executable text

Fig. CS3.2 Virtual address
space

as read-only, so that the process is prevented from modifying its machine code instructions.
Solaris has read, write, and executable protection modes implemented by the hardware MMU.

The virtual address space consists of at least the following four segments (Fig. CS3.2):

Executable Text
The executable instructions in binary reside in this segment.

Executable Data
 The initialized variables in the executable code reside in this segment.

Heap Space
 Heap segment allocates virtual memory (VM) of a process for user data
structures. The heap starts with small allocation but grows as VM is ex-
panded. It grows in units of pages. In fact, this is a large area available for
reading and writing.

Process Stack
 The stack also grows like heap but downwards. It is mapped into the address space with an
initial allocation as a single page and then grows as the process executes and calls functions.
The program counter, arguments, and local variables are pushed onto the stack. When the stack
grows larger than one page, the process causes a page fault and the kernel notices that this is a
stack segment page fault and grows the stack-segment.
The Solaris kernel uses a combined demand-paged and swapping model for memory manage-
ment. By default, demand paging is used while swapping is adopted when the system needs
memory that cannot be managed without swapping.
Solaris VM is implemented through three layers as shown in Fig. CS3.3. The layers are de-
scribed as follows:

Hardware Address Translation Layer
 This layer is about implementing the hardware-dependent address translation. Having this as
a separate layer minimizes the amount of platform-specific code that must be written for each
new platform.

Address Space Management Layer
 The segments created by device drivers are mapped into address spaces in the form of memory
pages. The drivers then call for hardware address translation (HAT) layer to create the transla-
tions between the address space they are managing and the underlying physical pages.

Global Page-replacement Manager
 This is memory-management daemon that steals pages when there is need of memory. It steals
pages from the address space that have not been run recently, that is, it follows LRU for page
replacement. There is a system threshold, say 1/64th of total physical memory, i.e., if the
memory goes down beyond this threshold, the page scanner runs and looks for pages to be
replaced. The two-handed clock algorithm is implemented for this purpose that views the page
list as a circular list. The two hands, that is, fronthand and backhand rotate clockwise in page
order around the list. The fronthand that rotates ahead of the backhand clears the reference
bit and modified bit for each page. After some time, the backhand observes both the bits for

Case Study III: Memory Management in UNIX/Solaris/Linux/Windows 387

the pages. The pages that have not been
referenced or changed are swapped out
and freed. This layer uses a page scanner
that implements the page replacement.

Page Scanner
The page scanner is implemented as
a thread along with two other threads,
namely, callout thread and page-out
thread (Fig. CS3.4). The callout thread
scans the pages, and the page-out
thread pushes the dirty pages (explained
in Chapter 10, Memory Management)
waiting for I/O to the swap device. The
callout thread scans the pages by cal-
culating two scanning parameters: the number of pages to scan and the number of processor
ticks that the scanner can consume while doing so. The callout thread uses a function that
checks whether free memory is below the threshold and triggers the page scanner thread. The
page scanner thread scans the physical page list that is progressing by the number of pages
requested each time the page scanner thread is triggered with the help of two hands already
mentioned. The fronthand progresses first and clears the referenced and modified bits of the
page pointed presently. After some time, the backhand starts and scans the status of the page.
If the page has been modified, it is placed in the dirty page queue that will be processed by
page-out thread. Otherwise, the page is freed. The page-out thread then writes these modified
pages to the disk.

Global page replacement manager

Address space manager

Process
memory
segment

Kernel
memory
segment

File cache
memory
segment

Hardware Address translation layer

Fig. CS3.3 Virtual memory management in Solaris

Wakes up
scanner
thread

Callout
thread

Page-scanner
thread

Page-out thread

Check page

Modified
?

Free page

Dirty page
list

Page out

Fig. CS3.4 Implementation of page scanner

388 Principles of Operating Systems

Page Faults
The Solaris, the virtual memory manager (VMM) uses features of the hardware MMU for
memory management. One of the features is to generate exceptions when a memory access can-
not continue and, consequently, to invoke appropriate memory-management code. In Solaris,
there are three types of page faults:

Major Page Fault
 This is the page fault that we have discussed while studying the VM management in Chap-
ter 11. This is an attempt to access a VM location mapped by a segment, but correspond-
ing mapped page in physical memory does not exist. Another case of major page fault is the
memory reference that is not mapped by any segment. In this case, a segment violation signal
to the process is sent.

Minor Page Fault
 Minor fault occurs when there is an attempt to access a VM location that resides within the
segment and the page is also in the physical memory but it is not possible to translate the MMU
address from the physical page to the address space.

Page Protection Fault
 This is a page fault that occurs when there is an attempt to access a memory location such that
it violates the access protection of a memory segment.

Swap Space Allocation States
The swap space is reserved as we create VM. The partial swap space is allocated only when real
pages are assigned to the address space. The remaining swap space remains unused. Thus, the
swap space allocation is performed through the following three states:

Reserved
 The space is reserved for an entire segment when it is created. This reservation represents the
virtual size of the area being created.

Allocated
Virtual swap space is allocated when the physical page is assigned to the process.

Swapped Out
The page scanner swaps out the page when there is requirement to replace a page.

Physical Page Lists
A segmented global physical page list is used by the Solaris. This list consists of segments of
contiguous memory. These segments are added during the boot time. The segments are added
and deleted dynamically as the physical memory is added or removed.

A free list is maintained to have the pages that are not mapped to any address space. The
pages are put in this list when a process exits.

Case Study III: Memory Management in UNIX/Solaris/Linux/Windows 389

Large Page Support
The Solaris supports large pages of the size of 4 MB. Since the memory performance of
a modern system is directly influenced by the effectiveness of the TLB used, the TLB should
have a high hit ratio. This can be increased with the large page size. The amount of memory
the TLB can address concurrently is known as the TLB reach. If the TLB reach is low, the
TLB miss ratio will become high. So the idea is to increase the TLB reach to increase its
 effectiveness. One method is to have a large number of entries in TLB. However, this will add
complexities to the hardware. Another method is to increase the page size. The higher the size
of the page, the higher will be the TLB reach.

LINUX

The MMU in Linux divides a system’s physical address space into nodes. A node is associated
with each processor of the system. Each node is then further divided into three zones. The size
of each zone depends on the architecture. The three zones are:

DMA Memory Zone
 This is the reserved memory area legacy architecture. It may be allocated for user processes if
free memory is scarce or full. Kernel data are also stored in this zone.

Normal Memory Zone
This zone is used to store user and most of the kernel pages along with data from devices.

High Memory Zone
 This memory is used to allocate user processes, by any devices that can access memory in this
zone, and for temporary kernel data structures. Some devices cannot access this zone as their
addressing capacity is limited. In this case, a bounce buffer is maintained in DMA memory to
perform I/O operation. Whenever the I/O operation is complete,
the modified pages in buffer are copied to high memory.

Depending on the compile-time configuration, some zones
need not be considered. For example, 64-bit systems do not re-
quire high memory zone. Figure CS3.5 shows the memory zones
for IA-32 architecture.

The physical memory is allocated in the form of page frames
by zone allocator. According to the requests, the page frames
are allocated from an appropriate zone. For user processes, any
memory area can be allocated in various zones but the kernel first
attempts to allocate the space from high memory zone. In case this
zone is full, it attempts to allocate space from normal zone. If both
high memory and normal zones are full, DMA memory zone is
used. In each zone, a free_area vector is used to identify contigu-
ous block of memory that is free. The blocks of page frames are
allocated in groups of power-of-two.

Linux maintains a list of free pages in the memory by using the
buddy system wherein the kernel maintains a list of page groups of
fixed size. The sizes may be 1, 2, 4, 8, 16, or 32. These page groups

0

16 MB

896 MB

Largest
memory
address

DMA
memory

zone

Normal
memory

zone

High
memory

zone

Fig. CS3.5 Memory zones in
IA-32 architecture

390 Principles of Operating Systems

refer to contiguous pages in the mem-
ory. The buddy algorithm enhances the
efficiency of reading in and writing out
pages to and from the memory.

With buddy system allocation,
there can be internal fragmentation if
the requests are for very small amount
of memory. The kernel wastes time
in the allocation, initialization, and
de-allocation of various objects that
 consume small memory. Thus, to re-
duce the internal fragmentation and
to have speed improvement, slab al-
locator is used. A slab allocator uses
a slab that is one or more physical contiguous pages of memory. A slab is used as a container
for storing kernel data structures. Slab allocator also serves as a slab cache that consists of a
number of frequently allocated and released objects called slabs spanning one or more pages
(Fig. CS3.6). The cache may consist of one or more slabs. There is a single cache for each
unique data structure. Each cache is populated with initialized instances of the concerned data
structure. By means of a slab cache, the kernel is able to store the objects ready for subsequent
use. The number of objects in a slab cache depends on the size of the associated slab.

When the memory is released, the slab allocator keeps it in an internal list and does not im-
mediately return them to the buddy system. A recently returned block is then used when a new
request is received for a fresh instance of the object. Initially, all the objects in the cache are
marked as free. The object when assigned from the slab cache is marked as used. This approach
results into shorter handling time, as the kernel accesses the slab cache and does not approach
the buddy system.

There can be three states of a slab as follows:
Full state where all the objects are used.
Empty state where all the objects are free.
Partial state where both used and free objects are present.

The slab allocator first attempts to allocate the cache from partial slab. If it does not find the
cache in the partial slab, the empty slab is used.

The slab allocator may not perform optimally when slab allocation is used on systems,
implementing tiny embedded systems and large parallel systems consisting of huge amounts
of RAM. In embedded systems, the total footprint and complexity of slab allocation could be
too much. For the second case, many gigabytes of memory are required only for the slab data
structures on large systems. Therefore, two replacements, as follows, for the slab allocator were
added during the development of Linux kernel 2.6:

Slob Allocator
It is used for low code size. With roughly 600 lines, the total footprint of the slob allocator is
very small.

Slub Allocator
It minimizes the required memory overhead by dividing page frames into groups.

Fig. CS3.6 Components of a slab allocator

Slab Slab Slab

Cache object

Case Study III: Memory Management in UNIX/Solaris/Linux/Windows 391

Virtual Memory Management
The virtual address space in Linux is of 4 GB on 32-bit systems and 2 PB (petabytes) on 64-bit
systems. The total address space is usually split in a 3:1 ratio. For example, on IA-32 systems,
the kernel is assigned 1 GB, whereas 3 GB is available to each user space process.

Linux implements memory management that is largely independent of the processor on
which it is executing. The VM system supports three-level page table structure. The three level
page tables are as follows:
 • The first level of page table is page global directory that stores addresses of second-level

page tables.
 • The second level is known as page middle directory that points to pages in the page table

of third level.
 • The third level is known as page table that points to pages of the process.

To accommodate real-time processes that must not be interrupted or suspended, Linux pro-
vides for the locking of the pages. Through locking, a memory zone can be defined that will not
be transferred to the secondary memory to free the memory.

To implement the VM, the pages are swapped out to make room for new requests in case
the memory is full. There is a kernel thread known as kswapd (swap daemon). It periodically
replaces the pages and reclaims the dirty pages by swapping out and writing on the secondary
storage. On the secondary storage, the system swap file is there as a swap space. To avoid slow
I/O operations while writing the dirty pages on the secondary storage, a swap cache is main-
tained. The kswapd thread first checks the page in swap cache before writing it onto swap file.
If it is found in swap cache, the page frame is freed immediately without writing the page to the
secondary storage as the page is already in swap file.

While performing page replacement for page faults, the page that has been chosen for re-
placement must be first checked for its references to avoid inconsistencies. It may be the case
that a page chosen for replacement may be referenced by more than one process, that is, it is
shared or the case may be that it has been modified. It may also be possible that the page is
locked. For the first case, the kswapd thread must know all its references and then unmap all the
references. The unmapping is done by zeroing its PTE values. To do this, the kernel needs to
search every page table in the system to find page table entries mapping the victim page for re-
placement. Linux uses reverse mapping to find out all page table entries referencing to a page.
For this purpose, a linked list of page table entries that references the page is maintained in page
structure. This reverse mapping increases the size of page object but enhances the performance.

The page-replacement algorithm in Linux is based on clock algorithm. In this algorithm,
an 8-bit variable known as age is used. The age determines how much a page has been used.
Therefore, this variable is incremented after every page is accessed. The algorithm is executed
in multiple passes. Linux periodically sweeps through global page pool in every pass and decre-
ments the age value for each page as it rotates through the pages. The victim page to be replaced
will be the page whose age count is the lowest. A larger value of age for a page means that it is
a frequently accessed page and cannot be the choice for page replacement.

WINDOWS

In Windows, the VMM component is responsible for allocating memory and other memory
management functions. Depending on the processor, Windows provides either 32 or 64-bit
virtual address space. On 32-bit Windows, each process can address up to 4 GB of memory.

392 Principles of Operating Systems

Similarly, each process on 64-bit Windows, can address virtual address space up to 8 TB. All
the threads belonging to a process can also access the corresponding process’ virtual address.
Windows XP allocates 4 GB virtual address space to each process. However, this space is
divided into two parts:
 • The first 2 GB is for use of process.
 • The second 2 GB is reserved for the system for kernel-mode components

Depending on the versions of Windows, the physical memory ranges from 2 GB to 2 TB.
The subset of virtual address space residing in physical memory is called working set. The data
stored on the disk in the form of files is known as pagefiles. The physical memory is divided
into fixed-size page frames having page size of 4 KB on a 32-bit system.

The VMM creates two types of memory pools located in the address space reserved for the
system to manage the memory: non-paged and paged pools. The virtual addresses are in non-
paged pool, whereas the page pool consists of VM.

Memory Allocation
Memory allocation is done in the following three steps:
 • A process first reserves space in its virtual address space.
 • The process cannot access the page until it commits it. The commit is performed when the

process is ready to write to the page.
 • Finally, the ready process accesses the committed VM.

This type of memory allocation has an advantage that it uses only the required memory.

Memory Mapping
Windows XP uses two-level page table structure. Therefore, the virtual address is composed
of the following:
 • The offset in page directory table (PDT)
 • The offset in page table
 • The offset on a page in physical memory

Each process is assigned a page table directory. Whenever, there is a process switching, the
location of new process’ page table directory is loaded into the page directory register. Each
entry in PDT points to the page table. The value of page directory register is added with the first
portion of the virtual address that determines the location of page directory entry in PDT. The
value in page directory entry is then added to a second component of virtual address that points
to the PTE that contains the page frame number corresponding to the virtual page’s location in
the memory. Finally, the PTE is concatenated with the third component of the address to form
the physical address.

The five protection bits in PTE out of 32 bits are for protection indicating whether a process
can read, write, or execute the page. These protection bits may also inform whether a page is
copy-on-write page. When a page is to be shared, the system uses only one page with both
processes sharing that same copy of the page. However, when one of the processes writes onto
the page, a private copy is made for that process, which can then be manipulated individually.
This is known as copy-on-write. This gives a lot better efficiency.

Case Study III: Memory Management in UNIX/Solaris/Linux/Windows 393

Large Page Support
A large page is formed as a set of contiguous pages that OS treats as one single page. Windows
XP allows allocating a large page to the applications. When the system has been running for
a long time and at this time applications allocate large pages, it may affect the system perfor-
mance as the memory may get fragmented by this time. Therefore, applications should not
allocate repeated large pages in between. The large page allocation should be allowed only at
start up. The large page memory should be non-pageable.

Virtual Memory Management
When there are much less number of page frames in the memory, Windows XP does not allow
multiple requests to be serviced. It has a process known as I/O throttling that manages one
page frame at a time and retrieves one page at a time from disk also. It slows down the system
but avoids crashing of the system.

In Windows XP, each page’s state is also maintained in a database known as page frame
database. This database lists the state of each page frame sorted by the page frame number
only. The system has a singly linked list known as page list for each state of the page frame.
For example, there is a page list of free page frame that contains all page frames having the
state as free. Table CS3.6 lists all the possible states of a page frame. As per the states, various
page lists are maintained. When Windows is started, all memory is in the free page list. As a
process requires memory, it is faulted in from zeroed page list. Zeroed means the page is free
but has been filled with zeroes so that there is no dirty bit. When a process exits, its pages are
moved back to free page list. There are two threads that move threads from one list to another:
 Zero page thread that is responsible for zeroing out free pages before they are moved from
free page list to zeroed page list;
 Modified page writer that is responsible to move pages from modified page list to standby
page list.

Table CS3.6 Page frame states in Windows

Page frame state Meaning

Valid Page is in the working set of process and PTE is set to valid.

Standby Page has just been removed from working set and is not modified. The PTE
points to physical page but has been marked as invalid and is in transition.

Modified Page has just been removed from working set. The page has been modi-
fied but the changed contents have not been written to the disk. The PTE
points to unchanged physical page but has been marked as invalid and is
in transition. The VMM must write modified page to the disk.

Modified No-write It is the same as modified but has been marked as No-write, that is, not to
write it to the disk.

Free Page is free but may contain some dirty data.

Zeroed Page is free and does not contain any dirty data but has been filled with
zeros. Page is not part of any working set.

Bad Page has generated parity or other hardware errors and should not be
used.

394 Principles of Operating Systems

Windows XP is able to predict the requests for pages on disk and then move these pages into
the memory such that there is less number of page faults in the system. The API functions can
be invoked to know process’ future memory requirements.

Windows uses clustered demand paging instead of demand paging. The idea is to load sev-
eral nearby pages along with the page for which the system gets a page fault. In Windows, the
disk is divided into clusters of bytes. Windows taking the advantage of this spatial locality loads
all the pages in a cluster at once. Any kind of prefetching, however, must be carefully handled
as it may bring in some unrequired pages in the memory, leaving less space for required pages
and thereby increasing the page faults.

Page Replacement
The page-replacement policy of Windows XP is based on working set model. The working set
is the set of pages a process is currently using. There is a minimum and maximum range for a
working set of a process. The VMM assigns a default minimum (50 for the Windows XP) and
maximum working set. There is a component known as balance set manager that is respon-
sible to move pages to pagefiles. Windows XP uses localized LRU page-replacement policy.
Whenever the working set size of a process becomes equal to its maximum working set size,
it requests an additional page. In this case, the balance set manager pages out a page on the
disk. The balance set manager checks the free space in memory once per second and adjusts the
working set size as per the maximum one. Furthermore, it also performs page trimming, that
is, the process of moving out the pages that are not required by a process.

Prefetching
Prefetching may also reduce the loading time of application, files, and even the OS. The system
adopts the recording system that monitors which pages have been accessed. While loading a
new application, it retrieves its history and loads all required pages. The Windows OS creates
prefetch files in a special prefetch folder to speed up the booting of the system and to increase
the application response time. There are some scenarios such as booting time and application
loading in the OS, and for prefetching facility, the users have to specify to Windows for which
scenarios they need services of a prefetcher. For each scenario, a scenario file is created. The
memory traces of the scenario files are stored by the Windows. For booting, the prefetcher
observes which files are required for booting. After this, it optimizes the locations of these files
on the disk in such a manner that reduced disk I/O time is required. Moreover, it issues large
asynchronous I/O requests overlapped with device initialization process during boot time. This
is the reason that Windows XP offers fast boot-up time. Once the application is loaded, the
prefetcher checks the traces and finds whether any data or code specified in the trace is pres-
ent in memory. If not, then it prefetches from the disk. After successful loading of application,
the scenario files are updated every 10 s periodically. To optimize the application load time,
the prefetcher organizes the files that have been previously fetched in contiguous manner on
the disk so that the seek time is minimized. In Windows XP, the prefetcher is called logical
prefetcher, and in Windows Vista and Windows 7 it is called superfetcher.

UNIX

Files in UNIX are of the following types:

Ordinary/regular file
This type of file contains arbitrary data that is internally represented as a stream of bytes. It can be fur-
ther categorized as follows:

Text file
It contains only printable characters.

Binary file
It contains both printable and non-printable characters that cover the entire ASCII range, for example,
Picture, sound, video files, and so on.

Directory file
This type of file contains details of all the files and subdirectories underneath it. Directory files are
actually regular files with special write protection privileges so that only the file system can write into
them, whereas read access is available to user programs. For each file/subdirectory, it contains two
things :
• a filename
• a unique ID for that file/subdirectory also known as its index node (inode) number

 Device file
This type of files contains the details of various peripheral devices required during I/O. This information
is stored in the file called /dev.

 Named pipes
A pipe file buffers data received in its input, so that another process can read from the pipe’s output. It
receives the data on a first-in-first-out (FIFO) basis.

Links
A link is nothing but another file name for an existing file.

 Symbolic links
This is a data file that contains the name of the file it is linked to.

Case Study IV: File
Management in UNIX/
Solaris/Linux/Windows

Case Study IV: File Management in UNIX/Solaris/Linux/Windows 439

Inode Structure and File Allocation in UNIX
System V Release 4 and almost all the other releases of UNIX identify each file using a
 distinctive inode number. When a system call is executed to access a file, its inode number
is being referred. This inode number is nothing but an index into the inode table where the
information about the file is stored. An inode table of a file is a data structure associated with
each file that contains the metadata (data about data) for each file. Several file names may be
associated with a single inode, but an active inode is associated with exactly one file, and each
file is controlled by exactly one inode. The contents of a typical inode table residing in the disk
are as follows:

 • File owner identifier and access permissions
This identifier identifies both individual and group owners, and defines the set of users who have
access rights to a file. Each class has access rights to read, write and execute the file, which can
be set individually.

 • File type identifier
A file can be of any of the types described in the previous sections.

 • File access time
This identifier contains the time when a file was last accessed , when it was last modified, and
when the corresponding inode was last modified.

 • Number of links to a file
It includes the number of names the file has in the directory hierarchy.

 • Table of contents for the disk addresses of data in the file

 • Size of file (in bytes)

 • Address of the blocks where the file is physically present
A typical inode entry of System V is shown below in Fig. CS4.1. Among other information,
each inode entry in the inode table consists of 13 addresses that specify where the contents of
a file are stored on the disk. These addresses may be numbered 0 to 12. Of these, the first 10
addresses(0–9) directly point to 1 KB blocks on the disk. The last three blocks, that is, 11 to 13
indirectly contain addresses of the blocks of files that have sizes greater than 10 KB.

As shown in Fig. CS4.1, the first 10 addresses point to the first 10 data blocks of the file.
Each of the blocks is not necessarily stored on the contiguous location. If the file requires more
than 10 data blocks, one or more levels of indirection are used as follows:

 • The eleventh address in the inode table does not contain an address of a block. Instead it
points to a block on the disk that contains the next portion of the index. It is capable of
referring 256 more addresses. This is known as the single indirect block. This block can
thus handle a file of maximum size 256 KB (256 × 1 KB).

 • In case the file contains more blocks, the 12th address in the inode points to a block known
as a double indirect block. This block points to a block of 256 addresses, each of which in
turn points to another set of 256 addresses. These are the addresses of 1 KB chunks, mak-
ing the maximum size accessible to be 256 × 256 KB = 64 MB.

440 Principles of Operating Systems

 • If the file still contains more blocks, the 13th address in the inode points to a block known
as a triple indirect block. It is a third level of indexing. This block also points to additional
double indirect blocks. This level of addressing can support a file of maximum size 256 ×
256 × 256 KB = 16 GB.
In this way, SVR4 can together handle a file of 10 KB + 256 KB + 64 MB + 16 GB capacity.

File System Contents
A UNIX file system (UFS) is logically divided into the following four parts:

 • Boot block
This block marks the beginning of the file system. It contains ‘bootstrap loader’ that is the
program used for booting the OS.

 • Super block
It describes the status of the file system such as its size, and current capacity.

 • Inode block
It contains the collection of inodes for each file.

 • Data block
It contains the actual file contents and subdirectories.

File owner
Group owner

Access permissions
File type

File access time
File modification

time
File size

No. of links to a file

Direct (0)

Direct (1)

Direct (2)

.

.

.

Direct (9)

Single Indirect

Double Indirect

Triple Indirect

Pointer

Pointer

Pointer

Pointer

Pointer Pointer

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Fig. CS4.1 File allocation in UNIX

Case Study IV: File Management in UNIX/Solaris/Linux/Windows 441

Directories
Directories are special files that give the file system its hierarchical structure. Its data content is
a sequence of entries, each consisting of an inode number and the name of a file contained in the
directory. When the file or directory is accessed, its i-number is used as an index into the inode
table. The main reason for creating directories is to keep related files together and separate them
from other group of files. A hierarchical directory structure followed by almost all the versions
of UNIX is shown in Fig. CS4.2.

/(root)

unix bin dev lib usr tmp etc

User1 User2 bin

Fig. CS4.2 Hierarchical structure of UNIX file system

SOLARIS

Solaris provides multiple and different file systems. The default file system is UFS that holds
all of the files in the root directory hierarchy of the file system. The UFS uses a storage device
to store file data. That is why it is also known as on-disk or regular file system. In contrast
to on-disk, there are some file systems that represent virtual devices such as processes and
 network sockets. These are known as pseudo file systems.
There are different file allocation methods for different file systems. However there are two
common allocation methods supported by Solaris:

Block-based Allocation
This method is used by the traditional UFS. According to this method, it creates incremental
disk space for a file. The disk blocks are allocated as the need arises so that there is a minimum
allocation to conserve the space on the disk. When a file requires space, blocks are allocated
from a free block map. However, sometimes blocks are allocated in a random order. Random
block allocation can be avoided by optimizing the block allocation policy such that the blocks
are allocated in a sequential manner. This reduces the disk seek time but results in fragmented
disk blocks on the system. A file system block structure is maintained wherein address of the
new block allocated and other information are stored. This data structure is known as metadata.

Extent Allocation
This method creates a large series of contiguous blocks. When a new file is created, it is
 allocated a large number of blocks, also known as an extent. On the subsequent demand also,
the file is allocated extent of sequential blocks. The metadata is maintained as discussed in
block allocation. However, the metadata here is just the starting block number and length
for each extent. On the other hand, for block allocation, a lot of metadata for each file are

442 Principles of Operating Systems

 maintained as block address of each disk block is required. Thus, the metadata write operations
are reduced in this method as compared to the block allocation method. Since an extent is a
group of sequential disk blocks, this allocation method optimizes the seek pattern.

The robustness of a file system can be increased by logging or journaling. Logging helps
in preventing the file system structure corruption during a power or system failure. Logging
logs changes to on-disk data in a separate log area such that an accurate structure of the file
system is maintained. In case of any kind of failure, the state of the file system is known from
file system log. Metadata logging is the type of logging used in most of the Solaris versions.
The file system supporting metadata logging has an append-only log area on the disk that is
used to record the state of each disk transaction. Before any change in the on-disk structures, a
start of change is logged. Then the structures are updated and then completion is also logged.
Since every change to the file system structure is in the log, the whole file system need not be
scanned to check the consistency of the file system, but by looking in the log. Another method
of logging is data and metadata logging. In this logging, there is an option to put data along
with the metadata.

Solaris supports large files from Version 2.6 onwards. Each of these file systems can reside
files larger than 2 GB and also provide support to seek within the large offsets.

LINUX

Since a user may work on various types of platforms, there may be a need to support various file
systems. Linux supports a variety of file systems through a single, uniform file system interface
through a virtual file system (VFS). The kernel supports more than 40 file systems of various
origins. Linux kernel includes a layer between user processes (or the standard library) and
the file system implementation. In this system, a user can view all the files and directories in
the system under a single directory tree. It is intended to provide uniform ways of manipulating
files, directories, and other objects. The user is not concerned about the location of file data
and type of the file system. Thus, there is a VFS layer where all the user requests in the form
of system calls related to the file are sent first. The VFS system layer acts as an interface
through which a file of any file system can be accessed. The VFS layer after receiving a user
request determines the file system to which the request actually belongs known as the target
file system. For this purpose, a mapping function is called in the kernel that maps the call from
the VFS into a call to the target file system. The target file system in turn converts the initial
user request into device-specific instructions that are then passed to the concerned device driver
(Fig. CS4.3).

The VFS is implemented as an object-oriented technology. The objects in its implementation
are known as VFS objects. The following are VFS objects used in the VFS:

Superblock Object
The superblock contains the information about a mounted file system. It is created by the kernel
and resides exclusively in the memory. Whenever a file system is mounted, the superblock data
must be provided to the VFS. The superblock data are file system dependent. It may consist of
the following data:
1. Pointer to the root inode, that is, the root of the file system
2. Type of the file system
3. Number of free blocks

Case Study IV: File Management in UNIX/Solaris/Linux/Windows 443

4. Number of free inodes
5. Basic block size
6. Function pointers to read, write, and manipulate inodes

Inode Object
Inode object associated with each file provides the information about a file or directory along
with its location and data contents. This object does not contain the name of the file but is rather
represented by a tuple containing an inode number and a number that identifies the file system
that contains the inode.

Directory Entry Object
Each file in the VFS is represented as a file descriptor. This file descriptor contains the following
information:
1. The inode being accessed,
2. The position in the file being accessed
3. The manner in which the data are being accessed, that is, which permission is executed

(read/write/append-only, etc.)
To map file descriptors to the corresponding inodes, the VFS uses another object known
as directory entry (dentry) object. A dentry object contains the name of file or directory an
inode represents. Thus, a file descriptor points to a dentry and dentry in turn points to the
 corresponding inode. It also includes pointers to the parent dentry and subordinate dentries.

System call

Target file systems

User Processes

System call Interface

VFS

Journaling
file system

DOS file
system

New
technology
file system

User space

Kernel space

Device drivers

Fig. CS4.3. Virtual file system

444 Principles of Operating Systems

File Object
This object is created in response to the file open system call that is used to represent an opened
file. Similarly it is destroyed in response to the close system call.

The VFS uses all such objects in the system and interprets data from them. After this, it
determines the contents of the available file systems. However, due to slow block media, find-
ing inode associated with a file may take some time. Therefore, to provide quick access, inode
cache and dentry cache (dcache) are used. These caches provide related information for the
frequently used entries in the directory tree. The dcache contains dentries corresponding to
directories that have been accessed recently. With this provision of dcache, the kernel can
quickly perform pathname to inode translation when the file specified by pathname exists in the
memory. With the help of dentries found in dcache, the VFS quickly locates inodes in inode
cache. In turn, inode is used to locate the file’s data. The space allocated to dcache is not very
large but in spite of this, the VFS ensures that parent and the subordinates of a dentry also reside
in dcache. However, in case the file system is accessed across the network, files are used instead
of dcache.

Initially, the dentry and inode corresponding to a file are not present in dcache and inode
cache, respectively. In this case, the VFS locates the inode by calling its parent directory
 inode’s lookup function. Once the directory is located, its associated inode and corresponding
dentry are loaded into the memory. Now the new inode is added to inode cache and the dentry
is added to the dcache.

Extended File System Family
Initially, Linux kernel had adapted the MINIX file system but could not evolve with this. The file
system for Linux kernel was developed known as the extended file system. Many versions of this
extended family have been released now. The following is the description of all these versions.

Second Extended File System
Its second version was released commercially, named as the second extended file system (ext2).
This was the first file system using the VFS API. It solved major problems encountered in the
MINIX file system. For example, in MINIX, there was limit of file name as of 14 characters
maximum. The ext2 file system supports maximum data size of 4 TB and maximum file name
length of 255 characters. Like this, there was much advancement in the ext2 file system.

Ext2 is a block-based file system that divides the hard disk into several blocks. The blocks
are of the same size and files may occupy only integer multiples of the block size. The block
size may range from 1KB to 8 KB. Since the blocks with big sizes require fewer I/O requests,
I/O operations will speed up as less number of head seeks are required. The file size may range
from 16 GB to 2 TB. The file system may be of size ranging from 4 TB to 32 TB. Ext2 is able
to manage file systems on much bigger partitions.

It supports basic objects such as superblock, inodes and directories with their extended
 features. The disk space corresponding to ext2 file system is divided into fixed-size blocks of
data. As discussed earlier, an inode represents files and directories in the ext2 file system. In
each ext2 inode, there are 15 data block pointers. The first 12 data blocks are directly located
by first 12 pointers. The remaining pointers are indirect pointers. The 13th pointer is a single
indirect pointer, 14th is double indirect and 15th is triple indirect. If a file is smaller in size,
that is, it consumes less than 12 blocks of data, it does not need any indirect pointer otherwise
it needs some indirect pointers according to its size.

Case Study IV: File Management in UNIX/Solaris/Linux/Windows 445

Ext2 has the provision of fast symbolic links. The reason for the fast symbolic links is that it
does not use any data block on the file system but stores the target name on the inode itself. In
this way, it speeds up link operation and saves disk space also. However, this implementation
cannot be done for every link as the space available on inode is limited. The maximum size that
can be supported in a fast symbolic link is 60 characters.

The central element of the ext2 file system is block group that is a cluster of contiguous
blocks. The idea is to reduce seek time to access large groups of related data by storing related
data in the same block group. The structure of a block group is shown in Fig. CS4.4.

Superblock Group

descriptors

Data bitmap Inode bitmap Inode table Data blocks

Fig. CS4.4 Structure of a block group

Superblock
This block stores all characteristic data of the file system that the kernel first views while
mounting the file system. Some of the data stored in superblock are as follows:
1. Total number of blocks in the file system
2. Total number of inodes in the file system
3. Total number of free blocks
4. Total number of free inodes
5. Total number of reserved blocks
6. Size of a block
7. Number of blocks per group
8. Number of inodes per group
9. The time at which the file system was mounted

Group descriptor
 These blocks store the information about the contents of each block group of the file system,
that is, the block numbers of inode bitmap, data bitmap and inode table. Besides these, they also
contain some accounting information such as number of free block in the group, and number of
free inodes in the group, number of directories in the group.

Inode table
It contains an entry for each inode in the block group.

Inode bitmap
 The inode bitmap is a block used to provide an overview of the used and free inodes of a block
group.

Each inode is represented as ‘used’ or ‘free’ by means of a single bit in inode bitmap. Thus,
to track use of inode in a block group, an allocation bitmap is maintained wherein each bit cor-
responds to an entry in the group’s inode table. At the time of file allocation, an available inode
is selected from inode table to represent the file. At the same time, the bit in the inode bitmap
corresponding to the inode’s index in the inode table is turned on to reflect that the inode is
in use. For example, if a file has been assigned 10th entry in inode table, the 10th bit in inode
bitmap is turned on.

446 Principles of Operating Systems

Data bitmap
 To track the use of each group’s block usage, another bitmap known as data bitmap or block
allocation bitmap is maintained in the same manner as inode bitmap.
Data blocks
They contain useful data of the files in the file system.

Directories and Files
As described for UNIX, directories in ext2 are special files with pointers to inodes and their
file names to represent files and subdirectories in the current directory. Each directory is repre-
sented by an inode to which data blocks are assigned. The blocks contain structures to describe
the dentries. Each dentry consists of the following fields:
 • inode number
 • dentry length
 • file name length
 • file type
 • file name

The ext2 file system is also able to represent objects such as devices and sockets as files.

Pre-allocation
The ext2 file system uses a new mechanism called pre-allocation. When there is demand for
new blocks to be allocated for a file, it allocates the required blocks along with some additional
blocks in the consecutive allocations. These extra blocks are kept for later use. This mechanism
may save time when allocating the blocks to a file and also in preventing fragmentation. How-
ever, pre-allocated blocks may be overwritten if required.

Third Extended File System

Ext2 was later extended as the third extended file system (ext3) with more advanced features. It
was ported into Linux kernel Version 2.4.15 in 2001. The block size in this file system ranges
from 1 KB to 8 KB. The file size ranges from 16 GB to 2 TB. The file system size ranges from
2 TB to 32 TB. The ext3 file system was extended as a log-structured file system to have a con-
sistent file system wherein the file data is logged in a log, also known as a journal. There are
three modes by which the kernel may access the file system:

Writeback mode
 In this mode, only changes to the file metadata are logged to the journal. In other words, the
operations on useful data are not considered. Therefore, this mode provides the highest perfor-
mance but does not provide any protection to the useful data.

Ordered mode
 In this mode, only changes to the file metadata are logged to the journal, but changes to useful
data are grouped and are always made before operations are performed on the metadata. This
mode is therefore slightly slower than the writeback mode but provides data protection.

Journal mode
 In this mode, along with the changes to metadata, useful data are also written to the journal.
Thus, it provides the highest level of data protection.

Case Study IV: File Management in UNIX/Solaris/Linux/Windows 447

The journal may reside in a special file with its inode or on a separate partition. The
kernel includes a layer called a journaling block device (JBD) layer to handle journals and
associated operations.

To accommodate the structure of a file system and for performance reasons, the transactions
are broken down into the following smaller units:

Log records
These are the smallest units that can be logged.

Handles
Several log records when grouped together are known as a handle.

Transactions
Several handles when grouped together are known as a transaction.

In inspite of the advanced log facilities in the ext3 file system, ext2 is the preferred file sys-
tem for flash and USB drives as it does not support logging. Since logging requires more writes
to the storage unit, it can slow down the performance.

Forth Extended File System

The fourth extended file system (ext4) file system was developed as an extension to ext3. The
stable version started from Linux version 2.6.28 in 2008. It uses a 48-bit addressing system that
allows a maximum file size of 16 TB.

The maximum file system size it can support is 1 EB (Exabyte; 1 EB = 1024 PB and
1 PB = 1024 TB). Some of the features of ext4 are as follows:

 1. Files stored on an ext4 file system are stored in extents that reduces fragmentation and
 improves performance. The contiguous space of 128 MB can be mapped with a single extent
having block size of 4 KB. In the inode, there can be four extents. In case there are more than
four extents, the rest of the extents are stored in an HTree (a specialized version of B-tree).

 2. A directory can contain maximum 64,000 subdirectories, whereas ext3 supports 32,000.
 3. It also uses multi-block allocation method that writes multiple blocks at once to increase the

performance.
 4. Along with multi-block allocation, delayed allocation is also used that flushes cache at a

regular fixed time interval.
 5. To improve performance, logging feature can be turned off, if required.
 6. To improve the reliability, journal checksumming has been used.
 7. An improved time stamp has been implemented in this file system. Since the Linux system

may be used in mission critical systems, it provides time stamps measured in nanoseconds.
Moreover, two more bits have been added in the seconds field of timestamp.

 8. Pre-allocation is also supported in ext4.

Proc File System
This file system does not grant access to data stored on disk but provides certain kernel
 information in the form of virtual files. The purpose of this file system is to provide real-time
information about the status of the kernel and processes in the system. Some of the available
files or directories in the file system are as follows:
 • Description of processor
 • List of device controllers included in the kernel

448 Principles of Operating Systems

 • List of file systems supported
 • Memory allocated to the kernel
 • List of modules loaded in the kernel
 • List of file systems mounted
 • Kernel version
 • Information on network protocols

Using this information, kernel behaviour can be modified without the need to recompile
the sources, load modules, or reboot the system. This is quite useful to driver developers and
 system administrators who can refer this detailed information about system usage.

WINDOWS

Windows XP has a layer of file system drivers. File system drivers are responsible to imple-
menting a particular file system format. Whatever the facilities a user uses from the file system
are implemented through file system drivers only. Thus, they are interfaced between the user’s
view of file system and the actual representation of files on the storage. Furthermore, these driv-
ers also perform some high level functions, such as virus protection and compression. Windows
XP supports New Technology File System (NTFS) as its native file system format. It also sup-
ports some other formats to support various devices such as compact disk file systems for CDs
and universal disk format for CDs and DVDs.

New Technology File System

Windows NT 3.1 onwards, the developers of Windows adopted a new file system known as
NTFS. Now it is a default file system for Windows XP. It is a flexible and powerful file sys-
tem intended to meet high-end requirements for workstations and servers. It addresses all the
limitations of the file allocation table (FAT) file system previously used in Windows. It uses
the concept of clusters along with the sector for disk storage, but the cluster is the fundamental
unit of allocation in NTFS instead of sectors. The contiguous sectors on the same track form
a cluster. A logical partition on the disk consisting of one or more clusters forms a volume. A
volume consists of information about the file system. The clusters allocated to a file need not be
contiguous. The maximum file size in NTFS can be 232 clusters. The use of clusters makes it
possible to support non-standard disks that do not have 512-byte sector size (as NTFS does not
recognize a sector). Another benefit is that it is possible to support large disks and large files by
using a larger cluster size.

The NTFS considers every element on the volume as a file. Every file in turn consists of
 various attributes including data contents of a file. The layout of an NTFS volume consists of
the following regions (Fig. CS4.5):

Partition boot sector Master file table System files File area

Fig. CS4.5 Layout of NTFS volume

Partition Boot Sector
 The size of this region is equal to the size of 16 sectors, that is, 512x16 containing the informa-
tion about volume layout, file system structures, boot startup information, and so on.

Case Study IV: File Management in UNIX/Solaris/Linux/Windows 449

Master File Table
This region has the information about all the files and directories on the volume including the
metadata. The metadata may be the time of creation, file name, file permissions, archives, and
so on. Each file has an entry in the master file table (MFT). Thus, the MFT is a list of files and
their attributes. It is organized as 1024-byte rows called records. Each row describes a file. The
required file attributes are as follows:

 • Standard information
It includes access attributes such as read and write, along with time stamp and link count
(i.e., how many directories point to the file).

 • File name

 • Security descriptor
It specifies the owner of a file and who can access it.

 • Data
It is the contents of a file.
It may be possible that a file attribute does not fit into the file’s first MFT record. In this case,
the NTFS creates a special attribute that stores pointers to the attributes located in different
records. On the basis of this, the attributes that fit into the file’s first MFT record are known
as resident attributes whereas the second category is called as non-resident attributes.

System Files
These are hidden files from the view of NTFS volume. This region is of 1 MB length consisting
of the following files:

 • MFT2
It is a mirror of the first three rows of an MFT to access the information in case of single-
sector failure.

 • Log file
It contains a list of transaction steps to recover any information in case of sector failure. Its
size depends on the volume size.

 • Cluster bitmap
It shows which clusters are in use.

 • Bad cluster file
It consists of information about the bad clusters on the volume.

 • Security file
It contains a unique security descriptor for all files.

 • Attribute definitions
It is a table consisting of attribute names, numbers and description.

Data Streams
A data stream is a file attribute that stores file data. The NTFS allows multiple data streams for
a single file and these streams store metadata about a file.

450 Principles of Operating Systems

File Compression
The NTFS allows compressing of files and folders in Windows. For compressing a file, the NTFS
divides the file’s data into blocks of 16 contiguous clusters known as compression units. For this,
the NTFS mainly uses Lempel–Ziv compression algorithm that is a lossless compression algo-
rithm. It uses segmented compression by dividing files into compression units. It compresses
one unit at a time. One unit may be of 16 clusters. Segmented compression is better observed in
large files. The compressed files enable the decreased file access time. The benefit of segmented
compression is that the file can be compressed even if it is being modified by an application.

File Encryption
Like compression, the NTFS encrypts the files in the unit of 16 clusters. Each unit is encrypted
separately. It uses a public/private key pair to encrypt the files. The NTFS creates recovery
keys that can be used to decrypt the files. The recover keys are helpful when a user forgets the
private keys. The encryption keys are stored in the non-paged memory pool in the system due
to security reason such that these are not written to the disk. Furthermore, these keys are stored
in encrypted manner to increase the security.

Sparse Files
Although the compression reduces the space, decompression is a time-consuming process. As
an alternative, the concept of sparse files has been taken. A sparse file is a file that has most of
the data as zero (white spaces). If we store this file on the disk, it wastes most of the space in
storing only zero entries. The scientific and database files may be sparse files containing very
few data. A thread may be assigned the job of explicitly specifying the sparse file. This thread
indicates areas of the file that contain large number of zeroes. The NTFS uses sparse files to
store them on disk such that only non-zero data are stored consuming less space. The NTFS
does not store zero data but keeps track of them using a zero black list for the file.

UNIX

In UNIX, I/O devices are associated with special files and the file system manages these special files.
Thus, the I/O operations are performed on the devices in the same manner as of files. There are three
main kinds of I/Os in Free Berkely Software Distribution (FreeBSD): block devices, character devices,
and socket interface. Input/Output requests can be handled with buffer cache. In UNIX, buffer cache is
basically a disk cache. There are two types of buffers used: system buffer cache and character queues.
The DMA is used to transfer data between the buffer cache and the user process space. Buffer cache is
maintained further with three more queues described as follows:
Free list It is a list of all available slots in the cache.
Device list It is a list of the buffers that are presently associated with each disk.
Driver I/O queue It is a list of buffers that are waiting for an I/O.

The size of buffer cache affects the performance of the system, so it should be decided appropriately.
The size should be large enough such that the cache hit ratio is high and the number of actual I/O trans-
fers is low. In FreeBSD, buffer cache is optimized by adjusting the amount of memory used by programs
and disk cache continuously.

Character Queues
Character queues, also known as C-lists, are smaller buffers as compared to buffer cache. All free character
buffers are placed in a single free list. When there is a write system call for a device, the characters
are placed in an output character queue for it. The hardware interrupts start de-queuing of characters
and thereby transfer the characters. If there is no space in the output queue, the system call is blocked
unless there is sufficient space. The input is also interrupt driven as discussed for output. However, for
input, two character queues are maintained: raw queue and canonical queue. Raw queue is to collect
 characters coming from the terminal port. The canonical queue is where the input is being processed.

SOLARIS

Asynchronous I/O
Asynchronous I/O in Solaris is dealt with two interfaces known as aioread() and aiowrite() routines.
These routines do not block a calling process or thread when it issues a read or write but allows it
to continue. A signal known as SIGIO is sent to the calling thread as a notification of completion of

Case Study V:
Input/Output
Management in UNIX/
Solaris/Linux/Windows

500 Principles of Operating Systems

I/O operation or about the error encountered. However, this type of dealing with asynchronous
I/O does not provide optimal performance for applications that extensively make use of this
asynchronous I/O. In case of extensive use, there are overheads involved in creating, manag-
ing, and scheduling of user threads. In response to this, a low overhead implementation to deal
with asynchronous I/O was devised known as kernel asynchronous I/O (kaio). The kaio is

the method available in Solaris 2.4 onwards.
However, kaio works only when the target of
asynchronous I/O is a character device.

File I/O, as we know, is performed with
system calls that perform I/O on behalf of
a process with the help of a kernel buffer
(Fig. CS5.1).

Another way to perform file I/O is
implemented in the form of memory
mapping. This is done by mapping a file
directly into the process’s address space
(Fig.CS5.2). There is a system call known
as mmap() that allows to map a range of
a file into a process’s address space and
the file can be accessed by referencing to

memory locations. This method reduces the overhead of read and write system calls, and
there is no need to handle the data twice as in buffer method.

Solaris Page Cache
When we use traditional buffer cache method for file data caching, the file system looks up
the corresponding disk direct/indirect block for the file the process has requested in its system
call. After having the block number, it requests that block from file I/O system. If the request
is for the first time, the I/O system retrieves the block from the disk and the subsequent
requests are satisfied by the buffer cache (Fig.CS5.3). The disadvantage here is that every
time we need to invoke the file system and look up physical block number for every cached
I/O operation.

Process address space

Stack

Heap

Executable data

Executable text

Kernel buffer
Disk

Fig. CS5.1 File I/O with kernel buffer

Process Address space

Stack

Heap

Executable data

Executable text

Disk

Fig. CS5.2 Memory mapped file I/O

Case Study V: Input/Output Management in UNIX/Solaris/Linux/Windows 501

Instead of traditional caching file system data, Solaris has a new caching method known as
page cache. The limitation of old caching method is that its size is limited, that is it cannot be
expanded. Moreover, the old method is not efficient. The page cache, as an improved cach-
ing method, is dynamically sized and can use all the memory that is presently not in use. It is
basically a virtual file cache rather than a physical block cache. Thus, it caches file blocks in
the form of page caches rather than disk blocks. The OS retrieves the file data efficiently by
looking up the file reference and seek offset. In the older method, on the other hand, the OS
invokes the file system, looks up the physical disk block number corresponding to the file, and
retrieves that block from the physical block cache. When a process requests an I/O operation
through system call, the file data are retrieved from disk through the file system into memory

Disk block

File system

User
process

Buffer cache

Disk

Logical I/O operation

PhysicalI/O operation

Fig. CS5.3 Buffer cache-based I/O

Inodes and metadata

Disk block

File system

User
process

Page cache

Disk

Logical I/O operation

PhysicalI/O operation
Buffer cache

Fig. CS5.4 Page cache-based I/O

502 Principles of Operating Systems

in page-sized chunks (Fig. CS5.4). However, on subsequent operations, the same file data are
retrieved directly from the page cache without a logical to physical mapping through the file
system. The old method of buffer cache is only used for internal file system data.

LINUX

The device drivers in Linux are implemented as loadable kernel modules. These can be dynami-
cally loaded and unloaded as they are required. The devices are represented as files only known
as device special files. Each special file has a corresponding device driver. The special files are
accessed via the virtual file system (VFS). The system calls are first passed to the VFS. After
this, the VFS calls device drivers. There are two types of special files in Linux, given as follows:

Special File in Block Mode
These are special files corresponding to block devices like the disk. The I/O operations are car-
ried out with the help of buffer cache. For block devices, the kernel maintains a request list for
the pending requests. Instead of sending the pending requests to the devices in their arrival order,
these are sent to the request list. The kernel now can order the requests (based on some factors
like location of disk head) in request list, so that I/O operations performance can be increased.

Special Files in Character Mode
These are special files corresponding to unstructured peripheral devices like ports.

Each special file is characterized by three attributes as follows:
File type (block or character)

Major identification number
Each device is identified by a 32-bit device identification number. The major identification
number identifies the driver controlling the device.
Minor identification number
This identification number allows the driver to be aware of the physical device upon which it
should act.

There is an interrupt management module in Linux that is a low-level module responsible
for physical programming of the interrupt controller.

Disk Scheduling
Linux adopts two improved disk-scheduling algorithms discussed as follows:

Deadline Scheduling
This scheduling algorithm prevents starvation problem occurring in disk scheduling. A dead-
line scheduler has been designed, which services each request within a given deadline. The
deadline scheduler attempts to service the request before its deadline expires. To meet the
deadline of each request, the scheduler has to process quickly. For this purpose, a single queue
for requests does not suffice as linear search of requests in this queue would lead to poor per-
formance and missed deadlines. Therefore, deadline scheduler uses the following three queues:
 • Sorted elevator queue
 • Read first-in-first-out (FIFO) queue
 • Write FIFO queue

Case Study V: Input/Output Management in UNIX/Solaris/Linux/Windows 503

When a new request arrives, the request is placed in this queue. The queue is sorted accord-
ing to the disk head positions. Each incoming request is also placed at the tail of a read or write
queue depending on the type of request. Thus, two separate queues based on the operations are
maintained to improve the efficiency. There is a deadline period with each request. For a read
request, the expiration time is 0.5 s, whereas for a write request, it is 5 s. These values provide
better performance in general but can be changed by system administrator. When a request
gets serviced, it is removed from the sorted queue as well as from the corresponding read/write
queue.

Anticipatory Scheduling
In case there are a number of synchronous read requests, the deadline scheduling may not
perform well. The deadline scheduler after servicing a read request may switch to another
request, thereby causing delay in read requests. It would be nice if all the read requests are
serviced first and then the other requests. Due to the principle of locality, it is possible that
successive read requests by a process may lie on the disk near to each other. There are chances
that the process requesting a read operation will further issue another read request to the same
region on the disk. The performance of the system may be increased if there is a delay for a
short time after servicing a read request to look whether there is a nearby read request. Thus,
this scheduler anticipates the future requests. The standard delay between the read requests is
6 milliseconds.

WINDOWS

In Windows, I/O management involves many kernel components. The user processes interact
with environment subsystem that passes I/O requests to the I/O manager (Fig. CS5.5). The I/O
manager in turn interacts with device drivers to process an I/O request. The I/O manager keeps

I/O requests

Environment sub-system

I/O manager Power manager

Plug and play
manager

Device driver stack

HAL

Devices

Fig. CS5.5 Input/Output management in Windows

504 Principles of Operating Systems

track of device drivers, file systems, and even buffers used for I/O requests. There are a num-
ber of device drivers to cooperate with the I/O manager. This is known as device driver stack.
Besides this, plug and play manager and power manager also help in I/O management. Plug
and play manager recognizes the new devices when connected to the system and allocates or
de-allocates the I/O to these newly connected devices. The power manager on the other hand,
conserves energy as per the requirement of devices.

Device Driver Stack
Since an I/O request may involve a number of device drivers, the driver stack consists of a
number of device drivers. Some of those are as follows:
Low-level driver It interacts with HAL and controls a device.
High-level driver It abstracts hardware details and passes the I/O requests to the low-level
driver.
Intermediate driver It is an intermediate driver that may filter or process I/O requests and
export an interface for a specific device.

Windows has a standard driver model known as Windows driver model (WDM) defined by
Microsoft. Windows driver model has three types of device drivers as follows:
Bus driver It interfaces with a hardware bus and provides some generic functions for the
devices on the bus.
Filter driver It may add additional features to any device. It sorts I/O requests among sev-
eral devices.
Function driver It implements the main function of the device, that is it performs I/O pro-
cessing and provides the device’s interface.

In Windows, an I/O request is processed with an I/O request packet (IRP). An IRP consists
of two parts: header block and I/O stack. Header block contains permanent information such
the following:
 • Mode (user or kernel)
 • Flags (e.g., to use cache or not)
 • I/O status block (to indicate the completion status of I/O)

There may be many device drivers for a target device. These device drivers are placed in a
list for each device known as the I/O stack. The I/O stack consists of at least one different stack
location for each driver in the device stack of the target device. The I/O stack location contains
information necessary to process an IRP.

To process an I/O request, consider the following sequence of actions:
 1. The I/O request is passed to the environment sub-system.
 2. The environment sub-system passes this request to the I/O manager.
 3. The I/O manager after interpreting the request builds an IRP.
 4. The I/O manager then forwards this IRP to the first driver in the stack for processing.
 5. The driver processes the request and passes the IRP to the next driver in the stack.
 6. When the IRP reaches the lowest-level driver, it checks the validity of the input parameters

and notifies the I/O manager about an I/O request pending.
 7. The I/O manager on the availability of I/O device calls the required driver routine that

handles the requested I/O operation.

Case Study V: Input/Output Management in UNIX/Solaris/Linux/Windows 505

There may be synchronous and asynchronous I/O requests. Windows supports both of them.
The asynchronous mode is used when there is a need to enhance the performance of the appli-
cation, as the application can continue processing after it initiates an asynchronous I/O request.
However, there must be some mechanism by which the application that invoked the I/O request
must know when the I/O request is complete. Windows provides multiple ways to signal this. A
thread in the application may poll the device to check whether I/O has been performed. Another
method is that the thread uses an event object and waits for this object. Another alternative
method is to use a queue associated with a thread. This is known as asynchronous procedure
call (APC) queue. In this method, when a thread makes an I/O request, it specifies a user mode
procedure that is run when the I/O completes. On the Windows server, there is another method
known as the I/O completion port for this purpose. The I/O completion signal is sent to this
port only.

UNIX

In spite of the cryptic nature of UNIX, one of the foremost reasons for UNIX’s popularity is the levels of
security it ensures at various stages. One of the means to guarantee security is file access control. When
a file is created, it has, associated with it, nine protection bits. The protection or permission bits specify
who all can access the file and for what purpose. These protection bits specify read(r), write(w), and
execute(x) permission for the owner of the file, other members of the group to which this file belongs,
and all other users. This forms a hierarchy of owner, group, and all others, with the highest relevant set
of permissions being used. For example consider a file myfile. If the permissions for the file myfile are,
say, rwx, rw, x; they signify the following, respectively:
 • The owner can read, write, as well as execute the file myfile.
 • The members of the group can read and write the file but cannot execute it.
 • All others can only execute myfile.

When applied to a directory, the read and write bits grant the right to
 • list the files
 • create, rename, or delete files in the directory.

The execute bit grants the right to search the directory for a particular component of a filename.
The read, write, and execute bits are also assigned weights (numerical value) that which provide an

alternative means to change the permissions of a file. The weights assigned to the three permissions are
shown in Table CS4.1.

When all the three permissions are available, the total weight is, thus
4 + 2 + 1 = 7.

A level of security is increased in case of directories by using a
sticky bit. This bit is used to guard the directories from intruders.
When the sticky bit sticks to a particular directory, only the owner of
this directory or its super user can delete files from this directory.

The UNIX system security has a login program that asks for login
ID and a password from a user. It hashes the password and searches
the password file to verify the login credentials entered by the user.
The login program then uses setid command to provide a user ID and

setgid to provide a group ID to the user who entered the system. When a file is opened by a process,
the system first checks the protection bits in the file’s inode against the user ID and group ID to verify
whether the user is permitted access that file or not.

Table CS6.1 Weights assigned to
file permissions

Permission Weight

Read 4

Write 2

Execute 1

Case Study VI:
Protection Mechanisms
in UNIX/Solaris/
Linux/Windows

548 Principles of Operating Systems

SOLARIS

In UNIX, there is an owner and a group corresponding to each file. A bit map of permissions
is then assigned. However, this is not sufficient when different users want to have different
permissions. Access control list (ACL) is the mechanism by which users with different permis-
sions can be assigned to a file. Solaris introduced the ACL for protection in Version 2.5. The
protected versions are known as trusted Solaris. Through Solaris ACLs, the administrator
assigns a list of user IDs and groups to a file using setfacl command and ACL list is assigned.
A file can be assigned to multiple users and groups. Access control lists may be permitted to
directories as well. However, in Solaris, a sub-directory under directory does not inherit the
ACL from its parent.

To perform privileged operations, some OSs require the users to be root users. However,
this makes the application powerful. This is harmful if there is vulnerability in the applica-
tion as it can be exploited by the hackers, thereby damaging data by escalating privileges. In
Solaris 10, using the principle of least privilege, only appropriate privileges that are necessary
to perform tasks are granted. Thus, by default, some privileges are already configured with
applications. Thus, the applications are not granted unlimited system access, thereby reducing
the chances of attack.

Instead of providing the full super-user privileges to the users, Solaris provides role-based
access control. In this, it may define the role of users and appropriately assign the privileges.
Each role of user defines the tasks and responsibilities that a user can perform. Solaris 10 has
a pre-defined set of profiles that can be combined with roles. To have more security, the user
assigned with a role needs to log in using the user ID and then can utilize the role he or she has
been assigned.

The OSs that are configured to service external network connections after first booting may
be prone to security attacks. Solaris 10 has an option of ‘secure by default networking’ during
installation. The system while being installed is made secure from outside attacks.

Solaris 10 integrates an IP packet filtering firewall within the TCP/IP stack. The filtering
may be on the basis of IP address, port, protocol, network interface, and so on. The specific
Internet addresses that may attempt to gain access to the system may also be blocked. Solaris
may restrict access to TCP services based on some criteria, such as domain name, host name,
and IP address. This layer of protection is known as TCP wrappers.

Cryptographic framework in Solaris provides cryptographic operations at the application as
well as kernel level. It helps to increase security with built-in cryptographic technology to have
a quick encryption and decryption.

Solaris has a secure shell that protects against session eavesdropping, password theft, and
session hijacking. The secure shell is able to encrypt all network traffic, have stronger authen-
tication, and monitor the integrity of network sessions.

Solaris supports enhanced password management with the following features:
 • Password length
 • Account locking
 • Defined password complexity levels

Since passwords used in networked environments can be intercepted, Solaris supports Ker-
beros. Kerberos provides stronger authentication methods based on industry-standard encryp-
tion algorithms.

Solaris has a number of features that check whether a system has been compromised and
ensure data integrity. Besides this, Solaris has the following tools to validate:

Case Study VI: Protection Mechanisms in UNIX/Solaris/Linux/Windows 549

Basic auditing and reporting tool (BART) Using this tool, cryptographic hashes can be
generated to validate data and files.
Fingerprint database Solaris provides digital fingerprint database that may be used to check
the integrity of files.

Solaris has an optional layer of secure label technology as a trusted extension to implement
mandatory access control (MAC) security policies. The OS is able to support multi-level data
access policies with labeled security policies. Furthermore, it does not necessitate modifying the
existing applications. Through Solaris-trusted extensions, highly secured desktops, servers, fire-
walls, and so on are supported.

LINUX

Linux provides authentication to its users via username and password. Passwords are hashed
using MD5 or data encryption standard (DES) algorithms. To avoid the brute-force attacks on
passwords, Linux has the provision to load pluggable authentication modules that are capable
of reconfiguring the system at run time to include enhanced authentication techniques. These
authentication methods may include smart cards, Kerberos, and voice-authentication systems.

Conventionally, the access control policy is default access control (DAC) as discussed ear-
lier. However, Linux supports the Linux security modules (LSMs) framework also, wherein
customized access control policy can be designed through loadable kernel modules. Only the
required modules to implement a customized access control policy are loaded. However, the
LSM is only invoked if DAC policy has granted the access.

Linux also provides cryptographic API through which processes can encrypt information
using various algorithms such as DES, AES, and MD5. The kernel uses this API to implement
secure network protocols. It is also possible to create secure file systems using this API.

WINDOWS

Windows XP has several mechanisms that increase the security of stored data. One approach
is that it runs in the background as a file system known as guardian angel. Guardian angel
watches over the system files in root folder such as. dll,. exe,. sys, and so on. Whenever there is
any update in these files, the file system restores the original version of the modified file.

Windows XP also offer encrypting file system (EFS) feature. However, this feature works
only for disks that have been formatted with New Technology File System (NTFS). In EFS, a
public key is used to encrypt a file and a private key decrypts it. The public and private keys
used in EFS are handled in the background by Windows automatically. The encryption keys are
stored on the disk only in the encrypted file’s header. The EFS may use expanded DES, that is,
DESX for encryption. The EFS is especially useful for mobile users. It may not be possible to
access any of the files on the disk even if someone is able to gain access to the system some-
how. This is because the files are encrypted. Since in Windows XP, the EFS is integrated with
NTFS, the file encryption and decryption are transparent. It means when a user saves his file, it
is encrypted and written to the disk.

Windows has the provision of personalized login facility. Through personalized login,
security has a separate interface to the system now and no one can access or delete anyone’s
documents. Moreover, different profiles can be set with different security limits; for example,
separate profile for children can be set so that some Internet sites can be filtered for them.

550 Principles of Operating Systems

In Windows XP, there is terminal services technology feature, which runs unique user ses-
sions due to which each user’s data are isolated in a user session. It means that a user does not
need to save another user’s files before logging in. Users can log in with a password and open
their session, thereby securing the session from one another.

For Internet security, there is a protection feature in Windows XP known as Internet connec-
tion firewall (ICF). The ICF provides firewall security for the systems directly connected to
the Internet. It protects the system from intruders through active packet filtering as soon as we
start Windows XP. In this filtering, ports on the firewall are dynamically opened to access only
the required services. This way, ports cannot be scanned by the intruders, thereby reducing the
external attacks. The ICF is available for LAN, VPN, dial-up connections, and so on. The ICF
does not allow any unsolicited traffic in by default. However, sometimes, if we need to host a
website or for some other purpose, the system may require open holes in the firewall to allow
traffic in some specific ports. The ICF facilitates this also and it is known as port mapping.

Windows XP professional supports the use of group policy objects (GPO). Through this
feature, administrators can apply single security profile to multiple systems and authenticate
users with smart card.

There are various security-related settings in Windows XP that can be implemented individ-
ually. Moreover, there are pre-defined security templates that can be used without modification
or be customized as per needs.

Windows XP keeps the system safe from intruders by providing only guest-level privileges
to anyone trying to access a system from the network. An intruder who is able to get the access
to the system can only obtain the guest-level privileges and hence may not be able to harm the
system much.

As an extension of the ICF, Windows XP professional has a location-aware group policy.
This policy is useful for mobile users who work from home or other places. When a system is a
member of domain and connected to the corporate network, the domain administrator enables a
group policy that may prevent the use of the ICF. However, as soon as the system is brought to
home or public Internet connection, the ICF is enabled. Since the ICF is a stateful packet filter,
it blocks all the unsolicited connections over the public network. There is a data structure used
by the ICF known as flow table, which is used to validate any incoming flow. The incoming
flow is only allowed if it is originated within the protected network.

In Windows XP, to restrict the software on the system, there are software-restriction poli-
cies. Two types of software restriction policies are discussed as follows:
 • If administrators are able to identify all the trusted software, they can lock down the sys-

tem and do not allow any other software to be run on the system. In this case, the default is
disallowed.

 • In case the administrators are not able to identify the trusted software, they will react and
identify undesirable software as it is encountered. The default in this case is allowed.
But the systems having Windows XP will now be more vulnerable to hackers’ attacks as

Microsoft has ended its technical support for Windows XP. The support ended on 8 April 2014.
In Windows 7, there is an application called Windows biometric framework (WBF),

which aims to support biometric authentication devices. To provide a common interface for
all biometric devices, there is a Windows biometric driver interface (WBDI). The WBDI
consists of a variety of interfaces having the appropriate data structures and I/O controls for
biometric devices.

UNIX

UNIX is a multi-user multi-tasking OS. It was first developed in the 1960s and has been under
constant development ever since. As discussed in Chapter 1, UNIX was developed initially
from the MULTICS project that began in the mid 1960s as a joint effort by General Electric,
Massachusetts Institute of Technology (MIT), and Bell Labs. Through continuous develop-
ment, Ken Thompson in the University of California at Berkeley, along with his two graduate
students, wrote the first Berkeley version of UNIX, which was distributed to students. This
resulted in the source code being worked on and developed by many different people. The
Berkeley version of UNIX is known as Berkeley Software Distribution (BSD). The BSD sup-
ported vi editor, C shell, virtual memory (VM), and TCP/IP.

 Table CS1.1 summarizes the decade wise growth of UNIX since its inception.
Table CS1.1 Decade wise growth of UNIX

1969–1979 The first decade initially witnessed the origin of UNIX as a joint venture by Dennis Ritchie,
Ken Thompson, and others at MIT. Later, the First Edition was developed, which was used
for text processing of patent documents. Thereafter, UNIX was rewritten in C. It was termed
as Fourth Edition and proved to be a major milestone for an OS’s portability among different
systems. Version 6 was also developed in this decade, which was the first to be widely avail-
able outside Bell Labs. It became the basis of the first Berkeley version of UNIX developed
at the University of California, Berkley. Finally, the Seventh Edition was developed, in which
the kernel was more than 40 KB.

1980–1990 Xenix was introduced by Microsoft. Later, AT&T’s UNIX System Group (USG) developed
System III, the first public release outside Bell Labs. Henceforth, Computer Research Group
(CRG), USG, and a third group together formed UNIX System Development Lab. In the later
years, the University of California at Berkeley released 4.2BSD, which included TCP/IP, new
signals, and much more. Thereafter, System V Release 2 (SVR2) came in, which introduced
demand paging, copy on write, and so on. Subsequently, 4.3BSD released, which included
Internet name server. It had separated machine-dependent and independent code and
introduced the implementation of OSI network protocol stack and virtual memory system.
The next year in succession witnessed the origin of SVR3. It had file system switch (FSS),
virtual file system (VFS) mechanism, shared libraries, and transport layer interface. Towards
the end of this decade, SVR4 brought with itself TCP/IP, socket support, VFS, and network
file system NFS. The last year marked the launch of XPG3 Brand by X/Open System

AQ:1

I Case Study I: History
and Architecture of
Operating Systems

Untitled-5 89 4/17/2014 2:02:14 PM

Features of the Book

Solved Examples

Numerous solved examples inter-
spersed within the book facilitate
the understanding of the concepts
 discussed.

Basice Memory Management 295

PA<LR Address

PA>LR Address

PA LA
Processor Adder

BR

10200

Comparator

LR

10400

Memory

Interrupt to OS
LA: Logical address

PA: Physical address

BR: Base register

LR: Limit register

Fig. 10.3 Memory mapping using base and limit registers

When the process starts executing, relative or logical addresses are generated by the CPU.
These relative addresses are first added in the base register to produce an absolute address
or physical address (see Fig. 10.3). Next, the address is compared with the address stored in
the limit register. If the address is less than the limit register address, the instruction execu-
tion continues. It is clear that adder (to add the base and relative address) and comparator (to
compare the generated physical address with the limit register address) are also required in the
hardware of a Memory Management Unit (MMU). In this way, the MMU, with the help of
base and limit registers, performs the memory mapping, by converting logical addresses into
physical addresses.

Example 10.2

A process is to be swapped-in at the location 20100 in memory. If logical addresses generated
by the process are 200, 345, 440, and 550, what are the corresponding physical addresses?

Solution

The relocation register will be loaded with the address 20100. So adding the logical addresses
to the relocation register, the corresponding physical addresses are:
20100 + 200 = 20300
20100 + 345 = 20445
20100 + 440 = 20540
20100 + 550 = 20650

10.2.5 Protection and Sharing
In a multi-programming environment, there is always an issue of protection of user processes,
such that they do not interfere with others and even the OS. Therefore, it is required that the
process should not be able to enter the memory area of other processes or the OS area. Each
process should execute within its allocated memory. It means whenever a process executes,
all the address generated must be checked, so that it does not try to access the memory of other
processes. The base and limit registers serve this purpose. In protection terminology, some-

Chapter 10.indd 295 3/31/2014 10:00:11 AM

Case Studies

The first six parts of the
book include case studies
on operating systems, such
as UNIX, Solaris, Linux,
and Windows.

The chapter on real-
time OSs contains two
case studies on VxWorks
and QNX.

502 Principles of Operating Systems

Linux

The device drivers in Linux are implemented as loadable kernel modules. These can be dynami-
cally loaded and unloaded as they are required. The devices are represented as files only known
as device special files. Each special file has a corresponding device driver. The special files are
accessed via VFS. The system calls are first passed to VFS. After this, VFS calls device drivers.
There are two types of special files in Linux:
 • Special file in block mode

 These are special files corresponding to block devices like disk. The I/O operations are
carried out with the help of buffer cache. For block devices, the kernel maintains a request
list for the pending requests. Instead of sending the pending requests to the devices in their
arrival order, these are sent to the request list. The kernel now can order the requests (based
on some factors like location of disk head) in request list, so that I/O operations performance
can be increased.

 • Special files in character mode
These are special files corresponding to unstructured peripheral devices like ports.
Each special file is characterized by three attributes:

 • File type (block or character)
 • Major identification number

 Each device is identified by a 32-bit device identification number. The major identification
number identifies the driver controlling the device.

 • Minor identification number
 This identification number allows the driver to be aware of the physical device upon which
it should act.
There is an interrupt management module in Linux which is a low level module responsible

for physical programming of the interrupt controller.
Disk Scheduling
Linux adopts two improved disk scheduling algorithms discussed below.
Deadline scheduling This scheduling algorithm prevents starvation problem occurring in

disk scheduling. A deadline scheduler has been designed that services each request within
a given deadline. The deadline scheduler attempts to service the request before its deadline
expires. To meet the deadline of each request, the scheduler has to process quickly. For this
purpose, a single queue for requests does not suffice as linear search of requests in this queue
would lead to poor performance and missed deadlines. Therefore, deadline scheduler uses fol-
lowing three queues:
 • Sorted elevator queue
 • Read FIFO queue
 • Write FIFO queue

When a new request arrives, the request is placed in this queue. The queue is sorted accord-
ing to the disk head positions. Each incoming request is also placed at the tail of a read queue
or write queue depending on the type of request. Thus, two separate queues based on the opera-
tions are maintained in order to improve the efficiency.

There is a deadline period with each request. For a read request, the expiration time is 0.5
seconds whereas for a write request, it is 5 seconds. These values provide better performance
in general but can be changed by system administrator. When a request gets serviced, it is re-
moved from the sorted queue as well as from the corresponding read/write queue.

Case Study Part V.indd 502 3/31/2014 5:13:59 PM

614 Principles of Operating Systems

VxWORKS

VxWorks is a high-performance RTOS designed by WindRiver Systems. It is supported on
almost all popular architectures such as x86, PowerPC, ARM, MIPS, and so on. VxWorks is a
flexible OS that may be configured as a minimal kernel having some minimal kernel functional-
ities, which may be extended by adding some custom components. It has a highly scalable hard
real-time kernel, wind, which provides the basic multi-tasking environment. The kernel main-
tains the current state of each task in the system through the TCB. There are four task states.
A newly created task enters the system through suspended state. After activation, the task enters
the ready state. The state of the task, when it waits for a resource, is known as Pend. The task
may also enter the state delayed if it waits for a fixed time.

Priority-based pre-emptive scheduling algorithm is the default algorithm to allocate ready
tasks to the processor. But there is also a provision with which round-robin scheduling can be
selected in case there is requirement of the same. In general, round-robin scheduling is used
for tasks having the same priority. The kernel has 256 priority levels, numbered from 0 to 255.
Priority number 0 is considered as the highest and 255 as the lowest. As a task is created in the
system, its priority is assigned, based on the design of the system.

The wind scheduler can be explicitly enabled and disabled as per the requirement of a task.
A pre-emption lock is used for this purpose. When the scheduler is disabled by a task, no
 priority-based pre-emption can take place while the task is running. But after some time, if that
task blocks, the scheduler selects the next higher priority task to execute. When the blocked
task unblocks and begins execution again, the scheduler is disabled again. The pre-emption
locks can be used for mutual exclusion, but for the duration of pre-emption locking, that is,
disabling the scheduler must be for a short duration.

There is an exception handling package that takes care of exceptions produced in the system
due to errors in program code or data. The default exception handler suspends the task that
caused the exception and saves the state of the task when exception occurs. The kernel and
other tasks continue uninterrupted.

VxWorks provides many methods for inter-task communication and synchronization.
One of them is shared memory. Another is semaphore. VxWorks semaphores are highly
 optimized and provide the fastest inter-task communication mechanism. Three types of
 semaphores are provided: binary, mutual exclusion, and counting. The mutual exclusion-based
semaphore is identical to the binary semaphore, but is used only for mutual exclusion, that is,
it is released only by the task that locked it. There can be the problem of priority inversion in
mutual exclusion-based semaphore. Therefore, it has the option of enabling PIP algorithm that
assures the resolution of the priority inversion problem. There can be another problem in this
semaphore. A task, while executing inside the critical section, may be deleted. Deleting the task
unexpectedly may corrupt the resource and make it unavailable to other tasks. To avoid this
situation, the mutual exclusion-based semaphore provides the option that enables the task not to
be deleted while it is inside its critical section. Another mechanism for inter-task communica-
tion is message queue. Message queues allow a variable number of messages, each of variable
length, to be queued. Any task can send or receive messages from the message queue. The send
and receive primitives use timeout parameters. On the one hand, when sending the message, the
timeout specifies the number of ticks to wait for the buffer space to become available. On the
other hand, while receiving the message, the timeout specifies the number of ticks to wait for
the message to become available. There may be some urgent messages. These messages may
be added at the head of the queue.

Untitled-4 614 4/17/2014 1:48:54 PM

 Multiple Choice
Questions and
Review Questions

Also provided at the chapter end,
they help students to prepare for
their examination.

54 Principles of Operating Systems

SUMMARY

Let us have a quick review of the important concepts dis-
cussed in this chapter:

 • Everything an operating system does is interrupt driven.
 • Interrupt is a signal to the processor generated by hard-

ware or software indicating an event that needs immedi-
ate attention.

 • On the processor hardware, there is an interrupt-request
(IRQ) line that the processor senses for any interrupt after
each instruction execution of the process.

 • There is a program known as interrupt service routine
(ISR) corresponding to each interrupt generated.

 • The addresses of all ISRs are placed in a list known as
Interrupt Vector Table (IVT).

 • A hardware interrupt is generated from an external
 device, which could be either a part of the computer itself
such as a keyboard, disk or an external peripheral.

 • The software interrupts are caused either by an excep-
tional condition in the process, or a special instruction in
the instruction set which causes an interrupt when it is
executed.

 • Device controller is an electronic device in the form of
chip or circuit that controls the communication between
the system and the I/O device.

 • To communicate with each type of device controller a
specific code in the form of a device driver is written
that takes care of the specific device controller regis-
ters and the commands. Thus, the device drivers act
as a layer that hides the differences among the device
controllers.

 • The modern OSs separate code and data of the OS
from the code and data of the user processes. This
separation is termed as dual mode operation. The dual
mode operation has two modes: the kernel mode and
the user mode.

 • Initially, the mode bit is set to 0, which means the con-
trol is with the OS when the computer system is started.
When a user process wants to gain the control, the mode
bit is set to 1 and the user is able to execute in his own
area but is prevented all access to the kernel memory
space.

 • The INTEL modern processors come with four privilege
rings (0-3).

 • All I/O instructions are privileged. To access any I/O
 device, the process may request to the OS in the form
of a system call.

 • The system call is a user request to the operating system
which is interpreted and executed on the hardware by the
operating system on the behalf of the user.

 • In programmed I/O technique, the processor time is
wasted as it continually interrogates the status of I/O
 operation.

 • In DMA-based I/O, instead of generating multiple
 interrupts after every character, a single interrupt is
 generated for a block, thereby reducing the involvement
of the processor.

 • There are three following steps in disk formatting: low
level formatting, disk partitioning, and logical formatting.
The low-level formatting is performed by the manufac-
turer and the other two steps are performed by the OS
and, therefore, they are linked to it.

 • The purpose of low-level disk formatting is to organize
the surface of each platter into entities called tracks and
sectors, by polarizing the disk areas.

 • Disk partitioning is a process of dividing the storage
space of a hard disk into separate data areas. These
separate data areas are known as partitions.

 • Primary partition is a partition that is required to store and
boot an operating system.

MULTIPLE CHOICE QUESTIONS

 1. The modern OSs are .
 a) programmed-I/O driven c) software-driven
 b) interrupt-driven d) hardware-driven

 2. Interrupt is a signal to the generated by
hardware or software.

 a) memory c) processor
 b) device controller d) none

 3. IVT is generally placed in memory.
 a) low c) disk
 b) high d) none

 4. The number of hardware interrupts is limited by the number
of .

 a) processes c) IRQ lines
 b) processors d) none

 5. is also known as an adapter.
 a) memory c) device
 b) processor d) device controller

 6. Which of the device controller register is read-only?
 a) control c) data
 b) status d) none

Untitled-6 54 4/17/2014 3:11:14 PM

56 Principles of Operating Systems

 7. Which of the device controller register is write-only?
 a) control b) status
 c) data d) none

 8. Initially, the mode bit is set to .
 a) 1 b) 0
 c) 2 d) none

 9. The base and limit registers are updated for every process
in mode.

 a) user b) kernel
 c) both user and kernel d) none

 10. The first physical sector on a basic disk contains a data
structure known as the .

 a) partition sector b) basic sector
 c) boot record d) master boot record

REVIEW QUESTIONS

 1. What is an interrupt? What are its types?

 2. What are the tasks to be executed when an interrupt arrives
on the processor?

 3. What is IVT?

 4. What is ISR?

 5. What is a trap?

 6. Provide some examples when software interrupt is
 generated.

 7. Provide some examples when hardware interrupt is generated.

 8. How are multiple interrupts handled?

 9. Differentiate between blocking and non-blocking I/O devices.

 10. What is a timer? Explain its role in operating system.

 11. What is a device controller? How does it work?

 12. What is a device driver? Explain its functioning with device
controller and operating system.

 13. What were the basic problems in multi-programming-based
modern operating systems?

 14. What is the need of a dual mode protection?

 15. What is the need of memory protection?

 16. What is the need of processor protection?

 17. What is the need of I/O protection?

 18. Explain the physical structure of a magnetic disk.

 19. What is a cylinder on a disk?

 20. What is disk partitioning?

 21. Differentiate between primary and extended partitions.

 22. What is MBR?

BRAIN TEASERS

 1. The interrupt number of an hardware interrupt is 8. At what
location in the IVT, its ISR address will be found?

 2. Is nested interrupt possible? If yes, how are they handled?

 3. All I/O instructions are privileged. Then, how does a user
access the devices?

 4. Which of the following instructions should be privileged?
 a) switch from user mode to kernel mode
 b) updating base and limit register
 c) clear memory location
 d) set value of timer
 e) read a clock
 f) interrupts are disabled

 g) Executing a loop to enter user data
 h) Load a value in processor register
 i) Abort a process
 j) Read input from keyboard
 k) Send a file to printer to print
 l) A global variable in the user process reinitialized

 5. Inter-sector and inter-track gaps are used on the disk to
avoid errors. How do these gaps affect storage utilization
on the disk?

 6. Study the DOS and Windows operating systems with refer-
ence to dual mode protection and find out which operating
system provides a better protection in terms of multi-tasking.

Authur Query

AQ: 1 Please verify the sentence for intended meaning and correctness.

Chapter 2.indd 56 3/15/2014 2:42:14 PM

Multi-processor Operating Systems 615

In VxWorks, across the network, inter-task communication is provided through sockets.
When a socket is created, the Internet communication protocol (ICP) needs to be specified.
VxWorks supports TCP and UDP. VxWorks also supports signal facility, which is more appro-
priate for error and exception handling as compared to other IPC methods.

Since interrupt handling is a major issue in real-time systems, as the system is informed of
external events only through these interrupts, ISRs in VxWorks run in a special context outside
of any task’s context. Thus, interrupt handling incurs no context switch. VxWorks has a mecha-
nism of watchdog timer. It allows any C function to be connected to a specified time delay. It is
maintained as part of system clock ISR.

To have an overview of VxWorks kernel, some important system calls are listed in
Table 20.2.

Table 20.2 System calls in VxWorks

Sl. no. System call Description

 1 kernelTimeSlice() Time slice used in controlling round-robin scheduling

 2 taskPrioritySet() Changes the priority of a task

 3 taskLock() Disables scheduler

 4 taskUnlock() Enables scheduler

 5 taskSpawn() Creates a new task

 6 taskInit() Initializes a new task

 7 taskActivate() Activates an initialized task

 8 taskPrioityGet() Returns the priority of a task

 9 taskTcb() Returns the pointer to TCB of task

10 taskSuspend() Suspends a task

11 taskResume() Resumes a task

12 semBCreate() Allocates and initializes a binary semaphore

13 semMCreate() Allocates and initializes a mutual-exclusion semaphore

14 semCCreate() Allocates and initializes a counting semaphore

15 msgQCreate() Allocates and initializes a message queue

16 msgQSend() Sends a message to a message queue

17 msgQReceive() Receives a message from a message queue

18 wdCreate() Allocates and initializes a watchdog timer

QNX

QNX is one of the first commercially successful microkernel-based OSs that has been adopted
in medical instruments, cars, nuclear monitoring systems, military communications, and mobile
phones. It is supported on almost all popular architectures such as x86, PowerPC, ARM, MIPS,
and so on. QNX is a multi-tasking priority-driven real-time OS that provides fast context
 switching. The microkernel contains only scheduler, IPC, interrupt handling, and timers. The

Untitled-4 615 4/17/2014 1:48:54 PM

90 Principles of Operating Systems

2002-
2009

The core volumes of Version 3 of the Single UNIX Specification were approved as an interna-
tional standard.

Architecture of UNIX Operating System
UNIX was initially developed in monolithic structure. Many modules and interfaces were
added over the years in this structure only. The classic architecture of UNIX is divided
into layers with the hardware and application programs existing at the extreme ends. The
 structure of UNIX is shown in Fig. CS1.1. It consists of two parts: kernel and system pro-
grams. The kernel was evolved into a series of interfaces and device drivers. The kernel
architecture supports the key requirements of UNIX which fall in two categories namely,
functions for file management (files include device files) and functions for process man-
agement. Process management entails allocation of resources including CPU, memory, and
offers services that processes may need. The file management in itself involves handling all
the files required by the processes, communication with device drivers and regulating trans-
mission of data to and from peripherals.

Later on, UNIX was modified as microkernel architecture. True64 is the microkernel based
UNIX version. The latest versions of UNIX including SVR4, Solaris are based on a modular and
dynamic architecture. The modular architecture design is based on object oriented program-
ming techniques that helps in creating a modular kernel. The kernel in this architecture has a core
kernel that is always resident in memory along with the modules which can be linked to the

core kernel either during boot time or run time
without any kernel re-configuration or com-
pilation. This is why these modules are also
known as dynamically loadable modules. The
object oriented approach helps in loading the
modules dynamically and link them to the core
kernel thereby running them in kernel mode.
The advantage of this modular architecture
is that any module can be replaced or added
without affecting rest of the structure. Due to
this dynamic architecture, it may evolve to ac-
commodate new modules (for new devices and
services) without even rebooting. Since the
modules are loaded on demand, the memory
footprint is also reduced.

SOlArIS

Sun Solaris is a UNIX variant operating system that was originally installed on SPARC com-
puters. It is a complete operating environment, built on a modular and dynamic kernel. Solaris
primarily runs on SPARC and Intel x86 processors.

The growth of this operating system, since its inception, is briefly summarized in table CS1.2.

Application
Programs

Shell and Library
routines
Kernel

Hardware

Fig. CS1.1 Unix Structure

Case Study Part I.indd 90 3/29/2014 9:23:03 PM

392 Principles of Operating Systems

WindoWS

In Windows, the virtual memory manager (VMM) component is responsible to allocate memory
and other memory management function. Depending on the processor, Windows provide either
32-bit or 64-bit virtual address space. On 32-bit Windows, each process can address upto 4
gigabytes (GB) of memory. Similarly, each process on 64-bit Windows, can address virtual
address space upto 8 terabytes (TB). All the threads belonging to a process can also access the
corresponding process’ virtual address. Windows XP allocates 4GB virtual address space to
each process. But this space is divided into two parts:
 • First 2 GB is for use of process.
 • Second 2GB space is reserved for the system for kernel-mode components

Depending on the versions of Windows, the physical memory ranges from 2GB to 2TB. The
subset of virtual address space residing in physical memory is called working set. The data
stored on the disk in the form of files is known as pagefiles. The physical memory is divided
into fixed-size page frames having page size of 4 KB on a 32-bit system.

VMM creates two types of memory pools located in the address space reserved for the sys-
tem to manage the memory: non-page pool and paged pool. The virtual addresses are in non-
paged pool whereas the page pool consists of virtual memory.

Memory allocation
The memory allocation is done in the following three steps:
 • A process first reserves space in its virtual address space.
 • The process cannot access the page until it commits it. The commit is performed when the

process is ready to write to the page.
 • Finally the ready process accesses the committed virtual memory.

This type of memory allocation has an advantage that it uses only the required memory.

Memory Mapping
Windows XP uses two-level page table structure. Therefore, the virtual address is composed
of the following:
 • The offset in page directory table (PDT)
 • The offset in page table (PT)
 • Offset on a page in physical memory

Each process is assigned a page table directory. Whenever, there is a process switching, the
location of new process’ page table directory is loaded into the page directory register. Each
entry in PDT points to the PT. The value of page directory register is added with the first por-
tion of virtual address that determines the location of page directory entry in PDT. The value
in page directory entry is then added to second component of virtual address that points to the
page table entry that contains the page frame number corresponding to the virtual page’s loca-
tion in the memory. Finally, the page table entry is concatenated with the third component of
the address to form the physical address.

The five protection bits in page table entry out of 32 bits are for protection indicating whether
a process can read, write, or execute the page. These protection bits may also inform whether
a page is copy-on-write page. When a page is to be shared, the system uses only one page with
both processes sharing that same copy of the page. However, when one of the processes writes

Case Study Part III.indd 392 3/31/2014 4:56:23 PM

Brain Teasers

Provided at the chapter end, test the conceptual
 understanding of students.

34 Principles of Operating Systems

 12. Explain the difference between DOS, UNIX, Apple Macin-
tosh, and Windows?

 13. Explain the differences between multi-programming, multi-
user, and multi-tasking OSs.

 14. Explain the characteristics of multiprocessor and distributed
systems.

 15. What is the differences between network and distributed
OSs?

 16. What is the difference between real-time and embedded
operating systems?

 17. How does operating system function as resource manager?

 18. How does operating system provide protection?

 19. What is a virtual machine? How does operating system
function as a virtual machine manager?

 20. Discuss the role of shell and kernel in operating system.

 21. What are the challenges in designing a multiprocessing/
distributed operating systems?

 22. What is the difference between a smart card and smart-
phone?

BRAIN TEASERS

 1. Can you work without operating system in your computer
system?

 2. The major drawback of multiprogrammed batch systems
was the lack of user/programmer interaction with their jobs.
How can you overcome this?

 3. The response time is the major requirement of a multiuser
time-sharing OS. What are the things that need to be
improved for this requirement from a system designer’s
viewpoint?

 4. Is time-sharing OS suitable for real-time systems?

 5. Examine the following conditions and find appropriate oper-
ating system for them:

 a) In a LAN, users want to share some costly resources
like laser printers.

 b) Multiple users on a system want quick response on
their terminals.

 c) Railway reservation system
 d) A user wants to work with multiple jobs on his system.

 e) In a network system you want to transfer file and log on
to some node.

 f) There are some jobs in the system which does not want
user interaction.

 g) Washing machine

 6. Explore the features of operating system being used in
recent design of smartphones.

 7. Do all operating systems contain shell?

 8. Multiprogramming is inherent in multiuser and multitasking
systems. Explain how.

 9. There are four jobs running in a multiprogramming system
with the following requirements:

job 1: requires disk after every 1 min, device service time including
wait and access = 3 min, total processing time = 4 min.
job 2: does not require any I/O, total processing time = 7 min.
job 3: requires printer after every 3 min, device service time includ-
ing wait and access = 2 min, total processing time = 9 min.

Author Query:
AQ:1 - OK at add ‘GUI-based’ here? Pls check for intended meaning.

AQ:2 - Windows 7 and 8?

Chapter 1.indd 34 3/15/2014 3:40:04 PM

Shell Programming

The last part of the book discusses shell
programming, which will aid students in per-
forming the practicals for this course. The
chapter consists of numerous programming
examples and exercises.23.1 INTRODUCTION

This chapter gives an overview of the UNIX shells and how to perform shell-programming exercises.
The shell programming is as simple as we do in any high-level language. The only difference is the
syntax of the commands used in the shell. Therefore, the prerequisite for this chapter is that the reader
should be well aware of any high-level language constructs. This chapter introduces various UNIX
shells and the related programming constructs with the help of programming examples.

23.2 ROLE OF SHELL

UNIX or Linux shell is a command line interpreter that handles users’ interactions with the computer
system. It is a command-programming language that acts as an intermediate between the user and the
kernel. Its features include control-flow primitives, parameter passing, variables, and string substitution.
A shell allows you to easily create a new program with all the privileges of any other UNIX program.

There are various types of a shell that have come into the market
since its inception. These shells share many similarities but each
shell also has its own set of recognized commands, syntax, and
functions that are important for advanced users.

23.3 TYPES OF SHELLS

There exist various types of shells in UNIX and UNIX-like systems.
In this section, some important ones are discussed.

sh: It was developed by Stephen Bourne, of AT&T Bell
 Laboratories and is also known as Bourne shell after his name.
The binary program of the Bourne shell is located at/bin/sh on
most UNIX systems and provides a user interface to a huge num-
ber of UNIX utilities. It is good for I/O control but not well-suited
for interactive users. Its default command prompt is denoted as $
sign.

ash: Almquist shell, also known as A shell or ash, is a high-speed,
POSIX-compatible UNIX shell designed to replace the Bourne shell
in later BSD distributions. Its initial versions did not support com-
mand history feature. Its recent versions support UNIX text-editing
programs, such as emacs and vi modes.

23 Shell Programming
and UNIX Shells

Learning Objectives
After reading this chap-
ter, you should be able to
understand:
 • Shell and its types
 • File- and directory-related

commands in UNIX
 • Filters and related commands
 • Input/Output redirection and

related commands
 • Communication-related

commands in UNIX
 • Shell meta characters
 • Vi editor and its various

commands
 • Shell scripts
 • Shell programming constructs
 • Shell script examples

Chapter 23.indd 645 4/12/2014 6:51:20 AM

Mobile Operating Systems

The chapter on mobile OSs delves into the
characteristics of various mobile devices
and issues related to mobile OSs. It also dis-
cusses the Android OS.

21.1 INTRODUCTION

We are living in a world of mobile devices such as smartphones, laptops, and tablets. These mobile
devices are different as compared to general desktop systems. These are designed and run in very
restricted environment/resources. Therefore, the OSs for these devices cannot be the same as those
for desktop systems. The mobile OSs have been designed for each category of mobile devices. This
chapter explores the types and characteristics of mobile devices and then discusses the mobile OSs.
Since mobile OSs pose many new challenges such as power management, as power is a critical issue in
mobile devices, all such issues have been discussed in detail. Finally, the most popular mobile OS today,
that is, Android has been discussed in detail.

3.2 FUNCTIONS OF A RESOURCE MANAGER

The OS as a resource manager performs the following functions:

3.2.1 Resource Abstraction/Transformation
As discussed in Chapter 1, it is really difficult to work with
hardware devices. To perform read or write function from I/O
devices, we need to know the structure of every device in the
form of registers: data registers, control registers, and so on.
A user or programmer cannot work efficiently if he or she works
so close to the hardware, since there are numerous details that
need to be taken care of; thus, hardware resources are complex
interfaces to work with. To ease the job of the user, the OS hides
the complex details of the hardware and presents I/O devices to
them in such a form that it is easy to interface with these devices.
In fact, actual hardware devices are simulated in the form of a
program known as virtual device. The user program interfaces
with the virtual device, which, in turn, interfaces with the actual
device. In this way, actual device has been abstracted or trans-
formed into a virtual device and presents the user with an easy
interface.

Besides providing an easy interface to the devices, another
benefit of abstraction is that the concept of virtual devices
provides the best utilization of the devices. For example,

21 Mobile Operating
Systems

Learning Objectives
After reading this chapter,
you should be able to
understand:
• Operating system as a resource

manager
• Transformation of hardware

devices into virtual devices
• Time division multiplexing
• Space division multiplexing
• Resource scheduling
• Hardware resources
• Virtual resources
• Software resources
• Nature of resources
• Goals of resource management
• Working of resource manager
• Components of resource man-

agement

Untitled-31 56 4/5/2014 1:28:03 PM

558 Principles of Operating Systems

SMS and MMS, read and forward e-mails, access the personal organizer and calendar, and
so on. Furthermore, if the user is able to tap into a mobile phone’s basic hardware features,
additional data from the surroundings can be collected. For example, by utilizing the voice
recording hardware or camera, the attacker can misuse the device as a listening device or
take photos or videos. Furthermore, the user’s privacy can be compromised by exploiting the
location information using GPS.

 • Since the mobile devices are equipped with high-frequency processor and high-capacity
memory, the attackers also exploit the raw computing power along with the broadband
network access. The high-speed Internet links are also used to deploy the botnets.

 • The attacker sometimes aims at performing harmful malicious actions on the mobile devices.
The actions may result in loss of data, draining the device battery, generating network
 congestion, disabling the device completely, and so on.
Thus, the mobile devices, especially smart-phones are prone to attacks any time. The mobile

OS therefore must provide the security mechanisms to address the security issues.

21.4 ANDROID OPERATING SYSTEM

Android is a software stack including mobile OS that has been primarily designed for touch-
screen-based mobile devices. It was originally developed by Android Inc. and was later sold to
Google in 2005. Android consists of the following components (see Fig. 21.1):

 1. Linux kernel: It is as an underlying OS interface. It acts as an abstraction hardware layer
for Android. The Linux kernel provides memory management, networking, and other basic
OS facilities.

 2. Native libraries: These are hardware-specific shared libraries developed in C/C++ language
and are pre-installed on the device by vendor.

 3. Android runtime: It includes Dalvik Virtual Machine (DVM) code (that runs the Java pro-
grammed applications) and core Java libraries.

 4. Application framework: It consists of classes used in writing Android-based applications.
 5. Android applications: It is the highest level layer that provides the end-user applications

including the applications shipped with Android and the applications that can be downloaded
by the user. These applications run on DVM just like Java Virtual Machine (JVM). DVM is
tailor-made according to the require-
ments of mobile devices. Moreover, it
runs on a relatively smaller RAM and
slower processor.

Our concern here is to discuss only the
OS part of Android. Android OS is a low-
cost, customizable, and light-weight OS
that not only has become the world’s best
environment for smart-phones but also
has been integrated in microwaves, digi-
tal cameras, refrigerators, smart watches,
media players, robots, set-top box, and so
on. The first version of Android appeared
in 2008 and has gone through several ver-
sions till now (see Table 21.1).

Linux kernel

Libraries

Application framework

Applications

Android runtime

Fig. 21.1 Android architecture

Chapter 21.indd 558 3/15/2014 9:37:53 PM

Visual WalkthroughVisual Walkthrough

21.1 INTRODUCTION

We are living in a world of mobile devices such as smartphones, laptops, and tablets. These mobile
devices are different as compared to general desktop systems. These are designed and run in very
restricted environment/resources. Therefore, the OSs for these devices cannot be the same as those
for desktop systems. The mobile OSs have been designed for each category of mobile devices. This
chapter explores the types and characteristics of mobile devices and then discusses the mobile OSs.
Since mobile OSs pose many new challenges such as power management, as power is a critical issue in
mobile devices, all such issues have been discussed in detail. Finally, the most popular mobile OS today,
that is, Android has been discussed in detail.

3.2 FUNCTIONS OF A RESOURCE MANAGER

The OS as a resource manager performs the following functions:

3.2.1 Resource Abstraction/Transformation
As discussed in Chapter 1, it is really difficult to work with
hardware devices. To perform read or write function from I/O
devices, we need to know the structure of every device in the
form of registers: data registers, control registers, and so on.
A user or programmer cannot work efficiently if he or she works
so close to the hardware, since there are numerous details that
need to be taken care of; thus, hardware resources are complex
interfaces to work with. To ease the job of the user, the OS hides
the complex details of the hardware and presents I/O devices to
them in such a form that it is easy to interface with these devices.
In fact, actual hardware devices are simulated in the form of a
program known as virtual device. The user program interfaces
with the virtual device, which, in turn, interfaces with the actual
device. In this way, actual device has been abstracted or trans-
formed into a virtual device and presents the user with an easy
interface.

Besides providing an easy interface to the devices, another
benefit of abstraction is that the concept of virtual devices
provides the best utilization of the devices. For example,

21 Mobile Operating
Systems

Learning Objectives
After reading this chapter,
you should be able to
understand:
• Operating system as a resource

manager
• Transformation of hardware

devices into virtual devices
• Time division multiplexing
• Space division multiplexing
• Resource scheduling
• Hardware resources
• Virtual resources
• Software resources
• Nature of resources
• Goals of resource management
• Working of resource manager
• Components of resource man-

agement

Untitled-31 56 4/5/2014 1:28:03 PM

1. Learning Objectives
Provided at the beginning of each chapter,
gives an outline of the topics discussed in
the chapter.

2. Solved Examples
Numerous solved examples interspersed
within the book facilitate the understand-
ing of the concepts discussed.

Basice Memory Management 295

PA<LR Address

PA>LR Address

PA LA
Processor Adder

BR

10200

Comparator

LR

10400

Memory

Interrupt to OS
LA: Logical address

PA: Physical address

BR: Base register

LR: Limit register

Fig. 10.3 Memory mapping using base and limit registers

When the process starts executing, relative or logical addresses are generated by the CPU.
These relative addresses are first added in the base register to produce an absolute address
or physical address (see Fig. 10.3). Next, the address is compared with the address stored in
the limit register. If the address is less than the limit register address, the instruction execu-
tion continues. It is clear that adder (to add the base and relative address) and comparator (to
compare the generated physical address with the limit register address) are also required in the
hardware of a Memory Management Unit (MMU). In this way, the MMU, with the help of
base and limit registers, performs the memory mapping, by converting logical addresses into
physical addresses.

Example 10.2

A process is to be swapped-in at the location 20100 in memory. If logical addresses generated
by the process are 200, 345, 440, and 550, what are the corresponding physical addresses?

Solution

The relocation register will be loaded with the address 20100. So adding the logical addresses
to the relocation register, the corresponding physical addresses are:
20100 + 200 = 20300
20100 + 345 = 20445
20100 + 440 = 20540
20100 + 550 = 20650

10.2.5 Protection and Sharing
In a multi-programming environment, there is always an issue of protection of user processes,
such that they do not interfere with others and even the OS. Therefore, it is required that the
process should not be able to enter the memory area of other processes or the OS area. Each
process should execute within its allocated memory. It means whenever a process executes,
all the address generated must be checked, so that it does not try to access the memory of other
processes. The base and limit registers serve this purpose. In protection terminology, some-

Chapter 10.indd 295 3/31/2014 10:00:11 AM

3. Case Studies
The first six parts of the book include
case studies on operating systems, such as
UNIX, Solaris, Linux, and Windows.

The chapter on real-time OSs contains
two case studies on VxWorks and QNX.

Operating System
Architectures

4

UNIX

UNIX is a multi-user multi-tasking OS. It was fi rst developed in the 1960s, and has been under constant
development ever since. As discussed in Chapter 1, UNIX was developed initially from MULTICS
project that began in the mid 1960s as a joint effort by General Electric, Massachusetts Institute for
Technology and Bell Laboratories. Through the continuous development, Ken Thompson in University
of California at Berkeley along with his two graduate students wrote the fi rst Berkely version of UNIX,
which was distributed to students. This resulted in the source code being worked on and developed by
many different people. The Berkeley version of UNIX is known as Berkeley Software Distribution
(BSD). BSD supported vi editor, C shell, virtual memory and TCP/IP.
Table CS1.1 given below summarizes the decade wise growth of UNIX since its inception.
Table CS1.1 Decade wise growth of UNIX

1969-
1979

The fi rst decade initially witnessed the origin of UNIX as a joint venture by Dennis Ritchie, Ken
Thompson, and others at MIT. Later, the First Edition was developed which was used for text
processing of patent documents Thereafter, UNIX was rewritten in C. It was termed as Fourth
Edition and proved to be a major milestone for operating system’s portability among different
systems. Version 6 was also developed in this decade which was the fi rst to be widely available
out side of Bell Labs. It became the basis of fi rst Berkeley version of UNIX developed at University
of California, Berkley. Finally, the Seventh Edition was developed in which the kernel was more
than 40 Kilobytes (K).

1980-
1990

Xenix was introduced by Microsoft. Later, AT&T’s UNIX System Group (USG) developed Sys-
tem III, the fi rst public release outside Bell Laboratories. Henceforth, Computer Research Group
(CRG), UNIX System Group (USG), and a third group together formed UNIX System Develop-
ment Lab. In the later years, University of California at Berkeley released 4.2BSD, which included
TCP/IP, new signals and much more. Thereafter, SystemV Release 2(SVR2) came in which
introduced demand paging, copy on write, etc. Subsequently, 4.3BSD released, which included
internet name server. It had separated machine dependent and independent code and introduced
the implementation of OSI network protocol stack and virtual memory system. The next year in
succession witnessed the origin of System V Release 3(SVR3). It had File System Switch (FSS),
Virtual fi le system mechanism, shared libraries, and Transport Layer Interface. Towards the end
of this decade, SVR4 brought with itself TCP/IP, Socket support, Virtual File System and NFS.
The last year marked the launch of XPG3 Brand by X/Open System

1992-
2001

The third decade began with the launch of System V Release 4.2. In the subsequent year,
4.4BSD was released by Berkeley. It had TCP/IP, Socket support, etc. The Single UNIX specifi ca-
tion was introduced that separates UNIX trademark from any other stream. Later on, version 2 of
Single UNIX Specifi cation was introduced. This version includes real time support, threads, and
64-bit processor support. Further, version 3 of Single UNIX Specifi cation was released.

Operating System
Architectures

4 Case Study I: History and
Architecture of Operating Systems

I

Case Study Part I.indd 89 3/29/2014 9:23:03 PM

90 Principles of Operating Systems

2002-
2009

The core volumes of Version 3 of the Single UNIX Specification were approved as an interna-
tional standard.

Architecture of UNIX Operating System
UNIX was initially developed in monolithic structure. Many modules and interfaces were
added over the years in this structure only. The classic architecture of UNIX is divided
into layers with the hardware and application programs existing at the extreme ends. The
 structure of UNIX is shown in Fig. CS1.1. It consists of two parts: kernel and system pro-
grams. The kernel was evolved into a series of interfaces and device drivers. The kernel
architecture supports the key requirements of UNIX which fall in two categories namely,
functions for file management (files include device files) and functions for process man-
agement. Process management entails allocation of resources including CPU, memory, and
offers services that processes may need. The file management in itself involves handling all
the files required by the processes, communication with device drivers and regulating trans-
mission of data to and from peripherals.

Later on, UNIX was modified as microkernel architecture. True64 is the microkernel based
UNIX version. The latest versions of UNIX including SVR4, Solaris are based on a modular and
dynamic architecture. The modular architecture design is based on object oriented program-
ming techniques that helps in creating a modular kernel. The kernel in this architecture has a core
kernel that is always resident in memory along with the modules which can be linked to the

core kernel either during boot time or run time
without any kernel re-configuration or com-
pilation. This is why these modules are also
known as dynamically loadable modules. The
object oriented approach helps in loading the
modules dynamically and link them to the core
kernel thereby running them in kernel mode.
The advantage of this modular architecture
is that any module can be replaced or added
without affecting rest of the structure. Due to
this dynamic architecture, it may evolve to ac-
commodate new modules (for new devices and
services) without even rebooting. Since the
modules are loaded on demand, the memory
footprint is also reduced.

SOlArIS

Sun Solaris is a UNIX variant operating system that was originally installed on SPARC com-
puters. It is a complete operating environment, built on a modular and dynamic kernel. Solaris
primarily runs on SPARC and Intel x86 processors.

The growth of this operating system, since its inception, is briefly summarized in table CS1.2.

Application
Programs

Shell and Library
routines
Kernel

Hardware

Fig. CS1.1 Unix Structure

Case Study Part I.indd 90 3/29/2014 9:23:03 PM

502 Principles of Operating Systems

Linux

The device drivers in Linux are implemented as loadable kernel modules. These can be dynami-
cally loaded and unloaded as they are required. The devices are represented as files only known
as device special files. Each special file has a corresponding device driver. The special files are
accessed via VFS. The system calls are first passed to VFS. After this, VFS calls device drivers.
There are two types of special files in Linux:
 • Special file in block mode

 These are special files corresponding to block devices like disk. The I/O operations are
carried out with the help of buffer cache. For block devices, the kernel maintains a request
list for the pending requests. Instead of sending the pending requests to the devices in their
arrival order, these are sent to the request list. The kernel now can order the requests (based
on some factors like location of disk head) in request list, so that I/O operations performance
can be increased.

 • Special files in character mode
These are special files corresponding to unstructured peripheral devices like ports.
Each special file is characterized by three attributes:

 • File type (block or character)
 • Major identification number

 Each device is identified by a 32-bit device identification number. The major identification
number identifies the driver controlling the device.

 • Minor identification number
 This identification number allows the driver to be aware of the physical device upon which
it should act.
There is an interrupt management module in Linux which is a low level module responsible

for physical programming of the interrupt controller.
Disk Scheduling
Linux adopts two improved disk scheduling algorithms discussed below.
Deadline scheduling This scheduling algorithm prevents starvation problem occurring in

disk scheduling. A deadline scheduler has been designed that services each request within
a given deadline. The deadline scheduler attempts to service the request before its deadline
expires. To meet the deadline of each request, the scheduler has to process quickly. For this
purpose, a single queue for requests does not suffice as linear search of requests in this queue
would lead to poor performance and missed deadlines. Therefore, deadline scheduler uses fol-
lowing three queues:
 • Sorted elevator queue
 • Read FIFO queue
 • Write FIFO queue

When a new request arrives, the request is placed in this queue. The queue is sorted accord-
ing to the disk head positions. Each incoming request is also placed at the tail of a read queue
or write queue depending on the type of request. Thus, two separate queues based on the opera-
tions are maintained in order to improve the efficiency.

There is a deadline period with each request. For a read request, the expiration time is 0.5
seconds whereas for a write request, it is 5 seconds. These values provide better performance
in general but can be changed by system administrator. When a request gets serviced, it is re-
moved from the sorted queue as well as from the corresponding read/write queue.

Case Study Part V.indd 502 3/31/2014 5:13:59 PM

392 Principles of Operating Systems

WindoWS

In Windows, the virtual memory manager (VMM) component is responsible to allocate memory
and other memory management function. Depending on the processor, Windows provide either
32-bit or 64-bit virtual address space. On 32-bit Windows, each process can address upto 4
gigabytes (GB) of memory. Similarly, each process on 64-bit Windows, can address virtual
address space upto 8 terabytes (TB). All the threads belonging to a process can also access the
corresponding process’ virtual address. Windows XP allocates 4GB virtual address space to
each process. But this space is divided into two parts:
 • First 2 GB is for use of process.
 • Second 2GB space is reserved for the system for kernel-mode components

Depending on the versions of Windows, the physical memory ranges from 2GB to 2TB. The
subset of virtual address space residing in physical memory is called working set. The data
stored on the disk in the form of files is known as pagefiles. The physical memory is divided
into fixed-size page frames having page size of 4 KB on a 32-bit system.

VMM creates two types of memory pools located in the address space reserved for the sys-
tem to manage the memory: non-page pool and paged pool. The virtual addresses are in non-
paged pool whereas the page pool consists of virtual memory.

Memory allocation
The memory allocation is done in the following three steps:
 • A process first reserves space in its virtual address space.
 • The process cannot access the page until it commits it. The commit is performed when the

process is ready to write to the page.
 • Finally the ready process accesses the committed virtual memory.

This type of memory allocation has an advantage that it uses only the required memory.

Memory Mapping
Windows XP uses two-level page table structure. Therefore, the virtual address is composed
of the following:
 • The offset in page directory table (PDT)
 • The offset in page table (PT)
 • Offset on a page in physical memory

Each process is assigned a page table directory. Whenever, there is a process switching, the
location of new process’ page table directory is loaded into the page directory register. Each
entry in PDT points to the PT. The value of page directory register is added with the first por-
tion of virtual address that determines the location of page directory entry in PDT. The value
in page directory entry is then added to second component of virtual address that points to the
page table entry that contains the page frame number corresponding to the virtual page’s loca-
tion in the memory. Finally, the page table entry is concatenated with the third component of
the address to form the physical address.

The five protection bits in page table entry out of 32 bits are for protection indicating whether
a process can read, write, or execute the page. These protection bits may also inform whether
a page is copy-on-write page. When a page is to be shared, the system uses only one page with
both processes sharing that same copy of the page. However, when one of the processes writes

Case Study Part III.indd 392 3/31/2014 4:56:23 PM

544 Principles of Operating Systems

20.8 CASE STUDY: VxWORKS

VxWorks is a high-performance real-time OS designed by WindRiver systems. It is supported
on almost all popular architectures such as x86, PowerPC, ARM, MIPS, and so on. VxWorks is
a flexible OS that may be configured as a minimal kernel having some minimal kernel function-
alities, which may be extended by adding some custom components. It has a highly-scalable
hard-real-time kernel, wind, which provides the basic multi-tasking environment. The kernel
maintains the current state of each task in the system through the TCB. There are four task
states. A newly-created task enters the system through suspended state. After activation, the
task enters the ready state. The state of the task, when it waits for a resource, is known as Pend.
The task may also enter the state delayed if it waits for a fixed time.

Priority-based pre-emptive scheduling algorithm is the default algorithm to allocate ready
tasks to the processor. But there is also a provision with which round-robin scheduling can be
selected in case there is requirement of the same. In general, round-robin scheduling is used for
tasks having same priority. The kernel has 256 priority levels, numbered from 0 to 255. Priority
number 0 is considered as the highest and 255 as the lowest. As a task is created in the system,
its priority is assigned, based on the design of the system.

The wind scheduler can be explicitly enabled and disabled as per the requirement of a task.
A pre-emption lock is used for this purpose. When the scheduler is disabled by a task, no
 priority-based pre-emption can take place while the task is running. But after some time, if that
task blocks, the scheduler selects the next higher priority task to execute. When the blocked
task unblocks and begins execution again, the scheduler is disabled again. The pre-emption
locks can be used for mutual exclusion, but for the duration of pre-emption locking, that is,
disabling the scheduler must be for a short duration.

There is an exception handling package that takes care of exceptions produced in the system
due to errors in program code or data. The default exception handler suspends the task that
caused the exception and saves the state of the task when exception occurs. The kernel and
other tasks continue uninterrupted.

VxWorks provides many methods for inter-task communication and synchronization.
One of them is shared memory. Another is semaphore. VxWorks semaphores are highly
 optimized and provide the fastest inter-task communication mechanism. Three types of
 semaphores are provided: binary, mutual exclusion, and counting. The mutual exclusion-based
semaphore is identical to the binary semaphore, but is used only for mutual exclusion, that is,
it is released only by the task that locked it. There can be the problem of priority inversion in
mutual exclusion-based semaphore. Therefore, it has the option of enabling PIP algorithm that
assures the resolution of the priority inversion problem. There can be another problem in this
semaphore. A task, while executing inside the critical section, may be deleted. Deleting the task
unexpectedly may corrupt the resource and make it unavailable to other tasks. To avoid this
situation, the mutual exclusion-based semaphore provides the option that enables the task not to
be deleted while it is inside its critical section. Another mechanism for inter-task communica-
tion is message queue. Message queues allow a variable number of messages, each of variable
length, to be queued. Any task can send or receive messages from the message queue. The send
and receive primitives use timeout parameters. On the one hand, when sending the message, the
timeout specifies the number of ticks to wait for the buffer space to become available. On the
other hand, while receiving the message, the timeout specifies the number of ticks to wait for
the message to become available. There may be some urgent messages. These messages may
be added at the head of the queue.

Chapter 20.indd 544 3/15/2014 9:30:20 PM

Real-time Operating Systems 545

In VxWorks, across the network, inter-task communication is provided through sockets.
When a socket is created, the Internet communication protocol needs to be specified. VxWorks
supports TCP and UDP. VxWorks also supports signal facility, which is more appropriate for
error and exception handling as compared to other IPC methods.

Since interrupt handling is a major issue in real-time systems, as the system is informed of
external events only through these interrupts, ISRs in VxWorks run in a special context outside
of any task’s context. Thus, interrupt handling incurs no context switch. VxWorks has a mecha-
nism of watchdog timer. It allows any C function to be connected to a specified time delay. It is
maintained as part of system clock ISR.

To have an overview of VxWorks kernel, some important system calls are listed in
Table 20.2.

Table 20.2 System calls in VxWorks

Sl. no. System call Description

 1 kernelTimeSlice() Time slice used in controlling round-robin scheduling

 2 taskPrioritySet() Changes the priority of a task

 3 taskLock() Disables scheduler

 4 taskUnlock() Enables scheduler

 5 taskSpawn() Creates a new task

 6 taskInit() Initializes a new task

 7 taskActivate() Activates an initialized task

 8 taskPrioityGet() Returns the priority of a task

 9 taskTcb() Returns the pointer to TCB of task

10 taskSuspend() Suspends a task

11 taskResume() Resumes a task

12 semBCreate() Allocates and initializes a binary semaphore

13 semMCreate() Allocates and initializes a mutual-exclusion semaphore

14 semCCreate() Allocates and initializes a counting semaphore

15 msgQCreate() Allocates and initializes a message queue

16 msgQSend() Sends a message to a message queue

17 msgQReceive() Receives a message from a message queue

18 wdCreate() Allocates and initializes a watchdog timer

20.9 CASE STUDY: QNX

QNX is one of the first commercially successful microkernel-based OSs that has been adopted
in medical instruments, cars, nuclear monitoring systems, military communications, and mobile
phones. It is supported on almost all popular architectures such as x86, PowerPC, ARM, MIPS,
and so on. QNX is a multi-tasking priority-driven real-time OS that provides fast context
 switching. The microkernel contains only scheduler, IPC, interrupt handling, and timers. The

Chapter 20.indd 545 3/15/2014 9:30:20 PM

4. Summary
Provided at the end of every chapter, it
consists of a quick review of the chapter
followed by the key concepts discussed in
the chapter.

Introduction to Operating Systems 31

the graphical form wherein commands are in the
form of mouse-based window and menu system as
used in Windows OSs or commands form wherein
commands are typed in by the user as used in MS_
DOS or UNIX operating systems.

As the requirements have grown, the size of
the operating systems has also increased. But we
know that it needs to be loaded into the main mem-
ory which is already packed with user programs.
Therefore, the operating system to be loaded into
the memory should be of smaller size otherwise
most of the memory will be taken by the operat-
ing system only. Therefore, essential modules of
the operating system such as task management,
memory management, etc. are only loaded into
the memory known as kernel. The kernel is the in-

nermost layer close to the hardware to get things done. Other modules of operating system are
stored in the secondary storage like hard disks and get loaded as and when required. For exam-
ple, virtual memory module is not part of kernel but will be loaded if required. In this way, the
operating system part is also divided into two parts: essential part (kernel) and secondary part.

User

System and application
programs

Kernel

Shell

Hardware

fig. 1.14 Operating system structure with shell and kernel

Summary

There was a time when a user on the computer system
used to get the program executed in days because every-
thing for program execution was manual and in fact the
user was close to the machine. But with the advancement
in the technology, a software layer between the user pro-
grams and hardware was added so that the user is relived
from the details of the hardware and all the work related
to machine was done via this software layer. This software
layer is known as operating system. The OSs evolved
with the increase in demands of the user and inventions in
computer hardware and I/O devices. The advancements in
computer architecture have always impacted the develop-
ment of OSs. But sometimes, the researchers of OSs also
demanded to have modifications in the architecture. Thus,
OSs and architecture both have affected each other and
developed in parallel.

Multi-programming is a central concept in operating
systems. The multi-programming, i.e., placing more than
one program in the main memory, has given birth to other
modules of operating system. In fact, the multi-programming
originated many problems. As a solution to these problems,
other modules of operating system were developed. For ex-
ample, multi-programming demanded that memory should
be partitioned and allocated to the required processes. All
the processes must be protected. Multiple processes will
compete for limited I/O devices. Multiple processes must
communicate and synchronize with each other. Therefore,

memory management, process management, process
scheduling, device management, process communication,
process synchronization, protection, etc., have been devel-
oped in response to the problems of multi-programming. All
these concepts are relevant to a designer. For a system
designer, the operating system is a resource allocator, ex-
tended machine manager, and control program. As a re-
source manager it allocates and manages the resources in
the system. As an extended machine manager, it acts as an
extended machine in support of the actual hardware and
seems to a general user that all the facilities have been pro-
vided by the machine hardware only. As a control program,
the operating system protects all the programs and itself
from any malicious job.

However, all these concepts are not related to the user.
A general user’s view is different from the system’s view.
The user wants the convenience while working on the sys-
tem. There are many facets of the user convenience. The
user does not want to indulge into the hardware details. The
user wants the interaction with his job so that he can debug
it. The user does not want to work with the commands. He
wants the GUI based flexibility and convenience. And all
these have been incorporated in the operating systems.
Thus, the prime goal of an operating system is to have the
user convenience so that there is a friendly environment
on the system for the user. The other goal of the operating

Chapter 1.indd 31 3/31/2014 2:55:06 PM

5. Multiple Choice Questions and
Review Questions

Also provided at the chapter end, they help
students to prepare for their examination.

Hardware Support for Operating Systems 55

SUMMARY

Let us have a quick review of the important concepts dis-
cussed in this chapter:

 • Everything an operating system does is interrupt driven.
 • Interrupt is a signal to the processor generated by hard-

ware or software indicating an event that needs immedi-
ate attention.

 • On the processor hardware, there is an interrupt-request
(IRQ) line that the processor senses for any interrupt after
each instruction execution of the process.

 • There is a program known as interrupt service routine
(ISR) corresponding to each interrupt generated.

 • The addresses of all ISRs are placed in a list known as
Interrupt Vector Table (IVT).

 • A hardware interrupt is generated from an external
 device, which could be either a part of the computer itself
such as a keyboard, disk or an external peripheral.

 • The software interrupts are caused either by an excep-
tional condition in the process, or a special instruction in
the instruction set which causes an interrupt when it is
executed.

 • Device controller is an electronic device in the form of
chip or circuit that controls the communication between
the system and the I/O device.

 • To communicate with each type of device controller a
specific code in the form of a device driver is written
that takes care of the specific device controller regis-
ters and the commands. Thus, the device drivers act
as a layer that hides the differences among the device
controllers.

 • The modern OSs separate code and data of the OS
from the code and data of the user processes. This
separation is termed as dual mode operation. The dual
mode operation has two modes: the kernel mode and
the user mode.

 • Initially, the mode bit is set to 0, which means the con-
trol is with the OS when the computer system is started.
When a user process wants to gain the control, the mode
bit is set to 1 and the user is able to execute in his own
area but is prevented all access to the kernel memory
space.

 • The INTEL modern processors come with four privilege
rings (0-3).

 • All I/O instructions are privileged. To access any I/O
 device, the process may request to the OS in the form
of a system call.

 • The system call is a user request to the operating system
which is interpreted and executed on the hardware by the
operating system on the behalf of the user.

 • In programmed I/O technique, the processor time is
wasted as it continually interrogates the status of I/O
 operation.

 • In DMA-based I/O, instead of generating multiple
 interrupts after every character, a single interrupt is
 generated for a block, thereby reducing the involvement
of the processor.

 • There are three following steps in disk formatting: low
level formatting, disk partitioning, and logical formatting.
The low-level formatting is performed by the manufac-
turer and the other two steps are performed by the OS
and, therefore, they are linked to it.

 • The purpose of low-level disk formatting is to organize
the surface of each platter into entities called tracks and
sectors, by polarizing the disk areas.

 • Disk partitioning is a process of dividing the storage
space of a hard disk into separate data areas. These
separate data areas are known as partitions.

 • Primary partition is a partition that is required to store and
boot an operating system.

MULTIPLE CHOICE QUESTIONS

 1. The modern OSs are .
 a) programmed-I/O driven b) interrupt-driven
 c) software-driven d) hardware-driven

 2. Interrupt is a signal to the generated by
hardware or software.

 a) memory b) device controller
 c) processor d) none

 3. IVT is generally placed in memory.
 a) low b) high
 c) disk d) none

 4. The number of hardware interrupts is limited by the number
of .

 a) processes b) processors
 c) IRQ lines d) none

 5. is also known as an adapter.
 a) memory b) processor
 c) device d) device controller

 6. Which of the device controller register is read-only?
 a) control b) status
 c) data d) none

Chapter 2.indd 55 3/15/2014 2:42:14 PM

56 Principles of Operating Systems

 7. Which of the device controller register is write-only?
 a) control b) status
 c) data d) none

 8. Initially, the mode bit is set to .
 a) 1 b) 0
 c) 2 d) none

 9. The base and limit registers are updated for every process
in mode.

 a) user b) kernel
 c) both user and kernel d) none

 10. The first physical sector on a basic disk contains a data
structure known as the .

 a) partition sector b) basic sector
 c) boot record d) master boot record

REVIEW QUESTIONS

 1. What is an interrupt? What are its types?

 2. What are the tasks to be executed when an interrupt arrives
on the processor?

 3. What is IVT?

 4. What is ISR?

 5. What is a trap?

 6. Provide some examples when software interrupt is
 generated.

 7. Provide some examples when hardware interrupt is generated.

 8. How are multiple interrupts handled?

 9. Differentiate between blocking and non-blocking I/O devices.

 10. What is a timer? Explain its role in operating system.

 11. What is a device controller? How does it work?

 12. What is a device driver? Explain its functioning with device
controller and operating system.

 13. What were the basic problems in multi-programming-based
modern operating systems?

 14. What is the need of a dual mode protection?

 15. What is the need of memory protection?

 16. What is the need of processor protection?

 17. What is the need of I/O protection?

 18. Explain the physical structure of a magnetic disk.

 19. What is a cylinder on a disk?

 20. What is disk partitioning?

 21. Differentiate between primary and extended partitions.

 22. What is MBR?

BRAIN TEASERS

 1. The interrupt number of an hardware interrupt is 8. At what
location in the IVT, its ISR address will be found?

 2. Is nested interrupt possible? If yes, how are they handled?

 3. All I/O instructions are privileged. Then, how does a user
access the devices?

 4. Which of the following instructions should be privileged?
 a) switch from user mode to kernel mode
 b) updating base and limit register
 c) clear memory location
 d) set value of timer
 e) read a clock
 f) interrupts are disabled

 g) Executing a loop to enter user data
 h) Load a value in processor register
 i) Abort a process
 j) Read input from keyboard
 k) Send a file to printer to print
 l) A global variable in the user process reinitialized

 5. Inter-sector and inter-track gaps are used on the disk to
avoid errors. How do these gaps affect storage utilization
on the disk?

 6. Study the DOS and Windows operating systems with refer-
ence to dual mode protection and find out which operating
system provides a better protection in terms of multi-tasking.

Authur Query

AQ: 1 Please verify the sentence for intended meaning and correctness.

Chapter 2.indd 56 3/15/2014 2:42:14 PM

6. Brain Teasers
Provided at the chapter end, test the
 conceptual understanding of students.

34 Principles of Operating Systems

 12. Explain the difference between DOS, UNIX, Apple Macin-
tosh, and Windows?

 13. Explain the differences between multi-programming, multi-
user, and multi-tasking OSs.

 14. Explain the characteristics of multiprocessor and distributed
systems.

 15. What is the differences between network and distributed
OSs?

 16. What is the difference between real-time and embedded
operating systems?

 17. How does operating system function as resource manager?

 18. How does operating system provide protection?

 19. What is a virtual machine? How does operating system
function as a virtual machine manager?

 20. Discuss the role of shell and kernel in operating system.

 21. What are the challenges in designing a multiprocessing/
distributed operating systems?

 22. What is the difference between a smart card and smart-
phone?

BRAIN TEASERS

 1. Can you work without operating system in your computer
system?

 2. The major drawback of multiprogrammed batch systems
was the lack of user/programmer interaction with their jobs.
How can you overcome this?

 3. The response time is the major requirement of a multiuser
time-sharing OS. What are the things that need to be
improved for this requirement from a system designer’s
viewpoint?

 4. Is time-sharing OS suitable for real-time systems?

 5. Examine the following conditions and find appropriate oper-
ating system for them:

 a) In a LAN, users want to share some costly resources
like laser printers.

 b) Multiple users on a system want quick response on
their terminals.

 c) Railway reservation system
 d) A user wants to work with multiple jobs on his system.

 e) In a network system you want to transfer file and log on
to some node.

 f) There are some jobs in the system which does not want
user interaction.

 g) Washing machine

 6. Explore the features of operating system being used in
recent design of smartphones.

 7. Do all operating systems contain shell?

 8. Multiprogramming is inherent in multiuser and multitasking
systems. Explain how.

 9. There are four jobs running in a multiprogramming system
with the following requirements:

job 1: requires disk after every 1 min, device service time including
wait and access = 3 min, total processing time = 4 min.
job 2: does not require any I/O, total processing time = 7 min.
job 3: requires printer after every 3 min, device service time includ-
ing wait and access = 2 min, total processing time = 9 min.

Author Query:
AQ:1 - OK at add ‘GUI-based’ here? Pls check for intended meaning.

AQ:2 - Windows 7 and 8?

Chapter 1.indd 34 3/15/2014 3:40:04 PM

7. Mobile Operating Systems
The chapter on mobile OSs delves into the
characteristics of various mobile devices
and issues related to mobile OSs. It also
discusses the Android OS.

21.1 INTRODUCTION

We are living in a world of mobile devices such as smartphones, laptops, and tablets. These mobile
devices are different as compared to general desktop systems. These are designed and run in very
restricted environment/resources. Therefore, the OSs for these devices cannot be the same as those
for desktop systems. The mobile OSs have been designed for each category of mobile devices. This
chapter explores the types and characteristics of mobile devices and then discusses the mobile OSs.
Since mobile OSs pose many new challenges such as power management, as power is a critical issue in
mobile devices, all such issues have been discussed in detail. Finally, the most popular mobile OS today,
that is, Android has been discussed in detail.

3.2 FUNCTIONS OF A RESOURCE MANAGER

The OS as a resource manager performs the following functions:

3.2.1 Resource Abstraction/Transformation
As discussed in Chapter 1, it is really difficult to work with
hardware devices. To perform read or write function from I/O
devices, we need to know the structure of every device in the
form of registers: data registers, control registers, and so on.
A user or programmer cannot work efficiently if he or she works
so close to the hardware, since there are numerous details that
need to be taken care of; thus, hardware resources are complex
interfaces to work with. To ease the job of the user, the OS hides
the complex details of the hardware and presents I/O devices to
them in such a form that it is easy to interface with these devices.
In fact, actual hardware devices are simulated in the form of a
program known as virtual device. The user program interfaces
with the virtual device, which, in turn, interfaces with the actual
device. In this way, actual device has been abstracted or trans-
formed into a virtual device and presents the user with an easy
interface.

Besides providing an easy interface to the devices, another
benefit of abstraction is that the concept of virtual devices
provides the best utilization of the devices. For example,

21 Mobile Operating
Systems

Learning Objectives
After reading this chapter,
you should be able to
understand:
• Operating system as a resource

manager
• Transformation of hardware

devices into virtual devices
• Time division multiplexing
• Space division multiplexing
• Resource scheduling
• Hardware resources
• Virtual resources
• Software resources
• Nature of resources
• Goals of resource management
• Working of resource manager
• Components of resource man-

agement

Untitled-31 56 4/5/2014 1:28:03 PM

558 Principles of Operating Systems

SMS and MMS, read and forward e-mails, access the personal organizer and calendar, and
so on. Furthermore, if the user is able to tap into a mobile phone’s basic hardware features,
additional data from the surroundings can be collected. For example, by utilizing the voice
recording hardware or camera, the attacker can misuse the device as a listening device or
take photos or videos. Furthermore, the user’s privacy can be compromised by exploiting the
location information using GPS.

 • Since the mobile devices are equipped with high-frequency processor and high-capacity
memory, the attackers also exploit the raw computing power along with the broadband
network access. The high-speed Internet links are also used to deploy the botnets.

 • The attacker sometimes aims at performing harmful malicious actions on the mobile devices.
The actions may result in loss of data, draining the device battery, generating network
 congestion, disabling the device completely, and so on.
Thus, the mobile devices, especially smart-phones are prone to attacks any time. The mobile

OS therefore must provide the security mechanisms to address the security issues.

21.4 ANDROID OPERATING SYSTEM

Android is a software stack including mobile OS that has been primarily designed for touch-
screen-based mobile devices. It was originally developed by Android Inc. and was later sold to
Google in 2005. Android consists of the following components (see Fig. 21.1):

 1. Linux kernel: It is as an underlying OS interface. It acts as an abstraction hardware layer
for Android. The Linux kernel provides memory management, networking, and other basic
OS facilities.

 2. Native libraries: These are hardware-specific shared libraries developed in C/C++ language
and are pre-installed on the device by vendor.

 3. Android runtime: It includes Dalvik Virtual Machine (DVM) code (that runs the Java pro-
grammed applications) and core Java libraries.

 4. Application framework: It consists of classes used in writing Android-based applications.
 5. Android applications: It is the highest level layer that provides the end-user applications

including the applications shipped with Android and the applications that can be downloaded
by the user. These applications run on DVM just like Java Virtual Machine (JVM). DVM is
tailor-made according to the require-
ments of mobile devices. Moreover, it
runs on a relatively smaller RAM and
slower processor.

Our concern here is to discuss only the
OS part of Android. Android OS is a low-
cost, customizable, and light-weight OS
that not only has become the world’s best
environment for smart-phones but also
has been integrated in microwaves, digi-
tal cameras, refrigerators, smart watches,
media players, robots, set-top box, and so
on. The first version of Android appeared
in 2008 and has gone through several ver-
sions till now (see Table 21.1).

Linux kernel

Libraries

Application framework

Applications

Android runtime

Fig. 21.1 Android architecture

Chapter 21.indd 558 3/15/2014 9:37:53 PM

8. Shell Programming
The last part of the book discusses shell program-
ming, which will aid students in performing the
practicals for this course. The chapter consists of
numerous programming examples and exercises.

Shell Programming and UNIX Shells 587

23.12 SHELL SCRIPT EXAMPLES

Example 1

This shell script displays the date, time, username, and current directory.
Display today’s date and the list of all the users who are currently logged in
echo “the date today is:”
date
echo
echo “the various users logged in now are: \n”
who

Example 2

This script determines whether the number entered through the keyboard is even or odd.
echo “enter the number”
read a
result = ‘expr $a % 2’
if [result –eq 0]
echo “it is an even number”
else
echo “it is an odd number”
fi

Example 3

This script displays a pattern for n lines.
Print a pattern of asterisks(*) for the number of lines being entered by the user.
Echo “Enter the number of lines for which you want the pattern”
Read n
a=0
while [“$a” –lt n] # this is loop1
do
b=”$a”
while [“$b” -ge 0] # this is loop2
do echo -n “* “
b=`expr $b - 1`
done
echo
a=`expr $a + 1`
done

Example 4

This script demonstrates the use of for loop.
Prints the list of fruits according to the choice made.
fruitlist=”Apple Pear Tomato Peach Grape”
for fruit in $fruitlist

Chapter 23.indd 587 3/15/2014 10:18:37 PM

590 Principles of Operating Systems

then
[!-z “$filename”]
then
if [-r “$filename” –a -w “$filename” –a -x “$filename”]
then
echo the user has read write and execute permissions to the desired file
else
echo Permissions denied
fi
else
echo Improper filename
fi

SUMMARY

This chapter discussed the basics of UNIX shell program-
ming. The shell programming includes the knowledge of
shell, the various commands that can be run on it, and
its programming constructs. The reader using these con-
structs can write shell programs and thus do programming
exercises.

Let’s have a quick review of important concepts dis-
cussed in this chapter:

 • UNIX or Linux shell is a command-line interpreter that
handles users’ interactions with the computer system.

 • UNIX shell is a command programming language that
acts as an intermediate between the user and the kernel.

 • When a program takes its input from standard input, per-
forms some operation on that input, and writes the result
to the standard output, it is referred to as a filter.

 • Certain characters in shell have been assigned special
meanings. These characters are called shell metacha-
racters.

 • The vi editor is a screen editor used on almost all UNIX
systems. It has no menus but instead uses combinations
of keystrokes to execute commands.

 • Shell script is a short program or a sequence of instruc-
tions/commands given to UNIX kernel.

 • Like a regular programming language, shell scripts also
make use of control instructions to specify the order in
which the various instructions in the program are ex-
ecuted.

 • There are three types of control instructions in a shell:
decision control instruction, loop control instructions, and
case control instructions.

REVIEW QUESTIONS

 1. Explain various types of shells in UNIX.

 2. Give the syntax and meaning of the following command:
 a) touch b) cat
 c) cp d) rm
 e) who f) grep
 g) cut h) head
 i) tail

 3. What is I/O redirection?

 4. Explain various communication-related commands in UNIX.

 5. What are shell metacharacters?

 6. What is vi editor? Explain various commands to use it.

 7. What is a shell script?

SHELL PROGRAMMING EXERCISES

 1. Write a shell script to read marks of 10 students in a particu-
lar subject (say chemistry) and calculate the average result
of that class in that particular subject.

 2. Write a script to print the fibonacci series upto the number
entered by the user.

 3. Write a script to list the details of all the c++ (*.cpp) files in
the current directory.

 4. Write a shell script that displays only those lines that contain
the word of in the file supplied as argument to this script.

Chapter 23.indd 590 3/15/2014 10:18:37 PM

Acknowledgements
Big projects are not realized without the cooperation of great personalities and the society. I would like
to thank all who have directly or indirectly helped me in completing this project. My interest in the
subject started in the days when I was working in the industry, especially on real-time operating sys-
tems. I am thankful to Dr A.K. Sharma (Dean, PG Studies, BSAITM, Faridabad) for the real technical
approach to the subject. He has been my guide in research work as well as in other areas of life. I am
extremely grateful to all my colleagues with whom I discussed many issues relating to the subject. I thank
my colleagues Ms Rashmi and Ms Preeti for their invaluable support in preparing case studies.
I thank Ms Anita who helped me in writing some portions of the manuscript. My special thanks to
Harsh Bhasin (Assistant Professor, Jamia Hamdard, Delhi) who helped me with material on web
resources. Many thanks to my students whose questions always helped me to refine my understanding
of these topics.

I am indebted to my family for their love, encouragement, and support throughout my career. I owe a
lot to my dear wife, Anushree Chauhan. I am thankful for her never-ending patience and unconditional
moral support. I thank my children Smiti and Atharv who let me complete this book with love and
encouragement.

My acknowledgement would be incomplete if I do not thank the editorial team at Oxford University
Press, India, who gave an effective transformation to the raw manuscript. I also thank all the reviewers
who, with their constructive comments and suggested changes, helped to improve the book.

 Naresh Chauhan

Part I Introduction

Corbato, F.J., Saltzer, J.H., and Clingen, C.T.: “MULTICS—The First Seven Years,” Proc. AFIPS Spring Joint Computer Conf., AFIPS,
pp. 571–583, 1972.

Corbato, F.J., and Vyssotsky, V.A.: “Introduction and Overview of the MULTICS System,” Proc. AFIPS Fall Joint Computer Conf.,
AFIPS, pp. 185–196, 1965.

Engler, D.R., Kaashoek, M.F., and O’Toole, J. Jr.: “Exokernel: An Operating System Architecture for Application-Level Resource
Management,” Proc. 15th Symp. on Operating Systems Principles, ACM, pp. 251–266, 1995.

Kaashoek, M.F., Engler, D.R., Ganger, G.R., Briceno, H., Hunt, R., Mazieres, D., Pinckney, T., Grimm, R., Jannotti, J., and Mackenzie,
K.: “Application Performance and Flexibility on Exokernel Systems,” Proc. 16th Symp. on Operating Systems Principles, ACM,
pp. 52– 65, 1997.

Ng, S.W.: “Advances in Disk Technology: Performance Issues,” Computer, vol. 31, pp. 75–81, May 1998.

Stallings, W.: Operating Systems, 4th Ed., Upper Saddle River, NJ: Prentice Hall, 2001.

Tanenbaum, A.S., and Van Steen, M.R.: Distributed Systems, Upper Saddle River, NJ: Prentice Hall, 2002.

Goyeneche, J., and Souse, E. “Loadable Kernel Modules.” IEEE Software, January/February 1999.

McDougall, R., and Mauro, J. Solaris Internals: Solaris 10 and Open Solaris Kernel Architecture. Palo Alto, CA: Sun Microsystems
Press, 2007.

Milenkovic, M., Operating Systems : Concepts and Design, New York: McGraw Hill, 1992.

Ritchie, D. “UNIX Time-Sharing System. A Retrospective.” The Bell System Technical Journal, July-August, 1978.

Ritchie, D. “The Evolution of the UNIX Time-Sharing System.” AT & T Bell Labs Technical Journal, October 1984.

Part II Process Management

Anderson, T.E., Bershad, B.N., Lazowska, E.D., and Levy, H.M., “Scheduler Activations: Effective Kernel Support for the User-level
Management of Parallelism,” ACM Trans. on Computer Systems, vol. 10, pp. 53–79, Feb, 1992.

Andrews, G.R., and Schneider, F.B.: “Concepts and Notations for Concurrent Programming,” Computing Surveys, vol. 15, pp. 3–43,
March 1983.

Arora, A.S., Blumofe, R.D., and Plaxton, C.G.: “Thread Scheduling for Multiprogrammed Multiprocessors,” Proc. Tenth Symp. on
Parallel Algorithms and Architectures, ACM, pp. 119–129, 1998.

Blumofe, R.D., and Leiserson, C.E.:“Scheduling Multithreaded Computations by Work Stealing,” Proc. 35th Annual Symp. on
Foundations of Computer Science, IEEE, pp. 356–368, Nov. 1994.

Bricker, A., Gien, M., Guillemont, M., Lipkis, J., Orr, D., and Rozier, M.: “A New Look at Microkernel-Based UNIX Operating
Systems: Lessons in Performance and Compatibility,” Proc. EurOpen Spring ’91 Conf., EurOpen, pp. 13–32, 1991.

Buchanan, M., and Chien, A.: “Coordinated Thread Scheduling for Workstation Clusters Under Windows NT.” The USENIX Windows
NT Workshop, USENIX, pp. 47–??, 1997.

Carr, R.W., and Hennessy, J.L.: “WSClock—A Simple and Effective Algorithm for Virtual Memory Management,” Proc. Eighth Symp.
on Operating Systems Principles, ACM, pp. 87–95, 1981.

Chandra, A., Adler, M., Goyal, P., and Shenoy, P.: s10 “Surplus Fair Scheduling: A Proportional-Share CPU Scheduling Algorithm for
Symmetric Multiprocessors,” Proc. Fourth Symp. on Operating Systems Design and Implementation, USENIX, pp. 45–58, 2000.

Corbalan, J., Martorell, X., and Labarta, J.: “Performance-Driven Processor Allocation,” Proc. Fourth Symp. on Operating Systems
Design and Implementation, USENIX, pp. 59–71, 2000.

Courtois, P.J., Hevmans, F., and Parnas, D.L.: “Concurrent Control with Readers and Writers,” Commun. of the ACM, vol. 10,
pp. 667–668, Oct. 197.

Bibliography

658 Bibliography

Duda, K.J., and Cheriton, D.R.: “Borrowed-Virtual-Time (BVT) Scheduling: Supporting Latency-Sensitive Threads in a General-
Purpose Scheduler,” Proc. 17th Symp. on Operating Systems Principles, ACM, pp. 261–276, 1999.

Havender, J.W.: “Avoiding Deadlock in Multitasking Systems.” IBM Systems Journal, vol. 7, pp. 74–84, 1968.

Hoare, C.A.R.: “Monitors, An Operating System Structuring Concept,” Commun. of the ACM, vol. 17, pp. 549–557, Oct. 1974;
Erratum in Commun. of the ACM, vol. 18. p. 95, Feb. 1975.

Isloor, S.S., and Marsland, T.A.: “The Deadlock Problem: An Overview,” Computer, vol. 13, pp. 58–78, Sept. 1980.

Newton, G.: “Deadlock Prevention, Detection, and Resolution: An Annotated Bibliography,” Operating Systems Review, vol. 13,
pp. 33–44, April 1979.

Peterson, G.L.: “Myths about the Mutual Exclusion Problem,” Information Processing Letters, vol. 12, pp. 115–116, June 1981.

Petrou, D., Milford, J., and Gibson, G.: “Implementing Lottery Scheduling,” Proc. USENIX Annual Tech. Conf., USENIX, pp. 1–14,
1999.

Philbin, J., Edler, J., Anshus, O.J., Douglas, C.C., and Li, K.: “Thread Scheduling for Cache Locality,” Proc. Seventh Int’l Conf. on
Architectural Support for Programming Languages and Operating Systems, ACM, pp. 60–71, 1996.

Tai, K.C., and Carver, R.H.: “VP: A New Operation for Semaphores,” Operating Systems Review, vol. 30, pp. 5–11, July 1996.

Walker, W., and Cragon, H.G.: “Interrupt Processing in Concurrent Processors,” Computer, vol. 28, pp. 36–46, June 1995.

Zobel, D.: “The Deadlock Problem: A Classifying Bibliography,” Operating Systems Review, vol. 17, pp. 6–16, Oct. 1983.

Abramson, T. “Detecting Potential Deadlocks”. Dr. Dobb’s Journal, January, 2006

Anderson, T.; Laxowska, E; and Levy H. “The Performance Implications of Thread Management Alternatives for Shared-Memory
Multiprocessors.” IEEE Transaction on Computers, December 1989.

Anderson, T.; Bershad, B; Laxowska, E; and Levy H. “ Thread Management Alternatives for Shared-Memory Multiprocessors.”
In [TUCK04].

Andres,G., and Schneider, F. “Concepts and Notations for Concurrence Programming,” Computer Surveys, March 1983.

Axford, T. Concurrent Programming: Fundamental Techniques for Real-Time and Parallel Software Design. New York: Wiley, 1988.

Barkely, R., and Lee, T. “A Lazy Buddy System Bounded by Two Coalescing Delays per Class.” Proceedings of the 12th ACM
Symposium on Operating Systems Principles, December 1989.

Birrell, A. An Introduction to Programming with Threads. SRC Research Re-available at http://www.research.compaq.com/SRC.

Buhr, P., and Fortier, M. “Monitor Classification.” ACM Computing Surveys, March,1995

Carr, S; Mayo, J.;and Shene, C. “Race Conditions: A Case Study.” The journal of Computing in Small Colleges, October,2001.

Corbett, J. “Evaluating Deadlock Detection Methods for Concurrent Software,” IEEE Transactions on Software Engineering, March
1996. Datta, A., and Ghosh, S. “Deadlock Detection in Distributed Systems.” Proceedings, Phoenix Conference on Computers and
Communications, March 1990.

Datta, A.; Javagal, R.; and Ghosh, S. “An Algorithm for Resource Deadlock Detection in Distributed Systems,” Computer System
Science and Engineering, October 1992.

Denning, P. The Locality Principle” Communications of the ACM July 2005.

Dimitoglou, G. “Deadlocks and Methods for Their Detection, Prevention and Recovery in Modern Operating Systems.” Operating
Systems Review, July, 1998.

Downey, A. The Little Book of Semaphores. www.greenteapress.com/semaphores.

Gray, J. Inter process Communications in UNIX: The Nooks and Crannies. Upper Saddle River, NJ: Prentice Hall, 1997.

Haldar, S., and Subramanian, D. “Fairness in Processor Scheduling in Time Sharing Systems” Operating Systems Review, January, 1991.

Hartig, H., et al. “The Performance of a u-Kernel-Based System.” Proceedings Sixteenth ACM Symposium on Operating Systems
Principles, December 1997.

Henry, G. “The Fair Share Scheduler.” AT & T Bell Laboratories Technical Journal, October 1984.

Hoare, C. “Monitors: An Operating System Structuring Concept.” Communications of the ACM October, 1974.

Howard, J. “Mixed Solutions for the Deadlock Problem.” Communications of the ACM July, 1973.

Bibliography 659

Johnston, B.; Javagal, R.; Datta, A.; and Ghosh, S. “A Distributed Algorithm for Resource Deadlock Detection.” Proceedings, Tenth
Annual Phoenix Conference on Computers and Communications, March 1991.

Kang, S., and Lee, J. “Analysis and Solution on Non-Preemptive Policies for Scheduling Readers and Writers.” Operating Systems
Review, July 1998.

Kay, J., and Lauder, P. “A Fair Share Scheduler.” Communications of the ACM, January 1988. Kent, S. “On the Trail of Intrusions into
Information Systems.” IEEE Spectrum, December 2000.

Kleiman, S. “Interrupts as Threads.” Operating System Review, April, 1995.

Kleiman, S.; Shah, D.; and Smallders, B. Programming with Threads. Upper Saddle River, NJ: Prentice Hall 1996.

Lamport, L. “A New Solution to Dijkstra’s Concurrent Programming Problem.” Communications of the ACM, August 1974.

Lamport, L. “The Mutual Exclusion Problem.” Journal of the ACM, April 1986.

Lamport, L. “The Mutual Exclusion Problem Has Been Solved.” Communications of the ACM January 1991.

Levine, G. “Defining Deadlock with Fungible Resources.” Operating Systems Review, July 2003.

Lewis, B, and Berg, D. Threads Primer, Upper Saddle River, NJ: Prentice Hall, 1996.

Liedtke, J. “On u-Kernel Construction.” Proceedings of the Fifteenth ACM Symposium on Operating Systems

Principles, December 1995. Liedtke, J. “Toward Real Microkernels.” Communications of the ACM, September 1996.

Liedtke, J. “Microkernels Must and Can Be Small.” Proceedings, Fifth International Workshop on Object Orientation in Operating
Systems, October 1996.

Liu, C., and Layland, J. “Scheduling Algorithms for Multiprogramming in a Hard Real-time Environment.” Journal of the ACM
February 1973.

Part III Memory Management

Denning, P.J.: “Thrashing: Its Causes and Prevention,” Proc. AFIPS National Computer Conf., AFIPS, pp. 915–922, 1968b.

Denning, P.J.: “Virtual Memory,” Computing Surveys, vol. 2, pp. 153–189, Sept. 1970.

Jacob, B., and Mudge, T. “Virtual Memory: Issues of Implementation.” Computer, June 1998.

Jacob, B., and Mudge, T. “Virtual memory in Contemporary Microprocessors.” IEEE Micro, August 1998.

Johnson, T., and Davis, T. “Space Efficient Parallel Buddy memory Management.” Proceedings Third International Conference on
Computers and Information, May 1992.

Khalidii, Y.; Talluri, M.; Williams, D.; and Nelson, M. “Virtual Memory Support for Multiple Page Sizes.” Proceedings, Fourth
Workshop on Workstation Operating Systems, October, 1993.

“Microsoft Windows Timeline”, www. Technicalminded.com/widows-timeline.htm.

Peterson, J.L., T.A. Normann, “Buddy Systems”, Communications of the ACM, 20(6), pp. 421–431.

Aho, A.V., P.J. Denning, J.D. Ullman, “Principles of optimal page replacement”, Journal of ACM, 18(1), pp. 80–93, 1971.

Jeff Bonwick. The slab allocator: An object-caching kernel memory allocator.Usenix proceedings, 1994. Electronic document, available
on www.usenix.org/publications/library/proceedings/bos94/full_papers/bonwick.ps.

Gorman, M., Understanding the Linux Virtual Memory Manager, Upper Saddle River, NJ: Prentice Hall, 2004.

Part IV File Management

Rosenblum, M., and Ousterhout, J.K.: “The Design and Implementation of a Log- Structured File System,” Proc. 13th Symp. on
Oper. Sys. Prin., ACM, pp. 1–15. 1991.

Roselli, D., and Lorch, J.R.: “A Comparison of File System Workloads,” Proc. USENIX Annual Tech. Conf., USENIX, pp. 41–54,
2000.

Rubini, A., “The Virtual File System in Linux”, Linux Journal, May 1997 p4.

660 Bibliography

Part V Input-Output Management

Chen, P.M., Lee, E.K., Gibson, G.A., Katz, R.H., and Patterson, D.A.: “RAID: High Performance Reliable Storage,” Comp. Surv.,
vol. 26, pp. 145–185, June 1994.

Chen, S., and Towsley, D.: “A Performance Evaluation of RAID Architectures,” IEEE Trans. On Computers, vol. 45, pp. 1116–1130,
Oct. 1996.

Geist, R., and Daniel, S.: “A Continuum of Disk Scheduling Algorithms,” ACM Trans. on Computer Systems, vol. 5, pp. 77–92,
Feb. 1987.

Patterson, D.A., Gibson, G., and Katz, R.: “A Case for Redundant Arrays of Inexpensive Disks (RAID),” Proc. ACM SIGMOD Int’l
Conf. on Management of Data, ACM, pp. 109–166, 1988.

Reddy, A.L.N., and Wyllie, J.C.: “Disk Scheduling in a Multimedia I/O System,” Proc. ACM Multimedia Conf., ACM, pp. 225–233,
1992.

Rompogiannakis, Y., Nerjes, G., Muth, P., Paterakis, M., Triantafillou, P., and Weikum, G.: “Disk Scheduling for Mixed-Media
Workloads in a Multimedia Server,” Proc. Sixth Int’l Conf. on Multimedia, ACM, pp. 297–302, 1998.

Worthington, B.L., Ganger, G.R., and Patt, Y.N.: ‘Scheduling Algorithms for Modem Disk Drives,” Proc. 1994 Conf. on Measurement
and Modeling of Computer Systems, pp. 241–251, 1994.

Chen, P.; Lee, E; Gibson, G,; Katz, R.; and Patterson, D. “RAID: High-Performance, Reliable Secondary Storage.” ACM Computing
Surveys, June 1994.

Chen,S., and Towsley, D. “A Performance Evaluation of RAID Architectures.” IEEE transactions on Computers, October 1996.

Eischen, C. “RAID 6 Covers More Bases,” Network World, April 9, 2007.

Iyer, S., and Druschel, P. “Anticipatory Scheduling: A Disk Scheduling Framework to Overcome Deceptive Idleness in Synchronous
I/O.” Proceedings, 18th ACM Symposium on Operating Systems Principles, October, 2001.

Pai, V; Druschel, P; and Zwaenepoel, W. “IO-Lite: A Unified I/O Buffering and Caching System.” ACM Transactions on Computer
Systems, February 2000.

Seltzer, M.; Chen, P; and Ousterhout, J. “Disk Scheduling Revisited.” Proceedings, USENIX Winter Technical Conference, January 1990.

Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device Drivers.O’Reilly, 3rd edition, 2005.

Sreekrishnan Venkateswaran. Essential Linux Device Drivers. Prentice Hall, 2008.

Part VI Security and Protection

Klein, D.V.: “Foiling the Cracker: A Survey of, and Improvements to, Password Security,” Proc.UNIX Security Workshop II,
USENIX, Summer 1990.

Milojicic, D.: “Security and Privacy,” IEEE Concurrency, vol. 8, pp. 70–79, April-June 2000.

Morris, R., and Thompson, K.: “Password Security: A Case History,” Commun. of the ACM, vol. 22, pp. 594–597, Nov. 1979.

Pankanti, S., Bolle, R.M., and Jain, A.: “Biometrics: The Future of Identification,” Computer, vol. 33, pp. 46–49, Feb. 2000.

Aycock, J. Computer Viruses and Malware, New York: Springer, 2006.

Chen, S., and Tang, T. “Slowing Down Internet Worms,” Proceedings of the 24th International Conference on Distributed Computing
Systems, 2004.

Chess, D. “The Future of Viruses on the Internet.” Proceedings, Virus Bulletin International Conference, October, 1997.

Chinchani, R., and Berg, E. “A Fast Static Analysis Approach to Detect Exploit Code Inside Network Flows.” Recent Advances in
Intrusion Detection, 8th International Symposium,2005.

Kephart, J.; Sorkin, G.; Chess, D.; and White, S. “Fighting Computer Viruses.” Scientific American, November 1997.

Levine, J; Grizzard, J; and Owen, H. “Detecting and Categorizing Kernel-Level Rootkits to Aid Future Detection.” IEEE Security and
Privacy, May-June 2005.

I hee, K., and Chapin, S., “Buffer Overflow and Format String Overflow Vulnerabilities.” Software – Practice and Experience, Volume
22, 2003.

Bibliography 661

McHaugh, J: Christie, A; and Allen, J. “The Role of Intrusion Detection Systems.” IEEE Software, September/October 2000.

Morris, R., and Thompson, K. “Password Security: A Case History.” Communications of the ACM November 1979.

Sandhu, R. and Samarati, P. “Access Control: Principles and Practice.” IEEE Communications, September 1994.

Sandhu, R. et al. “Role-Based Access Control Models.” Computer, September 1994. Scarfone, K., and Mell P. Guide to Intrusion
Detection and Prevention Systems. NIST Special Publication SP 800–94, February 2007.

Stallings, W., and Brown L. Computer Security: Principles and Practice. Upper Saddle River, NJ: Printice Hall, 2008.

Wagner, D., and Goldberg, I. “Proofs of Security for the UNIX Password Hashing Algorithm.” Proceedings, ASIACRYPT’00, 2000.

Zou, C., et al. “The Monitoring and Early Detection of Internet Worms.” IEEE/ACM Transactions on Networking, October, 2005.

Parts I – VI

Crowley, C. Operating Systems: A Design-oriented approach, Tata McGraw Hill, 1998.

Dhamdhere, D.M. Operating Systems: A Concept based approach, Tata McGraw Hill, 2002.

Silberschatz A., P.B. Galvin, G. Gagne, Operating system concepts, John Wiley & Sons, Inc., 2002.

Godbole, A.S. Operating Systems, Tata McGraw Hill, 2005.

Bach, M.J. The Design of UNIX Operating System, PHI, 1986.

Deitel H.M., P.J. Deitel, D.R. Choffnes, Operating Systems, Pearson Education, 2008.

Tanenbaum, A.S. Modern Operating Systems, Pearson Education, 2002.

Stallings, W. Operating Systems: Internals and Design Principles, Pearson Education, 2009.

Bovet, D.P. and Marco Cesati. Understanding the Linux Kernel. O’Reilly, 3rd Ed, 2005.

Greg Kroah-Hartman, Linux Kernel in a Nutshell. O’Reilly, 2007.

Remy Card, Eric Dumas, Franc Mevel, The Linux Kernel Book, Wiley, 1998.

Bovet, D., Cesati, M., Understanding the Linux Kernel, Sebastopol, CA: O’Reily, 2006.

Love, R., Linux Kernel Development, Indianpolis, IN: Novell Press, 2005.

Part VII Advanced Operating Systems

Bal, H.E., R. Van Renesse, A.S. Tanenbaum, “Implementing distributed algorithms using remote procedure calls”, Proceedings of the
National Computer Conference, AFIPS, 1987, pp. 499–505.

Bershad, B.N., T.E. Anderson, E.D. Lazowska, H.M. Levy, “Lightweight Remote Procedure Call”, Proceedings of the 12th ACM
Symposium on Operating system Principles, Special issue of Operating system Review, vol. 23, no. 5, Dec. 1989, pp. 1102–113.

Rozier, M., J.M. Legatheaus, “The Chorus Distributed Operating system: Some Design Issues”, Proceedings of the NATO Advanced
Study Institute on Distributed Operating Systems: Theory and Practice, Springer –Verlag, New York, 1986, pp. 261–289.

Sinha, P.K., M. Maekawa, K. Shimizu, X. Jia, H. Ashihara, N. Utsunomiya, K.S. Park, H. Nakano, “The GALAXY Distributed
Operating system”, IEEE Computer, vol. 24, no. 8, 1991, pp. 34–41.

Tanenbaum, A.S., R. Van Renesse, H. Van Staveren, G. J. Sharp, S.J. Mullender, J. Janesen, G. van Rossum, “ Experience with the
Amoeba Distributed Operating System”, Communications of the ACM, vol. 33, no. 12, 1990, pp. 46–63.

Chandy, K.M., L. Lamport, “Distributed Snapshots- Determining Global states of Distributed Systems”, ACM Transactions on
Computer Systems, vol. 3, no. 1, 1985, pp. 272–314.

Lai, T.H., T.H. Yang, “On Distributed Snapshots”, Information Processing Letters, vol. 25, 1987, pp. 153–158.

Lamport, L., “Time, Clocks, and the orderings of events in a Distributed system”, Communications of the ACM, vol. 21, no. 7, 1978,
pp. 558–565.

Bracha, G., S. Toueg, “Distributed Deadlock Detection”, Distributed Computing, vol. 2, 1987.

Chow, T.C.K., and Abraham, J.A.: “Load Balancing in Distributed Systems,” IEEE Trans. On Software Engineering, vol. SE-8,
pp. 401–412, July 1982.

662 Bibliography

Howard, J.H., Kazar, M.J., Menees, S.G., Nichols, D.A., Satyanarayanan, M., Sidebotham, R.N., and West, M.J.: “Scale and Perfor-
mance in a Distributed File System,” ACM Trans. on Computer Systems, vol. 6. pp. 55–81, Feb. 1988.

Artsy, Y., ed. Special Issue on Process Migration. Newsletter of the IEEE Computer Society Technical Committee on Operation
Systems, Winter 1989.

Artsy, Y., “Designing a Process Migration Facility: The Charlotte Experience.” Computer September 1989.

Barbosa, V. “Strategies for the Prevention of Communication Deadlock in Distributed Parallel Programs.” IEEE Transactions on
Software Engineering, November,1990.

Douglas, F., and ousterhout, J. “Transparent Process Migration: Design Alternatives and the Sprite Implementation.’ Software Practice
and Experience, August 1991.

Eager, D.; Lazowska, E.; and Zahnorjan, J. “Adaptive Load Sharing in Homogeneous Distributed Systems.” IEEE Transactions on
Software Engineering, May 1986.

Eskicioglu, M. “Design Issues of Process Migration Facilities in Distributed Systems.” Newsletter of the IEEE Computer Society
Technical Committee on Operating Systems and Application Environments, Summer 1990.

Lamport, L. “Time, Clocks and the Ordering of Events in a Distributed System.” Communications of the ACM, July 1978.

Raynal, M., and Helary, J. Synchronization and Control of Distributed Systems and Programs. New York: Wiley, 1990.

Singh, H. Progressing to Distributed Multiprocessing. Upper Saddle River, NJ: Prentice Hall, 1999.

Sinha, P. Distributed Operating Systems. Piscataway, NJ: IEEE Press, 1997.

Smith, J. “A Survey of Process Migration Mechanisms.” Operating Systems Review, July 1988.

Tanenbaum, A., and Renesse, R. “Distributed Operating Systems.” Computing Surveys, December 1985.

Tray, B., and Ananda, A. “A Survey of Remote Procedure Calls.” Operating Systems Review, July 1990.

Mukesh Singhal, N.G. Shivaratri, Advanced Concepts in Operating Systems, Tata McGraw Hill, 2004.

Hwang, K., F. Briggs, Multiprocessor Systems Architecture, McGraw-Hill, New York, 1984.

Lazowska, E., M.Squillante, “Using Processor-Cache Affinity in shared-memory Multiprocessor Scheduling”, Tech. Report, Dept. of
computer science, University of WA, 1989.

M.Squillante, “Issues in Shared-Multiprocessor Scheduling: A performance evaluation”, Ph.D. dissertation, Dept. of Computer Science
& Engg., Univ of Washington, WA, 1990.

Li, K.: “Shared Virtual Memory on Loosely Coupled Multiprocessors.” Ph.D. Thesis. Yale Univ., 1986.

Chapin, S., and Maccabe, A., eds. “Multiprocessor Operating Systems: Harnessing the Power.” Special issue of IEEE Concurrency,
April-June 1997.

Rashid, R. et al. “Machine-Independent Virtual Memory Management for Paged Uniprocessor and Multiprocessor Architectures.” IEEE
Transactions on Computers, August 1988.

Tucker, A., and Gupta, A. “Process Control and Scheduling Issues for multiprogrammed Shared-Memory Multiprocessors.” Proceedings,
12th ACM Symposium on Operating System Principles, December 1989.

Mukesh Singhal, N.G. Shivaratri, Advanced Concepts in Operating Systems, Tata McGraw Hill, 2004.

Axford, T. Concurrent Programming: Fundamental Techniques for Real-Time and Parallel Software Design. New York: Wiley, 1988.

Hong, J.; Tan, X.; and Towsley, D. “A Performance Analysis of Minimum Laxity and Earliest Deadline Scheduling in a Real-Time
System.” IEEE Transactions on Computers, December 1989.

Liu, J. Real Time Systems. Upper Saddle River, NJ: Prentice Hall, 2000.

Morgan, K. “The RTOS Difference.” Byte, August 1992.

Ramamritham, K., and Stankovic, J. “Scheduling Algorithms and Operating Systems Support for Real-Time Systems.” Proceedings of
the IEEE, January 1994.

Sha, L; Rajkumar, R.; and Lehoczky, j, “Priority Inheritance Protocols: An Approach to Real-Time Synchronization.” IEEE
Transactions on Computers, September 1990.

Sha,L.; Klein, M; and Goodenough, J. “Rate Monotonic Analysis for Real-Time Systems.” In [TILB91].

Bibliography 663

Sha, L.; Rajkumar, R; and Sathaye, S. “Generalized Rate-Monotonic Scheduling Theory: A Framework for Developing Real-Time
Systems.” Proceedings of the IEEE January 1994.

Stankovic, J., et al. “Strategic Directions in Real-Time and Embedded Systems.” ACM Computing Surveys, December 1996.

Takada, H. “Real-time Operating System for Embedded Systems.” In Imai, M. and Yoshida, N. (eds). Asia South-Pacific Design
Automation Conference, 2001.

TimeSys Corp. “Priority Inversion: Why You Care and What to Do about It? TimeSys White Paper, 2002. http://www.techonline.com/
community/ed_resource/tech_paper/21779.

Warren, C. “Rate Monotonic Scheduling.” IEEE Micro, June 1991.

VxWorks Application Programmer’s guide 6.2, Wind River Systems Inc. 2005.

Paul Kohout, “Hardware Support for Real-time operating systems”, Master’s Thesis, Master of Science, 2002.

Jim Collier, An Overview Tutorial of the VxWorks Real-Time Operating System, 2004.

R. Dick, G. Lakshminarayana, A. Raghunathan, and N. Jha. “Power Analysis of Embedded Operating Systems.” In Proceedings of the
37th Design Automation Conference, Los Angeles, CA, June 2000.

Y. Li, M. Potkonjak, and W. Wolf. “Real-Time Operating Systems for Embedded Computing.” In Proceedings of the 1997 International
Conference on Computer Design (ICCD ’97), Austin, TX, October 1997.

David E. Simon, An Embedded Software Primer, Pearson Education, 2001.

Sriram V. Iyer, Pankaj Gupta, Embedded Realtime Systems Programming, Tata McGraw Hill, 2006.

Phillip. A. Laplante, Real-time Systems: Design and Analysis, PHI, 2002.

Stuart Bennett, Real-Time Computer Control, Pearson Education, 2003.

Jane W.S. Liu, Real-time systems, Pearson Education, 2004.

C.M. Krishna, Kang G. Shin, Real-Time Systems, McGraw Hill International Editions, 1997.

Flash File systems, Intel White paper, 2006.

Kaushik Velusamy, Shriram K.V., “Adapting Linux as Mobile operating system”, Journal of Computer Science, 9(6): 740–748, 2013.

P. Dharanya Devi, S. Poonguzhali, T. Sathiya, G.Yamini, P. Sujatha and V. Narasimhulu, “Survey on Multimedia Operating systems”,
International journal of computer science and emerging technologies (IJCSET), Vol. 1, Issue 2, 2010.

Deepali Kayande, Urmila Shrawankar, “Priority Based Pre-emptive Task Scheduling for Android Operating System”, International
Journal of Computer Science and Telecommunications,Volume 2, Issue 7, October 2011.

MA Wei-feng, WANG lia-hai, “Analysis of the Linux 2.6 kernel scheduler”, International Conference on Computer Design and
Appliations (ICCDA), 2010.

XU Long, et. al, “An Improved Algorithm to Optimize the Access Time of Data Broadcast in Mobile Computing Environments”,
Second International Workshop on Education Technology and Computer Science, 2010.

Sangchul Lee, Jae Wook Jeon, “Evaluating Performance of Android Platform Using Native C for Embedded Systems”, International
Conference on Control, Automation and Systems, 2010.

Nasr addin Al-maweri, et.al, “Runtime CPU Scheduler Customization Framework for a flexible mobile operating system”, Student
Conference on Research and Development (SCOReD), 2009.

Li Lo, et.al, “A Modified Interactive Oriented Scheduler for GUI-based Embedded Systems”, 8th IEEE International Conference on
Computer and Information Technology, 2009.

C.S. Wong, et. al, “Fairness and Interactive Performance of O (1) and CFS Linux Kernel Schedulers”, International Symposium on
Information Technology, 2008. ITSim, 2008.

Wang Chi, Zhou Huaibei, “A Modified O (1) Scheduling Algorithm for Real-Time Tasks”, International Conference on Wireless
Communications, Networking and Mobile Computing, 2006. WiCOM, 2009.

Yan ZHAO, et. al, “Research on the Priority-based Soft Real-time Task Scheduling in TinyOS”, International Conference on
Information Technology and Computer Science, 2009.

“Android.com”, Available: http://www.android.com

“Android SDK| Android Developers”, http://developer.android.com/sdk/index.html.

664 Bibliography

Advanced Configuration and Power Interface Specification, Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation,
Phoenix Technologies Ltd., Toshiba Corporation, Revision 4.0a, April 5, 2010.

Greg Kroah-Hartman. “Android and the Linux kernel community” http://www.kroah.com/log/linux/android-kernel-problems.html.

“Linux developer explains Android kernel code removal”. http://news.zdnet.com/2100–9595_22–389733.html.

“What is Android”. Android Developers. http://developer.android.com/guide/basics/what-isandroid.html.

Open Handset Alliance. “Industry Leaders Announce Open Platform for Mobile Devices” http://www.openhandsetalliance.com/
press_110507.html.

Bort, Dave. “Android is now available as open source”. Android Open Source Project. http://source.android.com/posts/opensource.

Honan, Matthew. «Apple unveils iPhone». Macworld. http://www.macworld.com/article/54769/2007/01/iphone.html.

Android architecture. http://www.slideshare.net/deepakshare/android-arch-presentation.

An overview of iPhone OS architecture. http://thecoffeedesk.com/news/index.php/2009/05/17/iphone-architecture/.

Bornstein. Dalvik vm internals, 2008 google i/o session, 01 2008. http://sites.google.com/site/io/dalvik-vm-internals.

Brady, Anatomy & physiology of an android, 2008 google i/o, 2008. URL http://sites.google.com/site/io/anatomy--physiology-of-
an-android.

Winandy Davi, Sadeghi. Privilege escalation attacks on android, 2010. http://www.ei.rub.de/media/trust/veroeffentlichungen/2010/11/13/
DDSW2010_Privilege_Escalation_Attacks_on_Android.pdf.

Enck, Understanding android security. IEEE S, JanuaryFebruary:50pp, 2009.

Freyo, Android get signature by uid, 2010. URL http://www.xinotes.org/notes/note/1204/.

Google. Android documentation - fundamentals, 2011. http://developer.android.com/guide/topics/fundamentals.html.

Google. Android security, 2011. URL http://developer.android.com/guide/topics/security/security.html.

David A Rusling. The Linux Kernel. 1999.

Chin Felt Greenwood Wagner. Analyzing inter-application communication in android, 06 2001. www.cs.berkeley.edu/~afelt/
intentsecurity-mobisys.pdf.

Android memory usage, 2011. URL http://elinux.org/Android_Memory_Usage.

Goyal, P., Guo, X., and Vin, H.M.: “A Hierarchical CPU Scheduler for Multimedia Operating Systems,” Proc. Second Symp. on
Operating Systems Design and Implementation, USENIX, pp. 107–121, 1996.

Mercer, C.W.: “Operating System Support for Multimedia Applications,” Proc. Second Int’l Conf.on Multimedia, ACM, pp. 492–493,
1994.

Nieh, J., and Lam, M.S.: “The Design, Implementation and Evaluation of SMART a Scheduler for Multimedia Applications,”
Proc. 16th Symp. on Operating Systems Principles, ACM, pp. 184–197, 1997.

Reddy, A.L.N., and Wyllie, J.C: “I/O Issues in a Multimedia System,” Computer, vol. 27, pp. 69–74, March 1994.

Part VIII Shell Programming

Kernighan, B.W., and Pike, R.: The UNIX Programming Environment, Upper Saddle River, NJ: Prentice Hall, 1984.

Newham, C., and Rosenblatt, B.: Learning the Bash Shell, Sebastopol, CA: O’Reilly & Associates, 1998.

Robbing A.: UNIX in a Nutshell: A Desktop Quick Reference for SVR4 and Solaris 7, Sebastopol, CA: O’Reilly & Associates,
1999.

B.A. Forouzan, R.F. Gilbery, UNIX and Shell Programming, Cengage Learning, 2012.

Yashavant Kanetkar, UNIX Shell programming, BPB Publications, 1996.

B.M. Harwani, UNIX and Shell Programming, Oxford University Press, India, 2013.

This page has been reformatted by Knovel to provide easier navigation.

INDEX

Index Terms Links

A

Absolute deadline 604

Absolute path 412

Access control list (ACL) 416 535

Access protection bits 318

Accidental breaches 514

Active intruder 515

Adapter 40

Adaptive piggybacking 641

Advanced configuration and power interface (ACPI) 622 629

Advanced power management (APM) 622

Aegis 85

Affinity-based scheduling 594

AFRAID 497

Aging 248 357

Android shared memory (ASHMEM) 631

Anticipatory scheduling 507

Aperiodic 604

APM 629

Architecture of UNIX 90

Associative mapping 316

Asymmetrically blocked architecture 626

Asynchronous procedure call (APC) queue 509

Atomic operations 190

Attack 514

Auxiliary queue 165

Average response time 475

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

B

Bad blocks 488

Bad sectors 488

Balance 142

Balance set manager 396

Banker’s algorithm 237

Barrier 213

Base register 45 296

Basic Input-output System (BIOS) 68 79 622

Batch processing system 15

 batch processing 15

Batch systems 9 10

Berkeley Software Distribution (BSD) 89

Bit table 431

Block caching 640

Blocked process 108

Blocked queue 108 117

Block-oriented device 458

Block striping 639

Boot block 421 444

Boot device 69

Boot disk 487

Booting 70

Booting/Bootstrapping 69

Boot loader 69

Boot partition 53 487

Boot software 69

Bootstrap loader 69

Boot-up time 624

Botnet 523

Bottom-half 625

Bounce register 296

Bounded priority inversion 610

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Buddy system 389 392 393

Buddy system 308

Buffer cache 467 503

Buffering 465

C

Cache manager 584

Capability lists or C-lists 535

Chandy–Lamport Consistent State Recording Algorithm 570

Character-oriented device 458

Chip operating system (COS) 23

Cigarette smokers’ problem 205

Cipher text 537

Client–server or microkernel-based OS 83

Client-server protocol 565

Client stub 567

Clocks 39

Clustered demand paging 396

Coarse-grained computations 563

Command interpreter 30

Common Object Request Broker Architecture (CORBA) 562

Compaction 303

Compatible time-sharing system (CTSS) 11

Concurrent processes 106

Concurrent processes 178

Concurrent program 106

Conditions for deadlock 230

 Circular wait 231

 Hold and wait 230

 Mutual exclusion 230

 No pre-emption 230

Consumable resources 60

Context saving 118

Context switching 119

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Context switch time 119 253

Contiguous allocation 303

Continuous media data 636

Control cards 8

Control program 29

Control synchronization 180

Conversational Monitor System (CMS) 82

Cooperating processes 106

Copy-on-write (COW) 280 395

CP/M 12

CPU-bound process 133

CPU-burst 133

CPU protection 47

CPU utilization 142

Critical regions 209

Critical section 184

D

Daemon processes 125

Dalvik Virtual Machine (DVM) 628

Data access synchronization 178

Data block 444

Data striping 493

 coarse-grained strips 493

 fine-grained strips 493

Dcache 448

Deadlock 228 229

Deadlock avoidance 235

Deadlock detection 241

Deadlock prevention 232

Deadlocks 183

Denial-of-service (DoS) 514

Dentry cache 448

Device controller 41

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Device controllers 40

Device driver 41 462

Device driver stack 508

Device-independent I/O software 65

Device-independent I/O softwares 457

Device registers 40

 Control register 40

 Data register 40

 Status register 40

Device scheduling 462

Dining-philosopher problem 201

Direct addressing 215

Direct memory access (DMA) 49 459

 DMA controller 49

Dirty eager 597

Dirty pages 597

Discretionary access control (DAC) 530

Disk 50 51

 sectors 50

 tracks 50

Disk access time 474

Disk bandwidth 474

Disk controller 51

Disk drive 50

 disk arm 50

 read/write head 50

 spindle 50

Disk formatting 52

Disk mirroring 493

Disk operating system 12

Disk partitioning 52 487

Dispatcher 107 121

Distributed Component Object Model (DCOM) 562

Distributed operating systems 13 20

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Distributed system 21

 computation migration 21

 CORBA 21

 data migration 21

 DCOM 21

 Process migration 21

 remote method invocation 21

 remote procedure call 21

 resource sharing 21

Distributed system 559

Double buffering 467

D-space (data-space) 377

Dynamic allocation 293

Dynamically loadable modules 90

Dynamic scheduling 605

E

Eager migration strategy 597

ECC 490

Edge-chasing algorithm 578

Effective-memory access time (EAT) 316

EFS 554

Elevator algorithm 478

Embedded operating systems 22

Encrypted file systems (EFS) 546

Encrypted passwords 539

Encryption 537

Error-correcting code (ECC) 488

Event handlers 77

Execute-in-place mechanism 624

Exokernel 84

Explicit 105

Extended file system 448

Extended machine 30

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Extent 445

Extents 424

External fragmentation 303

F

Fairness 142

Fair-share scheduling 169

False deadlock 577

Falsification 514

FCB 433 435

Fibers 284

File control block (FCB) 419 421

File-locking 415

File management 64

File servers 584

Fine-grained computations 563

First Come First Served 143

Fragmentation 298

 external fragmentation 299

 internal fragmentation 298

Frame striping 639

Frame table 374

Free list 421

Free page list 377

Free-process queue 117

Free space list 431

G

Gang scheduling 595

Guardian angel 554

H

Hamming code 495

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Happens-before relation 568

Hashed passwords 539

Hash function 324

Heap space 388

Heavy weight process 254

Highest Response Ratio Next (HRRN) scheduling 158

Hybrid kernel 86

Hybrid kernel-based OS 86

Hybrid threads 263

I

Implicit 105

Improved round robin scheduling 156

Independent processes 106

Index block 430

Indirect addressing 215

Indirect blocks 423

Inode 443

Inode block 444

Inode cache 448

Input–output devices 38

 block-oriented device 38

 character-oriented devices 38

 network device 38

 random access device 38

 sequential device 38

Input–output management 65

Input–output protection 45

Insider attacks 515

Interacting 106

Internal fragmentation 302

Internet connection firewall (ICF) 555

Internet relay chat (IRC) 523

Interrupt 35 121

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Interrupt context 625

Interrupt-driven I/O 48

Interrupt handler 36

Interrupts 37

 Hardware interrupts 37

 Software interrupts 37

Interrupt service routine (ISR) 36 42 121 464

Interrupt vector table (IVT) 36

Intimate shared memory 276

Intrusion detection system (IDS) 541

I/O-bound process 133

I/O buffer 466

I/O burst 133

I/O devices 39

 blocking 39

 non-blocking 39

I/O redirection 650

I/O software 41 65 457

I/O subsystem 65

I/O throttling 395

IRQ 37

I-space (instruction-space) 377

J

Jacketing or wrapping 262

Jacket routine 262

Job 103

Job control language (JCL) 8

Job pool/queue 106

Job scheduling 106

K

Kernel 31

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Kernel asynchronous I/O (kaio) 504

Kernel-mode 44

L

Layered architecture 79

Lazy migration strategy 597

Library OSs 85

Light weight process (LWP) 254

Limit 296

Limit register 45

Linux 94 280 391 446

 506 554

 Process states 280

Live bytes 624

Load-balancing 564

Locality of reference 337

 spatial locality 337

 temporal locality 337

Logical address 311 325

Logical addresses 294

Logical formatting 53 487

Logical prefetcher 397

Long-term scheduling 136

Lotsfree 387

Lottery scheduling 171

Lower-bound 298

Low-level formatting 487

M

Magnetic disks 49

Mailbox 216

Malicious breaches 514

Malware 515

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Mandatory access control (MAC) 530

Mapping manager 586

Mapping table 463

Masquerade 514

Masquerader 515

Master boot record (MBR) 52

Medium-term scheduling 137

Memory allocation 305

 best-fit allocation 306

 first-fit allocation 305

 worst-fit allocation 306

Memory management 63

Memory management unit (MMU) 297 311 388

Memory or cache coherence 596

Memory protection 45

Message passing 182

Message passing system 214

Messages 275

Metadata logging 446

Microkernel 83 84

Migration strategy 597

Minfree 387

Misfeasor 515

Mobile code 524

Monitor mode 44

Monitor program 8

Monitors 211

Monolithic architecture 78

Monoprogramming 15

Motif 13

Multi-level Feedback/Adaptive Queue Scheduling 168

Multi-level Queue Scheduling 166

Multi-level Security Models 548

 Bell–La Padula security model 548

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

 biba model 549

MULTiplexed Information and Computing Service (MULTICS) 11

Multi-processor operating systems 20

 multiple processors 20

Multi-programmed batch systems 9

Multi-programming 10

Multi-programming systems 15 16

 degree of multi-programming 16

 multi-programming 15

Multi-tasking 13

Multi-tasking systems 18

Multi-threading 255

Multiuser 17

Multiuser time-sharing systems 17

 time slice 17

Mutual exclusion 184

N

Network device 458

Network operating system 13

Network operating systems 19

New Technology File System (NTFS) 452 554

Non-consumable resources 59

Non-pre-emptive resources 60

Non-uniform memory access architecture (NUMA) 590

No remote memory access architecture (NORMA) 590

O

O(1) scheduling algorithm 626

Offline operation 9

Offline scheduling 604

On-demand streaming 636

One-time passwords 541

Multi-level Security Models (Cont.)

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Online scheduling 605

Open-file table 407

Ordering 234

OS/360 81

OS-directed device configuration

 and power management (OSPM) 623

Outsider attacks 515

Overlays 336

Overlay structured program 336

P

Page cache 505

Page directory register 395

Pagefiles 394

Page frame database 395

Page list 395

Pageout daemon process 387

Page scanner 389

Page size 372

Page table 310 315 393

Page table base register (PTBR) 316 372

Page table length register (PTLR) 318 373

Page trimming 396

Paging 309

 blocks 309

 frames 309

 pages 309

Paging space 491

PalmOS 23

Partition table 53 487

Passive intruder 515

Path-pushing algorithm 578

PCB 114 119 121 253

 315 372

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Periodic 604

Personal digital assistants (PDAs) 620

Pfdata table 385

Physical addresses 294

Physical address space 294

Pipe 274

Piping 650

Power on self test (POST) 70

Predictability 141

Pre-emptive resources 60

Prefetching 397 641

Principle of locality of reference 336

Priority ceiling protocol (PCP) 611

Priority decay 616

Priority inheritance protocol (PIP) 611

Priority inversion 610

Priority number based scheduling 146

Priority scheduling 145

Private key encryption 537

Privileged instructions 45 69

Privileged mode 44

Privileged operations 71

Privilege rings or levels 44

Process 104 106

 life cycle of a process 106

 process environment 104

 process scheduling 106

 relationship between processes 106

Process communication 182

Process context in UNIX 270

Process control block 114

Process descriptor 114

Process image 114

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

 deadlock management 63

 deletion 63

 inter-process communication 63

 process creation 63

 process scheduling 63

 process synchronization 63

Process migration 581

Process operations 125

Process scheduling 133

Process spawning 125

Process States 107

Process switching 120 253

Process tables 116

Process/task management 62

Producer–consumer problem 196

Program 103

Programmable interval timer (PIT) 39

Programmed I/O 48

Program status word (PSW) 37 73

Proof-carrying code (PCC) 545

Proportional share scheduling 637

Protected objects 212

 protected entry 213

 protected procedure 212

Public key encryption 538

Q

QNX 615

R

RAG 242

RAID 53 492

 RAID controller 492–493

Process management 63

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

RAID controller 489

Reader–writer problem 197

Ready queue 106 117

Real-time operating systems (RTOS) 15 21

 real time tasks 22

Real-time processing 22

Real-time system 601

 hard real-time systems 601

 soft real-time systems 601

Real-time systems 22

 hard real-time systems 22

 soft real-time systems 22

Record blocking 403

Recovery from deadlock 245

Re-entrant code 319

Reference bit 352

Reference monitor 547

Relative deadline 604

Relative path 412

Release time 604

Relocation 296

Relocation register 296

Remote method invocation 562

Remote Procedure Call 562

Repudiation 514

Reserves space 394

Resident monitor 8

Resident part 77

Resource abstraction/transformation 56

Resource allocation graph (RAG) 229

Resource allocator 26 27

Resource manager 27 29 56 61

Resource pre-emption 245

Resource ranking 234

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Resource scheduling 57

Resource sharing/multiplexing 57

 space division multiplexing 57

 time division multiplexing 57

Resource types 58

 hardware 58

 software 58

 virtual 58

Response time 141

Response time 475

Reverse mapping 394

Role-based access control (RBAC) 530

Rollback 246

Rootkit 524

Rotational latency 474

Round robin scheduling 152

Running process 108

S

Sandboxing 544

Schedulability analysis 605

Scheduler 78 107

Schedulers 123

 long-term scheduler 124

 medium-term scheduler 125

 short-term scheduler 124

Scheduling in Solaris 279

Scheduling types 139

 non-pre-emptive scheduling 139

 pre-emptive scheduling 139

Secondary storage management 64

Sector slipping 488

Sector sparing 488

Security and protection 65

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Security patch 545

Seek time 474

Segment Table Base Register (STBR) 328

Segment Table Limit Register (STLR) 328

Semaphore 192

 binary semaphore 192

 counting semaphore 192

Semaphores 190

Server processes 83

Server stub 567

Set-up time delay 7

Shared memory 275

Shell 30 645

Shortest process next (SPN) 147

Shortest remaining time next (SRN) 149

Short-term scheduling 138

Signals 217 275

 asynchronous signal 217

 implementation of signals 217

 signal handler 217

 synchronous signal 217

Simultaneous peripheral operation online (SPOOL) 10

Slab allocator 392

Slab cache 392

Sleeping barber problem 207

Soft link 414

Solaris 90 91 92 445

 553

 architecture of Solaris 10 91

Space sharing scheduling 595

Sparse files 454

SPIN 84

Spinlock 192

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Spinlocks 592

Spoofing 516

 email spoofing 516

 identity spoofing 516

 IP spoofing 516

 Web spoofing 516

Spooling 467

Sporadic tasks 604

Stack property 358

Staggered striping 639

Standard input stream 650

Standard output stream 650

Starvation 248

Static 293

Static scheduling 605

Stream merging 641

Super block 421 444

Superfetcher 397

Supervisor mode 44

Suspended processes 111

Suspended queue 111 117

SVR4 90

Swap file 491

Swap partition 491

Swapped-out process 111 294

Swapping 294

Swap space 294 486

Swap time 295

Symbolic link 414

Symbolic links 442

Symmetric addressing 215

Symmetrically blocked architecture 626

Synchronization protocols 216

 blocking protocol 216

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

 non-blocking protocol 216

Synchronized methods 214

System call 45 69 72

System call handler 77

System calls 71 74 120

System disk 487

System generation programs 76

System mode 44

System process 105

System programs 76

System swap file 393

System-wide open file table 407

T

Task 104

TCP wrappers 553

Terminated process 108

Test-and-Set 219

Thrashing 362

Thread control block (TCB) 256

Thread pooling 265 284

Thread recycling 264

Threads 258

 kernel threads 258

 user threads 258

Thread scheduling 265

Thread table 259

Throughput 142

Timers 39

Time-sharing multi-user systems 11

Top-half 625

Transfer time 474

Transient error 488

Transient part 77

Synchronization protocols (Cont.)

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Translation Look-aside Buffer (TLB) 316 323

 TLB hit 316

 TLB miss 316

Translation tables 276

Transparency 562

 concurrency transparency 563

 location transparency 562

 migration transparency 563

 parallelism transparency 563

 replication transparency 563

Trap 37

True64 90

True64 UNIX 84

Trusted Solaris 553

TSS/360 81

Turnaround time 141

U

Uniform memory access architecture (UMA) 589

UNIX 89 90 385 442

UNIX kernel 269

Unprivileged instructions 45

Upper-bound registers 298

Use bit 352

User-mode 44

User process 105

V

Variance of response time 475

Virtual address 337

Virtual address space 337

Virtual file system (VFS) 446

Virtual machine 30

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Virtual machine manager (VMM) 29 394

Virtual machine OS 81

Virtual memory (VM) 335

Virtual memory handler 335 337

Virtual round robin scheduling 165

Viruses 521

 Appending virus 521

 Boot sector virus 522

 Companion virus 521

 Encrypted virus 522

 File/Executable program viruses 522

 Macro virus 521

 Memory resident virus 521

 Polymorphic virus 521

 Stealth virus 522

VM/370 81 82

VM-CP 82

VM/SP 82

Volume control block 421

Vulnerability 514

VxWorks 614

W

Wait and signal operations 191

Wait-for graph 242

Waiting time 141

Watchdog timer 615

White hat hackers 515

Windows 95 452 507 554

Windows XP 96

Working set 364

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

X

XOK 85

X Windows 13

Z

Zone allocator 392

z/VM 82

