Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

PRINCIPLES OF

peratin
ystem

Naresh Chauhan

Professor and Chairman
Department of Computer Engineering
YMCA University of Science and Technology, Faridabad

OXFORD

UNIVERSITY PRESS

OXFORD

UNIVERSITY PRESS

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press
YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2014
The moral rights of the author/s have been asserted.
First published in 2014

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the
prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics
rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the
address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-808287-3
ISBN-10: 0-19-808287-8

Typeset in Times New Roman
by Mukesh Technologies Pvt. Ltd, Puducherry 605005
Printed in India by India Binding House, Noida 201301

Third-party website addresses mentioned in this book are provided
by Oxford University Press in good faith and for information only.
Oxford University Press disclaims any responsibility for the material contained therein.

Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

Dedicated to
my wife, Anushree Chauhan
and my loving children, Smiti and Atharv

Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

Preface

An operating system is an interface through which we are able to access and operate the computer
hardware. Thanks to the operating system, the user need not worry about hardware or interact with different
devices. The operating system, therefore, works in the background without letting us know who is doing
the job. It is the software through which all the hardware devices are managed and utilized. However,
an operating system is much more than just that and encompasses a vast domain. One reason is that an
operating system and computer architecture affect each other and co-evolve. Sometimes, the computer
architecture has forced the operating systems to evolve, and sometimes the operating system demanded
the architecture to change. This has given rise to the operating system concepts in the light of computer
architecture. Another reason is that the technology has shifted from single-processor to multi-processor
technology. This has given birth to so many operating systems, such as multi-processor, distributed,
networked operating systems, and so on. Another development that we have seen in the last 15 years is
the mobile technology. Today, we are living in the world of mobile devices. The mobile technology has
bred various developments in mobile operating systems. Besides this, there is the world of embedded
and real-time systems, which produced yet another category of operating systems—embedded and real-
time operating systems. The list is endless! All these advances have made operating systems a subject
of rich concepts and frequent changes in user applications and technology.

About the Book

This book has been written after reviewing the syllabi of various Indian universities and, therefore, provides a
wide coverage of the subject—operating systems. The target readers of this book are undergraduate students
of computer engineering and I'T. The book will also be useful to postgraduate students of MCA and M. Tech.
as it includes many chapters on specialized operating systems as well as several other advanced topics.

Each chapter begins with the learning objectives and ends with a summary containing a quick
review of important concepts discussed in the chapter. Each chapter provides plenty of solved examples
in-between the text for a practical understanding of the method or technique. Multiple choice questions,
review questions, and brain teasers provided at the end of each chapter will assist the teaching faculty
to prepare their students for the examinations.

The book covers every aspect of the subject. It describes the development of modern operating
systems, explaining the evolution starting from the mainframe systems. Since operating system is con-
sidered to be a concept-rich subject, this book has focused on each and every concept in depth and
explained the same in a lucid manner. The book also covers the practical aspect of the subject, empha-
sizing shell programming. It has a complete chapter on shell programming, which will help the students
in the operating system laboratory. Case studies of four operating systems, namely, UNIX, Solaris,
Linux, and Windows are presented at the end of Parts I-VI. The different features of various versions
of each operating system are explained. In UNIX, version SVR4; in SOLARIS, version 10; in Linux,
version 2.6; and in Windows, Windows XP are emphasized in the case studies.

Key Features
This book is packed with the following features:

e Explains how the modern operating system has been developed and discusses different types of
OSs and OS architectures

Preface vii

e Highlights the hardware issues necessary to understand operating system concepts

e Contains dedicated chapters on specialized OSs such as distributed OSs, multi-processor OSs,
real-time OSs, mobile OSs (including Android OS), and multimedia OSs

e Covers every concept in depth and provides numerous solved examples interspersed within the text

e Provides specially designed brain teasers at the end of each chapter for the students to develop an
analytical approach to problem solving

e Includes case studies of four OSs, namely, UNIX, Solaris, Linux, and Windows and two real-
time OSs, VxWorks and QNX

e Contains a separate chapter on shell programming that will be helpful for operating system laboratory

Online Resources

The following resources are available to help the faculty and the students using this text:

For Faculty
e Chapter-wise PowerPoint Slides

For Students
e Solved questions for competitive examinations
e Practical exercises for OS laboratory

Content and Coverage

The book consists of 23 chapters divided into eight parts. A brief outline of each chapter is as follows:

PART | Introduction

Chapter 1 introduces operating systems and explains their goals and functions along with their types.

Chapter 2 discusses the need of hardware support for OSs and explains the hardware components such
as I/0 devices, device controllers, magnetic disk, etc. It explains the interrupt-driven nature of OSs along
with the hardware protection mechanisms to implement multi-programming or multi-tasking OSs.

Chapter 3 explains how an operating system functions as a resource manager. Various resource types,
along with the components of resource manager, are also discussed.

Chapter 4 explains the general working of an operating system along with the coverage of various
structures of an operating system.
PART Il Process Management

Chapter 5 introduces the basic concepts related to process management along with discussion on pro-
cess life cycle. Further, it explains the implementation of process with various data structures and mod-
ules and various process operations.

Chapter 6 discusses every detail of process scheduling. Types of schedulers and scheduling algorithms
are dealt with in detail.

Chapter 7 introduces the concept of synchronization of processes with the help of various methods.
Solutions to some classical synchronization problems are also discussed.

Chapter 8 introduces the problem of deadlock in multi-programming environment, explaining how to
represent deadlock and various conditions responsible for it. It also explains how to deal with deadlocks.

Chapter 9 introduces the concept of multi-threading and various thread types and its operations.

viii Preface

PART Il Memory Management

Chapter 10 introduces the concepts related to basic memory management and explains various con-
cepts like memory allocation, paging, and segmentation.

Chapter 11 explains the importance of virtual memory and its implementation using various methods.

PART IV File Management

Chapter 12 introduces the concept of files, and their types, attributes, and operations along with details
of directories.

Chapter 13 elucidates file system structure and its implementation, data structures, along with the
details of various file operations, file allocation methods, and implementation of directories.

PARTV Input-Output Management

Chapter 14 introduces types of I/O, explains various issues related to I/O management, and kernel I/O
subsystem along with the life cycle of an I/O request.

Chapter 15 introduces the need for disk scheduling and various concepts related to disk management.

PART VI Security and Protection

Chapter 16 mainly deals with security issues in operating systems and various types of attacks and
threats.

Chapter 17 explains the protection mechanisms in operating systems to tackle threats and attacks.

PART VIl Advanced Operating Systems
Chapter 18 introduces distributed operating systems and its features.
Chapter 19 introduces multi-processor operating systems and various related issues.

Chapter 20 introduces real-time operating systems and explains various issues therein. The chapter
contains case studies on VxWorks and QNX.

Chapter 21 discusses mobile devices and mobile operating systems and explains various issues therein.
A popular operating system, Android OS, is discussed in detail.

Chapter 22 discusses the various concepts in multimedia operating systems.

PART VIl Shell Programming

Chapter 23 introduces various types of shells of UNIX operating systems and explains various
structures used in shell programming along with some programming examples.

The readers are requested to send their valuable suggestions, comments, and constructive criticism
for further improvement of the book at nareshchauhan19@gmail.com.

Naresh Chauhan

Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

Briet Contents

Features of the Book
Preface
Detailed Contents

PART | Introduction

1. Introduction to Operating Systems [3]

2 Hardware Support for Operating Systems [35]
3. Resource Management

4 Operating System Architectures [68]

Case Study I: History and Architecture of Operating Systems [89]
PART Il Process Management

5. Fundamentals of Process Management [103]
Process Scheduling

Process Communication and Synchronization [178]
Deadlocks

Multi-threading [251]

Case Study ll: Process Management in UNIX/Solaris/Linux/Windows
PART Il Memory Management

10. Basic Memory Management [291]
1. Virtual Memory

Case Study Ill: Memory Management in UNIX/Solaris/Linux/Windows [382]

Part IV File Management

12. File Systems [397]
13. File System Implementation

Case Study IV: File Management in UNIX/Solaris/Linux/Windows [438]
PARTV Input-Output Management

14. Basics of /0 Management [453]
15. Disk Management [469]

Case Study V: Input/Output Management in UNIX/Solaris/Linux/Windows
PART VI Security and Protection

16. Security Issues [509]
17. Protection Mechanisms [524]

Case Study VI: Protection Mechanisms in UNIX/Solaris/Linux/Windows [547]
PART VIl Advanced Operating Systems

18. Distributed Operating Systems [553]

19. Multi-processor Operating Systems [583]
20. Real-time Operating Systems

21. Mobile Operating Systems

22. Multimedia Operating Systems [630]

PART VIl Shell Programming

23. Shell Programming and UNIX Shells [639]
Bibliography [657]

Index [665]

© oo N

Detailed Contents

Features of the Book
Preface
Brief Contents

PART |
1.

Introduction

Introduction to Operating Systems

1.1 Introduction [3]
1.2 The Need for Operating Systems [4]
1.3 Evolution of Operating Systems [€]
1.3.1 First Generation [6]
1.3.2 Second Generation [7]
1.3.3 Third Generation [9]
1.3.4 Fourth Generation [11]
1.4 Types of Operating Systems [14]
1.4.1 Batch Processing Systems [15]
1.4.2 Multi-programming Systems [15]

1.4.3 Multi-user Time-sharing Systems [16]

1.4.4 Multi-tasking Systems [18]

1.4.5 Network Operating Systems [19]

1.4.6 Multi-processor Operating
Systems [20]

1.4.7 Distributed Operating Systems [20]

1.4.8 Real-time Operating Systems [21]

1.4.9 Embedded Operating Systems [22]

Goals of an Operating System [25]
Functions of Operating System [27]
1.6.1 User View [27]

1.6.2 System View [28]

1.7 Operating System’s Generic
Components [30]

—_
[e>N&)]

Hardware Support for
Operating Systems
2.1 Introduction [35]
2.2 Interrupt-driven Operation for Operating
System [35]
2.2.1 Types of Interrupts [37]
2.2.2 Multiple Interrupts Handling [38]
2.3 Input-Output Devices [38]
2.3.1 Timers or Clocks [39]
2.4 Device Controllers [40]
2.5 Device Driver [41]

2.6 Problems in the Design of Modern 0Ss [42]

2.7 Need for Protection [43]

2.8 Hardware Protection for
Multi-programming/
Multi-tasking [43]

29

2.10

[

2.8.1 Multiple Modes of Operation [43]
2.8.2 Input-Output Protection [45]
2.8.3 Memory Protection [45]
2.8.4 CPU Protection [47]
Input-Output Communication
Techniques [47]

2.9.1 Programmed I/0 [48]

2.9.2 Interrupt-driven 1/0 [48]
2.9.3 Input/Output Using DMA [49]
Magnetic Disks [49]

2.10.1 Disk Formatting [51]
2.10.2 Disk Partitioning [52]

Resource Management [56]

3.1
3.2

3.3

3.4
3.5
3.6

Introduction [56l
Functions of a Resource Manager [56]
3.2.1 Resource Abstraction/

Transformation [56]
3.2.2 Resource Sharing/Multiplexing [57]
3.2.3 Resource Scheduling [57]
Resource Types [58]
3.3.1 Nature of Resources [59]
Goals of Resource Management [60]
How Resource Manager Works? [61]
Components of Resource Management [62]
3.6.1 Process/task Management [62]
3.6.2 Memory Management [63]
3.6.3 Secondary Storage Management [64]
3.6.4 File Management [64]
3.6.5 Input-Output Management [65]
3.6.6 Security and Protection [65]

Operating System Architectures (e8]

4.1
4.2

Introduction [68]

General Working of an Operating

System

421 Blos [68]

4.2.2 Booting/Bootstrapping [69]

4.2.3 Boot Software/Boot Loader/Bootstrap
Loader [69]

4.2.4 Boot Device [69]

xii Detailed Contents

4.2.5 Privileged Instructions
4.2.6 System Call
4.3 System Calls
4.3.1 Making a System Call
4.3.2 Executing the System Call
4.3.3 Types of System Calls
4.4 System Programs
4.5 System Generation Programs
4.6 General Structure of OS

4.7 Monolithic Architecture
4.8 Layered Architecture

4.8.1 Grouping of Functions in a

Layer

4.8.2 Hierarchy of Layers
4.9 Virtual Machine 0S
4.10 Client-Server or Microkernel-based OS
4.11 ExoKernel
4.12 Hybrid Kernel-based 0S

Case Study I: History and Architecture of Operating Systems

PART Il Process Management

5. Fundamentals of Process

Management [103]

5.1 Introduction [103]
5.2 Terminology [103]
5.3 Implicit/System and Non-implicit/User
Processes [105]
5.4 Relationship Between Processes [106]
5.5 Life Cycle of a Process [106]
5.5.1 Process States and State
Transitions [107]
5.5.2 Suspended Processes and Their
State Transitions [111]
56 Process Control Block [114]
5.7 Implementation of Processes [115]
5.8 Context Switching [118]
5.9 Process Switching [119]
510 Schedulers [123]
5.10.1 Long-term Scheduler [123]
5.10.2 Short-term Scheduler [123]
5.10.3 Medium-term Scheduler [124]
5.11 Process Operations [124]
5.11.1 Creation [125]
5.11.2 Dispatching [126]
5.11.3 Blocking/Wakeup [126]
5.11.4 Termination [126]

6. Process Scheduling [133]

6.1 Introduction [133]
6.2 Process Behaviour for Scheduling [133]
6.3 Scheduling Decision [134]
6.4 Scheduling Levels [136]
6.4.1 Long-term Scheduling [136]
6.4.2 Medium-term
Scheduling [137]
6.4.3 Short-term Scheduling [138]

6.5 Scheduling Types [139]

6.6 Process-scheduling Goals [140]
6.6.1 User-based Scheduling Goals [141]
6.6.2 System-based Scheduling

Goals [142]
6.7 Scheduling Algorithms [143]

6.7.1 First Come First Served (FCFS) [143]
6.7.2 Priority Scheduling [145]
6.7.3 Round Robin Scheduling [152]
6.7.4 Improved Round Robin
Scheduling [156]
6.7.5 Highest Response Ratio Next (HRRN)
Scheduling [158]
6.7.6 Virtual Round Robin
Scheduling [163]
6.7.7 Multi-level Queue Scheduling [166]
6.7.8 Multi-level Feedback/Adaptive Queue
Scheduling [168]
6.7.9 Fair-share Scheduling [169]
6.7.10 Lottery Scheduling [171]

Process Communication
and Synchronization [178]

7.1 Introduction [178]
7.2 Concurrent Processes [178]
7.2.1 Data Access Synchronization [178]
7.2.2 Control Synchronization [180]
7.2.3 Process Communication [182]
7.24 Deadlocks [183]
7.3 Critical Section (CS) [184]
7.4 Algorithmic Approach to CS
Implementation [1861
7.4.1 Two-process Solution [186]
7.4.2 Dekker's Solution [188]
7.4.3 Peterson’s Solution [189]

Deadlocks

8.1 Introduction [224

8.2 Defining Deadlocks |224
8.3 Modelling of Deadlock
8.4 Conditions for Deadlock 228

7.5 Semaphores
7.6 Solution of Classic Synchronization
Problems Using Semaphores [194
7.6.1 Solution of Producer—Consumer
Problem Using Semaphore (194
7.6.2 Solution of Reader—Writer Problem
Using Semaphores
7.6.3 Solution of Dining-philosopher
Problem Using Semaphores {200
7.6.4 Cigarette Smokers’ Problem [204
7.6.5 Sleeping Barber Problem 206
7.7 Critical Regions
7.7.1 Producer—Consumer Problem’s
Solution with CCR
7.8 Monitors
7.8.1 Producer-Consumer
Problem’s Solution with
Monitor {210
7.9 Protected Objects [211

7.10 Synchronized Methods [212
7.11 Message Passing System [213]

7.11.1 Direct Addressing [213
7.11.2 Indirect Addressing [214]
7.11.3 Mailbox 214

7.11.4 Synchronization Protocols

7.12 Signals
7.13 Hardware Support for Process

Synchronization [217

8.4.1 Mutual Exclusion 228
8.4.2 Hold and Wait
8.4.3 No Pre-emption
8.4.4 Circular Wait

8.5 Dealing with Deadlock [230
8.6 Deadlock Prevention [230

Detailed Contents xiii

8.6.1 Preventing Mutual Exclusion
Condition [230
8.6.2 Preventing Hold and Wait
Condition [231
8.6.3 Preventing No Pre-emption
Condition [231
8.6.4 Preventing Circular Wait
8.7 Deadlock Avoidance |233
8.7.1 Deadlock Avoidance for
Single Instance of Resources [234
8.7.2 Dijkstra’s Banker's Algorithm for
Deadlock Avoidance in Multiple
Instances of Resources [235
8.8 Deadlock Detection [239
8.8.1 Deadlock Detection in Multiple
Instances of Resource Types 240
8.9 Recovery from Deadlock
8.9.1 Resource Pre-emption 243
8.9.2 Rollback
8.9.3 Abort the process m
8.10 Practical Approach for Deadlock
Handling
8.11 Two-phase Locking
8.12 Starvation |246

Multi-threading [251]

9.1 Introduction 251

9.2 Process and Thread

9.3 Multi-tasking vs Multi-threading

9.4 Thread Control Block

9.5 Usage of Multi-threading [255

9.6 Types of Threads |2_ﬁ‘q
9.6.1 User Threads |257
9.6.2 Kernel Threads |260

9.7 Hybrid Threads |261

9.8 Thread Operations and Other Issues
in Thread Implementation [263]
9.8.1 Signal-handling Issues 263
9.8.2 Thread Pooling
9.8.3 Thread Scheduling

Case Study Il: Process Management in UNIX/Solaris/Linux/Windows m

PART Il Memory Management

10.

Basic Memory Management [291]

10.1 Introduction [291]
10.2 Basic Concepts [291]

10.2.1 Static and Dynamic Allocation [291]
10.2.2 Logical and Physical Addresses [292]
10.2.3 Swapping [292]

xiv Detailed Contents

1.

10.3

10.4
10.5
10.6

10.7

10.8

111
11.2
11.3

10.2.4 Relocation [294
10.2.5 Protection and Sharing
10.2.6 Fixed and Variable Memory
Partitioning @
10.2.7 Fragmentation 296
Contiguous Memory
Allocation 1297
10.3.1 Contiguous Allocation with Fixed
Partitioning
10.3.2 Contiguous Allocation
with Dynamic/Variable
Partitioning
10.3.3 Compaction [301
10.3.4 Memory Allocation
Techniques
Buddy System 306
Non-contiguous Memory Allocation 1307
Paging Concept
10.6.1 Paging Implementation and
Hardware Requirements
10.6.2 Protection in Pages
10.6.3 Shared Pages [317]
10.6.4 Fragmentation [318
Page Table Structures [318]
10.7.1 Hierarchical/Multi-level Page Table
Structure
10.7.2 Inverted Page Table
Structure
10.7.3 Hashed Page Table
Structure
Segmentation [323
10.8.1 Segmentation Implementation and
Hardware Requirements |326
10.8.2 Protection and Sharing |327

Virtual Memory (333]

Introduction @
Need for Virtual Memory @

Principle of Locality

11.4

11.5

11.6

1.7

11.8

11.9

11.10

11.11

11.12

Virtual Memory System |335

11.4.1 Demand Loading of Process
Components [335

Demand Paging

Virtual Memory System with Translation

Look-Aside Buffer [340

Page-replacement Algorithms

11.7.1 FIFO Page-replacement
Algorithm [345

11.7.2 Optimal Page-replacement
Algorithm [346

11.7.3 Least Recently Used Page-
replacement Algorithm |347

11.7.4 Second Chance Page-
replacement Algorithm |350

11.7.5 Clock Page-replacement
Algorithm [351

11.7.6 Modified Clock Page or Not
Recently Used Page-replacement
Algorithm |352

11.7.7 Not Frequently Used
Page-replacement
Algorithm [355

Stack Property of Page-replacement

Algorithms 1356

Thrashing

11.9.1 Dealing with Thrashing

11.9.2 Working-set-based Page-
replacement Algorithm |363

11.9.3 WSClock Page-replacement
Algorithm [365

11.9.4 Page Fault Frequency

Virtual Memory Using

Segmentation 1368

Combined Paging and

segmentation 368

Design and Implementation Issues

11.12.1 Paging Hardware

11.12.2 Virtual Memory Handler [372

Case Study lll: Memory Management in UNIX/Solaris/Linux/Windows (382

Part IV File Management

12.

12.1
12.2
12.3

File Systems (397

Introduction [397]
Files and File System [397]
File Structure [398]

12.4
12.5
12.6

12.3.1 Internal Structure and Record
Blocking [399]

File Naming and File Types [400]

File Attributes [401]

File Operations [402]

12.6.1 Implementation of File
Operations [403]
12.7 File Access 1403
12.8 Directories [405
12.8.1 Single Level 1406
12.8.2 Two Level [407]
12.8.3 Hierarchical or Tree
Structure 1407
12.8.4 Acyclic Graph Structure and File
Sharing
12.9 File Protection [411
12.10 File System Mounting

Detailed Contents xv

13.5.1 Create aFile [421
13.5.2 Open afile [421
13.5.3 Read aFile [422
13.5.4 Write a File [422
13.5.5 Close a File [422
13.6 File Allocation Methods [423
13.6.1 Contiguous File Allocation [423
13.6.2 Linked/Chained File
Allocation [424
13.6.3 Indexed File
Allocation [426
13.7 Free Space Management
13.8 Directory Implementation 1429
13.9 Backup and Recovery
13.9.1 Physical Backup [429
13.9.2 Logical Backup
13.9.3 Incremental Backup [429
13.10 File System Inconsistency [430
13.10.1 Superblock Check
13.10.2 File Control Block Check 1431
13.11 File System Performance Issues 431
13.11.1 Block Size [431
13.11.2 Input-Output Transfer
Time [432]
13.12 Log-structured File System [433

Case Study IV: File Management in UNIX/Solaris/Linux/Windows [438]

13. File System Implementation
13.1 Introduction
13.2 File System Structure
13.2.1 Logical File System
13.2.2 File Organization Module
13.2.3 Basic File System/Physical
Input-Output Level
13.2.4 Input-Output Control
13.3 Implementation of Data Structures
13.4 File Mapping Through FCB
13.4.1 Extents
13.5 Implementation of File Operations
PARTV Input-Output Management
14. Basics of I/O Management [453]

14.1 Introduction [453]
14.2 Types of Devices [453]
14.3 Types of /0 [454]
14.3.1 Programmed /0 [454]
14.3.2 Interrupt-driven /0 [455]
14.3.3 Input-Output Using DMA [455]
14.4 Input-Output Management Issues [456]
14.5 Input-Output Software [457]
14.5.1 User-level Input-Output
Software [457]
14.5.2 Kernel Input-Output
Sub-system [457]
14.5.3 Device Driver [459]
14.5.4 Interrupt Handling [459]
14.6 Kemel /0 Sub-system [460]
14.6.1 Uniform Interface [460]
14.6.2 Input-Output Scheduling [461]
14.6.3 Buffering [467]

14.6.4 Caching [463]
14.6.5 Spooling [463]
14.6.6 Error Handling [464]
14.7 Life Cycle of /O Request [464]
Disk Management [469]

15.1 Introduction [469]
15.2 Disk Scheduling [469]
15.3 Disk-scheduling Criteria [470]
15.4 Disk-scheduling Algorithms [471]
15.4.1 FCFS [471]
15.4.2 SSTF [472]
15.4.3 SCAN [474]
15.4.4 C-SCAN [476]
15.4.5 F-SCAN and N-step SCAN [476]
15.4.6 LOOK and C-LOOK [481]
15.5 Rotational Optimization [482]
15.5.1 SLTF-scheduling Algorithm [483]
15.5.2 SPTF-scheduling Algorithm [483]

xvi Detailed Contents

15.5.3 SATF-scheduling Algorithm [483 15.8 Swap-space/Paging-space
15.6 Disk Formatting Management 485
15.7 Bad Sectors 484 15.9 RAID Structure [487

15.9.1 RAID Levels [489
Case Study V: Input/Output Management in UNIX/Solaris/Linux/Windows

PART VI Security and Protection 507

16. Security Issues (509] 17.5 Access Control Lists [531]

. 17.6 Capability Lists [531]
lg; Isntrodgtctgg L::TQJ el 17.7 Cryptography as a Security Tool [533]
- oecurly JbJeCtves 17.7.1 Private Key Encryption [533]
16.3 Security Problem [510]

16.3.1 Unauthorized Disclosure [510] 17.7.2 Public Key Encryption 34
) 17.8 Authentication [534]
16.3.2 Deception [510] = .
. . 17.8.1 Authentication Using

16.3.3 Disruption [510] P i [

16.4 Intruders [510] asswords -
' . 17.8.2 Token-based Authentication [537]

16.5 Some Standard Security Attacks B11] 17.8.3 Authentication Usin

16.5.1 Denial-of-Service [512] © g

. Biometrics [537]
16.5.2 Spoofing [512] : .
16,53 Session Hiacking B2 17.9 Intrusion Detection System [537]

: : 17.9.1 Host-based Intrusion Detection
16.5.4 Man-in-the-Middle Attack [513] System (5381

16.5.5 Replay Attack [513] 17.92 Network-based IDS [538)

16.6 Security Levels [513] :
167 Inside System Attacks 1] 17.10 Worm/Bot/Rootkit Counter

Measures [538]
12;; [ra‘.’ %Oorzsa"km—?{l’or [574] 17.11 Dealing with Buffer Overflow
12 0g1e B0 Attacks [539]

16.7.3 Trojan Horse [575]

16.7.4 Login Spoofing [515]

16.7.5 Buffer Overflow [515]
16.8 Outside System Attacks [516]

16.8.1 Viruses [516]

16.8.2 Types of Viruses [517]

16.8.3 Worms [519]

16.8.4 Bots [519]

16.8.5 Mobile Code [520]

16.8.6 Rootkit [520]

17.11.1 Writing Correct Code [539]
17.11.2 Safe Libraries [539]
17.11.3 Use of Type-safe Programming
Language [539
17.11.4 Non-executable Buffers [539]
17.11.5 Address Space
Randomization [539]
17.12 Dealing with Mobile Code [540]
17.12.1 Code Blocking Approach [540]
17.12.2 Authentication Using Code

Signing [540]
17. Protection Mechanisms [524] 17.12.3 Safe Interpreters [540]
17.1 Introduction [524] 17.12.4 Code Inspection [540]
17.2 Protection Domains [524] 17.12.5 Sandboxing (5401
17.3 Access Control [526] 17.12.6 Proof-carrying Code [541]
17.3.1 Discretionary Access Control [526] 17.13 Security Patches (641l
17.3.2 Mandatory Access Control [526] 17.14 Secure File Systems (541]
17.3.3 Role-based Access Control [526] 17.15 Trusted Operating Systems [542]
174 Access Matrix [527] 17.15.1 Multi-level Security Models [544]

Case Study VI: Protection Mechanisms in UNIX/Solaris/Linux/Windows

PART Vi

Advanced Operating Systems

Distributed Operating Systems [553]

18.1 Introduction [553]
18.2 Characteristics of Distributed
Systems [553]
18.3 Network Operating Systems
18.4 Distributed Operating Systems [555]
18.5 Issues in Distributed Operating
Systems
18.5.1 Transparency @
18.5.2 Global Knowledge [557]
18.5.3 Performance |_5i$Ll|
18.5.4 Reliability [558]
18.5.5 Process Synchronization [558]
18.6 Communication in Distributed
Systems
18.6.1 Message-passing Model [559]
18.6.2 Remote Procedure Calls [560]
18.7 Clock Synchronization in Distributed

Systems

18.7.1 Synchronizing Logical
Clocks
18.8 Global State
18.8.1 Chandy-Lamport Consistent State
Recording Algorithm
18.9 Mutual Exclusion
18.9.1 Centralized Algorithm
18.9.2 Ricart-Agarwala Algorithm [568]
18.9.3 Token Ring Algorithm
18.10 Deadlock Detection ﬁl
18.10.1 Centralized Deadlock
Detection
18.10.2 Distributed Deadlock
Detection
18.10.3 Correctness Criteria for Deadlock
Detection Algorithms
18.11 Deadlock Prevention
18.12 Distributed Process Scheduling
18.12.1 Sender-initiated
Algorithms
18.12.2 Receiver-initiated
Algorithms
18.12.3 Symmetrically Initiated
Algorithms
18.13 Distributed File Systems _
18.13.1 File-sharing Semantics _5_79_|
18.14 Distributed Shared Memory (5801

20.

Detailed Contents xvii

[551]

Multi-processor Operating Systems [583]

19.1 Introduction [583]

19.2 Multi-processor Systems [583]

19.2.1 Multi-processor System
Architecture [583]

19.3 Structure of Multi-processor OSs [Ga4]
19.3.1 Separate Kernel Configuration [584]
19.3.2 Master-Slave Configuration [585]
19.3.3 Symmetric Configuration [585]

19.4 Process Synchronization [586]

19.4.1 Spinlocks [586]

19.4.2 Queued Locks [587]

19.4.3 Special Hardware for Process
Synchronization [587]

19.5 Processor Scheduling [587]

19.5.1 Job-blind Scheduling
Algorithms [586]

19.5.2 Job-aware Scheduling
Algorithms [586]

19.6 Memory Sharing [590]

19.7 Process Migration |

19.8 Fault Tolerance [591]
19.8.1 Fault Detection [592]

19.8.2 Fault Recovery 592

Real-time Operating Systems [594]

20.1 Introduction
20.2 Real-time Systems
20.2.1 Characteristics of a Real-time
System [595]
20.2.2 Structure of a Real-time
System [596]
20.3 Real-time OS
20.4 Real-time Scheduling [598]
20.4.1 Rate Monotonic Scheduling
Algorithm [599]
20.4.2 Earliest Deadline First Scheduling
Algorithm
20.4.3 Precedence Constraints [603]
20.5 Mutual Exclusion
20.6 Priority Inheritance Protocol [605]
20.7 Priority Ceiling Protocol
20.8 Case Studies
20.8.1 VxWorks [608]
20.8.2 QNX [609]

Xviii

21,

PART VI

23.

Detailed Contents

Mobile Operating Systems

211
21.2

21.3
214

215

Shell Programming and UNIX Shells

23.1
23.2
23.3
234

23.5
23.6
23.7
23.8
23.9

Introduction
Introduction to Mobile Devices
21.2.1 Personal Digital Assistant
21.2.2 Smartphones
21.2.3 Tablet PC
Characteristics of Mobile Devices
Mobile OS
21.4.1 Power Management [616]
21.4.2 Battery Management [6171
21.4.3 Thermal Management [618]
21.4.4 Memory Management [618]
21.4.5 Shortening Boot-up Time 1618
21.4.6 Scheduling [618
21.4.7 File System [620 |
21.4.8 Security [621]
Android OS
21.5.1 Power Management
21.5.2 Memory Management
21.5.3 Scheduling 1626
21.5.4 Inter-process
Communication
21.5.5 File Management
21.5.6 Security

(op]

=l

623
625

626
626

Shell Programming

Introduction [639]

Role of Shell [639]

Types of Shells [639]

File and Directory-related

Commands

Filters

Input/Output Redirection Commands
Communication in UNIX

Shell Meta-characters

Vi Editor

Bibliography [657]

Index

665

[639]

22,

Multimedia Operating Systems

221
22.2
22.3
224
22.5

22.6

22.7

22.8

2310

23.11
2312

Introduction [630]
Multimedia [630]
Multimedia OSs [631]
Process Scheduling
File System
22.5.1 Partitioned File Systems
22.5.2 Integrated File Systems 632
File Allocation [632
22.6.1 Scattered Allocation
22.6.2 Contiguous Allocation
22.6.3 Locally Contiguous

Allocation [633
22.6.4 Constrained Allocation [633]
22.6.5 Distributed Allocation [633
Disk Scheduling
22.7.1 EDF Scheduling
22.7.2 SCAN-EDF
22.7.3 Group Sweeping

Strategy [634]
Memory Management
22.8.1 Batching
22.8.2 Buffering/Bridging
22.8.3 Stream Merging
22.8.4 Prefetching 1635

637

23.9.1 Starting the Vi Editor
23.9.2 Navigating within a File
23.9.3 Editing Files
23.9.4 Deleting Characters
23.9.5 Copy and Paste
Commands [647]
23.9.6 Quitting Vi Editor [647]
Shell Scripts [648]
23.10.1 Shell Variables and
Keywords
Programmimg Constructs in Shell
Shell Script Examples

(— Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com
Qt——wll -
™ J)

PART 1

Introduction

1. Introduction to Operating Systems
2. Hardware Support for Operating Systems
3. Resource Management

4. Operating System Architectures

Case Study I: History and Architecture of
Operating Systems

1 Introduction to
Operating Systems

1.1 INTRODUCTION

The power of computing has changed the lives of common people in the last two decades. Computer
systems have also been through a lot of change. In this information age, everybody is concerned with the
computer and its speed; whether you are surfing the web, booking tickets through the Internet, or accessing
online banking. Mobile phones have also doubled up as mini computers known as smartphones.
Everyone needs a computer system that will meet their requirements at a great speed. Whether you are
working on a stand-alone system or transferring your files on the network, the job is done with not much
effort. Have you ever thought how all this works? How does a machine know whether you are working
on a stand-alone system or on the network or a distributed system? Is the machine capable of knowing
all your needs? Do you think that the hardware performs all these functionalities for you? The fact is
that the hardware cannot perform on its own.

There was a time in the history of computer systems when every work was done manually. At that
time we were very close to the machine. But it had a lot of problems and there was no efficiency
in working as we get today. Therefore, a software was designed,
which worked on the hardware to relieve a general user from the = '
machine view of the system. This software did all the functional- o
ities that. need to be performed on the hardware on behglf of the Learning Objectives
user. This software that operates the computer system is known
as operating system (OS). It acts as a layer between the user and After reading this chapter,
the hardware. It provides a friendly environment for a user. In the the reader should be able

to understand:
absence of an OS, a user would have had to be aware of every _
. . . . o The need for an Operating
configuration of the hardware and how to interact with the devices.
hanks to the OS, the user d d bout hard System (05)
T anks tot e OS, t e user does r}ot need to worry about har ware « The evolution of OSs
or interact with the different devices. The OS, therefore, works in

. . . .) o Batch processing systems
the background without letting us know who is doing the job. « Multi-programming systems

The operating system has also been through a lot of changes o Multi-user systems
in the past. In fact, with the advancement and technological « Multi-tasking systems
changes in the computer architecture, OSs have also been evolved o Multi-processor systems
in parallel. The improvements in computer system have always o Distributed systems
impacted the structure of the OS. Sometimes, there is a need to o Real-time systems
modify the hardware as there is demand from the OS’s designers. o Embedded systems
The design motivation of the OS has also been changed from « Goals of an OS
time to time. There was a time when CPU was a costly resource o Functions of OSs
and innovations in OSs were developed to utilize the CPU » Generic components of OSs

efficiently. As the CPU speed was increased with technological

4 Principles of Operating Systems

advancements, it is not a major design issue. Today, the major issue is user convenience and
response time for the user’s multiple tasks. This is the reason Apple’s Macintosh and Windows
OSs were developed and today we are using their much improved versions.

The aim of this book is to have a basic understanding of the OS and know its components in

detail. This book presents a detailed and systematic discussion of OSs.

1.2 THE NEED FOR OPERATING SYSTEMS

Before discussing or defining OSs, it would be better to first understand why we need OSs.
Let us look at some questions that will help to understand the basic need of OSs as well as its
functionalities:

System and application

By the time we are ready to learn this subject, we must be conversant in at least one pro-
gramming language. So let us find an answer to the question—while saving and running a
program in file, what is the part of the computer system that allocates memory to this file?
How are the files as a logical concept mapped to the physical disk?

Today, we are able to open many windows at a time; who is managing all these windows
despite a single processor?

Who ensures that the CPU is not sitting idle or busy forever?

Sometimes we see some messages like memory error or power failure, connection failure
in network, paper jam in printer, etc. Who is detecting these errors and displaying error
messages?

Who manages the limited memory despite the large size of user programs?

Our processes can also communicate and cooperate via some synchronization mechanisms.
Who provides the communication and synchronization mechanisms?

Who schedules tasks to the CPU for execution?

What happens to a task when the CPU is already busy in processing some other task?
Despite a single processor, it seems that many jobs are being executed in parallel. How
does this happen?

Suppose, some users are working in a LAN (local area network) with a single printer and
more than one user gives a print command. How are the requests of multiple users on a
single printer managed?

Who protects one user’s area from unauthorized access by another user’s task?

Why is it that sometimes our system hangs?

User We always think that a computer system is a hardware and
through the use of programs and other utilities, we are utilizing
the system as shown in Fig. 1.1.

We work on the computer system in different ways: we
write, compile, run the programs in the files or make a word
file, etc. Whatever we do, we need not worry how the file is cre-
ated physically, how much memory the file will take or whether
the program is larger than the present RAM. So, coming back to
the question, who manages and controls all the resources of the
computer system?

There is a software layer between the programs and the
hardware of the computer that is performing all these functions

programs

Hardware

Fig.1.1 Computer system

Introduction to Operating Systems 5

User (see Fig. 1.2). This software is known as operating
system (OS) and is the answer to all the questions
asked earlier. The OS starts functioning right from the
moment we switch on the computer system and con-
tinues till we shut down the system.

Operating system From the earlier discussion, it is obvious that the
OS performs the following functions:

e Presents an environment for the user so that he or
she can easily work without worrying about the
hardware resources, i.e., the user is not directly in-
teracting with the resources

e Manages all the resources in an efficient manner

Hardware

After understanding the role of an OS, there is still
a question: Can we work without the OS? Yes, but
subject to the conditions if all the functions listed earlier
Fig. 1.2 Computer system with OS can be performed manually. However, this condition
is not valid due to technological development in computer systems, software, and information
technology. We cannot manually perform the functions of loading, saving, running, debugging,
allocating memory, etc., for large-sized programs. One cannot interact with the hardware
devices manually every time you need to access them. Moreover, we are living in the world
of multi-tasking where users open many windows simultaneously and have a perception
that they are working on all the windows in parallel. So there is no question of having just a
single process for execution. The present scenario on computer systems is of multiple users
with multiple processes to be executed on limited resources (see Fig. 1.3). Suppose, multiple
tasks are open on a system with single CPU. The CPU time needs to be shared among all
these tasks. It seems very difficult to manage CPU time among all the tasks manually. In this
environment, we in fact need a software that manages all this multiplicity and controls it. This
is the reason that we need OS—a software that takes care of any peripheral of the system. A
software that is preparing the environment for the users such that they need not worry about
the hardware details of the system. A software that is managing conflicting requests from
multiple users to be executed on limited resources. A software that is protecting one user

from another so that they do not interfere with one another.

It is clear now that there are certain tasks (from initialization of hardware to management
and control of all the resources) that need to be performed while working on the computer sys-
tem. All these tasks are put together in a single software known as the operating system. The
OS can be defined in the following ways:

e A software that acts as an interface between the users and hardware of the computer
system

e A software that provides a working environment for the users’ applications

e A resource manager that manages the resources needed for all the applications in the
background

e A software in which all common functions required to work on the computer system have
been put together

6 Principles of Operating Systems

User 1 e
P1 >
User 2
° Other
resources/
o peripherals
User n e Computer system

Fig. 1.3 Multiple users with multiple processes accessing the limited resources

1.3 EVOLUTION OF OPERATING SYSTEMS

It is necessary to understand the evolution of OSs. Understanding how they were developed
will help us in understanding the functions of OSs we use today. There was a time when a
programmer working on the computer needed to do all the activities from writing the program
to loading the program into the memory, execution, debugging, and printing the output. Every
activity was needed to be performed manually consuming a lot of time and resources. But
today, a programmer is relieved of all other tasks of programming such as loading and linking
and he or she does not care about the actual hardware details also. The programmer is only
concerned with writing the program in a flexible and friendly editor and debugging it. So once
we understand this, we are able to understand what the OSs mean to us today and get closer to
their real requirements and objectives.

The important point in the evolution of OSs is that their development means parallel
development in computer systems. As there is advancement in computer system hardware, the
OSs also get updated. Sometimes, there is a demand from the OSs developers to modify the
hardware. So there is influence of one on the other.

Let us have a look at how the OSs have been developed.

1.3.1 First Generation

The first generation of computer systems was the era of vacuum tubes, plug boards, and punched
cards. The programmer used to interact with the machine directly through punched cards and
used to write the programs in machine language. All the tasks for executing a program would
be performed by the programmer only. There was no help like programming language, linker,
loader, etc. Obviously, there was no operating system as we use today.

Introduction to Operating Systems 7

1.3.2 Second Generation

In the first generation, the programmers used to perform every task manually. There were no
tools or aids for them. Therefore, in the second generation, many new softwares and hardwares
were developed along with the programming languages, e.g., line printers, magnetic tapes,
assemblers, linkers, loaders, and compilers for the convenience of programmers. Now the pro-
grammer would first write the program in any high-level language. To compile it, the required
compiler would be loaded into the computer by mounting the compiler tape on a tape drive.
Students should note that in this generation there was no hard disk to store compiler in it as we
do today. The only secondary storage available was magnetic tape. But it needed to be mounted
on tape drive first. After this, the program would be read through the card reader. As an output,
the compiler would produce the assembly language output. This assembly language would then
be assembled through an assembler. But for this purpose, it would need to mount another tape
consisting of the assembler. Finally, the assembler would produce the binary object output to
be loaded in the memory for execution. However, this operation of computer systems suffered
from the following drawbacks:

e Since each programmer or user was allotted a fixed amount of time to execute the program
on the computer system, it meant that the user would need to start all over again if there was
an error at any step. This resulted in wastage of time and further delaying other users.

e Set-up time for various tasks wasted a significant amount of time of the computer system.
As seen earlier, for execution of a program, there may be the following steps:

1) Loading the compiler tape of the required compiler
i1) Reading from card reader
iii) Running the compiler
iv) Unloading the compiler
v) Loading the assembler tape
vi) Running the assembler
vii) Unloading the assembler tape
viii) Loading the object program
ix) Running the object program

For a single program execution, the loading and unloading of tapes for various purposes
wasted a lot of time and delays other users.

The set-up time delay was not desirable not only for the reason that it delayed the job of users
but also for the impact it had on the utilization of the CPU. In this era, the computer systems
were so expensive that everyone wanted to use the system resulting in high utilization of the sys-
tem. However, owing to time taken to set up, the CPU was idle most of the time. This prompted
efforts towards reducing this idle time.

The solution adopted to reduce the set-up delay was that one operator was hired for loading/
unloading and other tasks as listed earlier. The operator trained in loading and unloading the
tapes reduced the time taken in set-up as compared to an untrained user. But, this solution was
not able to reduce the actual set-up time taken by loading/unloading the tapes. Besides this,
another problem was that the waiting time for the users was still high. One user had to wait
while the other user executed programs on the system.

The delay in set-up time would increase further if some jobs in queue were of different
requirements. For example, one job is written in FORTRAN, second in COBOL and the third
is again in FORTRAN. This sequential processing of jobs would require more set-up delay as

8 Principles of Operating Systems

loading and unloading the tapes again and again for different jobs would be needed. If the jobs
are known in advance, then we could combine these two FORTRAN jobs and send them for
execution together. This would save time for loading and unloading tapes for the third job in the
queue. As a solution, to reduce the waiting time of users, the jobs of users prepared with same
programming language were batched together. With this solution, it was possible to execute
multiple jobs instead of one and thereby saving set-up time for an individual job. For example,
if there are three FORTRAN written jobs placed at different places in the queue, then a batch of
these three jobs could be prepared and executed with a single set-up time as compared to three.

But in this process, the operator/user would need to check when one job would get finished
and prepare the set-up for next job. So during this manual intervention, again CPU was idle.
This idle time could be reduced if the switching to another job was automated instead of manual
process. But this automation further required the recognition of the tasks like executing the
compiler, executing the assembler, etc.

We can say that this was the turning point in the history of computer systems, when the
automation for the job sequencing was conceived and thus the first operating system was born.
It was thought that there would be a software called monitor program that would perform the
automatic job sequencing. For identifying the tasks to be done for a job, the concept of control
cards was introduced. Control cards contained the directives to tell the software which tasks
to perform for a job. In this way, the software with automatic job sequencing was written that
switched from one job to another. Since all the events were being controlled by the monitor
now, it had to be in the memory forever. Therefore, it was called resident monitor and given
space in the memory (see Fig. 1.4).

Resident monitor would read the control card, and load the appropriate program into the
memory and run it. This process was repeated until all the cards got interpreted. Thus, the first
OS in the form of resident monitor improved the execution on the computer systems. It reduced
the manual intervention needed for set-up and job sequencing.

The monitor read in jobs one at a time from the card reader or tape. The job was then placed
into memory in the user area and control was passed to this job. When the job was complete,
the control was passed to the monitor. But the monitor needed to do several other tasks for a
job. Let us look (see Fig. 1.5) at the structure of a job in the form of
job control language (JCL), a special type of language developed
to provide instructions to the monitor. The meanings of these con-
trol instructions prefixed with ‘$’ are given in Table 1.1. At the time
of executing control instructions, the control was transferred to the
User program monitor. Otherwise, the control was transferred to the user program.

area The batch systems mentioned earlier also faced one problem.

In this generation, input/output (I/O) devices were mostly electro-
mechanical. On the other hand, the CPU was an electronic device.
While reading the input or printing the output, there was a clear
mismatch between the speed of CPU and I/O devices. It was not
possible to cope up with the speed of even a slower CPU that per-
formed thousands of instructions per second. Moreover, in batch
systems, it was required to execute multiple jobs with multiple
control cards quickly. As a solution, it was thought that all the
inputs from the card readers would be read and copied to a mag-
Fig. 1.4 Memory structure consisting ~ netic tape. The input would be processed in one go using this input
of resident monitor magnetic tape. Similarly, the output, instead of being sent to the

Monitor

Introduction to Operating Systems 9

$JOB printer directly, was copied to the magnetic tape to be printed later on

(see Fig. 1.6). This reduced the time taken in online processing, i.e., pro-

$FTN cessing the inputs or outputs directly through the CPU. Students should

FORTRAN program note that magnetic tapes were of faster speed as compared to card readers

or printers. This concept gave birth to offline operation. The CPU was

SLOAD now not constrained with the speed of slow I/O devices and was busy in

$RUN processing with the I/O on tapes. The offline concept eliminated the need
— of processing the 1/0 operations through the CPU directly.

$END 1.3.3 Third Generation

Batch systems with offline operation continued for a long time in second

Fig. 1.5 FormatofajobinJCL generation. But, still there were problems due to the nature of magnetic

tapes. First, the tapes were sequential access devices.

Table 1.1 Control instructions The tape needed to be rewound again and again if

$JOB Start of a job there was a need to write and read in between. Sec-

. ond, we needed to carry separate tapes for input and

$END End of a job output as their storage capacity was low. There was

SASM Execute the assembler no other option until the disks came into existence.

$FTN Execute the FORTRAN compiler The disks solved the problem faced with the tapes

$LOAD Load the object code from tape to as disks were random access devices and of higher

memory storage capacity as compared to tapes. Now it was

$RUN Execute the user program possible to read or write quickly from/to any area on

the disk. The cards were written directly onto the disk
and read and executed the jobs from the disk. Similarly, the outputs were written directly to
the same disk instead of another disk. The output was printed actually after the job is executed
completely.

In this era, due to technological improvements in hardware, the speed of CPU became faster
than the second generation. The result of this technological improvement was that CPU was
more idle. The batch systems with disks improved the performance of the system, but CPU was
still idle. When a job executed, it might need to have input or output, which means it needed to
access devices. And the access to the devices was slow at that time as compared to the speed
of CPU. So while performing I/O operation for a job, there was sufficient time for CPU to sit
idle. If there had been another job, CPU would switch to it. As a solution, it was thought that
instead of one job, there would now be multiple jobs in memory. Consequently, it required the
memory to be partitioned for multiple jobs because till now only single job was in the memory
for execution (see Fig. 1.7). This gave birth to multiprogrammed batch systems. It was now
possible to overlap the I/O of one job with computation of another job. It means when one job
was waiting for its I/O, CPU switched to another job. This was possible only with the disk
systems and the method is called as simultaneous peripheral operation online (SPOOL). Later
on, the process was famous with the name spooling.

L »/ Tape ‘
CPU drive [}-\\
| —
Printer

Fig. 1.6 Offline operation

10 Principles of Operating Systems

o The process for spooling was very simple. First, the input from
e input device would be read to the disk. Whenever the CPU would

be free, the OS loaded the job from the hard disk to the memory and

CPU would execute the job. After executing the job, it would store

Job 2 the results again to the disk. Later on, the results would be sent to
the output device (see Fig. 1.8). Thus, CPU was busy in compu-

Job 1 tation of another job while first job was busy in waiting for 1/O.
In this way, multi-programming concept came into picture. The

requirements for the multi-programming increased the size of the
OS because now the OS had the components for spooling, memory

management (memory partitioning and keeping the account of jobs
in the memory slots), managing multiple jobs, scheduling of tasks
to CPU, and many more. In fact, this was the point where all other
components of the OS were added. In other words, multi-programming was the basic concept
around which all concepts of modern OS have been developed.

Although multi-programmed systems were able to improve the performance in terms of
CPU time and throughput, still the jobs were batched and, therefore, there was no interaction
of the job and the programmer. In fact, batch systems were not suitable for every type of job.
There are certain jobs that need attention of user, i.e., interactive jobs. Due to batch of jobs,
there was a long gap before the programmer would get the result back. Moreover, if there was a
single error somewhere, the whole cycle of batch processing would get repeated causing further
delays in getting the output. As a result, the debugging process became a time-consuming and
irritating process. It was felt that even first-generation computers were better as they at least
had the machines for a fixed time slot. Thus, the major drawback of multi-programmed batch
systems was lack of user--programmer interaction with their jobs.

The solution found for the interaction between the job and the user was to have the dedicated
dumb terminals for each user connected to the main system having CPU whose time would be
shared among the multiple users. (Students should note that at that time, we did not have per-
sonal computers.) The idea was that user should have a feeling that he/she is using the system
alone. Instead of submitting the job in a batch, the user would directly submit the job to the
system. In this way, the user would be able to interact with his job. But the basic concept, i.e.,
multi-programming was still there. The jobs being submitted to the system would be stored in
the partitioned memory. As the CPU time on the main system was shared among multiple users,
these types of systems were known as time-sharing multi-user systems.

Fig. 1.7 Memory structure consisting
of multiple jobs

-
v
Card CPU ‘
reader o ¥ g/ B\
| —
Printer

Fig. 1.8 Spooling

Introduction to Operating Systems 11

One of the earlier time-sharing systems was compatible time-sharing system (CTSS)
developed at MIT. This system got popular as it supported many interactive users as compared
to the batch systems. With the success of CTSS, it was thought that there should be a power-
ful machine which would support thousands of users at a time. For this type of project, MIT,
Bell Labs, and General Electric came together with a system called M ULTiplexed Informa-
tion and Computing Service (MULTICS). But the idea of supporting thousands of users on
Mainframe computers of that time did not work. Due to many reasons, the project could not
be a success. Bell Labs dropped the project. Later on, General Electric also withdrew from the
project and even left the computer business. But the story of time-sharing systems does not end
here. MULTICS, despite the commercial failure, had a great impact on the future development
of operating systems.

One of the scientists, Ken Thompson of Bell Labs, working on MULTICS thought of the
idea of running the single-user version of MULTICS on PDP-7, a discarded minicomputer that
time. With great surprise, Thompson’s idea worked and it started supporting multiple users.
Encouraged with his success, Brian Kernighan, Dennis Ritchie, and his other colleagues joined
the project. Brian Kernighan started calling this project as UNICS (UNiplexed Information
and Computing Service); however, later it was renamed as UNIX. After this, UNIX was ported
to PDP-11/70, PDP-11/45, and PDP-11/70, the other modern computers of that time. These
computers also had the mechanism of memory protection hardware. But the major problem
realized at that time was that porting UNIX on different machines was becoming a tough job
because UNIX was written in assembly language, and new hardware required rewriting of the
code. It was surveyed and found that no language was suitable for making UNIX as a portable
operating system. So it was realized that a new language should be designed for this purpose.
Ritchie developed a language called ‘C’ for rewriting the UNIX. Finally, with the efforts of
Thompson and Ritchie, UNIX was rewritten in ‘C’ high-level language and its portable version
was prepared. In this way, the path of a time-sharing multi-user operating system was paved
that dominated the world for a long time after that.

1.3.4 Fourth Generation

Undoubtedly, UNIX was a major achievement as a time-sharing multi-user OS in the third gen-
eration. Now the users do not need to wait for the response of their jobs for long hours. If there
was an error in the user program, the user could debug it at that time only instead of waiting
for a long time as in the batch systems. Thus, there was an interactive session between the user
and the job. But, still this was a multi-user system which was sharing the processing time of a
single system. It was desired that there should be a single system for a single user, which is not
shared with others, i.e., the demand for personalization of processing time. However, this was
not possible on the minicomputers of third generation.

With a leap of time, hardware technology further advanced and now it was possible to have
thousands of transistors on a very small area of silicon chip due to LSI (Large Scale Integra-
tion) and VLSI (Very Large Scale Integration) technology. With the result of this success, the
size of computers reduced beyond imagination. Due to this architecture, the processing speed
of CPU further increased. This was the sunrise of microcomputers, later on called as personal
computers (PCs). It was possible now to have a personal computer as compared to Mainframe
or mini computers system shared by many users. Now the question was to design the OS for
personal computers as the others present were not compatible with them. As Intel 8080 was
the first microprocessor for personal computer, there was a need to design an OS for it. Gary
Kildall in Intel designed an OS called ‘CP/M’ (control program for microcomputers). With

12 Principles of Operating Systems

the success of CP/M, Kildall formed his own company Digital Research to support this OS for
other microcomputers like Zilog Z80.

After some years, IBM came into the market with IBM PCs. IBM with Bill Gates
hired Tim Paterson who had written one OS known as disk operating system (DOS). Tim
modified DOS according to the modifications desired by IBM and came up with Microsoft
DOS (MS-DOS). This OS with PCs revolutionized computing and became very popular
among general users. On one hand, Intel was coming out with many new advancements in
microprocessors like 8086, 80286, 80386, and 80486, and on the other, Microsoft modified
MS-DOS and released many versions as per the microprocessors released. A number of
utilities like dBASE, LOTUS, Wordstar and languages like BASIC, COBOL, C under DOS
were also developed. This made programming and other jobs on the personal computer a
very convenient task for a general user, which was not possible till third generation.

Despite the success of MS-DOS on PC, UNIX was also being modified with many versions
to cater to many features of operating systems. The major and unique success point of UNIX
was still multi-user time-sharing system which no other operating system of that time pro-
vided. Even DOS versions were also being updated as an impression of UNIX, e.g., the hier-
archical file system incorporated in DOS was based on UNIX file system only. Microsoft was
aware of the success of UNIX due to multi-user capability. Intel 80286 and other 80x86 family
microprocessors were very fast in speed and were able to execute the jobs of multiple users.
But MS-DOS on PC was designed only to handle a single-user job. So having the impression
of multi-user feature of UNIX on mind, Microsoft came up with XENIX. After this, IBM also
joined Microsoft for developing an OS known as OS/2 for multi-user feature to be installed
on 80286- and 80386-based systems.

The CP/M and MS-DOS operating systems were based on the commands to be typed by the
user. It means whatever the task we wanted to do on these systems, we need to remember or
refer the appropriate commands first, type them, and then perform the operation. This was be-
coming cumbersome to have so many commands to work with. Moreover, we needed to under-
stand the hierarchical file system to work with the files, which was not user friendly. Thus, there
was now another goal for OS developers—user friendliness and convenience. The research for
this goal was being performed at Stanford Research Institute by Doung Engelbart who invented
GUI (graphical user interface). This GUI concept was adopted by Steve Jobs who was work-
ing with Apple Computer at that time. Jobs’s first attempt as Lisa system failed as it was too
costly. His second attempt as Apple Macintosh was commercially successful not only due to
its cheaper cost but also because of its user friendliness. The convenience and user friendliness
concept relieved the users from command system and was very easy to learn.

Later on, Microsoft also realized the need to have an OS with GUI as impressed with the
success of Apple Macintosh. By this time, Intel came up with 80386- and 80486-based systems
which were faster as compared to the previous ones. This speed factor invented the graphic
displays. Later on, Microsoft designed GUI-based operating system called Windows. But,
Windows was just a graphical interface running on top of MS-DOS. It was in 1995 only that
Windows 95 was released as a true operating system. After this, Windows has continued to
rule over the world with many evolving versions: Windows 98, Windows NT, Windows NT
4.0, Windows 2000 (Windows NT 5.0), Windows Millennium, Windows XP, Windows Vista,
and Windows 2007. The latest version is Windows 2008.

Intel continued to release the faster microprocessors (80486 and Pentium family), and
applications of the users were becoming complex. At the same time, users demanded to execute
multiple windows at a time in Windows OS. Every user wanted to open many tasks at a time on

Introduction to Operating Systems 13

the system. This motivated to have an OS which would handle many tasks of a single user. This
was termed as multi-tasking and implemented in many versions of Windows mentioned earlier.

The success of Windows as a user-friendly OS influenced the UNIX developers as it was
lacking GUI. This motivated them to incorporate GUI features and come up with X Windows.
X Windows included only basic window management. Another version having complete GUI
features was released, known as Motif.

Another advancement in the hardware technology was the network system. In a network
system, there were some basic functionalities like file transferring, remote login, etc. To
provide these functionalities to a general user, network interface controller and a low-level
software were required. Therefore, another type of OS was designed, known as network
operating system. Similarly, distributed systems were developed, and thus distributed operating
systems. The distributed systems were also network systems but there was a difference that
in network systems the users were aware of the network and computer in that network. For
example, if a user is copying a file to another computer through network, then user must have
the address of that destination computer. It means the user has the knowledge of the task and
is aware of the location in the network where the task will be performed. On the other hand, in
a distributed system, the user submits the complex task and gets the result back. He does not
know how the task has been divided among multiple tasks; at which nodes in the network these
tasks have been sent for processing. All these functionalities are performed by a distributed
operating system without the knowledge of the user. Moreover, a distributed system requires
a different operation compared to a centralized system such as distributed scheduling, i.e.,
scheduling of various tasks on various processors, distributed synchronization among tasks,
distributed file systems, etc.

The evolution of all major OSs is given in Table 1.2.

Table 1.2 Evolution of different operating systems

Generation

Period Computer architecture Problems and development of OSs

1940s—-1950s Vacuum tubes based
technology, plug boards
and punched cards, mag-

netic core memories

No operating system

Second

1950s-1960s

Transistors based
technology, Mainframe
computers, line printers,
magnetic tapes, assem-
blers, linkers, loaders,
compilers, FORTRAN,
COBOL

Set-up delay problem due to load-
ing and unloading of tapes in earlier
computer systems.

CPU was idle.

Jobs of users prepared with same
programming language were batched
together.

Automated job sequencing
Resident monitor
Batch systems

Mismatch between the speed of CPU
and /O devices

Offline operation with magnetic tapes

Tapes were sequential access
devices

(Contd)

14 Principles of Operating Systems

(Table 1.2 Contd)

Third

Fourth

1960s—-1980s

1980s—Present

IC-based technology,
Minicomputer

Magnetic disk

LSI- and VLSI-based tech-
nology, Microcomputer

Hard disks came into existence
Spooling

Multi-programming
Multi-programmed batch systems

Lack of user—programmer interaction
with their jobs in multi-programmed
batch systems

Time-sharing multi-user systems
CTSS

MULTICS

UNICS

UNIX

UNIX written in C

CP/M for PCs
MS-DOS

Multi user facilities were not there in
DOS

XENIX
0S/2

No user friendliness and convenience
due to command driven and complex
file systems

Apple Macintosh

Windows

Multi-tasking
Multi-threading

X Windows

Motif

Network operating systems

Distributed operating systems

1.4 TYPES OF OPERATING SYSTEMS

We have traced the history of OSs and seen how they have been developed. Today, a variety
of OSs exist according to the project environment and requirements of the user. For daily use,
we use Windows OS as it has become a general-purpose OS today. On the other hand, if the
project is embedded with a real-time system, then Windows will not suffice. Instead, a real-time
OS (RTOS) will be required to meet the requirements of real-time system project. If we are
working on a multiprocessing distributed system, then the OS should be able to distribute the
processes on various processors, coordinate between distributed processes, etc. Thus, OSs are
there to meet our needs. We should identify the requirements and project types and then select

an appropriate operating system. Here we describe various types of OSs.

Introduction to Operating Systems 15

1.4.1 Batch Processing Systems

The batch processing system was developed as a result of more set-up time for execution
of different types of user programs. But today, we do not have the problems of set-up time.
However, batch processing can be used for the user jobs which do not want user attention. These
jobs can be combined in a batch and sent for execution without the intervention of the user. Thus,
batch processing systems take a sequence of jobs in a batch and executes them one by one with-
out any intervention of the user. The main advantage of batch processing is to increase the CPU
utilization. The batch processing, obviously, is not meant for a quick response to the users, but
it is still used to quantify the user service turnaround time. The turnaround time of a user job is
the time since the job was submitted to the system to the time when the user gets the result back.

1.4.2 Multi-programming Systems

Multi-programming is a very basic concept today. In evolution of operating systems, it was
described that multi-programming means to place several programs or jobs in the main memory
instead of a single program. It means that now several jobs are ready to be executed, but CPU
can execute only one job at a time. Then how do we execute all the jobs in the main memory?
The idea is switching between the jobs.

There can be two types of instructions in a program: CPU bound and I/O bound. CPU
bound instruction means when CPU has an instruction for processing or computation. I/O bound
instruction means there is a request to an input or output device to read or write. It means dur-
ing the I/O bound instructions, CPU is not doing work and is idle, i.e., the job which CPU was
executing is now waiting for an I/O service. It has been observed that most of the time in a job is
wasted in waiting for I/O. When there is a single program in memory or in monoprogramming
concept, the CPU sits idle and waits for I/O to complete and then moves to next CPU bound
instruction. Since, due to multi-programming concept there are many jobs ready in the main
memory, the CPU can switch to its second job while the first is waiting for an 1/O. If the second
job also reaches an I/O bound instruction, then CPU switches to another job and so on. The CPU
comes back to its previous jobs and executes them in the same fashion. With this concept, the CPU
always has a job to execute and remains busy. For example, see Fig. 1.9; there are two programs

Program

P1 Execute /0 Execute o) Execute
Program
P2 Execute o) Execute /0 Execute

Execute Execute Execute Execute Execute Execute

Multi-programming P1 p2 P1 P2 P1 P2

Fig. 1.9 Multi-programming

16 Principles of Operating Systems

P1 and P2. With monoprogramming, there would be only P1 in the main memory and P2 will ar-
rive in the memory and be executed only after the execution of P1. But with multi-programming,
both programs will be stored in the memory. Suppose if P1 is first sent to CPU for execution, then
after some time if P1 waits for some I/O, then in monoprogramming, CPU will sit idle. But in
case of multi-programming, it will switch to P2 and start executing it. With this arrangement, the
CPU does not sit idle; and in this example, both P1 and P2 will be executed in the same time as
required to execute P1 in monoprogramming. Obviously, there is higher CPU utilization (ideally
in this example, it is 100%) and throughput is doubled. Although this is an example of an ideal
case, there is high CPU utilization and throughput in multi-programming systems.
The major benefits of multi-programming systems are as follows:

o [ess execution time As compared to batch systems, the overall execution time for users’
job is less because of spooling and switching between the jobs frequently by CPU.

o Increased utilization of memory Instead of storing a single program in the memory as
done before, now more than one program is stored, thereby utilizing the main memory.

e Increased throughput Since in multi-programming, CPU does not sit idle and switches
between all the jobs, the number of jobs executed in time ¢ is more as compared to batch
systems, thereby increasing the throughput. Throughput may be given as follows.

Throughput = Number of jobs completed per unit time
Throughput is increased if degree of multi-programming is increased. Degree of multi-program-
ming is the number of programs in main memory. As we increase the number of programs in
memory, i.e., increase the degree of multi-programming, throughput also increases. However, this
increase in throughput depends on two factors. First, how much memory for storing programs is
available and second, the type of program. If the programs under multiprogrammed execution are
either CPU bound or I/O bound, the throughput will be low. If there is a proper mix of these two
types of programs, only then the throughput will be improved.

Example 1.1

There are three jobs running in a multi-programming system with the following requirements:
Job 1: Requires disk after every 2 min (device service time including wait and access = 2
min). Total processing time = 6 min.
Job 2: Requires printer after every 5 min (device service time including wait and access = 2
min). Total processing time = 7 min.
Job 3: Requires disk after every 3 min (device service time including wait and access = 2
min). Total processing time = 5 min.
Prepare a timing chart showing the CPU and /O activities of the jobs. Compute the total time
for execution using mono-programming and multi-programming and then compare the results.
Solution
We represent our jobs with J1, J2, and J3 and the execution of the jobs as E. First see the timing
[Fig. 1.10(a)] with monoprogramming and then [Fig. 1.10(b)] with multi-programming. From
these two diagrams, it is clear that about 30% of time has been saved with multi-programming
and CPU was busy instead of being idle just for waiting the 1/O to be completed.

1.4.3 Multi-user Time-sharing Systems

Batch systems and multi-programmed batch systems do not provide immediate response to
the user. If one user submits his/her job, he/she has to wait for the execution of all the jobs in
that batch and then get the output. In this way, waiting time of a user is more and he/she is not

Introduction to Operating Systems 17

Elw| E|wmw]| E E | E E o | E

0 2 4 6 8 10 15 17 19 22 24 26

|<_ J1 ;I: J2 =I= J34’|

(@) For monoprogramming

E E E E E E E

7

0 2 10 12 14 16 18
|¢J1*|<— J2 —>|<—J3—>|¢J1*|¢J2->|¢J3*|¢J 1*|
(b) For multi-programming

Fig.1.10 Timing diagram

in direct touch with his/her job. If something goes wrong in the job, the user needs to correct
it, submit it in another batch, and again wait for a long time to execute the full batch. This
behaviour of batch systems and multiprogrammed batch systems were due to non-interactive
input and output devices. With the invention of interactive devices like keyboard and video
terminals, another paradigm was designed wherein multiple users with their terminals (having
no processors) were connected to a computer system (with processor) to perform their jobs. In
this arrangement, the jobs of multiple interactive users were placed in the main memory instead
of batched jobs. It means that multi-programming was still used here. This system was called
multiuser as it supported multiple interactive users. It was also known as time sharing as CPU
time of main computer system was shared among multiple users to execute their jobs. Thus,
multiuser time-sharing systems are the systems where multiple interactive users connected
through their dumb terminals (for interface only) access the main computer system (with CPU)
to perform their jobs (see Fig. 1.11).

Main
system

User 1 l User 2 l User 3 I User n l

Fig. 1.11 Multi-user time-sharing system

18 Principles of Operating Systems

As mentioned above, this technique uses multi-programming, and CPU time of main system
is being shared among multiple users. However, due to the processor’s speed, each user has the
impression that the system is dedicated to him/her only. Therefore, CPU switches from one job
to another job on regular intervals to have a fair distribution of its time for the users. For this
fair distribution, a time slice for each user may be fixed. By using this time slice, the users’ jobs
are scheduled in such a manner that each job gets equal chance for computation. In this way, the
major benefit of time-sharing systems over multiprogrammed batch systems is the improved
response time. The response time is the time between submission of a job to the system and its
first reaction/response to the user. The better response time, in turn, improved the productivity
of the user as he/she gets the quick response to his every job.

The major benefits of multiuser time-sharing systems are as follows:

o Multiuser facility With time-sharing paradigm, it is possible to connect multiple users to
a system where each user presents the job to the system and gets the response.

o Improved response time The major benefit is the response time for a user’s job which was
not possible in batch systems. The user now is in direct touch of his job and due to easy
interface, he views everything regarding his job.

o Improved debugging and productivity From the programmer’s point of view, debugging
of the programs is now easy because the user can easily view his mistakes. In this way, he
quickly modifies the program and runs again, thereby increasing the productivity also.

1.4.4 Multi-tasking Systems

In most of the literature, multi-programming and multi-tasking have been used interchange-
ably. In the literary sense of both these terms, they seem to mean the same thing and one may
get confused with these two terms. Similarly, time-sharing and multi-tasking are also used
interchangeably. Let us understand these terms first.

As mentioned above, multi-programming was the basic concept wherein more than one
program were stored in the main memory and first batch systems were developed around this
concept of multi-programming. Due to no interaction of users with their jobs in batch multi-
programming, multiuser time-sharing systems were developed. So it should be noted here that
in history, the term time-sharing was used for multiuser systems. Today time-sharing has been
used as a scheduling technique which should not be confused with any term like multiuser or
multi-tasking. After this, Windows was developed for personal computers such that a single
user working on a PC can open multiple windows. The user can open the web browser and
at the same time, open a Word file to edit (see Fig. 1.12). In this way, the user is able to open
many windows or tasks and work on them. This is known as multi-tasking where a single user
works on multiple tasks on the PC. With the availability of high speed of processor, the user
has the illusion of working in parallel on multiple tasks. But it is the time-sharing scheduling
technique which has made it possible. And we know that time-sharing technique was also used
in multiuser systems. This is the reason that multi-tasking and time-sharing are mixed up. But it
should be made clear that multiuser and multi-tasking are different terms, and time-sharing is the
scheduling technique in both of them. Moreover, the multi-programming technique (more than
one program/task in the main memory) is inherent in both multiuser and multi-tasking systems.

To make it more clear to the readers, let us summarize some definitions:

o Multi-programming Place more than one job/program/task in the main memory.

Introduction to Operating Systems 19

o Multiprogrammed batch systems Place
more than one job/program/task in the main
memory of a batch prepared for same type

|Task 1| |Task 2| |Task ,,| of jobs, and execute them by switching

between them.
| | e Multiuser systems Place more than one

‘ — ‘ job/program/task in the main memory

of the main computer system. Here jobs
come from the different users who are

Fig. 112 Multi-tasking System connected through terminals to the main

computer. The jobs are scheduled by time-
sharing technique.
o Multi-tasking systems Place more than one job/program/task in the main memory of the
system. The jobs here are of a single user working on the system. The jobs are scheduled
by time-sharing technique.

1.4.5 Network Operating Systems

The network operating system is the earliest form of operating system that coordinates the
activities on a network system. Network operating system may be considered as loosely cou-
pled operating system software on a loosely coupled hardware that allows nodes and users of
a distributed system to be quite independent of one another but interacts in a limited degree. In
a network, each node has its own local operating system. A user sitting on a node may work as
on the local machine through its local operating system. However, on the network system, there
may be some control operations that may be performed by the user sitting on his/her machine.
In other words, the user working on a node is also able to perform non-local functions. For
example, the user may remotely log on to some other node. Similarly, the user may transfer the
files to another node also. For the functioning of these non-local operations, the operating sys-
tem software is required to coordinate the activities. Here the role of network operating system
starts. The network operating system may be considered as another layer of software on the
operating system on a local machine. This layer works between the user computations and the
kernel on the local machine. The processes of user first contact the network operating system.
If the operation to be performed is local on the node, the network operating system passes the
request to the local operating system on the node. But if the operation to be performed is non-
local, the network operating system contacts the network operating system on the node.

A network operating system also targets the resource sharing across multiple nodes of the
network where each node has its own local operating system and a layer of network operating
system. Each node on the network is able to perform some control operations that are run locally
as well as on some other node on the network. However, to work on a network system using
network operating system, the user must be aware of the network nodes and their access rights to
perform the control functions. For instance, if a user wants to log on to some other node on the
network, i.e., remote login, he must know the address of the node and must have permission to log
on the system. Similarly, while transferring the files, the user must explicitly transfer the file from
his machine to another one, i.e., he must be aware of where all files are located and where they
will be copied. Thus, in network operating system based system, a user must know where a re-
source is located in order to use it leading to poor transparency of system resources and services.

20 Principles of Operating Systems

1.4.6 Multi-processor Operating Systems

In the technological evolution of computer systems, there was a desire for parallel processing
with the help of more than one processor instead of only one. This has been realized through
multi-processor systems. Multiprocessing systems contain more than one processor and share
other resources. These types of systems are very useful for engineering and scientific applica-
tions by processing data in parallel on multiple processors. Another category of application
suitable in multiprocessing environment is mission-critical and real-time systems. Since these
systems are specially designed for defence systems, it is expected that they will continually
work in warfare conditions. Therefore, in these types of systems, besides parallel computation,
there is a high demand of fault tolerance and graceful degradation of services when any of the
processor fails. Thus, multiprocessing systems are most suitable for these applications. Multi-
processing systems offer the advantage of increased throughput due to multiple processors, are
economical to work on, and have increased reliability due to fault tolerance.

It is obvious that for multiprocessing systems, different operating systems are required to
cater to the special requirements. These are called multiprocessing operating systems. These
operating systems have more challenges as compared to single-processor systems. Since in this
environment there are multiple processors, all of them should be busy. The processes should be
distributed on various processors for parallel computation. The process scheduling is another
challenge as it is needed to schedule multiple processes on multiple processors. Moreover, the
coordination of various processes should also be taken care of. Different inter-process commu-
nication and synchronization techniques are required. In multiprocessing systems, all proces-
sors share a memory; therefore, there is a need to check that all processors operate on consistent
copies of data stored in shared memory.

1.4.7 Distributed Operating Systems
Distributed systems are also multi-processor systems but with the following differences:

e Distributed system works in a wide area network.

e Each node in a distributed system is a complete computer having full set of peripherals
including operating system.

e The users of a distributed system have an impression that they are working on a single
machine.

Resource sharing is the main motive behind distributed systems. If we want to take advan-
tage of hundreds of processors, it may not be possible to have all of them on a single board.
But the multiple processors are realized as a single powerful machine in a network system and
this machine is known as a distributed system. In this way, a number of users can share the
resources of all the machines on the distributed system.

Besides the resource sharing, the distributed systems also provide computational speed
up by partitioning a computation into some subcomputations which are distributed and run
concurrently on various nodes on the system. A distributed system also provides the enhanced
availability of the resources through redundancy and communication paths thereby increasing
the reliability of the system. For example, a distributed file system places files on separate
machines and allows many users to access the same set of files reliably providing the view of
a single file system.

Distributed operating systems have been designed for this special type of system. These
operating systems providing distributed computing facility employ almost same communication

Introduction to Operating Systems 21

methods and protocols as in network operating systems. But the communication is transparent
to the users such that they are unaware of the separate computers that are providing the service.
The following are some important tasks to be met by distributed operating system:

e Since distributed systems need to access any resource or transfer any task on any node,
there are three types of migration provided by the operating systems:

Data migration Transferring the data from one site to another site

Computation migration Transferring the computation on a particular node

Process migration The process or its subprocesses may also need to be transferred to
some other nodes due to some reasons like load balancing, computation speed, etc.

e Distributed OS must provide the means for inter-process communication. Some of the
methods are as follows:

Remote Procedure Call A process on one node may invoke a function or procedure in a
process executing on another node.

Remote Method Invocation Allows a Java process to invoke a method of an object on a
remote machine.

CORBA (Common Object Request Broker Architecture) It is a standardized language
that supports different programming languages and different operating systems for distributed
communication.

DCOM (Distributed Component Object Model) Another standard developed by Micro-
soft included in Windows operating system.

e Due to multiple processes, synchronization methods should be supported by the operating
system.

e There may be deadlock when processes distributed over several nodes in a network wait
for the resources not released by other processes. Therefore, deadlock should also be
handled by OS.

1.4.8 Real-time Operating Systems

In time-sharing systems, there was a drawback, i.e., if there was more load on the system, the
response time was more and further increased with the increase in load. But there are some
computations in a system which cannot bear the delay. Therefore, after the development of
time-sharing systems, new kinds of computer systems were developed in 1980s. In these sys-
tems, response to a user request has to be immediate or within a fixed time frame, otherwise
the application will fail. This is known as real-time processing. This type of processing is
largely useful in defence applications which are mission specific, i.e., if there is no timely
response, there might be loss of equipment and even life. Therefore in these systems, there
are deadlines of time which should be met to prevent failures, otherwise the purpose of the
system is lost. For example, suppose there is an electric motor being controlled through a
computer system. The motor running at a speed, if crosses a threshold speed, will burn. The
system is controlling the motor in such a way that if motor crosses the threshold, it will lower
the speed of the motor. Now, when motor is crossing the threshold speed, and system does not
respond in that time period, the motor will burn. So, this is an example of real-time system
which in case of failure results in loss of equipment. Similarly, there are many defence appli-
cations like guided missile systems, air traffic control systems, etc. which in case of failure
may result in loss of life.

22 Principles of Operating Systems

Real-time systems are of two types: hard real-time systems and soft real-time systems. The
systems that have hard deadlines and must be met are called hard real-time systems. All defence
applications are of this type. There is another type known as soft real-time system where missing
of some deadline is acceptable. For example, in a video conferencing system, if some audio or
video data are somehow delayed for a fraction of time, then it may be acceptable and there is no
harm. Thus, digital audio, multimedia systems, virtual reality are all examples of soft real-time
systems. However, missing the deadlines does not mean that they are not real-time systems.
The delay of soft real-time systems must be bounded and predictable and should not be infinite.

Real-time operating systems (RTOS) are there to meet special needs of a real-time system.
They have the major characteristic of providing timely response to the applications besides
other facilities. The major challenge for an RTOS is to schedule the real time tasks. In a real-
time system design, all deadlines requirements are gathered and analyzed. The RTOS schedules
all tasks according to the deadline information and ensures that all deadlines are met. Another
feature of a real time system is to have fault tolerance. Since a real time system must work con-
tinuously in every condition, therefore in case of any hardware or software failure, the system
should not stop working. To achieve this target, fault tolerance is provided by means of redun-
dancy both in hardware and software. For example if one processor fails, another processor in
the standby will take over the charge and the system continues to work. The RTOS must use
some special techniques such that the system can tolerate the faults and continue its operations.
Obviously, with the fault tolerant feature, there is degradation in the performance of the system.
But OS should take care that this degradation is graceful, i.e., no critical functioning should be
stopped or delayed.

1.4.9 Embedded Operating Systems

Embedded systems are specialized systems that tend to have very specific tasks. The last decade
has filled our daily life with embedded systems. From the household systems to defence systems,
the embedded systems are seen everywhere. Either you purchase the toys for your children
or the smartphone for yourself, these systems have dominated every walk of life. Washing
machines, televisions, and cars are other examples where these systems are being used.

Embedded systems have also operating systems but they are not generalized ones. The
user uses these devices without any awareness of operating systems. Embedded operating
systems are there to perform all the basic functionalities in these systems like initialization,
task management, memory management, etc. but with little or no user interface. Thus, in
the embedded systems, there are operating systems but not in the same structure as found
in general purpose computer systems.

A large number of devices categorized as consumer electronics are mobile. They are better
known as mobile devices or hand-held devices. One of the category of mobile devices is per-
sonal digital assistants (PDAs), such as palm top computer, are hand-held devices that combine
elements of computing, telephone/fax, Internet, and networking in a single device. A typical
PDA can function as a cellular phone, fax sender, web browser, and personal organizer. Thus,
these devices allow us to access the email, messaging, web browsing, work on documents, and
much more. The examples for PDAs are Palm Pilot, Toshiba Pocket PC. PalmOS is a well-
known OS for them. The second category is mobile phones and smartphones. Smartphones
combine both mobile phone and hand-held computers into a single device. They allow users
to store information (e.g., e-mail), install programs, along with using a mobile phone in one
device. The examples of operating systems for smartphones are: Symbian OS, iPhone OS,
BlackBerry, Windows Phone, Linux, Palm WebOS, Android, and Materno.

Introduction to Operating Systems 23

Another category of mobile devices is smart cards. Smart cards have the capacity to retain
and protect critical information stored in electronic form. The smart card has a microprocessor
or memory chip embedded in it. The chip stores electronic data and programs that are protected
by advanced security features. When coupled with a reader, the smart card has the processing
power to serve many different applications. Smart cards provide data portability, security, and
convenience. Smart cards are being used in various sectors, such as telephone, transportation,
banking, healthcare transactions, etc. There are two basic types of smart cards: contact and
contact-less smart cards. Contact cards have a 1-cm-diameter gold-plated pad that has eight
contacts on it. These contacts are in turn wired to a microchip underneath the pad. The mi-
crochip can be a memory-only chip or a microprocessor chip containing memory and a CPU.
Memory cards are used mostly as telephone cards, whereas microprocessor cards can be used
for multiple applications on the same card. Although both cards can have stored value and
stored data areas, the microprocessor card can in addition process the data since it contains a
CPU, RAM, and an operating system in read only memory (ROM). Contact-less cards not only
have an embedded microprocessor chip, but also contain a miniature radio transceiver and an-
tenna. They only operate within close proximity to the reader. Instead of inserting the card, we
simply pass the card close to the reader. Contact-less cards tend to be more costly than contact
cards and are best suited for transportation and building access applications

The smart card’s chip operating system (COS) is a sequence of instructions permanently
embedded in the ROM of the smart card. The baseline functions of the COS which are common
across all smart card products include

e management of interchanges between the card and the outside world, primarily in terms of
the interchange protocol

management of the files and data held in the memory

access control to information and functions (select file, read, write, and update data)
management of card security and the cryptographic algorithm procedures

maintaining reliability, particularly in terms of data consistency, and recovering from an error

There are some challenges for the designers of the operating systems for mobile devices.
Some of them are as follows:

e All the mobile devices have a very small memory. So the memory must be managed efficiently.

e All the devices have a slow power CPU as faster CPU will require more power and thereby
a larger battery. And larger battery cannot be there in a small mobile device. Therefore, the
operating system should not load the processor with heavy computations.

e Devices like mobile phones and smartphones have a small screen area. So the contents
should be mapped to the available size of the display screen.

The features of major types of operating systems discussed above are given in Table 1.3.

Table 1.3 Types of operating system

Type of operating
system

Features/benefits

Example

Applicable to which
type of application

Batch systems

More than one job
can be stored in main
memory

FMS (FORTRAN monitor
system), IBM'’s operating
system for 7094

Background jobs in
which the user
interaction is not
necessary

(Contd)

24 Principles of Operating Systems

(Table 1.3 Contd)

Multiuser systems

Multi-tasking
systems

Network systems

Distributed systems

Real-time systems

Embedded systems

Batches of same
type of jobs can be
executed quickly

Jobs of different users
who are connected to
a main computer are
executed through the
multi-programming

Interaction of jobs
with the user is
possible

Debugging is easy

Multiple tasks of a
single user can be
opened on the
system through
multi-programming

The user is able to
connect to another
machine and perform
many operations

The user is aware of
the location of the net-
work node where he/
she wants to connect

When multiple nodes
of a wide network
realized as a powerful
machine sharing the
resources on the net-
work. The users are
not aware where their
processes are being
sent and executed.

Used to handle time-
bound responses to
the applications

Specialized systems
with size, memory
and power restrictions

CTSS by MIT, TSS by
IBM, MULTICS, UNIX

Windows

Novell Netware, Win-
dows NT, Windows
2000, Windows XP, Sun

Solaris

Amoeba, V system,
Chorus

pSOS, VxWorks,
RTLinux, etc.

Palm Pilot, Toshiba
Pocket PC, Palm OS,
Symbian OS, iPhone
OS, RIM’s BlackBerry,
Windows Phone, Linux,
Palm WebQOS, Android
and Maemo.

When multiple users
need to share a single
system

When a user wants
to open and work
simultaneously on
many windows on the
system

When a user wants
to remote log on to

a system, wants to
transfer a file, etc. on
a network system

When computational
speed and resource
sharing is required
and implemented
through various full
computer systems in
a network

Applicable to systems
which require time-
bound response,

i.e., for the real-time
processing systems

Used in consumer
electronics items,
mobile phones, smart
cards, etc.

Introduction to Operating Systems 25

1.5 GOALS OF AN OPERATING SYSTEM

We have seen how operating systems have been developed in the past. It can be noticed that as
soon as the concept of multi-programming came into picture, a number of problems started to
occur. The solution of these problems in fact contributed for further development of operating
systems. All these operating systems have been developed keeping in view the convenience of
the user of the system. As discussed, there was a time when all the tasks related to programming
had to be done by the user only, whether it is loading the program in memory or debugging
the program. The journey from multi-programming through multiuser is still continuing with
multi-tasking and multi-threading. The central theme is the user’s convenience. Either it is the
throughput, i.e. the number of tasks being performed, or the response time of a user’s job, or the
user wants to execute more than one tasks at a time or the environment wherein the user can per-
form the tasks conveniently without worrying about the CPU time, memory partitions, memory
size, etc. All these developments signify that an operating system provides an environment to a
user such that he concentrates on his job instead of being concerned about the hardware.

Another point that we have observed through the development of operating systems is that
operating systems have been designed to utilize the hardware and other resources. For instance,
CPU time had always been the target for its utilization. From the batched multi-programming
systems to multi-tasking systems, CPU time had been the central resource to be utilized. The
goal of CPU usage also changed as the generation of computer systems changed. In initial
operating systems, the goal was the throughput and that CPU should be made busy in executing
more number of jobs. But in the recent operating systems, the goal has changed to response
time, i.e., CPU executes the jobs to provide a user the minimum response time for his jobs
in multi-tasking environment. Another important resource is memory. With the invention of
multi-programming, many jobs started residing in the memory. Therefore, it was necessary to
keep maximum jobs in the main memory and utilize it as much as possible. Even the concept of
virtual memory was given with the help of which the user does not need to worry about the size
of the memory to write a program. In fact, it is possible to have a program larger than the actual
size of memory. There is another concern of utilization—devices utilization. All devices should
be shared and utilized fairly among the tasks. As we will go through the chapters in this book,
we will realize the need of utilization of all the resources being used in the computer system.
Therefore, to meet the needs of resources utilization, an operating system is required. Thus,
the operating system provides an abstraction to the user of a system that he is best utilizing the
resources of the system even without his knowledge.

As a result of resource utilization, another goal for operating system has been added, i.e.,
resource allocation. In multi-programming environment, there is need to allocate resources
to various tasks. For instance, when there are many tasks in the memory, it is required that
one of them will go to the CPU for execution. Someone has to take this decision for process
allocation. The operating system has been designated to perform this function. It uses vari-
ous scheduling algorithms according to the need and chooses one of the tasks in memory
and sends it to CPU for execution. For memory utilization, there is a problem of memory
allocation to a task, i.e., which vacant space should be allocated to a task? Similarly, de-
vices are very limited as compared to the tasks. Therefore, again the operating system al-
locates the devices to the tasks in best possible manner. Thus, another goal in designing the
operating system is to allocate resources to various tasks. Therefore, it is also known as
resource allocator.

26 Principles of Operating Systems

It should be noted that there is a side effect of multi-programming and multi-tasking. We
know that more than one job resides in the memory in these concepts. Moreover, operating sys-
tem is also loaded in the memory in a separate partition. However, it may be possible that one
user accesses the memory region of another user or even the operating system. Till the develop-
ment of DOS, there was no protection among users’ jobs and operating systems. Therefore, the
next goal for an operating system is to have protection in this form such that no user is able to
access others memory regions and of operating system.

Let us summarize these goals as follows:

Convenience

The convenience of a user, who performs a job using the computer system, is the prime goal
of an operating system. Let us understand the user requirements. Some of them are as follows:

Hardware abstraction/virtual machine

The user does not want to care for hardware resources and to access the devices because the
details of all the hardware are too complex to work. The details of hardware also hinder the
thinking process of a programmer. Therefore, operating system provides an abstraction layer
between the user and the hardware so that the user can work on the hardware without actually
knowing it.

Convenient programming environment

The process of program execution includes several steps. We should have a good editor to write
a program, debugger to debug the program, linker, loader, etc. The operating system provides
all these facilities to a programmer so that a convenient environment is present and the user can
concentrate on the programming and nothing else.

Response time

As we know through the evolution of operating systems that there was a time when there was a
gap of hours or even a day between the user’s job submission and its first response of execution.
With the invention of high-speed processors, the user desired to have immediate response from
the job. This desire has resulted in the development of multiuser and multi-tasking operating
systems.

Easy-to-use interface

The users’ convenience has taken another shape when the use of GUI became popular. This
was another goal for an operating system which resulted in Mac OS and Windows OS. The use
of an operating system in the form of GUI makes a user understand the operation he wants to
perform. Moreover, the user is relieved from remembering the commands which needed to be
typed in older UNIX and DOS systems.

Resource Utilization/Management

We know that multi-programming introduced many new challenges for an operating system.
Due to multi-programming, there was a need to partition the memory and allocate memory
to various tasks. So memory partitioning and memory allocation jobs added to the operating
system. As the number of users and tasks increased, there was need to utilize the memory effi-
ciently. Thus, memory management techniques were devised.

Another concern that arose due to multi-programming was CPU utilization. When there was
a single program to execute, there was no issue of memory management and CPU utilization.
But when there are multiple tasks in memory, all compete for execution. Since CPU can execute

Introduction to Operating Systems 27

a single task at a time, others need to wait. So the issue is to schedule the tasks such that CPU
does not sit idle and all the tasks get the CPU time fairly.

Device utilization is another important issue for operating system. As the devices are less
in number as compared to the number of users and tasks, there is need of controlled allocation
to them. For example, if we allow all the users to access a shared printer, then there will be a
chaos. It means we must have some mechanisms to share the devices. This device management
is also supported by the operating system.

Likewise, there are many resources today in the computer system which need to be allocated
and managed in a controlled manner. In this way, operating system’s jobs to manage and utilize
the resources are as follows:

1) grants access to resource requests from different users
ii) keeps track of which task is using which resource
iii) keeps account of usage of the resources
iv) resolves the conflicting requests from users
v) utilizes the hardware and other resources in best possible manner

Thus, it can be said that operating system acts as a resource allocator and resource manager
in order to provide an efficient operation on computer system to the user. The efficiency is the
major goal for an operating system which takes care of the best utilization and allocation of
resources on the computer system.

Protection

Due to multi-programming and multi-tasking, there was a challenge that one user should not
be able to access other user area in memory. Similarly, one user should not be able to access
the operating system area in memory. For this purpose, hardware was first modified and then
protection feature was added in the operating system (we will discuss this issue later in detail).
Thus, an operating system should be able to protect the task of one user from another and oper-
ating system from any user.

1.6 FUNCTIONS OF OPERATING SYSTEM

We have understood what an operating system is and broadly what it does. Now it is time to
discuss the various functions being performed by an operating system. The functions can be
categorized as per two viewpoints: user view and system view. The user view is a top-down
view of functions performed by an operating system, whereas system view is bottom-up view
of functions performed by an operating system.

1.6.1 User View

The user view is to execute the user’s task on the computer system. But a user does not want to
be overwhelmed with the complex hardware details of the system. He simply wants an interface
between his application and the hardware. There are many system programs or utilities to help
him in developing his application. The operating system is also a system program developed
to act as an interface between the application and the hardware. He is not concerned how the
application will get resources from the system and get executed. All these jobs will be done
by the operating system. Thus, an operating system does hardware abstraction for the user by
hiding the complex details of the hardware, thereby providing a flexible user-friendly interface

28 Principles of Operating Systems

to the user for developing his application. In other words, operating system acts as a mediator
between the application and the computer system that makes easy use of hardware and other
resources without even knowing. From the user’s point of view, the following are some func-
tions performed by an operating system:

User Interface

The operating system provides the interface to use the computer system. There are two types of
interfaces: command-driven interface and graphical user interface (GUI). As discussed earlier,
in older systems, there was only command-driven interface. But with the invention of Win-
dows, now almost every operating system provides GUI.

Program Development and Execution

For executing a program, there are certain tasks like loading the program in main memory,
initializing and accessing 1/0O devices and files, scheduling various resources, etc. All these
program executions are performed by the operating system without the knowledge of the user.
Moreover, operating system provides some utilities such as editors, debuggers, etc., which
although are not part of the operating system but are packed with the operating system for the
convenience of the programmer.

Accessing I/0 Operations

If you have written some programs in high-level language, then you write some standard input-
output instructions according to the language being used. For example, in ‘C’ language, for
reading the input the instruction is scanf and for output the instruction is printf. You do not care
for the type of input/output devices and use only standard instructions for any type of devices.
The operating system relieves the user from details of input/output devices and accesses them
on behalf of the user.

Accessing File Systems

A file is a logical concept to store the user’s data or program. A user creates the file using
some editor and saves and retrieves the files conveniently through the operating system’s
interface. But the file as a logical entity is mapped to some physical memory. Operat-
ing system in background keeps track of memory provided to the files and performs all the
operations related to file management.

Error Detection

While working on a computer system, one may encounter different types of errors. Either it
is a hardware error or error in some user program. There may be a memory access failure or
a device failure. A user may give a command for printing a file but there may be no paper in
printer or there is a paper jam. Or the errors may be in user programs such as arithmetic over-
flow, divide by zero error, or accessing an illegal memory location. All these errors must be
identified by the operating system and an appropriate action must be taken and the user should
be notified through a message on the screen.

1.6.2 System View

Beyond the user’s convenience, most of the functionalities are performed in background by the
operating system. These activities are to manage or utilize the hardware and other resources of
the computer system. Therefore, from the computer system’s point of view, the operating sys-
tem is a program that controls the allocation/execution of all the resources in the system. There
are three major functionalities done by the operating system:

Introduction to Operating Systems 29

Resource Manager

The operating system is a program that controls the allocation/execution of all the resources in
the system. In this way, operating system schedules and manages the allocation of all resources
in the computer system. It is best called as a resource allocator and resource manager. If there
are multiple processes, then their creation, deletion, and other operations are handled by the
operating system only. Memory is to be provided to all these processes. It is the job of operating
system to look for the available memory and allocate to the process. When multiple processes are
simultaneously running there may be problems such as how to communicate with other processes
and how to access the shared objects. Therefore, an operating system needs to also handle inter-
process communication and synchronization. It utilizes the resources in the best possible manner.
Users work on the computer using various files. The user sees these files as only a logical con-
cept. The operating system implements the file systems in the physical memory. Similarly, I/O
devices, which are not directly accessible to the user, are given access by the operating system.
Thus, from the system’s viewpoint, process management, file management, I/O management,
memory management, etc., are all the functions performed by the operating system.

Control Program

The operating system acts as a control program in the sense that it protects one user’s program
from another. It is necessary in multi-programming because a user may try to enter other user’s
memory and even in operating systems’ region. Also, it does not allow the users to access any
I/O devices directly as the user may misuse them. It detects any exception in the system if it
happens and informs the user. Thus, operating system acts as a control program that controls
the user activities, I/0 access, and all other activities performed by the system.

Virtual Machine Manager

A very different view to see the operating system is as a virtual machine manager. As we know
that operating system acts as an abstraction which hides the complex details of the hardware
from the user and presents a user-friendly environment to him. Even a programmer does not
want to interact directly with the I/O devices. Interacting with I/O devices, memory, and hard
disk is too clumsy and no one can easily work on these hardware details. Due to this fact, oper-
ating system provides a layer on the actual hardware on which it performs the tasks of the user.
And to the user, it seems that all the work done is by the hardware. In other words, there is an
illusion created by the operating system that there is a virtual machine that is performing all the
work. Let us see how a virtual computer is created:

1) The operating system creates virtual processors by creating multiple processes.

i1) The operating system creates multiple address spaces out of the physical memory and
allocates to various processes.

iii) The operating system implements a file system out of the hard disk, i.e., virtualization of
disk space.

iv) The operating system implements virtual devices out of the physical devices because
it is cumbersome to work with physical devices and virtual devices prepare a simple
interface instead.

In this way, virtual machine or extended machine (in the form of virtual processors, virtual
memory, and virtual devices) is created from the physical computer. On a single physical ma-
chine, multiple virtual computers are created in the form of multiple processes (see Fig. 1.13).
Each user has an illusion that he is using a single machine. Therefore, operating system is also
viewed as a manager of the virtual machine or extended machine.

30 Principles of Operating Systems

User User User
process process process
\
Virtual Virtual Operating svstem Virtual
machine machine P g sy machine
Extended
machine
Physical computer/hardware
_/

Fig. 1.13 Operating system as a virtual machine manager

1.7 OPERATING SYSTEM’S GENERIC COMPONENTS

In this section, a generic structure of operating system is discussed. The detailed structure and
various types will be discussed later. The emphasis here is to know how the interfaces between
user, operating system, and hardware are in place. The reader should be aware that the user
or programmer cannot access hardware resources directly. Even, in the subsequent chapters a
concept will be established that no user is allowed to perform any I/O operations. Therefore, it
becomes necessary to know the generic structure of an operating system.

In Fig. 1.2, we have seen the computer system where operating system fits therein. We have
seen there that operating system is the interface between user’s applications and hardware.
It means that whatever job a user wants to perform through the hardware of the computer
system will be performed by operating system on behalf of the user. But there is a question

User

System and application
programs

Kernel

Hardware

Fig. 1.14 Operating system structure with shell and kernel

of how to tell the operating system the functions
we want to perform. It means there should be an
interface by means of which user tells the operat-
ing system to perform operations on the hardware.
This interface is the place where the users give the
commands through control statements. There is
a program which reads and interprets these con-
trol statements and passes the signals to operating
system. This program is known as command-in-
terpreter or shell. Thus, there is a clear separation
between the user application, OS, and hardware
as shown in Fig. 1.14. The shells may be in the
graphical form wherein commands are in the form
of mouse-based window and menu system as used
in Windows OSs or commands form wherein
commands are typed in by the user as used in MS_
DOS or UNIX operating systems.

Introduction to Operating Systems 31

As the requirements have grown, the size of the operating systems has also increased. But
we know that it needs to be loaded into the main memory which is already packed with user
programs. Therefore, the operating system to be loaded into the memory should be of smaller
size otherwise most of the memory will be taken by the operating system only. Therefore, es-
sential modules of the operating system such as task management, memory management, etc.
are only loaded into the memory known as kernel. The kernel is the innermost layer close to the
hardware to get things done. Other modules of operating system are stored in the secondary stor-
age like hard disks and get loaded as and when required. For example, virtual memory module
is not part of kernel but will be loaded if required. In this way, the operating system part is also
divided into two parts: essential part (kernel) and secondary part.

SUMMARY

There was a time when a user on the computer system
used to get the program executed in days because every-
thing for program execution was manual and in fact the
user was close to the machine. But with the advancement
in the technology, a software layer between the user pro-
grams and hardware was added so that the user is relived
from the details of the hardware and all the work related
to machine was done via this software layer. This software
layer is known as operating system. The OSs evolved
with the increase in demands of the user and inventions in
computer hardware and I/O devices. The advancements in
computer architecture have always impacted the develop-
ment of OSs. But sometimes, the researchers of OSs also
demanded to have modifications in the architecture. Thus,
OSs and architecture both have affected each other and
developed in parallel.

Multi-programming is a central concept in operating
systems. The multi-programming, i.e., placing more than
one program in the main memory, has given birth to other
modules of operating system. In fact, the multi-program-
ming originated many problems. As a solution to these
problems, other modules of operating system were de-
veloped. For example, multi-programming demanded that
memory should be partitioned and allocated to the required
processes. All the processes must be protected. Multiple
processes will compete for limited /O devices. Multiple
processes must communicate and synchronize with each
other. Therefore, memory management, process manage-
ment, process scheduling, device management, process
communication, process synchronization, protection, etc.,
have been developed in response to the problems of multi-
programming. All these concepts are relevant to a designer.
For a system designer, the operating system is a resource
allocator, extended machine manager, and control program.
As a resource manager it allocates and manages the re-
sources in the system. As an extended machine manager, it
acts as an extended machine in support of the actual hard-
ware and seems to a general user that all the facilities have

been provided by the machine hardware only. As a control
program, the operating system protects all the programs
and itself from any malicious job.

However, all these concepts are not related to the user.
A general user’s view is different from the system’s view.
The user wants the convenience while working on the sys-
tem. There are many facets of the user convenience. The
user does not want to indulge into the hardware details. The
user wants the interaction with his job so that he can debug
it. The user does not want to work with the commands. He
wants the GUI based flexibility and convenience. And all
these have been incorporated in the operating systems.
Thus, the prime goal of an operating system is to have the
user convenience so that there is a friendly environment
on the system for the user. The other goal of the operat-
ing system is the utilization of the hardware and all other
resources in the system.

Let us have a quick review of important concepts in this
chapter:

® AnOS s a software that acts as an interface between the
users and hardware of the computer system.

® An OS is a software that provides a working environment
for the users’ applications.

e An OS is a resource manager that in background man-
ages the resources needed for all the applications.

® Multi-programming is the central concept in operating sys-
tem that originates all other concepts of operating system.

® Multi-programming places more than one job/program/
task in the main memory.

® Multi-programmed batch systems place more than one
jobs/programs/tasks in the main memory of a batch pre-
pared for same type of jobs and execute them by switch-
ing between them.

® Multi-user systems place more than one job/program/
task in the main memory of the main computer system.
The jobs are of different users who are connected through
terminals to the main computer. The jobs are scheduled
by time-sharing technique.

32

Principles of Operating Systems

Multi-tasking systems place more than one job/program/
task in the main memory of the system. The jobs here
are of a single user working on the system. The jobs are
scheduled by time-sharing technique.

The primary goals of operating system are convenience
of the user and best utilization of the hardware.

There are two views to look at the functioning of the oper-
ating systems: user view and system view.

From the user’s viewpoint, the operating system acts as
an easy interface between the user and computer system
and presents a friendly environment wherein the user can
work efficiently without worrying about any configuration
or details of the hardware.

From the system’s viewpoint, the operating system acts
as a resource manager, control program, and virtual ma-
chine manager.

As a resource manager, operating system schedules and
manages the allocation of all resources in the computer
system.

MULTIPLE CHOICE QUESTIONS

1.

Automatic job sequencing is performed by

(a) operating system (c) job pool
(b) resident monitor (d) none
Disks were invented in generation.
(a) first (c) third

(b) second (d) none
SPOOL is

(@) simultaneous printer operation offline

(b) simple peripheral operation offline

(c) simultaneous peripheral operation offline
(d) simultaneous peripheral operation online

MULTICS is
(@) multiplexed information control system

(b) multiple input control system

(c) multiplexed information and computing service
(d) none
PDP-7wasa__.
(@) mini computer
(b) Mainframe

(c) PC

(d) none

IBM with Bill Gates hired Tim Paterson who had written one
OS known as

(@) UNIX (c) Windows

(b) DOS (d) none

Batch systems were developed in ____ generation.
(a) first (c) third

(b) second (d) none

10.

1.

12.

13.

14.

As a control program, operating system controls the user
activities, 1/0 access, and all other activities performed
by the system.

As a virtual machine manager, operating system provides
a layer on the actual hardware on which it performs the
tasks of the user. And to the user, it seems that all the
work done is by the hardware. In other words, there is an
illusion created by the operating system that there is a
virtual machine which is performing all the work.

There are two generic components of operating system:
shell and kernel.

Shell is a program which reads and interprets the control
statements entered by the user to perform a task. It is
also known as command interpreter.

Kernel is the part wherein only essential modules of the
operating system are placed.

Spooling was developed in _____ generation.
(a) first (c) third
(b) second (d) none
Time-sharing was developed in ____ generation.
(a) first (c) third
(b) second (d) fourth
Multi-tasking/Multi-threading was developed in ____
generation.
(a) first (c) third
(b) second (d) fourth
processing is largely useful in defence applications.
(a) Batch (c) Parallel
(b) Real-time (d) None

Symbian OSisusedin____.
(@) smartphones (c) Palm pilot
(b) smart cards (d) none

When a user wants to open and work simultaneously
on many windows on his system, what OS should be
chosen?

(@) Multi-user OS (c) Batch OS

(b) Multi-tasking OS (d) Networked OS

When a user wants to remotely log on to a system, wants
to transfer a file, etc., on a network system, what OS should
be chosen?

(@) Multi-user OS
(b) Multi-tasking OS

(c) Batch OS
(d) Networked OS

15.

16.

17.

When computational speed and resource sharing is
required and implemented through various full computer
systems in a network, what OS should be chosen?
(@) Real-time OS (c) Embedded OS
(b) Distributed OS (d) Networked OS

What OS should be chosen which is applicable to systems
that require time-bound response?

(@) Real-time OS (c) Embedded OS

(b) Distributed OS (d) Networked OS

What OS should be chosen which will be used in consumer
electronics items, mobile phones, smart cards, etc.”?

(@) Real-time OS (c) Embedded OS

(b) Distributed OS (d) Networked OS

REVIEW QUESTIONS

Eal A e

© N o o

10.
1.
12.

What is the need for an operating system?

What are the functions of an OS from user’s viewpoint?
What are the functions of an OS from system’s viewpoint?
What were the difficulties in second generation from OS
viewpoint?

What is a resident monitor?

What is JCL?

What is offline operation?

What is the difference between online and offline operation
on a computer system?

How did the disks solve the problem faced with the mag-
netic tapes?

What is SPOOL? What is the benefit of spooling?
Give a brief overview of development of UNIX?

Explain the difference between DOS, UNIX, Apple Macin-
tosh, and Windows?

BRAIN TEASERS

1.

Can you work without operating system in your computer
system?

The major drawback of multiprogrammed batch systems
was the lack of user/programmer interaction with their jobs.
How can you overcome this?

The response time is the major requirement of a multiuser
time-sharing OS. What are the things that need to be
improved for this requirement from a system designer’s
viewpoint?

Is time-sharing OS suitable for real-time systems?

5. Examine the following conditions and find appropriate oper-

ating system for them:

19.

20.

13.

14.

15.

16.

17.
18.
19.

20.
21.

22.

Introduction to Operating Systems 33

. Program which reads and interprets these control statements

and passes the signals to operating system is known as

(@) system programs (c) shell
(b) system call (d) kernel
is the innermost layer close to the hardware to get
things done.
(@) System programs (c) Shell
(b) System call (d) Kernel

Apple Macintosh was commercially successful not only due
to its cheaper cost but also because itwas__ .

(@) taking less memory (c) accessing I/O faster
(b) user friendly (d) none

Explain the differences between multi-programming, multi-
user, and multi-tasking OSs.

Explain the characteristics of multi-processor and distrib-
uted systems.

What is the differences between network and distributed
0Ss?

What is the difference between real-time and embedded
operating systems?

How does operating system function as resource manager?
How does operating system provide protection?

What is a virtual machine? How does operating system
function as a virtual machine manager?

Discuss the role of shell and kernel in operating system.

What are the challenges in designing a multiprocessing/
distributed operating systems?

What is the difference between a smart card and smart-
phone?

(@) InaLAN, users want to share some costly resources
like laser printers.

(b) Multiple users on a system want quick response on

their terminals.

Railway reservation system

d) Auserwants to work with multiple jobs on his system.

(e) Ina network system you want to transfer file and log
on to some node.

(f) There are some jobs in the system which does not
want user interaction.

(9) Washing machine

e
()
=

Explore the features of operating system being used in
recent design of smartphones.

34

Principles of Operating Systems

7. Do all operating systems contain shell?

8. Multi-programming is inherent in multiuser and multi-task-

ing systems. Explain how.

There are four jobs running in a multi-programming system
with the following requirements:

job 1: requires disk after every 1 min, device service time in-
cluding wait and access = 3 min, total processing time = 4 min.

job 2: does not require any I/O, total processing time = 7 min.
job 3: requires printer after every 3 min, device service
time including wait and access = 2 min, total processing
time = 9 min.

Prepare a timing chart showing the CPU and I/O activities
of the jobs. Compute the total time for execution using
monoprogramming and multiprogramming and then com-
pare the results.

Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

2 Hardware Support for
Operating Systems

2.1 INTRODUCTION

The first chapter introduced the basic concepts of an OS. Before we delve into the details of an OS, the
knowledge of computer system architecture is a prerequisite to understand the concepts of an OS. Since
there was a parallel development in computer architecture and the OSs as we have seen in Chapter 1, it
is necessary to understand the relation of architecture with OS. Therefore, some basic concepts that are
related to OS have been discussed in this chapter. Since the modern OSs are interrupt driven, the inter-
rupt mechanism has been explained. The protection among the user jobs and the OS is a major issue to
implement the multi-programming-based concepts in OSs. Therefore, it is necessary to understand how
the protection has been achieved in the hardware. The management of I/O devices is a major area where
the OS plays a great role. All the fundamental issues related to I/O devices such as type of devices,
device controllers, and the device drivers have also been discussed. The magnetic disk is a widely used
secondary storage device and used in many concepts of OS such as scheduling, virtual memory, and so
on. Therefore, the structure of the disk and its related issues have also been discussed.

Ul

2.2 INTERRUPT-DRIVEN OPERATION FOR OPERATING & 3

SYSTEM Learning Objectives
The modern OSs that support the multi-programming/multi-user/ After reading this chap-
multi-tasking environment perform interrupt-driven operation, ter, you should be able to
i.e., everything an OS does is interrupt driven. If there is no event understand:
and no processes to execute, the OS does nothing. It simply waits « Interrupts, their types, and inter-
for an event. The OS is activated when there are processes to exe- rupt-driven operation of an OS
cute or an event causing the interrupt. Therefore, it is important to * Types of /O devices
understand what an interrupt is and what happens to the processor * Introduction to timers
when an interrupt arrives. So, let us discuss the concept of inter- * Role of device controllers and

device drivers
o Multiple mode of protection
o Input-output protection
e Memory protection
o CPU protection
e Input-output communication

rupt.

Interrupt is a signal sent by hardware or software to notify the
processor about the occurrence of an event that needs immediate
attention. On the processor hardware, there is an interrupt request
(IRQ) line that the processor senses for any interrupt after execu-
tion of each instruction of the process. If there is no interrupt, it techniques

moves to next instruction to execute. But if there is an interrupt, « Structure of a magnetic disk
the state of the process being executed is saved so that the pro- o Disk partitioning

cessor can resume its execution from the place where it left off « Disk formatting

(see Fig. 2.1).

36 Principles of Operating Systems

{

while (fetch next instruction)

Execute the instruction;
If (there is an interrupt)

Save the state;
Find address of ISR;
Execute ISR;

Return from ISR and restore the state;

Fig. 2.1

Interrupt view of processor

After saving the state of the old process, a
program known as an interrupt handler or inter-
rupt service routine (ISR) is executed, which
is a part of microcontroller firmware (such as
ROM-BIOS that provides a small library of
basic input/output functions used to operate and
control the peripherals such as the keyboard,
display, disk, etc.), OS or a device driver. There
is an ISR corresponding to each interrupt gen-
erated. After executing the ISR, the control is
returned to the interrupted program and its
execution is resumed by loading its saved state.

But we do not know the address of an ISR to be executed. The addresses of all ISRs are
placed in a list known as interrupt vector table (IVT). The IVT is generally placed in low
memory. Each interrupt has a unique number and therefore in IVT, corresponding to an
interrupt number, the address of the ISR is stored. Whenever an interrupt is sensed by the
processor, it finds out its number and the address of the ISR in IVT. After finding the address
of the ISR, the control is transferred to the ISR and it is executed. In the x86 architecture,
each address in the IVT is 4 bytes long and supports 256 total interrupts (0-255). To access
the location of an interrupt in IVT, the interrupt number is multiplied by 4 as each address is
4 bytes long. For example, hitting a keyboard generates a hardware interrupt whose number
is 9. It means the address of ISR corresponding to this interrupt will be found on locations
36, 37, 38, and 39.

The steps of the interrupt processing are summarized as follows (see Fig. 2.2):

Interrupt
source

A 4

Processor executes
an instruction,
checks the IRQ, and
acknowledges

Save state of the

control
back

ISR executed and

interrupted program

Load address of
B ISR in PC and
returned [€ control
to the transferred to
ISR

A

Restore state of
the interrupted
process to
resume

]

interrupted
process

A 4

Find out the
address of ISR

ISR

Fig. 2.2 Steps of interrupt processing

from IVT

A

IVT

Hardware Support for Operating Systems 37

—_—

. The interrupt is generated from its source (hardware or software).

2. The interrupt signal generated is pending on the interrupt request (IRQ) line of the processor

hardware.

The processor finishes its current instruction execution and then checks for the interrupt.

4. The processor determines that there is a pending interrupt request and sends an acknowl-
edgement signal to the source that generated the interrupt.

5. After the acknowledgement, the source of the interrupt removes the interrupt request
signal.

6. The processor saves the current state of the process that was interrupted such as pro-
gram status word (PSW), program counter (PC), processor registers, and other data
structures that will be discussed later in the book. These can be pushed onto a control
stack.

7. The processor finds out the type and number of the interrupt generated and finds the address
of the corresponding ISR in IVT.

8. The processor loads the address of the ISR in PC and executes it.

9. After executing the ISR, the control is returned back to the interrupted program and saved

state is loaded again so that the program can be resumed.

e

2.2.1 Types of Interrupts

There may be various sources of interrupts. In general, there may be two types of interrupts as
follows:

Hardware Interrupts

A hardware interrupt is generated from an external device, which could be either a part of the
computer itself such as a keyboard, disk, or an external peripheral. For example, when we press
a key on the keyboard or move the mouse, the hardware interrupts are triggered, which in turn
causes the processor to read the keystroke or mouse position.

Software Interrupts
A software interrupt may be generated due to the following:

e There may be conditions caused within the processor that require OS attention. For example,
if there is an arithmetic exception like divide-by—zero during the execution of a process.

e There are some instructions in the user process which are treated as a request to the OS.
These instructions, known as privileged instructions, are the medium through which a
user process can indirectly interact with hardware through the OS. For example, if the
user process wishes to read input data from the keyboard, then the user process will use
a privileged instruction that will be passed to the OS and treated as a software interrupt.

Thus, the software interrupts are the result of an exceptional condition in the process or
may be caused due to a special instruction in the instruction set that triggers the interrupt
when executed. The exceptional condition is sometimes known as a frap. In general, it is
used for errors or events occurring during the program. The maximum number of hardware
interrupts that can be handled depends on the number of IRQ lines to the processor. However,
the software interrupts are not limited to the number of IRQ lines and therefore can be hun-
dreds in number.

38 Principles of Operating Systems

2.2.2 Multiple Interrupts Handling

It is not so that only one interrupt may arrive at a time. We will see later in the explora-
tion of multi-programming concept that multiple interrupts may also arrive and require the
processor’s attention. For example, in a multi-programming environment, a printer is print-
ing the output, the keyboard is receiving the input, and the data is read from the disk. All
these events cause interrupts. However, the processor is able to execute one interrupt at a
time. There are two approaches to solve this problem. One is to disable the other interrupts
while the ISR corresponding to one interrupt is being executed. The interrupts arrived during
the execution of the ISR are treated as pending and may be stored in FIFO queue. Once the
ISR execution is over, the other interrupts in the queue are processed. But the disadvantage
of this approach is that some interrupts which need immediate attention and not get serviced
may do some loss. For example, if an ISR is being executed and the keyboard interrupt
arrives that is reading some data. If keyboard interrupt is not processed immediately, the
input data may be lost. Therefore, the second approach—a priority mechanism—is taken
that decides the priority of the interrupts arriving. On the basis of the priority decided, the
interrupts are serviced. If a lower priority ISR is being executed and a higher priority inter-
rupt arrives, the ISR is interrupted and the control is passed to the high priority ISR. After
the execution of this high priority ISR, the control is returned to the older ISR. Even if no
ISR is being executed and two interrupts arrive at the same time, the interrupt with higher
priority is executed first. In this way, the priority based interrupt mechanism is used to
handle multiple interrupts.

2.3 INPUT-OUTPUT DEVICES

Since the OS provides a generic, consistent, convenient, and reliable way to access I/O devices,
a brief introduction of I/O devices is provided in this section. There are various types of devices
available today. They may vary depending on their operation, speed, data transfer, etc. Some
devices may be categorized based on these characteristics. Even within a category the devices
may vary. This is the reason that device management is necessary as part of operating system
function. The devices may be categorized as human readable and machine readable. The human
readable devices are mouse, keyboard, monitor, etc. The machine readable devices are sensors,
controllers, disks, tapes, etc.

The devices may transfer the data as a stream of bytes or in the form of a block. If the
device accepts and delivers the data as a stream of characters/bytes, it is known as character
device. Character-oriented devices are suitable where linear stream of bytes are required.
For example, while accepting input data from the keyboard, a block of characters cannot be
expected in one instance. Therefore, input devices like keyboard, mouse, modems, etc., are all
examples of character devices. Even the output devices of this nature, like printers, are also
character devices. On the other hand, if the device accepts and delivers the data as a fixed sized
block, it is known as block-oriented device. Disk is the example of a block device. Another
criterion is how a device accesses the data. On the basis of accessing data sequentially or
randomly, the devices are called as sequential device such as a tape drive and random access
device such as a disk.

A different type of 1/O device is the network device. The network devices differ from
conventional devices like disk in the sense that they need special I/O interfaces to send or
receive data on a network. For example, socket is the major I/O interface used for network
devices.

Hardware Support for Operating Systems 39

There may be two types of I/O devices: blocking and non-blocking. In blocking devices, the
program is blocked with an 1/O action and is not allowed to execute the program until the I/O
action completed. For example, the word processor program waits for a key press or a mouse
click (I/O) done by the user and then starts processing. In non-blocking devices, the device is
checked periodically for an I/O. If there is a process that processes the data and displays it on
the screen but needs to check the I/O on keyboard and mouse as well. In this case, the process
periodically checks the keyboard and mouse for I/0 while processing and displaying the data.
In another example, the video application reads data from a file and simultaneously decom-
pressing and displaying the data on the screen.

Other criteria to define the types of devices may be based on complexity of control, data
representation, error conditions, etc.

2.3.1 Timers or Clocks

The timer is an important device that is used in the operating system to implement
multi-tasking and other jobs. It is used to have the current time and elapsed time and to
trigger some operation at a particular time instant. The timers are used for the following
purposes:

e The periodic interrupts may be generated.

e It may be used by a scheduler to generate an interrupt when there is need to preempt a
process when its time slice expires.

e [t may be used by a disk subsystem when there is need to flush the modified cache buffers
to the disk.

¢ It may be used to cancel the operations in a network that are causing congestion and therefore
taking a long time to process.

e [t may be used to cancel the operation of a process that is not releasing the processor and
holds it for a long time. It helps in sharing the processor time among multiple tasks and every
task gets fair time and no task holds the processor.

A timer is implemented with a hardware known as up-counter that counts incoming
pulses. A counter acts as a timer when the incoming pulses are at a fixed known frequency.
For example, the programmable interval timer (PIT) hardware is used for the function
of a timer.

A timer consists of the following components:

e Pre-scaler
e N-bit timer/counter register
e N-bit capture register

The pre-scaler component allows the timer to be clocked at the rate we wish. It takes
the basic timer clock frequency (may be the CPU clock frequency or some higher or lower
value may also be taken), divides it by some value, and then feeds it to the timer. The
timer register (an up-counter) reads and writes the current count value and may stop or
reset the counter. The regular pulses which drive the timer are called ticks. Thus, a tick is
a basic unit to express the timer value. When there is some event, the current count value
is loaded in the capture register. Besides these components, a compare register is also
used that holds a value against which the current timer value is continuously compared.
When the value in timer register and the value in compare register matches, an appropriate
event is triggered.

40 Principles of Operating Systems

2.4 DEVICE CONTROLLERS

A device controller, also known as an adapter, is an electronic device in the form of chip or
circuit that controls the communication between the system and the I/O device. It is inserted
into an expansion slot of the mother board. It functions as a bridge between the device and the
operating system, i.e., the operating system deals with the device controller of the device to
which it wishes to communicate. It takes care of low level operations such as error checking,
data transfer, and location of data on the device. Each device controller is designed specifically
to handle a particular type of device but a single controller may handle multiple devices also.

To perform an I/O operation on a device, the processor sends signals to its device
controller. For example, it may be the case that the data needs to be read from a serial
device. So the processor sends a command to the device controller of that serial device
first to read the desired bytes of data. In turn, the controller collects the serial bit stream
from the device and converts it into a block of bytes. It may also perform some necessary
error corrections if required. There is a buffer inside the controller that stores the block of
bytes thus obtained. After this, the block of bytes from the buffer of controller is copied to
the memory. Now if these data need to be displayed, the device controller for the display
reads the data from the memory and sends the signal to the CRT to display the data. In this
case, the operating system initializes the device controller with required information such
as address of the bytes to be read, number of characters per line, and the number of lines on
the screen to be displayed.

For the purpose of communication with the processor, each device controller has a set of
following device registers (see Fig. 2.3):

Control Register

These are used by the processor to configure and control the device. This register is meant to
write the data, i.e., the processor can alter but not read them back.

Status Register

These registers provide the status information about an I/O device to the processor. This
register is meant to be read-only, i.e., the processor can only read the data and is not allowed
to alter.

Data Register

This register is used to read and write data from/to the I/O device.

The operating system performs I/O operations with the use of these registers only by sending
commands to an appropriate register. The parameters of the commands are loaded first into the

Device
controller

> Control
register

A
A

Processor I/O device

Status Data
register register

Fig. 2.3 Device controller registers

Hardware Support for Operating Systems 41

controller’s registers. When the command is accepted, the control is passed to the controller
by the processor. When the control is passed to the controller, the processor is free to do other
job during this time. When a command has been completed, the controller triggers an interrupt
to inform the operating system that the desired operation has been completed. The operating
system after gaining the control again gets the result of the operation and checks device status
by reading information from the controller’s registers.

2.5 DEVICE DRIVER

The most challenging task for an operating system is to manage the I/O devices in a com-
puter system. It acts as an interface between devices and computer system. This interface
should be simple, easy to use for a user, and preferably same for any type of device. How-
ever, today there are a myriad of input and output devices. Each I/O device has its own detail
and complexity. In this case, operating system needs to be changed to incorporate every
newly introduced device. Therefore, the I/O functionalities should be treated separately in
the operating system so that the other parts of the operating system are not affected. The
software which deals with the 1/O is known as /O software. In 1/O software, there are two
types of modules. First module deals with the general functionalities when interfacing with
any type of device, i.e., these functions are common while interfacing with any I/O device
and are known as device-independent I/O software. For example, there should be a general
interface for any type of device. The second module provides device-specific code for con-
trolling it and is known as device driver. The second module in fact takes care of the pecu-
liarity and details of a particular device, i.e., how to read or write data to the device. In this
way, operating system does not need to change its code again and again to incorporate any
new device. Its I/O software takes care of all the I/O devices to be interfaced with the system
without changing the OS code.

Each device needs a device-specific code in the form of device driver for controlling
it. As discussed earlier, each device has a device controller that has some device registers
for performing I/O operations on the device. But the number of device registers and the
nature of commands for performing I/O operations vary from device to device. Therefore,
to communicate with each type of device controller, a specific code in the form of a device
driver is written, which takes care of the specific device controller registers and the com-
mands. Thus, the device drivers act as a layer that hides the differences among the device
controllers.

The device drivers are part of the operating system, but not necessarily part of the OS kernel.
These are software modules that help the operating system such that there is easy access to the
hardware. They need to be installed on the system for each device we need to use. In general,
the manufacturer of the device supplies the device drivers. However, the device drivers may
differ according to the operating system type and its version.

The device driver communicates with the device controllers and thereby with the device
with the help of interrupt-handling mechanism. When the device controller interacts with
the actual device, the data are transferred between the actual device and the controller
according to the I/O operation, i.e., the data from the device are written to the controller’s
register in case of input operation or the data from the controller’s register are sent to the
device in case of output operation. After completion of I/O operation at the level of device
and device controller, the device controller generates an interrupt to the device driver

42 Principles of Operating Systems

P Device [* Device |
Device [~ controller driver
Interrupt
Device [¥—®| Device [¢ Device |,
controller driver |~
Interrupt
Device [Device < Device [¢
controller driver
Interrupt

Fig. 24 Functioning of device driver

(see Fig. 2.4). The interrupt service routine is executed in order to handle a specific inter-
rupt for an I/O operation. This routine extracts the required information from the device
controller’s register and performs the necessary actions. After the completion of an ISR, the
blocked device driver is unblocked and may run again.

2.6 PROBLEMS IN THE DESIGN OF MODERN OSs

When the multi-programming concept was introduced, a new generation of OSs was evolved.
The modern OSs have multi-programming as an inherent concept. But when the multi-user
time-sharing and multi-tasking concepts were developed, many problems arose for their imple-
mentation. To implement them, there was no architectural support. For example, the Intel
microprocessor series till 80186 was not able to support the multi-user and multi-tasking con-
cepts. Let us first discuss the problems occurred:

Since the multi-programming concept allows the switching between the processes, there
was a need to preserve the state of the process that was stopped temporarily so that it can be
resumed when the processor switches back to it. Similarly, the state of the process where the
processor switches currently needs to be loaded. In this way, a mechanism is needed to save
and load the state of a process.

Since the resources are limited as compared to the number of processes in a system, the
processes need to share them. There are several problems due to this environment. One of
them is that the processes may try to access the devices at the same time. There should be a
mechanism so that the processes have an orderly access to the devices.

The multiple processes sometimes may be trapped in a deadlock situation while accessing
the resources. Suppose there are two processes P1 and P2 and two resources R1 and R2 in
a system. P1 is using R1 and needs to have R2 to continue its execution. But R2 is used by
P2 which needs to have R1 to continue its execution. In this situation, both the processes
are waiting for each other to release the resource to continue thereby causing a deadlock
situation.

Another problem in multi-programming environment is that all the processes may try to
update the contents of a memory location at the same time.

Since all the processes and operating system reside in the main memory, a process may try
to access the memory locations of another process or even access the operating system area
in the memory. It may corrupt the operating system or some process.

Hardware Support for Operating Systems 43

e A process may engage the processor for an infinite time by having such instructions in it and
does not release it. In this case, the other processes will be in wait for that process to release
the processor.

e A process while accessing any I/O device may do any illegal operation on it thereby dam-
aging the devices. For instance, in disk operating system (DOS), there is no protection
of devices from the user programs. A user may write some virus programs and do some
mischievous operation on the devices, e.g., infecting the boot disk by loading the virus
program in boot sector, jamming the printer, etc.

All the problems discussed earlier were faced in the design of the multi-programming-based
operating systems. The single-user operating systems like DOS were not able to provide the
solutions to these problems.

2.7 NEED FOR PROTECTION

Some of the problems discussed earlier may be solved with the help of software support from
the operating system. For example, the solution to deadlock or accessing the same memory
location is provided by the operating system through deadlock avoidance or detection algorithm
and semaphore, respectively. But there are some issues which may not be implemented without
the architectural support. Since the problems discussed earlier largely address one problem,
i.e., the protection, the processor architecture of that time (e.g., Intel 8086, 8088, 80186) was
not able to provide any kind of protection. Any user was able to write a program that might
access the memory area of operating system and corrupt it. Any user was able to enter in the
memory area of any other user area. These problems initiated the demand for a mechanism that
the processes and even the operating system were not protected as there was no provision to
prohibit the user from illegal accessing of memory area or I/O device. Further, memory areas
divided among various processes and the operating system were not protected.

After this demand for protection, various architectures were developed to incorporate the protec-
tion mechanisms such that the multi-programming-based operating system could be implemented.
Thus, this protection demand emerged from the operating system implementation need and the
result was the new processor architecture. The Motorola MC68000 family of microprocessors,
AT&T UNIX operating system, and Intel 80286 and its other derivatives are examples of the
modified processors that considered the protection need in multi-programming operating systems.

2.8 HARDWARE PROTECTION FOR MULTI-PROGRAMMING/ MULTI-TASKING

To address all the problems described, various architectural support/modifications taken are
discussed as follows.

2.8.1 Multiple Modes of Operation

The basic idea in implementing the protection feature is to separate the regions of operating system
and users in order to protect the operating system and hardware devices from damage by any
malicious user/program. The modern operating systems separate code and data of the operating
system from the code and data of the user processes. This separation was termed as dual mode
operation. This dual mode operation has two modes: the kernel mode and the user mode. The
processor now can execute in one of the mode at a time, either in the kernel mode or in the user mode.
The contemporary processors implement this by having a mode bit in the program status word

44 Principles of Operating Systems

Boot in system mode, load OS
If there is a user program to run, switch to user mode

When there is an interrupt or illegal access by user
program, switch to kernel mode and jump to OS code

To resume the user program, switch back to user mode
and return to next instruction in user code

Interrupt/lilegal access

Mode bit =0 Mode bit = 1

Set user mode

User program

Fig. 2.5 Mode switching

(PSW) to specity whether the processor is executing in kernel-mode code or user-mode code. The
PSW is a collection of control registers in the processor. The control registers control the opera-
tion of the processor itself. Initially, the mode bit is set to 0, thereby meaning that the control is
with the operating system when the computer system is started. When a user process wants to gain
the control, the mode bit is set to 1 and the user is able to execute in his own area but prevented
all access to the kernel memory space. However, if a user attempts to access any illegal memory
area or instruction, the processor generates an illegal access exception and the mode is switched
to the kernel mode. Similarly, if a user wants to access any hardware, the mode is switched from
the user to kernel mode. The mode switching is shown in Fig. 2.5.

Since the operating system has more priv-
ilege over user processes, the kernel mode
has high privilege as compared to user mode.
This is why the kernel mode is also called
privileged mode. The kernel mode is also
known as system mode, monitor mode, or
supervisor mode. Thus, the system is booted
first with the kernel mode and the operating
system has all the access to the hardware,
thereby initializing a protected environment.

There are multiple levels of protection
known as privilege rings or levels. For ex-
ample, the MC68000 processor was de-
signed to have two privilege rings as dual
mode. The AT&T UNIX was designed with
three levels: kernel, shell, and the applica-
tion. The kernel here is the innermost level
Fig. 2.6 Intel privilege rings and the application is on the outermost level.

Ring 1

Ring 0

Kernel

Device
drivers

Device
drivers

Application

Hardware Support for Operating Systems 45

The Intel modern processors come with four privilege rings (0-3) as shown in Fig. 2.6. In this
architecture, the operating system is in the innermost level (most trusted) having the highest
level of privilege and protected. The outermost level (least trusted) is application level hav-
ing the least privilege. The other two levels are for device drivers having the high privilege as
compared to the application but less privileged than the OS.

2.8.2 Input-Output Protection

The multiple mode operation of the system enhances the security between the user processes
and operating system. But, the users should also be prohibited to access the I/O devices directly.
Therefore, all I/O instructions are privileged and the privilege to access the devices is with oper-
ating system only. It means no user process can access the I/O device directly. To access any
I/O device, the process may request the operating system through a system call. The system
call is a user request to the operating system which is interpreted and executed on the hardware
by the operating system on the behalf of the user. In this way, all I/O instructions are privileged
thereby providing another level of security. In this sense, the instructions are divided into two
parts: privileged instructions and unprivileged instructions. The illegal instructions mentioned
in previous section are unprivileged instructions only. The user process cannot execute privileged
instructions. In fact, whenever there is a system call in the user process, the control switches from
the user mode to the kernel mode thereby transferring the control to the operating system. After
servicing the system call, the mode is again switched back to the user mode and control is with
the user process again (see Fig. 2.7). This privilege mechanism with mode switching ensures that
the user never gains control to access the devices directly, thereby protecting the I/O devices.

The system call being used in a user process is basically a software interrupt. As a result of
this software interrupt, the control is passed to an appropriate interrupt handler and the mode
is switched to the kernel mode. The operating system determines and verifies the details of the
interrupt occurred, executes the interrupt handler, and then returns the control back to the user
by switching mode to user mode.

2.8.3 Memory Protection

Besides the earlier-mentioned protection, a user program can still access the memory region
of some other user process. It means the user processes are not protected from any illegal
access by some process or any malicious process. Moreover, a user process may access the
IVT in memory and may change the address of any interrupt handler and do some illegal
operations on the devices. There should be some mechanism to protect the memory regions
of each process as well as the operating system. For this kind of protection, each process
must know its boundary of execution, i.e., there should be a start address and a limit
address that defines the boundary of each process. This was supported by the architecture
in the form of base register and limit register. Each process has defined limits to its mem-
ory space. The start address of a process is stored in the base register and the maximum
size of the process is stored in the limit register. Whenever a process starts executing and
references some memory location (say, m), it is checked against the base register. If the
memory location being referenced is greater than or equal to the base register and less than
the addition of base address and limit, then only it proceeds for execution; otherwise it is
considered as illegal memory access. In case of illegal access, the control is transferred
to the operating system by switching the mode back to the kernel mode as shown in Fig.
2.8. This check for memory protection is done by the hardware for each process. The base

46 Principles of Operating Systems

Boot the
system

|

Mode_bit=0
(kernel mode)

Is there any
user process
o execute?

Wait for an event

Mode_bit = 1 _| Execute the
(user mode) | user process

Return to the
user process/

abort the Mode_bit = 0

rocess
P . (kernel mode)

Is there any system
call/interrupt/illegal
access?

A 4

Execute the interrupt
handler/kernel process

Wait for an event

Fig. 2.7 1/O protection flow

m m< yes
CPU base + Memory
limit

lllegal access, control passed to OS

Fig. 2.8 Memory protection

Hardware Support for Operating Systems 47

and limit registers are updated for every process (which is to be executed) in the kernel
mode by the operating system. This mechanism thus prevents any user process to access or
modify another user process or operating system area.

Example 2.1

Figure 2.9 shows the memory structure of some processes and operating system with their legal
memory addresses. The base and limit registers are loaded with the addresses 1050 and 1000,
respectively. Suppose P1 and P2 reference the memory locations 2040 and 3052, respectively.
Check if the processes will be allowed to execute.

5050 P4 Solution
4050 P1 is first checked against the base register 1050. In this
e case, the reference memory location of P1, i.e., 2040, is greater
3050 P2 than base register. Now, P1 is checked against the sum of base
2050 and limit registers, i.e., 1050 + 1000 = 2050. Since it is less
P1 than 2050, it will be allowed to execute.
1050 On the other hand, if P2 references a memory location 3052,
o . it is not allowed to execute because it violates the second crite-
perating system . . - .
rion, i.e., m < limit + base. So the control is passed to the oper-
0 ating system as it attempts to access the memory location of P3.
Fig. 2.9 Memory protection

2.8.4 CPU Protection

There may be some situation that a user process gains the control of the processor and has a
set of instructions that are being executed for an infinite time and thereby not relinquishing the
control of the processor. Thus, it leads to the situation when the processor is also not safe and
must be protected from the user processes. There should be a mechanism such that the proces-
sor does not get trapped infinitely in a user process and returns the control back to the operating
system. To achieve this, again the hardware support is required. A timer is used that interrupts
the processor after a specified period of time. The timer is implemented with the clock and
a counter. All the operations related to the timer modification are executed by the operating
system as these are treated as privileged operations. The operating system sets the counter for
a time period. Every time the clock ticks, the counter is decremented and an interrupt is gener-
ated when the counter reaches to 0. On the generation of interrupt, the control is switched to
the operating system. In this way, no user process can hold the processor beyond a limit and
has to relinquish it after a specified period of time, thereby protecting the processor. The timers
are also helpful in implementation of multiuser time-sharing systems. In these systems each
user gets a uniform time to execute his process. This is achieved by setting the timer for a fixed
period of time and interrupt is sent when the time of a user process expires.

2.9 INPUT-OUTPUT COMMUNICATION TECHNIQUES

There are three techniques by which I/O operation can be performed on a device. These
are known as [/O communication techniques. These techniques are used to have a mode
of communication between the user request and the device, taking device characteristics
into account.

48 Principles of Operating Systems

2.9.1 Programmed I/O

Whenever a process is being executed and the processor finds an I/O instruction, it issues the
commands to the appropriate device controller. The device controller performs the operation
by interfacing to the physical device and then sets the status of the operation in a status reg-
ister. But this is the job of the processor to check whether the operation has been executed or
not. For this purpose, it continually checks the status of the operation until it finds the opera-
tion is complete. Therefore, the process is busy waiting until the I/O operation has not been
performed.

The 1/0 operation is performed using a processor register and a status register. The device
puts the data in the processor register when input operation is required. On the other hand, the
device reads the data from the register when output operation is required. After completion of
the I/O operation, the status of the operation is written in the status register as a flag. In this
way, the processor executes the instruction in such a way that it is in direct control of the I/O
operation, i.e., sensing a device status, sending read/write command to the device, and transfer-
ring the data.

There is one disadvantage of this technique that the processor is busy waiting for the status
of the operation while the I/0 module is performing. At this time, the processor is not execut-
ing other instructions of the same process or any other process and is tied up for only one I/O
operation. For the 1/0 operations that consume very less time or the systems where the proces-
sor has no other job to do, the programmed 1/O is better. But for the multi-tasking environment,
programmed I/O is not a better choice where several processes are in queue waiting for the
processor.

2.9.2 Interrupt-driven 1/0

In programmed 1/O technique, the processor time is wasted as it continually interrogates
the status of I/O operation. It would be better if the I/O operation is started and the proces-
sor switches to another process to be executed instead of waiting. Therefore, the processor
issues I/O command to the device controller for performing I/O operation and switches to
another processor by calling the scheduler that schedules the process to it. The question
is how the processor knows when the I/O is complete. This is done through the interrupt
mechanism. When the operation is complete, the device controller generates an interrupt
to the processor. In fact, the processor checks for the interrupt after every instruction cycle.
After detecting an interrupt, the processor will stop what it was doing by saving the state
of the current process and resumes the previous process (where I/0 occurred) by executing
appropriate interrupt service routine. The processor then performs the data transfer for the
1/0 operation.

For example, when a user requests a read operation from an input device, the processor
issues the read command to the device controller. The device controller after receiving this
command starts reading from the input device. The input data from the device needs to be
stored on the controller’s registers. But it may take some time and this time is sufficient to serve
any other process. Therefore, the processor is scheduled to execute any other process in the
queue. As soon as the data become available in the controller’s register, the controller signals
an interrupt to the processor. The appropriate interrupt handler is run so that the processor is
able to get the data from the controller’s register and save them in the memory.

Since the modern operating systems are interrupt driven, they service the I/O requests using
the interrupt mechanism only.

Hardware Support for Operating Systems 49

2.9.3 Input/output Using DMA

When a user wants to input some data through the keyboard or some data are printed on the
screen after every character to be input or output, the processor intervention is needed to
transfer the data between the device controller and the memory. Suppose a user inputs a string
of 50 characters length and for every character to input there is 10 millisecond time required.
It means between two inputs there is a 10-ms time duration, thereby having an interrupt. It
causes to have a number of interrupts just to enter 50 characters long string. Thus, when the
data are large, interrupt-driven 1/O is not efficient. In this case, instead of reading one character
at a time through the processor, the block of characters is read. This operation is known as
direct memory access (DMA), i.e., without the processor intervention. In DMA, the interrupt
will not be generated after every character input. Rather a block of characters is maintained
and this block is read or written. So when a user wishes to read or write this block, the proces-
sor sends the command to the DMA controller and rest of the responsibility to do I/O operation
for one block is given to this DMA controller. The processor passes the following information
to the DMA controller:

e The type of request (read or write)

e The address of the I/0 device to which I/O operation is to be carried out

e The start address of the memory where the data need to be written or read from alongwith
the total number of words to be written or read. This address and the word count are then
copied by the DMA controller in its registers.

Let us suppose, we need to perform a read operation from the disk. The CPU first sends
the information mentioned above to the DMA controller. The information is stored in the disk
controller registers. There are three registers as follows:

o Memory address register states the address where the read/write operation is to be performed.
e Byte count register stores the number of bytes to be read or written
e Control register specifies the I/O port to be used, type of operation, the data transfer unit, etc.

The DMA controller initiates the operation by requesting the disk controller to read
data from the specified address and store in its buffer. The buffer data are then transferred
to the specified memory location. When this write is complete, the disk controller sends
an acknowledgement signal to the DMA controller. The DMA controller increments the
memory location for the next byte and decrements the byte count. The disk controller again
copies the next byte in the buffer and transfers the byte to the memory. This process goes
on until the byte count becomes zero. When the full I/O operation is complete, the DMA
controller sends an interrupt to the processor to let it know that the I/O operation has been
completed.

Thus, in DMA-based I/O, instead of generating multiple interrupts after every character, a
single interrupt is generated for a block, thereby reducing the involvement of the processor.
The processor just starts the operation and then finishes the operation by transferring the data
between the device controller and memory.

2.10 MAGNETIC DISKS

A magnetic disk is a widely used secondary storage device in the computer system. It con-
sists of a set of circular shaped metal or plastic platters coated with magnetic material. Both
the surfaces of each platter are used to store the information on the disk by recording data

50 Principles of Operating Systems

magnetically. To organize the data on
the disk, each platter is logically divided
in a concentric set of rings called fracks.
There may be thousands of tracks per
surface of each platter depending on
the storage capacity of the disk. Each
track is further divided into sectors (see
Fig. 2.10). A sector is the smallest unit
where the actual data are stored on the
disk. Each track may consist of hun-
Tracks dreds of a sectors. The size of sector

may be variable or fixed. But in contem-
Sectors porary systems, sector size is fixed. The
fixed sector size is 512 bytes. Thus, the
data are transferred to and from the disk
in sectors only.

The older disks store the same number of sectors per track as shown in Fig. 2.10. But, as we
move outward, the number of sectors per track may be increased as there is more space on the
outer tracks as compared to the inner tracks. The modern disks exploit this feature and store
more number of tracks as we move from the innermost track to the outermost track. There can
be various zones of tracks storing different capacities of sectors. For example Zone 1 has three
tracks and each track in this zone stores 90 sectors. Similarly, Zone 2 has four tracks and each
track in this zone stores 120 sectors.

The magnetic disk is mounted on a disk drive consisting of the following components:
Spindle
The part where the disk spins around, i.e., the spindle is a mechanism through which it rotates
the disk.

Read/write head

A device that is able to read from or write to the sectors of a track on one platter surface, i.¢.,
to transfer the information it just moves above the surface of a platter. The head may be either
movable or fixed. In fixed-head disk, there is one head per track whereas in movable-head disk,
there is only one head for all the tracks. The movable head moves to all the tracks. In movable-
head, however, the head is separate for both surfaces of a platter, i.e., each platter has two heads.

Disk arm

The head is mounted on an arm that can be extended or retracted for positioning the head on
any track. In case of a movable-head disk, there are multiple arms depending on the number of
platters.

A disk in common use comes with multiple platters and movable read-write head mecha-
nism as shown in Fig. 2.11. The tracks that appear at the same location on each platter form a
cylinder. Whenever we need to store sequentially related information, it should be stored in a
cylinder. This is done by first storing the information on a track of a platter and continuing the
information on the same track of others platters.

There may be some error due to misalignment of the head or interference of magnetic
fields. Due to this reason, some gap (see Fig. 2.12) is required between any two tracks
(inter-track gap) and similarly between any two sectors (inter-sector gap). This gap avoids
any error due to misalignment or the effect of magnetic field on adjacent tracks or sectors.

Fig. 210 Track and sectors on a disk platter surface

Inter-track

gap

Fig. 2.12

Read/write
head

Hardware Support for Operating Systems 51

Cylinder —;

Disk

C O D2

[arm

assembly

Spindle

Fig. 2.11 Physical structure of a disk

3
J

2%

v
Inter-track and inter-sector gap on the disk surface

Inter-sector
gap

()
\

[
\

Arm

The disk starts functioning with the
help of a motor. The drive motor spins
the disk at a high speed and the head per-
forms read/write on a portion of the sur-
face of the platter rotating beneath it. The
processor initiates a disk read operation
by first writing a command, then the log-
ical block number from where the data
are to be read, and finally the destination
memory address to a port, which is as-
sociated with the disk controller. To find
the location on the disk, the head first lo-
cates the desired track by moving on it

and then the platter under the head rotates such that the desired sector comes under the head.
Disk controller reads the sector and performs a DMA transfer into the memory. On completion
of the DMA transfer, the controller sends the interrupt to processor for notifying it the comple-

tion of the operation.

2.10.1 Disk Formatting

The disk formatting prepares the raw disk to be used. There are three steps in disk formatting:
low-level formatting, disk partitioning, and logical formatting. The low-level formatting is
performed by the manufacturer and the other two steps are performed by the operating system
and therefore are linked to it. The manufacturer of the disk performs the low-level format-
ting and is able to test the disk and later on use the disk for storage. The purpose of low-level

52 Principles of Operating Systems

Preamble Data ECC

Fig. 213 Format of a sector

formatting is to organize the surface of each platter into entities called tracks and sectors, by
polarizing the disk areas. Tracks are numbered starting from 0, and then the heads polarize
concentrically the surface of the platters.The low-level format thus decides the number of con-
centric tracks, number of sectors on each track, sector size on the track, and the inter-track and
inter-sector gaps. The format of a sector is shown in Fig. 2.13.

The preamble is a bit pattern used to recognize the start of a sector. It consists of the cylin-
der number, sector numbers, and other related information. The low-level format decides the
size of the data field. The data size is in general 512 bytes. Error-correcting code (ECC) that
contains the redundant information used to recover from read errors. The size of ECC field is
decided by the manufacturer. In general it is a 16-bit field. The number of spare sectors are also
reserved at the time of low-level formatting.

Thus low-level formatting reduces the actual space of a disk as some of the space is reserved
for preamble, ECC, inter-track gap, inter-sector gap, and spare sectors. On the average, the disk
capacity reduces by 20% after low-level formatting.

2.10.2 Disk Partitioning

On a disk, separate areas need to be created as per the convenience of the user to keep his
work separate. Thus, disk partitioning is process of dividing the storage space of a hard disk
into separate data areas. These separate data areas are known as partitions. For this purpose,
a partition editor program may be used that creates, deletes or-modifies these partitions. After
creation of different partitions, the directories and the files on various partitions may be stored.
There may be two types of disks on the basis of disk partitioning: basic disk and dynamic disk.

Basic disks are the storage types most often used with Windows. The basic disk contains
partitions, such as primary partitions and logical drives, and these are usually formatted with
a file system to become a volume for file storage. The space can be further added to existing
primary partitions and logical drives by extending them to adjacent, contiguous unallocated
space on the same disk. The provision of multiple partitions on a disk appears to have separate
hard disk drives to the user.

The following operations can be performed only on basic disks:

e Primary and extended partitions can be created and deleted.
e Logical drives within an extended partition can be created and deleted.
e A partition can be formated and marked as active.

The first physical sector on a basic disk contains a data structure known as the master boot
record (MBR). The MBR contains the following:

A boot program (up to 442 bytes in size)
A disk signature (a unique 4-byte number)
A partition table (up to four entries)

An end-of-MBR marker (always 0x55AA)

Thus, there may be two types of
partitions based on the above discus-
sion: primary and extended. There
may be multiple primary partitions
but one of the primary partitions
is used to store and boot an operat-
ing system. The primary partition
that is used to boot the system is
set active to indicate that this is the
boot partition. If more than one or
no primary partition is set active, the
system will not boot. The extended
partition is divided into logical drives
and is viewed as a container for logi-
cal drives where data are located.
This partition is formattable and is
assigned a drive letter.

Another data structure known as
the partition table stores the informa-
tion about each partition such as its
starting sector, size of each partition,
etc. The partition table is also stored at
sector 0 as shown in Fig. 2.14.

Dynamic disks, on the othe hand,
have the ability to create volumes that
span multiple disks. The volumes thus

created are known as dynamic volumes. The volume management is very flexible in case of

Hardware Support for Operating Systems

Master boot
record

<

’

Master boot code

First partition
table entry

Second partition
table entry

Third partition
table entry

Fourth partition
table entry

'

0x55 AA

Fig. 214 MBR partition

Primary partition 1

Primary partition 2

Primary partition 3

Extended
partition 4

Partition
table

53

dynamic disks as they use a database to track information about dynamic volumes on the disk
and about other dynamic disks in the system. The following operations can be performed only

on dynamic disks:

e Create and delete simple, striped, mirrored, and RAID-5 volumes (striped, mirrored, and

RAID will be discussed in detail in Chapter 15).
e Remove a mirror from a mirrored volume or break the mirrored volume into two

volumes.

e Repair mirrored or RAID-5 volumes.

Another step in disk formatting is logical formatting concerned with the operating sys-
tem. This is also known as high-level format. This operation is performed for each partition.
The logical formatting operation lays down a boot block in the partition and creates a file
system. The initial file system data structures such as free and allocated lists or bitmaps, root
directory, and empty file system are also stored. Since different file systems may be there in
different partitions, the partition table entries will indicate which partition contains which

file system.

54

Principles of Operating Systems

SUMMARY

Let us have a quick review of the important concepts dis-
cussed in this chapter:

Everything an operating system does is interrupt driven.
Interrupt is a signal to the processor generated by hard-
ware or software indicating an event that needs immedi-
ate attention.

On the processor hardware, there is an interrupt-request
(IRQ) line that the processor senses for any interrupt after
each instruction execution of the process.

There is a program known as interrupt service routine
(ISR) corresponding to each interrupt generated.

The addresses of all ISRs are placed in a list known as
interrupt vector table (IVT).

A hardware interrupt is generated from an external
device, which could be either a part of the computer itself
such as a keyboard, disk or an external peripheral.

The software interrupts are caused either by an excep-
tional condition in the process, or a special instruction in
the instruction set which causes an interrupt when it is
executed.

Device controller is an electronic device in the form of
chip or circuit that controls the communication between
the system and the I/O device.

To communicate with each type of device controller a
specific code in the form of a device driver is written
that takes care of the specific device controller regis-
ters and the commands. Thus, the device drivers act
as a layer that hides the differences among the device
controllers.

The modern OSs separate code and data of the OS
from the code and data of the user processes. This
separation is termed as dual mode operation. The dual
mode operation has two modes: the kernel mode and
the user mode.

MULTIPLE CHOICE QUESTIONS

1.

The modern OSs are .
(a) programmed-I/O driven (c) software-driven
(b) interrupt-driven (d) hardware-driven

Interrupt is a signal to the
hardware or software.
(a) memory

generated by

(c) processor

(b) device controller (d) none
IVT is generally placed in memory.
(a) low (c) disk
(b) high (d) none

® |nitially, the mode bit is set to 0, which means the con-

trol is with the OS when the computer system is started.
When a user process wants to gain the control, the mode
bit is set to 1 and the user is able to execute in his own
area but is prevented all access to the kernel memory
space.

The Intel modern processors come with four privilege
rings (0-3).

All I/O instructions are privileged. To access any I/O
device, the process may request to the OS in the form
of a system call.

The system call is a user request to the operating system
which is interpreted and executed on the hardware by the
operating system on the behalf of the user.

In programmed /O technique, the processor time is
wasted as it continually interrogates the status of I/O
operation.

In DMA-based /O, instead of generating multiple
interrupts after every character, a single interrupt is
generated for a block, thereby reducing the involvement
of the processor.

There are three following steps in disk formatting: low
level formatting, disk partitioning, and logical formatting.
The low-level formatting is performed by the manufac-
turer and the other two steps are performed by the OS
and, therefore, they are linked to it.

The purpose of low-level disk formatting is to organize
the surface of each platter into entities called tracks and
sectors, by polarizing the disk areas.

Disk partitioning is a process of dividing the storage
space of a hard disk into separate data areas. These
separate data areas are known as partitions.

Primary partition is a partition that is required to store and
boot an operating system.

. The number of hardware interrupts is limited by the number

of
(@) processes (c) IRQlines
(b) processors (d) none

is also known as an adapter.
(c) device
(d) device controller

(a) memory
(b) processor

. Which of the device controller register is read-only?

(a) control
(b) status

(c) data
(d) none

7.

8.

9.

Which of the device controller register is write-only?
(a) control (c) data
(b) status (d) none

Initially, the mode bit is set to
(a) 1

(b) 0

The base and limit registers are updated for every process
in_— mode.

(c) 2
(d) none

REVIEW QUESTIONS

N

o g A~ oW

~

What is an interrupt? What are its types?

What are the tasks to be executed when an interrupt arrives
on the processor?

What is IVT?
What is ISR?
What is a trap?

Provide some examples when software interrupt is
generated.

Provide some examples when hardware interrupt is generated.
How are multiple interrupts handled?

9. Differentiate between blocking and non-blocking I/0 devices.

10.
.

What is a timer? Explain its role in operating system.

What is a device controller? How does it work?

BRAIN TEASERS

1.

2.
3.

4,

The interrupt number of an hardware interrupt is 8. At what
location in the IVT, its ISR address will be found?

Is nested interrupt possible? If yes, how are they handled?

All' /O instructions are privileged. Then, how does a user
access the devices?

Which of the following instructions should be privileged?
a) Switch from user mode to kernel mode

b) Updating base and limit register

c) Clear memory location

d) Set value of timer
e) Read a clock

f) Interrupts are disabled

—~ e~~~ —~ —

10.

12.

13.

14.
15.
16.
17.
18.
19.
20.
21.
22.

Hardware Support for Operating Systems 55

(a) user
(b) kernel

The first physical sector on a basic disk contains a data
structure known as the
(a) partition sector
(b) basic sector

(c) both user and kernel
(d) none

(c) boot record
(d) master boot record

What is a device driver? Explain its functioning with device
controller and operating system.

What were the basic problems in multi-programming-based
modern operating systems?

What is the need of a dual mode protection?

What is the need of memory protection?

What is the need of processor protection?

What is the need of I/O protection?

Explain the physical structure of a magnetic disk.
What is a cylinder on a disk?

What is disk partitioning?

Differentiate between primary and extended partitions.
What is MBR?

(9) Executing a loop to enter user data

(h) Load a value in processor register

(i) Abort a process

(i) Read input from keyboard

(k) Send a file to printer to print

(I) Aglobal variable in the user process reinitialized

Inter-sector and inter-track gaps are used on the disk to
avoid errors. How do these gaps affect storage utilization
on the disk?

Study the DOS and Windows operating systems with refer-
ence to dual mode protection and find out which operating
system provides a better protection in terms of multi-tasking.

Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

Resource
Management

3.1 INTRODUCTION

The hardware resources are not easy to interface. There is a lot of complexity in using them. Moreover,
there are very limited resources in the system and multiple processes. Owing to this, there should be
some schedule and management for accessing and using the resources. The OS performs all these func-
tionalities. It schedules the limited resources among multiple tasks and gives an easy interface to I/O
devices. The hardware resources are abstracted or transformed into virtual devices. The virtual devices
are easy to work from the user’s viewpoint. The resources are of three types: hardware, virtual, and
software. In this chapter, responsibilities of the OS as a resource manager are discussed, along with
the types of resources and the goals of resource management. The functions and the components of the
resource manager and all the components of resource management are also discussed. Since all these
components are part of the operating system, all of them, along with other parts, will be discussed in
different chapters of this book.

3.2 FUNCTIONS OF A RESOURCE MANAGER . -
The OS as a resource manager performs the following functions: . L z
Learning Objectives

After reading this chapter,
you should be able to

3.2.1 Resource Abstraction/Transformation
As discussed in Chapter 1, it is really difficult to work with

. . . nderstand:
hardware devices. To perform read or write function from I/O Y .
. .. o Operating system as a resource
devices, we need to know the structure of every device in the manager

form of registers: data registers, control registers, and so on. e Transformation of hardware

A user or programmer cannot work efficiently if he or she works
so close to the hardware, since there are numerous details that
need to be taken care of; thus, hardware resources are complex
interfaces to work with. To ease the job of the user, the OS hides
the complex details of the hardware and presents I/O devices to
them in such a form that it is easy to interface with these devices.
In fact, actual hardware devices are simulated in the form of a
program known as virtual device. The user program interfaces
with the virtual device, which, in turn, interfaces with the actual
device. In this way, actual device has been abstracted or trans-
formed into a virtual device and presents the user with an easy
interface.

devices into virtual devices
Time division multiplexing
Space division multiplexing
Resource scheduling
Hardware resources

Virtual resources

Software resources

Nature of resources

Goals of resource management
Working of resource manager
Components of resource man-
agement

Resource Management 57

Virtual processor | Virtual processor | Virtual processor | Virtual processor | Virtual processor
P1 P2 P3 P1 P2

v

CPU time slices

Fig. 3.1 Time division multiplexing

Besides providing an easy interface to the devices, another benefit of abstraction is that the
concept of virtual devices provides the best utilization of the devices. For example, if multiple
users have requested for printing, a single printer cannot handle all of them simultaneously.
Moreover, it may mix up the output of many users. Therefore, multiple virtual printers can be
created to give the impression to the users that they are using printers exclusively. In this way,
actual single device is converted into multiple virtual devices. Another problem is that while
executing the program, a fast CPU cannot cope up with the slow speed of I/O devices. It cannot
wait to read from a card reader or keyboard or to print on the printer because all I/O devices are
much slower as compared to the speed of a CPU. The third advantage of having virtual devices
is that with the use of these devices, the program can be executed without any speed limit of
/0 devices.

3.2.2 Resource Sharing/Multiplexing

As discussed in Section 3.2.1, since virtual devices will be more as compared to actual devices,
there is a need to share the actual devices among the virtual devices. This is known as resource
sharing or multiplexing. The resource sharing is done by following two methods:

Time Division Multiplexing

In this type of resource sharing, a device is shared by programs at different times. As seen in
time-sharing systems, CPU time is shared by multiple programs. There is a single-processor,
but with the help of virtual processors, single-processor time is shared. Every virtual processor
is given time on the actual CPU. In this way, all virtual processes share the processor at different
times. This is known as time division multiplexing or time-sharing (see Fig. 3.1).

Space Division Multiplexing

In this type of sharing, the actual device or resource is divided into smaller versions, and each
virtual device is allocated a part of the resource. For example, main memory is divided into
several partitions to accommodate several programs. It means that for every virtual proces-
sor, a virtual memory (VM) is needed, which is provided by dividing the actual memory (see
Fig. 3.2). Similarly, hard-disk space is also divided to accommodate several programs to have
the impression of separate secondary storage of their own. This is
known as space-division multiplexing.

3.2.3 Resource Scheduling

It is a well-known fact that all the resources are limited as compared

Virtual memory 3

Virtual memory 2 to the number of processes. That is why there is a need to schedule
the processes to the limited resources. There are many instances in
Virtual memory 1 the lifetime of a process when scheduling is needed. Whenever a job

is submitted in a batch system, it is first stored in a job pool in the
Fig. 3.2 Space division multiplexing hard disk. A job pool is maintained in the hard disk for all incoming

58 Principles of Operating Systems

jobs entering the system first time. When there is a space in the main memory, a job is brought
from job queue to the ready queue in the main memory. Ready queue is the place where jobs are
fetched from job pool and the jobs wait there for their turn to be executed. The process of bring-
ing a job from job pool to the ready queue is called job scheduling. However, there is no need of
job scheduling in a time-sharing system because jobs directly enter the ready queue instead of a
job queue. Now, in the ready queue, there are multiple processes that are ready and that need to
be executed on a single CPU. There is a need to schedule the processes on CPU as it can execute
only one process at a time. This is known as process scheduling. There may be many process
scheduling algorithms depending on the situation and type of the system. Similarly, limited I/O
devices are needed by a number of processes. There must be a scheduling mechanism for alloca-
tion of these devices to the processes. Likewise, there are memory, virtual memory, hard disk, and
files that need to be scheduled for multiple processes. As students will study more components of
the OS in the book, they will come across some more scheduling concepts.

There are many schedulers needed to perform scheduling. For example, for job scheduling,
there is a scheduler called long-term scheduler. Similarly, for process scheduling, short-term
scheduler is used. The scheduler is the software that selects the job to be scheduled according
to a particular algorithm. We will study in detail all the schedulers and their functioning.

3.3 RESOURCE TYPES

In this section, all the resources available to the OS are described. The OS needs to manage all
these resources, and hence to understand the functioning of an operating system, it is impera-
tive to learn about these resources in detail. There are three types of resources (see Fig. 3.3):
hardware, virtual, and software.

Hardware resources do not require any description. The major hardware resources are
processors, memory, I/O devices, and hard disk. The hardware resources that have been
abstracted or transformed into other resources are known as virtual resources. The processes,
virtual memory, logical devices, and files are examples of virtual resources.

The next type of resources includes virtual resources. Since the hardware resources are very
complex in nature for direct usage, there is a need to hide their details such that there is some
abstraction in their use that makes it easy to use and interface them. For example, when there
are multiple users to share a single CPU, they cannot use it. However, if separate processes
are made for each user, then these processes act as virtual processors such that the computa-
tional power of a single CPU is shared among multiple users. Similarly, the physical memory
available cannot accommodate the user programs that are larger than the size of the available
memory. However, with the use of VM concept using hard disk, it is possible to accommodate

Resources in the
operating system

Hardware Virtual Software
resources resources resources

Fig. 3.3 Resource types

Resource Management 59

User
Processes Virtual address space
olelolgnL:
Virtual level

\[/

S Physical memory

Physical level

Fig. 3.4 Mapping of virtual resources to hardware Resources

the larger size programs in main memory in spite of less memory available. Similarly, hard
disks are very complex if used directly. Therefore, to use them conveniently without taking care
of its internal structure, the concept of files and directories are there. Files and directories are
easily understandable concepts through which a user stores, updates, and retrieves his or her
work on the hard disk. In this way, all hardware devices that are very complex in nature have
been abstracted into virtual devices in such a manner that they do not present complex details
to the user, but instead are very flexible, easy, and understandable (see Fig, 3.4).

Software resources have no direct relation with the hardware resources, that is, they are
independent of hardware and virtual resources but may be used in managing them. For example,
the starting address of a page (it is a logical entity used to represent the divisions of a process
and is discussed in Chapter 10, Memory Management) will be stored in a page table. So the
pages of a process need to obtain the slots in a page table. Therefore, page-table slot is a
software resource. Similarly, for inter-process communication, messages in a message queue
or mailbox are software resources. There is a resource used for synchronization between the
processes known as semaphore. Semaphore is also a software resource. Other examples of
software resources may be segment-table slot, file allocation table slots, local descriptor table
(LDT) slots, global descriptor table (GDT) slots, and so on. The students become familiar with
these resources as they progress through the chapters.

3.3.1 Nature of Resources

The resources can also be categorized according to their nature. The resources are consumable
or non-consumable. Resources are also categorized based on the fact that when one resource is
in use, whether it can be taken by a process or not. Based on these characteristics, the resources
have been categorized as follows:

Non-consumable Resources

The resources that cannot be consumed but can be used, that is, when one process has used the
resource, another process can use it. For example, memory, CPU, and I/O devices are shared by
the processes. All physical resources are non-consumable resources.

60 Principles of Operating Systems

Consumable Resources

The resources when used by a process are consumed and cannot be used by others. For example,
semaphores, interrupts, signals, and messages when consumed by processes cannot be allo-
cated to others.

Non-pre-emptive Resources

The resources that when allocated to a process cannot be taken away or preempted by others,
that is, the process holding the resource has complete control over it. For example, when a
printer is allocated to some process, it cannot be allocated to other processes until the first pro-
cess finishes its job.

Pre-Emptive Resources

There are situations when resources can be preempted from the process holding it. As explained
in the time division multiplexing, these types of resources need to be shared without completion
of the job of a process and can be allocated to other processes. For example, CPU when allo-
cated to a process in time-sharing environment may be preempted by another process when its
time slice expires. It may be possible that within the time slice, the process holding the resource
has not completed its execution but will be preempted by other processes on the expiry of its
time slice. However, the process will get CPU time again when its turn comes. However, this
is not easy to do. When one process is interrupted, we know that it has to be resumed when its
turn comes. Therefore, the state of one process is required to be saved. Therefore, pre-emption
is achieved with overhead. This will be discussed in detail in process management.

3.4 GOALS OF RESOURCE MANAGEMENT

We discussed various types of resources in Section 3.3. These resources need to be shared among
the multiple processes. While allocating the resources to processes, the resource manager in the
OS should take care of the following goals:

Resource Utilization

As described in the Chapter 1, all the resources must be utilized as there is always a scar-
city of resources in the operating system. For example, CPU should not be idle and must be
utilized. There are many concepts in the OS that originated only from this goal. As we have
already discussed, multi-programming, multi-tasking, and multi-threading (discussed in detail
in Chapter 9) are the concepts in response to keep the CPU busy. Similarly, VM is the concept
to utilize the available physical memory.

Protection

In multi-programming and Multi-tasking environment, processes should not be allowed to
access other processes’ area or operating-system area, as user processes and the OS both are in
the main memory.

Synchronization

Resource manager should not allow the multiple processes to access a resource that is mutually
exclusive. Otherwise, there may be a chaos and the results will be disastrous. For example, if
multiple processes access a shared memory location to read and write simultaneously, then

Resource Management 61

there will be wrong results. It means that synchronization must be provided among processes
by the resource manager.

Deadlock

When multiple processes share the resources, it may be possible that one process P1 is holding
a resource R1 and waiting for another resource R2. However, R2 is held by another process
P2 and P2 is waiting for R1 held by P1. In this situation, both processes are waiting for one
another to release the resource. This situation is called a deadlock, and the processes are in a
deadlocked state. It is the responsibility of the resource manager to check that deadlock condi-
tion never occurs in a system.

Fair Distribution

In some systems, such as in multiuser systems, all processes should get equal time of the CPU.
Therefore, in this case, resources should be allocated to all the processes such that the processes
get a fair distribution.

3.5 HOW RESOURCE MANAGER WORKS?

When a process requests for some resource, there are chances that it does not get it
immediately because some other process has already acquired it. Therefore, there are queues
where the process waits for its turn. There may be a scheduling criterion for processes in the
queue implemented by the resource manager. The resource manager, therefore, according
to the scheduling criterion, selects the process in the queue and assigns the resource as seen
in Fig. 3.5. However, before assigning the resource to the process, it performs the following
tasks:

Accounting of Resources

The resource manager keeps the account of number of instances of a resource to check which
instance is free and which already allocated. If there are no free resources, then the process is
asked to wait.

PROCESSES

/ Scheduling Accounting

Synchronization
Resource

manager

Protection

Allocation

Fig. 3.5 Resource manager functions

62 Principles of Operating Systems

Synchronization

If a process requests a resource, the resource manager first checks whether the resource is
mutually and exclusively accessible or not. If it is not, then it cannot allocate the resource to the
process and waits until it becomes free.

Protection

The resource manager should check the authorization access on a resource. If a resource is only
readable, then a process should not be able to write on that resource. Moreover, if a process
requests to access the memory location of the OS or other users, it should not be allowed to do so.

Scheduling

In a waiting queue, the way the processes are to be retrieved is decided by the resource manager.
This process is known as scheduling.

Allocation

After passing through synchronization and protection checks, and if there is availability of
resource, then the resource is finally allocated to the process.

After allocation of resources, the process uses and returns them to the resource manager so
that other processes can use them.

3.6 COMPONENTS OF RESOURCE MANAGEMENT

In this section, all the components of resource manager are discussed. In other words, the way
all the resources in the OS are managed and utilized is described. Largely, these components
form the operating system. A brief overview of them is given here and will be discussed in
detail in separate chapters throughout the book.

3.6.1 Process/task Management

The terms job, process, or task have been used interchangeably till now, but the meanings of
all these and similar terms have been made clear in further chapters. At this stage, the students
should only understand that there is a task or process to be executed by the user or the operating
system. It means that there are two types of processes: the user and the OS . As discussed,
multi-programming and multi-tasking introduced the concept of multiple jobs in the main
memory. Therefore, there is not a single job to be executed but many. The first question is
how to create and perform several operations on it. A process will have many states such as
ready, executing, suspended, and terminated. All the operations performed by the user on the
processes are implemented by the operating system. When a process is created, it needs certain
resources such as CPU time, memory, file, I/O devices, and so on. The status of the resources
and the execution of a process need to be stored somewhere in a data structure known as
process control block (PCB). The PCB is also maintained by the operating system. It is very
useful in various operations on process.

Since there are many processes to be executed in multi-programming environment, all com-
pete for execution by the CPU. There should be some mechanism for the allocation of the CPU to
one process. This is known as process scheduling. Process scheduling should be fair enough to all
processes. The process scheduling job is performed by the operating system.

Resource Management 63

As discussed, the multiple processes have increased the problems and challenges for the
operating system. When there are some shared resources, there is a need to control the access of
resources by the processes such that at a time, only one process should have the control of that
resource, otherwise, there may be inconsistencies. The mechanism tomanage the accessesis called
process synchronization. Process synchronization demands that the processes co-operate. For
example, if two processes are sharing a data structure and if both try to access it simultaneously,
there will be a data inconsistency; thus, process synchronization is a complex feature performed
by the operating system. Similarly, co-operating processes need to communicate with each other.
The OS provides an inter-process communication (IPC) mechanism by which the processes
communicate. The importance of inter-process communication facility increases in a distributed
environment where processes reside in geographically separate locations. The message passing
system is a convenient method for this purpose.

Another problem in process management is deadlock as described in Section 3.5. The OS
resolves the deadlock such that the system should be in the safe state and the normal execution
of the system resumes.

To summarize, the OS performs the following process-management functions:

1) Process creation, deletion, and other operations on process
ii) Process scheduling
iii) Inter-process communication
iv) Process synchronization
v) Deadlock management

3.6.2 Memory Management

Memory management consists of two parts: main memory and virtual memory. The main
memory is central to any operation done by the system. Whenever we want to execute on the
system, we need to first store it in the main memory. It means that the user process should also
be stored in the main memory first. The multi-programming and multi-tasking concepts require
more than one process to be in the main memory. Therefore, memory must be partitioned first
and allocated to the processes. The OS partitions and allocates the memory to the processes
using some mechanisms. The size of memory partitions can be fixed or varied. The processes
in these partitions can be allocated as contiguous or non-contiguous. The contiguous allocation
means that the space allocated to a process should be contiguous in the memory. If small chunks
of memory are scattered in the memory, then they cannot be allocated to a process due to their
non-contiguous locations. On the other hand, non-contiguous allocation allocates the scattered
memory chunks to the process in the memory. Non-contiguous allocation is implemented as
paging. The OS keeps account of available memory partitions and occupies portions of mem-
ory. It also has an account of memory requirements of each process. In this way, keeping in
view the available memory, the OS allocates the space to the process in the memory. All these
concepts will be discussed in detail in the individual chapters. Based on these criteria, we
have contiguous allocation and non-contiguous allocation methods. It should be noted that all
memory-management mechanisms provided by the OS are supported by the hardware.

There is another concept in the memory management. When a user writes a program larger
than the size of the memory, in normal memory management scheme, this program cannot be
stored in the memory and executed. However, a VM concept has been invented that allows the
programmers to write the programs of very large size, which, in spite of their size, can be stored

64 Principles of Operating Systems

and executed. The OS supports VM mechanism at some cost of secondary memory and speed.
This will also be discussed further in detail.
To summarize, the OS performs the following memory management functions:

1) Keeps account of the allocated space to the processes and the available space

ii) Partitions the memory as per fixed partition or variable partition methods
ii1) Allocates the memory to the processes as per contiguous or non-contiguous methods
iv) Manages VM

3.6.3 Secondary Storage Management

Since the main memory cannot accommodate every program or data, some other mechanism is
required to store them. For this purpose, hard disk as a secondary storage is a widely used device
for storing every program or data. We have already discussed that whenever a job enters the
system, it is first entered in the job queue, which is maintained on the hard disk only. The system
programs like compilers, debuggers, editors, and so on, including a large part of the operating
system, are stored in the hard disk. In VM concept, we need to swap out some pages of the pro-
cess from the main memory for some time. These swapped-out pages are also stored in the hard
disk; thus, secondary storage provides the backup for the main memory to store programs and
data. However, to utilize the hard disk for several purposes, there efficient management of space
on it is required. There should be mechanisms for managing the free space on the hard disk, as
it is necessary to know which part of the disk is free to be allocated to some program. Then, it
must be decided how to utilize the available space in the best manner, that is, storage allocation
methods should be devised. Swap space for VM should be allocated and reserved only for this
purpose. Disk as a device may have queue of the processes to be accessed. Therefore, disk-
scheduling techniques should be there for a better utilization of the hard disk.
To summarize, the OS performs the following secondary storage-management functions:

1) Free space management of secondary storage
ii) Allocation on secondary storage
iii) Disk scheduling
iv) Swap space management on secondary storage

3.6.4 File Management

Whenever we work on the computer system, the files are the entities where we store our work.
Either we write a Word file or a C program, files are there to store the work. Basically, files are
logical concepts similar to the physical files where we store or place our related work at one
place. Logically, we understand files very well. We save a file after writing program into it,
compile it, run it, debug it, and, later on, retrieve it. However, have you thought how these files
have been implemented in the system? The operating system presents a very convenient way of
representing the files to a user but implements the file system with the help of some physical
medium such as magnetic tapes or disks. The files containing the data are stored on the physical
media through the related physical devices. For example, for magnetic tapes, there are tape
drives, and for disks, there are disk drives. A logical file is mapped to physical memory by the
operating system, and a table is maintained for the location of each file in the storage known
as file allocation table. There are many allocation methods to allocate space to a file on the
physical medium such as hard disk. These methods are known as file-allocation methods. The

Resource Management 65

OS implements the allocation method that will take less space, and a file can be retrieved quickly.
Before allocating space to a file on the disk, the OS must be in a position to have the account
for free space on it. Therefore, the OS manages a free space list that records all free disk blocks.

When a user requests for a file operation, the OS retrieves the required file from its physical
medium location and presents it to the user. The OS also provides a directory system under which
related files can be arranged and stored for the convenience of the user. The directory contains
information about the files, for example, its name, location, size, access rights, and so on.

A file is considered a resource of the system. Therefore, multiple processes may share
the files or access the same file at the same time. It means that the protection of files is also
necessary as a controlled access to the users. The OS also defines the access rights to the users
for a file such as read, write, execute, and so on.

To summarize, the OS performs the following memory-management functions:

i) File operations such as creation, deletion, and so on.
ii) Directory creation and deletion
iii) File-allocation methods
iv) File-retrieval methods
v) Free-space management
vi) File protection

File management will be discussed in detail in Chapter 13.

3.6.5 Input-Output Management

The most challenging task for an OS is to manage the I/O devices in a computer system. It acts
as an interface between devices and other computer systems. This interface should be simple,
easy to use for a user, and preferably same for any type of device. However, today, there are
myriad I/O devices. Each 1/0 device has its own detail and complexity. In this case, the OS
needs to be changed to incorporate every newly introduced device. Therefore, the /O function-
alities should be treated separately in the OS so that the other parts of the OS are not affected.
The software that deals with the /O is known as /O software or I/O subsystem. In 1/O soft-
ware, there are two types of modules. First module deals with the general functionalities when
interfacing with any type of device, that is, these functions are common while interfacing with
any 1/0O device and are known as device-independent 1/0 software. For example, there should
be a general interface for any type of device. The second module provides device-specific code
for controlling it and is known as device driver. The second module in fact takes care of the
peculiarity and details of a particular device, that is, how to read or write data to the device. In
this way, the OS needs not to change its code again and again to incorporate any new device. Its
1/0 software takes care of all the I/O devices to be interfaced with the system without changing
the code of it. /O management will be discussed in detail in Chapter 14.

3.6.6 Security and Protection

In this age, various types of confidential information are being stored either on computer systems
or transmitted over the Internet. However, the information/data are not safe from the security
breaches. The OS must be able to secure the computer system from outside attacks. In general,
it is done by providing passwords. Moreover, as a resource manager, the OS should also protect
the resources either from the inside users or outside hackers if they are successful in entering
the system. Therefore, the OS must prohibit the processes or users from accessing the resources

66 Principles of Operating Systems

if they are not authorized for them. Each object, either hardware (CPU, memory, disk, printers,
etc.) or software (processes, files, databases, etc.), has a set of operations that can be performed
on it. These set of permitted operations corresponding to an object are known as rights. These
rights can be viewed as a kind of permission to access an object. When a process or user tries
to access an object, its rights must be checked first. If the user tries to access the resources he or
she has been authorized, then only the access will be granted, otherwise, it is denied. The pair of
object and its rights is known as a domain. The OS provides the protection in the form of these
domains. Security and management will be discussed in detail in Chapters 16 and 17.

SUMMARY

Operating systems primarily are resource managers. The
hardware resources such as the CPU, memory, I/O devices,
secondary storage devices, and so on are managed only
by the OS, and this management includes not only using
the resources but also utilizing them properly. As a resource
manager, the OS also hides the unnecessary details of
the hardware resources from the user and abstracts the
resources in such a manner that the user does not worry
about the configuration of the hardware resources. For
example, the user only knows the process but not the CPU.
Of course, the process will be executed on the CPU, but
the user is not aware of the execution details of its process,
that is, when the process will be sent to the CPU, how the
process has been scheduled for how much time. These
issues are not concerned with the user. Therefore, the OS
abstracts the hardware resources into virtual resources.
Besides the hardware and virtual resources, there are also
some software resources that again need to be managed
by the operating system. A message in message queue to
be consumed by a process is a software resource; thus, the
OS manages three types of resources: hardware, virtual,
and software. Moreover, the resources can be classified
based on their nature. Some resources can be consumed
and preempted. Based on this, the resources can be non-
consumable, consumable, preemptive, and non-preemptive.
The management of these resources is not an easy job.
In a multi-programming and multi-tasking environment, the
resources need to be shared by the processes, and in case of
non-consumable resources, there is a need to keep account of
which resource is free and which resource has been allocated.
Further, in case of pre-emptive resources, when the process
is preempted its state, it must be saved so that it can be
resumed again. There are many issues regarding the resource
management. In this chapter, all the resource types, resource-
management goals, working of resource manager, including
the components of resource manager, have been discussed.
Let us have a quick review of the important concepts in
this chapter:
® There are three types of resources: hardware, virtual,
and software.

The hardware resources that have been abstracted or
transformed into other resources are known as virtual re-
sources. The processes, virtual memory, logical devices,
and files are examples of virtual resources.

Software resources are the resources that have no
direct relation with the hardware resources. It means
that they are independent of hardware and virtual re-
sources but may be used in managing them. For ex-
ample, messages in a message queue or mailbox are
software resources.

The OS abstracts the hardware devices into virtual
devices.

The OS allows the resource sharing by two methods:
time division multiplexing and space division multiplexing.
Time division multiplexing means to share the mutual
exclusive resource at different times by the processes,
for example, the CPU.

Space division multiplexing means to share the resource
at the same time. For example, memory can be partitioned
and allocated to different processes at the same time.
The OS schedules the resources according to a
scheduling algorithm, that is, a criterion by which the
resource is shared. For example, the CPU is scheduled
among different processes according to first come first
served criterion.

The main goals of resource management are re-
source utilization, protection, synchronization, deadlock
prevention, and fair distribution.

The resource manager is responsible for accounting of
resources, synchronization among processes, protection
of processes, scheduling of processes, and allocation of
resources.

The resources can be classified based on their nature.
Some resources can be consumed and preempted.
Based on this, the resources can be non-consumable,
consumable, pre-emptive, and non-pre-emptive.

Main components of resource management are process/
task management, memory management, secondary
storage management, file management, I/O management,
and security and protection.

MULTIPLE CHOICE QUESTIONS

1.

The processes, VM, logical devices, and files are examples of
(@) hardware resources (c) software resources
(b) virtual resources (d) none

2. are the resources that have no direct relation with the
hardware resources.
(a) hardware resources (c) software resources
(b) virtual resources (d) none

3. All physical resources are resources.
(@) non-consumable (c) pre-emptive
(b) consumable (d) none

4. Printeris a resource.
(@) non-pre-emptive (c) pre-emptive
(b) consumable (d) none

5. TheCPUisa resource.
(@) non-pre-emptive (c) pre-emptive
(b) consumable (d) none

6. The status of the resources and the execution of a process
need to be stored somewhere in a data structure known as
(a) status block (c) PCB
(b) resource block (d) none

REVIEW QUESTIONS

1. What is resource abstraction? Explain with an example.

2. What are the benefits of resource abstraction?

3. What is the difference between time division multiplexing

and space division multiplexing?

4. Give examples of hardware, software, and virtual resources.

5. How are hardware resources mapped into their virtual

resources?

6. Explain various resource-management functions.

7. What is the difference between (a) consumable and

non-consumable resources and (b) pre-emptive and
nonpre-emptive resources

Give examples of the resources asked in Question 7.

Name the resource type of the following: process,
semaphore, memory, VM, file, and page table

BRAIN TEASERS

1.

2.

Is it true that the role of IPC mechanisms will increase in
real-time systems?

What is the cost incurred in resource abstraction?

10.

10.
1.
12.
13.
14.
15.
16.
17.
18.
19.
20.

Resource Management 67

Non-contiguous memory allocation is called
(@) memory partitions (c) demand paging
(b) paging (d) none

Which of the following is @ memory-management function
performed by the operating system:
i) Keeps account of allocated space to the processes and
available space
ii) Partitions the memory as per fixed partition or variable
partition methods
iii) Allocates the memory to the processes as per
contiguous or non-contiguous methods
(@) iandii (c) iandiii only
(b) ionly (d) all

Swap space for VM should be allocated and reserved in

(@) main memory
(b) logical memory

(c) ROM
(d) disk

The OS provides a system under which related
files can be arranged and stored for the convenience of the
user.

(a) file
(b) disk

(c) directory
(d) none

What is a deadlock?

What is process synchronization?

What are the methods to allocate a process in memory?
What is VM?

What is free-space management?

What is disk scheduling?

What is swap space management?

What is a file system?

What is the purpose of file allocation table?

What is I/0 subsystem?

What is a device driver?

Is it possible to implement time division multiplexing on a
system with multiple processors?

If VM is not there, what will be the effect on performance of
the system?

Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

4 Operating System
Architectures

41 INTRODUCTION

In this chapter, the basic working of an OS and related terminologies is presented. Booting is the start
process of an OS through which it sets up its environment and starts working. After booting, the OS
begins its initial process and hands over the control to the user process. Since a user is not allowed to
perform any I/O operation, all these are performed by the OS. However, a user needs to request the
OS for all I/O operations. System call is the medium through which a user sends the request. The OS
works on the hardware on behalf of the user and provides the results back to the user. Thus, system call
execution and its types are fundamental for understanding the working of the OS. After a discussion
of the details of the working, various architectures developed have been discussed in this chapter. The
architectures have been evolved over time, catering to the needs of various requirements and keeping
pace with technological advancement in computer hardware.

4.2 GENERAL WORKING OF AN OPERATING SYSTEM

The role of an OS starts as soon as the computer system is switched (=S]
on and lasts till it is shut down. But where is the OS in the computer S
system? How does the OS get loaded in the system? How does
it start? These are some questions addressed here in this section.
Before delving into the working of an OS, there are some basic After reading this chapter,
definitions/concepts that need to be understood. you should be able to

Learning Objectives

understand:

o General working of an OS
4.2.1 BIOS o Booting of the OS
Basic Input-output System (BIOS) is a software that basically o System calls, their execution,
consists of input-output functions. These functions are low-level and types
routines that the OS uses to interface with different I/O devices, o System programs
such as keyboard, mouse, monitor, ports, and so on. This is the o System generation programs
reason that this software is named as such (BIOS). However, the * General structure of 0S
meaning of BIOS was extended beyond this functioning. Since * Monolithic architecture
the OS is on the hard disk, it needs to be loaded onto the main * Layered architecture

o Virtual machine OS

o Microkernel architecture
o Exokernel architecture
o Hybrid architecture

o System generation

memory to start the functioning of the system. So the problem is
to find a way to tell the microprocessor to load the OS. It needs
some instructions that, when executed, load the OS. These instruc-
tions are provided by the BIOS. In this way, along with providing
the basic input-output low-level routines, it also provides the

Operating System Architectures 69

initialization function. This is the reason that the BIOS is embedded in the ROM or flash-RAM
so that whenever the system is switched on, the initial instructions get executed automatically
and the process of loading the OS initiates. However, it was found that BIOS was inefficient for
OSs such as Linux and Windows written for 32-bit CPUs. Therefore, with the advent of new
CPU architecture and development in OSs, BIOS is getting replaced. For example, since 2008
in x86 Windows systems, Extensible Firmware Interface (EFI) booting is being supported. The
EFI is more flexible in accessing devices. In this way, today, BIOS is primarily used for loading
the OS and initialization purposes and otherwise not used, as during the general operation of the
system. Instead of calling BIOS, OSs use device drivers for accessing the hardware.

4.2.2 Booting/Bootstrapping

When a system is switched on the first time, it does not have an OS. We need to get the OS
ready from the hard disk or other secondary storage onto the memory. A set of sequence of
operations is needed to load the OS. This process of placing the OS in memory is known as
booting or bootstrapping.

4.2.3 Boot Software/Boot Loader/Bootstrap Loader

The set of instructions needed for booting, that is, to load the OS in RAM is known as boot
software/boot loader/bootstrap loader.

4.2.4 Boot Device

The OS is originally stored in a non-volatile secondary storage such as hard disk, CD, and the
like. In the process of booting, there is a need to search this storage device, where an OS is
stored, to load it onto the RAM. The device that stores the OS is called boot device.

4.2.5 Privileged Instructions

There are some operations, provided in the form of instructions, that need to interact with
hardware devices. But a user is not allowed to access the devices directly. The instructions are
first passed on to the OS, and the OS then interacts with devices on behalf of the user. Thus,
the instructions, which are not directly executed by the user but need to be passed to the OS,
are known as privileged instructions.

4.2.6 System Call

All privileged instructions, that is, instructions, which need to interact with hardware and
other resources, and therefore passed on to the OS for execution, are known as system calls.
For example, when the user needs to write something on the screen, he/she writes the output
instruction in the appropriate format. This instruction in the program is system call.

The general working of an OS is discussed in the following steps:

Initialization

It was discussed that the OS acts as a resource manager, so it must have the initialized set
of devices in the system. Therefore, whenever the computer is switched on, the control is
transferred to the BIOS in the ROM by the hardware. The first job for the BIOS is to initial-
ize and identify system devices such as the video display card, keyboard and mouse, hard

70 Principles of Operating Systems

disk, CD/DVD drive, and other hardware. This initialization job is known as power on self
test (POST). It is a built-in diagnostic program that initializes and configures a processor and
then checks the hardware to ensure that every connected device is present and functioning
properly. In other words, it tests the computer to make sure it meets the necessary system
requirements and that all the hardware is working properly before starting of the system.
There may be some errors while the execution of POST. These errors are stored or reported
through auditory or visual means, for example, through a series of beeps, flashing LEDs, or
text on a display.

Booting

(a) After the execution of POST, the BIOS determines the boot device, for example, floppy,
CD, or hard disk.

(b) BIOS contains a program that loads the first sector of the boot device called boot sector.

(c) The boot sector contains a program. The program in boot sector, when loaded onto the
memory and executed, first examines the partition table at the end of the boot sector to
determine which partition is active.

(d) In the partition, there is a boot loader/bootstrap loader, which is now loaded onto the
memory by the boot sector program (see Fig. 4.1). The area where the boot program/loader
is stored is called boot block of the boot device.

(e) Boot loader contains the instructions that, when executed, load the OS onto the main
memory (bootstrapping) and the control is passed on to the OS by setting bits, correspond-
ing to the privileged mode. It means that whenever the system boots, the control is with the
OS, that is, the CPU is in privileged mode.

Start the Operation

(a) After being loaded and executed, the OS first queries the BIOS to get the configuration
information.

(b) For each device, it checks the corresponding device driver. After confirming all the device
drivers, it loads them into the kernel.

(c) The OS initializes its tables, creates needed background processes, and kicks off the start-
up of the first process, such as the login program.

(d) The user programs are loaded onto the memory as the users log in. The control is transferred
to the scheduler that selects a user program from the memory and transfers control to the
selected program by setting bits corresponding to the user mode, that is, the CPU is now in

CPU

Fig. 4.1

user mode.

T

! N

P R 1. Load the boot sector
2 IS 2. Boot sector program examines the active
TN 3 partition at the end of the boot sector

h Boot device 3. Boot sector program loads the boot loader

p 4 4. Boot loader loads the OS
N

Booting sequence

Operating System Architectures 71

(e) Given the interrupt-driven nature of the OS, it waits for an event. When there is an event
signalled by the interrupt from the hardware or software, it starts responding. The hardware
interrupts are triggered by sending a signal to the CPU on the system bus. Software inter-
rupts are triggered by executing a special operation or control instruction called a system
call. For instance, when a user wants to access an 1/O device, he/she will send a request
to the OS in the form of a system call, which, in turn, executes a software interrupt and
transfers the control to the OS.

(f) These system calls are handled by the system call handler that identifies the cause of
interrupt by analyzing the interrupt code and transfers control to the corresponding
interrupt-handling routine/event handler in the OS. For example, if there is an /O inter-
rupt, then control is passed on to the I/O interrupt handler. Thus, the OS has many event
handlers that are invoked through the system calls.

4.3 SYSTEM CALLS

The role of system calls is important for understanding the operation of the OS. It is clear
now that there are two modes in the operation of the system, that is, user mode and system
mode. In the user mode, all user processes are executed and in system mode, all privileged
operations are executed. The user programs and kernel functions are being executed in
their respective spaces allotted in the main memory partitions. But it is obvious that user
mode programs need to execute some privileged operations, which are not permitted in the
user mode but allowed in the system mode. Since the processor prevents direct access to
kernel-mode functions, user-mode programs must use an interface, which forms the only
permitted interface between user mode and kernel mode. This interface is called system
call. It means that the system call is an interface between the user programs and the OS.
System calls expose all kernel functionalities that user-mode programs require. In other
words, system call is an instruction that requests the OS to perform the desired opera-
tion that needs hardware access or other privileged operations. Whenever the user uses
privileged instructions in the program, he/she uses system calls. For instance, when the
user wants access to some hardware operations or resources like files and directories or
communication with other processes, he/she uses
system calls.

But it should be clear here that a system call does
not perform the operations itself. System call, in fact,
generates an interrupt that causes the OS to gain con-
trol of the CPU. The OS then finds out the type of the
system call and the corresponding interrupt-handler
routine is executed to perform the operations desired
by the user through the system call. Therefore, sys-
tem call is just a bridge between user programs and
the OS for executing the privileged operations as
shown in Fig. 4.2.

System calls are inherently used for security rea-
sons. Due to the use of system calls, a user program
is not able to enter into the OS or any other user’s
region. Similarly, I/O devices are also safe from any

User

Application programs

(ON]

Hardware

Fig.4.2 System call interface misuse by the user. Thus, through the use of system

72 Principles of Operating Systems

N
User User User

program program program User

> space
System calls
J
v

Kernel Kernel
space

Fig. 4.3 Kernel space and user space in main memory

calls, kernel, other user programs, and I/O devices are safe and secure from malicious user
programs (see Fig. 4.3).

4.3.1 Making a System Call

It is obvious that system calls for executing privileged operations or system operations, are
used in a process while writing its code. System calls are generally available in the form of
assembly language instructions. But with the introduction of system programming in high
level languages like C or C++, system calls are directly available and used in high level lan-
guages. Therefore, it has become easy to use system calls in a program. For a programmer,
system calls are same as calling a procedure or function. System calls demand nothing extra
and the format is similar to that of a normal function call. The only issue is that these system
calls should be available in the form of a library. The difference between a system call and
a normal function call is that a system call enters the kernel but a normal function call does
not. Another difference is that a system call itself does not execute anything but generates an
interrupt that changes the mode to system mode and passes control on to the OS.

4.3.2 Executing the System Call

As discussed earlier, a system call is not a general function call. There is a sequence of steps to
execute a system call. For execution of system call, there is the need to pass various parameters
of system call to the OS. For passing these parameters to the OS, three methods are used, as
follows:

1. Register method, wherein the parameters are stored in registers of the CPU.

2. If parameters are more in number, compared to the size of registers, a block of memory is
used and the address of that block is stored in the register.

3. Stack method, wherein parameters are pushed onto the stack and popped off by the OS.

Another parameter to be passed on to the OS is the code of the system call being used in the user
process. There is a code or system call number that is to be placed in the processor register. This
is, in fact, performed by the mechanism of a system call table. A table consisting of system calls
and their numbers are maintained. The numbers may differ according to different processors

Operating System Architectures 73

and OSs. When a user uses a system call in his/her program, the number of that system call is
retrieved from the system call table and placed in the processor register. However, the user or
programmer who writes the program does not need to worry about all these system call num-
bers. The library function being called in response to the system call retrieves the system call
number and places the same in the processor register. The set of library functions are included
with the compiler of the high-level language that makes a run-time support package.

The kernel retrieves the system call number of the system call and needs to execute the
corresponding system call handler. For this purpose, it uses the system call dispatch table that
stores the system call number and the location of its system call handler. After finding the
address, it dispatches to execute the handler.

The following is the sequence in which a system call is executed (Fig. 4.4):

1. In the user program when the system call is executed, first of all, its parameters are pushed
onto the stack and later on saved in the processor registers.

2. The corresponding library procedure for the system call is executed.

3. There is a particular code for every system call by which the kernel identifies which system
call function or handler needs to be executed. Therefore, library procedure places the system
call number in the processor register.

4. Then the library procedure traps to the kernel by executing interrupt instruction. With this
interrupt execution, the user mode switches to kernel mode by loading Program Status Word
(PSW) register to 0.

Processor

... User program

System call (a, b, c);

LU

/ 5

Library
procedure

User space

System call
handler

v

System call
handler

Dispatch

System call
Kernel space handler

Fig. 4.4 Steps to execute a system call

74 Principles of Operating Systems

5. The hardware saves the current contents of CPU registers, so that after executing the system
call, the execution of the rest of the program can be resumed.

6. The kernel identifies the system call by examining its number and dispatches the control to
the corresponding system call handler.

7. The system call handler executes.

8. On completion of system call handler, the control is returned to the user program and it
resumes its execution.

4.3.3 Types of System Calls

Since a user needs to access many resources, the type of system calls depends on the use of
these resources. For example, the user needs to have system calls related to process control
and management, such as creating a process, putting a process in wait, exiting a process.
Similarly, for file management, we must have system calls such as creating a file, deleting a
file, opening and closing a file, reading a file, writing to a file, and so on. In this section, let
us have a look at some important system calls. Basically, there are five broad categories of
system calls.

Process Control System Calls

As discussed in Chapter 3, a process is a basic entity in the system. The processes in the system
need to be created, deleted, and aborted. Besides these, many operations are required on the pro-
cesses for their management. All these operations are performed by system calls (see Table 4.1).

File Management System Calls

A file is also a basic resource accessed by a user. Every work the user performs and stores is as
files. Therefore, there is a need to access this resource through system calls. Creation, deletion,
opening, closing, reading, and writing are some of the general operations on files. Similarly,
for organizing files, there is a directory system and thereby system calls for managing them
(Table 4.2).

Table 4.1 Process control system calls

System call UNIX example
Create a process: Creating a new process fork ()
Terminate a process: When a process executes its operation, it exits normally. exit ()
Terminate a process abnormally: There may be situations in which you need to kill ()

terminate the process in between; for example, there is hang situation, program has
been stuck in an indefinite loop, and the performance of system has been affected
such that no processing is being performed.

Increase the priority of a process: Some processes have got more importance than Nice ()
others. So their execution must get priority over others. This is done by setting and
increasing the priority of the process.

Suspend the process: There may be situations in which a process needs to be pause ()
suspended but not terminated. It will resume again after receiving some signal.

Cause the process to sleep: A process may need to wait for I/O devices. In that wait ()
period of time, the processor switches to some other process and the current process
is blocked to wait or sleep for some time.

Operating System Architectures 75

Table 4.2 File management system calls

System call UNIX example
Create a file: Creating a new file. Creat ()
Open a file: Opening a file that is already created. Open ()
Close a file: Closing a file that has been opened earlier. Close ()
Read a file: Reading a file that has been opened earlier. Read ()
Write a file: Writing into a file that has already been opened. Write ()
Change the position of the read-write pointer: There is a need to access any part of Lseek ()

a file randomly. File pointer indicates the current position in the file. This call changes
its position as desired.

Give another name to a file: This call allows a file to appear in different directories Link ()
with different names. But the copy of the file is single. It means that if there is change
in the file, it is visible in all the directories wherever it appears. This is done through
the unique ID of the file (known as i-number), which is an index into a table of entries
known as i-nodes. These entries in the table store the information of a file, such as who
owns the file, its disk blocks, etc. So, the i-number is same for all entries of the file in
different directories. However, there is a single file; only the name is different under
different directories. The file is accessible through either name.

Delete a file in a directory: This call removes the entry of a file in one directory. Unlink ()
Make a directory: Create a new directory. Mkdir ()
Remove a directory: Delete an existing directory. Rmdir ()
Change the directory: When you are working in a directory, you can move to some Chdir ()

other directory by using this call.

Change the mode: There are various modes and groups of users who will use the Chmod ()
files. For a particular group, there may be different access permissions (modes) such
as read, write, or execute. This call changes the access permissions of a file to the
specified mode.

Change ownership of file: Changes the owner and group of the indicated file. Chown ()

Device Management System Calls

The user cannot work without accessing the 1/O devices. However, accessing them directly
is not possible. Therefore, system calls are there for accessing the devices. The general com-
mands related to this category are request of the device, release of the device, read and write
operations, and so on. Since files are treated as virtual devices, most of the system calls related
to file systems are used for device access also.

Information Maintenance System Calls

Some of the system calls are for accounting and providing information to the user. This infor-
mation can be about a process, memory, device, computer system, OS, disk space, and so on
(Table 4.3).

Communications System Calls

There is a need for communication among the processes in the system. All communica-
tion operations are also performed through system calls. The general operations in this cat-
egory are opening and closing the connection, sending and receiving messages, reading and

76 Principles of Operating Systems

Table 4.3 Information maintenance system calls

System call UNIX example
Get process identification number: Every process has a unique identification num- Getpid()
ber. If the user wants to see the same, this call is used.

Get status information of a file: The information regarding a file such as the file type Stat ()
and its permissions, size, time of last access, and so on.

Set the system date and time Stime ()
Get statistics about a file system: Gets the statistics about a file system such as Ustat ()
number of free blocks, file system name, and so on.

Table 4.4 Communications system calls

4.4 SYSTEM PROGRAMS

writing messages, and so on. These system calls
may be related to the communication between

processes either on the same machine or between
System call UNIX example processes on different nodes of a network. Thus,
Sending a message Msgsnd () inter-process communication is provided by the
Receiving a message Msgrev () OS through these communication-related system

calls (Table 4.4).

These are some utilities programs above the layer of the OS, that is, programs that help a user
in developing and executing his/her applications. System programs should not be confused
with system calls. System programs are utilities programs that help the user and may call
further system calls. For example, creating a file is a system program, which helps in creat-
ing a file, and this system program calls the system call for doing this. Thus, system call and
system programs are not the same. Some examples of system programs are: file management
programs (create, delete, copy, print, and so on), compilers, assemblers, debuggers, inter-
preters, loaders, editors, communication programs (establishing connections, sending email,
browsing web pages, and so on), and status information programs (date, time, disk space,
memory, and so on).

4.5 SYSTEM GENERATION PROGRAMS

Although the general architectures of a computer system and OS are the same for all machines,
there may be some differences of configuration. For example, machines may differ in processor
speed, memory size, disk size, I/O devices available in the system, and so on. Therefore, the OS
must be configured according to the specifications available on the system on which it has to
run. For this purpose, the detailed description of the configuration of the machine is stored on a
file, or the hardware is directly probed at the time of booting. The description of the configura-
tion may be in terms of the following:

e The processor type and its options selected
e Disk formatting information, its partitions
e Size of memory

e CPU scheduling algorithm

Operating System Architectures 77

e Disk scheduling algorithm
e [/O device type and model, its interrupt number

The system generation program takes the input from the file of description about the config-
uration details and generates the OS accordingly. In system generation, it basically selects some
code modules from the system generation library as per the hardware details and compiles and
links these modules to form the OS.

4.6 GENERAL STRUCTURE OF OS

It is clear now that the OS resides in the main memory. However, as

the size of the OS increased, there was the problem of keeping it in the
limited memory. Therefore, the OS was structured into two parts: Resi-

User program

dent part or kernel and Transient part (see Fig. 4.5). The resident part
contains programs that are crucial and needed always. Therefore, they

area S . .
must reside in the memory forever. Thus, this makes up the resident
part. The transient part is based on programs that are not always needed
and, therefore, need not be in the memory forever. Therefore, this part
is loaded only when needed, thereby reducing the memory require-

. ment. In this way, the resident- and transient-part programs structure

Resident
the OS.

Transient The decision to put programs or data structures in resident or transient

part depends on its frequency of use in the OS. If the function is inherent

and used every time in the operation of the OS, it must be included in the

Fig.4.5 Residentandtransient resident part. Otherwise, it should be in the transient part.

parts of an OS The resident part may contain the following programs or data structures:
in the memory

Resource Allocation Data Structures

The data structures related to the allocation of various resources must be in the resident part. A
device, if allocated to some process, needs to be checked before being allocated to some other
process. Therefore, this data structure is important for smooth allocation of resources.

Information Regarding Processes and their States

Every process contains some information such as its ID, priority, state, and so on. This infor-
mation is useful while switching from one process to another. The switching operation is
quite frequent in multi-programming OSs. Thus, this data structure should also be in the
resident part.

System Call Handler

Since the user uses system calls frequently in his/her programs, there is a need to handle these
system calls by the OS. Therefore, system call handler must be in the resident part.

Event Handlers

Some event handlers are also necessary for the working of the OS, that is, they are in frequent
use. For example, the memory handler or disk I/O handler is required for almost every operation.

78 Principles of Operating Systems

Scheduler

This is a frequently used program in the OS whose job is to select the jobs in the queue and
send it for dispatching. As we know, in a multi-programming system, there always are jobs to
be executed in the queue. Therefore, there is a need to schedule them as well. So, this program
should also be in the resident part.

4.7 MONOLITHIC ARCHITECTURE

In the evolution of the OS, it was demonstrated that it was developed in response to the various
requirements realized. Keeping the CPU busy, multiple jobs in batch system, multiple jobs in
multi-user environment expecting immediate response, user friendliness, and so on, were some
of the motivation points against which OSs were designed. In this journey of OS development,
one can easily realize that the development was not planned and the initial architecture of OSs
was not efficient. The OSs were developed in the same way as in programming, where we keep
on developing the program in one file or adding some functions and calling each other without
any boundary between them. Initially, the OS consisted of very few modules, due to limited
functionality. Therefore, all the functionalities were added in the kernel only. The advantage
of this type of architecture was that intercommunication between the modules of the OS was
efficient, as all the modules were in the kernel together (Fig. 4.6).

Later on, due to multi-programming and its extended concepts, the size of the OS grew
beyond limit. This resulted in a complex structure of OS because every module in the OS
accessed hardware directly. Thus, programming effort was high because there is a large
gap between the meaning of operations required by the user and the meaning of operations
performed by the hardware. This gap is known as semantic gap between the user applica-
tion and bare hardware. When a user creates a process, one process or task is being created
for the user. For the OS, it is a collection of some algorithms like allocating the memory for
the process, scheduling the process, and so on. But at the hardware level, these operations are
performed at the level of machine instructions. Therefore, there is a large gap in understanding
the operations at OS level and machine level as shown in Fig. 4.7.

User
applications

v

User mode

Modules

0s Kernel
mode

Bare hardware

Fig. 4.6 Monolithic architecture

Operating System Architectures 79

Create a process
User User mode

'

oS
Process Memory Device Kermel
management management management mode

Semantic
gap

A A A

Bare hardware . .
Machine instructions

Fig. 4.7 Semantic gap between the OS and hardware

Due to all functionalities merged in a single layer, it was difficult to do modifications in a
module. This is because, as a result of a lot of interfacing among modules, it is hard to imagine
which module may be affected due to a single change in a module. Consequently, debugging
in the modules of the OS became a difficult job. Another disadvantage of this architecture was
that there was no protection. Since in this structure, there is unrestricted access of any module
to the system and among them, therefore, there was the danger of malicious code. A user job
can enter into the area of another job or even of the OS.

Monolithic systems were not suitable for multi-programming/multi-tasking environments
due to unprotected behaviour of the system. Any user’s job can corrupt any other user’s job
and even OS. For example, in DOS, any user job has direct access to BIOS device drivers.
Therefore, there it is possible to change the functionality of any device driver. The DOS, initial
architecture of UNIX, and Linux are some examples of monolithic structures.

4.8 LAYERED ARCHITECTURE

With the advancement in OSs, monolithic structures became complex and then obsolete after
some time. There was the need to design the OS such that there is no single layer consisting of
all the functionalities. This resulted in layered architectures (see Fig. 4.8). This architecture is
based on the following two points of design:

4.8.1 Grouping of Functions in a Layer

The functions related to a category are grouped together and made into a layer of that
category. For example, process creation, deletion, saving the context of a process, and so on,
may be grouped together and named as process management layer. The topmost layer pro-
vides the interface to applications of the users. The lowest layer interacts with the underlying
hardware.

80 Principles of Operating Systems

4.8.2 Hierarchy of Layers

The hierarchy of layers is maintained in this architec-

User User ture to reduce the complexity of interfacing among all
applications mode the layers. It means that any layer cannot interface with
any other layer. There is a proper hierarchy between the

¢ layers. Each layer can communicate with only layers

Kernel immediately below or above it. Moreover, a layer uses

mode the services of the layer below it. It means each lower-

level layer provides the functionalities to its higher level.
Thus, only adjacent layers communicate.

The layered architecture of OS came into existence
due to this design. The layered architecture consists of
many layers of different functionalities identified in a
design. These layers have pre-defined hierarchy, and
interfacing among them is simple when compared to
monolithic architecture. This design has simplified the
architecture of OSs. The limited interface among the
layers has resulted in a simple architecture. The layered
architecture provides the modularity wherein there is a
defined layer for each group of functionality. Therefore,
Fig. 4.8 Layered architecture if there is a need to change a module or debug an error,

it becomes easy because changes or debugging an error
are localized to only one layer. It means changes made in one layer do not affect the other lay-
ers. Similarly, if we want to find some error in one layer, we are concerned with only that layer.
Debugging is easy due to this localization of errors.

Another advantage in this architecture is that there is protection among different modules of
different layers. Due to limited interface among layers and a proper hierarchy, no module can
enter into others’ area, thereby giving protection among layers and their modules. For instance,
the upper layer can invoke a module only of the lower layer and does not know the addresses
of data and instructions of that module. It means implementation and interfaces of a module
have been separated. The upper layer needs to know how to interface with the lower module
or what modules of the lower layer is to be called but need not know how those modules have
been implemented. Thus, this design prevents a malicious code and corruption of data from
one layer to another.

There are also some disadvantages in layered architecture. In this design when a system
call appears, it needs to pass through all the layers for getting the functionality of the requested
resource. Since there is hierarchy of layers and limited interaction between them, it will take
some time to execute a system call due to time taken in getting the system call request from the
topmost layer to the lower layer and then to the actual resource. Thus, this design may suffer
from efficiency problems if there is a large number of layers. The increasing number of lay-
ers may again lead to a complex architecture. Another problem in the layered architecture is
to group the modules in a layer such that the upper layer is able to invoke the modules of the
lower layer. It may be difficult sometimes to isolate functionalities from one another. Then in
this case, the decision of placing the modules in a fixed layer or defining the roles of each layer
may be difficult.

(O]

Bare hardware

Operating System Architectures 81

4.9 VIRTUAL MACHINE OS

A user may have different types of requirements to execute jobs. Some jobs are batch oriented,
that is, these jobs do not need attention or any interaction of the user. Some jobs require
immediate attention and quick response. However, the OS structure is either batch oriented or
time-sharing. It means that the same structure of the OS cannot be used for different types of
requirements for executing jobs. The same happened to OS/360, which was a batch system.
But users also demanded to have a time-sharing environment in the system. IBM then devel-
oped Time-Sharing System/360 (TSS/360), which was big and slow and, in turn, abandoned.
It means the same structure of OS would not be suitable for providing different requirements.
Later on, the system was redesigned and called Control program/Conversational monitor sys-
tem (CP/CMS). Later this was renamed as Virtual Machine Facility/370 (VM/370).

The solution adopted in VM/370 to support different types of requirements of the user
was to have different types of OSs. These different types of OSs would support the different
functionalities desired by the user. The different OSs were realized through virtual machine
concept (see Fig. 4.9). It means these OSs will run on virtual machines. If there are three virtual
machines, then it means three different OSs can be supported. But these virtual machines are not
extended machines as discussed in Chapter 1 but are exact copies of the bare hardware machine.
Each virtual machine has the same architecture as the actual hardware. A virtual machine will
have a virtual processor, memory, and I/O devices. The OSs on these virtual machines have
facilities as of normal OSs on actual machines such as user/system mode, interrupt processing,
and the like. However, the configuration of the virtual machine may not be the same as that of
actual hardware. For instance, the size of memory will be smaller in the virtual machine. To
implement the virtual machine, in fact, they are mapped on to the bare hardware machine. The
services of various OSs, running on their virtual machines, are also required. This is done by the
host OS, which is running on the bare hardware. The host OS multiplexes the virtual proces-
sors onto the actual CPU of the host computer. The host OS decides which OS to run next. This
is just like how the normal OS performs scheduling of jobs on the CPU. The host OS switches

A y K
y v v
Virtual machine Virtual machine Virtual machine
A A A
y v v
Host

Bare hardware

Fig. 4.9 Virtual machine architecture

82 Principles of Operating Systems

the control between various OSs running on virtual machines in the same fashion as done for
different jobs. In this way, the host OS maps the virtual machine onto the bare hardware and
the functionality of the OS running on that virtual machine is achieved. Thus, different virtual
machines may run different OSs as required. This architecture of the OS is known as virtual
machine OS. The obvious advantage of virtual machine OS is that the same hardware is being
shared to run different execution environments, that is, multi-programming, time-sharing can
be on a single machine. Another advantage of these OSs is that all virtual machines are isolated
and, thus, protected. Similarly, host OSs running on bare hardware are protected from virtual
machines. For example, a virus in the host OS may corrupt it but cannot corrupt guest OSs.

The virtual machine concept in OSs can be seen in various systems. Some of them are dis-
cussed here. As discussed earlier, VM/370 was a virtual machine-based OS. Other versions
of this system are VM/SP and z/VM. The host OS in this system (see Fig. 4.10) is a control
program known as hypervisor or, generally, VM-CP. It runs on the bare hardware and creates
the virtual machine environment by coordinating among various virtual machines. The VM-CP
implements the virtualization of the actual hardware, including all I/O and other privileged
operations. It performs the system’s resource sharing, including device management, dispatch-
ing, virtual storage management, and other traditional OS tasks. Each user views the system as
having a separate machine, the virtual machine. All virtual machines have their own address
spaces, 1/O, interrupts, and so on, just like the real machine has. Thus, virtual machines are not
extended machines but limited versions of exact hardware.

The OS running on the virtual machines, sometimes called guest OSs, is known as Conversa-
tional Monitor System (CMS), which is a single-user interactive system. But any other mainstream
OS can also run on virtual machine. These guest OSs are prevented from using privileged instruc-
tion by the hypervisor. However, the hypervisor simulates privileged instruction on their behalf.

Another use of virtual machines has been made in Pentium machine. On this machine, along
with Windows, MS-DOS programs can be run. Intel provided a virtual 8086 mode on this Pen-
tium architecture and in this mode, DOS programs are started up.

A A A
y v 4
Virtual machine Virtual machine Virtual machine
CMS CMS CMS
K A A

VM-CP (Hypervisor)

Bare hardware

Fig. 410 VM/370 architecture

Operating System Architectures 83

410 CLIENT-SERVER OR MICROKERNEL-BASED 0OS

As the computer architecture improved over time and demands from an OS increased, the
size of kernel expanded beyond limit. Larger-sized kernels were more prone to errors and
difficult to maintain. Whatever the architecture; the large kernel size became unmanage-
able and suffered from the difficulty of extensibility, efficiency, and reliability. A number
of new devices have appeared and many of them have already disappeared. There is a need
to add or delete their support in the OS. But due to the monolithic or layered structure of
kernel, it was not easy to add or delete the modules, because there was dependency among
modules or layers. In layered architecture, as the number of layers increased with more
demands in the functionality of the kernel, the OS started to perform badly as compared to
previous architectures. Due to this reason, Windows NT with layered architecture gave bad
performance as compared to Windows95. Due to the more integrated nature of layers or
modules, if one component fails, then the whole OS goes down. It decreases the reliability
of the system.

To remove heavy functionalities from the kernel, it was thought that some essential func-
tionality will remain inside the kernel known as essential core of the OS code. The kernel,
consisting of essential core, is called microkernel. The components of the essential core may
be process management, inter-process communication, low-level memory management, and
so on. The other OS modules, which were considered as non-essential, were moved up in the
user space. In this way, microkernel was designed to manage the large-size kernel by dividing
it into two parts: kernel space code and user space code. The only difficulty in microkernel is
to decide the essential core of the kernel. Developers have discussed features to be included
inside the kernel and features to be incorporated in the user space.

The modules implemented outside the kernel in user space are called server processes. The
application programs of the user (client programs) communicate with the server processes as
shown in Fig. 4.11. The server processes provide various services like file system management,
process scheduling, device management, networking, and so on. The communication between

Application
A y
A
File system Networking Process U
r
scheduler se
mode
Server processes
Y
A y
Kernel
Kernel
m
Process Inter-process Memory ode
management communication management

Fig. 411 Microkernel architecture

84 Principles of Operating Systems

the client applications and server processes is through the message-passing communication
method, called as Inter-process Communication (IPC). This is the reason this architecture is
also known as client-server architecture of OSs. The microkernel facilitates this message-pass-
ing communication by validating the messages, passing them on to various modules and giving
access to hardware. Thus, IPC is the basic mechanism in microkernel through which a service
is provided. Any service is obtained by sending an IPC message to a server, and obtaining the
result in another [IPC message from the server. The server processes are like any other program
that allows the OS to be modified simply by starting and stopping these server programs. For
example, in a machine, if networking support is not required, then the server module supporting
networking is not started without any further change in the OS. But if this is the case in other
architectures of OSs, then the kernel needs to be recompiled after removing the networking
module. Therefore, the microkernel structure is more adaptable as compared to others. Simi-
larly, if a server module fails, it can be stopped, rather than crashing the kernel itself. In this
way, microkernel is more robust and reliable.

The extensibility feature of microkernel architecture can be used for developing various
types of OSs, using the same microkernel. For example, Mach microkernel has been used to
develop several OSs like True64 UNIX and SPIN.

Microkernel architecture has been used in many systems. Mach was the first OS designed
with this approach. Mach, developed in the 1980s, was the most successful microkernel and
has been used in various commercial systems. For example, True64 UNIX and SPIN were
built on Mach microkernel. The microkernel has been evolved over several generations. The
first-generation microkernels (Mach, L3, and so on) were slower in nature due to IPC used
for communication between kernel and servers. This inefficiency was removed in later gen-
erations of microkernel. Some examples of the latest generation, which are now faster than
the first-generation microkernels, are L4, SPIN, and QNX. ‘PARAS’ developed by Centre
for Development of Advance Computing (C-DAC), India, is another example of microkernel
architecture.

4.11 EXOKERNEL

There may be the case that the performance of an application being developed is affected due
to the architecture of the OS. Although, there are various options of OSs to be selected for
various types of applications, it may not be possible sometimes that the required feature is
available in the selected OS. For example, a file system that does not leave old data on the disk
may be suitable for security-oriented application but not for a reliability-oriented application.
The reason behind this is, that in the original concept of OS, the hardware has been at such
high abstraction level to application developers that they, in fact, do not know about the actual
hardware. They work in a convenient environment, provided by the OS, without worrying
about the bare hardware details. In all the structures of the OS, it has been ensured that the
developers need not worry about the configuration and limits of the hardware. This is because
the OS is there for all these tasks and provides a convenient and friendly environment to the
user. The OS provides a conceptual model through processes, threads, schedulers, file system,
paging, virtual memory, sockets, and so on, on which a developer works. But, researchers at
MIT realized that giving so much abstraction to the developer affects the performance of the
application being designed on the system. It would be better for a developer if he/she decides
on his/her own about what to do with resources instead of following the abstractions provided

Operating System Architectures 85

by the OS. In this way, performance of an application, not bounded by the abstractions and
policies of the OS, may perform better.

To implement this idea, control of the resources need to be provided to the developers.
One way is to program directly on the hardware and remove the kernel as we did in the past,
without the OS. But this idea is to return to the past and we have seen how difficult life was
without OSs. The compromising idea is to use a kernel with minimum functionality and
providing access of resources to the developer as well. This kernel is called exokernel. The
exokernel performs the job of allocation and synchronizing of resources with user jobs. But
the way in which the application makes use of resources will be decided by the developer.
In other words, the exokernel works as an executive for application programs such that
it ensures the safe use of resources and allocates them to the applications. It means that
the developer can implement the customized abstraction on the resources. The applications
implemented in this way are known as /ibrary OSs. Library OSs (see Fig. 4.12) may request
the exokernel to allocate resources like some disk blocks, memory addresses, CPU, and so
on, and use these resources the way it suits the application best. In this way, the exokernel
also provides the efficiency, because now there is no need to map the resources from the
conceptual model provided by the conventional OS to the physical model. For example, in
the MIT Exokernel Project, the Cheetah web server stores pre-formatted Internet Protocol
packets on the disk, the kernel provides safe access to the disk by preventing unauthorized
reading and writing, but the method in which the disk is abstracted is up to the application
or the libraries the application uses.

Though the concept of exokernel has been in use since 1994, and MIT has developed two
exokernels, namely Aegis and XOK, this concept has not been used in any commercial OS and
research is still going on.

User program

A y 2
y A A
Library OS Library OS Library OS User
mode
A A A
Kernel
Exokernel mode

Bare hardware

Fig. 4.12 Exokernel architecture

86 Principles of Operating Systems

4.12 HYBRID KERNEL-BASED OS

In microkernel architecture, there was a cost involved in IPC for context switching from user
mode to kernel mode and vice versa. Context switching will be elaborated in Chapter 5. In a
component like networking, the overhead of context switching is too high. Therefore, some
kernels were designed to bring back some of the components inside the kernel. Moreover, the
advantages of a layered approach were also merged with microkernel architecture. This type
of kernel, having the mixed approach of various structures, is known as hybrid kernel. Various
OSs have been designed using hybrid kernels. For example, the architecture of Windows NT
and Windows 2000 has been designed with the hybrid approach, taking advantage of layered
as well as microkernel approaches. In order to reduce the cost of IPC in microkernel, the mod-
ules that were in the user space have been brought back inside the kernel. But these modules
are still not inside the microkernel. It means the kernel’s non-essential functionalities and core
essential functionalities are still separate. This has been achieved by the layered concept. There
are separate layers of kernel functionalities called as the executive layer and below this layer is
the microkernel layer. There are basically three layers: executive layer, microkernel layer, and
hardware abstraction layer. The executive layer includes high-level kernel functionalities like
object management, IPC, virtual memory management, and so on. The microkernel layer pro-
vides minimal kernel functionality such as process synchronization, scheduling, and the like, as
discussed in microkernel architecture. Hardware abstraction layer provides easy portability to a
number of hardware architectures. In this way, a hierarchy of layers to separate the microkernel
from other functionalities of kernel has been designed. But both microkernel and executive
layers are in kernel mode, thereby reducing the context switch overheads.

Win32 0S/2 POSIX
application application application
A A Y
A v y
Win32 0S/2 POSIX Environmental
User sub-systems
mode
K
y
E .
Kernel xecutive
mode
y
Microkernel

A 4

Hardware abstraction layer

4

Bare hardware

Fig. 4.13 Windows hybrid architecture

Operating System Architectures 87

SUMMARY

The very first architecture of an OS was monolithic. With
the introduction of multi-programming, it was evolved to lay-
ered architecture due to some constraints like security, de-
bugging, and so on. The layered architecture provides the
modularity wherein there is a defined layer for each group of
functionality. Therefore, if there is a need to change a mod-
ule or debug an error, it becomes easy to do so because
changes or debugging an error are localized to one layer
only. It means changes made in one layer do not affect the
others. Another architecture known as virtual machine OS
was designed to cater to the different needs of a user. As the
computer architecture improved over time and demands from
an OS increased, the size of the kernel expanded beyond
limit. Larger-sized kernels were more prone to errors and
difficult to maintain. Therefore, another architecture was de-
signed, known as Microkernel-based OS. Since the OS ab-
stracts the hardware to a user and hides the complex details
of the hardware, it was realized that the performance of the
application being developed may be affected somewhere, as
all the decisions regarding the resources in the system are
with the OS. In response to this, exokernel architecture was
developed, giving some access of resources to the user. Fi-
nally, a hybrid architecture combining the merits of some OS
architectures was designed.

Let us have a quick review of important concepts dis-
cussed in this chapter:

e BIOS is a software that consists of input-output func-
tions. These functions are low-level routines that the OS
uses to interface with different 1/0 devices like keyboard,
screen, ports, and so on.

® The set of instructions needed for booting, that is, to load
the OS in RAM is known as Boot software/Boot loader/
Bootstrap loader.

® The instructions, which are not directly executed by the
user but need to be passed to the OS, are known as privi-
leged instructions.

o Allthe privileged instructions, that is, instructions that need to
interact with hardware and resources, and therefore passed
on to the OS for execution, are known as system calls.

MULTIPLE CHOICE QUESTIONS

1. All the privileged instructions, that is, the instructions, which
need to interact with hardware and other resources, and,
therefore, passed on to the OS for execution, are known as

(@) OS procedures
(b) kernel functions

2. POST is a built-in that initializes and
configures a processor and then checks the hardware

(c) system calls
(d) none

POST is a built-in diagnostic program that initializes and
configures a processor and then checks the hardware
to ensure that every connected device is present and is
functioning properly.

The difference between system call and a normal function
call is that a system call enters the kernel but a normal
function call does not. Another difference is that the sys-
tem call itself does not execute anything but generates an
interrupt, which changes the mode to system mode and
passes the control over to the OS.

System programs help a user in developing and execut-
ing his/her applications. System programs should not be
confused with system calls. System programs are utilities
programs, which help the user and may call for further
system calls.

System generation is the process of configuring the OS
according to the hardware and other specifications on a
particular machine.

Monolithic systems were not suitable for multi-program-
ming/multi-tasking environments due to the unprotected
behaviour of the system. Any user job can corrupt another
user’s job and even the OS.

Layered architecture provides the modularity wherein
there is a defined layer for each group of functionality.
Therefore, if there is a need to change a module or debug
an error, it becomes easy because changes or debug-
ging an error are localized to one layer only.

The advantage of the virtual machine OS is that same hard-
ware is being shared to run different execution environments,
that is, multi-programming and time-sharing can be on a sin-
gle machine. Another advantage of these systems is that all
virtual machines are isolated and, thus, protected.
Exokernel works as an executive for application pro-
grams such that it ensures the safe use of resources
and allocates them to the applications. It means that the
developer can now implement the customized abstrac-
tion on the resources.

Hybrid architecture combines the features of microkernel
and layered architectures.

to ensure that every connected device is present and
functioning properly.
(@) system program
(b) diagnostic program

(c) system call
(d) none

Boot loader contains the instructions, which, when executed,
load the OS in the main memory called

(@) bootstrapping (c) system program

(b) POST (d) none

88

Principles of Operating Systems

The BIOS contains a program that loads the first sector of
the boot device called
(a) boot loader
(b) boot sector

(c) boot program
(d) none

System call is just a bridge between user programs and
for executing privileged operations.

(@) system programs (c) OS

(b) users (d) none

What is the UNIX command for terminating a process
abnormally?
(a) fork
(b) kil

(c) suspend
(d) none

7. What is the UNIX command for increasing the priority of a
process?
(a) priority (c) nice
(b) Iseek (d) none
8. What is the UNIX command for suspending a process?
(a) sleep (c) pause
(b) wait (d) none
9. Whatis the UNIX command for causing a process to sleep?
(a) sleep (c) pause
(b) wait (d) none
10. What is the UNIX command for changing the position of
read/write pointer?
() sleep (c) link
(b) Iseek (d) none
1. must reside in the memory forever.
REVIEW QUESTIONS
1. Define the following terms:

(a) BIOS
(c) Boot loader

(b) Booting
(d) Boot device

2. Explain all the steps of the general working of an OS.

3. Whatis the need of a system call? With the help of example,

explain how it is executed.

What is the difference between a system call and a function
call?

Explain all types of system calls using some examples.

What is the difference between a system call and system
program?

BRAIN TEASERS

1.

Would microkernel architecture work well for design of an
object-oriented OS? Justify your answer.

Design a format of message in message-passing system of
microkernel architecture.

How is reliability increased in microkernel architecture?

12.

13.

14.

15.

16.

17.

18.

(@) resident
(b) transient

DOS is an example of
(@) layered architecture
(b) monolithic architecture

(c) exokernel
(d) none

The OS running on virtual machines, sometimes called
guest OSs, is known as
(a) CMS
(b) TMS

The modules implemented outside the kernel in user space
in microkernel architecture are called

(c) VMS
(d) none

(@) servers (c) special modules
(b) clients (d) none

architecture is also known as client-server
architecture.

(@) layered architecture (c) microkernel
(b) monolithic architecture ~ (d) none

TRUEG4 UNIX is an example of .
(a) layered architecture (c) microkernel
(b) monolithic architecture ~ (d) none

PARAS is an example of
(a) layered architecture
(b) exokernel architecture

(c) microkernel
(d) none

Aegis and XOK are examples of .
(a) layered architecture (c) microkernel
(b) exokernel architecture (d) none

7. What is the need of a system generation program?

8. What are the two parts in the general structure of an 0S?

9. What are the shortcomings of monoalithic architecture?

10.

1.
12.
13.
14.

What are the advantages and disadvantages of layered
architecture?

Explain the architecture of VM/370.
Explain the architecture of microkernel-based OS.
What is the idea behind the development of exokernel?

What are the good features of a hybrid-based archi
tecture?

Explore some research issues in designing an exokernel.

5. What steps would you suggest while designing an OS in

order to reduce the semantic gap between user application
and bare hardware?

Explore how UNIX has been modified to support protection.

~——| Copyrighted Materials
. Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

PART I1

Process Management

5. Fundamentals of Process Management

6. Process Scheduling

3. Process Communication and Synchronization
8. Deadlocks

9. Multi-threading

Case Study II: Process Management in
UNIX/Solaris/Linux/Windows

Fundamentals of
Process Management

5.1 INTRODUCTION

Process is a basic term to understand the operation of an operating system. Since there are a number of
user and system processes, there is a need to manage them. A running process may be interrupted at any
time. Due to this concept, the processes are not in the same state forever. They change state according
to an event in the system. Moreover, the state of an interrupted process needs to be saved so that it can
resume its work. If a process is interrupted, another process is scheduled to be dispatched to proces-
sor for execution. Besides this, processes also need to communicate and synchronize with each other.
Therefore, it is critical to manage the processes in the system from the view point of their state change,
scheduling, dispatching, process switching, communication, synchronization, and so on. In this chapter,
we will study these basic concepts regarding the management of processes in the system.

5.2 TERMINOLOGY

To perform a computation on the computer system, we must have

a unit of work or execution for the user computation. Basically, we =
need a term to call all CPU activities performed by the operating R
system. Various terms are in use interchangeably. First of all, we
take two terms: Program and Job. These two terms were in use
when the batch systems developed. The term ‘Program’ was very After reading this chapter,
common at that time and also used frequently today. A program you should be able to

can be considered a set of instructions in the form of modules. understand: ,
Thus, program is a classic term used for user’s computation. Since * Difference between job, pro-
in a batch system, there was a requirement to load and unload the . ?n:arlri}c’i:a:ﬁjaggn?ir;cﬁii?t o
magnetic tapes for various activities such as compiling, linking, ceSSes piet
loading, and so on, the term ‘job’ was used for performing the

; . L2 o Process environment
execution of a program through the execution of those activities. « Life cycle of a process with its

Learning Objectives

These activities were termed as a sequence of job steps as shown states and state transitions

in Fig. 5.1. For example, the job is to execute a C program and the o Implementation of processes

execution of compiler, linker, and loader programs are job steps. with process control block

These job steps are in sequence, that is, loading is meaningless « Context switching

without the execution of linking program. Thus, job is a sequence e Process switching

of single programs. However, the terms ‘job’ and ‘program’ were o Process schedulers

used interchangeably and are also popular today as generic terms » Various operations on pro-
cesses

for unit of execution.

104 Principles of Operating Systems

The term ‘task’ was used when there was a
need to have concurrent execution on a single
processor, that is, more than one program of a
single user. For example, when a user works in
Windows environment, he or she is able to open
and work on multiple windows such as Word file,
email, web browser, and so on. To distinguish it
from the multi-programming and multiuser, the
Fig. 5.1 Job as a sequence of programs term ‘task’ was used and that is why it is called

multi-tasking. Therefore, the term is used in the
sense of multi-tasking.

The term ‘process’ is different from the terms ‘job’ or ‘program.” We need to understand
the nature of a program and process for this difference. A program is a set of instructions
the user/programmer has written and stored somewhere. It means that a program is a
passive entity and continues to exist at a place. On the other hand, when a program is ready
for the execution, it becomes active and is known as a process. In other words, a program
in execution is called a process. Thus, a process is an active entity with a limited span of
time as compared to a program. The term ‘task’ is also sometimes used interchangeably
with the term ‘process’.

Job: Execute a C program

A 4

Compile Link Load

When a program is ready to execute or, in
other words, when it becomes a process, it means
Code section Data section that now it is able to compete for resources. Since
there may be many processes ready at one time,
the process needs to compete for the resources
Stack Program such as CPU time, memory, 1/O devices, and so

counter value . ..
on. Thus, a process is eligible to compete for re-
CPU register sources, whereas a program ﬁs not. When a pro-

EhEs cess needs to execute, that is, when it gets the
CPU time, it has a program counter (PC) value
(initialized with process’s address) also for mov-
Fig. 5.2 Process environment ing to the next instruction while executing along

with a code section or program code. Moreover,
a data section and a stack are also allocated to a process along with other resources. When a
process starts executing, the data may be stored in some CPU registers. Therefore, CPU regis-
ter values are also attached to processes that are null (blank) before execution. In this way, all
these together make a process’s environment as shown in Fig. 5.2.

Consider an example for the difference between a program and a process (see Table 5.1). In
multiuser environment, many users may open a Word program. When a user tries to open the
Word file, the OS loads the Word program into memory, creating a process for the user. Now
this process has separate set of resources as mentioned in Section 5.1 for execution. The process
is then scheduled for execution. If another user opens the Word file, the OS again creates and
schedules a separate process for the editor program. In this way, the same editor program can be
invoked as separate processes. It means that there are multiple processes sharing the text editor

Fundamentals of Process Management 105

Table 5.1 Difference between program and process

Program Process

Passive/Static Active/Dynamic

Cannot compete for resources Competes for resources

Has a code section Has a code section, data section, stack, and pro-
gram counter

code section, but the data section, stack, program counter, and resources of each process will be
different. Thus, each process has its own address space consisting of code section, data section,
and stack section. The code section stores the program code. The data section consists of global
variables. The stack stores local variables, parameters in a module call, and return addresses.

5.3 IMPLICIT/SYSTEM AND NON-IMPLICIT/USER PROCESSES

While working on the computer system, processes must be defined to execute the jobs. These
processes also need to be initialized. There are two types of processes depending on how they
are defined and initialized. If the OS defines a process, it is called an implicit or system process.
If the process is defined by the programmer, then it is an explicit or user process. Sometimes,
there is a requirement that processes be defined by the OS itself. However, for the reasons of
efficiency and control, some processes need to be defined by the programmer. Therefore, both
types of processes exist in the system.

In general, implicit processes are created when multi-programming and multi-tasking envi-
ronment are implemented. For example, when a user submits his or her program in multiuser
time-sharing environment, the OS creates a process for each user program. In this case, the OS
is responsible for initializing the process attributes. Similarly, the batch job submitted to the
system may also be divided into several processes. For example, to execute a C program (job),
the OS will create processes for compiling, linking, and loading programs. In this way, the im-
plicit processes may be created for single programs as independent processes or a job may be
divided into multiple processes by the operating system.

It is not necessary that the OS created processes, that is, implicit processes will provide the
efficiency in executing the jobs on the computer system. Sometimes, the programmer needs
to divide a job into processes according to his or her convenience and wants control of these
processes with him or her, not the operating system. In this case, the programmer may divide
the jobs into processes as per the need and create explicit processes. The explicit processes may
also be initialized by the programmer during development or at runtime. Moreover, the control
of some of the attributes of the processes is also with the programmer. For example, in Real-
time systems, the division of processes is a critical work and is performed by the programmer.
There are some processes with higher priority that must be executed even if a lower priority
process is executing then. The higher priority process will preempt the lower priority process
and gain the excess of processor. A process responsible for accepting the sensor data and up-
dating the data accordingly will get the higher priority over other processes. It means that the
control of process priority should be with the programmer. The programmer will initialize the

106 Principles of Operating Systems

priority of every process according to its priority, and the priority of the process is determined
on the basis of its functionality. The critical real-time functionality process will get the higher
priority. In real-time systems, there may be the case when the priority of the process needs to be
changed to reduce the starvation of lower-priority processes. Therefore, the dynamic priority is
provided to the process. Thus, explicit processes with dynamic priority are under control of the
programmer. In this way, there may be other attributes of the processes that can be initialized
and are under control of the programmer.

5.4 RELATIONSHIP BETWEEN PROCESSES

In Section 5.2, a process was discussed as a program in execution in the context when a pro-
gram is executed sequentially. The program may consist of a set of procedures or functions, but
each of them executes in a sequence. This program when executed becomes a single process
consisting of all procedures inside the program. However, there may be some procedures or
functions in a program that can be executed simultaneously, that is, there is no sequence of
order of execution between them. In this case, the program when executed consists of many
processes. This type of program is known as concurrent program. In general, there are some
processes (created out of a program or concurrent program) whose executions overlap in time.
These processes are known as concurrent processes.

In a multi-programming system, processes are interleaved to be executed efficiently on a
single processor. These processes are concurrent processes. Concurrent processes may be in-
dependent of each other and are known as independent processes. However, they may also
interact with each other. They may share a data, send a message to each other, or send signals
to coordinate their activities. These are known as interacting or cooperating processes. Coop-
erating processes are very critical and important in the system. These processes are critical in
the sense that if they will not cooperate with each other, a chaos may occur in the system. The
problems related to concurrent processes will be discussed in Chapter 7.

Another relation between processes is the parent—child relationship. It means that when a pro-
cess creates its sub-processes, the parent—child relation exists between the parent process and its
sub-processes. A child process may further create another child process. In this way, the parent—
child relationship between processes gives rise to a tree structure.

5.5 LIFE CYCLE OF A PROCESS

Since a process is an active entity as discussed in Section 5.4, it changes its state with time.
A process from its creation to termination passes through various states. A process when cre-
ated is in a new state as a program/job. Whenever a new job is entered into the system, it is
stored in the job pool/queue maintained in the hard disk (see Fig. 5.3) in case of a batch system.
In the job queue, a job waits for its turn to be moved to the main memory. When a job is selected
to be brought into the main memory, it is called job scheduling. When a job is loaded into the
memory, it becomes a process and is stored in a waiting queue where all processes wait for their
turn to be sent to the CPU for execution. This waiting queue is called ready queue. A process in
ready queue becomes ready for execution as it can compete for the CPU and resources.

A new job is stored in the ready queue in case of a time-sharing system. Therefore, there is
no need of job scheduling in these systems. The processes in ready queue are then selected for
the next execution called process scheduling or CPU scheduling. After this, the selected pro-
cess is sent for execution called process dispatching. After getting the CPU time, the running

Fundamentals of Process Management 107

Program
» Ready » CPU
Job Job queue Process
queue scheduling scheduling/
dispatching
Disk
storage

Fig. 5.3 Job scheduling and process scheduling

process executes its full code and terminates. The scheduling and dispatching functions are
performed by the scheduler and dispatcher, respectively. These are the modules of the operat-
ing system, which will be discussed later in this chapter.

This may not be the case always. A process may be interrupted while executing, or it may
transition to wait state while trying to access an I/O device. Thus, a process as an active entity
is not in a static state but changes its state with time. Let us now discuss the states a process can
have and how it transitions from one state to another.

5.5.1 Process States and State Transitions

The state of a process is an effective way to manage the processes in a multi-programming envi-
ronment. A process may be running and another process may be waiting for an I/O device at
the same time. Therefore, through the states of the processes, the situation of every process at a
given time is identified and every process is managed such that it gets a uniform execution. Vari-
ous events happening in the system cause a process to change its state. Thus, a process moves
through a series of discrete states. The states of a process are depicted as follows (see Fig. 5.4):

New State

Whenever a job/program enters the system, it is put into a job queue in case of a batch system.
In the job queue, the process is in its new state. It means that the process is still in the secondary
storage as a program and not admitted to the main memory. However, the control information
regarding the new process is being updated and maintained in the memory.

I/O access or
event wait

Fig. 5.4 Process state diagram

108 Principles of Operating Systems

Ready State

When program in job queue is scheduled and brought to the main memory in the ready queue,
the state of the process is ready. The process in ready state is called ready because now it is
ready for execution but not executing. The ready means that the process is now able to compete
for the resources and is waiting for execution. A process may enter in ready queue after getting
its execution for various reasons, which will be discussed very shortly.

Running State

A process in the ready queue when selected by the scheduling mechanism for execution and
dispatched to the CPU becomes a running process. The CPU executes the instruction in the
code of the process. A process while running does not mean that it will hold the CPU until it
terminates. It can either be interrupted or its allotted time expires.

Blocked State

A process while executing may reach an instruction where it has to wait for some 1/O devices
or some other event. In this case, the processor will be taken away from the running process
and may be given to another ready process. Therefore, the current running process becomes a
blocked process. A blocked process will wait for the I/O device and its access or the other event
to happen. The blocked process waits for the event only in the main memory but in a separate
queue known as blocked queue. When the 1/0 access or the other event is over, the process is
now again ready to execute further. However, now, it cannot be given the processor because
some other process may be executing at that time. Therefore, the blocked process after its wait
will move again to the ready queue for its turn to execute.

Terminated State

A process executed completely till its end and terminated becomes a terminated process. There
may be some other reasons also for terminating a process, for example, when a process is not
able to recover from an error or some other process aborts it in between for some reasons. The
terminated process will release all the resources that have been allotted to it.

The process changes its state when there is an event causing a state transition. The events
can be of the following types:

A new process is created

The process makes a resource request

Resource is released

The process requests an I/O device

An /O device is released after access

The allocated time slice for a process is over. In this case, system timer sends a timer

interrupt

e A higher-priority process appears in the ready queue. In this case, the running
lower-priority job is pre-empted by a newly arrived higher-priority process

e The process reaches its end of execution or is aborted

e Any hardware interrupt is generated

e An error or exception condition is generated in the current running process

The OS looks for an event, and when an event happens in the system, the processes affected
with the recent event are determined. After this, the OS changes the states of processes if required.
Thus, events cause state transitions of the processes from one state to another. For example, if
a running process reaches an instruction or system call where it needs to access an I/O device.

Table 5.2 Event handling in OS

Fundamentals of Process Management

109

Event Current state New state OS actions

A new process is -- NEW Assigns an ID to the process

created. and some other related
information.

Process makes a RUNNING BLOCKED Schedules the next process

resource or an 1/0 from ready queue and dis-

request. patches it to the processor.

The resource or BLOCKED READY (If the resource Schedules the next process

an 1/O device is or /O device released from ready queue and dis-

released. is what the BLOCKED patches it to the processor.

process requires)

An interrupt is gener- RUNNING READY Schedules the next process

ated by another (interrupting process if the

process or due to interrupt has come from this

any other reason. process) from ready queue
and dispatches it to the
processor.

Process reaches its RUNNING TERMINATED Schedules the next process

end of execution or from ready queue and dis-

is aborted. patches it to the processor.

The state transitions occur due to various events, which are listed as follows:

If the device requested cannot be granted immediately, the process needs to wait on the device
queue of the device requested. Now, there is a need to change the state of process because the
processor will be taken away from this process and given to some other process in the ready
queue. Thus, the state of this process will be changed from running to blocked or sleep. Simi-
larly, when the event happens such that the requested device is released, this blocked process will
be awakened and its state will be changed from blocked to ready. In this way, events become the
source of state transitions of the processes and help in managing the processes (see Table 5.2).

Admit (New — Ready)

This event takes place when there is a need to increase the degree of multi-programming in the
system. It means that a process can be accommodated in the memory. Therefore, admit event
allows fetching one job from the job pool to the main memory and the process is admitted to
ready queue. In this way, the state of the process changes from new to ready.

Dispatch (Ready — Running)
The dispatch event sends a process to the CPU for execution after selection. The state of the

process changes from ready to running due to this event. How the process is selected for dis-
patching depends on a scheduling algorithm, which will be discussed later on.

Exit (Running — Terminated)

When a running process reaches its completion or aborts due to any reason, the exit event
changes its state from running to terminated.

Interrupt (Running — Ready)

The running process may also be pre-empted from execution by some other process. It may
happen due to several reasons. For example, in a time-sharing multi-user system, a fair distribution
is done of the processor time to provide equal amount of processor’s time to each process.

110 Principles of Operating Systems

Therefore, in this case, a fixed time slot is given to each process for execution. On the expiry
of this time slot, interrupt will stop the execution of this process for the time being and changes
its state to ready again. In another case, in real-time systems, every process is provided a prior-
ity for execution. The highest-priority process has the privilege to execute first. Therefore, if a
lower-priority process is executing and a higher-priority process arrives, it will send the interrupt
and cause the running process to stop the execution, changing the state of the running process to
ready. Whenever interrupt event changes the state of a running process to ready again, the process
that has been interrupted will enter the ready queue once again and will compete for the processor.

1/0 or Event Wait (Running — Blocked)

A running process reaches an instruction in the code that it needs to wait for some access. For
example, the instruction may be to access an 1/O device; in this case, the process must wait for
the device on its device queue if the device is busy then. In this way, a process may need to wait
for an event or request that cannot be granted immediately. Therefore, this wait event causes
change of state from running to blocked. A blocked process will wait for the event to happen
or the request to be granted.

1/0 or Event Wait Completion (Blocked — Ready)

The blocked-process wait is over when the event-wait completion happens. It means that the
process has accessed the device, or the request for which it was waiting has been serviced. The
blocked process can then again resume its operation for which it needs the processor. How-
ever, it cannot be granted the processor immediately as some other process is executing then.
Therefore, this process will move to the ready queue causing the state transition from blocked
to ready. In the ready queue, the process will again wait for its turn to get the processor.

Example 5.1
Consider Example 1.1 of Chapter 1 illustrate the state transitions for all the processes in the system.

Solution

The state transitions for all the processes are as follows:

Time

J1

J2

J3

Event

State
transitions

OS actions

RUNNING
BLOCKED

RUNNING

BLOCKED

RUNNING

J1 requests
1/0

J2 requests
1/0

J1: Running
to Blocked

J2: Running
to Blocked

Puts J1 to Blocked
queue.

Schedules the
process J2 from
ready queue and
dispatches it to the
processor.

Puts J2 to Blocked
queue.

Schedules the
process J3 from
ready queue and
dispatches it to the
processor.

(Contd)

(Table Contd)

10

12

14

16

18

RUNNING

BLOCKED

J3 requests
110

Fundamentals of Process Management 111

J3: Running
to Blocked

Puts J3 to Blocked
queue.

Schedules the
process J1 from
ready queue and
dispatches it to the
processor.

Puts J1 to Blocked
queue.

Schedules the
process J2 from
ready queue and
dispatches it to the
processor.

Schedules the
process J3 from
ready queue and
dispatches it to the
processor.

Schedules the
process J1 from
ready queue and
dispatches it to the
processor.

BLOCKED RUNNING -- J1 requests| J1: Running

110 to Blocked

- TERMI-
NATED

RUNNING J2 Exits J2: Running

to Terminated

RUNNING - TERMI-

NATED

J3 Exits J3: Running

to Terminated

TERMI- - -
NATED

J1 Exits J1: Running -

to Terminated

5.5.2 Suspended Processes and Their State Transitions

This is understood now that the processes change their states when there is an event. As per the
knowledge of multi-programming, when a process waits for an I/O device, that is, when the
process is blocked, another process from the ready queue is scheduled. However, there may be
the case that all the processes need I/O devices, that is all the processes at a particular instant of
time are blocked and are waiting for some event to happen and no process is under execution,
that is, in the running state. In this case, no useful work is being done by the processor. There-
fore, it is necessary to bring in some process that is ready for execution. However, there may be
a situation that there is no space so that a new process may be swapped in. Therefore, we need
to create the memory space for this purpose. Since blocked processes cannot be executed unless
their I/O devices are released, some blocked process may be swapped out.

The swapped-out process is known as suspended process and the queue where it waits is called
suspended queue in the secondary storage such as disk. The state of the process then changes
from blocked to suspended. In this way, sometimes, there is a need to have this suspended state
also in consideration to manage the processes in this situation. The question arises that when
these suspended processes will come back to the ready queue. Since the suspended process was
in blocked state, it was waiting for an I/O device before suspension. Therefore, when the wait
for an I/O device is over, the suspended process can be brought back to the ready queue. In fact,

112 Principles of Operating Systems

whenever the suspended process is swapped out in the disk, there are two choices for bringing in
a process that is ready for execution. First is a suspended process from the suspend queue whose
waiting event is now over, that is, it is now ready for execution. Second, a new process from the
job queue can be scheduled in the ready queue. However, the new job from the job queue will
increase the load of the system. The second choice is only valid if we want to increase the degree
of multi-programming of the system, otherwise the first choice is preferred.

Two more states for suspended processes can be added to the previous model of process
behaviour. These are as follows (see Fig. 5.5):

Blocked-Suspended

The blocked process waiting in blocked queue in the memory is suspended and moved
to suspended queue in disk. The state of the process is called blocked—suspended. The
blocked—suspended process is still waiting for its desired event to happen but in the disk.

Ready-Suspended

When the event for which the blocked—suspended process was waiting has occurred, its state
changes. The state is ready because now it is ready to be executed. However, yet, it cannot be
executed as it is still in the disk. Therefore, its state is called ready-suspended.

The new transition states are as follows (see Fig. 5.5):

Suspend (Blocked— Blocked-Suspend)

This event takes place when a process is in blocked state and is waiting in blocked queue in
the memory. After this event, the blocked process from the queue is taken away and placed in
suspended queue in the disk. Now, the process will wait for its desired event in the disk instead
of the memory. The state of the process changes from blocked to blocked—suspended.

I/0 or Event Wait Completion (Blocked-Suspend—Ready-Suspend)

This event takes place when the I/O wait for a blocked—suspended process is over, changing the
state of the process from blocked—suspended to ready—suspended. The new status is ready—sus-
pended because the process is now ready to be executed, but it cannot get the processor because
it is still in the suspended queue.

Admit .
Dispatch

Exit

I/O access or

Activate

event wait
Ready—
suspended Blocked

/O access or

event
I/O access or completion
event Suspended
completion

Blocked—
suspended

Fig. 5.5 Process state diagram with suspended states

Fundamentals of Process Management 113

Activate (Ready-Suspend—Ready)

This event takes place when there are no processes in the ready queue or the priority of the
ready—suspended process is higher than the process in ready queue. Therefore, this event moves
the ready—suspended process from the suspended queue to the ready queue, changing the state
of the process from ready—suspended to ready. Now, the process that was originally blocked
and then suspended is ready for execution in the ready queue.

The case of suspended processes has been discussed when there is a need to swap out some
processes. There may be some other reasons also for suspending the processes. Some are dis-
cussed as follows:

e Imagine that there are processes in ready queue and some processes are blocked. However,
it may be the case that we need to suspend some process to have a free memory block.
Which process should be suspended? In general, blocked process is suspended because
ready queue processes are ready to execute as compared to blocked processes that are still
waiting for an I/O device. However, this is not the case always. A ready process may also
become a candidate process for suspension. Some of the reasons may be

1. That the large memory space that we require may be available only when a ready process is
suspended

2. The blocked process is of higher priority as compared to all ready processes

3. And that there are too many processes in the system causing performance degradation

In such cases, it would not be feasible to suspend a blocked process; rather, a ready process
should be suspended.

To implement the suspension of a ready process, there is a need to have another transition
state from ready state to ready—suspended as follows:

Suspended (Ready— Ready-Suspend)

This event takes place when a process is in ready state and is waiting in ready queue in the
memory. After this event, the ready process from the queue is taken away and placed in sus-
pended queue in the disk. Now, the process will be there until it is activated and called again in
the ready queue. The state of the process changes from ready to ready—suspended (see Fig. 5.6).

Dispatch

Exit
Ready _ Terminated

I/O access or
event wait

Blocked

suspended /|/0 access or

I/O access or completion

event
completion

Suspended

Blocked—
suspended

Fig. 5.6 Process state diagram with ready to ready-suspended transition

114 Principles of Operating Systems

e There are many background processes that are of very low priority or utility processes that
may be suspended in case there is no need or when memory space is required for other
critical processes

e Ifthe OS detects a deadlock, then the process causing the deadlock may be suspended for
some time so that the deadlock situation is removed

e A parent process may also suspend its child process if there is an error in its execution

5.6 PROCESS CONTROL BLOCK

The process environment discussed in Section 5.5 consists of program (code), data section,
and stack. However, this is not sufficient to control a process. The OS needs some attributes
associated with the processes to implement and control them. The attributes are stored in the
data structure known as process control block (PCB) or process descriptor. The collection of
user program, data section, stack, and the associated attributes is called the process image as
shown in Fig. 5.7.

The PCB is created for every process whenever a new process is created in the system. Simi-
larly, it is also deleted as the process is terminated. The PCB contains all information about the
process needed for its control. For example, for the identification of the process, there must be an
ID for it. At a particular instant, the current state of the process and its PC value must be known.
Whenever, there is process switching, the state of the process in PCB must be changed. At the
same time, the processor register values for the current process must be saved so that it can
resume the execution again. Some processes are more important than others. For this purpose,
a priority of every process is maintained. Therefore, priority is also one field in the PCB. Since
the process will be stored somewhere in the memory, the address information where the process
image will be stored is also a part of the PCB. The information related to resources held by the
process and accounting information such as CPU time used, disk used, and so on will also be
stored in the PCB. Thus, there is a lot of information associated with a process stored in its PCB.
The information stored in the PCB basically provides control over the execution of the process.
The following are the fields associated with a PCB (see Fig. 5.8):

PID
It is a unique identification number of the process.
pPC
) . Indicates the address value at which the next
Code section Data section instruction of the process will be executed by

the processor.

Registers
CPU registers are used for the execution of a pro-
cess. While the process is in execution, data regis-
ters, address registers, control, and status registers
Process control are used for executing and controlling the process.
block The registers information must be saved when
there is a state change of the process so that it may
resume its execution when its next turn comes.

Stack

Fig. 5.7 Process image

5.7

Fundamentals of Process Management 115

PID State
A process has a number of states in its life. For scheduling the pro-
PC and CPU registers cesses, the current state of a process must be known.
Priority

Process state . . .
The priority number can be assigned to a process to give preference

to it over other. In general, the lowest number means the highest pri-
ority, for example, the process with Priority 1 will have the highest
Eventlinformation priority over all other processes. However, the priority scheme may
be changed depending on the OS that we select.

Process priority

Memory-related

information Event information
This is the event for which a blocked process is waiting. If the
Resource-related awaited event is over, the information regarding this event must be
lem=tien stored in this field so that the status of the blocked process is changed
to ready.

Scheduling-related
information Memory-related information

Memory-management component of the OS uses many registers
and tables. The information regarding all this memory-related
information linked to a process is also mentioned in the PCB, for
example, the values of the base and limit register of the process,
page tables, segment tables, and so on. All these tables will be
discussed in Memory Management chapter. The information is necessary while de-allocating
the memory of the process.

Various pointers

Fig.58 PCB

Resource-related information

The resources allocated to a process are listed here. For example, all files opened by this pro-
cess are listed in this field. The information is necessary to release the resources on the termi-
nation of the process. For example, all opened files must be closed on the termination of the
process. Moreover, the information regarding the utilization of the resources may also be stored
here. For example, the processor utilization may be required by the schedulers.

Scheduling-related information

A process will be executed according to a scheduling algorithm. The scheduling-related infor-
mation of a process is also stored such as the time the process has waited, the amount of time
the process executed the last time it was running.

Pointer to parent process
If a process is a child process, then the pointer to its parent process is stored here.

Pointer to child process
If a process has some child processes, then the pointer to its child processes is stored here.

Pointer to address space of the process
This is the pointer to the process’s data and instructions in the memory.

IMPLEMENTATION OF PROCESSES

Now we can discuss the implementation of processes in the operating system. Using the knowl-
edge of process states, process image, and the PCB, the implementation of processes can be
explained. The OS manages and controls the resources by having a table. The tables are impor-

116 Principles of Operating Systems

tant data structures to store information about every process and resource. This is the reason
the OS maintains memory tables, I/O tables, file tables, and process tables. The processes are
implemented by the means of process tables. The process tables store the ID of every process
and, corresponding to it, the pointer to its PCB as shown in Fig. 5.9.

PCB1
PC
Registers
State
Priority

Process table

1
2
3

v

n PCB2
PC

L | Registers
State
Priority

PCBn
BE

L 5| Registers
State
Priority

Fig. 5.9 Process table and the PCB

At the time of creation of a new process, the OS allocates a memory for it, loads a process
code in the allocated memory, and sets up data space for it. In this way, process environment is
created for a process. Further, the PCB for the process is created to have a control on it through-
out its execution. The state of the process is stored as ‘New’ in its PCB. Whenever this process
moves to the ready queue, its state is changed to ‘Ready’. Similarly, when it is dispatched to the
CPU, its state is changed to ‘Running’ in its PCB. When a running process needs to wait for an
/0 device, its state is changed to ‘Blocked’. The various queues used here are implemented as
linked lists. There are mainly the following queues:

Ready queue for storing the processes with state ready

Blocked queue for storing the processes that needs to wait for an I/O device or a resource
Suspended queue for storing the blocked processes that have been suspended
Free-process queue for the information of empty space in the memory where a new PCB
can be created

All these queues store a particular process’s PCB only for the sake of search efficiency. If
there is a process with the state ready, then its PCB is stored in the ready queue. Therefore, as
soon as the state of a process is changed, its PCB is moved to its appropriate queue. All these
queues are implemented as linked lists. Each PCB has a pointer that points to the next PCB.
There is a header for each type of queue. The header stores the information about the first
and the last PCBs in that queue. For example, there is a ready-queue header that provides the
information about the first and the last PCBs in the queue (see Fig. 5.10). Similarly, there is
a blocked-queue header. There is one more header giving the information about the running
process information; however, there is no queue of running processes because there is only one

Fundamentals of Process Management 117

PC
Registers
Process table State
Running . Pr.I?rlty
Ready
Blocked
PC PC PC
Registers Registers .| Registers
Priority " | Priority Priority
PC PC PC
.| Registers . | Registers . | Registers
“| Priority | 7| Priority " Priority

Fig. 5.10 Separate queues for different states of the processes

running process in the system. One more queue having the information of a process’s area,
which is free after the termination of a process, will release the memory after its termination.
This memory area can be used for a new process. Therefore, the free process queue is a linked
list of the free areas where the upcoming new processes can be stored. The free process queue
also has a header. All the headers provide information about the address of the first and the
last PCBs in that queue. Only running header gives the address of only one running process
because there is a single running process in the system. Let us see one example (see Fig. 5.11)
for the implementation of PCBs, queues, and their corresponding headers. As a notation, we
are representing one PCB in the memory as one rectangle having two smaller rectangles inside
it. The top rectangle represents the process 1D, and the bottom rectangle represents the address
of the next PCB in the queue. All the headers have been shown below the representation of all
PCBs in the memory. In the bottom rectangle, symbol ‘E’ represents the end of the queue. The
running process header shows in this example that Process 5 is running. The ready-process
header shows that in this queue, Process 8 is the first and Process 10 is the last. Looking at the
rectangle shaped PCB that starts with PCB Number 8, the next PCB is Number 1. When we
move to the rectangle shaped PCB that starts with PCB Number 1, its next PCB number is 4.
In this way, by observing the chain in the figure, we can say that Processes 8, 1, 4, and 10 are
in the ready queue. Similarly, Processes 3 and 6 are in the blocked queue and 2, 7, and 9 are in
the free-process queue.

Besides changing the state of a process, the PCB of this running process needs to be saved at
this time so that the process can resume its execution from where it left off. Since all informa-
tion of a running process is in its PCB, the PCB must be saved for this purpose. Initially, the
process’ program counter, program status word, registers, and other information are stored on
the stack. After this, the stack information is stored in the corresponding PCB of the process.
Once the current status of the process is saved in its PCB, the process can resume its execution
when it will get the chance to be in the ready queue. This saving of the status of the running
process in its PCB is called context saving.

118 Principles of Operating Systems

Running process Ready process Blocked process Free process
header header header header

Fig.5.11 PCB queues in memory

After saving the context of a process, the appropriate event-handling function is executed.
For example, if the process needs to wait for an I/O device, then it is sent to the queue of the
blocked processes. After this, there is requirement that another process be dispatched to the
CPU because the current process has been interrupted. Therefore, scheduler is called to sched-
ule a process from the ready queue. After selecting the process from the ready queue, its PCB
is loaded and dispatched to the CPU for execution. In this way, the processes are implemented
by saving their contexts in PCBs and making state change possible.

5.8 CONTEXT SWITCHING

The context saving as discussed in Section 5.7 is necessary whenever a running process is inter-
rupted or waits for an I/O device. It means that the current context of a process always resides in
its PCB. Therefore, whenever the running process stops, its context is saved in its PCB and the
context of other scheduled process from its PCB is loaded. This is known as context switching.
However, saving the context of the current process takes some time. It is obvious that saving
the registers and other information will consume some time. Similarly, loading the context of
other process also takes some time, which is known as context switch time. However, during
this context switch time, what is the processor doing? Since the current process is not running
and no new process has been scheduled for execution, the processor is idle during the context
switch time. Therefore, the context switch time is a pure overhead for a multi-programming/
multi-tasking environment because CPU is not doing any execution during this time. In the
lifetime of a process, a process may either wait for an I/O device or be interrupted many times.
Thus, the context switch time is proportional to the frequency of processes being stopped. For
example, two processes in a multi-tasking environment will have the context switch time in
saving the context of one process and in loading the context of another.

Fundamentals of Process Management 119

Example 5.2

Consider Example 1.1 of Chapter 1. In this example, we have seen the timing diagram of multi-
programming without considering the context switch time. If we consider the context switch
time of 1 unit time between two processes, then what will be the total execution time of three
processes?

Solution

The timing diagram after considering the context switch time of 1 unit time between two pro-
cesses is shown as follows:

The total execution time in this case is 24, whereas it was 18 without context switching
(refer to Example 1.1). This example shows that the context switch time between the processes
is pure overhead and no actual execution by the processor is being done.

(03 C C C C C
E S E S E S E S E S E 3 E
0 2 3 8 9 12 13 15 16 18 19 21 22 24
“J1_’| J2 J3 |‘_J1’| |<_J2_»| |¢J3_’| |‘_J1’|
Save Save Save Save Save Save
context context context context context context
of J1 of J2 of J3 of J1 of J2 of J3
and load and load and load andload andload and load
context context context context context context
of J2 of J3 of J1 of J2 of J3 of J1

CS: Context switch time

5.9 PROCESS SWITCHING

When a running process is interrupted and the OS assigns another process to it and transfers
control to it, it is known as process switching. Process switching occurs due to an event in
the system. The events can be of any type as described in Section 5.4.1. However, only the
events that interrupt the execution of the currently running process trigger the process switch-
ing. There are following broad categories of interrupts:

System Calls

The system calls used by a process always cause an interrupt. The system call
requests the kernel to execute a request. For example, if a process has the system

calls for reading or writing from/to a device, then it causes the interrupt.

Exceptional Conditions

There can be some instructions in the process that when executed cause some
exceptions that need attention of the kernel. Arithmetic exceptions, reference to an
illegal address, and so on are some examples that cause the interrupt.

120 Principles of Operating Systems

1/10 Completion

When an I/0 device completes the read/write operation with a process, an interrupt is
generated so that the process waiting for that device may use it.

External

Any external unit connected with the system may also generate an interrupt. For
example, timer clock on completion of a time slice may send an interrupt.

As soon as an interrupt is generated due to events, the following actions are performed (see Fig.
5.12 and 5.13):

1.

Since the current running process has been interrupted, its execution context must be saved.
The execution context of a process includes PSW, processor’s registers, and program coun-
ter (PC). Therefore, the processor pushes the PSW and the PC onto system control stack to
save the execution context.

. When the interrupt arrives, the interrupt hardware analyzes the cause of the interrupt and

forms a code corresponding to this interrupt. The interrupt vector area in the memory is
accessed corresponding to this interrupt code, and information from the interrupt vector is
loaded into the PSW. Since the interrupt vector contains the address of the interrupt service
routine (ISR) in the kernel to handle the interrupt, the PC is loaded with the address of this
ISR.

. The processor mode is switched from the user to the kernel, and control is transferred to ISR

in the kernel.
The PSW and the PC have been saved onto system stack as described in Step 1. However,

the processor’s registers at the time of interrupt of the interrupted
Event process have not been saved yet. The ISR does the remaining work

of context saving of the interrupted process. The context-saved

{ interrupt sub-function in the ISR locates the PCB of this process. After this,

it saves the processor’s registers, the PSW, and the PC from the
Save the context stack in the PCB. It also changes the state of the process as the

case may be. For example, if the interrupted process has been pre-

v empted by a higher priority, then the state of this process will be

Process the event

changed from ‘running’ to ‘ready’. Besides this, there may be some
other fields that need to be updated in the PCB such as account-

ing information related to interrupted information. For example,

v how much the processor time has been used by the process? Since

Schedule another the OS maintains the queue for various types of processes (ready,

process blocked, and suspended queues), the PCB of the interrupted pro-

cess is moved to one of these queues according to its updated state.

v 5. After saving all information related to the interrupted process, the

Dispatch the ISR proceeds to process the interrupt. The corresponding event-
selected process handling function is executed to service the generated interrupt.

6. After processing the interrupt, the next step in process switching

Fig. 512 Sequence of is to schedule a process for execution as there is no process to ex-

activities dur- ecute. Therefore, a scheduler function is called that selects a pro-

ing process cess from the ready queue. However, if there is an event such that

switching the running process has requested time or date or a resource such

Fundamentals of Process Management 121

Memory l 1
Process A
P
Process B 10 CPU
A o —
9.B
PCB B 3 PSW
R 7.A2
Dispatcher 4_—> 6 |M| IC | .. | PC | 5
8
Scheduler
2
Event-handling| 7.B
functions 7.C
ISR 7
1 System
Interrupt vector 4 Stack
area

pPON=

oo

®

10.

Initially process A is running and an Interrupt comes to the CPU.

PSW saved on system stack.

Interrupt hardware analyzes the type of interrupt and generates interrupt code in IC of PSW.

Corresponding to interrupt code, interrupt vector area is searched and information about the address

of the ISR is retrieved.

Address of ISR is stored in PC field of PSW.

Mode is switched to kernel, i.e., mode bit M in PSW is set to 0 for kernel mode.

Processor starts executing ISR.

7.A Calls context saving function.

7.A.1 Save the processor’s registers in the PCB A.

7.A.2 Copy the PSW containing PC from the system stack in PCB A.

7.A.3 Changes the state of the process from running to the blocked or appropriate state according to
interrupt code.

7.B Calls event handling function (or interrupt processing function).

7.C Passes control to the scheduler.

Scheduler selects a process from the ready queue and control is passed to dispatcher.

Dispatcher

9.A Finds the PCB of the process selected by scheduler, e.g. it is Process B.

9.B Loads the PSW containing PC and other registers from its PCB to CPU.

9.C Changes the state of the process to running in its PCB.

9.D The mode bit M in PSW is changed to 1 for user mode.

As soon as the PC in PSW is loaded the process B starts executing by the processor.

Fig. 5.13 Detailed steps of process switching

as memory that can be granted immediately, then there is no state change. In this case, the
scheduler function will select the same process for execution.

After this, a dispatcher function is called to prepare the process for the execution. It locates
the PCB of the selected process and loads the saved PSW and CPU registers of the process
onto the CPU registers from the PCB to resume the process from where it left off when
last interrupted. The state of the selected process is also changed to running. These actions
thereby set up the environment of the selected process for execution.

122 Principles of Operating Systems

Some of the possible events that trigger the interrupt, along with their event-handling func-
tions, are listed in Table 5.3. These event-handling functions are basically interrupt-processing
functions in the kernel. In this table, only events and their corresponding event-handling func-
tions have been shown. It should not be misunderstood here that in response to an event, an
event-handling function is executed. The sequence will be same as shown in Fig. 5.12. In
response to every event, the interrupt will be generated, and in response to every interrupt, con-
text save functionality is executed. After this, the event-handling function is executed and then

the scheduler and the dispatcher are called for their appropriate functions.

Table 5.3 Event-handling functions

Event

Event processing

A new process is created.

The process makes a resource request.

A resource is released.

The process requests an I/O device.

An I/O device is released after access.

The allocated time slice for the process is
over. In this case, system timer sends a timer
interrupt.

A higher-priority process appears in the ready
queue. In this case, the running lower-priority
job is pre-empted by the newly arrived higher-
priority process.

Create the process. Add it to the ready queue
and Pass the control to Scheduler.

If the resource can be granted immediately, then
Allocate resource. Otherwise Block the process.

Pass the control to Scheduler.

If there is any blocked process waiting for the
resource (in the resource queue), which has
been released recently, Unblock the process
and send it to ready queue.

If there is any blocked—suspended process
waiting for the resource (in the hard disk), which
has been released recently, Unblock the pro-
cess and send it to ready-suspend queue.

Pass the control to Scheduler.

If the I/O device can be granted immediately,
then Allocate device. Otherwise Block the pro-
cess.

Pass the control to Scheduler.

If there is any blocked process waiting for
the 1/0 (in the device queue) which has been
released recently, Unblock the process and
send it to ready queue.

If there is any blocked—suspended process
waiting for the /O device (in the hard disk),
which has been released recently, Unblock the
process and send it to ready-suspend queue.

Pass the control to Scheduler.

Send the process to the ready queue.
Pass the control to Scheduler.

Send the process to the ready queue.
Pass the control to Scheduler.

(Contd)

Fundamentals of Process Management 123

(Table 5.3 Contd)

The process reaches its end of execution or If the process is a parent having some child pro-
is aborted. cesses, then terminate all child processes.

Pass the control to Scheduler.
Any hardware interrupt is generated. Process the interrupt according to its type.

Pass the control to Scheduler.

An error or exception condition is generated in Terminate the process.

the current running process. Some examples:

The process requires more memory than Pass the control to Scheduler.
allowed.

The process tries to access a resource or
an 1/0O device or memory location that is not
allowed to use.

The process attempts an arithmetic opera-
tion that is not allowed, for example, divide by
zero.

5.10 SCHEDULERS

The process-scheduling procedure needs to be invoked as soon as a running process is interrupted
after saving its context so that the CPU has one process to be executed. However, there are other
instances also when scheduling is required. For this purpose, there are various types of sched-
uler modules in the OS that execute at their appropriate time. The classification of schedulers is
based on the frequency of their use in the system. If the use is after a long time, then it is called
a long-term scheduler. Similarly, when a scheduler is invoked very frequently, it is known as a
short-term scheduler. The following are the types of schedulers used in an OS (see Fig. 5.14):

5.10.1 Long-term Scheduler

This scheduler is invoked when there is a need to perform job scheduling, that is, when a job
from the job pool is selected to be sent to the ready queue. Since a job entering the system
needs to be a process in the ready queue, this scheduler is invoked whenever there is a need to
increase the degree of multi-programming in the system. However, this type of scheduling does
not happen very frequently because a process needs some time in the system to be executed.
If there are no slots in the ready queue for a new process to be accommodated, then there is
no need to increase the degree of multi-programming and, hence, of the long-term scheduler.
The long-term scheduler is needed only in case of a batch processing and is absent in multi-
user time-sharing systems. In time-sharing systems, the jobs are directly entered into the ready
queue as processes.

5.10.2 Short-term Scheduler

This scheduler is invoked when there is a need to perform process scheduling, that is, when a
process from the ready queue is to be selected for dispatching to the CPU. There are various
instances in the system when this type of scheduling is needed. We have studied in previous
sections about various types of events that cause interrupt. Whenever there is an interrupt, the
running process stops, and the short-term scheduler is invoked every time to select another
process for execution. That is why this scheduler is called a short-term scheduler.

124 Principles of Operating Systems

Main memory

Process
scheduling/
Ready dispatching
queue
»{ Short-term
Long-term > scheduler
scheduler l
Blocked Dispatcher —»{ CPU
Job queue
scheduling |
Wait for 1/10

...| Medium-term
“| scheduler

Program

’ Disk
Ready- |« Blocked— storage
suspended suspended
queue queue

Fig. 5.14 Long-term, medium-term, and short-term schedulers

5.10.3 Medium-term Scheduler

This scheduler is invoked when there is a need to swap out some blocked processes. It can hap-
pen in the case when all processes are blocked for some I/O devices and there is no ready pro-
cess to execute. Moreover, there is no space for any other process. In this case, some blocked
processes need to be swapped out from the main memory to the hard disk. There is another
queue called blocked—suspended queue for this purpose in the disk. The task of swapping the
processes from the blocked queue to the blocked—suspended queue is performed by another
type of scheduler known as medium-term scheduler. Further, when there is a signal of comple-
tion of an I/O device for which the process is blocked and presently in the blocked—suspended
queue, the process changes its state to ready—suspended and moves to the ready—suspended
queue. This task of moving a process from the blocked—suspended to the ready—suspended
queue is also performed by this medium-term scheduler.

5.11 PROCESS OPERATIONS

As seen in the process state diagram, there are various operations performed on a process. The
processes need to be created, deleted, suspended, blocked, and so on. The OS must have the
mechanisms for all these operations. Let us see all these operations.

Fundamentals of Process Management 125

5.11.1 Creation

There may be various reasons for creation of a process in a system. It can be a part of a batch
of jobs or whenever a user logs on the system or a process executes a process creation system
call. The OS may also create a system process to provide a service. For example, when a user
wishes to print a file, the operating system, on behalf of the user program, will create a process
that will control the printing task. At the time of booting, there are several processes that run
in the background known as daemon processes; for example, a process to accept an incoming
request to host a web page on a web server machine.

On the creation of a process, the process identification (process ID) and its priority are as-
signed. The memory and other resources required by the process are allocated to it. After this,
the code is copied in the code area, thereby setting the process environment. The OS looks for
a free PCB space in the free-process queue for the newly created process and initializes all its
fields.

The process creation is not limited to this only. An existing process may also create another
process. This is known as process spawning. When a process spawns another, the process
creating the other process is called parent process and the created process is known as a child
process. A child process may also become a parent by further creating new processes, thereby
forming a tree structure. In Fig. 5.15, P1, P3, and P6 are parent processes, whereas P3 and P6
are also child processes. There may be many child processes of a parent process. There is a hi-
erarchy between these processes in the tree structure. All child processes at one level will have
one parent process, and they work only under the control of this parent process. For example,
in Fig. 5.15, Processes P2, P3, and P4 are child processes of Process P1, and all these processes
work under the control of the parent P1. This tree structure has one parent root process and
other processes at the other levels as child processes. In UNIX, there is one parent process
called init(), and other system processes are created from this process. However, this process
hierarchy is not necessary as seen in Windows operating system. This OS does not have any
hierarchy of processes and treats all processes at same level. Though there is a provision of hav-
ing parent and child processes, the parent of a child process can be changed, thereby violating
the process-hierarchy concept.

One obvious question is that what functionality a

° child process will perform. Therefore, the creation

of child processes should be logically justified, that

is, the functionality of every child process should

be defined and there should be communication and

e @ cooperation between them. The functionality of a
child process depends on the application where a

process has created it. For example, if a complex

process creates its child process to divide its work,

then the code of the child process will be differ-

e @ ent from the parent process. In another example, a
web server needs to create a child process when-

ever there is a client connecting to it. In this case,

the child functionality is same as the parent and

° therefore, the address space of the parent and the

child processes is same. All these details related to

Fig. 5.15 Process hierarchy a child-process creation differ in various operating

126 Principles of Operating Systems

systems. For example, in UNIX, after the fork () command, a new child process is created hav-
ing the same environment, resources, and so on as the parent process, that is, the new process
has the copy of the address space of the parent process. Both parent and child processes con-
tinue to get execution. However, the copy of address space in the child process does not mean
that there is sharing of the address space. Both address spaces are different and non-sharable
except some shared resources such as files. If the child process wishes to have a separate code,
then another system call execlp() needs to be executed. This command loads the new program
in the memory replacing the old parent’s program. On the other hand, Windows and VMS OS
does not have the provision of duplicating the address space while creating a child process. In
these operating systems, at the time of the creation of a child process, a new program is loaded.
Windows NT supports both types, that is, the parent process may duplicate the address space or
a new program for the child process may be loaded.

The child process may get all or a subset of resources its parent has. It depends on the availability
of resources and the number of child processes. A parent may allow sharing its resources among mul-
tiple child processes. The child process may also get some initialization data from its parent process.

5.11.2 Dispatching

This operation starts when there is a need to schedule a process from the ready queue. The
scheduler according to scheduling policy of the system selects a process from this queue. Now
this process will be sent to the processor for execution. For this purpose, the process environ-
ment must be set up, that is, its code must be loaded in the memory and data and stack must be
initialized. After this, the PCB must be located and the saved fields (if the process has executed
partially before) must be loaded in the processor’s registers and initialized appropriately. The
dispatcher performs all these functions resulting in start of the execution of this selected process.

5.11.3 Blocking/Wakeup

When a running process executes an instruction that requires a resource or an I/O device that
cannot be fulfilled immediately, the process is not able to execute further as it needs to wait
for that resource or I/O device. Since this process needs to wait, there will be no useful work
by the processor; therefore, another process is scheduled and the process that is waiting for a
resource or an I/O device is moved to a queue where it can wait. This operation is called block-
ing of the process. The blocking operation requires some overhead. First, the process should be
maintained in a queue known as a blocked queue where all processes that need to wait for their
resources or I/O devices reside. There is another question regarding the blocked process that
how this process would come to know when a resource or an I/O is available. There is a field in
the PCB known as event information, which stores the I/O device or the resource for which the
blocked process is waiting. When a resource or an I/O device is released in the system, the OS
must scan the event information field of all the blocked processes in the blocked queue. If the
processes match, it means that their wait is over and they are unblocked, that is, they are sent
to the ready queue. This operation is known to wake up the process that was blocked earlier.

5.11.4 Termination

The process that has started and executed its work must also finish its execution. It means
that the process will terminate after execution of its assigned task. When a process reaches
the execution of its last statement, a system call is executed to tell the OS that the process is

Fundamentals of Process Management 127

terminating. For example, in UNIX, exit(), system call is executed after the execution of the
last statement in the process. In fact, this is necessary to tell the OS about a process’s termina-
tion because the resources held by the process need to be released. Therefore, when a process
terminates, the occupied memory, open files, and other resources are taken away from it.

However, this is not the only reason for the termination of a process. As a process is created
when a new user logs on or a new window is opened, the same way when a user logs off or a
window is closed, the corresponding process is terminated. Another reason for the termination
of a process may be some error or exception generated in the execution of the process. It may
be the case that the process may

require more memory than allowed

reference a memory location out of its limits

try to access a resource or an I/O device that is not allowed to use

attempt an arithmetic operation that is not allowed, for example, divide by zero
find an error while accessing an 1/0

The termination of a child process in the process-hierarchy tree structure may not be as simple
as that of an independent process because it is dependent on its parent process. In case of child-
process termination, there are different rules in various operating systems. The only require-
ment is that the parent process must have the knowledge of its child processes. When a child
process is created, its ID is created and returned to its parent. This ID is used by the parent
process while taking the decision to terminate the child processes. A parent process may termi-
nate its child process at any time. The parent process looks after the state of its child process.
If there is any error or exception, it may terminate the child. The problem occurs when a parent
process is to be terminated while its children processes exist. In this case, the parent process
needs to wait for the execution of its children. For example in Fig. 5.15, if Process P3 needs to
be terminated, it cannot be because it has two children processes, P5 and P6. It needs to wait
for the termination of P5 and P6 and then only it can be terminated.

SUMMARY

The first important component of the OS is process manage-
ment. Process management is to handle various user and
system processes. The basic terminology and concepts
regarding process management have been discussed in
the chapter. The process set up includes an environment
consisting of code section, data section, stack, PC values,
and other processor register values. The PCB is another
data structure used to control the execution of processes
in a multi-programming environment. Since in a multi-pro-
gramming environment, there is a need to switch between
processes, it becomes necessary to save the context of one
process before switching to another process. The PCB helps
in saving the context of a process. This arrangement of pro-
cess switching works with the interrupt-driven nature of the
operating system. With an event in the system, an interrupt
is caused to the running process that stops the execution of

the current process. At this moment, the context of this inter-
rupted process is saved in its PCB. The next step is process
scheduling, that is, to select another process from the ready
queue to send it to the CPU for execution. After this, dis-
patching function loads the context of the selected process
from its PCB. In this way, process execution is managed
through interrupt handling, process switching, scheduling,
and dispatching.
Let us have a quick review of important concepts dis-
cussed in this chapter:
® A program in execution is called a process.
® FEach process has its own address space consisting of
code section, data section, and stack section.
e |f the OS defines a process, then it is called an implicit
process. If the process is defined by the programmer,
then it is an explicit process.

128

Principles of Operating Systems

A process has seven states: new, ready, running, blocked,
blocked-suspended, ready—suspended, and terminated.
The process changes its state when there is an event
causing a state transition.

The state transitions are admit (new to ready), dispatch
(ready to running), I/O wait (running to blocked), sus-

pended (blocked to blocked-suspended), /0O complete
(blocked to ready or blocked—suspended to ready-—sus-
pended), activate (ready—suspended to ready), and exit
(running to terminated).

There are many queues used for process management.
These are as follows:

Queue

Purpose

Job queue
system.

Ready queue

Blocked queue
resource or and |/O.

Suspended queue

It is in the hard disk for storing the new jobs when first entered in the

It is in the main memory for storing processes. The jobs when brought
from the job queue to the ready queue become processes.

It is in the main memory for storing processes that need to wait for a

It is in the hard disk for storing processes that have been suspended or
kicked out of the main memory.

When a job from the job queue is selected and moved to
the ready queue, it is known as job scheduling.

When a job arrives in the ready queue, it becomes a pro-
cess.

When a process in the ready queue is selected for execu-
tion, it is known as process scheduling.

When a scheduled process is sent to the processor for
execution, it is known as dispatching.

The PCB is a data structure used to store various attri-
butes related to it. The PCB is created for every process
whenever a new process is created in the system. The
PCB information is used for controlling and managing the
processes in the system.

Whenever there is an interrupt to the running process, the

process stops and its current status is saved in its PCB.
This is known as context save operation.

The process of saving the status of an interrupted process
and loading the status of the scheduled process is known
as context switching.

Context switching is a pure overhead from viewpoint of
processor time because during context switching no ex-
ecution is being done.

When a running process is interrupted and the OS assigns
another process to the running process and transfers con-
trol to it, it is known as process switching.

A scheduler is a component of the OS that performs the
job of scheduling at various levels. There are three types
of schedulers:

Type

Purpose

Long-term scheduler
Short-term scheduler

Medium-term scheduler.

Performs job scheduling.
Performs process scheduling.

Some processes need to swap out from the main memory and swap in
at some appropriate time. These swap-in and swap-out functions are
performed by this scheduler.

Various types of schedulers are activated at different sce-
narios in the system as follows:

Fundamentals of Process Management 129

Long-term scheduling Short-term scheduling

Ready
queue

Job queue

~ Processor »(Exit

Suspend
queue

queue

Medium-term
scheduling

Resource
or /O wait

Resource
or /O
completes

Time slice

High-priority
process appears

expired

Create a
child process

Hardware

e A dispatcher is a component that locates the PCB of the
process selected by a scheduler, loads its context, and
passes the control to the processor for execution.

MULTIPLE CHOICE QUESTIONS

1. Program in execution is called

(a) aprocess (c) ajob
(b) atask (d) none
2. Programis a entity while processis ___.

(@) passive, active
(b) active, passive

(c) both active
(d) both passive

3. Whenever anew job is entered into the system, itis stored in the

Error/exception
in the process

interrupt

® At the time of booting, there are several processes that
run in the background known as daemon processes.

® Process spawning is to create a child process by a parent
process.

(a) ready queue
(b) job queue

(c) suspended queue
(d) none

4. When ajob is selected to be brought in the main memory, it
is called

(a) process scheduling
(b) CPU scheduling

(c) job scheduling
(d) none

130 Principles of Operating Systems

10.

11.

12.

13.

14.

When a job is fetched in the memory, it becomes a
(a) task (c) job

(b) process (d) none

A process in

(a) ready queue
(b) job queue

becomes ready for execution.
(c) suspended queue
(d) none

When the processes in the ready queue are selected for the
next execution, it is called
(a) process scheduling
(b) job scheduling

(c) disk scheduling
(d) none

A process in the ready queue when selected by the sched-
uling mechanism for execution and dispatched to the CPU
becomes a

(a) ready process
(b) running process

(c) waiting process
(d) none

A process while executing may reach an instruction where
it has to wait for some I/O devices or some other event. Its
state becomes
(a) wait state

(b) running state

(c) blocked state
(d) none

The swapped out process from a blocked queue is known
as

(a) swapped process
(b) suspended process

(c) blocked process
(d) none

The blocked process waiting in the blocked queue in mem-
ory is suspended and moved to the suspended queue in the
(a) disk (c) ROM
(b) memory (d) none

When the event for which the blocked-suspended process
was waiting has occurred, its state changes to

(a) blocked-suspended (c) ready

(b) ready-suspended (d) suspended

The collection of user program, data section, stack, and the
associated attributes is called the

(a) PCB (c) process environment
(b) process image (d) none

The context switch time is a ___for multi-programming/

REVIEW QUESTIONS

1.
2.
3.

Differentiate between job, program, and task.

What is the difference between a program and a process?
What is the difference between an implicit and a non-implic-
it process? Provide examples.

Define:

(@) PCB

(b) Process environment
(c) Process image

1.

16.

17.

18.

19.

20.

21.

22.

multi-tasking.
(a) useful
(b) pure overhead

(c) used for scheduling
(d) none

When a running process is interrupted and the OS assigns
another process to the running process and transfers con-
trol to it, it is known as
(@) context switching
(b) PCB switching

When an I/O device completes the read/write operation with

(c) interrupt handling
(d) process switching

a process, ___is generated so that the process waiting for
that device may use it.
(a) trap (c) interrupt

(b) system call (d) none

The classification of schedulers is based on the
(@) frequency of their use in the system

(b) number of processes in the system

(c) number of schedulers in the system

(d) none

scheduler is invoked when there is need to perform
job scheduling.
(a) Long-term
(b) Short-term

(c) Medium-term
(d) none

scheduler is invoked when there is need to per-
form process scheduling.
(a) Long-term
(b) Short-term

scheduler is invoked when there is need to swap out
some blocked process.
(a) Long-term
(b) Short-term

An existing process may also create another process. This
is known as

(@) process spawning
(b) process creation

(c) Medium-term
(d) none

(c) Medium-term
(d) none

(c) process switching
(d) none

There is afield in the PCB known as , Which stores the
/0 device or resource for which the blocked process is waiting
(a) resource information (c) event information

(b) PCB information (d) none

What is the difference between

(a) co-operating and independent processes?
(b) job scheduling and process scheduling?

(c) process scheduling and process dispatching?
(d) process scheduling and process switching?
(e) process switching and mode switching?

Explain the roles of different queues used in process man-
agement.

Explain the process state diagram considering the sus-
pended processes.

8. What is the main cause that a process changes its state?

9. What are the steps to be followed for process management

10.
1.
12.
13.
14.
1.
16.

when an interrupt comes to a running process?

How is the context switching implemented?

What is context switch time? What is its disadvantage?
How is the process switching implemented?

How is the process scheduling implemented?

How is the process dispatching implemented?

What is process spawning?

What is the difference between a scheduler and a
dispatcher?

BRAIN TEASERS

1.

In alarge operating system, if there is a single queue for main-
taining the blocked processes, it will be inefficient to search a
required process that needs to be awakened on occurrence
of an event. What can be the remedies for this inefficiency?

In a large operating system, if there is a single ready queue
for maintaining the ready processes, it will be inefficient to
search a required process for scheduling. What can be the
remedies for this inefficiency?

Can a process switch from ready to terminated or blocked
to terminated?

What can be the reasons for suspending a process other
than mentioned in the chapter?

Is it necessary that every event causing interrupt will
change the state of the running process?

The suspended queue is maintained on the hard disk
and therefore, 1/0 operations are required with it. Does it
have any impact on the performance of process manage-
ment because all other queues are managed in the main
memory?

How does a blocked or blocked—suspended process know

about the completion of the I/0 device or the resource for

which it is waiting?

What event handler would be executed in the following

cases:

(@) The running process has finished its execution before
completion of its time slice

(b) The running process tries to access a memory location
that it is not allowed to access

(c) Ifthere is failure in reading or writing an I/O device

(d) A process is ready to execute but there is no space in
the main memory

17.
18.

19.

20.

21.

22.

23.

10.

11.

12.

13.

14.

15.

16.

Fundamentals of Process Management 131

Discuss various types of schedulers.

What is the need of swapping in and swapping out a pro-
cess?

What are the situations when process scheduling is re-
quired?

What are the situations when a process needs to be termi-
nated?

What are the situations when a process needs to be sus-
pended?

What are the situations when a process needs to be
spawned?

What are the steps performed by an OS to create, termi-
nate, block, and suspend a process?

(e) A periodic process is idle waiting for its next time slot to
be executed
(f) A background process has caused a problem

Multi-programming/Multi-tasking was developed so that
there would be no processor idle time. However, there still
may be some situation when the processor is idle. Explore
these situations.

What will be the effect on performance of process man-
agement if there is a majority of CPU-bound or 1/0-bound-
processes in a system?

A parent process needs to be terminated but has two child
processes: One child process is waiting for an 1/0, and the
other is executing. How will you terminate the parent process?

How will you design the device queues where processes
are waiting to access them? Can the priority of a process
be incorporated here?

Context switch time is a pure overhead. What can be the
factors that can increase this overhead?

Consider Brain-Teaser Problem 9 in Chapter 1 and
illustrate the state transitions for all the processes in the
system.

Again consider Brain-Teaser Problem 9 in Chapter 1. As-
sume that there is context switch time of 2 minutes and then
prepare a timing chart showing the CPU and I/O activities of
the jobs in multi-programming with this context switch time.
Compute the total time for execution.

In a system, Process A is running and Processes B
and C are in a blocked state. An I/O-completion signal
arrives for Process B. The priority of Process B is the

132 Principles of Operating Systems

17.

highest. Describe the sequence of actions in the operat-
ing system.

In a system, Process A is running and Processes B and
C are in a blocked state. Process D is ready to execute
but not in the ready queue as there is no space. What will
you do to accommodate this ready process D? Describe the
sequence of actions in the operating system.

18.

19.

In a system, Process 5 is running and Processes 2, 4, and 7
are in a blocked state. Processes 1, 3, and 6 are in a ready
state. Show the PCBs and process headers of all these pro-
cesses in the memory.

Can a process switch from a blocked-suspended to a
blocked state?

Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

0 Process Scheduling

6.1 INTRODUCTION

Process scheduling is an important component of process management. Its role starts in a
multi-programming environment and expands to multi-user and multi-tasking environments. In fact,
there is a difference in performance requirements of various environments. While some mainframes
still demand batch processing of processes, a multi-user environment expects a minimum response time,
so that every user feels that he/she is using a single system. Similarly, on multi-tasking systems, a user
expects that he/she should be able to open many windows and every window should respond within a
minimum period of time. On the other hand, in real-time systems, the processes are executed according
to their defined priorities. A higher-priority process must always pre-empt the lower one. Moreover, in
processing, there are deadlines which should be met, otherwise it may have adverse effects on the system.
In this way, to meet the requirement of every type of system, scheduling mechanisms are needed to select
the right process from the ready queue. Besides this, they have some general goals like processor utiliza-
tion, throughput, context-switch time, and so on. Also discussed in this chapter are the various scheduling
algorithms for different types of requirements and the keeping of various goals in consideration.
3
6.2 PROCESS BEHAVIOUR FOR SCHEDULING

When a process starts executing, the processor or CPU, starts

Learning Objectives
After reading this chapter,

working. However, in the execution of a process, apart from com- you should be able to
putations, some /O operations may also be involved. A process understand:

may need to take input from an input device or send output to an e CPU-bound and 1/O-bound
output device. During an I/O operation, the CPU does not do any- processes

thing and sits idle. When a process has long computations to be When to schedule a process
executed by the processor, it is then known as CPU-burst, and on * Long-term scheduling

the occurrence of 1/0 operation, it is known as /O burst. If there ¢ Medium-term scheduling

is a process with intensive CPU-bursts, that is, longer CPU cycles » Short-term scheduling

and a low number of I/O bursts, then it is known as a CPU-bound * Non-pre-emptive scheduling

o Pre-emptive scheduling

o Scheduling goals

o Scheduling algorithms

o Multi-level scheduling algo-
rithms

o Fair-share scheduling
Lottery scheduling

process. If the process has a large number of frequent I/O bursts
within the smaller CPU-bursts, then it is known as an I/O-bound
process (see Fig. 6.1).

If there is a large number of CPU-bound processes, it may be
difficult to achieve multi-programming. I/O wait slots are places
where process switching occurs. If these are not there, then multi-
programming will not give good performance. On the other hand,

134 Principles of Operating Systems

} CPU-Burst

CPU-Burst

1/0-Burst
1/0-Burst

Printf("enter the three variables x,y,z");
scanf("%f %f %f",&x,&y,&z); } I/O-Burst
if(x>y)
if(x>z)
printf("x is greatest");
else
printf("z is greatest");
}
else
{
if(y>z)
printf("y is greatest");
else
printf("z is greatest");
}
getch();

1/0-Burst
1/O-Burst

Fig. 6.1 CPU burst and I/O burst in a process

if there is a large number of I/O bound processes, then process execution will not happen in a
multi-programming environment. Thus, for the scheduling of processes in a multi-programming
environment, there should be a proper mix of CPU-bound and I/O bound processes. Otherwise,
scheduling of processes will not be proper, thereby affecting the performance of the system.

6.3 SCHEDULING DECISION

If there is only a single process to be executed by the processor, then scheduling is not required.
Since in multi-programming, there are multiple processes running at all times, scheduling is used.
But scheduling does not happen when a process finishes. As process switching is another feature

Ready
queue

Fig. 6.2 Scheduling reason: Running process exits

Ready queue

F Y
Resource
or /O

Fig. 6.3 Scheduling reason: Running process enters
in a wait

v

of multi-programming, it is not necessary that a

process will execute completely for scheduling

to take place. Due to process switching, when a

process is interrupted, there is need to schedule

another process from the ready queue. The fol-
lowing events can become the reason for sched-
uling:

1. When an executing process finishes its ex-
ecution and exits, then another process is
required for execution (Fig. 6.2).

If there is no process in the ready queue,
then scheduling is done on the job queue to se-
lect a job and send it to the ready queue.

2. When the executing process needs to wait
for an I/O or resource, it is blocked. There-
fore, there is need to select another process
for execution (see Fig. 6.3). Therefore, the

scheduler is called for scheduling another
process from the ready queue, which is
further sent for execution.

3. When an /O or resource being used by
any process is released, then the blocked
process, waiting for the I/O or resource,
goes back to the ready queue (see
Fig. 6.4). At this moment, there is need
to perform scheduling, in order to give
chance to the recently admitted process.

4. In a multi-user time-sharing environment,
a fixed time period/time slice is allotted to
every process, so that there is uniform re-
sponse to every process. When a process
finishes its allotted time slice, it moves
back to the ready queue (see Fig. 6.5).

5. When an executing process creates its
child process, then scheduling is per-
formed to give the newly created process
a chance for execution (see Fig. 6.6).

6. When a newly added process in the ready
queue has higher priority compared to that
of the running process, there is need to
temporarily stop the execution of the run-
ning process and scheduling is performed,
so that the higher priority process gets the
chance to execute (see Fig. 6.7).

7. Ifthere is an error or exception in the process
or hardware, then the running process may
need to be stopped and sent back to the ready
queue. After this, scheduling is performed to
select another process (see Fig. 6.8).

Ready queue

Process Scheduling 135

Ready queue

\4

Resource
orl/Ois
released

Fig. 6.4 Scheduling reason: I/O or resource is
released

Ready queue

Processor

v

Time slice
finishes

Fig. 6.5 Scheduling reason: Time slice of running
process finishes

Ready queue

Processor

v

Child
process is
created

Fig. 6.6 Scheduling reason: Running process creates
a child process

Processor

v

Higher priority
process is
created

Fig. 6.7 Scheduling reason: Higher priority process arrives

136 Principles of Operating Systems

8. If all the processes are waiting for Ready queue
any resource or I/O, there is need to
suspend some blocked process and DE:'—> Processor
make space for a new process. In this
case, all schedulers are needed. To
suspend a blocked process, a medi-
um-term scheduler is needed. Then
the long-term scheduler is called to
send a job from the job queue to the
ready queue, and finally a short-term
scheduler is called to dispatch this Fig. 6.8 Scheduling reason: Error or exception in
process to the processor. process/hardware

v

Error or
exception
in process

or hardware

6.4 SCHEDULING LEVELS

In Chapter 5, types of schedulers were discussed. There is no single scheduler in the system, but
depending on the specific events, there are three levels of scheduling to be performed by different
schedulers. A job entered in the system passes through various types of scheduling. First of all,
a job needs to wait in a job queue. Then it is scheduled by a long-term scheduler and sent to the
ready queue. After entering the ready queue, it may be scheduled either by a medium- or a short-
term scheduler, depending on the event. The scheduling levels are discussed in the following list.

6.4.1 Long-term Scheduling

When a job enters into a batch or multi-programming system, it may need to wait for space
in the memory, if there is no available slot. Therefore, keeping this situation in consider-
ation, the OS has been designed in a way that a job entering the system first needs to wait in
a job queue or job pool. When there is space in the memory, this job must be moved from
the job queue to the ready queue in the memory. This is done by the long-term scheduler
and is known as long-term scheduling. The job becomes a process in the ready queue and
we say that a process is created. This is now able to compete for resources. The newly
created jobs need to be moved to the ready-suspend queue in the swap space of the disk.
The long-term scheduler sends these jobs from the job queue to the ready-suspend queue,
as shown in Fig. 6.9. In this way, long-term scheduling can be performed in either way,
depending on the system in use.

The long-term scheduling has a direct relationship with the degree of multi-programming.
The degree of multi-programming can be defined as the number of processes which can be

Job queue Ready queue

Ready-suspend queue

Fig. 6.9 Long-term scheduling

Process Scheduling 137

accommodated in the memory and is ready for execution. It means when a process finishes its
execution, its memory space is released. This can be used by any other process. Thus, long-
term scheduling is performed at this time and the scheduler brings another job from the job
queue to the ready queue. The long-term scheduler is also requested when the CPU is idle for
more than a threshold time. This idleness of the CPU may be due to unavailability of a pro-
cess or other reason. At this time again, the long-term scheduler brings another process to be
executed. In this way, the degree of multi-programming can be controlled through the use of
long-term scheduling.

In a multi-user time-sharing environment, however, the users want quick response. There-
fore, there is no provision for waiting in a queue for new users. Every user, when connected to
the system, will get space in the memory. Thus, there is no role of long-term scheduler in these
types of systems. But there will be a maximum limit, allowing the number of users to connect to
the system, that is, the number of user processes that would be accommodated in the memory.
When this limit is crossed, a new user is not allowed to connect.

Long-term scheduling is not frequent. After allowing a limited number of processes in the
memory, there is no need to perform scheduling, because the admitted processes are busy in
executing through the use of multi-programming concept. The criteria used to perform schedul-
ing, such as to increase the degree of multi-programming and when a process finishes is not so
frequent. Hence the name, long-term scheduling.

6.4.2 Medium-term Scheduling

In some systems, there is provision for medium-term scheduling. It is not necessary that a pro-
cess in the ready queue will get the CPU. If its requirement of resources is known in advance,
and if it cannot be fulfilled immediately, it would be better to send the process on the disk to
optimize memory requirements. There may also be the case that at a particular instant of time
in the system, all the processes need 1/0, that is, all the processes are blocked and are wait-
ing for some event to happen, and no process is under execution. In this case, it is necessary
to bring in some process that is ready for execution. But if there is no space in the memory,
space is to be freed, so that a new process can enter. The best way is to swap out a blocked
process. The swapped-out processes are known as suspended processes. There is another queue
called blocked-suspend queue, for this purpose in the disk. The task of swapping the pro-
cess from blocked queue to blocked-suspend queue is performed by a medium-term scheduler
(see Fig. 6.10). The memory manager takes the decision to swap-out a process from memory.
When there is a signal of completion of an I/O, for which the process is blocked and presently
is in the suspend queue, the state of process is changed to ready-suspend and moved to the

Ready queue

Blocked-suspend
v queue

LI —TTT+—TTT]

Ready-suspend
queue

Blocked queue

Fig. 6.10 Medium-term scheduling

138 Principles of Operating Systems

ready-suspend queue. This task of moving a process from blocked-suspend queue to ready-
suspend queue is also performed by the medium-term scheduler. Hence, the task of performing
swap-out and swap-in is known as medium-term scheduling.

Whenever the suspended process is swapped out on the disk, there are two choices for bring-
ing in a process, which is ready for execution. First is a suspended process from the suspend
queue, which is now ready for execution. Second, a new process from the job queue can be
scheduled and sent to the ready queue. However, the new job from the job queue will increase
the load of the system. The second choice is only valid if we want to increase the degree of
multi-programming of the system, otherwise, the first choice is preferred.

The frequency of this type of scheduling is not as low as that of long-term scheduling, and
is not as frequent as that of short-term scheduling. A process may travel through phases of
blocking, suspension, and execution very frequently. Therefore, in the multi-programming en-
vironment, if there is a single chance of a process being blocked and suspended, even then the
frequency of this type of scheduling will be more as compared to long-term. This is the reason
that this type of scheduling is known as medium-term scheduling.

6.4.3 Short-term Scheduling

This is the last level of scheduling. When the processor has no process to execute and there
are several processes ready, waiting in the ready queue, then the type of scheduling performed
to select a process and dispatch it to the processor is known as short-term scheduling (see
Fig. 6.11). The scheduler, after selecting the process from the ready queue, passes the informa-
tion about this process on to the dispatcher function. The dispatcher, after finding the location
of PCB of the process, loads the PSW and other registers in the processor and execution of this
process starts. Due to loading of these registers, the process may resume its work from the point
where it was blocked, or suspended, or its time slice expired in the past and could not complete
its execution.

Short-term scheduling is very frequent. A process goes through many events as discussed in
Chapter 5. These events do not allow it to complete its execution in one go. Therefore, the pro-
cess is stopped temporarily from execution and is sent to the ready queue again. So, it needs to
compete for the processor again and wait for its execution. In this way, a process is interrupted
many times and it goes back to the ready queue again and again. This is the reason behind the
high frequency of short-term scheduling. Obviously, the frequency of this type of scheduling is
very high as compared to the other two types of scheduling. This is why this type of scheduling
is called short-term. There are many instances which lead to short-term scheduling. Some of
them are shown in Fig. 6.12.

Since short-term scheduling is performed in response to various events, which cause inter-
ruption to a running process, the scheduling decision cannot be the same. The scheduling deci-
sion is based on the event occurrence and the data structures associated with a process. The
scheduling mechanisms by which a process is selected from the ready queue are called schedul-
ing algorithms. These algorithms will be discussed later.

Ready
ueue

q
I... Processor

Fig. 6.11 Short-term scheduling

Ready
queue

Process Scheduling 139

Suspend Blocked 1

queue queue

> l—P Processor

Resource
or /O

wait

Resource
or l/O
completes

Time slice

expired

Create a
child

process

High priority
process
appears

Hardware

Fig. 6.12 Short-term scheduling decisions

6.5 SCHEDULING TYPES

Interrupt

Error/exception
in the process

»

Exit

The scheduling of processes is based on two broad categories. When a process is assigned to
the processor, it is allowed to execute to its completion, that is, a system cannot take away the
processor from the process until it exits. In that case, it is called non-pre-emptive scheduling.
In this type of scheduling, the process may also voluntarily release the processor, for example,
when the process needs to wait for an I/O. Thus, a new process will be allocated to the proces-
sor, only if the running process completes its execution or gets blocked due to a resource or I/O.

On the other hand, if a running process is interrupted in between, even if it has neither vol-
untarily released the processor nor exited, it is known as pre-emptive scheduling. In this type of
scheduling, the system may stop the execution of the running process and after that, the context

140 Principles of Operating Systems

switch may provide the processor to another process. The interrupted process is put back into
the ready queue and will be scheduled sometime in future, according to the scheduling policy.
Pre-emption can be done in the following situations:

1) When a new process with higher priority, as compared to the running process, arrives in the
ready queue.
i1) When a resource or I/O is released, interrupt occurs, and due to this, a blocked process ar-
rives in the ready queue.
iii) A timer interrupt occurs. The timer interrupt may be used for two purposes. One is a periodic
timer to implement a multi-user time-sharing system to give response to every user. The other
timer interrupt may be for a process which maliciously or accidentally holds the processor.

Pre-emptive scheduling is helpful in systems like real-time systems, where a high priority pro-
cess needs the processor immediately, failure of which may cause a catastrophe. However, the
success factor for pre-emptive scheduling in real-time systems is the assignment of priorities to
various processes. Higher priorities must be given only to critical modules so that the critical
processes will only pre-empt the running process, otherwise the purpose of the real-time system
is lost. Similarly, pre-emptive scheduling is used in multi-user time-sharing systems, where
every user wants a quick response. As discussed above, it needs a timer interrupt, implemented
with the help of a timer clock, which sends the interrupt to a running process after a fixed period
of time, so that every user process gets a fixed execution time.

Pre-emptive scheduling is better than non-pre-emptive scheduling, because it provides bet-
ter management of processes and does not allow the processes to hold the processor for a long
time. However, it incurs the cost in its implementation. Besides the requirement of timer clock,
it needs to perform context switching many times. While saving the context of the interrupted
process and loading the context of a new process, the processor is idle. Thus, a high number
of context switches in a system may degrade the performance of the system. Another factor in
the implementation of pre-emptive scheduling is that a running process may be interrupted in
between data modification. At this time if we save the context, and the uncompleted modified
data are used by other processes, there may be chaos. For this purpose, the OS must be designed
in such a way that the interrupt should not be serviced, unless the interrupted process has not
completed its critical work, like modification of data.

6.6 PROCESS-SCHEDULING GOALS

After studying the basics of process-scheduling, now it is time to design various scheduling
algorithms, according to which a process will be scheduled from its queue and dispatched to
the processor. Here, the question that arises is the reason why we need to design an algorithm
for the scheduling. The process could be selected on the basis of the order as they arrive in
the queue. But that would not suffice, keeping in view the system’s performance. In general,
we want to optimize the behaviour of the system. And this behaviour may depend on various
general factors such as throughput, response time, and so on. Some are also based on environ-
mental factors such as real-time response in real-time environment. So, first we need to look at
a set of criteria which decide the objectives or goals for design of scheduling algorithms. Once
these criteria are fixed, these algorithms may be evaluated.

The goals of scheduling may be categorized as user-based scheduling goals and system-
based scheduling goals. User-based goals are the criteria that benefit the user. A user has some
expectation while working on a system. For example, a user in a multi-user environment expects

Process Scheduling 141

the system to give quick response to the job. System-based goals are the criteria that benefit
the system, that is, performance of the system. For example, how much the processor is being
utilized in processing the processes. Let us discuss these two categories of scheduling goals.

6.6.1 User-based Scheduling Goals

Let us discuss some of the user-based scheduling goals in detail:

Turnaround Time

The time elapsed between the submission of a job and its termination is called the turnaround
time. Turnaround time includes all time periods, such as time spent in waiting for getting entry
in the ready queue, waiting time in the ready queue, execution time, waiting time for any
resource or I/O, and so on. It is the sum of all these time periods. In other words, turnaround
time of a process is

t=wt+x

where ¢_is turnaround time of a process,

wt is waiting time of the process in the ready queue,

and x is the total service or execution time of the process

The scheduling algorithm should be designed such that the turnaround time is minimum, so
that a process need not wait long in the system and performs its functions on time.

If turnaround time is divided by the execution time of the process, it becomes weighted or
normalized turnaround time.

Wi =1t/x

Where Wi is weighted or normalized turnaround time.

Wi _is the indication of the service a process is getting. The minimum possible value of Wi,
is 1, which means that the process does not wait and gets the execution immediately. Increas-
ing values indicate the delay in getting the processor or poor service. Thus, Wz _should also be
minimized while designing the scheduling algorithm.

Waiting Time

A process spends its time in the ready queue and gets execution as per the scheduling policy.
Waiting time is the total time spent in the ready queue by a process. It includes all the time
periods, starting from its arrival in the ready queue to its completion. The scheduling policy
should be such that the waiting time is less, so that it does not wait too much in the ready queue
and gets execution.

Response Time

In multi-user and multi-tasking systems, the user processes are of interactive nature, that is,
they need attention immediately. Thus, response time is another important criterion from the
user’s viewpoint. It may be defined as the time period between the time of submission of a
process and the first response given by the process to the user. The scheduling algorithm must
be designed such that the response time is within an acceptable range.

Predictability

While working on the system, the human mind is able to predict the processing of some pro-
cesses. But sometimes, a process takes a long time due to loading or some other reason. The
scheduling algorithm should take care that a process does not take too long in processing as
compared to the predictable behaviour of the processes.

142 Principles of Operating Systems

Deadlines

Predictability is a feature based on which a user expects a process behaviour. But in real-time
systems, there are fixed deadlines for completing the processing by a process. So a user knows
very well, quantitatively, that a process would complete its work in a specific time period. If a
process is not able to complete its work within the deadline, then the purpose of the real-time
system is lost. For example, if a process in a system is handling RADAR data received from
sensors and is not able to complete the processing of signals within its deadlines, then RADAR
data will be lost. Consequently, the system which is supposed to work on this data will not
work as a real-time system. So the scheduling algorithm must be designed such that real-time
processes will execute within their deadlines.

6.6.2 System-based Scheduling Goals

Some system-based scheduling goals are discussed in detail in the following list:

Throughput

This is a general metric used to measure the performance of two systems or a single system over
a time period. Throughput is the number of processes completed in a unit time. It indicates how
much work has been finished and what is left. Though throughput may be affected due to the
length of the processes, it is also affected by scheduling algorithms. So the process-scheduling
should be designed in a way such that throughput in a system is maximized. For example, the
performance of a system which completes four processes in one hour, is better than a system
which completes two processes in the same time-period..

CPU Utilization

The fundamental goal of scheduling is that the processor should be busy all the time. Multi-
programming, multi-tasking, and other concepts of OSs have been developed for specific
achievement of this objective. CPU utilization is the percentage of time that the CPU is busy in
executing the processes. Due to architectural development today, the CPU is very fast. It may
not be an important goal for some systems, but it may be important for a shared system, where
a processor and other resources are shared.

Fairness

One system objective in process-scheduling is that all processes should be treated in the same
way, unless there is some preference or priority for a specific process. Even if a priority scheme
is implemented in the system, the processes with lower priority should not be ignored. Other-
wise, the lower priority process may suffer from starvation. So the scheduling algorithm should
not allow any process to starve.

Balance

As we discussed in CPU utilization, there should be utilization of every resource in the sys-
tem. It should not be the case that some resources are underutilized and some resources are
busy. At a particular instant of time, all resources should be used in balance. For this purpose,
a good mix of CPU-bound and I/O-bound processes will help. If there are only CPU-bound
processes, then all I/O-processes will be idle. If all I/O-bound processes are selected, then

Process Scheduling 143

the processor will be idle. A proper mix of CPU-bound and I/O-bound processes ensures that
if a process executes and needs to wait for I/O, the system will switch to another process,
utilizing both processor and I/O devices. Some scheduling decisions can also be based on
the utilization of resources. For example, if there is only one slot empty for a process in the
memory, then the long-term scheduler will send one process to the memory, so that memory
is not underutilized.

6.7 SCHEDULING ALGORITHMS

After discussion of scheduling objectives, we now know the desired properties of a scheduling
algorithm. In general, a scheduling algorithm selects a process from the ready queue and the
dispatcher sends this process to the CPU for execution. The various scheduling algorithms
are discussed in the following sub sections. Gantt chart is used for showing the execution
of all the processes in the system at a timeline. The timeline depicts the start time and end
time of the execution of every process. Thus, it helps in judging the performance of every
process in the system.

6.7.1 First Come First Served (FCFS)

There is always a simple approach to maintain a queue, that is, the item that comes first will be
served first. It is in tune with this natural justice that people waiting in a queue will be served
according to their position in the queue. The person in first position will be served first. The
ready queue can also be maintained with this approach. The arriving process is added onto
the tail of the queue and the process at the head of the queue is dispatched to the processor
for execution. In this way, a ready queue is implemented as a linked list wherein the order
of arrival of the processes is maintained with the simple logic of first in, first out (FIFO). A
running process, if interrupted, is moved back to the ready queue and added onto the end/tail
of the queue. It means a process that has been interrupted by any means does not maintain its
previous order in the ready queue. Once it has been dispatched to the processor, it has no arrival
order. If it comes back in the queue, it acquires the last position. This scheduling policy is non-
pre-emptive because the process which has arrived first will be executed first to its completion.
Obviously, this scheduling policy is useful in batch systems, where the jobs of users are ordered
and executed as per their arrival time.

Let us take an example to understand how the processes are added and deleted from the
queue. Suppose there are four processes in the ready queue and they have arrived in the order
P1, P2, P3, and P4 (see Fig. 6.13). Now when the processor is free, the short-term scheduler
will select the process P1 in the queue to dispatch it to the processor, because it is the first pro-
cess at the head of the queue. So P1 will get the processor and start executing. Now there are
three processes in the system P2, P3, and P4 (see Fig. 6.14). Now suppose the running process
is interrupted and goes back to the ready queue. At this time, since P1 has been interrupted,
there is no process to execute. Therefore, the scheduler will take another process P2 from the
head of the queue (see Fig. 6.15). Since P1 has been placed in the ready queue again, so ac-
cording to the rule of FIFO queue, the arriving process will be added onto the tail of the queue.
Therefore, P1 will get the last place after P4, at the end of the queue.

Now let us illustrate the execution of this scheduling algorithm with the following example.

144 Principles of Operating Systems

Head Tail
P1 P2 P3 > P4 | —— Nul
Fig. 6.13 Ready queue of processes
Head Tail
P2 —» P3 > P4 —— Null
Fig. 6.14 Ready queue of processes: P1 gets execution
Head Tail
28 » P4 » P1 —— Null

Fig. 6.15 Ready queue of processes: P1 interrupted, P2 gets execution and P1 moves
back at the end of the queue

Example 6.1

Consider the following scenario of processes in a system:

Process Arrival time Execution time
P1 0 5
P2 2 4
P3 3 7
P4 5 6

Draw a Gantt chart for the execution of the processes, showing their start time and end time,
using FCFS algorithm. Calculate turnaround time, normalized turnaround time, and waiting
time for each process, and average turnaround time, average normalized turnaround time, and

average waiting time for the system.

Solution

Let us illustrate the execution of these processes in the Gantt chart as given in the following
space.

P1

P2

P3

P4

0

16 22

Process Scheduling 145

Table 6.1 Performance metrics for Example 6.1

Process Arrival Execution Turnaround Normalized turn- Waiting
time time (x) time (t) around time (t /x) time
P1 0 5 5 1 0
P2 2 4 7 1.75 3
P3 3 7 13 1.85 6
P4 5 6 17 2.84 11
Average Average normalized Average
turnaround turnaround time = 1.86 waiting
time = 10.5 time =5

The process P1 arrives at time 0 and completes at time 5. Therefore, its turnaround time is 5.
Similarly, for the process P2, it arrives at time 2 and finishes at time 9, since it waits for the
execution of P1 to complete. Hence, its turnaround time includes its wait time (3 units) and
processing time (4 units), making its turnaround time 7. In this way, turnaround times for all
processes and average turnaround time are shown in Table 6.1. Similarly the normalized turn-
around time for all the processes is also shown.

Another performance metric for the system is waiting time. For process P1, waiting time is
0 as it arrives at time 0 and gets processor at the same time. Similarly, waiting time for process
P2 is 3 unit time as it arrives at time 2 and gets processor at time 5. In this way, waiting time
for all processes and average waiting time for the system are shown in Table 6.1. Though FCFS
algorithm is simple to understand and implement, it may not be a good choice for multi-user or
real-time systems, where quick response is expected. Example 6.1 shows that short processes
also have high turnaround and high normalized turnaround times. Similarly, the waiting time for
shorter processes is also high. It is obvious that short processes suffer due to long processes. It
may also be the case that some important processes arriving late may suffer, as the processor is
busy executing some unimportant process, which has arrived earlier. Thus, it can be said that
FCEFS algorithm may be better for longer processes as compared to shorter processes.

6.7.2 Priority Scheduling

In a computer system, all processes cannot be treated equally with FCFS policy. In some sys-
tems like real-time systems, each process is well defined with its functionality. It has a priority
in the system, according to the importance of its functionality. It means the arrival of the pro-
cesses does not matter. If a process with higher priority has arrived late or at its defined time,
then it will be executed first according to its priority. For example, consider a process with low
priority, whose job is to compute some data. At this time, a process which brings sensor data
will pre-empt the first process, because if the sensor data are not processed at the right time,
data are lost, and so will be the purpose of a real-time system.

The question is how to give priority to the processes. In real-time systems, the priorities are
defined as a number associated with a process. This number scheme is also different in vari-
ous OSs. Some systems follow lower numbers as higher priorities and others follow higher
numbers as higher priorities. In general, lower numbers are considered as high priorities. For
example, there are three processes as: P1 with priority 1, P2 with 6 and P3 with 8. In this case,
P1 has the highest priority and P3 has the lowest priority.

146 Principles of Operating Systems

There can be other methods to attach priorities to the processes. For example, processes can
be prioritized based on their execution time. The drawback of FCFS scheduling can be mitigated
using this priority scheme. The processes with shorter execution times will be executed first. Simi-
larly, another priority scheme can be to give preference to those processes which have the shortest
remaining execution time. All these priority schemes are discussed in the subsequent sections.

Priority Number-based Scheduling

In this type of scheduling, preference is given to the processes, based on a priority number
assigned to it. This scheduling scheme is generally used in real-time systems and is of pre-
emptive nature. It can be non-pre-emptive as well, but in real-time systems it makes no sense.
We will follow the priority number scheme as low number means high priority and pre-emptive
version of this type of scheduling. Let us understand this algorithm with an example.

Example 6.2
Consider the following scenario of processes with their priority:
Process Arrival time Execution time Priority
P1 0 5 2
P2 2 4 1
P3 3 7 3
P4 5 6 4

Draw the Gantt chart for the execution of the processes, showing their start time and end time,
using priority-number based scheduling. Calculate turnaround time, normalized turnaround
time, waiting time for each process, and average turnaround time, average normalized turn-
around time, and average waiting time for the system.

Solution

Let us illustrate the execution of these processes in the Gantt chart as shown in the following
space.

P1 P2 P1 B3 P4
0 2 6 9 16 22
Table 6.2 Performance metrics for Example 6.2
Process Arrival Execution Priority Turnaround Normalized Waiting
time time(x) number time (t) turnaround time
time (t/x)
P1 0 5 2 9 1.8
P2 2 4 1 4 1
P3 3 7 3 13 1.85
P4 5 6 4 17 2.84 11
Average Average nor- Average
turnaround malized turn- waiting
time =10.75 around time time =
=1.87 5.25

Process Scheduling 147

The process P1 arrives at zero and executes until P2 arrives at time 2. Since P2 has higher prior-
ity, P1 is interrupted and P2 gets execution. After the completion of P2 at time 6, execution of
P1 is continued and it finishes at time 9 Hence, its turnaround time is 9. For P2, the turnaround
time is 4. In this way, turnaround of all processes can be calculated as shown in Table 6.2. The
waiting time for P1 is 4. For calculating this, consider the starting time of the last execution of
the process. Now subtract the finishing time of the previous execution of the process, if any, and
its arrival time. For P1, the starting time of last execution is 6, the previous execution is from 0
to 2 and its arrival is at 0. Therefore, its waiting time is 6 —2 — 0 = 4. Similarly for process P2,
wt=2-0-2=0. See Table 6.2 for all the calculated metrics.

Example 6.3
Consider the following scenario of processes with their priority:
Process Arrival time Execution time Priority number
P1 0 3 3
P2 2 7 4
P3 3 5 1
P4 5 9 2

Draw the Gantt chart for the execution of the processes, showing their start time and end time,
using priority-number based scheduling. Calculate turnaround time, normalized turnaround
time, waiting time for each process and average turnaround time, average normalized turn-
around time, and average waiting time for the system.

Solution

Let us illustrate the execution of these processes in the Gantt chart as shown in the following
space.

P1 P3 P4 P2
0 3 8 17 24

In this example, process P1 appears first in the system and starts executing. During its execu-
tion, P2 arrives at time 2, but it does not get the processor because its priority is low compared
to that of P1. After the full execution of P1, at time 3, P3, having the highest priority, arrived
and therefore, gets the execution. By the time, P3 completes its execution, P4 has also arrived.
Now all the processes except P1, compete for the processor. They get the execution according
to their priority numbers.

All calculated performance metrics are shown in Table 6.3.

Shortest Process Next (SPN)

Another way to prioritize the processes is to run the processes with shorter execution times.
This policy will overcome the drawback of FCFS that favoured long processes. In this algo-
rithm, at an instant of time, the processes are compared based on their execution times.
The process with the shortest execution time is executed first. This is a non-pre-emptive
scheduling algorithm. This means that if a process with the shortest execution time appears,
even then it cannot pre-empt a process with longer execution time. Since the preference is
based on the execution time of processes, the shorter processes will be executed earlier,

148 Principles of Operating Systems

Table 6.3 Performance metrics for Example 6.3

Process Execution Arrival Priority Turnaround Normalized Waiting
time (x) time number time (t) turnaround time
time (t /x)
P1 3 0 3 3 1 0
P2 7 2 4 22 3.14 15
P3 5 3 1 5 1 0
P4 9 5 2 12 1.34 3
Average Average Average
turnaround normalized waiting
time =10.5 turnaround time=4.5
time = 1.62

thereby increasing the response time of processes. In comparison with FCFS, more number
of processes will start responding and therefore, the performance of the system, in terms of
response time, will increase.

One problem in the implementation of this algorithm is that we must know the
execution time of every process in advance, so that comparison of processes can be
done. But it is not possible practically. We will discuss this problem in the next schedul-
ing algorithm.

Let us understand this algorithm with an example.

Example 6.4

Consider the following scenario of processes:

Process Arrival time Execution time
P1 0 5
P2 2 4
P3 3 7
P4 5 6

Draw the Gantt chart for the execution of the processes, showing their start time and end time,
using SPN scheduling. Calculate turnaround time, normalized turnaround time, waiting time
for each process and average turnaround time, average normalized turnaround time, and aver-
age waiting time for the system.

Solution

Let us illustrate the execution of these processes in the Gantt chart as shown in the following
space.

P1 P2 P4 P3
0 5 9 15 22

P1 starts at 0 and P2, which appears at 2, is of shorter execution time. But it cannot start
until P1 finishes, since SPN is a non-pre-emptive scheduling algorithm. During this period,
P3 and P4 have also appeared. It means now there are three processes P2, P3, and P4 in the

Process Scheduling 149

Table 6.4 Performance metrics for Example 6.4

Process Execution Turnaround Normalized turnaround Waiting time
time (x) time (t) time (t /x)

P1 5 5 1 0

P2 4 7 1.75 3

P3 7 19 2.7 12

P4 6 10 1.67 4
Average Average Average
turnaround normalized turnaround waiting
time =10.25 time =1.78 time =4.75

ready queue. But P2 will be executed first at time 5, as it has the shortest execution time
among all the processes. After P2 finishes the execution at 9, P4 gets preference over P3,
as shown in the Gantt chart. All calculated performance metrics are shown in Table 6.4.

Shortest Remaining Time Next (SRN)

This algorithm also considers the execution time of processes as in SPN. But it is a pre-emptive
version of SPN. It means, here, we can pre-empt a process based on the execution time. The
process with the shortest execution time will always pre-empt other processes. Since the pro-
cesses may not be able to complete their execution as they may be pre-empted, the preference
for pre-emption will be based on the remaining execution time of processes. Let us see one
example of this scheduling.

Example 6.5
Consider the following scenario of processes:
Process Arrival time Execution time
P1 0 9
P2 1 5
P3 2 3
P4 3 4

Draw the Gantt chart for the execution of the processes, showing their start time and end time,
using FCFS, SPN, and SRN scheduling. Calculate turnaround time, normalized turnaround
time, waiting time for each process and average turnaround time, average normalized turn-
around time, and average waiting time for the system.

Solution
FCFS
P1 P2 P3 P4

150 Principles of Operating Systems

Table 6.5 Performance metrics for Example 6.5 (FCFS)

Process Arrival Execution Turnaround Normalized turn- Waiting
time time (x) time (t) around time (t /x) time
P1 0 9 9 1 0
P2 1 5 13 2.6 8
P3 2 3 15 5 12
P4 3 4 19 4.75 14
Average Average normal- Average
turnaround ized turnaround waiting
time =14 time = 1.86 time = 8.5
SPN
P1 P3 P4 P2
0 9 12 16 21
SRN

Process P1 gets the execution as it arrives first. At time 1, P2 arrives, and its execution time is
less than that of P1. Therefore, P2 pre-empts P1 and gets the execution. Similarly, P3 pre-empts
P2 as the execution time of P3 is less than that of P2. P3 completes its execution as its execu-
tion time is less than others. At time 5, there are two processes P2 and P4 having execution
time 4. In this case, we adopt FCFS scheduling. Therefore, P2 is given chance to execute. After
completion of P2, P4, and then P1, get execution.

P1P2| P3 P2 P4 P1
01 2 5 9 13 21

Table 6.6 Performance metrics for Example 6.5 (SPN)

Process Arrival Execution Turnaround Normalized turn- Waiting
time time (x) time (t) around time (t /x) time

P1 0 9 9 1 0
P2 1 5 20 4 15
P3 2 3 10 3.34 7
P4 3 4 13 3.25 9

Average Average normal- Average

turnaround ized turnaround waiting

time =13 time = 2.89 time =7.75

Process Scheduling 151

Table 6.7 Performance metrics for Example 6.5 (SRN)

Process Arrival time Execution Turnaround Normalized turn- Waiting time
time (x) time (t) around time (t /x)

P1 0 9 21 2.34 12

P2 1 5 8 1.6 3

P3 2 3 3 1 0

P4 3 4 10 25 6

Average Average normal- Average

turnaround ized turnaround waiting time
time =10.5 time = 1.86 =5.25

SRN is provably the best scheduling algorithm. In the above example, we can see that the aver-
age turnaround time and waiting time are reduced as compared to FCFS, thereby, increasing
the performance of the system. But again, we need to know in advance, the execution time of
every process as in SPN. Therefore, despite being the optimum scheduling algorithm, we can-
not use it. The only solution to this problem is to estimate the execution time for a process from
its past history of execution. Thus, this scheduling algorithm can be used if we have past data
of execution time of the processes, so that the next CPU burst of a process can be estimated.
While calculating, the recent past values must be given high weights as compared to older val-
ues, because recent values will reflect closer value of the actual burst time.
If recent observed burst time for a process is 7/, then its next estimated burst value will be
ot,+(l-0) 1,
where
o = weighting factor
t, = older burst value of the process.
If o= 0.4, then successive estimates will be
{,,2t,/5+31t,/5, 4t /25 + 6t,/25 +...
So we can say that
S, =at +(l-)ou, +...
Based on the past values on time series, the exponential average formula for predicting the next
CPU burst value of process may be given as:
S =ot +(1-0) S,
where
S ., = predicted value of next CPU burst
t = value of nth CPU burst, that is, recent information
S = past history information
o = constant weighting factor, and 0 < a < 1
In this equation, through the choice of ¢, we can quickly choose to forget the past data, or retain
the same for a longer time. For example if o= 0, then
Sn+1 = Sn
It means that the recent information has no effect, and we are considering past data.
Similarly if =1, then

152 Principles of Operating Systems

It means, only recent information is relevant and past data are ignored.
To have a balance between past data and recent data, we choose o= 1/2.
That is, S, =02 +(172)S,

Example 6.6

What will be the exponential average for predicting the next CPU burst value of a process, if
constant weighting factor is 0.2 and 0.7? Mention their significance as well.

Solution

Since S. =ot +(l-o)at +....
Putting = 0.2, we get
S,., =02t +0.16t +0.128t ,+0.1024¢
This equation indicates that the exponential average is distributed over some past values, that
is, past data are considered.
Putting o= 0.7, we get
S,.,, =0.7t +0.21t_, +0.063t _,+0.0189¢ _....
This equation indicates that the exponential average considers two recent values, and other past
data are given less weightage or are ignored.

6.7.3 Round Robin Scheduling

In multi-user time-sharing systems or multi-tasking systems, the requirement of scheduling is
different. In these systems, response time is the most important objective. It is quite obvious
that FCFS cannot be used for these systems, because it does not care about the response of
processes, and they are processed according to their arrivals. It may be possible that a process
arriving late may not get response for a long time, if processes arriving earlier are of long
processing times. Shortest process next or shortest remaining time next algorithms can be
beneficial sometimes, but not always, because they also suffer from starvation. Long processes
may need to wait for a long period, again resulting in no response from the process. Thus, the
above discussed algorithms cannot be applied for systems, where quick response time is a
highly desirable feature.

Since the concept of multi-user and multi-tasking systems is to share the processor time
among processes, we can design the algorithm such that each arriving process gets the same
amount of time for execution. If each process gets same processor time, the response will be
equally good for all the processes, and neither the short nor long process will suffer from starva-
tion. But how will you design the ready queue then? The ready queue can be of the same pattern
as that of FCFS, that is, FIFO queue. The only issue is that when one process is executing and
its fixed allotted time finishes, it must be temporarily stopped, and the processor must be given
to the next process in the queue. In this way, every process gets equal time for execution, and
no process can hold the processor for a long time.

But what happens to a process which has been stopped, because its time period has expired
but its execution has not been completed. There are some design issues which must be resolved.
These are discussed with the functioning of the algorithm:

1) The ready queue is maintained as a FIFO queue.
ii) A fixed time period is allotted to every arriving process in the queue. This fixed time period
is known as time slice or time quantum.

A 4

P1

P2

P3

P4

b P5

Time quantum
q for every
process is
equal

Fig. 6.16 Round robin scheduling

Process Scheduling 153

iii) The first arriving process is selected and dispatched to

the processor. But if it is not able to complete its execu-
tion within its time slice, then an interrupt is generated
with the help of the timer.

iv) As soon as the timer interrupt arrives, the running process

is stopped temporarily, and is placed back in the ready
queue at the end of the queue (see Fig. 6.16). The context
of the interrupted process is saved, so that it can resume
when its turn comes in the future.

v) The scheduler selects another process from the queue

and dispatches it to the processor. It is executed until the
allotted time slice expires.

vi) In this way, scheduling is done in a round robin fashion, such that processes are executed
for a fixed time slice again and again, unless all the processes are finished with their execu-

tion as shown in the figure.

Sometimes a process may finish its execution before the time slice expires. Will the timer
complete its full time slice and then send the interrupt signal? No, it does not happen that way.
There is time wastage in this design if a timer completes its time slice, even when a process
has finished earlier than the time slice. Therefore, the design is such that whenever a process
finishes before the time slice expires, the timer will stop and send the interrupt signal, so that

the next process can be scheduled.

The RR scheduling is simple and the overhead in decision-making is very low. It is the best
scheduling for achieving good and, relatively evenly, distributed terminal response time.
Let us understand this algorithm with some examples.

Example 6.7
Consider the following scenario of processes with time quantum = 2:
Process Arrival time Execution time
P1 0 9
P2 1 5
P3 2 3
P4 3 4

Draw the Gantt chart for the execution of the processes, showing their start time and end time,
using round robin scheduling. Calculate turnaround time, normalized turnaround time, waiting
time for each process and average turnaround time, average normalized turnaround time, and

average waiting time for the system.

Solution

Let us illustrate the execution of these processes in the Gantt chart as shown in the following

space.

P1

P2

P3

P4

P1 P2 |P3| P4 P1 |P2|P1|P1

10 12 13 15 17 18 20 21

154 Principles of Operating Systems

Table 6.8 Performance metrics for Example 6.7

Process Arrival Execution Turnaround Normalized turn- Waiting
time time (x) time (t) around time (t /x) time
P1 0 9 21 2.34 12
P2 1 5 17 34 12
P3 2 3 11 3.67 8
P4 3 4 12 3 8
Average Average normal- Average
turnaround ized turnaround waiting
time = 15.25 time = 3.10 time =10

Every process gets time slice of 2 unit times and hence, every process gets pre-empted after 2
unit times. At time 12, P3 is left with only 1 unit time execution, so it completes its execution
at time 13. Then, the timer sends the interrupt signal and P4 starts execution.

All calculated performance metrics are shown in Table 6.8.

Example 6.8
Consider the following scenario of processes with time quantum = 2:
Process Arrival time Execution time
P1 0 5
P2 2 3
P3 3 2
P4 5 7

Draw the Gantt chart for the execution of the processes, showing their start time and end
time, using round robin scheduling. Calculate turnaround time, normalized turnaround time,
waiting time for each process and average turnaround time, average normalized turnaround
time, and average waiting time for the system.

Solution

Let us see the execution of these processes in the Gantt chart as shown in the following
space.

P1 P2 P3 P4 P1 [P2| P4 | P1| P4 |P4
0 2 4 6 8 1011 13 14 16 17

The time quantum used in the round robin scheduling plays an important role in its perfor-
mance. If the time quantum chosen is very large, it will be as good as the FCFS algorithm. The
rule is that 80% of CPU bursts should be smaller than the time quantum. On the other hand,

Process Scheduling 155

Table 6.9 Performance metrics for Example 6.8

Process Arrival Execution Turnaround Normalized turn- Waiting
time time (x) time (t) around time (t /x) time
P1 0 5 14 2.8 9
P2 2 3 9 3 6
P3 3 2 3 1.5 1
P4 5 7 12 1.7 5
Average Average Average
turnaround normalized waiting
time =9.5 turnaround time =
time = 2.25 5.25

if it is too small, then there will be a large context switch time because after every time quan-
tum, process switching will occur. The context switch time should not be more than the time
quantum. Therefore, time quantum should be selected such that context switch time is a small
fraction of time quantum. For example, if there are six processes of burst time of 1 unit time and
time quantum is 1, then there will be five context switches. If time quantum is two, then there
will be two context switches. In this way, the size of time quantum affects the performance of
the system, if context switch time increases.

It can be concluded that we cannot choose time quantum as too large or too short, because in
both cases the performance of the algorithm will be degraded. Thus, it should be selected in a
balanced range, keeping in view the two rules:

Rule 1: 80% of the CPU bursts should be smaller than the time quantum.
Rule 2: Context switch time is nearly 10 % of time quantum.

If the time quantum is selected optimally, then besides the context switch time reduction, the
processes need not wait long for their execution and get more service as compared to a bad
choice of time quantum. Therefore, it results in reduction of turnaround time, normalized turn-
around time, and waiting time. In Example 6.8, if we take time quantum as five instead of two,
then it reduces context switches as well as turnaround time, normalized turnaround time, and
waiting time. Let us again solve Example 6.7 with time quantum five.

Example 6.9
Consider the following scenario of processes with time quantum = 5:
Process Arrival time Execution time
P1 0 9
P2 1 5
P3 2 3
P4 3 4

156 Principles of Operating Systems

Table 6.10 Performance metrics for Example 6.9

Process Arrival Execution Turnaround Normalized turn- Waiting time
time time (x) time (t) around time (t /x)
P1 0 9 21 2.34 12
P2 1 5 9 1.8 4
P3 2 3 11 3.67 8
P4 3 4 14 3.5 10
Average turn- Average normalized Average
around time turnaround time waiting time
=13.75 =2.82 =85

Draw the Gantt chart for the execution of the processes, showing their start time and end time,
using round robin scheduling. Calculate turnaround time, normalized turnaround time, and
waiting time for each process and average turnaround time, average normalized turnaround
time, and average waiting time for the system.

Solution

Let us illustrate the execu- P1 P2 P3
tion of these processes in
the Gantt chart as shown in |0 5 10 13 17 21
the following space.

P4 P1

Example 6.10

If there is n number of processes in a system and t is the time quantum, what is the maximum
time a process needs to wait for its execution?

Solution

Suppose t =2
n=>5
Let us take P1. After first execution of P1, it needs to wait for all four processes to complete,
that is, 8 time units. For P35, it needs to wait for 8 time units for its first execution. It means, in
this example, waiting time of every process cannot be more than 8 time units.
We can generalize that the maximum waiting time of a process in round robin is
w=(n-1) *t

| Pt | P2 [P3 | P4 | P5 |

6.7.4 Improved Round Robin Scheduling

Round robin scheduling was developed to provide a uniformly-distributed execution time
to every process, so that all of them respond equally. But in this scheduling, waiting time of
processes, and thereby, average waiting time of the system increases. A long process needs
to wait for more time. Moreover, a process with very short execution time, but more than
the time quantum, may also wait for a complete cycle of execution. It means that both long
and short processes may suffer from this type of scheduling. If we know the total estimated

Process Scheduling 157

execution time for each process, we can calculate the ratio of actual CPU time consumed by
the process to the total estimated time allowed to the process.

CPU consumption ratio = Actual CPU time consumed/total estimated execution time

This ratio will provide us the scenario about which long processes need attention, that is, their
waiting time need to be reduced. So the process, which has minimum CPU consumption ratio,
will be selected next for the scheduling. The scheduling interval will be the same as that of
round robin, that is, after every time quantum. But what about the short processes? The CPU
consumption ratio of short processes will be high very soon. So they will not be scheduled and
need to wait for a long time. To accommodate short processes, we need to take another condi-
tion into consideration. If CPU consumption ratio of a process is greater than 0.6, it will be
selected next. Thus, the combined rule for scheduling becomes:

Schedule a process if its CPU consumption ratio is greater than 0.60, else schedule a pro-
cess whose CPU consumption ratio is minimum.

Let us see with an example how it has improved the response time and the waiting time of the
process.

Example 6.11

Consider the following scenario of Process Arrival time Execution time
processes with time quantum = 2.

Draw the Gantt chart for the execution P1 0 °

of the processes, showing their start P2 1 5

time and end time, using improved P3 2 3
round robin scheduling. Calculate turn- P4 3 4

around time, normalized turnaround
time, and waiting time for each process and average turnaround time, average normalized turn-
around time, and average waiting time for the system. Compare all the metrics with round robin
scheduling.

Solution

To draw Gantt chart of this example, we need to calculate the CPU consumption ratio and
decide which process will be selected after every interval. Table 6.11 shows the CPU consump-
tion ratio and the next process selected.

Table 6.11 CPU consumption ratio for Example 6.11

Time Actual CPU time consumed/CPU time entitled Process selected

for next execution
P1 P2 P3 P4

0 - - - - P1

2 2/9=0.23 0 0 - P2

4 2/9=0.23 2/5=04 0 0 P3

6 2/9=0.23 2/5=04 2/3 =0.67 0 P4

8 2/9=0.23 2/5=0.4 2/3 =0.67 2/4=0.5 P3

9 0.23 0.4 3/3=1 0.5 P1

(Contd)

158 Principles of Operating Systems

(Table 6.11 Contd)

11 4/9 =0.45 0.4 - 0.5 P2
13 0.45 4/5=0.8 - 0.5 P2
14 0.45 5/5=1 - 0.5 P1
16 6/9 =0.67 - - 0.5 P1
18 8/9=0.89 - - 0.5 P1
19 9/9 =1 - - 0.5 P4
21 9/9 =1 - - -

Now we can draw the Gantt chart, using the information from Table 6.11.

P1 P2 P3 P4 (P3| P1|P2
0 2 4 6 8 9 11

P2
13 14

P1

P1

P1| P4
18 19 21

16

The performance metrics calculated are shown in Table 6.12. This table shows the improve-
ment in waiting time.

6.7.5 Highest Response Ratio Next (HRRN) Scheduling

This is another algorithm that can reduce the shortcomings of round robin scheduling. As dis-
cussed earlier, round robin may favour short or long processes. Since in multi-user and multi-
tasking systems, each process must respond equally well, the idea is to consider the response
time in the scheduling decision. Let,

Response ratio = Time elapsed in the system / CPU time consumed by the process

This response ratio will be able to indicate how much service a process has received. Higher the
ratio, better will be the service received by the process. Therefore, scheduling decision will be:
Schedule a process which has the highest response ratio.

For a newly arrived process, response ratio will be high and it will be able to get the attention
of the processor. A process is allowed to execute until the response ratio of another process is
the highest. When a process is executing, other processes are waiting. It means the time spent

Table 6.12 Performance metrics for Example 6.11

Process Arrival Execution Turnaround Normalized turn- Waiting
time time (x) time (t) around time (t /x) time

P1 0 9 19 2.12 10
P2 1 5 14 2.8 8
P3 2 3 9 3 4
P4 3 4 21 5.25 14

Average Average normal- Average

turnaround ized turnaround waiting

time = 15.75 time = 3.10 time=9

Process Scheduling 159

by them in the system is increasing, thereby increasing the response ratio. Therefore, they will
also get the attention of the processor. In this way, this algorithm will be able to distribute the
processor time more fairly as compared to simple round robin scheduling algorithm. Let us

understand this algorithm with an example.

Example 6.12

Consider the following scenario of Process Arrival time Execution time
processes with time quantum = 1. P1 0 3

Draw the Gantt chart for the execution

of the processes, showing their start P2 2 3

time and end time, using RR and HRRN P3 3 2
scheduling. Calculate turnaround time, P4 5 4
normalized turnaround time, and wait- P5 7 2

ing time for each process and average

turnaround time, average normalized turnaround time, and average waiting time for the system.

Compare all the metrics with round robin scheduling.

Solution

Round Robin

Let us illustrate the execution of these processes in the Gantt chart given in the following space:
P1| P1| P2|P3|P3|P4|P4|P5|P1|P2|P4|P5|P2|P4

01 2 3 4 5 6 7 8 9 10 11 12 13 14

HRRN

To draw Gantt chart of this example, we need to calculate response ratio and decide which
process will be selected after every interval. Table 6.14 shows the response ratio and the next

process selected.

Table 6.13 Performance metrics for Example 6.12 (RR)
Process Arrival Execution Turnaround Normalized turn- Waiting time
time time (x) time (t) around time (t /x)
P1 0 3 9 3 6
P2 2 3 11 3.67 8
P3 3 2 2 1 0
P4 5 4 9 2.25 5
P5 7 2 5 2.5 3
Average Average normal- Average
turn- ized turnaround waiting
around time = 2.484 time =44
time =7.2

Table 6.14 Response ratio for Example 6.12 (HRRN)
Process
Time Response ratio = Time elapsed in the system/CPU time consumed by process]
for next
execution
P1 P2 P3 P4 P5
0 undef - - - - P1
1 1/1=1 - - - - P1
2 2/2=1 undef - - - P2
3 3/2=1.5 171 undef - - P3
4 4/2=2 2/1=2 171 - - P1
5 5/3=1.67 3/1=3 2/1=2 undef - P4
(completed)
6 - 4/1=4 3/1=3 1/1=1 - P2
7 - 5/2=2.5 4/1=4 2/1=2 undef P5
8 - 6/2=3 5/1=5 3/1=3 17 P3
9 - 7/2=3.5 6/2 4/1=4 2/1=2 P4
(completed)
10 - 8/2=4 - 5/2=2.5 3/1=3 P2
11 - 9/3=3 - 6/2=3 4/1=4 P5
(completed)
12 - - - 7/2=3.5 5/2=2.5 P4
(completed)
13 - - - 8/3=2.67 - P4
14 - - - 9/4 -
(completed)

swaysAg bunesadQ Jo sadioud 091

Process Scheduling

Let us see the execution of these processes in the Gantt chart:

P1|P1|(P2|P3|P1|P4 P5|P3|P4|P2|P5|P4|P4
01 2 3 4 5 6 7 8 9 10 11 12 13 14
Table 6.15 Performance metrics for Example 6.12 (HRRN)
Process Arrival Execution Turnaround Normalized turn- Waiting
time time (x) time (t) around time (t /x) time
P1 0 3 5 1.67 2
P2 2 3 9 3 6
P3 3 2 6 3 4
P4 5 4 9 2.25 5
P5 7 2 5 25 3
Average Average normal- Average
turnaround ized turnaround waiting
time = 6.8 time = 2.484 time =4
Example 6.13
Consider the following scenario of processes with time quantum = 4:
Process Arrival time Execution time
P1 0 18
P2 1 3
P3 2 4
P4 3 5
P5 4 3

161

Draw the Gantt chart for the execution of the processes, showing their start time and end time,
using FCFS, RR, improved RR, and HRRN scheduling. Calculate turnaround time, normalized
turnaround time, and waiting time for each process and average turnaround time, average nor-
malized turnaround time, and average waiting time for the system.

Solution
FCFS
P1 P2 P3 P4 P5
0 18 21 25 30 33

162 Principles of Operating Systems

Table 6.16 Performance metrics for Example 6.13 (FCFS)

Process Arrival Execution Turnaround Normalized turn- Waiting time
time time (x) time (t) around time (t /x)
P1 0 18 18 1 0
P2 1 3 20 6.67 17
P3 2 4 23 5.75 19
P4 3 5 27 5.4 22
P5 4 3 29 9.67 26
Average Average normal- Average
turnaround ized turnaround waiting
time =23.4 time = 5.689 time = 16.8
RR
P1 P2 P3 P4 | P5 | P1 (P4 P1
0 4 7 11 15 18 22 23 33
Table 6.17 Performance metrics for Example 6.13 (RR)
Process Arrival Execution Turnaround Normalized turn- Waiting
time time (x) time (t) around time (t /x) time
P1 0 18 33 1.84 15
P2 1 3 2 3
P3 2 4 2.25 5
P4 3 5 20 4 15
P5 4 3 14 4.67 11
Average Average normal- Average
turnaround ized turnaround waiting
time =16.4 time = 2.952 time=9.8
Improved RR
Table 6.18 CPU Consumption ratio for Example 6.13 (Improved RR)
Process
Actual CPU time consumed/CPU time entitled selected
Time
for next
execution
P1 P2 P3 P4 P5
0 Undef - - - - P1
4/18=0.23 Undef undef undef - P2

(Contd)

(Table 6.18 Contd)
7 0.23
11 0.23
15 0.23
18 0.23
19 0.23
23 8/18
27 12/18
31 16/18
33 18/18

3/3

(completed)

undef

4/4
(completed)

undef

undef

4/5=0.8
0.8

5/5
(completed)

Process Scheduling 163

Undef

undef

undef

3/3
(completed)

P3

P4

P5
P4

P1

P1
P1
P1
P1

6.7.6 Virtual Round Robin Scheduling

RR scheduling performs well and provides a uniformly distributed response time. However,
this might not always be true. If all processes are CPU-bound, then RR performs well, but

Table 6.19 Performance metrics for Example 6.13 (Improved RR)

Process | Arrival Execution Turnaround Normalized turn- Waiting
time time (x) time (t) around time (t /x) time

P1 0 18 33 5.5 15

P2 1 3 6 2 3

P3 2 4 9 2.25 5

P4 3 5 16 3.2 11

P5 4 3 14 4.67 11
Average Average normal- Average
turnaround ized turnaround waiting
time =15.6 time = 3.524 time =9

HRRN

164 Principles of Operating Systems

Table 6.20 Response ratio for Example 6.13 (HRRN)

Process
Response ratio = Time elapsed in the system/CPU time consumed by pro- selected
Time cess
for next
execution
P1 P2 P3 P4 P5
0 undef - - - - P1
4 4/4=1 undef Undef undef undef P2
7 7/4=1.75 6/3=2 Undef undef undef P3
(completed)
11 11/4=2.75 - 9/4 undef undef P4
(completed)
15 15/4=3.75 - - 12/4=3 undef P5
18 18/4=4.5 - - 15/4=3.75 com- P1
pleted
22 22/8=2.75 - - 19/4=4.75 - P4
23 23/8=2.875 - - 20/5 - P1
completed
27 27/12 - - - -
31 31/16 - - - -
33 33/18 - - - -
P1 P2 P3 P4 P5 P1 P4 P1
0 7 11 15 18 22 23 33
Table 6.21 Performance metrics for Example 6.13 (HRRN)
Process Arrival Execution Turnaround Normalized Waiting
time time (x) time (t) turnaround time
time (t /x)
P1 0 18 33 4.125 15
P2 1 3 6 2 3
P3 2 4 9 2.25 5
P4 3 5 20 4 15
P5 4 3 14 4.67 11
Average Average Average
turnaround normalized waiting
time = 16.4 turnaround time =9.8
time = 3.409

Process Scheduling 165

this is not practical. We have a mix of CPU-bound and I/O-bound processes. Since 1/O-bound
processes have very small executions in between the long I/O accesses, these processes are
not able to consume their time quantum in comparison with CPU-bound processes. 1/O-bound
processes, after executing for a very short period (less than the time quantum), are put into
I/O waiting queues. After I/O operation, they get back to the ready queue, but at the end of it.
Therefore, after every /O, they need to compete with all other CPU-bound jobs. In this way,
they are not able to consume their time quantum, while CPU-bound processes consume their
full time quantum. It results in the starvation of I/O-bound processes over CPU-bound pro-
cesses, because of the poor performance of I/O-bound processes. Moreover, no one can predict
the response time of these processes, that is, the variance of response time is increased. Finally,
due to this strategy, there is poor utilization of I/O devices.

To reduce this starvation of I/O-bound processes, a virtual round robin scheduling is adopted.
In this scheduling, CPU-bound processes are executed in the same fashion as discussed in RR
scheduling. Whenever this type of process reaches the head of the ready queue, it starts execu-
tion and consumes its time quantum. If it is not able to complete its execution within the time
quantum, it releases the processor, and is put back at the end of the ready queue, where it waits
for its next selection. But there is a difference in the working of I/O-bound processes. When
an I/O-bound process gets execution, it uses its time quantum partially and initiates an 1/O. It
releases the processor and waits in an appropriate device queue for its I/O access. As soon as
its I/O access is finished, it is put back at the end of the ready queue in RR scheduling. But here
in virtual RR scheduling, the process is not put back at the end of the ready queue, but at the
end of another queue called auxiliary queue. Auxiliary queue is the place where it will wait for
its next selection of execution. It means, now there are two queues: ready queue and auxiliary
queue. Auxiliary queue has been introduced so that I/O-bound processes, after completing
their I/O, need not compete with other processes. They will get preference over other processes
(see Fig. 6.17). It means, first of all, we need to provide priority-based scheduling among the
queues. The priority of auxiliary queue is higher, such that a process in this queue will get pri-
ority over a process in the ready queue. In this way, I/O-bound processes are not starved, and
there is fair distribution of processor time among all types of processes.

Time slice
finishes

Processor (———»

A 4

—{TT]

Ready queue

Auxiliary queue | | | | | 1/0 t «—
reques

A 4

completes :D

1/0 queue

Fig. 6.17 Virtual round robin scheduling

166 Principles of Operating Systems

The process at the head of the auxiliary queue gets the processor and runs till it finishes its
remaining time quantum. For example, if in a system, the time quantum is # milliseconds and
an 1/O-bound process uses its n milliseconds of time quantum, it initiates an I/O and waits on
the device queue. After getting a place in the auxiliary queue and consequently the processor,
it executes for 7-n milliseconds.

6.7.7 Multi-level Queue Scheduling

Virtual RR scheduling can be generalized further as multi-level queue scheduling. The basic
idea behind multiple queues is that all processes are not of the same nature. For example, we
have seen in virtual RR that there are two types of processes, namely CPU-bound and 1/0-
bound. Also that I/O-bound processes will suffer, if we treat both type of processes in the same
way and store them in a single ready queue. In this way, every process has a different nature
and different requirement of execution. For example, an interactive process needs immediate
attention and cannot wait. Therefore, this type of processes requires quick response time and
should be at the highest priority. Some processes are less important than interactive, but are of
short duration, so they must not wait for a long process. It means all processes have different
requirements of processing as well. The various categories of processes can be:

Interactive processes
Non-interactive processes
CPU-bound processes
[/O-bound processes
Foreground processes
Background processes

Thus, it can be concluded that all processes are not of the same nature, and so, should not
be stored in the same ready queue. Therefore, the idea of multi-level queue scheduling is to
partition the original ready queue into various queues and store every process according to its
category. Instead of designing a single ready queue storing all the processes, there is need to
design multiple queues with different levels. The different levels mean that the priority of each
queue is different. There are two types of scheduling in multi-level queue scheduling:

e Scheduling among the queues.
e Scheduling between the processes of the selected queue.

The queues can be designed according to the order of their priorities. Let us understand with
an example how multiple queues are designed and scheduled.

e Interactive processes demand very quick response time and have high priority. Therefore,
they are stored in the first queue.

e Some I/O-bound processes have short execution time, but are less important than the pro-
cesses in the first queue. These processes are stored in a second queue.

e There are some background processes which have long execution time and do not need any
interaction. These processes are of lowest priority and are stored in a third queue.

In this way, there are three queues designed in the system, based on their nature and processing
requirements, as shown in Fig. 6.18. Each queue has an absolute priority over the one after it.
It means, if there is a process in the first queue, any process of the second queue cannot execute
until the first queue is empty. Similarly, a process in the third queue cannot start until all the

Process Scheduling 167

Time quantum = 1

Priority 1 || | | || | | || | | |Interactive process queue

Time quantum = 2

Priority 2 || | | || | | || | | |I/O-boundprocessqueue

FCFS
Priority 3 || | | || | | || | | |Backgroundprocessqueue

Fig. 6.18 Multi-level queue scheduling

processes in the second queue have finished their execution. If an interactive process appears in
the system, when there is one background process running, then the new process will pre-empt
the background process, as it belongs to the higher priority queue. This is how scheduling is
performed among the queues.

Once a queue is selected, the second type of scheduling is done between the processes of
this queue. Any type of scheduling can be taken for this purpose, depending on the type of
queue. For example, round robin scheduling can be performed for first and second queues in
our example, as they expect equal response time and service. Since background processes in the
third queue have no such requirement of response time, they can be scheduled in FCFS order
(see fig. 6.18).

The scheme given for the set of queues in our example is just as per the needs of the pro-
cesses. Another scheme for the queue scheduling is to perform round robin scheduling in each
queue. It means every queue will get a fixed time slice for its processes, so that lower priority
processes do not starve. The time quantum for each queue may vary as per the requirement

Time quantum = 1

|| | | || | | || | | |Interactiveprocessqueue

Time quantum =5

Time quantum = 2

|| | | || | | || | | |I/O-boundprocessqueue

Time quantum = 10

FCFS
|| | | || | | || | | |Backgroundprocessqueue

Time quantum = 15

Fig. 6.19 Round robin scheduling among multi-level queues

168 Principles of Operating Systems

and type of the processes in the queue. For example, in queue 1 and queue 2, the time quantum
should be short as compared to the third one, as shown in Fig. 6.19.

6.7.8 Multi-level Feedback/Adaptive Queue Scheduling

Multi-level queue scheduling is one of the practical approaches that can be adopted in process-
scheduling. It favours short processes and I/O-bound processes. These suffer a lot in other
scheduling schemes, where a single ready queue is maintained and all types of processes reside.
Multi-level queue scheduling can solve the problems of starvation of some processes. How-
ever, the efficiency of multi-level queue scheduling is dependent on the categorization of pro-
cesses, based on their nature. It means we need to categorize the processes before they enter
into the system. We cannot judge the behaviour of any process before its execution, therefore,
we cannot categorize the processes in different queues.

In multi-level feedback queue scheduling, categorization is done on the basis of the feed-

back obtained from process behaviour. Here, the priority is decided based on the past execution
time. Each queue will be given a time quantum. The higher priority queue will get the shortest
time quantum, that is, the process entering the higher priority queue will get the shortest time
quantum. If the process is able to complete its execution within the time quantum allotted,
it is considered an interactive or I/O-bound or short process and resides in that queue only.
Otherwise it means it is not a short process and requires more time to finish. In that case, it
is moved to the next queue, where time quantum is more as compared to the first queue. If it
is able to complete its execution, then it is considered a process of medium priority and resides
in that queue only. But again if it is not able to complete its execution, it is moved to the next
queue that is the third queue, where the time quantum is more as compared to the second queue.
In this way, the process is demoted to the lower queue until it reaches the last queue designed
in the system. The CPU-bound long processes get equal response time, because initially they
get the processor in higher priority queues, and then get more time quantum in lower queues
after the execution of short processes. In this mechanism, the following events may happen at
every queue (see fig. 6.20):

Time quantum = 2

queve 1 [T T 1L L LI L] I—»P:"

Queue 2 Y Time quantum = 4
| | | | | | | | | | l_' Processor
FCFS |
Q A
veren | | | | | | | | | | | l_’ Processor [

Fig. 6.20 Feedback/Adaptive queue scheduling

Process Scheduling 169

e A process consumes its time quantum and finishes its execution.

e A process releases the processor when it either initiates an I/O or is pre-empted by a higher
priority process. In case of I/O, it is moved to the I/O queue and then to the end of its
queue . And in case of pre-emption, it is moved back to the end of its queue.

e A process consumes its time quantum, but is not able to complete its execution within that
time, and therefore, it is moved to the next lower queue.

As in multi-level queue scheduling, the scheduling of queues can be based on fixed priority
or the time quantum. And the scheduling of processes in the queues may be based on the RR
scheduling, providing time quantum to each process. The time quantum is inversely propor-
tional to the priority of the queue: the lower the priority, the higher the time quantum.

One drawback in this mechanism is that if there are new processes arriving in the system
which are of short execution time requirement, they will always pre-empt other processes,
especially long processes which are residing in lower priority queues. Therefore, there are
chances that these processes may starve for execution. Another problem here is that processes
may change their behaviour. It is not necessary that a long CPU-bound process will always re-
main the same; it may become an I/O-bound process. A background process may also become
a short process which requires priority over others. Therefore, another modification required in
feedback queue scheduling is that a process can not only be demoted to lower priority queues,
but can also be promoted to higher priority queues based on the change in their behaviour. If a
process in a lower priority queue becomes I/0-bound, but still does not get the processor as it is
in the lower priority queue, then it should be moved to the upper high priority queues where it
can get the processor. Thus, instead of permanently assigning the queues to a process, the pro-
cesses should be moved between the queues (either to lower or higher), so that they are in the
appropriate queue according to their recent behaviour. But this incurs an overhead of maintain-
ing the information about these processes. For example, we need to keep track of the waiting
time of a process in the lower priority queue. Based on its waiting time, it will be promoted to
the next higher queue. Similarly, there may be many parameters to be stored, based on which,
a decision is taken about the promotion or demotion of a process. In this way, a feedback about
the behaviour of a process is taken and the scheduling mechanism is adapted, according to its
changing behaviour in the system.

6.7.9 Fair-share Scheduling

In our scheduling algorithms discussed so far, it has been assumed that corresponding to one
user, there is a single process. Therefore, they consider one process for one user and divide
the processor time considering this strategy. However, this is not true in practical situations.
In a multi-user environment, there are multiple users (or groups of users) sharing a system, or
a single user with multiple processes for running an application. But the process-scheduling
algorithms designed so far are not capable of these situations. So we need to consider the issues
of a user with multiple processes and groups of users.

Before we discuss what fair-share scheduling is, let us consider an example. Suppose there
are two groups of users accessing a system. First group, having multiple users, is responsible
for accessing only general information, which requires very short time. On the other hand, the
second group, having one or two users, is responsible for accessing some critical data and per-
forming some decisions, requiring longer time as compared to the first group. Algorithms like
RR would give most of the processor time to the first group and the second group may starve for
the execution. Therefore, previously discussed scheduling algorithms would not suffice for a

170 Principles of Operating Systems

user with multiple processes and group of users, which is quite a practical situation. Moreover,
the large number of users in the first group may affect the performance of the second group. So
we need to design algorithms which consider the needs of a user or group of users and distribute
the processor time not among the individual processes, but among the users or group of users as
the case may be. These algorithms are known as fair-share scheduling algorithms.

To implement fair-share scheduling, we need to know how much share of processor or re-
sources a user or a group of users require in the system. Therefore, a share-weightage is nec-
essary to be provided to the users or group of users. The fair-share scheduler will use this
share-weightage to provide fair share of resources to every user or group of users. The users’
share indicates the measure of their entitlement to work on the system. The more share a user
has, the greater their entitlement. If a user x has 30% more shares than user y, then it means user
x needs to work 30% more than y.

For example, in a system, there are two users U1 and U2. U1 has processes P11, P12, P13,
and P14 and U2 has processes P21, P22, P23, and P24. Suppose U2 has to perform some criti-
cal computation-intensive job, which requires more time as compared to U1. Let the weightage
fixed to U2 and U1 be 75% and 25 %, respectively. If conventional round robin scheduling is
performed, then the execution sequence may be:

P11, P21, P12, P22, P13, P23, P14, P24.....

As we can see, U2 is not getting much time to complete its application, due to fixed time slice
for every user. Now, if we apply fair-share scheduling, then the sequence of execution may be:

P11, P21, P22, P23, P12, P24, P21, P22, P13, P23, P24, P21, P14.....

Fair-share scheduling provides 75% time of the CPU to U2, thus providing the user time to per-
form its critical work in time and not starve due to a large number of processes in U1. Likewise,
we can extend the scheduling for a group of users.

In the above example, we have already assumed that Ul consumes 25% and U2 consumes
75% processor time. But it may not be possible every time to predict the share of every user
or group of users. Therefore, we need to generalize this concept of fair-share, such that every
process of the user or every user in a group gets the required share of processor, depending on
its need. We can calculate the priority of a process based on the following factors:

Processor utilization by an individual process
Processor utilization by a user or group of processes
Weight assigned to a user or group of users

Original base priority of the process

In this way, the priority of every process of a user or a group of users can be calculated,
considering its past history of execution and the weight provided to it. The only overhead with
this is that the priority needs to be calculated, say once per second.

A normalized share is calculated, considering processor utilization, which is a decayed mea-
sure of the work that the user has done and the weight assigned to the user. With the consump-
tion of normalized share by the user, the response time from the system increases. This is in
accordance to the philosophy of fair-share scheduling. The scheduler increases the response to
users who have used their normalized share, so that other users can use their share. Thus, the
response time to a user is directly proportional to the usage of their fair-share. The scheduler for
this purpose decays each user’s usage and updates the usage of all active users at a particular
time periodically. Based on all the factors mentioned, the priority of a process is calculated and
the process with the highest priority is scheduled next.

Process Scheduling 171

6.7.10 Lottery Scheduling

There are some drawbacks in fair-share scheduling. It is possible for a user to monopolize the
processor by creating multiple processes so that he gets most of the share of the processor time.
Another drawback is that for controlling execution rates, there is computation overhead for cal-
culating the priority of a process, that is., there is no way to directly control relative execution
rates, and therefore, we cannot directly conclude that one user should get this much proportion
as compared to another.

Lottery scheduling is another mechanism through which these drawbacks can be mitigated.
In lottery scheduling, the idea is based on lottery tickets. Every user is provided tickets based on
their required share of processor execution. When there is need to perform scheduling, a lottery
is held by executing a program for generating a random number from the set of tickets provided
to all users. The user holding the winning ticket is allowed to execute. In this way, a user runs in
proportion to the number of tickets it holds. Thus, lottery scheduling is a randomized resource
allocation mechanism, wherein resource rights are represented by lottery tickets.
There are two good features possessed by this scheduling. They are:

Ticket transfers If a user who needs to wait for some resources like 1/0 or is blocked for

any other reason and is not able to use his/her share, then he/she can temporarily transfer his
tickets to a single user or multiple users who may be in need.

Ticket inflation A user can escalate resource rights by creating more lottery tickets. But ticket
inflation should be rarely used, because any user can monopolize the processor by creating a
large number of tickets.

SUMMARY

The processes in a multi-programming environment cannot
be managed, if they are not scheduled in a proper man-
ner as per the demands of various systems. If process-
scheduling is not there, all processes will compete for the
processor in a random order, which may result in chaos
in the system and no process would be able to finish.
Thus, process-scheduling is important to manage pro-
cesses. There are various mechanisms for scheduling
processes which have been discussed in this chapter.
Every scheduling algorithm has an appropriate use in a
particular system. FCFS scheduling is used in batch sys-
tems. Round robin is appropriate in a multi-user environ-
ment. However, these algorithms are very basic in nature
and cannot be applied in practical OSs. This is because
these algorithms consider the scheduling of a process as
an individual, but processes in multi-user environment may
belong to a user or group of users. Therefore, schedul-
ing algorithms consider processes of users or of group of
users. Multi-level queue scheduling and feedback queue
scheduling are used for this purpose. Another problem in
scheduling is that the requirement of a user and a group
of users may be different. But every user or group of
users must get the required share of processor execution.

Fair-share scheduling and lottery scheduling algorithms

are used for distributing processor time to every user

fairly.
Let us have a quick review of important concepts dis-

cussed in this chapter:

® The processes may be CPU-bound or 1/O-bound, but
there should be a good mix of both for good scheduling.

e There are three levels of process-scheduling: long-, me-
dium-, and short-term scheduling.

® | ong-term scheduling is the first level where a job from
the job queue is selected to be sent to the ready queue.

® Medium-term scheduling is done to select a process from
the ready queue to be sent to processor.

® Short-term scheduling is done to select a process from
the ready queue, suspend it for some time by swapping it
out from the memory and swap-in at an appropriate time.
Long-term scheduling has a direct relationship with the degree
of multi-programming. The degree of multi-programming can
be defined as the number of processes which can be accom-
modated in the memory and made ready for execution.

e The short-term scheduler, after selecting the process
from the ready queue, passes the information to the dis-
patcher function. The dispatcher, after finding the location

172

Principles of Operating Systems

of PCB of the process, loads the PSW and other registers
in the processor, and the execution of this process starts.
The scheduling mechanisms, by which a process is se-
lected from the ready queue, are called scheduling al-
gorithms.

When a process is assigned the processor, it is allowed
to execute to its completion, that is, the system cannot
take away the processor from the process until it exits.
Then it is called non-pre-emptive scheduling.

If a process is not allowed to execute to its completion,
and is interrupted in between by another process, it is
known as pre-emptive scheduling.

Turnaround time is the total time spent by a process in
the system.

The turnaround time of a process is t = wt + x, where wt
is waiting time of the process in the ready queue, x is the
total service or execution time of the process.

If turnaround time is divided by the execution time of the
process, it becomes weighted or normalized turnaround
time.

The waiting time is the total time spent by a process in
the ready queue.

Response time is the time period between the time of
submission of a process and the first response given by
the process to the user.

® Predictability is the expected behaviour of a process.
® Throughput is the number of processes completed in a

unit time.

CPU utilization is the percentage of time that the CPU is
busy executing the processes.

A process should be scheduled such that there is mini-
mum turnaround time, minimum weighted turnaround
time, minimum waiting time, minimum response time,
maximum predictability, maximum throughput, and maxi-
mum CPU utilization.

FCFS works on FIFO queue and is suitable for batch
systems.

Priority scheduling is based on the idea of providing prior-
ity to the processes. Its types are:

i) Priority number-based scheduling: where a priority
number is provided to every process, according to its
importance in the system

ii) Shortest process next: where the shortest process in
terms of its execution time is scheduled, but with non-
pre-emption

i)y Shortest remaining-time next: pre-emption version of

SPN, where the remaining time of a process, in terms
of its execution, is the criterion for priority.

Round robin scheduling algorithm provides equal chance
to every process to run, by periodically providing a time
quantum to every process.

If the time quantum chosen is very large, RR algorithm
will be as good as FCFS algorithm.

If the time quantum chosen is too small, then there will
be large context switch time, because after every time
quantum process, switching will occur.

Two rules must be followed while choosing the time
quantum:

Rule 1: 80% of the CPU bursts should be smaller than
the time quantum.

Rule 2: Context switch time is nearly 10% of the time
quantum.

The maximum waiting time of a process in round robin is
w = (n-1) * g, where n is the number of processes and q
is the time quantum.

CPU consumption ratio = Actual CPU time consumed/
total estimated execution time.

In improved round robin scheduling, the rule is to sched-
ule a process, if its CPU consumption ratio is greater than
0.60, or else, schedule a process whose CPU consump-
tion ratio is minimum.

Response ratio = Time elapsed in the system / CPU time
consumed by the process.

Highest response ration next (HRRN) scheduling also
improves the round robin in terms of response time, and
schedules a process which has the highest response
ratio.

Various scheduling algorithms, according to their na-
tures, can be distinguished as follows:

Scheduling Nature
algorithm
FCFS Non-pre-emptive
Favours longer processes
Priority Both pre-emptive and
number-based non-pre-emptive
Favours highest priority
processes
Shortest pro- Non-pre-emptive
cess next Favours short processes
Good response time

(Contd)

(Table Contd)

SRN Pre-emptive

Favours short processes
Good response time
Reduced turnaround time

and response time

Round robin Pre-emptive

Good response time

o Multi-level queue scheduling divides the ready queue into
multiple queues, according to various categories of pro-
cesses, and favours short-term and I/0-bound processes.

MULTIPLE CHOICE QUESTIONS

1.

If there is a large number of

difficult to achieve multi-programming.
(a) 11O devices (c) 1/0-bound processes
(b) CPU-bound processes (d) none

Long-term scheduling has a direct relationship with the de-
gree of

(@) processes (c) multi-programming

(b) devices (d) none

execute to its completion. This is called
(a) Dispatching

(b) Scheduling

(c) Non-pre-emptive scheduling

(d) Pre-emptive scheduling

released the processor nor has it exited, it is known as:
(a) Dispatching

(b) Scheduling

(c) Non-pre-emptive scheduling

(d) Pre-emptive scheduling

The higher number of

grade the performance of the system.
(a) context switches (c) devices
(b) processes (d) none

The minimum possible value of normalized turnaround time is
(@0 (c) 2
(b) 1 (d) 3

The total time spent by a process in the system is called
(a) turnaround time (c) response time
(b) waiting time (d) none

, then it may be

When a process is assigned the processor, it is allowed to

If a process is not allowed to execute to its completion and
is interrupted in between, such that it has neither voluntarily

in a system may de-

10.

11.

12.

13.

14.

15.

16.

17.

Process Scheduling 173

The behaviour of processes cannot be judged before
executing the processes. Therefore, a feedback is taken
from every process after executing it for some time, and
is then put to the appropriate queue. This is known as
multi-level feedback queue scheduling.

Fair-share scheduling considers the needs of a user or
group of users, and distributes the processor time among
users or group of users.

Lottery scheduling is a randomized resource allocation
mechanism, wherein resource rights are represented by
ottery tickets.

The total time spent by a process in the ready queue is called
(@) turnaround time (c) response time
(b) waiting time (d) none

FCFSis scheduling algorithm.
(a) Pre-emptive (c) Both
(b) Non-pre-emptive (d) none

Priority is scheduling algorithm.
(a) Pre-emptive (c) Both
(b) Non-pre-emptive (d) none

SPN is
(@) Pre-emptive
(b) Non-pre-emptive

scheduling algorithm.
(c) Both
(d) none

SRNis scheduling algorithm.
(a) Pre-emptive (c) Both
(b) Non-pre-emptive (d) none

Round robin is
(@) Pre-emptive
(b) Non-pre-emptive

scheduling algorithm.
(c) Both
(d) none

HRRN is scheduling algorithm.

(@) Pre-emptive (b) Non-pre-emptive
(c) Both (d) none

FCFS favours processes.

(a) short (c) both

(b) long (d) none

SRN favours processes.

(a) short (c) both

(b) long (d) none

Which algorithm is best suited to real-time systems?
(@) FCFS (c) Round robin
(b) SPN (d) Priority

174 Principles of Operating Systems

18.

19.

Which algorithm is best suited to multi-user systems?
(a) FCFS (c) Round robin
(b) SPN (d) none

Which algorithm is best suited to batch systems?

(@) FCFS (c) Round robin
(b) SRN (d) none
20. Which algorithm is best suited to 1/0-bound processes?
(@) FCFS (c) Round robin
(b) SRN (d) none
21. Iftime quantum is too short in RR scheduling, then it suffers
from
(@) high waiting time
(b) high turnaround time
(c) high context switch time
(d) none
22. If time quantum is too large in RR scheduling, it becomes
(a) FCFS (c) SPN
(b) SRN (d) HRRN
23. Which is true regarding selection of time quantum in RR
scheduling?
(@) 50% of the CPU bursts should be smaller than the time
quantum.
(b) 70% of the CPU bursts should be greater than the time
quantum.
(c) 80% of the CPU bursts should be smaller than the time
quantum.
(d) none
24. Which is true regarding selection of time quantum in RR
scheduling?
(@) Context switch time is a large fraction of time quantum
, nearly 60 %.
(b) Context switch time is a small fraction of time quantum,
nearly 10 %.
REVIEW QUESTIONS

1. What is the meaning of CPU-burst and 1/0-burst? How do
they affect the performance of multi-programming?

2. Explain the situation when scheduling needs to be per-
formed.

3. Differentiate between long-, medium-, and short-term pro-
cess-scheduling.

4. Differentiate between non-pre-emptive and pre-emptive
types of scheduling.

5. Define: turnaround time, waiting time, response time,
weighted turnaround time, predictability, deadlines,
throughput, CPU utilization, fairness, and balance.

6. How do you implement FCFS scheduling algorithm?

25.

26.

27.

28.

29.

30.

(c) Context switch time equals time quantum.
(d) none

Which one is true regarding response time?

(a) CPU time consumed by the process/ Time elapsed in
the system

(b) Time elapsed in the system / CPU time consumed by
the process

(c) Time elapsed in the ready queue / CPU time consumed
by the process

(d) none

Auxillary queue is used in scheduling.

(@) FCFS (c) Improved RR

(b) RR (d) Virtual RR
In____ scheduling, the needs of a user or group

of users are considered, and the processor time is distrib-
uted, not among the individual processes, but the users or
group of users, as the case may be.

(@) Improved RR (c) Feedback queue

(b) Multi-level queue (d) Fair-share

If a user x has 50% more shares than user y, user x needs
to work than usery.

(@) 50% more (c) 100% more

(b) 50% less (d) none

scheduling is a randomized resource alloca-
tion mechanism, wherein resource rights are represented
by tickets.
(a) FCFS (c) Lottery
(b) RR (d) HRRN

The provision that a user can escalate his resource rights
by creating more lottery tickets, is called

(a) ticket transfer (c) ticket deflation

(b) ticket inflation (d) none

. What is priority scheduling? What are the methods for giving

priority to a process?

. Explain the mechanism of priority number-based scheduling.
. Explain the mechanism of shortest process next scheduling.

. Explain the mechanism of shortest remaining-time next

scheduling.

. Explain the mechanism of round robin scheduling.
. What are benefits and drawbacks of round robin scheduling?
. What are the rules for selecting a time quantum?

. What is the need of virtual round robin?

15.
16.
17.
18.
19.
20.
21.

22.
23.

What is the need of improved round robin scheduling?
What is the need of highest response ratio next scheduling?
Explain the mechanism of virtual round robin scheduling.
How do you implement improved round robin scheduling?
How do you implement HRRN?

What is the need of multi-level queue scheduling?

What is the drawback in implementing multi-level queue
scheduling?

How do you implement feedback queue scheduling?

What is the benefit of fair-share scheduling?

BRAIN TEASERS

1.
2.

Why does FCFS tend to favour long processes?

Why does FCFS tend to favour CPU-bound processes over
1/0 bound ones?

. Which of the following events will cause process-scheduling

and of which type? Explain what happens to the current

running process:

a) Process creates its child.

Process executes a computation statement.

Process executes a read statement.

A resource is released for which no process is waiting.

A resource is released for which a blocked process is

waiting.

(f) A new job enters the job-queue.

(9) A new process enters the ready-queue.

(h) A process enters the blocked-queue.

i) A process enters the blocked-suspend queue.

() An attached /O fails.

k)
)
)

(
(b
(c
(d
(

—_— =

e

(

(k) An illegal instruction is executed in the process.

(I) There is no process in the ready queue.

(m) Some process need to be brought into the ready queue,
but space in memory is not available.

(n) A blocked process is suspended.

(0) Process exits.

(p) A process is dispatched from the ready queue.

(q) A high priority process appears in the ready queue.

(r) Alower priority process appears in the ready queue.

(s) Process calls a module from library.

. Demonstrate that a short quantum will increase the number

of context switches in the system in RR scheduling.

. Demonstrate that a long time quantum will lead RR schedul-

ing to FCFS scheduling.

. Can there be a situation in which a running process is se-

lected again for execution?

24.
25.
26.
27.

28.

29.

10.

14.

15.

16.

Process Scheduling 175

How do you implement fair-share scheduling?
What is the drawback of fair-share scheduling?
How do you implement lottery scheduling?

What are the scheduling algorithms which may cause star-
vation? How do you reduce it if there is?

What will be the exponential average for predicting the next
CPU burst value of a process, if constant weighting factor is
0, 0.5, and 0.9? Mention their significance as well.

Using o = 1/2, what will be the prediction of the next CPU
burst time, if five runs from oldest to most recent values of
execution time are 30, 15, 40, 40, 20?

What is the significance of normalized turnaround time? If it
increases, what will be the effect on a scheduling algorithm?

Suggest an appropriate scheduling algorithm for the follow-
ing software systems:

(@) Online entrance examination system

(b) Inventory control system

(c) Missile tracking system

(d) Railway reservation system

(e) Traffic control system

What will be the effect on execution time estimation, if a
simple averaging method is chosen, as compared to expo-
nential averaging in SRN scheduling?

In interactive systems, the goal should be to minimize vari-
ance in response time as compared to minimizing the aver-
age response time. Explain the reason for this statement.

. SRN is provably the best scheduling algorithm. Demonstrate.
12.
13.

Why can SRN not be used directly in practice?

If there are 7 processes in a system and 4 is the time quan-
tum, what is the maximum and minimum time a process
needs to wait for its execution?

A process changes its behaviour randomly. What kind of
scheduling will you perform on this process?

A client process sends a message to a server requesting
something, and then blocks itself. If scheduling is to be
done, so that chances of running the server process next
are to be increased, then which type of process-scheduling
will you prefer?

A web server serves some audio files to its clients through
various processes, which run at different frame rates. How
will you ensure that scheduling of these server processes
will serve clients perfectly?

176 Principles of Operating Systems

17.

18.

19.

There is a centralized system which is accessed by multiple
groups. The first group accesses the general information for
a very short time and there are 15 users in this group. Sec-
ond group accesses the system for critical computation in-
tensive work and there are only 2 users in this group. Which
scheduling algorithm will suit this environment and how?

Consider the following scenario of processes with time
quantum = 2.

Execution
time

Arrival
time
P1 0 5
P2 1 9
P3 2 7
P4 3 2
P5 4 4

Process

Draw the Gantt chart for the execution of the processes,
showing their start time and end time using FCFS, RR, im-
proved RR, and HRRN scheduling. Calculate turnaround
time, normalized turnaround time, and waiting time for each
process and average turnaround time, average normalized
turnaround time, and average waiting time for the system.

Consider the following snapshot of the processes:

time, normalized turnaround time, and waiting time for
each process and average turnaround time, average nor-
malized turnaround time, and average waiting time for the

system.
Process Arrival Execution
time time
P1 0 9
P2 2 20
P3 4 2
P4 7 14
P5 8 4

21. Consider the following scenario of processes with their

priority.
Process Arrival Execution | Priority
time time
P1 0 12 5
P2 2 25 1
P3 3 3
P4 5 4
P5 6 13 2

Process

Burst
time

Arrival
time

Priority

P1
P2

8
20

0

Draw the Gantt chart for the execution of the processes,
showing their start time and end time, using priority num-
ber-based scheduling. Calculate turnaround time, normal-
ized turnaround time, and waiting time for each process and
average turnaround time, average normalized turnaround

1
P3 2
P4 6 3
P5 12 4

A 0N W -

Draw the Gantt chart for the execution of the processes,
showing their start time and end time using FCFS, prior-
ity number-based scheduling (pre-emptive), SRN (without
considering the priority), RR (with time quantum=5), im-
proved RR, and HRRN scheduling. Calculate turnaround
time, normalized turnaround time, and waiting time for each
process and average turnaround time, average normalized
turnaround time, and average waiting time for the system.

20. Consider the following scenario of processes with time

quantum = 1 and 3.

Draw the Gantt chart for the execution of the processes,
showing their start time and end time using FCFS, RR, im-
proved RR, and HRRN scheduling. Calculate turnaround

time, and average waiting time for the system.

22. Consider the following scenario of processes.

Pro- Arrival Execu-
cess time tion time
P1 0 9

P2 1 3

P3 1 14

P4 1 1

Draw the Gantt chart for the execution of the processes,
showing their start time and end time, using SPN and SRN
scheduling. Calculate turnaround time, normalized turn-
around time, and waiting time for each process and aver-
age turnaround time, average normalized turnaround time,
and average waiting time for the system.

23. Consider the following scenario of processes with time

quantum =1 and 2.

Process Arrival Execution
time time

P1 0 9

P2 1 1

P3 2 7

P4 3 1

P5 4 6

Draw the Gantt chart for the execution of the processes,
showing their start time and end time using FCFS, RR, im-
proved RR, and HRRN scheduling. Calculate turnaround
time, normalized turnaround time, and waiting time for each
process and average turnaround time, average normalized
turnaround time, and average waiting time for the system.

Process Scheduling 177

24. Which is the best non-pre-emptive scheduling algorithm?

Prove it, taking an example set of processes.

25. Consider the following scenario of processes with time

quantum =3 ms.

Process Arrival Execution
time time

P1 0 9

P2 1 5

P3 2 3

P4 3 4

Process P1 requires I/O after every 1 millisecond. P2 re-
quires /O after every 2 millisecond, and P4 after every
3 ms. The access of every /O takes 2 milliseconds. The
context switch time for every process switching is 1 millisec-
ond. If RR scheduling is performed, what will be the CPU
utilization in the system?

Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

7 Process
Communication and
Synchronization

7.1 INTRODUCTION

Multi-programming environment poses many challenges.
Some of them have been covered in the preceding chapters. As /. -e
discussed in Chapter 5, there are concurrent processes that are 4

natural outcomes of a multi-programming system. Independent
processes are easy to implement than the interacting processes.
Interacting processes may access shared data, produce deadlock

Learning Objectives

After reading this chapter,
the reader should be able

while competing for resources and may starve for resources in
some conditions. Moreover, they need to communicate some infor-
mation among themselves. Therefore, there is a need to synchro-
nize the activities of interacting processes and provide mechanisms
through which they can communicate. This chapter discusses all
the problems associated with interacting processes and their solu-
tions. It provides some popular methods of process communica-
tion as well.

7.2 CONCURRENT PROCESSES

Independent processes are easier to manage, since they do not share
any resources among them. The problem arises when the processes
are interacting, that is, when they share some data structures or need
to communicate. The root problem here is the concurrent process-
ing. The concurrent access of some resources by these processes
may cause problems in the system if not resolved. Therefore, there
should be mechanisms to synchronize the processes so that they
coordinate with each other, otherwise, multi-programming cannot
be achieved. Moreover, the interacting processes must cooperate
with each other and that is why they are known as co-operating
processes. Let us discuss the issues related to concurrent processing:

7.2.1 Data Access Synchronization

While writing the code of processes, it is a general practice to
take global variables that are shared by more than one process.

to understand:

Concurrent processes and
their problems

Defining Critical section (CS)
as a protocol for synchro-
nization

Algorithmic approach to CS
implementation

Semaphore as a synchroniza-
tion tool and its implementation
High-level language con-
structs for synchronization:
critical region,

conditional critical ~ region
(CCR),

monitors, and

protected objects

Solution of classic synchroni-
zation problems:
producer—consumer problem,
reader—writer problem,
dining-philosophers problem,
cigarette smokers problem,
and

sleeping barber problem
Hardware support for process
synchronization

Process Communication and Synchronization 179

In a multi-programming environment, it may be possible that there is a concurrent access of a
global variable by more than one process. However, this concurrent execution may not give the
desired result. Let us see this with an example.

There are two processes, P1 and P2, sharing common variable shared. Suppose, P1 updates
shared as

shared = shared + 3

and P2 updates shared as
shared = shared — 3.

If both processes reach the statement where shared is being updated and one process is inter-
rupted in between and control switches to another process, then results may be wrong. Let us
elaborate this problem.

At the time of implementation of the processes in a machine, the statements of a process
are further broken down into a low-level language. Therefore, the two statements referred in
P1 and P2 can be broken down as follows:

Process P1:

. . Al. regl = shared
1. Load the value of shared in a register of the CPU A2. regl = regl + 3
2. Add 3 to the value of the register A3' shared = regl
3. Load the new value of the register in shared :

Process P2:

1. Load the value of shared in a register of the CPU
2. Subtract 3 from the value of the register
3. Load the new value of the register in shared

B1. reg2 = shared
B2.reg2 =reg2 — 3
B3. shared = reg2

The single statements both in P1 and P2 have been divided into three equivalent statements.
Suppose, P1 starts first and executes the Statements Al and A2. At this time, P1 is interrupted
and the execution is stopped. Then, P2 starts executing and completes all the statements, that is,
B1, B2, and B3. After this, P1 is resumed and completes the execution of A3.

Suppose, the initial value of shared is 4; then after the execution of P2, the value of sharedis 1;
and after the execution of P1, it is 7. In fact, if Process P2 has completely updated the shared
variable, then P1 will not get the correct result ever. This happens because P1 cannot update the
new value of shared as it has already executed first two statements and only A3 is remaining.
Here, the value of shared may be depending on the interleaved execution of the sequence
of statements. The correct value cannot be predicted because there may be many combinations
of execution of all the six statements of P1 and P2. This problem arises because both processes
have been allowed to update the global variable at the same time. This leads to inconsistency
of data, and the problem increases further if one process takes a decision or action based on the
updated data. Let us elaborate this problem with an example.

Example 7.1

A web server services its clients by creating processes when it receives a client’s request. All
the processes are same in their function, that is, they are identical and each process updates a
common data used to count the number of clients serviced. Thus, as soon as a client’s request
is received by a process, it updates the count.

In this example, it may be possible that when one process is updating the count, another cli-
ent’s request is received and another process is created. The new process will also update the
count, making the data inconsistent.

180 Principles of Operating Systems

Let us take the data variable as count client and its current value as 4, that is, four clients
have been serviced by the server. Now, a Client x requests and, corresponding to it, a Process
x has been created. Process x then starts updating the count client. While x is updating the
count_client, another Client y requests and, corresponding to it, another Process y is created.
Process y also starts updating the count client. We can reverse this situation, that is, Process
y starts first followed by x. The executions of both the cases are shown in the following table.
In both the cases, the final count client is 5, whereas the desired result is 6. It means that if we
allow both the processes to update count client concurrently, one client will not be counted
leading to inconsistency of data.

The statements for two processes:

Process x Process y

x.1 regl = count client
x.2 regl =regl + 1
x.3 count_client = regl

v.1 reg2 = count client
y.2 reg2 =reg?2 + 1
v.3 count_client = reg2

Time Case 1 Case 2
Process x Process y Current Process x Process y Current
values values
1 x.1 regl =4 y.1 reg2 =4
2 X.2 regl1 =5 y.2 reg2 =>5
3 y.1 reg2 =4 x.1 regl =4
4 y.2 reg2=>5 X.2 regl =5
5 y.3 count_client y.3 count_client
=5 =5
6 x.3 count_client x.3 count_client
=5 =5

Now we can generalize that when more than one processes access and update the same data
concurrently and the result depends on the sequence of execution of the instructions, the situ-
ation is known as a race condition. The two cases shown in Example 7.1 are examples of race
conditions. Processes x and y are in a race to update the data first, and the result is incorrect in
both the cases. Thus, race conditions lead to data inconsistency and, thereby, to wrong results.
Data access synchronization is required when race conditions arise due to the execution of
concurrent processes. It becomes necessary in database systems, where frequent queries and
updating of data are required, that processes are not allowed to update global data concurrently.
Therefore, these systems must adopt a mechanism through which data access synchronization
is achieved.

7.2.2 Control Synchronization

If processes are interacting, it may be possible that one process needs an input from the other.
In this case, the first process needs to wait until the required input is received from the other
process. It means that the first process is dependent on the other. However, if there is no con-
trol on the execution of these interacting processes, then they will not be able to perform their

Process Communication and Synchronization 181

functions in a correct manner. To have desired results, there should be a control over a process
such that it is forced to wait until the execution of another process has been finished from which
some data or information is expected. For example, there are two processes, A and B. The state-
ment in 4 expects some information from B, which is possible only after the execution of the
statement in B. Therefore, 4 needs to wait until the execution of the statement in B has been
completed. This is known as control synchronization in interacting processes where the order
of the execution of processes is maintained.

Example 7.2

There is a buffer in an application maintained by two processes. One process is called a
producer that produces some data and fills the buffer. Another process is called a consumer
that needs data produced in the buffer and consumes it. In this application, both the processes
need control synchronization because they are dependent on each other. If the buffer is empty,
then a consumer should not try to access the data item from it. Similarly, a producer should not
produce any data item if the buffer is full. To track whether the buffer is empty or full, there
should be a counter that counts the data items in the buffer. This counter variable will be shared
between the two processes and updated by both. The consumer process before consuming the
items from the buffer must check the value of the counter. If the counter is greater than or equal
to 1, it means that there is some data item in the buffer. It starts executing for consuming it and
updates the counter by decrementing it by one. Similarly, the producer process before adding
the items to the buffer must check the value of the counter. If the counter is less than its maxi-
mum value, it means that there is some space in the buffer. It starts executing for producing the
data item and updates the counter by incrementing it by one.

Let max be the maximum size of the buffer. There may be a situation that the buffer is full,
that is, counter = max, and the consumer is busy executing other instructions or has not been al-
lotted its time slice yet (see Fig. 7.1). At this moment, the producer is ready to produce an item
in the buffer. Since the buffer is full, it needs to wait until the consumer consumes an item and
updates the counter by decrementing it by one, that is, counter = max — 1. This is the control
synchronization between the two processes, that one waits for the other and the sequence of
processes needs to be maintained, otherwise, new item produced by the producer will be lost
as the buffer is full.

Producer Ready to produce data but cannot, so
waiting for the consumer

counter = max

Fig. 7.1 Producer-consumer problem: Buffer is full

Busy

182 Principles of Operating Systems

Busy
Producer

counter =0

Ready to consume data but cannot, so
waiting for the producer

Fig. 7.2 Producer-consumer problem: Buffer is empty

Another situation may be that the buffer is empty, that is, counter = 0 (Fig. 7.2), and the pro-
ducer is busy executing other instructions or has not been allotted its time slice yet. At this
moment, the consumer is ready to consume an item from the buffer. Since the buffer is empty,
it needs to wait until the producer produces an item and updates the counter by incrementing it
by one, that is, counter = 1. This is the control synchronization between the two processes, that
one waits for the other and the sequence of processes needs to be maintained, so that there is no
inconsistency in the normal functioning of the processes.

7.2.3 Process Communication

In both the cases of synchronization discussed in Examples 7.1 and 7.2, the processes are inter-
acting or communicating. There is a shared variable through which they communicate, that is,
they are not aware of the existence of each other but coordinate with each other in the execu-
tion. In this way, there is an indirect communication through shared memory. It can be realized
in both the cases of communication and synchronization that a shared variable is necessary to
have a proper synchronized execution of the processes.

However, there may be the case that the processes need to share data not required for data
access synchronization or control synchronization but for reading purpose. In this case, there
is no need to maintain a shared data as it incurs the cost of accessing. The processes can also
communicate through messages and be explicitly aware of the existence of each other. This
type of communication known as message passing is used where shared memory communica-
tion among the processes is not necessary or not possible in some systems such as distributed
systems, where processes reside at different nodes. Message passing is a simple system where
processes explicitly know each other and exchange messages through system calls. One sys-
tem call is used for sending the message and another for receiving it. The message has a fixed
format consisting of a message and the name of its sender or receiver process. The process
wishing to communicate a message with another process copies the message in its mes-
sage structure with the specific name of the receiver. Similarly, when the receiver receives
the message, it copies the message into its local variable and starts executing. Therefore, if
there is no requirement to update the message concurrently, there is no need to maintain a

Process Communication and Synchronization 183

shared variable; hence, a message-passing system is more appropriate. Due to its simplicity,
a message-passing system can be implemented in distributed systems as well as in shared-
memory systems.

The synchronization is also needed in a message-passing system. When a sender sends a
message, it is not necessary that the receiver is ready to receive it. In this case, the sender will
be blocked and the message will be copied to a buffer. It is activated only when the intended
receiver will execute its system call for receiving the message. The message from the buffer
is then sent to the process. Similarly, when a process is ready to receive a message, it is not
necessary that the sender be ready to send it. In this case, the receiver will be blocked and
activated only when the intended sender will send the message to it. Thus, there should be
synchronization between the sender and the receiver process. The message-passing system is
discussed in detail in Section 7.11. First, let us see an example of a message-passing system.

Example 7.3

Consider again Example 7.2, where producer and consumer processes communicate with each
other. In this problem, both the processes need to know the maximum size of the buffer, denoted
as max. Both the processes use max in their code but do not modify it; they use it only for
knowing the size of the buffer. Therefore, there is no need to define max as a global variable.
There can be one process or main () that can send the information about the size of the buffer to
both the processes through a message passing system. Here, main () is the sender process and
the producer and the consumer are the receiving processes.

Although shared memory and message passing systems are effective process-communica-
tion mechanisms, they are not suitable for emergency conditions. If a child process dies or is
suspended, and this information is communicated through a message passing system, it may be
possible that the parent process may not receive this message or receives it at the time when it
has no relevance in the system. Similarly, if an arithmetic fault or illegal instruction has been
executed in a process, it must be notified about this error by the kernel immediately. It means
that there are some exceptional conditions and alarms that while occurring in the system must
be communicated to the processes immediately without any delay. It becomes more important
in the real-time systems because if a faulty process is not signaled at the right time, then the
system may fail or behave erratically. It is worth mentioning here again that these kinds of
exceptional notification messages cannot be communicated through message passing systems
as they may not reach the desired process at the right time. Therefore, there should be another
mechanism that catches the attention of the process to which the emergency message is to
be passed. This form of process communication is known as a signal. Since communication
should be established immediately without any delay, the receiving process must also respond
to it by suspending what it was doing and execute the appropriate action. Therefore, the design
of a signal-communication mechanism is just like an interrupt. Signals perform in a manner
similar to the interrupts suspending the execution of a process. The only difference is that sig-
nals have no priority: All the signals are treated equally. The implementation details of signals
will be discussed in detail later in this chapter.

7.2.4 Deadlocks

If there is no control on the competing processes for accessing multiple resources, then it can
lead to a severe problem in the system. For example, a Process P1 is accessing a Resource R1
and needs another Resource R2 to complete its execution, but at the same time, another Process

184 Principles of Operating Systems

P2 is holding a Resource R2 and requires R1 to proceed. Here, both the processes are waiting
for each other to release the resources held by them. This situation is called a deadlock. There
can be many situations like this causing deadlock problems in the system. Deadlocks will be
discussed in detail in Chapter 8.

7.3 CRITICAL SECTION (CS)

An OS must be able to ensure co-operation among the processes such that the different speeds of
the execution of concurrent processes do not cause any problems. If more than one co-operating
process is sharing a data, then it must be protected from multiple accesses as discussed in data
access synchronization. Similarly, when a process is given access to a non-shareable resource
such as printer, another process cannot be given the access at the same time; otherwise, output
of two processes will be mixed up and no process will get the desired result. This requirement
is known as mutual exclusion. Mutual exclusion ensures that the processes do not access or
update a resource concurrently.

The issues identified in the execution of concurrent processes lead to the design of a protocol
that enforces mutual exclusion and does not cause race condition problem. The protocol
demands that the code of a process where it modifies the data or accesses the resource be
protected and not be allowed to be executed by concurrent processes simultaneously.
Therefore, the first thing in the protocol is to identify a section of the code that must be pro-
tected. This section is known as a critical section. To protect the critical section, there should
be some conditional criteria that a process must pass before entering the critical section. Only
one process at a time is allowed to enter its critical section. If another process requests at this
time, then the access will be denied so that mutual exclusion is maintained. The criteria for
entering the CS are known as entry criteria. The protocol should also define that when one
process has finished its execution, the other waiting processes must be informed so that one of
them can enter the critical section. The criteria for exiting the CS are known as exit criteria
(see Fig. 7.3).

{

Process P ()

do({

Example 7.4

We have seen in Example 7.1 that Processes x and y produce
race condition if they try to update the global data count cli-
ent. The critical sections in this example are the instructions

Entry criteria

where the count client is updated. According to the proto-
col designed to reduce race condition, both the processes

cannot enter their critical sections at the same time. If Pro-
Critical section cess x has entered its critical section, then Process y will
have to wait until x exits. In this way, the process waiting to

Exit criteria

enter its CS will use the updated value of count_client and
thus, there will be no data inconsistency. Both the cases of

Y while (true):

Example 7.1 have been shown again in table but with the
critical section. No process is allowed to enter its CS unless
the other process has exited. In both the cases the count cli-

ent is now equal to 6, which is correct as the two processes

Fig. 7.3 Protocol for critical section have been added.

Process Communication and Synchronization 185

Time Case 1 Case 2
Process | Process Current Status of Process | Process Current Status of
X y values process X y values process
1 x.1 regl =4 Process x y.1 reg2 =4 Process y
appears first appears
first
2 X.2 reg1 =5 Process x y.2 reg2 =5 Process y
continues continues
3 x.3 count_ Process y count_cli- | Process x
client=5 appears but ent=5 appears
is not allowed but is not
to enter its allowed to
critical section, enter its
that is, it could critical sec-
not update tion, that
count_client is, it could
not update
count_
client
4 y.1 reg2 =>5 Process x x.1 reg1=>5 Process y
exits and exits and
Process y is Process x
allowed to is allowed
enter its CS to enter
and starts its CS
updating and starts
count_ updating
client with new count_
value 5 client with
new value
5
5 y.2 reg2 =6 Process y X.2 regl1 =6 Process x
continues continues
6 y.3 count_ Process Xx.3 count_cli- | Process
client =6 y updates ent=6 y updates
count_client count_
client

The solution for CS problems should satisfy the following characteristics of protocol:

Mutual exclusion

The protocol should not allow more than one process at a time to update a global data.

Progress

The implementation of this protocol requires that the track of all the processes wishing to enter
their critical sections be kept. If there are some processes in the queue waiting and, currently, no
process is executing inside the critical section, then only the waiting processes must be granted
permission to participate in the execution, that is, the CS will not be reserved for a process that
is currently in a non-critical section.

186 Principles of Operating Systems

Bounded wait
A process in its CS remains there only for a finite time because, generally, the execution does
not take much time, so the waiting processes in the queue need not wait for a long time.

No deadlock

If no process is executing inside the CS and there are processes in the queue waiting for the
execution but are not allocated the CS yet, then there may be a deadlock in the system. Therefore,
the protocol must ensure that all the waiting processes are allotted the critical section.

7.4 ALGORITHMIC APPROACH TO CS IMPLEMENTATION

Initially, the CS was implemented through an algorithmic approach, that is, complex logical
checks to implement mutual exclusion among processes. This section discusses some of them.

7.4.1 Two-process Solution

Let us take two processes, P1 and P2, and implement synchronization between them. Each
process has a CS and needs to wait for the other if one of them has entered its critical section.
The two-process solution has been implemented with a shared variable process turn for
providing mutual exclusion between the two (see Fig. 7.4). The variable is used to indicate
which process is now able to enter its critical section. Here, the while statement acts as an
entry criterion. P1 and P2 cannot enter the CS until the value of process_turn is one and two,
respectively. If process turn = 1, P1 will be allowed to execute in its critical section. At this
time, if P2 is ready to enter its critical section, then it will not be granted permission since it
does not meet its entry criterion, that is, process _turn = 2. After P1 completes its execution,
it initializes process _turn as 2; hence, P2 will finally be able to execute. In this way, the two-
process solution maintains mutual exclusion.

Let us now examine whether this algorithm follows other properties of the protocol. Suppose
P1 is inside its CS and P2 is in its non-critical section. When P1 exits, it initializes process_turn
as 2. However, P2 is still in its non-critical section and does not want to execute. On the other

Process P1 Process P2
{ {
int process_turn;
do {
process_turn = 1;
do { while (process_turn! = 2);
while (process_turn! = 1); Critical
Section

Critical

Section process_turn=1;
process_turn = 2; } while (true);

}.;Nhile (true);

Fig. 7.4 Two-process solution: Attempt 1

Process Communication and Synchronization 187

Process P1 Process P2
int state_flag P71, state_flag P2 { int state_flag_P1, state_flag_P2
state_flag P1=1; state_flag_P2= 1;
do { do {
while (state_flag P2! = 1); while (state_flag P1!=1);
state_flag P1=0; state_flag P2=0;
Critical Critical
Section Section
state_flag_P1= 1, state_flag_P2 = 1;
}.\.Nhile (true); }.\.Nhile (true);

Fig. 7.5 Two-process solution: Attempt 2

hand, P1 enters the wait state again. However, it cannot enter its CS since process_turn = 2.
This is a violation of the protocol because the property of progress is not observed here.

The problem with this algorithm is that it does not save the state of the executing process.
To store the state of the process, two more variables, namely, state flag PI and state flag P2
are taken (see Fig. 7.5). If a process enters its critical section, it first sets this state flag to zero,
and after exiting, it sets it to one. It indicates that if a process is using its CS, then the other
process must wait until the state flag becomes one, that is, when the CS is available. In this way,
the state flag variables eliminate the problem of progress observed in the first attempt of the
algorithm. It can be seen in the second attempt that if a process is ready to enter its CS again,
it may do so (Fig. 7.5).

This algorithm suffers from other problems as well. In the beginning, when no process
is executing, both P1 and P2 will try to enter the critical section. This violates the mutual
exclusion property of the protocol. To remove this problem, we should consider setting
state_flag Pl and state flag P2 to 0 before the while loop. This will solve the problem of
mutual exclusion, but there still is one problem. Suppose, at the moment P1 starts and executes
its first statement as state_ flag P1 = 0, P2 interrupts and gets the execution and executes its
first statement, state_ flag P2 = 0. In this situation, if P2 continues and executes its while loop,
then it will not be able to proceed as it is waiting for P1 to set state flag PI to 1. Similarly,
if P1 gets the execution and executes its while loop, then it will not be able to continue as it is
waiting for P2 to set state_ flag P2 to 1. Both the processes are waiting for each other, thereby
causing deadlock in the system.

This deadlock can be eliminated if a process before entering the CS checks whether the other
process is ready or not. P1 checks whether state flag P2 =0, then it sets state flag P1=1.
Similarly, P2 checks whether state flag PI1 =0, then it sets state flag P2 = 1(see Fig. 7.6).

This solution for eliminating the deadlock causes another problem. It may be possible that
both the processes are waiting for each other to execute and no process is proceeding. This
situation is known as livelock. This situation arises because the variable process_turn has been
ignored in this attempt of the algorithm.

188 Principles of Operating Systems

Process P1 Process P2

int state_flag_P1, state_flag_P2 int state_flag_P1, state_flag_P2

state_flag P1=1; state_flag_P2= 1,

do { do {

state_flag P1=0; state_flag_P2= 0;

if (state_flag_P2== 0) if (state_flag_P1==0)
state_flag_P1= 1, state_flag_P2= 1,

while (state_flag P2! = 1); while (state_flag P1! = 1);

Critical Critical
Section Section

state_flag_P1=1; state_flag P2 = 1;

}.\.Nhile (true); }.\.Nhile (true);

Fig. 7.6 Two-process solution: Attempt 3
7.4.2 Dekker’s Solution

If both the turn and the state of a process are taken into consideration, the algorithm will not
suffer from all the problems discussed in Section 7.4.1. The solution for the CS problem was

given by Dekker (Fig. 7.7).

Process P1

int state_flag_Pj1
state_flag P2,
process_turn;

state_flag P1=1;
process_turn=1;

do {

state_flag_P1=0;

while (state_flag_P2!=1)
{

If (process_turn== 2)

state_flag_P1=1;
while (process_turn == 2);
state_flag_P1=0;
}

Critical
Section

process_turn = 2;
state_flag_P1=1;

}.\.Nhile (true);

ProcessP2

int state_flag_P/1
state_flag_P2;
process_turn;

state_flag_ P2=1;

do {

state_flag_P2= 0;

while (state_flag_P1! = 1)
{

If (process_turn== 1)

state_flag_P2=1;
while (process_turn == 1);
state_flag_P2= 0;

}

Critical
Section

process_turn = 1;

state_flag P 2= 1;

}.\.Nhile (true);

Fig. 7.7 Dekker’s solution for two-process synchronization

Process Communication and Synchronization 189

This algorithm satisfies all the rules of the designed protocol. Both the processes will not try
to enter simultaneously due to the variable, process turn and will satisfy the mutual exclusion
property. If P1 starts first and finds that state flag P2 = 0, that is, P2 wants to enter the CS, it
will allow P2, only when process_turn = 2. Otherwise, it will wait for state_ flag P2 to be one
so that P1 can enter its CS. If state_ flag P2 =1 initially, then P1 will skip the while loop and
straightway enter the CS. In this way, there will not be any deadlock or livelock. Moreover, the
chance is given to only those processes that are waiting in the queue to enter the CS.

7.4.3 Peterson’s Solution

The two-process solution for CS proposed by Peterson (Fig. 7.8) is an easier method compared
to Dekker’s solution. In this solution, process turn takes the value zero for Process P1 and
one for Process P2. For the process flag, a Boolean array process _ flag[] is taken that consists
of two values, zero for P1 and one for P2. The variable process turn maintains the mutual
exclusion and process_ flag[| maintains the state of the process. Initially, both the processes
make their flags true but to maintain the mutual exclusion, the processes before entering their
critical sections allow other processes to run. The process that satisfies both the criteria, that
is, its process_ flag is true and its process_turn maintains mutual exclusion, is allowed to enter
its critical section. After exiting the critical section, the process makes its flag false so that the
other process can start if it wants. For example, P1 starts and executes process_ flag/0] = true.
At this time, P2 interrupts and gets execution and executes process_ flag[1] = true and
continues with process_turn = 0. At this time, if P1 is able to get the execution, then it can
continue because P2 has given P1 another chance to execute by making process _turn=0. If P1
continues, then it is able to enter the critical section. While P1 is inside the critical section, and
P2 interrupts, it is not able to enter the CS unless P1 exits and makes process _ flag[0] = false.

In this way, in this algorithm, processes do not wait for each other, thereby eliminating dead-
lock. There can be no situation that both the processes defer to each other. If one is deferring the
other, then one of the processes is able to continue; therefore, there will be no livelock.

do {
process._flag[0] = true;
process_turn=1;

while (process_flag[1] &&
process_turn==1);

Critical
Section

process._flag[0] = false;

j'\./vhile (true);

Process P1 Process P2
{ {

int process_turn;

boolean process_flag[2]; do {

process_flag[1] = true;
process_turn = 0;

while (process_flag[0] &&
process_turn==0);

Critical
Section

process._flag[1] = false;

}.\.Nhile (true);

Fig. 7.8 Peterson’s solution for two-process synchronization

190 Principles of Operating Systems

A process cannot enter its CS while the other process is already in it, thereby maintaining the
mutual exclusion. Obviously, there is also a bounded wait for every process.
Thealgorithmicimplementationofcritical-sectionsolutionposesmanyproblemsasweincrease
the number of processes for synchronization. If there are » number of processes, the status flags of
the processes need to be maintained. Further, it must be known how many processes wish to enter
their critical sections. The check for deadlock, livelock, and mutual exclusion becomes complex
in case of n number of processes. There is a limitation to the algorithmic approach performed
by the programmers. Programmers who have been hired to develop the software system are
engaged in synchronizing the processes. Thus, it is not feasible that programmers provide the
solution for CS in the system. There must be support from the hardware or the OS system to
provide synchronization and communication among the processes. The operating-system and
hardware-support mechanisms for synchronization will be discussed in succeeding sections.

7.5 SEMAPHORES

The problem of race conditions is avoided by not updating a global variable by more than one
process at a time. The operations that cannot be overlapped or interleaved with the execution of
any other operations are known as indivisible or atomic operations. It means that if the opera-
tions are made indivisible, then there will be no problem of race condition and this method can
be implemented at the level of programming language and operating system.

Semaphore is a very popular tool used for process synchronization. Before understanding its
implementation or physical structure, let us first understand its concept. The semaphore is used
to protect any resource such as global shared memory that needs to be accessed and updated
by many processes simultaneously. Semaphore acts as a guard or lock on the resource. The
prerequisite for semaphore is that processes follow this guard to avoid any problem. Whenever
a process needs to access the resource, it first needs to take permission from the semaphore. If
the resource is free, that is, if no other process is accessing or updating it, the process will be
allowed, otherwise permission is denied. In case of denial, the requesting process needs to wait
until semaphore permits it, that is, when the resource becomes free. Semaphores can also be
understood with our daily-life analogy. Let us take an example of a classroom where teachers
take classes for students. A guard is sitting outside the room. Whenever a teacher comes to
take the class, he or she asks the guard for permission to enter the class. The guard will allow
the teacher only if the room is free, otherwise permission is denied. Thus, the room is used in
mutually exclusive manner with the help of a guard. The semaphore works in the similar way.

The semaphore is implemented as an integer variable, say as S, and can be initialized with
any positive integer values. The semaphore is accessed by only two indivisible operations
known as wait and signal operations, denoted by P and V, respectively, after the Dutch nota-
tions. The simple implementation of these operations is shown in Fig. 7.9.

The implementation of a semaphore guarding the CS is shown in Fig. 7.10. Whenever a
process tries to enter the critical section, it needs to perform wait operation. The wait is an entry
criterion according to the designed protocol. If the CS is free or no other process is using it,
then it is allowed, otherwise denied. The count of semaphore is decremented when a process
accesses the available critical section; hence, the count of semaphore tells us the availability
of the critical section. Initially, the count of semaphore is 1. If it is accessed by a process, then
the count is decremented and becomes zero. Now, if another process tries to access the critical
section, then it is not allowed to enter unless the semaphore value becomes greater than zero.
When a process exits the critical section, it performs the signal operation, which is an exit

Process Communication and Synchronization 191

Operation Wait

criterion. In this way, the solution to CS using semaphore
satisfies the designed protocol. The semaphore whose value

P(S) is either zero or one is known as binary semaphore. A re-
while (S <= 0): source having a single instance and which is to be used in
S=S-1; ’ a mutually exclusive manner can use binary semaphore for

} synchronization.

_) The semaphore can take any positive value as discussed

Operation Signal

in Section 7.4. Suppose, if there are three memory locations

V(S) and each need to be updated in a mutually exclusive man-

{ ner (see Fig. 7.11), then the semaphore is taken to guard

) S=8+1; all the three memory locations with value 3. It means that

three processes at the same time can access the semaphore.

Fig. 7.9 Wait and signal operation in a sema-

After giving the access to the third process, the value of
semaphore becomes 0. It will not allow any other process
unless one of the running processes exits. This type of sema-
phore that takes a value greater than one is known as counting semaphore.

There is one more type of binary semaphore known as mutex, that is, in a binary semaphore,
the CS locked by a process may be unlocked by any other process. However, in mutex, only the
process that locks the CS can unlock it.

There is one problem in the implementation of such a semaphore. When a process does not
get access to the critical section, it loops continually waiting for it. This does not produce any
result but consumes CPU cycles, thereby wasting the processor time. This busy waiting is a
problem in a multi-programming system where processor time is shared among the processes.
This type of semaphore is known as a spinlock, since the process spins while waiting for the lock.

To save the processor time, the process that is not able to get the resource should be blocked.
Since there may be many waiting processes, a queue is needed to store them. Therefore, a
queue is maintained for storing all the waiting processes. A process is awakened from this
queue when another process releases the resource and the semaphore allows it to enter its
critical section. However, this solution incurs the cost of context switching as the process state
needs to be switched from running to blocked, blocked to ready, and, then, ready to running.
Therefore, when the busy waiting is of very short time compared to context switch time, there is
no need to block the waiting process. In multi-processor systems also, there is no need to block

phore

the process due to multiple processors.

do { To incorporate this design, the implementation of the sema-
wait (Semaphore) phore needs to be changed. Along with tl}f: integer value of
{ semaphore, we need to take a queue or list storing the pro-
cesses so that we can take a record or structure storing both
Critical of these elements. See this implementation in Fig. 7.12.
Section
} Example 7.5
There are three processes, P1, P2, and P3, sharing a
signal (semaphore) semaphore for synchronizing a shared variable. The
semaphore is guarding the CS of the processes where
} they update the shared variable. Initially, the value of the

semaphore is one. P1 needs to access the CS and update

Fig. 7.10 Semaphore implementation: Attempt 1 the variable, so it accesses the semaphore first. It gets

192 Principles of Operating Systems

Memory Memory Memory
location 1 location 2 location 3
Semaphore
A X

S ® &

Fig.7.11 Counting semaphore

Struct {
int sem_value;

queue sem_gq;
} semaphore;

semaphore S;
Operation Wait

P(S)

{
S.sem_value = S.sem_value —1;
if (S.sem_value < 0)

Add the process to S.sem_queue;
Block the process;

Operation Signal

V(S)
{
S.sem_value = S.sem_value + 1;
if (S.sem_value <= 0)
{
Remove the process from S.sem_queue;
Wakeup the process;

}

Fig.7.12 Semaphore implementation: Attempt 2

permission as no one is using it, thereby making the value of the semaphore zero. After this,
P2 needs to access its CS but is not allowed as the value of the semaphore is zero; hence, P2 is
blocked and placed in the waiting queue. All other sequences of events and statuses are shown
in the table. One point to be noted here is that the negative value of the semaphore tells us how
many processes are waiting in the queue.

Process Communication and Synchronization

Current
value of the
semaphore

Time

Needs of process

Modified
value of the
semaphore

Current status

1
2 0

P1 needs to access.
P2 needs to access.

P3 needs to access.

P1 exits the critical
section.

P2 exits the critical
section.

P3 exits the critical
section.

0
-1

-2

P1 enters its critical section.

P1 continues and one
process (P2) is waiting in
the queue.

P1 continues and two
processes (P2 and P3) are
waiting in the queue.

[P2[P3| |

P2 is waked up and enters
its critical section. P3 still
waits in the queue.

P2 continues and P3 still
waits in the queue.

(P3| |

P3 is waked up and enters
its critical section. The
queue is empty now.

E
N

H
w

No process is now using its
CS and the queue is empty.

Example 7.6

Let S be the semaphore between three processes for mutual exclusion with an initial value one.
Consider their executions in time instants in the following table and find out the final value of S.

Processes in
Time Process P1 Process P2 Process P3 Value of S the queue of the
semaphore
0 P(S) - - 0 -
1 - P(S) - -1 P2
2 V(S) - - 0 -
3 - V(S) - 1 -
4 P(S) - - 0 -
5 - - P(S) -1 P3
6 - P(S) - -2 P3,P2

The final value of S is —2, that is, two processes are waiting in the queue. The change in value

of S and the corresponding queue status, along with timeline, is depicted as follows:

193

194 Principles of Operating Systems

S=1
| | wait(S)
S=0
|| c
S
— wait(S)
P2| |
signal(S)
S=0 C
|| S
S=1 signal(S)
1] v
S=0
||
C
=-1 S wait(S)
P3| |
S=-2 wait(S)
P3|P2 |]

7.6 SOLUTION OF CLASSIC SYNCHRONIZATION PROBLEMS USING SEMAPHORES

There are some classic synchronization problems in computer science. Programmers will face
these synchronization problems during development of any application. The semaphore is the
solution for all of them, for example, producer—consumer problem discussed in Examples 7.2
and 7.3. The synchronization among the processes can be obtained using semaphores. There are
several synchronization problems such as these that are discussed in the subsequent sections.

7.6.1 Solution of Producer-Consumer Problem Using Semaphore

In the OS and in computer science in general, the problem of producer—consumer synchro-
nization is common. For example, compilers and assemblers can be thought as producer and
consumer processes, respectively. A compiler as a producer produces the object code and an
assembler as a consumer takes the object code. Similarly, the process that gives command
for printing a file is a producer process, and the process for printing them on the printer is a

consumer process.

To solve the producer—consumer problem using semaphore, the following requirements

should be met:

1. The producer process should not produce an item when the buffer is full.

Process Communication and Synchronization 195

2. The consumer process should not consume an item when the buffer is empty.

3. The producer and consumer processes should not try to access and update the buffer at the
same time.

4. When a producer process is ready to produce an item and the buffer is full, the item should not be
lost, that is, the producer must be blocked and must wait for the consumer to consume an item.

5. When a consumer process is ready to consume an item and the buffer is empty, it must be
blocked and wait for the producer to produce the item.

6. When a consumer process consumes an item, that is, a slot in the buffer is created, the
blocked producer process must be signaled about it.

7. When a producer process produces an item in the empty buffer, the blocked consumer pro-
cess must be signaled about it.

The producer—consumer problem can be solved by placing a semaphore on the buffer.
However, after analyzing these requirements, it is clear that we also need to check the status
of the empty and the full buffer for the producer and the consumer, respectively. Moreover, the
producer process after inserting the item in the buffer slot must increase the value of the full
buffer to indicate that one slot of the buffer is filled. Similarly, the consumer process after taking
the item from the buffer must increase the value of the empty buffer to indicate the empty slot
in the buffer. For example, the three items have been produced by the producer, but nothing has
been consumed by the consumer process. The empty and full pointers, along with their current
values, are shown in Fig. 7.13. If the algorithmic solution mentioned for the checks is adopted,
then again busy waiting will be there. The producer will be busy waiting for checking whether
the buffer is empty. Similarly, the consumer will be busy waiting for checking whether the buffer
is full. Instead of that, two more semaphores can be taken, which will count the number of empty
slots and full slots in the buffer. Before accessing the buffer, the processes need to check its sta-
tus. Therefore, the processes first wait on the semaphores used for status and then on the sema-
phores used for accessing the buffer. Thus, there are three semaphores to be used in the solution:

e Empty semaphore initialized to n, where n is the number of empty slots in the buffer
e Full semaphore initialized to zero
e Buffer access semaphore initialized to one

Producer

a b c | | .
Full Empty

Fig. 7.13 Producer—consumer problem’s solution with semaphores

Empty = n-3
Full =3

196 Principles of Operating Systems

Producer()

{
do {

Produce an item;

P(Empty); //Wait on empty semaphore
P(Buffer_access);

/I Wait on buffer_access semaphore

Consumer()

{

do {

P(Full); //Wait on Full semaphore
P(Buffer_access);

/I Wait on buffer_access semaphore
Consume item from buffer;

Add item to buffer;
V(Buffer_access);

V(Buffer_access);
/I Signal the buffer_access semaphore

/I Signal the buffer_access semaphore V(Empty);

V(Full); /I Signal the Empty semaphore
/I Signal the Full semaphore } while true;

} while true;

Fig. 7.14 Algorithms for producer—consumer problem’s solution with semaphores

The producer process after producing the item waits on the empty semaphore because it needs
to check whether there is an empty slot in the buffer. If there is a slot, the semaphore allows it
to go further. Once it passes this condition, it waits on the Buffer _access semaphore to check
whether any other process is accessing it. If any other process is already accessing it, then the
semaphore will not allow it. After getting the permission, the process starts accessing and stor-
ing the item in the buffer. After storing, it signals the Buffer access so that any other process
in wait can access the buffer. Moreover, it also signals the full semaphore to indicate that the
buffer now contains one item. In this way, the producer stores the item in the buffer and also
updates the status of the buffer. Similarly, the algorithm of the consumer can be understood.
Both the algorithms are given in Fig. 7.14.

7.6.2 Solution of Reader-Writer Problem Using Semaphores

There are several instances while designing a software system, for example, there is a data area
shared among many processes. Some processes read the data item from the memory, that is, readers
and some processes update the data item or write into the memory location, that is, writers. For
instance, in an airline reservation system, there is a shared data where the status of seats is main-
tained. If a person needs to enquire about the reservation status, then a reader process will read
the shared data and get the information. On the other hand, if a person wishes to reserve the seat,
then a writer process will update the shared data. The first thing to check here is whether there are
multiple readers and writers. The next thing is to check where the synchronization problems may
occur between them. If multiple readers are considered to access the shared data, then there is no
problem. However, if multiple writers are given access to it, then there will be a synchronization
problem. It means that when one writer is writing, other writers must wait. Moreover, if a writer
is writing, a reader is not allowed either. However, this synchronization cannot be solved by sim-
ply providing mutual exclusion on the shared data area because it will lead to a situation where a
reader will also wait while another reader is reading. Since multiple readers are allowed, the pure
mutual exclusion solution would not work. The people enquiring only the reservation status may
be given simultaneous access, otherwise there will be unnecessary delays.

Another point here to consider is that which process will get the priority over others? If a
writer is writing and multiple readers and writers are waiting, which process will get the prior-
ity? This may depend on some situations in the system. If a writer is critical, then all the writers

Process Communication and Synchronization 197

must get the priority; otherwise, the readers may also be given a chance to read. Let us consider
both the cases: When readers have the priority and when the writers have the priority.

Although mutual exclusion is not a good solution to the reader—writer problem, it is used
here in the form of critical section. This is because when a writer is writing, a reader should not
be allowed to access. Similarly, when a reader is reading or accessing, a writer should not be
allowed to update. Therefore, a CS needs to be designed where the shared data will be accessed
or updated, but not simultaneously.

Case 1: Readers have the priority

The priority to readers means that if a reader has gained the access to CS and there are multiple
readers and writers waiting, then readers will be allowed to access the CS first. The writers will
be allowed only after all the readers have finished accessing. It is obvious that we will use one
semaphore for mutual exclusion between the readers and the writers. There may be the follow-
ing scenarios on this semaphore:

1. A reader is inside the CS and multiple writers arrive, then they must wait on the semaphore.

2. A writer is inside the CS and multiple readers arrive, then they must wait on the semaphore.

3. A reader is inside the CS and multiple readers arrive, then they need not wait on the sema-
phore.

4. A writer is inside the CS and multiple writers arrive, then they must wait on the semaphore.

We need to count the number of readers also because writers, if waiting, will not be allowed
unless all readers have accessed. Therefore, a counter is taken to count the number of readers
arriving in the system. However, the processes should not be allowed to cause busy waiting to
check the status of this counter and update this variable because this will be a shared variable
among all readers. Therefore, another semaphore is used. The following semaphore and coun-
ter will be used in the solution:

ReadCount: integer variable as counter for readers; initialized as zero.

Sem_ReadCount: semaphore for ReadCount; initialized as one.

Sem_ReadWrite: semaphore for mutual exclusion between readers and writers; initialized

as one.

See the algorithms for reader and writer in Fig. 7.15.

Reader() Writer()
while(true) { while(true) {
wait(Sem_ReadCount); wait(Sem_ReadWrite);
ReadCount++; Perform the write operation;
If(ReadCount = = 1) signal(Sem_ReadWrite);
wait(Sem_ReadWrite); }
signal(Sem_ReadCount); }

Perform the read operation;
wait(Sem_ReadCount);
ReadCount--;
If(ReadCount = = 0)
signal(Sem_ReadWrite);
signal(Sem_ReadCount);

Fig. 7.15 Algorithms for reader—writer problem’s solution with semaphores: readers have the priority

198 Principles of Operating Systems

Case 2: Writers have the priority

Case 1 gives priority to readers. Writers cannot start unless all readers are finished. This may
cause starvation of the writers. In fact, a writer is considered important as compared to a reader
because it updates the data and the updating of data must be done in the system as soon as possi-
ble. Thus, writers must get priority over readers. The readers will also be served but only when
there is no writer waiting. However, the solution to this case becomes complex as the readers
need to be prevented from queuing on Sem_Read Write because if there is a long sequence of
readers, then the system is forced to serve them first. Therefore, a solution must be designed
such that a long queue of readers is not allowed where writers are waiting. For this purpose, let
us consider one more semaphore, Sem_Restrict, which will restrict the readers from entering
the queue. Only one reader is allowed in the queue of this semaphore. The following scenarios
may arise in this case:

1. If no writer is accessing the CS currently, and a new writer arrives, then it will also wait on
the Sem_Restrict so that readers do not monopolize and writers can also start.

2. Once a writer enters the CS and there are writers and readers waiting, then only writers will
be allowed to access. The reader will start only after all the waiting writers are finished.

3. After all the writers finish their work, if a reader appears and then a writer, the reader will
be given access first.

Another point to ponder here is where will the multiple readers wait when the writers have
gained access to critical section? In addition, it is constrained that only one reader can queue on
Sem_Restrict. In that case, if more than one reader is appearing, then they need to wait some-
where. Therefore, one more semaphore, Sem_ ReaderWait, is needed.

Sem_ ReadWrite will be used to provide mutual exclusion on the shared data. All the
writers must queue on Sem_ReadWrite for mutual exclusion. However, if there is no writer
waiting and multiple readers are there, then once a reader gains access, others need not wait on
Sem_ReadWrite because multiple readers are allowed simultaneously.

Reader() Writer()

while(true) { while(true) {

wait(Sem_ReaderWait);
wait(Sem_Restrict);
wait(Sem_ReadCount);
ReadCount++;
If(ReadCount = = 1)
wait(Sem_ReadWrite);
signal(Sem_ReadCount);
signal(Sem_Restrict);
signal(Sem_ReaderWait);
Perform the read operation;
wait(Sem_ReadCount);
ReadCount--;
If(ReadCount = = 0)
signal(Sem_ReadWrite);
signal(Sem_ReadCount);

wait(Sem_WriteCount);
WriteCount++;
If(WriteCount = = 1)
wait(Sem_Restrict);
signal(Sem_WriteCount);
wait(Sem_ReadWrite);
Perform the write operation;
signal(Sem_ReadWrite);
wait(Sem_WriteCount);
WriteCount--;
If(WriteCount = = 0)
signal(Sem_Restrict);
signal(Sem_WriteCount);

Fig. 7.16 Algorithms for reader—writer problem’s solution with semaphores: Writers have the priority

Process Communication and Synchronization 199

Besides, all these semaphores, the readers, and the writers need to be counted in this
solution. Obviously, one more semaphore, WriteCount, is required to update the count for
writers.

The following semaphore and counters will be used in the solution:

ReadCount: integer variable as counter for readers; initialized as zero.

Sem_ReadCount: semaphore for ReadCount; initialized as one.

Sem_ReadWrite: semaphore for mutual exclusion between readers and writers; initialized

as one.

WriteCount: integer variable as counter for writers; initialized as zero.

Sem_WriteCount: semaphore for WriteCount; initialized as one.

Sem_Restrict: semaphore to restrict the readers; initialized as one.

Sem_ReaderWait: semaphore where more than one reader appears; initialized as one.

See the algorithms for readers and writers in Fig. 7.16.

Case 3: No priority

Cases 1 and 2 consider the priority and are therefore not fair in the sense that the processes are
not served in the sequence they appear in the system. Although a writer process must be given
preference because it updates the value and thus the updated value is available to next pro-
cesses, sometimes fair service to the processes is also required. Let us consider the following
semaphores and counters used for the solution (see Fig. 7.17):

ReadCount: integer variable as counter for reader processes; initialized as zero.
Sem_Count: semaphore for mutual exclusion between ReadCount and WriteCount; initial-
ized as one.

Sem_ReadWrite: semaphore for mutual exclusion between reader and writer processes;
initialized as one.

WriteCount: integer variable as counter for writer processes; initialized as zero.

Reader() Writer()

while(true) { while(true) {

wait(Sem_Count);

If((WriteCount > 0) OR
ReadCount = = 0)

{
signal(Sem_Count);
wait(Sem_ReadWrite);
wait(Sem_Count);

ReadCount++;
signal(Sem_Count);
Perform the read operation;
wait(Sem_Count);
ReadCount--;
If(ReadCount = = 0)
signal(Sem_ReadWrite);
signal(Sem_Count);

wait(Sem_Count);
WriteCount++;
signal(Sem_Count);
wait(Sem_ReadWrite);
Perform the write operation;
wait(Sem_Count);
WriteCount--;
signal(Sem_Count);
signal(Sem_ReadWrite);

Fig. 7.17 Algorithms for reader—writer problem’s solution with semaphores: No priority

200 Principles of Operating Systems

7.6.3 Solution of Dining-philosopher Problem Using Semaphores

This is a classic problem posed by Dijkstra to understand the synchronization among processes
in an environment when there is insufficient number of resources. In this problem, there are five
philosophers sitting around a round dining table. There is a bowl of rice placed in the centre
of the table. Each philosopher gets a plate to eat and infinite supply of rice. Their work is to
think and eat, whenever they are hungry. To eat, they must make use of two spoons, but there
is scarcity of spoons with which they will eat (Fig. 7.18). The two conditions that need to be
noted here are:

1. There are only five spoons available, each placed between two philosophers.

2. Philosophers can start eating only when they have two spoons. They cannot eat even if they
have a single spoon. It means that every philosopher takes one spoon from his or her left
and another from his or right and start eating. After eating, they have to put down both the
spoons.

The problem here is obvious that all the philosophers cannot eat together as there are only five
spoons, whereas there is a demand for 10 if all of them eat together. The solution should be such
that if one philosopher is eating with two spoons, the adjacent philosopher must wait even if he
or she is able to get one spoon. If all the philosophers pick up one spoon at the same time, then
this leads to deadlock, since every philosopher is waiting for the other to release the spoon but
no one is releasing. Therefore, a philosopher should not hold a spoon if he or she is not able to
get the other. The philosopher must check the availability of both the spoons first and then pick
up them. It is possible only when either of the neighbour philosophers is not eating.
The following conditions must hold for the solution of this problem:

Only one philosopher can hold a spoon at a time.

It must be impossible for a deadlock to occur.

It must be impossible for a philosopher to starve waiting for a spoon.

It must be possible for more than one philosopher to eat at the same time.

Let every philosopher be denoted by » and numbered from one to five. Similarly, spoons
are numbered from one to five so that a philosopher n has a spoon n on the left and n + 1 on

Fig. 7.18 Dining-philosopher problem

Process Communication and Synchronization 201

the right. However, in general how does a philosopher get spoons from either side? On his or
her left, he or she gets a spoon by having number z and on his or her right, he or she gets it
by calculating (n +1)% 5. Since a spoon is mutually exclusive, consider a semaphore called
Sem_Spoon to protect each spoon. We take an array of five elements of this semaphore type as

Semaphore Sem_Spoon[5];

The algorithm with this solution is given in Fig. 7.19.

The solution ensures that only one philosopher holds a spoon at a time. However, it is prone
to deadlocks and livelocks. As discussed earlier, if all the philosophers hold the spoons on their
left at the same time or hold the spoons on their right at the same time, it leads to deadlock.
It may also be the case that all philosophers put down their spoons letting others to hold the
spoons and try later. It may cause livelock. Thus, in any of these cases, the system will not
progress.

To eliminate the deadlock, the root of the problem must be known. When five philosophers
start picking up the spoons at the same time, it will always lead to a deadlock or livelock.
If we allow only four philosophers to participate, then the deadlock will not happen. If four
philosophers start at the same time, there is one spoon remaining on the table. Therefore, one
of the philosophers will find this spoon on his or her one side and can start eating. Moreover,
the philosopher after eating will put down both the spoons. Consequently, one of the adjacent
philosophers will be able to start eating and so on. In this way, controlling the number of
philosophers avoids deadlock.

To implement this solution, the fifth philosopher must be prevented from sitting with other
four philosophers at the table. A semaphore, Sem_Philosopher, is required with an initial value
of four because at the most, four philosophers must be allowed at a time. Philosophers must
take their place at the table through this semaphore and after eating, they must leave the table.
The solution is given in Fig. 7.20.

Another solution to the dining-philosopher problem to overcome deadlock is an asymmetric
approach that states that there should be at least one left-handed and at least one right-handed
philosopher at the table. Here, all five philosophers will participate but with the above condi-
tion. In this solution, there will not be any deadlock and one philosopher will be able to eat
and eventually, all others will. In Fig. 7.21, two philosophers are left-handed and three are
right-handed. There is one spoon available between the second and the third, even if they all

dof

wait (Sem_Spoon[n]);
wait (Sem_Spoon[(n + 1) % 5]);

eat();

signal (Sem_Spoon[n]);
signal (Sem_Spoon([(n + 1) % 5]);

think():

} whil.é.(true);

Fig. 7.19 Dining-philosopher problem’s solution: Attempt 1

202 Principles of Operating Systems

dof
wait (Sem_Philosopher);
wait (Sem_Spoon[n]);
wait (Sem_Spoon[(n+1) % 5]);
eat();
signal (Sem_Spoon[n]);
signal (Sem_Spoon[(n + 1) % 5]);
signal (Sem_Philosopher);
think();

} while (tI:l.J.e);

Fig. 7.20 Dining-philosopher problem’s solution: Attempt 2

Fig. 7.21 Dining-philosopher problem’s solution: Attempt 3

picked up one spoon at the same time. Either the second or the third can start eating. When the
philosopher finishes eating, another can start and eventually, progress will be there.

In the line of asymmetric solution, there can be one more solution with the restriction that
odd-numbered philosophers will first pick up spoons on their left and then the right one and
even numbered philosophers will first pick up spoons on their right side and then the left one.
In Fig. 7.22, all odd-numbered philosophers are able to pick up their first spoon that is on
their left. In this case, all even-numbered philosophers are not able to pick up their first spoon
on their right. Two spoons are free on the table, so Philosopher 1 and 3 can start eating. The
solution algorithm given in Fig. 7.23 assumes that all the philosophers and the spoons have
been numbered.

Process Communication and Synchronization 203

Fig. 7.22 Dining-philosopher problem’s solution: Attempt 4

do{
if (N % 2! = 0) // philosopher number is odd

wait (Sem_Spoon[n]);
wait (Sem_Spoon[(n + 1) % 5]);

eat();

signal (Sem_Spoon[n]);

signal (Sem_Spoon[(n + 1) % 5]);
}

else // philosopher number is even

wait (Sem_Spoon[(n + 1) % 5]);
wait (Sem_Spoon[n]);

eat();
signal (Sem_Spoon([(n + 1) % 5]);

signal (Sem_Spoon|[n]);

}
think():

} while (trL.J.e-);

Fig. 7.23 Dining-philosopher problem’s solution algorithm: Attempt 4

Another solution for dining-philosopher problem was given by Tanenbaum. He defines the states
of a philosopher. The possible states are thinking, eating, and waiting (hungry). A semaphore
is taken for all the philosophers, on which they wait to start eating. The philosophers can start

204 Principles of Operating Systems

eating only if neither of their neighbours is eating. The state of a philosopher is checked and
updated; therefore, another semaphore is used for this purpose. Assume that the state of all the
philosophers is thinking and all semaphores for the five philosophers are initialized as zero. The
following are the data structures:

int state[5];

Semaphore Sem_State = 1;

Semaphore philosopher [5];

The left and right neighbour of a philosopher are defined as

#define LEFT (n+ 5 — 1) % 5 // number of left neighbour of nth philosopher
#define RIGHT (n + 1)%5 // number of right neighbour of nth philosopher

The solution algorithm for Tanenbaum’s solution is given in Fig. 7.24.

void philosopher(int n)
{

do {
think();
get_spoons(n);
eat();
put_spoons(n);
} while (true);

void get_spoons(int n)

wait (Sem_State);
state[n] = Hungry;
test_state (n);

signal (Sem_State);
wait (philosopher[n]);

void put_spoons(int n)

wait (Sem_State);
state[n] = Thinking;
test_state (LEFT);
test_state (RIGHT);
signal (Sem_State);

void test_state (int n)
if (state[n] == Hungry & & state[LEFT] ! = Eating & & state[RIGHT]!= Eating)

state[n] = Eating;
signal (philosopher[n]);

Fig. 7.24 Dining-philosopher problem: Tanenbaum’s solution

7.6.4 Cigarette Smokers’ Problem

This is another classic synchronization problem posed by Suhas Patil. The problem consists of
three smokers S1, S2, and S3. All smokers prepare a cigarette themselves and smoke continu-
ously with the help of three ingredients: tobacco, wrapping paper, and a match. Each smoker
has infinite supply of only one ingredient. However, a smoker needs two more ingredients to

Process Communication and Synchronization 205

prepare and smoke. For supplying the other two ingredients, there is a supplier having three
vendors. Vendor V1 supplies tobacco and paper, V2 supplies paper and matches, and V3
supplies tobacco and matches. Every vendor supplies two ingredients to the smokers at random.
Depending on the ingredients supplied, the smoker with the complementary ingredient takes
them and prepares the cigarette. The smoker smokes it and signals to the supplier to supply the
next lot of ingredients. For example, S1 has tobacco, S2 has paper, and S3 has matches. If a
supplier offers paper and match, then S1 will take these two ingredients, prepare the cigarette,
and smokes it.

Here, the supplier is the OS system and smokers are applications that require resources to
execute. The problem is that if resources are available, then the OS system must provide these
resources to the appropriate processes. Only the process that can be satisfied with the available
resources should be woken up. In the example, if the ingredients are provided to S2, then it is
of no use because the smoker cannot prepare a cigarette.

Let us discuss its solution now. All three vendors should not supply the materials at the same
time. Therefore, a semaphore, Sem_Supplier is needed so that only one vendor supplies the
materials and others wait. Three semaphores are required on three types of ingredients. There
must be a mechanism for waiting and releasing the ingredients, so three semaphores for each
ingredient are Sem_Tobacco, Sem_Paper, and Sem_Match. The algorithms for all vendors and
smokers are given in Fig. 7.25. The semaphores are initialized as

Sem Supplier =1,

Sem_Tobacco =0,

Sem_Paper =0,

Sem_Match = 0;

Vendor V1()

{
wait (Sem_Supplier);
signal (Sem_Tobacco);
signal (Sem_Paper);

Smoker with Tobacco()

{
wait (Sem_Paper);
wait (Sem_Match);
signal (Sem_Supplier);

Vendor V2()

wait (Sem_Supplier);
signal (Sem_Paper);
signal (Sem_Match);

Smoker with Paper()

{
wait (Sem_Tobacco);
wait (Sem_Match);
signal (Sem_Supplier);

Vendor V3()

wait (Sem_Supplier);
signal (Sem_Tobacco);
signal (Sem_Match);

Smoker with Match()

{
wait (Sem_Tobacco);
wait (Sem_Paper);
signal (Sem_Supplier);

Fig. 7.25 Cigarette smoker problem’s solution: Attempt 1

206 Principles of Operating Systems

Problems, however, do exist in this solution. Suppose Vendor V1 supplies tobacco and
paper. Since the smoker with matches is waiting for tobacco and paper, it might be unblocked,
but the smoker with tobacco is waiting for paper, so it may also be unblocked. In such cases,
one smoker will wait on paper and the other on matches. First, it is a wrong solution because
only one smoker should start at a time. Second, if more than one smokers start, then there is a
possibility of deadlock.

David Parnas provided the solution to these problems. He suggested three pushers that will
respond to the signals from three vendors, keep track of the available ingredients, and signal
the appropriate smoker. Suppose there are three Boolean variables to keep track of three ingre-
dients and three more semaphores to signal the appropriate smokers. The smoker with tobacco
will be signaled by one of the pushers. One more semaphore is needed so that all the pushers
should not check and modify the status of Boolean variables at the same time. The additional
data structures are

isTobacco = isPaper = isMatch = False

Semaphore Sem_Pusher tobacco =0,

Sem_Pusher paper =0,

Sem_Pusher match =0,

Sem BooleanUpdate = 1;

Keeping the vendor algorithms same, the algorithms of each pusher and smoker are shown
in Fig. 7.26. Suppose V1 supplies tobacco and paper, then Pushers A and B are activated.
Pusher A first runs and finds that paper and match are not there yet. It makes is Tobacco =

True. Then Pusher B runs and finds that paper and tobacco are there, signaling the smoker with
matches. Similarly, the other pushers are activated.

7.6.5 Sleeping Barber Problem

This problem is related to synchronization between a barber and his or her customers. In
a barber shop, there is one barber chair that the barber uses to sleep when there are no
customers. A customer, who enters the shop, wakes up the barber and gets a haircut. If the
barber is already busy with a customer and more customers arrive, they wait in the free

Pusher A() Pusher B ()
{ {

wait (Sem_Tobacco);
wait (BooleanUpdate);
if(isPaper)

isPaper = False;

signal (Sem_Pusher_match);
}
elseif (isMatch)
{

isMatch = False;

signal (Sem_Pusher_paper);
}
else

isTobacco = True;
signal (BooleanUpdate);

wait (Sem_Paper);
wait (BooleanUpdate);
if (isTobacco)
{
isTobacco= False;
signal (Sem_Pusher_match);
}
else if (isMatch)
{
isMatch = False;
signal (Sem_Pusher_tobacco);
}
else
isPaper= True;
signal (BooleanUpdate);

Process Communication and Synchronization 207

Pusher C () Smoker with Tobacco ()
{ {
wait (Sem_Match); wait (Sem_Pusher_tobacco);
wait (BooleanUpdate); PrepareCigarette();
if(isPaper) Smoke();
{ signal (Sem_Supplier);
isPaper = False; }

signal (Sem_Pusher_tobacco);

else if (isTobacco)

{ Smoker with Paper()
isTobacco= False; {)
signal (Sem_Pusher_paper); wait (Sem_Pusher_paper);
} PrepareCigarette ();
else Smoke (); .
isMatch= True: signal (Sem_Supplier);
signal (BooleanUpdate); }
Smoker with Match ()
{
wait (Sem_Pusher_match);
PrepareCigarette ();
Smoke ();
signal (Sem_Supplier);
}

Fig. 7.26 Cigarette smoker problem’s solution: Attempt 2

chairs in the shop. If all the chairs are occupied, they leave the shop. When the barber is
finished with one customer, he or she calls one of the waiting customers and starts hair
cutting. If there are no customers waiting, the barber goes back to his chair and sleeps
until a customer comes and wakes him up. This process continues. The problem here is
to synchronize the activities of the barber and customers with predefined waiting chairs.
It may be possible that the barber could end up waiting for a customer and the customer
waiting for the barber, resulting in a deadlock. Alternatively, customers may not approach
the barber in an orderly manner, leading to process starvation as some customers will not
get a haircut even though they have been waiting. If two customers arrive at the same time
when the barber is busy and there is only one chair vacant, then how will they synchronize
with each other?

The solution needs two semaphores: Sem_Customer for customers and Sem Barber for
the barber. Sem_Customer is needed so that all customers wait properly and signal the bar-
ber that a new customer has arrived. Similarly, Sem_Barber is needed so that the barber
waits for a customer and signals the customer when free. There are n chairs in the shop for
waiting customers. On the basis of the number of occupied chairs, the number of custom-
ers waiting is estimated. Since the count of customers waiting needs to be updated, there
should be one more semaphore, Sem_CountWaitingCustomers. The following are the data
structures needed:

int NumberofCustomers = 0;
Semaphore Sem_Customer = 0,

208 Principles of Operating Systems

Barber() Customer ()
wait (Sem_Customer); wait (Sem_CountWaitingCustomers);
signal (Sem_Barber); if (NumberofCustomers ==n + 1)
cuthair (); {
signal
(Sem_CountWaitingCustomers);

leave the shop;

NumberofCustomers++;

signal (Sem_CountWaitingCustomers);
signal (Sem_Customer);

wait (Sem_Barber);

wait (Sem_CountWaitingCustomers);
NumberofCustomers;

signal (Sem_CountWaitingCustomers);
gethaircut () ;

}

Fig. 7.27 Sleeping barber problem’s solution
Sem_Barber =0,

Sem_CountWaitingCustomers = 0;
The algorithms for customer and barber are given in Fig. 7.27.

7.7 CRITICAL REGIONS

The semaphore is an efficient tool for providing synchronization among processes as described
in Section 7.6. However, in the solution of some complex problems, managing the sema-
phores is dangerous. If any sequence of wait and signal operations of a semaphore is missed or
exchanged, it may lead to data corruption and deadlock. The programmer’s effort is consumed
in managing the semaphores instead of developing the application. Therefore, some high-level
language constructs have been developed to make waiting and signaling operations much
simpler as compared to semaphores. One of them is known as critical region.

In critical region, a global variable, shared, is used and accessed within a CS only. The CS is
defined with the keyword region. If a shared variable S needs to be used among many processes
inside a critical section, then the code should be written as shown in Fig. 7.28. Once S has been
taken as a shared variable, it should be accessed inside a region, that is, critical section. If it is
used somewhere else in the code, the compiler of high-level language will detect this as an error.
The critical region construct, however, is prone to busy waits

shared <type> S = <initial value> because it is not able to block a process if it does not continue

while (true) {

in a critical section. The next process in CS starts, but the previ-

; ous process needs to loop to check whether the region is free
region S do

{ to access. Therefore, the critical region is supported with one
//Critical section more keyword, await (B). Whenever a process tries to enter
I/Access shared a critical region, the Boolean expression B is evaluated. If B is
variable S here true, then it is allowed to access the shared variable inside the

region, otherwise the process is blocked until B becomes true.
This type of critical region is called conditional critical region
(CCR). The code given in Fig. 7.28 can be modified as given

in Fig. 7.29. The Edison language for embedded applications

Fig. 7.28 Critical region supports CCRs.

shared <type> S = <initial value>

while (true) {
region S do

¢ await (B);

/[Critical section
/IAccess shared
variable S here

}

Fig. 7.29 Conditional critical region

Process Communication and Synchronization 209

7.7.1 Producer—Consumer Problem’s Solution with CCR

The producer—consumer problem can be solved with the help of CCR construct. We need to
take some global variables as shared variables. The data structure is given by

Shared Struct {

Item buffer[n]; // buffer that stores items of type Item in n-sized buffer

int buffer size = n;

int full = 0; // counter that keeps track of buffer items

} Bounded buffer.

The producer produces an item in the buffer with the await condition that the buffer is
not full, and similarly, the consumer consumes item with the await condition that the
buffer is not empty. The algorithms for producers and consumers are given in Fig. 7.30.

7.8 MONITORS

The CCR can be dispersed throughout the program. The more structured critical regions are
provided by monitors. The monitor is another high-level language construct used for shared

Producer ()

while (true) {
region Bounded_buffer do

{await (full < buffer_size);
produce (); // produce the item
full++;

Consumer ()

while (true) {
region Bounded_buffer do

await (full > 0);
Consume (); // consume the item
full- —;

}
}}

Fig. 7.30 Producer-consumer problem’s solution with CCR

210 Principles of Operating Systems

{
-

type <name of monitor type> = monitor) . -]
... data declaration to encapsulation used in object-oriented languages for

monitor entry <name and its parameters>

data and process synchronization. The concept similar

data hiding is applied in monitors. A monitor is same
as a class type; like objects of a class are created, the
variables of monitor type are defined. The monitor
defines not only the shared data but also the operations

Fig. 7.31

that can operate on this data. The critical regions are
written as procedures and encapsulated together in a
single module. All procedure calls are mutually exclu-
sive. In this way, monitors are superior to CCR and
are more reliable to use in large concurrent systems because they provide data abstraction,
control abstraction, and procedural abstraction through encapsulation. Modula-1, Concur-
rent Pascal, and Mesa are some languages that support monitors. The format of a monitor
is shown in Fig. 7.31.

The synchronization among the processes is provided through the monitor entry procedures.
There may be many processes that wish to enter the monitor at the same time, but it enforces
mutual exclusion. Only one process will be allowed within the monitor; others will be blocked
and made to wait at its boundary. Data inside a monitor may be shared among the processes or
the local data of the procedure. However, the shared data cannot be accessed outside the bound-
ary. Moreover, the wait and signal introduced in semaphores are also implemented in monitors
through the use of condition variables. A process inside a monitor may wait till a specific condi-
tion occurs. This is known as blocking of the process on the condition. The first process in the
queue is activated when the condition becomes true, which is explicitly signaled by the process
inside the monitor. Thus, wait and signal are implemented inside the monitor through condition
variables to enforce mutual exclusion and synchronization. Condition variables are different
from normal variables because each of them has an associated queue. A process calling wait on
a particular condition is put into the queue associated with that condition variable. It means that
the process is waiting to enter a CS guarded by the monitor. A process calling the signal causes
the waiting process in the queue to enter the monitor. The condition variable’s declaration with
wait and signal operations is defined as

Condition <name of variable>;

wait (condition variable);

signal (condition variable).

If the signaling process is still inside the monitor, then the waiting process in the queue
cannot enter the monitor. To force the process to exit immediately after the signal operation,
signal-and-exit monitor is used. However, in some cases, if the signaling process needs to be
inside the monitor for some more time after signaling, then signal-and-continue monitor is
used. It means that the signaling has been done by the process, but it still maintains a lock on
the semaphore. Java programming language implements the signal-and-continue monitor.

Format of a monitor

7.8.1 Producer-Consumer Problem’s Solution with Monitors

Let us revisit the producer—consumer problem to solve it with the help of monitors; buffer full
and buffer empty have been taken as condition variables; and produce_info and consume _info
are two monitor entry procedures through which synchronization between two processes is
achieved. The algorithm is given in Fig. 7.32.

Process Communication and Synchronization 211

type Bounded_buffer = monitor

Item buffer[n]; / buffer that stores items of type Item in n-sized buffer
int full = 0;

Condition buffer_full;

Condition buffer_empty;

monitor entry produce_info ();
{
If (full = n)
wait (buffer_empty);
produce ();
full++;
signal (buffer_full);
}
monitor entry consume_info ();
{
if (full = 0)
wait (buffer_full);
Consume ();
full- —;
signal (buffer_empty);

Producer ()

{
Bounded_buffer B;

while (true)

Consumer ()

{
Bounded_buffer B;

while (true)

{ {

B.produce_info ();

} }

B.consume_info ();

Fig. 7.32 Producer-consumer problem’s solution with monitors

7.9 PROTECTED OBJECTS

Protected objects are another high-level constructs to implement monitors in Ada language.
In this language, the data items are encapsulated into a protected object. The access to these
data items is provided only via protected sub-programs on protected entries. Further, these
sub-programs and entries are executed such that the data are mutually exclusively updated.
Sub-programs are of two types: protected procedures and protected functions. The role of a
protected procedure is to provide mutually exclusive read/write access to the encapsulated
data. On the other hand, the protected functions provide concurrent read-only access to the
encapsulated data. A protected entry is also a protected procedure having same features to
update encapsulated data mutually exclusively and read/write access to the encapsulated data.
However, the protected entry is guarded by a Boolean expression known as barrier. The barrier
is inside the body of the protected object. While the entry call is made and barrier value is
false, the calling function is suspended (queued) until the barrier value becomes true and there
should be no other active task inside the protected object. Thus, the protected objects are used

212 Principles of Operating Systems

protected type <Name of protected object> is
entry <Name of protected entry>;
procedure <Name of protected procedure>;
function <Name of protected function>;

return <return type>;

private
Open : Boolean := False;

end <Name of protected object>;

protected body <Name of protected object>is

entry <Name of protected entry> when Open is
begin

Open := Falseg;
end <Name of protected entry>;

procedure <Name of protected procedure> is
begin

Open := True;
end <Name of protected procedure>;

function <Name of protected function>
return <return type>is
begin
return Open;
end <Name of protected function>;

end <Name of protected object>;

Fig. 7.33 Format of protected objects in Ada

to implement conditional synchronization. In this way, protected objects make use of good
points of both monitors and CCR. The method of defining the protected objects in Ada has
been shown in Fig. 7.33. Since the protected object interface must provide all the information
required by the compiler to allocate the required memory in an efficient manner, the state of the
object is placed in the private part of the specification.

To call a protected object, the process names the object and the required sub-program or
entry. For example, to call a protected entry the syntax is

Object Name.Entry Name (Parameters)

The barrier is thus executed on the call of a protected procedure or entry. On the completion of
a protected procedure or entry, all barriers are re-evaluated. Barrier evaluation, protected-object
queuing, and protected-object execution are collectively known as protected actions.

7.10 SYNCHRONIZED METHODS

This is a Java language construct to implement a monitor. A lock is associated with an object by
the keyword synchronized. When a method is labeled with the synchronized modifier, access
to it can be gained once the lock associated with the object has been obtained (see Fig. 7.34).

Process Communication and Synchronization 213

Synchronized void <name of method> Java also has the facility of making a block of statements as
{ synchronized. The synchronized keyword takes an object as a
- parameter whose lock it needs to obtain before it can continue.
) - The keyword this is used for obtaining the current object (see
Fig. 7.35).
The conditional synchronization implementation is obtained
Fig. 7.34 Synchronized methods with the following methods in Java:
: 1. public void notify (): This method releases an object
void <name of method> . . .
{ and sends a notification to a waiting process.
synchronized (this) 2. public void notify All (): This method sends notifi-
cation to all processes once the object is available.
3. public void wait (): makes a process wait for the
object till it receives a notification.
. 7.11 MESSAGE PASSING SYSTEM
}

The message passing system allows processes to communicate

Fig. 7.35 Synchronized method with this

through explicit messages as introduced earlier in process com-
munication. In a message passing system, a sender or a source
process sends a message to a known receiver or destination process. The message has a pre-
defined structure through which the sender sends the message. In general, a message passing
system is implemented through two system calls: send and receive. The general format of these
two is given by

send (name of destination process, message);

receive (name of source process, message).

In these calls, the sender and receiver processes address each other by names. The addressing
or mode of communication between two processes can take place through two methods. They
are discussed in Sections 7.11.1 and 7.11.2.

7.11.1 Direct Addressing

In this type of communication, the two processes need to name each other to communicate.
This becomes easy if they have the same parent. For example, Processes A and B communicate
with each other through a message passing system. If Process A sends a message to Process B,
then in this case, the format is

send (B, message);
receive (A, message).

In send () call, the sender process names the Recipient B, and at the same time, in receive
() call, the receiver process names the Sender A. In this way, a link is established between
A and B. Here, the receiver knows the identity of destination of message in advance. This type
of arrangement in direct communication is known as symmetric addressing. The symmetric
addressing is useful in concurrent processes where sending and receiving processes cooperate
with each other. However, this type of addressing is not valid everywhere. For example, a print
server receiving requests from many unknown processes may not be able to know the name
or ID of the sending process in advance. For this purpose, another type of addressing known

214 Principles of Operating Systems

as asymmetric addressing is used. Here, the sending process’s name is not mentioned in the
receive call, but it possesses a value returned by a sending process when the receive operation
has been completed.

7.11.2 Indirect Addressing

Another way of communication is indirect addressing where the processes need not name each
other and send the messages directly. In contrast, the messages are sent to a shared area known
as mailbox, which stores them. A mailbox can be regarded as an object where messages can be
stored or removed by the processes. The receiver process that is not in synchronization with the
sending process may receive the message after some time from the mailbox. The sender and
receiver processes should share a mailbox to communicate (Fig. 7.36).

The following types of communication link are possible through mailbox:

One-to-one link: One sender wants to communicate with one receiver; a single link is estab-
lished between two processes. No other processes can interfere in between.

Many-to-one link: Multiple senders want to communicate with one receiver. For example,
in a client-server system, there are many client processes and one server process. The mailbox
here is known as port.

One-to-many link: One sender wants to communicate with multiple receivers, that is, to
broadcast a message.

Many-to-many link: Multiple senders want to communicate with multiple receivers.

7.11.3 Mailbox

A mailbox created among processes has a unique identity as there may be multiple mailboxes
depending on the communication needs of the processes in the system. The mailbox implemen-
tation also has some design issues. The first issue is regarding its creation. Since the mailbox
is a shared area, it needs to be created by a process. The kernel provides the system calls to
create a mailbox. Another issue is about the ownership of a mailbox. The process that creates
it becomes the owner, that is, the receiving process, by default. However, the ownership rights
can also be transferred to other processes. In general, any process that knows the identity of
a mailbox can send messages to it. However, there are some mechanisms to be provided by
the kernel through which senders and receivers share a common mailbox to communicate.
The mailbox can be deleted, or it gets terminated when its owner process terminates. In both the
cases, the sending processes associated with the mailbox must be notified about it.

The assignment of a mailbox to the processes may not always be static. In case of one-to-one
relationship, the mailbox assigned between the two processes are permanent. However, if there
are multiple senders, then there will be dynamic assignment of the mailbox.

Since the mailbox is meant for storing messages, it has a queue to store them. In general, the
message queue is implemented as first-in-first-out, but for some preferred messages, the queue
may also be prioritized.

Mailbox

Receiver
process

Sender
process

\4

Fig. 7.36 Mailbox

Process Communication and Synchronization 215

7.11.4 Synchronization Protocols

The communication among processes need some type of synchronization between them. This
synchronization is governed by rules known as synchronization protocols. The following are
the two common protocols:

Blocking Protocol

In this protocol, both the sender and receiver are blocked until the message is delivered to the
receiver. The advantage here is that the sender is ensured about the delivery of the message to
its receiver. However, there is unnecessary delay in processing of the sender. When both the
sender and receiver follow blocking protocol, they are said to be in rendezvous.

Non-blocking Protocol

In this protocol, both the sender and receiver are non-blocking, that is, they resume their
operation without waiting for the message to get delivered. The advantage here is that the
processing of the sender is not delayed, but it cannot ensure the delivery of the message to
its receiver.

7.12 SIGNALS

Signals can be defined as the inter-process communication mechanisms that notify a process
about any event but do not exchange the data as in message passing. For example, if a child
process terminates or suspends, then this event should be notified to the parent process as a
signal. Likewise, if a parent process wants to terminate its child process, then the signal about
its termination will be sent. Signals can also be used to notify I/O completion. In this way,
some signals are received by the running processes from other processes asynchronously.
However, there are some events that when executed within the running process must be noti-
fied to it by the kernel synchronously. For example, a process tries to execute an illegal
instruction, an invalid system call, or exceed file size limit, and so on. Thus, signals can be
used either for process to process communication or kernel to process communication. Thus,
a signal may notify a running process synchronously and asynchronously. Based on this con-
cept, there are two types of signals: synchronous and asynchronous. A synchronous signal
occurs due to an instruction executed by the process itself and is passed to this process by
the kernel. An asynchronous signal occurs due to an external event and is passed from one
process to another. The external event in an asynchronous signal is unrelated to any execution
in the receiving process.

When a signal occurs, it is the job of the OS system to determine the process for which
the signal is meant and the way the receiving process will respond to the signal. Generally, a
process responds through a procedure known as signal handler. In other words, the exception
generated in the form of a signal is caught by the process. Sometimes, a signal may be ignored
by the process. In this case, the OS system takes some default action and executes a default
signal handler. The default action may be to abort or suspend the process. The process may also
mask or block a signal, which may be required if the process is already servicing another signal.
The process of masking may be different in various operating systems.

The implementation of signals is similar to that of interrupts. The process receiving the
signal is interrupted. The state of the process is saved before attending the signal handler so
that it can resume its work after the execution of the signal handler. The process executes the

216 Principles of Operating Systems

;S./.'gna/(address of

destinationprocess, | 1
signal type)

oL =

Fig. 7.37 Signal received by a process

signal handler for servicing the signal as interrupt service routine is executed for servicing
the interrupt. After the execution, the process resumes its work from where it was inter-
rupted. In fact, the signals are interrupted as a system call. The system call signal consists of
two parameters: One is the address of the destination process and another is the type or the
number of the signal to be sent (Fig.7.37). Since the signal is a system call, the parameters
of signal call are stored in CPU registers and an event-handling routine is executed. This
event-handling routine extracts the information about the destination process and the signal
type. It passes the signal to the destination process after which the control is passed to the
signal handler. However, for this purpose, event-handling routine must know the address of
the signal handler.

To know the address of the signal handler of a signal type, the process receiving the signal
must initialize the signal before it receives the actual signal. The receiving process executes
a system call for this initialization. The system call init signal is used for this purpose
(see Fig. 7.38). The parameters of init signal are signal type and the address of its signal
handler. When this system call is executed, the kernel enters the address of the signal handler
in the signal vector area of the kernel. The signal vector area is similar to interrupt vector
area and will be different for every process. It contains the addresses of the signal handlers

| Init signal (signal_type, address_of_signal_handler)
Process area

PCB
»| Signal PC
vector area Registers
State
Signal
2 Info Kernel area

1. Address of the signal handler corresponding to its type is added in the
signal vector area.

2. Inthe PCB of the process, Signal Info field is added and the address of
the signal vector corresponding to the process is copied here.

Fig. 7.38 Preparation for signal implementation

Process Communication and Synchronization 217

corresponding to all the signals a process supports. Therefore, by executing init signal call,
a process can store addresses of all the signal handlers in its signal vector area. For this
implementation, the PCB will be modified to have a new field signal info containing the
address of the signal vector area of the process.

When an event-processing routine corresponding to a signal system call is executed and
sends the signal to its destination process, it locates the corresponding PCB. From the PCB,
the address of the signal vector area is searched and then the address of the signal handler is
searched in this signal vector area. Once the desired address is found, the control is passed to
the signal handler and thereby it is executed. If the destination process is blocked, then the
kernel may put it into a ready state and after executing the signal handler, it is moved back to
its original state (see Fig. 7.39).

1...
2.
Signal(address of 1 3...
destination process, _/_->4
signal typey— | »5... \
\
/ 5
2
PCB
Signal PC |
handler Registers/
A vy State [
Signal
3 Info /
Signal
vector area

1. The sender sends the signal to the receiver. The process is interrupted.
The PCB of the receiver is searched and signal info field is searched for the
address of its signal vector.
3. The address of signal handler is retrieved from signal vector and control is passed
to the signal handler.
The signal handler is executed.
After executing the signal handler, the control is again passed to the receiver.

o s

Fig. 7.39 Signal implementation

7.13 HARDWARE SUPPORT FOR PROCESS SYNCHRONIZATION

The CS implementation for avoiding race condition and thereby synchronizing the processes
can be achieved if the hardware architecture support is there. In a uni-processor system, a
process will continue to execute unless it is interrupted by a system call or an interrupt. If any
system call or interrupt can be prevented, then the execution of a process in the CS will be
mutually exclusive (see Fig. 7.40).

218 Principles of Operating Systems

Process P ()

{
do {

Disable interrupts

Critical section

Enable interrupts

} while (true)

Fig. 7.40 Interrupt disabling for critical section

Process P ()

{
do {

Test and set the lock

Critical section

Reset the lock

j.\-/vhile (true)

test: if (lock== 1)
goto test;
lock = 1;

Critical section

lock = 0;

Fig. 7.41 Special instruction for critical section

However, interrupt disabling cannot be always
adopted in a multi-programming environment.
The first problem is that the system’s efficiency is
degraded as other processes are not allowed to be
interleaved. Another problem is that this will only
disable interrupts on a single processor; other pro-
cessors may still allow the interrupts, and disabling
interrupts on all processors may be time consum-
ing and degrade the system efficiency. In addition,
the kernel would not be able to update its data
structures causing race conditions. Thus, it can be
summarized that disabling interrupts is not a good
choice for implementing critical section.

Let us discuss the solution in terms of software
for a moment. Consider a variable /ock that can
take values zero and one. When the value of lock
is one, it is said to be locked. A process, wishing
to enter the critical section, first checks the value
of the lock. If it is zero, then it can enter and set the
lock’s value to one, otherwise it loops. Similarly,
when the process exits the CS after the execution,
it sets the lock’s value to zero. In this way, the pro-
cesses will execute in a mutually exclusive manner.
However, it is important to interleave the instruc-
tions for checking, setting, and resetting the value
of lock variable. This is where hardware support
is needed. If these instructions are indivisible, the
mutual exclusion will be implemented inside the
critical section. This idea is adopted by many sys-
tems. In IBM/370 systems, there is an indivisible
instruction called Test-and-Set (TS). TS instruction
performs two actions: First, it tests the value of a
memory byte (for lock variable) to check whether
it is zero or one. If it is zero, then it performs the
second operation, that is, sets the byte to one. The
initial value of a lock is zero. Now, to make these
two operations indivisible, the processor executing
these instructions locks the memory bus so that no
other process may request to access the memory at
this time. In this way, the indivisible operations are
implemented using special machine instructions
(see Fig. 7.41).

Compare-and-swap and Exchange are some other examples of hardware-supported indivis-
ible instructions that have been implemented in systems such as x86, IA32, [A64, and so on.

SUMMARY

Interacting processes need to synchronize in various ways.
The chapter discusses various classic synchronization prob-
lems and their solutions. Semaphores are one of the effective
solutions to synchronization problems. However, in complex
problems, semaphores may become difficult to implement.
Therefore, some other methods, such as high-level language
constructs, hardware support, and so on, are used. Synchroni-
zation among interacting processes also need to communicate.
Shared memory, message passing systems, and signals are
some of the means of communication discussed in the chapter.

Let us have a quick review of important concepts dis-

cussed in this chapter:

1.

10.

Concurrent processes may need to communicate data
and information among themselves. Therefore, there
should be some mechanisms for synchronizing the pro-
cesses.

Data access synchronization is used to synchronize
the concurrent processes so that they do not update a
shared variable at the same time.

When more than one processes access and update
the same data concurrently and the result depends on
the sequence of execution in which it takes place, it is
known as race condition.

Control synchronization is used to synchronize the se-
quence of execution of two processes where a process
needs to wait for input from the other process.

When every process is holding a resource and waiting
for another resource held by another process, the situ-
ation is known as deadlock in the system.

A section of code in the process where the shared data
is accessed and updated is known as CS.

Critical section consists of three parts: entry criteria, CS
code, and exit criteria.

When processes in a system are giving chance to one
another and no process is proceeding, this situation is
known as livelock.

The semaphore is a process-synchronization tool that
protects any resource such as global shared memory that
needs to be accessed and updated by many processes.

The semaphore is accessed with only two indivisible
operations known as wait and signal operations. The
wait and signal operations are also denoted by P and V,
respectively, after the Dutch notations.

1.

20.

21.

22.

23.

24.

Process Communication and Synchronization

The semaphore whose value is either zero or one is
known as binary semaphore.

. A semaphore that may take values greater than one is

known as counting semaphore.

. In mutex semaphores, the process that locked the CS

can only unlock it.

. When a process does not get access to the resource, it

loops continually waiting for it and wastes CPU cycles.
This type of semaphore is known as a spinlock.

Process communication may take place in three ways:
shared memory, message passing, and signals.

. In shared variable communication, there is a shared

variable among processes through which they commu-
nicate, that is, they are not aware of existence of each
other but coordinate with each other in the execution.

The processes can also communicate through mes-
sages and be explicitly aware of the existence of each
other. This type of communication is known as mes-
sage passing.

. A message passing system is implemented through

two methods: direct addressing and indirect address-
ing. The classification of a message-passing system is
given by

. The direct addressing based communication demands

that the sender and receiver processes know each
other and explicitly name them.

Direct addressing is of two types: symmetric and asym-
metric.

In symmetric addressing, both the sender and receiver
know the names of each other in advance and use
them for communication.

In asymmetric addressing, the sender knows the name
of the receiver but the receiver does not know the name
of the sender.

In Indirect addressing, the processes need not name
each other and send the message directly to a shared
area that stores them. This shared area for storing the
messages is known as a mailbox.

The communication link through a mailbox is of the fol-
lowing types:

(@) one-to-one
(c) many-to-one

(b) one-to-many
(d) many-to-many

219

220 Principles of Operating Systems

25. Exceptional notification messages cannot be communi- 26. The operations that cannot be overlapped or interleaved
cated through message-passing systems as they may with execution of any other operations are known as
not reach the desired process at the right time. Therefore, indlivisible or atomic operations.
there should be another mechanism that catches the 27. The high-|eve| |anguage constructs for imp|ememing
attention of the process to which this emergency mes- process synchronization are summarized as follows:
sage is to be passed. This mechanism is known as a
signal.

Message passing system

/\

Direct addressing Indirect addressing
/\A A4
Symmetric Asymmetric Mailbox

/R

High-level lan- High-level

guage constructs language

Conditional critical Edison

region

Monitor Modula-1, Concurrent
Pascal, Mesa

Protected objects Ada

Synchronized Java

methods

MULTIPLE CHOICE QUESTIONS

1. The situation where more than one processes access and method?
update the same data concurrently and the result depends (@) message passing (c) signal
on the sequence of execution in which it takes place is (b) shared memory (d) none
knownas 3. Which of the following is not a part of process synchroniza-
(a) critical section (c) deadlock

tion protocol?
(a) entry criteria (c) signal
2. Which one of the following is not a process communication (b) exit criteria (d) critical section

(b) race condition (d) none

10.

1.

12.

When every process is waiting for the other to execute and
no process is proceeding, the situation is known as

(a) deadlock (c) critical section

(b) livelock (d) none

The operations that cannot be overlapped or inter-
leaved with execution of any other operations are
known as

(@) atomic operations
(b) system calls

(c) messages
(d) none

The semaphore whose value is either zero or one is
known as

(@) binary semaphore
(b) counting semaphore

(c) guard
(d) none

The semaphore that takes value greater than one is
known as

(a) binary semaphore
(b) counting semaphore

(c) mutex
(d) none

Ina , the process that locks the CS will only unlock it.
(a) binary semaphore (c) mutex
(b) counting semaphore (d) none

When a process does not get access to the resource, it
loops continually for the resource and wastes CPU cycles.
It is known as
(a) deadlock
(b) livelock

A section of code in the process where the shared data is
accessed and updated is known as

(a) critical section (c) critical procedure

(b) critical region (d) none

(c) spinlock
(d) none

_____is a process synchronization tool that protects any
resource such as global shared memory that needs to be
accessed and updated by many processes.

(a) message passing system (c) semaphore

(b) signal (d) none

In , a global variable is used with the keyword shared
and accessed within a CS only.

REVIEW QUESTIONS

1.

What are concurrent processes? What are the problems
associated with them?

What is a race condition? Write a program that shows the
data access synchronization problem.

Write a program that shows the control synchronization
problem.

Explain the shared memory method for process communi-
cation.

13.

14.

15.

16.

17.

18.

19.

20.

Process Communication and Synchronization 221

(@) message passing system (c) critical region
(b) Critical section protocol ~ (d) none

Which one of the following languages does not support
monitors?

(@ C (c) Modula-1

(b) Java (d) concurrent Pascal
Which high-level language construct uses the keyword
await (B)?

(a) critical region
(b) conditional critical region

(c) monitor
(d) synchronized method

Which language uses protected objects for synchronization?
(@) C (c) Java
(b) C++ (d) Ada

A protected entry is guarded by a Boolean expression
called inside the body of the protected object.
(a) protected region (c) barrier

(b) monitor (d) critical region

Which language uses synchronized methods for
synchronization?

(@) C (c) Java

(b) C++ (d) Ada

In which type of link, a mailbox is known as a port?
(a) one-to-one (c) many-to-one
(b) one-to-many (d) many-to-many

When both the sender and receiver follow blocking protocol
in a message passing system, they are said to be in

(a) concurrency (c) rendezvous

(b) control (d) none

___ can be defined as the inter-process communication
mechanisms that notify the exceptional conditions and
alarms.

(@) Amessage passing system

(b) Asignal

(c) A semaphore

(d) none

Explain the message passing system for process communi-
cation. What types of system is suitable for this method?

Explain the signal system for process communication. What
types of system is suitable for this method?

Distinguish between deadlock, livelock, and spinlock.

Write a program that demonstrates a CS and its entry and
exit criteria.

What are the characteristics of a protocol for having mutual
exclusion in the form of critical section?

222 Principles of Operating Systems

10.

1.

12.

13.
14.

15.
16.

17.

18.
19.
20.

Explain the algorithms for two-process synchronization
solution with shortcoming of every attempt.

What is the difference between Dekker's solution and
Peterson’s solution for two-process synchronization solution?

What is the difference between interleaved operations and
indivisible operations? Explain with some program examples.

What is a semaphore? Explain its initial implementation.

What are the problems in initial implementation of a
semaphore? How do you modify it?

Which type of systems a spinlock is useful for?

What is the difference between a binary semaphore, a
counting semaphore, and a mutex?

What is the difference between symmetric and asymmetric
solution of dining-philosopher problem using semaphore?

What is a critical region?
What is a CCR?

What is a monitor?

BRAIN TEASERS

1.

Prove that all the CS protocol requirements are satisfied in
Dekker’s solution for process synchronization.

Prove that all the CS protocol requirements are satisfied in
Petorson’s solution for process synchronization.

3. Is nesting of critical sections possible in the system?

Is the reader-writer problem same as the producer-
consumer problem?

Prove that there is a starvation problem in Tanenbaum’s
solution to the dining-philosopher problem.

Can you implement semaphores using monitors? If yes,
write the code.

What are the problems faced by programmers in the imple-
mentation of a semaphore?

There are four processes sharing a semaphore for syn-
chronizing a shared variable. The semaphore is guarding
the CS of the processes where they update the shared
variable. Initially, the value of the semaphore is three. The
actions taken by the processes in time sequence are given
below:

Time Process Operation
P1 P(S)

2 P2, P(S)
P3 P(S)

3 P4 P(S)

21.

22.

23.

24,

25.

26.

27.

28.

29.

What are protected objects meant for?
What is a synchronized method?
What is the difference between a CCR and a monitor?

What is the difference between direct addressing and indi-
rect addressing for the implementation of a message pass-
ing system?

What is the difference between symmetric and asymmetric
addressing?

What is a mailbox? How is it used?

What is the difference between a blocking and a non-
blocking protocol for the implementation of a message
passing system?

What is a signal? What is the difference between a synchro-
nous and an asynchronous signal?

Define signal handler, signal vector area, and signal info for
the implementation of signals.

4 P1 V(S)
P3 V(S)
5 P2 V(S)
P1 P(S)
6 P2 P(S)
P3 P(S)

Show and explain the current and updated value of a semaphore
at every time instant and the processes in the wait queue.

9.

Abuffer has 10 slots. The initial value of empty = 10 and full
= 0. What will be the value of empty and full in the following
conditions?

(@) The producer has inserted five items and the consumer is

not able to consume.

(b) The producer has inserted five more items and the con-

sumer is not able to consume.

(c) The producer has produced three more items but cannot

insert as the buffer is full.

(d) The consumer has consumed five items.

10.

1.

Assystem with three concurrent processes has a shared print-
er. Write a program to implement synchronization between
the processes using a semaphore, a monitor, and a CCR.

Rendezvous is a point of synchronization where two pro-
cesses wait for each other and neither is allowed to proceed
until both have arrived. For example, see the Processes A
and B in the following diagram. It needs to be confirmed that

12.

13.

A1 happens before B2 and B1 happens before A2. Write a
solution for this rendezvous with semaphore. Can the solu-
tion be expanded to more than two processes?

Process A Process B
Al; B1;
A2; B2;

s s

The generalization of rendezvous mentioned in Problem 11
is in the form of a barrier. The synchronization requirement
here is that no process executes a critical point until all the
processes have executed the rendezvous. In other words,
no process would execute the CS until all the processes
have reached the barrier point. If there is any process left,
all the other processes at the barrier point will be blocked.
When all the processes reach at this point, they are allowed
to execute. Can you provide a general solution for imple-
menting this barrier?

There are two processes, oxygen and hydrogen. For a
complete water molecule, two processes of hydrogen and
one process of oxygen are required. To assemble these
two processes in water molecules, a barrier is needed
that makes each process wait until a complete molecule is
ready to proceed. In other words,

(a) when an oxygen process arrives at the barrier, and no
hydrogen process is there, it needs to wait for two pro-
cesses of hydrogen;

(b) when a hydrogen process arrives, and no other pro-
cess is there, it has to wait for one process of hydrogen
and one process of oxygen.

14.

15.

16.

17.

Process Communication and Synchronization 223

Similarly, there may be other combinations. Provide a
general solution to assemble the processes to prepare a
water molecule.

There is a unisex salon where both males and females can
get the salon service. However, there is a condition that
males and females cannot come to the salon at the same
time. The second condition is that there cannot be more
than three persons in the salon at a time. Give a synchroni-
zation solution using semaphores.

There is a dining hall of capacity of 10 people at the most
in a restaurant where families come to enjoy delicious food.
On weekends, however, there is a great crowd in the res-
taurant. A person would be entertained only if there is a
vacant chair. If all the seats are full, it means that there is
a single family of 10 members enjoying the dinner. In this
case, the person has to wait until the family leaves. Write a
synchronization solution using semaphores for the custom-
ers entering and leaving the dining hall.

A working couple has three babies. The babies cannot be
left unattended: Any one from the couple must be present
at home for the babies. Write a solution for synchronizing
the parents with the babies.

The passengers wait for a bus at a bus stop, and when the
bus arrives, they board the bus. A passenger, who arrives
when the bus is leaving, has to wait for the next bus. The
capacity of the bus is 30. If there are more than 30 pas-
sengers waiting, only 30 will be allowed to board and others
will have to wait for the next bus. Write a synchronization
solution to this problem.

Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

8 Deadlocks

8.1 INTRODUCTION

In the previous chapter, the problem of deadlock was introduced during the discussion of concurrent
processes and their synchronization problems. In this chapter, deadlock will be discussed in detail.
Deadlock is another critical problem in concurrent processes, and therefore, it must be known why it
occurs in a system. There are some necessary conditions that give rise to a deadlock. If all of them hold
true, the deadlock will certainly occur. If any one of the necessary conditions is prevented, the prob-
ability of deadlock becomes less. Some deadlock prevention methods have been discussed, but they are
not always applicable. Deadlock avoidance is another approach to deal with deadlocks. Avoidance algo-
rithms have been developed in order to have advance information about occurrence of deadlock. For
that, it requires to know the maximum resource requirement of processes in advance, which is impracti-
cal. Therefore, this algorithm has low importance in practice. Deadlock detection is the method that a
system must adopt if it is not able to prevent or avoid the deadlock. Finally, once a deadlock has been
detected in a system, recovery methods are used. In this chapter,

all these approaches have been discussed in detail. ‘. .:’
Learning Objectives

8.2 DEFINING DEADLOCKS o
After reading this chapter,

The computer system uses several types of resources, such as con- you should be able to
sumable or non-consumable, and pre-emptable or non-pre-emptable. understand:

In a multi-programming environment, the problem starts with » Definition of deadlock
non-pre-emptable resources. These resources have to be used in a * Resource allocation graph

(RAG)-based representation
of deadlock

o Wait-for graph-based repre-
sentation of deadlock

mutually exclusive manner. But the problem is that resources are
always limited, compared to the number of processes. In this case,
when the concurrent processes request the resources, a deadlock

oceurs. . « Conditions for occurrence of
Before defining a deadlock, let us understand how the resource deadlock

allocation is done in a system. In general, the OS follows a « Deadlock prevention methods
protocol to use non-pre-emptive resources. The protocol consists o Deadlock avoidance methods
of the following three events: o Banker's algorithm for dead-

lock avoidance
o Deadlock detection methods
o Recovery from deadlock
e Two-phase locking
o Starvation

1. Request: Before using a resource, a process must request for it.
This request is in the form of a system call, and it is passed on
to the kernel. This uses a data structure resource table to store
the information about all the resources in the system. When-
ever the request is received, it checks the status of the resource.

Deadlocks 225

If the resource is free, the requesting process will get it. Otherwise, the requesting process
will be blocked, and it must wait until the resource is free.

. Use: If a process gets the resource, the kernel changes the status of resource to allocated and

the state of process to ready, if it has been blocked earlier. The process uses the resource in
a mutually exclusive manner.

. Release: After its use, a process releases the resource again through the use of a system call.

The kernel can now allocate this resource to any blocked process or change the status of the
resource to free.

The use of a non-pre-emptive resource may also follow the protocol of a critical section,

which consists of the following criteria:

1.

2.
3.

criteria. It will guard a resource and help in using it in a !{Drocess A
mutually exclusiye manner (see Fig'. 8.1). semaphoresem_resource;
Let us consider a system with two concurrent
processes A and B, and with two resources such as one wait(tiem_resource)/;/cs
: : use ne resource;
CD drive rfmd one printer. Both the.resources can be signal(sem._ resource):
guarded using two semaphores (see Fig. 8.2). }

As we know, in a multi-programming environment,

Entry criteria: The resource should be free while requesting, otherwise the requesting pro-
cess must wait.

Mutual exclusion: The use of resource must be mutually exclusive.

Exit criteria: There must be some criteria for releasing the resources.

A semaphore can help the resources satisfy the above

there may be interleaving of concurrent processes. In

this example of Fig. 8.2, if process A starts first and

Fig. 8.1 Using resource with semaphore

holds the CD, then process B will not be able to start,

as the CD is held by A. Thus, A will use both resources without any interruption. However, if
there is a little change in the sequence of the instructions, the concurrent access of resources
may not be as simple as shown in the figure.

It may be possible that B changes the sequence of requesting and releasing of the resources

(see Fig. 8.3). It first requests the printer, and then the CD. It releases the CD first, and then
the printer. With this change in the code sequence, there will be conflicting demands of both
processes. In this scenario of concurrent processes, there may be interleaving of instructions as
given in the following space:

1,1°,2,2°.

Process A Process B

{ {

semaphoresem_CD; semaphoresem_CD;

semaphoresem_Printer; semaphoresem_Perinter;
1 wait(sem_CD); 1" wait(sem_CD);
2 wait(sem_Printer); 2’ wait(sem_Printer);
3 use the resources; //CS 3’ use the resources; //CS
4 signal(sem_Printer); 4’ signal(sem_Printer);
5 signal(sem_CD); 5’ signal(sem_CD);

} }

Fig. 8.2 Guarding two resources with two semaphores

226 Principles of Operating Systems

Process A

{

semaphoresem_CD;
semaphoresem_Printer;

Process B

{

semaphoresem_CD;
semaphoresem_Perinter;

1 wait(sem_CD);

2 wait(sem_Printer);

3 use the resources; //CS
4 signal(sem_Printer);

5 signal(sem_CD);

1" wait(sem_Printer);

2’ wait(sem_CD);

3’ use the resources; //CS
4’ signal(sem_CD);

5’ signal(sem_Printer);

Fig. 8.3 Guarding two resources with two semaphores: Request and release sequence changed

Here, process A has held the CD, and process B has the printer. Then A requests for the
printer and is blocked. Similarly, Process B requests for the CD and is blocked. Thus, both
processes hold one resource and are waiting for another resource held by the other process.
It can be realized here that the system will not progress because both processes wait for an
infinite time. This situation is known as a deadlock.

A deadlock can be defined as a situation when a set of concurrent processes in a system
request for the resources in such a conflicting manner that there is an indefinite delay in
resource allocation. In other words, every process in the system is blocked, and is waiting for
the resources held by the other blocked processes. In this manner, no process is releasing any
resource and cannot be awakened; therefore, the system is in a deadlock.

Deadlocks may occur with non-pre-emptable consumable resources as well. The consumable
resources, like messages once received by a process, are considered as consumed. Fig. 8.4
shows the semaphore as a consumable resource. Another example with messages causing
deadlock is shown in Fig. 8.5.

When a set of concurrent processes are in a deadlock situation, the degree of multi-
programming in the system decreases. This affects the performance of a system. In turn, it

Process A Process B

{ {

semaphoresem_CD;
1 wait(sem_CD);

3 signal(sem_CD);
}

2 use the resource; //CS

semaphoresem_CD;

1 wait(sem_CD);

2 use the resource; //CS

3 signal(sem_CD);
}

Fig. 8.4 Deadlock using semaphores

Process A

{
Re;:.éive_msg(B);

Seﬁ.d_msg(B, message);

}

Process B

{
Re;:.éive_msg (A);

Seﬁ-c-l_msg(A, message);

}

Fig. 8.5 Deadlock using Messages

Deadlocks 227

causes resource starvation because resources are tied up with deadlocked processes. Thus,
deadlock situations are not favourable for a system. Moreover, deadlocks occur not only with
user processes, but with OS processes as well. Thus, it becomes essential to identify and handle
deadlock situations, whenever they occur, either with user processes or system processes.

It is obvious from the above examples that the problem is in the program, designed for the
concurrent processes. Therefore, a careful approach for concurrent programming may avoid
deadlocks. A proper ordering of allocation of resources to the processes may also help. There
are many ways of handling deadlocks. However, let us first discuss how to model a deadlock,
and also the conditions that cause a deadlock in a system.

8.3 MODELLING OF DEADLOCK

The deadlock situation becomes complex when there are multiple processes. It is difficult to
find out which process has caused the deadlock. Therefore, a system needs to be represented
using the processes and the state of resources in the form of a directed graph. This directed
graph, known as a resource allocation graph (RAG), is a useful tool to represent the deadlock
situation in a system. The RAG follows the following notations and rules: @

e The processes are represented as circular nodes.

e The resources are represented with a rectangle node. R

e The resource node contains some dots to represent the
number of instances of that resource type. The number Izl R

of dots is equal to the number of instances.

e An edge, from a process to a resource, indicates that the
process has requested this resource but it has not been
allocated. This is known as a request edge. R

e An edge, from a resource node dot (resource instance)

to a process, indicates that one instance of this re-
source type has been allocated to the process. This is R m
known as an assignment edge.

In Fig. 8.6 there are four processes and two resources. R1 has two dots, that is, there are two
instances of R1. Similarly, R2 has a single instance. P1 has requested R1, and P3 has requested
R2. One instance of R1 has been allocated to P2 and another one to P3. One instance of R2 has
been allocated to P4.

R1

G—F—®
@ =06

R2

Fig. 8.6 Resource allocation graph

228 Principles of Operating Systems

Example 8.1

In a system, the following state of processes and resources are given:
P1—R1, P2—R3, R2—PI1, R1—P3, P4—R3, R1—-P4
Draw the RAG for the system.

Solution

R1

C— 0O
S B

R2

R3

8.4 CONDITIONS FOR DEADLOCK

It is not necessary that a deadlock will always occur in concurrent process environments.
In fact, there are certain conditions that give rise to a deadlock. The following are the
conditions:

8.4.1 Mutual Exclusion

The resources which require only mutually exclusive access, may give rise to a deadlock. These
resource types cannot allow multiple processes to access it at the same time. For example, a
memory location, if allocated to a process, cannot be allowed to some other process. A printer
cannot print the output of two processes at the same time. Therefore, a printer, if allocated to a
process, cannot be allocated to another.

8.4.2 Hold and Wait

When all the processes are holding some resources and waiting for other resources, a deadlock
may occur.

8.4.3 No Pre-emption

The resources in a deadlock situation are of non-pre-emptable nature, as discussed above. If a
resource cannot be pre-empted, it may lead to a deadlock.

Deadlocks 229

8.4.4 Circular Wait

These three conditions together give
rise to a fourth condition. A chain of
processes may be produced, such that
every process holds a resource needed
by the next process. In this way, a
circular chain of processes is built
up in the system, due to mutually-
exclusive and non-pre-emptable nature
of resources. The RAG shown in Fig.
8.7 depicts a deadlock.

In this way, the four -conditions
mentioned above, are necessary for a
deadlock to occur. In fact, the policies inherent in the first three conditions cause the fourth
condition, circular wait.

R1

Fig. 8.7 RAG with deadlock

Example 8.2

In a system, the following state of processes and resources are given:
R1-P1, P1—>R2, P2—R3, R2—P2, R3—P3, P3R4, P4—R3, R4—>P4, PA—>R1,R1—-P5
Draw the RAG for the system and check for deadlock condition.

Solution

R1 ? R2 R3 R4

In this scenario, processes P1, P2, P3, and P4 are holding one resource each, and requesting
for one more resource, which is held by the next process. From the RAG drawn above, it can be
seen that there is a cycle, in the form of circular wait in the graph, thereby, causing a deadlock
situation.

In Example 8.2, all the resource types have only a single instance, except R1. There is a
possibility that PS5 may release the instance of R1, because it does not want any other resource
type. In that case, it will be allocated to P4. Consequently, the cycle will break and there will
be no circular wait. It means the circular wait is a necessary, but not a sufficient, condition for
a deadlock. If there are more than one instances of resource and there is a circular wait, there

230 Principles of Operating Systems

may or may not be a deadlock. Moreover, if each resource type consists of only single instance,
and there is a cycle in the graph, then the deadlock will occur.
In general,
Fact I: There are four necessary conditions for the occurrence of a deadlock: Mutual exclusion,
hold and wait, non-pre-emption, and circular wait.
Fact 2: The circular wait, along with the other three conditions, becomes the necessary condi-
tion for a deadlock, but not a sufficient, condition.
Fact3: The necessary and sufficient condition for a deadlock is that a cycle must be present in
the RAG, that is, a circular wait is there, and all the resource types in the system have
only one instance.

8.5 DEALING WITH DEADLOCK

After characterizing the deadlocks, the question is how to deal with them. Every system may
be prone to deadlocks in a multi-programming environment, with few dedicated resources. To
deal with the deadlock, the following three approaches can be used:

Deadlock Prevention: This method is very idealistic. It is based on the fact that if any of the
four necessary conditions is prevented, a deadlock will not occur. Although it is very difficult
to achieve this kind of prevention, this method is better, in the sense that the conditions for
deadlock will not be allowed to arise in the system. Moreover, a principle is established that
a discipline is maintained, while the processes request for the resources. Deadlock prevention
will be discussed in Section 8.6.

Deadlock Avoidance: Deadlock prevention is not always possible. Another method to deal
with the deadlock is to avoid it. But avoidance is possible when there is complete knowledge
in advance, about which resources will be requested and used by the processes. At any instant
of time, information such as, how much resources are available, how many are allocated to the
processes, and what the future requests are, must be known. With this information, a process
may be delayed, if its future request may produce a deadlock. In this way, the deadlock may be
avoided. Deadlock avoidance will be discussed in Section 8.7.

Deadlock Detection and Recovery: If a system does not employ either prevention or avoid-
ance methods, then a deadlock may occur. In this case, it becomes necessary to detect the
deadlock. At least, it must be known that a deadlock has occurred in the system. The processes,
due to which the deadlock has occurred, should also be known. We should have a mechanism
to detect the deadlock in the system and resolve it, that is, recover from the deadlock situation.
Deadlock detection and recovery methods will be discussed in Section 8.8.

8.6 DEADLOCK PREVENTION

The deadlock prevention method is based on the philosophy-‘prevention is better than cure’.
The advantage of this method is that, it avoids the cost of detecting and resolving deadlocks
because this method will make any of the four conditions false and hence, prevent the deadlock.
Let us see one by one how any one of the conditions can be prevented.

8.6.1 Preventing Mutual Exclusion Condition

Non-sharable resources require mutually-exclusive access. It would be wrong to think that the
mutual exclusion condition can be prevented! Rather, sharable resources should be examined.
The reason for this is that, mutual exclusion is an inherent nature of a resource, which cannot

Deadlocks 231

be changed. If we have to use a resource among multiple concurrent processes, it has to be used
in a mutually-exclusive manner. Otherwise, no process would be able to get the desired output.
So, it is impossible to prevent mutual exclusion, but we can recognize resources which are
sharable that can help us prevent the deadlock situation in the system. For example, read only
files do not require mutually-exclusive access; any process can read this type of file. So, basi-
cally mutual exclusion cannot be prevented, but the idea here is to recognize and use sharable
resources as much as possible.

8.6.2 Preventing Hold and Wait Condition

To prevent the hold-and-wait condition, two protocols can be used. The first protocol is that,
instead of requesting a resource on a need basis, each process should request all its resources at
one time, and in advance. No process will be allowed to execute until it gets all of its declared
resources. In this way, there will not be any conflict, pertaining to the requesting of resources,
and no hold-and-wait condition will be generated in the system. However, this protocol suffers
from the following disadvantages:

1. A process may be idle for a long time, waiting for all the resources. This may decrease the
degree of multi-programming.

2. Resource utilization will be reduced because all the resources are not used throughout the
execution of the process. For example, a process copies some data from the CD to the hard
disk and then sends the same for printing. In this case, it needs three resources, that is, the
CD drive, hard disk space, and the printer. But if this process gets all the resources alto-
gether, then the printer will be idle most of the time, because it will be used only at the end
of the execution.

3. Some frequently-used resources will always be held up with a process, resulting in starva-
tion of other processes.

The second protocol is that a requesting process should not be holding any resource. If a pro-
cess needs another resource, it must first release the resource it is currently holding. This pro-
tocol may reduce the drawbacks of the first protocol to some extent.

8.6.3 Preventing No Pre-emption Condition

This condition is necessary to break because sometimes deadlock can be prevented easily by
pre-empting the resources. In this method, if a process, holding some resources already, wants
additional resources that are not free, then it should not wait. Rather, it should pre-empt all its
resources, so that a deadlock situation can be avoided. After some time, when the resources are
free, the process may request all its resources altogether and start the execution. However, there
is a disadvantage. Imagine a situation, where a process is using a printer and the printer needs
to be pre-empted in between. The problem with this method is that when a process releases its
resources, it may lose all its work. Thus, this prevention method should be used with care and
with the following guidelines:

1. The pre-emption is based on the execution of the processes. Suppose there are two processes,
A and B. Each of them is holding a resource and needs another resource held by the other.
This will give rise to a deadlock, if we do not pre-empt any of the resources. If A is about
to complete its execution, while B has just started, the resource of B should be pre-empted,
such that A finishes its execution without a deadlock.

232 Principles of Operating Systems

2. The pre-emption is based on the priority level of the processes. If process B is of higher
priority, the resource of process A should be pre-empted, and B should be allowed to
complete first.

This method is costlier, in the sense that a process loses all its work and needs to start again.
However, it is better and is applied in rare cases only.

8.6.4 Preventing Circular Wait

Since circular wait condition is the consequence of the other three conditions, it can be
prevented, if any of these three conditions is prevented. The circular wait can be prevented
independently also through resource-ranking or ordering. Resource ordering is a method,
in which every resource type in the system is given a unique integer number as an identi-
fication. Whenever a process requests a resource, it is checked whether it holds any other
resource. If it does, IDs of both resource types are compared. If the ID of a requested
resource is greater than the ID of the resource it holds, the request is valid. Otherwise, it is
rejected. Thus, following this resource-ordering, the processes can request resources in an
increasing order of their IDs. This specific ordering of requests will not allow the circular
wait condition to arise. We can represent resource-ordering as a one-to-one function, given
in the following space:
F:R—> 1

where, R is the set of resource type and [/ is the set of natural numbers for IDs.

This protocol implies that if a process wants to request a resource type with lower ID as
compared to the ID of resource type it holds, it must release all its resources.
The protocol is good enough for preventing the circular wait condition, but at the same time,
it is very difficult to implement it practically. Most of the resources are non-pre-emptable,
and if they are released in between, in order to acquire other resources, a process will lose its
work. The process then needs to acquire these released resources again. In this way, this pro-
tocol may lead to a degraded performance of the processes. Some guidelines that may help in
implementing this protocol are:

1. The ordering of resource types should be done depending on its use in the system. For
example, if a system is using a CD drive and a printer, the printer should be given a higher
ID as compared to the CD drive, as it will be used at the end of the processing. Thus, careful
numbering of resource types may help.

2. All processes should request the resources with lower ID, in the beginning itself.

Example 8.3

A system uses three types of resources: hard disk, CD drive, and printer. Each of the resource
types are allocated an ID, as shown in Fig. 8.8, and processes can request the resources in an
increasing order of their IDs, if they are already holding a resource.

In this example, processes P1, P2, and P3 hold and request resources, as shown in the
figure. If P3 requests the CD drive or hard disk, the request will be denied, as the ID of
these resources is less than the ID of the printer. This will generate a cycle or circular
wait condition in the system, thereby, producing a deadlock situation. The problem can be
resolved by following the guidelines listed in Section 8.6.4. Thus, this example illustrates
that circular wait can be prevented by allocating to resource types and IDs in an increas-
ing order, with the condition that processes will request resources only in an increasing
order of their IDs.

Deadlocks 233

Hard .
disk drive Printer

D=1 ID=5 D=7

Fig. 8.8 Preventing circular wait

8.7 DEADLOCK AVOIDANCE

Deadlock prevention is used to prevent any of the conditions that cause deadlock. However, it
results in degraded system efficiency and low device utilization. Therefore, this method cannot
always be implemented.

Another mechanism for avoiding deadlocks is deadlock avoidance, which checks in
advance, the condition that may give rise to a deadlock. It indicates the state of a system, such
that if the request of a process for a resource gives rise to a deadlock condition, it is denied, and
must wait. In this way, the deadlock is avoided. If the state of the system is such that it does
not lead to a deadlock, then it is known as a safe state. The converse, that is, deadlock state is
known as an unsafe state. The algorithm is run to check whether the requested resource changes
the state of the system. If the resource will lead to an unsafe state, the request must wait, and
if it does not affect the safe state, the request is granted. The deadlock avoidance algorithm, in
the form of safe state protocol, must be run dynamically, whenever allocating a resource to a
process. In this way, deadlock avoidance approach is better than deadlock prevention, because
it does not constrain the resources or processes, and there is no system performance degradation
or device underutilization.

The avoidance approach requires the knowledge of the maximum demand of all processes,
all the resources available, the resources allocated presently, and the future requests of the
processes. Whenever a resource request arrives, it is checked for its feasibility. A resource
request is feasible, only if the total number of allocated resources of a resource type does not
exceed the total number of that resource type in the system. For example, say, the maximum
available instances of a resource type are 4. Suppose the current allocated resources are 3. If
a request for the resource arrives, it can be granted. However, if another request for the same
resource type arrives, it will exceed the total available instances of that resource type, and there-
fore, this request must be rejected.

With the advance knowledge of system resources and process requests, it is possible to
define a safe state, which allows process requests without deadlock. However, if there is no pos-
sible safe state, the process is not allocated the resource, and it waits until there is a safe state in
the system. For example, in a system there are three processes P1, P2, and P3. There are three
resources, the CD drive, the hard disk, and the printer. P1 requires the CD drive and the printer.
P2 requires the hard disk and the printer, and P3 requires all three resources. If the sequence of
resources and releases for each process is known, the system can be maintained in a safe state.

234 Principles of Operating Systems

Example 8.4

Consider a system with four processes that use resource R1, whose instances are 15. Each pro-
cess declares its maximum demand of resources in advance, as shown in the following space.
What will be the situation in the system at time instants t1, t2, and t3?

Process Maximum demand Demand at time instants
t1 t2 t3
P1 9 6
P2 4 2 3
P3 6 3 1
P4 8 2
Solution

At time instant t1, all processes can be allocated the resources, because each process does not
exceed its maximum demand, and the sum of their demands is less than the total number of
instances, that is, 15. Further, the system will be in a safe state, because the remaining resource
demands of all the processes can be satisfied in a safe sequence P2, P1, P3, P4. At t1, after
allocating the current demands, the remaining numbers of instances are 2. So, only P2 can be
satisfied at this moment. However, after allocating 2 instances to P2, the process execution will
be finished and it will release all 4 instances. So we now have 4 instances, and P1 or P3 can be
satisfied. Similarly, the process goes on for other processes, and finally all the processes can be
allocated instances of resource without any delay.

At time instant t2, there is a request of 3 more instances from P2. But this will exceed the
declared total number of maximum demand of P2. So it is not a feasible request and hence, it
would be rejected.

At time instant t3, there is a request for one more instant from P3. This is a feasible request,
but the remaining demands cannot be satisfied, and may lead to a deadlock. Since after allocat-
ing the demands of resources at t2, we have remaining one instance with which no process can
be satisfied, the system may be in a deadlock state.

This example illustrates the fact that some resource request may convert a safe state into an
unsafe state. So the idea is to check the state of the system, whenever a process requests for a
resource. This will be dealt with in detail, in subsequent sections through deadlock avoidance
algorithms. However, one point to be noted here is that an unsafe state does not always lead
to a deadlock situation. In the above example, it may be possible that P2 does not demand its
remaining resources, but releases all the resources it is holding. In this case, other processes
may continue to execute, and there will be no deadlock. This happens only if the processes do
not demand the maximum resources required and release their resources for the time being.
Therefore, an unsafe state does not always cause a deadlock. But from the system’s viewpoint,
resources are not allocated to the processes that cause an unsafe state, and they need to wait
until there is a safe state.

8.7.1 Deadlock Avoidance for Single Instance of Resources

To avoid a deadlock in a system, where every resource type has a single instance of resource,
the RAG can be used again, but along with a new edge, known as claim edge. The claim

Deadlocks 235

edge is the same as request edge drawn from a process to a resource instance, but this does
not mean that the request has been incorporated in the system. It is drawn in dotted lines. The
RAG can be used in such a way that when a process requests for a resource, a corresponding
claim edge is drawn, and the graph is checked before converting it to a request edge. That is,
a process request will not be entertained until the cycle check has been done. After the cycle

check, if it is confirmed that there will be no circular

wait, the claim edge is converted to a request edge.
Otherwise, it will be rejected. In this way, the dead-
lock is avoided.

In Fig. 8.9, it can be seen, that if there is a request
from P3 for R2, a claim edge is drawn. However, it can
be observed that if this request is considered, a cycle
will be generated and deadlock will occur. Hence, the
Fig. 8.9 RAG with claim edge request will be denied.

8.7.2 Dijkstra’s Banker’s Algorithm for Deadlock Avoidance in Multiple Instances of
Resources

The RAG-based cycle check cannot be applied when there are multiple instances of resources,
because in this case, it is not for certain that deadlock will occur. Therefore, an algorithm
is designed to check the safe state, whenever a resource is requested. Dijkstra designed an
algorithm, known as the banker’s algorithm. The algorithm takes analogy of a bank, where
customers request to withdraw cash. The banker has some data, based on which, cash is lent
to a customer. The banker cannot give more cash than what a customer has requested for, and
the total available cash. Similarly, to design the algorithm for checking the deadlock, some
data structures are maintained, such that whenever a resource is requested, it can be checked
whether the request maintains the safe state of the system. If it does, the request can be granted,;
otherwise, the process must wait until there are sufficient resources available.

The banker’s algorithm has two parts. The first part is a Safety Test algorithm that checks
the current state of the system for its safe state. The second part is resource request-handling
algorithm that verifies whether the requested resources, when allocated to the process, affect the
safe state. If it does, the request is denied. In this way, banker’s algorithm avoids the deadlock.

Data Structures

1. Total resources in a system
It stores the total number of resources in a system. Let us denote it as
Total Res[i] =]
It means, there are j instances of resource type R, in the system. Thus, this is a vector of
length r, that is, there are r numbers of resource types.

2. Maximum demand of a process
Whenever a process enters the system, it declares its maximum demand of resources, which
is stored in this data structure. Let us denote it as,
Max[ijl=k
It means, process P, has a total demand of k instances of resource type R. Thus, this data
structure is a p X r matrix, where p is the number of processes, and r is the number of resource

types.

236 Principles of Operating Systems

3. Current allocation of instances of each type of resource
It indicates the current allocation status of all resource types to various processes in the
system. Let us denote it as,
Alloclijl=k
It means, process Pi is allocated k instances of resource type R. Thus, this is also a p X r matrix.
4. Number of available resources ‘
This data structure stores the current available instances of each resource type. Let us denote it as,
Avli] =]
It means, j instances of resource type R, are available. Thus, this is a vector of length r, that
is, there are » numbers of resource types.
This data structure is, in fact, the difference between the total resources and the allocated
resources, that is,
Av[i] = Total_Res[i] - %, processes
5. Current need of a process
This data structure indicates the current remaining resource need of each process. Let us
denote is as,
Need[i,jl =k
It means, process P, may require k more instances of resource type R, so that it can com-
plete its execution. Thus, this is a p x r matrix.
This data structure is, in fact, the difference between the maximum demand of a process and
the available resources, that is,
Need[i,j] = Max]i,j] — Alloc[i,j]
6. Request for a process
Request. is the vector to store the resource request for process P, Let us denote it as
Req[j1=k
It means, process Pi has requested k instances of resource type R.

Alloc[i] where i is the resource type R..

Safety Test Algorithm
Let Current _Avail and Marked be two vectors of length n and p, respectively. Safe String is
an array to store the process IDs.

The algorithm is given by:

1. Current Avail = Av
2. Initialize Marked as:
for(i=1; i<=p;i++)
Marked [i] = false;
3. Find a process Pi such that
Need < Current_Avail and Marked][i] =false
4. if(found)
{
Current_Avail = Current_Avail+ Alloc,
Marked [i] = true
Save the process number in SafeString[]
go to step 3.
H

Deadlocks 237

5. if(Marked[i] == true) for all processes, then the system is in safe state.

Print SafeString.
Otherwise, the system is not in safe state, and is in deadlock.

Resource Request Handling Algorithm

Let Regq, be the vector to store the resource request for process P.
if(Req Need)
the request is not a feasible request and is rejected.
elseif (Req>Av)
Resources are not available, so the process must wait.
Otherwise,
{
Z that the requested resource has been allocated to the process and update the state as:
Av=Av - Req,
Alloc,= Alloc, + Req,
Need = Need, — Req,
Execute the Safety Test Algorithm, assuming the state has been changed.
if (state is safe)
Change the state in actual and the resource will be allocated to the process.
Otherwise,
Keep the state unchanged and do not allocate the resource to the process.

}
Example 8.5
Consider a system with the following information. Determine whether the system is in safe
state.
Total Res
R1 R2 R3
15 8 8
Process Max Alloc
R1 R2 R3 R1 R2 R3
P1 5 6 3 2 1 0
P2 8 5 6 3 2 3
P3 4 9 2 3 0 2
P4 7 4 3 3 2 0
P5 4 3 3 1 0 1

With the information given above, let us find the available resources. The number of available
resources is calculated by:
Av[i] = Total Res[i] — Za”pnmm Alloc[i], where i is the resource type R,
Hence, the available resources are:
Av

238 Principles of Operating Systems

R1 R2 R3
3 3 2
Next, let us find the Need matrix by subtracting Alloc from Max as given in the following space:
Process Max Alloc Need(Max — Alloc)
R1 R2 R3 R1 R2 R3 R1 R2 R3
P1 5 6 3 2 1 0 3 5 3
P2 8 5 6 3 2 3 5 3 3
P3 4 8 2 3 0 2 1 9 0
P4 7 4 3 3 2 0 4 2 3
P5 4 3 3 1 0 1 3 3 2
Now let us execute the Safety Test algorithm to find whether the new state is safe.
Current_Avail = Av =3 3 2]
Marked
P1 false
P2 false
P3 false
P4 false
P5 false
The sequence of processes should be such that each process satisfies the criteria, Need<Current _
Abvail. A process, after finishing its execution, must release all the resources it is holding, so that
the next process can avail them as per its need. The following table shows the process found,
new value of Current Avail, and SafeString. Repeat the procedure until all the processes com-
plete their execution.
Process found Current_Avail SafeString [] Marked []
P5 [332]+[101]=[433] P5 Marked[P5] = true
P4 [433]+[320]=[753] P5, P4 Marked[P4] = true
P1 [753]+[210]=[96 3] P5, P4, P1 Marked[P1] = true
P2 [963]+[323]=[1286] P5, P4, P1, P2 Marked[P2] = true
P3 [1286]+[302]=[158 8] P5, P4, P1, P2, P3 Marked[P3)] = true

From the table, it can be observed that the Marked value for all processes is true. Therefore,
the system is in safe state. The Safe String of processes is {P5, P4, P1, P2, and P3}, that is, the
processes can be scheduled in this order, to have a safe state in the system.

Example 8.6

Consider the Example 8.5and assume that the system is in safe state. At this moment, if P4
requests two more instances of R1 and two instances of R3, will the system still be in safe state?
According to the requests made by P4, we have the request vector as:

Req,=[202]
Now let us execute the resource request-handling algorithm, to find out whether the request can
be granted.
First check that Reg, is less than Need,. We find that [2 0 2]<[4 2 3].

Deadlocks 239

Next, check that Req,is less than Av. We find that [2 0 2]<[3 3 2].
So, we pretend that we allocate these resources and update the following:
Av=Av—Req,=[332]-[202]=[130]
Alloc,= Alloc,+ Req,=[320]+[202]=[522]
Need,= Need,— Req,=[423]-[202]=[221]
With the updated data structures, the state will be as given in the following space:
Av

R1 R2 R3
1 3 0
Process Max Alloc Need

R1 R2 R3 R1 R2 R3 R1 R2 R3
P1 5 6 3 2 1 0 3 5 3
P2 8 5 6 3 2 3 5 3 3
P3 4 9 2 3 0 2 1 9 0
P4 7 4 3 5 2 2 4 2 3
P5 4 3 3 1 0 1 3 3 2

Now let us check again whether the system is in a safe state.
Current_Avail = Av =[13 0]
There is no process whose Need<Current _Avail. Therefore, no process can be started, and thus,
this state would be unsafe, if the request for P4 is granted. The unsafe state may lead to dead-
lock, so the OS should not grant the resources requested by P4, until the system is in a safe state.
Deadlock avoidance is a wonderful algorithm, as it alerts the system in advance that the
system is switching from safe state to unsafe state, and that there may be a deadlock situation.
But is it really possible to implement this algorithm? The answer is no. One reason is that it
is almost impossible to have the knowledge of maximum demand of each process in advance.
Without this information, the algorithm cannot be implemented. However, with some analysis
on a stable system, the maximum demand of processes for resources can be estimated, and
therefore, the deadlock avoidance algorithm can be implemented. Another reason is that in a
multi-programming system, the number of processes is not fixed. In a time-sharing system, the
processes are dynamic in nature; hence it may not be possible to have all the data structures
required for deadlock avoidance algorithm. Another practical problem is the unavailability
of resources at the required time. It is important that the resources must be available when a
process requests for them, otherwise the algorithm cannot be implemented, even if the system
knows in advance the total resources required by the process. Thus, the algorithm, due to these
practical reasons, is rarely implemented. There is a lot of scope for researchers to investigate

the problems inherent in this algorithm and make possible its implementation in order to avoid
the deadlock.

8.8 DEADLOCK DETECTION

Despite its strength to avoid the deadlock, deadlock avoidance algorithm cannot be imple-
mented, due to practical reasons. Thus, if a system is not able to implement neither dead-
lock prevention nor a deadlock avoidance algorithm, it may lead to a deadlock situation.

240 Principles of Operating Systems

P3 P4 whether there is a deadlock in the system,
and if there is, then which process is causing
it. It is better to find the deadlock process, as

e However, sometimes it is necessary to detect

| R1

it helps in recovering from the deadlock. The
| R2 R3 recovery process is the consequent action of

Fig. 8.10

Fig. 8.11

deadlock detection, which will be discussed in
the next section.
Deadlock detection algorithm also has two
parts, such as avoidance, that is, detection of
RAG example single instance of resource and detection for
multiple instances of resources. Let us first dis-
cuss detection algorithm for single instance. But before dis-
° e cussing it, we need to have some modification in the RAG.
We will use RAG for detecting the cycle as done in avoid-
ance algorithm. It becomes difficult to store the information
of request edge and assignment edge, as it is required to
@ store all these information, in order to make a RAG detect
a cycle in it. Therefore, in the graphical representation of
RAG, some modification is done and a new graph, known
as wait-for graph, is formed. In fact, RAG is optimized in
wait-for graph by eliminating the resource nodes, and there are only edges between the pro-
cesses. In Fig. 8.11, the wait-for graph has been shown, corresponding to the RAG shown
in Fig. 8.10. There is an edge from P1 to P2, because P1 waits for R1, and R1 is held by
P2. Therefore an edge exists between the processes, only if one process waits for another.
For example, an edge P, — P, exists in wait-for graph only if there are edges P, — R, and
R—P, in RAG.
To detect the deadlock, it is checked whether the wait-for graph contains a cycle. If it does,
there is certainly a deadlock in the system (see Fig. 8.11). In this way, this cycle detection can
be done periodically or when required to detect a deadlock in the system.

Wait-for graph for Fig. 8.10

8.8.1 Deadlock Detection in Multiple Instances of Resource Types

When there are multiple instances of resource types, then cycle detection is not sufficient to
detect deadlock in a system. An algorithm, similar to the banker’s algorithm, is designed. This
will check the system state with some data structures maintained and signal whether the system
is in deadlock. The data structures used to detect deadlock are almost the same as in avoidance
algorithm. The following data structures are used:

1. Total resources in system
It stores the total number of resources in the system. Total Res[i]=]j
2. Current allocation of instances of each type of resource
It indicates the current allocation status of all the resource types to various processes in the
system.
Alloc[i,jl=k
3. Number of available resources
This data structure stores the current available instances of each resource type.
Avlil=j
Av[i] = Total Res[i] -2 Alloc[i], where i is the resource type R..

all processes

Deadlocks 241

Request of each process

This data structure stores the current request of each process in the form of pxr matrix,
where p is the number of processes and r is the number of resource types. Let us denote it as
Reqlij]=k

It means, process P, is requesting k instances of resource type R.

Detection Algorithm

Let Current _Avail and Marked be two vectors of length n and p respectively. Safe String is
an array to store the process IDs.

1.
2.

Current _Avail = Av

Forall i=1 to p,

Initialize Marked as Marked [i] = false;
If (Alloc, = 0)

Initialize Marked as Marked [i] = false;

. Find a process P, such that

Req=Current_Avail andMarked [i] =false

. if (found)

{

Current_Avail = Current _Avail + Alloci
Marked [i] = true

Save the process number in Safestring|]
go to step 3.

}

. if (Marked[i] = true) is for all processes, then the system is not in deadlocked state.

Print Safe String.
Otherwise, the system is in deadlock caused by Process P.

Example 8.7

Consider a system with the following information. Determine whether the system is in dead-
lock situation.

Total Res
R1 R2 R3
5 6 4
Process Alloc Req
R1 R2 R3 R1 R2 R3

P1 1 0 2 1 0 0
P2 1 1 0 4 0 2
P3 1 1 0 0 1 2
P4 0 2 1 2 1 0
P5 1 2 0 3 1 4

With the information given above, let us find the available resources. The total number of
available resources is calculated by:

242 Principles of Operating Systems

Av[i] = Total Res[i] -2 Alloc[i], where i is the resource type Ri

all processes
Hence, the available resources are:
Av
R1 R2 R3
1 0 1
Now let us execute the detection algorithm.
Current_Avail= Av=[10 1]
Marked
P1 False
P2 False
P3 False
P4 False
P5 False
The sequence of processes should be such that each process satisfies the criterion, Need<Current
Avail. A process, after finishing its execution, must release all the resources it is holding, so
that the next process can avail them as per its need. The following table shows the process
found, new value of Current_Avail, and SafeString. Repeat the procedure until all the pro-
cesses complete their execution.
Process found Current_Avail SafeString [] Marked []
P1 [101]+[102]=[203] P1 Marked [P1] = true
P3 [203]+[110]=[313] P1, P3 Marked [P3] = true
P4 [313]1+[021]=[334] P1, P3, P4 Marked [P4] = true
P5 [334]+[120]=[454] P1, P3, P4, P5 Marked [P5] = true
P2 [454]+[110]=[564] P1, P3, P4, P5, P2 Marked [P2] = true
From the table, it can be observed that Marked value for all the processes is true. Therefore,
the system is not in a deadlock state. The SafeString of processes is {P1, P3, P4, P5, and P2},
that is, the processes can be scheduled in this order, and therefore, there will be no deadlock.
Example 8.8
In Example 8.7, if the process requests one additional instance of resource type R2, find out
whether the system is in a deadlock state.
Let us see the changed state of the system, with additional request for the resource by P4.
Process Alloc Req
R1 R2 R3 R1 R2 R3
P1 1 0 2 1 0 0
P2 1 1 0 4 0 2
P3 1 1 0 0 1 2
P4 0 2 1 2 2 0
P5 1 2 0 3 1 4

Deadlocks 243

Everything being same as in previous example, let us find the Safe String

Process found Current_Avail Safe String [] Marked []
P1 [101]+[102]=[203] P1 Marked [P1] = true
P3 [203]+[110]=[313] P1, P3 Marked [P3] = true
P4 - - Marked [P4] = false
P5 - - Marked [P5] = false
P2 - - Marked [P2] = false

It can be observed that after P3, no process request can be satisfied. Therefore, the system is in
deadlock situation, due to processes P4, P5, and P2.

Deadlock detection is a costly algorithm to implement, as it incurs the cost of detecting the
state of a system and affects system performance as well. Therefore, it is always a question of
how often the algorithm should be run to detect the deadlock. It can be periodic, at regular in-
tervals of time, or at arbitrary times, depending on the system’s requirements, such as, if there
is a decrease in CPU utilization. If the deadlocks are frequent in a system, it is necessary to
run the algorithm periodically, otherwise it can be run on the demand of the system. Deadlocks
generally occur when a request cannot be granted immediately. Therefore, it would be a good
alternative if the detection algorithm is invoked, every time a process requests for a resource.
The detection algorithm checks which process caused the deadlock. However, this solution is
expensive, as it increases the overhead of computation time.

8.9 RECOVERY FROM DEADLOCK

The consequent action of deadlock detection is recovery from it. The aim of deadlock detec-
tion is to find out which process has caused the deadlock and resolve it, so that the system can
resume its work. Imagine two cars approaching each other on a narrow bridge, through which
only one car can pass at a time. If no car is ready to move back, then of course there will be
deadlock situation forever. This is same as in a no pre-emption condition. So the only solution
for resolving the deadlock is for one of the cars to move back (rollback) and allow the other car
to pass through the bridge, thereby resolving the deadlock. An OS handles the deadlock in the
same way. There should be pre-emption of resources from one process, so that the other process
can continue and the deadlock is removed. Another solution is to abort the processes which
cause the deadlock. There are various solutions, but each one should be adopted with a lot of
care. Rollback or aborting a process cannot be implemented always, as there is a cost incurred
in each solution. There are some factors which guide us to choose a particular recovery method.
The following are some recovery methods:

8.9.1 Resource Pre-emption

Resource pre-emption is one of the methods with which to break a deadlock. In this method,
resources are pre-empted from a process, which has caused the deadlock. These resources are
then given to other processes, such that other processes execute their completion and in this
way, the deadlock is removed. In other words, no pre-emption condition for deadlock must be
broken, wherever applicable. However, there are various issues while adopting this solution.
The first issue is to choose a process whose resources can be pre-empted and given to other
processes. This decision is driven by the following cost factors:

244 Principles of Operating Systems

Number and type of resources a deadlocked process is holding

If the number of resources is less compared to the requirement of other processes to break the
deadlock, or if the process is not holding the desired type of resource, then those resources need
not be pre-empted.

Execution span of a process

The process with the longest execution span should be pre-empted first. It may be possible
that execution of a process is near completion, but it is in deadlock, due to shortage of just
one resource instance. In this case, it is not feasible to pre-empt the process. A process, whose
execution has just started and requires many resources to complete, will be the right victim for
pre-emption.

Starvation of process

Based on the factors above, it may be possible that the same process is always chosen for resource
pre-emption, resulting in a starvation situation. Thus, it is important to ensure that the process will
not starve. This can be done by fixing the number of times a process can be chosen as a victim.
After resource pre-emption of a deadlocked process, what happens to this process? The process
is not able to retain its position in execution, and cannot continue. This process either has to be
rolled back or be aborted and restarted. The decision depends on the situation of the processes
in the system. Both approaches involve cost. The abort solution involves the cost of execution
of the process from the start. Rollback involves the cost of maintaining the checkpoints in the
system and rollback to a safe state through the checkpoint.

8.9.2 Rollback

Checkpoints are also a good solution to recover from a deadlock, apart from using it in the
resource pre-emption. The checkpoints save the state of a system at specified point in time.
The resource state is saved in a separate file, along with the memory image. When a deadlock
is detected, the state is analyzed and the deadlock process is detected. Further, the needed
resource, which can break the deadlock, is also detected. The process, holding that resource, is
rolled back to a safe checkpoint. After allocating the resource to the desired process, the system
continues, thereby, recovering from the deadlock. The process, which was rolled back, restarts
from the checkpoint.

There is another advantage of using the roll back method. The processes can be rolled back
to a safe checkpoint and restarted from that point, such that, there is no deadlock.

8.9.3 Abort the process

Another method to recover from the deadlock is to abort some process, such that there is no
deadlock in the system. However, it is a costly solution in terms of process computation. Al-
ternatively, one process can be aborted at a time. After aborting a process, run the deadlock de-
tection algorithm to confirm whether the deadlock still exists. Like resource pre-emption, here
too, a victim process is chosen. Of course, the victim process should be such that the system is
the least affected and runs without deadlock. There may be many factors to decide the victim
process, which are as follows:

Number and type of resources a deadlocked process is holding

If the number of resources is less compared to the requirement of other processes to break
the deadlock, it would be a waste, if we abort this process. Similarly, if the desired type of
resource is not held by the process to be killed, then there is no use to kill it. Thus, this method
is dependent on the number and type of resources the deadlocked process is holding.

Deadlocks 245

Execution span of a process

If a process is just near completion, and is in deadlock, due to requirement of only one resource
instance, it is not good to kill this process. A process, which has just started, or requires many
resources to complete its execution, will be the right victim for termination. Thus, the execution
span of a process may determine the victim process.

Process priority
If the process is of high priority, there is danger in aborting it.

Type of process
Aborting of interacting processes may affect the system’s performance, as it will not able to
interact with the user. Hence, it is always better to choose batch processes as victim.

8.10 PRACTICAL APPROACH FOR DEADLOCK HANDLING

All the methods, discussed above, can be employed in a system. However, the practical
approach for handling deadlocks is to ignore it. Why? All the deadlock-handling strategies
are costly to implement. The prevention methods, as discussed, are not applicable on every
resource type. Only circular wait condition can be broken. The avoidance algorithm is also
limited, because it is not possible to predict the maximum resources required by the processes
in advance. The detection algorithm, employed in a system where there are too many processes,
incurs cost. Thus a system, which is not mission-critical or business-critical, will ignore the
deadlock, instead of employing any of the methods discussed.

However, the deadlock-handling methods have their importance in real-time systems. Real-
time systems, where the system must work continuously, cannot afford to ignore the deadlock.
Like a PC or any other system, a real-time system cannot reboot or restart, because it may result
in data loss. Therefore, all deadlock methods are employed in a real-time system with modifica-
tions. Distributed database systems and web systems also require deadlock-handling methods,
because they handle a large number of records of various users and websites.

No single method can be employed to handle the deadlock, instead an integrated strategy can
be prepared for it. Some steps are given in the following space:

e Assign a resource to a process only when it is needed, that is, a process should not claim
the resources in advance. This will reduce resources which need mutually-exclusive ac-
cess. Mutual exclusion of some devices can also be handled with the help of creation of
virtual devices. For example, spooling is used for making a virtual printer, and thereby,
preventing the mutual exclusion condition.

e Apply the resource pre-emption, wherever possible. Some of the resources are pre-
emptable by nature, for example, memory is a pre-emptable resource. In case of non-pre-
emptable resources, depending on the nature of job of a process, there can be a forced
pre-emption. For example, if a deadlocked process is using a printer, but the amount of job
done by this process is very little, then we can pre-empt the printer forcibly and give it to
some other process, so that the deadlock is broken.

e Always use a linear ordering of resource types, so that there is no circular wait, when pro-
cesses request the resources. It is better to request the resources in an increasing order of
their IDs, as discussed in Section 8.6.4.

e Deadlock detection is always a better choice in comparison with avoidance algorithm.

246 Principles of Operating Systems

8.11 TWO-PHASE LOCKING

Two-phase locking is a concurrency control method in database deadlocks. In a database sys-
tem, several processes need to lock the records, and then update them. In this environment, a
deadlock may occur very easily. To avoid this type of deadlock, two-phase locking is used. This
is done in two phases. In the first phase, known as growing or expanding phase, a process tries
to lock all the records it needs, one at a time. After locking all the records, in the second phase,
that is, the shrinking phase, it starts updating the records and releases the locks. If the process
is unable to lock any of the records in the first phase, it releases all the records it has locked so
far. It may start its first phase again and continue the procedure. In this way, two-phase locking
and updating avoids the deadlock situation in database systems.

8.12 STARVATION

Starvation has been discussed at many points while discussing concurrent processes. In concur-
rent processes, starvation is another problem, which is closely related to deadlocks. It results
when a process is not able to execute, as it is lacking enough resources due to process-scheduling
or resource-scheduling. For example, if a high-priority process always gets the execution over
a low-priority process, it causes the low-priority process to starve. To recover from a deadlock,
as discussed earlier, the process can be aborted or rolled back repeatedly. This may again cause
starvation in the system. Hence, starvation may occur in a system in many ways.

As in deadlocks, when the processes are not able to execute, it is the same case with starva-
tion. The difference is that in deadlock, there is no future execution sequence that can get them
out of it. But in case of starvation, there exists some execution sequence that is favorable to
the starving process, although there is no guarantee it will ever occur. Thus starvation is not a
deadlocked situation, but an indefinite postponement of getting the resources to the processes.

One solution to the problem of starvation in processes with priorities may be to temporarily
increase the priority of a low-priority process gradually, so that it may also get the execution.
This is known as aging. Aging helps lower-priority processes get rid of starvation. In case of
starvation resulting from deadlock recovery methods, a complete detail, regarding processes,
should be traced, for example, which process was last aborted or rolled back. The same process
should not be aborted or rolled back again and again, to avoid its starvation.

SUMMARY

Deadlocks, if not detected properly, can harm a
multi-programming system. The four necessary conditions
have been discussed in this chapter to understand deadlocks
completely. A deadlock is represented through a resource al-
location graph (RAG) and wait-for graph. Both graphs have
their importance in algorithms designed for deadlock handling.
Circular-wait is the most important necessary condition for
deadlock occurrence. In fact, it is the result of the first three
conditions. If we are able to break the circular wait condition,
the deadlock will not occur. A RAG representation easily de-
tects a deadlock through cycle detection, where all resource
types have a single instance. In case of multiple instances of
resource types, there are other algorithms. Deadlocks can be

handled through prevention methods, that is, to prevent any of
the four necessary conditions from occurring. But it may not
be possible every time to prevent the necessary conditions.
Another method to deal with a deadlock is deadlock avoid-
ance algorithms. It requires information about the resources,
processes, and demands of processes in advance and with
this knowledge, it indicates whether a deadlock will occur.
This approach is not practical, as it is not possible to know in
advance the maximum resources required by a process in a
system. The third approach to handle the deadlock is to detect
it at an appropriate time, and recover from it. The detection
algorithm is beneficial, if the system is able to recover from it.
If there is no recovery, the system cannot proceed further, and

is, therefore, useless. Therefore, the information acquired from

the detection algorithm helps in recovering from the deadlock.

The last method is to ignore the deadlock. All the methods

discussed for deadlock handling are costly in terms of the

system’s performance.
Let us have a quick review of important concepts
discussed in this chapter:

® Deadlocks can be defined as a situation in a system,
in which a set of concurrent processes request the
resources in such a conflicting manner, that there is an
indefinite delay in resource allocation.

® Resource allocation graph (RAG) is a directed graph
consisting of nodes and edges that represent the
resources requested and held by the processes.

e The four necessary conditions for occurrence of a
deadlock are: Mutual exclusion, hold and wait, no
pre-emption, and circular wait.The necessary and suf-
ficient condition for a deadlock is that a cycle must be

MULTIPLE CHOICE QUESTIONS

1.

When a set of concurrent processes are in a deadlock
situation, the degree of multi-programming in the system

(a) increases (c) unaffected

(b) decreases (d) none
. RAG is a useful tool to representa ____ in a
system.

(a) deadlock
(b) race condition

(c) resource allocation
(d) none

. An edge from a process to a resource in RAG is known as
(a) assignment edge (c) claim edge
(b) request edge (d) none

. An edge from a resource instance to a process in RAG is
known as

(@) assignment edge (c) claim edge

(b) request edge (d) none

The method based on future knowledge of process
requests, is known as
(a) deadlock prevention
(b) deadlock avoidance

(c) deadlock detection
(d) none

A mechanism, by which we try to constrain the conditions
for deadlocks, is known as
(a) deadlock prevention
(b) deadlock avoidance

(c) deadlock detection
(d) none

Which one of the following is not true?
(@) Safe state means there is no deadlock.
(b) Unsafe state always leads to a deadlock.

10.

1.

12.

13.

Deadlocks 247

present in the RAG.

Deadlock prevention is a set of mechanisms, by
which at least one of the four necessary conditions can-
not hold.

Deadlock avoidance algorithm indicates whether the
state of the system is safe or unsafe. An unsafe state
means the deadlock may occur, if the resource request is
granted, otherwise it is safe.

An unsafe state does not always lead to a deadlock
situation.

Deadlock detection algorithm is used to detect deadlocks
in the system and the deadlock process.

RAG is optimized in wait-for graph, by eliminating the
resource nodes, and the edges are drawn between
processes only.

Recovery from deadlock can be done through resource
pre-emption, roll back, and abortion of the process.

(c) There are four necessary conditions for a deadlock.
(d) All resources are not pre-emptable.

. Which one of the following is correct?

(@) Needi,j] = Av]ij] - Allocli,]
(b) Needi,j] = Max{i,] - Alloc[i]
(c) Needli,] = Allocli,j] - Max]i]
(d) None

. To detect deadlock in single instance of resource types,

which graph is used?
(@) RAG (c) Directed graph
(b) Wait-for graph (d) None

Which one of the following is not a deadlock recovery method?
(@) Resource pre-emption (c) Rollback
(b) Abort the process (d) Hold and wait

Deadlock may occur with

(a) consumable resources

(b) non-pre-emptable resources

(c) non-pre-emptable and non-consumable resources
(d) all of the above

Deadlock may occur with
(@) system processes

(b) user processes

(c) both system and user processes

(d) none of the above

Deadlock preventionis ___possible.

(a) always (c) sometimes
(b) not always (d) none

248 Principles of Operating Systems

REVIEW QUESTIONS

1.

EalE - N

10.

1.

Give examples of deadlocks with every type of resource.
What is the effect of deadlock in a system?
What is a RAG? Explain all its components.

What are the necessary conditions for occurrence of a
deadlock?

What is the necessary and sufficient condition for
occurrence of a deadlock?

Explain all the methods for preventing a deadlock.

What is the difference between deadlock prevention and
avoidance?

How do you use deadlock avoidance with a single instance
of resource type?

How do you use deadlock avoidance with multiple instances
of resource types?

What is a claim edge in RAG? What is its use in deadlock
avoidance?

Explain all the steps in the banker’s algorithm.

BRAIN TEASERS

1.

‘Deadlocks are not always deterministic’. Comment on this
statement.

Prove that circular wait condition may be produced, if all the
other three necessary conditions of a deadlock are present
in a system.

How many operations are required to detect a cycle in a
RAG, assuming that there are p number of processes in the
system?

How many operations are required to check a safe state in
banker’s algorithm, assuming there are p numbers of pro-
cesses and r numbers of resources?

A system consists of three processes P1, P2, and P3.
There is a single resource type Printer but with four instanc-
es. Each process declares the maximum resource demand
of 3 instances. Is deadlock possible in this situation?

Can there be a deadlock in the main memory?

Demonstrate, with an example, how a safe state may be-
come unsafe.

Does an unsafe state always lead to a deadlock? Demon-
strate your answer with an example.

Name the deadlock handling method that can be applied for
the following resource types:

a) Tape drives b) Files ¢) Main memory d) Semaphores
d) Disk space

12.

13.
14.
15.

16.

17.

18.
19.

20.

21.
22.
23.

10.

1.

12.

13.

14.

15.

What is the difference between deadlock avoidance and
detection?

What is the drawback of deadlock avoidance algorithm?
What is wait-for graph? Where is it used?

How do you use deadlock detection algorithm with a single
instance of resource type?

How do you use deadlock detection algorithm with multiple
instances of resource types?

What are the factors which must be considered in resource
pre-emption method for recovery from deadlock?

What is rollback? What is its importance?

What are the guidelines to be followed while rolling back a
process?

How do you select a victim process to abort a process, while
recovering from a deadlock?

What is the practical approach for deadlock handling?
What is two-phase locking?
What is the difference between starvation and deadlock?

Check whether a deadlock is present in the following:
a) Two processes with two files

b) Two processes access and lock database records
c) Three processes with CD drive, printer, plotter

There is no practical use of deadlock avoidance approach.
How can we benefit from this algorithm?

In a multi-programming and multi-user environment, the
processes are dynamic, that is, the new users, and there-
fore, their processes log in and log out frequently. Does it
affect the implementation of deadlock detection algorithm?

How do you recover a process from deadlock through roll-
back, if it has updated some data in a website?

In a system, the following state of processes and resources
is given:

R2—P1, P1—>R2, P2—R3, R1—-P2, R3—P3, P3—R4,
P4—R3, R4—P4, P4—R1, R1—-P5

Draw a RAG and wait-for graph for the system, and check
the deadlock condition.

Consider a system with the following information. Deter-
mine whether the system is in safe state.
Total_Res

R1 R2

R3
10 5 7 8

R4

Deadlocks 249

Process Max Alloc

R1 R2 R3 R4 R1 R2 R3 R4
P1 4 2 0 2 4 2 0 2
P2 1 0 0 0 1 0 0 0
P3 3 1 2 1 0 1 3 1
P4 1 0 2 0 0 0 0 0
P5 0 1 1 3 1 0 1 2

Determine whether the system will be in safe state, if a request arrives from the following processes:
a) P1requests two instances of R2, and one of R4.

b) P3 requests one instance of each resource type.

c) P5 requests one instance of R1, two instances of R3, and one instance of R4.

16. Consider a system with the following information. Determine whether the system is in a deadlock situation.
Total Res

R1 R2 R3
8 5 7
Process Alloc Req

R1 R2 R3 R1 R2 R3
P1 1 0 2 1 0 0
P2 0 0 0 0 1 1
P3 2 1 1 2 0 0
P4 1 1 0 1 0 1
P5 2 2 2 1 1 0

17. Five processes are competing for resources RO, R1, R2, and R3 where (R1, R2, R3, R4) = (6, 4, 4, 2). The maximum claim of
these processes and the initial resources allocated to these processes, are given in the following space:

Processes Max Alloc
R1 R2 R3 R4 R1 R2 R3 R4
P1 3 2 1 1 2 0 1 1
P2 1 2 0 2 1 1 0 0
P3 1 1 2 0 1 1 0 0
P4 3 2 1 0 1 1 1 0
P5 2 1 0 1 0 0 0 1

Does this initial allocation lead to a safe state? Explain with reason.
If P2 requests two instances of R1, one instance of R3, and one instance of R4, check whether the system is still in safe state.
Ifitis, find out the safe sequence of process execution.

250

18.
19.
20.
21.
22.

Principles of Operating Systems

Explain the deadlock and starvation problems in dining-philosophers’ problem.
Why can deadlock not happen in two-phase locking?

Two-phase locking can lead to starvation. How?

What will be the consequences of a deadlock in a real-time system?

What are the strategies that can be employed to handle deadlock in a real-time system?

Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

) Multi-threading

9.1 INTRODUCTION

In Chapter 1, many basic concepts of operating systems were discussed. The process concept described
in previous chapters always contains a single thread. However, a process may also contain several
threads giving rise to the concept of multi-threading. Multi-threading is implemented in modern operat-
ing systems for fast responsiveness and better efficiency. In this chapter, the difference between a pro-
cess and a thread has been explained keeping in view why threads are required. All the issues related to
the thread implementation have been discussed throughout the chapter.

9.2 PROCESS AND THREAD

In chapter 5, while learning the basic concepts of process management, it was established that the context
switch time is proportional to the frequency of interrupted processes. If a running process is interrupted,
theOS must save the context of that process and load the context of the next scheduled process. This
context switch time incurs overhead in terms of the system’s performance as no useful work is performed
by the processor during this time. If the processes are interrupted frequently, the context switch time

increases, thereby giving rise to a high overhead. This was the =)

reason that in round robin process scheduling, the time quantum o 3

was not chosen as too short. A small time quantum will interrupt

the processes very frequently causing more context switches of Learning Objectives

processes and thereby resulting in high overhead. After reading this chapter,
Besides the frequent process switching, there is another factor you should be able to

that adds to the overhead. The factor is that a process is considered understand:

not only a unit of computation but also a unit of resource « Difference between a process

scheduling, resource accounting, and so on. The state saved in the and a thread

PCB related to resource ownership increases the size of the PCB, * Difference between Multi-tasking

and Multi-threading

o Thread control block and its
fields

o Usage of multi-threading concept

thereby increasing the overhead. The more the information in the
PCB the more time it will take in saving and restoring it. Thus, the
context switch time is a problem in process management.

The context switch time can be reduced by reducing the o User threads
information stored in the PCB. However, it is not possible to e Kernel threads
ignore the information for the sake of reducing the overhead. « Hybrid threads
There is another solution. To elaborate the solution, let us take an « Thread Recycling
example of a web server and client system. A web server needs « Thread Pooling
to provide service to multiple clients concurrently. To meet this

252 Principles of Operating Systems

requirement, web server runs as a single process and then creates multiple processes that accept
the clients’ requests. Whenever a request is received by the server, it creates a new process.
In this multi-programming environment, there are multiple processes serving various users
accessing the web server, and there is process switching, which causes context switch overhead.
The saved context of the current process and the restored context of the next scheduled process
differ in the least. Both contexts differ only in their contents of CPU registers, PC value, and
stack. Other information in both the processes is same. The reason is that all the processes have
been created by the server process and share the code section, data section, and other resources.
If the code and data section of two processes are same, then it is redundant to store and restore

| cs || DS ||RES|

Registers Stack

Fig. 9.1

CS: Code section
DS: Data section
RES: Resources

Process as a single thread of execution

the same thing. This type of redundancy leads to high
context switch overhead. If this is eliminated, then the
context switch time can be drastically reduced.

To implement this solution, the concept of the thread
is used. A process when scheduled for execution has
a control thread known as thread of execution. Each
process has a single thread of execution as shown in
Fig. 9.1. When a client process requests the web server,
the server creates its child processes. Every child pro-
cess has same code section and data section as that of
the parent process shown in Fig. 9.2. This way, the con-
currency is achieved through multiple processes, but
this process model has a high overhead as discussed in
Section 9.2. In this sense, a process is also known as a
heavy weight process.

| cs || DS || RES|

| Registers |

| Stack |

1101
|)

2

Fig.9.2 Web server process divided into child processes

Multi-threading 253

If the functions of various child processes of
web server are implemented as multiple threads
of execution under a single (parent) process, then
saving and restoring the redundant information can
be avoided. In other words, threads of the same
process share the code, data, and resources of the
process. Therefore, a thread is a unit of concur-
rency within a process because it implements the
various functions of the process and shares the ad-
dress space as shown in Fig. 9.3. Therefore, when-
ever there is a need to switch between the threads
of the same process, the context of a thread will
be saved and restored in the form of its PC, CPU
registers, and stacks, that is, code and data section
are not part of the context of a thread. In this sense,
Fig. 9.3 A process divided into three threads of execution @ thread is known as a light weight process (LWP).

There is no need to save or restore the code sec-
tion, data section, or state of the resources. The code, data, and resource state is with the process
only, but execution of a process is in the form of threads. This drastically reduces the context
switch overhead.

The process concept is unaffected by the implementation of threads within it. A process still
exists with its environment with code, data, stack, CPU registers, and PC. In addition, it has
multiple threads that perform their designated tasks sharing the code section, global data, and
resources of the process. Every thread consists of the following information that is not shared
with a process:

|CS||DS||RES|

| Registers | | Registers | | Registers |

| Stack | | Stack | | Stack |

|PC| |PC| |PC|

| Other info | | Other info | | Other info |

——

Processor registers
Every thread works on its designated processor registers. Therefore, when there is a thread switch,
these must be saved and restored.

Stack

Every thread has its own stack. Each frame of the stack stores local variables and returns ad-
dress of the procedure called by the thread. It may be user stack or kernel stack depending on
the type of the thread.

PC
Every thread has unique program counter value so that they execute independently.

Other info
The thread has some other unique information such as its state, priority, and so on.

9.3 MULTI-TASKING VS MULTI-THREADING

The concept of implementing multiple threads to achieve concurrency within a single process
is known as multi-threading. This term should not be confused with multi-tasking or multi-user
systems. Multi-user and multi-tasking, as discussed in Chapter 1, are similar as they both are
implemented at the level of a process. Multi-threading, on the other hand, is implemented at the
thread level. This is the major difference between multi-tasking and multi-threading. However,

254 Principles of Operating Systems

multi-threading works the same way as multi-tasking, that is, the processor switches back and
forth among the threads as with the processes and provides the illusion that threads are running
in parallel. In other words, the original concept of multi-threading (switching to another thread
when one thread needs to wait for an I/O) is similar to that of multi-programming.

9.4 THREAD CONTROL BLOCK

Just like the PCB, in multi-threading, there is a thread control block (TCB) to save and restore
the context of a thread in case of thread switching. The only difference is that the information
in the TCB is lesser as compared to the PCB. The fields associated with a TCB are

1.

2.

. Information related to scheduling

. Pointer to owner process

Thread ID (TID)

It is a unique identification number of the thread.

PC

Indicates the address value at which the next instruction of the thread will be executed by
the processor.

. Registers

CPU registers are used for the execution of a thread. While the thread is in execution, data
registers, address registers, control registers, and status registers are used for executing and
controlling the process. The information in registers must be saved when there is a change
in the state of the threads so that it may resume its execution in its next turn.

State

A thread also has a number of states just like a process. For scheduling the threads, the
current state of a thread must be known.

. Priority

A priority number may be assigned to a thread as provided to a process.

Event information

This is the event for which a blocked process is waiting. If the awaited event is over, the
information regarding this event must be stored in this field so that the status of the blocked
process is changed to ready.

The information related to schedul-
ing of a thread, such as the waiting
time and the execution span of the
thread the last time it was running, is
also stored.

| PCB | |Address space|

| Stack | | Stack | | Stack |

The thread will be created within a | TCB | | TCB | | TCB |
process and it needs to access the
execution environment of its owner
process. Thus, the TCB contains a
pointer to this information.

TCB pointer

This is a pointer to another TCB that
is used to maintain the scheduling
list. Fig. 9.4 Process’s threads each with their stack and TCB

——

Multi-threading 255

In a multi-threaded process environment, the process image is same as described in Chapter 5,
but every thread within the process consists of its stack and TCB. Let us take an example.
Suppose there are three threads in a process. Each thread contains its stack and TCB as shown
in Fig. 9.4. The process has its address space, stack, and PCB as discussed in process image.
It means that the process and its data structures are unaffected by the introduction of multiple
threads but by the advantage that now there is no need to switch between various processes
because the functions of these processes have been implemented within the process through
the multiple threads.

9.5 USAGE OF MULTI-THREADING

The following are the usages of multi-threading:

1.

Low context switch overhead

This is the primary benefit of implementing multi-threading. In thread switching, the
information to be saved and retrieved is less as compared to the process switching. Low
context switch overhead increases the degree of concurrency and thereby improves the
performance of the system.

. High computation speed up

Due to less information in the TCB and low context switch overhead, there is a tremendous
increase in computation speed. As compared to the single-threaded process model, the
computation speed up is high, even on a uni-processor system. On a multi-processor system,
the concurrency can be increased further if the threads are executed in parallel.

No need of IPC

Unlike the processes in a multi-programming environment, the threads in a multithreaded
process do not require system calls to communicate with each other. This is because they
share the code and data section of the process. Thus, it saves cost and time resulting in a
high speed up.

. Decreased response time

As a consequence of the increased computation speed, the response time to a user de-
creases inspite of the execution of many other tasks. For example, in a multithreaded web
server, every client gets immediate response due to a dedicated thread corresponding to
each client.

. Sharing of resources

All the threads share the resources allocated to their owner process. Since the state of
resources is maintained by the process, limited resources are utilized without maintaining
their state.

Efficient management

It is easy and economical in terms of memory and speed to create and destroy a thread as
compared to a process. Some examples are as follows:

(a) In UNIX, thread creation is 10 times faster than process creation. Similarly, it takes less
time to terminate a thread as compared to a process termination.
(b) In Solaris 2, thread creation is 30 times faster than process creation.

It is easy to manage multiple activities within a process in the form of threads at a very
low cost as compared to multiple-process creation because multi-threading comes with the
advantage of low context switch overhead, no IPC, and zero state management of code and
global data.

256 Principles of Operating Systems

It may seem that a process and a thread have same effect in the system. In the case of a web
server, either processes or threads can be used to serve the clients. Therefore, to a programmer,
it is not clear when to use the multiple threads within a process. The following guidelines help
to decide when multi-threading is to be used:

(@

The application will obviously be first divided into multiple processes. However, in the
next stage, observe closely whether some or all the processes are using the same code and
data section and their functions are same in the application. This guideline is similar to the
example of the web server application discussed earlier. The web server needs to serve vari-
ous clients for which it creates various processes whenever a client connection is established.
Here, it can be observed that each process will use the same code and data section of the web
server process and has the same function: to serve the clients’ requests. For this type of appli-
cations, it is costly to create multiple processes as there will be high context switch overhead
and more time will be taken to manage them. On the other hand, multiple threads within the
web server process share the code section, data section, and resources of the process.

(b) There are several tasks inside a process, which if performed by a single thread of control,

(c)

As

may affect its performance. These tasks if executed in parallel will enhance the speed of
computation of the whole process. For example, a web browser performs several tasks:
accepts request from the user, communicates with the server, displays an image on the
screen, and so on. If the browser is a single-threaded process, some functions will be
delayed. If the browser is currently displaying an image, and at the same time the user tries
to enter his or her request, either the image will not be displayed or the response to the re-
quest will be delayed. Thus, if there are multiple functions in an application that can be run
in parallel, multiple threads should be used.

Some applications are highly interactive. If these applications are designed as a single-
threaded process, the response time will be longer. To provide user with a quick response,
the application must be designed as multithreaded. In a single-threaded process, only one
user request can be served at a time, thereby delaying the response time. The Word or
spreadsheet applications where the user expects a quick response should be designed as
multithreaded. In Word application, while the user is typing the text, one thread should be
there to accept the keyboard commands and text so that the user is able to see what he or
she is typing. Another thread, known as spell checker, checks the typed texts for spelling.
Similarly, there is a reformatting thread to perform functions such as deleting or changing
the document setup. If any of the tasks is missed or delayed, the user will not get the desired
performance from the application. This is the reason that all these tasks must be performed
in the form of threads so that they can be performed concurrently.

discussed, each thread has its own purpose in the application. Not all the threads are

interactive. For example, in Word application, one thread serves the purpose of saving the
contents of the Word file, that is, periodically saving the contents from RAM to disk. However,
according to the guideline, the application with more interactive functions must be designed as
a multithreaded application.

9.6 TYPES OF THREADS

As with the process model, threads can also be of two types:

1. User threads
2. Kernel threads

Let us discuss these in detail.

Multi-threading 257

9.6.1 User Threads

The user threads are are managed by the application in user space. By default, an application
starts running with a single thread of control, that is, as a process managed by the kernel.
However,, the application may spawn new threads based on the requirements of the process.
These threads are created and managed through a thread library provided by the OS so that
application programmer need not write the routine for thread management. The thread library
or thread package consists of the following functions related to the thread management:

Thread creation and deletion

Assigning priorities to the threads

Thread scheduling

Thread synchronization

Communication between the threads
Saving and restoring contexts of the threads
Blocking and resuming the threads

These procedures need to be invoked by a procedure call, and the control is passed to the
called procedure. However, these library procedures cannot directly execute privileged instruc-
tions or access kernel primitives. The thread management is quite similar to process manage-
ment. A user thread, as discussed, is managed through the library functions. First of all, a
process spawns a thread by calling a procedure. The thread-related data structures are then
stored in the TCB. The process needs to keep track of all the threads within it. Therefore, just
like the process table discussed in Chapter 5, a thread table is maintained. The thread table
contains entries as a pointer to the TCB of each thread. Thus, each process in the application
has its own thread table as shown in Fig. 9.5. Now, suppose a thread is running and it comes
across an instruction for waiting for some resource. In this case, the library procedure is called
that puts the running thread into a blocked state by saving its context in its TCB. The scheduling

Thread library

User space

Process P2

Process P1 Thread table

Process table

Kernel space

Fig. 9.5 User threads

258 Principles of Operating Systems

is performed among ready threads and the context of the selected thread is loaded and it starts
running. One can easily realize that all the functionalities related to thread management are
same as that of process management.

The library procedures invoked for thread management in user threads are local procedures.
There is no need to interface with the kernel, which is timeconsuming, and scheduling consumes
less time to call and execute the local procedures. Moreover, the context of a thread to be saved
and restored is lesser as compared to a process. Thus, creating and managing user threads are
easy and much faster compared to a process and a kernel thread. Kernel threads will discussed
in Section 9.6.2.

The point to be noted here is that all the thread-management activities are run in user space,
that is, the kernel is not aware of them. It is concerned with the management of processes
within the application as shown in Fig. 9.5. The kernel schedules and manages these processes
in the kernel space without knowing the existence of multiple threads within each process.
Therefore, the OS provides a single execution context to all the threads instead of each thread.
This user-level thread implementation is known as many-to-one mapping as the OS maps all
threads in a multithreaded process to a single execution context. Due to this, the process will get
blocked as soon as a thread gets blocked. The multithreaded process consisting of user threads
is responsible for maintaining thread-state information, scheduling threads within the process
and synchronizing them as well.

Since the threads are part of a process, there will be some relation between process scheduling
and thread scheduling. Suppose there are three processes, P1, P2, and P3, in an application.
Each process consists of two threads. Some of the events in scheduling are shown in Table 9.1.

It is clear from Table 9.1 that the thread scheduling is application-specific. Taking the
advantage of this concept, the scheduling algorithms can be tailored according to the need of the
application without affecting the kernel scheduler. Therefore, it is not necessary that a thread
scheduler will work only on one algorithm. One application may adopt round robin, whereas
another may run priority-based scheduling algorithm. In fact, user threads can run on any type
of OS. User threads do not require any support or modification in the underlying OS. The rea-
son is that there is a thread library (shared by all applications) using which all the functions
related to thread management can be run. User threads are portable due to their nature as they
do not require any support from the kernel, making them independent of a particular OS.

One should also understand the execution relations between a process and its threads. When
the context of a new thread is loaded and dispatched, the state of the process becomes running.
It means that the state of the running thread becomes the state of the process and the stack
pointer of the process is set such that the thread’s stack would be used as the stack for the
process. It is quite natural to do this because the process itself is not running but executing in
the form of its threads. Therefore, whenever one thread starts running, its stack pointer is set to
run the thread’s stack. If all the threads are in a ready state, the process’s state will also be ready.
If any of the thread blocks, the process state will also be blocked, that is, all the other threads are
blocked and will not be scheduled until the cause of that thread blocking is removed. Therefore,
user threads should be used with great care such that they should not use frequent system calls
that blocks them, which consequently blocks the other threads and finally the process. Due to
this nature of user threads, multithreaded applications cannot be executed on multi-processor
systems, that is, multiple threads of a process cannot be executed on multiple processors.

Inspite of the disadvantages, multit-hreading must be chosen over multiple process model
as it does not have high context switching time. One solution to the disadvantage of user thread
is to convert a blocking-system call executed by a thread into a non-blocking call. Instead of

Table 9.1

Relation between process scheduling and thread scheduling

Event

Process P1

Process P2

Process P3

Process
state

Thread1
state

Thread2
state

Process
state

Thread1
state

Thread2
state

Process
state

Thread1
state

Thread2
state

Process P2
is scheduled
and starts
executing.
Thread1 of
P2 is sched-
uled to run
by the thread
scheduler.

Thread1 of
P2 executes
an 1/0
instruction,
thereby
causing it

to wait for a
resource.

Since P2is
blocked in
the previous
event, sched-
uler selects
next ready
process, that
is, P1, and
thread sched-
uler selects
thread?2 of. P1

Time slice of
P1 expires.

Ready

Ready

Running

Ready

Ready

Ready

Ready

Ready

Ready

Ready

Running

Running

Running

Blocked

Blocked

Blocked

Running

Running

Running

Running

Ready

Ready

Ready

Ready

Ready

Ready

Ready

Ready

Ready

Ready

Ready

Ready

Ready

Ready

Ready

Ready

66z Buipesiyi-ninpy

260 Principles of Operating Systems

directly calling a system call, an I/O routine known as jacket routine is called from the thread
library. This jacket routine checks whether the I/O device is busy. If it is, then it becomes a
blocking call. Therefore, it will not be executed and the control is passed to another thread
within the process so that it is not blocked. If the device is not busy, then the system call
is executed and the process is not blocked. This technique of checking the status of devices
through an application-level jacket routine is known as jacketing or wrapping.

9.6.2 Kernel Threads

The kernel threads are managed by the kernel. Unlike user threads, there is no library routine facil-
ity. Kernel threads, implemented in the kernel space, are managed through system calls. Opera-
tions such as thread creation, deletion, context saving and restoring, synchronization, and so on
are implemented through system calls. It is obvious that threads are implemented within a process,
but there is no separate thread table corresponding to each process as in user threads. Here, all
the threads are managed through a single thread table maintained in the kernel space as shown
in Fig. 9.6. The thread table stores the same information as described for user threads. Thus, the
kernel maintains a thread table in the kernel space, along with the process table to keep track of the
processes. This concept eliminates the drawback of many-to-one mapping in user threads because
the OS maps each thread to its execution context. Thus, there is a one-to-one mapping in kernel
threads as shown in Fig. 9.7. The OS, to implement this type of mapping, provides each user
thread with a kernel thread that it can dispatch. The user process requests a kernel thread using
a system call and in turn the OS creates a kernel thread that executes user thread’s instructions.

Since both process table and thread table are in the kernel space, there is a difference in
thread scheduling of each kernel thread. The scheduler in the kernel schedules a thread on
occurrence of an event. It is not necessary that the thread will be scheduled from the same
process; it may be scheduled from any other process. The kernel checks whether the selected
thread belongs to the same process as that of the interrupted thread or to a different process.
If the thread is of the same process, then there is no issue and the kernel dispatches the thread
for execution. However, if the thread belongs to a different process, then it saves and loads the
context of the process to which the selected thread belongs and then dispatches it.

User space

Thread table

Process table

Kernel space

Fig. 9.6 Kernel threads

Multi-threading 261

User space

NVAES

Kernel space b

Fig. 9.7 One-to-one mapping in kernel threads

AVags

It can be realized that kernel threads are like processes because they interact with kernel
as processes do. The kernel threads use system calls for any I/O requirement similar to the
processes. Whenever there is a thread switching, the control is transferred from one thread to
another by the kernel at the cost of a context switch. Thus, kernel threads make use of system
calls and incur context switch overhead in thread switching within the same process. This
increases the operational latencies of kernel threads, thereby making them slower compared
to user threads. Thus, comparing processes, user threads, and kernel threads in terms of their
operation latencies, it can be concluded that user threads have the lowest latency, followed by
kernel threads and the processes are slower compared to both the types of threads.

Due to the design of kernel threads, the kernel is now able to schedule multiple threads of
the same process on a multi-processor system. The OS recognizes each thread individually
as the thread table is managed only by the kernel. Therefore, each thread can be prioritized
depending on its service type. If a thread is interactive in nature, it should be given high priority
compared to other threads. Thus, the OS may assign priority number to each of its threads. In
addition, if a thread is blocked, it is possible to schedule another thread of the same process, that
is, blocking a thread does not block the process. This improves the interactivity and efficiency
of applications. Thus, kernel threads overcome the disadvantages of user threads.

9.7 HYBRID THREADS

After studying both types of threads, the question is how to select a type.
Let us first discuss the differences between user threads and kernel threads:

1. Due to short latencies, user threads are faster to execute. Kernel threads, on the other hand,
are slower to execute.

2. Unlike kernel threads, user threads do not support priority-based scheduling. Therefore, if
one user thread blocks, then the whole process blocks. The scheduler will not select another
thread from that process even if it is of higher priority and may select a lower-priority thread
from another process.

3. Since user threads do not support priority scheduling, it cannot be employed in a real-
time system. A real-time system demands execution of all the high-priority processes and
threads, whatever be the case.

262 Principles of Operating Systems

4. Kernel threads are less efficient due to involvement of kernel and less portability.

5. One-to-one mapping in kernel threads consumes more resources and memory than many-to-
one mapping in user threads.

6. The number of kernel threads is larger than user threads. The multithreaded application in
this case needs to check the scalability of the OS in memory management and scheduling
techniques. Thus, high cost is incurred in creating and deleting the kernel threads.

One approach to cut down the cost incurred in kernel threads is to employ thread recycling.
Thread recycling does not destroy the data structures of a thread when it is deleted but instead
marks them as deleted. When a new thread is required, instead of creating one, a marked thread
is activated, thereby saving the overhead time in creating a new thread.

In this way, it can be remarked that there are advantages as well as disadvantages in both the
threads. A critical look at these two types of threads indicates that it may not be possible to imple-
ment them in their pure sense in an application. Therefore, the idea is to have a hybrid of both the
threads that combines the good features of both of them. In other words, instead of having many-
to-one (user threads) or one-to-one thread mapping (kernel threads), it is better to have a combina-
tion of both, that is, many-to-many thread mapping. However, it depends on the nature of threads
designed in an application to decide which mapping should be used. Threads that cannot be used
concurrently should use many-to-one mapping because only one execution context is needed.
Similarly, the threads that exhibit concurrency may use one-to-one mapping because separate ex-
ecution context per thread is needed. In this combined approach, the application specifies the
number of kernel threads required. For example, in Fig. 9.8, Processes P1 and P2 need two kernel
threads and P3 needs only one. However, note that two threads, T1 and T2, of Process P1 have
been mapped to a single-kernel thread. This decision about where the thread should be mapped
depending on its purpose is taken by a programmer. P1 has many-to-one as well as one-to-one
thread mapping, P2 has one-to-one mapping, and P3 has many-to-one mapping. Thus, multiple
user-level threads of an application can be mapped to some or all kernel-level threads, taking the
advantage of both the types of thread mapping. The overall advantage is that some threads may run
in parallel on multi-processor systems and there is no need to block the whole process if one thread
blocks. Moreover, due to the reduction in the number of kernel threads, less memory is consumed.

User space

P1 7 P2 i P3

Kernel space

/\/]
/\/]
/N

Fig. 9.8 Hybrid threads

Multi-threading 263

9.8 THREAD OPERATIONS AND OTHER ISSUES IN THREAD IMPLEMENTATION

The thread operations correspond to process operations. All operations, such as create,
terminate, suspend, resume, and so on, are also used in thread implementation. However, due to
the differences in implementation of a process and a thread, the thread creation and termination
are always faster when compared to process creation and termination.

A process or a thread may be terminated prematurely. There may be several reasons for
cancellation of a thread, for example, illegal memory reference causing an exception is
cancelled or a user wants to stop loading a web page. In general, a thread can be cancelled by
asynchronous cancellation method, that is, the thread is cancelled immediately. However, if
a thread that is modifying a shared variable is cancelled, then it may give an erroneous result.
Therefore, for thread cancellation, some OSs choose another alternated method known as
deferred cancellation. In this method, a target thread to be cancelled may periodically check
when it should be cancelled. For this purpose, the target thread masks the cancellation signals
except the abort signal while it is performing an operation that should not be interrupted.

9.8.1 Signal-handling Issues

Another issue in a multi-threading environment is signal handling. The signal handling in
processes (single-threaded) has already been discussed in Chapter 7. It is difficult to handle
signals of multiple threads. In case of synchronous signals, the signals are delivered to the
thread that is executing at that time. However, in case of asynchronous signals, it is not clear
which thread of the process will receive the signal. There are some options that are adopted
by different OSs. The options may be to deliver the signal to all the threads, selected threads,
or only one thread. The threads mask and accept only selected signals. In this way, signals are
handled by the threads. However, the first thread that accepts the signal will execute its signal
handler. Another option is to have a thread assigned by the process that will receive the signals.
This thread in turn sends the signal to the first thread of the process that does not mask it.

9.8.2 Thread Pooling

The implementation view of user threads and kernel threads has given us an idea that creating
and destroying threads incur cost. If there is a multi-threaded web server, then each time a client
requests, a new thread is created. This thread is then destroyed after serving the web request.
Moreover, if all the concurrent threads are allowed, then it may consume all the system resources.

To handle these issues, a fixed number of kernel threads are created in a pool. If there is a
client request, the kernel thread is called to service from the pool. After serving the client, the
thread is not destroyed but returned to the pool through thread recycling. In this way, the time
taken to create and destroy the threads can be saved and at the same time, the system resources
are not exhausted due to unlimited creation of threads in the system. On the application side, the
response time of request decreases, thereby providing a better service to the clients.

9.8.3 Thread Scheduling

Thread scheduling differs according to the types of threads, that is, scheduling of kernel threads
and scheduling of user threads. Since the kernel is not aware of the user-level threads, the
scheduler works only for the processes. It means that multiple threads are not scheduled within
a process. A scheduler schedules the threads as it does for processes. The thread scheduler is

264 Principles of Operating Systems

implemented through the thread library. However, the thread scheduler cannot allot time slice
to the threads as there are no clock interrupts to stop it. Therefore, a thread may continue until
it finishes or if it uses full quantum of its process. In this case, the kernel will select another
process to run. Another method is to use a thread call known as thread-yield. On execution of
this call, the running thread voluntarily gives up the processor so that other threads may run.
This is an alternative solution to implement time sharing between the threads. Like this, other
thread calls can be implemented so that a thread does not consume the full time quantum of a
process and let other threads also share the processor time.

On the other hand, in case of kernel threads, the scheduler picks up a thread instead of
a process. A thread may be given a time quantum. Thus, threads of different processes are
scheduled. Threads can be scheduled in round robin fashion or according to the priority num-
bers assigned for them. However, the scheduler must consider the thread switching costs. The
thread switching from one process to another will be costly as compared to thread switching
within the same process. Therefore, a scheduler must consider all these factors while scheduling
the kernel threads.

SUMMARY

The high context switch overhead in process switching has e Threads are of two types: user threads and kernel threads.

given rise to the multi-threading concept. an application that

has multiple threads, responds quickly, and executes fast.

The two types of threads, namely, user threads and ker-

nel threads, have been discussed with their pros and cons.

Another type of threads—hybrid thread—has also been

explained keeping in view the advantages of both types of

threads. Most of the issues regarding thread implementa-
tion and management (such as thread states, scheduling
algorithms, and so on) are same as that of a process. Some
of the differences in implementation of a thread and a pro-
cess have also been discussed in the chapter.

Let us have a quick review of important concepts dis-
cussed in this chapter:

® Multi-threading is to have multiple concurrent paths of
execution in the form of various threads of control within
a single process.

e A thread is a unit of concurrency within a process
because threads implement the various functions but
share the address space of the process.

® \Whenever there is a need to switch between the threads
of the same process, the context of a thread will be saved
and restored in the form of its PC, CPU registers, and
stack: Code and data section are not the part of the con-
text of a thread.

® Multi-threading works the same way as multi-tasking,
that is, the processor switches back and forth among the
threads as with the processes and gives the illusion that
threads are running in parallel.

® The TCB saves and restores the context of a thread in
case of thread switching.

User threads are are only managed by the application in
user space.

Kernel threads implemented in the kernel space are
managed through system calls.

User threads are created and then managed through a
thread library provided by the OS.

A thread table is maintained for user threads. The thread
table contains entries as a pointer to the TCB of each
thread.

Creating and managing a user thread is easier and much
faster as compared to a process and a kernel thread.
User threads are more portable due to their nature as
they do not require the support of a kernel, making them
independent of a particular OS.

User-level thread implementation is known as many-to-
one mappings as the OS maps all threads in a multi-
threaded process to a single-execution context.

Kernel threads are managed through a single-thread
table maintained in the kernel space.

There is one-to-one mapping in kernel threads that pro-
vides each user thread with a kernel thread that it can
dispatch.

Thread recycling is the concept that does not destroy
the data structures of a thread when it is deleted but is
marked as deleted and not runnable. When there is a
requirement of a new thread, instead of creating a new
thread, this marked old thread is activated from the
thread pool, thereby saving the overhead time in creating
a new thread.

MULTIPLE CHOICE QUESTIONS

1.

Each process has at least __ threads of execution.

(@) one (c) three
(b) two (d) none
A process is also knownas .

(a) heavy weight process (c) thread
(b) light weight process (d) none

Athread is also knownas .

(a) heavy weight process (c) process

(b) light weight process (d) none

Whenever there is a need to switch between the threads of

the same process, the context of a thread will be saved and
restored in the form of

(a) code, data, and stack

(b) code, CPU registers, and stack
(c) PC, CPU registers, and stack
(d) none

The information in the TCB is ____ as compared to the

PCB.

(@) lesser (c) much larger
(b) larger (d) none

Low context switch overhead ____ the degree of
concurrency.
(@) increases (c) no effect
(b) decreases (d) none

User threads are created and managed through .
(@) kernels

(b) thread library

(c) shells
(d) none

REVIEW QUESTIONS

w

© © N o o &

What is the difference between a process and a thread?
What is the need to create a thread?

What is the difference between multi-tasking and multi-
threading?

What is a TCB? Explain all its fields.

What is the difference between a PCB and a TCB?
Explain the benefits of the multi-threading concept.
Explain the implementation of user threads.
Explain the implementation of kernel threads.
What is wrapping?

What is the difference between one-to-one and many-to-
one thread mapping?

10.

1.

12.

13.

14.

15.

11.

12.

13.
14.
1.
16.
17.
18.

Multi-threading 265

. User threads can be ____ as compared to kernel threads.

(@) slower
(b) faster

(c) not comparable
(d) none

. Which type of mapping is implemented in user threads?

(a) one-to-one (c) many-to-one

(b) many-to-many (d) one-to-many
Which type of mapping is implemented in kernel threads?
(a) one-to-one (c) many-to-one
(b) many-to-many (d) one-to-many
Which type of mapping is implemented in hybrid threads?
(@) one-to-one (c) many-to-one

(b) many-to-many (d) one-to-many

In may-to-one mapping, if a thread blocks, the whole
process

(a) blocks (c) sleeps

(b) keeps running (d) none

Multithreaded applications with ____ threads cannot be
executed in multi-processor system.

(a) user (c) hybrid

(b) kernel (d) none

Which type has the lowest operational latency?

(a) kernel threads (c) processes

(b) user threads (d) none

Kernel threads consume ____ resources as compared to
user threads.

(a) more (c) equal

(b) less (d) none

What is the difference between a process table and a thread
table?

List out the advantages and disadvantages of both user
and kernel threads.

What is a thread library?

What are hybrid threads?

What is thread pooling?

How can a thread be cancelled?

Explain signal-handling methods in multi-threading.
What is a thread-yield?

266 Principles of Operating Systems

BRAIN TEASERS

1.

What are the key factors to be considered while choosing
multi-threading for an application?

. ‘A multithreaded application with user threads cannot take

the advantage of multi-processor systems.” Comment on
this statement.

. Why should user threads not use system calls frequently?

. If a multithreaded process creates its child process, then

will the child process get the same number of threads as
the parent process?

Why is there no need of kernel for communicating between
threads of the same process?

. Explain how multi-threading can be implemented in a

spreadsheet application.

. Ifathread opens a file with read privileges, then will another

thread within the same process be able to read from that
file?

. You cannot afford to have an infinite number of threads for

serving the clients’ requests in a multithreaded web server.
How do you limit the number of the threads?

. How can scheduling be application-specific in case of user

threads?

(— Copyrighted Materials
Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

(G

PART II1

Memory Management

10. Basic Memory Management
11. Virtual Memory

Case Study III: Memory Management in
UNIX/Solaris/Linux/Windows

10 Basic Memory
Management

10.1 INTRODUCTION

The multi-programming concept of an OS gives rise to another issue known as memory management.
Process management needs the support of memory management. Memory, as a resource, needs to be
partitioned and allocated to the ready processes, such that both processor and memory can be utilized
efficiently. It is partitioned into two parts; one for the OS, and the other for the user area. Besides this, the
user area needs to be divided into multiple parts for various user processes. This division of memory for
processes needs proper management, including its efficient alloca-

tion and protection. Memory management needs hardware support =
also, therefore, the management technique also depends on the o
hardware available. The memory management issue extends from

basic memory management techniques to virtual memory manage- Learning Objectives

ment, in order to meet the challenge of huge memory requirements After reading this chap-

of processes, since the size of the main memory is not sufficient. ter, you should be able to
Therefore, there are two types of memory management: real mem- under. §tan o .

ory (main memory) and virtual memory. This chapter discusses all ° :ltlztcl;;tig:d dynamic memory

the issues related to real memory management. .
e Basic concepts for memory

management: logical and phys-
ical addresses, swapping, relo-
cation, protection and sharing,

10.2 BASIC CONCEPTS

To understand memory allocation and other memory management
schemes, some basic concepts are discussed in this section. These
will be used throughout this chapter.

10.2.1 Static and Dynamic Allocation

Memory allocation is generally performed through two methods:
static allocation and dynamic allocation. In static allocation, the
allocation is done before the execution of a process. There are two
instances when this type of allocation is performed:

1. When the location of the process in the memory is known at
compile time, the compiler generates an absolute code for the
process. If the location of the process needs to be changed on
the memory, the code must be recompiled.

2. When the location of the process in the memory is not known at
compile time, the compiler does not produce an actual memory

fragmentation

e Fixed and variable memory
partitioning

» Contiguous memory allocation

e Memory partition selection
techniques: First fit, best fit,
worst fit

o Non-contiguous memory
allocation

o Paging concept

e Paging implementation with
associative cache memory

o Page table and its structures

o Segmentation concept

o Hardware requirements for
segmentation

292 Principles of Operating Systems

address but generates a relocatable code, that is, the addresses that are relative to some known
point. With this relocatable code, it is easy to load the process to a changed location and there
is no need to recompile the code. In both cases of static allocation, size should be known before
start of the execution of the process.

If memory allocation is deferred till the process starts executing, it is known as dynamic
allocation. It means the process is loaded in memory initially with all the memory references in
relative form. The absolute addresses in memory are calculated as an instruction in the process
executed. In this way, memory allocation is done during execution of a program. Dynamic
allocation also has the flexibility to allocate memory in any region.

10.2.2 Logical and Physical Addresses

To accommodate the multi-programming concept of modern OSs, dynamic memory allocation
method is adopted. In this method, two types of addresses are generated. Since in dynamic
allocation, the place of allocation of the process is not known at the compile and load time, the
processor, at compile time, generates some addresses, known as logical addresses. The set of
all logical addresses generated by the compilation of the process is known as logical address
space. These logical addresses need to be converted into absolute addresses at the time of
execution of the process. The absolute addresses are known as physical addresses. The set of
physical addresses generated, corresponding to the logical addresses during process execution,
is known as physical address space. There are now two types of memory: logical memory
and physical memory. The logical memory views the memory from 0 to its maximum limit,
say m. The user process generates only logical addresses in the range 0 to m, and a user thinks
that the process runs in this logical address space. But the user process, in the form of logical
address space, is converted into physical address space with a reference or base in memory.
The memory management component of the OS performs this conversion of logical addresses
into physical addresses. Thus, when a process is compiled, the CPU generates a logical address,
which is then converted into a physical address by the memory management component, to
map it to the physical memory.

10.2.3 Swapping

Swapping was introduced in Chapter 5 in concern with suspended processes. Swapping plays
an important role in memory management. There are some instances in multi-programming
when there is no memory for executing a new process. In this case, if a process is taken out of
memory, there will be space for a new process. This is a good solution, but the following factors
matter during the implementation.

e Where will this process reside?
e Which process will be taken out?
e Where in the memory will the process be brought back?

For the first question, the help of any secondary storage (generally, hard disk) known as
backing store, is taken, and the process is stored there. The action of taking out a process from
memory is called swap-out, and the process is known as a swapped-out process (see Fig.10.1).
The action of bringing back the swapped-out processes into memory is called swap-in. A sepa-
rate space in the hard disk, known as swap space, is reserved for swapped-out processes. The
swap space should be large enough such that a swapped out process can be accommodated. The
swap space stores the images of all swapped out processes. Thus, whenever a process is selected

Basic Memory Management 293

User program v

area

Swap-out

Swap space

A

Swap-in

Hard disk

~—

Fig.10.1 Swapping

by the scheduler to execute, the dispatcher checks whether or not the desired process is in the
ready queue. If not, a process is swapped out of memory and the desired process is swapped in.
For the second question, some of the processes that can be swapped-out are:

e In round robin process-scheduling, the processes are executed, according to their time
quantum. If the time quantum expires and a process has not finished its execution, it can be
swapped-out.

e In priority-driven scheduling, if a higher-priority process wishes to execute, a lower-priority
process in memory will be swapped out.

e The blocked processes, which are waiting for an I/0, can be swapped out.

For the third question, there are two options to swap in a process. The first method is to
swap-in the process at the same location, if there is compile time or load time binding. How-
ever, this may not be possible every time and it is inconvenient. Therefore, another method is
to place the swapped-in process anywhere in the memory where there is space. But this requires
the relocation, which is discussed in the next section.

Swapping incurs the cost of implementation. As discussed above, the swap space should be
reserved in the secondary storage. It should be large enough to store images of the processes
which are swapped out. Another cost factor is swap time, which is time taken to access the hard
disk. Here, the transfer time from the hard disk matters. There is already some latency in data
transfer from the hard disk, as compared to memory. So the swap time increases the transfer
time. The transfer time is also affected by the size of the process to be swapped out from the
hard disk. Hence, larger the size of the process, larger the transfer time.

Example 10.1

A process of size 200 MB needs to be swapped into the hard disk. But there is no space in
memory. A process of size 250 MB is lying idle in memory and therefore, it can be swapped
out. How much swap time is required to swap-in and swap-out the processes if:

Average latency time of hard disk = 10 ms

Transfer rate of hard disk = 60 MB/s

294 Principles of Operating Systems

Solution

The transfer time of the process to be swapped into hard disk =200/60 = 3.34 s. = 3340 ms
Therefore, the swap time of 200 MB process = 3340 +10 = 3350 ms

The transfer time of the process to be swapped-out from memory =250/60 =4.17 s. = 4170 ms
Therefore, the swap time of 250 MB process = 4170 +10 = 4180 ms

Total swap time = 3350 + 4180 = 7530 ms

10.2.4 Relocation

In a multi-programming environment, the memory is shared among multiple processes. Due
to this, it may not be possible to know in advance which processes will reside in the memory
and their locations. Therefore, static allocation may be difficult. Moreover, the processes may
be swapped out and swapped in many times. It may not be possible to swap in the processes
in the same location in the memory from where it was swapped out. It forces us to manage the
memory in such a way that a static allocation cannot be given to a process. It should be possible
to relocate the process to a different memory area where it gets space. The relocation process
should be able to provide a new location to the process and translate all the memory references
(either data reference or branch instructions) found in the process code into physical addresses,
according to the current location in the memory. To translate all the memory references of the
process, there must be an origin or base address in the memory. All relative addresses generated
are added in this base address to get the new location in the memory.

To implement relocation, some hardware support is required. There should be a processor
register which holds the base address. This register is known as the base register or relocation
register. Base register holds the starting address in the main memory from where the process
needs to be relocated. Along with the base register, there should be a register that stores the end-
ing location of the process, that is, the knowledge of the limit of the process in the memory. The
limit is stored in a /imit or bounce register (see Fig. 10.2). Thus, with the help of base and limit
registers, the process may be dynamically loaded or relocated. As soon as a process is loaded
or swapped into the memory, these registers must be set by the OS.

Base register 10200
10200 gister | 10200 |
Process P1
10400 Limit register | 10400
Process P2
10600
oS

Fig. 10.2 Relocation with base and limit register

Basic Memory Management 295

BR LR
10200 10400

A \ 4
5 o A . PA<LR Address
rocessor » er » omparator >

A oA p Memory
PA>LR Address
LA: Logical address v
PA: Physical address Interrupt to OS

BR: Base register

LR: Limit register

Fig. 10.3 Memory mapping using base and limit registers

When the process starts executing, relative or logical addresses are generated by the CPU.
These relative addresses are first added in the base register to produce an absolute address
or physical address (see Fig. 10.3). Next, the address is compared with the address stored in
the limit register. If the address is less than the limit register address, the instruction execu-
tion continues. It is clear that adder (to add the base and relative address) and comparator (to
compare the generated physical address with the limit register address) are also required in the
hardware of a Memory Management Unit (MMU). In this way, the MMU, with the help of
base and limit registers, performs the memory mapping, by converting logical addresses into
physical addresses.

Example 10.2

A process is to be swapped-in at the location 20100 in memory. If logical addresses generated
by the process are 200, 345, 440, and 550, what are the corresponding physical addresses?

Solution

The relocation register will be loaded with the address 20100. So adding the logical addresses
to the relocation register, the corresponding physical addresses are as follows:

20100 + 200 = 20300

20100 + 345 = 20445

20100 + 440 =20540

20100 + 550 = 20650

10.2.5 Protection and Sharing

In a multi-programming environment, there is always an issue of protection of user processes,
such that they do not interfere with others and even the OS. Therefore, it is required that the
process should not be able to enter the memory area of other processes or the OS area. Each
process should execute within its allocated memory. It means whenever a process executes,
all the address generated must be checked, so that it does not try to access the memory of other
processes. The base and limit registers serve this purpose. In protection terminology, some-

296 Principles of Operating Systems

times base and limit registers are also known as lower-bound and upper-bound registers,
respectively. Each relative address, generated by the process during its execution, is added
to the address in the base register, and its physical address is calculated. This physical
address generated must be less than the address in the limit register. This provides protection
to other processes, because no process can cross its boundaries set by the base and limit
registers. If, somehow the physical address is more than the address in the limit register,
a memory protection violation interrupt is generated. When this interrupt is processed, the
kernel may terminate the process. Furthermore, protection is provided to base and limit
registers also, so that they cannot be loaded or updated by any user process. The loading of
these registers with addresses is a privileged operation, and is performed by the kernel only.

From the protection viewpoint, it is clear that each process has its own boundaries in the
memory for its execution. However, to have a better utilization of the memory, sometimes
sharing of memory spaces is also required. Although sharing is contradictory to protection,
protection should not be compromised at all. Sharing of memory is predefined among the
processes, but why is sharing of memory important? For instance, if some processes are using
the same utility in their execution, it would be wastage of memory, if same kind of utility
is given space in the memory for each process. Therefore, the better idea is to have a single
copy of that utility in the memory and processes will share it, when required. Thus, memory
management techniques must consider memory-sharing, but with protection.

Example 10.3

A process has relocatable code of size of 900 K. The relocation register is loaded with 40020 K
and the limit register contains the address 41000 K. If the processor generates a logical address
990, where will it be located in the physical memory?

Solution

The physical address corresponding to logical address 990

= relocation register address + logical address

=40020 +990=41010
But the process will not be allocated, because it is greater than the address in the limit register,
hence, violating the criterion for protection. Consequently, an interrupt will be generated.

10.2.6 Fixed and Variable Memory Partitioning

The memory space is divided into fixed or variable partitions, which will be described in detail
in the subsequent sections. Fixed partitioning is a method of partitioning the memory at the
time of system generation. In fixed partitioning, the partition size can be of fixed size as well
as variable, but once fixed, it cannot be changed. Variable partitioning is not performed at the
system generation time. In this partitioning, the number and size of the memory partition vary
and are created at run time, by the OS.

10.2.7 Fragmentation

When a process is allocated to a partition, it may be possible that its size is less than the size of
partition, leaving a space after allocation, which is unusable by any other process. This wastage
of memory, internal to a partition, is known as internal fragmentation.

Basic Memory Management 297

While allocating and de-allocating memory to the processes in partitions through various
methods, it may be possible that there are small spaces left in various partitions throughout the
memory, such that if these spaces are combined, they may satisfy some other process’ request.
But these spaces cannot be combined. This total memory space fragmented, external to all the
partitions, is known as external fragmentation.

10.3 CONTIGUOUS MEMORY ALLOCATION

User program
area

(O]

Fig. 10.4 Single partition in memory

User
processes

In older systems, memory allocation is done by allocating a single
contiguous area in memory to the processes. When there was multi-
programming or a multi-user system, memory was divided into two
partitions, - one for the OS, and the other for the user process (see Fig.
10.4). The user process in its partition has a single contiguous region
of memory.

After the invention of multi-user and multi-programming systems,
more processes need to be accommodated in the memory (see Fig. 10.5).
Multiple processes are accommodated by having multiple partitions in
the memory. However, multiple partitioning has an effect on the OS
partition. It is still present in the memory. The OS area is generally
placed in the lower memory addresses. It can be in high memory also,
but interrupt vector is often in lower memory addresses.

The contiguous allocation method was implemented by partitioning
the memory into various regions. The memory can be partitioned,
using either fixed memory or variable memory partitioning.

Multiple
| Process P2 | partitioning
| Process P1 |

(O]

Fig.10.5 Multiple partitioning of memory

298 Principles of Operating Systems

In this method, a process is allocated a contiguous memory in a single partition. Thus, the
memory partition, which fits the process, is searched and allocated. The memory partition,
which is free to allocate, is known as a hole. Thus, an appropriate hole is searched for allocat-
ing it to a process. When the process terminates, the occupied memory becomes free and the
hole is available again. Initially, all the holes are available. When all the holes are allocated to
the processes, the remaining processes enter wait state. As soon as a process terminates, a hole
becomes free, and is allocated to a waiting process.

10.3.1 Contiguous Allocation with Fixed Partitioning

Fixed partitioning is a method of memory partitioning at the time of system generation. The parti-
tion can be of fixed as well as variable size, but once fixed, it cannot be changed. If there is a need
to change the partition size, the OS must be generated again with modified partitions. It means,
the partitions, once fixed, are static in nature. To allocate memory to the processes in partitions,
the OS creates a table to store the information, regarding the partitions in the memory. This table
is called the partition description table (PDT). The structure of the table is shown in Table 10.1.

The contiguous allocation method with fixed partitioning was adopted by earlier systems like
IBM mainframe OS/360, which was called OS/MFT (Multi-programming with Fixed number
of Tasks). In this method, the long-term scheduler performs job scheduling, and decides which
process is to be brought into the memory. It then finds out the size of the process to be loaded
and requests the memory manager to allocate a hole in the memory. The memory manager uses
one of the allocation techniques (discussed later) to find a best match for the process. After
getting a hole, the scheduler places the process in the
allocated partition. Next, it enters the partition ID in
the PCB of the process, and then PCB is linked to the
chain of the ready queue. Memory manager marks
the status of the partition as ‘Allocated’. Initially, the

status of all memo artitions is ‘Free’. As soon as a
e

process terminates, the OS updates the allocation sta- 2
tus (in the PDT) of the partition, where the terminated
process resided. Thus, with the use of PDT, a list of
available holes is obtained, and holes are allocated to
the processes, based on their memory requirements.
What should be the size of the memory partitions?
One approach is memory partitions, which are of equal
size, as shown in Fig 10.6. But there are disadvantages
to this approach. One is that a process may be too big
to fit into the partition. Another is that a small process,
occupying the entire partition, leads to the problem of Fig. 10.6 Fixed equal sized partitioning
internal fragmentation. based contiguous memory
allocation

2

(O

Table 10.1 Partition description table

Partition ID Starting address Size Allocation status

Basic Memory Management 299

Example 10.4

Three processes P1, P2, and P3 of size 21900, 21950, and 21990 bytes, respectively, need space
in the memory. If equal-sized partitions of 22000 bytes are allocated to P1, P2, and P3, will
there be any fragmentation in this allocation?

Solution

After allocating the partitions to the processes, the leftover space in each partition is estimated
by the difference between partition size and process size. Hence,

The leftover space in the first partition = 22000 — 21900 = 100 bytes

The leftover space in the second partition = 22000 — 21950 = 50 bytes

The leftover space in the third partition = 22000 — 21990 = 10 bytes.

This leftover space in each partition is nothing but internal fragmentation, as shown in the
following figure:

22000 bytes

100 bytes

Internal P2 22000 bytes

fragmentation \
50 bytes

E
w

22000 bytes

10 bytes

oS

Example 10.5

Three processes P1, P2, and P3 of size 67000, 65000, and 60000 bytes, respectively, need space
in the memory. If partitions of equal size, that is, 70000 bytes, are allocated to P1, P2, and P3,
will there be any fragmentation in this allocation?

Solution

After allocating the partitions to the processes, the first, second, and third partitions are left with
3000 bytes, 5000 bytes, and 10000 bytes, respectively. This leftover space in each partition is
internal fragmentation, as shown in the figure.

In the above two examples, fixed memory partitioning, with equal partitioning size, leads
to wastage of a large space in the memory. The second approach is to use unequal-sized
partitions in the memory. Unequal-sized partitions can be chosen, such that smaller to bigger
size processes can be accommodated, thereby, wasting less memory, as shown in Fig. 10.7.
Keeping in view the average size of the processes, the size of partitions in the memory can
be fixed.

Principles of Operating Systems

70000 bytes

3000 bytes
Internal 70000 bytes
. 5000
fragmentation —™—____|
bytes
=
70000 bytes
10000 bytes
(O]

2M
Although the second approach has improved the performance

AM of memory allocation, overall fixed partitioning suffers from
disadvantages, due to which this method has become obsolete

today. The following are some drawbacks of this method:

e The degree of multi-programming is limited by the number
6M of partitions fixed.
e There may be some processes whose memory require-

I z

ment is not known in advance. In this case, unequal-size

partitioning may also cause internal fragmentation. More-
0s over, due to internal fragmentation, there may be memory
space scattered in various partitions. If these memory

spaces are combined, it can be allocated to a process. But

it is not possible in fixed partitioning method. This results

Fig. 10.7 Fixed unequal-sized in external fragmentation also. Thus, fixed partitioning

partitioning-based contiguous method suffers from both types of fragmentation.
memory allocation

Example 10.6

Three processes P1, P2, and P3 of size 19900, 19990, and 19888 bytes, respectively, need space
in memory. If partitions of equal size, that is, 20000 bytes, are allocated to P1, P2, and P3, will
there be any fragmentation in this allocation? Can a process of 200 bytes be accommodated?

Solution

After allocating the partitions to the processes, the first, second, and third partitions are left with
100 bytes, 10 bytes, and 112 bytes, respectively. This leftover space in each partition is internal
fragmentation.

The total space left = 100 + 10 + 112 = 222 bytes

Process of 200 bytes cannot be accommodated, even if the total space left is more than 200
bytes. This is because the space left is not contiguous. Hence, this partitioning also leads to
external fragmentation.

Basic Memory Management 301

10.3.2 Contiguous Allocation with Dynamic/Variable Partitioning

Contiguous allocation with fixed partitioning suffers from drawbacks, as discussed above. To
overcome these drawbacks, contiguous allocation with variable partitioning was devised. It is
also known as dynamic partitioning. Instead of having static partitions, the memory partition
will be allocated to a process dynamically. In other words, the number and size of partitions
are not fixed at the time of system generation. They are variable and are created at run time
by the OS. The procedure for memory allocation in this method is the same as fixed partition-
ing. The only difference is that partitions for processes are created at run time, when they are
brought to the ready queue. PDT is maintained in variable partitioning as well. In the same way
as discussed in fixed partitioning, a hole is searched for in the process. Initially, there is only a
single large hole, that is, a partition allocated to user processes. The first process is allocated the
required memory, out of this large hole, and the rest of the memory is returned. It means there
are two partitions of the original hole: one allocated to the process and the other partition, which
is available. In this way, the processes are allocated the required space in the hole and variable-
sized partitions are produced. Two contiguous free holes can be combined into a single partition.

The IBM mainframe was developed as Multi-programming with Variable number of Tasks
(OS/MVT). The advantage in variable partitioning is that the process is given exactly as much
space as it requires, reducing the internal fragmentation faced in fixed partitioning. Although
variable partitioning reduces memory wastage, it can still cause fragmentation. Eventually,
there are small holes in the memory partitions. These holes cannot be allocated to any process,
because they are not contiguous, and hence, cause external fragmentation.

Example 10.7

Let us understand dynamic partitioning with an example. Consider three processes P1, P2, and
P3, as shown in Fig. 10.8. Initially, 120M hole is available in the memory. P1 of 30M consumes
memory from the first hole and leaves 90M space. Similarly, P2 and P3 are allocated 40M and
48M of memory, respectively, leaving a hole of 2M. In Fig. 10.8(e), P2 releases the memory,
leaving a hole of 30M. In Fig. 10.8(f), P4 arrives and acquires 28M, leaving a hole of 2M. In
Fig. 10.8(g), P3 releases the memory, leaving a hole of 48M. In Fig. 10.8(h), P1 arrives again,
and now requires 30M space. Since P4 resides in the space, which was earlier allocated to P1,
it will consume 30M from the hole left by P3.

10.3.3 Compaction

External fragmentation in dynamic partitioning can be reduced, if all the small holes formed
during partitioning and allocation, are compacted together. Compaction helps to control mem-
ory wastage, occurring in dynamic partitioning. The OS observes the number of holes in the
memory and compacts them after a period, so that a contiguous memory can be allocated for a
new process. The compaction is done by shuffling the memory contents, such that all occupied
memory region is moved in one direction, and all unoccupied memory region in the other direc-
tion. This results in contiguous free holes, that is, a single large hole, which is then allocated to
a desired process.

Compaction, however, is not always possible. One limitation is that it can be applied, only
if the memory is relocated dynamically at the execution time, so that it is easy to move one
process from one region to another. Another limitation is that compaction incurs cost, because
it is time consuming and wastes CPU time.

302 Principles of Operating Systems

2M
> 50M
48M
> 90M
120
M
. 40M S 40Mm
30M L 30M L 30M
2M 2M 2M 2M
} 18M
P3 48M P3 48M P3 48M
P1 30M
P2 S 40M P2 40M P2 40M P2 40M
2M oM 2M
P1 - 3OM P4 28M P4 28M P4 28M
os os os 0s

(e) ® (9 (h)
Fig.10.8 Variable partitioning

Basic Memory Management 303

2M
P3 }GM } 10M
P3 } 6M
P2 25M
P1
25M
} 6M P2
P1 } 22M P1 } 22M
oS 0oSs

(@) (b)
Fig.10.9 Compaction

Example 10.8

Fig. 10.9(a) shows the state of three processes in memory. Here, the wastage of memory is 6M
+2M + 2M = 10M. No process can be allocated to this space. However, through compaction,
that is, by merging these memory spaces, 10M space can be obtained contiguously, and can be
used for the allocation of a process, which is less than or equal to 10M (see Fig. 10.9 (b)). For
compaction, the processes should be relocated to different addresses. This may consume time,
thereby making this method costly.

The contiguous allocation method, with fixed as well as variable partitioning method, suffers
from fragmentation and wastes memory, as discussed above. The alternate method is non-
contiguous partitioning, which will be discussed later.

10.3.4 Memory Allocation Techniques

Memory allocation techniques are algorithms that satisfy the memory needs of a process: they
decide which hole from the list of free holes must be allocated to the process. Thus, it is also
known as partition selection algorithms. In fixed partitioning with equal-sized partitions, these
algorithms are not applicable, because all the partitions are of the same size and therefore, it
does not matter which partition is selected. These algorithms, however, play a great role in
fixed-partitioning with unequal-sized partitions and in dynamic partitioning, in terms of system
performance and memory wastage. There are primarily three techniques for memory allocation.

First-fit Allocation

This algorithm searches the list of free holes and allocates the first hole in the list that is big
enough to accommodate the desired process. Searching is stopped when it finds the first-fit
hole. The next time, searching is resumed from that location. The first hole is counted from this
last location. In this case, it becomes the next-fit allocation. The first-fit algorithm does not take
care of the memory wastage. It may be possible that the first-fit hole is very large, compared to
the memory required by the process, resulting in wastage of memory.

304 Principles of Operating Systems

Best-fit Allocation

This algorithm takes care of memory storage and searches the list, by comparing memory size of
the process to be allocated with that of free holes in the list. The smallest hole that is big enough
to accommodate the process is allocated. The best-fit algorithm may be better in terms of wastage
of memory space, but it incurs cost of searching all the entries in the list. This is an additional
overhead. Moreover, it also leaves small memory holes, causing internal fragmentation.

Worst-fit Allocation

This algorithm is just reverse of the best-fit algorithm. It searches the list for the largest hole.
This algorithm in its first perception seems that it is not a good algorithm, in terms of memory.
But it may be helpful in dynamic partitioning, because the large holes, leftover due to this
algorithm, may be allocated to the processes that fit. However, this algorithm incurs overhead
of searching the list for the largest hole. It may also leave small holes, causing internal frag-
mentation.

Example 10.9

Consider the memory allocation scenario as shown in Fig. 10.10. Allocate memory for addi-
tional requests of 4K and 10K (in this order). Compare the memory allocation, using first-fit,
best-fit, and worst-fit allocation methods, in terms of internal fragmentation.

Solution

First-fit allocation: It allocates the first hole in the list that is big enough. Hole of 10K is allo-
cated to the process of 4K, leaving a hole of 6K in memory. The next request is of 10K. So, the
next hole in the list is of 5K and it cannot accommodate the process. Hence, the next available
hole of 15K is allocated, leaving a hole of 5K (see Fig. 10.11). It leaves fragmentation of 6K
+5K =11K.

Best-fit allocation: It allocates the smallest hole that is big enough. Hole of 5K is allocated
to the process of 4K, leaving a hole of just 1K. The next request is of 10K. After comparing
the size of all the holes, hole of 10K is allocated. It leaves fragmentation of 0K +1K = 1K
(see Fig. 10.12).

Worst-fit allocation: It allocates the largest hole in the list. For the process of 4K, the largest
hole of 22K is allocated. This leaves a hole of 18K in the memory. The next request is of 10K.

| I % 77

10K 15K 15K 22K

5K

4
Hole Occupied by a process
/] Occupiesbyap

Fig.10.10 Example memory allocation scenario

Basic Memory Management 305

= G 0 74 | 77

4K 6K 25K 5K 20K 10K 5K 15K 22K

Hole // Occupied by a process

Fig. 10.11 First-fit allocation for Example 10.9

77777/
Hole /| Occupied by a process

Fig. 10.12 Best-fit allocation for Example 10.9

Comparing the size of all holes, the 18K hole is the largest hole in the list. Hence, it is allocated
to the process. It leaves fragmentation of 22K — 4K — 10K = 8K (see fig. 10.13).

By comparing all the algorithms on the basis of internal fragmentation, the best-fit allocation
is the best method, as it wastes least memory. The worst-fit is better than the first-fit allocation,
as it provides more holes of appropriate sizes for future requests. Also, memory wastage is

10K 5K

4
Hole // Occupied by a process

Fig. 10.13 Worst-fit allocation for Example 10.9

306 Principles of Operating Systems

10.4 BUDDY SYSTEM

Both types of memory partitioning have drawbacks. Buddy system is a technique that
is developed as a compromise. A buddy system allocates memory from a fixed-size
block of memory. The allocated block will be of power-of-two size. Therefore, if there
is a request of size s for memory allocation, the smallest block, greater than or equal
to s, is allocated. Initially, the segment is considered as a single block, and may be
allocated, if the request can occupy the whole segment. The block will be allocated,
if the wastage of space is very less. If the request is of small size, then the segment is
first divided into two parts, known as buddies. One of the buddies is then considered
for allocation. If the size of the buddy is large, compared to the request, then this buddy
is again divided into two buddies. This process goes on, until the smallest buddy or
block, enough to satisfy the request, is generated. In this way, the request for a block
is satisfied, by dividing the segment into buddies of power-of-two sizes. When the
memory is released by a process, a buddy can be combined with another buddy, if it is
free. This is known as coalescing, that is, merging the buddies, which are unallocated,
forming a larger block or buddy. For example, in Fig. 10.14, initially, there is a fixed-
size segment of 512K. A request for 100K block is received. Therefore, 512K segment
is split into two buddies, A and B, of 256K each. Then, one of the buddies, say A4,
is further divided into two more buddies, C and D, of 128K each. In this way, block

C is allocated to the request. After this, suppose a request of 240K block is received.
B is allocated for this request, as its size is 256K. After some time, A4 releases the
memory. Another request of 240K block is fulfilled by coalescing 4 (128K) and B
(128K), making a larger block to accommodate the new request.

The buddy system is efficient, compared to fixed and variable partitioning. The
good feature of this method is coalescing of blocks. UNIX kernel memory allocation
is done using the buddy system. However, this is not used in any contemporary OS,
as this may also suffer from fragmentation, if the system rounds up the size of a block

| 512K |
| 256K (A) | 256K (B) |
Request | 128K (C) 128K (D) | 256 K (B) |
100K
Request
240K 128K (C) 128K (D) 256 K (B)
A released | 128K (C) 128K (D) | |
Request
240K | 256 K 256K (B)

Fig. 10.14 Buddy System

Basic Memory Management 307

to the next higher power of 2. For example, a request for 65K, which cannot be satisfied with a
block of size 25, will be satisfied with a block of 2, but there will be a large wastage of memory.
Therefore, for any modern OS, paging and segmentation are used for memory allocation. These
methods will be discussed later in this chapter and the next chapter.

10.5 NON-CONTIGUOUS MEMORY ALLOCATION

Contiguous memory allocation method suffers from many drawbacks. Both types of this
method cause internal as well as external fragmentation. Moreover, the fragmentation is also
in the secondary storage, where the swapped-out processes of variable sizes need space. Thus,
the contiguous allocation method wastes a lot of memory space. These drawbacks lead us to
the non-contiguous allocation method. In this method, the holes do not need to be contiguous.
They may be scattered in the memory, and can be allocated to a process. The non-contiguous
memory allocation is also classified as fixed partitioning and variable partitioning. The former
is known as paging, and the latter is known as segmentation. These are discussed in the subse-
quent sections.

10.6 PAGING CONCEPT

The first non-contiguous allocation method is paging, where memory is divided into equal-size
partitions. The partitions are relatively smaller, compared to the contiguous method. They are
known as frames. Since the idea is to reduce external fragmentation, the logical memory of a
process is also divided into small chunks or blocks of the same size as frames. These chunks
are called pages of a process. In this way, whenever a frame in memory is allocated to a page, it
fits well in the memory, thereby eliminating the problem of external fragmentation. Moreover,
the hard disk is also divided into blocks, which are of same size as frames. Thus, paging is a
logical concept that divides the logical address space of a process into fixed-size pages, and is
implemented in physical memory through frames. All the pages of the process to be executed
are loaded into any available frame in the memory.

Let us understand the paging concept in detail and the benefits of a non-contiguous method
with an example.

Example 10.10

In Fig. 10.15(a), it is given that there are 10 free frames in the memory. There are four processes
P1, P2, P3, and P4, consisting of three, four, two, and five pages, respectively. All three pages
of P1 have been allocated to frames (see Fig.10.15 (b)). Similarly, all the pages of P2 and P3
have been allocated, as shown in Fig. 10.15 (c) and 10.15 (d). Now only one frame is free in
the memory, whereas P4 requires 5 frames. After some time, P2 finishes its execution and
therefore, releases memory. Therefore, frames 3 to 6 are free now, making the total number of
free frames as five. These five frames, though non-contiguous, are allocated to P4. Four pages
are allocated frames 3, 4, 5, and 6 and one page gets frame 9 (see Fig 10.15 (f)). Suppose after
some time, P1 releases page 1, P4 releases page 2, and P3 releases page 1, as shown in (see
Fig. 10.15(g)), as they are swapped out into the disk. At this time, another process, say PS5, is
introduced in the system with five pages, but needs only three pages to be accommodated in the
memory. As shown in the figure, three non-contiguous frames are available. These will be then
allocated to P5 (see 10.15 (h)), through paging.

308 Principles of Operating Systems

0 P10 [0 0 P1.0
1 P11 | 1 1 P1.1
2 P12 [P 2 2 P1.2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7 P3.0
8 8 8 8 P3.1
9 9 9 9
(a) (b) (c) (d) (e)

P10 |0 P10 |0 P1.0 |0

P11 | 1 1 P50 | 1

P12 |2 P12 |2 P12 |2

P40 |3 P40 |3 P40 |3

P41 |4 P41 | 4 P41 |4

P42 |5 5 P51 |5

P43 |6 P43 |6 P43 |6

P30 |7 P30 |7 P30 |7

P31 |8 8 P52 |8

Pasa | o P44 |9 Pas |9

) (9) (h)

Fig. 10.15 Paging concept example

One can realize that a logical address in the paging concept has two parts: a page number
and its displacement or offset in the page. Consequently, this logical address is converted into
a physical address. For that, the start address of the page in the memory, that is, address in the
base register, must be known. In this way, every page will have one start address in the memory.
But a single base register will not suffice for this purpose, unlike contiguous allocation. Instead
of a base register for every page, the start addresses of pages are stored in the form of a table,
known as a page table. A page table is a data structure used to store the base addresses of each
page in the process, that is, the entry in the page table indicates the frame location of pages in the
memory. Thus, the paging concept involves the logical memory division into pages, page table
to keep the base addresses of pages, and physical memory divided into frames (see Fig. 10.16).

Example 10.11
Design page tables for all the processes at the time instant of Fig. 10.15(h).

Basic Memory Management 309

Pages Frames
e
“EEEPage 0iEEEy 0 Base address of page 0 0 Page 0
;;;;ijjji;;;; 1 |Base address of page 1
zzzzlage Tond 1 Page 4
S St 2 |Base address of page 2
SR
RERET A0 STy 3 |Base address of page 3 2 Page 2
e e e e e e e e e e
pesvara sttty 4 |Base address of page 4
A 3
e at 5 |Base address of page 5
P ettt
ZzzzPage 4o 4 Page 1
L nRRRRRaRT Page table
el
Saznadeoaaa 5
Logical memory 6 Page 3
7 Page 5
Physical memory
Fig.10.16 Paging concept
0 0 0 7 0 3 0 1
On disk 1 On disk 1 4 1 5
2 2 2 On disk 2 8
PT of PT of 3 6 PT of
process P1 process P3 9 process P5
PT of
process P4

Solution

After reaching the start location of a page, its displacement or offset is added to map the com-
plete logical address into physical address and then, the particular instruction in a page can be
executed. Thus, the processor, in case of paging, generates the logical address in the form:
(Page number p, Offset d)
The logical address is converted into a physical address by the MMU. The hardware must
be updated such that it must know how to access the page table for conversion. The steps for
logical to physical address conversion (see Fig. 10.17) are as under:

1. The processor generates a two dimensional logical address, (p, d).

2. The page number p is extracted from the logical address, and is used as an index in the page
table.

The base address b, corresponding to the page number, is retrieved.

4. b is added to the offset d to get the corresponding physical address.

e

310 Principles of Operating Systems

Logicalladdress

>
>

A 4

CPU

\ 4
o

Physical memory

Page table
Fig. 10.17 Address translation in paging

Example 10.12

A program’s logical memory has been divided into five pages and these pages are allocated
frames, 2, 6, 3, 7, and 5. Show the mapping of logical memory to physical memory.

Solution
Frames
Pages
oottt tetent 0
e o |2
A 1
S22 Page 13554 116
AAASESa R 2 |3 2 Page 0
“izaza%ﬁé:é s [7
AR A
AAAAAA 3 Page 2
mmmu’ Page 3'-m-m-m 4 5
T En T
AAAAAA 4
S Page 432%% Page table
nomnmnnnnnn 5 e
Logical memory
6 Page 1
7 Page 3

Physical memory

Example 10.13

A program’s logical memory has been divided into four pages. The pages are allocated frames
5,3, 1, and 2. Assume that each page size is 4 bytes. Show the mapping of logical memory to
physical memory in bytes.

Basic Memory Management 311

Solution

Since the page size is of 4 bytes, the frame size will also be the same. Therefore, a logical
address needs to be converted accordingly. Suppose the logical address is (2, 2) (page number =
2 and offset = 2). After the page number is used to index into the page table, page 2 is in frame
1. The actual location of frame 1 is at 1 x 4 = 4% byte in physical memory. So the logical address
will map to 4 + 2 = 6" byte in physical memory. Similarly the logical address page number = 0
and offset = 3, will map to (5 x 4) + 3 = 23" byte in the memory.

Page 0 <

O | |O

=

~ | D
w N =~ O
N[WO

Page 1 <

Page table

~|lo|<|n|Q

- © 0o N O 0o b W DN -~ O

Page 2 <

1
12
13
14
15 i
16 n
17
Logical memory 18
19
20
21
22
23 r

~ |0 |l< |0 |l |3

~|lo|ln|3|o

Page 3 <

o |3 o

~

®(T|O

Physical memory

The logical address will not be generated as two-dimensional address by the processor. The pro-
cessor generates only a simple single-dimensional binary address, but the page number and offset
is separated out from the bits of the logical address. Some lower bits (rightmost) are for offset and
higher bits (leftmost) are for page number. The question is how many bits in the address should be
fixed for the page number and offset. This is decided by the page size. If a process is of size 65536
bytes (2!) and the page size is taken as 1024 bytes (2'°), then the number of pages will be 64 (2°).
It means the page number has 6 bits (leftmost) and the remaining 10 bits (rightmost) are for offset.
In this way, the page size decides the division of the logical address into a page number and offset.
Thus, if the size of a logical address space is 2%, and the page size is 2°, then the high-order bits
(a-b) indicates the page number and the low-order bits b gives the page offset (see Fig. 10.18).

312 Principles of Operating Systems

Page number (p) Offset (d)
[e———a-b bits e bbits —————]

Fig. 10.18 Logical address format in paging

But this scheme is only possible if page size is taken as power of 2. Otherwise, it is not pos-
sible to divide the logical address in this fashion. The page size, as power of 2, also convention-
ally facilitates the conversion of the logical address into a physical address.. After extracting
the page number from the logical address, it is used as an index in the page table, and the base
address of that page is retrieved. This base address is then appended to the offset and there is no
need to calculate their sum. Thus, the computation is also reduced with this method.

Let us illustrate this method using an example

Example 10.14

In a paging scheme, 16-bit addresses are used with a page size of 512 bytes. If the logical
address is 0000010001111101, how many bits are used for the page number and offset? Com-
pute the page number and offset as well. What will be the physical address, if the frame address
corresponding to the computed page number is 15.

Solution

Logical address space = 2!

Page size =512 =2°

Number of bits required for the page number =16 -9 =7

Number of bits required for offset, b =9

Page number is obtained by considering the leftmost 7 bits of the logical address
i.e., Page number = (0000010), = 2

Offset is obtained by considering the rightmost 9 bits of the logical address
ie., Offset = (001111101), = 125

Frame address corresponding to the second page in bits = (15),, = 0001111

Appending the frame address to the offset, we get

the physical address = 0001111001111101

Page number Offset

0000010 | 001111101

0

1 v
—_——2 0001111 » 0001111001111101

3 16 bit physical address

Basic Memory Management 313

Example 10.15

There are 128 pages in a logical address space, with a page size of 1024 bytes. How many bits
will be there in the logical address?

Solution

The logical address space contains 128 pages i.e., 27 pages.

That means the number of bits required for the page number, p =7
Page size, 2" = 1024 bytes = 2!°

That means the number of bits required for the offset, b= 10

p=a-5>b
7=a-10
a=17

Therefore, 17 bits are required in the logical address.

Example 10.16

There is a system with 64 pages of 512 bytes page size and a physical memory of 32 frames.
How many bits are required in the logical and physical address?

Solution

Given, page size = 512 bytes =2 i.e., b =9

No. of pages =64 =2, i.e.,p=6

Sincep=a—-b, a=15

Therefore, 15 bits are required in the logical address.

Since the number of bits required for offset, b = 9 and

The number of bits required to address 32 (2°) frames = 5

Therefore, after appending the number of bits required for the frame size to the offset, 14 bits
are required in the physical address.

10.6.1 Paging Implementation and Hardware Requirements

To implement the paging concept, the memory management component of the OS maintains
a list of status of all the frames in the memory. Initially, all the frames are empty in the user
area of the memory. As soon as a process loads its pages, the empty frames are allocated, and
their status is marked as allocated. As the pages are loaded to the frames, the page table of
that process is also updated correspondingly. The frame address of a page, where it has been
allocated, is entered in the page table. In this way, a page table must be updated as soon as the
frame address of a page changes. Furthermore, the address of a page table, where it is stored
in the memory, is also stored in the PCB of the process. This information is useful at the time
of execution of a process. As soon as a process is scheduled for execution, its appropriate page
table is referred for execution, if there is a page table address entry in its PCB.

It is clear from the above discussion that paging will incur cost and increase the access
time, because the page table will also be stored in the memory. To reduce the access time,
some systems (like DEC PDP-11) were developed, with the help of fast access registers at the
hardware level. These registers were used to store the page table entries. These registers were

314 Principles of Operating Systems

developed with very high-speed logic, so that address translation in paging is efficient and
does not affect the access time. However, this register-based page table entries method could
not be successful, because such entries increased (more than million entries) with the later
architecture of the system. The large number of page table entries was not feasible to imple-
ment with fast access registers. Therefore, the page table is stored in the memory only in any
contemporary OS. The hardware support needed in this case is to have a register just like the
base register, so that the page table address can be stored. This base register is known as Page
Table Base Register (PTBR). So, whenever a process is scheduled to be executed, the page
table address from its PCB is loaded into PTBR, and the corresponding page table is accessed
in the memory. Thus, a page table per process, along with one PTBR in hardware, is sufficient
to implement the paging concept. When the current process is suspended or terminated, and
another process is scheduled to execute, then the PTBR entry is replaced with the page table
address of a new process.

Another problem in paging is an increased number of memory accesses. To execute an
instruction in a page of a process, first its page table is accessed in the memory to find the frame
address of the desired page. This frame address is then combined with the offset, and then the
actual frame is accessed in the memory for the operation. Therefore, there are two memory
accesses that slow down the execution.

Total memory access time = Time to access page table + Time to access memory
location

This problem can be reduced if some of the page table entries are cached in a high-speed
cache memory. High speed associative cache memory known as Translation Look-aside Buf-
fer (TLB) is used for this purpose. The TLB consists of some recently-used page table entries
with page number (p) and its corresponding frame address (b). Whenever the CPU generates a
logical address, TLB is first searched for the page frame address. If the page number is found in
the TLB, it is known as a TLB hit, otherwise it is a TLB miss. This type of memory mapping
through TLB is known as associative mapping. In case of a TLB hit, the frame address of the
desired page number is retrieved from the TLB, and there is no need to access the page table,
thereby reducing to one memory access. However, in case of a TLB miss, the page table must
be searched for the frame address, and then the physical address is mapped. Furthermore, this
page table entry must be entered in the TLB as well, so that the next reference to this page num-
ber can be found in the TLB. In this way, the solution to reduce the two-memory accesses in
paging with TLB may be costlier, if the TLB miss ratio is high. To make it successful, the TLB
hit ratio must be high, otherwise Effective-memory Access Time (EAT) will increase further
(see Fig. 10.19). The total access time, in this case of a system with TLB, will be increased as
compared to that without TLB as in the following:

Total memory access time = Time to access TLB + Time to access page table + Time
to access memory location

The effective memory access time can be calculated, if TLB is used for paging address trans-
lation. It is calculated, based on the probability of TLB hit or miss, as in the following:

Effective memory access time (EAT) = P(H) x (Time to access TLB + Time to access
the memory location) + [(1 — P(H)) x (Time to access TLB + 2 (Time to access the
memory location)) |
where P(H) is TLB hit ratio.

If the hit ratio is high, the EAT is reduced. So, there should be a mechanism, such that
the hit ratio is high, in order to have a low EAT. The performance of the system with TLB
is highly dependent on the high value of hit ratio, otherwise its performance will be worse

Basic Memory Management 315

Logical[address

» »

CPU > >

Physical memory
TLB

\4
S5
[

Page table

Fig. 10.19 Paging implementation with TLB

than the system without TLB. Therefore, the TLB entries should be designed to have the
most frequent page table entries. Associative registers can also be added to have more
number of frequent page table entries.

Example 10.17

In a paging system with TLB, it takes 30 ns to search the TLB and 90 ns to access the memory.
If the TLB hit ratio is 70%, find the effective memory access time. What should be the hit ratio
to achieve the effective memory access time of 130 ns?

Solution

Time taken in case of TLB hit = Time to access TLB + Time to access memory
=30+90=120ns
Time taken in case of TLB miss = Time to access TLB + Time to access page table + Time to
access memory
= Time to access TLB + 2(Time to access the memory location)
=30+2(90)=210ns

316 Principles of Operating Systems

Effective memory access time (EAT) = P(H) X (Time to access TLB + Time to access
the memory location) + [(1-P(H)) X (Time to access TLB + 2(Time to access the
memory location)) |

=0.70x 120 + 0.30 x 210
=147 ns

Next, let us calculate the hit ratio when EAT is 130 ns.

130 = P(H) x 120 + ((1-P(H)) x 210)
130 = P(H) x 120 + 210 — 210 x P(H)

90 P(H) = 80
P(H) = 0.89
P(H) = 89%

Therefore, to reduce EAT to 130 ns, the hit ratio should be increased to 89%.

10.6.2 Protection in Pages

In a paging environment, every page has separate access rights. A page may be read-only,
write-only, or read-write. This kind of protection, associated with a page, can be implemented
with the help of a page table. The entries of a page in the page table may also contain its pro-
tection bits. These protection bits are known as access protection bits. The read, write, and
execute bits can be set or reset as desired for a page, so that when that page is referred to, its
access rights will be there. If an execution tries to violate the access rights in access protection
bits, an interrupt is generated by the OS (see Fig. 10.20). However, access protection bits are
only useful when a programmer knows in advance, which page is to be protected, and that is
difficult. For this, the module should be mapped to the pages, which need to be protected.

It may be possible that a process in its lifetime does not use all its pages. Some of the
pages, at a given time, may not be valid. However, the page table entries for these invalid
pages are still there, and therefore, may be accessed. To make these pages invalid, another
protection bit known as valid-invalid bit can be added to the page table. This bit is used in the
page table to mark a page as valid or invalid. Valid means the page is being referred by the
process, and invalid means the page is not in use by the process and it is illegal (see Fig. 10.21).
Another method to have protection against these invalid pages is to have a Page Table Length
Register (PTLR), just like the PTBR. Any access beyond the PTLR causes an interrupt in the
OS. However, it would be a waste to have page entries of those pages, which are not in use. As
page tables consume space in the memory, it is not recommended to have these invalid pages
in the page table entries.

5 ” : 5 */Access protection bits
ase address of page

Base address of page 1

Base address of page 2

Base address of page 3

Base address of page 4

a A W N =~ O

Base address of page 5

Fig. 10.20 Page table with access protection bits

Basic Memory Management 317

Access protection bits

/ Valid-invalid bits
¥ -
0 Base address of page 0 A7

1 Base address of page 1

Base address of page 2

Base address of page 3

2
3
4 Base address of page 4
5

Base address of page 5

Fig. 10.21 Page table with valid-invalid bits

Example 10.18

In Example 10.12, assume that page 4 is invalid, page 0 is read-only, page 2 is read-write, and
other pages have read, write, and execute permissions. Draw the page table, incorporating the
protection bits for the pages.

Solution

The page table is given by:

Base Address Read Write Execute Valid/Invalid bit
2 1 0 0 1
6 1 1 1 1
3 1 1 0 1
7 1 1 1 1
5 1 1 1 0

10.6.3 Shared Pages

In a multi-user time-sharing environment, different users may need to use the same software.
However, this does not mean that each user has copies of the desired software. To save memory
space, there should be a single copy of the software in the memory, instead of multiple copies.
Paging can be used here by means of shared pages. Suppose, if a compiler consuming 1500 KB
memory is shared between two users, then all the pages, related to the compiler, can be shared
among all users. In the memory, there will be only one copy of the compiler. The page table
corresponding to all user processes will map the compiler to the same location in the memory,
except the data page of the process (see Fig. 10.22). If each user process uses a separate copy
of the compiler, 3000 KB memory will be consumed, whereas with shared pages concept, only
1500 KB memory will be consumed, thereby, saving the memory space.

However, not all the pages can be shared. The data areas of processes cannot be shared, as
the processes will need separate data areas to run the same software. Moreover, the sharable
code page should be of re-entrant type. A re-entrant code never changes during execution, and
thus can be shared easily by multiple users. Thus, all the processes, sharing the same software,
can execute the same code in the memory in the form of shared pages, and each process has its
own copy of registers and data storage in the memory as non-sharable pages. The page table of
each process maps to the same location in the memory for the shared pages.

318 Principles of Operating Systems

Compiler page 3

Physical memory

0 2
Compiler page 0 ; A 0
Compiler page 1
S 2 8 1 Data2
Compiler page 2 3 -
Compiler page 3 4 E 2 Page 0
Data1
3 Page 2
Page table for
Logical memory process1
for process1 4
5 Data1
Compiler page 0 0 2 6 Page 1
Compiler page 1 1 6
. 7 Page 3
Compiler page 2 2 3
3 7
4 1

Data2
Logical memory Page table for
for process?2 process2

Fig. 10.22 Shared pages

10.6.4 Fragmentation

The paging concept was developed to reduce external fragmentation. However, it suffers from
internal fragmentation, as it may leave some bytes of memory, if the process does not fit in a
page size. If the size of a process is an exact multiple of the page size chosen, there will not
be any internal fragmentation, because each frame will be utilized completely. In practice, it
may not be possible that process size is an exact multiple of page size. Therefore, there will be
some internal fragmentation. Paging eliminates external fragmentation, because even if there is
sufficient space that is non-contiguous in the memory, it will be allocated to a process utilizing
the memory space.

10.7 PAGE TABLE STRUCTURES

The page tables in the paging concept may have various page table structures, depending on
different requirements.

10.7.1 Hierarchical/Multi-level Page Table Structure

Modern computer architecture supports a larger address space, such that a page table
consisting of page entries, consumes a large memory, even in megabytes. Most of the sys-
tems are of 32-bit logical address space. If the page size is 4 KB (2!?), and a page table entry

Basic Memory Management 319

consumes 4 bytes, then the page table will consume 4 MB of memory. Thus, if a single
page table, corresponding to a single process, consumes memory in megabytes, a large space
is required to accommodate page tables of all the processes in the system. It is obvious that
this much space cannot be accommodated in the memory contiguously. The solution is to
allocate the memory to page tables as non-contiguous. The page table of a process may
also be scattered in the memory, if it does not find contiguous space. Another table must be
maintained to keep the record of the page table, where it occupies the space in the memory.
It means the page table is also paged and is called two-level paging. Furthermore, if this
second level page table also cannot be accommodated in a contiguous space, it may again be
divided and memory is allocated non-contiguously. In this way, there may be several levels
to manage the page tables in the memory. This is known as multi-level or hierarchical page
table structures.

Let us discuss in detail how the multi-level page structures are implemented. In a two-level
page table structure, the page table is paged, such that its entries are scattered in the memory
and allocated non-contiguous memory. But another table is maintained that will contain the
entries of the page table, where these are stored in the memory. This table is known as outer
page table or directory of page table (see Fig.10.23).

To implement a two-level page table structure, the logical address needs to be modified, in
order to have the outer page table entries. To perform an operation in the process’ page, first
the outer page table will be searched for the address of a page table, and then the page table is
searched for the address of the page. So, the page number field in the logical address is divided
into two parts: one for the outer page table and another for the page table. The modified logical
address is shown in Fig. 10.24 for a 32-bit logical address space. Using this modified logical
address, the address translation starts from the outer page table bits p1, and then continues using
p2 and offset d, as shown in Fig. 10.25.

Frames

Base address of page 0 1

Base address of page 1 3

i dvavi
AV,

Base address of page 2

5
Outer page table
(contiguous) in Base address of page 3 6
memory

Scattered page table in

memory (non-contiguous) Physical memory

Fig. 10.23 Two-level page table structure

320 Principles of Operating Systems

p1 p2 d
1 10 20 32
N A A J
10 bits for 10 bits for 12 bits for
outer page page table offset
table

Fig.10.24 32-bit Logical address corresponding to two-level page table structure

Example 10.19

A system with 32-bit logical address uses a two-level page table structure. It uses page size of
219, The outer page table or directory is accessed with 8 bits of the address.

1) How many bits are required to access the page table?
ii) How many entries are there in the directory?
iii) How many entries are there in the page table?

Solution

i) Since the page size is 2,, therefore, 10 bits are required for the offset. It is given that
8 bits are required to access the outer page table, so bits required to access the page table
=32-(10+8)=14.

p1 p2 d
1 10 20 32
\ A N J
Y Y Y
p1
p2
| d
Outer page table Scattered page table in Physical memory
(contiguous) in memory memory (non-contiguous)

Fig. 10.25 Address translation using two-level page table structure

Basic Memory Management 321

ii) Since directory is accessed with 8 bits,
It can have 2% = 256 entries

iii) Since page table is accessed with 14 bits.
It can have 2'“ = 16, 384 entries

Example 10.20

A system with 32-bit logical address space uses 512 bytes page size. A page table entry takes
4 bytes. If a multi-level scheme is to be used for the page table structure, how many levels are
required?

Solution

Page size =512=2°
Therefore, page offset requires = 9 bits
The page number required = 32 — 9 = 23 bits

A single-level page table can handle 9 of 23 bits. That means three levels are required: Divid-
ing 23 bits into 9 for the first level, 9 for the second level, and 5 for the third level, page table at
the first level and second level will have 2° entries each, and the third level will have 23 entries.

The two-level paging may not be valid for 64-bit systems. The directory or outer page table
entries may be too large, such that these entries cannot be allocated contiguously. Therefore,
the directory should also be divided so that these entries are allocated non-contiguous space as
available. This results in three-level paging. To implement three-level paging, logical address
needs to be modified to accommodate another outer page table. In this paging, there will
be two outer page tables and one page table (see Fig.10.26). In this way, multiple levels can
be formed, if the size of page table entries is high, resulting in hierarchical or multi-level page
table structures.

The disadvantage of hierarchical or multi-level paging is that it increases the memory
accesses. As the number of levels increases, the number of memory accesses also increases.
There are two memory accesses in a simple page table implementation, as discussed earlier.
If there is a two-level paging structure, there are three memory accesses. Similarly, if
there is a three-level paging structure, there are four memory accesses, and so on. Multi-
level paging, though, manages the memory non-contiguously; and the number of memory
accesses is large. However, this number of accesses can be reduced with the help of asso-
ciative mapping, by having TLB as associative memory, and the performance of execution
can be increased.

p1 p2 d
1 32 42 52 64
N\ A A A J
32 bits for 10 bits for 10 bits for 12 bits for
second outer outer page page table offset
page table table

Fig. 10.26 64-bit Logical address corresponding to three-level page table structure

322 Principles of Operating Systems

10.7.2 Inverted Page Table Structure

The page table size is a serious issue for an OS designer. The page table size is directly pro-
portional to the virtual address space. There is another way to design it: using an inverted table
structure. In this design, instead of a virtual page, a real page frame is taken as the page table
entry. In other words, an inverted page table has one entry for each real page frame of memory.
Each entry consists of the virtual address of the page stored in the real memory location. It
consists of information about the process that owns the page. Since the process and page infor-
mation is stored together in one entry, there is no need to prepare a separate process table for
each process. There is a standard page table for all the processes that contains only one entry
for each physical page frame of the memory. This saves memory space, but inverted page table
structures are not appropriate for shared pages, as there is more than one virtual address for one
physical page frame.

The inverted page table is indexed by the page frame number of the physical memory, rather
than the virtual page number. The logical address in this page table structure consists of process
ID (pid), page number (p), and the displacement (d): (pid, p, d) (see Fig. 10.27). Once the logi-
cal address is generated, the inverted page table is then matched for the required pid and p. As
soon as a match is found, the frame address is obtained, which is then merged with the offset to
get the physical mapping address.

10.7.3 Hashed Page Table Structure

Inverted page table is efficient in memory saving, but searching the table for a match of process
ID and page number is a disadvantage. Searching the inverted page table may adversely affect
the performance of paging in the system. Therefore, hashing is used to speed up the page table
lookup. An appropriate hash function is used and applied on the page number of the virtual
address to locate the page table entry. The hash function on the page number results in a value

Logical{address v
CPU ™ pid |p|d b| +|d >
1
> pid,p
Physical memory
Page table

Fig. 10.27 Address translation in paging using inverted page table

Basic Memory Management 323

that is used as an entry number for the page table to be searched and mapped. If this entry
contains the page table, its frame address is used to map the virtual address. Otherwise, the
system checks the value of the chaining pointer, as the chaining mechanism is used with hash-
ing. If the chaining pointer is null, it means the page is not in memory, and therefore, it is a page
fault. Otherwise, there is a collision at that page table entry.

10.8 SEGMENTATION

A programmer writes programs not in terms [Fmmmemny oo T
wrwEmsst Logical address space Ty

of pages, but modules, to reduce the problem |[ZZZ5555 5 o BEEEEED
. ST ST PRRRRRREY
complexity. There may be many modules: [Z5] ThTTmThT
. e . 23 procedure Frcoa@Annay
main program, procedures, stacks, data, and |Zzi] Main 2 A
so on. So, it would be better if memory man- [ZZ] Program gzd. oo
. . . e e =y "
agement is also implemented in terms of these [s - o
. . iw%mmwmwmmwg: $ J/::

modules. Segmentation is a memory manage- |% mzg Stack B procedure B
R = ™ o] g gy

ment technique that supports the concept of [o e =
S . = A =

modules. The modules in this technique are |%| Procedure FiRZcisrsiiitorananaay
called segments. Now the memory manage- |: FEZEZE] Library FEREE
ment is implemented in the form of segments, | Fozzzzy routine RREmTEd
instead of pages (see Fig.10.28). The segments [T T o

are logical divisions of a program, and they
may be of different sizes, whereas pages in the
paging concept are physical divisions of pro-
gram, and are of equal size.

Managing memory in the form of segments has two obvious advantages: one is that, seg-
ments as logical memory are closer to a programmer’s way of thinking, and the other is that
the segments need not be of the same size, compared to pages. All the modules or segments in
the programs are of different sizes. Therefore, it is advantageous to divide the logical address
space into blocks of different sizes as required. This division of logical address space into
variable-sized segments eliminates the problem of internal fragmentation that occurred in the
paging concept. Thus, segmentation can be defined as a memory management technique, where
the logical address space is divided into variable-sized segments, as required. Each segment is
identified by a name and its length. The logical address is in two parts: the segment name and
its offset, in order to know the location within a segment. There are three major segments in an
executable program: code segment, data segment, and stack segment. Each of these segments
might use another segment. For example, a program may use segments for precompiled library
routines and for any other sub-routines. The segmentation does not require a programmer to
specify the segments and their sizes.

The logical address in segmentation has two parts: segment number (segment name is
replaced by segment number for the convenience of implementation), and offset in the segment.
Consequently, this logical address is converted into physical address. To convert it into physi-
cal address, the starting address of segment in the memory, that is, address in the base register,
must be known. The starting addresses of all the segments are stored in a table, known as seg-
ment table, as shown in Fig.10.29. The compiler/linker creates the segments at the time of
compilation/linkage, numbers them, builds a segment table, and finally an executable image
is produced by assigning two-dimensional addresses. In segmentation, there is a need to know

Fig.10.28 Logical address space divided into segments

324 Principles of Operating Systems

T T T T T T T 0 Seg 0
- Logical address space
P R R R R R 0 Base Length
e et
£ e e 1 Seg 4
=1 o B R A ARt 1
b = et
b = et
b =) ottt
& 4 e I 2 Seg 2
b ottt
b T
£ B A A At 3
5 = & e
b= Sl (-] Bt 3
e e a =
R)] 4
= e A i
= = #]
E =) & A
& Rokobtoss & 5 4 Seg 1
= LTEEY]
b e]
b T
- i e
&] et
= SaY]] Segment table 5
= testvaten et
& et e
E oy e
: Lalvalls L alval
o e e] g
e et
7 Seg 5

Physical memory

Fig.10.29 Segmentation concept

the length of each segment, as every segment may be of a different size. Therefore, another
field known as limit, is added to the segment table to check the length of the segments. Thus, a
segment table is a data structure used to store the base addresses of each segment in the process,
along with their limits. After reaching the start location of a segment through the segment
table, its offset is added to it in order to map the complete logical address onto the physical
address, and the instruction in a segment can be executed. The processor, in case of segmentation,
generates the logical address as:

(Segment number s, Offset d)

The logical address in segmentation is generated by the compiler, unlike in paging. In pag-
ing, the two-dimensional address is extracted from a single dimensional address generated by
the compiler, as the page size is always to the power of 2. But in segmentation, the size of a
segment varies, and the compiler itself has to generate the two-dimensional address.

The logical address in segmentation is converted into a physical address by MMU. The
hardware must be updated, such that it must know how to access the segment table for conver-
sion. The steps for logical to physical address conversion (see Fig. 10.30) are as under:

1. The processor generates a two-dimensional logical address that consists of s and d.

2. The segment number s is extracted from the logical address, and is used as an index of the
segment table.

3. After reaching the desired segment number in the segment table, its offset d is checked with
the limit of the segment. If d < length, then go to the next step. Otherwise, an interrupt is
generated to indicate that the address in the segment is not valid.

4. The base address, corresponding to the segment number, is retrieved.

5. The base address is added to d to get the physical address.

T Interrupt to OS

No
Logical |address Yes
CPU > s | 4 = d<length?
A 4
b| +| d
A
r
—> Length Base

Basic Memory Management 325

Segment table

Fig. 10.30 Address translation in segmentation

Example 10.21

A program has been divided into five

Physical memory

modules. Their lengths and base addresses L TTE S PUCR G o Base address
are stored in the segment table, as depicted 0 200 4100
in the following space: 1 700 1000
Show the physical memory mapping 2 400 3700
for the segments. What will be the physi-
. 3 900 1800
cal memory address for the following
logical addresses? 4 1000 2700
Solution
s d
The physical mapping of all the segments, along with the segment table,
is shown in the following space: 665
The physical addresses of logical addresses are shown in the following 906
space: 770
s d Physical address
1 665 1000 + 665 = 1665
3 906 Not a valid address, as offset is larger than the length of the segment.
770 2700 +770 = 3470

326 Principles of Operating Systems

T S T

Logical address space '3 Base Length

e e i i e e i e e]

e R oY 0| 4100 200 1000

E o AT

o= = oy Segment 1

£] T 1| 1000 700

E Fg FsRy 1700

= = FEseey

8 e e 2| 3700 400

SN R R 1800

forereree] ¥ = 3 1800 900 Segment 3

: = : & 41 2700 1000

- R] b 7

H 5 £ 2700

" AT o

E R T Segment 4

o et I et Segment table

1 AR AR |

- A L

" R vt

K R b 3700

T D e Segment 2
4100

Segment 0

4300

Physical memory

10.8.1 Segmentation Implementation and Hardware Requirements

To implement segmentation, the memory management component of an OS maintains a list of
status of all the holes in the memory, as done for the paging concept. The only difference is that
the OS needs to check the sizes of holes as well, as there is a different memory requirement for
various segments. As soon as a process loads its segments, the holes are allocated, and their
status is marked as ‘allocated’. As the segments are loaded, the segment table of that process
is also updated correspondingly. The base address of a segment, where it has been allocated,
is entered into the segment table. In this way, a segment table must be updated as soon as the
base address of a segment changes. When a program is compiled, the compiler keeps the seg-
ment table address and the maximum number of segments of the segment table in the header
of the executable file of the program. The address of the segment table, where it is stored in
the memory, and the maximum limit of the segments are copied to the PCB of the process at
the time of process creation. This information is useful at the time of execution of a process.
As soon as a process is scheduled for execution, the appropriate segment table is referred for
execution, if there is a segment table address entry in its PCB. The segment table address is
retrieved from the PCB and needs to be stored somewhere, so that during the execution, its
segment table can be referred to. The hardware support needed for this purpose is to have a
register to store the segment table address. This register is known as a Segment Table Base
Register (STBR). Similarly, to check the validity of a segment number, another register known
as a Segment Table Limit Register (STLR) is used (see Fig 10.31). So, whenever a process is
scheduled to be executed, its segment table address from its PCB is loaded to the STBR, and
the limit of the segment table is stored in the STLR. When the process starts executing, the logi-
cal address, consisting of a segment number and its offset, is generated. But the validity of this
segment number is first checked against the value of the STLR. If the segment number is less
than, or equal to, the value of STLR, the processing continues, otherwise interrupt is generated
to the OS. Thus, a segment table per process, along with one STBR and STLR in hardware, is
sufficient to implement the segmentation concept. When the current process is suspended or

Basic Memory Management 327

terminated, and another process is scheduled to execute, then the current STBR is replaced with

the segment table address of the new process.

T Interrupt to OS

No

Logical |address

CPU P s| g [

Interrupt to OS

Yes

Length Base

Segment table

Fig. 10.31

10.8.2 Protection and Sharing

In a segmentation environment as well, every
segment may have separate access rights,
like paging. A segment may have permission
to read, write, execute, or append. There can
be many combinations of these access rights,
such as read-only, write only, read-write, and
so on. This kind of protection is again imple-
mented using the segment table. Every entry
of a segment in the segment table may have its
access protection bits as well. If an execution
tries to violate the access rights in access pro-

Hardware requirements for address translation in segmentation

Yes
A\ 4 A\ 4
b|+|d >
A
Physical memory
STBR
< PCB
STLR
Access
Length Base] protection bits

Fig. 10.32 Segment table with access protection bits

tection bits, an interrupt is generated in the OS (see Fig.10.32). In segmentation, a programmer
knows, in advance, which segment is to be protected, unlike paging and therefore, it is easy to

implement protection on segments.

Like pages, segments also help in memory optimization. Owing to this, they can also be
shared. Sharable segments are prepared with the help of a re-entrant code. The segment table of
each process should map to the same location in the memory, so that the segment table of every
process maps to the same segment, which needs to be shared.

328 Principles of Operating Systems

SUMMARY

Memory management techniques of two types were discussed:
contiguous memory allocation and non-contiguous memory
allocation. The older systems were designed with contiguous
method, where the processes are allocated contiguous space.
However, the contiguous allocation suffers from fragmentation,
and the processes cannot be allocated, in spite of memory
space available that are not contiguous. Compaction is one
solution to this problem, but it incurs the cost. Therefore, the
non-contiguous method, where the fragmented space can also
be allocated to the processes, is designed to avoid memory
fragmentation. The paging concept is as a non-contiguous
method, which became very popular in earlier systems.

The segmentation, however, provides a natural memory

management technique, compared to paging. Thus, paging

and segmentation are basic memory management techniques.
Let us have a quick review of important concepts
discussed in this chapter:

e Memory allocation is generally performed through two
methods: static and dynamic allocation.

e |n static allocation, the allocation is done before the
execution of the process. If the memory allocation is
deferred till the process starts executing, it is known as
dynamic allocation.

® \When a process is compiled, the CPU generates a logical
address, which is then converted into a physical address,
by the memory management component, to map it to the
physical memory.

e The action of taking out a process from the memory is
called swap-out, and the process is known as a swapped-
out process. Similarly, the action of bringing back a
swapped-out process is known as swap-in. Protection
among process areas is done with the help of base and
limit registers.

® Fixed partitioning is the method of partitioning the mem-
ory at the time of system generation. The partition size
can be of fixed as well as variable size, but once fixed, it
cannot be changed.

® |n variable partitioning, the number and size of the memory
partition are variable, and are created at run-time by the OS.

e The memory partition that is free to be allocated, is
known as a hole.

® To allocate memory to the processes in partitions, the OS
creates a table to store information, regarding the parti-
tions, known as partition description table (PDT).

® Fixed partitioning method suffers from both types of frag-
mentation: external and internal.

® \ariable partitoning method suffers from external
fragmentation.

® Compaction method is used to reduce memory wastage
in variable partitioning.

The memory allocation techniques are the algorithms that
satisfy the memory requirement of a process of size n,
out of the list of available free holes; they are known as
partition selection algorithms. There are primarily of three
types: first-fit, best-fit, and worst-fit.

Paging is a logical concept that divides the logical ad-
dress space of a process into fixed-sized partitions,
known as pages, and is implemented in physical memory
through frames.

A page table is a data structure used to store the base ad-
dress of each page in the process, that is, the page table
entry of a page will indicate the frame location in the memory.
Hardware support for the paging concept is provided by
the PTBR and the PTLR.

Whenever a process is scheduled to be executed, its
page table address, from its PCB, is loaded in to the
PTBR and the corresponding page table is accessed in
the memory.

There are two memory accesses in paging, which are
reduced with the help of high-speed associative cache
memory, known as Translation Look-aside Buffer (TLB).
Every entry of a page in the page table may also have its
protection bits. These protection bits are known as ac-
cess protection bits.

The valid-invalid bit is used in the page table to mark a
page as valid or invalid. Valid means the page is being
referred to by the process, and invalid means the page is
not in use by the process and is illegal.

A re-entrant code is that which never changes during
execution, and thus, can be shared easily by multiple us-
ers. Thus, all the processes sharing the same software
can execute the same code in the memory, with the help
of shared pages.

The huge size of a page table is handled with the hierarchi-
cal page table structure or inverted page table structure.
Segments are logical divisions of a program, and
therefore, may be of different sizes, whereas pages in
the paging concept are physical divisions of the program,
and are of equal size.

Segmentation can be defined as a memory management
technique, where a logical address space is divided into
variable sized segments, as required.

Asegment table is a data structure used to store the base
address of each segment in the process, along with their
limits.

Hardware support for segmentation is provided by the
STBR and the STLR.

Whenever a process is scheduled to be executed, its seg-
ment table address from the PCB is loaded to the STBR,
and the limit of segment table is stored in the STLR.

MULTIPLE CHOICE QUESTIONS

1.

10.

1.

. The OS is generally in the

The swap space is reserved in .
(c) any secondary storage
(d) none

(@) The main memory
(b) The hard disk

. A memory management unit performs memory-mapping by

converting a logical address into a physical address, with

the help of
(@) base registers (c) base and limit registers

(b) limit registers (d) none

. Fixed partitioning is a method of partitioning the memory at

the time of
(@) system generation (c) run-time
(b) compilation (d) none

. In fixed partitioning, the partition size can be of

(a) fixed size (c) fixed as well as variable

(b) variable size (d) none

memory
addresses in the memory.

(a) higher (c) any fragmented space
(b) lower (d) none
. Fixed partitioning method suffers from frag-
mentation.
(a) internal (c) both internal and
external
(b) external (d) none
. Pages and frames are in size.
(a) unequal (c) none
(b) equal

is a data structure used to store the base
address of each page in the process.

(a) PDT (c) Frame table

(b) Page table (d) none
. Apage table entry provides
(a) offset (c) limit address

(b) base address (d) none

Apage table must be updated as soon as the

address of a page changes.
(a) frame (c) virtual
(b) logical (d) none

What is the minimum number of memory accesses needed
in paging?

12.

13.

14.

15.

16.

17.

18.

19.

20.

Basic Memory Management 329

(@) Three (c) Four
(b) Two (d) Five
Memory mapping through TLB is known as
(a) associative mapping
(b) physical mapping

TLB hit ratio must be
tive memory access time.

(c) TLB mapping
(d) none
to decrease the effec-

(@) low (c) no effect

(b) high (d) none

The -related areas of processes cannot be

shared.

(@) code (c) page table

(b) data (d) none

If the size of a process is an exact multiple of page size

chosen, there will not be any fragmentation.

(a) internal (c) internal and external

both

(b) external (d) none

If there is a two-level paging structure, there are
memory accesses.

(a) four (c) three

(b) two (d) none

Rather than having the page table entry for a virtual page,
is taken as a page table entry in the inverted

page table.

(@) process number (c) PTLR

(b) PTBR (d) real page frame

The paging concept context switch time.

(@) decreases (c) no effect

(b) increases (d) none

Which of the following decreases the overhead of processing?

(c) compaction
(d) none

(a) paging

(b) segmentation
Abuddy system is a compromise between
(a) internal and external fragmentation
(b) paging and segmentation

(c) fixed and dynamic partitioning

(d)

d) none

330 Principles of Operating Systems

REVIEW QUESTIONS

1.

10.

Distinguish between:
a) Static and dynamic allocation
b) Logical and physical addresses
c) Swapping and paging
)
)

e) Internal and external fragmentation

(

(

(

(d) Fixed and variable partitioning

(

(f) Contiguous and non-contiguous allocation
(

g) Page, frame, and segment

. What are the advantages and disadvantages of contiguous

allocation with fixed partitioning?

. What are the advantages and disadvantages of contiguous

allocation with variable partitioning?

. What is the requirement of relocating the processes?

. How do unequal-sized fixed partitions improve the perfor-

mance of memory allocation? Explain with an example.

. What is the use of PDT?

. Explain contiguous allocation with variable partitioning with

an example.

. Discuss the disadvantages of contiguous memory alloca-

tion. What are its solutions?

. Discuss the performance of all memory partition selection

algorithms.

What is a buddy system? Explain its role in memory alloca-
tion with an example.

BRAIN TEASERS

1. A process of size 300 MB needs to be swapped-in from

2.

the hard disk. But there is no space in the memory. After
observing the memory, it was found that two processes of
size 150 MB and 200 MB are lying idle, and therefore, can
be swapped out. How much swap-time is required for swap-
in and swap-out of the processes, if the following is given:
Average latency time of the hard disk = 10 ms

Transfer rate of the hard disk = 60 MB/s

Three processes P1, P2, P3, and P4 of size 18900,
19500, 19990, and 20990 bytes, respectively, need
space in memory. The equal partitions of size 20000
bytes are allocated to P1, P2, P3, and P4. Is there any

1.

12.

13.
14.

15.
16.
17.

18.
19.
20.

21.

22.
23.
24.

A process is to be swapped-in to the location 40100 in the
memory. If the logical addresses generated by the process
are 100, 245, 140, and 350, what are the corresponding
physical addresses?

A process has relocatable code of size 700 K. The reloca-
tion register is loaded with 30010 K and the limit register
contains the address 31000 K. If the processor generates
logical addresses, 990 and 1020, where will they be located
in the physical memory?

lllustrate the paging concept with an example.

Discuss the role of PTBR and PTLR in the implementation
of paging.

How does the paging concept increase memory accesses?
How do you reduce two-memory accesses in paging?

Discuss the role of access protection bits in paging? Where
do you implement these bits?

Does paging support sharing?
How does paging eliminate external fragmentation?

Discuss the address translation in the two-level page table
structure.

Discuss the address translation in the inverted page table
structure.

What is the need for segmentation?
Discuss the address translation in segmentation concept.

What are the hardware requirements in the implementation
of segmentation?

fragmentation in this allocation? Can a process of 600
bytes be accommodated?

. Design an example of variable partitioning that reduces in-

ternal fragmentation, and then analyze the situation when it
may cause external fragmentation.

. Analyze the costs associated with compaction.

5. Assume the memory allocation scenario, as in the follow-

ing, and allocate memory for additional requests of 10K and
20K (in this order). Compare the memory allocation using
first-fit, best-fit, and worst-fit allocation methods, in terms of
internal fragmentation.

10.

1.

12.

13.

14.

15.

Basic Memory Management 331

(O}

%

%

5K

|:| Hole

30K

. Design a scenario that illustrates that the worst-case

allocation may prove to be a good algorithm for dynamic
partitioning.

. A program’s logical memory has been divided into 7 pages,

and these pages are given frame numbers, 4, 10, 3, 7, 6,
8, and 2. Show the logical memory mapping to the physical
memory.

. Inapaging scheme, 16-bitaddresses are used with page size

of 256 bytes. If the logical address is 0011010101110101,
how many bits are used for the page number and offset?
Also, compute the page number and offset. What will be the
physical address, if the frame address corresponding to the
computed page number is 207

. There is a system with 2% bytes of memory and fixed par-

titioning of size 65536 bytes. What is the minimum number
of bits required for an entry in the process table to store the
partition to which a process has been allocated?

On a system with 1MB of memory that uses a buddy sys-
tem, show a diagram that illustrates the following requests:

(@) P1requests 256 K
(b) P2 requests 210 K
(c) P3requests 50 K
(d) P4 requests 60 K

In Problem 10, after allocating memory to P5, how much is
the internal and external fragmentation?

(e) P2 releases
(f) P1releases
(9) P5requests 410 K

How many bits are there in a logical address in a paging
system with 2% bytes of physical memory, 512 pages of
logical address space, and a page size of 28 bytes?

Analyze the searching efficiency of first-fit, next-fit, best-fit,
and worst-fit algorithms.

The address of a block under current allocation in a buddy
system is 011011000011. If the block is of size 16, what is
the binary address of its buddy?

How many bits are there in a logical address, where page
size is of 2'° bytes and 256 pages are there in the logical
address space?

7

5K 15K 15K 22K

Occupied by a process

16. A system with 32-bit logical address uses a two-level page

table structure. It uses page size of 2°. The outer page table
or directory is accessed with 10 bits of the address.

i) How many bits are required to access the page table?
i) How many entries are there in the directory?
iii) How many entries are there in the page table?

. A program has been divided into four modules. Their

lengths and base addresses are stored in the segment
table, as depicted in the following space:

Segment number Length Base
0 400 200
1 100 3000
2 700 1400
3 300 800

Show the physical memory mapping for the segments.
What will be the physical memory address for the following
logical addresses?

(a) 1,200 (c) 0,134
(b) 2,345 (d) 3,453
There is a system with a two-level paging scheme. It has 2"
bytes page size and 32-bit virtual addresses. If the first level

page table uses first 10 bits of the address to specify a page
table entry, then

(@) How many bits are required to specify the second-level
page table?

(b) How many pages are there in the first level page table?

(c) How many pages are there in the second level page
table?

(d) How many pages are there in the virtual address
space?

19. In a paging system with TLB, it takes 40 ns to search the

TLB and 70 ns to access memory. If the TLB hit ratio is
50%, find the effective memory access time. What should

332 Principles of Operating Systems

20.

21.

be the hit ratio to achieve an effective memory access time
of 220 ns?

Design a page table that illustrates the behaviour of an
inverted page table structure. Analyze its performance
compared to the general page table structure.

Design a page table that illustrates the behaviour of a
hashed page table structure. Analyze its performance com-
pared to the general page table structure.

22. Study the architecture of some recent OSs and analyze

how the large size of the virtual address space and page
table is handled.

23. A system with 32-bit logical address supports 2¢ bytes

page size and 22 bytes of physical memory. How many
page table entries are there in a single level and inverted
page table?

24. There is a system with 64 pages of 512 bytes page size and

physical memory of 24 frames. How many bits are required
in the logical and physical addresses?

Copyrighted Materials

Copyright © 2014 Oxford University Press Retrieved from www.knovel.com

11 Virtual Memory

11.1 INTRODUCTION

In Chapter 10, basic memory-management techniques were discussed. The discussion was based on the
real (main) memory. However, the main memory extends to the concept of virtual memory.

Virtual memory targets the organization of the memory when the process size is too large to fit in the
real memory. Therefore, a virtual memory is created that does not limit the size of the real memory and
a programmer is free to write a large-size program. This is a general method of memory management
used in today’s OSs. In virtual memory, combined approach of paging and segmentation is used. The
virtual memory implementation is complex as compared with real memory. It needs the assistance of
hardware support known as paging hardware. Moreover, OSs have a module known as virtual memory
handler (VM handler) that takes care of various algorithms needed to implement the virtual memory.
The implementation and management of a virtual memory system, along with paging hardware and VM
handler will be discussed in detail in this chapter.

11.2 NEED FOR VIRTUAL MEMORY

Paging and segmentation are two basic memory-management tech- L
niques that require an entire process to reside in the main memory e 3
before its execution. However, in modern systems that require
a high degree of multi-programming, this becomes a limitation.
The increase in the degree of multi-programming means that more
number of processes should be accommodated in the memory.
Consequently, the degree of multi-programming is limited with
the size of the memory. This limitation may lead to several prob-
lems. There may be a situation where a demand to increase the
number of processes in the memory is unable to be fulfilled due
to the limit of memory size. Another situation may be that a pro-
grammer writes a process that is too large to fit in the memory. It
may not be executed due to its large size. If there is no size limit,
then maximum number of processes can be accommoda.ted in the « Stack property of page-
memory and a programmer need not worry about the size of the replacement algorithms

process. o Thrashing and its solutions

Learning Objectives

After reading this chapter,

you should be able to

understand:.

o Need of virtual memory

o Virtual addresses and virtual
address space

o Implementation of VM system
through demand loading

o Demand paging

o Page-replacement algorithms

Is it necessary to have the whole process in the main memory
before execution? If the execution of some real programs is
observed closely, it can be noticed that the processes are not
required entirely in the main memory. Only certain portions of a

Paging hardware and its
components
VM handler and its components

334 Principles of Operating Systems

process are required for its execution. While declaring the variables, a large memory is allocated,
which is never used. An array of 100 memory locations may not be used for all 100 locations.
Some code in a process is reserved for some exceptional conditions that may not be used every
time the process is executed. There may be some portion devoted for initialization, which is
necessary only at the start of an execution. If a process is divided into several portions and
only one portion is required in the memory, then there is no need to load the entire process in
the main memory. Therefore, more number of processes can be accommodated in the memory.
This solution was adopted many years ago in the form of overlays. An overlay is a portion
of a process. A program is first divided into many overlays and stored in the disk. A program
containing overlays is called an overlay structured program. This program consists of a set of
overlays and a permanently resident portion known as root. Overlays are identified as mutually
exclusive modules of a program as they do not call each other and thus, need not be loaded
simultaneously in the memory. The root is first loaded in the memory and control is passed to
it for execution. As the root executes, the overlays are loaded as and whenever required. The
required overlays are swapped in the memory and later on swapped out when the memory is
full. The loading of an overlay overwrites a previously loaded overlay with the same load ori-
gin. This benefits the memory management by reducing the memory requirements of a program.
Although the swapping was done by the system only, the division of process into overlays was
done by the programmer. It is a difficult task for a programmer to divide a process into small
overlays. Moreover, today, overlay is an obsolete technique. This gives rise to the concept of
virtual memory in modern systems. Virtual memory is a method that manages the exceeded
size of larger processes as compared to the available space in the memory. It means that the
degree of multi-programming can be increased without worrying about the size of the memory.
Further, a programmer is relieved from the tight constraints of memory size when writing a
process. A large process will be accommodated in the memory. Suppose, a system has 2-MB
size memory and a programmer writes 8-MB size process. A VM system carefully divides the
process into 2-MB portions and loads the appropriate portion into the memory for execution.

11.3 PRINCIPLE OF LOCALITY

In virtual memory, the entire process is not loaded in the memory. Instead, only required portions
of the process are loaded. This is also supported with the principle of locality. The principle of
locality of reference states that during the course of execution of a program, memory references
by the processor tend to cluster. This is true for both instructions and data in a program. Over
a long period of time, the cluster of memory references changes, otherwise, the same set of
instructions is repeated. The memory references cluster due to the following reasons:

1) Most of the time, the program execution is sequential except for branch and call
instructions, and the ratio of these branch and call instructions is lesser as compared
to sequential instruction. For example, GOTO instruction in various languages is rarely
used and its use in programming is often discouraged. The frequency of call instruction
is also very less.

i1) The loop constructs in a program consist of very small set of instructions that are repeated
many times. During the loop execution in a program, the processor generates memory
references confined to a small contiguous portion of a program.

iii) The nesting depth of loops in a program is also confined to a small level in structured
programs. The moral of good programming is to have a very small nesting depth of loops
that again causes the clustering of memory references.

Virtual Memory 335

iv) When performing operations on data structures in a program, it has been observed that it
involves access to a clustered set of data locations. When an array or table is accessed, then
its data locations are accessed in sequence resulting in fixed clustered references.

Analyzing these facts of programming, locality of reference can be observed at two levels:
temporal locality and spatial locality. Temporal locality means that the recently referenced
memory locations are likely to be referenced again. In this way, loops, subroutines, and data
variables used to count or for summation are all examples of temporal locality. Spatial locality
means that nearby memory locations are also referenced. In this way, all sequential statement
execution and array traversal are examples of spatial locality. Both the types of locality tend to
generate clustered-memory references.

The principle of locality of reference thus promotes the idea of virtual memory implementation
and concludes that only a few portions of a process are needed over a period of time in its
execution. The programmer must learn the structured programming techniques, otherwise,
frequent changes in clusters of memory references may be harmful for the system.

11.4 VIRTUAL MEMORY SYSTEM

On the light of principle of locality of reference, it is now possible to implement a system with
virtual memory. The system with virtual memory is known as virtual memory (VM) system.
The implementation of a VM system requires both hardware and software components. The
software implementing the VM system is known as VM handler. Virtual memory may be
realized with paging or segmentation as it requires a non-contiguous memory allocation
method. The simple paging and segmentation concepts have been discussed in Chapter 10.
All the basics of these concepts are also applicable to VM systems. The logical address here
is known as virtual address, and the logical address space is known as virtual address space.
The address translation using paging and segmentation is applied in the same way as discussed
Chapter 10. The only difference of applying paging and segmentation in relation to virtual
memory is that there is no need to load all the pages or segments of a process into the main
memory. The VM system requires only those pages or segments of a process in the memory
that are needed at a certain time of execution. This approach benefits a large process that does
not fit within the limited size of the memory. Even the process that can fit into the memory is
not entirely loaded. Thus, the approach of VM system is to load only those pages or segments
of a process in the memory that are required for execution at an instant of time. Therefore, there
will be space for loading components of other processes. This approach is known as demand
loading of process components.

11.4.1 Demand Loading of Process Components

From the observation of location of reference, it would be wasteful to load all the components
of a process into the memory. A process can be executed without loading all its components.
Thus, in a VM system, only required components are loaded first in the memory. The other
components are loaded as and whenever required. The thumb rule of demand loading is that
never load a component of a process unless it is needed. The components of a process that
are present in the memory are known as resident set of the process as shown in Fig.11.1.
The execution of a process takes place smoothly as long as the logical address generated by
the processor is in the resident set of the process. However, a situation may occur when a
component (page or segment) corresponding to a generated logical address is not in the resident

336 Principles of Operating Systems

Frames
Pages/segments

A AN A A AN AN
e
A

o T T A T T T A A A T A 2
ErsEmTaTaaaaTy
ST T
A Swap out
P A AR AT
Tt
Erisuananaaaanay
R
AT
FETEEETIEREE R
T A
A AR AR,
AT
sebuiaibvrsiais
Bz =

RE

E

Swap space

ESsRsasa R gy 6 Swap in

A A A A AT ARt
Temmm——— v

Logical memory

Physical memory |:| Resident set

Fig. 11.1 Demand loading

set of the process. Therefore, to execute the process, the components that are not in memory
need to be brought in. Where are these components stored then? For this, a secondary storage,
generally a hard disk is used. The components that are not in the memory are stored in the
hard disk in a separate area. If the processor generates a logical address that is not found in the
memory after address translation, a memory-access-fault interrupt is generated. It means that
a component corresponding to the generated logical address is not present in the memory at
that time. The process being executed is interrupted and is put into a blocked state by the OS.
To resume its execution, the component needs to be swapped in the memory. For this, the OS
issues a disk I/O read request and dispatches another process to run while the disk I/O read
operation is being performed. As soon as the disk I/O read operation is finished, an I/O interrupt
is issued and the control is passed to the OS. The OS then puts the blocked-state process back
into the ready state so that it can be executed again.

The issues related to the implementation of demand loading in a VM system are as follows:

1) How will one recognize which component is in the memory and which one is not?

i1) How many processes will be resident in the memory?
This is related to the degree of multi-programming. The low degree as well as high degree
of multi-programming may cause problem to the VM system. If there are only a few
processes, then it may be possible that all the processes are blocked. On the other hand, if
there are too many processes, then the resident set of each process will get very less space,
and most of the time, components will be replaced for bringing in the desired components.

iii) How much main memory is allocated to a process?
A fixed or variable number of frames may be allocated to the process depending on many factors.

iv) When a required component from the hard disk is to be brought into the memory, it may be
possible that there is no free frame to be allocated. Where will this component be stored in
the memory then? The idea is to replace some component already stored there and make
room for the new component. In this way, an already existing component is swapped out
and a new one is swapped in. This is known as component replacement. However, what

Virtual Memory 337

will be the strategy for replacing a component? The strategies are known as component
replacement algorithms discussed later in the chapter.

v) The VM system realizes a huge memory only due to the hard disk. With the help of the
hard disk, the VM system is able to manage larger-size processes or multiple processes
in the memory. For this purpose, a separate space known as swap space is reserved in the
disk. The components of the processes are swapped in and swapped out of this swap space.
Swap space requires a lot of management so that the VM system woks smoothly. This is
known as swap space management, which will be discussed later.

11.5 DEMAND PAGING

As discussed in Section 11.4, a VM system can be implemented using either paging or segmen-
tation. In this section, virtual memory implementation with paging concept is discussed. All the
details discussed in this section with reference to paging are also applicable to segmentation.
To understand this, demand loading of a component is renamed as demand paging. The concept
is same as discussed in demand loading of components, but it has been specified in terms of
virtual address space. In demand paging, only pages that are needed at an instant of the time of
execution are loaded. The benefit is that some pages corresponding to some exception-handling
or error-handling code, which may not be executed, are not loaded. It results in efficient utili-
zation of memory and efficient execution in terms of time. Paging system with swapping was
discussed in Chapter 10. Demand paging is also the same except that an entire process is not
swapped in or swapped out. Rather a lazy swapper is used here that loads only those pages that
are needed. The swapper term is used for swap-in and swap-out. Here, the term pager will be
used. The swapping operations will hence be known as page-in and page-out operations.

Like demand loading, demand paging also has some issues related to its implementation.
The first issue with demand paging is how to recognize whether a page is present in the mem-
ory. The page table with valid—invalid bit can be used for this purpose. In demand paging, a
valid bit means that the page is in the logical address space of the process and is in memory at
the time. Similarly, an invalid bit means that the page is either not valid or not present in the
memory. The page table entry for a valid bit (1) will contain the frame address of the page. In
case of an invalid bit (0), the page table entry will not contain any frame address (see Fig. 11.2).

The second issue with demand paging is the situation when a process execution does not
get a page in the memory. A situation will occur in demand paging when the page referenced
is not present in the memory. This is known as a page fault. Consequently, the page fault must
be noticed by the system and be serviced appropriately. Paging hardware while translating the
address through the page table notices that the page-table entry has an invalid bit. It causes a
trap to the OS so that a page fault can be noticed.

Valid—invalid bit
Base address of page 0 4

Base address of page 1

Base address of page 2

Base address of page 3

Base address of page 4

a b WO N =~ O

Base address of page 5

Fig. 11.2 Page table with valid-invalid bit

338 Principles of Operating Systems

Page frames
Pages

T T T v v Tw Te Tt
[o e)
o o i R R A T I R TR T R e e

&
STy 1
EoZnnoinnannanny
AR AR AR
A A AR
Y
Fasaaazanaaaaaay
Eosnrororononany
e
sone
2o

et
Faoas St bbbttt

oo AR

o o T R R A A T T Page-out

Tt 9

A R R A A A A A T T A

A A A A At At

St twatvsu ettt

bttt

e e g A et 3

A A A A Attt

PSSttt tua st

B

Er o o o o] Lal

= R
s e 4 Swap space

e Paging device

R 6 Page-in

o v

Logical memory

Physical memory |:| Resident set

Fig. 11.3 Demand paging

The page fault once detected must be handled immediately. The page fault handling is to page
in a page from the disk known as a paging device. However, for a page-in operation, a free frame
should be available in the memory. If the free frame is there, a disk operation to read the desired
page is initiated. When the desired page is paged into the memory, the page-table entry must
also be updated as valid as the page is now in the memory. The process can now be executed
again without a page fault. The demand paging with page-fault handling is shown in Fig. 11.3.

Example 11.1

A logical address in a paging system generates the page number 5. After looking at the page-table
entry, it is found that its invalid entry is 0. After passing the control to the OS, it is found that the
page is legal on the paging device. This is a page fault as the required page number is not in the
memory. The page number 5 from the disk is then paged-in as depicted in the following diagram.

Frame address Valid—invalid bit

N/

1
. 1 13 |1) v
CPU I p | d
2 1 1 3
3 2 1 4 < Swap
4 0 5 space
""""" Page-in .
—> 5 |0 |} Physical Paging
S — = device
Page table memory

Page fault

Virtual Memory 339

Third issue is that there may be a situation when there is no free frame. In this case, to make
room for the page to be paged in, the existing page in the memory needs to be paged-out. In
other words, the existing pages may be replaced so that a page can be paged-in from the disk.
However, which page will be replaced is another issue? A strategy must be devised that will
guide the page replacement. Page-replacement strategies are known as page-replacement algo-
rithms. The page-replacement algorithms may affect the performance of the system. Therefore,
these algorithms must be optimized and chosen carefully. Page-replacement algorithms will be
discussed later in this chapter.

Example 11.2

Consider Example 11.1: If there are no free page frames in the memory as all the frames are
occupied with other pages, then any of the page frames needs to be replaced so that page
number 5 can be paged-in. Here comes the need of page-replacement algorithm that chooses a
victim page frame out of the resident set as depicted as follows.

Frame address Valid—invalid bit

N/

o | 5 | 1 0 C
‘ 1 [3| 1 ! —
CPU P9 2 1] i Seneee
3 2 1 4 / 1
4 0 ’ A ‘ ° Page-in 52?/:22
5 {o ¥ Physical
) R memory
Page table Page fault

The sequence of operations in demand paging, along with page fault handling, is summa-
rized in the following steps (see Figs 11.4 and 11.5):

1. Extract the page number from the generated logical address.

2. Check the page table and look for the corresponding page-number entry in the page table.

3. If the corresponding valid—invalid bit corresponding to the page number is 1, then the
desired page is in the memory and the address translation unit of paging hardware translates
it into a physical memory as described earlier.

4. If the corresponding valid—invalid bit corresponding to the page number is 0, then an
interrupt is generated and the control is passed to the OS.

5. The OS saves the registers and state of the process and checks whether the page is in the
legal boundary. If not, then the process may be terminated.

6. If the page is found to be in the logical memory, then it is a page fault and a page-fault
handler module of the VM handler is invoked to tackle the page fault.

7. The page-fault handler reads the disk address of the page number stored in the page table
and locates the required page on the paging device.

8. The page-fault handler checks whether there is a free frame through a free frame list that
maintains the status of all the free frames in the memory. If the memory is full and there is
no free frame, then a page-replacement algorithm is run to select a victim page frame so that
the desired page from the paging device can be paged-in.

340 Principles of Operating Systems

Frame address Valid—invalid bit

CPU

A 4
Re]
Q

12

O IN|[=~]wW]|O,

(o 1 11 | Physicar Page-in

4 1 memory
Page table

Page fault

Terminate
the process

Page-fault
handler

Fig. 11.4 Demand-paging steps

9. The page-replacement algorithm will select a page frame. If the selected page frame is
occupied with a page that has not been modified, then it can be replaced directly. If the
page has been modified, then it needs to be paged-out first on the paging device. There-
fore, a disk-write operation is performed. The page-modification information is maintained

through a modify bit (M-bit) in the page table (discussed in detail in Section 11.7)

10. When the page frame has been made free, the page-fault handler starts a disk-read operation

to page-in the desired page.

11. After the page has been paged into the memory, its page-table entry is updated by marking
the corresponding valid—invalid bit as 1 and adding frame address of the page indicating

that the page resides in the memory.

12. The instruction is restarted from the logical address where the page fault has happened.

It is to be noted that during every read/write operation on disk, there may be a queue of waiting
processes that need access to the device. While waiting for the device in the queue, the CPU
may switch to another process and the current process is blocked. As soon as the disk 1/O
read/write request is finished, an I/O interrupt is issued and the OS gets the control back. The
blocked process is moved back into the ready state so that it can be executed again. In this way,

page-fault-service time will be increased due to the device-waiting time.

11.6 VIRTUAL MEMORY SYSTEM WITH TRANSLATION LOOK-ASIDE BUFFER

VM system also uses TLB to reduce the memory accesses and increase the system performance.
The hardware implementation is the same as discussed in Chapter 10. The only difference is
the software mechanism in the OS by which a page fault is generated if the desired page is not

Page-number
extraction

Check valid—
invalid bit in
page table?

Generate an
interrupt. pass
the control to OS

\ 4

Page number

Valid—inval

id bit =1

»

os:

Saves the process state

Check page is in
logical memory?

Pass the control
to page-fault
handler (PFH)

-

PFH:
Locates the page
on disk,

Is there any
free frame in
the memory?,

Yes

Map to the
" | physical memory

Valid—invalid bit = 0

Terminate
the process

Execute the
page-
replacement
algorithm and
find the page to
be replaced

\ 4

Disk-read
operation and
page-in the page

v

Disk-write
operation

Is M bit

Change the valid—invalid bit L))

of the page to 1

Restart the
process

Fig. 11.5 Flow of sequence of events in demand paging

Virtual Memory 341

342 Principles of Operating Systems

in the memory and page-fault handling function is invoked. It means that whenever a virtual
address is translated into a physical address, there is a reference to a page-table entry that may
be in the TLB, memory, or disk. Thus, the performance of a system is affected by demand
paging as the time to service a page fault is also added, if there is a page fault.

A VM system cannot be free of page faults. Due to the nature of the demand-paging system,
there will be page faults. However, the higher the number of page faults the poorer will be
the performance of the system. Therefore, the number of page faults should be few. Thus, the
effective memory access time in case of demand paging is directly affected by the page fault
rate. If P is the probability of a page fault, then

Effective memory access time (EAT) = P(page fault) X page fault service time + [(1 — P(page
fault)) X (time to access memory location)]

Example 11.3

In a demand-paging system, the paging device has an average latency of 4 ms, seeks time of
4.5 ms, and transfers time of 0.06 ms. The disk has a queue of waiting processes. Therefore, it
has an average waiting time of 5 ms. If memory access time is of 180 ns and the page fault rate
(PFR) is 9%, then what will be the effective access time for this system? If the PFR increases
to 20%, then what will be effect on the effective access time?

Solution

Page fault service time =4 +4.5+0.06 + 5= 13.56 ms
Memory access time = 180 ns = 0.00018 ms
EAT for 9% PFR = (0.09 x 13.56) + [(1 — 0.09) x 0.00018]
=1.2204 4+ 0.0001638
=1.2205638 ms
EAT for 20% PFR = (0.2 X 13.56) + [(1 — 0.2) x 0.00018]
=2.712 +0.000144
=2.712144 ms
It can be seen that EAT increases with an increase in the page fault rate. Thus, there is a
direct relation between the two.

Example 11.4

In a demand-paging system, it takes 250 ns to satisfy a memory access when the requested page
is in the resident set. If it is not in the resident set, then the request takes 10 ms if a free frame is
found or the page to be replaced is not modified. Such requests are 3% of all the accesses. Other-
wise, if there is no free frame and the page to be replaced is modified, then it takes 20 ms. Such
pages are 7% of all the accesses. If the PFR in the system is 10%, then what will be the EAT?

Solution

EAT =0.9 x 0.00025 +0.03 x 10 + 0.07 x 20
=0.000225+03+1.4
=1.700225 ms

Example 11.5

In a demand-paging system, it takes 180 ns to satisfy a memory access when the requested page
is in the resident set. If it is not in the resident set, then the request takes 7 ms. What will be the

Virtual Memory 343

EAT if the PFR is 8%? What would be PFR to achieve an EAT of 400 us? Convert all the units
to microseconds.

Solution

Case I

EAT =0.92x0.18 + 0.08 x 7000
=0.1104 + 560
=560.1104 ps
=0.5601104 ms

Case 11

EAT =400 = (1 — PFR) x 0.18 + PFR x 7000
400=0.18 = PFR x 0.18 + PFR x 7000

400 =0.18 + 6999.82 x PFR

399.82 = 6999.82 x PFR

PFR =5.7%

11.7 PAGE-REPLACEMENT ALGORITHMS

Due to the concept of demand paging, the degree of multi-programming can be increased, that
is, more number of processes can be allocated in the memory as compared to the simple paging
concept. If there are five processes with five pages each, but only four pages of all processes are
used, then it makes room for another process with five pages to be accommodated. However,
the memory will be over-allocated in this case. Moreover, the memory is used not only for
holding pages but also contains page tables, buffers for I/O, and so on. Therefore, when a page
fault occurs during the execution of a process, a page needs to be paged into the memory from
the disk. However, it may be the case that there is no free frame in the memory. In such case, an
already existing page should be replaced so that there is room for a page that needs to be paged.
This is known as a page replacement. A page replaced randomly may affect the performance
of the system. Suppose a page is used frequently during the execution of a process. If this page
is replaced by a random approach, then it may be needed very soon and need to be paged-in
again resulting in more page faults and degrades the performance of the system. Thus, instead
of replacing any page, the use of pages in the memory is to be observed and a page should be
replaced such that the effect on performance of the system is the least. The strategy to choose
the best page to be replaced in the memory is called a page-replacement algorithm.

The page replacement increases the overhead because
there are two page transfers: page-in and page-out. There-
| | fore, these two page transfers will increase the page-fault

Valid—Invalid Bit ~ M-bit

Base address of page 0

Base address of page 1

Base address of page 2

Base address of page 3

Base address of page 4

a A WO N =~ O

Base address of page 5

Fig. 11.6 Page table with valid-invalid and M-bits

service time, thereby increasing the overhead. This over-
head can be reduced if it is known whether a page has
been modified. It is not necessary that all the pages in the
memory have been modified at a certain instant of time.
Some pages may have been modified and some may not
be. Moreover, some pages may be read-only. If a page
has not been modified and is chosen as the victim page,
then there is no need to replace it. It can simply be over-
written by another page because its copy is already on

344 Principles of Operating Systems

the disk. In this way, one page-transfer time can be reduced. This is implemented by including
a an M-bit) or a dirty bit with each page (see Fig.11.6) or frame in the hardware. Whenever
there is a change in a page, the modify bit is set by the hardware. If the modify bit is set, then it
indicates that the page has been modified since it was read in the memory. If the modify bit is
not set, then it means that the page has not been modified. It need not be paged-out for replace-
ment and can be overwritten. This mechanism reduces the page-fault service time.

How does one select a page-replacement algorithm? The evaluation criterion for the
algorithm is to have the lowest PFR. The algorithm that will produce less page faults will
be considered a good page-replacement algorithm. To select an algorithm, consider which
memory reference has caused the page fault during the execution of a process. Therefore, to
evaluate an algorithm, it is a must have a particular string of memory references. A string of
memory references is known as a reference string. The algorithm will be run on this string. The
reference string can either be generated artificially or a snapshot can be taken from an actual
running process. However, the reference string in the form of actual memory addresses will be
inconvenient for the evaluation of the algorithm. Therefore, the memory reference is consid-
ered in the form of a page. The page number containing the memory reference is taken in the
reference string. In this way, it is easy to know the page number where the memory reference
has produced a page fault.

For a page-replacement algorithm experimental evaluation, it is important to know the
number of page frames available in the memory. The number of page frames plays an important
role in producing the number of page faults and in the performance of the system. The more
the number of page frames the less is the probability of page faults and increased performance
of the system. This is because with the increase in the number of page frames, more number of
required pages can be accommodated in the memory. Therefore, the required pages will be in
the memory most of the times, thereby reducing the number of page faults. Thus, in general, it
is expected that as the number of page frames increases the number of page faults decreases to
a minimum level as shown in Fig. 11.7.

A page replacement algorithm must satisfy the following requirements:

167
144
121
10

Number of page faults
oo

o N B~ O

Number of frames

Fig. 11.7 Relation between PFR and the number of page frames

Virtual Memory 345

e The algorithm must not replace a page that may be referenced in the near future. This is
known as non-interference with the program’s locality of reference.
e The PFR should not increase with an increase in the size of the memory.

11.7.1 FIFO Page-replacement Algorithm

This strategy is used very often in daily life. Let us take an analogy of a shelf, which is used
to keep several things. When there is no place in the shelf to keep a new item, the oldest item
is replaced. The same strategy known as first-in first-out (FIFO) is also used for page replace-
ment. According to FIFO, the oldest page among all the pages in the memory is chosen as the
victim. The question is how to know the oldest page in the memory. One approach may be to
attach the time while storing a page in the memory. However, an easier approach is to store all
the pages in the memory in a FIFO queue. The page at the head of the queue will be paged-out
first and a new page will be inserted at the tail of the queue. Let us understand this algorithm
with some examples.

Example 11.6

Calculate the number of page faults for the following reference string using FIFO algorithm
with frame size as 3.
502103024303213015

Solution

OOOOOOO®E® OGO OG

o] [o |]

Initially, all the three frames are empty. Page number 5 is first referenced, and it is a page fault.
After handling the page fault, the page is brought into the memory in one of the frames. Similarly,
Page numbers 0 and 2 occupy the other two frames. Next, Page number 1 is referenced but
there is no free frame. Here, the FIFO algorithm comes into the picture and replaces the page
that was brought first, that is, Page number 5. The next referenced Page number 0 is already in
the memory; therefore, it will not fault. After this, the next referenced page number is 3, which
is a page fault. Therefore, Page number 0 is replaced. This process goes on resulting in 15 page
faults. All the page references causing page faults have been circled to show the page faults.

Example 11.7

Calculate the number of page faults for the following reference string using FIFO algorithm
with frame size as 4.
502103024303213015

Solution

Eleven page faults occur in the same reference string as in the previous example. The
difference is in the number of frames in the memory. With frame size 4, the number of page

346 Principles of Operating Systems

faults decreases as discussed earlier that the number of page faults will decrease with an increase
in the number of page frames.

Example 11.8

Calculate the number of page faults for the following reference string using FIFO algorithm
with frame size as 3 and then as 4.
432143543215

Solution

The page faults with frame size as 3 are 9 as shown as follows:

OCOOOOOE®+@O®s

The page faults with frame size as 4 are 10 as shown as follows:

@@@@H@@@@@@

Belady’s Anomaly

In Example 11.8, with frame size 3, the number of page faults is 9, whereas with frame size 4, it is
10. This is contradictory to the established principle that the number of page faults decrease with
an increase in the number of frames in the memory. This anomaly was observed by a researcher,
Belady, and is known as Belady’s anomaly that shows the unexpected behaviour of FIFO page-
replacement algorithm. This unexpected behaviour is seen in some of the reference strings but not
always. This anomaly therefore decreases the reliability of the replacement algorithm. Moreover,
it will soon be discussed that this algorithm produces a large number of page faults compared to
other algorithms. Thus, this algorithm cannot be a good choice for page replacement.

11.7.2 Optimal Page-replacement Algorithm

The FIFO algorithm produces a large number of page faults. Moreover, it suffers from Belady’s
anomaly as discussed in Section 11.7.1. An algorithm is required that produces the least num-
ber of page faults and does not suffer from Belady’s anomaly. An optimal policy is formed

Virtual Memory 347

according to which a page that will not be referenced for the longest time will be replaced.
This policy produces a minimal number of page faults. Let us understand this algorithm with
an example.

Example 11.9

Calculate the number of page faults for the following reference string using optimum algorithm
with frame size as 3.
502103024303213015

Solution

B © @ oB) o2 (9)303(2) (1)301(6)

The Page numbers 5, 0, and 2 are page faults as shown earlier. The next page reference is 1,
which is a page fault. At this moment, it is observed which page out of 5, 0, and 2 will not
be referenced for a long time in the reference string. This is Page number 5. Therefore, Page
number 5 will be replaced in the memory. The next reference Page number 0 is not a page fault.
Page number 3 is again a page fault. Again, it is observed which page out of 1, 0, and 2 will not
be referenced for a long time. This is Page number 1. Therefore, Page number 1 is replaced.
The process goes on resulting in 9 page faults. The number of page faults in this algorithm is
very less compared to FIFO algorithm.

Although the optimal page-replacement algorithm provides the minimum number of page
faults, it cannot be implemented. The reason is that there is no provision in the OS to know
the future memory references. Thus, this algorithm has no practical use in page replacement.
However, it can be used to measure the performance of an algorithm in comparison with this
algorithm. A new algorithm, although may not be optimal, can be compared with the minimum
number of page faults found in this algorithm. In this way, the efficiency of an algorithm can
be assessed.

11.7.3 Least Recently Used Page-replacement Algorithm

The optimal algorithm is not realizable as discussed in Section 11.7.2. The optimal algorithm
was designed to replace a page that will not be referenced for the longest time. In other words,
this was meant to have a low number of page faults. This algorithm may also be approximated
with another view. The idea is to predict future references based on the past data, that is, a page
that has not been referenced for a long time in the past may not be referenced for a long time
in the future either. In this way, LRU page-replacement algorithm replaces a page that has not
been used for the longest period of time in the past. Let us understand this algorithm with an
example.

Example 11.10

Calculate the number of page faults for the following reference string using LRU
page-replacement algorithm with frame size as 3.
502103024303213015

348 Principles of Operating Systems

Solution

The page references 5, 0, and 2 will result in page faults. The next page reference 1 needs
page replacement. Out of 5, 0, and 2, Page number 5 has not been used in the past. Therefore,
it will be replaced. This process goes on resulting in total 13 page faults, which is again less
compared to FIFO page-replacement algorithm.

Since in LRU, there is a need to have information about the page that has been the least
recently used, its implementation incurs some cost. There should be some mechanism to find
out a page that has not been used for the longest time. Some of them are discussed as follows:

Stack Implementation

To implement LRU, a linked list of all the pages in the memory can be maintained. The list
can be structured as a stack such that whenever a page is referenced, it is placed at the top of
the stack. This way, the most recently used page will always be at the top and consequently,
the least recently used page will be at the bottom of the stack. This implementation requires
removing one entry from the middle and placing it at the top of the stack. Thus, the stack needs
to be updated with every memory reference, which incurs a cost. However, the advantage is that
only the bottom of the stack needs to be searched for this purpose, which saves time.

Example 11.11

A page reference string is given by

502103024303213015

The stack implementation that records the most recent reference at the top and the least-used
page reference at the bottom of the stack. The following figure shows the state of the stack after
the first reference of Page number 3 in the reference string.

Counter Implementation

The stack implementation is costly because of constant updating of data in the linked list. If
it is possible to note the time when a memory reference was made, then the time when a page
was referenced can be known. For this purpose, a counter is taken in hardware, which is incre-
mented after every memory reference. Further, the contents of this counter should be copied
to the page table. For this, there must be another column, say counter, in the page table (see
Fig. 11.8). Therefore, whenever there is a reference to a page, the counter (time of the last use)
is incremented and the value of counter is copied into the counter field in the page-table entry
for that page. In this way, the time of the last reference of a page is obtained. Whenever a page
fault occurs, the page table is searched for the smallest value of the counter. The page with the

Virtual Memory 349

Valid—invalid bit M-bit Counter

_ | /

Base address of page 0

Base address of page 1

Base address of page 2

Base address of page 3

Base address of page 4

a A~ WO N =~ O

Base address of page 5

Fig. 11.8 Page table with counter

smallest value is replaced according to LRU policy. Counter implementation requires hardware
assistance for counter, page table searching, and a write operation to the memory for copying
the counter value into the page table.

Matrix Implementation

In this implementation, a matrix of # X n is maintained, where n is the number of page frames
in the system. All the entries in the matrix are initialized to 0. Whenever a page, say m, is
referenced, all the entries of m™ row in the matrix are set to 1 and all the entries of m" column are
then set to 0. This process is repeated with every memory reference. The page corresponding to
the least binary value of the row is the least recently used page. This implementation, however,
needs hardware assistance: All the matrix operations are implemented in hardware.

Example 11.12

A page reference string is given by
021030230321301
The matrix implementation of this string for some of the page references is shown in Fig. 11.9.

01 2 3 01 2 3 01 2 3
olo|1[1]1 olo[1]o0]1 0
1|o]lo]o]o 1lo]lo]o]o 1
2|0|ofo]o0 21| 1| o] 1 2
3{ojolo]o 3lojofofo 3
(@) () (©
01 2 3 01 2 3 01 2 3
olo|1[1]1 olol1]1]o0 0
1]ofof1]H1 1{oflol1]o0 1
2| 0]o]o]1 ojojo]o 2
3lojoloo 111]1]o0 3

(d) (e) (
Fig. 11.9 Matrix implementation of LRU

350 Principles of Operating Systems

In Fig. 11.9(a), the first page reference in the string, that is, Page number 0 is considered.
The entries corresponding to the 0" row are made 1, and then, the entries corresponding to
the 0™ column are made 0. For the next page reference, that is, Page number 2, the matrix of
Fig. 11.9(a) is used resulting in Fig. 11.9(b). At any step, the least recently used page can be
obtained. For example, after the second page reference, the binary value of Page number 2
(1101) is more than the binary value of Page number 0 (0101). Therefore, 0 is the least recently
used page. This process is repeated with all the page references, and the least recently used page
to be replaced can be easily obtained using matrix implementation.

LRU algorithm is considered as the best algorithm due to less number of page faults
compared to FIFO algorithm. Moreover, it does not suffer from Belady’s anomaly. However,
the implementation of LRU demands hardware assistance. Moreover, there is a need to update
the clock or stack for every memory reference. This slows down every memory reference in the
system. Thus, inspite of being good in performance, LRU is difficult to implement and incurs
overhead. Therefore, some other algorithms are required for page replacement. The research-
ers have tried to approximate the nature of the LRU and developed some other algorithms
that incur the least overhead or require the least hardware assistance. These algorithms are
discussed in the subsequent sections.

11.7.4 Second Chance Page-replacement Algorithm

This algorithm is a modification of FIFO algorithm. The FIFO algorithm inspite of its poor perfor-
mance is a low-overhead algorithm. The major drawback of this algorithm is that even if a page
is in use, it may be replaced due to its arrival time. It means that there is no consideration of the
use of a page in FIFO algorithm. The performance of FIFO algorithm can be increased and can be
approximated to LRU if information regarding how much a page is in use in the system is added.
For this purpose, some additional bits are required to keep the information. A reference bit or use
bit is used to give information regarding whether the page has been used (see Fig. 11.10). This
information is entered into the page-table entries. Initially, all the reference bits of the pages are set
to 0 to indicate that the page is not in use. As the page is referenced, the status of the reference bit
of the corresponding page is changed to 1 to indicate that the page is in use. In other words, when-
ever a page is loaded in the memory, its reference bit is 0. It is set only when the page is referenced.

With the help of a reference bit with each page frame, an algorithm is designed to give a
second chance to a page that is in use. In other words, a page whose reference bit is 1 will not be
replaced and will be given a second chance to be in the memory. In this way, a page that is being
frequently used will not be replaced. The implementation of this algorithm is done by resetting

Valid—invalid bit M-bit Counter Reference
| | / bit

Base address of page 0

Base address of page 1

Base address of page 2

Base address of page 3

Base address of page 4

a A~ W N =~ O

Base address of page 5

Fig. 11.10 Page table with reference bit

Virtual Memory 351

its reference bit to 0 and arrival time to the current time. Thus, a page that is given a second
chance will not be replaced until all the other pages have been replaced. Generally, FIFO list is
maintained through a queue. Therefore, this page is appended at the end of the queue of pages
by the OS. If a page is being frequently used, then its reference bit is always set to 1 and will
never be replaced. There may be a situation when all the pages in the memory are in use, then
this algorithm degenerates into pure FIFO algorithm. In this case, it scans all the pages once
and reaches to the first page again.

Example 11.13

Calculate the number of page faults for the following reference string using second-chance
algorithm with frame size 3 and compare the result with FIFO algorithm.
502103024303213015

Solution

t16 t17 t18

The page whose reference bit is 1 has been shown in grey color, otherwise, the reference bit
of the page is 0.

If we compare the number of page faults here as compared to FIFO in Example 11.6, then
second-chance algorithm is better as there are only 13 page faults in the second chance as
compared to 15 in FIFO.

11.7.5 Clock Page-replacement Algorithm

Implementation of the second-chance algorithm in the form of a queue may be inefficient as
it incurs the cost of moving the pages with reference bit 1 at the end of the queue. Therefore,
the pages are moved around in the queue unnecessarily. A better approach is to have a circular
queue instead of a general queue. The circular queue will store all the pages with their status
bits as before, but now, there is a hand (a pointer) that indicates the next page in the circular
queue. This circular queue is known as a clock. Whenever there is a page fault, the page indi-
cated by the hand of the clock is inspected. If the reference bit of the page being inspected is 1,
then it is reset to 0, that is, the page is given a second chance and the position of the hand is

352 Principles of Operating Systems

advanced to the next page in the clock. Otherwise, if the reference bit is 0, the page is replaced
with the new one. The reference bit for this page is set to 1, and the hand is advanced to the next
page in the queue. It may be possible that the reference bit of all the pages is set as 1. In that
case, the hand scans all the pages one by one and resets all of them to 0. Finally, it reaches the
first page in the clock where it started, but this time, the reference bit is 0. Therefore, the first
page can be considered for the replacement.

Example 11.14

The circular queue implementation as a clock has been shown for some pages in the queue
with a hand (see Fig.11.11(a)). Currently, the hand points to frame 1 containing Page number
4 and its reference bit R is set as 1. The clock algorithm is executed. Since the R bit is 1, the
page cannot be replaced but its R bit is set as 0. The hand is advanced to the next frame. The
next frame contains the Page number 12 and its R bit is 0. This page can be replaced with an
incoming page. Suppose the page to be brought in is the Page number 14. Therefore, Page
number 12 is replaced with Page number 14 and its R bit is set as 1 as shown in Fig. 11.11(b).
Further, the hand is positioned to the next frame and the process continues.

11.7.6 Modified Clock Page or Not Recently Used Page-replacement Algorithm

The clock page-replacement algorithm can be made more powerful and efficient if the M-bit is
combined with the reference bit. For the page replacement, these two bits should be combined
together and an algorithm can be designed such that a page, which is neither used recently
nor modified, is not replaced. This algorithm is known as modified clock page-replacement
algorithm or not recently used algorithm (NRU). The modified page considered for the page
replacement needs to be written to the disk so that changes done in the pages are saved. The
combination of reference bit and M-bit can be exploited to have the effect of both page access

Frame 1

Frame 5

Frame 2

Frame 4

Frame 3

Fig. 11.11 (a) Circular queue clock page replacement

Virtual Memory 353

Frame O

Page 2

R = Frame 1

Frame 5

Frame 2

Frame 4

Frame 3

Fig. 11.11 (b) Clock page replacement

and page modification. The combination of the bits is shown in Table 11.1, where R is reference
bit and M is M-bit. R and M bits are set by the hardware. When a page is referenced, the R bit
is set, and if the page is modified, its M bit is set.

For page replacement, a page that has been recently used or modified will not be consid-
ered. Therefore, the Classes 2 and 3 in Table 11.1 are invalid for page-replacement algorithm.
Therefore, the Classes 0 and 1 can be considered. In these two cases, Class 0 is more suitable
because it has not been used recently and is not modified. Thus, the clock algorithm is
designed such that the hand scans the pages in the clock and replaces the first page with R =0
and M = 0. Note that the R bit of any page is not modified in this step. If such a page is found,
then the algorithm executes fast as there is no need to transfer the page to be replaced to the
hard disk, thereby reducing the I/O time required. On the other hand, if the desired page is
not found, then the hand scans the clock again, but this time the strategy is changed, that is,
R =0 and M = 1. If such a page is found, then replace it; otherwise, R bit is reset and the
hand is advanced to the next page. This process continues until the desired page is obtained.
If not, then scan the queue again; this time, a page that satisfies either of the two strategies,
as discussed earlier, will be found. In this modified-clock algorithm, multiple sweeps of the
circular queue may be needed to perform that may improve the performance of the algorithm.
The algorithm is shown in Fig. 11.12.

Table 11.1 R bit and M bit combinations

Class R M Meaning
0 0 0 Page is not being used recently and is unmodified.
1 0 1 Page is not being used recently and is modified.
2 1 0 Page is being used recently and is unmodified.
3 1 1 Page is being used recently and is modified.

354 Principles of Operating Systems

Step 1: Find out the current position of hand in the clock.

Step 2: Scan the page. If a page with R = 0 and M = 0 is found, replace
it. Otherwise, move to the next page. Repeat this step till the end of the

queue. (Do not change the status of any bit in this step.)

Step 3: Scan the queue again. If a page with R =0 and M = 1 is found,
replace it. Otherwise, change the status of reference bit of the page and
move to the next page. Repeat this step till the end of the queue. Go to
Step 1.

Fig. 11.12 NRU algorithm

As givenin Table 11.1, is it possible that a page has not been recently referenced but modified?
This is possible. Suppose, a page is found pointed by the hand R =1 and M = 1. According to the
algorithm given in Fig. 11.12, the status of the R bit is changed to 0 to differentiate between the
recently referenced and the earlier ones. Therefore, it may be possible that whenever the hand of
the clock comes back to this page, its R bit is 0 whereas M bit is still 1. This is because the status
ofthe R bits is only changed in the algorithm and M bit is untouched. Therefore, it is possible that
one page is with R bit set to 0 and M bit as 1.

Example 11.15

A circular queue shown in Fig. 11.13 (a) uses R bit as well as M bit. The hand is positioned
currently on the Page number 4 whose R bit and M bit are set as 1. Therefore, this page cannot
be replaced. According to the algorithm, the R bit of this page is set to 0 and the hand is

Frame 0
Page 2
R =1 Frame 1
Frame 5 M =1
Page 11 -
R=1 Page 4
M =1 R=
M=
Page 7 Page 12
R = R=
M = M = Frame 2
Frame 4
Page 9
R =
M=
Frame 3

Fig. 11.13 NRU example (Contd)

Virtual Memory 355

(Fig. 11.13 Contd) Frame 0

Page 2
R=0 Frame 1
Frame 5 M

7/

7 [

0
o)
«Q

A OO0
ne
Q
«Q

<

<X

¢

0
Q
«Q
1)

Frame 2

<D

<X

Frame 4

Page 9
R=0
M=

Frame 3

(b)

advanced to the next frame. Coincidently, all the frames in the queue have R and M bits set
as 1. Therefore, one round of the algorithm does not find any page to be replaced. However, in
the next round, all pages have R bits reset to 0. Therefore, the first page, that is, Page number
4, can be chosen for the replacement as shown in Fig. 11.13(b).

11.7.7 Not Frequently Used Page-replacement Algorithm

Another approximation for LRU algorithm is not frequently used (NFU) algorithm. In this
algorithm, one counter is taken with every page frame. The counter variable is used to count
how many times the page has been used. R bit is also considered as used before, that is, it is set
or reset according to its use. The counter for each frame is initially 0. At each clock interrupt,
the OS scans all the pages. The R bits (either 0 or 1) of all the pages are added to their cor-
responding counters. If a page is used, then its R bit is set as 1. Therefore, its counter will be
incremented by 1. If a page is not used during a clock tick, then its counter will be unchanged
as its R bit is 0. This is done for all the page frames in the memory. Thus, the counter value for a
page frame indicates how many times a page has been used. When a page fault occurs, the algo-
rithm chooses a page with the lowest value of counter, that is, the page that has been used least.

This algorithm suffers from a problem. it does not take into account the time span of the
pages being used. It may be possible that in a particular time frame, some pages are frequently
used and therefore, their counter will provide a high count. These pages will not be replaced
even though in another time frame, they are not frequent and have a low count. Similarly, in-
spite of their heavy use in the current time frame, the new pages that are useful for execution
may be replaced due to their low counter value in the previous time frame.

This algorithm can be modified to rule out the problem. The solution is called aging. The
first modification is to shift all the counters to right by 1 bit after the clock interval and before
adding the R bit. The second modification is to add the R bit to the leftmost position of the
corresponding counter rather than the rightmost. These two modifications in the counter value
help to indicate not only the frequency but also the time span of reference of a page frame. Let
us illustrate this with an example.

356 Principles of Operating Systems

Clock tick 0 Clock tick 1 Clock tick 2

Counter R Counter R Counter R
0 10000000 1 0 11000000 1 0 11000000 0
1 00000000 0 1 10000000 1 1 11000000 1
2 10000000 1 2 11000000 1 2 11100000 1
3 10000000 1 3 10000000 0 3 11000000 1
4 00000000 0 4 10000000 1 4 10000000 0
5 00000000 0 5 00000000 0 5 10000000 1

Fig. 11.14 Implementation of NFU algorithm

Example 11.16

Using the NFU with aging, the following set of page frames in Fig. 11.14, along with their
counters and R bits, has been shown for clock ticks 0, 1, and 2. The counter has been assumed
to be of 8 bits. After clock tick 2, Page number 4 or 5 can be replaced as its counter value is
the lowest.

11.8 STACK PROPERTY OF PAGE-REPLACEMENT ALGORITHMS

The Belady’s anomaly observed in FIFO page-replacement algorithm forced researchers
to analyse the page-replacement algorithms. Their investigations resulted into a property
known as stack property of page-replacement algorithms. An algorithm that satisfies this
property does not suffer from the Belady’s anomaly. The property considers the execution
of an algorithm with two different page-frame sizes, say m and n where n < m. At an
instant of time, all the pages that are in the memory when the page-frame size is n would
also be in the memory when the page frame size is m. In other words, the set of pages when
the page-frame size is n is a subset of the set of pages when the page-frame size is m as
follows:

{page_set}' < {page_set}'

where n < m, t is the time instant

{page_set | is set of pages in memory of process i

The implication of stack property is that the number of page faults in page-frame size n
is more compared to that of m. It means that it holds the page fault characteristic, that is, the
number of page faults decreases as the page-frame size increases.

Example 11.17

Using the following page-reference string and frame size as 3 and 4, show whether FIFO,
optimal, LRU, and second-chance algorithm satisfy the stack property of page-replacement
algorithms:

t1

t2 3 t4 t5 t6 t7 8 t9 [t10 | t11 | t12 | t13 | t14 | t15 | t16 | t17 | t18

0 2 1 0 3 0 2 4 3 0 3 2 1 3 0 1 5

Compare the performance of algorithms with both the frame sizes based on the PFR.

Virtual Memory 357

Solution

FIFO
Frame size = 3

@@@@@@@@@@@@@@@

t2 t3 t4t5 6 t7 t9 10 111,112 t13 t14 t15 t16,t17 t18

In FIFO, at time instants t9 and t18, the page set in execution with page-frame size = 3 is
not the subset of page _set in execution with page-frame size = 4. Thus, this algorithm does not
satisfy the stack property.

Optimal

Frame size =

@@@@@w®m@®w ©,

0]
Il
t2

t4t5 t6t7t8 t9t10t11t12 t13 t14t15t16t17 t18

Frame size = 4

@@@@@02 @3032 @301 @

t18

358 Principles of Operating Systems

Here, in optimal algorithm, at every instant of time, the page set in execution with page-
frame size = 3 is the subset of the page set in execution with page-frame size = 4. Thus, this
algorithm satisfies the stack property.

LRU

Frame size = 3

OJOJOJOLOXOIONOXOK JORIO
H 1]

I3 {3 A I S R 1 A [I 1Kl
|| o] [of [o] [o] [of [of[a]]a] [3]
L L[] 2] (8] L] Laf [e] L] L2 o] Lo
t1

t2 t3 #t5 t6t7 t8 t9 t10 t11,t12 t13 t14t15 t16t17 18

o[- O

301@

3

5

1 t2 t3 t4t5 16,178 t9,t10,t11,t12, t13 t14,115,t16,t17 t18

Here, in LRU algorithm, at every instant of time, the page set in execution with page-frame
size = 3 is the subset of the page _set in execution with page-frame size = 4. Thus, this algorithm
satisfies the stack property.

Second-chance algorithm

Frame size = 3

GJOJOIONNONNOIOJONEENOLI00,

o e e e e e e e e e e e e e
L 2] (2] (2] s e e Le] Le] Led Lo L2 [2] 2]
1 t2 t3 t4 t5 t6 t7 8

9 t0 t11 12 13 4 t15
ONO,
o] [o] [o]

t16 t17 t18

Virtual Memory 359

1 t2 t3 t4 t5 6 tr 8 t9 t10 t11 t12 t13 t14 t15

t16 t17 118

Similarly, in second-chance algorithm, at every instant of time, the page set in execution
with page-frame size = 3 is the subset of the page set in execution with page-frame size = 4.
Thus, this algorithm also satisfies the stack property.

The performance comparison of all the algorithms is as follows:

Algorithm No. of page faults with No. of page faults with
frame size = 3 frame size =4

FIFO 15 11

Optimal 9

LRU 13

Second chance 13

16 15

14 -] 13 13
212 H |]]
3
P 10 1
2 gl 8 8 8 ||mFrame size = 3
o mFrame size = 4
o 6 +
2
£ 41
=}
Z 2

0
FIFO OPT LRU Second
. chance
Frame size

Fig. 11.15 Performance comparison of page-replacement algorithms

360 Principles of Operating Systems

The comparison shows that the number of page faults decrease with increase in the frame
size in the memory. Further, it may be seen in Fig. 11.15 that FIFO when modified as second
chance becomes as good as LRU in performance.

11.9 THRASHING

Virtual memory implementation in a paging environment faces one problem. It may be possible
that a process does not get enough frames in the memory to execute. Consequently, page faults
will occur to bring in the desired pages of the process. If there is no free frame in the memory
and all the pages currently in the memory are referenced frequently, then an active page will
be replaced to bring in the desired pages. When an active page is replaced, it will be needed
again, right away resulting in a page fault. After some time, the processes will try to replace
the active pages of another process to get a free frame in the memory causing a large number
of page faults. This results in a high PFR known as high paging activity, and this high paging
activity is known as thrashing. A process is said to be thrashing if most of the time is consumed
in paging rather than in its execution.

The process of thrashing can be understood with the help of the relation between the num-
ber of page frames and that of page faults as described earlier in Fig. 11.7. This relation is
reproduced in Fig. 11.16 by showing two zones in the graph. One zone is where the processes
execute with low number of page faults, and another is where the processes execute with high
number of page faults. The former is a desirable zone where low paging activity occurs. On
the other hand, in the latter case, processes are in high paging situation where they are busy in
paging activity rather than execution.

It should be clear that accessing the disk may take a few milliseconds compared to the instruction
execution that takes few nanoseconds. When there are a number of page faults and, consequently,
page replacements, the processes need to queue up on the hard disk because one page transfer to
and from the secondary storage takes time. Most of the processes are in waiting queue of the hard
disk and the main memory starts emptying as shown in Fig. 11.17. When a process page faults, it is
blocked. Therefore, most of the processes in high-paging activity are in blocked states, that is, wait-
ing for the hard disk for its service (page-in or page-out). Consequently, the average service time
for a page fault increases due to longer queue on the paging device. Therefore, no useful work other
than page-in or page-out is being done by the processor. In other words, CPU utilization decreases.

161
@ 141
3 121
b Desirable
S 107
® zone
= 81
o
o 61
o]
Y
2.
0 T T T T T T 1

Number of frames

Fig. 11.16 Desirable zone for PFR

Virtual Memory 361

0 For any R/'W
operation, the
process needs to

U

=N

2 wait on this queue Swap space
3)
_> -
4 Paging
5 / device
Paging device
. queue v
Physical
memory

Fig. 11.17 Paging device queue

The long-term scheduler observes the low CPU utilization and therefore, increases the degree
of multi-programming by pushing a new process from the job queue to the ready queue. As soon
as a new process arrives in the ready queue, it causes page fault because being a new process it
demands frames for its pages. This further decreases the CPU utilization instead of increasing
it. The scheduler may try to further increase the degree of multi-programming, thereby causing
more page faults. In this situation, there is a tremendous increase in the number of page faults
and all the processes are busy paging rather than executing. The system throughput is reduced
to almost zero, and this is the point of thrashing. At this time, it must be understood that if
CPU utilization does not increase inspite of increasing the degree of multi-programming and
drops down, then the degree of multi-programming should be decreased instead of increasing
because thrashing point in the system has been reached. In Fig. 11.18, the normal behaviour of
CPU utilization can be seen, that is, CPU utilization increases with the increase in the degree
of multi-programming. However, it may be possible that the CPU utilization suddenly starts
dropping with the increase in the degree of multi-programming. It means that the thrashing

Thrashing point

CPU
utilization

A\ 4

Degree of multi-programming

Fig. 11.18 Thrashing

362 Principles of Operating Systems

point has reached in the system and the degree of multi-programming must be decreased to stop
thrashing in the system. Thus, it can be said that thrashing is a situation of coincidence of high
paging activity and low CPU utilization.

11.9.1 Dealing with Thrashing

Let us discuss how to deal with the thrashing problem. It is clear that thrashing is caused due
to shortage of page frames in the memory. If there are enough page frames in the memory for
execution of a process, then thrashing may not occur. However, it may not be possible most of
the time that all the pages will be allocated frames in the memory. Therefore, the idea is to guess
how many pages may be referenced for a process at a particular instant of time. With this guess,
some space can be allocated to the required number of pages. Therefore, if the number of pages
to be referenced is known, then required space can be allocated to those pages and loaded. The
set of pages a process is using is known as a working set. The working set is a set of m, that is
the most recent page references. If a page is in use, then it will be in the working set, otherwise,
it will be dropped from it at a particular instant of time.

Let m =10, that is, the working set has 10 most recent page references. At a particular instant
of time, look for the recent 10 page references. The pages that are in use in these recent 10 refer-
ences will be the part of the working set. The duplicate entries are omitted.

Example 11.18

A process executes with the following page reference string:
134323420343123728747272702720702
Taking the working set window size as 10, what will be the working set for the time instant
t1, t2, and t3?

Solution
1343234203F3123728747272702720F02

T

t1 t2 t3

The working set for the time instant t1,

WS ={0,1,2,3,4}

The working set for the time instant t2,

WS = {1,2,3,4,7,8}

The working set for the time instant t3,

WS = {0,2,7}

The working set theory discussed earlier is used to guess which pages will be needed in
the program execution when it will be restarted after its last stop. The reason behind using the
recent working set for guessing the next page references is that the working set varies slowly
with time. This is because the processes reference only a small subset of pages and the pages
being referenced tend to cluster according to the principle of locality discussed earlier. There-
fore, it is easy to analyse which pages are being referenced currently. This information can be
used to know in advance which pages are needed by a process. With this knowledge, the total
number of required frames can be calculated. If NumFrame is the number of frames required
by a process, then the total demand for the frames by all processes in the system are

Virtual Memory 363

n

TotalFramesDemand = 3, NumFrame,

i=1

where 7 is the number of processes.

Let TotalFramesAvail be the number of frames available. If TotalFramesDemand is larger
than TotalFramesAvail, then thrashing may occur as some processes do not have enough
frames that cause chain of page faults. The OS observes the working set of each process while
executing and allocates the number of frames required by it. If there are enough frames, then
another process in the system must be allowed to execute. Otherwise, if the TotalFrames
Demand is larger than TotalFramesAvail, then a process is selected to suspend. The pages of
the process thus chosen are paged-out and frames are allocated to other processes that are short
of frames. In this way, the system does not allow all the processes in the ready queue to execute
and keep a limit on them to prevent thrashing; hence, working set strategy not only prevents
thrashing but also keeps the CPU utilization high.

The working set strategy needs to keep track of the number of pages in the working set.
This can be implemented through a shift register of length m that shifts the register left by one
position with every memory reference and inserts the most recently referenced page number on
the right. The set of m page numbers in the shift register represents the working set. However,
maintaining and updating the shift register with every memory reference is quite expensive.
Therefore, this technique is not used in practice. Another technique is to use a time interval
instead of the number of memory references. In other words, the working set will not be based
on the number of memory references but on a time interval. The set of pages being referenced
during the time interval is the working set. This can be implemented through a fixed-interval
timer interrupt.

11.9.2 Working-set-based Page-replacement Algorithm

The working set theory can also be used for page replacement. The strategy to replace a
page in the memory is to find a page that is not in the working set and replace it. This algorithm
needs two items of information in the page table. Therefore, a page table must use the follow-
ing, along with its other items (see Fig. 11.19):

(a) reference bit R
(b) time of last use (TLU)

It must be noted that on each interrupt, the reference bits of the pages in the memory are set

to 0 and the pages that are in the working set being referenced are set to 1. According to this

Valid—invalid bit M-bit Counter Reference
VAL T
Base address of page 0 v v vVl « <

Base address of page 1

Base address of page 2

Base address of page 3

Base address of page 4

a b W N =~ O

Base address of page 5

Fig. 11.19 Page table with R bit and TLU

364 Principles of Operating Systems

On every Page_fault
while (page table entry)

If R bit = 1
TLU = Cur_time
Else

If Age >t
Replace the page
Else if Age <=t
Store its Age
}

}
If no page is found for replacement and there
are pages with R = 0 and Age <=t
Replace the page with the greatest Age

Fig. 11.20 Algorithm for working-set-based page replacement

algorithm, on every page fault, the page table is scanned to find a page whose R bit is not
1 and that is in the memory. If the R bit of the page is 1, then the current value of time is
written into the TLU field of the page table. It indicates that the page was in use when the
page fault happened. This page has been obviously referenced recently during the current
clock interrupt. It is in the working set and cannot be replaced. On the other hand, if the R
bit of a page is 0, then the page has not been referenced recently and is in the memory and
can be considered for replacement. Nevertheless, there are further conditions to check for
its replacement.

Let ¢ be the time frame of the working set, that is, the number of pages being referenced
during past ¢ seconds.

Cur_time = Current time in the system

TLU = Time of last use

Using these parameters, calculate the age of a page whose R bit is 0 as the following:

Age = Cur_Time — TLU

There may be two cases in the algorithm:
Case I:

If Age is greater than 7, then the page is no longer in the working set and can be replaced with
the new page.

Case II:
If Age is less than or equal to ¢, then the page is still in the working set.

If a suitable page is found in Case I, then the pages found in Case Il may be ignored for
replacement. However, if no page is found in case I and there are some pages in Case II,
then the page with the greatest Age is replaced, that is, the page with the smallest TLU is
replaced.

The algorithm for working-set-based page replacement is given in Fig. 11.20.

Example 11.19
In the following table, if a page is to be replaced on a page fault, which page will it be?

Virtual Memory 365

Page number TLU R bit Solution

0 1002 1 On scanning the page table, for all the entries with

1 1100 1 R =1, TLU is replaced with Cur_time.

For the entries with R =0,

2 980 ! Age =Cur_time — TLU

3 1020 0 i.e., Age for page 3 = 1200 — 1020 = 180 and

4 1102 0 Age for page 4 = 1200 — 1102 =98

5 990 1 Given, t =60

— Therefore, Page number 3 has Age > t, that is,
Cur_t|m¢i ; ;ioo 180 > 60, and therefore, the page can be replaced.

11.9.3 WSClock Page-replacement Algorithm

The working-set-based page replacement algorithm is good but expensive to implement as the
whole page table needs to be searched for a suitable page. The scanning of the entire page table
takes time. The working-set-based algorithm can be modified according to the clock-based
algorithm and thus can be implemented efficiently. Therefore, the modified clock algorithm
when implemented along with working set information is known as WSClock page-replace-
ment algorithm. As discussed in clock algorithm, the pages are stored in the circular queue as
they are loaded in the memory. The difference is that each entry in the queue for a page consists
of the following information:
i) Rbit
ii) M bit
iii) TLU
Along with these fields of information in the queue, the algorithm also uses Age and 7. The
hand position in clock is used to start the algorithm. The R bit of the page being examined is
checked first. If the R bit is 1, then it means that the page has been referenced recently and
therefore, cannot be used for replacement. Therefore, the page is not replaced and the hand is
positioned to the next page after resetting the R bit of the current page as 0. On the other hand,
if the R bit of a page is 0, then Age is checked. If Age of the page is greater than ¢, then it is not
in the working set. Further, the M bit of the page is also checked. If M bit is 0, it means that the
page has not been modified and its copy is already there on the disk and therefore, need not to
be transferred to the disk. Thus, a page whose Age is greater than ¢ and M bit is 0 is the best
to be replaced because it is the oldest and can be replaced immediately without transferring it
to the disk. However, if the M bit is 1, then it means that the page has been modified and there-
fore, needs to be saved on the disk. The write-to disk is scheduled to save the modifications in
the page and the hand is positioned to the next page to find a suitable page in the queue. There
may be a worst case that all the pages in the queue have been modified. It may lead to high disk
traffic as all the pages need to be saved on the disk. Therefore, a limit must be put on the pages
to be written back to the disk. Further, it may be possible that the hand comes back to the first
position in the clock. It means that either there is no page with R = 0 or there is a page with
R =0 but not with M = 0. In the former case, all the pages are in the working set; therefore, no
page can be replaced. In the latter case, the page found is not in the working set but has been put
on the disk queue to be written back. Thus, by the time the hand comes back to the first position
in the queue after completing one cycle around the clock, it may be possible that the write-to

366 Principles of Operating Systems

On every page fault
while (page table entry)
IfR=1

R=0
Position the clock hand to the next page in the queue

}

Else
If (Age > t)

If (M =0)
Replace the page
Else

Schedule the disk writeoperation
Position the clock hand to the next page in the queue

}

}
Else if Age <=t
Store its Age
}

If no page found for replacement and there are pages with R = 0 and Age <=t
Replace the page with the greatest Age
}

Fig. 11.21 Algorithm for WSClock page replacement

operation scheduled for the page has been completed and thus, can be chosen for replacement
after making its M bit as 0. The algorithm for WSClock page-replacement algorithm has been
shown in Fig. 11.21.

Example 11.20

Which page will be replaced in the clock shown in the following daigram with Cur_time =
1210, t = 50 using WSClock page-replacement algorithm?

Solution

1.

The clock hand is positioned on Frame 1. Here, R = 1. Therefore, it is reset to 0 and the hand
is moved to the next frame.

The R bit of Frame 2 is also 1. Again, the R bit is reset and the hand is moved to the next
frame.

The R bits of all the pages are 1. Therefore, in the first round through the clock, they are
reset to 0.

In the second round, on the first frame, now, the R bit is 0. The Age is 1210 — 1008 = 202,
which is greater than t. But the M bit is 1, that is, the page has been modified and needs to
be written to the disk. Therefore, the hand is moved on to the next frame.

On Frame 2, R =0, M =0, and Age = 1202 — 1160 = 42. Again, the page cannot be replaced
as Age is less than t. The hand is moved to the next frame.

Frame 4

Frame 6

Page 11
R=1
M=1
TLU = 1005

Page 2
R=1
M=1
TLU =998

Page 7
R=1
M=1
TLU = 1200

Page 4
R=1
M=1
TLU = 1008

e

Page 9
R=1
M=1
TLU = 890

Frame 3

Frame 1

Page 12
R=1
M=0
TLU = 1160

Frame 2

Virtual Memory 367

6. Again, in this round, no page can be replaced because now, all the pages have M = 1.

7. On the next round, again search for a page to be replaced. For the first frame, the page was
scheduled to be written to the disk. Therefore, if the write operation has been finished by
this time, then the M bit will be 0. Therefore, this page can be chosen for replacement. If the
write operation has not been finished yet, then the hand advances to the second frame and
the page can be chosen for replacement as a last option.

11.9.4 Page Fault Frequency

Another method in dealing with thrashing is to measure the page fault frequency. The idea
behind measuring the page fault frequency is to establish an upper bound of page faults as
well as a lower bound (see Fig. 11.22). The limits in the form of page fault bound help to
know the status of the PFR. An upper bound is a limit of the PFR, which is too high and

16 4
14 4
12 4
10 1
8
6 -
4 |

Number of page faults

Upper bound

Lower bound

2
0

) 6

Number of frames

Fig. 11.22 Page fault frequency

368 Principles of Operating Systems

unacceptable for the system. Similarly, a lower bound is defined where the PFR is just negli-
gible. The significance of upper limit in the prevention of thrashing is that it indicates whether
the PFR of a process is approaching the upper bound. If it is, then it provides the page frames
to this process so that the page fault decreases. Similarly, if a process is approaching the lower
bound of the PFR, then its page frames can be allocated to other processes. Thus, the page fault
frequency keeps a check such that thrashing does not happen.

11.10 VIRTUAL MEMORY USING SEGMENTATION

As indicated earlier, the VM system can also be implemented with segmentation concept. All
the details of the segmentation concept discussed in Chapter 10 are also used to implement a
VM system. The address translation for a virtual address is same as with the main memory
system. Each process has a segment table loaded into the memory as discussed for the page
table. To implement segmentation in a virtual memory system, all the segments are not loaded
into the memory to support the lazy swapping concept. The concept here is known as demand
segmentation. A segment that is not present in the memory at an instant of time and require-
ment for execution results into a segment fault similar to the page faults. Similarly, segment
replacement algorithms are needed to replace a segment in the memory to make room for a
segment to be brought into the memory. All the bits added to the page table are also applicable
to the segment table, namely valid—invalid bits, M-bits, and protection bits.

11.11 COMBINED PAGING AND SEGMENTATION

Both paging and segmentation have advantages and disadvantages. The paging concept, being
transparent to the programmer, divides the logical memory into pages and avoids external
fragmentation, thereby providing an efficient memory-management strategy. However, it may
result into internal fragmentation. Moreover, it is not a natural division done by the programmer.
Segmentation, which is visible to the programmer, avoids internal fragmentation and supports
natural modularity, along with sharing and protection. However, pure segmentation further leads
to external fragmentation. Moreover, if a segment is too large to keep it in the memory, then it
is better to load only some portions of it. Thus, either pure paging or pure segmentation cannot
be adopted in practical. Therefore, to have the advantages of both the memory-management
techniques, they are combined. Segments are partitioned into pages to have the benefits of
both pure segmentation and pure paging. The idea of dividing the segments into pages is
called paged segmentation system or combined paging/segmentation system, which has been
adopted in many significant OSs.

In this combined system, the system still exploits the benefits of segmentation, that is, avoids
the fragmentation due to dynamic change in segment size by having the logical address in the
form of a segment number and offset. It means that the logical address is still in its original form
as in pure segmentation system. However, from the system’s view point, the segment is managed
with the paging concept as discussed in pure paging system because a segment is divided into a
fixed number of pages. Therefore, now, the logical address is implemented in the form of a page
number and offset for a page within the specified segment. Thus, each segment is divided into a
number of pages and memory management is performed with the help of the paging concept. The
page faults, working set, and other issues are managed in terms of pages rather than segments.
However, the protection is implemented at the level of segments only by including protection
bits as discussed earlier in the segment table. This combined mechanism provides the benefits

11.12

Virtual Memory 369

CPU

v Logical address

S p d
A
b|+]|d >
A
Segment table
° Base
Seg nol Page no address
for page
> —>
Page
Ladbdlfess Physical memory

Page table
STBR

Fig. 11.23 Address translation in paged segmentation

of pure segmentation or paging because only required portion of a segment is retained in the
memory, thereby utilizing the memory and making it a better memory-management technique.
In the combined segmentation/paging system, there is a segment table with each process as in
pure segmentation but with many page tables, because now, every segment of the process consists
of'a page table. If a process has five segments, then this process consists of one segment table and
five page tables—one per segment. The virtual address in this system is of the following form:

(Segment number s, page number p, offset d)

When a process executes, the STBR holds the starting address of the segment table for that
process as discussed in pure segmentation system. After getting the location of the segment
table, the processor uses the segment number to index into the segment table to find the page
table for that segment. After this, the page number p in the virtual address is used to index into
the page table of the segment and get the address of the page. Finally, the address of the page
thus found is used with offset in the virtual address to get the physical address in the memory.
In this way, paged segmentation system maps a virtual address to a physical memory as shown
in Fig. 11.23 using two levels of address translation: the first level when the segment table is
referenced and the second when the page table is referenced. This address translation involves
three memory references as segment table and page table both are in the memory. This slows
down the address translation process. To speedup, TLBs can be used for frequent entries in both
the segment table and page table.

DESIGN AND IMPLEMENTATION ISSUES

As discussed earlier, a VM system is composed of both hardware and software components.
The design of a VM system is not easy to implement, and therefore, this section is devoted
to various design and implementation issues to have a better understanding. The following
sections will discuss issues related to the paging hardware and OS—VM handler.

370 Principles of Operating Systems

11.12.1 Paging Hardware

The following are some components or design issues related to paging hardware:

Address translation

A generated virtual address needs to be mapped into a physical address. This is done by the
hardware unit known as memory management unit or address translation unit that maps the
virtual memory into physical memory. Since a page table (stored in the memory) per process
is used for implementing the address translation, there are two memory references for locating
a memory location. Therefore, it is necessary to reduce the 2-memory access time. This can be
achieved by using a TLB to reduce the memory access time.

Another design issue is to support the address translation in a multi-programming/time-
sharing system. This is achieved through the PTBR register. Whenever a process is scheduled to
be executed, the page table address from its PCB is loaded into the PTBR and the corresponding
page table is accessed in the memory. Thus, a page table per process, along with one PTBR in
hardware, is sufficient to implement paging concept for a time-sharing system. When the cur-
rent process is suspended or terminated, and another process is scheduled to execute, the PTBR
entry is replaced with the page table address of a new process.

Page size

The size of a page is pre-defined in the architecture of a computer system, which in turn
determines the number of bits required to represent the word in a page. The paging hardware
implicitly uses this hardware information to implement the paging in a virtual system. In virtual
memory using paging concept, however, the page size is a major design issue. The page size
cannot be taken as random but decided carefully depending on various factors. The page size if
not chosen appropriately may affect the performance of the system. In general, the page size is
taken as power of two varying from 2'% to 222, If it is too small, then a process will have more
number of pages and therefore, more number of entries in a page table that will consume more
memory. Thus, a larger page size causes smaller page table as there will be less number of page-
table entries in the page table. Therefore, there is an inverse relationship between the page size
and page-table size. A larger page table is too difficult to store in the memory and the searching
time increases. A smaller page size will also increase the number of page faults.

Small page size increases the number of pages in the logical memory. Therefore, I/O time re-
quired to read or write pages also increases with the increase in the number of pages, as each page
demands separate seek, latency, and transfer time. On the other hand, large page size may cause
memory-space wastage. It is not necessary that a process always fits exactly on the boundary of
a page. Some space remains unused on the last page while allocating memory to a process in the
form of pages. Therefore, the larger the page size the more will be the wastage causing larger inter-
nal fragmentation in the system. On average, the last page would be half empty causing fragmenta-
tion. Thus, there is a direct relationship between page size and internal fragmentation. Further, it
may be possible that as the size of a page increases, the whole page may not be in the execution
but only a small part of the page that is in execution. Therefore, the page size chosen should not be
too large such that it does not appropriately cover the locality of a page. Thus, the page size cannot
be chosen as too small or large but is decided depending on the memory space and process size.

The page size also affects the PFR. The number of pages in the memory will be increased
if the page size is reduced. The more the number of pages the less the PFR, as the most of
the memory references will be found in the memory. On the other hand, if the page size is in-
creased, then the number of pages will be decreased causing more page faults as the memory

Virtual Memory 371

references may not occur in the pages present in the memory. Thus, there is an inverse relation-
ship between page size and PFR, already shown in Fig. 11.7.

Support for page replacement

As discussed in page-replacement algorithms, it is necessary to have information when a page
was last used to select a page to be replaced. This information is then collected by the paging
hardware and provides the same to the VM handler, so that an appropriate page replacement
algorithm can be implemented.

Support for memory protection

A valid—invalid bit is used in the page table to see whether a page exists in the logical address
space. The address translation unit checks for an illegal logical address, that is, a page number
generated in the address may not be in the current logical address space. In this case, this unit
checks the page number in the logical address generated against the PTBR and PTLR. It raises
a memory protection interrupt if the page number exceeds the PTLR to protect the processes
from one another. Another case may be that a process violates its access privileges stored in
accessprotection bits. Again, the address translation unit checks the access of the process with
its allowed access protection bits. If these do not match, then a memory protection interrupt is
raised to protect the page against any misuse.

Paging device

Another issue in implementation regarding hardware is the selection of a paging device, which
is, in general, a disk. The paging device may affect the performance of a VM system as the disk
access is much slower as compared to the memory. Moreover, there may be a number of page-in
and page-out operations in the system depending on the PFR, thereby increasing the device access
time, if the data transfer rate of the device is low. Therefore, the paging device selected should be
of high speed and also of high capacity to have a larger portion of swap space.

Each process is allocated a fixed space in the disk reserved as swap space. The process table
contains the disk address for each process. The page offset of a process is added to this disk
address to write a page in the swap space. It means that the pages of a process are allocated
contiguous space in the swap space. The pages in the memory have a shadow copy in the disk.
However, this copy may be outdated if the pages have been modified since being loaded and
therefore, must be updated before replacing it in the memory.

Page-frame allocation

A minimum number of page frames ensures good performance of the system as the PFR in-
creases with a decrease in the number of page frames. Therefore, it becomes necessary that
processes are allocated a minimum number of page frames. One method is to allocate the pro-
cesses equal number of frames. This is known as an equal allocation. However, this strategy
may not be appropriate where there is a large variation in process sizes. Some processes may be
small compared to other processes. For example, a process of size 10 KB may not need many
frames as compared to a process of size 150 KB. Therefore, it is obvious not to allocate frames
to the processes using the equal allocation method, but use a proportional method according
to the sizes of the processes. This is known as proportional allocation. Using this method, the
number of frames allocated is calculated as

Alloc_frames (P) = (P_Size,/ S) X n

where i is the i process,

P_Size is memory size of i process

S is the total memory size, which is sum of size of all processes

n is the total number of available frames

372 Principles of Operating Systems

Example 11.21

In a system, there are three processes, P1, P2, and P3, divided into 32, 189, and 65 pages,
respectively. If there are 115 frames in the memory, then calculate the proportions in which the
frames will be allocated to the processes.

Solution

n=115

S=32+189 + 65 =286

Alloc_frames (P1) =(32/286)x 115=12.86=13
Alloc_frames (P2) = (189 /286) x 115=75.99 =76
Alloc_frames (P3) = (65/286)x 115=26.13 =26

11.12.2 Virtual Memory Handler

As discussed earlier, VM handler is the software part that implements the VM system. This VM
handler is only a part of the OS. It starts functioning right from the process creation time till its
exit. Its main design issue is the PFR. All the components of a VM handler are designed with
the goal that the PFR should be the least because all the performance-related issues become
complex when the PFR becomes high. The following are components/design issues of a VM
handler:

Logical address space manager

This component of VM handler starts functioning at the time of a process’s creation. When a
process is created, it first determines how large the process and its initial data will be. Based
on this, it creates a page table for the process, and consequently, space is allocated to it in the
memory. Similarly, the space for the process is allocated on the disk as swap space. After this,
the logical address space of the process is initialized with the process’s text and data on this
swap space so that when the new process starts getting page faults, the pages can be paged-in
from the disk. When a page fault occurs, the page is paged-in and its status is modified in the
page table. Similarly, when there is a need to replace a page in the memory, the selected page
is paged-out and again, its status is modified in the page table. Thus, the logical address space
manager maintains the page table and performs the page-in and page-out operations.

Physical memory manager
This component keeps track of free page Table 112 Frame table

frames in the memory. It uses a data

structure known as frame table (FT). FT Page_ID (process no, page no) st
consists of status and page ID of the page P1,3 0
of a process as shown in Table 11.2. The P2,5 1
status of a free frame is simply marked as P3.2 1

0, and when a page is loaded, it is marked

as 1. P4,4 0

Protection initializer

This module is used to initialize the protection information as required to implement the protec-
tion among various processes. First, it stores the access privileges of all the pages of a process
in the page table. This information remains there until the process is terminated. After this, the
protection hardware is initialized by loading the page table start address and size information in

Virtual Memory 373

the PTBR and the PTLR, respectively, while dispatching the process. In this way, the hardware
is reset after initializing according to the new process. The TLB is also flushed so that there is
no trace of the previous process.

Page fault handler

This module acts when a page fault occurs. It reads out the hardware registers to determine
which virtual address and, hence, page has caused the page fault. After this, it checks whether
itis a valid address. Then, its access privileges are checked out. If the page is not valid or access
privileges do not match, then a memory protection interrupt is generated. On the other hand,
if it is valid and access privileges are matching, then the module checks whether a page frame
is free in FT. If not, the page-replacement algorithm is run and a page is selected as the victim.
The page-replacement algorithm may need to access R bits of the page table. The M bit of the
selected page is then checked to determine whether it has been modified. If it is, then it is sched-
uled to be transferred to the disk, that is, the page is paged-out to save its changed contents.
Since this page-out operation is an I/O operation and the disk needs to be accessed, there are
process switching and scheduling of another process. It means that the page fault handler for
the current process is blocked. If the page is not modified, then it means that the page frame is
ready to accomodate the required page. Therefore, this module looks up the disk address where
the required page is stored in the swap space and the page-in operation is scheduled. Again, this
being an I/O operation, the process is blocked. When the process is waked up, the page table is
updated to make it a valid page.

Prepaging

Due to the nature of demand paging, a number of page faults occur when a process starts ex-
ecuting to load the initial required pages in the memory. Similarly, when a swapped-out process
is restarted, it results in many page faults. Therefore, to load the initial locality of a process,
the pages are loaded from the disk, thereby increasing the number of page faults in the system
in the beginning of execution. It would be better if the page faults due to the nature of demand
paging can be reduced. Pre-paging is the solution for this. Loading the initial required pages
in the memory before execution of a process is known as pre-paging. The question is how to
determine which pages will be required so that they can be loaded in the memory in advance.
The working set theory may help here. It is kept along with each process. Whenever a process
is swapped out, its working set is saved. When it is swapped in again for execution, its work-
ing set is retrieved, and all the required pages are first loaded in the memory and then it starts
executing.

Page-replacement policy

When a page is replaced as discussed in page-replacement algorithms, there are two choices. One
is that a page to be replaced is chosen from the set of page frames allocated only to the running
process. This is known as local page-replacement policy. Another approach is to choose the page
from the set of page frames of any of the processes. It means that a process may take up the page
frames of any other processes. This is known as global page-replacement policy. Suppose, there
are three processes in the system and they have been allocated the pages in the memory as shown
in Fig. 11.24(a). If the process A is executing and it needs to page in A3, then according to the
local page-replacement policy, only pages allocated to the running process A can be replaced.
Therefore, A4 is selected as the victim page for replacement (see Fig. 11.24(b)). If the replace-
ment policy is global, then the whole set of page frames in the memory will be considered for the
page replacement. Suppose the victim page in this policy is C2, then it will be evicted from the
memory (Fig. 11.24(c)), even though A is executing.

374 Principles of Operating Systems

A1 A1 Al
A4

A7 A7 A7
B2 B2 B2
B3 B3 B3
C1 C1 C1
C2 Cc2

(@) Memory allocation (b) Local policy (c) Global policy

Fig. 11.24 Page-replacement policy

The global policy of allocating frames is better compared to local policy because there is a
constrained set of frames in local policy, whereas there is a large set of page frames in global.
The local policy is not appropriate when the working set size varies over a period of time in the
system. Thrashing may occur in case of local policy when the working set size increases even if
there are free page frames, and the memory is wasted if the working set size decreases. On the
other hand, global policy works fine in both the cases because there is no restriction in choosing
the page frame. A higher-priority process can take advantage of this global policy by taking the
frames of a lower-priority process to execute smoothly without any page faults. Since a process
can use the frames of other processes, the performance of a process depends on the paging behav-
iour of other processes. The process execution time may vary in two executions of the same pro-
cess due to change in page frames of other processes, affecting the global allocation of a process.

Page-frame locking

According to the page-replacement policy, any page can be replaced. However, some pages if re-
placed cause problems in the system. These pages can be I/O bufters, kernel pages, key control struc-
tures, and so on. The locking is implemented by adding a lock bit in the page table corresponding to
the page frame. When the lock bit of a page is set to 1, it cannot be replaced. The locking bit can be
used in some critical situation. For example, it can be used where higher-priority process preempts
a lower-priority process and replaces the pages again and again. The pages of the lower-priority
process can be locked until it executes and is unlocked after the execution.

Page-frame cleaning

It has been discussed that whenever a page fault occurs, the required page is brought into the
memory, and if there is no space in the memory, then a page is chosen to be replaced. However,
it is always better to have in advance, sufficient page frames to handle the situation of page
faults. In this approach, the page fault service time decreases and no time is wasted in finding
a free page frame in the memory. For this purpose, a background process is designed that pe-
riodically inspects the state of the memory. This process is known as paging daemon. A limit
is fixed for the number of page frames. If the number of page frames available in the memory
is less than this limit, then the process starts evicting pages from the memory using the page-
replacement algorithms. If the pages have been modified, then they are written back to the disk.

Virtual Memory 375

In this way, paging daemon cleans up the memory so that enough page frames are available to
service the page fault and provide space to the incoming pages.

Page buffering/page caching

It has been observed in page-replacement algorithms that an active page should not be replaced,
otherwise, it page faults again and again. In some situations, a replaced page should not be moved
out of the memory. Similarly, the cost of performing page-out operation on a modified page
is costlier. In this case also, modified page should not be moved out of the memory. For these
situations, a buffer or cache is optimized to store the replaced pages. In fact, the pages are re-
placed according to the page-replacement policy or algorithms but are not removed from the
memory: Their entries in the page tables are deleted. The page has been shown to be replaced,
but in actual, it resides in the memory in the form of a buffer or cache. This buffer or cache
is implemented as a list. The list is of two types: free page list and modified page list. The
free page list stores the pages that have not been modified. This list can be used for reading
the pages. In this way, when an unmodified page ID is replaced, it is added to the tail of the
free page list. Similarly, the modified page list stores the pages that have been modified.
The page that has been modified and replaced is added to the tail of this list. Thus, these two lists
act as a cache of pages. The cache is useful where the page is active and is referenced after re-
placement. In this case, the page is returned to the resident set of the process at less cost because
the cost of page-in and page-out operations is saved. Another use of the modified page list is that
after having a number of pages in this list, all can be paged out so that their modified copy can be
saved on the disk. The advantage is that pages are written out in a cluster rather than one at a time.
It greatly reduces the I/O operations and disk-access time.

Load control

Whenever the working set of all processes exceed the total system memory, thrashing may
occur. The page fault frequency method indicates if the processes are page faulting too high. In
this case, each process is in need of page frames so that the page fault reduces. In this situation,
if no remedy is taken, then the system thrashes. On the other hand, if we control the load, that
is, allocate the page frames to a limited number of processes, then thrashing can be handled.
The solution is to get rid of some processes so that the number of competing processes for
page frames decreases and the page fault reduces. The processes are swapped out to the disk
and their page frames are shared among processes in need. The processes can be swapped out
one by one. For example, if one process is swapped out, then its page frames are shared among
other processes and it is checked for thrashing. If not, then another process is swapped out and
checked for thrashing again. This process is repeated until the thrashing stops. In this way,
swapping is used along with paging to reduce the demand for page frames, thereby removing
the thrashing situation in the system. The only question in this method is which process will be
the victim to be swapped out. This may depend on many factors such as priority, its nature of
CPU bound or I/O bound, and so on.

Shared pages

Shared pages, discussed in Chapter 10, have some design issues in their implementation. Since
there is a single address space allocated to both code and data, the pages need to be identified
for the code portion that are to be shared and for the data portion that cannot be shared. There-
fore, it would be easy if there are separate address spaces for code and data. These separate
address spaces are known as I-space (instruction-space) and D-space (data-space). Both the
address spaces can be further paged and each one has its own page table. An instruction is refer-
enced through the I-space page table, and similarly, data is referenced through the D-space page
table. The processes share pages using the same I-space page table but have different D-space

376 Principles of Operating Systems

page tables. Each process has two pointers in its page table: one for the [-space page table and
another for the D-space page table.

Another design issue with shared pages is that the pages being shared should not be allowed to
be paged out simply because of one process that needs to be suspended. For example, two pro-
cesses, x and y, share the pages of a utility. Suppose, x needs to be removed from the memory,
then its pages may also be evicted from the memory. However, this will cause y to page fault.
Therefore, shared pages should not be allowed to be evicted or selected for replacement when
one of the processes needs to be removed from the memory.

SUMMARY

TheVMsystemisimplementedthrough paging/segmentation
hardware and VM handler. The demand loading is the key
concept behind virtual memory. However, it gives rise
to many other issues. Since all the pages or segments
of a process are not loaded in the memory, the memory
allocation to processes becomes difficult. Further, page
faults occur when the pages or segments are not found
in the memory. Therefore, the page fault must be handled
appropriately. Consequently, the page to be brought into
the memory should get a free frame. It may need to replace
an existing page. Thus, many page/segment-replacement
algorithms have been discussed in detail. The VM system
gives rise to thrashing problem when there is high paging
activity. Similarly, various issues related to paging hardware
and VM handler, as well as their solutions, have also been
discussed.
Let us have a quick review of important concepts
discussed in this chapter:
® \Virtual memory is a method that manages the exceeded
size of a larger process or processes as compared to the
available space in the memory.
® The principle of locality of reference states that during the
course of execution of a program, memory references by
the processor tend to cluster.
® Temporal locality means that the recently referenced
memory locations are likely to be referenced again.

Spatial locality means that nearby memory locations are
referenced.

The system with virtual memory is known as a virtual
memory (VM) system. The software implementing the
VM system is known as VM handler.

VM system requires only those pages or segments of a
process in the memory that are needed at a certain time
of execution.

The thumb rule of demand loading is that never load a
component of a process unless it is needed.

The components of a process that are present in the
memory are known as resident set of the process.
Demand paging is to load only those pages in the memory
that are needed at an instant of time of execution.

A pager term is used in connection with demand paging
conceptas comparedto swapper. The swapping operations
are renamed as page-in and page-out operations as com-
pared to swap-in and swap-out.

In demand paging, when the page referenced is not in the
memory, it is known as a page fault.

A strategy to replace an existing page so that a page that
causes page fault can be paged in is known as page-
replacement algorithm.

The various page-replacement algorithms with their
features are as follows:

Page-replacement algorithm

Features/imple mentation

Advantage/disadvantage

FIFO

Optimal

LRU

The oldest page is chosen.

Implemented through a FIFO
queue.

The page that will not be
referenced for the longest
time is replaced.

Replaces a page that has
not been used for the longest
period of time in the past.

Page fault rate is high.

Suffers from the Belady’'s
anomaly.

No way of knowing the future
memory references and
therefore cannot be imple-
mented.

Provides less number of
page faults.

(Contd)

(Table Contd)

Second chance

Clock

Modified clock or not recently
used (NRU)

Not frequently used (NFU)

Implemented through a stack/
counter/matrix.

A page thatis being frequently
used will not be replaced and
given a second-chance.

Implemented through a FIFO
queue and reference bit.

Another implementation of
the second-chance algorithm.

Implemented through a circu-
lar queue.

modify bit is combined with
reference bits.

One counter is taken with
every page frame to count
how many times the page is
used. The algorithm chooses
a page with the lowest value
of counter.

Virtual Memory

Difficult to implement and
incurs overhead.

When all the pages in the
memory are in use, this algo-
rithm degenerates into pure
FIFO algorithm.

Incurs the cost of moving the
pages with reference bit 1 at
the end of the queue.

377

Belady’s anomaly is observed in the FIFO algorithm that
violates the general page fault behaviour: The number of
faults does not decrease with the increase in the number
of page frames.

An LRU can be implemented with three approaches:
stack, counter, and matrix.

According to stack property, the set of pages when the
page-frame size is n is a subset of the set of pages when
the page-frame size is m, where n < m.

A process is said to be thrashing if it spends maximum
time in paging rather than its actual execution.

The working set is a set of m most recent pages a
process references.

The working set theory is used to guess which pages
will be needed in the program execution when it will be

Valid—invalid Bit M-bit

NN

Counter

restarted after its last stop.

The OS observes the working set of each process while
executing and allocates the number of frames required
by it.

Another method to deal with thrashing is to measure the
page fault frequency. The idea behind measuring the
page fault frequency is to establish an upper bound and
lower bound of page faults.

Segments are partitioned into pages to have the benefits
of both pure segmentation and pure paging. The idea of
dividing the segments into pages is called paged seg-
mentation system or combined paging/segmentation
system.

The page table may consist of various fields as depicted
in the following table:

Reference Time of Protection

Base address of page 0)

bit last use bits
K/ x/ /b

A <«— Lock bit

Base address of page 1

Base address of page 2

Base address of page 3

Base address of page 4

a A W N =~ O

Base address of page 5

378

Principles of Operating Systems

A larger page size causes smaller page table as there
will be less number of page-table entries in it. Therefore,
there is an inverse relationship between the page size and
page-table size.

Smaller page size increases the number of pages in the log-
ical memory. I/O time required to read or write pages also
increases with the increase in the number of pages as each
page demands separate seek, latency, and transfer time.
The larger the page size the more the wastage causing
larger internal fragmentation in the system.

The number of frames allocated to a process is
Alloc_frames (P)) = (P_Size,/ S) x n

MULTIPLE CHOICE QUESTIONS

1.

The degree of multi-programming is limited with the size of
the

(a) disk

(b) memory

(c) processes
(d) none

Loops, subroutines, and data variables that are used to
count or for summation are all examples of

(a) spatial locality (c) temporal locality
(b) principle of locality (d) none

All sequential statement execution and array traversal are
examples of

(a) spatial locality

(b) principle of locality

(c) temporal locality
(d) none

VM system’s implementation requires
(a) hardware

(b) software

(c) both hardware and software

(d) none

The software implementing the VM system is known as

pager
swapper

(a) (c) virtual software
(b) (d) VM handler
irtual memory may be realized with
(@) paging only
(b) segmentation only
(c) combined paging and segmentation only
(d) paging or segmentation
is to load only those pages in the memory
that are needed at an instant of time of execution.
(a) Paging (c) Pre-paging
(b) Demand paging (d) None

The effective memory-access time in case of demand pag-
ing is directly affected by the

(@) degree of multi-programming
(b) number of pages

(c) PFR
(d) size of the memory

10.

1.

12.

13.

14.

1.

16.

where i is the i'" process,

P_Size is memory size of i process

S is the total memory size, which is sum of size of all
processes

n is the total number of available frames

Loading the initial required pages in the memory before

execution of a process is known as pre-paging.

When the victim page to be replaced is chosen from the

set of page frames allocated to the running process, it is

known as local page-replacement policy. When it is cho-

sen from the set of page frames of any process, it is known

as global page-replacement policy.

The overhead of a page-replacement algorithm can be re-
duced with

(@) Rbit (c) counter

(b) M bit (d) none

Which of the following algorithms suffers from Belady’s
anomaly?

(@) LRU (c) FIFO

(b) Optimal (d) Second chance
Which of the following algorithms does not satisfy the stack
property?

(@) Second chance (c) Optimal

(b) LRU (d) None of the above

The optimal algorithm is impractical because it is impos-
sible to know

(a) the future memory references

(b) the page size in advance

(c) the page fault frequency

(d) none

Which of the following bits of a page table is used by the
second-chance page-replacement algorithm?

(@) Rbit (c) Both Rand M bits

(b) M bit (d) None

Clock page-replacement algorithm is another implementa-
tion of .

(@) LRU (c) FIFO

(b) optimal (d) second chance

Which of the following bits of a page table is used by NRU
page-replacement algorithm?

(@) Rbit (c) Both Rand M bits

(b) M bit (d) None

Which of the following bits of a page table is used by NFU
page-replacement algorithm?
(@) Rhbit
(b) M bit

(c) Both Rand M bits
(d) TLU

17.

18.

19.

Which of the following bits of a page table is used by work-
ing-set-based page-replacement algorithm?

(@) Rbit (c) Both Rand M bits

(b) M bit (d) TLU

Which of the following bits of a page table is used by
WSClock page-replacement algorithm?

(@) Rbit (c) TLU

(b) M bit (d) All of the above

Page fault frequency may be used to keep a check on

REVIEW QUESTIONS

1.
2.
3.

What is the need of a virtual memory?
What is an overlay structured program?

What is the principle of locality? What are temporal and
spatial localities?

What is the thumb rule for demand loading?
How do you implement demand paging?

When does a page fault occur? What are the steps to han-
dle a page fault?

7. What is a free frame list?

8. What is a paging device?

9. What is the role of valid—invalid bits in a page table?

10.

1.
12.

13.

14.
15.

16.

17.

18.

19.

20.

What is the difference between resident set and working
set?

What will be the effect of adopting a TLB in a VM system?

What is the relation between effective access time and
PFR?

How do you reduce the 2-page transfers during the page
replacement?

What is the relation between memory size and PFR?

What is Belady’s anomaly? Give an example of a page ref-
erence string that illustrates this anomaly.

What is the problem in implementing optimal page-replace-
ment algorithm?

Discuss the implementation of LRU page-replacement
algorithm using a counter, a stack, and a matrix using an
example.

Demonstrate that LRU does not suffer from Belady's
anomaly.

Compare the performance of second-chance algorithm with
FIFO.

Show the stack implementation of LRU on the following
string:

10511351534521301405

20.

21.

21.

22.

23.

24.

25.

26.
27.
28.

29.
30.

31.
32.

33.

Virtual Memory 379

(@) paging (c) thrashing

(b) segmentation (d) none

Alarger page size causes page table.

(@) smaller (c) no effect

(b) larger (d) none

Larger the page size will be the memory
wastage.

(@) the more (c) no effect

(b) the less (d) none

Show the matrix implementation of LRU on the following
string:01002033211223213

Show that a page-replacement algorithm that satisfies the
stack property cannot suffer from Belady’s anomaly.

How do you implement a clock page-replacement algo-
rithm?

Discuss the implementation of NRU algorithm with an ex-
ample.

How many types of data structures are used by a VM han-
dler?

What are various functions performed by a VM handler?
What is stack property of page-replacement algorithms?

What is the relation between the degree of multi-program-
ming and CPU utilization?

What is thrashing? Why does it occur?

Using the NFU with aging, the set of page frames, along
with their counters and R bits, has been shown as follows
for clock tick 0. Calculate the value of page frames after
clock tick 3.

Clock tick 0

A

Counter
0000000
00000001
110000000
00000000
00000011
10000000

a A WO N -~ O
o|lo|la|l~|lOo|~

Discuss the solutions for handling the thrashing.

How is a working set theory developed in the page-replace-
ment algorithm?

Explain the algorithm for working-set-based page-replace-
ment algorithm.

380 Principles of Operating Systems

34.

35.

36.

37.
38.

How is a working-set-based algorithm modified into
WSClock page-replacement algorithm?

Explain the algorithm for WSClock page-replacement
algorithm.

How does the combined approach of paging and segmenta-
tion work? Explain the address translation in this combined
system.

How are page frames allocated to different processes?

Explain the functions of a page fault handler.

BRAIN TEASERS

1.

Prepare some guidelines of structured programming using
the principle of locality that helps in avoiding the thrash-
ing.

In a demand-paging system, it takes 150 ns to satisfy a
memory request while the page is in the memory. Other-
wise, it takes 8 ms if the free frame is available or page
to be replaced is unmodified. However, the request takes
20 ms if the free frame is not available and the page to be
replaced is modified. The chances that the page has been
modified are 50%. What is the effective access time if the
PFRis 12%? If the PFR increases to 16%, then what will be
the effect on effective access time?

In a demand-paging system, the paging device has an
average latency of 10 ms, seek time of 5 ms, and transfer
time of 0.15 ms. The disk has generally the queue of wait-
ing processes. Therefore, it has an average waiting time
of 10 ms. If memory-access time is 200 ns and the PFR
is 9%, then what will be the effective access time for this
system?

In a demand-paging system, it takes 220 ns to satisfy a
memory access when the requested page is in the resident
set. If itis not in the resident set, then the request takes 10
ms. What will be the EAT if the PFR is 10%? What would be
the PFR to achieve an EAT of 350 us? Convert all the units
to microseconds.

Design a scenario in a virtual memory wherein all the fields
of page table mentioned in the chapter are used. Analyze
the performance of the system using all these fields.

Calculate the number of page faults for the following refer-
ence string using FIFO, optimal, LRU, and second-chance
algorithm with frame size as 3 and 4.
10511351534521301405

Which algorithm performs better in terms of the PFR?
Which of the algorithm satisfies the stack property?

Consider the following page table. If a page is to be
replaced on page fault, then which page will it be?

39.
40.

41.
42.
43.
44,

13.

What is pre-paging? What is its use?

Explain the two types of page-replacement policy with
examples.

What is the need of locking a page frame?
What is a paging daemon process?
What is page buffering?

What are the issues in the design of shared pages?

Page number TLU R bit
0 1020 0
1 950 1
2 1230 0
3 1000 1
4 878 1
5 990 0
Cur_time = 1278
t=50

. Which page will be replaced in the following page

table with Cur_time = 1278, t = 50 using WSClock page-
replacement algorithm? The clock hand is presently at
frame 2.

Frame Page R bit | M bit TLU
number | number

1 12 1 0 1020

2 3 1 1 950

3 4 1 1 1230

4 9 1 1 1000

5 7 1 1 878

. What is the effect of paging on the context switch time?
10.
1.
12.

Why is the page size always taken as power of 27?
Do you find a VM system suitable for a real-time system?

The size of a working set may increase or decrease with the
execution of a program. How?

In a system there are five processes divided into 23,117,
45, 8, and 98 pages. If there are 200 frames in the memory,
calculate the proportion in which the frames will be allocat-
ed to the processes.

14.

15.

16.

17.

18.

Check whether second-chance algorithm suffers from
Belady’s anomaly.

A system uses 64-bit virtual address space with 2K page
size. If a single-level page table is used, then what problem
would one face? What is the remedy for this?

The optimal page size should be lesser than 1K. However,
computer systems tend to use larger page size of the order
of 1K bytes. What is the reason for this?

Is it possible to design FIFO, optimal, and LRU segment-
replacement algorithms similar to page-replacement
algorithms?

Based on the two parameters in the following table, when
should be the degree of multi-programming increased?
Which case will give rise to thrashing?

CPU Paging-device
Utilization utilization
80% 3%
7% 78%
8% 14%

19.

20.

21.

22.

23.

24.

25.

26.

Virtual Memory 381

Write a program that reads the page reference string from
a file and calculates the number of page faults using FIFO,
optimal, LRU, and second-chance page-replacement
algorithms. The user should be asked to choose a page-
replacement algorithm. The program should be able to
graphically compare the performance of all the algorithms.

Write a program to implement LRU using stack and matrix
methods.

Write a program that implements the second-chance
algorithm using the circular queue.

Write a program that simulates the NRU page-replacement
algorithm.

Write a program that simulates the NRU page-replacement
algorithm with aging.

Write a program that simulates the working-set-based
page-replacement algorithm.

Write a program that simulates the WSClock page-
replacement algorithm.

Write a program that maps the virtual address to physical
address in paged segmentation.

Copyrighted Materials

PART IV

File Management

12. File Systems

13. File System Implementation

Case Study IV: File Management in UNIX/
Solaris/Linux/Windows

12 File Systems

121 INTRODUCTION

Disks are used as a primary storage medium for information. The file system provides a convenient mechanism
to store and retrieve the data and programs from this medium. In fact, files are used as a collection of related
information, the meaning of which is defined by its creator. These files are mapped to the disks or other
storage media by the OS. Files themselves are organized in the form of a directory. This chapter discusses

files and the file system concept, along with details about the internal structure of a file and directory.

12.2 FILES AND FILE SYSTEM

A file is the most obvious thing used in computers. Through the
use of files, a convenient environment is created that allows one
to write, read, save, and retrieve the program and data on any
type of storage media. Moreover, the file concept is independent of
the type of device. In other words, a user or programmer need not
be worried about the hardware complexities of the device while
writing a program or data in a file. A file, thus, is a collection
of related information that is mapped on to a secondary storage.
The information stored in a file is in bits, bytes, lines, or records,
and so on. The meaning of the content is specified by its creator.
However, as a logical concept, a file is not stored on perma-
nent media. Therefore, after saving all the work, a file needs to
be mapped on to the storage device. This is the background work
which is not seen by a user. The user only sees the logical view of
the files. The system views all the work required to map the logical
file to the secondary storage. In other words, a file is used to store
the programs and data on the secondary storage. The benefit of stor-
ing files on the secondary storage is the facility provided by the file
system: to create, store, and retrieve the information in the form of
files. The OS abstracts the actual storage of the program and data
from the user, and provides a logical and convenient file concept.
A user may want some files to be sharable among the members
of a group. The file system also provides explicit sharing of files
when the user wants. The files can be organized by the way they
are accessed, for example, sequential, direct, and so on. Moreover,

Learning Objectives

After reading this chap-
ter, you should be able to
understand:

o The logical concept of file and

file system
o Internal structure of a file
o Record blocking
o File-naming conventions
o Various types of files
o Various attributes of a file

o Different operations performed

on afile
o How files are implemented

o Methods in which a file can be

accessed
o The concept of directory

e The logical structuring of

directories
o How files can be shared
o File protection issue

e The concept of file system

mounting

398 Principles of Operating Systems

they may be structured in a hierarchical manner. Thus, file organization and structure are also
the constituents of a file system. The following are the primary constituents of a file system:

¢ File Management

It manages how the files are stored, referenced, shared, and secured.
¢ File Allocation

It provides the methods to allocate files on the disk space.
e File Access Methods

It provides the methods to access stored files.

12.3 FILE STRUCTURE

The basic element of data, field, is a single valued item, for example, name, date, employee 1D,
and so on. Obviously, it is characterized by its length and data type. When multiple fields are
combined to form a meaningful collection, it is known as a record. For example, a student’s
information (see Fig. 12.1) can be one record, consisting of fields such as roll number, name,
qualification, and so on. When such similar records are collected, it is known as a file. File has
also a name similar to a field or record. Thus, a file is treated as a single entity that may be used
by a programmer or application.

The files can also be flat in the form of an unstructured sequence of bytes, that is, the structure has
no fields or records. Thus, a file, composed of bytes, has no fields or records, and is looked upon as
a sequence of bytes by the programs that use it. UNIX and Windows use this kind of file structure.

Nevertheless, the OS must support a required structure for a certain type of file. For exam-
ple, an executable file must have a defined structure, so that the OS can determine the location
in the memory to load the file and locate the first instruction to be executed. Some OSs support
a single file structure, but may opt for multiple file structures as well. In the latter case, the size
of the OS increases, as it needs to support multiple file structures.

/ Student’s roll no
/

Student’s name

e

Address

Fields

Records

Student’s roll no
Student’s name | |
Class

Address

File

Fig.12.1 File structure

File Systems 399

12.3.1 Internal Structure and Record Blocking

Locating an offset within a logical file may be difficult for an OS. Since the logical file will be
mapped to the secondary storage, it is better to define the internal structure of a file in terms
of the units of secondary storage. In general, the disk is used for secondary storage and hence,
block is a unit taken for the storage. The block unit needs to be mapped to the logical file struc-
ture as well. For example, a file is considered a stream of bytes in UNIX. Each byte in the file
can be found having a start address of the file. Consider the logical record size as 1 byte. Now,
assume the packing of some bytes or records in the file into the disk blocks. For example, a
group of 512 bytes is packed into one block of disk. In this way, a file may be considered as a
sequence of blocks, and therefore, all basic I/O functions are performed in terms of blocks. This
is known as record blocking. The larger the size of a block, the more number of records will be
mapped on to the block of disk. In turn, larger number of bytes will be transferred in one I/O
operation. This is more advantageous, in case the file is searched sequentially, thereby, reducing
the number of I/O operations as well.

Another issue regarding record blocking is whether the blocks should be of fixed- or variable size.
Based on this issue, there are three methods of blocking (see Fig. 12.2):

Fixed BIOCking R1 R2 R3 R4
In this blocking, fixed sized records
are used. Therefore, there may be (a) Fixed blocking

a mismatch between the sizes of a
record and block, leaving some unused
space in the last block. This causes
internal fragmentation. In Fig. 12.2(a),
R1, R2, and R3 fit in the fixed blocks (b) Variable-length spanned blocking
but R4 does not, leaving some space in
the last block. The space may be left
unused, if there is not enough space
to allocate a block at the end of the
track of the disk space, as shown in the
figure. This method is advantageous
when sequential files are used. Fig. 122 Methods of blocking

R1 R2 R3 R3 R4

R1 R2 R3 R4

(c) Variable-length un-spanned blocking

Variable-length Spanned Blocking

In this blocking, variable length records may be considered instead of fixed size. Therefore, some
records may span more than one block in continuation. It happens when one block is smaller in
size as compared to the size of records. In this case, the records, after consuming this block, may
continue in another block. For example, R3 spans two variable-sized blocks in Fig. 12.2(b). This
method of blocking will not cause any fragmentation.

Variable-length Unspanned Blocking

In this blocking, records of variable lengths are used, but spanning is not considered in case
of small-size blocks. A small-size block is left unused, causing wastage of memory space,
and the records are allocated to a bigger block. In Fig. 12.2(c), R3 does not fit in a small
block and therefore, it is allocated to the next block, which is bigger. It causes wastage of
block space.

400 Principles of Operating Systems

12.4 FILE NAMING AND FILE TYPES

A file needs to be named, so that a user can store and retrieve the information from the storage
device. Through the name of a file, the work, which was saved on the disk, can be recognized
and retrieved easily, without knowing the actual storage details on the hardware. There are
rules for naming the files, which may vary from system to system. Some systems distinguish
between uppercase and lowercase letters, while some do not. Some systems support length of
file names as long as 255 characters. In some conventions of file naming, some special charac-
ters are also allowed.

In general, the file name has two parts, separated by a period (.). The first part is the name of
the file, defined by the user, and the second part is known as an extension. The extension part
usually indicates what type of file has been created. Some of the extensions have been shown
in Table 12.2. The extension part is generally composed of three letters, as in MS-DOS. Some-
times there may be two or more extensions in the file name as in UNIX.

An OS must recognize the type of the file, because the operations performed on it depend on
its type. For example, a zip file cannot be printed. Based on the extensions of a file name, there
are several types of files, such as the following:

e Source code file
It is used to write a program in the language chosen. For example, C language program will
be written in a file with name filename.c, where filename is the name given to the file by its
user, but essentially with extension as .c. It is recognized as a source program file, only if it
has .c extension in its file name.

e Object file
It is a compiled or machine language format-based, file when the source code file has been
compiled successfully. Its extension may be .0bj or .o.

e Executable file
When an object file has been linked properly and is ready to run, it is known as an executable
file. Its extension may be .exe, .com, .bin, etc.

o Text file
A general text format-level document is known as a text file. Its extension is .zxt or .doc.

e Batch file

e Itis a file consisting of some commands to be executed and given to command interpreter.
Its extension is .bat.

Table 12.2 Different Extensions in a file name

Extension Meaning

.C C source file

.cpp C++ source file

Jjpg Picture file encoded with JPEG standard
.pdf Portable document format file

.ps Postscript file

Axt Text file

.Zip Compressed file

.bak Backup file

File Systems 401

Archive file

When a group of files is compressed in a single file, it is known as an archive file. It exten-
sion may be .zip, .rar, and so on.

Multimedia file

It is a file containing audio or video information. Its extension may be .mpeg, .mov, .mp3,
.Jpg, etc.

Many other types of files may also exist today, depending on the necessity and support

provided by the OSs. But in general, files are of the following types:

Regular

Regular files contain the user information. The internal structure of the file type may be of
any type, as we discussed in file structures. Regular files may be either of ASCII or binary
type. The advantage of ASCII format is that they can be displayed and printed as it is, and
can be edited, using any text editor. On the other hand, binary files need to have an internal
structure, otherwise, they cannot be displayed or printed in their right form.

Directory

Directory is a file type used to organize the list of files in a group, that is, it organizes the
files in a hierarchy. Directory file is an ordinary file which can be read by any user, but write
operation is permitted in file system only. A created file is entered in a directory.

Special

A special file contains no data but provides a mechanism that maps physical devices to
file names, that is, these are used to access 1/O devices. There are two types of special files
namely, character special files to map serial I/O devices like terminals, printers, and so on,
and block special devices to model devices like disks.

12.5 FILE ATTRIBUTES

Besides name and data, a file has other attributes as well. These attributes also vary from system
to system. But some of the attributes are very common in every system, for example, data and
time of creation of a file. Some of the attribute types are as the following:

General information

Some attributes of a file are general for example. name, type, location, size, time, and date
of creation.
Protection-related attributes

A file may be enabled with access protection. Users cannot access it in their own way.
Before accessing, they must know its access rights, for example, read, write, and execute
permissions. Password of the file and creator/owner of the file also contribute to protection
attributes.

Flags

Some flags control or enable some specific property of the file. Some of them are:

1) Read-only flag: 1t is used for making a file read-only. It is 0 for read/write and 1 for read-
only.
i) Hidden flag: 1t is used to hide a file in the listing of the files. It is set for hiding the file,
otherwise, the file is displayed.
iii) System flag: 1t is used to designate a file as system file. It is set for making a file a system
file, otherwise, the file is a normal one.

402 Principles of Operating Systems

iv) Archive flag: 1t is used to keep track of whether the file has been backed up or not. The OS

sets it whenever a file is changed. The flag is 0, when the changed file has been backed up.
v) Access flag: Tt is used to convey how the file is accessed. It is set when the file is accessed
randomly, otherwise, the file is accessed sequentially.
Time of last change and last access
It is used to provide information about the time when the file was last modified, and when it
was last accessed.

12.6 FILE OPERATIONS

Because a file is of an abstract data type, the kind of operations that can be performed on it must
be known. The OS provides system calls for each operation to be implemented on the file. The
following are some operations that are performed on a file:

Create a file

It is a file creation operation. The OS must look for the space needed to create the file, and
the related attributes are set or created.

Write a file

The write operation needs the name of the file, wherein the data are to be written. The OS must
have a pointer in the file for reading or writing. This is known as current position pointer. If
the pointer is at the end of the file, the size of the file increases. If the pointer is in between, the
contents of the file are overwritten with the data to be written.

Saving a file

The contents of the file must be saved on the disk. For this, the OS must look for space on
the disk, and then save it. The appropriate entry in the directory, where the file is created, is
also done.

Deleting a file

When the file is not needed, it can be deleted. Now, the OS has some free space after deleting it.
The entry in the directory is also removed.

Open a file

Before a process uses a file for any operation, the file must first be opened. The OS fetches
its attributes and list of disk addresses into the main memory for rapid access to open the file.
Close a file

A file, when not needed, for any access may be closed. The close operation frees memory
space for attributes and disk addresses, and the file is updated on the disk. But closing a file
does not mean deleting it, because the file has not been removed from the disk. A process
may open many files at a time, consuming space in the memory. Therefore, a limit is put on
a process to open multiple files.

Read a file

The read operation also needs the name of the file and the pointer, from where the bytes will
be read. The current position pointer is maintained for this operation as well. After reading
the data, the pointer is updated to the position where the last read finished.

Append a file

This is another version of the write operation. The only difference here is that the write
operation is performed only at the end of the file. The OS locates the end of the file, using
the pointer, and then appends the data to be written in the file.

File Systems 403

¢ Repositioning the current position pointer

The current position pointer used to read and write in the file can be repositioned to any
desired position. The general system call for this operation is seek in some OSs. Therefore,
it is also known as seek operation.

e Get/Set attributes

The attributes of a file can be read, or even changed by a user, if necessary. A user may need
to look when the file was last changed or created. Similarly, the user might want to change the
access permission of a file. The system calls of an OS help to get/set the attributes of a file.

12.6.1 Implementation of File Operations

Although the implementation of file systems will be discussed in the next chapter, let us just go
through its basics. To perform any operation on a file, the file needs to be opened. The following
data structures are used for opened files:

Open File Table

Since the open operation fetches the attributes of the file to be opened, the OS uses a data
structure known as open file table (OFT), to keep the information of an opened file. When an
operation needs to be performed on the file, it is specified via an index into this table, and there-
fore, it need not be searched in its directory entry every time. OFT is maintained per process
basis, that is, it maintains the detail of every file opened by a process. OFT stores the attributes
of the opened file. Thus, each process has an OFT for this purpose. The OFT, per process, may
help in an environment, where several processes open files simultaneously. The OFT