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     Foreword    

 The year is 2027, the price of quantum computers is falling rapidly, and a universal 
solver for the leading type of quantum computer is now in its second release. Given 
any model instance and any well-formulated problem posed on that instance, 
Universal Solver 2.0 will quickly produce a solution. There are some limitations, of 
course: the model instance has to be specified using a given repertoire of common 
mathematical functions within an algebraic framework or, possibly, a system of 
differential or integral equations, with the data in a particular kind of database, and 
the problem posed has to be of a standard type: database query, equation solution, 
equilibrium calculation, optimization, simulation, and a few others. 

 As a tool for practical applications of operations management and operations 
research, is this all we need? 

 I think not. Useful as such a tool would be, we still need a solver or solution 
process that can explain  why  a solution is what it is, especially when the validity of 
the solution is not easily verifiable. The big weakness of computations and solvers 
is that they tell you  what  but not  why . 

 Practitioners need to know why a solver gives the results it does in order to arrive 
at their recommendations. A single model instance—that is, a particular model 
structure with particular associated data—hardly ever suffices to capture suffi-
ciently what is being modeled. In practical work, one nearly always must solve 
multiple model instances in which the data and sometimes even the model structure 
are varied in systematic ways. Only then can the practitioner deal with the uncer-
tainties, sensitivities, multiple criteria, model limitations, etc., that are endemic to 
real-life applications. In this way, the practitioner gradually figures out the most 
appropriate course of action, system design, advice, or whatever other work product 
is desired. 

 Moreover, if a practitioner cannot clearly and convincingly explain the solutions 
that are the basis for recommendations—especially to the people who are paying 
for the work or who will evaluate and implement the recommendations—then it is 
unlikely that the recommendations will ever come to fruit or that the sponsor will 
be fully satisfied. 

 There are two major approaches to figuring out why a model leads to the solu-
tions that it does. One is mainly computational. In the course of solving multiple 
model instances, as just mentioned, the analyst comes to understand some of the 
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solution characteristics well enough to justify calling them insights into why the 
solutions are what they are (typically at an aggregate rather than detailed level). 
These insights can inform much of the thinking that the model was designed to 
facilitate and can facilitate communicating with others. 

 The second approach is not primarily computational, but rather is based on 
developing insights into model behavior by analytical means. Direct analytical 
study may be possible for very simple (idealized) model structures, but this tends 
not to be feasible for the kinds of complex models needed for most real applica-
tions. Practical studies may have to rely on a deep understanding of greatly simpli-
fied models related to the one at hand, or on long experience with similar models. 
This is an art leading mainly to conjectures about solution characteristics of interest 
for the fully detailed model, and was the approach taken in the paper of mine that 
the editors cite in their preface. These conjectures are then subjected to computa-
tional or empirical scrutiny, and the ones that hold up can be called insights into 
why the full model’s solutions are what they are. 

 The importance of this book, in my view, rests partly on its success in teasing 
out the deep understanding that is possible for some relatively simple yet common 
model structures, which in turn can be useful for the second approach just sketched, 
and partly on the sheer expository strength of the individual chapters. The profes-
sion can never have too many excellent expositions of essential topics at the foun-
dation of operations management. These are valuable for all the usual reasons—utility 
to instructors, utility and motivation for students and practitioners, utility to lay 
readers (perhaps even the occasional manager or engineering leader) curious about 
developments in fields outside their own expertise, and even utility to researchers 
who like to accumulate insights outside their usual domain. 

 Having stressed the  utility  of expositions that communicate the insights attaina-
ble by avoiding too many complexities, let me balance that by pointing out how 
exquisitely  beautiful  the insights of such expositions can be, and also how exqui-
sitely  difficult  such writing is. 

 Most readers will find a good deal of beauty as well as utility in this book’s 
chapters, and I commend the editors and authors for their efforts. 

   Arthur   Geoffrion   
 UCLA Anderson School of Management   
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  Preface  

   The idea for this book began with a discussion at a professional meeting regarding 
teaching materials. As educators in schools of business, we each were looking for 
materials and teaching approaches to motivate students of operations management 
regarding the usefulness of the models and methods presented in the basic OM 
course. Our experience has been that many of the basic OM concepts have been 
“fleshed out” and so deeply developed to the point where basic insights are often 
lost in the details. Over the years, we both have been heavily influenced by Art 
Geoffrion’s classic article “The Purpose of Mathematical Programming is Insight, 
Not Numbers,”  Interfaces , 1976. We believe that this principle is fundamental in 
educating users of the “products” we deliver in the classroom, and so our project—
this book—was initiated with a great deal of enthusiasm. Our first task was to enlist 
the assistance of well-known individuals in the field who have the professional cre-
dentials to gain the attention of potential readers, yet are able to tell their story in 
language appropriate for our target audience. We think you will agree that we have 
been successful in our choice of authors. 

 The purpose of this book is to provide a means for making selected basic opera-
tions management models and principles more accessible to students and practicing 
managers. The book consists of several chapters, each of which is written by a well-
known expert in the field. Our hope is that this user-friendly book will help the 
reader to develop insights with respect to a number of models that are important in 
the study and practice of operations management. We believe that one of the pri-
mary purposes of any model is to build intuition and generate insights. Often, a 
model is developed to be able to better understand phenomena that are otherwise 
difficult to comprehend. Models can also help in verifying the correctness of an 
intuition or judgment. As an example, managers may use the SPT (shortest process-
ing time) method to schedule completion of paperwork with the objective of “clear-
ing their desk”— removing as many jobs from their desk as quickly as possible. As 
it turns out, it can be easily shown that SPT sequencing minimizes average job flow 
time (see Chap. 1). Thus, in this case, it is comforting to know that the manager’s 
intuition is correct. However, it is also essential to know when (and why!) intuition 
fails, and a well-structured model should convey this information. In spite of the 
fact that many educators recognize the intuition-building power of simple models, 
we are not aware of any existing book that has a focus similar to ours. 
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 As mentioned above, Chap. 1 deals with the shortest process time principle. 
Chapter 2 contains insight on the knapsack problem—a problem that often arises 
as a subproblem in more complex situations. The notion of process flexibility, and 
how to efficiently attain it, is the subject of Chap. 3, while queuing concepts are the 
subject of Chap. 4. A key relationship between flow rate, flow time, and units in the 
system—Little’s Law—is discussed in Chap. 5. In Chap. 6, the use of the median, 
as opposed to mean, is shown to be a best choice in certain situations. The news-
vendor model, a means of balancing “too much” versus “not enough,” is the subject 
of Chap. 7, while the economic order quantity inventory model is covered in Chap. 8. 
The pooling principle, a means of mitigating variance, is the topic of the final 
chapter. 

 To ensure that the book is accessible by our target audience, the chapters are 
written with students and managers in mind. Reading the book should help in 
developing a deeper appreciation for models and their applications. One measure 
of accessibility is that individuals only vaguely familiar with OM principles should 
be able to read and comprehend major portions of the book. We sincerely hope that 
the book will meet this test. 

 This book should appeal to three major audiences: (a) teachers of introductory 
courses in OM, (b) students who are taking one of their first courses in OM, and 
(c) managers who face OM decisions on a regular basis. 

 As professors who have considerable experience in teaching OM, we have found 
that students value insights gained by the models and tools that are the subject of 
this book. In addition, early in our careers we experienced a certain level of “dis-
comfort” in teaching some of these models. This discomfort arose because as teach-
ing “rookies” we lacked the maturity and experience to do proper justice to the 
material. Thus, we hope that the background and examples provided by the book 
will be of considerable help to “new” teachers. 

 Finally, we hope that the book will also appeal to those managers who believe 
that decision technology tools can be brought to bear on the problems they face. 

 Although each chapter of this book treats a different fundamental OM concept, 
we have made every effort to have a uniform writing style and (as much as possible) 
consistency in notation, etc. With this in mind, the book can be used in its entirety 
in an OM course. Alternatively, individual chapters can be used in a stand-alone 
situation since material does not “build” progressively through the book. For our 
managerial audience, we see the book as an excellent reference source. 

 We sincerely hope that you will find the book useful and that it will be a valuable 
addition to your personal library. 

   Tim     Lowe    and    Dilip   Chhajed   
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        Chapter 1  
 Sequencing: The Shortest Processing Time Rule 

        Kenneth R.   Baker    
Dartmouth College

   The problem of sequencing arises frequently in many areas of business and engineering. 
Shortest-first sequencing (or one of its variants) has proven to be optimal in 
a number of problem areas.    

   Introduction 

  Thanks to a day’s exposure at the annual professional conference, Alison has 
received four requests for design work. Based on her experience, she can estimate 
how long it would take her to deliver each design, noting that some of the jobs were 
short ones and others were longer. In addition, Alison’s working style is to focus on 
one job at a time, postponing any thought about the others until the current one is 
finished. Nevertheless, as she thinks about the situation, she realizes that her four 
customers will get different impressions of her responsiveness depending on the 
order in which she completes the designs. In other words, it seems to make a difference 
what sequence she chooses for the jobs. 

   What is Alison’s Sequencing Problem?  

 Let’s start by acknowledging that Alison is indeed faced with a  decision . She 
could work on her four jobs in any one of several possible sequences. Depending 
on what order she chooses, at least one of the customers will get a response 
almost immediately, while the rest of the customers will experience  various 
delays while they wait for other work to be completed. When different  customers 
experience different responses, it helps if we can find a suitable  measure to evalu-
ate how effectively the entire set of customers is served. 

 For example, suppose Alison’s predictions of the job times are as follows. The times 
indicate how many days must be dedicated to each job. 

D. Chhajed and T.J. Lowe (eds.) Building Intuition: Insights From Basic  1
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2 K.R. Baker

 Job number  1  2  3  4 
 Work time  4  2  9  7 

 From the time Alison starts, the entire set of jobs will take 4 + 2 + 9 + 7 = 22 days 
to complete. Let’s examine how individual customers might experience delays. 

 Suppose that the jobs are sequenced by job number (1-2-3-4). Then we can build 
the following table to trace the implications. 

 Sequence position  1  2   3   4 
 Job number  1  2   3   4 

 Work time  4  2   9   7 
 Completion time  4  6  15  22 

 The completion time of any customer is the completion time of the previous job 
in sequence, plus the time for the waiting customer’s job. A graphical representa-
tion of the sequence is shown in Exhibit 1.1. 

 time
4 6 15 22

4 2 9 7

 The      four completion times measure the four delay times experienced by the customers. 
One simple way to measure the effectiveness of the entire schedule is simply to add 
these numbers: 4 + 6 + 15 + 22 = 47. Some other sequence (for example, 4-3-2-1) would 
achieve a different measure of effectiveness (63), as calculated from the table below. 
 Sequence 
position 

 1   2   3   4 

 Job number  4   3   2   1 
 Work time  7   9   2   4 
 Completion time  7  16  18  22  7 + 16 + 18 + 22 = 63 

 In other words, the total of the delay times experienced by individual customers is 47 
in the former case and 63 in the latter. Thus, different sequences can lead to different 
measures of effectiveness: in sum, it  does  make a difference which sequence Alison 
chooses. Moreover, because smaller response times are more desirable than larger ones, 
Alison would prefer a sequence with a measure of 47 to one with a measure of 63. In fact, 
Alison would like to find the sequence that   minimizes  this measure of effectiveness.  

   What is the Sequencing Problem?  

 We can begin to generalize from the example of Alison’s decision. A sequencing problem 
contains a collection of jobs. In our example, there are 4 jobs; in general, we could have 
 n  jobs. Since the timing of those jobs is usually critical to the  problem, a sequencing 
problem also specifies the time required to carry out each of the given jobs. In our 
example, there are job times of 4, 2, 9, and 7. In general, we could associate the processing 
time  t

   i
   with the  i th job. Thus, jobs and job times constitute the minimal description of a 

Exhibit 1.1



1 Sequencing: The Shortest Processing Time Rule  3

sequencing problem. As long as the job times are not all identical, different sequences 
will exhibit different scheduling-related properties. These differences lead us to specify 
a measure of effectiveness, or  objective , which allows us to compare sequences and 
ultimately find the best one. In our example, the objective is the sum of four completion 
times. If we had  n  jobs, we could write the objective as  C  

1
  +  C  

2
  + … +  C   

n
  , where  C

   i
   

represents the completion time of job  i  (or, equivalently, the delay time experienced by 
the corresponding customer). The usual practice is to adopt the shorthand Σ C  to represent 
the sum of the jobs’ completion times. 

 It is possible to generalize further and consider objectives that are more complicated 
functions of the completion times, but we shall look at that situation later. For now, an 
objective that consists of the sum of the completion times  adequately captures one of the 
most common scheduling concerns—the response times experienced by a set of customers. 

 Thus, the sequencing problem starts with given information ( n  and the  t   
i  
-values) 

and identifies an objective. The decision problem is then to choose the best sequence. 
In our example, we can find the best sequence by listing every possible sequence and 
for each one, calculating the sum of completion times. The list of possible sequences 
(along with the objective value for each one) is shown in Exhibit 1.2. 

Objective

1 2 3 4 47
1 2 4 3 45
1 3 2 4 54
1 3 4 2 59
1 4 2 3 50
1 4 3 2 57
2 1 3 4 45
2 1 4 3 43
2 3 1 4 50
2 3 4 1 53
2 4 1 3 46
2 4 3 1 51
3 1 2 4 59
3 1 4 2 64
3 2 1 4 57
3 2 4 1 60
3 4 1 2 67
3 4 2 1 65
4 1 2 3 53
4 1 3 2 60
4 2 1 3 51
4 2 3 1 56
4 3 1 2 65
4 3 2 1 63

Sequence

Exhibit 1.2



4 K.R. Baker

 By comparing all twenty-four sequences, we can verify that the best sequence in 
our example is 2-1-4-3, with an objective of 43. 

 In general, we could imagine writing down all of the possible sequences and then 
computing the objective for each one, eventually identifying the best value. However, 
before we set out on such a task, we should take a moment to anticipate how much 
work we are taking on. The number of possible sequences is easy to count: there are 
 n  possibilities for choosing the first job in sequence, for each choice there are ( n  – 1) 
possibilities for the second job in sequence, then ( n  – 2) possibilities for the third job, 
and so on. The total number of sequences is therefore ( n ) × ( n  – 1) × ( n  – 2) ×...  ×  
(2) × (1) =  n ! In our example, this came to 4! = 24 possible sequences, as listed in 
Exhibit 1.2. In general, if  n  were, say, 20, or perhaps 30, listing all the possibilities 
might become too tedious to do by hand and even too time-consuming to do with the 
aid of a computer. We should like to have a better way of finding the best sequence, 
because listing all the possibilities will not always be practical. Besides, listing all the 
possibilities amounts to no more than a “brute force” method of solving the problem. 
We would much prefer to develop some general insight about the nature of the prob-
lem and then apply that insight in order to produce a solution      

  Pairwise Interchanges and Shortest-First Priority 

  We can often learn a lot about solving a sequencing problem from a simple interchange 
mechanism: take two adjacent jobs somewhere in a given sequence and swap them; then 
determine whether the swap led to an improvement. If it did, keep the new sequence and 
try another swap; if not, just go back to the original sequence and try a different swap. 

  Building Intuition  Sequencing jobs using Shortest Processing Time rule 
(shortest job first)  minimizes not only the sum of completion times but also 
minimizes average  completion time, maximizes the number of jobs that can 
be completed by a pre-specified deadline, minimizes the sum (and average) of 
wait times, and minimizes the average inventory in the system. Although the 
delay criterion and the inventory criterion may appear to be quite different, 
they are actually different sides of the same coin: both are optimized by SPT 
sequencing. Thus, whether a manager focuses on customer delays or on 
unfinished work in progress, or tries to focus on both at once, shortest-first 
sequencing is a good idea.

When jobs have different priorities or inventory costs, the job time must 
be divided by the weight of the job where the weight may represent priority 
or cost. These weighted times can then be used to arrange the jobs.

For all these problems suppose we start with any sequence and swap two 
adjacent jobs if it leads to improvement. Performing all adjacent pairwise 
interchanges (APIs) will always lead us to the optimal sequence. 
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 Let us illustrate this mechanism with our example. Suppose we start with the 
sequence 1-3-2-4, with an objective of 54. Try swapping the first two jobs in 
sequence, yielding the sequence 3-1-2-4, which has an objective of 59. In other 
words, the swap made things worse, so we go back to the previous sequence and 
swap the second and third jobs in sequence. This swap yields the sequence 1-2-3-4, 
with an objective of 47. This time, the swap improved the objective, so we’ll keep 
the sequence. Returning to the beginning of the sequence (because the first pair of 
jobs has been altered), we again try swapping the first two jobs, yielding the 
sequence 2-1-3-4, with an objective of 45. Now, we don’t have to revisit the first two 
jobs in sequence because we just confirmed that they appear in a desirable order. 
Next, we go to the second and third jobs; they, too, appear in a desirable order. Next, 
we go to the third and fourth jobs, where the swap yields 2-1-4-3, with an objective 
of 43. From Exhibit 1.2 we recognize this sequence as the optimal one. 

 Testing the interchange (“swap”) of two adjacent jobs, to see whether an  improvement 
results, gives us a mechanism to start with any sequence and to look for improvements. 
Searching for improvements this way cannot leave us worse off, because we can always 
revert to the previous sequence if the swap does not lead to an improvement. In our 
example, a series of adjacent pairwise interchanges led us to an optimal sequence; 
moreover, we evaluated fewer sequences than were necessary with the “complete 
 enumeration” approach of Exhibit 1.2 In general, we might wonder whether adjacent 
pairwise interchanges (APIs) will always lead us to the optimal sequence. 

   APIs in General  

 Imagine that we have a sequence on hand that contains  n  jobs. Somewhere, possibly 
in the middle of that sequence, is a pair of jobs,  j  and  k , with  k  following  immediately 
after  j . Suppose we swap jobs  j  and  k  and trace the consequences in general terms. 
See Exhibit 1.3 for a display of the swap. 

 Let S denote the original sequence on hand, and let S’ refer to the sequence after 
the swap is made. When we write  C

   i  
(S), we refer to the completion time of job  i  in 

S

B
Cj(S)

Ck(S�)

Ck(S)

Cj(S�)

S'

B

earlier jobs

k j later jobsearlier jobs

kj later jobs

Exhibit 1.3



6 K.R. Baker

schedule S, and when we write Σ  C (S), we refer to the sum of completion times 
in schedule S. Note that swapping adjacent jobs  j  and  k  does not affect the completion 
of any other jobs, so we can write  B  to represent the completion time of the job 
immediately before  j  in schedule S, and we can write  C  to represent the sum of the 
completion times of all jobs other than  j  and  k . Note that  B  and  C  are unchanged by 
the swap. Referring to Exhibit 1.3, we find that 

   ΣC(S) = C+C
j
(S) + C

k
(S) = C+(B+t

j
) + (B+t

j
+t

k
), and   

   ΣC(S') = C+C
j
(S') + C

k
(S') = C+(B+t

k
+t

j
) + (B+t

k
).    

 Then the difference between the two objectives becomes:

   ∆=ΣC(S') – ΣC(S') = t
j
 – t

k
.    

 Since ∆ > 0 if the swap improves the objective, it follows that there will be an 
improvement whenever  t   

k
   <  t

   j
  . In other words, the swap improves the objective if it 

places the shorter job first. 
 The implication of this result is far reaching. If we were to encounter  any  

sequence in which we could find an adjacent pair of jobs with the longer job first, 
we could swap the two jobs and thereby create a sequence with a smaller value of Σ C . 
Thus, the only sequence in which improvement is not possible would be a sequence 
in which the first job in any adjacent pair is shorter (or at least no longer) than the 
following job. In other words, the optimal sequence is one that processes the jobs 
in the order of Shortest Processing Time, or SPT. 

  Property 1-1.   When the objective is the sum of completion times, the minimum 
value is achieved by sequencing the jobs in the order of Shortest Processing Time.  

 This property articulates the virtue of shortest-first sequencing. For any set of  n  
jobs, shortest-first priority leads to a sequence that minimizes the value of Σ C . 
Thus, whenever the quality of a sequence is measured by the sum of completion 
times, we can be sure that the appropriate sequencing rule is  shortest first . 

 Armed with Property 1-1, we can easily find the optimal sequence for our exam-
ple. Arranging the jobs in shortest-first order, we can immediately construct the 
sequence 2-1-4-3 and then calculate the corresponding sum of completion times as 
43. There is no need to enumerate all 24 sequences, as we did in Exhibit 1.2, nor is 
there even a need to choose an arbitrary schedule and begin applying pairwise inter-
changes in search of improvements, as illustrated in Exhibit 1.3. The power of 
Property 1-1 is that we can avoid searching and improvement efforts and construct 
the optimal sequence directly.   

  Other Properties of SPT 

  Recall that a sequencing problem is defined by a set of jobs and their processing 
times, along with an objective. The choice of objective is a key step in specifying 
the problem, and the use of the sum of completion times may sound specialized. 
However, SPT is optimal for other measures as well. 
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 First, note that Property 1-1 applies to the objective of the average completion 
time. The average would be computed by dividing the sum of completion times by 
the (given) number of jobs. In our example, that would mean dividing by 4, 
 yielding an optimal average of 10.75; in general, that would mean dividing by the 
constant  n . Therefore, whether we believe that the  sum  of the completion times or 
the  average  of the completion times more accurately captures the measurement of 
schedule effectiveness, there is no difference when it comes to the sequencing 
decision: SPT is optimal. 

 Second, consider the objective of completing as many jobs as possible by a 
 pre-specified deadline. No matter what deadline is specified, SPT sequencing  maximizes 
the number of jobs completed by that time. This might not be surprising to anyone 
who has tried to squeeze as many different tasks as possible into a finite amount of 
time. Choosing the small tasks obviously works better than choosing the large 
tasks, if our objective is to complete as many as possible. Taking this observation 
to its limit, it follows that a shortest-first sequence maximizes the number of tasks 
completed. 

 Next, consider the completion time as a measure of the delay experienced by 
an individual customer. We could argue that the total delay has two parts: the wait 
for work to start and the time of the actual work itself. The processing time is a 
function of the order requested by the customer and is therefore likely to be under 
the customer’s control. The wait until work starts depends on the sequence 
chosen. Thus, we might prefer to take as an objective the sum of the wait times. 
Although this seems at first glance to be a different problem, it is not hard to see 
that SPT is optimal for the sum of the wait times (and the average of the wait 
times) as well. 

 Finally, consider a scheduling objective oriented not to the delays experienced 
by customers but rather to the number of jobs waiting in the system at any time. Let 
 N ( t ) represent the number of jobs in process (not yet completed) at time  t . If we 

N(t )

n
(n-1)

(n-2)

2
1

t

Exhibit 1.4
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were to draw a graph of the function  N ( t ), it would resemble the stair-step form of 
Exhibit 1.4. 

 Now suppose that the jobs are sequenced in numerical order (1, 2, …,  n ) as in 
Exhibit 1.4. The function  N ( t ) is level at a height of  n  for a time interval equal to 
the processing time of the first job, or  t  

1
 . Then the function drops to ( n  – 1) and 

remains level there for a time interval of  t  
2
 . Then the function drops to ( n  – 2) and 

continues in this fashion, until it eventually drops to zero at time Σ  t   
k
  . In fact, any 

sequence leads to a graph that starts out level at a height of  n  and eventually drops 
to zero at time Σ  t   

k
  . However, a desirable sequence would be one that tends to keep 

 N ( t ) relatively low. To create a specific objective for this goal, we form the  time 
average  of the function  N ( t ), which we can think of as the average inventory. That 
is, we weight each value of  N ( t ) by the time this value persists, the values of  N ( t ) 
being  n , ( n  – 1), ( n  – 2), …, 2, 1. In this fashion, we form a weighted sum composed 
of the following pairwise products: 

    n × [length of time N(t) = n]   

   (n–1) × [length of time N(t) = (n–1]   

   (n–2) × [length of time N(t) = (n–2)]   

  ...   

   2 × [length of time N(t) = 2]   

   1 × [length of time N(t)=1].    

 The first of these products is the area of the vertical strip in Exhibit 1.4 corre-
sponding to the length of time that there are  n  jobs in the system. The next product 
is the area corresponding to the length of time that there are ( n  – 1) jobs in the sys-
tem, and so on. When we sum all the pairwise products (i.e., the areas of the vertical 
strips), we obtain the area under the graph of the  N ( t ) function. Then we divide this 
sum-of-products by the total time required by the schedule, or Σ t   

i
  , in order to pro-

duce the average inventory. 
 It is not difficult to show that the area under the graph, and therefore the aver-

age inventory, is minimized by SPT. Perhaps the quickest way to see this result is 
to use the API illustrated in Exhibit 1-3. Suppose that the completion of the “ear-
lier jobs” in the exhibit leaves  J  jobs in inventory. In schedule S, that leaves  J  jobs 
during the processing of job  j  and ( J  – 1) jobs during the processing of job  k . In 
schedule S’, these numbers are reversed. Now let  A  represent the contribution of 
the earlier and later jobs to the area under the graph. (This contribution is unaf-
fected by the interchange of jobs  j  and  k .) Then we can write: 

   Area(S) = A + Jt
j
 + (J–1)t

k
,   and
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  Area(S') = A + Jt
k
 + (J–1)t

j
   .

The difference between the two objectives becomes:

  D = Area(S) – Area(S’) = t
j
–t

k
  .

 The area is smaller whenever ∆ > 0, so there will be an improvement whenever 
 t
   k
   <  t   

j
  . It follows that the minimum possible area (corresponding to the minimum 

possible average inventory) is achieved by the SPT sequence. 
 This derivation shows that shortest-first sequencing minimizes average inventory 

as well as average completion time under some very specialized conditions. For example, 
the job processing times were assumed to be known with certainty, and all jobs were 
available simultaneously. However, the intimate relationship between average inventory 
and average completion time holds under many other circumstances. See the coverage 
of Little’s Law in Chap. 5 for a broader picture of this relationship. 

 The dual benefits of SPT sequencing are fortuitous if we think in terms of the 
criteria that often guide managers of manufacturing or service systems as they 
strive to satisfy a given set of customer orders. One type of concern is the response 
time that customers experience. Customers would like delays in satisfying their 
orders to be short. As we have seen, if we quantify this concern with the average 
completion time objective, an optimal sequencing strategy is shortest-first. Another 
type of concern is the pile of unfinished orders in inventory, which managers would 
like to keep small. If we quantify this concern with the average inventory objective, 
then shortest-first remains an optimal strategy. In the context of our simple sequenc-
ing problem, at least, the delay criterion and the inventory criterion may sound quite 
different, but they are actually different sides of the same coin: both are optimized 
by SPT sequencing. Thus, whether a manager focuses on customer delays or on 
unfinished work in progress, or tries to focus on both at once, shortest-first sequencing 
is a good idea.  

  A Generalization of SPT 

  The shortest-first insights listed in the previous section are useful principles for 
making decisions about simple sequencing problems. In practice, there is some-
times a complicating factor: long jobs may often be important ones. Strict priority 
in favor of the shortest job would often conflict with importance. How do we rec-
oncile this conflict? In other words, how do we harness the virtues of shortest-first 
sequencing while acknowledging that jobs reflect different levels of importance? 

 To answer this question, we’ll have to go back to our basic problem statement 
and enrich it appropriately. To incorporate notions of importance, each job must 
have an importance weighting as well as a processing time. Thus, let’s take  w   

i
   to be 

a positive number representing the relative importance (or  weight ) of the  i th job. 
(We can think of the values of  w   

i
   as lying on a scale between zero and one, but the 
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scale usually doesn’t matter.) Now the statement of our sequencing problem con-
tains  n  jobs, each with a given processing time and weight. 

 Next, we need to specify an objective that is consistent with the use of weights. 
An obvious candidate is the weighted sum of completion times. In symbols, the 
weighted sum is  w  

1
  C  

1
  +  w  

2
  C

  2
  + … +  w

   n   
C   

n  
. This means that, as a result of sequenc-

ing choices, each job  i  experiences a completion time equal to  C   
i
  , and we form the 

objective by multiplying each completion time by its corresponding weight. Our 
objective is to minimize the sum of these values. Shorthand for the weighted sum 
of completion times is Σ wC . 

 To develop a sequencing rule suitable for the weighted objective, we can again inves-
tigate adjacent pairwise interchanges. As in Exhibit 1.3, we consider a pair of adjacent 
jobs,  j  and  k , somewhere in sequence S, and we swap those two jobs to form the 
sequence S'. This time, we let  C  denote the contributions of the other jobs (excluding  j  
and  k ) to the objective, a contribution that is unaffected by the swap, and as before, we 
let  B  denote the time required to complete all the jobs preceding  j  and  k . Then

  ∑wC(S)=C+w
j
C

j
(S)+w

k
C

k
(S)=C+w

j
(B+t

j
)+w

k
(B+t

j
+t

k
), and  

  ∑wC(S′)=C+w
j
C

j
(S′)+w

k
C

k
(S′)=C+w

j
(B+t

k
+t

j
)+w

k
(B+t

k
)   .

 Then the difference between the two objectives becomes: 

  D = ∑C
i
(S)–∑C

i
(S′) = w

k
t
j
–w

j
t
k
   .

 Since ∆ > 0 if the swap improves the objective, it follows that there will be an 
improvement if  w   

j   
t
   k
   <  w   

k
   t
   j
  . We can also write this condition as  t   

k
  / w   

k  
 <  t   

j
  / w   

j
  . In other 

words, the swap improves the objective if it places first the job with the smaller 
 ratio  of processing time to weight. In other words, we can weight each job’s 
processing time by dividing it by the job’s weight, then we can sequence the jobs 
according to the shortest  weighted  processing time (SWPT). 

  Property 1-2.   When the objective is the sum of weighted completion times, the 
minimum value is achieved by sequencing the jobs in the order of Shortest Weighted 
Processing Time.  

 Property 1-2 reveals that to reconcile the conflict between processing time and 
importance weight, we should use the ratio of time to weight. Viewed another way, 
the implication is that we should first scale the processing times (divide each one by 
its corresponding weight) and then apply the shortest-first principle to the scaled 
processing times. 

 Property 1-2 also applies to situations where the concern is focused on inventory, 
but where jobs represent different costs. A common criterion in practice is the mini-
mization of average inventory  cost  rather than average number of inventory items. 
Suppose that each job  i  has an associated cost,  w   

i
  . Then a suitable objective could be the 

average inventory value, where items are valued at cost. A variation on this objective 
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is to value items at some percentage of cost that reflects the opportunity cost of carry-
ing stock. At the outset, all jobs are in inventory, so the inventory value is Σ w   

i
  . As jobs 

in the sequence are finished, the value of inventory drops, eventually falling to zero. 
 A graphical representation is shown in Exhibit 1.5, where the graph tracks 

the value of inventory  V ( t ) over time. For the purpose of illustration, suppose 
the jobs are sequenced in numerical order. Then the inventory value is Σ w   

i  
 for 

a time interval equal to the processing time of the first job. At that point, the 
inventory value drops by  w  

1
  and remains at that level until the second job completes. 

The graph follows a stair-step pattern, but in contrast to Exhibit 1.4, the step 
sizes are not all the same. Each step down corresponds to a reduction in inven-
tory value by one of the  w

   i
   values. Again, the objective is the minimize the area 

under the graph of  V ( t ), and again, we can show that this objective is achieved 
by the SWPT sequence.  

  Shortest-First and Group Technology 

  An important principle in organizing systems with many elements is to group like 
elements together. Elaborating on this idea, the group technology principle has 
been applied effectively in discrete-parts manufacturing. For example, parts can be 
grouped in to similar families according shapes, sizes, materials, etc. In many man-
ufacturing applications, a machine switches from making products of one family to 
making products of another family by means of an expensive setup. To avoid exces-
sive setup time, and to simplify scheduling, many production schedules allow just 
one setup for all the parts in each product family. The jobs in the family are then 

V(t )

w1

w2

w3

C1

C2

C3

wn-1
Cn-1

Cnwn

t

Exhibit 1.5
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grouped together so that they can all be done after the same setup. How does the 
shortest-first principle apply to a sequence of groups? 

 In the so-called group technology problem, the given information consists of a 
set of jobs, the family each belongs to, their processing times, and their weights. 
For family  f , let  T   

f
   represent the sum of the processing times of all the jobs in the 

family, let  W   
f
   represent the sum of the weights, and let  s   

f
   represent the length of the 

setup time required to begin production of the family. Then, to solve the problem 
of minimizing Σ wC , the first step is to sequence the jobs by SWPT within families. 
Then, to order the families, choose according to the smallest ratio ( s

   f  
 +  T   

f  
)/ W

   f
  . In 

effect, this prescription implements SWPT twice. At the level of jobs, the sequenc-
ing rule holds, in its usual form. At the level of families, the sequencing rule applies 
to family processing time (including setup), as scaled by total family weight.  

  Limitations of APIs 

  We have seen that the shortest-first rule yields an optimal sequence when we are interested 
in simple measures of delay. That is, if the objective is the sum of completion times or the 
sum of wait times, we know that shortest-first priority is optimal. We also know that this 
principle generalizes to importance weights if we scale the processing times. Furthermore, 
an adaptation of the shortest-first rule applies to jobs when they are grouped in families. 
We might wonder when the shortest-first rule would fail. 

 As an illustration of the limits of SPT sequencing, consider a situation in which 
jobs have due dates but no weights. In other words, the given information consists 
of  n , the number of jobs, and, for each job, a processing time  t   

i  
 and a due date  d   

i
  . 

The presence of due dates gives rise to a scheduling goal that is different from mini-
mizing delay times or inventory costs. When due dates exist, a reasonable goal is 
completing jobs by their due dates. One way to quantify this goal is to calculate a 
 tardiness  value for each job in the schedule. Tardiness is defined as  T   

i  
 = max{0,  C

   i
   –  d

   i  
}. 

In other words, tardiness is zero as long as job  i  completes by its due date; otherwise, 
tardiness is equal to the amount of time that the job is late. A reasonable objective 
is to minimize the sum of tardiness values in a sequence, for which the usual short-
hand is Σ T . If we can work to this objective, then whenever there is a sequence that 
completes all jobs on time, we could produce it by using Σ T  as an objective and 
finding its minimum value. 

 However, finding the minimum value of Σ T  is not a straightforward problem. To 
suggest why this is so, let us return to the method of adjacent pairwise interchanges. 
Specifically, we consider swapping jobs  j  and  k  as in Exhibit 1.3, but now with the 
Σ T  objective in mind. In addition, take job  k  to be shorter than job  j , so that  t   

k
   <  t

   j  
. 

Consider the situation depicted in Exhibit 1.6, where job  j  is originally on time and 
 k  is late in schedule S. After the swap, job  k  is on time and  j  is late. However, the 
increase in the tardiness of job  j  (rightward arrow) is greater than the decrease in 
the tardiness of job  k  (leftward arrow), as the example is constructed, so that the 
swap actually makes the total tardiness worse. 
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Exhibit 1.6

Exhibit 1.7

 On the other hand, imagine that the pairwise interchange opportunity occurred 
later in the sequence, as depicted in Exhibit 1.7. In this case, both jobs are late in the 
initial sequence. However, the swap increases the tardiness of job  j  less than it 
decreases the tardiness of job  k , so the net effect is an improvement in total tardiness. 
(The increase for job  j  is represented by the length of the rightward arrow in Exhibit 1.6, 
while the decrease for job  k  is represented by the length of the leftward arrow.) 

 The implication of the cases shown in Exhibits 1.6 and 1.7 is that it is not always a 
good idea to sequence the jobs in shortest-first order. Moreover, in the case of the Σ T  
objective, the desirability of following the shortest-first rule may hold early in the sequence 
but not late in the sequence. This was not the case when the objective was the sum of 
completion times, where the preference for shortest-first sequencing was universal. 

 Adjacent pairwise interchanges allow us to derive a “delta” measure to account 
for the relative change in the objective when a job swap is made. Our first such 
example was the calculation of ∆ = Σ C (S) – Σ C (S'). If this calculation leads to a 
universal result (i.e., “the shorter job should come first”) then we have been successful 
at determining the nature of the optimal sequence. On the other hand, if this calculation 
leads to a conditional result, as with the tardiness objective, then the delta measure 
is not strong enough to dictate the full sequence. In that case, other methods must 
be brought to bear on the sequencing problem.  

S

S'

dj dk

kjearlier jobs

k jearlier jobs

later jobs

later jobs

S

S'

dj dk

jearlier jobs

kearlier jobs

k

j
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  Applications 

  The sequencing problem arises in many settings. Carrying out design projects, as in our 
first example, is analogous to writing a set of term papers for a set of course assignments, 
or producing a set of grant proposals, or drafting a set of legal documents. Whenever there 
is a collection of tasks waiting for service and a one-at-a-time facility for providing that 
service, the sequencing problem represents the essential decision. In these examples, of 
course, the person who makes the sequencing decision often represents the facility provid-
ing the service as well, but we could easily separate those two roles. 

 In manufacturing systems, there is frequently a need to sequence a set of available 
production tasks that are waiting for a piece of machinery. Often, there is one critical 
piece of machinery, such as an oven, or there is a “bottleneck” operation, such as 
inspection or testing, whose schedule strongly influences overall performance. 
Sequencing jobs at the bottleneck sometimes lends itself to the sequencing analysis 
of the type we’ve illustrated in the foregoing sections. Sequencing jobs at an oven 
may lead to a variation in which several jobs can be processed simultaneously. 

 Nevertheless, the more typical manufacturing system is highly complex and 
characterized by shifting bottleneck patterns and unpredictable events. Sequencing 
models would seem to be overmatched when it comes to scheduling these kinds of 
systems. However, a generation of research in this area has produced a remarkable 
insight: simple sequencing initiatives can be adapted very effectively to complex 
situations. The archetype for such systems is the  job shop  model, in which several 
different kinds of machines work on a large number of multi-operation jobs. Each 
job has a unique routing through the machines, and as a job proceeds along this 
routing, it finds itself waiting for service along with other jobs at the various 
machines. The vocabulary of “jobs” and “machines” describes some of the tradi-
tional settings for a job shop, such as the manufacture of metal parts or electronic 
components. However, the model may be equally as applicable to the flow of paper-
work in the back office of an insurance company or a bank. 

 As yet, there is no comprehensive theory that prescribes how work should be 
scheduled in a job shop system. One effective approach is to decompose a compli-
cated, multi-machine system into a collection of one-machine subsystems, where it is 
easy to implement SPT as a scheduling procedure. Research has demonstrated that if 
decisions are made locally—that is, if we isolate each subsystem from the others and 
apply SPT with only local considerations—performance in the overall system can be 
enhanced. A simple principle such as SPT sequencing, applied locally at each 
machine or service center, can thus provide major benefits in performance.  

  Historical Background 

  Modern research into sequencing and scheduling problems is usually traced to 
journal articles of the 1950s. The optimality of shortest-first sequencing for the 
sum-of-completion-times objective was one of the early results that attracted 
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researchers to the formal study of sequencing and scheduling. Based on its first 
appearance in an archival journal, the optimality of SPT is usually credited to  Smith 
(1956) . A complementary result, published around the same time, showed that 
sequencing by the earliest due date minimizes the maximum tardiness in the schedule. 
Soon after, researchers learned that the problem of minimizing the total tardiness in 
the schedule (Σ T ) was quite challenging. Then research began to generalize the 
basic results in several directions. 

 One direction that attracted researchers was elaborating on the elements of the 
processing model. What happens when there are two machines instead of one? 
What if they operate in parallel or in series? What if there are three machines? 
Ten? When there are several machines in the model, it becomes necessary to 
describe the workflow or  routing . What if all workflow is the same? What if it is 
different? What if it is balanced across machines or unbalanced? What if there are 
assembly operations? What if jobs require both labor and machine resources 
simultaneously? What if there are breakdowns? 

 Another direction was an elaboration of job features. What if jobs are not all 
available at the outset but instead arrive continually, over time? What if jobs arrive 
randomly? What if work times themselves are also uncertain (not known in 
advance)? What if work times can be estimated, but with some inherent forecast 
error? What if there are restrictions on the ordering of certain pairs of jobs? 

 Yet another direction was elaborating on the basic objectives. The Σ C  objective 
begins to capture the concern with inventory or responsiveness, just as the Σ T  
objective begins to capture the concern with meeting due dates, but are there other 
reasonable ways of quantifying these considerations? What about efficiency? What 
about costs and profits? What if the manufacturing facility is only a captive resource, 
working to support a supply chain? 

 It has not been possible to answer all of these questions in one place, of 
course, because our knowledge has been developing gradually as sequencing 
and scheduling problems have been addressed by researchers. Guideposts for 
the expansion of knowledge have usually appeared in the form of textbooks or 
proceedings, and occasionally in the form of influential articles. The first major 
book on the topic was  Industrial Scheduling , a collection of papers edited by 
 Muth and Thompson (1963)  and largely based on the presentations made at a 
specialized conference two years earlier. The collection reviewed some of the 
early work from the 1950s and highlighted some of the major research in 
progress. 

 The next book in the field was  Theory of Scheduling , the pioneering textbook 
written by  Conway et al. (1967) . This book brought together mathematical theory, 
queueing analysis, and simulation results, summarizing the major advances and 
providing new frameworks and concepts for scheduling problems. The text elabo-
rated on the simulation results in  Conway (1965a , b ), two articles that set the research 
agenda for simulation approaches to the job shop problem. 

 The most enduring textbook has been  Introduction to Sequencing and Scheduling , 
introduced by  Baker (1974) . This book focused on deterministic models in sequenc-
ing and scheduling and for its time, represented comprehensive coverage of that 
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portion of the field. In its updated form,  Elements of Sequencing and Scheduling  
( Baker 2005 ), the book remains in use as a contemporary text. Less encyclopedic 
than it was thirty years ago, it nevertheless provides an introduction to basic sched-
uling concepts and results, and it serves as a stepping stone to the vast research 
 literature on the subject. 

 Echoing the impact made by the specialized conference that gave rise to the field 
of scheduling in the early 1960s, two more symposia reinforced the growth of the 
field and motivated further work. The first symposium led to a collection of papers 
edited by  Elmaghraby (1973) , and the second formed the basis for a special issue 
of the journal  Operations Research  under the editorship of  Nemhauser (1978) . 

 The 1970s saw the development in computer science of a body of knowledge 
relating to computational complexity. Although complexity is a broader topic, many 
of its early applications were made to problems in scheduling. Furthermore, knowl-
edge in sequencing and scheduling could be organized in a new and informative way 
with the help of complexity theory. The linkages between classical scheduling and 
computer science were first highlighted in  Computer and Job/Shop Scheduling 
Theory , edited by  Coffman (1976) . The next major text was  Sequencing and 
Scheduling: An Introduction to the Mathematics of the Job-Shop , by  French (1982) , 
which drew on developments in complexity theory to organize its coverage of 
deterministic scheduling. However, the most influential work in this period was 
perhaps a survey paper by  Lawler et al. (1982) , which updated the field and created 
a comprehensive classification of scheduling results to guide the next generation of 
researchers. 

 With the field in a more mature state, progress in finding optimal solutions to 
well-specified scheduling problems began to slow. More attention was paid to heu-
ristic methods. The viewpoint of heuristic thinking was explored in depth in 
 Heuristic Scheduling Systems , by  Morton and Pentico (1993) . They identified the 
need to integrate operations research and artificial intelligence approaches with 
sophisticated information systems. Using that philosophy, they described the devel-
opment of heuristic methods for complex scheduling problems. 

 A new perspective on scheduling emerged from the artificial intelligence commu-
nity, exemplified by the collection of papers entitled  Intelligent Scheduling , edited by 
 Zweben and Fox (1994) . Meanwhile, there was considerable progress in the analysis 
of parallel-machine scheduling, which had elaborated on the computer science per-
spective that had developed some 20 years earlier. As new contributions were made 
to those models, updated coverage of the topic finally appeared in the book 
 Scheduling Computer and Manufacturing Processes , edited by  Blazewicz (1996) . 

 The latest new book on sequencing and scheduling is  Scheduling: Theory, 
Algorithms, and Systems , by  Pinedo (2001) . It is the first text to integrate stochastic 
and deterministic scheduling models and appears to be the leading textbook on 
scheduling currently on the market.   
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        Chapter 2     
 The Knapsack Problem 

        John   J.   Bartholdi,   III    
Georgia Institute of Technology

   The “knapsack problem” appears in many forms in economics, engineering, and 
business: any place where one must allocate a single scarce resource among multiple 
contenders for that resource. It has acquired the fanciful name “knapsack problem” 
because our common experience of packing luggage expresses something of the 
flavor of the problem: What should be chosen when space is limited?    

   Introduction 

  Alice and Bob were excited about the bicycle tour they had long planned. They were 
going to ride during the day, carrying only light supplies, and stay in hotels at night. 
Alice had suggested they coordinate packing to avoid duplication and extra weight. 

 Alice was to pack tools: a compass, spoke wrench, chain breaker, hub wrench, 
and spare tire tube; and Bob was to pack consumables: Water, toilet paper, sun-
screen, trail mix, soap. They agreed that neither would pack more than  c  = 7 pounds 
of supplies. 

 On the night before the trip Alice gathered everything on the kitchen table and 
prepared to pack; but it quickly became clear that she had staged rather more than 
7 pounds. Decision time. 

 Alice was a perfectionist. She realized the importance of packing the right 
stuff and so was prepared to think carefully about it. She methodically 
indexed the candidate items and listed the weight  w

   i
   of each item  i  (Table  2.1 , 

2nd row).    
  But what to pack? Alice saw that she could fill the knapsack to the limit with 

items 1, 2, and 4. But then again she could just as well fill it with items 3 and 5 or 
with items 2, 4, and 5. Which is best? Or might it be better to pack only items 2 and 
3 even if this alternative leaves some residual capacity unused? Why not pack only 
items 1 and 5 or only 3 and 4? 

 Alice realized that each item would either be packed or left behind—2 choices, 
and so there were up to 2 5  = 32 possible ways to pack the knapsack. Not all of these 
are possible or even desirable, but it seemed as if she would have to consider each 
possibility explicitly and choose the best, whatever that meant. 

 Alice saw that, to choose the best, she needed some way to distinguish the “value” of 
one packing from another. Was it better to pack the spoke wrench or the spare inner tube? 

D. Chhajed and T.J. Lowe (eds.) Building Intuition: Insights From Basic  19
Operations Management Models and Principles.
doi:10.1007/978-0-387-73699-0, © Springer Science + Business Media, LLC 2008



2020 J.J. Bartholdi, III

She thought she could answer simple questions like this, which asked her to compare 
the values of individual items, but it seemed harder to compare entire packings. 

 A good rule of thumb in making hard decisions is to formalize the choices in 
some way, in hopes of clarifying them. Alice did this by assigning “values”  v   

i
   to 

each candidate item  i  (Table  2.2 , 2nd row).
      Furthermore, it seemed reasonable to measure the value of a packing by the sum 

of the values of the items packed. Under this assumption it became clear that the 
packing of items 2, 4, and 5, which has a total value of 6 + 4 + 5 = 15, is less desir-
able, even though it fills the knapsack, than the packing of items 2 and 3, which 
does not fill the knapsack but has total value 6 + 11 = 17. 

 Alice saw that she could search for the best items to pack by the following process. 
Write out all 32 possible subsets of items, sum the values of the items in each sub-
set, eliminate those that are  not feasible (exceed the weight limit), and choose the 
subset of largest value. Tedious perhaps, but simple, straightforward, and guaran-
teed to produce a packing of maximum value. 

 Of course, this instance of a knapsack problem is so small that it presents 
scarcely any challenge. If Alice had had to choose from among, say, 20 items; then 
there would have been 2 20  = 1,048,576 possibilities and Alice would likely have 
been awake all night to evaluate them all. Things can become much worse quickly 
for larger versions of this problem: To choose from among 100 items requires 
 evaluating 2 100  = 1,267,650,600,228,229,401,496,703,205,376 possibilities and it is 
not likely Alice could evaluate all of them within her lifetime. 

   General Structure of a Knapsack Problem  

 In her professional life Alice is a fund manager who oversees investment portfolios. 
She is currently considering over 100 potential investments and has estimated the 
return expected from each one. But each investment has a certain cost and Alice may 
not exceed her budget. Which investments should she choose? You will recognize this 
as having the same structure as Alice’s problem of packing for the bicycle trip: How 
to choose a subset of items of maximum value while not exceeding a limit on total 
“weight.” For the bicycle trip, “value” was a subjective expression of importance 
and “weight” was physical weight. For the investment portfolio, “value” is estimated 
return, perhaps constructed via a financial or economic model; and “weight” is the 

 Table 2.2    Relative Values of Each Item to be Packed  

 Item   1  2   3  4  5 
 Value  10  6  11  4  5 

 Table 2.1    Weight in Pounds of Each Item to be Packed  

 Item  1  2  3  4  5 
 Weight (lbs)  3  2  4  2  3 
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cost of investment. The common structure of these problems of choice is called the 
“knapsack problem” and it is distinctive in the following ways.

  •  We are faced with a number of yes/no decisions.  
 •  The decisions are independent, except that each yes decision consumes some 

known amount of a single, common, scarce resource.  
 •  None of the data will change during the time we make our decisions.    

 The most important part of this problem is the single, scarce resource. We are 
 challenged to use it wisely to achieve the greatest value. For the bicycle trip, that resource 
was weight capacity; for the investment portfolio, that resource is budget. The knapsack 
problem is a way of looking at decisions that focuses on that single constraint. 

 In real life there are not many decisions with single constraints; but there are 
many in which one constraint matters more than others, and so the knapsack model 
is much more widely applicable than the idea of a single constraint might suggest. 
For Alice and Bob there may be an additional constraint in the physical volume that 
can be packed in the knapsack, but they may be justified in ignoring this constraint 
for now, perhaps because from previous experience they expect to reach the 7-pound 
limit well before filling the knapsack. Other constraints might not have well defined 
thresholds. For example, the cost of supplies may be a “soft” constraint: As more 
items are packed, Alice and Bob might feel increasingly uncomfortable at the 
thought of all they must purchase, but there is no clear threshold as there is for the 
capacity of the knapsack. In such cases, one identifies the most important constraint 
and models that are in the knapsack formulation. Then, after solving, check that the 
remaining, unexpressed constraints are satisfied. 

 For the bicycle trip, Alice and Bob have decided that weight is the most sig-
nificant issue to them and they have stipulated a limit on it. After finding a good 
packing, Alice may check the resultant volume to see whether it is acceptable. 
If not, she might re-pose her problem as one of packing the most valuable load 
subject to a limit on the total volume. This would be a knapsack problem as well, 
but with volume as the scarce resource. 

 The knapsack problem Alice faces as a fund manager is too large to solve by 
 considering every possible solution (a process known as “total enumeration”); but the 
economic context gave her some insight that helped simplify her decision-making. In 
the business world, one hopes to achieve a high return on investment (ROI), because 
this indicates efficient use of financial resources. Accordingly, Alice prefers an invest-
ment that promises a greater return per dollar invested (“bang-for-buck”). For the 
bicycle trip, analogous reasoning suggests that she should prefer to pack items that 
have a large value-per-pound ratio  v   

i
  / w

   i
  , Table  2.3 .

 Table 2.3    Bang-for-Buck of Each Item to be Packed  

 Item  1  2  3  4  5 
 Bang-for-buck  10/3  6/2  11/4  4/2  5/3 
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      Alice realized she could avoid the work of total enumeration by simply choosing 
those items with greatest bang-for-buck. More formally, we can summarize the 
decision process as follows.

   Step 1:    For each item compute its bang-for-buck  v   
i
  / w   

i
  .   

  Step 2:    Sort the items from greatest to least bang-for-buck.   
  Step 3:    Choose items from the top of the list until the next item (call it item  k ) does not fit.   

   Using this procedure to pack for the trip, Alice would choose items 1 and 2, 
which together weigh 3 + 2 = 5 pounds and are of value 10 + 6 = 16. We know this 
is not the best possible solution—for such a small problem you can surely see better 
packings—but it was very easy to generate. Moreover, we have some reason to 
believe the solution might not be too far from the best because there is an undeniable 
logic behind the procedure: Choose those items that best use the scarce resource.   

  Bob Packs 

  Bob was to pack the consumables, which, for pedagogical convenience, had exactly 
the same weights as given in Table  2.1 . He noticed immediately that he had more choices 
in packing than did Alice: Because his items were divisible, he could repackage any 
of them and take only a portion; therefore his problem was to decide not which to pack, 
all or nothing, but the fraction of each item to pack. Like Alice, he saw that some items 
were more important than others. For example, he valued water more than soap, which 
they could do without if necessary. Bob listed the relative values of each item, which, 
again for pedagogical convenience, were identical to those of Table  2.2 .

   Building Intuition    The procedure defined by steps 1, 2, and 3 is of a type 
known as “greedy” because it simply sorts possible choices by some measure 
of attractiveness (in this case, bang-for-buck) and chooses from the top. It 
never reconsiders decisions. However, since this procedure is not guaranteed 
to find the best answer, we call it a “heuristic.” Hence choosing items by 
bang-for-buck is a “greedy heuristic.” Greedy procedures to find solutions to 
decision problems are appealing since, in general, they are intuitive. 

 Although a greedy procedure does not always optimally solve the knap-
sack problem, there are instances of decision problems in operations manage-
ment where such a procedure does find the best solution. One such example 
is the weighted completion time problem discussed in Chap. 1. As is shown 
in that chapter, a sequence (ordering) of tasks that minimizes the sum of 
weighted completion times is found by computing, for each task, the ratio 
of task time divided by weight and then sequencing the tasks in order of 
nondecreasing ratio values.  



2 The Knapsack Problem 23

  Now Bob’s packing problem was similar to Alice’s: How much of each item 
to pack so as to maximize the total value of a load that may not exceed 7 
pounds. 

   Bob’s Solution  

 Bob tried Alice’s suggestion of choosing the items of greatest bang-for-buck; but 
when he had chosen items 1 and 2, he noticed that they weighed only 3 + 2 = 5 
pounds, which left unused a capacity for 7 − 5 = 2 pounds. Because his items were 
divisible, Bob decided to go one step further and pack 2 pounds of item 3, which 
was the next-most-attractive. Two pounds of item 3 represented half its weight and 
so may be assumed to contribute half the value, or 11/2 = 5.5. This results in a 
packing that uses all available capacity and achieves a value of 21.5. Furthermore, 
as can be verified by inspection of this small  example, this is the very best packing 
achievable. It provides the best packing possible in all instances because every sin-
gle unit of the scarce resource is devoted to that item, or fraction thereof, that 
returns the greatest possible bang-for-buck. 

 Let us make Bob’s decision process more specific, because, if we can formalize 
it, then we can program a computer to do it for us.

   Step 1:    For each item  i , compute its bang-for-buck  v   
i
  / w

   i
  .   

  Step 2:    Sort the items from greatest to least bang-for-buck.   

  Step 3a:    Choose items from the top of the list until the next item (call it item  k ) does 
not fit.   

  Step 3b:    Take only as much of item  k  as will fill the remainder of the knapsack.   

   Note that, for any capacity and for any set of items selected in this manner, Bob 
will have to repackage at most a single item, the one selected in less than full 
quantity. 

 For this version of the knapsack problem, in which items are continuously 
divisible, the procedure is optimal: There is no alternative choice of items to pack 
that will have greater total value. Let us call the resultant value  V* . It is the largest 
possible value that can be realized from these candidate items subject to this 
weight limit.   

  Alice Tries Harder 

  Alice was pleased to see that choosing by bang-for-buck always generated the very 
best possible choices for Bob; but she saw that it would not work for her because 
her items were indivisible. Half a chain breaker would be useless: Each of her items 
had either to be packed in its entirety or else not at all and so she could not “top 
off” remaining capacity by adding just a little of another item. 
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   Alice Finds a Guarantee  

 Alice saw that her procedure was similar to Bob’s except that it stopped one step 
short1 . (Step 3b). Surely her solution must be almost as good as Bob’s, and Bob’s 
was the best that could be hoped for. Surely, the value of the items greedily chosen 
could never be “too far” from  V* , the very best that would be achievable if Alice’s 
items were divisible. Alice reasoned thusly: Suppose the heuristic halts, unable to 
pack item  k  entirely in the remaining capacity of the knapsack. If item k were 
divisible, so that I could pack it to fill the remaining capacity, it would add value 
( v   

k
  / w   

k
  ) × (the remaining available capacity of the knapsack) to what had been 

already packed and this would be the best possible packing. But my items are not 
divisible and so this solution is an ideal, possibly unachievable. If I stop here, omit-
ting item  k , then the value of what I have packed must be within

 ( v   
k
  / w

   k
  ) × (the remaining available capacity of the knapsack)      (1)

of  V* .
 In short, Alice cannot have missed optimal by more than the value of that  k -th 

item, the first that that did not fit.  

   How Wrong Can Alice Be?  

 Expression (1) bounds the opportunity Alice might forfeit by accepting an easy-to-
compute solution rather than insisting on an optimal solution. Here is an example 
that embarrasses the greedy heuristic: Consider a knapsack of capacity  c  for which 
two items contend. One is of weight 1 and value 1; the other is of weight  c  and value 
just shy of  c , call it  c-ε . The greedy heuristic would choose the first item and halt, 
because the second item no longer fits. The total value achieved would be 1; yet if 
the second item had been chosen the total value would have been  c-ε . Since  c  could 
be any large number, the error, both relative and absolute could be arbitrarily large. 

 That is the worst case. What might we actually expect? In some circumstances 
this worst-case error is small, perhaps small enough that we would feel comfortable 
accepting it. For example, we would expect the worst-case error (1) to be small and 
the solution to be quite close to  V*  whenever any of the terms of (1) are small; that 
is, in any of the following situations.

  •  If  v   
k
   is small compared to the total value packed; or  

 •  If  v   
k  
/ w   

k  
 is small compared to the average bang-for-buck of the packed items; or  

 •  If the remaining capacity of the knapsack is a small fraction of the total.    

  1 Alice’s procedure could be made a little more effective by having it try to fit each successive 
candidate item into the knapsack rather than stopping at the first failure. This will not affect our 
subsequent discussion. 
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 All of these conditions, and especially the third one, may be expected to hold if most 
items are small with respect to the capacity of the knapsack. In such case we are packing 
lots of small items into a large container, which, as we know from experience, is easy 
to do well (think socks in a suitcase). Many items will fit before the first one fails, and 
consequently that item may be expected to have a relatively small bang-for-buck  v   

k
  / w   

k
  . 

This is so for the simple reason that we will have already packed those items that have 
the greatest bang-for-buck. Moreover, because the items are small with respect to the 
capacity of the knapsack, we would expect any capacity unused after Step 3 to be small. 
Consequently we would expect the solution to be quite close to  V* , the upper bound. 
For example, if no item weighs more than x% of the weight limit, then we can be sure 
that a greedy packing will always fill the knapsack to within x% of its capacity and pro-
vide total value within x% of the maximum possible. Statistics are on our side here.  

   Is It Good Enough?  

 Is it “good enough” to know that your solution is close to the best possible? The answer 
to this question is the ubiquitous “it depends.” In particular, it depends on how 
much you are willing to pay in money, time, and effort to get a better solution. 
It is probably not worth worrying over if you are packing a knapsack for a bike 
trip; but it may well be worth anguish if you are loading a space vehicle for 
an expedition to Mars. 

 There are some situations in which it makes sense to accept an approximate solution, 
even if you wish for the best. For example, the best may not be well defined when the 
data are uncertain. For the bike trip, the weights of the items to be packed can easily 
be measured and everyone can agree on them, assuming we have a scale of sufficient 
accuracy. It is not so clear how to measure value. It may be that Alice and Bob disa-
gree on the value of sunscreen; indeed, Alice might be uncertain herself exactly what 
number to assign to the value of a compass. When the data are uncertain, the expense 
of careful optimization may not be worthwhile.   

  Alice Is Difficult to Please 

  Alice was a perfectionist. She took pride in owning a top-of-the-line touring bicycle, 
which had been fine-tuned for lightness and strength. She was dissatisfied that the 
greedy solution to her knapsack problem might not be the best possible. She wanted 
to know for sure whether it was the best; and if it was not … well, then she wanted 
the best. As we saw, Alice could be sure by methodically evaluating all possible 
solutions and choosing the best. But this is practical only when the number  n  of 
candidate items is quite small because the work to evaluate 2  n   possibilities increases 
very rapidly in  n  and so is impractical for any but the smallest instances of the 
knapsack problem. 
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 It is possible to compute an optimal solution for fairly large problems by trying 
carefully to fit items into the knapsack, adding one after another, possibly removing 
some if we have come to an impasse, and resuming. We can formalize such a 
 process by representing it as a network that summarizes the sequence of decisions 
about what to pack, the resultant state of the partially packed knapsack, and the 
remaining choices available to us. For example, Fig.  2.1  shows the network of deci-
sions representing Alice’s problem if she, unlike Bob, could not split any item.  

 There are  1 + n = 6  columns of vertices indexed by  i = 0, 1,…,n  ; the first vertex 
corresponds to the start (an empty knapsack) and each of the next 5 columns corre-
sponds to the disposition of an item. Each column is composed of  1 + c = 8  rows 
indexed by  w = 0, 1,…,c , each corresponding to one additional unit of weight. Each 
vertex  (i,w)  represents a possible state of a partially packed knapsack, the state in 
which items  1,…,i-1  have been considered and either packed or rejected, resulting 
in a knapsack of weight  w . Each edge is directed from left to right, bottom to top, 
and represents the inclusion or exclusion of an item. In particular:

  •  Any edge from  (i-1,w)  to  (i,w)  represents the exclusion of item  i : We have 
 considered item  i  but not packed it and so the cumulative weight of the partially 
filled knapsack remains  w . Such an edge is assigned length 0.  

  Fig. 2.1    Alice’s decision modeled as a problem of finding the longest path through a network       
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 •  Any edge from  (i-1,w)  to  (i,w + w   
i
   )  represents the inclusion of item  i : We have 

considered item  i  and packed it and so the cumulative weight of the knapsack 
has increased by  w 

  i
  . Such an edge is assigned length  v   

i
  .  

 •  Any edge from  (n,w)  to  (n,w + 1)  represents the decision to leave one unit of 
capacity of the knapsack unused. Such an edge is assigned length 0 .    

 NOTE: To avoid clutter in the figure, only a very few edges have lengths indi-
cated on them. The complete figure would have a length indicated on each edge.

Here is the key insight: Any path from the bottom-left origin  (0,0)  to the vertex 
on the top right  (n,w)  corresponds to a sequence of decisions of what to put in the 
knapsack and what to omit. We want a selection of items that gives greatest value, 
which means we want the longest-path from  (0,0)  to  (n,c) . 

 Fortunately, there are simple methods to compute the longest path in a network 
such as this, in which all edges point in the same direction (so that there are no 
cycles). The standard method is called dynamic programming and it works like this:

  •  Start at the last column and label each vertex in this column with 0, which is the 
length of the longest path from it to vertex  (n,c) .  

 •  Working backward to preceding columns, label each vertex in the current column 
with the largest value of: the length of an edge departing this vertex plus the 
label of the vertex on the other end of that edge. This will be the length of the 
longest path from the current vertex to vertex  (n,c) .    

 When we have finished labeling the first column, the label of vertex  (0,0)  will 
give the length of the longest path to vertex  (n,c) , which will also, by the clever way 
we have built the network, be the maximum value of any way of packing the knap-
sack. The path of this length, which we can discern by the pattern of labeling, tells 
us exactly which items to pack and which to leave, Fig.  2.2 .  

 As you will have surmised, this method is tedious for a human but simple for a 
computer. One can think of it as merely a clever way of organizing a search. It 
reduces the work by taking advantage of the observation that the best-packed knap-
sack of capacity  c  must also contain the same loads as the best-packed knapsacks 
of smaller capacity. In any event, this methodical search takes substantially less 
time than evaluating every one of the 2  n   possible loads. 

   The Cost of Finding Optimum  

 To find the longest path on the network above requires us to examine about  nc  vertices2 , 
and so we may take this as an estimate of the total work required. Notice that this 
depends on the number of items to be packed, which seems reasonable; but it also 
depends on the capacity  c  of the knapsack. This is more troubling because it seems 

  2 Some vertices are clearly spurious to the solution, such as those in the upper left-hand corner, but 
it is generally not worth the effort to identify those that can be ignored. 
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to suggest that the work can depend on how accurately we measure the capacity. 
For example, the network to represent Alice’s problem would have been larger if 
she measured all weights to the nearest ounce, and larger still if she measured to the 
nearest tenth of an ounce. This observation works in the other direction as well. 
Alice could reduce the size of the network, and presumably the work of computing 
a solution, by measuring less accurately: to the nearest kilogram instead of to the 
nearest pound. This reveals an interesting feature of the knapsack problem: The 
greatest determinant of the work to construct an optimal solution is the precision of 
the weights  w   

i
   more so than the number of items  n . The more precise the data, the 

more work is required to take advantage of that precision. The work increases 
exponentially with any increase in precision but only linearly in the number of 
items. For example, if capacity of the knapsack had been specified as 7.01 pounds 
instead of 7 then the network would require 701 rows of vertices and the work to 
solve would have increased by a factor of 100.   

  Fig. 2.2    The longest path corresponds to packing items 1 and 3 and omitting the remainder. The 
total value is 21, the length of the path       
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  Pedaling Into the Sunset 

  As Alice and Bob have determined, we can approach any problem with knapsack 
structure via the most appropriate of the following:

  •  If there are few items from which to select, we can simply enumerate all possi-
bilities and choose the most valuable subset of items.  

 •  If there are a moderate number of items from which to select or if the precision 
of the weights is not too great then we can compute the optimal solution by 
dynamic programming, as on the network above.  

 •  If there are very many items contending for selection or if the data are very precise 
(so that it is impractical to compute an optimal solution) or if the data are very 
imprecise (so that an optimum solution is not to be relied upon), then the greedy 
heuristic—choosing items of greatest bang-for-buck—is suitable.    

 In many practical applications, there is much merit in Alice’s greedy heuristic if 
the potential shortfall in quality of solution can be tolerated. Besides ease of com-
putation, Alice’s solution has the advantage that it is simply a sorted list of all the 
items, ranked from greatest to least bang-for-buck. If the bang-for-buck of an item 
were to change, it is a simple matter to move this item to its new position in the 
sorted list. This allows us to incrementally adjust the knapsack solution as data 
changes, so that the greedy solution can support  dynamic decision-making . That is, 
we might monitor items and remove or insert them as their values or weights 
change or as the capacity of the knapsack changes. This would be useful, for example, 
in maintaining an investment portfolio that must adapt to changes in the  financial 
marketplace, or in keeping the right product stored in the right locations of a distri-
bution center even as the patterns of customer orders change.  

  Applications of the Knapsack Problem 

  Among the straightforward applications of the knapsack problem are, unsurpris-
ingly, problems of loading shipping containers especially when one of weight or 
volume is known in advance to be the limiting constraint. These issues can be quite 
significant when space is scarce, as is the case when manufactured product is 
shipped to the US from China in advance of the holiday selling season. 

 Another common application is to cutting stock problems. For example, paper 
mills produce huge rolls of paper, the dimensions of which are determined by the 
manufacturing process. These roles are subsequently sliced into smaller rolls to fill 
customer orders. The value of the smaller rolls depends on the selling price. A similar 
problem is faced by manufacturers of fiber optic cable, who must decide how to cut 
lengths of cable to satisfy customer orders while extracting the greatest value from 
each length of cable. 

 As suggested earlier, the knapsack problem is a basic tool of portfolio optimiza-
tion, where budget is almost always the most important constraint. Many portfolio 
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optimization problems generalize the knapsack problem in ways that more exactly 
model economic phenomena. Thus it may be possible to purchase 0, 1, 2, or more 
shares of an investment; and the additional shares may bring diminishing returns. 
Many of the ideas mentioned by Alice and Bob can be extended to account for such 
additional complexities. 

 In a warehouse or distribution center (DC), space is frequently a scarce resource 
because of inevitable growth in the number of products handled. There is competi-
tion among the stockkeeping units for storage in the most convenient areas of the 
DC, where customer orders can be filled most quickly. This can be modeled as a 
knapsack with space as the limited resource and labor-savings as the value of stor-
ing a product in a convenient location. 

 Many scheduling problems can be posed as knapsack problems with machine 
time the most important scarce resource. This is especially appropriate when the 
machine represents a large capital investment. In such case it can make economic 
sense to schedule the machine, perhaps by solving a knapsack problem, and then 
purchasing whatever additional resources, such as workforce or transportation or 
raw materials, as are necessary to meet the schedule. 

 The knapsack appears as a sub-problem in many, more complex mathematical 
models of real world problems. One general approach to difficult problems is to 
identify the most restrictive constraint, ignore the others, solve a knapsack problem, 
and somehow adjust the solution to satisfy ignored constraints.  

  Historical Background 

  The knapsack problem seems to have first been identified in print in 1957, in two 
important publications. One was a paper by  George Dantzig (1957)  , one of the 
developers of linear programming and a creator of the field of Operations Research. 
He showed that the continuous version of the knapsack problem (the one faced by 
Bob) is perfectly maximized by choosing items by bang-for-buck. 

 The problem must have been a topic of conversation amongst the early  specialists 
in discrete optimization because in the same year Richard Bellman, another impor-
tant early figure in Operations Research, described how to use dynamic  programming 
to solve the knapsack problem. (This is equivalent to the method above in which 
we find the longest path on a special network.) Very quickly thereafter the knapsack 
model was applied to a range of applications, including most of those listed above. 

 Throughout the 1980s there was much work on approximation algorithms, solu-
tion techniques that cannot be guaranteed to produce optimal solutions because 
they strategically give up some quality to achieve speed of execution. The knapsack 
problem was a popular target for the development of such approximation methods. 
Indeed, one of the first “polynomial approximation schemes” was developed for the 
knapsack problem by Sahni (1975). Such schemes may be thought of as solution 
methods in which one may specify a desired guarantee for the quality of solution 
in advance of solving. As to be expected, the work to solve increases quickly with 
the quality required. Immediately afterwards, this was improved by  Ibarra and Kim 
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(1975)  to a “fully polynomial approximation scheme,” which makes the trade-off 
between quality of solution and effort slightly more favorable. Specialized solution 
techniques to solve the knapsack problem and its variants are provided by  Martello 
and Toth (1990) . More recently, researchers, such as  Kellerer et al. (2005)  have 
worked on ways to exactly solve ever larger instances of the knapsack problem. 
Many of these involve solving some “core” of the problem and then building this 
partial solution to a full solution. 

 Interestingly, the knapsack problem figured prominently as the first suggested 
basis for a public key encryption system. This early work is described in  Diffie and 
Helman (1976)  and  Merkle and Helman (1978) . It should be noted that the approach 
was later “cracked” by cryptographers and replaced by more resistant schemes. 

 As an example of the flexibility conferred by the simplicity of the greedy algo-
rithm,  Bartholdi and Hackman (2006)  make extensive use of the knapsack problem 
as part of a larger model to cache product in a distribution center.   
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        Chapter 3  
 Flexibility Principles 

        Stephen   C.   Graves    
Massachusetts Institute of Technology

   Consider a setting with multiple demand classes that are served by a set of 
resources. When each resource is limited to serving only one demand class, we can 
often have a situation where some resources are under-utilized and idle, while others 
are over-utilized and not able to meet the demand. One tactic for dealing with this 
situation is to make each resource more flexible so that it can serve more than one 
demand class. But how much flexibility should each resource have and what is the 
best way to deploy flexibility across the resources? This chapter shows that when 
done right, limited flexibility can provide almost the same level of benefits as 
complete flexibility.    

   Introduction 

  FCM is a small manufacturing company that assembles a family of fuel controllers 
for jet engines and turbines. The assembly of each type of fuel controller is a 
 complex, labor-intensive activity that requires specialized tools and skills and takes 
half of a work day; that is, the assembly time for each unit is 4 h. FCM supplies six 
distinct products, labeled A, B, C, D, E, and F, and has six certified technicians, 
Adam, Bob, Carol, Dianne, Edith, and Fred. Each technician has been trained to 
assemble one type of fuel controller, as shown is Fig.  3.1 .  

 At the start of each week, FCM receives orders from its customers, which are 
Original Equipment Manufacturers (OEMs) for which the fuel controller is a  subsystem 
required for their final products. The OEMs expect delivery of the  completed orders at 
the start of the following week. Thus, FCM has exactly 1 week to meet the orders. 

 FCM follows a simple protocol for running its assembly operation. At the start 
of each week, it schedules each technician to assemble the number of units exactly 
equal to the demand for his/her product. For instance, if demand for product A is 
8 units, then Adam will assemble 8 units, no more and no less, in the coming week 
so as to meet the demand for A. 

 Based on past order history, FCM has developed a forecast for demand for each 
product. For instance, FCM expects demand for product A to be 10 units on 
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 average. However, this is just a forecast and actual demand for A can deviate from 
the forecast. Indeed, weekly demand for product A has ranged between 8 and 12 
units, and FCM forecasts that the likelihood that demand is 8, 10 or 12 units is 
equally likely. [Customer orders are typically for pairs as each engine will require 
two fuel controllers.] That is, the probability is 1/3 for each of the possible 
 outcomes, 8, 10 or 12 units. 

 Similarly, FCM has made a forecast for demand for the other five products, and 
each product has the same demand forecast. For each product the possible demand 
outcomes are 8, 10, or 12, with each occurring with equal likelihood, namely each 
with probability of 1/3. Furthermore, the demand for each product is independent 
from week to week and independent of the demand of each of the other products. 
Thus, the fact that the demand for product A in the current week is 12 has no 
 influence on the demand outcome for product B or on the demand outcome for A 
in the following week. 

 This is a quite stylized and simplified example, but is representative of many 
operational settings in which there are multiple demand categories or classes 
( products A, B,..F) that are served by a set of resources (Adam, Bob, … Fred). 
Many service systems operate with parallel servers and different demand classes. 
For example, the resources or servers might be physical therapists, or barbers, or 
tutors, and the categories of demand would correspond to customers with differing 
service requirements (e.g., therapy for different body parts; hair cuts for girls, boys 
and adults; help with math, science, or history). In a manufacturing operation, we 
might have a set of equipment that serves different types of jobs. For example, the 
photolithographic equipment in a semi-conductor fabrication plant is responsible 
for the two to three dozen photolithographic process steps that are required for each 
lot of wafers that flow through the facility. Each step requires a different setup and 
specific tooling, e.g., a mask. As a consequence, a plant will often dedicate each 
process step to a limited subset of the available equipment. 

  Fig. 3.1    Base case at FCM, a dedicated system       
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 A challenge in these settings is how best to match the resources to the demand. 
At FCM we have six technicians, each with a nominal work week of 40 h. Thus, if 
demand for each product were 10 units each week, then we would have a perfect 
match between the available resources and the demand. Each unit requires 4 h of 
assembly time, so each worker would complete his/her 10 units in his/her normal 
work week of 40 h. Unfortunately, when demand can vary from week to week, we 
lose this balance. When demand for product A is 12 units, Adam needs to work 48 
h, or 6 days, to complete the work within the week; Adam is willing to do this, as 
he gets paid an overtime rate of 150% of his normal pay for the extra 8 h he works. 
When demand for product A is 8 units, Adam is underutilized and needs to work 
only 32 h. However, FCM still pays him for a full week, namely for 40 h, and will 
assign him other tasks to fill out the remaining 8 h of work time. 

 Because of this imbalance, each technician works a day of overtime once every 
3 weeks on average, and thus, FCM pays, on average, for 2 days of overtime each 
week. FCM naturally wonders about how to mitigate or avoid this overtime 
expense. In such settings, the first thought is to explore how the variability might 
be eliminated or reduced. If FCM might somehow entice the customers to order 
exactly 10 units of each product each week, then there would be a perfect match of 
demand and resources and no need for overtime. This might be possible if there 
were a few large customers, and if FCM were willing to provide an incentive, like 
a price discount for stable ordering. However, this could be more costly than the 
overtime, and/or impossible to achieve if there were lots of small customers. 

 If FCM cannot affect the demand variability, then it might consider the common 
operational tactics of creating a buffer of some form as a counter measure to the 
variability. 

 One form of buffer is a  capacity buffer ; FCM might hire and train a seventh 
technician, who would be capable of assembling any of the products (e.g., Jack, a 
jack-of-all trades). Then each week Jack would pitch in and help out with any 
demand surpluses; that is, he would assemble the 11th and 12th units for any product 
that has demand of 12. This would eliminate the need for overtime, with one 
exception. If the demand for each product were 12, then Jack would have 12 units 
to assemble and he would need to work an extra day of overtime; but this would 

occur very rarely, with probability     
6

1 1

3 729
⎛ ⎞ =⎜ ⎟⎝ ⎠

, on average once every 729 weeks 

(about 14 years). Thus, adding capacity in the form of an additional technician 
effectively eliminates the need for overtime. The cost, though, might be quite high; 
we now need an extra person, fully trained to assemble every product. In most 
 settings, this cost is likely to exceed the savings, namely saving 2 days of overtime 
each week, unless we can find other things for Jack to do. 

 A second way to buffer variability is to create a  time buffer . Currently FCM com-
mits to deliver orders within a week. By lengthening its delivery lead time from 1 week 
to, say, 2 or 3 weeks, FCM could create a time buffer that would allow it to smooth out 
the week to week demand variability. This could substantially reduce FCM’s overtime, 
but only if its customers were willing to accept a longer delivery lead time. 
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 The third type of buffer is to use an  inventory buffer . FCM could assemble its 
fuel controllers to stock, and then serve demand from this inventory. Similar to a 
time buffer, the inventory buffer would allow FCM to smooth its production and 
reduce the amount of overtime. Making to stock presumes that each product is not 
customized to an order and that each product has a stable design specification. The 
cost for this tactic is the holding cost for the inventory. 

 Let us suppose that none of these options is readily viable for FCM. It’s too 
expensive to hire and train a seventh technician; customers will not accept a longer 
lead time; and the fuel controllers cannot be made to stock as each has some 
 customized content and thus must be made to order. Then another option to reduce 
overtime might be to increase the current capability of the work force by cross-
training. Currently each technician is trained to assemble just one product, and each 
product can be assembled by just one technician. We term this a  dedicated system , 
in which each resource is dedicated to one product and each product can be assem-
bled by only one resource. Suppose we could train and certify the technicians to 
assemble more types of products. As we will see, this cross-training is a form of 
risk pooling, as the resource flexibility permits the pooling of the demand variabil-
ity across multiple products that share the same set of resources; see Chap. 9 in  this 
volume for a discussion of risk pooling. 

 What is the benefit from having a  flexibility buffer  in the form of cross-trained 
labor? How is the best way to create this flexibility? We will explore these ques-
tions in the remainder of this chapter.  

  Total Flexibility 

  To get started, let us consider an extreme case. Suppose we train each technician to 
be able to assemble all six products. Again, each unit requires 4 hours of assembly 
time, so each technician can assemble 10 units in the normal work week. Thus, the 
work force can assemble 60 units each week without resorting to overtime, regard-
less of the product mix. This is because the technicians are fully interchangeable, 
with each of them capable of doing any mix of work — so each can do any 10 units 
per week. However, overtime will be needed to assemble any demand beyond 60 
units. 

 Under the assumption that demand for each of the six products has outcomes of 
8, 10, and 12 units with equal probability, we can find the probability distribution 
for the total aggregate demand. We report this in Table  3.1  and depict it as a histo-
gram in Fig.  3.2 . We also report in Table  3.1  the cumulative probability and over-
time required for each demand outcome. For instance, the weekly aggregate 
demand is 60 units or less with probability 0.5967; also, if demand were 66 units, 
then overtime is needed to assemble 6 units, requiring a total of 24 h.

       From the table we see that overtime is needed for only about 40% of the 
weeks; in 6 out of 10 weeks, we would not need any overtime. In contrast, in 
the dedicated system where each technician can assemble only one product type, 
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then each  technician works overtime with probability     
1

3
; thus, the probability 

that there is no overtime needed by any of the technicians would be 
6

2

3
⎛ ⎞
⎜ ⎟⎝ ⎠

 or only 
9% of the weeks. 

 Table 3.1    Probability Distribution for Total Demand  

 Demand 
 outcome  Probability 

 Cumulative 
 probability 

 Overtime 
 production (units)  Overtime (hours) 

 48  0.0014  0.0014 
 50  0.0082  0.0096 
 52  0.0288  0.0384 
 54  0.0686  0.1070 
 56  0.1235  0.2305 
 58  0.1728  0.4033 
 60  0.1934  0.5967 
 62  0.1728  0.7695  2  8 
 64  0.1235  0.8930  4  16 
 66  0.0686  0.9616  6  24 
 68  0.0288  0.9904  8  32 
 70  0.0082  0.9986  10  40 
 72  0.0014  1.0000  12  48 

48 50 52 54 56 58 60 62 64 66 68 70 72

Total demand probability

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

  Fig. 3.2    Total demand probability       
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 From Table  3.1  we find the average amount of weekly overtime to be 6.32 h. 
We compare this to the base case in which each technician could assemble only 
one product; in this case the average overtime is 16 h per week. Hence, for 
FCM the benefit of complete cross-training of the work force is a reduction in 
the average overtime from 16 h to 6.32 h per week. This is the absolute best that 
can be done from increasing the flexibility of the current work force. In the 
following sections we examine how close we can get to this best case with more 
selective cross-training.  

  Limited Flexibility: Train Adam To Assemble B 

  As training is quite expensive, a natural question is what the benefits might be from 
a less ambitious schedule of cross-training. Again, we will explore this by starting 
with an extreme case. Suppose we train Adam so that he can assemble product B, 
in addition to product A. All of the other technicians remain dedicated to their 
products. What is the benefit to FCM from this investment? 

 With a little thought, one realizes that the only benefit from this investment is 
when demand for product A is low and demand for product B is high, that is when  
  d

A
 = 8 and d

B
 = 12,   where   d

x
    denotes demand for product x. Then Adam can assem-

ble 8 units of A and 2 units of B within his 40-h work week and Bob can assemble 
the remaining demand for B, namely 10 units, in his normal week. Thus, the cross-
training of Adam to produce B would save one shift (8 h) of overtime for Bob 
whenever   d

A
 = 8 and d

B
 =12  . 

 For all other demand outcomes there is no benefit. When   d
A
 = 10 or 12   , then 

Adam is of no help to Bob, as he must spend his entire time assembling product A. 
When    d

A
 = 8 and d

B
 = 8 or 10   , then Adam has idle time but Bob does not need any 

help. 
 The probability that   d

A
 =8 and d

B
 = 12    is easily found to be: 

  [ ] [ ] [ ] 1 1 1
Pr 8 and 12 Pr 8 Pr 12

3 3 9A B A Bd d d d
⎛ ⎞ ⎛ ⎞= = = = × = = × =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

  . 

 Thus, relative to the base case of the dedicated system, the benefit from training Adam 

to assemble B is a reduction in overtime per week, on average, of    1 8 0.89 
9

h h× =    . 

 For FCM the cost of an hour of overtime is approximately $80. Thus, the annual 
benefit from training Adam to assemble B is given by 

  $80 0.89 52 $3700h weeks

h week year year
× × ≈   . 

 FCM needs to compare this to the cost of training; a technician requires 
between 100 and 150 h of training in order to be certified to assemble a new 
 product. FCM estimates the one-time cost of this to be on the order of $10,000. 
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Thus, there would be about a 3-year pay-back from training Adam to assemble B, 
which is an unacceptable return for FCM. FCM requires a 2-year pay back on this 
type of investment.  

  Limited Flexibility: Create Two-Person Teams 

  Suppose FCM also trains Bob to assemble product A, so that Adam and Bob can 
form a two-person team to handle both products A and B. From a similar analysis, 
we find that there are now two demand scenarios when this cross-training leads to 
a benefit:   d

A
 = 8, d

B
 = 12 and d

A
 = 12, d

B
 = 8.    Each scenario occurs with probability  

  1

9
   and saves 8 h of overtime, relative to the base case in Fig.  3.1 . Thus, cross-training 

both Adam and Bob leads to an average reduction in overtime of   
2

8 1.78 
9

h h× =   .  

 Based on these two examples, one might conclude that cross-training is not a viable 
option for FCM. Training each technician to be capable to assemble a second product 
entails a one-time cost of $10,000 per technician. The annual benefit from each cross-
trained technician would be a reduction in overtime leading to a savings of $3700 per 
year. Thus, each investment would be recovered in 3 years, which is not acceptable for 
FCM. One cross-training plan is shown in Fig.  3.3 , in which FCM establishes three 
two-person teams. This flexibility or cross-training plan results in a reduction in the 
expected overtime from 16 h per week for the base case to 10.67 h per week.  

 We previously had found that training each technician to assemble all products 
reduces the expected overtime from 16 h per week to 6.32 h per week, which is the 
best we can do. The cross-training plan shown in Fig.  3.3  closes more than half of 
the gap between the dedicated system (16 h of overtime per week) and the total-
flexibility configuration (6.32 h of overtime per week). We can close this gap by 

  Fig. 3.3    Two-person teams       
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adding more flexibility to the configuration in Fig.  3.3 , by continuing to cross-train 
each technician; but one wonders whether there is a better way to proceed.  

  Limited Flexibility: Build A Chain 

  Suppose instead of creating two-person teams we follow a different strategy, as 
shown in Fig.  3.4 . That is, let’s train Adam to assemble B, and Bob to assemble C. 
As before, we see that there are benefits when   d

A
 = 8, d

B
 =12 and d

B
 = 8, d

C
 = 12   . 

Each scenario occurs with probability   1

9
    and saves 8 h of overtime, relative to the 

dedicated system with no cross-training.  
 But we have another demand scenario to consider here. Suppose demand for 

 product A is low and demand for product C is high, namely   d
A
 = 8, d

B
 = 10, d

C
 = 12   . 

Then, from inspection, we see that we can accommodate the surplus demand for C 
without overtime: Adam assembles 8 units of A and 2 units of B; Bob assembles 8 
units of B and 2 units of C; and Carol assembles the remaining 10 units of C. Thus, 
we have been able to use Adam’s excess capacity to meet the demand surplus for 
product C, even though Adam is not capable of assembling product C! 

 This demand scenario occurs with probability   
3

1 1

3 27
⎛ ⎞ =⎜ ⎟⎝ ⎠

   and saves 8 h of over-

time, relative to the base case. Thus, cross-training Adam to product B and Bob to 

product C leads to an expected reduction in overtime of   
2 1

8 2.07 
9 27

h h⎛ ⎞+ × =⎜ ⎟⎝ ⎠
    

 Recall that cross-training Adam to product B and Bob to product A led to a 
reduction of 1.78 h.  Thus, the benefit from cross-training Adam and Bob depends 
on how it is done.  The plan in Fig.  3.4  is better than a two-person team focused on 
products A and B. The reason is clear from consideration of the demand scenario  
  d

A
 = 8, d

B
 = 10, d

C
 = 12.    When demand is low for A but high for C, the configuration 

in Fig.  3.4  permits Adam’s excess capacity to be applied  indirectly  to satisfy the 
excess demand for C. This is possible because Adam is linked to product C by way 
of Bob: since Adam can produce B, he can off load work from Bob, who can then 
use this capacity to help Carol with C. 

 Furthermore, we observe that the incremental benefit from the second invest-
ment in cross-training (training Bob to assemble product C) is  greater  than the 
benefit for the initial investment (training Adam to assemble B). When FCM trains 
Adam to assemble B, it obtains a reduction of 0.89 h of overtime per week, for an 
annual savings of $3,700. Training Bob to assemble C increases the overall benefit 
to a reduction of 2.07 h per week, for an annual savings in excess of $8,600. Thus, 
the incremental annual savings from training Bob is more than $4,900! In most 
contexts, the rule of thumb is that we get decreasing incremental returns from addi-
tional investment (for an example, see Chap. 2 in this volume); this is a somewhat 
surprising counter example to this rule. 
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 The configuration in Fig.  3.4  is the best way to train two technicians to each do 
an additional product. In network terminology, this is the best way to add two links 
or arcs to the dedicated system, shown in Fig.  3.1 , where each link signifies the 
training of one technician to assemble one product. We say that there is a  chain  that 
connects products A, B, and C to the resources Adam, Bob, and Carol, in that these 
products and technicians are connected by the links. Within the chain, we can trace 
a path between any product or technician to any other product or technician using 
the links1.    The existence of this chain is what provides the extra benefit, or divi-
dend, relative to the two-person teams in Fig.  3.3 : the chain permits Adam’s excess 
capacity to be deployed so as to handle the excess demand at C. 

 There are many equivalent configurations to that shown in Fig.  3.4 , in which 
we add two links and form a chain. For instance, we could train Adam to assemble 
C and train Carol to assemble E. This will create a chain from A to Adam, Adam 
to C, C to Carol, and Carol to E. The benefit is the same as that for Fig.  3.4 . When 
adding two links, the key idea is to coordinate the training so as to create the 
longest chain. 

 These ideas extend as we add more links to the network. Consider the cross-
training plan shown in Fig.  3.5 . To see the benefits, we enumerate all of the relevant 
demand scenarios in Table  3.2 , where blank cells signify that the demand can 
assume any outcome. From the table we can compute the expected reduction in 
weekly overtime to be 3.46 h, for an annual savings of nearly $14,400. Thus, the 
incremental benefit from training Carol to assemble product D is more than $5,700 
per year. Again we have an increasing return from the incremental investment in 
cross-training that is attributable to chaining; we now have a chain connecting 
product A to product D and technicians Adam to Dianne, which permits the excess 
capacity of Adam and Bob to be deployed to meet surplus demand for products C 
and D. Yet, we still do not quite have a viable business case for FCM: the required 

1 In network terminology, a chain is a connected sub-graph of the network.

  Fig. 3.4    Chaining Adam, Bob, and Carol       
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investment is $30,000 to train Adam, Bob, and Carol and the annual savings are less 
than $15,000, leading to a more than 2-year payback.     

    Limited Flexibility: Complete the Chain 

  We can continue in this fashion and add additional flexibility — train Dianne to 
assemble E and train Edith to assemble F. We then have a configuration as shown 
in Fig.  3.6 , with a chain that connects all products and all technicians. We find that 
the incremental savings from training Dianne to assemble product E is $6,300 per 
year; the incremental savings from then training Edith to assemble F is $6,711 per 
year. Thus, we find that there continues to be an increasing return from additional 
cross-training — as long as we keep building a longer chain. Furthermore, from the 

 Table 3.2    Demand Cases and Incremental Benefits from Configuration in Fig.  3.52    

 d 
A
   d 

B
   d 

C
   d 

D
    Probability  Overtime savings (hours) 

 8  12    0.1111  8 
  8  12    0.1111  8 

  8  12    0.1111  8 
 8  10  12    0.0370  8 

  8  10  12    0.0370  8 
 8  10  10  12    0.0123  8 
 8   8  12  12    0.0123  8 

  Fig. 3.5    Chain connecting Adam, Bob, Carol, Dianne with products A, B, C, D       

  2 The probabilities in the table are just the product of the probabilities for the specified demand 
outcomes, which are assumed to be independent; for instance, the probability for the demand case 
in the fifth row is found as: 

    
3

1 1
Pr[d 8,d 10,d 12] Pr[d 8] Pr[ 12] 0.0370.

3 27B C D B Dd ⎛ ⎞= = = = = × = = = =⎜ ⎟⎝ ⎠
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standpoint of FCM, the payback for the $10,000 investment in cross-training is now 
about 18 months for both Dianne and Edith; this is now a quite attractive return on 
investment for FCM.  

 However, there is still a big gap between the performance of the chain in Fig.  3.6  
(with all products and technicians connected) and that for a total flexibility 
 configuration in which each technician can assemble all products. The expected 
amount of overtime for the configuration in Fig.  3.6  is 9.42 h per week, whereas it 
is 6.32 h per week if each technician is fully flexible, capable of assembling any 
product. Again, we ask whether we can close this gap with limited flexibility, and 
if so, how? 

 We note that whereas we have connected all products and technicians in Fig.  3.6 , 
there are some asymmetries in the configuration. There are two technicians that can 
assemble each product, except for product A that can only be made by Adam; and 
we have cross-trained all technicians to assemble two products except for Fred. 
What if we now train Fred to assemble A, as shown in Fig.  3.7 ?  

 We find that this last investment in cross-training is extremely beneficial. As 
shown in Table  3.3  and Fig.  3.8 , adding this link, namely training Fred to assemble 
A, results in an incremental annual savings of over $12,800. Furthermore, we find 
that the configuration in Fig.  3.7  performs equivalent to the total flexibility configu-
ration. Each configuration averages 6.32 h of overtime per week, for an annual 
overtime cost of $26,300. Yet, these two systems differ dramatically in terms of 
their  investment in cross-training. On the one hand, the closed chain configuration 
requires an investment of $60,000, to train each technician to assemble a second 
product; the savings relative to the base case of a dedicated system is $40,000 per 
year, leading to payback in 1.5 years. On the other hand, the total flexibility con-
figuration entails training each technician to produce all five other products, say, for 
a one-time training cost of $50,000 per technician for a total of $300,000 for FCM; 
the payback for the investment in total flexibility would be 7.5 years.      

  Fig. 3.6    Chain connecting all products and technicians       
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 Why is this last link so valuable? This last link  closes the chain  in that we now 
have a complete circuit that connects all products and technicians. This circuit or 
closed chain permits us to move excess capacity from any part of the network to 
meet surplus demand for any of the products. In particular, if we consider the con-
figuration in Fig.  3.6 , even though we have chained all of the products and resources 
together, there is no way to move excess capacity from the bottom of the network 
(i.e., Edith or Fred) to meet surplus demand at the top of the network (products A 
and B); adding the last link from Fred to product A now permits this to happen. 
Indeed, with the closed chain we now have a remarkable ability to match the 
 available capacity to the variable demand. 

 Furthermore, in this example any additional cross-training provides no benefit. 
The closed chain configuration is literally equivalent to the system with total flexi-
bility, for the given demand outcomes. Having more cross-training does not lead to 
any reductions in the overtime requirements. Thus, this is the best we can do. 

 As another way to see the value from chaining, let’s compare the plan in Fig.  3.3  
(two-person teams) with the plan in Fig.  3.7  (closed chain). In both instances we train 
each technician to be able to assemble a second product. In both instances, each 
product can be assembled by two technicians. These two systems require the same 
investment in cross-training, $60,000, and would seem to be very similar in structure. 

  Fig. 3.7    Closed chain       

 Table 3.3    Performance of Chains, Adding One Link at a Time  

 
Configuration 

 Expected overtime 
per week (hours) 

 Expected cost per 
year ($ per year) 

 Incremental reduction 
from link ($ per year) 

 Dedicated system  16.00  66,560 
 Train Adam on B  15.11  62,862   3,698 
 Train Bob on C  13.93  57,932   4,930 
 Train Carol on D  12.54  52,180   5,752 
 Train Dianne on E  11.03  45,880   6,300 
 Train Edith on F   9.42  39,169   6,711 
 Train Fred on A   6.32  26,295  12,874 
 Total flexibility   6.32  26,295 
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But the return on this investment is much different, as these two systems perform 
much differently. In comparison with the dedicated system (Fig.  3.1 ), the plan with 
two-person teams reduces the weekly overtime, on average, from 16 h to 10.67 h. In 
contrast, the plan with the closed chain reduces the weekly overtime, on average, 
from 16 h to 6.32 h, yielding almost twice the benefit from the two-person teams.  

  General Insights On Flexibility 

  We have developed and used the FCM example as a way to examine flexibility in 
an operating setting. In this case, we have a relatively simple production system 
with uncertainty in the demand requirements and with production inflexibility due 
to constrained resources. We have an opportunity to increase the flexibility of the 
system by cross-training; however, there is a trade-off between the cost of cross-
training and the possible benefits from reduced overtime. From this example we 
observe the following:

  •  The benefits from increased flexibility depend on how it is deployed; in particular, 
we get the greatest benefits by building longer and longer chains that connect 
more and more products and resources together.  

 •  As we build a chain, we get increasing returns from our investments in flexibility; 
that is, the incremental benefit from an investment in flexibility grows as we 
increase the size of the chain.  

 •  Once we have created a chain that connects all of the products and resources 
together, we get the largest incremental benefit by closing the chain; that is, we 
get the largest return by adding a link that creates a circuit connecting all of the 
products and resources.  
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 •  In our example the performance of the closed chain configuration is equivalent 
to that for a system with total flexibility, that is, a system in which each resource 
can produce any of the products. Thus, there is no benefit from adding any 
 flexibility beyond the closed chain.    

 Although we have developed these observations for a quite stylized setting, we 
have found them to be quite robust. Indeed, we contend that (1) limited flexibility, 
when deployed in the right way, yields most of the benefits of total flexibility, and 
(2) limited flexibility provides the greatest benefits when configured to chain prod-
ucts and resources together to the greatest extent possible. In particular, as we 
increase the demand variability for the products, we do find that the performance 
of a totally flexible system can be better than that for a system with a closed chain 
configuration. However, for realistic ranges of the demand variability, this per-
formance gap, albeit not zero as in the case of the example, is quite small. As a 
consequence, we observe that there is usually a very poor return from adding any 
flexibility beyond the closed chain. 

 The FCM example has a great amount of symmetry—same number of products 
and resources, same production rates for each resource, same demand characteris-
tics for each product. This is not the case for more realistic scenarios, where each 
product has distinct demand characteristics, the production rates vary across the 
resources and the number of products differs from the number of resources. 
Nevertheless, we have found that the principles cited above are most helpful in 
providing guidelines for exploring flexibility options. We still want to build as long 
a chain as possible and to create a circuit that connects the primary products and 
resources together. In addition we try to equalize the load or expected demand that 
is assigned to each resource, and try to connect each product to its share of capacity. 
With these additional considerations, limited flexibility deployed to create chains 
provides most of the benefits of total flexibility. 

 The principles that we uncovered with the FCM example apply to many other 
contexts. The general conditions are that we have multiple resources and multiple 
tasks. A resource is required to perform each task. However, some form of invest-
ment, qualification or training is required in order for a specific resource to have the 
capability to perform a specific task. As a consequence, each resource has limited 
capability in that it is qualified to perform only a subset of all of the tasks. 
Furthermore there is some uncertainty in demand requirements, namely how much 
work is required for each type of task. Key issues for such an operation are to 
decide what capability each resource should have and to predict the performance of 
a given configuration of resources.  

  Applications 

  The FCM example is one context. The multiple resources are highly skilled techni-
cians. The tasks are the assembly of a complex product, e.g., fuel controllers. There 
is uncertainty in the demand requirements for these products, and there is a 
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nontrivial expense to train a technician to be certified to assemble each of the 
products. Other examples include

  •  Maintenance personnel and repair tasks. Equipment in a plant fails at random 
intervals. The repair task is specific to the type of equipment and requires a qualified 
maintenance engineer. The flexibility questions are to decide the training for each 
maintenance engineer, and then how to dynamically assign to repair tasks.  

 •  Service representatives and/or technicians in a call center. A call center receives 
a mix of types of calls: questions about a product warranty, questions about how 
to use a product or how to install software, questions about how to return a product 
for repair, requests to place an order or make a reservation, questions about order 
status or to cancel/change an order, etc. Service agents handle these calls but 
require specialized skills and/or access to on-line information, depending upon 
the product and the nature of the call. Most call center operating systems will 
automatically screen calls to determine the type of call so as to direct it to an 
appropriate service agent. The flexibility questions are to decide how many service 
agents and their training, and how to route calls as they arrive to the system.  

 •  An assembly cell. An assembly cell is set up to assemble a product or product 
family. The assembly of a product is broken down into a sequence of specific 
tasks. The assembly cell consists of a sequence of workstations, at each of which 
a subset of the tasks are to be performed. A trained technician is required to per-
form the tasks at each workstation, but often a cell will have fewer technicians 
than work stations. In this case, technicians will float between workstations. 
The flexibility questions are to decide how many technicians and what amount 
of cross-training is needed to assure an efficient operation.  

 •  Semiconductor fabrication. The production of a semiconductor device entails 
several hundred process steps that are necessary to build twenty to thirty layers 
of circuitry. For many of the process steps, a device returns to the same set of 
process tools for each layer. Each process tool is capable of performing the process 
task for any layer, but usually requires a setup and/or specialized tooling to switch 
from one layer to another layer. The flexibility questions are to decide which 
tools to dedicate to which layers, which tools to flex between multiple  layers, and 
then how to schedule the work flow through the set of process tools.  

 •  Assembly plants. In the automobile industry, the assembly plants for final vehicle 
assembly can produce multiple vehicle models or name plates. But such flexibility 
requires extensive planning and investment in tooling and training. The flexibility 
questions are to decide for a set of assembly plants and a set of vehicle models, 
which models are to be produced in which plants.     

  Historical Background 

  The key reference for this chapter is  Jordan and Graves (1995)  who examine the 
benefits of process flexibility in the context of a set of plants producing a set of 
products. They introduce the concept of chaining and establish that (a) limited 
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flexibility will yield nearly all of the benefits of total flexibility, if configured in the 
right way, and that (b) limited flexibility provides the greatest benefits when 
 configured to chain as many plants and products together as possible. 

 There have been a number of important subsequent developments. We mention 
a few here. 

  Hopp et al. (2004)  examine cross-training in a serial production or assembly line 
and establish the value of chaining; they find that a cross-training strategy that 
attempts to chain together workers and workstations performs best. 

  Gurumurthi and Benjaafar (2004)  consider a queuing system with multiple 
customer classes and heterogeneous servers. Each server can have the capability 
to process more than one customer class. They develop a framework and com-
putational algorithm for evaluating the performance of different flexibility 
configurations and control policies. They find that limited flexibility, in the 
form of chaining, works extremely well in many settings. 

  Graves and Tomlin (2003)  extend the model from Jordan and Graves to a 
 multistage supply chain in which each product requires processing at each stage of 
the supply chain. They show how the single-stage guidelines from Jordan and 
Graves adapt and apply to a multistage setting. 

  Jordan et al. (2004)  and  Inman et al. (2004)  examine two contexts in which cross-
training can arise in the automobile industry.  Jordan et al. (2004)  consider the value of 
cross-training a workforce to perform maintenance and repair tasks.  Inman et al. (2004)  
consider how best to do cross-training for an assembly line to counteract the impact 
from absenteeism. In both case, they find that a chaining strategy is effective. 

  Building Intuition    The performance of a service or manufacturing system 
with multiple products being served by multiple resources depends upon the 
flexibility of the resources. A resource is flexible if it is capable of serving 
several products, but making a resource flexible can be quite expensive. 
Hence there is always a tradeoff between the costs and benefits from increasing 
the flexibility in these systems. 

 We show by example that limited flexibility, when deployed in the right way, 
yields most of the benefits of total flexibility. Furthermore, limited flexibility 
provides the greatest benefits when configured to chain products and resources 
together to the greatest extent possible. 

 For realistic settings, these principles provide helpful guidelines for 
exploring flexibility options. We still want to build as long a chain as possible 
and to create a circuit that connects the primary products and resources 
together.  In addition we try to equalize the load or expected demand that is 
assigned to each resource, and try to connect each product to its share of 
capacity. With these considerations, limited flexibility deployed to create 
chains provides most of the benefits of total flexibility. 
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  Iravani et al. (2005)  consider a general setting with multiple parallel resources 
and multiple parallel tasks. They define a configuration by a specification of 
the capabilities of each resource, i.e., which tasks each resource can perform. 
They develop and examine various measures for predicting the flexibility of a con-
figuration, and provide additional evidence for the value of chaining. 

  Wallace and Whitt (2005)  consider cross-training of agents in a call center with 
several types of calls. They discover that when each agent has only two skills, the 
system performance can be comparable to that when each agent has every skill, 
provided that the cross-training is done the right way. Again, the concept of chaining 
together as many agents and skills as possible is the key insight.
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        Chapter 4   
 Single Server Queueing Models 

        Wallace   J.   Hopp 
University of Michigan  

    Queues or waiting lines form in systems when service times and arrival rates are 
variable. Simple queueing models provide insight into how variability subtly causes 
congestion. Understanding this is vital to the design and management of a wide 
range of production and service systems.    

   Introduction 

  Macrohard is a small startup software company that sells a limited array of products. 
Like many technology product firms, Macrohard provides technical support to its 
customers via a toll free number that is available 24 h a day, 7 days a week. 
However, because of its small size, Macrohard can only justify having a single 
technician staffing the call center at any given time. This technical support center 
is vital to Macrohard’s business strategy, since it has a significant impact on cus-
tomers’ experience with their products. To ensure that this experience is positive, 
technicians must provide accurate information and helpful support. From 
Macrohard’s perspective, this is a matter of ensuring that the technician has the right 
skill and training. But for customers to be happy, service also has to be responsive. 
A long wait on hold might turn an otherwise satisfied customer into an angry 
noncustomer. 

 The Macrohard manager responsible for technical support is therefore interested 
in a variety of questions concerning customer waiting, including:

   1.    What arrival rate can a single technician reasonably handle without causing 
excessive waiting?   

  2.    How likely is it that a customer will have to wait on hold?   
  3.    How long can we expect customers to have to wait on hold?   
  4.    What factors affect the likelihood and duration of customer waiting?   
  5.    What options exist for reducing customer waiting time?     

 To say anything about these questions we will clearly need some data on the 
technical support system. One key piece of information is how fast the technician 
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can process calls, subject to constraints on accuracy, completeness, and politeness. 
Suppose for the purposes of discussion that Macrohard has timed calls in the past 
and has found that the average time to handle a call is 15 min. 

 Now let us appeal to our intuition and see if we can address any of the above questions. 
  What arrival rate can a single technician reasonably handle without causing exces-

sive waiting?  At first blush, question (1) appears to be the simplest. Since it takes 15 
min per customer, the technician should be able to provide service to four customers per 
hour. If more than four customers per hour call for support, the technician will be over-
loaded and people will have to be put on hold. If less than four calls per hour come in, 
the technician should have idle time. Hence, the technician should be able to service all 
customers without waiting as long as the arrival rate is less than four per hour. Right? 

 Wrong! The above logic only makes sense if service times are exactly 15 min 
for every customer and calls come in perfectly evenly spaced. But we have not 
assumed that this is the case, and such behavior would be very unlikely in a call 
center. We would expect some callers to have easy questions, and hence require 
short service times, while other callers have difficult questions, which require 
lengthy service times to handle. Furthermore, since customers make independent 
decisions on when to call in, we would hardly expect uniform spacing of calls. 

 For example, assume that the average service time is 15 min and the arrival rate 
is three calls per hour (one call every 20 min), but that there is some variation in 
both service times and interarrival times. Now suppose customer A calls in, finds 
the technician idle, and has a 17-min conversation. Further suppose that customer 
B calls in 15 min after customer A. This entirely plausible sequence of events 
results in customer B waiting on hold for 2 min. Hence, even though the technician 
is fast enough to keep up with calls on average, fluctuations in either the arrival rate 
or service rate can lead to backups and hence waiting. 

 The realization that waiting can occur even when the technician has more than 
enough capacity to keep up with demand leads us to the other four questions in the 
above list. How likely is a delay? How long will it be? And so on. Unfortunately, 
intuition abandons us entirely with respect to these questions. Simply knowing that 
a burst of calls will lead to customers having to wait on hold does not give us a clue 
of how long waiting times will be on average. 

 This lack of intuition into the causes and dynamics of waiting is not limited to call 
center management. Waiting is everywhere in modern life. We wait at Starbucks for 
coffee to start the day. Then we wait at the toll booth on the drive to work. At the office, 
we wait to use the copier, wait for a technician to resolve a computer problem and wait 
for our meeting with the boss. On the way home, we wait at stop lights and wait at the 
checkout to buy groceries. In the evening we wait for a file to download from the web. If 
(heaven forbid) our schedule includes a visit to a medical care facility, government 
office, or an airport, then waiting may well be the dominant activity of the day. 

 These and thousands of other everyday occurrences are examples of  queueing , 
which is the technical (or at least English) term for waiting. Because it is so prevalent, 
understanding queueing is part of understanding life. But, there are also plenty of not-so-
mundane examples of queueing, including ambulance service, organ transplants, security 
checkpoints, and many more. So an understanding of queueing is also enormously 
useful in designing and managing all kinds of production and service systems.
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  These insights are central to the design of production and service systems that 
are both efficient and responsive.   

 Unfortunately, queueing behavior is subtle. Unlike many other phenomena, 
waiting phenomena cannot be understood in terms of average quantities. For exam-
ple, the time it takes to drive between two points depends only on the distance and 
the  average  driving speed. We do not need to know whether the trip was made at 
constant speed, or whether the driver sped up and slowed down, or even how often 
the driver stopped. Average speed is all that matters. Similarly, the amount of 
nondefective product produced by a factory during the month depends only on the 
amount produced and the yield rate (i.e., fraction of product that passes a quality 
test). We do not need to know whether some days had higher yields than others. 
Average yield rate is all that matters. 

 However, queueing behavior depends on more than average quantities. As we 
argued above, merely knowing that the service rate is four calls per hour and the 
call rate is three calls per hour in the Macrohard system is not sufficient for us to 
predict the amount of waiting in the system. The reason is that  variability  of 
 arrivals and service times also contribute to waiting. Hence, in order to understand 
queueing behavior we must characterize variability and describe its role in causing 
waiting to occur. 

 Questions about queueing behavior, in the Macrohard system and elsewhere, 
are clearly more difficult than the question of how long it will take to drive a 
given distance. So answering them will require a more sophisticated model than 
a simple ratio of distance over time. In this chapter we examine models of the 
simplest queueing systems, namely those with a single server, in order to 
develop intuition into the causes and nature of waiting. We will also develop the 
analytic tools needed to answer the previous list of questions concerning the 
Macrohard system.  

   Building Intuition      In any system where entities (customers, jobs, orders, 
etc.) are processed sequentially, waiting lines form when service rates do not 
keep up with arrival rates. This will occur occasionally if service times and 
interarrival times are random and unsynchronized.  

  The busier the server, the more frequent such backups will be. Hence, 
variability and utilization combine to cause congestion in sequential 
processing systems. This also implies that the server cannot always be busy 
because 100% utilization in a system with variability would have an infi-
nite queue.  

  Finally, the interaction between variability and utilization in causing wait-
ing lines means that variability reduction can serve as a substitute for capacity 
increases. Smoothing arrivals and/or service times can enable a system to 
operate at higher utilization while keeping queue times to acceptable levels.  
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  Queueing Systems 

  In order to model queueing systems, we first need to be a bit more precise about 
what constitutes a queueing system. The three basic elements common to all queueing 
systems are: 

  Arrival Process : Any queuing system must work on something — customers, 
parts, patients, orders, etc. We generically term these  entities . Before entities can 
be processed or subjected to waiting, they must first enter the system. Depending 
on the environment, entities can arrive smoothly or in an unpredictable fashion. 
They can arrive one at a time or in clumps (e.g., bus loads or batches). They can 
arrive independently or according to some kind of correlation (e.g., a network 
server that processes jobs from only five remote computers will have correlated 
arrivals, since if three of the computers are already waiting for a response from the 
server, we know that only the two remaining computers can make requests). In this 
chapter we assume that entities arrive one at a time and that times between arrivals 
are uncorrelated with each other and with the service times. We also assume that all 
arrivals enter the system (i.e., do not balk) and remain in the system until serviced 
(i.e., do not reneg). 

 A special arrival process, which is highly useful for modeling purposes, is the 
 Markov  arrival process. In this process, entities arrive one at a time and the times 
between arrivals are  exponential  random variables. This type of arrival process is 
 memoryless , which means that the likelihood of an arrival within the next  s  minutes 
is the same no matter how long it has been since the last arrival. For example, suppose 
an arrival has just occurred (at time  t  = 0) and that the probability of another arrival 
within the next 5 min is 0.25. Furthermore, suppose that no arrivals occur for 10 min. 
If the arrival process is Markov, then the probability of an arrival occurring within the 
next 5 min (i.e., by time  t  = 15) is still 0.25. This may seem counterintuitive if one 
thinks of smooth scheduled arrivals. But if one thinks of unpredictable public transit 
systems (e.g., buses), it may not be to much of a stretch to believe that the likelihood 
of an arrival does not increase as one waits. Moreover, there are theoretical results 
showing that if a large population of customers makes independent decisions of when 
to seek service, the resulting arrival process will be Markov. Examples where this 
occurs are phone calls arriving at an exchange, customers arriving at a fast food res-
taurant, hits on a web site, and many others. We will see below that a Markov arrival 
process leads to tractable models of queueing systems. 

  Service Process : Once entities have entered the system they must be served. 
The physical meaning of “service” depends on the system. Customers may go 
through the checkout process. Parts may go through machining. Patients may go 
through medical treatment. Orders may be filled. And so on. From a modeling 
standpoint, the operational characteristics of service matter more than the physical 
characteristics. Specifically, we care about whether service times are long or short, 
and whether they are regular or highly variable. We care about whether entities are 
serviced by a single server or by multiple servers working in parallel. We care about 
whether entities are processed in first-come-first-serve (FCFS) order or according 
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to some kind of priority rule. These and the many other operational variations 
possible in service processes make queueing a very rich subject for modeling 
research. In this chapter, we assume that entities are served one at a time and that 
service times are uncorrelated with each other and with the times of arrivals (e.g., 
the server does not speed up when many customers are waiting). 

 A special service process is the  Markov  service process, in which entities are 
processed one at a time in FCFS order and service times are independent and  expo-
nential . As with the case of Markov arrivals, a Markov service process is memoryless, 
which means that the expected time until an entity is finished remains constant 
regardless of how long it has been in service. For example, in the Marcrohard example, 
a Markov service process would imply that the additional time required to resolve 
a caller’s problem is 15 min, no matter how long the technician has already spent 
talking to the customer. While this may seem unlikely, it does occur when the 
distribution of service times looks like the case shown in Fig.  4.1 . This depicts a 
case where the average service time is 15 min, but many customers require calls 
much shorter than 15 min (e.g., to be reminded of a password or basic procedures) 
while a few customers require significantly more than 15 min (e.g., to perform 
complex diagnostics or problem resolution). Simply knowing how long a customer 
has been in service does not tell us how much more time will be required.   

  Queue : The third required component of a queueing system is a queue, in which 
entities wait for service. The simplest case is an unlimited queue, which can accom-
modate any number of customers. But many systems (e.g., phone exchanges, web 
servers, and call centers), have limits on the number of entities that can be in queue 
at any given time. Arrivals that come when the queue is full are rejected (e.g., customers 
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get a busy signal when trying to dial into a call center). Even if the system does not 
have a strict limit on the queue size, customers may balk at joining the queue when 
it is too long (e.g., cars pass up a drive through restaurant if there are too many cars 
already waiting). Entities may also exit the system due to impatience (e.g., customers 
kept waiting too long at a bank decide to leave without service) or perishability 
(e.g., samples waiting for testing at a lab spoil after some time period). 

 In addition to variations in the arrival and service processes and the queueing 
protocol, queueing systems can differ according to their basic flow architecture. 
Figure  4.2  illustrates some prototypical systems. The  single server system , which 
is the focus of this chapter, is the simplest case and represents many real world set-
tings such as the checkout lane in a drugstore with a single cashier or the CPU of a 
computer that processes jobs from multiple applications. If we add cashiers or 
CPUs to these systems, they become  parallel systems  (i.e., a single waiting line 
serviced by multiple identical servers). Many call centers, bank service counters, 
and toll booths are also parallel queueing systems.  

 Waiting also occurs in systems with multiple stages. For example, a production 
line that fabricates products in successive steps, where each step is performed by a 
single machine workstation, is an example of a  serial system . More elaborate produc-
tion systems, with parallel machine workstations and multiple routings form  general 
queueing networks . Modeling and analysis of such networks can become very 
complicated. But the basic behavior that underlies all of these queueing systems is 
present in the single server case. Hence, understanding the simple single server 
queue gives us powerful intuition into a vast range of systems that involve waiting.  

  M/M/1 Queue 

  We now turn our attention to modeling the single server queueing system, like that 
represented by the Macrohard technical support center. 

Single Server

Serial

Parallel

General Network

  Fig. 4.2    Queueing network structures       
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 To develop a mathematical model, we let λ (lambda) represent the  arrival rate  (calls 
per hour) and τ (tau) represent the  average service time  (in hours). In the Macrohard 
example, τ = 0.25 h (15 min). For convenience, we also denote the  service rate  by 
µ (mu), which is defined as µ = 1/τ. In the Macrohard call center, µ = 1/15 = 0.067 calls 
per minute = 4 calls per hour. This represents the rate at which the system can process 
entities if it is never idle and is therefore called the  capacity  of the system. 

   Utilization  

 This above information is sufficient for computing the average fraction of time the 
server is busy in a single-server queueing system. We do this by noting that the 
average time between arrivals (calls) is 1/λ. The average amount of time the server is 
busy during this interval is τ (see Fig.  4.3 ). Hence, the fraction of time the server is busy, 
called the  utilization  of the server and denoted by ρ (rho), is given by 

   
.

1 /
= = =τ λρ λτ

λ µ     
(1)

   

 This only makes sense, however, if τ < 1/λ, or equivalently λτ = ρ < 1. If this is 
not the case, then utilization is above 100% and the queueing system will not be 
stable (i.e., customers will pile up so that the queue grows without bound over time) 
unless customers balk at joining a queue if it is too long or leave the queue without 
service if they wait too long. 

 For example, in the Macrohard service center calls must come in at a rate below 
four per hour, because this is the maximum rate at which the technician can work. 
If calls are received at an average rate of, say, three per hour, then server utilization 
will be ρ = λτ = (3 per hour)(0.25 h) = 75%. This means that the technician will be 
idle 25% of the time. One might think that customer waiting would be almost 
nonexistent, since the technician has so much extra time. But, as we will see below, 
this is not necessarily the case.  

   Birth-Death Process Model  

 The average arrival and service rates are not enough to allow us to compute the 
average time an entity waits for service in a queueing system. To do this, we must 
introduce variability into arrival and service processes. The most straightforward 

Utilization 

0 τ 1/λ

IdleBusy

  Fig. 4.3    Fraction of time server is busy       
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queueing model that incorporates variability is the single server system with 
Markov (memoryless) arrival and service processes. We call this the Μ/Μ/1 
queue, where the first Μ indicates that the arrival process is Markov, the second 
Μ indicates that the service process is Markov and the 1 indicates that there is 
only a single server. Waiting space is assumed infinite, so there is no limit on 
the length of the queue. We will examine some other single server queues later 
in this chapter. 

 The assumption that both the arrival and service processes are memoryless 
means that the only piece of information we need to predict the future evolution 
of the system is the number of entities in the queue. For example, in the Macrohard 
support center if there is currently one customer being served and one waiting 
on hold, then we know that the expected time until the customer completes 
service is 15 min and the expected time until the next customer calls for service 
is 20 min. Because both interarrival and service times are exponentially distrib-
uted, and hence memoryless, we do not need to know how long the current customer 
has been in service or how long it has been since a call came into the system. 

 This fact allows us to define the number of customers in the queue as the system 
 state . Moreover, since arrivals come into the system one at a time and customers 
are also serviced one at a time, the state of the system either increases (when a cus-
tomer arrives) or decreases (when a service is completed) in increments of one. 
Systems with this property are called  birth–death processes , because we can view 
increases in the state as “births” and decreases as “deaths.” (Note that birth–death 
processes do not allow “twins,” since increases and decreases are assumed to occur 
in increments of one.) Figure  4.4  shows the progression of state in the birth–death 
process model of the Μ/Μ/1 queue.   

 We can use the birth–death representation of the Μ/Μ/1 queue to compute the 
long-run average probabilities of finding the system in any given state. We do this 
by noting that in steady state, the average number of transitions from state  i  to state 
 i +  1 must equal the average number of transitions from state  i +  1 to state  i . 
Graphically, the number of times the birth–death process in Fig.  4.4  crosses the 
vertical line going left to right must be the same as the number of times it crosses 
the vertical line going right to left. Intuitively, the number of births must equal the 
number of deaths over the long term. 

Birth-Death Process Model 

0 1 2 i-1 i i+1… …

λ

µ

λ λλλ

µ µµµ

  Fig. 4.4    Birth–death process model of M/M/1 queue       
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 Letting  p   
i
   represent the average fraction of time there are  i  customers in the system, 

the average rate at which the process crosses the vertical line from left to right is  p   
i
  λ, 

while the average rate at which it crosses it from right to left is  p
   i + 1

  µ. Hence, 

   p
i
l=p

i+1
m, and   

   
1 .+ = =i i ip p p

λ ρ
µ     

 This relationship holds for  i  = 0,1,2,…, so we can write 

   p
1
=rp

0
,

 p
2
=rp

1
=r2p

0
,

 p
3
=rp

2
=r3p

0
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 ...

 p
n
=rp

n-1
=rnp

0
,

 ...   

 If we knew  p   
0
   (i.e., the probability of an empty system) we would be able to 

compute all of the other long-term probabilities. To compute this, we note that since 
the system must be in some state, the long-term probabilities must sum to one. This 
implies the following 

   

0
0

0 0

1 .
1

∞ ∞

= =

= = =
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n n

p
p pρ

ρ    
(2)

   

 Note that the infinite sum in Eq. ( 2 ) converges only if ρ = λ/µ < 1. That is, the 
arrival rate (λ) must be less than the service rate (µ) in order for the queue to be 
stable and have long term probabilities. If ρ ≥1, then the queue length will grow 
without bound and hence the system will not be stable. 

 Equation ( 2 ) implies that the probability of finding the system empty is 

   p
0
=1–r ,   (3)  

and hence the long-term probability of being in state  n  is given by 

   p
n
=(1–r)rn, n=0,1,2, …, k.   (4)   

 This is known as the  geometric distribution , whose mean is given by 
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 So,  L   M/M/1   represents the average number of customers in the system (i.e., in 
service or waiting in queue). Again, this is only well-defined if ρ < 1. 

 Finally, we note that the expected number of customers in service is given by the 
probability that there are one or more customers in the system, which is equal to 
1− p   

0
   (i.e., one minus the probability that the system is empty.) Hence, the  average 

number in queue  can be computed as the expected number of customers in the 
system minus the expected number in service, which is 

   

/ /1 / /1
2

0(1 ) .
1 1

= − − = − =
− −

M M M M

qL L p
ρ ρ

ρ
ρ ρ    

(6)   

 We can apply Little’s Law (see Chap. 5) to compute the expected waiting time 
in the system and in the queue as follows: 
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   Example  

 The above results give us the tools to answer many of the questions we raised previ-
ously concerning the performance of the Macrohard technical support system, at least 
for the situation where both arrivals and services are Markov. For purposes of illustra-
tion, we assume that the mean time for the technician to handle a call is 15 min (τ = 
0.25 h) and, initially, that the call rate is three calls per hour (λ = 3 per hour). Hence, 
system utilization is ρ = λτ = 3(0.25) = 0.75. Now let us return to the questions. 

  How likely is it that a customer will have to wait on hold?  From Eq. ( 3 ) we know 
that the probability of an empty system is  p   

0
   = 1−ρ. Since the system must either 

be empty or busy at all times, the probability of a busy system is 1− p
   0
   = ρ. Thus, 

the likelihood of a customer finding the system busy is equal to the fraction of time 
the technician is busy. Since ρ = 0.75, customers have a 75% chance of being put 
on hold in this system. 

  How long can we expect customers to have to wait on hold?  Since the average 
service time is τ = 15 min, we can use Eq. ( 8 ) to compute the average waiting time 
(i.e., time spent on hold) to be: 

   

/ /1 0.75
0.25 0.75 h 45 min.

1 1 0.75

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ − ⎠ −
M M

qW
ρ

τ
ρ     

 Even though the technician is idle 25% of the time, the average waiting time for 
a customer on hold is 45 min! The reason is that variability in the customer arrivals 
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(and technician service times) results in customers frequently arriving when the 
technician is busy and therefore having to wait for service. 

  What arrival rate can a single technician reasonably handle without causing 
excessive waiting?  We have already argued that the fact that the capacity of the 
technician is µ = 4 calls per hour does not mean that the call center can actually 
provide service to four customers per hour. The reason is that if we had an arrival 
rate of λ = 4 customers per hour, the utilization would be ρ = 1 and hence the average 
queue length would be  L  = ¥, which is clearly impossible. 

 Since we are assuming Markov arrivals and services, this queueing system has 
variability and hence can only attain its capacity with an infinite queue, and thus 
infinite waiting time. Therefore, the volume of customers the system can handle in 
reality is dictated by either the queue space (e.g., number of phone lines available 
for keeping customers on hold) or the patience of customers (e.g., the maximum 
time they will remain on hold before hanging up). 

 Suppose that Macrohard makes a strategic decision that customers should be kept on 
hold for no more than 5 min on average. This will be the case if the following is true: 
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 That is, the customer wait in queue (on hold) will be less than 5 min only if the 
technician is utilized less than 25%. This places the following constraint on the 
arrival rate: 

    r = lt = l(0.25 h) < 0.25, or   

   l < 1/h.    

 Not surprisingly, if we want utilization to be below 25%, the arrival rate must be 
less than one quarter of the service rate. The implication is that the (not unreasonable) 
constraint that customers should not be required to wait on hold for more than 
5 min on average means that the system can only handle one call per hour, which 
is far below its theoretical capacity. 

 Of course, if Macrohard management was willing to let customers wait on hold 
for more time, the service center could handle a higher call rate. In general, if we 
want the average waiting time to be no more than  t  minutes, then we can compute 
the maximum allowable arrival rate (λ) as follows: 
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   0.25r < t–tr, or   
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 Note that if  t  = 1/12 h (5 min), then this formula yields λ < 1, which matches 
our previous calculation. If we plot the maximum arrival rate (λ) as a function of 
the allowable waiting time ( t ) for the Macrohard service system, we get the curve 
in Fig.  4.5 . Notice that in order for the system to handle 3.5 customers per hour, 
which is still well below the capacity of 4 per hour, we must accept an average 
waiting time of 2 h! Clearly, the presence of variability can cause a great deal of 
congestion in queueing systems, which makes it difficult to operate them near 
their capacity.  

 This insight is behind the fact that semiconductor facilities (wafer fabs) typi-
cally aim for equipment utilization of around 75%. If they are operated at 
higher levels of utilization, wafers wait too long at individual processing sta-
tions and hence the cycle time (i.e., time to produce a wafer) becomes uncom-
petitively long. 

 There are still two questions about the Macrohard call center that we have yet to 
address: What factors affect the likelihood and duration of customer waiting? and 
What options exist for reducing customer waiting time? To give useful answers to 
these, and to generalize the previous answers to situations where we cannot assume 
that arrivals and services are Markov, we need more powerful tools.   
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  Fig. 4.5    Maximum arrival rate as a function of allowable waiting time       
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  M/G/1 Queue 

  The Μ/Μ/1 queueing model gives us some important insights. In particular, it 
shows that variability causes waiting and that waiting increases with utilization. But 
because it assumes that both interarrival times and service times are Markov (expo-
nentially distributed), there is no way to adjust the amount of variability in an 
Μ/Μ/1 system. To really understand how variability drives the performance of a 
queueing system, we need a more general model. The simplest option is the 
so-called Μ/G/1 queue, in which interarrival times are still Markov but service 
times, are general (represented by the G in the label). This means that service times 
can take on any probability distribution, as long as they are independent of one 
another. 

 To express and examine the Μ/G/1 queueing model, we need to characterize the 
variability of the service times. The most common measure of variability used in 
probability and statistics writings is the  standard deviation , which we usually 
denote by σ (sigma). While this is a perfectly valid measure of variability, since it 
measures the “spread” of a probability distribution, it does not completely charac-
terize variability of a random variable. To see why, suppose we are told that the 
standard deviation of a service time is 5 min. We cannot tell whether this constitutes 
a small or large amount of variability until we know the mean service time. For a 
system with a mean service time of 2 h, a 5 min standard deviation does not repre-
sent much variability. However, for a system with a 2 min average service time, a 
5 min standard deviation represents a great deal of variability. 

 To provide a more general measure of variability, we define the  coefficient of 
variation (CV)  of a random variable to be the standard deviation divided by the 
mean. So, the  service time CV , denoted by  c   s  , is given by 

   
sc

σ
τ

=
 
,
  

(9)
  

where σ represents the standard deviation of the service time and τ represents the 
mean service time. 

 Figure  4.6  illustrates three distributions of service time with a mean of 15 min 
but with CVs of 0.33, 1, and 2. The distribution with c 

s
  = 0.33 has a normal shape, 

with service times symmetrically distributed around the mean. This represents a 
case with a fairly low level of variation in service times. In contrast, the distribution 
with c

 s
  = 2 exhibits a high frequency of very short service times (i.e., less than 5 

min), but also a non-negligible frequency of very long service times (i.e., over 60 
min). Hence, this distribution represents a high level of variability. The distribution 
with c

 s
  = 1 lies between these two cases, with more spread than the c 

s
  = 0.33 case 

but less spread than the c
 s
  = 2 case. In fact, the case with c 

s
  = 1 is precisely the 

 exponential distribution , which was illustrated in Fig.  4.1 .  
 A host of factors can influence the value of c

 s 
 in real-world queueing systems. 

In the Macrohard example, c
 s 
 will be large if many callers have simple questions 
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that can be answered quickly, but a few have complicated problems that take a long 
time to resolve. If this were the case, then the 15 min average service time could 
consist of a number of 2–3-min calls interspersed with an occasional 1 h call. As 
we will see below, this leads to very different behavior than the situation where the 
15 min average is made up of service times that are clustered around 15 min (e.g., 
as in the c 

s 
 = 0.33 case in Fig.  4.6 ). 

 Because the standard deviation is always equal to the mean in the exponential 
distribution,  c   

s  
 = 1 in the Μ/Μ/1 queue. Since we cannot change  c   

s
   in the Μ/Μ/1 

model, we cannot use it to examine the effect of changes in service time variability. 
In the Μ/G/1 queue, however,  c   

s
   can be anything from zero (which indicates deter-

ministic service times with no variability at all) on up. This allows us to adjust vari-
ability and examine the impact on system behavior. 

 Deriving the expression for mean waiting time in the Μ/G/1 cannot be 
done using the birth–death approach used for the Μ/Μ/1 case. The reason is 
that since service times are no longer memoryless, knowing the number of 
customers in the system is not sufficient to predict future behavior. We must 
also know how long the current customer (if any) has been in service. This 
requires a more sophisticated analysis approach, which is beyond the scope of 
this chapter. 

 So instead we simply state the result for the mean waiting time (i.e., queue time) 
for the Μ/G/1 queue, which is 
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  Fig. 4.6    Service time distributions with various coefficients of variation       
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 The total mean time in the system is hence given by 
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 Equation ( 10 ) is known as the  Pollaczek-Khintchine (P-K) formula . The 
only difference between this equation and the corresponding formula (Eq. ( 8 )) for 
the Μ/Μ/1 queue is the presence of the term   (1 + c

s
2)/2  . If c

 s
  = 1, then this term 

becomes 1 and Eq. ( 10 ) reduces to Eq. ( 8 ), as it should. But if c 
s
  > 1 then the 

waiting time in queue will be larger in the Μ/G/1 queue than in the Μ/Μ/1 queue. 
Likewise, if c 

s
  < 1 then the waiting time will be smaller in the Μ/G/1 queue than 

in the Μ/Μ/1 queue. 
 Figure  4.7  illustrates the P-K formula for the Macrohard service support system 

with an average service time of τ = 15 min and service time CV’s of c 
s
  = 0.33, 1 

and 2. As we already know, increasing c
 s 
 increases the average waiting time W 

q
 . 

More interestingly, Fig.  4.7  shows that the amount by which average waiting 
increases due to an increase in service time CV increases rapidly as server utiliza-
tion increases. For instance, at a utilization of ρ = 0.1, increasing c

 s
  from 0.33 to 2 

increases the waiting time by about a minute and a half. At a utilization of ρ = 0.9, 
the same increase in c 

s
  increases waiting time by over 100 min. The reason for this 

is that, as the P-K formula (Eq. ( 10 )) shows, the variability term   (1+ c
s
2)/2   and the 

utilization term ρ/(1-ρ) are multiplicative. Since the utilization term increases 
exponentially as ρ approaches one, variability in service times is most harmful to 
performance when the system is busy.  
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  Fig. 4.7    Effect of variability and utilization on average waiting time (τ = 15 min)       



 To appreciate the practical significance of the combined effect of utilization 
and variability in causing waiting, we zoom in on the curves of Fig.  4.7  and display 
the result in Fig.  4.8 . For the case where c

 s
  = 1 (i.e., the Μ/Μ/1 queue), we see 

that a 5 min average waiting time requires a utilization level of 0.25, as we com-
puted earlier. Now suppose we were to reduce c 

s
  to 0.33. In the Macrohard system 

this might be achievable through technician training or development of an efficient 
diagnostic database. By reducing or eliminating excessively long calls, these 
measures would lower the standard deviation, and hence the CV, of the service 
times. (Shortening the time to handle long calls without lengthening the time to 
handle other calls would also reduce the average service time, which would further 
improve performance. But for clarity, we ignore this capacity effect and focus 
only on variability reduction.)  

 Figure  4.8  shows that reducing the service time variability to c 
s
  = 0.33 reduces 

the average waiting time from 5 min to a bit over 3 min (3 min and 20 s to be 
exact). 

 Another way to view the impact of reducing c
 s 
 from 1 to 0.33 is to observe the 

change in the maximum utilization consistent with an average waiting time of 5 
min. Figure  4.8  shows that the Macrohard service center with c

 s
  = 0.33 can keep 

average waiting time below 5 min as long as utilization is below 0.33 (This is coin-
cidence that utilization is the same as c

s
). Compared with the utilization of 0.25 that 

was necessary for the case with c
 s
  = 1, this represents a 32% increase. Hence, in a 

very real sense, variability reduction acts as a substitute for a capacity increase, 
which can be an enormously useful insight. 

 For example, suppose Macrohard is currently experiencing a call volume of 1 
per hour and is just barely meeting the 5-minute constraint on customer waiting 
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time. Now suppose that, due to increased sales, the call volume goes up by 15%. 
If Macrohard does not want average waiting time to increase and cause customer 
discontent, it must do something. The obvious, but costly, option would be to add 
a second service technician. But, as our discussion above shows, an alternative 
would be to take steps to reduce the variability of the service times. Doing this via 
training or technology (e.g., a diagnostic database) might be significantly cheaper 
than hiring another technician. 

 Production systems represent another environment where this insight into the rela-
tionship between variability and capacity in queueing systems is important. In such 
systems, each workstation represents a queueing system. The time to process jobs 
(e.g., machine parts, assemble products, or complete other operations) includes both 
actual processing time and various types of “nonvalue-added” time (e.g., machine 
failures, setup times, time to correct quality problems, etc.). These nonvalue-added 
factors can substantially inflate the process time CV at workstations. Hence, amel-
iorating them can reduce cycle time (i.e., total time required to make a product), 
increase throughput (i.e., production rate that is consistent with a cycle time 
constraint) or reduce cost by eliminating the need to invest in additional equipment 
and/or labor to achieve a target throughput or cycle time. The techniques used to 
reduce variability in production systems are often summarized under the headings 
of  lean production  and  six sigma quality control.  Hence, whether most practi-
tioners know it or not, the science of queueing lies at the core of much of modern 
operations management practice.  

  G/G/1 Queue 

  The Μ/G/1 model gives us insight into the impact of service time variability on 
tradeoff between average waiting time and customer volume. But because interar-
rival times are still assumed to be Markov (memoryless), we cannot alter arrival 
variability. So we cannot use this model to examine policies that affect arrivals into 
a queueing system. 

 For example, suppose Macrohard were to adopt a scheduling system for appoint-
ments with technicians. That is, instead of simply calling in at random times, cus-
tomers seeking help must visit the Macrohard website and sign up for a phone 
appointment. If appointments are  x  minutes apart (and all slots are filled) then calls 
will come in at a steady rate of one every  x  minutes. This (completely predictable) 
arrival process is vastly different from the Markov arrival process assumed in the 
Μ/Μ/1 and Μ/G/1 models. 

 Figure  4.9  graphically illustrates the even spacing of deterministic (scheduled) 
arrivals and the uneven spacing of (random) Markov arrivals. Because interarrival 
times are highly variable in a Markov arrival process, customers tend to arrive in 
clumps. These clumps will cause periods of customer waiting and hence will tend 
to inflate average waiting time. To see how much, we need to extend the Μ/G/1 
queueing model to allow different levels of arrival variability.  
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 To develop such a model, we characterize arrival variability in exactly the same 
way we characterized service time variability in Eq. ( 9 ). That is, we define the 
 interarrival time CV  by 

   
,= a

a
a

c
σ
τ   

 
(12)

  

where τ 
a
  represents the mean time between arrivals (and so λ = 1/τ

 a
  is the average 

arrival rate) and σ 
a 
 represents the standard deviation of interarrival times. A higher 

value of c 
a 
 indicates more variability or “burstiness” in the arrival stream. For 

instance, the constant (deterministic) arrival stream in Fig.  4.9  has c
 a
  = 0, while the 

Markov arrival stream has c
 a
  = 1. 

 The parameter c 
a
  characterizes variability in interarrival  times . But we can also 

think of this variability in terms of arrival  rates . That is, the arrival bursts in the high 
variability case in Fig.  4.9  can be viewed as intervals where the arrival rate is high, 
while the lulls represent low arrival rate intervals. Examples of variable arrival rates 
are common. Fast food restaurants experience demand spikes during the lunch 
hour. Toll booths experience arrival bursts during rush hour. Merchandising call 
centers experience increases in call volume during the airing of their television 
“infomercials.” 

 The impact of increased fluctuations in arrival rate is similar to that of 
increased arrival variability (i.e., increased c 

a 
)−both make it more likely that cus-

tomers will arrive in bunches and hence cause congestion. However, an important 
difference is that arrival fluctuations are often predictable (e.g., we know when 
the lunch hour is) and so compensating actions (e.g., changes in staffing levels) 
can be implemented. 

 Throughout this chapter we assume that variability, in interarrival times and 
service times, is unpredictable. In the Macrohard example this is a reasonable 
assumption over small intervals of time, say an hour, since we cannot predict when 
customers will call in or how long they will require to service. However, some vari-
ability over the course of a day may be partially predictable. For instance, we may 
know from experience that the call rate is higher on average from 2–3 PM than from 
2–3 AM. As an approximation, we could simply apply our queueing models using 
a different arrival rate (λ) for each time interval. For more detailed analysis of the 

Deterministic (Low Variability) Arrivals

Markovian (High Variability) Arrivals

  Fig. 4.9    Low and high variability arrival processes       
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behavior of queueing systems with nonstationary arrivals, practitioners often make 
use of discrete event simulation. 

 Using c
 a
  as a measure of arrival variability we can approximate the average wait-

ing time of the G/G/1 queue as follows: 
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(13)

   

 Hence the total system time is given by 
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(14)   

 Equation ( 13 ) is sometimes called  Kingman’s equation  after one of the first 
queueing researchers to propose it ( Kingman, 1966 ). Note that it differs from Eq. 
( 10 ) for the Μ/G/1 queue only by replacing a “1” by   c

a
2  . Hence, when arrivals are 

Markov, and so c 
a
  = 1, Eq. ( 13 ) reduces to Eq. ( 10 ) and gives the exact waiting time 

for the Μ/G/1 queue. For all other values of c 
a
 , Eq. ( 13 ) gives an approximation of 

the waiting time. 
 Because it is so similar to the P-K formula, the behavior of the G/G/1 queue 

implied by Kingman’s equation is very similar to the behavior of the Μ/G/1 queue 
we examined previously. Specifically, since the utilization term is the same in Eqs. 
( 10 ) and ( 13 ), the average waiting time in the G/G/1 queue (  W

q
G/G/1  ) also increase 

exponentially as utilization (ρ) approaches one, as illustrated for   W
q

G/G/1   in Fig.  4.7 . 
The only difference is that, in the G/G/1 case, increasing either arrival variability 
(c 

a
 ) or service variability (c 

s
 ) will increase waiting time and hence cause   W

q
G/G/1   to 

diverge to infinity more quickly. An interesting and useful insight from Kingman’s 
equation is that arrival variability and service variability are equally important in 
causing waiting. 

 As we observed from the P-K formula, Kingman’s equation implies that variability 
has a larger impact on waiting in high utilization systems than in low utilization sys-
tems. Mathematically the reason for this is simple: the variability (  [c

a
2 + c

a
2]/2)   and the 

utilization (ρ/[1-ρ]) terms are multiplicative. Hence, the larger the utilization, the more 
it amplifies the waiting caused by variability. 

 While this mathematical explanation of the interaction between variability and 
utilization is neat and clean, it is less than satisfying intuitively. To gain insight into 
how variability causes congestion and why utilization magnifies it, it is instructive 
to think about the evolution of the number of customers in the system over time. 

 Figure  4.10  shows sample plots of the number in system for two single server 
queueing systems that have the same utilization (i.e., same fraction of time the server is 
busy). Figure  4.10(a)  represents a low variability system, in which customers arrive 
at fairly regular intervals and service times are also fairly constant. As a result, each 
customer who arrives to this system finds it empty and the number of customers 
never exceeds one. Thus, no one experiences a wait. In Kingman equation terms, 
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Fig.  4.10(a)  represents a system where c
 a
  and c 

s 
 are both low and hence so is aver-

age waiting time.  
 Figure  4.10(b)  shows the very different behavior of a high variability system. 

Arrivals (instants where the number in system increases by one) occur in a bunch, 
rather than spread over the entire interval as in Fig.  4.10(a) . Furthermore, the serv-
ice times are highly variable; the first service time is very long, while all subse-
quent ones are quite short. As a result, all customers after the first one wind up 
waiting for a significant time in the queue. In Kingman equation terms, Fig.  10(b)  
represents a system where c 

a
  and c 

s
  are both high and hence average waiting time 

is also large. 
 To understand why variability causes more congestion and waiting when utiliza-

tion is high than when utilization is low we examine the impact of an additional 
arrival on the average waiting time. Figure  4.11(a)  shows the number of customers 
in a low utilization system. Figure  4.11(b)  shows the modified figure when an extra 
arrival is introduced. Since this arrival happened to find the server idle (as is likely 
when system utilization is low) and was completed before the next arrival, this 
added arrival did not increase average waiting time. The lower the utilization, the 
more likely an additional arrival will be processed without waiting. Even if the 
arrival were to occur during a busy period, the extra waiting would be slight 
because another idle interval will occur before too long. Hence, when utilization is 
low we can conclude: (a) average waiting time will be low, and (b) a slight increase 
in utilization will increase waiting time only modestly.  

 In contrast, Fig. 4. 12  illustrates what happens when an additional arrival is 
added to a high utilization system. As shown in Fig.  4.12(a) , a high utilization has 
few and short idle periods. Hence, a randomly timed arrival is likely to occur when 

  Fig. 4.10    Number of customers in ( a ) low variability system and ( b ) high variability system       
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the server is busy and customers are waiting. When this occurs, as shown in Fig.  4.12(b) , 
the number in system will increase by one from the time of the new arrival until the 
end of the busy period during which it arrived. It will also extend this busy period 
by the service time of the new arrival. This could also cause the current busy period 
to run into the next one, causing additional waiting and a lengthening of that busy 
period as well. Only when the extra service time represented by the new arrival is 

  Fig. 4.12    ( a ) High utilization system and ( b ) high utilization system with additional customer       

  Fig. 4.11    ( a ) Low utilization system and ( b ) low utilization system with additional customer       
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“absorbed” by idle periods will the effect on waiting dissipate. Consequently, the 
busier the system, the less available idle time and hence the longer the effect of a 
new arrival on the number in system will persist. Hence, when utilization is high, 
we conclude: (a) the impact of variability on waiting will be high, and (b) a slight 
increase in utilization can significantly increase average waiting time.  

 Finally, armed with Kingman’s equation and the intuition that follows from it, 
we return to the Macrohard case to address the remaining two questions. 

  What factors affect the likelihood and duration of customer waiting?  Kingman’s 
equation provides a crisp summary of the drivers of waiting time: arrival variability 
(c 

a
 ), service variability (c

 s
 ) and utilization (ρ), which is composed of the arrival rate 

(λ) and the average service time (τ). By exploring the underlying causes of these 
four parameters (c 

a
 , c

 s
 , λ, τ), we can systematically identify the factors that cause 

waiting in a given queueing system. We do this for the Macrohard case in order to 
answer the last question we posed concerning its performance. 

  What options exist for reducing customer waiting time?  Because the utilization 
term frequently dominates Kingman’s equation, we first discuss options for reduc-
ing utilization (i.e., reducing λ or τ) and then turn to options for reducing 
variability.

   1.     Reduce arrival rate (λ):  There are many ways to reduce the call rate to the 
Macrohard call center. However, some of these (e.g., making it inconvenient for 
customers to get through) are in conflict with the strategic objective of providing 
good service. But there are options that could both reduce the call rate and 
increase customer satisfaction. For example, improving user documentation, 
providing better web-based support, making user interfaces more intuitive, 
offering training, etc., are examples of actions that may make customers less 
reliant on technical support.   

  2.     Reduce service time (τ):  Similarly, there are options for reducing service times 
(e.g., hanging up on customers or giving them curt answers) that are inconsistent 
with Macrohard’s strategic objectives. But options such as hiring more qualified 
technicians, improving technician training, and providing technicians with easy-
to-use diagnostic tools, could both speed and improve customer service. Policies, 
such as better self-help tools, that enable customers to partially solve problems 
and collect information of use to the technician prior to the service call could also 
speed service. However, it is worth asking whether customers will be happier 
performing such self-help rather than calling for technical support immediately. 
Finally, it may be possible for the technician to multi-task, by putting one cus-
tomer who has been asked to perform some diagnostic steps on hold and speaking 
with another customer. If processing multiple customers at once services them 
more quickly than processing them sequentially (and doesn’t anger them with 
more hold time) then this could be an option for dealing with bursts of calls.   

  3.     Reduce service variability (c   
s
   ):  The options for reducing service time may reduce 

service time variability as well. For example, a better trained technician is less 
likely to “get stuck” on a customer problem and will therefore have fewer excep-
tionally long calls. Eliminating very long calls will reduce both the mean and the 
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variability of service times. Similarly, options that promote customer self-help 
may shorten the longest calls and thereby reduce service time variability. Finally, 
while Macrohard does not have this option on account of their system consisting 
of a single technician, larger call centers can reduce variability by stratifying calls. 
For instance, most companies have a voice menu to separate customers with 
(short) sales calls from customers with (long) technical support calls. In addition 
to reducing variability in service times, such a policy allows service agents to 
specialize on a particular type of call and, we hope, provide better service.   

  4.     Reduce arrival variability (c   
a
   ):  We noted earlier that interarrival times tend to be 

Markov (i.e., c 
a
  = 1) when arrivals are the result of independent decisions by 

many customers. In most call centers, including that of Macrohard, it is reason-
able to assume that this will be the case, provided that customers call in when-
ever they like. But it isn’t absolutely essential that customers be allowed to call 
in at will. Many service systems (e.g., dentists, car mechanics, college profes-
sors) require, or at least encourage, customers to make appointments.     

 Suppose that customers were required to schedule technical support appoint-
ments in the Macrohard support system by going to a website and booking a call-in 
time. Recall that we used the Μ/Μ/1 model to find that if Macrohard wishes to keep 
average waiting time below 5 min when average process times are 15 min, the 
arrival rate can be no higher than one call per hour. This calculation, however was 
based on an assumption of Markov arrivals and service times (c 

a 
 = c

 s
  = 1). If we do 

not alter the variability in service times (so c
 s
  = 1) but we schedule arrivals (so c

 a 
 = 

0), how far apart must we schedule appointments to ensure that average waiting 
times remain below 5 min? 

 Recalling that ρ = λτ, and expressing all times in units of hours, we can use Eq. 
( 13 ) (Kingman’s equation) to answer this question as follows: 
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  l < 1.6 per hour.   

 This shows that smoothing out arrivals to the support center by asking customers 
to sign up for times will allow the technician to handle 60% more calls (i.e., λ 
increases from 1 per hour to 1.6 per hour) with the same average waiting time of 5 
min. The reason, as we noted above, is that the technician will not have to cope with 
clumps of calls that cause occasional intervals of congestion. So the technician can 
handle more calls if they come in more smoothly. 

 Of course, customers may feel that being forced to make appointments to get 
technical support is not consistent with good service. So Macrohard may elect to 
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continue allowing customers to call whenever they like. But they will need a larger 
capacity (i.e., more and/or faster technicians) to accommodate unscheduled 
customers without long delays. 

 Clearly, there are systems in which long delays and/or low server utilization are 
worse than the inconvenience of making appointments. We schedule appointments 
with physicians, hair stylists, dance instructors and many other service providers. If 
instead we simply showed up at our leisure and requested service we would fre-
quently experience long waits (unless the provider had very low utilization, which 
would probably not be a good sign with respect to quality). 

 Finally, in addition to the four categories of improvement suggested by 
Kingman’s equation, Macrohard could also consider some structural approaches for 
reducing average waiting time. One possibility is customer sequencing. As noted in 
Chap. 1, the shortest processing time (SPT) rule minimizes average flow time for a 
fixed set of jobs. While queueing systems do not match the conditions under which 
the SPT rule is strictly optimal (i.e., because arrivals are dynamic), they share some 
behavior in common with single station scheduling systems. If Macrohard can 
identify customers (e.g., using a voice menu system) who require short service 
times, they can very likely reduce average waiting time by handling them first and 
then taking the customers with long complex questions. 

 Another improvement approach might be to convert the system to a priority 
queue. If some customers seeking service are more important than others (e.g., have 
paid for premier support or have indicated through the phone menu that they have 
more pressing problems), then dividing customers into separate queues and han-
dling the higher priority customers first could reduce the waiting time of the most 
important customers. Of course, this improvement would come at the expense of 
increased waiting time for lower priority customers. But such a shift might be con-
sistent with Macrohard’s customer support strategy. 

 Finally, Macrohard could take steps to shift arrivals from busy (high utilization) 
periods to periods with excess capacity. One way to do this would be to allow only 
a fixed number of calls in queue at any time. If a customer calls when this buffer is 
full, then he/she would get a busy signal (or more appropriately a polite message) 
and would have to call back later. Alternatively, Macrohard could implement a 
system to announce the expected waiting times and count on customers to balk on 
joining the queue when the system is too busy.  

  Applications 

  Although we tend to think of queueing primarily in the context of service systems 
(e.g., waiting in line at the bank, grocery store or movie theater), queueing behavior 
occurs in all kinds of systems. 

 In manufacturing plants, jobs await processing at work stations. Variability in 
process times can be the result of product variety, machine failures, setup times, quality 
problems, operator variability, and many other causes. Variability in interarrival times 
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can be the result of uneven customer orders, upstream process variability, material 
handling, etc. High utilization work stations are called “bottlenecks” and are 
responsible for inflating work-in-process (WIP) and cycle times. Lean manufacturing 
methods focus on supplementing bottleneck capacity (e.g., through cross-training 
workers to “float” between work stations as needed) and reducing variability (e.g., 
through total preventive maintenance and setup reduction). 

 In transportation systems, queueing-type congestion occurs at many locations, 
including toll booths, stop signs, entrance ramps, etc. As we all know, when traffic 
gets heavier (utilization increases) congestion grows. Traffic calming methods, 
such as lights that pace cars on highway entrance ramps, reduce congestion by 
reducing variability. Electronic tags for toll collection (E-ZPass, I-Pass, SunPass, 
etc.) both increase capacity and reduce service variability at toll booths. While 
models of vehicle flow go well beyond single server queues, the basic insights of 
this chapter are at the core of traffic science. 

 Queuing behavior abounds in telecommunications systems. Calls at exchanges, 
information packets at routers and jobs at central processing units (CPUs) are just 
a few examples of electronic queueing systems. A prevalent application of models 
like those discussed in this chapter is sizing web server capacity. Since arrivals to a 
web site (hits) are random and downloaded file sizes are variable, queues will form. 
To prevent slow response, the web site must have sufficient server capacity to keep 
average utilization to reasonable levels. 

 An application where rapid response is essential is emergency services. Police, 
fire, and ambulance services can all be viewed as queueing systems with calls con-
stituting arrivals. Since excessive waiting time is not acceptable in these systems 
and variability is unavoidable (people do not schedule their heart attacks), the only 
way to keep waiting to a minimum is to have a great deal of excess capacity. As a 
result, ambulance systems operate at only 10–15% utilization and fire fighters tend 
to spend a lot of time cleaning their equipment while they are waiting for a call. But 
when one comes, they are likely to be ready to go. 

 These are just a few of the many situations where queueing behavior arises. 
Although the details differ widely, the main insights are remarkably similar.  

  Summary of Insights 

  The single server queueing models considered in this chapter are simple, but they illus-
trate essential behaviors that extend well beyond these simple settings. These are:

   1.     Variability causes congestion:  Uneven interarrival or service times in a queueing 
system result in occasional backups during which customers must wait. The 
more frequent and more severe these backups, the larger the expected wait 
time will be. Kingman’s Equation shows that interarrival and service variability 
(as measured by coefficient of variation) play equal roles in causing congestion 
and waiting. 
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 This insight explains why we wait at both doctors’ offices and ATM’s. Since 
patients have appointments with doctors, arrivals are quite steady and predictable 
(i.e., c

 a
  is low). So it is variability in the amount of time the doctor spends with indi-

vidual patients that causes the queueing that makes us wait. In contrast, arrivals to an 
ATM are not scheduled and are therefore quite random, while service times are fairly 
uniform. Hence, it is arrival variability (c 

a
 ) that causes us to wait at an ATM.   

  2.     Utilization exacerbates congestion caused by variability:  The busier a server is, 
the more vulnerable it is to the backups that result from uneven interarrival or 
service times. A key feature of Kingman’s Equation is that the variability term 
(  (c

a
2 + c

a
2)/2)   and the utilization term (ρ/(1-ρ)) are multiplicative. Doubling the 

variability term in a system with ρ = 0.5 will double waiting time in queue, while 
doubling the variability term in a system with ρ = 0.9 will increase waiting time 
by 18 times. Clearly, variability has an extreme effect on busy systems. 

 This insight explains the very different priorities of emergency medical service 
(EMS) systems and call centers. Because they must be highly responsive, EMS 
systems operate at very low utilization levels (in the range of 10–15%). Hence, a 
change in the variability of response times (c 

s 
) will not have a large impact on average 

waiting time and so service time smoothing is not an attractive improvement policy 
in EMS systems. In contrast, call centers operate at fairly high utilization levels 
(80% or more) in pursuit of cost efficiency. This makes them sensitive to variability 
in service times and so training, technology and other policies that facilitate 
uniform response times can be of substantial value.   

  3.     Service and production systems with variability cannot operate at their theoreti-
cal capacity:  All of the formulas (Eqs. (8), (10), and (13)) for average waiting 
time in a single server queue have a (1-ρ) term in the denominator, which implies 
that waiting time will approach infinity as ρ approaches one. Of course, the 
queue length can only grow to infinity given an infinite amount of time. So what 
this really means is that systems with 100% utilization will be highly unstable, 
exhibiting a tendency for the queue length and waiting time to get out of control. 
Hence, over the long term, it is impossible to operate at full utilization. Indeed, in 
systems with significant variability and a limit on the allowable waiting time, the 
maximum practical utilization may be well below 100%. 

 This insight may seem at odds with every day behavior. For instance, plant man-
agers are fond of saying that they operate at more than 100% capacity. That is, their 
plant is rated at 2,000 circuit boards per day but they have been producing 2,500 
per day for the past month. While it is possible to temporarily run a queueing sys-
tem at or above capacity, this cannot be done indefinitely without having congestion 
increase to intolerable levels. So what the plant managers who make statements like 
this usually mean is that they are running above the capacity defined for regular 
operating conditions. But they typically do this by using overtime, scheduling more 
operators, or taking other measures that increase their effective capacity. With 
capacity properly redefined to consider these increases, utilization  will  be below 
100% over the long term.   
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  4.     Variability reduction is a substitute for capacity:  Since both variability and utiliza-
tion cause congestion, policies that address either can be used to reduce waiting. 
Conversely, if the maximum waiting time is constrained by strategic considerations, 
then either reducing variability or increasing capacity can increase the volume 
the system can handle.     

 The Macrohard example illustrates this insight by showing that reducing varia-
bility by scheduling support calls will allow the technician to handle 60% more 
calls than if customers call in at random. While the theoretical capacity of the tech-
nician is not changed by scheduling calls, the practical capacity of the system (i.e., 
the call rate that can be handled without allowing average waiting time to grow 
beyond 5 min) is increased due to the reduction in congestion. 

 This insight has powerful implications in manufacturing, as well as service sys-
tems. For instance, in a batch chemical process, in which reactors are separated by 
tanks that hold small amounts of material, the work in process (and hence the time 
to go through the line) is strictly limited. Since reactors, which act like single server 
queueing systems, cannot build up long queues due to the limited storage space, 
variability prevents them from achieving high levels of utilization. Specifically, the 
reactors will be  blocked  by a full downstream tank or  starved  by an empty upstream 
tank. The more variability there is in processing times, the more blocking and starving 
the reactors will experience. Therefore, if changes in reaction chemistry, process 
control or operating policies can make processing times more regular, the line will 
be able to operate closer to its theoretical capacity. This would allow use of a 
smaller line to achieve a target throughput and hence variability reduction is indeed 
a substitute for capacity. 

 Insights like these will not eliminate waiting in our daily lives. But they can help 
us understand why it occurs and where to expect it. More importantly, in the hands 
of the right people, they can facilitate design of effective production and service 
systems. As such, the science of queueing offers the dream of a world in which 
waiting is part of sensibly managed tradeoffs, rather than an annoying consequence 
of chaotic and ill-planned decisions.  

  Historical Background 

  The scientific study of queues began nearly 100 years ago with the work of A.K. 
(Agner Krarup) Erlang, an engineer working for the Copenhagen Telephone 
Company. Motivated by the problem of determining how many circuits were 
required to provide acceptable telephone service, Erlang made use of the Poisson 
distribution to model randomness in phone calls ( Erlang 1909 ) and developed for-
mulas for average waiting time and loss rates for calls ( Erlang 1917 ). 

 Although they were not yet labeled as such, the queueing models used by 
Erlang were relatives of the Μ/Μ/1 model discussed in this chapter. Over the next 
half century, researchers extended their analysis to include the Μ/G/1 queue 
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( Khintchine 1932 ), the Μ/G/C ( Pollaczek 1934 ) and G/G/1 queue ( Lindley 1952 ) 
and their many variants. However, while these early papers talked about conges-
tion and used the term “queue,” the term “queueing” was not coined until after 
World War II by David  Kendall (1951) . Kendall also systematized the field he 
named by introducing the standard A/B/C classification in which A designates 
the arrival process, B represents the service process and C denotes the number of 
servers ( Kendall 1953 ). In this chapter we have only considered as values for A 
and B the options of Μ (Markov) and G (general). But many others, such as D 
(deterministic), Ek (Erlang), and Ph (phase type), are possible, which makes the 
study of queues incredibly rich. 

 Stimulated by the post-war burst of activity by operations research scholars 
to apply mathematics to practical problems, queueing theory enjoyed a period 
of substantial growth during the 1960s and 1970s. Indeed, by 1986, the literature 
on queues had become so extensive that a new journal,  Queueing Systems , was 
devoted exclusively to queueing research. The rich history of the mathematics 
of queues is far too extensive to document here, but  Stidham (2002)  offers an 
excellent review. 

 From an application standpoint, two developments—approximations and 
networks —were particularly important. The work of  Kingman (1966) , based on 
heavy traffic analysis, led to the approximation for the G/G/1 queue discussed in 
this chapter. Because this approximation, and similar ones for variants of the G/G/1, 
depend only on two moments (mean and coefficient of variation) of the interarrival 
and service times, they are enormously useful in modeling systems with limited 
data and drawing general insights about the causes of congestion. 

  Jackson (1957 ,  1963 ) initiated the study of networks of queues, in which entities 
flow through a series of servers and may have to wait at any of them. Because systems 
in manufacturing, service, transportation, telecommunications and many other 
domains are often characterized as flow networks, queueing network models are 
highly useful in analyzing and improving the performance of such systems.  Whitt 
(1983)  combined heavy traffic approximations with network analysis to produce 
the first practical tool for analyzing networks of queues. Today, there are a variety 
of commercial software packages that rely on queueing network models to make 
performance analyses of various operations systems. 

 The progress on the mathematics of queues has facilitated a broad range of 
applications of queueing. In the 1970s, researchers (e.g.,  Larson 1972 ;  Larson and 
Odoni 1981 ) made heavy use of queueing models to make quantitative analyses of 
urban systems. Also in the 1970’s, queueing models became a standard tool in the 
performance analysis of computer systems (see  Kleinrock 2002  for a historical 
overview). The 1980s saw the adoption of queueing methods in transportation 
systems analysis ( Newell 1982 ). In the 1990s, a number of scholars (e.g.,  Buzacott 
and Shantikumar 1993 ;  Hopp and Spearman 2000 ) relied on queues to construct 
a science of manufacturing that underlies the practices of lean production, agile 
manufacturing and six sigma. More recently, concerns about security have motivated 
scholars (e.g.,  Wein et al. 2003 ;  Green and Kolesar 2004 ) to use queueing models 
for improving emergency response systems. 
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 The past century has seen remarkable advances in our understanding of the funda-
mental causes of waiting. But since waiting remains a major source of inefficiency in 
many public and private sector systems, queueing theory and its applications will 
continue to receive research attention for many years to come.   
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        Chapter 5   
 Little’s Law 

        John   D.  C.   Little    and    Stephen   C.   Graves    
 Massachusetts Institute of Technology 

   The average waiting time and the average number of items waiting for a service 
in a service system are important measurements for a manager. Little’s Law 
relates these two metrics via the average rate of arrivals to the system. This funda-
mental law has found numerous uses in operations management and managerial 
decision making.    

   Introduction 

  Caroline is a wine buff and bon vivant. She likes to stop at her local wine store, 
 Transcendental Tastings , on the way home from work. She browses the aisles look-
ing for the latest releases from her favorite vineyards. Occasionally she picks up a 
few bottles. She stores these in a rack in a cool corner of her cellar. She and her 
partner eat out frequently but when they are at home they usually split a bottle of 
wine at dinner. Sometimes they have friends over and that puts a bigger dent in the 
wine inventory. 

 They have been doing this for some time. Her wine rack holds 240 bottles. She 
notices that she seldom fills the rack to the top but sometimes after a good party the 
rack is empty. On average it seems to be about 2/3rds full, which would equate to 
160 bottles. 

 Many wines improve with age. After reading an article about this, Caroline 
starts to wonder how long, on average, she has been keeping her wines. She went 
back through a few months of wine invoices from  Transcendental  and estimates 
that she has bought, on average, about eight bottles per month. But she certainly 
doesn’t know when she drank which bottle and so there seems to be no way she 
can find out, even approximately, the average age of the bottles she has been 
drinking. 

 This is a good task for Little’s Law. 

D. Chhajed and T.J. Lowe (eds.) Building Intuition: Insights From Basic  81
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   Little’s Law Deals with Queuing Systems  

 A “queuing system” consists of discrete objects we shall call “items” that “arrive” at 
some rate to the “system.” Within the system the items may form one or more queues 
and eventually receive “service” and exit. Figure  5.1  shows this schematically.  

 While items are in the system, they may be in queues or may be in service or 
some in queue and some in service. The interpretation will depend on the applica-
tion and the goals of the modeler. For example in the case of the wine cellar, we say 
that a bottle (an “item”) arrives to the system when it is first placed into the wine 
cellar. Each bottle remains in the system until Caroline selects it and removes it 
from the cellar for consumption. If we view the wine rack as a single channel 
server, the service time is the time between successive removals. It is interesting to 
note, however, that we do not know which bottle Caroline will pick and there is no 
particular reason to believe that she will pick according to a first-in, first-out (FIFO) 
rule. In any case, to deal with the average number of bottles in the cellar or average 
time spent by a bottle in the cellar, we need to consider the complete system con-
sisting of queue plus service. 

 Little’s Law says that, under steady state conditions, the average number of 
items in a queuing system equals the average rate at which items arrive multiplied 
by the average time that an item spends in the system. Letting 

   L    = average number of items in the queuing system, 
   W  = average waiting time in the system for an item, and 
   λ     = average number of items arriving per unit time, the law is 

   L = l W.   (1)   

 This relationship is remarkably simple and general. We require stationarity 
assumptions about the underlying stochastic processes, but it is quite surprising 
what we do  not  require. We have not mentioned how many servers there are, 
whether each server has its own queue or a single queue feeds all servers, what the 
service time distributions are, or what the distribution of inter-arrival times is, or 
what is the order of service of items, etc. 

 In good part because of its simplicity and generality, the equation  (1)  is 
extremely useful. It is especially handy for “back of the envelope” calculations. 
The reason is that two of the terms in (1) may be easy to estimate and not the third. 
Then Little’s Law quickly provides the missing value. 

Arrivals → queuing system:   items in  
queue & items in service

→ Departures

Flow of items through a queuing system

   Fig. 5.1     Schematic view of a queuing system       
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 Thus for Caroline, the average number of bottles in the system is  L  = (240)*(2/3) 
= 160 bottles and the average arrival rate is  λ  = (12)*(8) = 96 bottles/year. Without 
ever collecting individual data on how long each bottle remains in her cellar, she 
can calculate the average amount of time a bottle stays in her cellar as  W  = 
(160)/(96) ≅ 1.67 years. That’s not very old. She needs a bigger rack and more 
patience, or, alternatively, she should develop selection rules to favor holding 
special bottles longer than the others. This wouldn’t affect the average but might 
give her some fine old wines.  

   Arguing Little’s Law with a Picture  

 Figure  5.2  shows one possible realization of a particular queuing system. We can 
make a heuristic argument for Little’s Law by interpreting the area under the curve 
in Fig. 5. 2  in two different ways. Let 

   n(t)  = the number of items in the queuing system at time t; 
   T  = a long period of time; 
   A(T)  = the area under the curve  n(t)  over the time period  T ; 
   N(T)  = the number of arrivals in the time period  T .  

 On the one hand, an item in the queuing system is simply there. The number of 
items can be counted at any instant of time  t  to give  n(t) . Its average value over  T  
is the integral of  n(t)  over  T  (i.e.,  A(T) ) divided by  T . On the other hand, at time  t  
each of the items is waiting and so is accumulating waiting time. By integrating  n(t)  
over the time period  T , we obtain a cumulative measure of the waiting time, again 
equal to  A(T) . Furthermore, the arrivals are countable too, and given by  N(T) . 
Therefore, inspecting the figure, we define 

  Fig. 5.2    Number of items in a queuing system versus time       
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   λ(T)  =  N(T)/T  = arrival rate during time period  T , 
   L(T)  =  A(T)/T  = average queue length during time period  T , 
   W(T)  =  A(T)/N(T)  = average waiting time in the system per arrival during  T . 
  A slight manipulation gives  L(T)  =  λ(T)W(T) . 

 All of these quantities wiggle around a little as  T  increases because of the sto-
chastic nature of the queuing process and because of end effects. End effects refer 
to the inclusion in  W(T)  of some waiting by items which joined the system prior to 
the start of  T  and the exclusion of some waiting by items who arrived during  T  but 
have not left yet. As  T  increases,  L(T)  and  λ(T)  go up and down somewhat as items 
arrive and later leave. 

 Under appropriate mathematical assumptions about the stationarity of the 
underlying stochastic processes, the end effects at the start and finish of  T  
become negligible compared to the main area under the curve. Thus, as  T  
increases, these stochastic “wiggles” in  L(T) ,  λ(T) , and  W(T)  become smaller 
and smaller percentages of their eventual values so that  L(T) ,  λ(T) , and  W(T)  
each go to a limit as we increase  T  to infinity. Then, using the obvious symbols 
for the limits, we have: 

   
( ) ( ) ( )lim ;    lim ;    lim

T T T
L T L T W Tλ λ

→∞ →∞ →∞
= = =

   

from which we get the desired result (1). 
 It is interesting and important to note that the formula holds for  each  realization 

of the queuing system over time. This was argued by Little, in his original paper 
( Little 1961 ), noting that the relationship (1) held for each evolution of the time 
series of a particular queuing system. In other words, if we watch a specific case or 
realization designated, say, by  w , as it develops over time, then we will find that 

   Building Intuition    Little’s Law provides a fundamental relationship between 
three key parameters in a queuing (or waiting line/service) system: the average 
number of items in the system, the average waiting time (or flow time) in 
the system for an item, and the average arrival rate of items to the system. 
The system can be very general. For example, it might include both the serv-
ice facility and the waiting line, or it might be only the waiting line. An 
important feature of Little’s Law is that by knowing, perhaps via direct meas-
urement, two of the three parameters, the third can be calculated. This is an 
extremely useful property since measurement of all three parameters may be 
difficult in certain applications. 

 Little’s Law is applicable in many environments including manufa-
cturing and service industries as well as everyday decision making by 
individuals.  
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 L(w)  =  λ(w) W(w) , given the steady state and other assumptions made. Averaging 
cross-sectionally across the many possible realizations of a particular system gives 
(1), but it is a useful insight to know that the formula holds for each evolving time 
series as it is observed over a long time period.   

   Law or Tautology?  

 Equation  (1)  is commonly called Little’s Law and we have cheerfully adopted 
that terminology. However, as pointed out by various people, including  Little 
(1992) , Eq.  (1)  is a mathematical theorem and therefore a tautology. The relationship 
turns out to be useful in practice, but there is no need to go out on the factory 
floor and collect data to test it. This would be required in the case of a physical 
law such as Newton’s Law of Gravitation. Each side of Newton’s equation has 
to be measured and it is an empirical question whether they are equal within the 
measurement error. For a mathematical theorem, if the assumptions are satis-
fied by the application, the result will hold. Note that calling a mathematical 
theorem a law is not without precedent. The Law of Large Numbers would be 
another instance.   

  Usefulness of Little’s Law in Practice 

  In this section we try to convey the generality of the result and its usefulness in 
different contexts by means of simple examples. In each case we see how the 
observation of two of the three measures provides the third. We try to bring out 
why such back-of-the-envelope analyses are of interest and value in different 
situations. 

  Semiconductor Factory : Semiconductor devices are manufactured in extremely 
capital-intensive fabrication facilities. The manufacturing process entails starting 
with a silicon wafer and then building the electronic circuitry for multiple identical 
devices through hundreds of process steps. Suppose that the semiconductor factory 
starts 1,000 wafers per day, on average; this is the input rate. The start rate has 
remained fairly stable over the past 9 months. We track the amount of work-in-
process ( WIP ) inventory. The  WIP  varies between 40,000 and 50,000 wafers; the 
average  WIP  is 45,000 wafers. 

 Then we can infer the average flow time in the factory. The arrival rate to the 
factory is the wafer start rate:  λ  = 1,000 wafers per day. The  WIP  is the system 
queue length:  L  = 45,000 wafers. Thus the wait time or expected time in the system 
is  W  = 45 days. In a manufacturing context, we often refer to this as the flow time, 
the time between when a job starts and finishes in a factory. For instance, if we 
think of one wafer as being a job, then it takes the factory on average 45 days to 
process it, that is, to convert it from a blank wafer into a finished wafer comprised 
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of electronic devices. Knowing the flow time is critical for planning and schedul-
ing the factory, and for making delivery commitments to customers. We shall 
return later to the connection between Little’s Law and operations management. 

  E-Mail : Managing our e-mail is a common and time-consuming daily activity. 
For many it is hard to keep up with the volume of messages, let alone provide 
timely responses. A student Sue might receive 50 messages each day to which she 
must generate a response. Can we easily assess how well this student handles her 
e-mail duties? 

 Indeed we can apply Little’s Law to get a quick sense of how promptly Sue 
responds to messages. Suppose that she receives about 50 messages every day; 
then this is the arrival rate:  λ  = 50 messages/day. Suppose we can also track how 
many messages have yet to be answered. For instance, suppose that Sue 
removes a message from her InBox once she has responded to it. Then the 
remaining messages in her InBox are the messages that are waiting to be 
answered. Over the last semester, the size of the InBox has varied between one 
and two hundred messages with an average of 150 messages. Then we can 
regard this to be the system queue length:  L  = 150 messages. From Little’s Law 
we immediately have an estimate of how long it takes Sue to answer a message, 
on average:  W  = 3 days. 

  Hospital Ward : We wish to determine the size and staffing levels for the 
maternity ward for a local hospital. From historical records we know that the 
birth rate for the local community is about five births per day. We also know that 
most women stay in the maternity ward for 2 days before going home with child; 
however occasionally, there are complications with the birth that require much 
longer stays. Over the past 6 months, we find that 90% of the births have 
resulted in 2-day stays; for the remaining 10% of the cases, the average length 
of time in the maternity ward is 7 days. Thus, on average, the length of stay is 
  0.9 × 2 + 0.1 × 7 = 2.5 days  . 

 We can use Little’s Law to predict the average number of mothers in the mater-
nity ward. The arrival process corresponds to the women arriving to deliver their 
babies; the arrival rate is  λ  = 5 mothers per day. The relevant waiting time in the 
system is the length of stay in the maternity ward:  W  = 2.5 days. Thus, the expected 
queue length or number in the system is  L  = 12.5 mothers. This would be useful in 
determining the size of the maternity ward (e.g., beds) and the staffing require-
ments. However, the law only provides the average requirements, and one would 
need to design the maternity ward to accommodate its peak requirements. For instance, 
we would certainly want more than 12.5 or 13 beds in order to handle the variability 
in the occupancy of the ward. One needs to use queuing models and/or simulation 
to explore the trade-offs between the utilization of the beds and the likelihood of 
not having a bed for an expectant mother. Nevertheless, Little’s Law provides a 
starting point for this investigation, since we know the average number of beds that 
are needed. 

  Toll Booths : The Ted Williams Tunnel travels under the Boston harbor, connecting 
East Boston to South Boston. During the course of a day, about 50,000 vehicles go 
through the tolls at the entry point to the Tunnel in East Boston. The Massachusetts 
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Transit Authority (MTA) tries to modulate the number of toll booths that are open 
at any point in time so that the average number of vehicles waiting at the tolls 
(including those at the booths) never exceeds 20 vehicles. For instance, all six 
booths are open during the peak time in the morning from 6:00 AM to 10:00 AM. 
During this morning rush hour, the tunnel handles up to 4,000 cars per hour, and 
the MTA estimates that the average number of vehicles waiting at any point of time 
is near the target maximum of 20 vehicles. 

 With the assumption that the arrivals occur at a relatively stable rate over the 
morning rush hour, we can then use Little’s Law to ask what quality of service is 
being delivered in terms of average waiting time per vehicle. Suppose that the arrival 
rate to the toll booths is  λ  = 3,600 vehicles per hour (or 1 vehicle per second), and the 
expected number of vehicles in the system is  L  = 20 vehicles. Thus, on average, the 
time a vehicle spends at the toll booths is  W  = 20/3,600 h = 20 s. 

  Housing Market : The local real estate agent in your community estimates 
that it takes 120 days on average to sell a house; whereas this number changes 
some with the economy and season, it has been fairly stable over the past decade. 
You observe from monitoring the classified ads that over the past year the 
number of houses for sale has ranged from 20 to 30 at any point in time, with 
an average of 25. What can we say about the number of transactions in the 
past year? 

 From Little’s Law we can estimate this by viewing the real estate market as a 
queuing system. We regard a house being put up for sale as an arrival to the sys-
tem. We assume that an unsold house remains on the market until it is sold. Thus, 
when a house “completes its service” and departs from the market, we infer that it 
has been sold. We have estimates of the average time in the system and the average 
number in the system, namely,  W  = 120 days and  L  = 25 houses. From this, we can 
estimate the arrival rate to the system,  λ  = 25/120 houses per day ≅ 75 houses 
per year. 

  Doughnut Shop : From your daily morning trip to the doughnut shop, you know 
they have a healthy business, at least financially speaking. As you might want to 
invest in a franchise, you wonder what amount of revenue they generate. Over the 
course of several months, you visit the shop at random times between 6:00 AM and 
9:00 AM; you observe that the queue averages about 10 customers, and that it takes 
you about 3 min to get in and out of the shop. 

 If you assume your experience is typical, then you can apply Little’s Law 
to estimate what the throughput rate is for the enterprise for the morning peak 
period. The expected number in the system is  L  = 10 customers and the 
expected time in the system is  W  = 3 min. We can then estimate the arrival 
rate to the system, namely  λ  = 10/3 customers per minute = 200 customers per 
hour. We also term this the throughput rate as arriving customers become 
throughput once served. To get an estimate for the revenue potential from this 
shop, we need to estimate how much each customer spends. If you typically 
spend $5 per visit, then with the assumption that you are a typical customer, 
we have a rough estimate of the shop’s revenue during these morning hours, 
i.e., $1,000 per hour.  
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  The Robustness and Generality of Little’s Law 
in Certain Systems 

  So far we have developed and discussed Little’s Law as a relationship among 
steady-state stochastic processes. The contexts we have examined have been well-
behaved, stable, and on-going. In particular we assume that the characteristics of 
the arrival and service processes are stationary over time. For example, in the case 
of the maternity ward, we assume that the average arrival rate of mothers has been 
steady at five per day for some time, and that this rate does not vary with day of 
week or season of the year. Similarly, we have regarded the service process as 
being stationary; for instance, we read and process our e-mail at roughly the same 
average rate, day in and day out, independent of the backlog of unread messages. 
For some of our examples, we have focused on an interval of time, e.g., the morn-
ing rush hour through the toll booths. However, in these instances due to the huge 
volume of arrivals, we contend that the system behavior is virtually equivalent to 
that of a steady-state system. 

 The purpose of this section is to show the great robustness and generality of 
Little’s Law under certain circumstances. Indeed Little’s Law is exact in these 
cases even though arrival and service process may be nonstationary. The essential 
condition is to have a finite window of observation that starts and stops when 
the system is empty. We use an example to motivate and illustrate the validity 
of Little’s Law in this situation. Consider the  Sweet & Sour  supermarket, which 
opens every day at 7:00 AM and closes 16 h later at 11:00 PM. When  S&S  opens 
at 7 AM, there are no customers in the store. When it closes at 11 PM, all of 
the customers depart. Between opening and closing, customers arrive to the 
store, do their shopping and leave. The arrivals over the course of the day are 
quite varied. They include several customer segments, each with quite distinct 
shopping habits. Families with school-age children will shop between 9AM and 
2 PM, and tend to have fairly lengthy shopping forays as they stock up for a 
week at a time. Seniors will tend to shop at quiet times of the day, like first 
thing in the morning, and will also be fairly leisurely in their shopping, taking 
up to an hour to complete a visit. Working couples will shop at night after work 
or on the weekends; their evening visits are often to run in, grab something and 
run out. 

 We propose to model  S&S  as a queuing system with the arrivals being the 
customers as they enter the store and service being the duration of their time in 
the store selecting and purchasing their groceries. However, from the above dis-
cussion, we see that this is anything but a stable system. The supermarket is never 
in a steady-state. It starts and ends each day with zero customers. Over the course 
of the day, customers arrive at varying rates, and the nature of their shopping trips 
also varies over the day, due to the different clienteles. Nevertheless, we will 
show next that Little’s Law applies each and every day to this supermarket in an 
exact way. 
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   An Analytic Interlude  

 Let  N  denote the number of customers that shop on a particular day. Suppose that 
we keep track of when customers arrive and when they depart from the store. Then 
we can define and create two processes, one for the arrivals and the other for the 
departures. We define time  t  = 0 to correspond to the opening at 7 AM, and time 
 t  = 16 to be the store closing at 11 PM, 16 h later. 

 We let  N(t)  denote the cumulative number of arrivals to the store by time  t . Thus, 
as we start the day with zero customers, we have  N(0) = 0 ; as we assume a total of 
 N  customers arrive during the day, we have  N(16)   = N . The cumulative arrivals 
increase in a stair-case fashion, as shown in Fig.  5.3 , over   0 < t < 16  .  

 In similar manner we define  D(t)  to denote the cumulative number of depar-
tures from the store by time t. Again, we have  D(0) = 0, D(16) = N , and the 
cumulative departures increase in a stair-case fashion over the time interval 
  0 < t < 16  ; see Fig.  5.3 . 

 We note that at all time instants we have  N(t)    ≥    D(t),  as the number of departures 
can never exceed the number of arrivals. Indeed, the difference between the two 
cumulative processes is the number of customers in the supermarket at time t: 

   L(t) = N(t) − D(t).    

 With this observation we can determine the average number in the supermarket 
over the course of the day from the following integral: 

L(t)
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  Fig. 5.3    Cumulative arrivals to and departures from a system, for example, the supermarket       
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 To compute (3) we shall develop an equivalent expression based on the 
geometry in Fig.  5.3 . Let us define   {c1,c2 ,...cN}   to be the sequence of depar-
ture or completion times for the  N  customers, where   cj   denotes the completion 
time for the jth departing customer. Since customers need not exit the store in 
the order that they arrive, we shall often have   c

j
 ≠ cj

  
. However, the sequence 

  {c1, c2 ,..., cN}   is just a permutation or reordering of the sequence   {c
1
 ,c
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c
N
}    as the departure time for each customer must appear exactly once in 

each sequence. 
 As shown in Fig.  5.3 , we can define the jth wait time as   Wj = cj – s
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, equal to the 

difference between the departure time for the jth departing customer and the start 
time for the  j th arriving customer. Now let us consider the average of these 
wait times: 
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 Now we need to relate our expression for  L , given by (2) to our expression for 
 W , given by (4). From the geometry in Fig.  5.3 , we observe the following 
equivalence: 
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 That is, on each side of the equation, we have an expression for the area between the 
cumulative arrivals and the cumulative departures. On the left side we compute the area 
by integration over time of the function that tracks the number in the system; on the 
right side we compute the area by summing up the time in system for  N  customers. 

 From (2), (4) and (5), we can now write Little’s Law for the supermarket: 
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 We recognize 
   
16

N
   to be the arrival rate in customers per hour for the particular 

day, and we define  
  16

Nλ =
  
; thus we have (6) in its familiar form,   L = lW  . 

 With this simple example we have shown that Little’s Law can be true over a 
finite time window (16 h) with nonstationary arrivals and with no notion of any 
steady state for the system in question. On reflection, there were two essential con-
ditions for this result: 

 •  Boundary conditions—we specify the finite time window to start and end with 
an empty system. This was a natural condition for the supermarket, and indeed, 
would be common for many service systems.  

 •  Conservation of customers—we assume that all arriving customers will eventu-
ally complete service and exit from the system; there are no lost customers, so 
that the number of arrivals equals the number of departures. Again, this is a valid 
assumption for many systems of interest.    

 We really needed nothing else beyond these conditions in order to establish the 
law in our case. We have no assumptions about  N , the number of customers; 
indeed, all the equations hold true for any  N , e.g., for  N  = 1. We have no assump-
tions about the process for arrivals, or about how customers are serviced within 
the store. There might be a long period of no arrivals followed by the arrival of 
several busloads of customers; there might be periods of no service completions, 
say, if all the cash registers stopped working for an hour. The only conditions are 
as stated above: we need to start and end with an empty system and we need to 
conserve customers. 

 Notice that our formula is exact, but after the fact. In other words, we cannot 
complete our calculation until the supermarket door shuts. This is not a complaint. 
It merely says that we are observing and measuring not forecasting. Another point 
to mention is that the numbers will be different each day because of different sets 
of shoppers on different days of the week, the weather, holidays, and other changes 
in the store’s internal and external environment. Nevertheless, the relationship 
 L = λW,  as measured for that day, will be exact and the ability to measure two of 
the parameters and deduce the third still holds.  
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   Further Discussion of “Average”  

 Little’s Law holds exactly, but let us examine further what we mean by “average” 
wait, queue, and arrival rate. We have no probability distributions and so these are not 
expected values. Looking at the derivation of the result, we see that we are talking 
about everyday sample averages in the case of waits and arrival rates and finite time 
averages in the case of queues. So Little’s Law here shows us an exact relation among 
 sample and time averages . Next, consider a customer segment at the  Sweet & Sour  
supermarket that consists of men with children in strollers. We can compute sample 
or time averages for their arrival rate, time in store, and number in store. Little’s Law 
will hold exactly. Therefore, Little’s Law is true for these averages for any identifiable 
segment. To use the relationship in practice, it will be necessary to collect data 
observing how many people of the target segment enter the store during the day. 

 To summarize, Little’s Law is robust and remarkably general for queuing sys-
tems for which a finite window of observation starts and stops when the system is 
empty. Interpretation of the area between cumulative arrivals and cumulative depar-
tures permits an analytic argument that Little’s Law is exact despite possibly non-
stationary arrival and service processes. What we have discussed here turns out to 
be the tip of a fascinating mathematical iceberg that has been developed in recent 
years, called sample path analysis of queuing systems. An adequate discussion of 
it is beyond the scope of this chapter but the interested reader is referred to the book 
of  El-Taha and Stidham (1999) .   

  Evolution of Little’s Law in Operations Management 

  Over the past 15 years or so, Little’s Law has played an increasingly important role 
in the teaching and practice of operations management. However, the law is usually 
stated in a modified format to emphasize its applicability to operations. For 
instance, we cite as an example the very successful textbook of  Hopp and Spearman 
(2000)  who refer to Little’s Law as a “…an interesting and fundamental, relation-
ship between  WIP , cycle time and throughput.” They go on to state the law as 

   

WIP
TH

CT
=

 
,
  

(7)
  

where they define throughput ( TH ) as “the average output of a production process 
(machine, workstation, line, plant) per unit time,” work in process ( WIP ) as “the 
inventory between the start and end points of a product routing,” and cycle time 
( CT ) as “the average time from release of a job at the beginning of the routing until 
it reaches an inventory point at the end of the routing (that is, the time the part 
spends as  WIP ).” They note that cycle time is also referred to as flow time, through-
put time, and sojourn time, depending on the context. 
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 We easily see that (7) is equivalent to Little’s Law with   TH = l, WIP = L and CT 
= W  . However, there is a more fundamental difference in that the law is stated in 
terms of the average output or departure rate for the system, rather than the arrival 
rate. This reflects the perspective of a typical operating system, especially a manu-
facturing operation. Output is a primary attribute of any manufacturing system, 
since it is nominally its  raison d’etre . As stated, we see that any increase in output 
requires either an increase in work-in-process inventory or a reduction in cycle time 
or both. 

 Furthermore in many contexts, the output rate is determined exogenously and is 
given to the manufacturing system; it reflects actual sales and/or a forecast of sales. 
The manufacturing system must then manage its operations to achieve this output 
rate. It will need to determine how to release work to the operation so as to meet 
the output target. In effect, the arrival process is endogenous. The operations man-
ager decides the arrivals to the system based on the desired outputs. There is exten-
sive research in the operations literature on how best to set the work release (or 
arrival process) to achieve the output targets. The best policies are dynamic policies 
that depend on the state of the manufacturing shop, e.g., depend on the 
work-in-process. 

 Our original development of Little’s Law assumes a stable system with a stationary 
arrival process; as discussed above, we cannot assume a stationary arrival process 
for the typical context in which we might apply (7). Thus, we ask what conditions 
are necessary for (7) to be valid. At a minimum we must have conservation of 
flow. Thus, the average output or departure rate ( TH ) equals the average input or 
arrival rate ( λ ). Furthermore, we need to assume that all jobs that enter the shop 
will eventually be completed and will exit the shop; there are no jobs that get lost 
or never depart from the shop. In addition, we need some notion of system 
stability. We consider two possibilities, as this issue raises another important 
consideration. 

 First, we might assume that the shop will occasionally empty, i.e.,  WIP  = 0. 
Then, as with the supermarket example, we will see that Little’s Law holds exactly 
between any two time instances at which the shop is empty. 

 However, in many manufacturing systems, the WIP never drops to zero. In some 
contexts, this occurs for behavioral reasons; as the  WIP  decreases, the shop naturally 
slows down so as to not run out of work. The shop adjusts its service rate dynami-
cally so as to keep from driving the  WIP  to zero. In other contexts, there might be 
an explicit control rule that maintains some target level or range of  WIP . For 
instance, a very effective control policy is the so-called CONWIP policy that main-
tains an absolutely constant level of  WIP  ( Hopp and Spearman, 2000 ); that is, the 
control rule releases one unit of new work to the system whenever one unit of work 
completes processing and exits the system. In either case, Little’s Law applies, at 
least as an approximation, as long as we select a time interval that is long enough 
for two conditions to hold. 

 First, we need the size of the  WIP  to be roughly the same at the beginning and 
end of the time interval so that there is neither significant growth nor decline in the 
size of the  WIP . 
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 Second, we need some assurance that the average age or latency of the  WIP  is 
neither growing nor declining. We have previously assumed that all jobs that enter 
the shop will eventually be completed and will exit the shop. But if the  WIP  never 
drops to zero, it is possible for the jobs to be getting older or younger, in which case 
the law does not hold. 

 To illustrate the problem, consider a doll store that offers a line of international 
folk dolls. Each doll is adorned with traditional folk clothes from a particular 
country. The artist who produces the dolls gives each doll a distinctive hat in 
one of 10 different colors, which span the rainbow; the choice of color is 
completely at random. So, sometimes the Irish folk doll has a green hat, and 
sometimes a red hat. The store stocks 100 of these dolls so as to have a rich 
assortment of dolls from which to choose; whenever it sells a doll, the store 
immediately obtains a replacement from the supplier so as to maintain its in-store 
stock at 100 dolls. The supplier chooses the replacement doll at random from 
its supply. 

 Demand for the dolls has been quite good, as customers appreciate the artistry 
and novelty of the dolls. Indeed, the dolls sell consistently at a rate of about two per 
week. However, customers have a subtle but strong subconscious dislike for dolls 
with mauve hats. Dolls with mauve hats seldom sell; indeed, these mauve-hat dolls 
sell at a rate of about one every 2 years. 

 A naïve application of Little’s Law might assume a doll arrival rate, equal to the 
demand rate,  λ  = 2 per week and an average number in system  L  = 100 dolls, and 
then conclude that the average time in the store for a doll is  W  = 50 weeks. However, 
this is not likely to be an accurate estimate over any moderate time interval, like a 
few years. Suppose we start with none of the hundred dolls having mauve hats. 
Every time we sell a doll there is a 1 in 10 chance that it will be replaced with a 
doll with a mauve hat, as the artist has 10 colors from which to choose. Since these 
mauve-hat dolls sell much, much less frequently than any other doll, the mix of 
dolls will gradually change over time. Indeed, the number of mauve-hat dolls in the 
store grows by about 10 dolls per year. Dolls without mauve hats make up a smaller 
percentage, but continue to sell at a rate of two per week; the time in system for 
these dolls actually shrinks as they make up a smaller percentage of the store 
assortment. However, the dolls with mauve hats do not sell and just accumulate more 
and more waiting time. Hence, the average age of the dolls in the store’s assortment 
continues to grow older until at some point, the entire assortment has mauve hats. 
As a consequence, we cannot apply Little’s Law during this transient period. 

 For instance, suppose we observe the system for 5 years, and then use Little’s 
Law to estimate  W  =  L / λ  = 100/2 = 50 weeks; this estimate overstates the actual 
time in system for those dolls that have sold. Over the first 5 years, the number of 
mauve-hat dolls in the store grows from zero to about 50. As a consequence the 
active inventory, namely the dolls without mauve hats, drops from 100 to about 50. 
These dolls stay in the system, on average, less than 50 weeks, whereas the mauve-
hat dolls just sit and get older. Of course, if we extend the time interval, in 10 years 
the entire assortment becomes mauve and the demand rate falls to one doll every 2 
years; eventually (about 200 years) the mauve inventory turns over and Little’s Law 
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will now apply. Presumably, the store would recognize the trend a bit earlier and do 
something about it! Nevertheless, the example shows how Little’s Law might not 
hold over some time interval during which the average age of the  WIP  or queue is 
changing. 

 A quite different approach to the problem of nonzero  WIP  is motivated by what 
we learned in the supermarket problem. There we noted that Little’s Law applies 
independently to each customer segment, but we have to be able to identify the 
customers in each segment and collect data on them. 

 So, in the case of non-zero  WIP  (or, actually, any existing  WIP !), we can ignore 
all of it and focus on a group of new items, which, for example, might be colored 
blue. The system starts empty of blue items, even though it may be cluttered with 
others. We count blues as they enter the system (the rate may be controlled if we 
wish—stationarity is not required). The observations we make depend on what we 
want to learn and what is easy to measure. Suppose we want to observe and process 
 N  blue items. And suppose we want to know the cycle time  CT  =  W , the average 
time a blue item spends in processing. At regular intervals we take an inventory of 
blues so that we can estimate  WIP  =  L  (for blues only) by simple averaging. 
Eventually all  N  leave, say at  T  and so the average arrival rate is  λ  =  TH  =  N/T . Then 
 CT  =  W  can be calculated by Little’s Law. The underlying theory is exact, although 
we have introduced some sampling error in estimating the blue  WIP . However, this 
is something we can control by putting whatever resources we think are worthwhile 
to reduce it. 

 Alternatively, we might have a way of determining blue cycle time  CT  =  W  
exactly and wish to know the average inventory of blue items, i.e., the blue  WIP  =  L . 
This is the case in the following example. 

 Consider a toy manufacturer that contracts with a third party logistics firm, 3PL, 
to handle its on-line business. The toy manufacturer will supply inventory to 3PL to 
fill orders. When the toy manufacturer receives an order on-line, it will instruct 3PL 
to fill it. 

 The toy manufacturer pays 3PL to provide this service. The contract terms 
depend on two factors: the number of orders shipped and the amount of inventory 
space occupied by the toys at 3PL. The toy manufacturer pays 3PL $10 for every 
order that is shipped and $0.03 per day for each unit in inventory. 

 At the start of each month, the toy manufacturer ships a batch of toys to 3PL. 
These toys typically sell out within the month, but not always. For accounting rea-
sons, the toy manufacturer insists that 3PL submit an invoice for its services for 
each batch of toys. Hence, 3PL waits until the entire batch has been sold before it 
can finalize an invoice. In preparing the invoice 3PL can easily determine the 
shipping-cost component, as it just depends on the number of toys in the batch. 
However, 3PL is less clear about how to account for how much inventory space is 
attributable to a batch of toys. One approach would be to count its inventory each day. 
However, it would be quite difficult to track the inventory associated with a partic-
ular batch since the toys from all batches, as well as from other suppliers, are stored 
together in one section of the warehouse. Thus, it would be cost prohibitive to do 
an inventory count each day. 
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 A much simpler approach is to use Little’s Law. Suppose that whenever 3PL 
receives a batch of toys, it records the arrival date for each toy. 3PL can also 
record the date at which the toy is shipped, and hence obtain the time in system 
for each toy. 

 For instance, if there were an RFID tag attached to each toy, then 3PL can easily 
record these transactions with RFID readers at its shipping docks. Thus, 3PL knows 
the wait times  W

   i
   for  i  = 1,2, … N , where  W   

i
   is the difference between the ship time 

and receipt time for the  i th toy and  N  is the number of toys in a batch. The average 
wait time for the batch is 
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 If it takes  T  days to sell the batch of  N  toys, then the average arrival rate for the 
batch is 
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 By Little’s Law we now can find the average inventory attributable to this 
batch: 
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 Since  L  represents the average inventory over a period of  T  days, 3PL will 
charge the toy manufacturer for   L × T   unit-days of inventory storage, at $0.03 per 
unit-day.  

  Concluding Remarks 

  We have given a variety of examples showing the kinds of situations where Little’s 
Law can usefully convert an estimate of an average queue into an estimate of aver-
age waiting time and vice versa when one may be relatively easy to measure and 
the other not. 

 We have also briefly examined how Little’s Law has been used in operations 
management. Here we observe that a different terminology and set of symbols is 
usually adopted. Operations managers are concerned with their throughput rate 
rather than an arrival rate; their queue length is usually WIP, their wait time is 
termed cycle or flow time. We also discussed two differences in orientations 
between the use of the law in operations management and its original derivation and 
application: 
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 •  For operations management the law is often expressed in terms of output rates 
rather than arrival rates. Furthermore, the arrival process to most operating systems 
is not a stationary process, and, indeed, may be controlled.  

 •  Many operating systems are never empty. That is, the number in the system or 
WIP is always positive.    

 In each case we see that Little’s Law can apply, albeit with some required condi-
tions and thoughtful attention to the goals of the application.  

  Historical Background 

  We trace the evolution of Little’s Law from the early days of queuing theory in 
operations research and management science to our own chapter in this book. 

 The earliest paper we have found that makes use of Little’s Law simply assumes 
it to be true.  Cobham (1954) , in an article on priority queues, writes, “… it is suffi-
cient to observe that the  expected number  of units  of priority k  waiting to be serviced 
is  λ   

k
   W   

k
  , where  W   

k
    is the expected wait  for a unit of priority k.” (λ 

k
  is the arrival rate 

of priority k items.) 
 We attribute the explicit formula “L = λW” to Philip Morse and his book, 

 Queues, Inventories and Maintenance , ( Morse, 1958 ). He does not give the law 
a name but simply talks about “the relation between mean number and mean 
delay.” In Chap. 7 he proves the relationship for a single channel queuing sys-
tem having Poisson arrivals and a service time distribution of the general class 
known as k-Erlang. The proof of L = λW is, in a certain sense, incidental to his 
main task of solving for the steady-state joint probabilities of the number of 
items in the system and the stage of item in service. Using the fairly standard 
approach of describing the system with a set of differential equations, Morse 
solves the system by building a two variable generating function of the desired 
joint probabilities. One variable relates to the number of items in the system 
and the other to the stage of the item in service. The generating function can 
then be used rather easily to find both L and W. Examination shows that L 
and W differ only by the constant of proportionality λ. This is a nice piece of 
analysis of the particular system, but it does not readily suggest a route to 
greater generality. 

 Morse was clearly interested in the general case. After the above analysis he 
wrote, “we have now shown that... the relation between the mean number and mean 
delay is via the factor λ, the arrival rate: L = λW and..... We will find, in  all  the 
examples encountered in this chapter and the next, for a wide variety of service and 
arrival distributions, for one or for several channels, that this same relationship 
holds. Those readers who would like to experience for themselves the slipperiness 
of fundamental concepts in this field and the intractability of really general 
theorems, might try their hand at showing under what circumstances this simple 
relationship between L and W does  not  hold.” 
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 The next paper to appear was  Little (1961)  and had the title “A Proof of the 
Queuing Formula: L = λW.” Little essentially analyzes the picture shown in Fig.  5.2  
of our chapter. His argument uses ergodic theorems for strictly stationary stochastic 
processes, as drawn from  Doob (1953) . The basic analytic task is to get rid of “end 
effects” as discussed below Fig.  5.2  in this chapter. However, Little does something 
else not done previously. His proof argues that the law holds in any specific realiza-
tion of the queuing system when observed over a long period of time. This is dif-
ferent from finding steady state probabilities for the number in the system and 
calculating L and performing a corresponding analysis of the distribution of waiting 
times to find W. The idea that the theorem is true for each evolution of the system 
provides a deeper understanding of the importance of the relationship L = λW in the 
queuing process itself. It also lays a basis for sample path proofs of the relationship 
that are to come. 

 Not too long afterward,  Jewell (1967)  came along with “A Simple Proof of 
L = λW.” He draws a picture very similar to our Fig.  5.3  and makes the assumption 
that the event when the system becomes empty is a recurrent event. By definition the 
times between such events are mutually independent random variables having 
the same distribution. Thus the time line alternates between intervals during which the 
system is empty and ones during which the system is busy. Jewell assumes that 
arrival and waiting mechanisms are reset at the start of each busy period. In other 
words, in each busy period, the random variables in those mechanisms have the 
same joint distribution, and their values are new random draws, independent of 
previous busy periods. An advantage of Jewell’s paper was that it used a vocabulary 
more familiar to queuing system analysts than the measure-theoretic arguments of 
stationary stochastic processes invoked by  Little (1961) . 

 Jewell’s paper was followed by  Eilon (1969) , which had the title “A Simpler 
Proof of L = λW.” He shows essentially the same picture as Jewell and as our 
Fig.  5.3  and makes the same heuristic analysis that we do under Fig.  5.2 . He notes 
that, if the limits of L(T), W(T), and λ(T) exist as T goes to infinity, the result is 
proven. Most writers on the subject, however, consider that a further argument 
is required to be certain that end-effects go away in the limit. 

 As time went on, the number and importance of applications of queuing systems 
increased and with them the applications of Little’s Law. One major area lay in the 
design and analysis of computer systems.  Kleinrock (1975 ,  1976 ) develops and 
summarizes a set of tools to assist this. One of the present authors (Little) recalls 
receiving a telephone call out of the blue from a computer engineer on the West 
Coast during the 1970s. The caller asked, “Do you have any more laws? I use 
Little’s Law all the time and find it really helpful.” But the response from the East 
Coast was “Sorry, we’re fresh out of new laws today.” 

 Although researchers in the field had no doubt about the remarkable generality 
of Little’s Law, there developed among some of them the belief that its validity 
could be proven deterministically by sample path analysis. Such an approach would 
produce a reader-friendly proof without recourse to probability, somewhat in the 
manner that this chapter argues the deterministic validity of Little’s Law in the 
supermarket example. The net result was  Stidham (1974) , “A Last Word on L = λW.” 
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However, as he pointed out in a later review article ( Stidham, 2002 ), it was not the 
last word at all because the research potential of sample path analysis for queuing 
and other applications has ramifications far beyond Little’s Law. Many results of 
this sort appear in a book by Stidham and a colleague: ( El-Taha and Stidham, 
1999 ):  Sample-Path Analysis of Queueing Systems . 

 Over the past few years, Little’s Law has become increasingly important in 
operations management. The notation and type of thinking are different, but appli-
cations are growing in number and importance. The goal of this chapter has been 
to facilitate such applications by providing illustrative examples, especially ones 
that explore new territory. 

   A Note of Personal History (Little)  

 How did a sensible young PhD like me get involved in a crazy field like this? From 
1957–1962, I taught operations research at the Case Institute of Technology in 
Cleveland (now Case Western Reserve University). I was asked to teach a course 
on queuing. OK. Initially I used my own notes, but when  Morse (1958)  came out, 
I used his book extensively. Queuing was taken by most of the OR graduate stu-
dents and, indeed, one of these, Ron Wolff, went on to become a first class queuing 
theorist ( Wolff 1989 ). One year we were at the point when we had done the basic 
Poisson-exponential queue and moved through multi-server queues, and some other 
general cases. I remarked, as many before and after me probably have (and Morse 
does), that the often reappearing formula L = λW seemed very general. In addition 
I gave the heuristic proof that is essentially Fig.  5.2  at the beginning of this chapter. 
After class I was talking to a number of students and one of them (Sid Hess) asked, 
“How hard would it be to prove it in general?” On the spur of the moment, I oblig-
ingly said, “I guess it shouldn’t be too hard.” Famous last words. Sid replied, “Then 
you should do it!” 

 The remark stuck in my mind and I started to think about the question from time 
to time. Clearly there was something fundamental going on, since, when you 
draw the picture you do not really seem to need any detailed assumptions about 
interarrival times, service times, number of servers, order of service, and all the 
other ingredients that go into the panoply of queuing models. You only seemed to 
need a process that goes up and down in unit amounts and some guarantee of steady 
state and conservation of items. In addition, because I could see there were end 
effects in the picture, there needed to be a way to get rid of them in the limit. It 
seemed to me I was in the general arena of stationary stochastic processes. I am not 
a mathematician by training, and so I bought copies of measure theoretic stochastic 
process books like  Doob (1953) , which mentioned stationary processes and ergodic 
theorems. 

 My family’s habit at the time was to go to Nantucket in the summer where my 
wife’s family had a small summer house. We would load our children in a station 
wagon, drive to Woods Hole, take the ferry, and spend a couple months away from 
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the world. Since the beach was the baby-sitter, I was able to split off solid blocks 
of time to work on research as a good assistant professor should. (I wish I could do 
that today!) I always brought a pile of books and projects with me. L = λW was one 
of them. I soon ran into problems that required more than looking up theorems in 
my new books, but I worked out approaches to the road blocks and eventually wrote 
everything up, giving it my best shot. I sent the paper off to  Operations Research.  
It was accepted on the first round. 

 Nevertheless, I had learned my lesson. I decided that Borel fields and metric 
transitivity were not going to be my career and retired from queuing. That was in 
1961. My retirement held until 2004 when I was accosted by email and in person 
at an INFORMS meeting by Tim Lowe. Even then, as he will tell you, I resisted 
re-entrapment, saying, “I don’t know anything about OM and I haven’t looked at 
L = λW for 40 years.” Being always susceptible to a new challenge and, more 
importantly, thanks to much help from Steve Graves, who really does know OM, 
I took a run at holding up my end of the chapter. It has been a wonderful experience 
and I have learned much. Now I need to find ways to use it.    
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        Chapter 6   
The Median Principle 

        Timothy   J.   Lowe*    and    Dilip   Chhajed**    
 * University of Iowa 

 ** University of Illinois 

   The mean or average value is often used as the representation of a list of numbers 
when in fact another measure, the median, which is the middle value of the list, is 
more appropriate. This principle of “middle” is more general and has several other 
applications—from location to inventory problems .   

   Introduction 

  Professor Lewis teaches operations management classes at Central College and is 
known for giving challenging assignments to his students. Because of the amount of 
work required in completing homework exercises, he has asked students to work in 
teams and to submit a single paper for grading. Marc, Tej, and Carrie, students in 
Professor Lewis’s class, are in the same team and have decided to meet every Monday 
and Wednesday to work on Professor Lewis’s assignments. Each of them will take a 
“first stab” at the assigned problems, and then they will meet to compare answers and 
to finalize their joint paper. Marc lives at 101 Main Street while Tej lives three blocks 
east of Marc at 401 Main Street. Carrie lives 17 blocks east of Tej at 2101 Main 
Street. An immediate issue is to choose a location to meet to compare their answers 
to the problems. The students realize that some walking will be involved, but they are 
looking for an “efficient” solution to the meeting place problem.  

  The Location Problem 

  So where should the students meet? First, they should decide on an objective to use 
in making this decision. One possibility is to find a location where the student that 
walks the farthest would have the least possible walking distance. They observe that 
Marc and Carrie live 20 blocks apart and Tej lives in between these two students 
(see Fig.  6.1 ). Thus if they meet at the midpoint between Marc and Carrie (at 1101 
Main Street), the student that walks the farthest will walk 10 blocks. In fact, at this 
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“center” solution to the location problem both Marc and Carrie will walk 10 blocks 
while Tej will walk 7 blocks. This seems like a good  equitable  solution but is this 
how they should think about the problem? Is this equitable solution requiring an 
excessive amount of walking? That is, is this solution efficient?  

 Suppose an efficient solution is defined by the one which makes the average 
walking distance as low as possible. The average might be more appropriate in the 
case where the “meeting problem” is repeated a number of times, e.g., multiple 
assignments over the semester. Note that for the meeting point at 1101 Main Street, 
the  average  distance walked by a student is (10 + 10 + 7)/3 = 9 blocks. Thinking 
that there may be a better solution (to reduce the average walking distance) they 
begin to do some experimentation. If they decide to meet at 1001 Main Street (one 
block closer to both Marc and Tej) instead of 1101, Carrie, unfortunately, will walk 
one additional block but Marc and Tej will each walk one less block. Thus the aver-
age walking distance would be 9 + (1−2)/3 = 8 2/3. In fact, note that for each block 
of movement to the west of Carrie’s house, until Tej’s house is reached, the average 
walking distance decreases by 1/3 block. Once the potential meeting location is at 
Tej’s house, any further movement to the west increases Tej’s and Carrie’s walking 
distances while Marc’s decreases (as long as the location remains east of his house). 
Thus it seems that the best location is Tej’s house. The average walking distance is 
then (3 + 0 + 17)/3 = 6 2/3 blocks. 

 Now suppose we consider not only walking distance, but also walking effort as 
measured by the load each student must carry. Let us suppose that in addition to 
individual solutions to the homework problems, Marc will carry liquid refreshment 
for them to share (a cooler weighing 3 pounds). Tej will carry an ultramodern laptop 
computer weighing 2 pounds. Carrie has a set of books along with some antiquated 
technical reports that the group may need, giving a total weight of 6 pounds. 
The total effort a student must expend in reaching the meeting place is related to the 
weight carried times the distance traveled. Thus if Tej walks nine blocks, his effort 
is 9 blocks × 2 pounds = 18 lb-blocks and if Carrie walks two blocks, her effort is 
2 blocks × 6 pounds = 12 lb-blocks. With this objective in mind the three student 
may wish to find a location that minimizes the average weighted distance each 
 student must travel. Considering Tej’s house as the location, the total weighted 
 distance would be 3 blocks × 3 pounds (for Marc) + 0 blocks × 2 pounds (for Tej) + 17 
blocks × 6 pounds (for Carrie). Thus the average would be (9 + 102)/3 = 37. Would 
this be (as in the first scenario) the location minimizing the average? Considering 
first a movement one block west of Tej’s house, we see that Tej and Carrie’s 
weighted distance contributions increase by 1 × 2 pounds and 1 × 6 pounds, respec-
tively, while Marc’s would decrease by 1 × 3 pounds. Thus the average would 
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  Fig. 6.1    Location of houses of Marc, Tej, and Carrie       



 actually increase by [(1×2) + (1 × 6)−(1 × 3)]/3 = 5/3 block-pounds. However, con-
sidering a location one block east of Tej’s house (toward Carrie’s house) would 
 decrease  the average weighted distance by [1 × 6 pounds (for Carrie) − 1 × 3 
pounds (for Marc) + 1 × 2 pounds (for Tej)]/3 = 1/3 block-pound. In fact, continued 
movement east results in decreased average weighted distance until Carrie’s house 
is reached. Locating at Carrie’s house the average weighted travel distance is [20 × 
3 pounds + 17 × 2 pounds + 0]/3 = 31 1/3 block pounds. The best solution is at 
Carrie’s house. 

 Let’s temporarily suppose that in preparation for their meeting, Marc will need 
to first visit a convenience store located 20 blocks west of his house (in a direction 
opposite of where his colleagues live) to purchase the liquid refreshment. He can 
take a bus to the store, but must walk (carrying the load) to the meeting place. With 
this information, does the location minimizing average weighted walking distance 
remain at Carrie’s house, or is the best location now west of her house? The answer 
is that Carrie can still remain at home while Marc and Tej (poor Marc!) will need 
to walk to her house. In fact no matter how far west Marc lives relative to Carrie 
(2 blocks or 20 miles), the meeting point that minimizes the average effort remains 
at Carrie’s home 

 So what is the insight into this problem? The answer lies in Fig.  6.2 .  
 To make the situation a little more interesting, let us suppose that Carrie can leave 

some of the materials at home so the weight she must carry is now only 4 pounds. Figure 
 6.2  shows the home locations of Marc, Tej, and Carrie. In addition, the figure shows a 
cone pointed at each student’s home location. The cones represent individual weighted 
 distance functions. Thus, for example, considering the location at 301 Main street, 
Marc’s weighted distance to that location is 2 blocks × 3 pounds = 6 block-pounds 
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  Fig. 6.2    The weighted distance traveled from house       
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while Tej’s is 1 block x 2 pounds = 2 block-pounds. (Even though she has reduced 
her load to 4 pounds, Carrie’s weighted distance cone is too steep to show its value at 
301 Main Street.) Since the overall objective of the location problem is to minimize 
average weighted distance, we need to create a figure that represents the sum (at any 
location) of the values obtained from each of the cones and subsequently divided by 
3. Figure  6.3  illustrates this construction. The circled numbers on the figure are the 
average weighted distance values at 1, 101, 401, and 2101 Main Street. Note that with 
Carrie’s reduced load to 4 pounds, the best location has shifted back to Tej’s house. 
(Maybe Carrie should have insisted on needing all of the books!)  

 The principle insight is that the weighted average distance function is always 
bowl shaped (piecewise linear and convex) and the slope of this function only 
changes at the locations of travel origin (the student’s homes). The optimal location 
is characterized by a point where the slope of this function changes from negative 
to positive. This point is at a  median point  and is where no more than 1/2 of the 
total weight lies strictly to the left (the right) of the point. Thus with the students 
carrying materials to the meeting location, and Carrie with 4 pounds, the total 
weight is 3 + 2 + 4 = 9 pounds. Note that 3 pounds of total weight lies strictly to 
the left of Tej’s home so that 3 £ 9/2, while 4 pounds lies strictly to the right where 
4 £ 9/2. When Carrie must carry 6 pounds, the total weight is 11 pounds and so 3 
+ 2 £ 11/2 pounds are strictly to the left of her home while there is no weight strictly 
to the right. Thus in this instance, Carrie’s home would be the best location. 

 Another important insight in the solution to these location problems is that it is 
not dependent on the actual magnitude of the distances. Suppose we denote the 
location of Marc by 1, the location of Tej by 1 + x, and the location of Carrie by 1 
+  x + y  where  x  > 0 and  y  > 0. The median property says that the optimal location 
does not change as the values of X and Y change. The value of X can be 3 blocks or 
30 blocks and the value of y can be 17 blocks or 37 million blocks—the solution 
does not change. What does change is the total effort by Carrie, Tej, and Marc.  

  Fig. 6.3    The average distance traveled for each meeting place       
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  Problem Formulation and Solution 

  To build structure for the above arguments, let Main street be represented by the 
real line with a 

1
  = 0 = Marc’s house, a 

2 
 = 3 (3 blocks from Marc) = Tej’s house, and 

a 
3
  = 20 = Carrie’s house. Letting x represent the location for the meeting place, the 

objective is to find x to minimize 

  [3 | x−a
1
 | +2 | x−a

2
 | +4| x−a

3
 |]/3 = [3 | x−0 | +2 | x−3 | +4 | x−20|]/3  ,

where the coefficients are the weights in pounds the various students must carry. 
Note that | x − a 

j 
 | measures the distance student j must walk. 

 If there are n students located at a 
1
 , a 

2
 , …., a 

n
  and the amount of weight that 

student i has to carry is w
 i
  then the problem is to find X such that it minimizes 

  w
1
 | x - a

1
 | + w

2
 | x - a

2
 | + .... + w

n
 | x - a

n
 | =

=
∑wi
i

n

1

 | x - a
i
 |  . 

 The optimal x satisfies two properties. First, it is at one of the existing locations 
(a 

1
 ,…,a 

n
 ) and second, it is the median point. Suppose W(i) denotes the sum of the 

weight at i and all weights to the left of location i, and W denotes the sum of all the 
weights. The solution is then: starting from point 1, find the first point j such that 
W(j) > = W/2. In the meeting place problem note that W = 9, W(1) = 3, W(2) = 3 + 
2 = 5 and W(3) = 3 + 2 + 4 = 9. W(2) satisfies the median condition since W(1) < 
9/2 and W(2) > 9/2.  

  Tej Relocates 

  Suppose that instead of living at 401 Main Street, Tej lives 6 blocks north of 
that location. Given that Marc, Tej and Carrie continue to carry 3, 2, and 4 
pounds of materials, where would be the best location for a meeting place? 
Would the best location be at Tej’s new home? To answer this question, we first 
recognize that we are now faced with a location problem in two dimensions 
instead of one. Thus we need to decide on “walking paths” the students will 
take. Given that the problem is posed in an urban area, we will assume that the 
students will confine their travel to sidewalks, and so movement will be either 
in an east/west direction or in a north/south direction. In fact, if a student 
wishes to travel between two points with coordinates (a 

1
 , b 

1
 ) and (a 

2
 , b 

2
 ), the 

distance traveled will be |a 
1
  − a 

2
 | + |b 

1
  − b 

2
 |. Thus with Marc’s home located at 

(0, 0), Tej’s at (3, 6) and Carrie’s at (20, 0), the problem is to find a point 
(x*, y*) that minimizes 

  {3[| x − 0 | + | y − 0|} + 2{| x − 3 | + | y − 6|] + 4[| x − 20 | + | y − 0|]}/3  . 
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 Note that the problem separates into two distance problems: a problem in X and 
another in y. Thus to find (x*, y*) we simply find x* that minimizes 

  [3|x − 0| +2|x − 3| +4|x − 20|]/3  ,

and y* that minimizes 

  [3|y − 0| +2|y − 6| + 4|y − 0|]/3   .

 But, each of these problems is basically a problem in one dimension and we know that 
a median point solves each such problem. Thus in the X dimension, a median occurs at 
x* = 3. In the y dimension, a median occurs at y* = 0. (Note that y = 0 is a median since 
a weight of 2 £ 9/2 lies strictly above y = 0, while no weight lies strictly below y = 0. 

 With this information, we now know that the best meeting place will be at ( x*, 
y* ) = (3, 0), the location of Tej’s previous home! Thus we have the interesting fact 
that even though the best x (best y) coordinate will be coincident with an x (y) coordi-
nate of one of the demand points, the best location in two dimensions may be at a 
point that is not coincident with any demand point. We note that this fact is true in 
dimensions higher than two. Consider any dimension and arrange the weights on 
this axis as per their coordinates on this dimension. The optimum coordinate for 
this dimension would satisfy the median condition with respect to the weights thus 
arranged. In particular, given n points in k-dimensional space, where point i has 
coordinates  (a   i    

1
  ,  a   i    

2
  , …,  a   i    

k
   )  and weight  w   

i
  ,  i  = 1,.., n, and where the objective is to 

find a point  X * = ( x   
1
  *,  x   

2
  *, …,  x   

k
  *) that minimizes 

  iw
i

n
a

j
i

j

k
jx

=
∑

=
∑ −

1 1
( | |),   

an optimizing point will have the property that the  j th coordinate will be a median 
point with respect to the weighted  j th coordinates of the demand points. That is,  X * 
will have the property that 
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  What About Multiple Locations? 

  Let us return to the problem faced by the three students, but add a new aspect to 
it. Recall that Marc lives at (0, 0) and carries a weight of 3 pounds, while Tej and 
Carrie live at (3, 6) and (20, 0) carrying weights of 2 and 4 pounds respectively. 
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Carrie’s materials include books as well as reports, and Tej will be bringing a 
computer that actually has a scanning feature. Carrie and Tej have decided that 
they should meet somewhere together first and scan 2 pounds of Carrie’s materi-
als (the reports), thus reducing Carrie’s load since the scanned materials can then 
be discarded at this initial meeting site. Carrie and Tej can then proceed together 
to meet Marc, with each carrying 2 pounds. Thus the students must determine two 
meeting locations: (x 

1
 , y 

1
 ), where Carrie and Tej will meet, and (x 

2
 , y 

2
 ) where all 

three students will meet (with Carrie and Tej walking from [x 
1
 , y 

1
 ] to [x 

2
 , y 

2
 ]). 

A formal statement of their problem is to find (x 
1
 *, y 

1
 *) and (x 

2
 *, y 

2
 *) that 

minimizes 

  {4[|x
1
 − 20| + | y

1 
− 0|] + 2[| x

1
− 3| + | y

1
− 6|] + (2 + 2) [| x

1
 − x

2
| + |y

1
 − y

2
|] 

 + 3[| x
2
 − 0| + | y

2
 − 0|]}/3.   

 Dividing by three reflects the fact that we are still concerned with average 
weighted travel distance for the students. The first and second terms are Carrie’s 
and Tej’s weighted travel distances to the location where scanning will occur. 
The third term is the weighted distance that Carrie and Tej must travel from the 
scanning location to the site where they will meet Marc. The fourth term is 
Marc’s weighted travel distance. 

 Although the problem above cannot be solved in closed form, critical insights are 
still possible. Note that, for example, if the location of the three-student meeting site, 
(x 

2
 , y 

2
 ), is known, then the location of the scanning site (x 

1
 , y 

1
 ) can be found via the 

median conditions. That is, in the third term we can think of the point (x 
2
 , y 

2 
) as a 

“demand point” with weight = 4. In this case the fourth term is a constant with no 
impact on the best location for the scanning site. Similarly, if (x 

1
 , y 

1
 ) is known, the 

best (x
 2
 , y 

2
 ) could be found via the median conditions. 

 These observations may suggest an iterative procedure to find the two locations, 
but that is not an efficient means for solving the problem. A much better alternative 
is to use linear programming by substituting linear expressions for the absolute 
value terms and using additional variables. Details on this conversion can be found 
in  Francis et al. (1992) .   

 Building Intuition   The mean value is easily affected by very high or very low 
numbers in a set of numbers and is therefore not an appropriate measure of the 
 central value of the set. 
 The median of a set of numbers (arranged in increasing order) is the middle 
value of the list and this is not affected by extreme values. 
 For certain location problems on a plane as well as on tree networks the 
median condition specifies the optimal location that minimizes the total 
weighted distance traveled to the new location. 
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 A problem related to the above is popularly known as the p-median problem. 
For this problem, p servers (new facilities) must be located to provide service to a 
number of demand points. The objective is to locate the p servers to minimize the 
average weighted travel distance incurred (averaged over all of the demand points) 
when each travels to a closest new facility. Thus the key difference between the 
problem we study and the p-median problem is that in the latter problem the service 
“connections” are not known until the new facility locations have been determined. 
For one of the earliest heuristic methods for finding solutions to this difficult 
 problem see  Cooper (1964) .  

  Location on a Transport Network 

  Another example of a median location can be found in the problem of locating a 
single facility on a transport network where the objective is to find the location that 
minimizes the sum (or average of) weighted distances of several demand points to 
the facility. Roads, rail, and river networks are examples of such transport net-
works. Consider a special network, called a tree network, where there are no cycles 
in the network and there is a single path of travel between any two points on the 
network. A good example of a tree network is a river and its tributaries. Without 
loss of generality, we can suppose that each demand point is located at a node of 
the network. Thus if a demand point is not at a natural “branching point,” we can 
declare the location to be a trivial node. In Fig.  6.4 , the filled circles are the demand 
points and the hollow circles are the trivial nodes. Also, it is unnecessary that every 
branching point be the location of a demand point. We will call the demand at a 
node as the weight of the node. A useful result is that an optimal solution can be 
found by only considering nodes of the network. This result also holds for location 
problems on networks more general than tree networks (see  Hakimi 1964 )  

 The following mnemonic rhyme ( Hua Lo-Keng et al. 1962 ) provides a proce-
dure to this problem. The second and the third verse also consider the case when 

  Fig. 6.4    A tree network with demand nodes and trivial nodes       



6 The Median Principle 109

the network has loops. We, however, advise that the time required to find a solution 
using this method (when loops are present) will rise exponentially with the number 
of loops in the network. 

    When the routes have no loops,  
  Take all the ends into consideration,  
  The smallest advances one station.  
  When the routes do have loops,  
  A branch is dropped from each one,  
  Until there are no loops,  
  Then calculations as before are done.  
  There are many ways of dropping branches,  
  The calculation for each must be assessed,  
  After figuring all, we then compare,  
  And break the loop in the case which is best.    

 For the tree network, the method proceeds by collapsing the node with the  smallest 
weight. The node with the smallest weight is removed and its weight is added to the 
node it was connected to. On a tree network, following this process will eventually 
lead to a node called the median node. The median node satisfies the property that no 
more than one-half of the total weight can be in any portion of the subtree connected 
to it by a link. In Fig.  6.4 , the node with weight 5 will be the first node to be collapsed 
followed by the node with weight 12. The resulting tree after these two steps is shown 
in Fig.  6.5 . Following the algorithm we will eventually get the arc (v, w) with weight 
52 on node v and weight 50 on node w. In the last step, node w will be collapsed into 
node v, which is the optimal location.  

 More formally, let a
 i
 , i = 1,..,n be the locations of the n demand points, w 

i
  be the 

weight associated with demand point i, and x be the location of the facility. 
The objective is to find x* on the network that minimizes 

w a ,x .i
i

n

id ( )
=
∑

1

  Fig. 6.5    The tree network after collapsing two nodes       
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where d(a 
i 
, x) is the distance of travel on the network between demand point i and X. 

 Then, for any node v 
j
  of the tree, the branches defined by v

 j
  are the resulting 

pieces, say {T k (v 
j
 ), k = 1,…} of the original tree found by removing node v

 j 
. Then 

letting W k (v 
j
 ) be the sum of the weights of all demand points in T k (v

 j
 ), and W = the 

sum of all demand points in the tree, an optimal solution to the location problem 
will be a node x* where W k (x*) £ W/2 for all branches T k (x*). That is, no more than 
one half of the total weight can be in any branch defined by x*. In Fig.  6.4 , the total 
weight of all the nodes is 102. The three subtrees of the optimal location, node v, 
have weights of 50, 40, and 12, respectively. 

 The insight associated with the solution to this problem is similar to our first 
 example. Note that if some node v 

j
  has a branch where W k (v 

j
 ) > W/2, then movement 

into branch T k (v 
j
 ) from v 

j
  will decrease the objective function value. Once again the 

actual distances on the network do not affect the optimal location that minimizes the 
sum of the weighted distances. Thus even after stretching or shortening the links of 
the tree if the procedure is reapplied, the optimal location will remain unchanged.  

  When Uncertainty is Involved 

  We now consider a problem that is more of a planning issue, with an additional 
wrinkle that events are no longer fully known. That is, suppose we want to plan for 
a future when we do not what will happen. This situation is unlike our meeting 
location problem where we knew exactly how many students are meeting, their 
current address and the load they will carry. 

 Avanti, the chef and owner of the Maharaja Restaurant is contemplating the quantity 
of chicken to order from her supplier for Sunday dinner, typically the busiest night at 
the restaurant. In the highly competitive restaurant business, controlling the cost of food 
is crucial. For the past 2 years, Avanti has been meticulously keeping data on her 
requirements for various ingredients that she uses in her restaurant. As a result of her 
hard work, she has the data but she is not quite sure how to use it to decide what she 
should order. For chicken, she knows that the demand has fluctuated between 50 lbs and 
80 lbs. The table below shows the relative frequency of her need for various quantities 
of chicken for Sunday dinner. These frequencies (given in fractions) tell us how likely 
the demand for chicken will be on this coming Sunday. For example, the probability 
that the demand for chicken will be 50 pounds is 0.1 or 10%. The cost of fresh chicken 
from Avanti’s supplier is $3 per pound. The restaurant is closed on Monday, so any 
chicken that is not used by closing time on Sunday is discarded. In case she finds the 
demand for chicken exceeds what she had ordered, she uses her stock of frozen gourmet 
chicken to make up the difference. Gourmet chicken is of very high quality and costs 
$6 per pound, twice the $3 per pound that she pays for the fresh chicken.  

 Demand (lbs)  50  55  60  65  70  75  80 

 Probability, P   0.10   0.20   0.25   0.20   0.15   0.05   0.05 
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 Note that if Avanti orders 60 lbs and demand is for 50 lbs, she will waste 10 
lbs of chicken, and the cost of this mismatch is $3*(60−50) = $30. On the other 
hand, if the demand is 70 lbs then she has to use 10 lbs of frozen chicken, which 
would cost her an additional $3*(70−60) = $30. Thus the cost of ordering a pound 
more than the demand is the same as the cost of ordering a pound less than 
the demand. Since she does not know the exact demand for chicken on Sunday, 
the best Avanti can do is to minimize the cost she will incur in the long run. 
If she continues to order 60 lbs for every Sunday, the expected cost per week 
is 0.1*3*(60−50) + 0.2*3*(60−55) + 0.25*3*(60−60) + 0.2*3*(65−60) + 
0.15*3*(70−60) + 0.05*3*(75−60) + 0.05*3*(80−60) or ∑3*P( D )*| D -60|. Thus 
the correct order quantity is one that minimizes 3*∑P( D )*| D − Q | = 3*min 
E(| D −Q|). However, the value 3 has no effect on the optimal value of  Q  since it is 
a constant in the minimizing process. Thus, we wish to find the value of  Q  that 
minimizes E(| D-Q |). It is well-known that the minimizing value of  Q  is the 
median of the distribution of  D . In Avanti’s case, the median is 60 pounds of 
chicken since P( D < 60 ) £ 0.5, and P( D > 60 ) £ 0.5. 

 As noted above, the solution to the problem is at the median of the distribution 
of demand as long as the unit cost of ordering more than the demand is the same as 
the unit cost of ordering less than the demand. Avanti’s problem is actually an 
instance of the Newsvendor Problem which is discussed in Chap. 7. In Avanti’s 
case, the cost of over- and under- ordering are the same, but often these two costs 
are not the same and so the median of the demand distribution may not necessarily 
be the optimal choice. However, a “median type” solution does solve the 
Newsvendor Problem as we discuss next.  

  Medians and the Newsvendor Problem 

  As discussed in Chap. 7 of this volume,  with  P(D ) as the distribution on demand  D , 
and with  c   

u
   and  c   

o
   as the unit costs of understocking and overstocking respectively, 

the Newsvendor Problem is to choose the stocking quantity Q that minimizes the 
expected cost of understocking and overstocking. With ( x  −  y ) +  defined to be max{ x  
−  y , 0} we can express this expected cost as N(Q) = E{c

 u
 (D − Q) +  + c 

o
 (Q − D)  +  }. 

With  D  as the random variable, we can use the fact that E{(D − Q) + } = E{[|D − Q| 
+ E(D) − Q]/2}. Upon substitution we obtain N(Q) = ((c 

u
  + c 

o
 )/2) E{|D − Q|} + ((c 

u
  

− c 
o
 )/2) (E(D) − Q). 

 Suppose the distribution on  D  is discrete, and let  P   
i
   be the probability that 

demand is  D   
i
  ,  i  =  1 ,…, n . Each demand quantity could be thought of as a point 

on the real line. The first term contributes a weight of (c
 u
  + c 

o
 )/2)  P

   i  
 for each 

demand point i. Suppose  c   
u
   >  c   

o  
, Then the last term is decreasing in  Q  and to 

account for this we add an additional weight of (c
 u
  − c 

o
 )/2 to the weight of 

demand point n. However, if  c   
o  
 >  c   

u
  , then the last term in the objective function 

is increasing in  Q  and we add the weight (c 
o 
 − c 

u
 )/2 to the weight of first demand 

point. 
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 Thus, to solve the Newsvendor Problem as a median problem, reformulate the 
problem as follows:

   1.    Compute  v   
i
  = (c 

u
  + c 

o
 )/2)  P   

i
  ,  i  =  1 ,…, n.    

  2.    If (c 
u
  - c 

o
 )/2) > 0, set w

 i 
 =  v   

i
  , i = 1,…,n-1, and w 

n
  =  v   

n
   + (c

 u
  - c 

o
 )/2).   

  3.    If (c 
u
  − c 

o
 )/2) < 0, set  w  

1
  =  v  

1
  − (c 

u
  − c 

o
 )/2), and w 

i
  =  v   

i
  , i = 2,…,n.   

  4.    Identify the index  i * where   i
i i

i
i

n

i
i i

i
i

n

w w and w w≤ ≤
< = > =
∑ ∑ ∑ ∑

* *

,
1

2

1

21 1
      , and set

 Q* = D 
i
* .     

 Thus, the Newsvendor Problem can be solved as a median problem by appropri-
ately defining the weights. 

 Avanti’s problem is a very special case of the above since c 
u
  = c 

o
  = $3, and so 

the adjustments in steps 2 and 3 above are nil. But suppose the cost of the chicken 
goes up to $4.25 from $3. The new purchase cost changes the overstocking and 
understocking costs to c 

o
  = $4.25 and c 

u
  = $1.75. Since (c 

u
  − c 

o
 )/2) < 0 we set the 

weights following steps 1 and 3 which are given below. The median condition is 
now satisfied by the demand level of 55—the new order quantity. Note that the 
amount ordered has reduced from 60 to 55 as the cost of over ordering has gone up 
and the cost of under ordering has reduced.   

 Demand (lbs)  50  55  60  65  70  75  80 

 Probability   0.10   0.20   0.25   0.20   0.15   0.05   0.05 

 w   1.55   0.6   0.75   0.6   0.45   0.15   0.15 

 Σw   1.55   2.15   2.9   3.5   3.95   4.1   4.25 

  Applications 

  Our applications thus far are on using the median condition to solve certain location 
and inventory problems. The two-dimensional case is also applicable for location 
of equipment within a warehouse or a production facility. Another application of 
the median condition is in a product design problem. Suppose a product can be 
represented by a one dimensional attribute and the customers are characterized by 
an ideal level for this attribute. Customer segment i has a population of w 

i
  and 

desire an ideal level of a 
i
  for the attribute. The disutility of customer segment i from 

a product with attribute level b is w
 i
 *|a 

i
  − b|. The product designer wants to specify 

the attribute level such that it minimizes the average weighted disutility over all the 
customers. This optimal level of attribute satisfies the weighted median condition 
and can be found easily. 

 The term median is often used (or should be used) while reporting summary 
statistics and we discuss this next. 

 In June 2005, there were seven houses sold in CherryVille with prices (in 
 thousands), of $80, $85, $85, $90, $95, $100, and $110. Thus the average price of 
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the houses sold in June is $92.14K. In this instance, the median price, defined as 
the middle value of the list arranged in an increasing order, is $90K. The mean and 
the median prices are quite similar and tell us the typical price of the houses sold. 
Now let us change this data a bit. Suppose the most expensive house sold was not 
priced at $110K but was the house that belonged to the basketball coach and was 
sold for $550K. Now the average price of the houses sold is $155K. Obviously this 
price is higher than all but the coach’s house and does not adequately represent the 
typical price. The median price, however, is still $90K. 

 Note that the median is defined in exactly as the same way as the location that 
defines the median condition in the student meeting location problem with all the 
weights equal to one. The median does not change if one of the values becomes 
large or small as long as the changing price is not the median and it remains on the 
“same side” of the original median price. Similarly the optimal location of a point 
that minimizes the sum of distances walked by each student does not change if one 
of the students starts from a different location as long as the point from where the 
student walks does not switch the side on which it is relative to the original median. 
Returning to the house price example, as long as the fourth largest price remains at 
$90K, the actual values of the remaining six houses do not matter as long as three 
of them are less than $90K while three are more than $90K. The idea behind the 
median is that about half of the houses were sold at prices that were higher than the 
median and the other half were sold at prices that were lower than the median. 
Similar insights were derived for the location problem. 

 Our point is that the median value is often a more representative summary 
 statistic, even though the average is frequently used. Data such as “average sale per 
customer” is prone to similar distortions due to outliers, although companies 
 frequently use this summary statistic. In reporting income, house prices, grades, 
height of citizens, etc. the median is more appropriately used; it is less prone to be 
affected by “outliers” and is more often apt to convey the typical value of the 
 quantity of interest.  

  Historical Background 

  Evidently, the use of the weighted median as a location to minimize the sum of 
weighted distances to fixed points on the real line has its beginnings in the field of 
statistics. F. Y. Edgeworth (see  Bowley 1928 ) used (and proved) the result in his 
 analysis of error associated with the problem of using multiple observations of an 
unknown quantity to make statements about the quantity in question. He argues that 
the median of the observations is the “best mean” in comparison with other possible 
choices such as the arithmetic mean or the geometric mean.  Dodd (1938)  made use 
of the weighted median result in a study of the properties of the “ rth k -tile” of a set of 
numbers,  1  ≤  r  ≤  k  −  1.   Ekblom (1973)  also used the result in a study of nonlinear 
median estimators in the case of an even number of data points.  Eells (1930) , in an 
attempt to correct misstatements regarding properties of the “center of population” 
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appearing in the special bulletin of the 14 (1920) Census, noted that proof of the 
median conditions appears in several early books on statistics, e.g.,  Kelley (1923) . 
 Snyder (1971)  makes use of the median conditions (in one dimension) to show that 
finding the point  (x*, y*)  that minimizes total travel, via a rectangular network of 
roads, from points of “relative frequency of accidents” distributed via the joint density 
function  f(x, y)  can be found by finding the median in the x coordinate and the y coor-
dinate using the marginal density  f(x) and f(y), respectively.   Rosenhead (1973)  and 
 Mole (1973)  provide comments on Snyder’s analysis including mention of the early 
work in statistics.  Bindschedler and Moore (1961) , and  Wesolowski and Love (1971)  
are early papers that study the median problem in two dimensions with  applications 
in manufacturing facility layout.  Francis et al. (1992)  study the median conditions in 
a location setting and also provide a means of constructing contour lines—loci of 
points about the minimizing point that have a fixed objective function value.   
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        Chapter 7   
 The Newsvendor Problem 

      Evan   L.   Porteus    
 Stanford University 

   The newsvendor problem has numerous applications for decision making in manu-
facturing and service industries as well as decision making by individuals. It occurs 
whenever the amount needed of a given resource is random, a decision must be 
made regarding the amount of the resource to have available prior to finding out 
how much is needed, and the economic consequences of having “too much” and 
“too little” are known.    

   Introduction 

  Tyler has just been put in charge of deciding how many programs to order for this 
week’s home football game between his team, the Rainbows, and the visiting team, 
the Warriors. Each program ordered costs $1.25 and sells for $5.00 each. He found 
out from Nar Lee, the experienced department administrator, that 8,500 programs 
were ordered for the last home game and only 7,756 were sold. He thinks to himself 
that his problem is solved. He’ll simply order 7,756 programs. But he decides to 
discuss the issue with his friend, Shenn, who is a little bit nerdy, but tends to tease 
people she likes. 

 As Tyler is explaining his thinking, Shenn cuts in. “The last home game wasn’t 
that big a deal. We were playing against the Titans and they had a pretty pathetic 
record coming into the game. Remember, it rained a bit before the game, too, which 
probably kept some people at home. This game’s going to be a biggie, with strong 
implications for each teams’ chances for a postseason bowl game. Don’t you think 
it’s much more likely that you could sell more programs for this game?” Tyler 
agreed but felt overwhelmed with having to figure out how many more. Shenn 
helped him understand the difference between the unit  demand  for programs and 
unit  sales : The (unit) demand consists of the number of programs that would be 
sold if he had an unlimited number available, whereas (unit) sales are limited by the 
number of programs ordered. “Suppose you order 8,000 programs. If demand turns 
out to be for 9,000 programs, then you will sell all 8,000 that you ordered, but no 
more. However, if demand is for 7,000 programs, then sales will also equal 7,000 
and you will have 1,000 unsold programs.” 
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 “I get it. But I don’t want to have any leftovers. That will make me look bad. 
I still like that 7,756 number. I’m almost sure to sell them all. They sell for $5.00 
and cost only $1.25, so I’d get the full $3.75 for each of them.” 

 Shenn looked like she was settling in for a long discussion. “Have you thought 
about trying to look good, rather than avoiding looking bad? If you could increase 
the net return from selling programs, the proceeds would be mightily appreciated 
by the department. I think that what my econ prof called  opportunity cost  might be 
useful here. Suppose you decide to order 8,000 programs. It’s certainly true that if 
you only sell 7,000, then you will have 1,000 unsold programs that cost $1.25 each, 
for a total of $1,250 and if you had ordered only 7,000 you would have saved that 
$1,250, without changing how many you sold. However, if demand is for 9,000 
programs, then you will only sell 8,000, and if you had ordered 1,000 more, you 
would have sold them all, for a net profit of $3.75 each, representing a total gain of 
$3,750. The $3,750 opportunity cost of having 1,000 too few is much more than the 
$1,250 opportunity cost of having 1,000 too many. It may make sense to err on 
the side of ordering too much rather than too little. What do you think?” Tyler had 
to agree, but he could feel a headache coming on. “Let’s go talk to Nar about how to 
think about the possible demand quantities for this game.” 

 It did not take Nar long to power up his PC and print out a histogram of program 
sales for the past 3 years. 

 Tyler was the first to comment on the chart, “Well, I can see that we’ve never 
sold more than 9,500 programs, so I don’t have to worry about ordering more 
than that!” 

 Shenn jumped in, “Not so fast, Bubba-head. You’re forgetting the difference 
between demand and sales. When we sold 9,500 programs, that is all we ordered. 
We likely would have sold more if we had them. About all we can say is that the 
demand will be random. Let’s figure out how many to order for an example. We can 
then go back and fine-tune our assumptions. Let’s assume that there are only five 
possible outcomes, 7,000, 8,000, 9,000, 10,000, and 11,000, with probabilities of 
0.1, 0.2, 0.4, 0.2, and 0.1, respectively.” 

 Tyler exclaimed, “I like the idea of ordering 7,000 programs, then. We get the 
full $3.75 margin on each, for a total return of $26,250, without any unsold pro-
grams.” He was also thinking to himself that he didn’t even need to remember what 
probabilities meant to reach this conclusion. 

 “But you might be able to do better if you order more. The usual way to evaluate 
a decision like this is to determine the  expected value  of the resulting return. We get 
it by determining the net profit for each possible outcome, multiplying it by the 
probability of that outcome, and then adding up over all outcomes. If I remember 
what my stats prof said, this measure corresponds to the  average  net profit that 
would be obtained per football game if exactly the same problem were faced many 
times. Let’s see what we would get if we ordered 8,000 programs.” It didn’t take 
long to create the worksheet shown in Exhibit  7.1 .

      Tyler felt his headache reappear. Shenn explained, “This says that ordering 8,000 
yields an expected net return of $29,500, a full $3,250 more than the $26,250 from 
ordering 7,000. If demand is 8,000 or more, we sell all 8,000, for a net return of 
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$30,000, which is $3,750 more than we get if we order only 7,000. And the proba-
bility of that happening is 0.9. The only time we get less is if demand is for only 
7,000. We get $1,250 less in that case, but the probability of that happening is only 
0.1. That is, we have a 90% chance of getting $3,750 more and a 10% chance of 
getting $1,250 less. The expected increase is   0.9(3,750) - 0.1(1,250) = 3,250  . 
Looks to me like ordering 8,000 is quite a bit better than ordering 7,000. Let’s see 
what we get if we order 9,000” (Exhibit  7.2 ).     

 Tyler’s enthusiasm began to grow, “Let’s see. If only 7,000 programs are 
demanded, then we net $3.75 on each of them, for $26,250 and lose $1.25 on each 
of the 2,000 we bought but didn’t sell, for a net return of   $ 26,250 - $ 2,500 = 
$23,750  . We get $5,000 more if demand is 8,000 instead of 7,000, because we sell 
each of them for $5.00 and haven’t bought any more. We get another $5,000 if 
demand increases by another 1000 to 9000. And, …, aha! If demand increases yet 
another 1000 to 10,000, we don’t get any more, because we only have 9,000 to sell. 
This says our expected return is $31,750, which is $2,250 more than when we order 
8,000. Can that be right?” 

 “Absolutely. If demand is 9,000 or more, we get $3,750 more than with ordering 
8,000, and the probability of that is 0.7. If demand is 8,000 or less, we get $1,250 
less, and the probability of that is 0.3. The expected gain is   0.7(3,750) - 0.3(1,250) 
= 2,250  .” 

 Tyler felt a bell ring in his head, “Wait, wait. Let me guess. If we order 10,000 
instead of 9,000, then the expected gain will be   0.3(3,750) - 0.7(1,250) = 250,   
because the probability of getting the $3,750 more is the probability that demand 
will be 10,000 or more, which is 0.3. I can’t believe that we should order that 
many!” 

 “Get used to it, baby. What about ordering 11,000?” 

 Exhibit 7.1.    Analysis of 8,000  
 Demand outcome  Probability  ($) Net revenue  Product 

  7,000  0.1  25,000   2,500 
  8,000  0.2  30,000   6,000 
  9,000  0.4  30,000  12,000 
 10,000  0.2  30,000   6,000 
 11,000  0.1  30,000   3,000 
 Total  1.0  29,500 

 Exhibit 7.2.    Analysis of 9,000  

 Demand outcome  Probability  ($) Net revenue  Product 

  7,000  0.1  23,750   2,375 
  8,000  0.2  28,750   5,750 
  9,000  0.4  33,750  13,500 
 10,000  0.2  33,750   6,750 
 11,000  0.1  33,750   3,375 

 31,750 
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  Building Intuition    Tyler’s decision of how many programs to order requires 
evaluating the  tradeoff  between having too many and too few. There is 
something good and bad for each outcome. If he has too many, he has an 
 overage . The bad part is that he has leftover unsold programs, which he 
bought but are now worthless. The good part is that every customer is 
satisfied (able to buy a program when desired) and, hence, there are no 
shortages. If he has too few, he has an  underage . The bad part is that some 
customers were unsatisfied (wanted to buy a program but were unable to 
because he ran out). He could have done better by buying more because he 
would have been able to sell them at a substantial margin. The good part is 
that he has no leftover, unsold programs. 

 A  newsvendor problem  has three defining characteristics: (1) there is a 
random amount needed of some resource, (2) a single quantity of that 
resource must be selected prior to observing how much is needed, and (3) 
all relevant economic consequences can be represented by known (oppor-
tunity) costs in terms of either the amount of overage or the underage. The 
optimal quantity of the resource to make available is easy to identify when 
the overage and underage costs are proportional to their size. 

 “Well, let’s see. The expected gain will be   0.1(3,750) - 0.9(1,250) = - 750  , so 
we would lose by making that change. We should stay at 10,000 programs. Yay!” 

   What is Tyler’s Newsvendor Problem?  

 Tyler’s problem is an example of what is often called the newsvendor problem. Its 
name derives from the context of a newsvendor purchasing newspapers to sell before 
knowing how many will be demanded that day. In the simplest version of the news-
vendor problem, such as Tyler’s, the opportunity costs of an overage or underage are 
proportional to the size of that overage or underage, with unit costs of   c

O
   and   c

U
  , 

respectively. For example, Tyler’s unit overage cost   c
O
   is $1.25: It is the additional 

return that would be received if, in the event that too  many  programs were ordered, 
one  fewer  program was ordered. Tyler would have saved the $1.25 unit cost for each 
program that was not needed. Similarly, Tyler’s unit underage cost   c

U
   is $3.75: It is 

the additional return that would be received if, in the event that too  few  programs were 
ordered, one  more  program was ordered. Tyler would have sold each program that 
was demanded but unavailable for $5.00. He would have had to pay the $1.25 unit 
cost for each of them, netting a margin of $3.75 per program. We will discuss more 
general versions of the newsvendor problem at the end of this chapter.  

 As far as Tyler is concerned, he is happy with the solution to his problem. 
However, we want to build a model that represents a general form of his problem 
and see if we can find a systematic way to solve it. We also would like to see if there 
are any insights we can glean from the analysis that can aid our intuition. 
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 In the example that we have solved, the demand is  discrete , which means 
that the demand outcomes can be put into a list, as in Exhibit  7.3 . Each entry in 
the list is numbered, and we can therefore talk about  outcome    i  , for   i = 1,2, ...,5  . 
It is useful to have symbols for the pertinent quantities in the model: Let   d

i
   

denote the demand (quantity) for outcome   i   and   p
i
   the probability of that out-

come (for each   i  ). Let   D   denote the random demand that occurs. For example, 
the probability that demand equals 8,000 is 0.2. In symbols,   P(D = d

i
 ) = p

i
   for 

each   i = 1,2, ... ,5  .     
 Let us assume henceforth that it is possible to receive a positive expected return. 

(We have already seen that this is true for Tyler’s problem.) 
 When demand is discrete, then we only need to consider ordering quantities that 

can be demanded: It can be shown that if it is better for Tyler to order 7,001 pro-
grams than 7,000, then it is even better to order the next larger demand quantity, 
namely 8,000. (The expected gain by going from 7,000 to 7,001 will also be the 
expected gain by going from 7,001 to 7,002, and so on.) 

 The  optimal  amount to order is one that yields the highest expected return. The 
optimal amount can be determined by  marginal analysis : We identify the expected 
gain of going to the next larger demand quantity from the current amount. If it is 
positive, we make the move, and repeat the process. In Tyler’s example, if we go 
from 8,000 to 9,000, then the expected gain is 

   0.7(3,750) - 0.3(1,250) = 2,250.    

 In general, if we go from   d
i
   to   d

i + 1
  , then the expected gain is 

  P(D ≥ d
i + 1

 )(d
i + 1

 – d
i
 )(c

U
) - P(D £ d

i
 )(d

i + 1
 - d

i
 )(c

o
).   

 For example, if   i = 2  , then the expected gain is 

  P(D ≥ d
i + 1

 )(d
i + 1

 – d
i
 )(c

U
 ) – P(D ≤ d

i 
)(d

i + 1
 – d

i
 )(c

o 
)

 = P(D ≥ d
3
 )(d

3
 – d

2
 )(c

U
 ) – P(D ≤ d

2
 )(d

3
 – d

2
 )(c

o
 ) 

 = 0.7(1,000)(3.75) – 0.3(1,000)(1.25) = 2,250,   

 confirming what we already knew.  

 Exhibit 7.3.    Probability distribution of demand  

 Number in list,  i   Demand outcome  d   
i
   

 Probability 
 p   

i
   =  P ( D  =  d   

i
  ) 

 Cumulative probability 
 P ( D £ d   

i
  ) 

 1  7,000  0.1  0.1 
 2  8,000  0.2  0.3 
 3  9,000  0.4  0.7 
 4  10,000  0.2  0.9 
 5  11,000  0.1  1.0 
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   Finding the Optimal Solution  

 It can be shown that we should go from   d
i  
 to   d

i + 1
   if 

   
P(D d )

c

c +c
.i

U

O U

≤ ≤
    

 The ratio   g = c
U 

/(c
O
 + c

U
 )   is called the  critical fractile  which, in Tyler’s case, 

equals   c
U
 /(c

O
 + c

U
 ) = 3.75/(1.25 + 3.75) = 3.75/5 = 0.75  . That is, if the inequality 

above holds for a particular possible demand quantity, then it is better to stock more 
than that quantity. For example, the probability that demand is no more than 7,000 
is 0.1, which is less than 0.75, so it’s better to stock more than 7,000, namely at 
least 8,000. Similarly, it’s better to stock more than 8,000 and also 9,000. However, 
the probability that demand is no more than 10,000 is 0.9, which is  more  than 0.75, 
so it is not optimal to go to 11,000, which we already knew. 

 It is nice that finding the optimal amount is simple: we just go down the list of 
cumulative probabilities, find the last one that is less than the critical fractile, and 
the optimal level (to stock) is the next larger demand outcome in the list. For example, 
going down the list of cumulative probabilities in the rightmost column of Exhibit 
 7.3 , the last one that is less than 0.75 is 0.7, and the optimal level is the next larger 
demand outcome, namely,   d

4
 = 10,000  . 

 There are other ways to find the optimal amount. For example, we can start at 
the bottom of the list of cumulative probabilities and find the smallest one in that 
list that is more than the critical fractile. That demand quantity is optimal. 

 If one of the cumulative probabilities equals the critical fractile, then there are 
 alternative optimal solutions : The demand quantity whose cumulative equals the 
critical fractile is optimal and so is the next larger demand quantity: Each quantity 
yields the same expected return. (The marginal return from going to the next larger 
demand quantity is zero, so there is a tie for what is best.) 

 Now that we know how to find the optimal solution, we do not need to restrict 
our consideration to simple problems with only a few possible different demand 
quantities. Instead of only five different quantities, we could have hundreds or 
thousands, and it would still be easy to find the optimal solution.  

   Continuous Demand Distributions  

 In practice, it is often convenient to use  continuous  (cumulative) probability distri-
butions, such as the  normal distribution,  as representations for the probability 
distributions of demand. Technically, this requires thinking that it is possible for a 
fractional number of programs, such as 7,337.473, to be demanded. However, from 
a practical perspective, we are only  approximating  the demand distribution. We are 
building a model of a practical problem and virtually any model of a managerial 
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situation makes simplifying assumptions to aid the analysis. The art of building and 
analyzing models in this regard is to develop an instinct for which simplifying 
assumptions are good ones, in the sense that they facilitate the analysis and do not 
mislead the results in any important way. Use of continuous distributions to approx-
imate random quantities that are discrete is widely accepted as being a potentially 
good simplifying assumption. 

 When the demand distribution is continuous, it is also easy to determine the 
optimal quantity: We select the quantity   Q   such that 

   
P(D Q) =

c

c +c
U

O U

≤
 

.

    

   Back to Tyler’s Problem  

 Tyler and Shenn returned their attention to Nar and, after lengthy discussion and 
some statistical analysis, decided that a better representation of the random demand 
for programs (for the coming game) is a normal distribution with mean of   m = 9,000   
and a standard deviation of   s = 2,000  . Exhibit  7.4  illustrates the normal distribution 
and the critical fractile solution.    

   Normal Distribution  

 When the demand distribution is a normal distribution, then we can find the optimal 
order quantity either by using tables, found in statistics books, or by using built-in 
functions of software packages, such as Excel spreadsheets. Exhibit  7.5  makes it 
easy not only to find the optimal order quantity but the resulting expected overage 
and underage costs. The first column gives the critical fractile,   g  , and the second 

Exhibit 7.4 Critical fractile solution
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gives the stock level, expressed as the number   z* (g)   of standard deviations above 
the mean. In Tyler’s problem,   g = 0.75  , so we see that   z* (0.75) = 0.674  . Thus, the 
 optimal stock level is 

   Q* = m + z* (g) s = 9,000 + 0.674(2,000) = 10,348.   

  The third column in Exhibit  7.5  shows the cost factor   L
N
 (g)  , which gives the result-

ing expected overage and underage costs as follows: 

  c
O
 s L

N
 (g).   

 In Tyler’s problem, we have 

   c
O
 s L

N
 (g) = 1.25(2,000)(1.271) = 3178,   

Exhibit 7.5 Newsvendor solution for the normal distribution
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which is the optimal expected opportunity cost. But Tyler is not satisfied with this 
number, because he can not relate it to the expected return, which is what counts. 
The formula for the expected return in Tyler’s problem is 

   3.75m - c
O 

s L
N
 (g) = 3.75(9,000) - 1.25(2,000)(1.271) = 33,750 - 3,178 = 30,572,   

which we will now explain. 
 The   3.75m   is the expected return Tyler would get if he could defer deciding how 

many programs to order until after seeing how many programs would be demanded. 
In this case, for each quantity demanded, exactly that number would be ordered, 
and the full margin of $3.75 would be received on each of them. The resulting 
expected return would be 3.75 times the expected demand. This is sometimes called 
the  expected return under perfect information  because it corresponds to having a 
magic elf that has perfect foresight in that he can perfectly see ahead to what the 
random demand will be and whisper the amount to Tyler before he places his order. 
The expected overage and underage costs is also called the  expected value of 
perfect information (EVPI)  because it is how much better Tyler would do if he had 
the services of that magic elf: Because he must decide on how many programs to 
order before knowing what the random demand will be, the overage and underage 
costs would be eliminated if he had perfect information.  

   Insights  

 There are useful insights that can aid your intuition when facing similar problems. 
They are easiest to understand when the probability distribution of demand is con-
tinuous, because in that case there is no chance that demand will exactly equal the 
amount ordered. Either   Q > D   which means an overage occurs or   Q < D  , which 
means an underage occurs. 

 Both the unit overage and underage costs,   c
O
   and   c

U
  , are strictly positive. (We will 

clarify below that the problem is improperly formulated otherwise.) The critical frac-
tile   g = c

U
 /(c

O
 + c

U
 )  , which is between zero and one, gives the  optimal overage proba-

bility ,   P(D < Q) = P(D ≤ Q)  , namely the optimal probability that you will have too 
much. Similarly,   1 - g   is the optimal probability that you will have too little. The solu-
tion can be interpreted in gambling parlance: It is optimal to run odds of   c

U
   to   c

O
   of 

having too much, which means that the probability of having too much is   c
U
 /(c

U
 + c

O
)  . 

Odds do not depend on their units, so we can also say it is optimal to run odds of   c
U
 /c

O
   

to 1 of having too much. For example, if the (unit) underage cost is 3, 4, or 9 times the 
overage cost, then it is optimal to run a 75, 80, or 90% chance, respectively, of having 
too much. It is intuitive that the higher the relative cost of having too little is, the higher 
the optimal probability of having too much should be. The newsvendor model gives us 
more than that, namely, the exact way in which the probability should change. 

 One insight is that  never having leftover programs is bad, not good.  Tyler 
thought he would look good by not having any leftover, unsold programs, but our 
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analysis shows that he should run a 75% chance (3–1 odds) of having leftovers. 
Tyler’s boss needs to understand this, too, so he or she doesn’t implicitly put pres-
sure on Tyler to order too few and thereby receive lower expected returns. 

 A related insight is that  never having unsatisfied customers  (who tried to buy a 
program but were unable to, because the programs were sold out)  is also bad . Tyler 
should run a 25% chance of having unsatisfied customers.  

   Appeasing Unsatisfied Customers  

 Tyler took a marketing class once and he remembered that the mantra in that class 
was never to have unsatisfied customers. He could feel the headache returning. 
Unsatisfied customers might decide that they would stop attending games in the 
future, or would not bother trying to buy a program at future games. They might 
have such a bad taste in their mouths that they decide not to donate any money to 
the athletic department. These all have negative financial consequences that were 
not considered in our previous analysis. If Tyler can assess the expected financial 
loss from each such unsatisfied customer, then he can redo the analysis with the 
new considerations. For example, suppose he determines that each unsatisfied cus-
tomer will yield an expected loss, of the types discussed, of $7.50. Then the under-
age cost changes to become   c

U
 = 3.75 + 7.50 = 11.25  . In the event of an underage 

(programs selling out), then, for each additional program, not only would it get 
sold, yielding a margin of $3.75, but the expected shortage cost of $7.50 would be 
eliminated. The new critical fractile is   c

U
 /(c

O
 + c

U
 ) = 11.25/12.50 = 0.90  , which 

means that more programs should be ordered, the optimal probability of having no 
unsatisfied customers is 90%, and the optimal probability of having unsatisfied 
customers has been cut down to 10% from 25%. The optimal opportunity costs 
increase and the optimal expected return decreases. 

 Shenn, who took the same marketing class with Tyler but paid more attention to 
it, suggests that the analysis should not be left there. If there is some way to appease 
the unsatisfied customers that costs less than $7.50, then the athletic department 
would be better off doing that. For example, suppose all unsatisfied customers 
would be so happy to receive a $2 voucher to be redeemed at any food and drink 
concession at the game that they would carry no lingering resentment about not 
being able to buy a program. Then the underage cost could be reduced to   c

U
 = 3.75 

+ 2 = 5.75  , Tyler would order fewer programs than under the $7.50 shortage cost, 
and the expected return would increase. There are a couple of practical problems 
that must be solved in cases like this: The first is determining exactly how much is 
needed to appease an unsatisfied customer. (The fact that this amount might be 
random (differ across different potential unsatisfied customers) is not a problem, as 
long as we can estimate the  expected  amount.) The second is to assure that only 
truly unsatisfied customers are given the appeasement. For example, Tyler does not 
want any unsatisfied customers telling their friends and family at the game that all 
they need to do is pretend they want to buy a program and they will receive a $2 
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voucher. (The expected shortage cost could be much more than $2 for each (truly) 
unsatisfied customer in that case.)  

   Comparative Statics (Sensitivity Analysis)  

 In the previous discussion, we saw that as the underage cost increases, the critical 
fractile, and hence the optimal probability of an overage and the optimal order 
quantity, increases. As the overage cost increases, the opposite happens. 

 If either the overage or underage cost increases, then the optimal expected costs 
increase, and for situations such as Tyler’s, the optimal expected return decreases. 
Of course, if either the underage or overage cost decreases, the opposite happens. 

 Suppose for the remainder of this section that the demand distribution is normal. 
If the critical fractile equals 0.5, then it is optimal to stock the mean demand (zero 
standard deviations above the mean). If the critical fractile is above 0.5, then it is 
optimal to stock more than the mean and if the standard deviation increases, then the 
optimal order quantity increases. However, if the critical fractile is below 0.5, then it 
is optimal to stock  less  than the mean and if the standard deviation increases, then 
the optimal order quantity  decreases . Regardless of the value of the critical fractile, the 
optimal expected opportunity costs increase as the standard deviation increases. 
The intuition here is that the effect of more uncertainty (increasing the standard 
deviation) on the optimal order quantity depends on which is higher, the overage or 
underage cost, but the effect on the costs is always bad. 

 If the mean demand increases by one (and no other changes are made), then the 
optimal order quantity also increases by one, but the optimal expected opportunity 
costs remain the same. The expected return increases. Tyler has the incentive to 
increase the mean (demand) and reduce the standard deviation.  

   One Stocking Decision for a Perishable Product  

 The newsvendor model applies to problems of determining a single order quantity 
when unsold units of the product ordered will be obsolete and cannot be offered for 
sale again. Tyler’s problem fits this description because the programs ordered for 
one game cannot be legitimately offered as the program for any subsequent game. 
Newspapers and magazines are similar. 

 The newsvendor model can be useful for determining stock levels of perishable 
produce at a grocery store: For example, if a grocery store gets new lettuce every 
day and throws out the old, unsold lettuce (or gives it to a food bank or otherwise 
diverts the leftover unsold lettuce), then the grocery store faces a newsvendor problem 
each day for lettuce. If you are a customer of such a grocery store and that store 
almost never runs out of lettuce, then either the margin on lettuce is extremely high, 
or the grocer estimates the financial cost of a customer finding no lettuce to be 
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extremely high, or both. Incidentally, it is heard on the street that grocery stores get 
a significant amount of their profits from their produce sections. The newsvendor 
model does not capture all of the dynamics of selling produce at a grocery store. 
For example, if the grocer sells out of one type of lettuce, a customer may buy a 
different type of lettuce, as a substitute. To the extent that this kind of substitution 
takes place, the effective cost of a shortage is less and, thus, the optimal stock level 
can be lower. (If there is a type of lettuce that is the heavy favorite to be selected as 
a substitute for other types when they are out of stock, the way vanilla ice cream is 
the favorite substitute for other flavors, then the optimal stock level for that type of 
lettuce may be higher than if the effect of substitution were not considered.)  

   One Stocking Decision for a Nonperishable Product  

 The newsvendor model can be useful for determining how much to order of a product 
that requires a long lead time to produce and will be sold only over a relatively short 
season. In this case, there is still only one stocking decision. Much fashion-oriented 
clothing falls into this category: It takes many months to procure materials, 
manufacture the clothing, and transport it to the location/country where it will be 
sold. Unsold merchandise at the end of the season is generally sold to another 
organization at a deep discount. In contrast to restocking lettuce, which is done 
daily, this decision would be made once for the selling season (such as the Christmas 
season). The overage cost would be the unit materials, assembly, and transportation 
costs less end of season scrap value.  

   An Improper Formulation  

 Something is wrong with the formulation of the above problem if the overage cost is 
negative: This would happen if the end of season scrap value is assessed as more than 
the sum of the unit materials, assembly, and transportation costs. In this case, it would 
be optimal to buy an infinite amount, and each of the (infinite) number of unsold 
goods would net more scrap value than what they cost, yielding an infinite total 
return. In actuality, it is likely that if there are only a few unsold units, then they can 
be scrapped at a reasonably high value, perhaps more than what they cost. As the 
number of unsold units increases, the average scrap value decreases. A model of this 
situation is discussed further at the end of this chapter.  

   Stocking Decisions Under Buy-Backs  

 Although the newsvendor model is nominally designed for determining the stock level 
of a product that becomes obsolete by the end of the selling season, it can also be use-
ful for determining the stock levels of a product that still retains a great deal of value 
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at the end of the selling season. In particular, here we assume that the supplier offers 
 buy-backs,  which means that the supplier will buy back any unsold units. For example, 
Tyler may also be responsible for deciding how many cases of soda to order for the 
drink stands to sell during the game, and unsold cases can be returned to the supplier 
for a substantial credit. Suppose that each case of soda costs $4 from the supplier 
including delivery and that every unsold case of soda can be returned for a net of $3 
per case ($3.50 less $0.50 for labor and transportation getting the soda back to the 
supplier). If each case sells for $24, then the unit underage cost would be $20. (In case 
of an underage, Tyler could have bought one more case for $4, sold it for $24, and netted 
$20.) The unit overage cost would be $1. (If there is an overage, Tyler could have 
bought one fewer case for $4, which would therefore not be available to be returned 
for $3, for a net gain of $1.) The critical fractile is   20/(20 + 1) = 0.953  , so Tyler should 
run a 95.3% chance of having unsold soda and a 4.7% chance of running out. 

 Shenn again offers an opportunity for improvement by suggesting that Tyler not 
return unsold cases of soda until the end of the football season, because, as long as 
the unsold cases can be stored safely (without deterioration) between games for less 
than $1 each, then Tyler should do that. For example, if a case of soda can be put 
into storage and put back into position for sale at the next game for $0.60, then that 
approach would save $0.40 per case. The unit overage cost becomes $0.60. (If there 
is an overage, he could have bought one fewer case for $4. That benefit would be 
cancelled out because it would therefore not be available to be sold at the next game, 
and, thus, a new case would have to be purchased then for $4 delivered. The benefit 
would come from not having to spend the $0.60 to store it between games.) The critical 
fractile increases and the expected costs decrease. Shenn warns him that this logic is 
valid only when he is assured that all unsold cases would require replacing at the 
next game if they were not available. For example, if Tyler has 1000 cases of unsold 
soda at the end of one big game and the next game is a small one where only 800 
cases would be purchased if there were no leftover soda, then 200 of the unsold cases 
did not require replacing at the next game and a different unit overage cost applies 
to them. The overage costs would not be proportional to the size of the overage. 
This case of nonlinear overage costs is discussed at the end of this chapter.  

   Improper Formulations and Their Resolution  

 An interesting situation arises if there are no handling, transportation, or other 
transaction costs and cases of soda can be returned for their purchase price. An initial 
analysis would yield an overage cost of zero. (In the case of an overage, Tyler could 
have bought one fewer case for $4, which would therefore not be available to 
be returned for $4, for a net gain of $0.) The critical fractile would be   c

U
 /c

U
 = 1  , 

which means that Tyler should run absolutely no risk of having a shortage. If 
demand is really normally distributed, then there is no finite number   Q   such that 
  P(D ≤ Q) = 1  , so Tyler would have to stock an infinite amount. This is obviously not 
a practical solution. Something is wrong with the formulation. One resolution is to 
find that there must be some cost that was left out of the analysis. For instance, Tyler 
would not have enough room to store all the cases of soda in the world at the stadium, 
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so space would have to be rented, which would cost something and create a nonzero 
overage cost, and, therefore, a finite optimal stock level. There are many other possible 
resolutions. For example, the supplier would realize that it would be a bad idea to 
absorb the handling and transportation costs on tons of soda that almost surely would 
be returned. The supplier would be inclined to require Tyler to share in some of the 
cost, and even seek at least a small gain for all soda that is returned. 

 Another resolution of the improper formulation is to incorporate the opportunity 
cost of capital. For example, for some small expensive items, such as jewelry, the 
handling and transportation costs are very small compared to the cost of the item. 
The overage cost should also include any holding cost that is incurred for unsold 
items, which in this case, includes the interest costs of the money needed to purchase 
the items. Even if the unsold items can be sold back at the same price they were 
bought at, having those items for a period of time requires the commitment of capital, 
which could have been used for other productive purposes during that period.  

   Further Insights on Buy-Backs  

 Tyler figures that the more the supplier pays for buy-backs, the better off he will be. 
That is true if nothing else changes. However, in situations such as campus book-
stores, the supplier can take nearly all the profits of the business. Professors decide 
what textbook to require for their courses, only one publisher prints each book, and 
there is a published retail price, so the bookstore has no ability to change the text-
book, source it from a different supplier, or charge a higher price. The publishers 
then charge the bookstore a price that is nearly as high as the retail price. They also 
offer a buy-back rate that is nearly as high as its wholesale price. This combination 
means that the bookstore will make a little bit of money selling the books that are 
demanded, and not run any risk of having expensive, unsold textbooks after the 
demand has been realized. The publishers make virtually all the money. Without the 
buy-back system, the bookstore would have a high overage cost, leading to a low 
critical fractile, and a high probability that some students would not be able to buy 
the book, an untenable campus outcome. The bookstore would be pressured to 
stock more books than is optimal, and doing so might lead to losing money on a 
regular basis. The bookstore might even have to be closed. All these negative 
outcomes would likely lead to the revelation that the publishers are taking almost 
all of the profits. Pressure might be created on the publishers to reduce their whole-
sale prices. By using buy-backs, they keep their situation off the radar screen. 

 Publishers often go one step farther, by requiring the bookstores to send only the 
covers of the unsold copies of the books they buy back. This practice suggests that 
the shipping and handling costs incurred in sending the book back to the publisher 
are more than the marginal cost of printing it in the first place. (The publisher finds 
it cheaper to print more copies in the first place rather than have the complete books 
sent back for redirection to another bookstore later.) The publishers insist on getting 
the covers sent back, because they do not want to offer the temptation to the 
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 bookstores of requesting reimbursement (buy-backs) for books that they actually 
sold. The publishers often even include a message to consumers inside the cover 
that the book is “illegal” if it does not include its cover. (The publishers don’t want 
the bookstores to send the covers back, get reimbursed for them, and then sell 
what’s left of the books to consumers.)  

   Multiple Replenishment Problem for a Nonperishable Product  

 A useful way of understanding whether the newsvendor model is useful for determin-
ing replenishment stock levels of a nonperishable product over a sequence of selling 
periods is whether we can safely assume that each period’s problem starts with zero 
initial inventory. For instance, if unsold units available at the beginning of the next 
period can be returned for the same price as new ones can be purchased, then we can 
conceptually think of returning any unsold units and then buying them back (at the 
same price) as needed to get to the optimal stock level for the next period. 

 Similar logic is valid even if unsold units cannot be returned. Suppose that the 
problem is  stationary , which means that each period is alike in the sense of the 
demand and the costs and revenues, and has an  infinite horizon , which means that 
there are an infinite number of periods. Then the optimal stock level will be the 
same in each period. Thus, any unsold units at the end of a period can be used to 
reduce the number that are purchased at the beginning of the next period. Inventory 
management in this case is called  one for one  replenishment: Each unit that is sold 
in a period is replenished at the beginning of the next period. The overage cost is 
the holding cost, which includes both  financial holding costs , which include interest 
costs, and  physical holding costs , which include handling, storage, temperature 
control, insurance, and other costs incurred for each unit stocked for the period. 
The newsvendor model gives the optimal stock level. (See Chap. 9 in this volume 
for a discussion and use of the same idea.)  

   Capacity Management  

 The newsvendor model can be useful in determining decisions other than stock 
levels. For example, Tyler’s uncle, Rusty, works for an automobile manufacturer 
that must decide on how much  capacity  to have to manufacture each of its models 
for the approaching model year. The capacity set is the quantity Q and D is the 
(unknown, random) annual demand for that model. The overage cost includes 
the savings from providing one unit less capacity, and the underage cost 
includes the lost profit from not being able to make one more car of that type. 
In reality, there are other considerations that must be included in making a 
capacity decision like this one, such as the option to operate the plant at one, 
two, or three shifts a day, and/or weekends. Plants also often are designed so 
that multiple models can be manufactured on the same assembly line, which 
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provides the flexibility to make more of the hot selling models and fewer of the 
duds. It may also be possible to make adjustments to the capacity level during 
the year. All these considerations can be addressed in a model, and a newsven-
dor model can be a good starting point for the analysis.  

   Airline Overbooking  

 Another application of the newsvendor model is to airline overbooking of flights. 
Tyler has another uncle, Howie, who works for an airline that faces, for each flight, 
the possibility that not all potential passengers who made reservations will show up 
for the flight. If one of Howie’s flights has 100 economy seats, all 100 are reserved, 
but only 90 show up to board the flight, then the 10 empty seats generate no revenue, 
but would have if Howie had allowed 10 extra reservations to be made for the flight 
and all of them had shown up. The available quantity   100   of seats is fixed in advance 
by the type of airplane assigned to the flight. The decision   Q   is the number of over-
booked seats to allow. The (random) demand   D(Q)   is the number of no-shows, pas-
sengers with reservations who do not show up for the flight, as a function of the 
number   Q   of overbooked seats. If   Q > D(Q)  , then the flight is overbooked at the time 
of boarding: The number of no-shows is less than the number of overbooked seats, so 
there are some passengers who cannot board the flight. What the airlines do in this 
situation is offer vouchers redeemable on future flights to confirmed passengers who 
agree to take a later flight. Their initial offer is sometimes a free domestic flight 
within their system. Passengers who accept the offer are assumed to be appeased, 
creating no unforeseen negative consequences. If not enough passengers accept the 
offer, the airline will raise the offer, as in an auction, essentially paying the lowest 
price it can to reduce the number of passengers on the flight to its capacity. 

 The simplest version of this problem occurs when   D(Q)   is independent of   Q  , 
which means that the distribution of the number of no-shows is not affected by the 
number of overbooked seats. In the next paragraph, we will briefly discuss the more 
realistic scenario of there being a dependence of  D  on  Q . The situation of over-
booked confirmed passengers corresponds to   Q > D  , which, from the perspective 
of the newsvendor model, is an “overage” because the quantity set (number of 
overbooked seats) is higher than (over) the demand (number of no-shows). Thus, 
the unit “overage” cost here is the expected appeasement cost that the airline would 
save if it had overbooked one fewer seat and therefore had one fewer overbooked 
passenger at boarding. (It consists of the expected cost of adding one reservation to 
the later flight plus the expected cost of the voucher.) The unit “underage” cost is 
the expected additional return the airline would obtain by increasing the number of 
overbooked seats by one and therefore had one more paying customer on the flight. 
Both of these costs can be quite large and similar in magnitude. If they were equal, 
the critical fractile would be 0.5, which means the airline should run an equal risk 
of having empty seats on the flight and having overbooked passengers at boarding. 
If passengers are simply appeased with a voucher for a free flight of the same type 
in the future (along with the seat on a later flight), and the later flight is  underbooked, 
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then the cost of appeasing passengers would be less than the additional revenue 
from a paying passenger, because the cost of the seat on the later flight is insignifi-
cant and the voucher has the appeased passenger simply flying for free on another 
flight, which might not be overbooked. Therefore, the expected cost of the voucher 
is less than a paid fare. In this case, the critical fractile, which is the optimal probabil-
ity of having overbooked passengers at boarding, is greater than 0.5. 

 If we assume more realistically that the number of no-shows does indeed depend 
on the number of overbooked seats ( D  depends on  Q ), then, provided the relation-
ship is not perverse, marginal analysis still yields the optimal number of seats to 
overbook. The expected gain from overbooking one more seat is found as follows. 
If that ticket holder shows up and there is room on the flight (at boarding), then the 
airline will receive the additional revenue from the ticket. If that ticket holder shows 
up and there is no room on the flight, then the gain will equal the additional revenue 
received from the ticket and the loss will equal the opportunity cost of the seat that 
will be taken on the later flight plus the opportunity cost of the voucher that will 
appease the customer. There is nothing to stop the airline from overbooking as 
many seats as possible until these costs exceed the gain from the ticket sold. 
The financial consequences of the ticket holder not showing up must also be 
worked into the equation. For example, if the ticket is fully refundable, then the 
airline loses the revenue from the ticket and incurs the costs of processing both the initial 
ticket purchase and the refund. Airlines often offer much cheaper fares for non-
refundable tickets that involve a substantial penalty to change to another flight. 
This arrangement presumably reduces the incidence of no-shows. 

 The overbooking tradeoffs discussed here also are relevant to hotels, restaurants, 
and other services that take reservations.  

   Flexible Medical Savings Accounts  

 This application of the newsvendor model is to personal finance. Some US employers 
allow their employees to specify an amount to be taken out of their pay check, 
before taxes, that can be used to cover medical expenses that are not covered by the 
employee’s medical (and dental) insurance. At the urging of Shenn, Tyler is consid-
ering signing up to have $10 per month from his pay allocated to this account. 
He would therefore select $120 as the amount in his account for the year. He has 
good insurance coverage, but he faces a number of potential medical expenses that 
are not covered by any of his insurance plans. For example, he must co-pay for each 
office visit and a percentage of any medical procedure required. He also has no 
coverage for prescription eye glasses or for certain dental procedures. He is not sure 
what the total of these uncovered expenses will be for the year, but, with the help 
of Shenn, he has estimated that the probability distribution for the total is normal 
with a mean of $200 and a standard deviation of $20. If his uncovered expenses are 
more than $120, then he will get the full $120 back. Tyler’s marginal income tax 
rate is 25%, so, because the $120 was not taxed, Tyler has saved $30: If Tyler had 
not signed up for the program, he would have had to pay that $120 out of his 
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 after-tax earnings. So he would have had to earn $160 in pretax earnings to yield 
the $120 needed to pay the uncovered expenses. Under the program, he only needed 
to use $120 of his pre-tax earnings to cover these expenses, so he can keep $40 
more in pretax earnings, which converts into $30 in after-tax earnings. The down-
side of the program is that if Tyler’s uncovered expenses are less than the $120 he 
put aside, then he loses the unused funds. 

 This is a newsvendor model:   Q   is the amount put into the program for the year, 
and   D   is the total amount of uncovered expenses. In case of an overage,   Q > D  , then 
if he had reduced   Q   by one dollar, he could have kept that pretax dollar, which 
converts into $0.75 in after-tax dollars. So the unit overage cost is   c

O
 = 0.75  . In case 

of an underage,   Q < D  , then if he had increased   Q   by one dollar, he would have lost 
the $0.75 in after-tax dollars, but would have saved $1 in after-tax dollars that he 
needed to use to pay the extra uncovered expenses. Thus, the (net) unit underage 
cost is   c

U
 = 0.25  . 

 The critical fractile, the optimal probability of having too much in the account, 
is therefore 
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+
=

+
=

c
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0.25,

   

which, using Exhibit  7.5 , means that Tyler should put 

   Q* = m + z* (g ) s = 200 - 0.674(20) = 187   

into his account.  

   Other Applications  

 There are numerous other applications of the newsvendor model, such as setting 
cash reserves by a bank or an individual for a checking account, selecting spare 
parts for a product at the end of the life of its production line, deciding how much 
scrubber capacity to have available to clean noxious fumes being produced, college 
admissions, water reservoir management, staff sizing in a service business, and 
 prepurchased maintenance calls. See  Wagner (1975) ,  Shogan (1988) , and  Denardo 
(2002)  for more.  

   Historical Background  

 The first generally accepted framing and discussion of what we now call the news-
vendor problem appeared in  Edgeworth (1888)  in the context of a bank setting the 
level of its cash reserves to cover demands from its customers. His focus was on 
use of the normal distribution to estimate the probability that a given level is large 
enough to cover the total demand. 
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  Morse and Kimball (1951)  coin the term “newsboy” in introducing this problem, 
use marginal analysis, and implicitly provide the critical fractile solution.  Arrow et al. 
(1951)  formulate a more general problem and also implicitly provide the critical 
fractile solution within a special case of their solution.  Whitin (1953)  explicitly 
provides the critical fractile solution. 

 The problem began to be known as the  Christmas tree problem  and the  newsboy 
problem  in the 1960s and 1970s. In the 1980s, researchers in the field sought 
vocabulary, such as the “newsperson” model, that would not be gender specific. 
Matt Sobel’s suggestion, the  newsvendor problem,  is now in general use. 

 So far, all discussion has been limited to the case of proportional costs. When  Arrow 
et al. (1951)  quoted the defeated Richard III as exclaiming, “A horse, a horse, my king-
dom for a horse,” they not only suggested that the unit underage (shortage) cost might 
be very high, but that it might get larger as a function of the size of the shortage. Early 
work, such as  Dvoretzky et al. (1952)  and  Karlin (1958) , included such nonproportional 
(nonlinear) costs in their analyses.  Karlin (1958)  also allowed for the possibility that the 
overage cost might be a nonlinear function of the overage. 

 Suppose that both the underage and overage cost functions are  convex , which 
can be understood as being bowl shaped with the property that no matter how they 
are tilted, while being kept right side up, their only flat spots can be at the bottom. 
(The proportional cost case is covered.) Then the expected opportunity costs, as a 
function of the quantity selected, is convex, so any flat spot we find on it will be at 
the bottom and therefore minimize the expected costs. (Flat spots are found using 
calculus by computing the derivative and setting it to zero.) From a computational 
perspective, a solution is easily found, although not nearly as easily as computing 
a critical fractile   g   based on the given unit costs and then finding the   Q   such that 
  P(D ≤ Q) = g  . 

  Bellman et al. (1955)  provide the explicit critical fractile solution for the multiple 
replenishment problem of a nonperishable product in the stationary, infinite horizon 
case.  Veinott (1965)  and  Sobel (1981)  extend the analysis to the nonstationary and 
finite horizon cases and to other settings. 

  Gallego (1997)  provides a realistic formulation of the salvage value of unsold 
units: He assumes that there is a random quantity that can be sold at a given unit 
salvage value. It is also possible to include possibly many different markets in 
which the unsold units can be salvaged. Each market is characterized by the unit 
salvage value that it offers and the (possibly random) maximum number that can be 
salvaged at that price. This approach avoids the surprise of having many more 
unsold units to salvage than were anticipated. 

 When the purchase costs for the resource are proportional to the amount pur-
chased, then it is straightforward to reformulate the costs as proportional to the 
overage and the underage. However, in many realistic situations, the purchase costs 
are not proportional. For example, there may be  economies of scale , in that the 
average purchase cost may decrease in the size of the purchase. Considerations 
such as this have led to the development of  stochastic inventory theory , with the 
seminal contribution of  Arrow et al. (1958) .  Zipkin (2000)  and  Porteus (2002)  give 
expositions of the current status of that theory, with  Harrison et al. (2003)  giving an 
introduction to  supply chain management , a much broader field that developed 
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rapidly with the help of researchers in inventory management. There has been an 
analogous development of  capacity management , with  Manne (1961)  providing an 
early impetus, and  Van Mieghem (2003)  giving a recent review. The development 
of  revenue management  is more recent, with  Talluri and van Ryzin (2004)  provid-
ing an exposition of its recent status. In short, the newsvendor model is a key com-
ponent of several different modern disciplines that address practical problems.    
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        Chapter 8   
 The Economic Order-Quantity (EOQ) Model 

           Leroy   B.   Schwarz    
 Purdue University 

   The economic order-quantity model considers the tradeoff between ordering cost 
and storage cost in choosing the quantity to use in replenishing item inventories. 
A larger order-quantity reduces ordering frequency, and, hence ordering cost/
month, but requires holding a larger average inventory, which increases storage 
(holding) cost/month. On the other hand, a smaller order-quantity reduces average 
inventory but requires more frequent ordering and higher ordering cost/month. 
The cost- minimizing order-quantity is called the Economic Order Quantity (EOQ). 
This chapter builds intuition about the robustness of EOQ, which makes the model 
useful for management decision-making even if its inputs (parameters) are only 
known to be within a range of possible values. This chapter also provides intuition 
about choosing an inventory-management system, not just an EOQ.    

   Introduction 

  Lauren Worth is excited about her new job at Cardinal Hospital. Lauren had 
worked at Cardinal, first as a candy-striper, and then, after college, as a registered 
nurse. After several years “working the wards,” Lauren left Cardinal to get an 
MBA. Now, having recently graduated, Lauren had returned to Cardinal as its first 
“Inventory Manager.” 

 Lauren’s boss, Lee Atwood, is Purchasing Manager at Cardinal Hospital. Lauren 
has known Lee since her days as a candy-striper, and regards him as a friend. Lee 
describes himself as being from the “old school” of inventory management. 
“Lauren, I know that there are sophisticated methods for managing inventories, 
and, in particular for determining ‘optimal order-quantities.’ And, I know that 
Cardinal is paying a ‘management-cost penalty’ for using other than optimal  order-
quantities. In other words, that Cardinal is incurring higher than the minimum 
 possible inventory-management costs in managing its inventories. But, frankly, I’m 
skeptical about what it will cost Cardinal Hospital to reduce that management-cost 
penalty. That’s because determining the optimal order-quantity will require two 
things that are in short supply around here.” 

D. Chhajed and T.J. Lowe (eds.) Building Intuition: Insights From Basic  135
Operations Management Models and Principles.
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 “First, is the knowledge about costs and demands. For example, in the general 
supplies area, where I would like you to begin, in order to use the ‘EOQ model,’ 
you need to know what it costs to place an order, and how much it costs to hold an 
item in inventory. Now, I know that it costs Cardinal money to place an order and 
money to hold an item in inventory, but we don’t know what these costs are. Given 
enough time and trouble, we can find out what those numbers are, but, at best, they 
would be estimates. Now, let’s suppose it costs, say, $100 a year to get those 
 estimates for each of the 2,000 general-supply items we are talking about, and to 
keep those numbers up to date. Once we plug those numbers into this formula and 
determine the ‘optimal’ order-quantity, will using that order-quantity save us at 
least the $100/year that it is costing us to feed that formula? In other words, if we 
save $90/year by making better decisions, but it costs us $100/year to make those 
better decisions, then we have lost $10/year!” 

 “Another thing that’s been in short supply, at least until you’ve arrived, is 
enough expertise to know which inventory-management system we should use to 
manage the different inventories we manage. For example, as you know, some of 
these items are expensive, others are very inexpensive; some perish, some don’t; 
some become obsolete quickly, others don’t. I know there are lots of different 
systems out there—EOQ, JIT, MRP, and the ‘newsvendor,’ to name just a few—
but each of these has overhead connected with it. It is logical that the more 
 sophisticated the model, the ‘better’ the order-quantity decision, but it also makes 
common sense that the more sophisticated model will be more expensive to install 
and keep up to date. For example, suppose that the EOQ model would reduce 
ordering and holding costs by $200/year, but cost us only $100/year to use and 
keep up to date: a net saving of $100/year. Would some other model—JIT, for 
example—net Cardinal a larger saving?” 

 Lauren was confused. She had thought that all she had to do was to plug num-
bers into the EOQ model and Cardinal would be making optimal order-quantity 
decisions. She had not thought about the cost of getting those numbers; or, worse, 
the fact that those numbers would only be estimates that would have to be updated 
over time. As a consequence, it had not occurred to her that Lee Atwood’s policy 
of ordering a 3-month supply for  everything  might, all things considered, be a good 
decision-rule. Finally, Lauren also had not considered the possibility of using a 
more sophisticated system than EOQ, one that might yield larger savings but have 
a higher overhead cost.  

  The Decisions to be Made 

  One of the most frequent decisions faced by operations managers is “how much” 
or “how many” of something to make or buy in order to satisfy external (e.g., customer 
demand) or internal requirements for some item. 

 Many times, this decision is made with little or no thought about its cost conse-
quences. Examples are “order a case” or “make a month’s supply.” Lee Atwood’s 
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policy is to order a 3-month supply whenever he ordered anything. In  some  business 
scenarios, such decision-rules might be OK, in the sense that they require very little 
information (e.g., what  is  a month’s supply?), are easy to implement, and yield 
inventory-management costs that are only a few percent above the minimum 
 possible cost (i.e., a small management-cost penalty). Indeed, such “thoughtless” 
decisions might even be optimal, in the sense that they might minimize the  total  
cost of inventory management, including the cost of the information and 
 implementation requirements of the decision-rule being used. However, in other 
scenarios, decision-rules like these can be quite bad; in other words, their associ-
ated management cost-penalty is very large and, an alternative decision-rule, one 
that required more expensive information and/or implementation would yield a 
considerably smaller total cost of inventory management. 

 So, the  fundamental  decision about the “order-quantity decision”  isn’t  “What’s the 
right quantity”? Instead, it is: “Under what circumstances does the  choice  of the 
order-quantity make a lot of difference (in terms of the management-cost penalty)”? 
After all, if the choice of the order-quantity does not make a significant difference, 
then common sense suggests that the choice of the order-quantity does not matter 
much; and, therefore, should be made with a focus on making and implementing the 
order-quantity decision as inexpensively as possible (in terms of its information and 
implementation costs). For example, at Cardinal Hospital, Lee Atwood’s 3-month 
supply policy might be fine; that is, using EOQ—or some even more sophisticated 
system—would cost more than it was worth. On the other hand, if the choice of the 
order-quantity  does  make a significant difference, then the order-quantity decision 
may deserve a great deal of management attention and thoughtful judgment. Or, to 
quote Ford  Harris (1913) , who created the EOQ model, “This is a matter that calls, 
in each case, for a trained judgment, for which there is no substitute.” 

 This chapter will address the question of whether or not the choice of the order-
quantity makes a lot of difference in terms of its management-cost penalty, using 
the “Economic Order Quantity (EOQ) model.” 

 Assuming that the order-quantity decision  does  make a significant difference, 
the question  then  becomes “What’s the right quantity”? As might be expected, the 
larger the management-cost penalty, the more difficult it is to answer this question, 
typically because of costs and/or constraints that arise from the complexity of each 
specific business scenario. In such scenarios, the insights provided by the analysis 
of the EOQ model (see below) and the so-called “EOQ formula” are often helpful 
in guiding management about the order-quantity decision. Or, to quote Ford Harris 
again, in such scenarios, “… using the formula as a check, is at least warranted.”  

  The EOQ Business Scenario 

  The EOQ business scenario is simple. It involves selecting the order-quantity “Q” 
that minimizes the average inventory-management cost/time—where “time” can be 
a “year,” a “month,” or a “week”— for an item with demand that goes on forever 
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at a demand  rate  that never changes. Pretty simple, right? So simple, that if the 
value of the insights it provides depended on being able to find even  one  real-world 
 scenario that matched it, then it would be worthless. But, therein lies the tale….. 

   Customer Demand  

 The customer demand (or internal usage, as at Cardinal Hospital) rate of the item 
is assumed to be known and constant at a rate D units/time. The “units” dimension 
might be cases or gallons or truckloads; it does not matter. For convenience we will 
measure D in units of one and time in years.  

   Leadtime  

 The EOQ business scenario also assumes that the order (or manufacturing)  leadtime 
(i.e., the time interval between placing the order and receiving the corresponding 
order quantity) is zero. In other words, that delivery or manufacturing is instantaneous. 
This assumption (conveniently) removes the question of “When to order?” the 
chosen order-quantity: Order Q each time inventory falls to zero. 

 Although the instantaneous-delivery assumption is obviously unrealistic—after 
all, even in Star Trek movies the Replicator takes a few moments to produce what 
Captain Picard orders—any  fixed  leadtime is easily accommodated, provided that 
demand is known and constant: Order Q when inventory equals a leadtime’s supply. 
For example, if the leadtime is one week, then order Q when inventory equals a 
week’s supply. 

 On the other hand, if leadtimes are unpredictable, then even given a known and 
constant demand rate, D, the question “When to order?” becomes much more 
 difficult to answer. We will address this question briefly below.  

   Costs  

 The EOQ business scenario accounts for three types of costs: (1) the cost of the 
units themselves; (2) the cost of holding units in inventory; and (3) the fixed order 
(or manufacturing set-up) cost. 

  Unit Cost:  The cost of the units themselves, denoted c, and measured in $/unit, 
is assumed to be fixed, regardless of the number of units ordered or manufactured; 
although quantity discounts or other economies of scale are ignored in the  basic  
EOQ model, but are easily accommodated (See below). 

  Inventory-Holding Cost:  The inventory-holding cost in the EOQ business 
 scenario, denoted h, represents management’s cost of capital (i.e., the time value of 
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money) invested in the units, the cost of the space consumed by the units, taxes or 
insurance premiums on the inventory itself, and, in some cases, allowances for 
obsolescence (i.e., the possibility that the items might becomes useless while they 
are sitting in inventory) or “shrinkage” (i.e., that units may be lost or stolen). 

 The inventory-holding cost, h, is measured in $/(unit × time), where the “unit” 
and the “time” dimensions are the same as used in defining the demand rate D. So, 
for example, if the demand rate is measured in gallons/year, then h is measured in 
$/(gallon × year); in other words, the dollar cost to hold one gallon for one year’s 
time. For convenience, as above, we will measure time in years. 

 Every thoughtful inventory manager recognizes that holding inventory costs 
money. In many scenarios, the value of h is likely to be between 25% and 50% of 
the cost of the item itself, depending on the company’s cost of capital—for example, 
what it costs the company to borrow money—and the item’s risk of obsolescence. 
On the other hand, it is typically very difficult to determine h’s exact dollar 
value. For example, does it cost, say, $1 to hold a unit of an item in inventory for a 
year; or does it cost $2? Most company’s cost-accounting systems don’t report this 
number, although every accountant knows that it’s real. It’s even possible that, over 
time, the value of h changes. For example, if storage space is ample at some times 
of the year and tight at others, or if a company’s cost of capital changes over time, 
then the value of h changes over time. 

 For the time being, we will assume that the value of h is known and constant, 
and examine the importance of this assumption below. 

  Fixed Order Cost:  The fixed order cost in the EOQ business scenario, denoted 
K, and measured in dollars, represents all the costs associated with placing an order 
 excluding  the cost of the units themselves. In other words, K, represents any admin-
istrative (i.e., paperwork) costs of placing and/or receiving an order (e.g., inspection); 
and, in a manufacturing scenario, the cost of setting up the equipment to produce 
the order-quantity. 

 Like inventory-holding costs, fixed order costs are real costs for every company; 
and, in some scenarios, very significant costs. A set-up (i.e., equipment changeover) 
in pharmaceutical manufacturing, for example can shut down production and 
engage dozens of workers for weeks at a time; thereby costing thousands of dollars. 
However, like inventory-holding cost, the challenge is determining its exact dollar 
value. For example, does it cost, say, $100 or $300 to place an order? Most cost-
accounting systems do not report this number, either. It is even possible that, like 
the inventory-holding cost h, the value of K changes over time. For example, if the 
ordering, set-up, and/or receiving departments are busy at some times of the year 
but idle at other times, then the value of K itself changes over time. 

 For the time being, we will assume that the value of K is known and constant, 
and examine the importance of this assumption below. 

  Picking the “Optimal” Order-Quantity:  In the EOQ business scenario, the goal 
is to select the order-quantity, Q, that minimizes the average inventory-management 
cost/time—measured in $/year—that results from ordering Q (whenever inventory 
reaches zero), and doing that (repetitively) forever (i.e., over an “infinite time 
horizon”). We will denote this  a verage  c ost resulting from  Q  as “AC(Q)” 
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 Given the three costs accounted for in the EOQ scenario it follows that AC(Q) 
must be:

   AC Q K
D

Q
h

Q
c D( ) = × + × + ×

2
.    (1)   

 That is, as described above, the average cost/year of using Q as the order-quantity 
has three parts, the average annual cost of ordering (first term), the average annual 
inventory-holding cost (second term), and the average annual cost of the units 
themselves. 

 Taking a closer look, the average annual ordering cost, K × (D/Q), equals the 
fixed order cost K, multiplied by the average number of orders placed per year, D/Q. 
(For example, if the demand rate D is 1,200 units/year and Q = 200 units, then, on 
average D/Q = 1,200/200 = 6 orders will be placed each year.) The middle term in 
(1), h × (Q/2), is the inventory-holding cost rate, h, multiplied by the average inven-
tory, Q/2. (The average inventory is Q/2 since the maximum is Q, the minimum is 
zero, and it falls from Q to zero at a uniform rate.) Finally, the average annual cost 
of the units themselves is c × D; that is, the cost/unit of the item being inventoried, 
multiplied by its annual demand. 

 The first thing to notice about AC(Q) is that the average annual cost of the 
units themselves  does not depend  on Q; that is, whether we buy in small quantities 
(e.g., place several orders per year) or in large quantities (e.g., order every other 
year), the average cost of the units themselves doesn’t depend on the order-
quantity Q. Consequently, this term, c × D, is typically left out of AC(Q), as in 
(2) below:

   AC Q K
D

Q
h

Q( ) = × + ×
2

.    (2)   

 Written in this manner, AC(Q) is the sum of two terms, one of them: K × (D/Q), 
which decreases as Q increases; and the other, h × (Q/2), which increases as Q 
increases. In managerial terms, this makes perfect sense: The average annual ordering 
cost increases as Q decreases because more orders must be placed each year; and 
the average annual inventory-holding cost increases as Q increases because the 
average inventory, Q/2, increases. Figure  8.1  provides a graph of AC(Q) and its two 
components: K × (D/Q) and h × (Q/2).  

 Note that the average ordering cost, K × (D/Q), decreases as Q increases. 
For example, if D = 1,200 units/year, then as Q increases from, say, 100–1,200, then 
the average number of orders/year, D/Q, decreases from 12 to 1 time/year. (Notice 
also, that if, say, Q = 2,400, then one order will be placed every 2 years, and D/Q 
= ½.) So, if management wanted to minimize the average order cost, then it would 
choose the largest possible value of Q. For example, this might be the largest Q that 
it could afford to buy or the most it could store in the space available. On the other 
hand, the average inventory-holding cost, h × (Q/2), increases as Q increases. In 
other words, the larger the order-quantity, the larger the average inventory, and, 
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hence, the larger the average inventory-holding cost. So, if management wanted 
to minimize the average inventory-holding cost, then it would order the smallest 
possible value of Q. For example, this might be the minimum that the supplier 
would sell or the smallest quantity that could be made. 

 Hence, the choice of Q is a trade-off between the average ordering cost and 
the average inventory-holding cost. Note in Fig.  8.1  that the minimum value of 
AC(Q) occurs where the average annual ordering costs and average annual 
inventory- holding graphs cross; that is, where K × D/Q) = h × (Q/2). Thus, we 
can find the optimal Q, denoted Q* by solving equation  (3)  for Q*; that is, 
solving

   K
D

Q
h

Q× = ×
*

*

2
   (3)  

for Q*. The solution is:

   Q
K D

h
* .= × ×2

   (4)   

 This is the so-called “square-root” or EOQ formula for Q*. 
 To determine AC(Q*), the inventory-management cost/year using Q = Q*, one 

substitutes (4) into (2). After some algebra:

   AC Q K D h* .( ) = × × ×2    (5)     

Q*

K·

  Fig. 8.1    A Graph of AC(Q) Versus Q       
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  A Closer Look at the Assumptions Of EOQ: Sensitivity Analysis 

  In order to develop the EOQ model, several unrealistic assumptions must be made. 
The most  unrealistic  of these is that the demand rate is known and constant. 
However, even if management were comfortable with that assumption, there is 
the practical problem of estimating the values of the fixed order cost (K) and the 
inventory-holding cost (h) to “plug” into equation (4). 

 In order to assess the impact of all these assumptions, we are going to do 
“sensitivity analysis.” That is, we are going to assess the consequences of these 
assumptions on the costs we experience because we are making assumptions that 
might not be—indeed, probably are not—valid. We are going to conduct this sensi-
tivity analysis in several steps. In Step 1 we will assume that all of the assumptions 
of the EOQ business scenario are valid, but that we ignore the EOQ formula, and, 
instead, select Q without much thought. In Steps 2 and 3, we will continue to 
assume that EOQ model’s assumptions hold, and that we use the EOQ formula, but 
that we only have very rough estimates about its inputs: K, D, and h. In Step 4 we 
will use the insight provided in Steps 2 and 3 to examine the model’s assumptions 
about known and constant demand and known and constant cost parameters. We 
will continue to assume that production and/or delivery are instantaneous, in order 
to focus on the order-quantity decision. 

   Sensitivity Analysis: Step 1  

 We begin with a business scenario in which  all  of the assumptions of the EOQ 
business scenario are valid. We even know the true values of D, h, and K;  but  we 
select a value of Q without much thought (e.g., order a case). We will denote our 
choice of Q as   Q̂  . It is unlikely, of course, that our chosen   Q̂   will equal Q*. Since 
there is only one Q* that minimizes AC(Q), we will be paying a management-cost 
penalty for using   Q̂   instead of Q*; that is AC(  Q̂    )   ≥   AC(Q*), and the difference, 
[AC(  Q̂    )−AC(Q*)], is the penalty. For example, if our   Q̂   is larger than Q*, then, in 
Fig.  8.1 ,   Q̂   will be to the right of Q* and we will experience AC(  Q̂    ) larger than 
AC(Q*). How much higher, of course, depends on how much larger   Q̂   is than Q* 
and on the shape of the AC(Q) function. Suppose, for example that our chosen   Q̂   
is twice the size of Q*; i.e.,   Q̂   = 2 × Q*. The question we want to answer is:  Will 
the management-cost we pay, AC(   Q̂    ),  be 2 times AC(Q*)? Will it be more, or 
will it be less?  

 Specifically, we are interested in the ratio AC(  Q̂    )/AC(Q*). Notice that if, by 
chance,   Q̂   = Q*, then, of course, AC(  Q̂    ) = AC(Q*), and the “penalty-cost ratio” 
would equal 1. Otherwise, this ratio would be above 1, say, 1.25, which indicates 
that the management penalty cost is 25% above the minimum possible AC(Q*).   
Using equation  (2) , once with Q =   Q̂   and once with Q = Q* we get:  
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 What equation  (7)  says is that the ratio of the management cost we  will   experience—
from using the “wrong” Q,   Q̂  — to the minimum possible management cost we  would  
experience—if we used the optimal Q, Q*—is one-half the sum of Q*/  Q̂   and   Q̂    /Q*. 
So, for example, if our chosen   Q̂   = 2× Q* then

  
AC Q

AC Q

˘

*
. . . .

( )
( )

= × +[ ] =0 5 0 5 2 1 25    

 In other words, the average annual cost we will experience will be 25% higher 
than the minimum possible. Note that a 100% error in choosing   Q̂   has yielded a 
management-cost penalty of only 25% of AC(Q*). 

 Table  8.1  provides the values of AC(  Q̂    )/AC(Q*) for   Q̂   ranging from 0.1 Q* to 
10Q*. Note, that the penalty-cost ratio is symmetric around 1 (e.g., that the ratio is 
the same for   Q̂    /Q* = 0.1 as for   Q̂    /Q* = 10).     

 The management intuition from Step 1 is that as long as   Q̂    is in the “ballpark” 
of Q* (e.g., within a factor of 2), then the penalty-cost ratio is relatively small (e.g., 
less than or equal to 1.25), whereas if   Q̂    is “way off” (e.g., more than 10 times 
larger or smaller), then the penalty-cost ratio will be quite large (e.g., greater than 
or equal to 5.050). Although this is a  valuable intuitive insight , its  practical value  
is limited by the assumption that we know what Q* is. This leads to Step 2:  

   Sensitivity Analysis: Step 2  

 Consider a closely related business scenario in which: (a) all of the assumptions of 
the EOQ business scenario are valid; (b) management has chosen to use the EOQ 
formula to compute the order quantity; (c) management  knows  the exact dollar 
values of K, the fixed order cost (e.g., K = $100), and h, the inventory-holding cost 
(e.g., h = $2/unit × year); but (d)  doesn’t know  what the demand rate, D, is. Instead, 
management only knows the range of possible values for D; for example, that 900  ≤    
D   ≤   1,600; but doesn’t know for certain what the value of D is. 
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 Let’s begin by assuming that the value of D = 900 units/year. Using equation  (4)  
yields

   Q
K D

h
* = × × = × × =2 900

2
300

2 100
 units/order.   

 Similarly, if we assume that the value of D = 1,600 units/year, then

  Q
K D

h
* = × × = × × =2 16

2
400

2 100 00
 units/order.    

 Based on these calculations we  have not learned  the value of Q*, since we 
remain ignorant about the value of D. However, we  have learned  that Q* must be 
between 300 and 400 units/order! 

 As a consequence, we know that if we chose   Q̂   = 300 (assuming D = 900) when, 
in fact, D = 1,600, and, hence, Q* = 400, then   Q̂    /Q* = 300/400 = 0.75; and, using 
(7), the cost-penalty ratio would be: 

 Table 8.1    AC(  Q̂   )/AC(Q*) Versus    Q̂   /Q*  

   Q̂   /Q*  AC(  Q̂   )/AC(Q*) 

 0.1  5.050 
 0.15  3.408 
 0.2  2.600 
 0.25  2.125 
 0.3  1.817 
 0.35  1.604 
 0.4  1.450 
 0.45  1.336 
 0.5  1.250 
 0.55  1.184 
 0.6  1.133 
 0.65  1.094 
 0.7  1.064 
 0.75  1.042 
 0.8  1.025 
 0.85  1.013 
 0.9  1.006 
 0.95  1.001 
 1  1.000 
 1.05  1.001 
 1.1  1.005 
 1.25  1.025 
 1.5  1.083 
 2  1.250 
 5  2.600 
 6  3.083 
 7  3.571 
 8  4.063 
 9  4.556 
 10  5.050 
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 In other words, if D was actually 1,600 units/year, and we made the worst 
possible mistake in estimating its value (i.e., that D was 900 units/year), then the 
penalty-cost ratio would be 4.17% of AC(Q*). Since AC(Q* = 400) = $800/year, 
the management-cost penalty would be 0.0417 × $800 = $33.36/year. 

 Similarly, if we chose   Q̂   = 400 (assuming D = 1600) when, in fact, D = 900 (and, 
hence, Q* = 300), then   Q̂    /Q* = 400/300 = 1.333. The penalty-cost ratio would, 
again, be 1.0417, as before. However, in this case, AC(Q* = 300) = $600/year. 
Hence, the management-cost penalty would be 0.0417 × $600 = $25.02/year. 

 Based on these calculations, we  have not learned  the what Q* is, but we  have 
learned  that if we chose any estimate of D in the range [900, 1,600], then the maxi-
mum penalty-cost we would experience would be 4.17% of the minimum possible 
cost AC(Q*). Of course, in choosing a value for D to use in a scenario like this, 
management probably would not choose one of the extreme values (e.g., 900 or 
1,600), but, instead, choose an estimate in between. For example, if management’s 
estimated demand rate—we will denote this “  D̂    ” henceforth—was   D̂   = 1,200 units/
year, then the maximum penalty-cost ratio would be 1.010. In other words, the cor-
responding management-cost penalty would be just 1% above the minimum possi-
ble (of either $800 or $600/year).  

   Sensitivity Analysis: Step 3  

 In the Step 3 we extend the assumptions of Step 2, except, now, management is not 
certain about the exact values for  any  of its inputs. So, in addition to choosing a 
value for   D̂    , management also has to choose estimates for K, and h, which we will 
denote   K̂    and   ĥ   , respectively. 

 To take a specific example, suppose management knows only that:

  900 ≤ D ≤ 1,600 unit per year,  
  $75 ≤ K ≤ $125/order, and  
  $1.50 ≤h ≤$2.50/unit × year.   

 As in Step 2, in order to compute the maximum management-cost penalty, we 
have to consider the most extreme estimates (  D̂    ,  K̂    ,  ĥ   ) that management might 
choose and the most extreme true values that the (D,K, h) might take on. In order 
to simplify the process, we can use the fact that the penalty-cost ratio depends only 
on the ratio   Q̂   /Q*; and, in particular, that, whatever the values of   Q̂   and Q*, it is 
those values that generate either the smallest possible ratio   Q̂    /Q*or the largest 
possible ratio   Q̂   /Q* that will yield the largest penalty-cost ratio. 

 Continuing, we can determine the largest possible   Q̂   /Q* by asking:  what is the 
largest possible    Q̂     (based on its chosen    D̂    ,  K̂     , ĥ     , ) that management might compute, 
using the EOQ formula; and what is the smallest that Q* might possibly be?  
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 Since EOQ is increasing in D and K and decreasing in h, the largest possible   Q̂   
that management might choose is 516.40 (using   D̂   = 1,600,   K̂   = 125, and   ĥ   = 1.50). 
Similarly, the smallest possible Q* is 232.39 (based on D = 900, K = 75, and h = 
2.50). Hence, the largest possible ratio   Q̂    /Q* ratio in this scenario equals 2.22 
(=516.40/232.39). Using the same logic, the smallest possible ratio   Q̂    /Q* ratio in 
this scenario equals 0.45 (1/2.22 = 232.39/516.40). 

 Plugging either of these   Q̂     /Q* ratios into equation  (7)  yields the largest possible 
penalty-cost ratio that management might experience, regardless of the value of 
  Q̂   it computes (that is, regardless of its estimates of D, K, and h; and regardless of 
what the true values of these parameters might be). This maximum ratio is  
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 In managerial terms, the analysis above tells us that in this EOQ business scenario, 
but with considerable uncertainty about the values of the parameters (D, K, h) to 
use in the EOQ formula, the  worst  management-cost penalty we would pay would 
equal 33.5% above the minimum possible cost (i.e., if we  knew  what the precise 
values of (D, K, h) were. 

 Finally, as in Step 2, management faced with this scenario would most likely 
choose in-between values for   D̂   ,   K̂    , and   ĥ   , not their possible extremes. For example, 
if management chose to use   D̂    = 1200,   K̂    = $96.82, and   ĥ    = $1.94, then the maxi-
mum management-cost penalty would be 8.11% of AC(Q*). 

 The management intuition from Step 3 is that as long as the assumptions of the 
EOQ business scenario are valid,  one can use the EOQ formula, (4), to compute an 
order-quantity that results in a relatively small penalty-cost ratio even if management 
has a great deal of uncertainty about the values of D, K, and h to “plug” into it!   

   Sensitivity Analysis: Step 4  

 Finally, we relax the most significant of the EOQ model’s assumptions: namely, 
that the demand rate, D, the fixed order cost, K, and the inventory-holding cost, h, 
are stationary (i.e., never changing). 

 Suppose, now, that the demand rate D varies over some known range, [D 
Min 

, 
D 

Max 
]. For example, suppose D

 Min
  = 900 units/year and D 

Max
  = 1600 units/year. Note 

that the difference between this scenario and the one above is that D is no longer 
fixed at some unknown value. Instead, D  varies , perhaps in an unknown manner, 
within this range. Similarly, suppose that both K and h vary, again, perhaps in some 
unknown manner, over their respective ranges; i.e., $75   ≤   K   ≤   $125/order and $1.5 
  ≤   h   ≤   $2.50/unit ´ year. 

 Common sense suggests that since D, K, and h all change their respective 
values over time, then the optimal order-quantity policy probably should, too. 
In other words, the optimal policy probably orders different quantities at different 
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times, depending on how predictable the pattern of changes in D, K, and h are and 
depending how much management knows about them. Instead, we will use a 
“stationary” order-quantity policy (i.e., one that orders the same quantity every 
time), and compute that order-quantity,   Q̂    , using stationary (i.e., fixed) estimates 
of their true values. 

 For the sake of convenience, we will use the values   D̂    = 1,200,   K̂   = $96.82, and 
  ĥ    = $1.94, from Step 3. The corresponding   Q̂   = 346.09. Recall from the analysis in 
Step 3, that regardless of whatever the true stationary values of D, K, and h, this order-
quantity will never yield a management-cost penalty larger than 8.11% of AC(Q*). 

 To see how this result applies when the values of D, K, and h are changing over 
time, imagine some moment of time when inventory reaches zero units. As 
described, management will order   Q̂     = 346.09 units. In order to minimize the rate 
at which ordering and inventory-holding costs are accumulating  at that moment of 
time , management should be ordering the Q* that corresponds to whatever the true 
values of D, K, and h are  at that moment of time.  We do not know those values 
at that moment, but we do know the ranges for each. So, based on the analysis in 
Step 3, we can conclude that whatever their values are, in ordering   Q̂    we will never 
be accumulating a management-cost penalty of more than 8.11% above the minimum 
possible (associated with whatever Q* is at that moment of time). 

 Exactly the same argument applies at  any  moment of time. That is, at any 
moment of time, inventory-management costs are accumulating at a rate based on 
management’s chosen (stationary) EOQ policy. If, at the same moment of time, 
management had been using the optimal policy, inventory-management costs 
would be accumulating at the minimum possible rate. However, at  no  moment of 
time will management ever be accumulating an inventory-management-cost  penalty 
at a rate higher than 8.11% of AC(Q*). 

 See  Lowe and Schwarz (1983)  for a formal analysis of this management scenario 
and the conclusion stated above and interpreted below.  

   The Bottom Line  

 The management intuition from the sensitivity analysis above is that in  any  
EOQ-like management scenario—one with a demand (or usage) rate, a fixed 
order cost, and an inventory-holding cost—the EOQ formula will provide 
order-quantities that have relatively small management-cost penalty percent-
ages, regardless of whether the demand rate is either known or constant and 
regardless of whether or not its associated ordering and inventory-holding costs 
are either known or constant. “Relatively small” means that the penalty-cost 
percentage is small (e.g., 8.11%) compared to the possible ranges of values for 
D, K, and h. 

 For Lauren Worth, this means, first, that the EOQ model can be used to make “good” 
order-quantity decisions—that is, decisions with small management-cost penalty 
 percentages—whether or not Cardinal Hospital’s accounting system is able to yield 
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 accurate estimates of costs and/or demands. Furthermore, the EOQ model will make 
“good” order-quantity decisions even if the cost and demand inputs to the EOQ model 
are nonstationary (i.e., change their values over time).   

 This insight is of tremendous importance: It is what accounts for the use of the EOQ 
model and EOQ formula in so many real-world inventory-management applications.   

  Back to the Fundamental Decision 

  We began this chapter by arguing that the  fundamental  decision about the “order-
quantity decision”  is not  “What’s the right quantity”?. Instead, it is: “Under what 
circumstances does the  choice  of the order-quantity make a lot of difference (in 
terms of the management-cost penalty)”?. And, we promised that we would address 
this question using the EOQ model. We are now ready to do so. 

 Consider managing the inventory of some item, or, practically speaking, a set of 
items with roughly the same ranges of values for their fixed order cost,  inventory-
holding cost, and demand rates, respectively. Apply the analysis above in order to 
determine the maximum inventory-management penalty-cost percentage, assuming 
that the item’s order-quantity would be chosen using the EOQ formula and “ball-
park” estimates of it inputs:   D̂    ,   K̂   , and    ĥ  . Denote this  percentage P%. To illustrate, 
in Step 4 above, we determined that the maximum management-cost penalty, P%, 
would be 8.11% of AC(Q*). 

 Now, the question is: “Is P% a large dollar amount or not?” For example, is an 
8.11% management-cost penalty in Step 4 a significant amount of money or not? 
The answer, of course, depends on the true, but unknown values of D, K, and h, but 
we can put an upper limit on it by assuming that the true values of D, K, and h are 
their maximum possible values: D 

Max
 , K 

Max
 , and h 

Max
 . 

 In Step 4 these values are D = 1,600, K = $125, and h = $2.50. Based on these, 
the corresponding   AC Q *( )= × × × =2 125 1600 2.50 $1,000/year.    Hence, the 

maximum possible management-cost penalty incurred by managing this item using 
the EOQ model is $81.10/year = 0.0811 × 1,000. 

 Finally, management must ask itself: Would the information and implementation 
costs associated with managing this item using a more sophisticated model—one 
that took into account the fluctuating values of D, K, and h—cost more or less 
than $81.10/year? Remember, the maximum possible reduction in annual ordering 
and inventory-holding costs resulting from using this more sophisticated model 
is $81.10. 

 If the answer is that this more sophisticated model would cost more than 
$81.10/year, then management should choose to use the EOQ model to select 
  Q̂  . Why? Because even if this more sophisticated model were able to reduce inven-
tory-management costs to the minimum, since it cost more than it was worth, it 
would actually increase the total management costs associated with this item. 

 If, on the other hand, the answer is that this more sophisticated model would 
cost less, then, management should test this model’s performance against that of 
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the EOQ model. Most likely this will require a computer simulation of the 
management scenario, one that would keep track of the total inventory-management 
costs of both models—EOQ and the more sophisticated model—including what-
ever the increased information and implementation costs of the more sophisticated 
model are. 

 In other words, by determining the maximum management-cost penalty/year 
that is associated with the use of the EOQ order-quantity, management can deter-
mine the maximum savings—that is, the maximum possible reduction in penalty 
cost—that might be derived from the use of a more sophisticated system. 

 In the same manner, management can estimate the maximum management-cost 
penalty associated with any order-quantity decision-rule, such as “Order a case.” or 
“Order a month’s supply.” All that is required are estimates of the maximum and 
minimum possible values for D, K, and h, as in Steps 3 and 4 above. Then, deter-
mine the minimum and maximum values of   Q̂   /Q* to determine the penalty-cost 
ratio AC(  Q̂   )/AC(Q*). Finally, using the maximum possible value of AC(Q*), one 
can determine the corresponding management-cost penalty.  

  Extensions 

  The basic EOQ business scenario can be extended in a wide variety of ways. Here 
are just a few: 

   Integer and Case Quantities  

 Equation  (4)  often results in a Q* that isn’t an integer. For example, suppose that 
Lauren Worth computes Q* = 346.09 units for some item she is analyzing. Since 
supplies can only be ordered in integer quantities, Lauren knows that Capital 
Hospital’s supplier would laugh at her if she attempted to order 346.09 units. Given 
the shape of Fig.  8.1 , it is obvious that Lauren’s selected   Q̂    should be either the 
integer just above or just below the noninteger Q*, since an even larger or even 
smaller integer value, respectively, would increase AC(  Q̂    ) unnecessarily. For exam-
ple, given Q* = 346.09, Lauren should order either   Q̂   = 346 or 347 units. But 
which? Strictly speaking, Lauren  should  evaluate AC(  Q̂   = 346) and AC(  Q̂   = 347) and 
chose the   Q̂    with the smaller AC(  Q̂    ). 

 However, given the fact that the cost-penalty ratio associated with a   Q̂   value 
different from Q* depends only on how far the ratio of   Q̂   /Q* is from 1— see 
equation  (7) — and that, whether we choose   Q̂   = 346 or 347, the corresponding   Q̂    /Q* 
ratio will be  very close  to 1, Lauren could simply round Q* = 346.09 in the conven-
tional manner (i.e., to   Q̂   = 346) and pay a little or no cost penalty 

 Another practical consideration in purchasing scenarios is that suppliers may 
only accept orders for case quantities, where a case contains, say, 12 or 48 units. 
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Continuing the example above, suppose the EOQ formula prescribes Q* = 346.09 
units, but that this item is sold only in cases of 12. Hence, Q* = 346.09/12 = 28.84 
cases. Again, strictly speaking, Lauren should evaluate AC(  Q̂   = 28 cases = 336 units) 
and AC(  Q̂   = 29 cases = 348 units) and choose the   Q̂   with the smaller AC(  Q̂   ). Or, 
equivalently, Lauren should pick the   Q̂    whose   Q̂    /Q* ratio is the closest to 1. However, 
since, again, both these ratios are very close to 1, Lauren  could  simply round 
 conventionally—that is, round up to 29 cases—and pay a little or no cost penalty.  

   Other Constraints on Q  

 In some scenarios there are other constraints on the order quantity. For example, in 
Cardinal Hospital’s business scenario the supplier for some given item might 
require that some minimum quantity be ordered. To illustrate, suppose in the sce-
nario in which Q* = 346.09, the supplier requires a minimum order of 500 units. In 
such scenarios, Fig. 8. 1  tells Lauren that the best thing to do is to order either 
Q* or the supplier’s minimum amount, whichever is larger. Hence, in this example, 
Lauren should select   Q̂   = 500 units (since ordering a larger amount will only yield 
an AC(Q) larger than AC(  Q̂   = 500). 

 In some scenarios, storage considerations may constrain Q to fit into the 
assigned storage space. In such scenarios, Fig.  8.1  tells us that the best thing to do 
is to order Q* or the capacity of the assigned space, whichever is smaller, since 
ordering an even smaller   Q̂   will yield higher costs.  

   Quantity Discounts  

 In many purchasing scenarios suppliers offer discounts on the cost of the units 
themselves in order to motivate buyers to purchase in larger quantities. Such 
“quantity discount” scenarios are straightforward to handle. In particular, the goal 
remains the same as in the basic EOQ model: to select a value of Q, Q*, that mini-
mizes AC(Q). However, since the unit cost, denoted c, in the basic EOQ scenario 
above, now depends on the order-quantity, AC(Q) now must include the cost of a 
year’s supply. In other words, equation  (1)  and not equation  (2)  should be used in 
evaluating AC(Q). 

 As an illustration, consider the most common quantity discount, the so-called 
“all-units” discount scheme. Under this scheme if   Q̂   is below some “breakpoint 
quantity,” denoted “b,” then each unit of Q costs a higher price, denoted C 

H
 ; how-

ever, if   Q̂    is greater than or equal to b, then each unit costs a lower per-unit price, 
denoted C 

L
 . 

 The simplest way to handle this scenario is to determine the best choice of Q, 
first, with unit cost C 

H
 , then, with unit cost C 

L
 ; and, finally, select the best overall   Q̂   . 

Hence, Lauren would first compute Q 
H
 * (that is, Q* if the unit cost is C 

H
 ), using 
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equation  (4) . Then, based on equation  (1) , compute AC(Q 
H
 *). Next, compute Q 

L
 * 

(that is, the Q* if the unit cost is C 
L
 ). However, in this step it is important to rec-

ognize that in order to qualify for the lower unit cost, C 
L
 , Q

 L
 * must be greater than 

or equal to b, the breakpoint quantity. Hence, as described above, the order-quan-
tity Lauren should select is the maximum of Q 

L
 * and b. Finally, Lauren should 

order either this quantity or Q 
H
 *, depending on whose AC(Q)—using equation 

 (1) —is lower.  

   Finite Planning Horizon  

 Another major assumption of the EOQ business scenario is that demand goes on 
forever; in other words that the “planning horizon” is infinite. If, instead, manage-
ment knows that demand will only last for, say, a fixed T years, then it would be 
foolish to order EOQ every time inventory fell to zero; and then, if inventory were 
leftover at the end of T years, to throw away those leftovers. 

  Schwarz (1972)  has shown that, in this business scenario the optimal order-
quantity is stationary (i.e., Q* will never change); that is, management should order 
an equal quantity n times over T years. Schwarz further demonstrates that the 
 optimal n, denoted n* satisfies  

   n n
D h T

n n+( ) ≥ × × ≥ −( )1
2

1
2

K
.    (8)   

 In order to develop some intuition about n*, note that, given (8), then n* 2  is 
approximately equal to

  n
D h T D T

Q
*

*
,

2

2

2 2 2

2
≈ × × = ×

K
  

which, in turn, means that n* is approximately equal to DT/Q*; in other words, n* 
is approximately equal to the total number of units demanded over the finite hori-
zon, DT, divided by the number of units in an EOQ. Hence, a very good rule-of-
thumb for picking n is to determine how many EOQs would satisfy DT, and then 
round this number to the closest integer.  

   (Q,r) Policies  

 In order to gain insight into the order-quantity decision, the EOQ business scenario 
is structured so that the “order-point decision”—that is, what level of inventory, 
denoted r, should signal management to order its selected   Q̂   ?—is a trivial one. 
In its simplest form, the EOQ business scenario assumes that the order leadtime is 
zero. However, as long as demand (or usage) over the leadtime is known, the 
optimal order-point is to order whenever inventory equals a leadtime’s supply. 
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 Unfortunately, there are many real-world scenarios in which management  does 
not know  what demand during the leadtime will be! This leads to two important 
questions, one of them of some theoretical significance, and one of them of great 
practical significance. 

 The theoretical question is: How should the order-quantity and order-point 
denoted “(Q,r),” be chosen in order to minimize, average annual cost/time? 
The practical question is: How “good” are EOQ order-quantity decisions in 
 business scenarios like this; that is, if one selected Q = EOQ and then selected a 
corresponding r, then would the cost-penalty be large or small? 

 The theoretical question has been addressed by several researchers, under a 
variety of different assumptions. For example, consider a scenario where all of the 
assumptions of the EOQ scenario apply, except that leadtimes are fixed and known, 
and uncertain customer demand is generated by a probability distribution such as 
the Poisson. For this scenario,  Federgruen and Zheng (1992)  describe an algorithm 
for computing (Q*,r*). 

 The practical question—which basically asks: How “good” is EOQ as the value 
of Q in a (Q,r) policy? —  is an important, since, if the answer was that EOQ was 
“bad” at prescribing the order-quantity, then virtually every implemented real-
world (Q,r) policy would be “bad,” too, since EOQ is the de facto choice for the 
order-quantity in virtually every (Q,r) business setting. 

 The rationale for this de facto choice has been, as we have seen above, that 
inventory-management cost is insensitive to the choice of the order-quantity deci-
sion: insensitive to demand being known or constant, and even insensitive to its 
fixed ordering and inventory-holding costs being known or constant. Hence, as long 
as one picked an order-quantity in the “ballpark” of the correct value, one would 
pay a small cost penalty. The expectation, then, was that something like the same 
insensitivity applies in selecting the Q in a (Q,r) policy; i.e., that EOQ would 
 provide an order-quantity in the ball park. 

  Zheng (1992)  brilliantly validates the use of EOQ as a very good choice for Q 
in one specific (Q,r) scenario. Although the details are beyond the scope of this 
chapter, we will quote and interpret two of Zheng’s findings: First, “… in con-
trast to the (basic) EOQ model, the controllable costs of the stochastic model due 
to the selection of the order quantity (assuming the (order point) is chosen opti-
mally for every order quantity) are actually smaller…” What this means is that 
the cost/time in the (Q,r) model is  less  sensitive to the order-quantity decision 
than the cost/time in the EOQ model. Second, Zheng is able to prove that “…the 
relative increase of the costs incurred by using the (order-quantity) determined by 
the EOQ instead of the optimal from the stochastic model is no more than 1/8, 
and vanishes when ordering costs are significant relative to other costs.” What 
this means is that the cost-penalty ratio associated with selecting Q to be EOQ 
and then selecting the order-point optimally is no more than 1.125; that, at worst, 
management would incur a 12.5% management-cost penalty as a consequence of 
its incorrect choice of Q. 

  Gallego (1998)  describes heuristic (Q,r) policies and provides additional 
references.  
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   Net-Present Value Criterion  

 The EOQ business scenario uses the criterion of minimizing the average cost/time 
over an infinite time horizon in determining the optimal order quantity. One alter-
native to this criterion is net-present value. As applied in the EOQ scenario, we 
wish to select the order-quantity   Q̂    that minimizes the net-present value (i.e., 
 discounted total cost) associated with this order quantity. 

 There are three cost inputs: (1) the fixed order cost K; and (2) the cost of capital, 
denoted i, on the dollars invested in the units, and measured in dollars/(dollar × 
time); and (3) the cost of the units themselves, denoted c, as above, and measured 
in dollars/unit. 

 It can be shown, see  Zipkin (2000)  for example, that the optimal Q in this sce-
nario, denoted “Q* 

N
 ,” is approximately equal to EOQ; that is,

  Q
K D

i cN
* .≈ ×

×
2

     

  Application: Cash Management 

  The EOQ model can be applied to  any  quantity decision that is repeated over time, 
where there is a trade-off between a fixed cost (i.e., EOQ’s order cost K) and a 
 variable cost associated with that decision (i.e., EOQ’s inventory-holding cost), and 
where the choice is based on minimizing the cost/time associated with that decision. 
The most popular such application involves the management of cash. 

 The simplest version of a cash-management scenario corresponds to the basic 
EOQ scenario, but with its inputs reinterpreted. In particular: (1) D is the rate at 
which cash is being accumulated from some business activity into a noninterest 
bearing account (e.g., checking account); (2) h is the interest being paid in an 
 interest-bearing account (e.g., money-market account), and is measured in dollars/
(dollar x time); and (3) K is the fixed cost incurred in transferring any amount of 
money, Q, from the non-interest to the interest-bearing account. Hence, Q* from (4) 
is the optimal transfer quantity.  

  Historical Background 

  The EOQ model and formula are attributed to Ford Whitman Harris ( Harris, 
1913 ), and originally published in 1913 in  Factory, The Magazine of Management . 
However, despite this magazine’s wide circulation among manufacturing manag-
ers, Harris’ article had been lost until it was found by Erlenkotter (See  Erlenkotter 
1989 ). 
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 In the years between Harris’ article being lost and found, the EOQ model, and, 
in particular, the square-root equation, (4), was attributed to others, some calling it 
the “Wilson lot size formula,” others calling it “Camp’s formula.”  Erlenkotter 
(1989)  describes the early development of the EOQ literature and sketches the life 
of Harris as an engineer, inventor, author, and patent attorney.

   Building Intuition    The EOQ formula provides near-optimal order 
 quantities—that is, order quantities that have small management-cost penal-
ties—even in realistic management scenarios when the unrealistic assump-
tions of the EOQ model don’t apply. In  particular, the EOQ formula will 
provide near-optimal order quantities regardless of whether the item’s demand 
rate is either known or constant and regardless of whether or not its associated 
ordering and inventory-holding costs are either known or constant. 

 More broadly, the notion of a management-cost penalty introduced in this 
 chapter is an important aid in thinking strategically about the adoption of  any  
 management system. That is, if we take it as granted that better information 
and more sophisticated decision-making systems yield better performing 
(i.e., lower cost) operations, then question is not:  When  or  how  to acquire/
adopt them? Instead, the question is:  Are these more sophisticated systems 
worth it?   
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        Chapter 9   
 Risk Pooling 

      Matthew   J.   Sobel    
 Case Western Reserve University 

   This chapter shows that the following simple idea can be applied in many ways to 
manage business risks in the face of uncertainties. The standard deviation of a sum 
of interdependent random demands can be lower than the sum of the standard 
deviations of the component demands.    

   Introduction 

  At the end of an exciting and tension-filled week at Salmon Pools, Inc., Richard 
and Elizabeth congratulated each other on Salmon Pools’ acquisition of Maple 
Leaf Pools (MLP). MLP, a Canadian manufacturer of accessories for above-ground 
swimming pools, was headquartered in Montreal. As Rich returned to his office, 
he considered the vexing problem of integrating the operations of Salmon Pools 
and MLP. Salmon Pools (SP), a medium-sized manufacturing company headquar-
tered outside Springfield in central Massachusetts, was a major North American 
manufacturer and distributor of above-ground swimming pools and accessories. 
Liz was President and CEO, and Rich was Executive Vice President and oversaw 
purchasing, product design, manufacturing and distribution. 

 MLP was an attractive acquisition because its product lines complimented those 
of SP with little overlap. Although Liz and Rich had already decided to continue 
production activities both in Montreal and Springfield, the following issues were 
unresolved.

   1.    Both companies’ products used the same kinds of raw materials and purchased 
parts such as specialty steel, small motors, plastic sheets, and pressure-treated 
wood. What were the economic advantages and disadvantages of maintaining 
separate inventories of the same items in Springfield and Montreal?   

  2.    SP and MLP used different vendors for their purchases. Was it economical for 
the consolidated firm to  dual-source , i.e., to purchase the same item from two 
(or more) suppliers?     

 Rich decided to ask Anne, SP’s newly-hired OP (Operations Planner), to discuss these 
issues with him. Anne had just completed a Master’s Degree in Operations Research 
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with an emphasis on operations management, and Rich hoped that her coursework 
included topics that would help him answer these questions. Also, he thought that 
it would be an effective way for her to learn more about SP’s operations. After Rich 
briefly outlined the issues to Anne, they scheduled a meeting a few days later. Until 
then, she would prepare suggestions for analyzing the  economic trade-offs of inven-
tory centralization. Depending on the outcome of that meeting, he would ask her to 
do the same thing for dual sourcing. When she left his office she was elated. She 
realized that these decisions would be important to the future of the consolidated 
company and she knew that she could use the  square root law of inventory centrali-
zation  that she had learned in class.  

  The Square Root Law of Inventory Centralization 

  At the meeting, Anne began with the basic single-location Economic Order 
Quantity model that is often called the  EOQ  model. 1   Suppose that an electric motor 
is used at the rate of 20 motors per week; so its annual consumption is  r  = 1,000 
motors per year (the factory operates 50 weeks per year). Its holding cost is  h  = $10 
per motor per year and its ordering cost is  K  = $100 each time an order is placed. 
She explained that the holding cost includes opportunity cost, breakage in storage, 
theft, and property taxes. The ordering cost includes the expense of placing the 
order with the vendor, handling the delivery when it arrives, putting it in storage at 
SP (or MLP), and updating the inventory records to reflect the delivered items that 
were now in storage. 

 Rich said that he had learned about the EOQ model. Anne acknowledged that he 
already knew that the periodic order quantity,  Q , that would minimize the sum of 
the annual holding and ordering costs was 

   Q rK h* / , / .= = × × =2 2 1 000 100 10 141    (1)   

 That is, if  Q  motors were ordered every  Q /20 weeks (or  Q/r  years), then the annual 
holding and purchasing costs (not including payments to the vendor) would be 

   ( / ) ( / )( / ) .r Q K Q Q r h+ 2    (2)   

 This total cost is minimized by  Q*  given by ( 1 ) and the resulting sum of the 

annual holding and purchasing costs in ( 2 ) is   2Krh    
 Anne observed that if the costs and the weekly demand of this motor are the 

same in Montreal as they are in Springfield, and separate inventories are maintained 
in both locations, then by using the EOQ ( Q* ) at both locations, the sum of the 
annual ordering and holding costs at the two locations will be 

   2 2 2 2 100 1 000 10 2 828Krh = × × × =, $ ,  per year.    (3)   

1 Read Chap. 8 to learn more about the Economic Order Quantity model.
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 Then she asked, instead of maintaining separate inventories at both factories, 
suppose that the needs at both places were met from a single consolidated inven-
tory. Then the cost per order and the annual holding cost rate would remain the 
same as before, but the annual usage would rise to 2 r  motors per year. So the EOQ 
at the consolidated inventory location would rise from  Q*  = 141 to 

   Q r K h** ( ) / , / ,= = × × =2 2 2 2 000 100 10 200    (4)  

and the annual ordering and holding cost would drop from   2 2Krh = $ ,2 828   to

   2 2 2 100 2 000 10 2 000K r h( ) , $ ,= × × × =  per year.    (5)   

 Comparing ( 3 ) and ( 5 ), the ratio of the minimal annual ordering and holding 
costs with consolidated inventories to the same costs with separate inventories is 

   1 2/ .    (6)   

 Instead of consolidating two inventories, if  n  separate and identical inventories 
were consolidated at a single location, then the ratio would be   1/ n    . This ratio 
explains the label the  square root law of inventory centralization . 

 Anne commented that she had learned in class that the economics of centraliza-
tion versus decentralization were more complex than these calculations suggested. 
For example, if a sizeable inventory were held only at one factory, then there would 
be shipping costs to transport the motors frequently from that factory to the other 
factory. On the other hand, the consolidated purchasing process might have more 
market power than either factory could have alone, and it might be able to negotiate 
a lower unit cost from a vendor. If trucks would frequently drive from one factory 
to the other, regardless of whether inventories were consolidated or not, then the 
incremental logistics cost might be negligible and the net economic improvement 
due to centralization might be greater than   1 2/ .    

 Rich noted that the factor of   1 2/     applied to a quantity that included the square 
root of the ordering cost,  K  [see ( 1 ), ( 3 ), ( 4 ), and ( 5 )], so the net advantage would 
not be important if  K  were small. He explained to Anne that years ago SP and MLP 
had each decided to specialize in high quality service niches of their industries. 
Each of them had structured its operations to respond to customers’ needs very 
quickly. Although this obliged them to maintain high inventories of finished goods, 
they retained their largest customers year-after-year and they were often able to 
charge higher prices than the competition. It also meant that they had built relation-
ships with suppliers of raw materials and parts who could respond very quickly to 
changing needs at SP and MLP. Rich noted that one of the side effects of  rapid 
response  was that both SP and MLP had partnered with suppliers to implement new 
procedures and technologies that lowered ordering costs. In other words,  K  in the 
EOQ was quite small for most items that were inventoried either in Springfield or 
Montreal. 

 Finally, Rich noted that the reduction in annual ordering and holding costs, that is 
the difference between ( 3 ) and ( 5 ), would be small if the ordering cost,  K , were low. 
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Let   ∆    be the difference. Then 

  ∆2
2

2 2 2 2 4 3 2 2= −⎡⎣ ⎤⎦ = −( )Krh K r h Krh( ) ,    and   ∆    would be small if the 

ordering cost,  K , were low. In that case, would the economic advantage of consoli-
dating inventories depend primarily on the trade-off between higher logistics costs 
and lower purchasing costs? He suggested that Anne consider these newly learned 
facts about the business, and that they resume their discussion of inventory consoli-
dation in a few days. Anne was obviously downcast as she left the meeting room. 
She had pinned her hopes for making a big contribution on an inappropriate intel-
lectual framework. 

 Later that day, Richard saw Elizabeth, Salmon Pool’s CEO, and she asked him 
whether he had reached any conclusions about inventory consolidation and dual-
sourcing. He said that Anne was inexperienced at SP, but she was learning 
quickly and he expected to be able to give Elizabeth more information after his 
next meeting with Anne.  

  Safety Stock 

  At the next meeting, Anne began by explaining that she had learned that inventory 
was often held as a hedge against uncertainty. Since customer demand fluctuates 
from week-to-week, you cannot be sure exactly when to reorder an item so that the 
delivery arrives just before a stockout occurs.  This uncertainty leads to additional 
economic advantages of inventory consolidation.  

 For example, suppose that successive weeks’ demands for the electric motor at 
SP and MLP are independent random vectors 

  (D
S1

, D
M1

),(D
S2

,D
M2

),...    and that for each week  t,    (D
St
, D

Mt
)    has the same proba-

bility distribution as   (D
S
, DM)   . Let   s sS M

2  and 2    be the variances of a generic week’s 
demands   D

S
 and DM   , respectively, and let   r    be the correlation between   D

S
 and DM  . 

Anne thought that the weekly demands were unlikely to be independent because 
demand for pools and accessories is driven partly by the weather, and the 
weather is sometimes similar in Montreal and Springfield. In any case, the vari-
ance of the weekly demand at the consolidated inventory location would be   s Τ

2     
which is given by

   s s s rs sΤ
2 2 2 2= + +S M S M .    (7)   

 For purposes of illustration, from now on assume that   D
S
 and DM    have the same 

variance, say   s s s2 2 2
M S= =     so the variance of the consolidated weekly demand 

would be

   s s rT
2 2= 2 + )( .1    (8)   

 This variance would be between zero and   4s 2     because   r  , the correlation 
coefficient, can be any number between −1 and +1.   
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  Building Intuition  

Centralizing inventories sometimes yields great economic benefits because 
the safety stock can be reduced. If the demands at the decentralized locations 
are negatively correlated, then the safety stock at a centralized location can 
be considerably less than the combined safety stocks at separate locations 
 while providing the same stockout protection!  The safety-stock advantage is 
nil if the demands are strongly positively correlated, but the advantage 
grows as the correlation shifts from strongly positive to strongly negative.

 The importance of the variance is that it affects the  reorder point ,  R . Anne 
explained that many inventory systems (like those at SP and MLP) have up-to-
date information on each item’s inventory levels, and they trigger the replenish-
ment of an item when the  inventory position  drops to a trigger point,  R , called the 
 reorder point . An item’s inventory position is the number of units in stock minus 
the number of units backordered (if any) plus the number of units contained in 
replenishment orders that are on the way from suppliers but have not yet been 
delivered. The reorder point should be high enough so that the demand during the 
procurement or production  lead time L , is usually less than  R . She understood 
that the rapid response programs at SP and MLP meant that the lead times were 
reliable, so she would treat the lead time  L  as a number rather than a random 
variable. 

 Two criteria are widely used to choose a reorder point. A  safety level criterion  
selects  R  so that the risk of a stockout during the lead time, that is the probability 

that   D Rt
t

L

>
=
∑

1

,    is a small fraction labeled   a   ; say   a = 0.025   . The rationale for this 

criterion is that stockouts occur only during lead times, so the inventory manager 
should keep the risks low during lead times. A  service level criterion  focuses on 
customers who, after all, want good service and are not particularly interested in the 
minutia of lead times or reorder points. So this criterion selects the reorder point, 
 R,  to yield a high  fill rate . The  fill rate , often denoted   b   , is the fraction of customer 
demand that is filled immediately from on-hand inventory. The choice of   b    should 
reflect the importance of not running out of stock, and typical values are between 
0.90 and 0.99. Anne noted that these criteria had economic consequences due to 
inventory levels and customer patronage, and Rich would no doubt want to see the 
tradeoffs before he chose   a or b  .  

  Safety Level Criterion for Safety Stock 

  If Rich opted for a safety level criterion and the inventories remained unconsoli-
dated, then  R  at Springfield (SP) would be chosen so that
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  a = >
=
∑P D RSt
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 She said that the demand processes at many inventory systems were analyzed 
with a normal distribution. Let  Z  be a standard normal random variable 2   and let   Φ(⋅)    

be its  distribution function. Then   
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(10)  

can be evaluated easily with widely available tables of    Φ(⋅)   . Let    z    be the place at 
which the standard normal random variable’s cumulative area is   1 - a    to the left 
and    a    to the right. That is,   a = P{Z >z}=1−Φ(z).   

 Then ( 10 ) corresponds to

   
z

R L

L
R L z L= − = +m

s
m s which is .

  
 (11)

   

 For example, if   a = 0.025, L=1, and σ = 4 then z = 1.96    and   R = 1(20) + 

(1.96)(4)(1) = 27.84.   
 The  safety stock , the hedge against uncertain demand during the lead time, is   z Ls ,     

so in this example it is 7.84 units. If there are separate inventories, the cumulative 
safety stock level at SP and MLP is

   2z Ls .    (12)   

 If the inventories are consolidated, the lead time is still  L  = 1, the mean consoli-
dated demand per week is   m = 2 × 20 = 40 and a is still 0.025 so z = 1.96.    However, 

the  variance of demand during the lead time, from ( 8 ), is   s s r rT
2 2= 2 + ) = + )( (1 32 1   . 

2 That is, z is a normal random variable with mean zero and variance one.
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Applying (10) to consolidated demand, 

  R L z LT= + = + + = + +m s r r( )( ) ( . )( ( ) . .1 40 1 96 32 1 1 40 11 09 1    

 So the safety stock,   11 09 1. ,+ r    will range from 0 to 15.7 as the correlation 
between demands at the two locations varies from –1 to + 1. If the demands are 
uncorrelated (  r = 0   ), the safety stock would be 11.09. Generally, the safety stock is

   z L z LTs s r= +2 1( ).    (13)   

 Contrasting ( 12 ) and ( 13 ), the ratio of the safety stocks in the centralized versus 
decentralized systems is

   

1

2

+ r
.
   

(14)
   

 Anne observed that expressions ( 6 ) and ( 14 ) share the factor   1 2/     which is 
frequently encountered when activities are aggregated. Expressions typically include 
a factor of   1/ n    when  n  activities are consolidated. She then turned to the correla-
tion coefficient,   r   , in ( 14 ). Unlike ( 6 ) which is based on the presumption of deter-
ministic demand, ( 14 ) quantifies the advantage of  pooling the risks  of random 
demands. The factor   1+ r     in ( 14 ) often arises when risks are pooled. That is, the 
correlations among pooled risks affect the economic benefits.  The economic advan-
tage of pooling is greatest if the risks (demands) are opposed (strongly negatively cor-
related ,   r = −1)   ,  and the advantage is nil if the risks reinforce each other (strongly 
positively correlated,    r = +1)    . 

 Anne commented that the differences in safety stocks could yield substan-
tial savings to the consolidated operations of SP and MLP. If demands are 
uncorrelated, then the sum of the decentralized safety stocks is 7.84 × 2 versus 
  7 84 2 1. ( .× + )r     Multiplying the difference by  h  = $10, the annual unit holding 

cost, yields   78 4 2 2 1 110 86 2 1. ( ( ) . ( ).− + ) = − +r r    
 If the demands are uncorrelated, this would save nearly $46 per year. SP and MLP 

have many hundreds of items in their inventories, and these savings could add up! 
 Anne started to explain that similar conclusions would be reached if they chose 

the reorder point to ensure a high fill rate. At this point, Richard’s concentration 
ebbed and his eyes started to glaze. He noted that SP and MLP were proud of their 
fill rates and a service level criterion was probably more appropriate than a safety 
level criterion. Even so, he said that many stocked items are resupplied periodically, 
say weekly, and the essential decision was the size of the shipment. That is, SP uses 
a  base-stock level  policy to manage inventories of many items rather than a reorder 
point-reorder quantity policy. He thought that MLP did the same. Rich commented 
that Anne had given him useful ideas to ponder and suggested that they meet again 
in a few days to review the benefits of consolidating inventories that are managed 
with base-stock level policies. 
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 Later that afternoon, Elizabeth, the CEO, asked Rich about the progress of his 
considerations of whether to maintain inventories in Montreal and Springfield or to 
consolidate inventories at one location. He said that his meetings with Anne were 
productive and soon he expected to set a date on which they would know which 
inventoried items to consolidate.  

  Base-Stock Level Policies 

  At the following meeting, Anne started to summarize the  Newsvendor Model  but 
Rich interrupted to say that he had learned all about it in his executive MBA 
 program. 3 He had found it to be a useful metaphor for economically balancing the 
risk of too many versus the risk of too few. Anne replied that now they could apply 
newsvendor models to calculate base-stock inventory target levels. She would use 
the same electric motor as an example, but now she realized that SP and MLP con-
tacted their suppliers each Thursday afternoon to specify the numbers of motors to 
deliver the following Monday morning. The quantity of each order was determined 
so that the inventory position late on Thursday plus the quantity delivered on 
Monday would reach a target level,   τ  , called the  base-stock level . If  I  is the inven-
tory position late Thursday, then the quantity ordered is   t − I   . How should   τ   be 
selected, and how would it be affected by inventory consolidation? 

 Anne reminded Rich of the equation for the value of   t   that maximizes the 
expected net profit in the single-period newsvendor model. Let  D  be the weekly 
demand for motors, a random variable, and let  F  be its distribution function. 
Further, assume that any demand that exceeds supply is backordered (customers get 
“rainchecks”), with  p  as the unit cost of backordering, and  h  as the cost of holding 
of holding a unit of inventory for a week. Rich interjected “Back orders are a really 
big deal and we work harder than you can imagine to avoid them. They cost a lot 
of money in extra shipping cost (which can be the entire profit) and order process-
ing (backorders are expensive to process due to the number of steps that the 
 paperwork goes through and the higher incidence of lost or mistaken orders). Also, 
lost goodwill and reputation is a BIG deal on back orders in a tight seasonal 
 business. We have to pay it a lot of attention. For example, all the other stuff that is 
available to ship is possibly junk to the dealer (customer) if they cannot go out and 
install the product without a missing motor—so we can’t ship any of it at all!” 
Anne, now more accustomed to his vehemence, said “I guess that  p  would be quite 
large relative to  h .” Continuing, she pointed out that   τ    is the solution to

   
F

p

p h
( ) .t g g= =

+
       where       

   
(15)

   

 3 Chapter 7 in this volume presents the basic principles of the newsvendor model. 
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 So if  p  is large relative to  h , then   g    is close to one and   t    must be a large number 
to satisfy ( 15 ). In particular, if  D  is normally distributed with mean   m and variance 
s2  , then ( 15 ) corresponds to

   t = m+zs,   (16)  

where   a = 1 – g = h/(h + p).    For example, if   m = 20,s = 4, h = 0.2, 
p = 1.8, then g  = 0.9 and Z = 1.28  . So

   t
D
 = 20 + (1.28)(4) = 25.12,   (17)  

where   t
D
   refers to the target inventory level in a decentralized system. Therefore, if the 

same parameters were appropriate at MLP, the aggregate target levels at the decentral-
ized locations each Monday morning would be 2 × 25.12 = 50.24. This total is

   2t
D
 = 2m + 2Zs.   (18)   

 How does this total compare to the appropriate target inventory level in a con-
solidated inventory system? 

 The mean weekly demand would be   2m and the same numerical values of p and 
h   should be used. But the variance of weekly demand, from ( 8 ), would be   2s 2 (1 + r)  . 
So the base-stock level of the consolidated inventory system,   t

C
   , should be

   t m s rC z= + + )2 2 2 1( .    (19)   

 If the parameters are   r = 0  ,   m = 20,s = 4,h = 0.2, and p = 1.8, then a = 0.1   and 
Z = 1.28, so the consolidated base-stock level is   40 + (1.28)(4) 2  = 47.24  . The dif-
ference between ( 18 ) and ( 19 ) is

   s rz 2 2 1( ).− +    (20)   

 So the consolidated target inventory level is at least as low as the sum of the 
unconsolidated levels, and the difference gets larger as the correlation between 
demands at the two locations becomes more negative. Once again,  the economic 
advantage of pooling is greatest if the risks (volatility of demands) are opposed 
(strongly negatively correlated ,   r = -1  ),  and the advantage is nil if the risks reinforce 
each other (strongly positively correlated,   r = +1   ) . With the illustrative values of the 
parameters, the difference is 3.  

  Base-Stock Level Policies with Lost Sales 

 Rich noted that these calculations all presumed that demand was backordered 
when it exceeded supply. However, both SP and MLP competed in a high service 
niche of their industry and they were much more likely to lose a sale than to be able 
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to issue a “rain check” when demand exceeded supply. What were the economic 
effects of consolidation if excess demand was lost, i.e., what happened in the  lost 
sales case ? Furthermore, how could they systematically consider the lost goodwill 
and damaged reputation when a stockout occurs? 

  Building Intuition  

  The economic advantage of pooling risks is greatest if the risks are opposed, 
that is if they are strongly negatively correlated. The advantage is nil if the 
risks are strongly positively correlated, and the advantage grows as the corre-
lation shifts from strongly positive to strongly negative. 

 Anne answered that the lost sales and backordering results were similar. In both 
cases, high values of  p  should reflect the effects of lost goodwill and damaged repu-
tation if a stockout occurs. Instead of ( 15 ), lost sales results in the following equation 
for the base-stock level that minimizes the long-run average cost per week:

   F
p c

p h c
( ) .t = −

+ −
   (21)   

 The new parameter,  c , the unit cost of a motor, is the price that the motor manufac-
turer charges. This parameter appears in the expression because the unit cost of excess 
demand is offset by not having to pay the manufacturer for the motor. If demand is 
normally distributed, then ( 16 ) remains valid with a different calculation of   a   :

   a =
+ −

h

p h c
.    (22)   

 For example, if the unit cost is  c  = 1 and we use the parameters on which ( 17 ) 
is based (  m = 20, s = 4, h = 0.2, and p = 1.8  ), then   a = 0.2   so   z = 0.84   and

   t
D
 = 20 + (0.84)(4) = 23.6.   (23)   

 Similarly, ( 19 ) and ( 20 ) are valid with the altered specification ( 22 ) instead of 
( 15 ). So the difference between the aggregate unconsolidated target inventory levels 
and the consolidated target level would be

   s z 2  ( 2  - 1  + r) = (4)(0.84) 2  ( 2  – 1) = 1.97.   (24)    

  Base-Stock Level Policies with A Fill Rate Criterion 

  Rich commented that he knew how they should calculate  h , the unit holding cost 
for an item that they inventoried, but it was very hard to estimate  p , the unit cost of 
excess demand. He knew that they might lose all of a customer’s business due to a 
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stockout. How should he translate that risk to a numerical value of  p ? He thought 
that a fill rate was more appropriate for SP and MLP, and they achieved at least 95% 
on most items such as the motor, i.e.,  b = 0.95  . What were the advantages of con-
solidating inventories that were managed with base-stock level policies that 
responded to a fill rate criterion? 

 Anne said that the resulting equation for the base-stock level was more compli-
cated than ( 15 ) but there was an excellent approximation if the succession of 
weekly demands were independent normal random variables with the same mean:

   τ Φ Φ≅ ( + + + + (− / )]−1L L L1 1) [ .m s b m s    (25)   

 In ( 25 ),   Φ–1   is the function inverse of the standard normal distribution function   Φ  . 
That is,   Φ–1(x) = z corresponds to Φ(z) = x  . For example, using a table of   Φ  , 
  Φ–1 (0.5) = 0 and Φ–1 (0.99) = 2.33.   In order to illustrate ( 25 ), suppose that the 
parameters for a motor that is stocked at a decentralized location are   m = 20, s = 4, 
L = 1, and b = 0.95  . Then   t 

D
  , the target base-stock level that yields a fill rate of 

95%, is

   
τ ≅ Φ Φ

Φ
D (1+1)(20) + (4) 1+1 + (− 1

= + +

−1

−1

[ . ( ) / )]

[ .

0 95 20 4

40 4 2 0 95   ΦΦ Φ(−5)] = +
= + =

−140 4 2 0 95

40 5 656 1 645 49 30

[ . ]

( . )( . ) . .   

   
(26)

   

 If the motor is stocked at both locations, the aggregate target base-stock inventory 
is   2 × 49.30 = 98.60. Instead, if the motors are stocked at a consolidated location, 
then   t

D
  , the target base-stock inventory level, is given by ( 25 ) with   m replaced by 

2m    and   s replaced by 2 1s r2 + )(   :

   τ Φ ΦC L L
L

( + + + + ) + (
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 Using the same parameter values as in ( 26 ), if demands at the two locations are 
uncorrelated, then

   τ Φ ΦC = + + + (
− 2

=−1( )( )( ) ( ) [ .
( )

)] . .2 1 1 20 2 4 2 0 95
20 1

4
93 16    (28)   

 Since the lead time is one week ( L  = 1), in the comparison of   t
D
 with t

c
  , the mean 

demand during the current week and the following week when the ordered goods 
arrive is 80 units. The remainder is a cushion for risk. That cushion is 98.60−80 = 
18.60 if the inventories remain decentralized. The cushion is 93.16−80 = 13.16 if 
the inventories are consolidated and demands at the two locations are uncorrelated. 
Notice that   18.60/ 2  = 13.16  . Once again, consolidating two inventories yields 
improvements at a rate of   1/ 2   . 

 At this point Rich asked if consolidation would provide greater benefits if 
demands were negatively correlated. Anne confirmed his understanding by calcu-
lating the base-stock level when   r = –0.5  . The result was that   t

c
 = 89.30   whose 

cushion of 9.30 would be a 29% reduction of the cushion with   r = 0  . 
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 Rich closed the meeting by thanking Anne and saying that he understood the 
economic tradeoffs of inventory consolidation much more clearly than when they 
discussed it the first time. He said that the next steps were:

  •  To organize the information on hundreds of items that were stocked both at 
Montreal and Springfield in order to analyze the economic tradeoffs and finally 
reach decisions on which items should be stocked in a consolidated inventory 
system;  

 •  To forecast the date by which the necessary information would be available so 
that consolidation decisions could be made;  

 •  To understand when it was economical for the consolidated firm to  dual-source , 
i.e., to purchase the same item from two (or more) suppliers.    

 He scheduled the next meeting and praised Anne! Later that day, he told 
Elizabeth, the CEO, that he could shortly tell her when the inventory consolidation 
decisions would be made.  

  Dual Sourcing 

  When they met, Anne described the data that she would retrieve to estimate the 
potential savings from consolidating inventories. She intended to analyze the 
impacts of consolidation on inventory-related costs, payments to suppliers, and 
logistics costs. After she estimated the time she needed to obtain and organize the 
data, the discussion turned to dual sourcing.   

 Rich commented that industrialists all over the world were paying greater attention 
to multiple sources of supply since 2000. A fire in an Albuquerque semiconductor 
plant interrupted an important source of computer chips for two of the world’s major 
cell phone manufacturers, Nokia Corp. of Finland and Telefon AB LM Ericsson of 
neighboring Sweden. Global mobile phone sales were soaring and it was critical for 
both companies to find alternative suppliers promptly. While Nokia succeeded, 
Ericsson did not and lost at least $400 million in potential revenue. 

  Building Intuition  

The economic advantage of dual sourcing can stem from pooling the risks of 
a supply disruption. The advantage is greatest if the risks are opposed, that is 
if they are strongly negatively correlated. The advantage is nil if the risks are 
strongly positively correlated, and the advantage grows as the correlation 
shifts from strongly positive to strongly negative. 

 Anne observed that an industry’s characteristics determined whether there were 
potential savings from awarding business to multiple suppliers. SP and MLP 
bought items that were made with standard production technologies so there were 
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plenty of potential suppliers for most of them. Moreover, suppliers didn’t depend 
on an SP order (or an MLP order) to move out on the “learning curve.” 

 SP and MLP usually arranged for suppliers to ship items weekly or monthly 
during the production season. Purchasing an item from more than one supplier is 
 multiple sourcing . Since SP and MLP were medium-sized companies, when they 
multi-sourced it was usually with two suppliers and they called it  dual sourcing . 

 Anne said that the potential advantages to SP and MLP from dual sourcing 
depended on correlations of risks. They had already seen the importance of correlations 
in inventory consolidation. She said that she would illustrate these considerations 
with a small electric motor. 

 Each August, before the production season began, SP placed open orders for the 
motor with two suppliers. The production year’s demand was estimated in October 
when half the estimated demand was ordered from each supplier; the finished 
motors were shipped two months later. There was a good reason why the motors 
were not ordered (and shipped) monthly between October and June. Although SP 
was a whale among manufacturers of above-ground pools, it was a minnow in the 
overall market for small electric motors. When the motor manufacturers received 
SP orders, they set up equipment that was unique to SP’s needs and made the batch 
of ordered motors in a few weeks’ time. The motor manufacturers used suppliers to 
make the corrosion-resistant casing that housed the motor. After a supplier com-
pleted the ordered batch of casings, the equipment that was specific to the SP cas-
ings was replaced with equipment for whatever job they did next. If the motors had 
been ordered monthly, then the cost of this setup and teardown would be absorbed 
by relatively few motors (one month’s demand) and the unit cost of motors would 
have been too high. 

 The prices charged by the two motor suppliers were slightly different but their 
motors had the same quality. Did the risk of a supply disruption justify paying a 
higher price for half the motors? Label the suppliers  x  and  y  and let  c  and  c  + δ be 
the prices charged by  x  and  y , respectively. Here, δ > 0 indicates that  y  charges a 
higher price than  x . Let  X  indicate whether supplier  x  can supply the motors or has 
a supply disruption. That is,  X  = 1 if  x  can supply the motors, and  X  = 0 if  x  cannot 
supply the motors. Similarly, let  Y  = 1 if  y  can supply the motors, and  Y  = 0 if  y  
cannot supply the motors. It is realistic to count on either supplier being able to 
provide  all  the motors if the other cannot provide any. Also, if both suppliers are 
unable to provide motors at the last minute, then SP can find another supplier who 
can ship fairly quickly but at a high price, say  K  where  K  >  c  + δ. 

 Let π 
x
  be the cost if SP sole sources with supplier  x , and let π 

xy
  be the cost if SP 

dual sources. Let ∆ be the expected difference between the cost of sole sourcing 
(with  x ) and the cost of dual sourcing; that is,

   ∆ = E(p
X
) – E(p

XY
).   (29)   

 So dual sourcing is cost-effective if ∆ ≥ 0. Under what conditions is ∆ ≥ 0? The 
answer depends on the cost parameters  K, c,  δ, and on the joint probability distribu-
tion of  X  and  Y . 
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 The cost of sole sourcing Q units is  cQ  if  X  = 1, and it is  KQ  if  X  = 0. So

   p
X
 = cQX + KQ(1 - X).   (30)   

 The expression for π 
xy

  is more complex; that cost is ( c  + δ/2) Q  if  X = Y  = 14 , it is 
 cQ  if  X  = 1 and  Y =  0, it is ( c  + δ) Q  if  X =  0 and  Y  = 1, and it is  KQ  if  X = Y  = 0. 
Therefore,

   p
XY

 = (c + d/2)QXY + cQX(1 – Y) + (c + d)QY(1 – X) + KQ(1 – X)(1 – Y).   (31)   

 Let 1− a  be the probability of a supply disruption; that is,   a = P{X = 1} = P{Y = 1}    
and   1 – a = P{X = 0} = P{Y = 0}  . Using  a = E ( X ) in ( 30 ), the expected cost of sole 
sourcing is

   E(p
X
 ) = Q[K – a(K – c)].   (32)   

 In order to specify ∆, the difference between the expected costs with sole 
sourcing and multi-sourcing, we can use ( 31 ) and ( 32 ) after obtaining  E (π 

xy
 ). That 

task is complicated by terms in ( 31 ) involving  XY . However,  E ( XY ) can be speci-
fied in terms of  a  and the correlation coefficient of  X  and  Y . The correlation 
between  X  and  Y , labeled ρ, is

  r =
−

−
E XY a

a a

( )

( )

2

1
  

  so E(XY) = a2 + ra(1 - a)  . Using this expression with ( 31 ) to specify  E (π 
xy

 ) leads to 

   E(p
XY

) = Q{K – 2a(K – c)+d a + (K – c– d / 2)a [r (1 – a) + a]}.   (33)   

 Subtracting ( 33 ) from ( 32 ) gives ∆, the cost advantage of dual sourcing instead 
of sole sourcing:

   ∆ = { (K – c – d ) – (K – c – d/2)[r (1 – a) + a]} Qa.   (34)   

  This cost advantage is favorable (∆ ≥ 0) if 

   a a
K c

K c
+ − ≤

− −
− −

r
d

d
( )

/
.1

2
   (35)   

 Notice in ( 35 ) that the annual volume of motors,  Q , plays no role in whether the 
cost advantage is favorable or not. Also notice in ( 33 ), ( 34 ), and ( 35 ) that dual 
sourcing is more favorable if the risks of supply disruptions from  x  and  y  are more 
strongly opposed. That is, the advantage grows as ρ, the correlation of  X  and  Y , 

 4   The payments to X and Y, respectively, are cQ/2 and (c + δ)Q/2, so the sum is (c + δ/2)Q. 
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moves from +1 down to −1. Inventory consolidation had the same risk pooling 
influence of the correlation. Richard had become less attentive as the algebra 
seemed to dominate the presentation, so Anne gave him an example. Suppose  c  = 
10,  K  = 50, δ = 0.5,  a  = 0.95, and ρ = 0.5. With these parameters, the price of 
supplier  x  is 5% higher than the price of supplier  y . The ratio on the left side of ( 35 ) 
is 0.975 and the right side is 0.995. This means that ∆ ≥ 0; so sole sourcing is more 
expensive than dual sourcing. 

 Richard commented that  c  = 10 compared to  K  = 50 was unrealistic; he doubted 
that the price would rise five-fold even for an emergency shipment with a very short 
lead time. How low could  K  drop until it was no longer beneficial to dual source? 
Anne said that it was easy to rearrange ( 35 ) to specify indifference points. For 
instance, ∆ ≥ 0 if

   K c
a

≥ + +
− −

⎡

⎣
⎢

⎤

⎦
⎥ 2

1
1

1 1( )( )
.

r
d

  (36)  

 In the numerical example, the right side of ( 36 ) is 20.25, so it would be cost-
effective to dual source if  K  were at least 20.25. 

 Similarly, ( 35 ) yields indifference points for the correlation coefficient, ρ, and 
the difference δ between the prices charged by  x  and  y :

   r
d

d
d

r≤ −
− − −

≤ − − −
+ −

1
2 1 2

2 1 1

1 1( )( / )

( )( )( )

( )(a K c

a K c

a
,    and    

11− r)
.    (37)   

 Using the parameters in the example, the right side of the inequality for ρ is 0.87, 
so dual sourcing would be cost-effective even if the correlation coefficient were 
significantly higher than 0.5. The right side of the inequality for δ is 1.95. So dual 
sourcing would be cost-effective until the higher priced supplier ( y ) charged 19.5% 
more than the lower priced supplier. 

 Richard thanked Anne for identifying some of the key considerations in a decision 
of whether or not to use multiple suppliers for the same goods or service. He said 
that her next project, after she had retrieved and organized the data on inventory 
consolidation, would be to organize data on dual sourcing at SP and MLP. 

 The next morning, when Rich described their progress to Elizabeth (the CEO), 
she asked whether risk pooling might assist them to obtain lower health insurance 
premiums for Salmon Pools employees. Most of the employees worked in 
Springfield, Massachusetts, but the firm also had employees in three US sales 
offices. Although employee benefits were the same at all geographic location, SP 
had separate insurance policies for the employees at each location. 

 Richard asked her why she didn’t simply have the head of Human Resources 
(HR) ask the insurance broker (through whom the firm bought health insurance) if 
consolidating the policies would result in lower premiums. Elizabeth explained that 
she first wanted Richard’s advice before intimating that the head of HR and the 
broker might not have protected the firm’s interests adequately. Rich said that he 
would discuss with Anne whether the principles of risk pooling were as applicable 
to insurance premiums as to safety stocks.  
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  Pooling Insured Risks 

  Soon Anne and Richard met to discuss whether SP might be able to bargain for 
lower health insurance premiums if all employees were covered by one policy 
instead of four. She said that the underlying considerations for inventory consolida-
tion were relevant, but the details were different. The square root law of inventory 
consolidation could not be used here, but the premise of an economy of scale 
remained valid. For example, an insurance company spends less money on billing 
SP and posting payments of premiums if there is one insurance policy instead of 
four. Rich replied that the insurance company’s processing costs were not signifi-
cantly different if there were one group policy or four. Anne agreed that differences 
in processing costs were probably unimportant, but there was an important economy 
of scale from the perspective of the insurance company. 

 Rich said that he did not see how consolidating the policies could affect the 
insurance company’s total payments of health insurance claims. Anne agreed 
that the insurance company’s total payout would be the sum of claims submitted 
by SP employees; that sum didn’t depend on the manner in which employees 
were batched into policies. She observed, however, that risk pooling might pro-
vide the insurance company an important advantage that SP could exploit to 
obtain lower premiums. 

  Building Intuition  

 There are advantages from operating a business so that its  suppliers  can pool 
 their  risks to reduce  their  costs. Their cost reduction is greatest if their risks are 
opposed, that is if they are strongly negatively  correlated. The cost reduction is 
nil if their risks are strongly positively  correlated, and the cost reduction grows 
as the correlation shifts from strongly positive to strongly negative. 

 She illustrated the potential advantage with the effects of pooling the sales office 
employees at Mobile, Alabama and Salt Lake City, Utah. In order to use the same 
formulas as for inventory pooling, she let  D   

M
   and  D   

S
   denote next year’s claims that 

would be paid to employees in Mobile and Salt Lake City, respectively.5  If the risks 
are pooled into a single policy, then   σ2  , the variance of the total payout under that 
policy, is given by ( 38 ):

   s s s rs sΤ
2 2 2 2= + +S M S M .    (38)   

 In this formula,   σ
S 
, σ

M
 , and r    are respectively the variance of  D   

S
  , the variance 

of  D   
M
  , and the correlation between them. In particular, for the remainder of this 

  5  In Eq. ( 38 ) and the discussion of inventory consolidation, these symbols denote a week’s 
demands at Springfield and Montreal, respectively. 



9 Risk Pooling 171

discussion, suppose that  D   
M
   and  D

   S
   have the same variance, say   s 2Μ = s 2

S
 = s 2  ; 

so ( 38 ) becomes ( 39 ):

   s s rT
2 2= 2 + )( .1    (39)   

 The importance of the total variance,   s Τ
2   , is that an insurance company is regu-

lated by the insurance departments in the states in which it does business, and the 
company is required to hold some of its assets in a form that makes it very likely 
that the company can pay all of its claims next year. The requisite forms are low 
risk securities that are easily marketable (for example, US Treasury bills). In the 
discussion of a safety level criterion earlier in this chapter,   a   in ( 9 ) was the risk of 
a stockout during a replenishment leadtime. Here,   a   is the risk that the total health 
insurance claims exceed the amount of assets that the insurance company can convert 
to cash to pay those claims. Then the  safety reserve  is the amount of funds that the 
company must hold in the form of low-risk highly marketable securities, over and 
above the expected amount of the claims, in order to have the probability as high 
as   1 - a    that it will be able to pay all of the claims. 

 There is a substantial opportunity cost attached to every dollar that the insurance 
company holds in safety reserve; that dollar cannot be placed in higher yield invest-
ments that are riskier or less liquid. So if   s Τ

2    is higher, the safety reserve is higher, 
the opportunity cost is higher, and the insurance company compensates by charging 
a higher premium. 

 Repeating ( 12 ) and ( 14 )6 , if there are separate insurance policies for the employees 
at Mobile and Salt Lake City, the cumulative safety reserve level is7 

   2Zs.    (40)   

 If the employees at both locations are pooled into one policy, the safety reserve is

   z zTs s r= +2 1( ).    (41)   

 Contrasting ( 40 ) and ( 41 ), the ratio of the safety reserves in the pooled versus 
separate policies is

   1

2

+ r
.    (42)   

 This ratio ranges from + 1, which occurs if the claims at the two locations are 
perfectly positively correlated (  r = +1  ), to 0, which occurs if the claims at the two 
locations are perfectly negatively correlated (  r = –1  ). 

  6  Here, L = 1 in ( 12 ) and 13). 

  7  Recall the notation z for the fractile of the standard normal distribution where 100α% of the area 
lies to the right. 
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 Rich said that he doubted that the claims at the two locations were interdependent, 
so he wouldn’t be surprised if   r   were ∼ 0. That would cause ( 42 ), the ratio of the 
safety reserves, to be   1 2/    which is ∼ 0.71. That is, pooling the employees would 
reduce the insurance company’s safety reserve by about 29%. He thanked Anne for 
helping him understand why it might be profitable for the insurance company if 
Salmon Pools combined all its employees into a single health insurance policy. 

 Later that day, he made an appointment with Elizabeth to explain his insight. He 
suggested that their firm’s director of HR contact the insurance broker and insur-
ance company. Before renewing the insurance policies, they should analyze claims 
data to find out if consolidating the policies would increase the insurance compa-
ny’s profits (by reducing its opportunity costs). In that case, SP should negotiate to 
share the higher profits by paying lower health insurance premiums.  

  Applications of Risk Pooling 

  Risk pooling is not a panacea and consolidation generates costs as well as benefits. 
The usual question is whether the benefits of consolidation sufficiently outweigh the 
added costs. For example, if inventories are held at numerous widely scattered depots 
that are close to customers, there are typically low costs to deliver the goods from the 
depots to the customers. On the other hand, having numerous depots may require a 
high cost to transport goods from factories to depots. Consolidating numerous depots 
into a single (or a few) central locations may reduce safety stocks with their associated 
opportunity costs. Although it will also reduce the costs of transporting goods from 
factories to depots, it will increase the costs of distributing goods from depots to 
customers. In some cases there will be a large net cost reduction but its magnitude 
may depend on the shrewdness of the selection of the centralized location. In other 
cases, net costs will increase. So it is essential to account for  all  cost changes before 
making a commitment to consolidate risks.  Kulkarni et al. (2005)  study the tradeoff 
between risk pooling and logistics costs in a multi-plant network. 

 The emerging field of financial engineering includes sophisticated methods to 
pool risks. 

 Much of the fable in this chapter concerns the aggregation of multiple locations; 
there is an opportunity to combine inventories at decentralized locations into a central-
ized depot at one location.  Delayed differentiation  is an application of risk pooling in 
which aggregation occurs  in time.  This arises, for example, when components are 
stocked after they are fabricated, but finished goods are assembled only after 
customer orders are received. There is a large and growing literature on this topic 
which is sometimes labeled  mass customization . 

 Another operations management application of risk pooling is a firm’s reduction 
of the number of different products it provides. A producing firm can reduce the 
variety of finished goods and services that it produces; a retail store can reduce the 
variety of goods that it stocks. In each instance, one should balance the lower costs 
due to a reduction in variety versus the lost revenue. 
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 Production capability is yet another direction of aggregation. Here, a firm may 
be able to replace several specialized “machines” with a single “flexible” machine. 
Under what circumstances is flexible automation superior to a set of specialized 
capabilities? Some answers are provided by  Graves and Tomlin (2003)  and Tomlin 
and Wang (2005).8  

 Most research on risk pooling assumes that end-item demand fluctuates more 
slowly than production. However, some applications of risk pooling occur when the 
production of goods occurs in supply chains where there are significant delays 
between the date on which an additional output is sought, and the date on which it 
is finally available. These contexts are the  production-inventory systems  discussed 
by  Benjaafar et al. (2005) . 

 Dual sourcing is an important application of risk pooling. See the research 
reviews of dual sourcing by  Elmaghraby (2000)  and  Minner (2003) . Dual sourcing 
in a risk pooling context is discussed by  Babich et al. (2007)  and  Tomlin and Wang 
(2005) . See  Latour (2001)  for the consequences of the 2001 fire in a Albuquerque, 
N.Μ. semiconductor plant.  

  Historical Background 

  Risk pooling is an old concept that came to operations management relatively 
recently. Five thousand years ago, Chinese sea-going merchants distributed their 
goods in several ships to reduce the risk of total loss. Insurance is a manifestation 
of risk pooling, and Lloyd’s of London, the world’s preeminent specialist insurance 
market, began in the seventeenth century. 

  Gary Eppen (1979)  initiated the study of risk pooling in operations management. 
He considered the consolidation of inventories that are held in separate locations, 
and he showed that the inventory-related costs of the consolidated system are lower 
if the correlation between the correlated demands is more negative. His assumptions 
include normally distributed demand and the same parameters at each of the separate 
locations. However, Eppen’s conclusions remain valid if the parameters are  not  the 
same at each location ( Ben-Zvi and Gerchak 2005 ) or if demand has a nonnormal 
distribution ( Chen and Lin 1989 ). Good brief surveys of the ensuing research are 
included in  Benjaafar et al. (2005)  and  Gerchak and He (2003) . The reader is 
directed to those papers for references to the material that was published between 
1980 and 2003. 

 Aggregation in a supply chain raises the possibility of consolidating inventories 
that are maintained by different firms. The aforementioned literature considers the 
aggregate costs and benefits ( social welfare  in economics parlance) rather than the 
distribution of the costs and benefits among the participating firms. Two exceptions 
which take game theoretic approaches are  Ben-Zvi and Gerchak (2005)  and 
 Hartman and Dror (2005) . 

  8  Flexibility principles are presented in this volume in Chap. 3. 
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 The material on base-stock level policies with a fill rate criterion is based on 
 Sobel (2004) .   
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