
The Fraunhofer IESE Series on
Software and Systems Engineering

Jens Knodel
Matthias Naab

Pragmatic
Evaluation of
Software
Architectures

The Fraunhofer IESE Series on Software
and Systems Engineering

Series editors

Dieter Rombach
Peter Liggesmeyer

Editorial Board

Adam Porter
Reinhold E. Achatz
Helmut Krcmar

More information about this series at http://www.springer.com/series/8755

http://www.springer.com/series/8755

Jens Knodel • Matthias Naab

Pragmatic Evaluation
of Software Architectures

123

Jens Knodel
Fraunhofer IESE
Kaiserslautern
Germany

Matthias Naab
Fraunhofer IESE
Kaiserslautern
Germany

ISSN 2193-8199 ISSN 2193-8202 (electronic)
The Fraunhofer IESE Series on Software and Systems Engineering
ISBN 978-3-319-34176-7 ISBN 978-3-319-34177-4 (eBook)
DOI 10.1007/978-3-319-34177-4

Library of Congress Control Number: 2016939924

© Springer International Publishing Switzerland 2016

Figures 1.1, 1.2, 2.1, 2.2, 2.3, 3.1, 3.3, 3.4, 4.2, 5.2, 5.3, 6.2, 6.3, 6.4, 6.5, 6.6, 7.2, 8.2, 8.4, 8.5, 8.6, 8.7,
9.3, 10.2, 10.3, 10.4, 10.5 and 10.6 of the book are published with the kind permission of
© Fraunhofer IESE. All Rights Reserved.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

About this Series

Whereas software engineering has been a growing area in the field of computer
science for many years, systems engineering has its roots in traditional engineering.
On the one hand, we still see many challenges in both disciplines. On the other
hand, we can observe a trend to build systems that combine software, microelec-
tronic components, and mechanical parts. The integration of information systems
and embedded systems leads to so-called smart ecosystems.

Software and systems engineering comprise many aspects and views. From a
technical standpoint, they are concerned with individual techniques, methods, and
tools, as well as with integrated development processes, architectural issues, quality
management and improvement, and certification. In addition, they are also con-
cerned with organizational, business, and human views. Software and systems
engineering treat development activities as steps in a continuous evolution over
time and space.

Software and systems are developed by humans, so the effects of applying
techniques, methods, and tools cannot be determined independent of context.
A thorough understanding of their effects in different organizational and technical
contexts is essential if these effects are to be predictable and repeatable under
varying conditions. Such process–product effects are best determined empirically.
Empirical engineering develops the basic methodology for conducting empirical
studies and uses it to advance the understanding for the effects of various engi-
neering approaches.

The series presents engineering-style methods and techniques that foster the
development of systems that are reliable in every aspect. All the books in the series
emphasize the quick delivery of state-of-the-art results and empirical proof from
academic research to industrial practitioners and students. Their presentation style is
designed to enable the reader to quickly grasp both the essentials of a methodology
and how to apply it successfully.

v

Foreword

Many activities in software engineering benefit from explicit documentation of the
software architecture. Such activities range from cost estimation via make-or-buy
decisions to implementing software and deployment, or even the establishment of a
software product line or other forms of planned reuse.

However, in many projects, the documentation of software architectures is
considered as a burden and is thus avoided.

I think one of the major reasons for this reluctance to invest in software archi-
tecture documentation is the absence of feedback: Do I have a good architectural
design? Is the architecture documented well enough for my project? As a result,
developers are unsure whether the architecture is useful altogether. In fact, the
problem of the lack of feedback in architectural design exists regardless of the
documentation approach. When attempting to document the architecture, it just
becomes more obvious. Anyway, the effects of bad architectural design are also
well known: shift of risks to the later phases of software development, lowered
productivity, and, most often, unsatisfactory quality of products. The latter, in
particular, is not very surprising, as the software architecture is for many IT systems
the major factor influencing the perceived quality for customers and developers
alike.

Therefore, the role of early evaluation of software architectures is well under-
stood in research. In fact, there exists a large body of proposals on how to evaluate
software architectures for various concerns. Most approaches are informal, but
automated formal approaches also exist. The benefits of informal approaches are a
certain flexibility regarding acceptable types of architectural documentation and a
broad range of potential quality impacts of the architecture. However, they require
manual effort and depend to a considerable extent on the experience of the eval-
uation team. In contrast, formalized automated approaches require specific archi-
tectural models, but the evaluation is “objective,” as it is automated. However, only
specific quality concerns are answered.

This book addresses the very important field of software architecture evalua-
tions. It is important for two reasons: First, it provides practical means for evalu-
ating software architectures, which is relevant to the reasons given above. Second, it
bundles experiences and how-to guidelines for the manual approaches, which
particularly benefit from exactly such experiences and direct guidelines. This book

vii

is an invaluable help in bundling the existing body of knowledge and enriching it
strongly with real-world project expertise of the authors. It is not only a major step
toward the practical applicability of software architecture evaluation but also helps
to find good designs right at the beginning, as it helps to avoid design errors in all
phases of a software system’s lifecycle.

I wish the readers many insights from the abundant experience of the authors and
a lot of fun when applying the knowledge gained.

Prof. Dr. Ralf H. Reussner
Chair Software Design and Quality, Karlsruhe Institute of Technology (KIT) and
Executive Director, Forschungszentrum Informatik (FZI), Karlsruhe, Germany

viii Foreword

Preface

What is the Point of This Book?

Software architecture evaluation is a powerful means to mitigate risks when making
decisions about software systems, when constructing them, when changing them,
when considering (potential) improvements, or when reasoning about ways to
migrate. Architecture evaluation is beneficial in such cases either by predicting
properties of software systems before they are built or by answering questions about
existing systems. Architecture evaluation is both effective and efficient: effective, as
it is based on abstractions of the system under evaluation, and efficient, as it can
always focus only on those facts that are relevant for answering the evaluation
questions at hand.

Acknowledging the need for architecture evaluation does not necessarily mean
that it has been adopted by practitioners. Although research has disseminated
numerous publications about architecture evaluation, a pragmatic and practical
guide on how to apply it in one’s own context and benefit from it is still missing.
With this book we want to share our lessons learned from evaluating software
architectures. We do not aim at reinventing the wheel; rather, we present a con-
solidation of useful ideas from research and practice, adapting them in such a way
as to make them applicable efficiently and effectively—in short, we take a prag-
matic approach to evaluating software architectures. Where necessary, we will fill
in gaps in existing approaches, in particular in the areas of scalability and appli-
cability. Additionally, we aim at interrelating all aspects and techniques of archi-
tecture evaluation and creating an understandable and memorable overall picture.
We will refer to examples of real architecture evaluation cases from our industrial
practice (anonymized due to confidentiality reasons) and provide data on projects.

ix

Why Read This Book?

“The most serious mistakes are not being made as a result of wrong answers.
The truly dangerous thing is asking the wrong question.”

Peter Ferdinand Drucker

We think that thorough and continuous architecting is the key to overall success in
software engineering, and architecture evaluation is a crucial part of architecting.
Asking the right questions and knowing about the right techniques to answer is
crucial for applying architecture evaluations as a valuable and pragmatic means of
technical risk management in software engineering.

To date (i.e., as of February 2016), we have conducted more than 75 architecture
evaluation projects with industrial customers in the past decade. In each of these
projects, at least one of the authors has been directly or indirectly involved as part
of our jobs as architects and consultants at the Fraunhofer Institute for Experimental
Software Engineering IESE. Fraunhofer IESE is an applied research institute for
software engineering located in Kaiserslautern, Germany. These projects covered a
large number of different types of systems, industries, organizational constellations,
technologies, modeling and programming languages, context factors, and, of
course, a whole spectrum of different evaluation results. Most importantly, we
collected a lot of evaluation questions that were asked and operationalized them
into actions.

“You can’t control what you can’t measure.”

Tom DeMarco

“Everything that can be counted does not necessarily count; everything that
counts cannot necessarily be counted.”

Albert Einstein

While scientific literature on architecture evaluation approaches is available, the
number of publications on practical experiences is rather limited. The contribution
of this book consists of the presentation and packaging of our experiences together
with context factors, empirical data, example cases, and lessons learned on miti-
gating the risk of change through architecture evaluation. Our approach for archi-
tecture evaluation (called RATE Rapid ArchiTecture Evaluation) has evolved and
been proven successful in many projects over the past decade. We will provide an

x Preface

in-depth description on the ingredients of our approach, but will also tackle the field
of architecture evaluation as a whole, as many of our insights and findings are
independent of the approach.

After reading this book, the target audiences will be able to take their own steps
in evaluating software architecture. By giving comprehensive answers to more than
100 typical questions (including questions we had, questions we heard, and ques-
tions our industrial partners had) and discussing more than 60 frequent mistakes and
lessons learned, readers will take their first steps on ground paved by more than a
decade of the authors’ experiences.

Even more importantly, readers will learn how to interpret the results of an
architecture evaluation. They will become aware of risks such as false conclusions,
fiddling with data, and wrong lines of arguments in evaluations. Last but not least,
readers will become confident in assessing quantitative measurement results and
will learn when it is better to rely on qualitative expertise. In short, it is important to
be aware what counts in architecture evaluation.

The target audience for the experience shared with this book includes both
practitioners and researchers. On the one hand, we aim at encouraging practitioners
to conduct architecture evaluations by showing the impact and lowering the hurdles
to making first attempts on their own by providing clear guidelines, data, and
examples. On the other hand, we aim at giving researchers insights into industrial
architecture evaluations, which can serve as basis for guiding research in this area
and may inspire future research directions.

How Should I Read This Book?

Our book is structured into three parts explaining the background of architecture
evaluation, describing concrete evaluation techniques, and offering hints on how to
successfully start and institutionalize architecture evaluation in practice.

Part I What is the Point of Architecture Evaluation?
Part II How to Evaluate Architectures Effectively and Efficiently?
Part III How to Apply Architecture Evaluation in Practice?

• For an executive summary on one page, please jump directly to question Q.117
on page 148.

• For architects, developers, or as learning material for aspiring evaluators, all
three parts are highly relevant.

• For managers, mainly Part I and Part III are relevant.
• For a quick start into an evaluation, we recommend starting with question

Q.117, reading Chaps. 3, 4, and 11, then proceeding directly to the respective
checks you want to conduct in Chaps. 5–9.

Preface xi

http://dx.doi.org/10.1007/978-3-319-34177-4_3
http://dx.doi.org/10.1007/978-3-319-34177-4_4
http://dx.doi.org/10.1007/978-3-319-34177-4_11
http://dx.doi.org/10.1007/978-3-319-34177-4_5
http://dx.doi.org/10.1007/978-3-319-34177-4_9

In order to serve practitioners’ needs in the best possible way, the entire book is
structured along questions. These questions are organized in a hierarchical and
uniform way to cover the big picture of architecture evaluation. For every topic, we
also present frequently made mistakes we often encountered in practice and give
hints on how to avoid them. Lists containing all questions, all frequently made
mistakes, and the lessons learned serve to offer quick guidance for the reader.

In the following, we depict the recurring patterns that guide readers through the
book. To a large extent, the chapters follow a uniform structure and are organized
internally along questions. The questions are numbered consecutively. Frequent
mistakes and lessons learned are visually highlighted, as shown in the following
examples.

1:1 What is the point?
! This section summarizes the key points of the chapter’s topic.
1:2 How to do it effectively and efficiently?
! Here we present detailed descriptions and guidance.
1:3 What mistakes are made frequently in practice?
! This section names typical pitfalls and points out how to avoid them.

Q.001. Question

Frequently made mistake

! Question Q.00X (please read this question for more background
information)

Lesson learned

xii Preface

Acknowledgments

We would like to express our gratitude to our families, our colleagues (past and
present), our customers, and the software architecture community.

We thank our families for their continuous support and encouragement in
writing this book.

We had the opportunity to work and collaborate with great people at Fraun-
hofer IESE, where architecture evaluation has been a field of expertise for far more
than 10 years now. We would like to thank our institute’s directors Peter
Liggesmeyer and Dieter Rombach for giving architecture evaluation a high degree
of awareness and visibility. We also thank our past and present colleagues at
Fraunhofer IESE for collaborating with us in software architecture projects and
helping us to evolve our architecture evaluation method. The architecture evalua-
tion projects making up this book would not have been possible without you.

We would like to thank Stefan Georg, Jens Heidrich, Thorsten Keuler, Torsten
Lenhart, Mikael Lindvall, Dirk Muthig, Stefan Toth, Marcus Trapp, Carl Worms,
and Stefan Zörner for their reviews and valuable feedback on earlier versions of this
book. We are especially happy about the foreword by Ralf Reussner. Our special
thanks go to Sonnhild Namingha for her excellent proofreading.

More than 75 customer projects were the key enabler of this book—as writing
for practitioners is only possible when collaborating with practitioners. The col-
laboration with companies worldwide gave us lots of practical experience.
Although we are not allowed to name them, we would like to thank our customers
for their trust and the insights we were able to learn.

Over the years, we had many inspiring discussions with practitioners and
researchers all over the world about software architecture in general and architec-
ture evaluation in particular. We would like to thank them for stimulating ideas,
shared insights, and their feedback to our ideas.

Finally, we would like to thank our publisher Springer and in particular Ralf
Gerstner for his continuous support and his patience on the long journey of getting
this book done—at last.

xiii

Contents

Part I What Is the Point of Architecture Evaluation?

1 Why Architecture Evaluation? . 3

2 What Is the Background of Architecture? 11

3 What Is Architecture Evaluation? . 21

4 How to Perform an Architecture Evaluation? 35

Part II How to Evaluate Architectures Effectively and Efficiently?

5 How to Perform the Driver Integrity Check (DIC)? 49

6 How to Perform the Solution Adequacy Check (SAC)?. 59

7 How to Perform the Documentation Quality Check (DQC)? 73

8 How to Perform the Architecture Compliance Check (ACC)? 83

9 How to Perform the Code Quality Check (CQC)? 95

Part III How to Apply Architecture Evaluation in Practice?

10 What Are Example Cases of Architecture Evaluation? 107

11 How to Engage Management in Architecture Evaluation? 127

12 How to Acquire Architecture Evaluation Skills?. 137

xv

http://dx.doi.org/10.1007/978-3-319-34177-4_1
http://dx.doi.org/10.1007/978-3-319-34177-4_1
http://dx.doi.org/10.1007/978-3-319-34177-4_2
http://dx.doi.org/10.1007/978-3-319-34177-4_2
http://dx.doi.org/10.1007/978-3-319-34177-4_3
http://dx.doi.org/10.1007/978-3-319-34177-4_3
http://dx.doi.org/10.1007/978-3-319-34177-4_4
http://dx.doi.org/10.1007/978-3-319-34177-4_4
http://dx.doi.org/10.1007/978-3-319-34177-4_5
http://dx.doi.org/10.1007/978-3-319-34177-4_5
http://dx.doi.org/10.1007/978-3-319-34177-4_6
http://dx.doi.org/10.1007/978-3-319-34177-4_6
http://dx.doi.org/10.1007/978-3-319-34177-4_7
http://dx.doi.org/10.1007/978-3-319-34177-4_7
http://dx.doi.org/10.1007/978-3-319-34177-4_8
http://dx.doi.org/10.1007/978-3-319-34177-4_8
http://dx.doi.org/10.1007/978-3-319-34177-4_9
http://dx.doi.org/10.1007/978-3-319-34177-4_9
http://dx.doi.org/10.1007/978-3-319-34177-4_10
http://dx.doi.org/10.1007/978-3-319-34177-4_10
http://dx.doi.org/10.1007/978-3-319-34177-4_11
http://dx.doi.org/10.1007/978-3-319-34177-4_11
http://dx.doi.org/10.1007/978-3-319-34177-4_12
http://dx.doi.org/10.1007/978-3-319-34177-4_12

13 How to Start and Institutionalize Architecture Evaluation? 141

14 What Are the Key Takeaways of Architecture Evaluation? 147

About Fraunhofer IESE. 149

Bibliography . 151

xvi Contents

http://dx.doi.org/10.1007/978-3-319-34177-4_13
http://dx.doi.org/10.1007/978-3-319-34177-4_13
http://dx.doi.org/10.1007/978-3-319-34177-4_14
http://dx.doi.org/10.1007/978-3-319-34177-4_14

Table of Questions

Q.001. What Is Architecting? . 3
Q.002. Why Invest in Software Architecture, Which Is Only

an Auxiliary Construct in Software Engineering? 4
Q.003. What Is the Role of Architecture Evaluation

in Software Engineering? . 4
Q.004. What Are the Benefits of Architecture Evaluation? 6
Q.005. Who Should Ask for an Architecture Evaluation?. 6
Q.006. Who Executes Architecture Evaluations? 7
Q.007. What Is the Return on Investment for Architecture

Evaluations? . 8
Q.008. What Causes Complexity in Software Engineering

and Architecting? . 11
Q.009. What Drives Architecting?. 13
Q.010. How Does Architecting Work? . 13
Q.011. Why Is Architecting Complicated in Practice? 15
Q.012. How Do I Bridge the Gap Between “What & How”? 17
Q.013. What are Context Factors for Architecting and for Evaluating

Architectures? . 17
Q.014. What Is the Mission of Architecture Evaluation? 21
Q.015. What Does Our Architecture Evaluation Method Consist of? 22
Q.016. What Determines the Scope of an Architecture Evaluation? 26
Q.017. What Are the Basic Confidence Levels in Architecture

Evaluation? . 26
Q.018. What Is the Outcome of an Architecture Evaluation? 28
Q.019. How to Interpret the Findings of an Architecture Evaluation? . . . 28
Q.020. How to Aggregate the Findings of an Architecture

Evaluation? . 30
Q.021. What Are the Limitations of Architecture Evaluation?. 32
Q.022. What Is a Good Metaphor for Architecture Evaluation?. 32
Q.023. When Should an Architecture Evaluation Be Conducted? 35
Q.024. What Are the Steps to Follow When Performing

Architecture Evaluations? . 36
Q.025. How to Define Evaluation Goals? . 36

xvii

Q.026. How to Shape the Context of an Architecture
Evaluation Project?. 37

Q.027. How to Set Up an Architecture Evaluation Project? 38
Q.028. Who Should be Involved in an Architecture Evaluation? 39
Q.029. How to Involve Stakeholders in Architecture

Evaluation Projects? . 39
Q.030. Why Manage Stakeholders’ Expectations? 40
Q.031. How to Conduct an Architecture Evaluation Project? 40
Q.032. How to Interpret the Evaluation Results?. 42
Q.033. How to Present Evaluation Results? . 42
Q.034. What Is the DIC (Driver Integrity Check)? 49
Q.035. Why Is the DIC Important? . 51
Q.036. How to Exploit the Results of the DIC? 52
Q.037. What Kind of Input Is Required for the DIC? 52
Q.038. How to Execute the DIC? . 53
Q.039. What Kind of Output Is Expected from the DIC? 53
Q.040. What Do Example Results of the DIC Look Like? 55
Q.041. How to Rate the Results of the DIC? . 55
Q.042. What Are the Confidence Levels in a DIC? 55
Q.043. What to Do with the Findings of the DIC? 56
Q.044. What Kind of Tool Support Exists for the DIC?. 57
Q.045. What Are the Scaling Factors for the DIC? 57
Q.046. What Is the SAC (Solution Adequacy Check)? 59
Q.047. Why Is the SAC Important? . 61
Q.048. How to Exploit the Results of the SAC? 62
Q.049. What Kind of Input Is Required for the SAC? 62
Q.050. How to Execute the SAC?. 62
Q.051. What Kind of Output Is Expected from the SAC? 65
Q.052. What Do Example Results of the SAC Look Like? 67
Q.053. How to Rate the Results of the SAC? . 67
Q.054. What Are the Confidence Levels in an SAC? 68
Q.055. What Kind of Tool Support Exists for the SAC? 69
Q.056. What Are the Scaling Factors for the SAC?. 69
Q.057. What Is the Relationship Between the SAC

and Architecture Metrics? . 70
Q.058. What Is the DQC (Documentation Quality Check)? 73
Q.059. Why Is the DQC Important? . 76
Q.060. How to Exploit the Results of the DQC?. 76
Q.061. What Kind of Input Is Required for the DQC?. 77
Q.062. How to Execute the DQC? . 77
Q.063. What Kind of Output Is Expected from the DQC? 78
Q.064. What Do Example Results of the DQC Look Like? 78
Q.065. How to Rate the Results of the DQC? 79
Q.066. What Are the Confidence Levels in a DQC? 80
Q.067. What Kind of Tool Support Exists for the DQC? 80

xviii Table of Questions

Q.068. What Are the Scaling Factors for the DQC? 81
Q.069. What Is the ACC (Architecture Compliance Check)? 83
Q.070. Why Is the ACC Important? . 85
Q.071. How to Exploit the Results of the ACC?. 86
Q.072. What Kind of Input Is Required for the ACC?. 87
Q.073. How to Execute the ACC? . 87
Q.074. What Kind of Output Is Expected from the ACC? 88
Q.075. What do Example Results of the ACC Look Like?. 90
Q.076. How to Rate the Results of the ACC?. 90
Q.077. What Are the Confidence Levels in an ACC? 91
Q.078. What Kind of Tool Support Exists for the ACC? 92
Q.079. What Are the Scaling Factors for the ACC? 93
Q.080. What Is the CQC (Code Quality Check)? 95
Q.081. Why Is the CQC Important? . 97
Q.082. How to exploit the results of the CQC?. 97
Q.083. What Kind of Input Is Required for the CQC?. 98
Q.084. How to Execute the CQC? . 98
Q.085. What Kind of Output Is Expected from the CQC? 100
Q.086. What Do Example Results of the CQC Look Like? 100
Q.087. How to Rate the Results of the CQC?. 100
Q.088. What Are the Confidence Levels in a CQC? 101
Q.089. What Kind of Tool Support Exists for the CQC? 102
Q.090. What Are the Scaling Factors for the CQC? 103
Q.091. What Is an Example Case of Critical Decision-Making

Regarding a System’s Future (Example 1)? 107
Q.092. What Is an Example Case for Risk

Management (Example 2)? . 110
Q.093. What Is an Example Case of Making a Decision

Between Two Technology Candidates (Example 3)? 113
Q.094. What Is an Example Case of Institutionalizing Architecture

Compliance Checking at an Organization (Example 4)? 115
Q.095. What Did We Learn About Architecture During System

Construction and Software Change? . 118
Q.096. What Did We Learn About Maintainability

as a Quality Attribute? . 120
Q.097. What Did We Learn About the Interpretation

of the Results from Architecture Evaluation? 123
Q.098. What Did We Learn About Risk Mitigation in General? 124
Q.099. How Did Our Evaluation Approach Evolve Over Time? 125
Q.100. Why Does Management Need to Be Engaged in Architecture

Evaluation? . 127
Q.101. How to Convince Management of the Need for Architecture

Evaluation? . 128
Q.102. What Are the Scaling Factors for Effort Spent

on Architecture Evaluations? . 130

Table of Questions xix

Q.103. What Are Typical Figures for Architecture
Evaluation Activities? . 131

Q.104. What Are Typical Findings and Potential Gains
of Architecture Evaluation? . 132

Q.105. Why Turn Architecture Evaluation Results into Actions?. 132
Q.106. What Are Possible Improvement Actions? 133
Q.107. Why Is Architecture Evaluation Worthwhile?. 135
Q.108. What Is the Relationship to Architecture Skills in General? 137
Q.109. What Sources of Learning Are There? 139
Q.110. How Does the Approach of This Book Relate

to Other Methods? . 139
Q.111. Why Is It Often Difficult to Start Architecture Evaluation? 141
Q.112. What Opportunities Exist for Starting with Architecture

Evaluation? . 142
Q.113. What Are Best Practices for Starting and Institutionalizing

Architecture Evaluation? . 143
Q.114. How to Make Architecture Evaluation Sustainable

Within a Development Organization? . 144
Q.115. What Are Promising Improvements of the Evaluation Methods?. . 145
Q.116. What Is the Key Message of This Book? 147
Q.117. What Is the Essence of Architecture Evaluation? 148

xx Table of Questions

Table of Frequent Mistakes
and Lessons Learned

Frequent Mistakes

Always giving the architecture evaluation reduced priority 146
Architecture evaluation used for politics instead of improvement. 136
Being too superficial in the evaluation . 70
Checking only documentation best practices and not the suitability
for the audience . 82
Conducting the architecture evaluation without the necessary strictness . . . 44
Considering compliance checking as a one-time activity 94
Distracting the architecture evaluation by focusing too much
on templates . 70
Doing no architecting at all . 19
Doing no architecture evaluation at all . 33
Evaluating against unclear architecture drivers . 57
Evaluating one’s own architecture on-the-fly . 45
Evaluating only the quality of the documentation 33
Evaluating whether the architecture is “state-of-the-art” 34
Focusing on architecture metrics or code metrics only 33
Focusing on source code measurement only and believing
that’s enough . 103
Focusing solely on methodical skills for the evaluation 140
Focusing solely on technological and system-related skills
for the evaluation . 140
Having no clear goals for an architecture evaluation 44
Having no explicit architecture documentation . 19
Having no idea about architecture evaluation at all 9
Having no patience to wait for the evaluation results 135
Having no systematic approach for an architecture evaluation 44
Improperly dealing with levels of confidence . 71
Inadequately interpreting the evaluation results . 45
Inadequately presenting the evaluation results to the stakeholders 45
Losing the good atmosphere due to the evaluation 71
Losing the overview over the number of drivers and decisions 71
Mixing up the results of the SAC and those of the DQC 81

xxi

Neglecting follow-up activities despite a pressing need 136
Not being able to engage in an architecture evaluation
for a particular case . 9
Not being aware of drift in architecting . 20
Not being aware of the architecting Bermuda Triangle. 20
Not being aware that drift is often unavoidable . 20
Not having the skills or the right people to execute
an architecture evaluation . 9
Not refining the scope of compliance checking over time. 94
Positioning certain metric values as goals in an incentive system 104
Postponing the start of architecture evaluation activities 146
Prophet in one’s own country syndrome . 45
Reading a book and thinking that this is all that is necessary
to be able to evaluate software architectures . 140
Reducing the evaluation results to the traffic lights only. 33
Replacing the SAC with automated measurement
of architecture metrics . 72
Selecting the wrong evaluation setup for the concrete context 44
Simply removing architecture violations is not enough. 94
Starting architecture evaluation without management support 135
Waiting too long to achieve driver integrity . 57

Lessons Learned

All architecture evaluation is not the same . 125
Architecting lacks a clear mission in software projects 124
Architecting plays a first-class role during development,
but not during maintenance . 118
Architecture evaluations have to evaluate implicit decisions made
in people’s minds, explicit decisions found in documentation,
and decisions manifested in system implementations 125
Daily workload wins over architecture evaluations 119
Development becomes agile, but architecting in sprints only
is not enough . 118
Early and essential architecture design decisions
are indeed fundamental . 118
Evaluation results are expected to be delivered immediately 124
“It depends” is not a good final answer . 124
Maintainability is a quality attribute with many indirections 121
Maintainability is a versatile quality attribute . 120
Measuring maintainability requires a mix of checks. 122
Measuring quality attributes in general requires a mix of checks 122
New features kill architecture work . 120
No standard interpretation of evaluation results is possible 123
Patient dies on the way to the hospital . 119

xxii Table of Frequent Mistakes and Lessons Learned

Plain numbers are preferred over statements and interpretations
provided by architecture evaluations . 123
Rather refactor in the small than challenge your own decisions made
in the past . 119
Representation of evaluation results for management people
and non-technical decision makers is challenging 123
Some architecture problems can be fixed easily 119
Some architecture problems can’t be fixed (easily) 119
Stakeholders sometimes try to influence the interpretation
to achieve their own goals . 124
Tool-based reverse engineering often leads to impressive
but useless visualizations . 120

Table of Frequent Mistakes and Lessons Learned xxiii

Part I
What Is the Point of Architecture

Evaluation?

1Why Architecture Evaluation?

Architecture evaluation is a valuable, useful, and worthwhile instrument for
managing risks in software engineering. It provides confidence for decision-making
at any time in the lifecycle of a software system. This chapter motivates architecture
evaluation by explaining its role and its initiators, and by pointing out its benefits.
Architecture evaluation requires investments, but saves time and money (if done
properly) by preventing wrong or inadequate decisions.

1.1 What Is the Point?

Q.001. What Is Architecting?

Architecting, in its core essence, is the creative activity of software engineers
making principal design decisions about a software system to be built or to be
evolved. It translates concerns and drivers in the problem space into design deci-
sions and solution concepts in the solution space.

Architecting is the process of coming up with some kind of solution for some
kind of problem. Key to success for the architect is awareness of the problem to be
solved and the design of an adequate solution considering given context factors.
Consequently, any principal design decision made in advance is an investment in
software engineering: the design decisions capture the output of reasoning based on
facts, assumptions, and experiences and prescribe an implementation plan to satisfy
the desired properties of the software system.

As a matter of fact, every software system has an architecture. The question is
whether it is known or not, whether it has been designed proactively and inten-
tionally or has emerged accidentally, and whether the design decisions have been

© Springer International Publishing Switzerland 2016
J. Knodel and M. Naab, Pragmatic Evaluation of Software Architectures,
The Fraunhofer IESE Series on Software and Systems Engineering,
DOI 10.1007/978-3-319-34177-4_1

3

explicitly documented or are only known and communicated implicitly. Therefore,
architecting denotes the process of deliberately designing, using, communicating,
and governing the architecture of a system.

Q.002. Why Invest in Software Architecture, Which Is Only
an Auxiliary Construct in Software Engineering?

Because it saves time and money (if done properly) by preventing repeated trial and
error.

The architecture offers an escape from the complexity trap. It systematically
provides abstractions to enable coping with the complexity of modern software
systems. Common software engineering practice is to use software architectures as
the central vehicle for prediction, analysis, and governance over the whole lifecycle
of a software system. The architecture enables the architects to reason about the
pros and cons of design decisions and alternatives. Any principal design decision,
and thus architecting itself as an activity, is always accompanied by the potential
risk of being wrong or turning out to be extremely expensive.

The architecture enables making the right trade-offs between functionality and
quality attributes. It assures that the technical aspects of realizing business goals are
met by the underlying software system. Without investing effort into software
architecture, it is unlikely that a software system with adequate quality (e.g.,
maintainability, performance, security, etc.) can be developed in time and on
budget.

Q.003. What Is the Role of Architecture Evaluation in Software
Engineering?

Architecture evaluation is a crucial assessment technique for mitigating the risks
involved in decision-making. It contributes to the typical assessment questions
depicted in Fig. 1.1. Note that architecture evaluation does not aim at answering the
question “Is this design (or the decisions leading to it) good or bad?”. It rather
evaluates whether the architecture is adequate to address the stakeholder concerns
or not. However, having a well-designed architecture is just half the rent. The
best-designed architecture does not help at all if it is not properly realized in the
source code (the so-called drift between intended and implemented architecture).
Hence, architecture evaluation further aims at making sure that the right design
decisions have been manifested correctly in the implementation. The architecture is
only of value if the implemented system is built as prescribed by the architecture;
otherwise, all investments made into architecting become delusive and useless.

4 1 Why Architecture Evaluation?

Consequently, the mission of architecture evaluation is twofold: (1) to determine
the quality of the (envisioned) software system and (2) to determine the quality of
the (auxiliary) artifacts created during architecting or derived from the architecture.

Architecture evaluation supports informed decision-making: It creates aware-
ness of risks and allows understanding potential trade-offs and side effects in
decision-making. It aims at delivering quantitative and/or qualitative facts as input
to decision-making. The architecture evaluation reveals design decisions (already
made or under discussion) to address concrete stakeholders concerns and make
them explicit. This enables challenging these design decisions and reasoning about
their adequacy for addressing the stakeholder concerns. Risks associated with the
design decisions can be made explicit, either to discuss mitigation measures or to
find an alternative solution that fits the given context.

Architecture evaluation supports tracking of the realization of decisions
made: Architecture evaluation creates awareness of drifts between the intended
architecture (as designed) and the implemented architecture (as codified). The
implemented architecture is typically not visible directly; rather, it is usually buried
deeply in the source code and has to be extracted by means of reverse engineering
or architecture reconstruction techniques. Since the architecture describes not only
static artifacts of a system at development time, it might be necessary to mine for
information from the system behavior at runtime. Risks associated with drift are
detected and support the tracking of decisions made.

Software

Product

Assessment

Did we
identify the

right
stakeholders?

Did we elicit
the right
concerns?

Did we set the
right scope of

delivery?

Did we design
the right
solution?

Did we build
the product

right?

Did the
product satisfy
the concerns?

Fig. 1.1 Software product assessment questions. © Fraunhofer IESE (2015)

1.1 What Is the Point? 5

Q.004. What Are the Benefits of Architecture Evaluation?

The key benefit of architecture evaluation is to deliver guidance—for making
business decisions, for making technology decisions, for controlling product
quality, and last but not least for managing the evolution and migration of software
systems. Any decision comes with the risk of being inadequate: thus, architecture
evaluation aims at sustaining the investments made.

The obvious advantage of an architecture evaluation is, of course, the subsequent
improvement of the architecture as such. Given the fact that the architecture (or the
design decisions made) often determines the success or failure of arbitrary projects
(e.g., software construction, software acquisition, software customization, retire-
ment), it is clear that effort should be spent in every project on getting the archi-
tecture right. Architecture evaluation helps to avoid running into problems with
respect to quantity, quality, budget, and/or time. This stresses the importance of
architecture in general and architecture evaluation as a means for assuring its
quality in particular. Consequently, the need for a systematic approach for archi-
tecture evaluation is obvious—and it is no surprise that architecture evaluation is
considered one of the software engineering best practices in both research and
industry. Numerous success stories in industry are proof of the crucial role of
architecture evaluation in reaping benefits for risk management.

Besides, architecture evaluation provides other positive side effects: Its results
can be the basis for improving the documentation of the software system under
evaluation. Implemented violations of architecture decisions can be revealed as well
and can be refactored afterwards. Furthermore, the organization’s awareness for the
architecture is raised (at least for the stakeholders directly or indirectly involved in
the evaluation).

In summary, the advantages of architecture evaluation are significant. We
believe it should be part of the quality assurance portfolio of any software devel-
opment organization. However, the return on investment for evaluating architecture
is only positive if the results can be achieved with adequate effort and if fast
feedback is provided regarding the design decisions made with respect to the
achievement of stakeholder concerns.

Q.005. Who Should Ask for an Architecture Evaluation?

There is no single stakeholder (see Fig. 1.2) who is typically interested in an
architecture evaluation. Depending on the overall situation of the development and
the evaluation goals, very different stakeholders may ask for an architecture
evaluation.

Stakeholders who own an architecture evaluation may be from the company that
develops the software system or from another company. In the same company, the
owner of an architecture evaluation may be the architect or the development team
itself, or higher development management. In particular, architects of a system
should be interested in evaluating their own architectures. However, other

6 1 Why Architecture Evaluation?

stakeholders may also be interested: for example, method support groups that
intend to introduce and manifest architecture practices for improving overall soft-
ware development quality. In addition, top management stakeholders may be
interested in an architecture evaluation when they have to make decisions about
software that will have a far-reaching impact.

On the other hand, stakeholders from external companies might also be inter-
ested in architecture evaluations. Potential customers or potential investors might be
interested in the quality of a system and how adequate it is for the customer’s
purposes and requirements in the context of product selection and risk mitigation.
Current customers have to make decisions about the future of acquired software
systems: Is there enough confidence that the system will evolve in the right
direction? What will happen if the customer’s own context changes—for example,
if its customer base strongly increases? Will the acquired system still be adequate or
would it need to be replaced?

Q.006. Who Executes Architecture Evaluations?

Determining who is best suited for an architecture evaluation strongly depends on
the goals of the evaluation.

An architecture evaluation can be done by very different people. Software
architects who design a system should continuously challenge their own design
decisions. Whenever they make a decision, they directly reflect on how well the
tackled drivers are fulfilled by the decision they just made as well as those they
made earlier. They should also reflect on how the current decision affects other
drivers. These continuous evaluations can be augmented by the opinion of other
people with direct involvement in decision-making, such as developers or product
managers.

Owner

… in same
Company

Top Management

Development
Management

Development
Team

Method Support
Group

… in other
Company

Current
Customer

Potential
Customer

Potential
Investor

Fig. 1.2 Typical initiators of architecture evaluations. © Fraunhofer IESE (2014)

1.1 What Is the Point? 7

As architects are human beings, they tend to overlook deficiencies in their own
work. Thus, it is often useful to get neutral people involved in the performance of an
architecture evaluation at critical points. These neutral people may be from the same
company: Internal auditors perform architecture evaluations as a (regular) quality
engineering instrument. Internal auditors may be other architects, technology
experts, or experienced developers. They typically have in-depth domain knowl-
edge, are at least partially aware of the architecture/system history, and are poten-
tially familiar with the overall vision and roadmap of the software system, its
business goals, and the requirements to be satisfied in the next releases. Internal
auditors may face the challenge of being low priority when requesting information or
they may be ignored when summarizing the results and pinpointing identified risks.

However, sometimes it is even better to get a completely external opinion from
external auditors. External auditors provide an objective evaluation delivered by
qualified and experienced people. External auditors often apply a more formal
approach for systematically eliciting and collecting information. They have pre-
defined templates for audit presentations and reports that create higher visibility and
awareness of the results. They avoid the “prophet in one’s own country” symptom.
In case of conflicts, external auditors can be neutral towards all involved parties.

Q.007. What Is the Return on Investment for Architecture
Evaluations?

In our experience, architecture evaluation is a worthwhile investment that pays off.
Any wrong or inadequate decision prevented or any risk avoided may save suffi-
cient time and/or effort to pay for the evaluation. The cost for reversing fundamental
or business-critical design decisions typically outweighs the investment required for
architecture evaluation.

In more than 75 architecture evaluation projects in the past ten years in which we
performed architecture evaluations or were part of a team of external auditors, we
received—without any exception—positive feedback about the results and the
output. In most cases, the cost for the auditing contract consumed less than one
percent of the overall project budget. In most cases, the architecture evaluation
results were delivered within a few weeks and were perceived as valuable input to
decision-making by the sponsor of the evaluation. Architecture evaluation results
are always expected to be delivered immediately as they deal with critical stake-
holder concerns. This means that the “time to evaluate” is in many cases a critical
factor for the overall success of the architecture evaluation.

In a nutshell, architecture evaluations serve to improve the architecture and
mitigate risks. They identify problems, allow early and quick corrective reactions,
and provide valuable input to decision-making for future-proof systems. Archi-
tecture evaluation results can be achieved rapidly with comparably low effort and
provide fast feedback regarding stakeholder concerns. Avoiding just a single risk
can already save more time and effort than what is required for conducting the
architecture evaluation.

8 1 Why Architecture Evaluation?

1.2 What Mistakes Are Frequently Made in Practice?

Having no idea about architecture evaluation at all.

If stakeholders do not know what an architecture evaluation is (i.e., if they are
not aware of its benefits, procedures, and limitations), they are unable to use
architecture evaluation as an instrument for quality assurance. This means risks may
remain uncovered and crucial design decisions may be realized without critical
reasoning and challenging of the decision.

This book and in particular Chap. 3 will allow the reader to learn about the key
issues and characteristics of architecture evaluation. Stakeholders can use the
detailed descriptions and sample cases used throughout this book to match them to
their particular situations. We consider architecture evaluation to be a crucial
instrument for assessing software products and believe that it should be part of the
quality assurance portfolio of every software development organization.

! Questions Q.003, Q.004, Q.014, Chaps. 3 and 4.

Not being able to engage in an architecture evaluation for a particular
case.

Stakeholders might be aware of the power of architecture evaluation and cur-
rently have a concrete case for architecture evaluation at hand, but they might not
be able to engage in the architecture evaluation. The advocates for an architecture
evaluation might not be able to convince management, or technical stakeholders
might not be willing to participate.

! Questions Q.028, Q.029, Q.030, Q.100, Q.101.

Not having the skills or the right people to execute an architecture
evaluation.

Stakeholders willing to go for an architecture evaluation might face the chal-
lenge of identifying a skilled auditor for the task. Instead of starting immediately
with a good enough candidate, they might spend too much time and effort on
selecting an auditor. We experienced more than ten cases with long preparation
phases prior to the actual architecture evaluation where the patient eventually died
on the way to the hospital (before we could start evaluating, the project was
canceled due to inadequate architecture). Being successful in evaluating

1.2 What Mistakes Are Frequently Made in Practice? 9

http://dx.doi.org/10.1007/978-3-319-34177-4_3
http://dx.doi.org/10.1007/978-3-319-34177-4_3
http://dx.doi.org/10.1007/978-3-319-34177-4_3
http://dx.doi.org/10.1007/978-3-319-34177-4_4
http://dx.doi.org/10.1007/978-3-319-34177-4_4
http://dx.doi.org/10.1007/978-3-319-34177-4_4
http://dx.doi.org/10.1007/978-3-319-34177-4_4
http://dx.doi.org/10.1007/978-3-319-34177-4_11
http://dx.doi.org/10.1007/978-3-319-34177-4_11

architectures requires skills and experiences and is driven by the stakeholders’ level
of confidence. To introduce architecture evaluation in an organization, one should
think big, but start small. Incremental and iterative rollout of architecture evaluation
promises to be the path to success if accompanied by coaching of architecture
evaluation skills.

! Questions Q.006, Q.098, Q.113.

10 1 Why Architecture Evaluation?

http://dx.doi.org/10.1007/978-3-319-34177-4_10
http://dx.doi.org/10.1007/978-3-319-34177-4_13

2What Is the Background
of Architecture?

We will sketch the big picture of architecting in this chapter—it is far more than just
a phase for modeling boxes and lines between requirements and implementation.
Today’s complex software systems require continuous architecting over the whole
lifecycle of the software system. We will place particular emphasis on industrial
practice, where architecting can never be done in the ideal way but where one has to
continuously make deliberate tradeoffs.

2.1 What Is the Point?

Q.008. What Causes Complexity in Software Engineering
and Architecting?

The output of software engineering is mainly the source code representing the
solution ideas translated into algorithms and data structures, which eventually are
built into an executable form. What sounds like a simple, straightforward
problem-solving process, in fact turns out to be a real engineering challenge for any
non-trivial problem—because complexity strikes back.

Complexity arises because of many reasons:

• Modern software systems are inherently complex. Understanding the prob-
lem to be solved can become difficult, in particular for legacy systems, which
have a history of design decisions made in the past—potentially forgotten,
unknown, and inadequate for today’s requirements, and causing technical debt.

• Managing the stakeholders and sponsors can be complicated. Elicitation of
the actual requirements from stakeholders can become difficult and
conflict-laden. Drift between the assumed and the actual requirement may lead
to inadequate design decisions.

© Springer International Publishing Switzerland 2016
J. Knodel and M. Naab, Pragmatic Evaluation of Software Architectures,
The Fraunhofer IESE Series on Software and Systems Engineering,
DOI 10.1007/978-3-319-34177-4_2

11

• The solution itself turns out to be a complex conglomerate of system arti-
facts. The implementation typically consists of hundreds and thousands of
source code entities and grows continuously. Obviously, it is not feasible to
manage this efficiently on the source code level. Drift between the actually
implemented architecture and the intended architecture may cause subsequent
design decisions to be made on the wrong basis.

• The collaboration of humans in teams or distributed organizations requires
the exchange of information. The resulting need for sharing adds another
dimension of complexity. Design decisions and their rationales have to be
documented explicitly, otherwise they get lost during such exchanges.

• Tools and technologies are another source of complexity. Tools and tech-
nologies promise to be beneficial in supporting engineering, but their drawbacks
are often discovered only after the decision to use them has been made. It not
easy to reverse such decisions once the tool or technology has become an
integral part of the system.

• Change is the inevitable characteristic of any successful software system. As
software is “soft”, it is often assumed that arbitrary changes can be made. In
principle, this is of course correct, but the effort required and the time needed to
accommodate the change can be enormous and hence in practice, implementing
changes is often economically infeasible. Any change entails the risk of making
wrong or inadequate design decisions.

Thus, making adequate design decisions is the most crucial thing in software
engineering. In common software engineering practice, software architectures are
used as the central vehicle for making design decisions explicit as well as for
prediction, analysis, and governance in the lifecycle.

Architecture provides the possibility to work with abstractions, which promises
to be less effort-intensive than realizing every solution idea in code and seeing
afterwards whether it works or not or which alternative works best. We believe that
architectures should be used as the central vehicle for prediction, analysis, and
governance. Of course, the benefits gained by architecting have to outweigh the
costs created by the investments into architecting. If done properly, we are able to
consciously design the software with the architecture as the conceptual tool to
manage complexity in software engineering. At the same time, we can use the
architecture as a vehicle to communicate the vision of the system, to make the right
decisions at the right time, and to save a lot of rework. Thus, architecting avoids the
trial-and-error approach of just writing source code without having a master plan.

In fact, it is commonly agreed that “every system has an architecture”. This
statement is definitely correct, as all design decisions made for an implemented
system are made somehow, somewhere, by someone. However, such an implicit
architecture has limited value, as it can’t be “used explicitly” for any purpose. This
holds true independent of the quality of the implicit architecture, even if the
architecture perfectly fulfills all requirements of the software. Thus, the mission of
architecting is to provide explicit information on everything that is important for
solving current and/or future anticipated challenges regarding the engineering,

12 2 What Is the Background of Architecture?

operation, or execution of the software. This information enables sound decision
making by the architect or any other stakeholder with the power to decide (e.g.,
management, project lead, product owner) or with the need to use this information
for other engineering tasks (e.g., development, testing, operation).

Q.009. What Drives Architecting?

The desired properties of the software system originate from stakeholders. Stake-
holders are those individuals or groups who can directly or indirectly affect, or be
affected by, the software system. Stakeholders have concerns, which shape the
product and thus drive the architecting process. Concerns in the context of the
architecture are requirements, objectives, intentions, or aspirations that stakeholders
have for the software system, as defined in (ISO/IEC 42010 2011). For any soft-
ware system, there is always a multitude of stakeholders with almost indefinite
concerns and limited time and budget to produce the software system. So architects
have to focus on what really matters: how to accomplish business goals, how to
achieve key functional and quality requirements, and how to handle given con-
straints. These are things that the architect must take care of. Architecture drivers
capture these important, significant, missing, or still unknown requirements and
complex exceptional cases, aggregate large numbers of similar (types of) or
repeating requirements, and consolidate different stakeholders’ opinions and con-
cerns. The design decisions must define solution concepts that satisfy the archi-
tecture drivers considering the given context factors (please refer to question Q.013
for more details), and thus also satisfy the most important stakeholder concerns.

Q.010. How Does Architecting Work?

Architecting translates concerns and drivers in the problem space into decisions and
manifestations in the solution space. To be successful with architecting, we first
have to understand the problem space and then we have to make design decisions in
the solution space and finally manifest the decisions made by coding the algorithms
and data structures of the software. Architecting has different facets:

• Predictive: It is used to make predictions and avoid costly trial and error.
• Prescriptive: It is used to prescribe solutions to be realized in a uniform way.
• Descriptive: It is used to build abstractions and make complexity manageable.

We recommend the following key activities for effective architecting in practice
(see Fig. 2.1), during new construction as well as maintenance of legacy systems.
These are not one-time activities but permanently accompany a system.

2.1 What Is the Point? 13

• Engage the architecture for a purpose: Define an explicit mission for archi-
tecting, plan effort and time to be spent on accomplishing the mission, track
progress, and orchestrate the architecting work.

• Elicit architecture drivers: Know and manage your stakeholders, elicit their
concerns and figure out what is important to whom and why, negotiate and
resolve conflicting concerns, and consolidate concerns into architecture drivers.
Understand the scope of the current architecture driver: be aware of what can be
influenced and what is fixed for the current architecture driver, and what might
change or could be changed.

• Design (or reconstruct) a solution: invest in being creative and designing a
solution that is adequate and appropriate for satisfying the architecture driver—
not more and not less; be explicit and document the architecture; ideally
describe what the code itself does not; document the rationale for design
decisions and discarded alternatives; reconstruct design from existing systems, if
necessary; reuse.

• Build confidence in the design: Make early predictions on quantity and quality
based on abstractions (before manifesting the decisions made), reason about
design alternatives and finally accept one (and discard the others), and convince
the stakeholders of the adequacy of the architecture to satisfy their concerns.

• Propagate decisions and exploit the design: Communicate design decisions to
subsequent engineering steps and derive system artifacts from the architecture to
manifest design decisions in the source code.

• Reflect about the decisions made and govern the architecture: Collect
feedback on the code and technology level about the decisions made; adapt and
refine, if necessary, and sustain the manifestation of design decisions by
assuring compliance of the implementation with architecture.

Design, Modeling, and
Reconstruction

Architecture
Driver
Elicitation

Decision
PropagationReflection

Confidence
Building Architecture

Stakeholder
Concerns

DERIVATION

INVESTMENT

ANALYSIS &
PLANNING

PREDICTION

GOVERNANCE

Fig. 2.1 Architecture-centric engineering: key activities. © Fraunhofer IESE (2012)

14 2 What Is the Background of Architecture?

• Embrace change: Anticipate changing and new concerns and handle unfore-
seen concerns (they are inevitable); evolve the architecture when changes occur;
seek to improve past decisions, if necessary; iterate over the activities as listed
above.

In theory, architecting sounds simple and straightforward, but in practice it is far
more complicated.

Q.011. Why Is Architecting Complicated in Practice?

At any stage, drift happens between explicit and implicit information—accidentally
or intentionally (see Fig. 2.2). Mastering this drift is the major challenge for
architecting in practice.

Architecture and consequently the resulting software system have to follow the
concerns of the stakeholders. Not being aware of a drift in concerns might result in
investing design and engineering effort for the wrong items (i.e., concerns not
intended by the stakeholders). However, drift is inevitable when architecting in
practice. Stakeholders as the sources of architecture drivers may change their minds
and may change their view on certain aspects of the system over time. Architects
themselves may deviate from the information they made explicit in the documen-
tation. Last but not least, developers may diverge from the decisions made by the
architect.

Thus, mastering the drift requires continuous architecting over the whole life-
cycle of the software system. The architect needs to promote the architecture and
constantly gather information about stakeholders’ concerns and their manifestation

Implicit

Explicit

Intended
by Stakeholder

Understood
by Architect

elicit/
specify /
document document

guess

consolidate

Designed
by Architect

Implemented
by Developer

model /
document reconstruct

„hack“

implement

driftdrift

Problem Space Solution Space

decide

decide

decide

decide

Architecture

Concerns Drivers Decisions Manifestation

driftdrift

Fig. 2.2 Drift in architecting. © Fraunhofer IESE (2013)

2.1 What Is the Point? 15

in the source code—and, of course, handle any drift that is detected. Mastering (or
failing to do so) determines the success of architecting and sustains the return of
architecting investments over the lifecycle of the software system.

Figure 2.2 depicts the stages of architecting—covering concerns and drivers in
the problem space and decisions and manifestations in the solution space. Note that
each concern spans one architecting area of interest; of course, the areas of interest
can overlap or may even be almost identical for different concerns. The stages in
architecting deal with implicit information by default and we invest effort to make
the information explicit. Having information about the “what & how” in an explicit
form allows exploiting the architecture for manifold purposes and hence getting
benefits from the investments made into the architecture. Explicit information can
be communicated and is useful for humans who perform tasks and make decisions;
hence, it serves every stakeholder, including the architects themselves.

Every stakeholder pursues targets and intentions with a software system. Such
targets can be quite diverse, ranging from functional or quality requirements via
business goals to technical, organizational, legal, or even political constraints.
When stakeholders specify these concerns and they get documented, they are made
explicit. In part, this is the classical task of requirements engineering, and the output
of requirements engineering can be shared with the architect. But typically, not all
stakeholders are covered by requirements engineering; in particular internal tech-
nical stakeholders (e.g., developers, testers, and maintainers) are often omitted. In
these cases, the architect has to elicit the stakeholders’ concerns. The same is true in
cases of missing or incomplete requirements. The goal is to identify architecture
drivers, meaning the things the architect must take care of. Note that it is not the
goal of the architect to substitute the requirements engineer and produce a full
specification of the software system. However, merely knowing what every
stakeholder strives for is not enough. Competing concerns need to be consolidated,
prioritized, and aligned with the overall strategy when engineering the software
system.

The architect captures his understanding of the stakeholders’ concerns by for-
mulating architecture drivers. Drivers are the consolidated output of architecting in
the problem space—representing accepted and approved concerns. Thus, archi-
tecting in the problem space transforms concerns into drivers, potentially including
refinements and/or modifications, which have been negotiated and agreed on during
interaction between the architect and the stakeholders.

In case the architects do not receive explicit information from the stakeholders,
the only thing they can do is guess. Guessing might be guided by experiences from
the past or assumptions about the domain of the problem space. Such educated
guesses need to be documented in order to become explicit output of architecting in
the problem space.

Ideally, every design decision would be explicitly documented prior to imple-
mentation. In practice, this would be extremely time-consuming and
effort-intensive, and thus infeasible. Additionally, this is only possible in theory:
there is always the need for information and feedback from implementation work.
Therefore, we need to define the scope of the architecture regarding what we design

16 2 What Is the Background of Architecture?

now and what others or we will design later (i.e., we leave it open for now). In
practice, design decisions are made throughout the whole lifecycle of the software
system. Some design decisions have far-reaching effects and are hard to change (in
later phases or future projects). So it is crucial to make these architecture decisions
consciously during the lifecycle, to get these decisions right, and to model or
document them explicitly.

For every engineering iteration, architects need to at least address the key
requirements and quality attributes and be able to explain how they are addressed.
Furthermore, they should have enough confidence that these can actually be
achieved. Then they can propagate design decisions and assign implementation
work units to developers. Such work units are decomposed frames of the software
system derived from the architecture. They are constrained by the decisions made
by the architect but leave space to refine these design decisions and to implement
algorithms and data structures. Finally, an architect should be able to reflect the
decisions made based on feedback from the code level and control the manifestation
of these decisions.

Every decision not made with an architectural intention would otherwise be
made at a later point in the lifecycle of the software system by someone else, who in
the worst case might not even be aware of making the decision. Such (often
implicit) decisions are manifested in the source code but it is not easy to control,
evaluate, and reverse them. Reconstructing them can become a tedious task for the
architect and is more often than not infeasible given common effort and time
constraints.

Q.012. How Do I Bridge the Gap Between “What & How”?

Bridging the gap between problem space and solution space requires creativity and
experience in design and decision making. Unfortunately, it is not possible to
automatically derive a solution based on the statement of a problem. Hence, in
design we rely on best practices and sound principles such as abstraction, separation
of concerns, encapsulation, and uniformity. In addition, we establish an architecting
approach that is tailored to the characteristics of the software system, in particular
software engineering factors arising from the context, in which architecting and
consequently architecture evaluation take places (engineering, execution, or oper-
ation context).

Q.013. What Are Context Factors for Architecting
and for Evaluating Architectures?

Having the right information at hand is the prerequisite for making the right
decisions in architecting the software system. Obviously, we need information
about the architecture of the software system itself, but also about its context. The
same holds true when evaluating the architecture.

2.1 What Is the Point? 17

The context factors—we call it the Bermuda Triangle of architecting—are
depicted in Fig. 2.3. For any activity, architects have to be aware of the software
system’s current position within the Bermuda Triangle (and note that a change in
any factor depicted in the triangle affects the other factors). The challenge for
architecting in general is to balance this architecture equilibrium:

• Design decisions have to acknowledge the overall lifecycle of the software
system. In architecting, many decisions to be made at present require antici-
pating future change scenarios (which might emerge or not). All of these
decisions have to be made in the light of the history—the previous decisions
made in the past. Ideally, past decisions would have anticipated the future
perfectly, but in reality, this never happens. So the architecture has to tackle the
debt of the past—inadequate decisions originating due to changing requirements
or wrong assumptions due to workarounds made because of high workload or
time pressure.

• Design decisions have to acknowledge the constraints imposed by the ini-
tiatives driving software engineering. Construction, maintenance, evolution,
and retirement of software systems are software engineering efforts driven by
humans and are associated with a certain schedule, budget, and availability of
human resources. Architects are limited in their creativity by these boundaries
(of course they can try to influence these constraints). Many ideas sound
appealing at first glance; however, their realization is not possible under the
given constraints.

• Design decisions have to acknowledge the scope of the assets to be delivered
per iteration. Architecting is not an end in itself. It is an auxiliary artifact in
software engineering to facilitate software engineering. Architects should
always keep in mind that there is a demand for assets (source code, executables)
to be delivered—and that the architecture as such is of minor interest for users,
customers, or sponsors. Assets have a business value (typically decreasing over

AssetsInitiatives

Lifecycle

Present

Future
(Anticipation)

Past
(Debt)

Resources Budget

Schedule Value

Quantity Quality

Scope of
Architecting

Fig. 2.3 The Bermuda triangle of architecting. © Fraunhofer IESE (2015)

18 2 What Is the Background of Architecture?

time) and are delivered with a scope for each iteration—comprising a defined
amount of functionality exhibiting a certain degree of quality in use.

To enable sound decision making at any point in the software lifecycle,
knowledge is required. Knowledge is the result of a learning process of a human
being. It can be seen as a function of (task-related) information, experience, skills,
and attitude at a given moment in time. Thus, knowing the context of architecting is
crucial for decision making and evaluating the impact of design decisions.

2.2 What Mistakes Are Frequently Made in Practice?

Doing no architecting at all.

Development organizations with no architects or no clear responsibilities for
architecting run the risk of not meeting functional and quality requirements. Our
experiences show that an organization might succeed in bringing releases to the
market at the beginning. However, after some time, there is a turning point and
decisions that were made early, but which were not thoroughly thought through,
strike back: Maintenance costs might explode; developers might spend more and
more effort on bug fixing and testing rather than on implementing new features; or
countermeasures such as restructuring might fail because the organization lacks the
abstractions of the architecture as a communication and decision vehicle. An
architecture evaluation can still provide input to decision making. However, prior to
the actual evaluation, a reconstruction phase has to take place to uncover the
architecture that is relevant for the current question. Note that reconstructed
excerpts are typically far from complete but nevertheless constitute a good starting
point for further architecture re-documentation.

! Questions Q.002, Q.008.

Having no explicit architecture documentation.

Making design decisions and documenting them in models, views, perspectives,
and diagrams enables explicit sharing of information. If not made explicit, the
information remains in the mind of the architect in the best case; in the worst case, if
the architect has left, the information is lost as well. An architecture evaluation
(with neutral auditors) provides explicit information in terms of reports or pre-
sentations for the areas under evaluation. Such parts can be a starting point for
turning more and more information from implicit to explicit. Note that it is not

2.1 What Is the Point? 19

http://dx.doi.org/10.1007/978-3-319-34177-4_1

economically possible to make all information explicit; however, we recommend
investing into explicit architecture documentation, at least to a certain extent.

! Question Q.011.

Not being aware of the architecting Bermuda Triangle.

If architects are not aware of the context factors, they might get lost in the
Bermuda Triangle of architecting. Ideally, they would meet the sweet spot, but in
practice they fail. The scope for architecting in the iteration is too ambitious, too
trivial, too large, or too small; design decisions are made too late or too early, for
too many or too few things. An architecture evaluation can reveal wrong
assumptions about the context factors of design decisions. When evaluating the
architecture, the auditors shed light on the context factors for the area of interest
currently under evaluation. This may lead to insights about design decisions that
were made based on wrong assumptions or ignoring certain constraints imposed by
context factors.

! Questions Q.008, Q.013.

Not being aware of drift in architecting.

Drift in the problem space might lead architecting into the wrong direction,
whereas drift in the solution space might make the abstractions provided by the
architecture unreliable, delusive, and in the worst case useless. Architecture eval-
uation is a quality assurance instrument that creates awareness of drift by eliciting
and revisiting stakeholder concerns to be evaluated. By checking the compliance
between the intended and the implemented architecture and challenging the
architect against the documented concepts, drift may become apparent. Architecture
evaluation helps to mitigate the risk of drift.

! Question Q.011.

Not being aware that drift is often unavoidable.

It can be observed that most solution concepts need iterations of revisions as
soon as they are getting implemented. Typically, drifting from the designed con-
cepts cannot be avoided (often directly at the start of implementation). Architecting
requires updating the documentation of the respective solution concepts directly or
at a later point in time.

! Question Q.011.

20 2 What Is the Background of Architecture?

3What Is Architecture Evaluation?

In this chapter, we will present what architecture evaluation is and what it consists
of. We will break down the overall method of architecture evaluation into five
clearly delineated checks: (1) checking the integrity of the drivers, (2) checking the
solution adequacy of an architecture, (3) checking the architecture documentation
quality, (4) checking the compliance of the implementation with the architecture,
and (5) checking the code quality in general. We will introduce confidence levels as
a response to the risk-driven idea of architecture evaluation: we only want to invest
as much as needed to gain enough confidence. We will show how evaluation results
can be interpreted, aggregated, and represented to senior management by mapping
them to a color-coded rating scale.

3.1 What Is the Point?

Q.014. What Is the Mission of Architecture Evaluation?

The mission of architecture evaluation is to determine the quality of the (en-
visioned) software system and the quality of the (auxiliary) artifacts created
during architecting or derived from the architecture.

Architecture evaluation aims at achieving confidence in the (architectural) design
decisions made about the software system with respect to an evaluation question. It
summarizes all activities aimed at answering critical concerns regarding the soft-
ware system, its environment, its evolution (debts from the past and anticipated
needs for the future), and its artifacts documenting and manifesting the design
decisions.

© Springer International Publishing Switzerland 2016
J. Knodel and M. Naab, Pragmatic Evaluation of Software Architectures,
The Fraunhofer IESE Series on Software and Systems Engineering,
DOI 10.1007/978-3-319-34177-4_3

21

The evaluation of the (envisioned) system quality analyzes the following
questions:

• How well are the stakeholders’ requirements (driving the architecture) under-
stood and agreed on?

• How well are the solution concepts and design decisions of the architecture
suited to adequately addressing the requirements?

• How well are the solution concepts manifested in the implementation?

The evaluation of the artifact quality (documentation, models, source code)
analyzes the following questions:

• How well is the documentation of the architecture structured and how consistent
is it?

• How well is the source code of the software system structured and how readable
is it?

Thus, architecture evaluation requires several checks and ranges from require-
ments via the architecture to the implementation/system level:

• Check for ambiguities, unclarities, or drift in stakeholder concerns and derived
architecture drivers.

• Check for flaws and issues in solution concepts and identify inadequate archi-
tecture decisions.

• Check for problematic deficiencies and inconsistencies in the system’s archi-
tecture documentation.

• Check for drift between a system’s intended architecture and the architecture as
realized in the implementation.

• Check for anomalies in the source code with respect to best practices, quality
models, style guides, and formatting guidelines.

Q.015. What Does Our Architecture
Evaluation Method Consist of?

Our approach to architecture evaluation applies a set of checks—driver integrity
check, solution adequacy check, documentation quality check, architecture com-
pliance check, and code quality check—to deliver answers with a certain level of
confidence to the stakeholder concerns.

Figure 3.1 provides a conceptual overview of our approach for architecture
evaluation, which is called RATE (Rapid ArchiTecture Evaluation). It is not
intended to be yet another architecture evaluation method. Rather, it is a compi-
lation and collection of best practices of existing evaluation approaches tailored
towards pragmatic (or rapid) application in industry. We derived this approach from

22 3 What Is Architecture Evaluation?

experiences in projects with industry customers (Knodel and Naab 2014a, b) and
consolidated lessons learned and concrete hints. For more background information
on the underlying architecture evaluation methods, we refer to the respective
(academic) publications, for instance (Clements et al. 2001).

RATE comprises five checks, with each check serving a distinct purpose. All
checks follow the same principle of work: to reveal findings aimed at
confirming/improving the system’s quality and/or the artifact’s quality. The checks
are always applied for concrete stakeholder concerns.

Stakeholders have concerns about a software system. The DIC analyzes the
integrity of these concerns and checks whether there is agreement about the
stakeholders’ concerns. It sets the goals for other architecture evaluation checks
(and determines whether or not additional checks should be performed). It balances
and negotiates these potentially conflicting concerns with respect to business goals,
constraints, external quality (runtime), internal quality (development time), and
preparation for anticipated changes. Thus, the driver integrity check consolidates
different stakeholder concerns into architecture drivers. Moreover, it structures and

Implementation/System
Level

Architecture
Level

Stakeholder
Level

Concerns

Knowledge

Models

Documents

Source Code

Code Metrics

0110
01

Driver Integrity Check (DIC)

Architectural
Drivers

Rating

Solution Adequacy Check (SAC)

Documentation Quality Check (DQC)

Architecture Compliance Check (ACC) 0110
01

Code Quality Check (CQC)

0110
01

Interpretation

Support
Level Preparation ReportingEvaluation Project Management

Fig. 3.1 The Rapid ArchiTecture Evaluation Approach (RATE). © Fraunhofer IESE (2011)

3.1 What Is the Point? 23

formalizes the set of drivers for the architecture (sometimes also called
architecture-significant requirements) with the help of templates and requires
explicit stakeholder approval (e.g., agreement and signing off on the driver) before
proceeding with other checks.

The SAC determines whether an architecture permits or precludes the
achievement of targeted functional requirements and particularly quality require-
ments [for an overview of frequently checked quality attributes, see (Bellomo et al.
2015)]. However, it does not guarantee achievement because activities further
downstream obviously have an impact. The Solution Adequacy Check allows
reasoning about the advantages, drawbacks, and trade-offs of a solution concept (or
alternative solution concepts) for satisfying requirements or changing requests at
hand. Hence, it provides valuable input to decision-making by creating awareness
of flaws in the design. It enables identification of potentially problematic design
decisions, early prediction based on abstraction, and comparison among alterna-
tives, and can be the starting point for timely responses and corrections to improve
the architecture. The Solution Adequacy Check is applied specifically for the
software product under evaluation and comes with the downside that it is a largely
manual task causing significant effort and leading to mainly qualitative results only.

The DQC assures that the documentation of the architecture makes it possible to
understand the solution concepts. It determines whether or not readers will find the
right information to gain knowledge, understand the context, perform
problem-solving tasks, and share information about design decisions made. Addi-
tionally, the documentation (reports, presentations, models) is inspected with
respect to criteria such as consistency, readability, structuredness, completeness,
correctness, extensibility, and traceability.

24 3 What Is Architecture Evaluation?

The ACC aims at assuring the compliance of an implementation (with its
so-called implemented architecture) or of the running system with the intended
architecture and its rules on code structure and system behavior. Only if the
architectural concepts are implemented compliantly does the architecture have
value as a predictive and descriptive instrument in the development process.
Compliance checking [see Knodel et al. 2006; Knodel and Popescu 2007, or
Knodel 2011] typically requires architecture reconstruction (reverse engineering of
code or instrumentation of runtime traces) to collect facts about the system, from
the source code as well as from the running system. By mapping the actual and the
intended architecture onto each other, this compliance can be evaluated. This is a
task that strongly benefits from tool support due to the large number of facts
typically extracted.

The CQC aims at numerically quantifying quality properties of the source code.
Many integrated development environments (IDEs) support a wide range of code
quality metrics, either natively or through plugins or external tools. Such tools
include certain thresholds or corridors that are recommended not to be exceeded as
best practice. Violations are reported for the offending code elements. The aggre-
gation by these environments of code-level metrics into system level metrics is
often not more sophisticated than providing descriptive statistics (i.e., average,
mean, maximum, minimum, total). Assessors typically either need to craft their own
aggregations or use expert opinions to provide accurate evaluations or to establish
quality models for one or more quality attributes. This is typically done by mapping
a selection of low-level metrics to those quality attributes using sophisticated
aggregation techniques.

The code quality check is not really an architecture evaluation technique.
However, we integrated it into our overall method as we found over time that it is
necessary to thoroughly answer the evaluation questions posed by stakeholders.

3.1 What Is the Point? 25

Q.016. What Determines the Scope of an Architecture
Evaluation?

Any decision we make during the design and evolution of a software system entails
the risk of being wrong or inadequate for its intended purpose. For every design
decision, we have a gut feeling about our confidence regarding how well the design
decision will satisfy the goals of architecting in its context. More often than not, this
feeling might be wrong. Furthermore, changing requirements and drift over time, as
discussed above, challenge the design decisions made in the past.

Architecture evaluation can increase confidence in such cases by identifying
risks and flaws in the driving requirements, the solution concepts of the architec-
ture, or the resulting implementation. However, not all design decisions are equally
important; some are more crucial for success than others. In those cases where the
confidence level as such is not (yet) acceptable or where we need to have more
evidence to convince stakeholders, we conduct an architecture evaluation. It will
lead either to increased confidence in the decisions made or to findings about flaws
calling for redesigning the architecture.

Chapter 1 presented many concerns and questions that can be answered with
architecture evaluation: Depending on the criticality of the questions, the confi-
dence level differs within an architecture evaluation. For some design decisions, it is
fairly easy to check them off, while others require a thorough analysis of the
software architecture and its underlying implementation or even the running system
to arrive at a conclusive answer.

Consequently, architecture evaluation is triggered by the stakeholders’ concerns
for which the architectural solution concepts and their implementation (if available)
are checked. The criticality of the concern determines the depth to which the
concerns will be analyzed (i.e., the level of confidence).

Q.017. What Are the Basic Confidence Levels in Architecture
Evaluation?

The level of confidence indicates the quality of the analysis for each of the five
checks introduced above. It expresses, for instance, the degree to which the
requirements driving the architecture have been clearly understood, the degree to
which the architecture adequately addresses the requirements, or the degree to
which the implementation consistently realizes the architecture. Thus, the higher the
confidence, the lower the risk of having made a wrong design decision.

We use distinct levels to express confidence (see Fig. 3.2 for an overview). Each
confidence level has certain characteristics (applicability, input, effort), which differ
for the five checks introduced above (see Chaps. 5–9, respectively).

The basic confidence levels for artifact quality are as follows:

• Believed: The lowest level of confidence is pure belief. This means that the
quality of the artifact is accepted without further analysis. No dedicated effort is

26 3 What Is Architecture Evaluation?

http://dx.doi.org/10.1007/978-3-319-34177-4_1
http://dx.doi.org/10.1007/978-3-319-34177-4_5
http://dx.doi.org/10.1007/978-3-319-34177-4_9

spent on raising findings and investigating their impact (spanning concerns,
driver, solution concept, and source code). The work of the architect regarding
these design decisions is trusted. This level of confidence applies to the vast
majority of design decisions. In most cases, it will be just fine because the
concerns were well known, the solution concepts were suited to the architecture
drivers, and the implementation is compliant with the intended design. Lever-
aging the knowledge, skills, competencies, and experiences of the architect
yields adequate design decisions.

• Inspected: The artifact quality is inspected in each of the checks in order to
reveal findings (positive and/or negative). The inspections typically follow a
structured, well-defined process with defined roles and activities in order to
examine the degree to which the manifestation satisfies the target. Inspectors
may be the architects who are actually responsible for the design, internal peers
not directly involved in the architectural design (e.g., architecture boards, other
architects, quality assurance groups, or method groups within the same orga-
nization), or an external, independent third party (consultants, research organi-
zations, etc.).

• Measured: Measurements provide quantitative numbers and data by calculating
certain characteristics of the artifacts of the software system under evaluation.
Measurements apply formally defined formulas to perform the calculations (e.g.,
metrics, style guides, formatting guidelines, etc.).

The basic confidence levels for system quality are as follows:

• Believed: The lowest level of confidence is again pure belief, meaning that it is
assumed that the resulting software system will be adequate; no further analysis
is done.

• Predicted: Prediction means using existing knowledge, current information, and
historical data to reason about the future. Confidence is achieved by using the
available resources to predict properties of the software system. The better the
underlying data and model are applied for prediction, the higher the level of
confidence achieved. Predictions comprise estimations performed by topic
experts (educated guessing based on individual experiences and expertise),
simulations based on the execution of a formally described model (often leaving
room for some uncertainty in the parameters or in the data set of the model), or
heuristics based on data and fact-based (sets of) rules where evidence is pro-
vided from other software systems that they are relevant for some kind of issue

Artifact
Quality

System
Quality

Believed

Believed

Inspected Measured

Predicted Probed Tested

Fig. 3.2 Architecture evaluation: confidence levels

3.1 What Is the Point? 27

(because of their general nature, the heuristics are likely to be valid for the
software systems under evaluation, too).

• Probed: A probe indicates an exploratory action to technically try out and spike
a solution (or a potential solution concept under evaluation). A detailed and
thorough investigation serves to study context factors, examine assumptions
about environment, concepts, and technologies, and explore scaling factors. In
short, it serves to mitigate risks. Probes may use mock-ups to explore an idea or
a concept with low effort in a simplified or simplistic manner, representatives of
the actual software system (e.g., earlier versions or variants, or similar parts of
other systems sharing the design or the same technology stack), or prototypes to
learn by example by providing the implementation of a crucial part or aspect of
the solution concept. Probes provide high confidence as the solution concept
realized can be explored in full detail, with the target technology, and its ade-
quacy can be trialed.

• Tested: Testing executes the software system to evaluate certain aspects of
interest. It is checked whether a given functionality works properly with
acceptable quality. Additionally, measurements about the running software
system can be taken. The systematic, reproducible act of testing can be done
either in a lab environment or in the field (production environment). Lab
environments provide a playground for testing with (artificial) data and a
(similar or identical) infrastructure as in the field. Testing in the field provides
ultimate confidence as the quality of the software system is analyzed in the
production environment.

Q.018. What Is the Outcome of an Architecture Evaluation?

The application of each of the five checks (see above) will produce a set of findings
in the object under evaluation with respect to the evaluation question. Findings
represent positive and negative results revealed by the check performed. They may
include risks identified, assumptions made, scaling factors, limitations, trade-offs,
violations, etc. All findings can be pinpointed to a concrete part of the object under
evaluation. The results of each check always have to be interpreted in the light of
the overall questions triggering the architecture evaluation, and in the context and
the environment of the software system under evaluation. This interpretation is
typically not easy and straightforward and hence requires experience in architecting.
Accordingly, the outcome of each check is a list of findings.

Q.019. How to Interpret the Findings of an Architecture
Evaluation?

The interpretation of the findings is crucial in order to benefit from the overall
architecture evaluation results. Architecture evaluation reveals positive and

28 3 What Is Architecture Evaluation?

negative findings about both the system quality and the artifact quality. The
interpretation of the findings is context-dependent, based on the underlying eval-
uation question, the software system under evaluation, and the nature of a finding.
In particular in case of negative findings, it is the starting point towards deriving
improvement actions.

The nature of findings (see Fig. 3.3) is characterized along two dimensions: the
cause of the finding and the baseline on which the finding is based. Causes can
either be based on product properties such as the inherent flaws or weaknesses of
the software system or technology and their misusage, or on human capabilities and
human limitations in terms of coping with complexity (i.e., comprehensibility) and
dealing with continuous change in the evolution of the software system (which is
the inevitable characteristic of any successful system). The baseline describes the
criteria that are the basis for stating the finding. These can range from universal
criteria (applicable in the same form to any other software system, e.g., ISO
standards or metrics) to individual criteria (tuned specifically to the software system
under evaluation, e.g., meeting product-specific performance requirements). In
between there may be domain-specific or organization-specific criteria, which have
limited applicability compared to universal criteria.

Architecture evaluations may reveal a number of findings whose nature differs
(see question Q.096 for an example of the nature of findings for maintainability).
Some evaluation questions may need to be evaluated individually for the software
system under evaluation, while others may use general-purpose rules (these thus
rules have wider applicability and may be checked across many software systems).
Typically, findings caused by technologies in use and limitations of human capa-
bilities are more general. They serve to detect risks with respect to best practices,
guidelines, misusage, or known pitfalls in the technologies. In practice, it is much
easier to aim for such causes because tools can be bought that come, for instance,
with predefined rules or standard thresholds and corridors for metrics. They are easy
to apply and make people confident that they are doing the right thing to mitigate

Human
Capabilities

Cause

Software System
(Flaws/Weaknesses)

Technologies in Use
(Misusage/Known Pitfalls)

Complexity
(Comprehensibility/Deficiencies)

Baseline

Product
Properties

Evolution
(Change-Proneness/History)

Fig. 3.3 Architecture evaluation: nature of findings. © Fraunhofer IESE (2014)

3.1 What Is the Point? 29

http://dx.doi.org/10.1007/978-3-319-34177-4_10

risks. The downside is that such general-purpose means often do not fit to the
evaluation questions driving the architecture evaluation, but this is not discovered.
Organization-specific techniques take the specific guidelines of the domain, the
development organization, the specific development process, or the company cul-
ture into account. However, they do not take the concrete product properties into
account. In simple cases, organization-specific techniques could be tailored from
instruments for detecting universal causes based on experiences made in the
company. Being product-specific implies being concerned with all the aspects that
make the software system unique and thus need to be applied to the product. What
is common sense for testing (no one would just run technology-related test cases
without testing the product-specific logic of the software system) is not the case for
architecture evaluations and source code quality checks. Here many development
organizations, tool vendors, and even some researchers claim to be product-specific
with a general-purpose technique realized in a quality assurance tool that can be
downloaded from the Internet. However, these general-purpose techniques can
merely lead to confidence regarding the avoidance of risks with respect to the
technology or the limitations of human capabilities.

If done properly, architecture evaluation does indeed combine product-specific
and general-purpose aspects and hence enables reasoning about the evaluation
question at hand. This is what makes architecture evaluation an extremely valuable
instrument for mitigating risks in the lifecycle of a software system.

Q.020. How to Aggregate the Findings of an Architecture
Evaluation?

While the findings are detailed by their nature, it is also important to provide an
overview and enable comparability of checks over time and of several candidates
undergoing the same checks. We recommend rating every check result on two
simple four-point scales. All findings in summary are considered to provide the
aggregated rating. The higher the score, the better the rating of the manifestation
object and the less critical the risks.

• Severity of Findings expresses the criticality of the findings aggregated over all
findings per goal. Importance ranges over (1) critical, (2) harmful, (3) minor,
and (4) harmless/advantageous.

• Balance of Findings expresses the ratio of positive versus negative findings
aggregated per goal. It ranges over (1) only or mainly negative findings,
(2) negative findings predominate (3) positive findings predominate, and
(4) only or mainly positive findings.

The combination of both scales (i.e., the mathematical product of the two factors,
see Fig. 3.4) determines the overall score for the check-based expression of the
target achievement of the manifestation object:

30 3 What Is Architecture Evaluation?

• N/A Not Applicable (GRAY): This means that the goal achievement has not
(yet) been checked. The check might have been deferred or discarded due to
missing information, effort and time limitations, or unavailable stakeholders.

• NO Target Achievement (RED): This means there are issues, flaws, or strong
arguments against the goal achievement. Fixing these major weaknesses will
cause serious effort for repair or require fundamental rethinking.

• PARTIAL Target Achievement (ORANGE): This means that significant
flaws or risks have been identified, but we expect that they can be removed with
modest effort.

• LARGE Target Achievement (YELLOW): This means that there are no major
objections to goal achievement. However, some details may require further
refinement or elaboration.

• FULL Target Achievement (GREEN): This means there is full goal
achievement. No findings or only harmless or advantageous findings have been
revealed.

While such a simple, traffic-light-inspired scale is important for summarizing the
evaluation results and for presenting the evaluation results to management and other
stakeholders, there is always a need for keeping the more detailed results at hand.
The rating should be based and justified on a detailed and differentiated explanation
of the findings. This is necessary to justify the rating in critical situations and to
make the rationale of the rating persistent. Furthermore, it serves to derive action
items for starting improvement actions.

Legend

C
rit

ic
al

H
ar

m
fu

l

M
in

or

H
ar

m
le

ss
 /

A
dv

an
ta

ge
ou

s

N/A

Mainly negative findings NO

Negative findings predominate PARTIAL

Positive findings predominate LARGE

Mainly positive findings FULL

Rating

Severity of findings

B
al

an
ce

 o
f

fi
n

d
in

g
s

Fig. 3.4 Architecture evaluation: rating and legend. © Fraunhofer IESE (2015)

3.1 What Is the Point? 31

Q.021. What Are the Limitations of Architecture Evaluation?

Despite being a powerful instrument, architecture evaluation has limitations, too.

• Architecture can only be evaluated indirectly: The architecture that is actually
interesting is the one that is implemented. However, this is not really tangible
and thus abstractions and their documentations are used. However, there is
always the risk of inadequate information.

• Architecture is an abstraction: That architecture is an abstraction has advan-
tages and disadvantages at the same time. It has advantages in the sense that the
complexity can only be handled via abstractions. It has disadvantages in the
sense that whenever we leave something out, this still has an impact on the final
system, which just cannot be evaluated.

• Absolute architecture evaluation is typically not possible: The result of an
architecture evaluation is mostly not a quantified measure or degree of goal
achievement. Rather, it is a set of findings that require interpretation.

• Architecture evaluation requires cooperation: It is very hard and inefficient to
evaluate an architecture without cooperating architects as all the information has
to be collected and reconstructed from documentation and code.

• Architecture evaluation cannot guarantee quality: The details of the imple-
mentation, e.g. specific algorithms, also have a strong impact on achieving
quality attributes.

Q.022. What Is a Good Metaphor for Architecture Evaluation?

Consider a route guidance system as a metaphor for an architecture evaluation.
Imagine that after driving on the road for three consecutive hours (a running pro-
ject), you are almost halfway to reaching your destination (the release). The route
guidance system (the architecture evaluation) can tell you whether you will reach
the destination on time (within budget) or not. It gives you a plan regarding which
roads to follow (static information) and is aware of construction work and traffic
jams (dynamic information). But in the end, the route guidance system is able to
give only recommendations and make the driver aware of risks (warnings). The
final result as to whether or not you will arrive at the scheduled time significantly
depends on your decisions as a driver (taking a rest, ignoring the recommendations)
and on your car (the underlying technology).

32 3 What Is Architecture Evaluation?

3.2 What Mistakes Are Frequently Made in Practice?

Doing no architecture evaluation at all.

Although architecture evaluation has found its way into industry (Babar and
Gorton 2009; Knodel and Naab 2014a, b; Bellomo et al. 2015), many crucial
decisions are still being made with regard to software without getting the relevant
architectural facts from an architecture evaluation. And there are still many software
engineers and managers who have not heard about architecture evaluation as a
means for identifying and mitigating risks.

! Questions Q.003, Q.004, Q.014.

Reducing the evaluation results to the traffic lights only.

Providing aggregations of the evaluation results is necessary, in particular for
communication and presentation. However, these aggregations only offer a limited
view and there are always complex and detailed findings behind the aggregated
results that have to be considered. The essence of architecture evaluation is to
provide guidance for decision-making and for the upcoming work. Thus, the right
interpretation of the findings is important but also challenging.

! Question Q.018, Q.019, Q.020.

Focusing on architecture metrics or code metrics only.

Architecture evaluation with a strong focus on the fulfillment of requirements is
effort-intensive. Evaluating only metrics with a tool is rather easy. Thus, practi-
tioners often tend to measure general properties of an architecture (such as coupling
metrics), which are a rough indicator of internal quality properties such as main-
tainability, but they completely fail to evaluate the adequacy for most architecture
drivers.

! Questions Q.015, Q.017, Q.096, Q.097.

Evaluating only the quality of the documentation.

Architecture is more than a bunch of diagrams and documents. Sometimes,
architecture evaluation is reduced to the review of architecture documents with a
focus on document properties such as readability, consistency, or traceability.

3.2 What Mistakes Are Frequently Made in Practice? 33

http://dx.doi.org/10.1007/978-3-319-34177-4_1
http://dx.doi.org/10.1007/978-3-319-34177-4_1
http://dx.doi.org/10.1007/978-3-319-34177-4_10
http://dx.doi.org/10.1007/978-3-319-34177-4_10

Although it is important to have high-quality documentation in place, it is not
enough to check the documentation quality in isolation.

! Question Q.015.

Evaluating whether the architecture is “state-of-the-art”.

Using state-of-the-art technologies seems to be a promising goal for many
practitioners. Thus, the goal of an architecture evaluation is sometimes to check
whether the architecture is “state-of-the-art”. In such cases, an evaluation against
the architecture drivers is typically missing completely.

! Question Q.014, Q.046.

34 3 What Is Architecture Evaluation?

http://dx.doi.org/10.1007/978-3-319-34177-4_6

4How to Perform an Architecture
Evaluation?

There are typical indicators that an architecture evaluation would be beneficial.
Architecture evaluation is typically conducted as a project, answering specifically
formulated evaluation goals. We will show the big picture of how an evaluation
project can be set up and structured, including which stakeholders to involve and
how to manage their expectations. We will offer support for estimating the effort for
an architecture evaluation and the actual project management. Finally, we will share
experiences on the interpretation of evaluation results and describe how to structure
a concluding management presentation that accurately conveys the evaluation
results and presents recommendations.

4.1 What Is the Point?

Q.023. When Should an Architecture Evaluation
Be Conducted?

There is no single point in time when an architecture evaluation should be done.
Rather, there are several points in time throughout the whole lifecycle of software
products that benefit from architecture evaluation.

• Before and during architecture design work, the architecture drivers should be
challenged and checked for completeness and consistency.

• Regular checks of the adequacy of an architecture under design should be done
right after making the decisions or in order to compare and select architecture
alternatives. Architecture evaluation aims at predicting properties of the system
under design.

© Springer International Publishing Switzerland 2016
J. Knodel and M. Naab, Pragmatic Evaluation of Software Architectures,
The Fraunhofer IESE Series on Software and Systems Engineering,
DOI 10.1007/978-3-319-34177-4_4

35

• At certain milestones, e.g., before sending numerous implementation teams to
work after a ramp-up phase, the architecture should be evaluated.

• During implementation work, compliance between the intended architecture and
the implemented architecture should be checked continuously.

• Before making major decisions about the acquisition, migration, or retirement of
components or whole systems, the architecture should be evaluated.

• During larger maintenance, integration, or migration projects, which need
architectural guidance, the respective target architecture has to be evaluated in
terms of adequacy and the subsequent development activities have to be mon-
itored in order to check for architecture compliance.

Q.024. What Are the Steps to Follow When Performing
Architecture Evaluations?

Figure 4.1 depicts an overview of the steps for performing architecture evaluations.
The following sections and chapters will describe these steps in detail.

Q.025. How to Define Evaluation Goals?

Architecture evaluation is never an end in itself. It should always be aimed at
achieving clear and concrete evaluation goals. The following list shows frequent
categories and examples of evaluation goals:

• Business-related evaluation goals

– We are planning to roll out our product in 6 months: Is the overall quality of
the architecture adequate for achieving our business goals?

– Which subcontractor should be selected considering their product portfolio?

Scope
Evaluation
Context

Set up
Evaluation

Project

Select Evaluators

Select Evaluation
Techniques

Estimate Effort

Involve
Stakeholders

Establish Project

Conduct
Evaluation

Package
Evaluation

Results

Interpret Results

Present Results

Conduct DIC

Conduct SAC

Conduct DQC

Conduct ACC

Conduct CQC

Define
Evaluation Goals

Shape Evaluation
Context

Fig. 4.1 Steps of an architecture evaluation

36 4 How to Perform an Architecture Evaluation?

– What does the adoption of a new paradigm such as cloud computing mean
for our own products and business?

– Is the current product portfolio a sound basis for expanding to a new market?

• Quality-related evaluation goals [related to quality attributes, see (ISO 25010,
2011)]

– Will system A be capable of serving 20 times the number of users served
today (scalability)?

– Is the newly designed architecture able to greatly reduce the response times
of the system (performance)?

• Technology-related evaluation goals

– Is technology X a good candidate for data storage in our software system?
– What is the impact of technology Y on our system and what needs to be done

in order to replace it with technology Z?

• Evolution-related evaluation goals

– Is the architecture of our system still adequate after 15 years or does it
require significant changes in order to further serve our business needs?

– Which changes to our system are necessary in order to make it fit for a
completely new class of features?

Please note that architecture evaluations can often give only partial answers to
the evaluation questions. Further evaluations might include economic and organi-
zational aspects.

The definition of evaluation goals should be done cooperatively between the
architecture evaluation owner, the architects responsible for the system under
evaluation, and the auditors conducting the evaluation.

Q.026. How to Shape the Context of an Architecture
Evaluation Project?

Based on the evaluation goals for the project, the context that has to be taken into
account has to be clarified:

• Systems in and out of scope: Which systems need to be considered in the
evaluation and which can be seen as out of scope? Which systems have to be
evaluated with respect to their inner details, and which systems are only inter-
esting with respect to their outer interfaces?

• Organizations in and out of scope: Which organizations or organizational
units have to be involved?

• Stakeholders in and out of scope: Which stakeholders should be involved or
should at least be represented in some form in the project?

4.1 What Is the Point? 37

Q.027. How to Set up an Architecture Evaluation Project?

To set up an architecture evaluation project, the following aspects have to be
discussed and clarified:

• Selection of evaluators for the evaluation project
External evaluators: If one or more of the following conditions is true, an
external evaluator should be involved: in particularly critical situations; if
neutrality is absolutely essential; if there is discussion about quality between a
supplier and a customer; if no adequate architecture evaluation knowledge is
available internally; if no architect is available internally with enough time; if
the evaluation project should be conducted in a more visible manner.
Internal evaluators (e.g., architects from other projects or cross-cutting archi-
tecture departments): If the factors above don’t apply, an internal evaluator is
adequate and could help to do the evaluation faster and with less lead time.

• Selection of the right combination of evaluation techniques
Depending on the evaluation goals and the status and context of the software
development regarding the system under evaluation, a set of evaluation tech-
niques has to be selected. The evaluation technique categories are introduced in
Chap. 3 and explained in detail in Part II.

• Determination of the rough effort to be spent
The effort to be spent on architecture evaluation depends on several factors, such
as the criticality of the situation, the required confidence in the results, or the
complexity of the organizational situation. Questions Q.101, Q.103, Q.104, and
Q.107 discuss this in more detail.

• Involving stakeholders
Architecture evaluation is an activity that is not done only by the evaluators.
Rather, it requires significant involvement of stakeholders (e.g., all types of
stakeholders for eliciting architecture drivers or the system’s architects for
discussing the architecture). It is important to involve these stakeholders early.
They have to understand the goals and the approach of the architecture evalu-
ation. In particular, it is important to demonstrate management commitment to
the architecture evaluation and to actively manage the expectations of all
involved stakeholders. Since architecture evaluation strongly depends on a
cooperative and open climate, continuous communication with the stakeholders
is essential.

• Establishing a project with rough time planning and resources
Unless it is a very small and informal internal activity, architecture evaluation
should be viewed as a project that is actively managed. The key reason is that
this increases the perceived importance and commitment. The availability of the
stakeholders required for an architecture evaluation is typically very limited, and
thus it is important to schedule specific meeting dates as early as possible. Often,
architecture evaluation projects are expected to be conducted very quickly. From

38 4 How to Perform an Architecture Evaluation?

http://dx.doi.org/10.1007/978-3-319-34177-4_3
http://dx.doi.org/10.1007/978-3-319-34177-4_11
http://dx.doi.org/10.1007/978-3-319-34177-4_11
http://dx.doi.org/10.1007/978-3-319-34177-4_11
http://dx.doi.org/10.1007/978-3-319-34177-4_11

the owner’s perspective, this is understandable as he needs facts and answers to
strategic questions. However, the involvement of various stakeholders and
sometimes even several organizations implies the need for more time. Thus,
sound scheduling and expectation management is important for the persons
conducting the architecture evaluation.

Q.028. Who Should Be Involved in an Architecture Evaluation?

In principle, all relevant stakeholders should get involved in the architecture
evaluation.

Typical stakeholders include architects, developers, project managers, product
managers, customers, users, operations staff, testers, maintainers. Depending on the
type of development organization and process, the responsibilities and role names
might vary. E.g., in agile development contexts, there might be no dedicated
architect, but hopefully there is somebody who knows the architecture very well. If
stakeholders are not accessible directly (e.g., the user), representatives could be
used as a substitute.

Q.029. How to Involve Stakeholders in Architecture Evaluation
Projects?

In an architecture evaluation project, relevant stakeholders need to be identified
first. This may sound easier than it actually is in practice. Stakeholders are often
widely distributed in an organization; they are hard to catch due to their tight
schedules; and they might not agree right away that they need to be involved in an
architecture evaluation project since they are not interested in the technical details.

It has to be made clear that architecture evaluation evaluates against the concerns
voiced by the stakeholders and the corresponding drivers derived from these. This
is a pressing argument for being part of the architecture evaluation. Of course, not
all wishes are realistic and it is necessary to agree on a set of architecture drivers
before diving into the details of the evaluation. That is, the stakeholders also need to
be involved in negotiation activities, which have to be actively guided and mod-
erated by the evaluation team.

Stakeholders should be involved directly from the start of an architecture
evaluation project. We always conduct the initial kickoff meeting together with all
stakeholders and explain to them the goals and, in particular, the procedure of the
evaluation project. They can ask all their questions to feel really involved.

During the course of the architecture evaluation project, they have to be
informed and their expectations need to be managed. This can be done with regular
emails stating the current status of the project, sending them intermediate results to

4.1 What Is the Point? 39

comment on, or through intermediate and final presentations. The architects and
developers responsible for the system under evaluation should be involved even
closer: When there are findings as results of evaluation workshops, these should be
summarized and shared with the architects and developers to check whether
everything was understood correctly.

Q.030. Why Manage Stakeholders’ Expectations?

It is very important for evaluators to manage the expectations of evaluation owners
and stakeholders. This requires clearly communicating what has been done as part
of an architecture evaluation and how to interpret the outcome of an architecture
evaluation.

It is mandatory to explicitly state the confidence level that applies to the findings
revealed and the ratings derived in each check. This allows conscious interpretation
of the results by the stakeholders.

Furthermore, it is always necessary to keep the evaluation question and the
context of the evaluation owner in mind in order to answer the questions in a way
that is most beneficial for him or her. Just providing facts and findings is not
enough. Architecture evaluation provides the evaluation owners and stakeholders
with the information they asked for in the way that helps them to understand it best
and thus enables them to make (keep, rethink, change) decisions.

Q.031. How to Conduct an Architecture Evaluation Project?

The following meetings have proven to be meaningful in most evaluation projects:

• Kickoff meeting
In the kickoff meeting, all involved stakeholders should come together. The
evaluation owners should state their expectations and the background. In the
meeting, the evaluation goals, the evaluation approach, the schedule, and the
results to be expected should be presented.

• Working meetings
The working meetings are conducted based on the needs of the evaluation
techniques selected. Example working meetings are stakeholder workshops to
elicit architecture drivers, meetings for the reconstruction and discussion of the
architecture, meetings for the discussion of code details, and so on. Evaluators
should always be well prepared in order to optimally use the time invested by
the stakeholders.

• Result presentation and touchdown meeting
An architecture evaluation project should be officially closed with a meeting
where the evaluation results are presented to the evaluation owner and the other

40 4 How to Perform an Architecture Evaluation?

stakeholders. How to interpret the results and how to present them in such a
meeting will be discussed in the next questions. Depending on the project, the
presentation of intermediate results might be relevant (e.g., to further focus
upcoming evaluation activities, to have early results and improvement sugges-
tions that could be incorporated before a fixed release date). The result pre-
sentation and touchdown should always be used to discuss the findings and
recommendations and the derived actions. Very often, the group of people
attending a result presentation is not meeting each other in the same group
composition otherwise.

Besides the actual evaluation work, an architecture evaluation project needs
managerial and supportive activities, too:

• Preparation
All activities have to be prepared by the evaluators in order to run effectively
and efficiently as the stakeholders involved typically have tight schedules.
Further preparation may concern the selection, acquisition, and installation of
tools, which might take considerable time as well.

• Audit management
An architecture evaluation is typically a project and has to be managed as a
project. That is, it is necessary to schedule and organize all meetings, collect and
distribute material, and define and assign tasks to evaluators and stakeholders. In
our experience, architecture evaluation projects are performed because of their
importance often on a tight schedule and often require re-planning due to the
unavailability of stakeholders on short notice.

• Reporting
An architecture evaluation has to produce results. These results have to be
presented in a way that fits the expectations of the evaluation owner. Typical
forms are reports and presentations. In our experience, writing reports that are
too long does not pay off—condensed reports are much better. We highly
recommend a final result presentation with the stakeholders (see Question
Q.033).

Meaningful milestones for structuring an architecture evaluation project depend
on the evaluation techniques used. The following milestones directly reflect the
typical checks of our approach. However, a specific project setting could also be
organized in two or three iterations in order to deliver first results of each check as
early as possible and then refine them.

• Architecture drivers elicited
• Solution adequacy checked
• Documentation quality checked
• Architecture compliance checked
• Code quality checked.

4.1 What Is the Point? 41

Q.032. How to Interpret the Evaluation Results?

The interpretation is crucial for benefiting from the evaluation results. It is the
bridge to recommendations and subsequent actions.

The results of an architecture evaluation have to be interpreted in light of the
evaluation questions and the concrete context of the software system under eval-
uation. This interpretation is typically not easy and requires experience in archi-
tecting. Even when there are quantitative results (e.g., the number of architecture
violations from compliance checks), the interpretation of the results remains a
difficult step. Due to the nature of software architecture and software architecture
evaluation methods, the evaluation results often cannot be fully objective and
quantifiable. In the case of a solution adequacy check, rating the adequacy of an
architecture for a set of architecture drivers or a single driver often does not lead to
any quantification at all. The results are rather the identified risks, assumptions,
limitations, and trade-offs, and the overall rating of adequacy.

It is very important for evaluators to manage the expectations of evaluation
owners and stakeholders and to clearly communicate these. For instance, it is not
possible to establish standard thresholds for the number of acceptable architecture
violations. Rather, it is always necessary to keep the goals and the context of the
evaluation owner in mind to answer the questions in a way that is most beneficial
for him or her. Just providing facts and findings is not enough.

Q.033. How to Present Evaluation Results?

The presentation of results and recommendations to evaluation owners such as
senior management and other stakeholders has to be done carefully in order to steer
development activities into the right direction. To facilitate giving understandable
presentations, we decided to depict the outcome using traffic light colors. This is
done for all types of checks and different levels of detail: e.g., to show the adequacy
of the architecture for single drivers but also aggregated for the complete check.
From our experience, the following aspects should be covered in a result presen-
tation (see more details in the upcoming chapters):

• Overview of the results to give an overall impression (see Fig. 4.2)
(While this sounds too early, our experience is that the audience wants to know
what is going on directly in the meeting. Then it is easier to listen to the details
and to see how they contribute to the big picture. We are not telling a story that
has to be thrilling—rather we give our stakeholders the information they asked
for in the way that helps them to understand it best.)

• Evaluation goals and questions
• Evaluation approach

42 4 How to Perform an Architecture Evaluation?

• Involved stakeholders/persons
• Inputs used and outputs produced
• Architecture drivers evaluated (overview, examples, prioritization)
• Evaluation results (if applicable)

– Driver integrity check results
– Solution adequacy check results
– Documentation check results
– Compliance check results
– Code metrics results

• Rating of the severity of the situation
• Information on the confidence level achieved and potential needs for actions to

get more confidence
• Recommendations derived from the evaluation results

– Clustered along areas of recommended actions
– Very rough estimates on effort needed for the recommendations.

4.2 What Mistakes Are Frequently Made in Practice?

Having no clear goals for an architecture evaluation.

Having no clear goals for evaluating an architecture might lead to severe
drawbacks. Effort might be spent on the wrong concerns; too much effort might be
spent on the design and on decisions that do not require that much attention

Architecture

Architecture
Documentation

Architecture
Compliance

Code Quality

Evaluated System

Architecture
Requirements

Is the architecture adequate for the requirements?

Are the architecture requirements clear?

Is the architecture documentation adequate?

Does the code have good overall quality?

DIC

SAC

DQC

ACC

CQC

Is the code consistent with the architecture as it was planned?

Fig. 4.2 Evaluation result overview template (colour figure online). © Fraunhofer IESE (2015)

4.1 What Is the Point? 43

(analysis paralysis) or too little effort might be spent on items that would require
more confidence (underestimation). Always start with a clear and approved for-
mulation of the evaluation goals.

→ Question Q.025.

Having no systematic approach for an architecture evaluation.

Having no or no systematic approach for an architecture evaluation may cause
additional effort due to a lack of approach maturity. Furthermore, ad hoc approa-
ches may cause omissions in the conduction of the checks and may lead to limited
exploitation of the results.

→ Questions Q.015, Q.017, Q.024, Q.031.

Selecting the wrong evaluation setup for the concrete context.

The selection of an evaluator and adequate setup of the evaluation approach are
decisive factors for the success of an architecture evaluation. Only if the evaluation
approach is adequate for the goals and the required confidence can the project
deliver the necessary answers. Evaluators have to have the necessary expertise,
availability, and neutrality.

→ Questions Q.024, Q.026.

Conducting the architecture evaluation without the necessary strictness.

If an architecture evaluation project is not given the necessary attention, it will
nearly always be overruled by other important activities. If the project is not strictly
planned upfront with clear milestones and meeting dates, important stakeholders
will not be available and the project cannot proceed.

An architecture evaluation project needs the attention and commitment of the
evaluation owner and the stakeholders to be involved. The project needs careful
planning (and re-planning) and strictness regarding its conduction.

→ Questions Q.024, Q.026, Q.029, Q.031.

Inadequately interpreting the evaluation results.

Interpreting the results of an architecture evaluation is not an easy task. Whether
a solution for requirements is adequate or whether the trade-offs made are
acceptable cannot be judged objectively. Thus, the interpretation has to take many

44 4 How to Perform an Architecture Evaluation?

http://dx.doi.org/10.1007/978-3-319-34177-4_3
http://dx.doi.org/10.1007/978-3-319-34177-4_3

situational factors as well as the involved people into account. Even when quan-
titative data is available, such as from a compliance analysis, the interpretation of
severity is not straightforward.

→ Questions Q.032, Q.033.

Inadequately presenting the evaluation results to the stakeholders.

An architecture evaluation often has to serve as input for decision makers who
do not know about all the technical details of an architecture. On the other hand, an
architecture evaluation often has to look at all the technical details in order to come
up with fact-based results. Thus, it is very important to elaborate and present the
results in a form that is adequate for the audience.

→ Question Q.033.

Evaluating one’s own architecture on-the-fly.

Human beings tend to overlook problems in their own work. Thus, they often go
over it very quickly as they assume all the details are clear. This often leads to
superficial architecture evaluations that do not reveal severe problems.

→ Questions Q.006, Q.017.

Prophet in one’s own country syndrome.

Performing an architecture evaluation with internal auditors may lead to the
problem that nobody listens to their results (or does not listen anymore)—they are
perceived as a prophet in their own country. In such cases, it might be an option to
involve an external party or to consider our experience in convincing management.

→ Questions Q.006, Q.017, and Chap. 11.

4.2 What Mistakes Are Frequently Made in Practice? 45

http://dx.doi.org/10.1007/978-3-319-34177-4_1
http://dx.doi.org/10.1007/978-3-319-34177-4_3
http://dx.doi.org/10.1007/978-3-319-34177-4_1
http://dx.doi.org/10.1007/978-3-319-34177-4_3
http://dx.doi.org/10.1007/978-3-319-34177-4_11

Part II
How to Evaluate Architectures

Effectively and Efficiently?

5How to Perform the Driver Integrity
Check (DIC)?

The goal of the Driver Integrity Check (DIC) is to get confidence that an archi-
tecture is built based on a set of architecture drivers that is agreed upon among the
stakeholders. We will show how to work with stakeholders and how to reveal
unclear architecture drivers or those on which no agreement exists. Architecture
drivers are expressed using the well-known architecture scenarios. The activity is
based on classical requirements engineering aimed at compensating for not elicited
requirements and aggregating a large set of requirements into a manageable set for
an architecture evaluation (Fig. 5.1).

5.1 What Is the Point?

Q.034. What Is the DIC (Driver Integrity Check)?

Stakeholders of the software system under evaluation have concerns. Concerns can
be considered a moving target: they are influenced by the current stakeholders’
perceptions of the software system as well as by other factors and by experiences
stakeholders make; they change over time; and their priority might be different at
different points in time. Most importantly, there are always many stakeholders, with
different concerns not (yet) aligned and potentially resulting in a conflict of interest.

Concerns shape the product and drive the architecting activities in general, and
are thus crucial for evaluating the architecture, too. The objective of the DIC is to
set the goals for the architecture evaluation. This means for the assessor to elaborate
with all relevant stakeholders on the questions that are critical to them at a given
moment in time. Investigating these concerns in detail and delivering informed,
fact-based, and well-grounded responses to the questions is the key to being suc-
cessful with architecture evaluations. The objective of the DIC is to set the focus in

© Springer International Publishing Switzerland 2016
J. Knodel and M. Naab, Pragmatic Evaluation of Software Architectures,
The Fraunhofer IESE Series on Software and Systems Engineering,
DOI 10.1007/978-3-319-34177-4_5

49

the jungle of stakeholder concerns and requirements. Having a clear view of the
evaluation goals (i.e., the underlying questions that cause trouble to the stake-
holders or make them feel uneasy) turns architecture evaluation into a worthwhile
exercise. This goal orientation helps to make the evaluation effective and efficient
and allows focusing on the most pressing issues in subsequent checks.

To achieve alignment among assessors and stakeholders, the concerns are for-
malized into architecture drivers. We apply a template for documenting such drivers
and use them as a basis for discussions with the stakeholders. We recommend
proceeding with an architecture evaluation only if there is agreement on the
architecture drivers.

Ideally, the execution of a DIC would be straightforward: inspect the docu-
mentation of requirements and architecture, distill the set of architecture-relevant
drivers currently of interest for the architecture evaluation, make sure they are still
valid and up-to-date, and, last but not least, achieve agreement on the drivers among
the stakeholders. However, in practice this process is far more complex. Docu-
mentation does not exist (anymore), is not up-to-date (was written years ago and
has not been updated since), or its level of detail is not appropriate, ranging for
instance between the extremes of being too little (e.g., three pages) or too much
(e.g., thousands of pages). Moreover, even more challenging is the fact that
stakeholders typically have different concerns and opinions about the priority of
architecture drivers.

• Requirements documentation
• Architecture documents

(if available)

• Identify and involve relevant stakeholders
• Elicit and consolidate stakeholder concerns
• Find areas of interests, recurring items, hot spots,

disagreements, and potential conflicts
• Merge, unify and align terminology used
• Document all architecture drivers
• Check for common agreement and approval
• Rate the integrity of the concerns
• Package the results

Architecture Drivers

Findings (deviations, inconsistencies,

ambiguities) in and consolidation of
architecture drivers (business goals,
constraints, quality attributes,key
functional requirements)

Severity and balance of findings

• Predicted
• Probed

• Architect
• Peers
• External auditor

• Documentation tools

• All stakeholders of the system
• Architects of system under evaluation (optional)

Input

Involved Stakeholders

Execution

Evaluators Tools

Output

Rating

Confidence Levels

Driver Integrity
Check (DIC)

It serves to check the integrity of
architecture drivers manifesting the
stakeholders’ concerns.

Fig. 5.1 DIC overview

50 5 How to Perform the Driver Integrity Check (DIC)?

The DIC serves to deliver explicit and approved input for the subsequent checks.
Consequently, we need to elicit from the stakeholders what their current concerns
for the software system under evaluation are. Such concerns may relate to tech-
nologies, migration paths, quality attributes, key functional requirements, and
constraints. In detail, the DIC aims at:

• Compensation for missing or yet unknown requirements for the software
system under evaluation, and in particular the analysis of complex exceptional
requirements that may be underrepresented in the requirements documentation.
Here the DIC draws attention to concerns that are important for the architecture
evaluation.

• Aggregation of large numbers of similar (types of) or repeating requirements
with little or no architecture relevance. Here the DIC raises the abstraction level
and places emphasis on those concerns that cause an impact on the architecture
of the software system.

• Consolidation of different stakeholder opinions and concerns (business vs.
technical) and balancing the focus of the investments of the architecture eval-
uation between (1) clearing technical debt of the past, (2) resolving current
challenges, and (3) anticipating and preparing for future changes/needs. Here the
DIC places the focus and the priority on the most pressing concerns.

• Negotiation in case of conflicting interests among stakeholders or conflicting
priorities of concerns [e.g., of external quality (run time) and internal quality
(development time)]. Here the DIC aligns the conflicting stakeholder concerns
and achieves shared awareness.

Q.035. Why Is the DIC Important?

The DIC is important because it delivers clear, explicit, and approved information
about the areas of interest for the architecture evaluation at the time of the evalu-
ation. As concerns drift over time and as an architecture evaluation is always
performed relative to the concerns, it is crucial to perform the DIC before checking
solution adequacy or architecture compliance. This enables efficient and effective
use of the time and effort allotted to the evaluation.

The DIC sets the questions for further checks within the architecture evaluation.
It elaborates and documents the questions at a given point in time and thus coun-
teracts drift in stakeholders’ concerns. It delivers a clear view on business goals (of
the customer organization, the development organization, the operating organiza-
tion), quality attributes of the software system (system in use or under develop-
ment), key functional requirements (functions that constitute unique properties or
that make the system viable), and constraints (organizational, legal, technical, or
with respect to cost and time).

5.1 What Is the Point? 51

The DIC serves to clarify whether or not additional checks should be conducted,
if and only if there is agreement about the stakeholders’ concerns. If there is no
agreement, we recommend reiterating over the concerns instead of wasting effort on
evaluating aspects that may prove irrelevant or superfluous later on.

Q.036. How to Exploit the Results of the DIC?

The results of the DIC are documented and architecture drivers are agreed upon.
Their main purpose is their use as input in subsequent checks of an architecture
evaluation. In addition, the results might be used for designing an architecture (in
case the driver has not been addressed yet), for raising awareness among all
stakeholders involved regarding what is currently driving the architecture design,
for detailing quality attributes by quantifying them, and for making different
implicit assumptions explicit and thus discussable.

Moreover, the DIC serves to increase the overall agreement of the product’s
architecture-relevant requirements and may justify the need for architecture (eval-
uation) by revealing a large number of disagreements or architecture drivers still
neglected at that point.

5.2 How Can I Do This Effectively and Efficiently?

Q.037. What Kind of Input Is Required for the DIC?

Inputs to the DIC are stakeholder information (if available), existing documentation
(if available), and a template for documenting architecture drivers (mandatory).

• Stakeholder information provides input about the roles and responsibilities of
the people in the organizations participating in the architecture evaluation.
Knowing who is involved, who is doing what, and who is reporting to whom
allows identifying stakeholders and thus enables eliciting their concerns.

• Existing documentation (documents and presentations about requirements,
architecture, release plans, etc.) provides inputs in two ways. On the one hand, it
is a viable source of information for extracting concerns about the architecture
under evaluation, and on the other hand, it enables the assessors to prepare for
the evaluation by getting familiar with the software system under evaluation,
domain-specific concepts, and, of course, the architectural design.

• A template for architecture drivers allows structured and formalized notation of
the consolidated concerns. Please refer to the question about the output of the
DIC for the template we recommend. The template may be customized and
adopted to the concrete situation where it is used. The stakeholders should be
informed about the structure and the content types of the template in order to be
able to read and work with the template.

52 5 How to Perform the Driver Integrity Check (DIC)?

Q.038. How to Execute the DIC?

The DIC applies a structured approach consisting of the following steps:

• Identify the stakeholders who are relevant and important for the software
system under evaluation.

• Involve the stakeholders and make sure that they are available during the DIC.
If they are unavailable, the use of personas might help to guess architectural
concerns (be aware of the risk of guessing wrong when using personas instead
of talking to the real stakeholders).

• Elicit stakeholder concerns for each stakeholder identified in workshops,
face-to-face interviews (of single persons or a group), or video or phone con-
ferences (whatever is the most applicable instrument for elicitation in the given
context of the evaluation).

• Consolidate the stakeholders’ concerns over all stakeholder interviews. Find
areas of interests, recurring items, hot spots, disagreements, and potential con-
flicts. Merge, unify, and align the terminology used.

• Document all architecture drivers using the template. Please refer to the ques-
tion about the output of the DIC for the template we recommend.

• Check for common agreement and approval on architecture drivers by offering
them for review. Discuss feedback with the stakeholders and mediate in case of
conflicts. Be a neutral moderator of the discussion. Raise attention to potential
trade-offs that might be acceptable for all involved stakeholders. Achieve
agreement on the priorities of the individual architecture drivers.

• Refine the documentation of the architecture drivers and make amendments, if
necessary. Iterate over the updated set of architecture drivers, if necessary, and
check again for agreement.

• Rate the integrity of the concerns (please refer to the question about how to rate
the results of a DIC).

• Package the results of the DIC and report the findings to the owner of the
architecture evaluation to get a decision on whether or not to continue with
subsequent checks.

Q.039. What Kind of Output Is Expected from the DIC?

The output of a DIC is a set of prioritized architecture drivers. Such drivers are
documented using templates [for instance, see Fig. 5.2, adapted from the archi-
tecture scenario template of (Clements et al. 2001)]. The template consists of a set
of fields for organizing and tracking information and the actual content. Please note
that the template is mainly to be seen as a form of support. It does not have to be
followed strictly. We often note down drivers merely as a structured sequence of

5.2 How Can I Do This Effectively and Efficiently? 53

sentences (oriented along the content of the template). This is easier to write (given
enough experience) and easier to read. We separated the field Quantification in
order to remind writers of scenarios that quantification is very helpful in creating
precise architecture drivers.

• ID and a representative Name identify an architecture driver.
• Status indicates the current processing status of an architecture driver (e.g.,

elicited, accepted, rejected, designed for, implemented, evaluated).
• Responsibilities can assign several responsibilities around the scenario to con-

crete stakeholders (e.g., the persons who up brought the driver and support it,
are financially responsible and sponsor it, wrote the driver down, or evaluated
the architecture with respect to the driver). This can be adapted individually to
the needs in a concrete project.

• Environment describes the concrete context in which the architecture driver is
relevant and where the stimulus arrives. If possible, provide quantifications.

• Stimulus describes a certain situation that happens to the system, respectively
the architecture, and which requires a certain response. If possible, provide
quantifications. The stimulus can arrive in the running system, e.g. in the form
of user input or the failure of some hardware, or the stimulus can arrive in the
system under development, e.g. in the form of a change request. If possible,
provide quantifications.

• Response describes the expected response of the system, respectively the
architecture, when the stimulus arrives. If possible, provide quantifications.

Categorization Responsibilities

Driver Name Application startup time Supporter

Driver ID AD.01.PERFORMANCE Sponsor

Status Realized Author

Priority High Inspector

Description Quantification

Environment
The application is installed on the system and has been started
before at least once. The application is currently closed and

Previous starts >= 1

Stimulus
A user starts the application from the Windows start menu.

Response
The application starts and is ready for inputting search
data in less than 1 second. The application is ready for

Initial startup time < 1s
Full startup time < 5s

the system is running on normal load.

fast answers to search queries after 5 seconds.

Fig. 5.2 DIC example result. © Fraunhofer IESE (2011)

54 5 How to Perform the Driver Integrity Check (DIC)?

Q.040. What Do Example Results of the DIC Look like?

Figure 5.2 depicts the documentation of a sample architecture driver using the
template described above.

Q.041. How to Rate the Results of the DIC?

We rate the driver integrity for each architecture driver derived. All findings (i.e.,
disagreements, deviations, inconsistencies, ambiguities) are considered in total and
then aggregated by assigning values on the two four-point scales (severity of the
findings and balance of the findings). The higher the score, the better the degree of
driver integrity for the architecture driver.

The combination of both scales (i.e., the mathematical product of the two fac-
tors) determines the overall driver integrity for each architecture driver:

• N/A means that the driver integrity of the architecture driver has not (yet) been
checked.

• NO Driver Integrity means there is strong disagreement among the stake-
holders (conflicting concerns or priorities), or between stakeholders’ concerns
and the architecture driver specified by the assessor.

• PARTIAL Driver Integrity means that the architecture driver consolidates the
stakeholders’ concerns to some extent, but that parts of the driver need further
elaboration before getting approval from the stakeholders.

• LARGE Driver Integrity means that the stakeholders have no major objections
and approve the architecture driver in principle; some details may require further
refinement or elaboration.

• FULL Driver Integrity means there is shared agreement among stakeholders
and assessors about the architecture driver and the driver has been approved by
the stakeholders.

Q.042. What Are the Confidence Levels in a DIC?

The procedures of a DIC ideally result in agreement about the relevant, critical, and
important drivers of the software system under evaluation. If no agreement is
reached and depending on the criticality of the driver, it might be necessary to
invest into additional means to predict or probe the driver with a prototype to make
sure that the stakeholders share the same understanding regarding what the software
system shall achieve. Creating such prototypes consumes significant more effort
than just inspecting, but delivers higher confidence. Figure 5.3 schematically
depicts the confidence levels for the DIC.

5.2 How Can I Do This Effectively and Efficiently? 55

Q.043. What to Do with the Findings of the DIC?

The findings of a DIC consist of a list of open issues that require the stakeholders’
attention, clarification, or conflict resolution. We recommend revising the archi-
tecture drivers until the conflicts have been resolved before conducting other
checks. For conflict resolution between stakeholder parties, the following strategies
may apply:

• Convincing: one party convinces the other; both parties eventually agree.
• Compromising: new alternative or trade-off is accepted by the parties in

conflict.
• Voting: the alternative with the most votes by all stakeholders involved wins

over the other options.
• Variants: conflict is not resolved, but different variants co-exist (parameterized)

and all variants eventually get evaluated separately.
• Overruling: a (third) party with a higher organizational rank decides and

enforces the decision over the conflicting party.
• Deferring: decision-making is delayed and the conflicted architecture driver

will not be evaluated further (for the time being).

The documentation of the architecture drivers is considered a living work pro-
duct, which is updated as soon as new drivers emerge, the results of the DIC are
compiled, or the findings of the DIC are addressed.

Confidence

Effort
low high

high

low

Applicability
(Diameter: Applicability to number of drivers)

Self-Controlled

Reviewed

Reviewed
3rd Party

Estimated

Prototyped

Inspected

Probed

Fig. 5.3 DIC confidence levels. © Fraunhofer IESE (2015)

56 5 How to Perform the Driver Integrity Check (DIC)?

Q.044. What Kind of Tool Support Exists for the DIC?

Performing the DIC mainly comprises manual activities to be performed by the
assessors. Only the documentation of the architecture drivers can be supported by
tools. Here we use the tooling that is already in place at the company, which ranges
from modeling tools (capturing the drivers as first-class model elements and using
the template as part of the description of the model element), office tools (adopting
the template in documents, slide sets, or spreadsheets), or wikis (adopting the
templates in dedicated pages).

Other than that, no special tools are available for the DIC, except for
general-purpose tools for sharing and version management.

Q.045. What Are the Scaling Factors for the DIC?

Scaling factors that increase the effort and time required for performing a DIC
include:

• Number of organizations involved
• Distribution of organization(s)
• Number of stakeholders involved
• Number of evaluation goals
• Size of the software system
• Criticality of the architecture evaluation.

5.3 What Mistakes Are Frequently Made in Practice?

Evaluating against unclear architecture drivers.

Architecture drivers are the foundation of the evaluation. In practice, architecture
drivers are often not clear, not commonly agreed on, or they are too abstract to be
useful for evaluation. We think that the DIC is one of the most crucial steps for
making the overall architecture evaluation effective. The DIC provides a clear view
on the most important concerns of the stakeholders and allows prioritizing.

! Questions Q.035, Q.038 and Q.039.

Waiting too long to achieve driver integrity.

5.2 How Can I Do This Effectively and Efficiently? 57

Sometimes stakeholders and assessors have a hard time achieving agreement on
particular architecture drivers, or conflict resolution strategies consume too much
time. Do not wait too long to achieve driver integrity. Defer the driver until
agreement has been reached, but continue doing subsequent checks of other drivers
(where driver integrity has already been achieved). It is better to start off with 80 %
of the architecture drivers than to delay the entire architecture evaluation endeavor
until perfection has been reached. In addition, in most cases, the Pareto principle
applies here, too.

! Questions Q.098 and Q.102.

58 5 How to Perform the Driver Integrity Check (DIC)?

http://dx.doi.org/10.1007/978-3-319-34177-4_10
http://dx.doi.org/10.1007/978-3-319-34177-4_11

6How to Perform the Solution
Adequacy Check (SAC)?

The main goal of the Solution Adequacy Check (SAC) is to check whether the
architecture solutions at hand are adequate for the architecture drivers identified and
whether there is enough confidence in the adequacy. We present a pragmatic
workshop-based approach that is based on ideas of ATAM. We provide guidance
for the documentation of evaluation results, such as the discussed architecture
decisions and how they impact the adequacy of the overall solution. We also
provide concrete templates and examples and show how evaluation results and
specific findings can be rated and represented (Fig. 6.1).

6.1 What Is the Point?

Q.046. What Is the SAC (Solution Adequacy Check)?

There is no good or bad architecture—an architecture always has to be adequate for
the specific requirements of the system at hand. Checking this adequacy is exactly
the mission of the SAC. It is performed in nearly all architecture evaluation projects
and is often used synonymously with architecture evaluation.

The SAC requires a sound set of architecture drivers as input, as generated by
the DIC. The architecture drivers (often represented as architecture scenarios) can
be used to structure the SAC: For each architecture driver, an independent SAC is
possible, the results of which can be aggregated into the overall result.

The SAC works across “two worlds”: requirements in the problem space and
architecture in the solution space. There is no natural traceability relation between
requirements and architecture. Rather, architectural decisions are creative solutions,
which are often based on best practices and experiences, but sometimes require
completely new approaches. This has an impact on the solution adequacy check: It

© Springer International Publishing Switzerland 2016
J. Knodel and M. Naab, Pragmatic Evaluation of Software Architectures,
The Fraunhofer IESE Series on Software and Systems Engineering,
DOI 10.1007/978-3-319-34177-4_6

59

offers limited opportunities for direct tool-supported analyses and is rather an
expert-based activity.

The goal of the SAC is to get the confidence that the solutions are adequate. As
architecture is always an abstraction, it typically does not allow for ultra-precise
results. Thus, it should be made clear throughout an architecture evaluation which
level of confidence needs to be achieved and what this means in terms of invest-
ment into evaluation activities. Confidence levels are no exactly (pre-) defined
levels; rather, their aim is to establish a common understanding of the confidence
that needs to be obtained or has been obtained regarding an architecture evaluation.

More clarification is needed regarding what talking about the adequacy of “an
architecture” means:

• An architecture is not a monolithic thing: It consists of many architecture
decisions that together form the architecture. In the SAC, architecture drivers
and architecture decisions are correlated. An architecture decision can support
an architecture driver; it can adversely impact the driver; or it can be unrelated.

• The SAC is done to support decisions about the future. This can mean that
only an architecture (or parts of it) has been designed and it should be made sure
that the architecture is appropriate before investing into the implementation.
This can also mean that a system is already implemented, for example by a
third-party provider, and it should be made sure that the system fits the current
and future requirements of a company. Some properties of a system, such as its
performance (in particular its response time), can be judged well by looking at

• Architecture drivers
• Architecture documentation

• Overview explanation of the architecture
• For each architecture driver

• Reconstruct and discuss detailed solution
• Document design decisions, risks, tradeoffs
• Rate adequacy of the solutions
• If necessary, increase confidence with other analyses

• Guidelines
• Challenge the architect: ask for details
• Ask about the “why?”
• Use your experiences from other systems
• Explore boundary areas

Architecture decisions
Architecture driver solutions
Architecture diagrams

Findings on adequacy of architecture

decisions to fulfill the architecture
drivers (explicit rationales, risks,
tradeoffs, assumptions)

Severity and balance of findings

• Predicted
• Probed
• Tested

• Architect
• Peers
• External auditor

• Simulation tools
• Documentation tools

• Architects of system under evaluation
• Further stakeholders of system (optional)

Input

Involved Stakeholders

Execution

Evaluators Tools

Output

Rating

Confidence Levels

Solution Adequacy
Check (SAC)
It serves to check whether the
architecture drivers of a system are
adequately addressed in its
architecture.

Fig. 6.1 SAC overview

60 6 How to Perform the Solution Adequacy Check (SAC)?

the running system, but only if tests can be conducted representing all relevant
parameters. Other quality attributes such as development time quality attributes
can be judged much better by evaluating the architecture of a system. Whenever
it is not possible to observe properties in the running system or in local parts of
the implementation, architecture becomes the means to provide the right
abstractions for evaluating system properties.

• Looking at the lifecycle of a software system, the architecture can mean
different things: If the system is not implemented yet, it most likely means the
blueprint for building the system. If the system is already implemented, it can
mean the decisions as manifested in the code, the original blueprint from the
construction phase, or a recently updated blueprint. Which architecture to take
as the foundation for the SAC depends on the concrete context of the evaluation
project and on the evaluation goals.

Q.047. Why Is the SAC Important?

The main goal of checking the adequacy of architectural solutions is to avoid
investing a lot of implementation effort until it can be determined whether the
architectural solutions are really adequate. In that sense, the SAC is in investment
made to predict at a higher level of abstraction (predicting at the architecture level
instead of testing at the implementation level) whether certain solutions are really
adequate. The SAC can thus support questions from many levels: business-level
questions with far-reaching effects as well as rather low-level technological ques-
tions. The SAC can be seen as a risk management activity (in particular the
identification of risks arising from wrong architectural decisions or architectural
mismatches).

Additionally, the SAC can provide further benefits:

• Revealing inadequacies that did not exist in earlier times but that arose due to
architecture drivers changing over time

• Making implicit decisions and trade-offs clear and known to everybody (often,
decision-making is rather implicit and the consequences are not considered so
much)

• Revealing aspects that were not considered well enough: Where are gaps in the
argumentation; which decisions are not thoroughly considered?

• Increasing awareness of and communication about the architecture in a software
company

• Increasing the architectural knowledge of the involved persons.

6.1 What Is the Point? 61

Q.048. How to Exploit the Results of the SAC?

The results of the SAC are mainly the basis for well-founded decisions. Which
decisions to make depends on the evaluation questions that triggered the archi-
tecture evaluation. Potential decisions could be: (1) The architecture is a sound
basis for the future and should be realized as planned. (2) The architecture is not
adequate and has to be reworked. (3) The architecture does not provide enough
information, thus the level of confidence achieved is not high enough. More
focused work has to be spent to create the required confidence.

Another stream of exploitation is based on the further benefits described in the
previous section: exploiting the improved knowledge and communication regarding
the architecture in order to achieve higher quality of the products.

6.2 How Can I Do This Effectively and Efficiently?

Q.049. What Kind of Input Is Required for the SAC?

Key inputs for the SAC are:

• Architecture drivers: They are typically the output of the DIC, but may already
be available from other requirements engineering activities. One useful form of
representation are architecture scenarios.

• Architecture under evaluation: This architecture may be more or less accessible:
Sometimes the architecture is already made explicit in terms of models and/or
documents, sometimes it is completely implicit or only in the minds of people. In
order to be able to assess the adequacy of an architecture, it has to be explicit.
Thus, many architecture evaluation projects have to include reconstruction
activities, which extract architectural information from the source code or from
people’s minds. In our experience, there was not a single project that provided
architecture documentation which was sufficient for directly performing a solution
adequacy check. In practical terms, this means that some rough reconstruction of
the key architectural aspects must be performed upfront and that the details must
be reconstructed when discussing how architecture scenarios are fulfilled.

Q.050. How to Execute the SAC?

ATAM (Architecture Tradeoff Analysis Method) (Clements et al. 2001) is probably
the best-known method for solution adequacy checks. It describes in great detail how
to collect and prioritize architecture drivers and how to evaluate an architecture against
them. In particular, it also gives detailed advice on how to organize an architecture
evaluation and which organizational steps to propose. We recommend the book on
ATAM for the details; here, wewill only provide some brief guidance and experiences

62 6 How to Perform the Solution Adequacy Check (SAC)?

for conducting the SAC. Our proposed approach is less strict than ATAM in several
aspects in order to react to constraints that we often encountered in practice:

• We do not require all the stakeholders to attend all the time (although this would
often be useful).

• We do not require the architecture to be documented upfront (documentation
was insufficient in almost all of our evaluation projects). Rather, we try to
compensate for and reconstruct missing documentation in the evaluation.

• We simplify the process of eliciting the architecture drivers.
• We extended/slightly modified the template for describing how a certain

architecture driver is addressed.
• We keep the workshops lightweight by not using the templates for drivers,

decisions, and solutions in the workshops. In the workshops, facts are infor-
mally noted down by the evaluators and later consolidated in the respective
templates. Doing differently distracts the workshop members from the real
evaluation work and is not advisable.

The key idea behind techniques for the Solution Adequacy Check is to gain con-
fidence in solutions by taking a detailed look at particular architecture drivers and to
use the expertise of (external) people to assess the adequacy of the architecture.

An established way of organizing a Solution Adequacy Check is to conduct
workshops with at least the following participants: (1) the people evaluating the
architecture and (2) the architects who designed the system under evaluation.
Additionally, further stakeholders can be valuable, in particular those who stated
architecture drivers. These stakeholders often have experienced that certain solu-
tions did not work and can thus help to reveal potential problems.

Figure 6.2 gives an overview of the procedure of an SAC evaluation workshop. At
the beginning of the workshop, the architects of the system introduce the architecture

Presentation of
Architecture

Overview

Evaluation of
Driver X

Rating
Confidence
in Result

Rating Driver
Fulfillment

Architecture
Driver

Architecture
Driver

Architecture
Driver

Architecture
Driver

Architecture
Driver

Architecture
Decision

Architecture
Driver

Architecture
Driver
Driver

Solution

Architecture
Driver

Architecture
Driver

Architecture
Diagram

Fig. 6.2 SAC procedure. © Fraunhofer IESE (2014)

6.2 How Can I Do This Effectively and Efficiently? 63

to the other participants to give an overview of the architecture under evaluation. This
typically takes one to three hours. Depending on the availability and capability of the
architects, this can be done with more or less guidance by the evaluators.

The basic procedure of a solution adequacy check workshop consists of going
through the architecture drivers according to their priorities and discussing how
adequate the architecture is in terms of fulfilling the respective driver. For every
driver, the architectural decisions that are beneficial for the scenario or that hamper
the fulfillment of the driver are discussed and documented. To reveal these deci-
sions, the evaluators need their expertise to identify which architectural aspects are
affected by a driver (data aspects, deployment aspects, …), and they need experi-
ence to judge whether a set of decisions would really fulfill the requirements. For
each driver, all the decisions and their pros and cons are documented and it is
described as a sequence of steps how the architecture or the system is achieving the
fulfillment of the driver. Additionally, the reviewers have to maintain an overview
of the discussion of other drivers and the respective architecture decisions, as these
might also be relevant for other scenarios. More details about the produced outputs
will be described later.

While it is important to maintain a very constructive and open atmosphere
during an architecture evaluation, it is in the nature of this exploration to contin-
uously challenge the architects by asking questions like:

• How did you address this particular aspect?
• What happens in this particular case?
• How does this relate to the decisions explained for the other scenario?
• Why did you design it like that and not the other way around?

The goal to keep in mind when asking such questions is: Is the architecture
adequate? The evaluator has to judge this based on his experience, and it is not
possible to provide clear guidelines regarding how to make this judgment. How-
ever, a good guideline for evaluators is the architecture decomposition framework
(ACES-ADF) of Fraunhofer IESE (Keuler et al. 2011), as it provides a quick
overview of relevant architectural aspects. Yet, not all the aspects of the ADF are
relevant for the fulfillment of each scenario. For scenarios expressing runtime
qualities, the runtime aspects in the ADF are more important, and the same is true
for development time. Of course, there is always a close connection between
runtime and development time, and quite often trade-offs can be identified between
runtime scenarios and development time scenarios: optimizing for performance
often adversely impacts maintainability and vice versa.

When discussing architecture drivers in a solution adequacy check, the first
drivers take quite a long time (up to several hours) as many details of the overall
architecture (in addition to the initial overview) have to be asked and explained.
Later, evaluating the drivers becomes faster and finally it sometimes only takes
minutes to refer to architecture decisions discussed before.

64 6 How to Perform the Solution Adequacy Check (SAC)?

Q.051. What Kind of Output Is Expected from the SAC?

The output of the discussion of architecture scenarios is organized in three con-
nected types of output (see Fig. 6.3, also showing relationships and cardinality).
The evaluators consolidate the facts and findings of the workshop afterwards and
use the templates to structure the information.

• Architecture decisions, documented in the Decision Rationale Template (see
Fig. 6.4). Architecture decisions can be related to several architecture drivers
and can positively and negatively impact these drivers. The template can also be
used to document discarded decisions.

– ID and a representative Name identify an architecture decision.
– Explanation describes an architecture decision.
– Pros summarize reasons in favor of the decision.
– Cons and Risks summarize reasons that would rather speak against the

decision.
– Assumptions express what was assumed (but not definitely known) when

making the decision.
– Trade-Offs describe quality attributes, drivers, and other decisions that are

competing with this decisions.
– Manifestation Links are pointers to architecture diagrams, in which the

architecture decision is manifested.

Categorization Responsibilities

Driver ID Promotor

Driver Name Sponsor

Status Author

Priority Inspector

Description Quantification

Environment

Stimulus

Response

Decision Name

Decision ID

Pros Cons & Risks

Assumptions Trade-offs

Manifestation
Links

x Architecture Drivers (Input) y Decision Rationales (Output)

1:1

n:m

x Driver Solutions (Output)

Driver Name

Driver ID

Related Decisions

Steps

Pros Cons & Risks

Assumptions Trade-offs

User Interface

Services

Domain Logic

Data Management

z Architecture Diagrams (Output)

n:m

Fig. 6.3 Relationships—drivers, solutions, decisions, and diagrams. © Fraunhofer IESE (2012)

6.2 How Can I Do This Effectively and Efficiently? 65

• Architecture driver solutions, documented in the Driver Solutions Template
(see Fig. 6.5). This summarizes and references everything that is relevant for the
solution of a specific architecture driver.

– ID and Name refer to the architecture driver that is being addressed.
– Related Decisions refer to all architecture decisions that contribute to the

architecture driver or adversely impact it.

Decision Name Decoupled loading of search data

Design Decision ID DD.01

Explanation
Loading the search data is done in a separate thread. The application’s UI can be started
and used for typing in search queries before the search data is actually loaded.

Pros & Opportunities Cons & Risks

Data loading time does notadd on startup time Loading in separate thread requires synchronization
and makes implementation more difficult

Assumptions & Quantifications Trade-Offs

Data can be loaded in 5s Maintainability, understandability

Manifestation Links

Fig. 6.5 SAC example results—decision rationale template. © Fraunhofer IESE (2012)

Driver Name Application startup time

Driver ID AD.01.PERFORMANCE.

Steps 1. Application always stores preprocessed index-structures on updates of searchable items
2. On startup, loading of search data is moved to a separate thread
3. The UI is started and ready for user input while loading of search data is ongoing
4. After loading the search data, searches can be done without the user noticing that search was not available before

Related Design
Decisions

DD.01 Decoupled loading of search data
DD.12 Preprocessed index-structures of search data

Pros & Opportunities Cons & Risks

Very fast startup time, application directly usable by user More effort in realization
Loading in separate thread requires synchronization and makes
implementation more difficult

Assumptions & Quantifications Trade-Offs

Data can be loaded in 5s
User rarelysends a search in less than 4s after start is completed

Maintainability, understandability

Fig. 6.4 SAC example results—driver solution template. © Fraunhofer IESE (2012)

66 6 How to Perform the Solution Adequacy Check (SAC)?

– Steps describes an abstract sequence of steps regarding the way the system
and its architecture address the architecture driver if the related architecture
decisions are used.

– Pros summarize aspects that contribute to achieving the architecture driver.
– Cons and Risks summarize aspects that adversely impact the achievement of

the architecture driver or that are risky in terms of uncertainty.
– Assumptions express what was assumed (but not definitely known) when

making the decisions for addressing the architecture driver.
– Trade-offs describe quality attributes, drivers, and other decisions that are

competing with this architecture driver.

• Architecture Diagrams, documented in any convenient notation for architec-
tural views. In architecture diagrams, architecture decisions are manifested and
visualized.

Q.052. What Do Example Results of the SAC Look Like?

Figures 6.4 and 6.5 show examples of the driver solution template and of the
decision rationale template for the architecture driver introduced in Fig. 5.2.
According to Fig. 6.3, multiple architecture decisions might be related to the driver,
but only one is fully described. Additionally, there might be architecture diagrams,
which are not necessary for the examples shown.

Q.053. How to Rate the Results of the SAC?

We rate the solution adequacy for each architecture driver that is evaluated. All
findings (i.e., risks, assumptions, trade-offs, missing confidence) are considered and
then aggregated by assigning values on the two four-point scales (severity of the
findings and nature of the findings). The higher the score, the better the solution
adequacy for the architecture driver. The combination of both scales determines the
overall solution adequacy for each architecture driver:

• N/A means that the solution of the architecture driver has not (yet) been
checked. It can also mean that the check was not possible as the architecture
driver was stated but not agreed upon.

• NO Solution Adequacy means there are major weaknesses in the solution or no
solution may even be provided for the architecture driver.

• PARTIAL Solution Adequacy means that the architecture driver is addressed
but there are still weaknesses and risks that require further clarification or
architectural rework.

6.2 How Can I Do This Effectively and Efficiently? 67

http://dx.doi.org/10.1007/978-3-319-34177-4_5

• LARGE Solution Adequacy means that the architecture driver is generally
well addressed but with minor weaknesses or risks.

• FULL Solution Adequacy means there is confidence that the architecture
driver is well addressed by the architecture decisions.

Q.054. What Are the Confidence Levels in an SAC?

While the evaluation procedure as described above provides important results with
limited investment, it sometimes cannot provide the confidence that is needed for the
results (Fig. 6.6). A good example are performance requirements: Imagine a system
has to respond to every request within 0.1 s. The whole architecture is explained and
for a reasonably complex system and known technologies you might have an idea
whether the response time is realistic, but this is not a guarantee. However, if the
system is not very simple, it is probably not possible to get high confidence that the
response time is really achieved. In particular when new technologies come into play
in which the architects do not have any experience yet, there is no chance to judge
whether the requirements will be fulfilled. This is particularly true for performance
requirements, but may also occur for other types of requirements.

In such cases, extended techniques for architecture evaluation are necessary. In
the case of unknown technologies, prototyping should be used to gather first data
about the properties of these technologies. This could mean building a skeleton of
the system with a realization of the relevant architectural decisions in order to
measure for example response times. Another possibility to gain more confidence
are simulation-based approaches (e.g. Becker et al. 2009; Kuhn et al. 2013):
Simulation is useful for expressing complex situations but always requires expe-
rience in the form of calibration data in order to align the simulation model with the
real behavior of the resulting system.

Confidence

Effort
low high

high

low

Applicability
(Diameter: Applicability to number of drivers and solution concepts)

Self-Controlled

Tested in Lab

Reviewed

Reviewed
3rdParty

Tested in Field

Simulated

Prototyped

Predicted

Tested

Probed

Fig. 6.6 SAC confidence levels. © Fraunhofer IESE (2015)

68 6 How to Perform the Solution Adequacy Check (SAC)?

Q.055. What Kind of Tool Support Exists for the SAC?

As described above, the real evaluation part of the SAC is a strongly expert-based
activity. Thus, the only tool support for this type of activity can support the eval-
uating experts in organizing information and notes. During the evaluation work-
shop, tools are needed that allow very quick note-taking. These may be plain text
tools or mind-mapping tools that allow structuring the gathered information very
quickly. Office tools such as text processing and presentation tools are useful for
structuring the consolidated information and sharing it with the stakeholders.

More sophisticated tools come into play when the level of confidence in the
evaluation results has to be increased. Example tools are prediction and simulation
tools for certain quality attributes [e.g., for performance and reliability (Becker et al.
2009)]. Another approach can be to quickly prototype architectural ideas, which can
be supported by tools such as IDEs and cloud environments, which allow quick
trials of new technologies.

Q.056. What Are the Scaling Factors for the SAC?

The key scaling factor for the SAC is the number of scenarios that are evaluated.
The prioritization of the architecture drivers makes it clear that the scenarios with
the highest priorities are checked first. Additionally, it can be agreed to select
further scenarios mandatory for evaluation according to other criteria (e.g., a certain
number of scenarios for development time quality attributes, whose priority might
not be so high depending on the voting stakeholders).

Our approach is to determine a fixed time for the evaluation (1 or 2 workshop
days have proven to be appropriate). As long as time is left, scenarios are discussed.
In our experience, we managed to evaluate an average of 10–25 architecture drivers
in one to two days.

Of course, this leads to a number of remaining scenarios that are not evaluated in
detail. However, our experience shows that the first 10–25 evaluations of archi-
tecture drivers approximate the full evaluation result very well. Thus, we have
pretty high confidence that after two workshop days, a summarizing evaluation
result can be presented.

Further scaling factors that increase the effort and time required for performing
the SAC include:

• Number of organizations involved
• Distribution of organization(s)
• Number of stakeholders involved
• Number of evaluation goals
• Size of the software system
• Criticality of the architecture evaluation.

6.2 How Can I Do This Effectively and Efficiently? 69

Q.057. What Is the Relationship Between the SAC
and Architecture Metrics?

Another, quite popular, aspect of architecture evaluation is to use architecture level
metrics to assess the quality of the architecture (Koziolek 2011). Architecture
metrics try to capture general rules of good design. For example, they measure
aspects such as coupling and cohesion of modules. Although the name might
suggest otherwise, architecture metrics are typically measured on the source code.
Architecture is used as an abstraction of the source code, and thus mainly more
abstract properties of modules and the relationships between modules are checked.

The key difference between architecture metrics and the SAC is that architecture
metrics do not evaluate against a product-specific evaluation goal but against metric
thresholds and interpretation guidelines, which have been determined before in other
settings to express aspects of software quality. Architecture metrics are, like nearly all
other metrics, typically measured with the help of tools. As they work on the source
code, they have to deal with a large amount of information that needs to be processed.

6.3 What Mistakes Are Frequently Made in Practice?

Being too superficial in the evaluation.

Many architecture evaluation results turn out to be too superficial if one looks at
the details. Some of the reasons for this are: missing experience of the evaluators,
trying to be very polite and challenging the architects too little, not covering all
necessary architectural aspects.

! Questions Q.017, Q.051 and Q.054.

Distracting the architecture evaluation by focusing too much
on templates.

Templates are helpful for presenting results in a structured form. But working
with the templates in workshops where most of the participants are not used to the
method and to the templates can be very distracting. We propose working as
informal and focused on the real evaluation content as possible in the workshop. It
is the duty of the evaluators to make sure that all the necessary content is discussed
and collected. Then it can be persisted in structured templates afterwards.

! Questions Q.051 and Q.052.

70 6 How to Perform the Solution Adequacy Check (SAC)?

http://dx.doi.org/10.1007/978-3-319-34177-4_3

Losing the good atmosphere due to the evaluation.

Architecture evaluation benefits from an open and constructive atmosphere as
the information has to be provided mainly by the architects of the evaluated system.
Since architecture evaluations now and then originate from critical situations, there
is the risk of losing the good atmosphere. It is the task of the evaluators to have a
feeling for the criticality of the situation and to preserve the open and constructive
climate.

! Question Q.050.

Losing the overview over the number of drivers and decisions.

During the evaluation workshops, the evaluators have to maintain an overview
over a large number of architecture drivers and decisions that contribute positively
or negatively to the drivers. As stakeholders and architects rarely have time,
evaluators cannot spend much time on writing and organizing notes. Rather they
have to mentally organize all information almost on the fly and still maintain an
overview of the previous discussion. This is particularly important in order to reveal
inconsistencies in the discussion of architectural solutions for different architecture
drivers (“This morning you said the communication protocol should work like this
to achieve … Now you are saying …”).

! Questions Q.050, Q.051 and Q.052.

Improperly dealing with levels of confidence.

Mistakes happen in two directions: Overcautious people will sometimes try to
get level of confidence that is too high and thus too costly for drivers where this is
not necessary. This strongly increases the time and budget consumed for an
architecture evaluation. On the other hand, people often fail to accept that in a
scenario-based review, it might just not be possible to achieve the necessary level of
confidence.

! Question Q.054.

6.3 What Mistakes Are Frequently Made in Practice? 71

Replacing the SAC with automated measurement of architecture metrics.

Measuring architecture metrics and seeing this as sufficient for an architecture
evaluation is tempting: It can be widely done with tool support and does not
consume much expert time. Unfortunately, it does not tell much about the adequacy
of an architecture for the architecture drivers. We strongly encourage everyone to
clearly look at the evaluation goals and at the evaluation techniques that can be used
to achieve them.

! Questions Q.054, Q.055 and Q.096.

72 6 How to Perform the Solution Adequacy Check (SAC)?

http://dx.doi.org/10.1007/978-3-319-34177-4_10

7How to Perform the Documentation
Quality Check (DQC)?

The main goal of the Documentation Quality Check (DQC) is to check how ade-
quate the architecture documentation is for its audience and purposes. The evalu-
ation checks both the content and the representation of the architecture
documentation. Thinking from the perspective of the audience and considering the
purposes of the documentation helps to rate the adequacy of the documentation. In
addition, principles of good documentation, such as structure, uniformity, or
traceability, can be checked. These principles are determined by the mental capa-
bilities of the readers and can be used across domains and system types (Fig. 7.1).

7.1 What Is the Point?

Q.058. What Is the DQC (Documentation Quality Check)?

Architecture documentation is made for people, not for being processed by com-
puters. Its intention is to describe aspects about a system that the code does not
contain or expose. It offers targeted and quick access to the key ideas and decisions
behind a system. Here, we will not provide profound insights into architecture
documentation but refer the reader to the dedicated literature (Zörner 2015;
Clements et al. 2010).

As for any documentation, two main aspects of architecture documentation
should be checked in the DQC:

• Content of the architecture documentation
• Representation of the architecture documentation.

© Springer International Publishing Switzerland 2016
J. Knodel and M. Naab, Pragmatic Evaluation of Software Architectures,
The Fraunhofer IESE Series on Software and Systems Engineering,
DOI 10.1007/978-3-319-34177-4_7

73

Regarding content, two things are important to consider as background infor-
mation when checking architecture documentation quality:

• Who is the audience?
The main audience are, of course, the developers. However, there are other
important stakeholders of architecture documentation, such as management,
marketing, and testers. It is fairly obvious that these target groups have different
needs in terms of architecture documentation. These differences are related to
content and focus, representation, and level of detail. Schulenklopper et al.
(2015) describes with great examples how architecture documentation can be
tailored to different audiences and supports the notion that it might pay off to
invest into different representations of the architecture documentation, although
this mostly means effort for manual creation.
The audience can typically be characterized further and should be known to the
architects writing the architecture documentation. For example, the need for
architecture documentation depends on the knowledge of developers as one
factor: Do they know the domain well? Do they know the architectural impli-
cations of the technologies used? Do they know other similar systems of the
company? These characteristics might lead to strongly different needs for
architecture documentation and an evaluator of the quality of this documentation
has to take them into account.

• Documentation purposes
• Architecture documents,

models, wikis, sketches, API
documentation

• Audience

• Manual inspections
• Walkthroughs
• Tool-based measurement

Findings on adequacy of
documentation and adherence to
best practices

Severity and balance of findings

• Inspected
• Measured

• Architect
• Peers
• External auditor

• Best practice andstyle
checkers

• (Audience of documentation)

Input

Involved Stakeholders

Execution

Evaluators Tools

Output

Rating

Confidence Levels

Documentation Quality
Check (DQC)

Serves to check the documentation
of solution concepts and the
adherence to documentation best
practices.

Fig. 7.1 DQC overview

74 7 How to Perform the Documentation Quality Check (DQC)?

• What is the purpose of the architecture documentation?
One key purpose of architecture documentation is to convey the main ideas and
concepts and to enable efficient and effective communication among stake-
holders. Developers should get the right information to conduct their imple-
mentation tasks; testers should get information about things that are important to
test and about their testability. Managers should understand the main risks and
mitigation strategies and the implications of the architecture on schedules and on
the staffing situation.

Regarding representation, general best practices of good documentation
(Zakrzewski 2015) apply for architecture documentation as well. In the following, a
selection of important best practices is presented:

• Adherence to best practices such as architecture documentation view frame-
works [e.g., SEI viewtypes (Clements et al. 2010), 4 + 1 views (Kruchten
1995), arc42 (Starke and Hruschka 2015), Fraunhofer ACES-ADF (Keuler et al.
2011)].

• Internal and external consistency, uniformity: Is the information provided
consistently across different areas, diagrams, naming of elements, and
documents?

• Structuredness: Is the information structured in a form that supports the con-
struction of a mental model and that breaks the information down in a mean-
ingful way?

• Readability, Understandability, Memorability: Is the language understandable
and adequate for the target audience? Is the document easy to read and follow?
Are the diagrams well organized and are recurring aspects depicted in a similar
layout? Are the diagrams clear and not overloaded?

• Completeness: Is the information complete in the sense that relevant questions
can be answered by the document and the system can be understood based on
the document?

• Adequate notation: Is the notation adequate for the intended audience?
Management needs different notations and descriptions and another level of
detail than developers.

• Traceability within and across documents: Can related aspects (and there are
many relations in an architecture documentation) be identified and easily
navigated to?

• Extensibility: Is the documentation created in a way that allows updating and
distribution of new versions of the documentation (very important to have a low
barrier for updating the documentation)?

Checking the quality of the documentation comes down to the question: Is the
documentation adequate for the audience and their purposes? A given architecture
documentation does not have to address all potential audiences and purposes.
Rather, it should clearly show what it addresses and how. Reading the architecture
documentation of real projects often exposes deficiencies because the writer

7.1 What Is the Point? 75

(probably the architect) did not explicitly think about the audience and the purposes
of the documentation. In such cases, the document is rather optimized from a
writing perspective than from a reading perspective. It makes little sense to spend
effort on such work.

Q.059. Why Is the DQC Important?

The DQC assures that the documentation of the architecture enables comprehension
of the solution concepts. It determines whether or not readers will find the right
information in order to gain knowledge, understand the context, perform
problem-solving tasks, and share information about design decisions. Additionally,
the documentation (reports, presentations, models) is inspected with respect to
information representation criteria such as consistency, readability, structured-
ness, completeness, correctness, uniformity, extensibility, and traceability. The
rules for high-quality information representation are mainly determined by human
capabilities and limitations.

Missing quality in architecture documentation can lead to many problems,
including:

• Communication problems in the team, as no uniform idea of the system exists
• More time required by developers to understand their tasks and the context of

the tasks
• Difficulties for new developers to get a quick introduction to the system
• Lack of uniformity in the implementation
• Quality problems in the resulting system as solution concepts are not realized

adequately
• Lack of possibilities to analyze the existing system and to plan necessary

changes.

The good news with respect to problems with the quality of architecture doc-
umentation is that these problems can be overcome with relatively little cost if the
architecture is known at least to an architect or developer. Compared to other
problems found in architecture evaluations, low-quality or missing architecture
documentation is something that is easy to fix. Many important things can be
written down even in just one day, and within two or three weeks, a comprehensible
architecture documentation can be re-documented, if missing. The effort for
creation can be scaled quite well and can be dedicated to the most important
information.

Q.060. How to Exploit the Results of the DQC?

The results of the DQC can be used directly to improve the documentation of
a system. Additionally, it can improve the understanding of the audience, the

76 7 How to Perform the Documentation Quality Check (DQC)?

purposes, and the resulting readers’ needs. The DQC can improve and converge a
development team’s common understanding of good documentation.

7.2 How Can I Do This Effectively and Efficiently?

Q.061. What Kind of Input Is Required for the DQC?

The obvious input for the DQC is the architecture documentation to be checked. It
can be provided in any form that is available and found in practice:

• Architecture documents
• Architecture models
• Architecture wikis
• Architecture sketches
• API documentation
• Etc.

Typically, such documentation artifacts can simply be collected. In systems with
some history, there is no often uniform location and it may not even be clear which
documents are up-to-date and which are not. This will lead to some more analysis
on the hand; on the other hand, it is a direct finding of the DQC.

The other input that is mostly not so obvious is the clarification of the audience and
the purpose of the architecture documentation. This has to be done by the evaluators in
cooperation with the responsible architects and developers. If a system has undergone
a certain history of development and maintenance, the current audience and purposes
might also have drifted away from the initial ones. This is only natural as the system
and its surrounding development activities change over time.

Q.062. How to Execute the DQC?

Checking whether the architecture documentation is adequate for its audience and
purposes is a highly manual effort. It requires manual inspection by an experienced
architect who can quickly understand the content of the documentation and can put
himself into the role of the audience. Well-known inspection techniques such as
perspective-based reading (Basili et al. 1996) can be applied.

An additional possibility is to conduct walkthroughs through the documentation
with representatives of the documentation’s audience and to conduct interviews
with these representatives in case they already had to work with the documentation
in the past.

To check adherence to best practices, checklists can be used. The list of char-
acteristics found in Question Q.058 can be used as a starting point and can be
refined if needed. In part, adherence to such best practices (e.g., traceability in case
of well-structured models) can be supported with tools.

7.1 What Is the Point? 77

The amount of existing architecture documentation that can be used as input for
the DQC strongly differs in practice. For many software systems, no or not much
architecture documentation exists to be checked. At the other end of the spectrum,
in particular in environments that are more restricted and require documentation for
instance regarding safety regulations, large amounts of documentation exist. Most
of the time, the goal of the DQC is not to identify every single deviation from a best
practice; rather, the goal is to check the overall quality and to show significant
findings with the help of examples. Thus, if the amount of documentation is too
large, it might be sufficient to pick parts of the architecture documentation at
random and to make sure that adequate coverage is achieved.

Q.063. What Kind of Output Is Expected from the DQC?

The DQC mainly provides qualitative findings related to the aspects described
above:

• Adequacy to communicate architectural information to a certain audience for
certain purposes

• Adherence to best practices that make the documentation understandable and
memorable for the audience.

The output can be represented in the following way:

• Stating the general impression and supporting it with examples (findings across
a wide range)

• Stating further findings that are rather exceptions or intensifications of the
general impression (e.g., violations of best practices such as traceability, uni-
formity, etc.).

Q.064. What Do Example Results of the DQC Look Like?

These example results stem from a real architecture evaluation project and are
anonymized. The stages of the rating are simplified to positive or negative findings
only.

Positive findings:

• Overall, good and comprehensive documentation
• Extremely detailed, well-structured, well-described model
• Strong focus on functional decomposition
• Mapping to code: very clear on higher level
• Good support for concrete development tasks
• Extremely detailed

78 7 How to Perform the Documentation Quality Check (DQC)?

• Well maintained (regarding development, stabilization, maintenance)
• Well structured (regarding logical parts, architectural views, hierarchical

decomposition, data objects, …)
• Good introductions and background descriptions
• Good explanations of diagrams and architecture elements
• Good coverage of architectural aspects in views: data, functions, behavior,

deployment
• Diagrams: mostly good layout and easy to read.

Negative findings:

• Concrete architecture decisions are not made very explicit and thus the rationale
is often not so clear

• Partially missing uniformity
• Less focus on architecture decisions and solutions for requirements
• Mapping to code: sometimes not so clear in details
• Difficult to understand the overall system
• Missing linkage between architectural solutions and architecture drivers
• Detailed diagrams are sometimes overloaded and hard to read
• Sometimes missing uniformity in the model structure (different substructures,

different naming of packages).

Q.065. How to Rate the Results of the DQC?

The rating is done according to the scheme introduced in Sect. 3.1 for rating the
nature and severity of the findings. The rating can be done for the complete
architecture documentation or in a more fine-grained manner for single artifacts
such as documents or models.

• N/A means that the documentation quality for a criterion has not (yet) been
checked.

• NO Documentation Quality indicates that major problems with the architecture
documentation have been found. Significant amounts of effort and strong rework
of the documentation concept are necessary.

• PARTIAL Documentation Quality means that a substantial number of defi-
ciencies has been found in the documentation. These deficiencies endanger the
usefulness of the documentation and require significant improvement.

• LARGE Documentation Quality means that only manageable deficiencies
have been identified. The existing anomalies should be addressed explicitly and
the estimated effort for fixing these fits into the next evolution cycle.

7.2 How Can I Do This Effectively and Efficiently? 79

http://dx.doi.org/10.1007/978-3-319-34177-4_3

• FULL Documentation Quality means no or only few weaknesses were found
in the documentation. Overall, the documentation is well suited for its purposes
and follows documentation best practices.

Q.066. What Are the Confidence Levels in a DQC?

According to the techniques for performing the DQC, measurement and inspection
are the categories of the checks. Inspections can be performed by different evalu-
ators as explained above, resulting in different levels of confidence. Adherence to
best practices can generally be measured with little effort if the best practices can be
described formally. However, most architecture documentations are not that formal
and thus there is limited applicability, although the tools could be applied to a large
number of documentations due to the high degree of automation (Fig. 7.2).

Q.067. What Kind of Tool Support Exists for the DQC?

The DQC is mainly a manual activity, in particular in terms of checking the ade-
quacy of the architectural information provided to the audience for their purposes.
When it comes to checking adherence to best practices that can be formalized
(e.g., the maximum number of elements per diagram, the presence of traceability
links between elements, etc.), tool support is possible. Such tool support is mainly

Confidence

Effort
low high

high

low

Applicability
(Diameter: Applicability to amount of documentation)

Self-Controlled

Reviewed

Reviewed
3rd Party

Tool-based
Best Practice

Check

InspectedMeasured

Fig. 7.2 DQC confidence levels. © Fraunhofer IESE (2015)

80 7 How to Perform the Documentation Quality Check (DQC)?

not available out of the box in architecture documentation tools. However,
modeling tools often provide extensibility APIs that allow creating custom checks
and searches that enable automatic measurement of deviations from the desired
best practices.

Q.068. What Are the Scaling Factors for the DQC?

The most important scaling factor is the amount of architecture documentation
available. This partly depends on the system’s size and complexity, but mainly on
the willingness and discipline of the architects creating the documentation. As there
is no clear boundary between architecture and fine-grained design, there is also no
such boundary in documentation. There is partial overlap and the DQC has to
inspect both types of documentation, if they exist. If documents are extremely
scattered or hard to find and to correlate, this also has an impact on how much of the
documentation can be evaluated. If architecture models exist, their navigability and
structuredness are important scaling factors. Finally, the experience of the evalu-
ators in reading and evaluating documentation is a scaling factor that determines
how much documentation can be checked.

Often the amount of architecture documentation is rather limited and does not
cause problems for the DQC. If a huge amount of documentation is available, the
key factor for scaling the effort for the DQC is to focus on the overview and then
select further information at random, aiming at representative coverage.

7.3 What Mistakes Are Frequently Made in Practice?

Mixing up the results of the SAC and those of the DQC.

Checking the adequacy of architecture solutions and how they are documented
are two fundamentally independent things. As architecture is intangible and mostly
only accessible from people’s minds or from documentation, the temptation exists
to mix up the quality of the architecture and that of the architecture documentation.

! Questions Q.051 and Q.063

7.2 How Can I Do This Effectively and Efficiently? 81

http://dx.doi.org/10.1007/978-3-319-34177-4_6

Checking only documentation best practices and not the suitability for
the audience.

As described in this chapter, the DQC has to consider the content of the
architecture documentation and its representation. The content is determined by the
audience and the purposes, while the representation can be guided by general best
practices of good architecture documentation.

! Questions Q.058, Q.062 and Q.063

82 7 How to Perform the Documentation Quality Check (DQC)?

8How to Perform the Architecture
Compliance Check (ACC)?

The main goal of the Architecture Compliance Check (ACC) is to check whether
the implementation is consistent with the architecture as intended: only then do the
architectural solutions provide any value. Nevertheless, implementation often drifts
away from the intended architecture and in particular from the one that was doc-
umented. We will show typical architectural solutions that are well suited to being
checked for compliance. Compliance checking has to deal with large amounts of
code and thus benefits from automation with tools. Not all violations of architecture
concepts have the same weight: we provide guidance for the interpretation of
compliance checking results (Fig. 8.1).

8.1 What Is the Point?

Q.069. What Is the ACC (Architecture Compliance Check)?

The objective of architecture compliance checking is to reveal where the consis-
tency between the solution concepts and the resulting source code is no longer
given. We distinguish two kinds of violations of the intended architecture: structural
violations exhibit a (part of a) solution concept that has a counterpart in the source
code not realized as specified, whereas behavioral violations indicate the same in a
running instance of the software system. Almost all implementations (at least those
we analyzed in the past decade) exhibit significant structural or behavioral viola-
tions. The best solution concepts of the designed (intended) architecture do not help
if they are not reflected properly in the source code (the implemented structural
architecture) or the running system (the realized behavioral architecture). As
architecture is an abstraction to allow making predictions about a software system,

© Springer International Publishing Switzerland 2016
J. Knodel and M. Naab, Pragmatic Evaluation of Software Architectures,
The Fraunhofer IESE Series on Software and Systems Engineering,
DOI 10.1007/978-3-319-34177-4_8

83

these predictions only have any value if the implemented system is built and
behaves as prescribed by the architecture. In cases where coding fixes an inadequate
architecture, the architecture documentation becomes useless if not updated and
respective predictions have no value at all.

Thus, the goal of compliance checking is to check whether the architecture has
been implemented in the source code as intended. The implemented architecture is
not directly visible from the source code. Rather, it is typically buried deeply in the
source code and has to be extracted by means of reverse engineering activities to
collect facts about the system. As the architecture describes not only static artifacts
of a system at runtime, it might not even be enough to extract information from the
source code, but information might also be needed from the running system.
Checking for other architectural aspects getting codified in some form (e.g., pro-
cedures for (continuous) building, linking, and testing the system, rules for con-
figuration files and deployment descriptors, guidelines for using technologies)
might be worthwhile, but may be effort-intensive and time-consuming as these
typically lack tool support. Thus, considerations about the required level of con-
fidence have to drive which and how much compliance checking is needed. If
necessary and economically feasible, we construct additional checks for such cases.
If and only if architectural concepts are realized compliantly, the architecture keeps
its value as an abstraction used as a predictive and descriptive instrument in soft-
ware engineering.

• Architecture documents, models,
wikis, sketches, API
documentation

• Source code
• (Running system)

• Identification of solution concepts to be checked for
compliance

• Extraction of relevant facts from the code / running system
• Mapping of extracted facts to solution concepts
• Comparison of implemented architecture (extracted facts)

and intended architecture (solution concepts)
• Interpretation of compliance checking results

Findings on the compliance of the
implementation with respect to the
intended architecture
• Convergences
• Divergences (violation)
• Absences (violation)

Severity and balance of findings

• Inspected
• Measured

• Architect
• Peers
• External auditor

• Compliance checking
tools

• Architects and developers of the
system under evaluation

Input

Involved Stakeholders

Execution

Evaluators Tools

Output

Rating

Confidence Levels

Architecture Compliance
Check (ACC)

Serves to check the manifestation of
solution concepts in source code
and/or in executables of the system.

Fig. 8.1 ACC overview

84 8 How to Perform the Architecture Compliance Check (ACC)?

Q.070. Why Is the ACC Important?

The ACC and implementation evolve independently and at different speeds. Already
during the initial system development and during maintenance there is the threat of
having drift. Violations of the structure or behavior of the software system violate the
intended solution concept defined at the architectural level. Reasons for having drift
include: developers are working within a local, limited scope, while the architecture
is balanced from a global viewpoint; time pressure on engineers; developers are not
aware of the right implementation; violating the architecture is easier in individual
cases; the architecture does not allow realizing a certain requirement or a requested
change; technical limitations require violating the architecture.

An analysis of industrial practice covering various software systems distributed
across diverse application domains such as embedded systems or information
systems revealed that there was not even a single system that the developers
implemented in full compliance with the architecture. On the contrary, all analyzed
systems featured substantial structural violations (see Knodel et al. 2006; Lilienthal
2015). Other researchers confirm that the lack of compliance is a practical problem
in industrial practice; for instance (see Murphy et al. 2001; Bourquin and Keller
2007; Rosik et al. 2008). However, not only industrial software systems lack
compliance: open source software systems face the same problem. The most
prominent example here is probably the Mozilla web browser, where Godfrey and
Lee (2000) observed significant architecture decay within a relatively short lifetime;
the browser was still under development after a complete redesign from scratch.
Another prominent study is reported in Garlan and Ockerbloom (1995), where
architectural mismatches resulted in a number of issues (e.g., excessive code, poor
performance, need to modify external packages, need to reinvent existing func-
tionality, unnecessarily complicated tools), which eventually hampered successful
reuse of components. Further empirical studies show that lack of compliance
negatively affects the effort for realizing evolutionary changes in a software system
and the quality of such tasks (Knodel 2011).

Lack of compliance bears an inherent risk for the overall success of the devel-
opment organization: The architecture as a communication, management, and
decision vehicle for stakeholders becomes unreliable, delusive, and useless. Deci-
sions made on the basis of the architecture are risky because it is unclear to which
degree these abstractions are actually still valid in the source code. Hence, structural
violations seriously undermine the value of the architecture. It is unclear whether
the development organization will meet the essential demands of the requested
functionality delivered while meeting effort, quality, and time constraints for the
software system under development. Even worse is the long-term perspective
during maintenance and evolution, which was already observed by Lehman and
Belady (1985), who states that “an evolving program changes, its structure tends to
become more complex”. The source code surpasses innovations designed in terms
of the architecture and can prevent their introduction. Because all decisions made to
obtain the goals were derived from the architecture, the imperative need for
architecture compliance becomes apparent.

8.1 What Is the Point? 85

Moreover, knowing about violations does not remove them from the source
code. The later violations are revealed, the more difficult their removal. The
development organization can decide between two fundamental options. None of
them is really appealing to the development organization because each has sub-
stantial drawbacks:

• Ignore the lack of compliance: This option increases the technical debt for the
development organization and has severe negative impacts, e.g., the architecture
documentation becomes delusive and useless; it gets harder to meet quality
goals not met yet; reuse of components may fail; and eventually projects may
get canceled due to quality problems caused by or very negatively affected by
architecture violations.

• React to and repair lack of compliance: This option requires unplanned,
additional effort for fixing the architectural violations. For instance, tasks like
analyzing violations [e.g., the inspection of six violations required four hours
(see Lindvall et al. 2005)], communication (e.g., a single 2-day workshop with
10 engineers consumes 20 person-days), and coding projects for repairing
architectural violations (e.g., approx. 6 person-months of effort spent to fix 1000
violations, assuming that fixing one distinct violation consumes roughly 1 h).

Q.071. How to Exploit the Results of the ACC?

In practice, the ACC often reveals a large number of architecture violations: in
some of our evaluation projects, we found more than tens of thousands of viola-
tions! These architecture violations are, of course, not all different. They often
follow similar deviation patterns, which became necessary due to a certain func-
tionality that needed to be implemented, or they are the result of a developer not
knowing the intended architecture.

Architecture violations may also require being treated in different ways in order
to resolve them. Depending on the type of the violation, the architects and the
engineer have to decide which of the violations require (1) refactoring in the small
(a set of rather simple code changes to fix the violations), (2) refactoring in the large
(larger and more complex restructuring of the source code to realize the intended
solution concepts of the architecture compliantly), or which violations are
(3) indicators of a systemic misunderstanding hampering the achievement of the
architecture driver. The latter requires great dedicated effort for redesigning the
architecture and fix the issue. Quite on the contrary, the results of the ACC might
also lead to (4) changes in the architecture while the implementation remains the
same. In cases of wrong assumptions or previously unknown technical constraints,
the code proves the architecture to be wrong and reveals the need to adapt the
model and documentation to the facts established by the implementation.

86 8 How to Perform the Architecture Compliance Check (ACC)?

In both cases, we strongly recommend taking the initiative to ensure traceability
between the architecture and the source code. Architectures have to be implemented
as they were intended. Otherwise, their value disappears and causes technical debt,
as mentioned above. Thus, the results of the ACC can be used directly to improve
the implementation of a software system.

8.2 How Can I Do This Effectively and Efficiently?

Q.072. What Kind of Input Is Required for the ACC?

The inputs to architecture compliance checking depend on whether structural
compliance checking or behavioral compliance checking is applied. The architec-
ture (or rather the solution concepts) need to be evaluated as well as the respective
counterparts in the software system, either the source code for structural checking
or runtime traces for behavioral checking. Figure 8.2 depicts example and typical
models of solution concepts (the arrows depict uses dependencies of modules):
(a) depicts a typical technical layer structure; (b) depicts a recurring internal
structure of a service; (c) depicts the separation of customizations, a shared core and
framework; (d) depicts the organization of functionality in a system. Please note
that these solution concepts can be orthogonal to each other and the implementation
might have to comply with all of them at the same time. Further examples of inputs
as well as psychological backgrounds can be found in Lilienthal (2015).

Q.073. How to Execute the ACC?

The ACC typically comprises the following steps:

• Identify and describe the architectural concepts, structures, or behavior that
should be checked for compliance in the software system. This step is mainly
driven by the evaluation question at hand and performed manually by the
evaluator and the architect.

User Interface

Services

Domain Logic

Data Management

F
ra

m
ew

o
rk

A
p

p
lic

at
io

n
 C

o
re

L
o

g
is

ti
cs

G
eo

S
h

o
p

p
in

g

C
o

m
m

u
n

ic
at

io
n

S
o

ci
al

P
ar

ti
ci

p
an

ts

C
u

st
o

m
iz

at
io

n
sService

Interfaces

Logic

Data Objects

(a) (b) (c) (d)

Fig. 8.2 ACC solution concept input examples. © Fraunhofer IESE (2013)

8.1 What Is the Point? 87

• Extract relevant facts from the source code or from runtime traces using reverse
engineering or reconstruction techniques (typically performed with and only
scaling due to tool support). It is important to tailor and scope the reverse
engineering method and tools to the identified solution concepts in order to
minimize the reverse engineering effort.

• Map the extracted facts to the elements of the solution concepts (done manually,
typically with tool support) and lift elements to the same level of abstraction.

• Conduct the compliance checking, which will identify deviations between the
intended architecture and the implemented architecture (these are called archi-
tecture violations).

• Interpret the compliance checking results: How many architecture violations
were found? Can they be classified? What is their severity? How much effort is
estimated to remove the architecture violations? Is it worthwhile removing the
architecture violations?

The ACC is often performed in an iterative manner, starting with a high-level
model and a coarse-grained mapping of model elements to code elements. The
mapping sounds straightforward, but in fact is non-trivial. Especially for aged or
eroded systems or in cases where the original architects and developers are no
longer available, it can become a tedious task requiring many iterations. Often,
there are also findings during these iterations that lead to an adjustment of the
intended architecture, just because the realized architecture is more adequate and
there has been no feedback from development to the original architecture
documentation.

Q.074. What Kind of Output Is Expected from the ACC?

Architecture compliance is always measured based on two inputs, the intended
architectural plan and the actual reality manifested in the software system. The
output is a collection of so-called violations: violation is an architectural element or
a relationship between elements that has a counterpart in the system artifacts
(source code or running system), which is not realized as specified. From this
definition, we can derive three distinct results types:

• Convergence is an element or a relation that is allowed or was implemented as
intended. Convergences indicate compliance, i.e., the reality matches the plan.

• Divergence is an element or a relation that is not allowed or was not imple-
mented as intended. Divergences indicate violations, i.e., the reality deviates
from the plan.

• Absence is an element or a relation that was intended but not implemented.
Absences indicate that the elements or relations in the plan could not be found in
the implementation or may have not been realized yet.

88 8 How to Perform the Architecture Compliance Check (ACC)?

As stated above, we distinguish between structural and behavioral compliance
checking. Consequently, the output looks differently, see Figs. 8.3 and 8.4,
respectively.1 Figure 8.3 depicts a structural model and exemplifies the three result
types. The source code model has been lifted to the same level of abstraction based
on a mapping provided. This enables comparison of the two models.

Figure 8.4 shows the comparison of a behavioral model versus a trace generated
from an instrumented run of the software system. In the example depicted, the
“server_run” invocation is a divergence from the specified protocol because it
should have been invoked before “client_run”. Such a trace provides exactly one
execution of the software system under evaluation, and the challenges are similar as
in testing. Achieving full code coverage is hardly possible for any non-trivial
software system.

Module
Convergence
Divergence
Absence

Intended Architecture
(Structural Model)

Implemented Architecture
(Model Extracted from Source Code)

Compliance Checking
(Comparison of Models)

Fig. 8.3 ACC Output of structural checking. © Fraunhofer IESE (2006)

Compliance Checking
Behavioral Model

vs.
Runtime Trace Model

Instance

Convergence

Divergence

Absence

Fig. 8.4 ACC output of behavioral checking. © Fraunhofer IESE (2009)

1Note that all screenshots in this chapter were produced with the research prototype
Fraunhofer SAVE (Software Architecture Visualization and Evaluation).

8.2 How Can I Do This Effectively and Efficiently? 89

Q.075. What Do Example Results of the ACC Look Like?

Figure 8.5 depicts an example result of a structural ACC for a layered architecture.
It is an excerpt of checking an industrial software product line for measurement
devices where the ACC was institutionalized as a means for ensuring compliance
between the reference architecture and the source code of all product instances (see
Kolb et al. 2006; Knodel et al. 2008) for more details on the case study).

Q.076. How to Rate the Results of the ACC?

We rate architecture compliance for each solution concept manifested in the soft-
ware system. All findings (i.e., convergences, divergences, absences) are considered
in total and then aggregated by assigning values on the two four-point scales
(severity of the findings and balance of the findings). The higher the score, the
better the degree of architecture compliance for the solution concept.

• N/A means that the architecture compliance for a solution concept has not
(yet) been checked.

• NO Architecture Compliance indicates a systemic misunderstanding that has
been manifested in the code. It affects the fulfillment of architecture drivers and
requires great dedicated effort for correction. Another possibility is even worse:
no counterparts were found on the source code level for the architectural
solution concept (e.g., see Fig. 8.6 for an example where the architects pro-
claimed having a layered architecture and the visualization of the extracted facts
from the source code revealed the chaos and disorder depicted in Fig. 8.6).

Intended Architecture
Structural Model

Compliance Checking
Structural Model vs. Code Model

Fig. 8.5 ACC example results: compliance check for layered architecture. © Fraunhofer IESE
(2008)

90 8 How to Perform the Architecture Compliance Check (ACC)?

• PARTIAL Architecture Compliance means that there is a large gap between
the solution concept and the source code. The lack of compliance does not break
the architecture but the number of violations is drastically high. As a conse-
quence, the impact on the achievement of some architecture drivers is harmful or
detrimental. The estimated effort for fixing these violations does not fit into the
next evolution cycle; rather, fixing the violations requires dedicated effort for
redesigning, restructuring, and refactoring.

• LARGE Architecture Compliance means that there is a small or medium gap
between the solution concept and the source code. The lack of compliance does
not break the architecture but has a significant adverse impact on the achieve-
ment of some architecture drivers. The existing violations should be addressed
explicitly and the estimated effort for fixing these does fit into the next evolution
cycle.

• FULL Architecture Compliance means there are no or almost no violations in
the source code (short distance to the architectural solution concepts). However,
having no violations at all is unrealistic for non-trivial software systems; there
will always be exceptions for good reasons (technical limitations, optimizations
of quality attributes, etc.). It is rather important to have a low number of vio-
lations (e.g., less than one percent violations of all dependencies) that are known
explicitly and revisited regularly to keep them under control.

Q.077. What Are the Confidence Levels in an ACC?

The procedures of the ACC deliver as output architecture violations (divergences
and absences). Tool-based compliance checking enables analysis over large code
bases. Ideally, all kinds of architecture violations could be detected by tools, but in
practice, tools mainly focus on structural dependencies (a few tools also provide
basic support for behavioral dependencies). However, architecting is more than just

Fig. 8.6 ACC example results: visualization of critical gap in layered architecture. © Fraunhofer
IESE (2008)

8.2 How Can I Do This Effectively and Efficiently? 91

dependency management and not all implications of an architectural solution
concepts can be translated into a rule that can be processed by a tool. For these
cases, inspections are the means to achieve confidence. Their applicability is rather
limited due to the size and complexity of the source code for any non-trivial system.
Figure 8.7 schematically depicts the confidence level for the ACC.

Q.078. What Kind of Tool Support Exists for the ACC?

Tools provide automation support for (1) the reverse engineering steps, (2) the
actual compliance checking, and (3) visualizing and navigating the results and the
source code. Reverse engineering is an activity that typically requires manual as
well as automated steps. Manual steps are necessary to direct the analysis to the
relevant facts and to exclude irrelevant information. Automated steps are necessary
to handle the sheer amount of data that comes with millions of line of source code.
Visualization provides means for navigating, filtering, and processing such large
amounts of information.

The ACC typically puts the greatest emphasis on structural aspects (i.e.,
dependencies among source code modules), which are obviously very relevant for
quality attributes such as maintainability, extensibility, and so on. The ACC is used
less frequently, but is nevertheless also important, for the behavior of the software
system (i.e., whether the executables of the system act as prescribed in the archi-
tecture, e.g., adherence to protocols). Here the running system has to be instru-
mented to gather traces about the invocations made, their order, their timing, and
the data processed. The evaluation of such traces sometimes requires individual
development of scripts for preprocessing to distill the architectural aspects currently
under consideration.

Confidence

Effort
low high

high

low

Applicability
(Diameter: Applicability to number of solution concepts)

Self-Controlled

Reviewed

Reviewed
3rd Party

Tool-based
Compliance

Check

Inspected

Measured

Fig. 8.7 ACC confidence levels. © Fraunhofer IESE (2015)

92 8 How to Perform the Architecture Compliance Check (ACC)?

Commercial, open-source, and academic tools2 are available for automating
compliance checking. Googling for tools for “architecture compliance checking”,
“architecture conformance checking”, or “architecture reconstruction tools” will
lead to prominent tool vendors and consulting services, while the survey of (Pollet
et al. 2007) provides an overview of academic research on architecture recon-
struction, partly advanced, partly not applicable to industrial systems of such a
scale.

Q.079. What Are the Scaling Factors for the ACC?

The ACC has to deal with large amounts (typically millions of lines) of source code
or huge runtime traces of system executions (millions of invocations). The pro-
cessing of such large amounts of data can only be achieved with adequate tool
support. The size of the system, respectively the code base, is one of the scaling
factors for the ACC, as the larger the model extracted from the source code or from
runtime traces, the likelier it becomes for compliance checking tools to run into
scalability or performance problems when visualizing or computing the results.
Then automated checks become difficult or require separation of the models into
sections in order to enable computation of the results.

Another influence factor is the heterogeneity of the code base. Large software
systems are often composed of source code implemented in several programming
languages or scripting languages. This heterogeneity of languages may constrain
the selection of ACC tools as they typically support only a limited number of
languages. Furthermore, extensive usage of framework, middleware, and other
technologies (e.g., for dependency injection, management of other containers,
communication) may affect the results of the ACC, as dependencies may be hidden
by the framework (see, e.g., Forster et al. 2013).

The expertise of evaluators in using the tools and understanding the code base is
another scaling factor for the ACC. ACC tools are typically made for experts, so
some of the tools on the market score with feature richness but lack usability and
ease of learning. Working with visualizations of larger code bases (navigation,
filtering, zooming, creating abstractions, digging for relevant details, and in par-
ticular layouting the information to be visualized) is a huge challenge in itself.

In addition, the availability of experts (architects and developers) to provide
inputs to the solution concepts and mapping them to the source code is crucial for
the ACC. If architecture reconstruction is required first (i.e., in the event that
information was lost, the software system is heavily eroded, or experts are no longer
available), the application of the ACC will require tremendously more effort and
time.

2For instance, see tools such as the CAST Application Intelligence Platform, Structure101,
hello2morrow’s Sotograph and sotaarc, NDepends, Axivion Bauhaus, Lattix Architect, or Fraunhofer
SAVE.

8.2 How Can I Do This Effectively and Efficiently? 93

8.3 What Mistakes Are Frequently Made in Practice?

Simply removing architecture violations is not enough.

Typically, if there is a large number of architecture violations, architecture
adequacy is not given (anymore) either. Thus, before worrying about architecture
compliance, it is necessary to improve the architecture in terms of adequacy for the
requirements.

Considering compliance checking as a one-time activity.

Architecture compliance checking requires regular and repeated applications in
order to lead to fewer violations over time. Typically, the point in time when
compliance checking is conducted is usually late in product development. However,
we were able to observe in several cases that the cycles between two compliance
checking workshops became shorter over time. In some cases, it has even been
integrated into continuous build environments to further reduce compliance
checking cycle times and apply it early in product development, even if only partial
implementations are available. Compliance checking has been able to cope with the
evolution of the architecture and the implementation. The compliance checking
results serve to provide input to the continuous refinement and improvement of the
architecture. This is one prerequisite for starting strategic discussions (e.g.,
investment into reusable components, anticipation of future changes, planning and
design for reuse).

Not refining the scope of compliance checking over time.

The initial application of compliance checking typically aims at checking
coarse-grained solutions concepts such as the usage of a framework, basic layering,
or fundamental design patterns. Initial checks often reveal a high number of
architecture violations, which are then subject to refactoring or restructuring. In
repeated analyses, the lower number of violations indicates that these solution
concepts have become compliant to a large degree. But then no detailed concepts
are checked, which might be a risk. We recommend refining the analysis scope of
compliance checking by also checking the detailed dependencies on the subsystem
and/or component level once issues with coarse-grained solution concepts have
been fixed.

94 8 How to Perform the Architecture Compliance Check (ACC)?

9How to Perform the Code Quality
Check (CQC)?

The main goal of the Code Quality Check (CQC) is to gather data about the source
code base. As such, the CQC is not a direct part of the architecture evaluation.
However, reasoning about quality attributes (in particular maintainability) requires
the CQC results in order to make valid statements about the software system under
evaluation (Fig. 9.1).

9.1 What Is the Point?

Q.080. What Is the CQC (Code Quality Check)?

The implementation is one of the most important assets of a development organi-
zation, possibly determining its overall success in delivering a software system with
the requested functionality while meeting effort, quality, and time constraints.
Producing the implementation is an activity executed by a number of (teams of)
developers. These developers write source code statements in order to translate
solution concepts defined in the architecture into algorithms and data structures.
The size of the code base can range from a few thousand lines of code to many
millions lines of code. Due to the size of software systems and their inherent
complexity, it is obviously not feasible to manage software development efficiently
on the source code level (hence, we need architecture that provides abstraction,
enabling us to keep control over complexity). The situation gets even worse over
time, as observed in Lehman’s laws of software evolution (see Lehman and Belady
1985) on “continuing growth”, “increasing complexity”, and “declining quality”.
Complementary to a sound architecture, the code itself has to be of high quality in
order to stay maintainable (Visser et al. 2016).

© Springer International Publishing Switzerland 2016
J. Knodel and M. Naab, Pragmatic Evaluation of Software Architectures,
The Fraunhofer IESE Series on Software and Systems Engineering,
DOI 10.1007/978-3-319-34177-4_9

95

The CQC analyzes the source code of a software system to reveal anomalies
with regard to best practices, quality models, coding and formatting guidelines in
order to counteract the declining quality symptom. The underlying model is about
the human capabilities to process large and complex information (i.e., the source
code). Because the mental capabilities of human beings to manage larger parts of
the overall system are limited, source code metrics, for instance, can measure
whether the length of a method or class does not exceed a certain threshold or
whether the complexity [e.g., the cyclomatic complexity as specified by McCabe
(1976)] does not exceed given thresholds.

Code quality checks as such are hence no direct means of architecture evalua-
tion. However, they are often applied to complement the information gathered in
architecture evaluations to provide a complete picture. For example, the quality
attribute maintainability covers many different aspects: In the SAC, the adequacy of
an architecture for supporting certain anticipated changes can be checked by
assessing how large the impact of a change and thus the effort to execute it would
be. With architecture level metrics, it can be checked to which extent rules of good
design are adhered to, which allows making at least some general statements about
maintainability. While these two aspects are mainly aimed at predicting the actual
effort required to execute a change, code level metrics can cover another aspect of
maintainability: the readability and understandability of the source code (see also
Question Q.096).

• Source code
• (Build scripts)

• Identification of goals for checks
• Setup and configuration of code quality checks
• Measurement of the selected metrics and checks
• Interpretation of code quality results

Findings on quality of the source
code
• Best practice violations
• Code clones
• Quality warnings

(maintainability, security, …)
• Code metrics
• …

Severity and balance of findings

• Inspected
• Measured

• Architect /
Quality Engineer

• Peers
• External auditor

Code quality tools (style
checker, clone detection,
quality warning checker, …)

• Developers of the
system under evaluation

Input

Involved Stakeholders

Execution

Evaluators Tools

Output

Rating

Confidence Levels

Code Quality
Check (CQC)

Serves to check the implementation
for the adherence to coding best
practices and quality models.

Fig. 9.1 CQC overview

96 9 How to Perform the Code Quality Check (CQC)?

http://dx.doi.org/10.1007/978-3-319-34177-4_10

Numerous tools for computing metrics and/or analyzing adherence to various
coding and formatting rules exist for the CQC. Using such tools bears the risk of
being overwhelmed by numbers and data as some of the tools compute dozens of
different metrics and check for adherence to hundreds of rules. This huge amount of
numbers (in some organizations even recalculated by the continuous build envi-
ronment for every commit) might have the effect of not seeing the forest for the
trees. Interpreting the numbers and the output lists generated by the tools and
mining them for architecture relevance is the key challenge of the CQC.

Q.081. Why Is the CQC Important?

Change is the inevitable characteristic of any (successful) software system.
Changing the code base requires the major part of the total effort spent on software
engineering (see Boehm 1981). At least since the late 1970s we have known from
the studies of (Fjelstad and Hamlen 1983) that codifying and resolving a change is
only half the battle; roughly the other half is spent on program (re-) comprehension.
These findings make it obvious why it is important to invest into the architecture as
a means for navigating larger code base and into instruments for improving code
quality.

The CQC is nevertheless a crucial instrument for detecting anomalies in the
source code that negatively affect the understanding of code quality. Anomalies are
derived from universal baselines and their calculation is supported by tools. Fixing
the anomalies can significantly improve code quality. This results in better
understanding of the code base by architects and developers. The underlying
assumption is that optimizing the source code with respect to general-purpose
measurements will facilitate the implementation of change requests and thus
improve the productivity of the team and the overall maintainability of the software
system. Many empirical studies on software maintenance provide evidence that this
assumption is generally true. However, exceptions prove the rule and it is dan-
gerous to trust in pure numbers.

Q.082. How to Exploit the Results of the CQC?

The results of a CQC can be used directly to improve the implementation of a
software system. Anomalies can be fixed or monitored over time. Common metrics
and coding best practices or team-specific coding guidelines can improve the
overall understanding of the code base. This makes the development organization
more robust towards staff turnover and integration of new development team
members. Additionally, the results of a series of CQCs can be used to define
team-specific coding guidelines.

9.1 What Is the Point? 97

9.2 How Can I Do This Effectively and Efficiently?

Q.083. What Kind of Input Is Required for the CQC?

The mandatory input for the CQC is obviously the source code of the software
system under evaluation. Additionally, the CQC requires configuring the thresholds
of coding rules and best practices for the detection of anomalies. Here, either
general-purpose rules or thresholds can be used, or dedicated quality models are
defined and calibrated for the CQC. While the former are rather easy to acquire and
in many cases come with the tool, the latter often require fine-tuning to the specific
context factors of the software system under evaluation.

Q.084. How to Execute the CQC?

The CQC typically comprises the following steps:

• Select a tool for computing the code quality (make sure the tool supports the
programming languages of the software system under evaluation).

• Configure and tailor the tool for your own context (e.g., select metrics and rules
and define thresholds).

• Conduct the CQC by applying the tool to the code base of the system.
• Interpret the CQC results: How many anomalies were found? Can they be

classified? What is their severity? How much effort is estimated to remove the
anomalies? Is it worthwhile removing the anomalies?

The CQC is often performed in an iterative manner, starting with a limited set of
rules or best practices to which adherence is checked. In particular, the configu-
ration of thresholds when a check is firing often requires time and effort in order to
turn raw data into useful, meaningful, and understandable information. Typically, a
lot of coarse-grained reconfiguration takes place in the beginning (e.g., in or out),
while fine-grained adaptations are performed later on (adapting thresholds, refining
rules, etc.).

In general, the CQC opens a wide field of different tools and possibilities to
check for, ranging from style guides via general coding to technology best prac-
tices. Some typical purposes for executing a CQC are listed below:

• Code Quality Metrics aim to numerically quantify quality properties of the
source code. Well-known examples of code quality metrics include the com-
plexity defined by (McCabe 1976), the Chidamber and Kemerer suite of
object-oriented design metrics, for instance including Depth of Inheritance Tree,
Coupling Between Objects, see Chidamber and Kemerer (1994), and the suite of
Halstead metrics including Halstead Effort and Halstead Volume, see Halstead
(1977). Many integrated development environments (IDEs, e.g., Eclipse,

98 9 How to Perform the Code Quality Check (CQC)?

VisualStudio) support a range of code quality metrics, either natively or through
plugins. Typically, the supporting tools include certain thresholds or corridors
that should not be exceeded. For the offending code elements, violations are
reported, similar to bugs detected with heuristics.

• The aggregation of code-level metrics into system-level metrics by these envi-
ronments is often not more sophisticated than providing descriptive statistics
(i.e., mean, maximum, minimum, total). Assessors typically need to craft their
own aggregations or use expert opinion to provide accurate assessments.

• Code Quality Models establish generally applicable quantifications for evalu-
ating one or more quality attributes of a software product. This is typically done
by mapping a selection of low-level metrics to those quality attributes using
relatively sophisticated aggregation techniques.

• Several models that operationalize the maintainability quality characteristic (as
defined by the ISO 25010 standard (ISO 25010 2011) or its predecessor, ISO
9126) are available, see Deissenboeck et al. (2009), Ferenc et al. (2014), for
instance the SIG maintainability model (Heitlager et al. 2007) for the purpose of
assessing and benchmarking software systems. This model seeks to establish a
universal measurement baseline to provide benchmarks and enable compara-
bility (see Baggen et al. 2012). Some code quality tools for developers also
include quality models as plugins. For example, the SonarQube tool supports the
SQALE quality model (see Mordal-Manet et al. 2009). Some quality models are
not universal, but require tailoring according to a structured method like
QUAMOCO (Wagner et al. 2015). Also, methods exist for constructing indi-
vidual quality models through goal-oriented selection of metrics, such as the
GQM (see Basili and Weiss 1984 or more recently Basili et al. 2014).

• Clone Management is aimed at the detection, analysis, and management of
evolutionary characteristics of code clones (see Roy et al. 2014). Code clones
are segments of code that are similar according to some definition of similarity,
according to (Baxter et al. 1998). Tools apply universal rules to detect clones in
the source code.

• Bug Detection Heuristics aim at finding bugs in the code through static code
analysis or symbolic execution. There are various tools for static code analysis,
with some of them able to detect potential defects. Tools such as Coverity (see
Bessey et al. 2010) and Polyspace for C/C++, or FindBugs (see Ayewah et al.
2007) for Java can be used by developers to identify locations in the program
code where bugs are likely to be present. Some of these tools support standards
intended to avoid bug patterns that are universal to particular programming
languages (e.g., MISRA-C, see MISRA 2004).

• Though such tools typically are not intended to support assessment at the level
of an entire system, one can apply them for this purpose. However, there is no
broadly accepted method for aggregating numerous code-level bug findings into
a unified quality indicator at the system level. When using bug detection tools
for this purpose, assessors need to carefully craft the appropriate aggregation for
their specific situation. In practice, we have observed that badly chosen
aggregations lead to inaccurate assessments.

9.2 How Can I Do This Effectively and Efficiently? 99

• Code Reviews and Inspections are structured methods for identifying potential
problems in the source code by manually reading and reviewing the code. They
are typically not conducted on the level of an entire system, but rather on the
level of a set of code changes. Typically, the guidelines used for the inspection
or review refer to design patterns, naming conventions, and style guides specific
to an individual system. Recommender tools support code reviews by proposing
source code excerpts to be reviewed, revisiting items under review, highlighting
changes made by others or within a certain time frame, or tracking comments on
findings.

• Style Guide Enforcements aim at checking the conformance of the source code
with respect to universal or organization-specific coding guidelines, see Smit
et al. (2011). Tools such as PMD or Checkstyle support such checks, which are
typically available as plugins to an IDE. As in the case of bug detection and
code metrics, we have observed in practice that aggregation to the system level
for assessment purposes is problematic.

Q.085. What Kind of Output Is Expected from the CQC?

The output of the CQC is basically a data set capturing all values for all entities that
have been analyzed. Typically, most tools highlight the anomalies in the data set or
provide certain features for navigating, filtering, aggregating, and visualizing the
findings. For instance, the screenshot in Fig. 9.2 uses aggregations (upper left), tree
maps (upper right), doughnut charts (lower left), and time series data (lower left) to
present the computed data.

Q.086. What Do Example Results of the CQC Look Like?

Figure 9.2 depicts an example visualization of a tool for conducting code quality
checks using SonarQube, representing different metrics in numbers and with ade-
quate visualizations. Other tools for checking code quality produce similar results.

Q.087. How to Rate the Results of the CQC?

We rate the code quality for each criterion (i.e., each metric, rule, or best practice)
that has been computed by the CQC analysis tool. The combination of both scales
determines the overall code quality:

• N/A means that the code quality for a criterion has not (yet) been checked.
• NO Code Quality indicates major parts of the code base exceed the thresholds

that have been defined for the criterion at hand.

100 9 How to Perform the Code Quality Check (CQC)?

• PARTIAL Code Quality means for some parts of the source code, the
thresholds defined and the impact of the anomalies is considered harmful. The
estimated effort for fixing these anomalies does not fit into the next evolution
cycle; rather, dedicated effort for refactoring is required to fix the anomalies.

• LARGE Code Quality means that only limited anomalies were found with
respect to the defined criterion. The existing anomalies should be addressed
explicitly and the estimated effort for fixing them does fit into the next evolution
cycle.

• FULL Code Quality means there are no or only few anomalies (e.g., condoned
exceptions).

Q.088. What Are the Confidence Levels in a CQC?

The CQC procedures deliver numbers and anomalies on the various aspects being
analyzed (see Question Q.081). Being able to formulate and define a relevant rule to
check for is an effort-intensive and time-consuming endeavor, which has to be
undertaken individually for each rule that is defined.Tools then automate the execution
of the rule against the code base, which comes at almost zero cost.Most out-of-the-box
tools are able to produce numbers and come with a lot of built-in checks (e.g., lines of
code,McCabe complexity, depth of inheritance tree, etc.). Deriving useful information

Fig. 9.2 CQC output (screenshot with SonarQube) (screenshot taken from Nemo, the online
instance of SonarQube dedicated to open source projects, see https://nemo.sonarqube.org/)

9.2 How Can I Do This Effectively and Efficiently? 101

https://nemo.sonarqube.org/

based on these built-in checks is not trivial (i.e., if a method with more than 100 lines
indicates an anomaly, what about another method with 99 lines of code?). Conse-
quently, confidence in these basic built-in checks is rather low.

Using tailored quality models (pulling data from built-in checks, configured and
adapted to one’s own context and calibrated with one’s own code base at hand) is
an approach for gaining useful information; hence confidence is high. A predefined
quality benchmark maintained and evolved by an external organization capable of
running arbitrary code analyses on unknown code bases is an intermediate solution.
Here the risk might be that the heterogeneous zoo of programming and scripting
languages as well as technologies and frameworks used might not be fully sup-
ported by the benchmark. Code inspections can lead to rather high confidence.
Their applicability is rather limited due to the size and complexity of the source
code for any non-trivial system. Figure 9.3 schematically depicts the confidence
level for the CQC.

Q.089. What Kind of Tool Support Exists for the CQC?

Tools for the CQC are crucial in order to be able to handle any code base of a
non-trivial size. There are numerous tools1 for the CQC, both commercial and open
source. The tools differ with regard to the measurement criteria (metrics, rules, best
practices, etc.), the formulas they use for computing the data, the features for
visualizing and handling the data, and the way they are integrated into the

Confidence

Effort
low high

high

low

Self-Controlled

Reviewed

Reviewed
3rd Party

Tailored &
Calibrated

Quality Models
(Tool-based)

Inspected

Measured

Out-of-the-
Box Tools

Predefined
Quality

Benchmarks

Applicability
(Diameter: Applicability to amount of source code)

Fig. 9.3 CQC confidence levels. © Fraunhofer IESE (2015)

1For instance, see SciTools Understand, Grammatech Codesonar, Coverity, Klocwork FrontEndart
QualityGate, Codergears JArchitect, CQSE Teamscale, semmle Code Exploration, or open source
tools like SonarQube, PMD, Findbugs or various Eclipse plugins.

102 9 How to Perform the Code Quality Check (CQC)?

development environment or the tool chains used by the development organization.
The list of tools for static code analysis2 gives a first good, but incomplete overview
of available tools.

Some of the tools available for the CQC support integration into continuous
build systems, enabling recomputing for any commit that has been made by any
developer. This also allows plotting trend charts that show how certain values have
changed over time.

Depending on the tools used, the various ways to visualize the results can differ a
lot. Many tools also support extension by means of custom-made plug-ins or
custom-defined metrics or rules.

Q.090. What Are the Scaling Factors for the CQC?

The CQC face similar scaling factors as the ACC (see Question Q.079): the size of
the system, the large amounts of data to be processed, and the heterogeneity of the
code base.

The expertise of evaluators in using the tools and understanding the code base is
also an important scaling factor for the CQC. Knowing the formulas for computing
metrics and the definitions of the rules as implemented in the CQC tool at hand is
crucial. Note that even for a well-known metric like Lines of Code there are many
possible ways of counting the lines. Again working with visualizations of metrics of
larger code bases (navigation, filtering, zooming, digging for relevant details, and in
particular layouting the information to be visualized) is also a huge challenge for
the CQC.

9.3 What Mistakes Are Frequently Made in Practice?

Focusing on source code measurement only and believing that’s enough.

We experienced several times that measurement programs collecting tons of
metrics (e.g., lines of code, cyclomatic complexity) had been established in cus-
tomer companies. Management was confident that they were controlling what could
be measured. However, most of the time, the interpretation of the measurement
results was not connected to the architecture. Thus, the measurement results were
more or less useless in the context of architecture evaluations. Product-specific
means for risk mitigation require much more in-depth analysis and more thorough

2See https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis.

9.2 How Can I Do This Effectively and Efficiently? 103

http://dx.doi.org/10.1007/978-3-319-34177-4_8
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

understanding of the current system and software architecture in general. Thus, it
often seems to be the easiest solution to buy a metric tool, with the disadvantages
described above.

Positioning certain metric values as goals in an incentive system.

Who wants certain metric values will finally get them. If metrics are used to
control the work of developers and certain values have to be achieved, the devel-
opers will find ways to achieve them. However, this often leads to the opposite of
what was planned. A good example from practice: If the length of a method is
restricted to 25, developers might split the method into 2 parts, called part 1 and
part 2.

104 9 How to Perform the Code Quality Check (CQC)?

Part III
How to Apply Architecture

Evaluation in Practice?

10What Are Example Cases
of Architecture Evaluation?

An architecture evaluation approach can be illustrated best with examples in which
the approach was applied. We report on four real but anonymized architecture
evaluation projects with industrial customers. We will show how critical decisions
about the future of a software system were supported, how architecture evaluation
was applied to identify risks, and how architecture evaluation supported the
selection of a foundational technology. We will share experiences with the appli-
cation of our checks and show the results as they were presented in the management
presentation. We will then summarize lessons learned from more than 75 archi-
tecture evaluation projects on architecting in general, on maintainability, and on
metrics, and briefly outline how our evaluation approach evolved over time.

10.1 What Are Typical Evaluation Questions
and Example Cases?

Here, we will describe some of our architecture evaluation projects in greater detail
and in an anonymized form. The results overview as shown in the management
presentation is depicted in Fig. 10.1 as an aggregation for the four examples. Our
description largely follows the recommended structure for result presentations
outlined in the last section. A broader overview of a series of 50 architecture
evaluation projects can be found in Knodel and Naab (2014a, b).

Q.091. What Is an Example Case of Critical Decision-Making
Regarding a System’s Future (Example 1)?

This example case evaluated the architecture of an existing system with special
emphasis on maintainability and support of future business goals. The outcome of

© Springer International Publishing Switzerland 2016
J. Knodel and M. Naab, Pragmatic Evaluation of Software Architectures,
The Fraunhofer IESE Series on Software and Systems Engineering,
DOI 10.1007/978-3-319-34177-4_10

107

the evaluation was to completely restart the architecting work since the intended
architecture was not adequate. For an overview and aggregation of the results, see
Fig. 10.1; details are given in Table 10.1.

Architecture

Architecture
Compliance

Architecture
Documentation

Code Quality

Example 3
System 1

Architecture
Requirements

N/A

N/A

DIC

SAC

ACC

DQC

CQC

Example 3
System 2

N/A

N/A

Example1
System

N/A

N/A

Example 2
System

Example 4
System

N/A

N/A

N/A

N/A

Fig. 10.1 Evaluation results overview of 4 example cases

Table 10.1 Example of critical decision-making

Initial Situation
• Solution provider of a large-scale information
system has developed, maintained, and operated
a system for one customer for several years

• The system is a workflow-supporting frontend,
which works on an independently developed
backend

• Continuous maintenance (2 releases per year) is
getting more and more expensive, in particular
also the backend maintenance

• Frontend system should be migrated to a new
backend system purchased from another vendor

Facts about the System
• *4 MLoC Java
• *10 years old
• Distributed development incl. off-shore
development

Evaluation Questions and Approach
• Q1: Is the currently realized architecture of the
frontend system a solid foundation for the
renovated system based on the other backend
(especially with respect to maintainability)?

! SAC: Elicitation of maintenance scenarios and
checking whether these are addressed
adequately at the architecture level

! ACC: Application of SAVE tool to current
implementation

• Q2: Is the projected architecture adequate for
supporting the stakeholders’ future goals?

! SAC: Elicitation of stakeholder requirements
as scenarios and evaluation of adequate
architecture realization

Facts about the Checks
Involved stakeholders/persons
• 16 stakeholders from 2 organizations (customer
and solution provider organization) were
interviewed

• No significant deviations in driver integrity were
identified

• 3 architects of the system were involved in the
evaluation

Architecture drivers evaluated
• 25 architecture scenarios were elicited and
ranked into 3 priorities A, B, and C

• 19 architecture scenarios were evaluated in the
SAC

(continued)

108 10 What Are Example Cases of Architecture Evaluation?

Quality Attribute Solution Adequacy

Availability

Performance

Resource Utilization

Operability

Security

Scalability

Maintainability Extensibility /

Flexibility

Reusability

Migration Support

Testability

Solution Concepts

Shared Framework

Layering

Service-Orientation-

Data Model Separation

Business Process and GUI Design

Event-Orientation

Clustering

Compliance

Fig. 10.2 Example of critical decision-making—SAC results (left) and ACC results (right).
© Fraunhofer IESE (2009)

Evaluation Results
Q1:
• Original architecture provided a lot of
well-designed solution concepts that were
beneficial for maintainability in general

• No overall maintainability concept
• Maintainability concept not tailored to migration
to new backend

• Widely missing compliance in the realization of
the solution concepts (see right side of
Fig. 10.2)

• *26,800 architecture violations against the
solution concepts identified in the code

Q2:
• Large number of scenarios for which solution
adequacy is PARTIAL or even NO (see left side
of Fig. 10.2; each point is an evaluated scenario)

• Overall, the future architecture is not thoroughly
designed yet

Confidence Level Achieved
• Level of confidence is high, in particular for the
scenarios with missing solution adequacy

• No further means necessary to increase
confidence

Recommendations
• Overall, migration project should not be started
yet

• Thorough architecture design is needed first
• A stronger architecture team is needed (missing
skills)

• Improvement of architecture documentation
necessary as basis for reuse

• Investment into refactoring and modernization
of the implementation: reduce architecture
violations

• Migration has to be planned for inherently in the
architecture design

Facts about the Evaluation Project
• *70 person-days of effort were spent by the
evaluating people

• *4 person-days were spent for the interviews to
elicit the architecture drivers

• *10 person-days were spent by the system’s
architects during the architecture evaluation

• The overall architecture evaluation project lasted
roughly 4 months

Table 10.1 (continued)

10.1 What Are Typical Evaluation Questions and Example Cases? 109

Q.092. What Is an Example Case for Risk Management
(Example 2)?

This example case evaluated the architecture of an existing system with special
emphasis on the identification of risks for the upcoming rollout in architecture and
implementation. The outcome of the evaluation was largely positive, indicating
some improvement potential regarding the clarification of future requirements,
architecture documentation, and specific aspects of code quality. For an overview
and aggregation of the results, see Fig. 10.1; details are given in Table 10.2.

Table 10.2 Example risk management

Initial Situation
• Solution provider developed a solution for a
market of *15 potential customers

• High criticality of the solution for the solution
provider and its customers

• First customer acquired the solution and now it
was being finalized and prepared for bringing it
into operation

• Solution provider is responsible for
development, maintenance, and operation

• Solution provider wants to sell the solution to
further customers and maintain and operate it
with large synergies

Facts about the System
• Development is partly done by solution provider
directly, partly outsourced to a local company
and to a near-shore company

• Development in C/C++

Evaluation Questions and Approach
• The main motivation behind the architecture
evaluation is risk management concerning the
architecture and the quality of the code

• The evaluation questions cover the whole range
of aspects of RATE checks

• Q1: Is there consensus among the stakeholders
about the requirements?

! DIC
• Q2: Is the architecture adequate for the
requirements?

! SAC
• Q3: Is the code consistent with the architecture
as planned?

! ACC
• Q4: Is the architecture documentation adequate?
! DQC
• Q5: Does the code have good overall quality?
! CQC

Facts about the Checks
Involved stakeholders/persons
• 3 stakeholders from development management
and product management were interviewed

• 3 stakeholders with a development/architecture
background were interviewed

• No access to a broader set of stakeholders, in
particular not to customers or end users

Architecture drivers evaluated
• 52 architecture scenarios elicited in total
• Most of the architecture scenarios are already
realized in the implementation, but some are
future requirements regarding sales to more
customers

• Prioritization done by the available stakeholders
• 24 architecture scenarios evaluated, in particular
also the ones stating future requirements

Evaluation Results
Q1: DIC
• Extensive collection of non-functional
requirements, good coverage of quality
attributes in the available documentation

Confidence Level Achieved
• High confidence in results of DIC, ACC, DQC,
ACC

• For SAC, many scenarios assessed with high
confidence

(continued)

110 10 What Are Example Cases of Architecture Evaluation?

• Non-functional requirements often too abstract
as documented, had to be compensated in the
interviews

• Future requirements are partly not agreed upon
among the stakeholders

Q2: SAC
• Most of the architecture drivers well addressed
• 94 design decisions recorded and related to
architecture drivers

• Architecture very well explained, excellent
architect

• Key trade-offs identified: demanding
requirements for availability, robustness, … led
to comparably high complexity of the solution
concepts | High degree of configurability leads
to high complexity | Resulting complexity
adversely impacts maintainability

• More investment into maintainability needed, in
particular for selling to other customers

• Figure 10.3 depicts an overview of the
scenarios, the quality attributes, and the
evaluation results. Gray indicates that an
evaluation was not possible, mainly due to
unclear requirements. In these cases, the missing
clarity was not discovered before the evaluation
workshop (also not in the architecture driver
reviews)

Q3: DQC
• Overall, good and comprehensive
documentation: extremely detailed, well
structured, well described model, but in part
missing uniformity

• Architectural information: strong focus on
functional decomposition, but less focus on
architecture decisions and solutions for
requirements

• Adequacy of documentation for audience: good
support for concrete development tasks, but
more difficult for understanding the overall
system

Q4: ACC
• 4 architecture concepts checked for ACC: to a
large extent very high architecture compliance

• In part, missing uniformity: internal and external
developers created different code structures,
naming conventions, placing of interfaces, and
data objects. The external developers adhered to
the development guidelines while the internal
developers did not always do so

Q5: CQC

• For SAC, for several scenarios (like
performance), fulfillment strongly depends on
algorithmic aspects. Due to the readiness of the
implementation, further confidence was
gathered from lab and field tests. The absence of
architectural flaws and the measured results led
to overall high confidence in the evaluation
results

(continued)

Table 10.2 (continued)

10.1 What Are Typical Evaluation Questions and Example Cases? 111

• Overall, pretty good code quality: well
structured, readable code; programming
guidelines widely followed

• Technology-specific static code analysis
(tool-supported): revealed several potentially
critical security and reliability warnings that
should be removed

• Code metrics (tool-supported measurement):
overall, code metrics do not indicate major
concerns regarding maintainability. A few
classes exist that are very large and have high
cyclomatic complexity. However, there are
good reasons for the design of the classes; no
major impact on maintainability

• Clone detection (tool-supported measurement): a
few code clones found with high level of
duplication

Recommendations
• Clarification of the unclear architecture drivers
• Elaborate and improve architecture concepts for
a few scenarios

• Increase the uniformity of the implementation
• Improve the architecture documentation, in
particular with respect to architecture decisions
and the addressing of architecture drivers

• Remove the critical warnings of static code
analysis

Facts about the Evaluation Project
• *75 person-days of effort were spent by the
evaluating people

• *5 person-days were spent for the interviews to
elicit the architecture drivers

• *4 person-days were spent by the system’s
architects during the architecture evaluation

• Evaluation was conducted during *10 weeks

Table 10.2 (continued)

F : Future Scenario

Accuracy

Availability

Businessgoal

Consistency

Flexibility

Interoperability

Monitoring

Operability

Performance

Reliability

Updatability

User Experience

F

F

F

F

F F F F

0

2

4

6

8

10

12

14

16

18

Realized Future

N
um

be
r

of
 S

ce
na

rio
s

Status of Scenario Realization

Fig. 10.3 Example risk management—SAC results. © Fraunhofer IESE (2009)

112 10 What Are Example Cases of Architecture Evaluation?

Q.093. What Is an Example Case of Making a Decision Between
Two Technology Candidates (Example 3)?

This example case evaluated the architecture of two competing technologies that
were the final candidates in a selection process for the future core technology of a
system to be built. The overall results of the evaluation for both candidates were
extremely positive. Only very rarely has such a positive evaluation result been
achieved in our experience of evaluation projects. The outcome was the selection of
one of the candidates, taking into account factors beyond the architecture evaluation
since both architectures very equally adequate. For an overview and aggregation of
the results, see Fig. 10.1; details are given in Table 10.3.

Table 10.3 Example selection between technology candidates

Initial Situation
• A solution provider of an information
system in the media domain wanted to
renew their product

• The strategy was to acquire a product from
the market as a stable basis and to extend it
with value-added features

• A pre-selection was made based on required
features and resulted in two candidate
systems (called Product 1 and Product 2 in
the following)

• The final selection was to be made between
the two candidates

• An architecture evaluation conducted by
Fraunhofer IESE was to provide the
necessary in-depth analysis, complementing
the comparison on the feature level

Facts about the System
• Both candidate systems were written in Java
and had roughly 1 MLoC, but a completely
different overall architecture (regarding the
functional decomposition, deployment, etc.)

Evaluation Questions and Approach
• Evaluation goal: take a deep look at the
architecture of the two candidate products
and determine which product is suited better

• Q1: How do the two candidate products
fulfill the key requirements for the new
solution to be built? Which strengths and
weaknesses do exist?

! SAC 2 times independently
• Q2: Do the implementations of the
candidate products really conform to the
intended architectures, in particular with
respect to support for extension and
evolution?

! ACC 2 times independently

Facts about the Checks
Involved stakeholders/persons
• 10 stakeholders of the customer provided
architecture drivers

• No significant deviations in driver integrity
were identified

• 1–3 architects of the providers of Product 1
and Product 2 were involved

Architecture drivers evaluated
• 30 architecture scenarios were elicited and
also evaluated

• Different quality attributes were covered and
with varying numbers of scenarios (see
Fig. 10.4)

(continued)

10.1 What Are Typical Evaluation Questions and Example Cases? 113

Evaluation Results
Q1:
• Figure 10.4 gives an overview of the
evaluation results for Product 1 and Product
2 for the 30 architecture scenarios (all of
them could be evaluated)

• The result shows a very positive and
homogeneous picture for both products.
Also, the yellow results only originate from
minor risks and are not severe problems

• Architecture documentation was not
assessed for both products as no
architecture documentation was available

• Both products had 3 dominating solution
concepts. The concepts were partially the
same across the products, but with different
instantiations. For the concepts, their
adequacy in the context of the respective
system and the compliance in the source
code were rated

Q2:
• The compliance checking results of the
dominating solution concepts were also
extremely positive (see Fig. 10.5)

• Only very few architecture violations (in
total not more than a few dozens for each of
the products, all with minor severity) could
be counted

Confidence Level Achieved
• The confidence in the results is pretty high:
due to the very detailed information
provided in the architecture evaluation
workshops and due to the fact that both
products are already implemented and
certain critical requirements such as
response time can be measured on the
running products, we have high confidence
in the evaluation results

Recommendations
• No clear recommendation to select one of
the candidate products could be given as a
result of the architecture evaluation

• As a further result of the architecture
evaluation, we outlined technical aspects of
the products and their potential implications
(e.g., that the user interfaces are based on
different technologies)

• The customer could make their selection
based on other factors, such as the features
provided, without worrying about the
internal quality of the software, which was
not visible to the customer

Facts about the Evaluation Project
•*35 person-days of effort were spent by the
evaluating people

• *2 person-days of the customer were spent
for the interviews to elicit the architecture
drivers

• *8 person-days were spent by each of the
providers of Product 1 and Product 2 during
the architecture evaluation

• Overall, the evaluation project lasted
roughly 1.5 months

• At the point of acquisition, only the
Fraunhofer evaluation team was allowed to
look at the source code of Product 1 and
Product 2. The providers did not allow the
customer to look at the source code before
buying the product

Table 10.3 (continued)

114 10 What Are Example Cases of Architecture Evaluation?

Q.094. What Is an Example Case of Institutionalizing
Architecture Compliance Checking at an Organization
(Example 4)?

This example case evaluated the architecture of an existing system with special
emphasis on maintainability and support of future business goals. The outcome of
the evaluation was to completely restart the architecting work since the intended
architecture was not adequate. For an overview and aggregation of the results, see
Fig. 10.1; details are given in Table 10.4. A detailed description of the case has
been published in (Knodel et al. 2008).

Quality Attribute Product 1 Product 2

Availability

Reliability

Performance

Resource Utilization

Usability

Security

Scalability

Maintainability / Extensibility

Flexibility

Integrateability

Migration Support

Portability

Fig. 10.4 Example case technology decision—SAC results. © Fraunhofer IESE (2008)

• Layering

• Clustering

• Plugins

Compliance

Product 1 Product 2

• Layering

• Service-Orientation

• Plugins

Solution Concept ComplianceSolution Concept

Fig. 10.5 Example case technology decision—ACC results. © Fraunhofer IESE (2008)

10.1 What Are Typical Evaluation Questions and Example Cases? 115

Table 10.4 Example of institutionalizing architecture compliance checking at an organization

Initial Situation
• Software product line of embedded systems—
flue gas and climate measurement devices

• Regular architecture compliance over a period of
30 months

• Reference architecture for all product line
instances: family-specific implementation with
generic components and application-specific
implementation

• Three generations of the framework (i.e., an
internal reuse infrastructure)

Facts about the System
• The size of the measurement devices ranged
from 10 KLoC to 600 KLoC

• Reuse degree of about 40 %
• (i.e., the framework comprises approximately
40 % of each product line instance). Values
were measured with various size metrics such as
lines of code (LoC), number of framework files
used, number of framework functions used

• All products were implemented in the C
programming language

Evaluation Questions and Approach
• Q1: Do the investments into reuse (framework,
generic components) pay off? Is the currently
realized implementation of each product line
member compliant with the reference
architecture of the product line?

! ACC: Application of SAVE tool to 15 product
implementations based on different framework
generations, 5 times within a period of
30 months, with significant framework
extensions and refactorings in between

! t1: checking of P1–P3 based on 1st generation
framework

! t2: checking of P4–P10 based on 2nd
generation framework

! t3: checking of P4–P11 based on 2nd
generation framework

! t4: checking of P4, P5, P11 based on 2nd
generation framework, P12–P15 based on 3rd
generation framework

! t5: checking of P5 based on 2nd generation
framework, P12, P14, P15 based on 3rd
generation framework

Facts about the Checks
Involved stakeholders/persons
• About 35 software engineers involved in
workshops

• 5 architects and core developer interviewed for
defining compliance checking scope

Solution concepts evaluated
• Several central solution concepts such as reuse
dependencies or layering were checked across
the products

• 15 products evaluated in total
• Checks applied after new products had been
implemented based on new generation of the
internal reuse framework (before release of
products)

Evaluation Results
Q1:
• See Fig. 10.6 for the degree of diverging code
dependencies in the total of all dependencies

• The results of the compliance checking activities
indicate that architectural knowledge has been
established successfully in the minds of the
developers. For instance, when comparing
products P3, P4, P11 and P13 (all are mid-sized
systems), a significant and sustainable decline in
the number of divergences could be observed

Confidence Level Achieved
• Level of confidence is high
• ACC results enabled controversial discussions
among architects and developers about the reuse
infrastructure

(continued)

116 10 What Are Example Cases of Architecture Evaluation?

10.2 What Lessons Can Be Learned
from Architecture Evaluations?

This whole book is built on and supported by our lessons learned. However, this
section aims at stating some lessons learned very explicitly again. All of our lessons
learned have been derived from the practical experiences made in the projects. At
least one of the authors was involved either directly or indirectly in each of the
projects. We retrospectively analyzed our projects first in 2013 and published the
results in Knodel and Naab (2014a, b). In part, the following lessons learned were

Table 10.4 (continued)

Recommendations
• For all evaluation dates, it can be stated that the
results enabled improvement of the reuse
infrastructure

• For all evaluation dates, it can be stated that
compliance checking results and the rationales
of the stakeholders involved both served as
input to the decision-making process for the
further evolution of the product line architecture

• Adaptations for both the architecture and the
product implementations were decided on and
realized

• Customizations made to tooling to adapt to the
evaluation context

! The analyses have to be automated to a large
extent, for instance, by processing make-files
and build scripts for parsing and generating the
source code model required for compliance
checking

• The visualization of the compliance checking
results was extended to export detailed lists of
violations to support developers

Facts about the Evaluation Project
• *50 person-days of effort were spent by the
evaluating people

• *2 days were spent on average for the
workshops to discuss violations at each
checkpoint in time

• The overall architecture evaluation project lasted
roughly 30 months

• The architects perceived a great benefit in
avoiding and counteracting architectural
degeneration with the help of compliance
checking

Framework
1st Generation

Framework
2nd Generation

Framework
3rd Generation

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

P
o

in
t

in
 T

im
e t1

t2

t3

t4

t5

2.1% 1.9% 2.0% 5.1% 2.4% 7.2% 4.4%

1.6% 1.5% 1.9% 2.7% 3.9% 6.6% 4.6% 2.6%

0,9% 5,8% 2.7% 1.0% 0.7% 0.6% 0.6%

1.7% 0.9% 1.1% 1.2%

4.3% 10.2% 27.3%

Fig. 10.6 Example case of institutionalizing architecture compliance checking—ACC results.
© Fraunhofer IESE (2008)

10.2 What Lessons Can Be Learned from Architecture Evaluations? 117

already published there. We are aware that our lessons learned might not be valid in
projects settings with other context factors. Of course, we do not claim generaliz-
ability, but nevertheless believe each single lesson learned to be a valuable piece of
experience that might help other practitioners and researchers to avoid pitfalls and
facilitate their own evaluation.

Q.095. What Did We Learn About Architecture During System
Construction and Software Change?

Early and essential architecture design decisions are indeed fundamental.

No matter how long the system has evolved, the initial description of the
architecture is still valid (and used) for communicating the basic ideas and key
functions of the systems. This means we can confirm the common belief that
architectures stick to their initial ideas for a long time in the system lifecycle, at
least for the 13 systems aged ten years or more.

Development becomes agile, but architecting in sprints only is not
enough.

Reviewing the past decade of architecture evaluation projects, we can see that
more and more of our customers have adopted agile development processes.
Architecting has to be “re-defined” or “re-invented” in the context of more and
more companies “going agile”. The main point we have observed is that if archi-
tecting is performed within the scope of the current sprint only, it does not help to
solve problems that arise across individual sprints, across teams, and in distributed
development. This is especially true for quality requirements that cannot be solved
in one sprint only. See Toth (2015), Rost et al. (2015) for more insights on the
combination of agile development and architecting.

Architecting plays a first-class role during development, but not during
maintenance.

Over the years, architecting has been established as playing a first-class role
during initial development. In many cases, experienced developers are promoted to
being responsible for architecting. However, during maintenance the situation is
different: no architects are available to review change requests or design solutions.
This leads to a gradual drift between architecture and implementation over time and
confirms that architecture erosion is a fact.

118 10 What Are Example Cases of Architecture Evaluation?

Some architecture problems can be fixed easily.

In our experience, problems such as missing documentation or missing support
for several new scenarios can be fixed as long as the basic knowledge about the
system is up-to-date and implicitly known by the architects. The same is true for
minor non-compliance in the code, which typically can be fixed in the next iteration.

Some architecture problems can’t be fixed (easily).

Problems such as a high degree of non-compliance in the code or a strong degree
of degeneration of the architecture over time reveal a systemic misunderstanding of
the architectural concepts among architects and developers and would require
enormous effort to resolve them. In our evaluations, we had just one case where
such effort was actually spent without any other action (such as improvement and
coaching). In this case, there was an urgent need to reduce side-effects in the
implementation as a change in one place in most cases resulted in a problem in
another place. Another problem that is difficult to fix afterwards is missing thor-
oughness in the definition of the initial architecture.

Daily workload wins over architecture evaluations.

We often encountered willingness to do an architecture evaluation project, but
time and effort could not be spent (by the way, this is a fact that corresponds to
typical architecture practice in these companies as well). Instead of analyzing the
root cause, firefighting work was performed on the symptoms.

Patient dies on the way to the hospital.

In more than ten cases, the project was even stopped by management before the
architecture evaluation (already under discussion) could take place and potential
improvements could have been identified.

Rather refactor in the small than challenge your own decisions made in
the past.

In some cases, the architects did not dare to question their own decisions made in
the past. They ignored the possibility that decisions that once were correct in the

10.2 What Lessons Can Be Learned from Architecture Evaluations? 119

past might not be correct anymore in the present, as the context and the system had
evolved.

New features kill architecture work.

As the architecture does not deliver any direct end customer value, it is at risk of
being put off or getting dropped. However, the insight that architecting delivers
business value to the developing company (if it is going to maintain the software)
by preparing the future or making development more efficient is often neglected.
Even when we made customers aware of critical issues, we had eight cases where
nothing was done afterwards.

Tool-based reverse engineering often leads to impressive but useless
visualizations.

Reverse engineering of implementation artifacts is often used in architecture
evaluations and partly also in the development process of our customers. We expe-
rienced that whenever such reverse engineering activities were not driven by clear
evaluation questions, complex and threatening visualizations resulted. Such visual-
izations serve to increase awareness, but provide no guidance for improvements.

Q.096. What Did We Learn About Maintainability as a Quality
Attribute?

Maintainability is a versatile quality attribute.

The quality attribute Maintainability covers many different aspects: In solution
adequacy checks, it can be checked how adequate an architecture is in terms of
supporting certain anticipated changes by assessing how large the impact of a
change and thus the effort to execute it would be. With architecture level metrics, it
can be checked to which extent rules of good design are adhered to, which allows
making at least some general statements about maintainability. While these two
aspects are mainly aimed at predicting the actual effort required to execute a change,
code level metrics can cover another aspect of maintainability: readability and
understandability of the source code. Maintainability of a software system is crucial
for the success of a system in the future.

120 10 What Are Example Cases of Architecture Evaluation?

The definition of maintainability in ISO 25010 (ISO 25010 2011) shows that the
aspects described above match very well with sub-qualities in the model:

• Readability/analyzability are aspects that are mainly aimed at the understanding
of the developers and strongly depend on the code quality (of course not
exclusively; the overall architecture also has some impact here). That is, when
developers have to change a certain part of the code, they first have to under-
stand it. Good code quality obviously supports this. There has been a lot of
research and numerous approaches exist regarding how to measure what good
readability of code means. What is interesting now is that this type of code
quality does not depend on the concrete product under development. Rather, it
depends on the mental capabilities of the available developers (see Fig. 3.3). For
example, if methods are too long or the degree of nesting is too high, they are
hard to read, or cyclic dependencies are hard to understand.

• Modifiability/changeability are aspects that mainly determine the overall change
effort by the degree to which a concrete change is distributed over the whole
system (from local to nearly global). This is mainly determined by major
architecture decisions. Whether a change can be performed with low effort
(meaning the system is maintainable) can be strongly influenced by architecture
decisions, which cannot be measured locally in the code. For example, the
requirement to replace the UI framework (e.g., because it is no longer supported
by the vendor) might spread out over large parts of a system if there is no clear
separation of the UI part and maybe even the concrete technology.

The measurement of maintainability plays an important role in software evalu-
ations. It contributes to answering questions like “Is our system a solid basis for the
future?” or “Can we make the upcoming changes within a reasonable amount of
time and budget?”

Maintainability is a quality attribute with many indirections.

Most of the time, maintainability is not directly visible, in particular not for the
end user, often not for the customer, and often not even for the developer. It is very
common that there is not so much focus on maintainability during initial system
development, which has to deliver fast. Then the lack of maintainability and its
consequences are perceived during later system development and maintenance
phases. Even then, the perception is mainly indirect, visible only in the high cost of
changes.

Another reason that makes maintainability harder to handle is that it is mostly
difficult to precisely formulate maintainability requirements. Anticipated changes
can be stated, but often it is pretty open how a system will evolve. In terms of
readability, requirements are rather stated in terms of coding conventions than as
real requirements.

10.2 What Lessons Can Be Learned from Architecture Evaluations? 121

http://dx.doi.org/10.1007/978-3-319-34177-4_3

Measuring maintainability requires a mix of checks.

When it comes down to measuring maintainability, this is not an easy task. In
practice, the simple solution is often to buy a tool that measures code metrics and
also outputs results on maintainability (CQC). These quantitative results can, of
course, be valuable. However, they are only part of the answer. They are that part of
the answer that deals with the readability/analyzability of the source code. The good
thing is that it is easy to codify such rules and quantitative metrics and measure
them with standard tools. This is often done in practice. However, as stated above,
this is only part of the truth.

What is missing are considerations of major architectural decisions and concrete
change scenarios of the software system. However, measuring this part of main-
tainability is not so easy for several reasons:

• Measurement needs concrete (anticipated) change requests as a baseline and often
change requests that may occur further along in the future are not known yet.

• Measurement is not possible in absolute terms, but rather requires the usage of
architecture evaluation techniques, which produce only qualitative results.

• Measurement is only possible manually with the help of experts; tool support is
quite limited as the evaluation is individual for each specific product. Thus, this
type of measurement is often neglected in practice and, as a consequence,
maintainability is not measured sufficiently.

Concrete measurement can indicate positive values for both aspects independent
of each other. To reliably measure maintainability, both aspects are essential. This
shows that performing a measurement requires a good understanding of the quality
attributes and the concrete goals behind the measurement. It may also require the
combination of different measurement techniques (such as quantitative code quality
measurement and qualitative architecture evaluation) performed on different
artifacts.

Measuring quality attributes in general requires a mix of checks.

The lessons learned for measuring maintainability are partly transferrable to
other quality attributes. Other attributes such as performance, security, or reliability
exhibit similar properties, meaning that code quality and architectural solution
adequacy are both crucial for fulfilling the requirements.

122 10 What Are Example Cases of Architecture Evaluation?

Q.097. What Did We Learn About the Interpretation
of the Results from Architecture Evaluation?

No standard interpretation of evaluation results is possible.

Interpretation has to consider evaluation questions and context factors. Even
when there are quantitative results, the interpretation of the results remains a dif-
ficult but crucial step in architecture evaluations. Due to the nature of architecture
evaluation, the results often cannot be fully objective and quantifiable. It is very
important for the evaluators to manage the expectations of the evaluation owners
and the stakeholders and to clearly communicate this. For instance, it is not possible
to establish standard thresholds for the number of acceptable architecture violations.
Rather, it is always necessary to keep the goals and the context of the customer in
mind. Merely providing facts and findings is not enough. Over time, we have
learned that interpretation also includes the preparation of potential follow-up steps.
Today, we consider an architecture evaluation to be successful if at least one of the
action items or recommendations proposed has been implemented.

Representation of evaluation results for management people and
non-technical decision makers is challenging.

Often, the sponsors of an architecture evaluation are people from senior man-
agement. Despite abstracting from the system under evaluation, architectures are still
technical constructs. Presenting the evaluation results to such stakeholders (who
often do not have much of a technological background) is very challenging. On the
one hand, the results have to be very condensed and understandable intuitively.
Recommendations and alternative ways should be shown and supported with
quantitative data. On the other hand, evaluators have to be careful to present subtle
differences in an understandable way as these can have a substantial impact on
far-reaching decisions. This holds especially true for qualities at development time.
Our traffic-light-colored rating was motivated by the need to give clear presentations.

Plain numbers are preferred over statements and interpretations pro-
vided by architecture evaluations.

Many companies decide to buy a code metric tool instead of performing an
architecture evaluation. We value the capabilities of metrics and continuous mea-
surement, but we doubt their use for deriving answers to typical architecture
evaluation questions (as discussed in Chap. 1).

10.2 What Lessons Can Be Learned from Architecture Evaluations? 123

http://dx.doi.org/10.1007/978-3-319-34177-4_1

“It depends” is not a good final answer.

Although true in many cases, it is important to clearly distinguish and delineate
alternatives among follow-up actions. Companies want to know what they can do
next. Ideally, findings and recommendations should be translated into business
terms (gain or loss of money, meeting or failing deadlines, etc.).

Stakeholders sometimes try to influence the interpretation to achieve
their own goals.

Such attempts are not very frequent but they do occur (as the results of architecture
evaluations may have a significant impact on stakeholders). Being neutral is a key
prerequisite for evaluators. External evaluators are often hired exactly for this reason.

Q.098. What Did We Learn About Risk Mitigation in General?

Evaluation results are expected to be delivered immediately.

Despite feeling and communicating the pressing need for having an architectural
evaluation (or rather having important questions or doubts in decision-making),
ordering an architecture evaluation project for some reason can take up to several
months. Once ordered, expectations regarding the delivery of results do not
accommodate the long waiting time for being allowed to start the evaluation.
Industry customers expect evaluation results to be delivered promptly, which is
contrary to other architecture-related projects we did in the past (e.g., supporting the
design or coaching of architecture capabilities).

Architecting lacks a clear mission in software projects.

Our experiences show that architecting typically goes slowly because it lacks a
goal-oriented focus. Architects in industry often spend a lot of time on designing
templates, evaluating several technologies, modeling and pimping diagrams, but
forget the point of architecting: delivering solutions for current and future design
problems. As there are always a lot of problems, we think it is important to
explicitly focus, plan, and track architecture work. For this reason, we proposed the

124 10 What Are Example Cases of Architecture Evaluation?

construct of architecture engagement purposes (Keuler et al. 2012), an auxiliary
construct to align architecting with other engineering activities in the product
lifecycle.

Q.099. How Did Our Evaluation Approach Evolve Over Time?

Architecture evaluations have to evaluate implicit decisions made in
people’s minds, explicit decisions found in documentation, and decisions
manifested in system implementations.

The big picture and integration of evaluation techniques (as depicted in Fig. 3.1)
emerged over time. At Fraunhofer IESE, architecture evaluation research has been
driven from three directions: reconstruction (Knodel and Muthig 2008), tool devel-
opment (Knodel et al. 2009), and literature about architecture evaluation in general
(e.g. Clements et al. 2001; Dobrica and Niemela 2002; Babar and Gorton 2009;
Bellomo et al. 2015, to name but a few). In ourfirst evaluation projects, we startedwith
coarse-grained recovery and reconstruction. Over the course of time, we learned that
customers rather require one concrete answer to one current, urgent, and pressing
question (where an architecture evaluation may or may not be the means to answer
their question). They do not care about exploiting the power of reconstruction for other
parts. This resulted in our request-driven reverse engineering approach, where we
always have concrete stakeholder scenarios guiding all subsequent analysis. Hence,
this manifests the need to evaluate implicit decisions in architects’ minds, explicit
decisions described in documentation, and the source code.

All architecture evaluation is not the same.

We are covering more and more initial situations in which architecture evalu-
ation can provide benefits. Furthermore, in every new project, we learn about
something that is different than before. Every software system is unique in its
characteristics, lifecycle, and context, including the people and organization behind
the system, and the same is true for the evaluation of the system. In this way,
architecture evaluations are always interesting, as the evaluators learn about
something new within a short period of time.

10.2 What Lessons Can Be Learned from Architecture Evaluations? 125

http://dx.doi.org/10.1007/978-3-319-34177-4_3

11How to Engage Management
in Architecture Evaluation?

Management support is crucial for starting and conducting architecture evaluations,
and even more important for exploiting the results to improve the software system.
This chapter presents data, numbers, and insights gained from our project retro-
spective on points that are typically important to management: effort, duration,
benefits, scaling factors, and improvement actions.

11.1 What Is the Point?

Q.100. Why Does Management Need to Be Engaged
in Architecture Evaluation?

Architecture evaluation is an activity whose objective is to identify (potential) risks.
However, architecture evaluation does not come for free:

• It requires investments to hire the auditor party (external or internal) to perform
the architecture evaluation (see Chap. 4).

• It requires time and availability of relevant stakeholders of the software system
under evaluation. Typically, these people are busy, under high workload, and
have tight time constraints.

• It requires access to confidential and business-critical information about soft-
ware systems under evaluation, and to (parts of) the overall business strategy of
the development organization owning the software system.

• It may require budget for acquiring tools (and training regarding their usage) for
architecture compliance checking and code quality checking.

© Springer International Publishing Switzerland 2016
J. Knodel and M. Naab, Pragmatic Evaluation of Software Architectures,
The Fraunhofer IESE Series on Software and Systems Engineering,
DOI 10.1007/978-3-319-34177-4_11

127

http://dx.doi.org/10.1007/978-3-319-34177-4_4

• It requires attention to the revealed findings. The results of an architecture
evaluation support informed decision-making and tracking of the realization of
decisions made. Findings may include design flaws, open issues, or unpleasant
surprises for the development organization.

• It requires making decisions on follow-up activities (see also Question Q.106).
Some findings may reveal an urgent need for action, while other improvement
items may be deferred.

For all these points above, it is imperative to have the support of management,
with the ability and the power to promote and push first the architecture evaluation
project and then the improvement actions.

Q.101. How to Convince Management of the Need
for Architecture Evaluation?

Among a lot of other aspects, making management decisions means reasoning
about how to spend the available budget on software development projects or
migration projects or maintenance. To convince management, architects have to
play the numbers game. For managers with a strong software engineering back-
ground, we can expect the game can be easily won because these people usually
have enough awareness and experience to know when to call for an architecture
evaluation, or more generally speaking, when risk management is expedient. For
managers with a non-technical background, the numbers game will be more diffi-
cult: The investments and their potential return (i.e., the benefits) have to be
sketched and estimated to provide a sound basis for informed decision-making.

In our projects, we experienced different situations where architecture evaluation
became an instrument to support decision-making (see Fig. 11.1). We distinguish

Emergency

Keep or Let Die,
Crisis, Clash

Rescue

Evolution vs.
Revolution

Quality
Management

Strategy,
Institutionalization

Decision Support

Business Goals, Quality,
Migration,

Technologies, Reuse

System
“out of hand”

System
“on plan”

E
va

lu
at

io
n

 &
Im

p
ro

ve
m

en
t

E
va

lu
at

io
n

o

n
ly

Fig. 11.1 Situations calling for architecture evaluation. © Fraunhofer IESE (2014)

128 11 How to Engage Management in Architecture Evaluation?

between different types of criticality of a situation: Either the software system is in
good shape overall (known requirements, sound architecture, compliant imple-
mentation, good documentation), which we call system on plan, or the software
system already lacks quality (e.g., architecture is eroded/requirements not
up-to-date/not documented, implementation lacks compliance), which is what we
call a software system out of hand. Furthermore, we classified the evaluation
projects according to whether the situation was a short-term assessment (called
evaluation only), or an assessment embedded within a longer-term architecture
improvement project. In each situation, different aspects come into play when the
aim is to convince management to go for an architecture evaluation.

• Decision Support means performing an architecture evaluation for a central and
important design decision with respect to the achievement of business goals, key
functional or quality requirements, technology candidates, migration paths, or
reuse of existing solutions. Management has to consider the investment for
architecture evaluation on the one hand, and the risk and cost of making a wrong
decision (and reversing it afterwards) on the other hand. We are confident that a
single risk avoided or a wrong decision prevented can pay for all architecture
evaluation activity within the budget. Architects have to make management
aware of the criticality of the impending decision and confront management
with the cost for realizing the decision afterwards. In our experience, the
investments for an architecture evaluation will be a marginal percentage of the
overall investment. Architects need to get heard, either on the merits of their
credibility, by having a feeling for the situation and good timing, or as a result of
their persuasive and diplomatic skills. Management will not accept if the
architects call for an architecture evaluation too often nor often enough, so they
have to prepare a good case for it and come up with a strong line of arguments
for why it is needed at a particular time.

• Quality Management means establishing architecture evaluation as a recurring
quality assurance instrument in a broader context (e.g., across projects, or across
quality gates of long-running projects, or as a service of a central method
support group). For this strategic goal of institutionalization (see also Chap. 13),
it might be difficult to get the necessary budget, as no single project would pay
for the basic infrastructure and for building up competencies. Nevertheless,
architecture evaluations pay off in these cases through their high number of
applications. Evaluators gain a lot of experience over time and become more
efficient and effective in conducting architecture evaluations. Management will
likely be in favor of institutionalization as the individual project only has to
provide a share of the whole investment or almost no investment at all if the
central group is financed otherwise.

• Emergency characterizes situations where there is a pressing need for decisions
with high impact, which often have to be made under tight time constraints.
Examples of this category are crises where one or many clients react unhappily
or angrily, where a sponsor or subcontractor does not deliver as promised, where
a project gets stopped, or when a decision must be made as to whether to keep a

11.1 What Is the Point? 129

http://dx.doi.org/10.1007/978-3-319-34177-4_13

software system or let it die. Why should management invest into an archi-
tecture evaluation in such cases and delay its decision? Because such situations
tend to be hot, are often overloaded with politics, and because sometimes there
is a need to blame someone (not oneself). However, what is missing in such
cases is a neutral, objective analysis of the situation: the properties of the
software systems and its underlying architecture and whether it offers a path to
escaping the situation. Because of their high impact and often high budget,
decisions in emergency cases mostly cannot be reversed. Architecture evalua-
tion (in these cases better performed with an external auditor) provides
fact-based data and information. We believe that in such overheated situations, it
is important to keep a clear head. Architecture evaluation serves as an instru-
ment to make decisions with confidence and to avoid hasty reactions.

• Rescue means that a software system out of hand should be brought on track
again. There are two natural options: evolving the existing system at hand or
revolving it by starting over from scratch. In practice, the solution is often a mix
of both of these options (for more details, see aim42 2014). However, the
question remains which of the two is the better option for which situation.
Improvement initiatives benefit from the insights delivered by architecture
evaluations to make such a decision. If the need for improvement is obvious to
management, it should also be obvious for them to use architecture evaluations
as an instrument for decision-making to avoid ending up again with a software
system that is out of hand.

Q.102. What Are the Scaling Factors for Effort Spent
on Architecture Evaluations?

Architecture evaluation is a strongly risk-driven activity. It is mostly motivated by
the identification and mitigation of risks. Furthermore, the management of archi-
tecture evaluations steers the evaluation in such a way that most effort is spent on
the riskiest parts. Consequently, the effort to be spent on an architecture evaluation
is driven by several aspects regarding risks:

• Number and type of evaluation questions.
• Criticality of the situation.
• Need for fast results.
• Required confidence and details of results.

Besides these risk-related aspects, further aspects are relevant. These aspects
mainly express the size of the system and the organizational constellation.

• System size and complexity.
• Organizational complexity.
• Number of stakeholders to be involved.

130 11 How to Engage Management in Architecture Evaluation?

The overall effort spent on an architecture evaluation can range from a few hours
up to hundreds of person-days. Both examples are absolute extremes but illustrate
the spectrum of effort that can be spent. If an architecture evaluation tends to be
critical and requires more effort, it is often better to involve dedicated external
evaluators in order to get the evaluation done with great dedication and power. Most
such evaluation projects might require between 20 and 80 person-days of effort.
Example efforts from real projects are presented alongside the examples in Chap. 10.

The most relevant architecture drivers can be collected within a reasonable
amount of time—even those of very large systems. By talking to all relevant
stakeholder groups within a limited amount of time [we recommend 1–2 h per
stakeholder (group)], the overall amount of time needed is limited. It has been our
experience that the resulting coverage of architecture drivers is always good enough.

Solution adequacy checks can be controlled with respect to the invested effort by
evaluating a representative and prioritized set of architecture scenarios. Of course,
very complex systems require more effort; however, our experience has shown that
one to three days of solution adequacy checking are typically enough to get a good
understanding of the key problems in an architecture.

Finally, we want to offer some experiences regarding the effort of architecture
evaluation projects in industry:

• Our architecture evaluation projects are typically conducted by two evaluating
persons.

• In our past evaluation projects, the companies developing the software systems
were involved with up to 30 persons, with a typical number of 8.

• Most architecture evaluation projects were conducted with 20–80 person-days
of the evaluating persons. Additional effort was spent by the stakeholders and
architects of the customer companies. The extremes are evaluations as small as 4
person-days and as large as 200 person-days.

Architecture evaluation is one of the disciplines in architecting that allows very
good scaling even for very large systems and organizations. In contrast to archi-
tecture design, architecture evaluation can often leave out details or focus on a
subset of architecture drivers and still provide reliable results.

Q.103. What Are Typical Figures for Architecture Evaluation
Activities?

Architecture evaluation is an investment requiring time and effort by the evaluating
party, the initiating party, and the party owning the software system under evalu-
ation. As all architecture evaluation is not the same, the figures differ from case to
case. However, our retrospective gives some indicators for the range and the mean
across the projects we have conducted so far. We do not claim that this empirical
data can be generalized for all cases, but it can still be considered as a rough
ballpark figure.

11.1 What Is the Point? 131

http://dx.doi.org/10.1007/978-3-319-34177-4_10

Figure 11.2 shows the data collected. It is organized along the steps to follow
when conducting an architecture evaluation as introduced in Question Q.024. We
distinguish three different parties involved in an architecture evaluation: The project
initiator is the party asking and sponsoring the evaluation; the evaluator conducts
the evaluation; and the system owner is the party responsible for the development
of the software system under evaluation. Note that all three roles may be performed
by the same development organization. These figures may serve as input (together
with the concrete examples in Chap. 10 and the scaling factors given in Ques-
tion Q.102). To convince management at the end of the day, some figures have to
be given to obtain the necessary budget. The figures given in Fig. 11.2 may help,
but use them with care and common sense.

Most effort is spent on conducting the evaluation, i.e., on executing the selected
checks (DIC, SAC, DQC, ACC, and CQC). As a risk-driven activity, the initiator
has the authority over the priorities and the desired confidence level to be achieved.
In doing so, the effort for the main drivers and scaling factors is controlled by the
sponsor of the architecture evaluation.

Q.104. What Are Typical Findings and Potential Gains
of Architecture Evaluation?

Findings in architecture evaluations, if addressed properly after being revealed, may
lead to certain improvements. Figure 11.3 lists a set of sample findings recurring
across architecture evaluation projects and discusses potential gains for a devel-
opment organization.

Q.105. Why Turn Architecture Evaluation Results into Actions?

Architecture evaluation is an investment made to detect and mitigate technical risks
and inadequate design decisions for a software system under evaluation. It only

What? Who and How Much?
Persons Involved

TotalPerson-Days Max-Min [Mean]

How Long?
in Total Work Days
[Mean]

Project Initiator Evaluator System Owner

Scope Evaluation
Context

5-1 [2]
10-1 [2]

2-0 [0]
5-0 [0]

60-1 [10]

Set up Evaluation
Project

15-1 [1]
10-1 [1]

15-1 [1]
10-1 [1]

60-1 [5]

Conduct Evaluation # 15-3 [10]
10-1 [5]

15-3 [5]
60-2 [20]

100-2 [20]

Package Evaluation
Results

15-1 [10]
10-1 [4]

15-1 [10]
5-1 [4]

20-1 [5]

TOTAL 40-4 [12]

2-0
10-0 [1]

[1]

2-1 [1]
10-1 [1]

6-1 [2]
200-4 [30]

6-1 [2]
20-1 [10]

240-4 [42] 80-4 [25] 240-5 [5]

Fig. 11.2 Typical effort numbers for architecture evaluation. © Fraunhofer IESE (2014)

132 11 How to Engage Management in Architecture Evaluation?

http://dx.doi.org/10.1007/978-3-319-34177-4_4
http://dx.doi.org/10.1007/978-3-319-34177-4_10

pays off if the recommended improvements are actually turned into action.
Otherwise the investments were made in vain (as the situation remains unchanged).
Consequently, architects must always strive to exploit the results. Typically, it is not
possible to cover every recommendation made, but at least some have to be realized
in order to exploit the results.

Q.106. What Are Possible Improvement Actions?

Architecture evaluations are performed to increase confidence regarding
decision-making about the system under evaluation. After we presented the out-
come in a final meeting (see Question Q.033), our customers had to decide what to
do next. We did a post-mortem analysis to find out what actions were taken
afterwards. We found the following categories of action items performed by the
customers (please note that combinations of multiple actions were also applied):

• Everything OK: In these cases nothing was done because the architecture
evaluation basically did not reveal any severe findings. There were only minor
points (if at all), which could be addressed as part of regular development.

• Selection of one out of many options: One of several candidate systems/
technologies being evaluated was actually selected (for instance, see
Question Q.091). In these cases, the architecture evaluation provided valuable
input to decision-making and management found itself confident to select one
winner from the alternatives offered.

Typical Findings Potential Gains if Fixed

Unknown requirements or constraints Time and effort saved in software engineering; late surprises (if requirements are discovered later) causing

additional overhead are avoided.

Unknown architecture drivers Critical requirements and complex problems requiring design excellence are not addressed appropriately. If

detected early, more design effort can be spent on coming up with adequate solutions.

Architecture typically not thoroughly defined Risks are mitigated and flaws in the architecture design can be fixed or circumvented before the need for

change is imminent.

Architecture often not fully adequate for

requirements (or not any longerfor older systems)

Need for change for (future) requirement becomes obvious and can be addressed accordingly. Effort for

designing is applied effectively.

Documentation incomplete, inconsistent, or

contradictory

Assumptions and decisions based on missing or wrong information are avoided.

Documentation not available Documentation can serve as communication and information vehicle for architects and other stakeholders.

Missing uniformity in implementation Easier transfer of developers within the project and less time and effort for getting familiar with the source

code.

Lack of architecture compliance or chaotic

implementation

Improved maintainability and architecture can be used as abstraction and mediator for decision making and for

principles guiding the evolution of the software system.

Limited architecture awareness among developers Better knowledge of the architecture, especially in the part(s) of the system on which they are working (i.e.,

implementing or maintaining) and those part(s) that are dependent on the current working part (i.e., the

context).

Fig. 11.3 Findings and potential gains of architecture evaluations

11.1 What Is the Point? 133

http://dx.doi.org/10.1007/978-3-319-34177-4_4
http://dx.doi.org/10.1007/978-3-319-34177-4_10

• Improvement of existing architecture: Dedicated effort was spent on
improving the existing architecture. This was particularly true for projects at an
early stage (without any implementation or at the beginning of development). At
this point in time, corrective decisions regarding the design could be integrated
into the development process. In one case, the improvement took place on both
levels, in the architecture and in the implementation. On the one hand, the
architecture was changed to accommodate the findings of the architecture
evaluation, and on the other hand, significant numbers of architectural violations
in the implementation were removed at the same time.

• Design next-generation architecture: The need for a complete redesign of the
architecture has been accepted and decided. In these cases, instead of improving
the existing architecture, the findings and insights regarding the existing systems
served as input for the design of a new architecture (followed by a
re-implementation from scratch). Although conceptual reuse and very limited
code reuse took place, fundamental design decisions were made in the light of
the findings from the architecture evaluation.

• Removal of architecture violations: We observed the definition of an explicit
project for removing architecture violations, which were the results of the ACC.
This happened in several cases and required spending significant amounts of
time and effort (e.g., one team working for six months) each time only on the
removal of architecture violations (i.e., changing the code to remove violations
by refactoring or re-implementing).

• Coaching architecture capabilities: An initiative for training and improvement
of architecture capabilities in the organization was started. Coaching was never
done in isolation; in one case, it was performed together with an improvement of
the existing architecture, and in two cases, it was performed together with the
design of the new next-generation architecture and a dedicated project for
removing architecture violations.

• Project stopped: We also had cases where all engineering activities were
canceled and the product development (or the next release) was stopped com-
pletely. Management was convinced that achieving adequate quality was no
longer possible with reasonable effort within a reasonable amount of time. In
these cases, the implementation exhibited such severe flaws in the architecture
and a high number of violations in the implementation that it was decided that it
would be better to stop altogether.

• None (although actions would be necessary): We also experienced a number
of cases where nothing happened after the evaluation—although the results
revealed many action items, either in the architecture or in the implementation.
We have explicit confirmation by the customers that—in fact—nothing did
happen afterwards (although it might be that we were not informed on purpose).
The need was recognized and acknowledged, but neither budget nor time was
allocated to actually doing something about it. The reasons are diverse, e.g.,
strategic shifts in the company setting a different focus for the next actions. In
these cases, the investments for the architecture evaluation were made in vain
because no benefits were exploited.

134 11 How to Engage Management in Architecture Evaluation?

Q.107. Why Is Architecture Evaluation Worthwhile?

To summarize the points mentioned above, any wrong or inadequate decision
prevented or any risk avoided pays off. The costs for reversing such fundamental or
business-critical design decisions outweigh the investments required for performing
an architecture evaluation. Avoiding just a single risk does already save more time
and effort than what is required for conducting the architecture evaluation.

When contacting customers in our retrospective of past projects, there was not a
single case where regret was voiced over the investments made for the architecture
evaluation. Other publications on the field confirm our impression. Unfortunately,
only very limited data (besides our paper Knodel and Naab 2014a) on architecture
evaluation is publicly available to support our claim.

11.2 What Mistakes Are Frequently Made in Practice?

Starting architecture evaluation without management support.

Management support is crucial for getting investments, for convincing stake-
holders to participate in the evaluation, for turning recommendations into actions
items, and for benefiting from the results. Without management support, an
architecture evaluation is likely to be an unsuccessful endeavor.

! Questions Q.100 and Q.101.

Having no patience to wait for the evaluation results.

It takes time and effort to conduct an architecture evaluation. Architects and
developers often do not want to spend that time as they feel the pressure to push on
with their development tasks. Management often asks for an architecture evaluation
very late, when the decision to be made based on the results is almost due. Then
their patience to wait for the results is rather low.

! Questions Q.097, Q.102 and Q.103.

11.1 What Is the Point? 135

http://dx.doi.org/10.1007/978-3-319-34177-4_10

Neglecting follow-up activities despite a pressing need.

An architecture evaluation often points out needs for improvement, which typi-
cally require significant effort. As architectural changes are typically effort-intensive
and cannot be estimated and planned exactly, decision makers often tend to defer
investments into necessary improvements, which typically leaves the project
members in a state of disappointment. The great time pressure in development often
leads to neglecting the required actions and to collecting more technical debt.

! Questions Q.097, Q.098, Q.105, Q.106 and Q.113.

Architecture evaluation used for politics instead of improvement.

In some cases, we experienced that architecture evaluation was used for
company-internal politics instead of for technical improvements of the underlying
software system. This resulted in stakeholders trying to influence the findings, the
recommendations, or the follow-up action items. We think it is crucial to have one
shared goal among all stakeholders: the improvement of the software system under
evaluation.

! Questions Q.097 and Q.113.

136 11 How to Engage Management in Architecture Evaluation?

http://dx.doi.org/10.1007/978-3-319-34177-4_10
http://dx.doi.org/10.1007/978-3-319-34177-4_10
http://dx.doi.org/10.1007/978-3-319-34177-4_13
http://dx.doi.org/10.1007/978-3-319-34177-4_10
http://dx.doi.org/10.1007/978-3-319-34177-4_13

12How to Acquire Architecture
Evaluation Skills?

Acquiring architecture evaluation skills is crucial for successful architecture eval-
uation projects. While this book provides answers to many questions in the area of
architecture evaluation and introduces a comprehensive methodology, very good
architecture evaluation skills will only come with practical experience. We will
point out in the following how skills for architecture evaluation complement gen-
eral architecting skills. A great source of skills is to explore a large number of
software systems and their architectures in great detail and to try to follow these
software systems and their maintenance over their entire lifetime. Accompanying
experienced evaluators is a great source of learning: observing how they work with
stakeholders, thoroughly investigating the technical solutions, and presenting the
results to management at the right level of abstraction.

12.1 What Is the Point?

Q.108. What Is the Relationship to Architecture Skills
in General?

The typical skills of an architect are the basis of the skills needed by a good
evaluator of architectures. This comprises all areas of technical, engineering,
organizational, economic, and interpersonal skills. Additionally, some specifics
should be pointed out here that complement the skill set of an experienced
evaluator:

© Springer International Publishing Switzerland 2016
J. Knodel and M. Naab, Pragmatic Evaluation of Software Architectures,
The Fraunhofer IESE Series on Software and Systems Engineering,
DOI 10.1007/978-3-319-34177-4_12

137

• Evaluation methods: Evaluators should know how to apply typical evaluation
methods such as ATAM. The framework of different checks provided in this
book provides a consistent toolbox that can be enhanced with further evaluation
methods if necessary.

• Levels of confidence: Evaluators should know which evaluation methods can
lead to which level of confidence and should be able to estimate their own level
of confidence in certain situations, which might strongly depend on their
experiences in the past. Only if the evaluator understands which level of con-
fidence is required to answer an evaluation question can she determine when the
evaluation can be finished or if further analyses, probably with extra effort, are
necessary.

• Manifold experiences—systems, domains, architectures, architecture pat-
terns, technologies, companies, cultures: All the knowledge about evaluation
methods is worth nothing if the evaluator does not know about and understand
software systems very well. Having gained experience with different systems
from different domains with different architectures creates a background for
evaluations. Experiences made in different companies and their respective cul-
tures add further background and credibility to the evaluator. Often, evaluators
are asked to compare the current findings to the situation in other companies
because development teams want to compare themselves to others. In such
cases, the evaluator should be able to report on comparisons.
In general, comparing against experiences from the past is very helpful in
architecture evaluations because this helps to increase the level of confidence:
This solution has worked in a similar context, so there is confidence that it might
work here as well.

• Fast learning of new domains and technologies: Evaluators of architectures
often face the situation that they have to evaluate an architecture in a domain
that is completely new to them. Learning the key aspects of the domain and
relating them to the architecture of the software system is crucial for getting a
quick and productive start into an evaluation project.

• Accepting partial knowledge and getting credibility: External evaluators can
never have as much knowledge about a system as the architects and developers
have accumulated over the years. Nevertheless, they have to work productively
in the evaluation and have to accept this partial knowledge. They have to give
the owners of the system the feeling that they are learning fast and asking the
right questions, and that they are adding value for them.

• Specific moderation and communication skills: Architecture evaluations
entail a lot of interview and workshop work. Evaluators have to organize and
moderate this work. In situations of high criticality and when problems are
encountered, sensitive moderation is necessary in order to maintain an open and
cooperative climate among all parties involved in the evaluation.

• Specific presentation skills: In architecture evaluations, special attention does
not only need to be paid to the gathering of information from stakeholders, but

138 12 How to Acquire Architecture Evaluation Skills?

also to the presentation of the (intermediate) results. An evaluator needs to have
good intuition regarding how to present the results corresponding to the eval-
uation questions to a certain audience. This might range from a very sensitive
and careful presentation to very powerful and hard formulation of the results.

Q.109. What Sources of Learning Are There?

The following sources have been proven in practice to build up skills of successful
evaluators:

• Learn from experienced evaluators: This is the best source of learning.
Accompanying evaluation projects provides many learning opportunities. In
addition, reports and presentations about evaluation projects can offer many
insights.

• Read about evaluation methods: Evaluation methods are mostly described in
books and reports. Evaluators should read about these and know how to use
them, if necessary.

• Read about architectures, architectural trends, technologies: Many infor-
mation sources are available about other systems and their architectures. Eval-
uators can never know everything, but they should constantly try to keep
up-to-date and to at least know about current trends and how they influence
architectures. If possible, they should also at least try something out and make
themselves comfortable with what the new technologies look like at the code
level and what the architectural consequences are. Building this mental model
consumes some effort as the reports and elaborations are mostly not provided in
a way that points out the architectural implications. Any knowledge and
experience regarding architectures and technologies is helpful for understanding
a concrete system under evaluation.

• Visit seminars for soft skills: Soft skills seminars provide the opportunity to
improve moderation, communication, and presentation skills; all three being
tremendously useful for evaluators.

Q.110. How Does the Approach of This Book Relate to Other
Methods?

Architecture evaluation is neither a new topic nor is this the first book on this topic.
We strongly recommend reading (Rozanski and Woods 2005; Bosch 2000;
Clements et al. 2001), with the latter putting particular emphasis on architecture
evaluation. We do not aim at reinventing the wheel; rather, we picked up useful
concepts and ideas and, where necessary, we filled in gaps in order to make them
applicable efficiently and effectively in industry.

12.1 What Is the Point? 139

The most prominent architecture evaluation methods are: SAAM (Software
Architecture Analysis Method, see Kazman et al. 1994), ATAM (Architecture
Tradeoff and Analysis Method, see Clements et al. 2001, which is the de facto
standard published by the Software Engineering Institute, SEI), ALMA (Archi-
tecture Level Modifiability Analysis, see Bengtsson et al. 2004), Palladio (see
Becker et al. 2009). For a more comprehensive overview of architecture evaluation
methods, refer to (Babar and Gorton 2009; Dobrica and Niemela 2002). The most
prominent publications on compliance checking are Reflexion Models (see Murphy
et al. 2001; Koschke and Simon 2003, or Knodel and Popescu 2007). For examples
of compliance checking tools, refer to Question Q.078.

12.2 What Mistakes Are Frequently Made in Practice?

Focusing solely on methodical skills for the evaluation.

See next mistake.

Focusing solely on technological and system-related skills for the
evaluation.

Architecture evaluation requires both methodical skills and experience with
software systems as described above. Focusing on either of these skills alone is not
sufficient. Evaluators have to acquire and continuously improve both types of skills.

! Question Q.109.

Reading a book and thinking that this is all that is necessary to be able to
evaluate software architectures.

In order to be able to consciously apply any method, there is no way around
making practical experiences by doing it, doing it, and doing it again. The same
holds true for architecture evaluation.

! Questions Q.108, Q.109, Q.113 and Q.114.

140 12 How to Acquire Architecture Evaluation Skills?

http://dx.doi.org/10.1007/978-3-319-34177-4_8
http://dx.doi.org/10.1007/978-3-319-34177-4_13
http://dx.doi.org/10.1007/978-3-319-34177-4_13

13How to Start and Institutionalize
Architecture Evaluation?

Here, we will offer guidance on how to get started with architecture evaluation and
how to institutionalize it in one’s own company. There are many good opportunities
for doing a first and beneficial architecture evaluation—new development, mod-
ernization of a system, or selection of new technologies. We will share best prac-
tices regarding how to have a successful start and how this success can be sustained.
Finally, we will look at more sophisticated architecture evaluation methods and
how the discipline can be further improved with even more dedicated guidance or a
higher degree of automation, for example by integrating repeated compliance
checks into the build process.

13.1 What Is the Point?

There are many good reasons for conducting architecture evaluations. Many
companies already do some kind of architecture evaluation. This chapter is intended
to offer support during the introduction of architecture evaluation in
software-related organizations and industrial software projects in order to allow
effective application of the methodology presented in this book.

Q.111. Why Is It Often Difficult to Start Architecture
Evaluation?

• Architecture evaluation as a means of risk management and quality assurance is
new for many companies. It is an additional investment and implies making

© Springer International Publishing Switzerland 2016
J. Knodel and M. Naab, Pragmatic Evaluation of Software Architectures,
The Fraunhofer IESE Series on Software and Systems Engineering,
DOI 10.1007/978-3-319-34177-4_13

141

changes in an organization. In many organizations, this obstacle has to be
removed first prior to getting started.

• Architecture evaluation needs a climate of openness and cooperation. This is true
for the technical level as well as for the connection to the managerial level.
Presenting a system’s architecture with the goal of checking and improving it
requires an organizational culture that is open to accept mistakes and eager to learn
and improve. However, many organizations still do not have this type of culture.

• Architecture evaluation is an investment without immediate return. It requires
spending the time of people who are typically very busy. Spending the neces-
sary time and budget requires trusting that the architecture evaluation will be
worthwhile. Often the necessity of architecture evaluation is recognized too late,
when the risk has materialized already and is a real problem. In such an event,
an architecture evaluation can still help to assess the situation and make deci-
sions, but the resulting cost is typically much higher.

• Architecture evaluation requires additional investments into evaluators: This
may mean qualifying internal architects with the required skills or hiring
external evaluators as consultants.

• Most of the time, architecture evaluation is not a one-time activity. Rather, it
accompanies software projects over their lifecycle with an emphasis on different
checks and with different degrees of intensity. Viewing it as a continuous risk
management activity is even harder than treating it as a one-time investment and
requires strong discipline.

Q.112. What Opportunities Exist for Starting with Architecture
Evaluation?

Software projects lead to many situations that are good starting points for archi-
tecture evaluation. Chapter 1 introduced numerous motivations for architecture
evaluation. Below, we will briefly mention several situations that occur quite often
and that are well suited for this purpose.

• Architecture for a new system is just under design: Checking the foundation
of architecture drivers and their initial adequacy early can help to avoid
expensive rework. Most of the time, an internal review is adequate and can
deliver enough confidence. DIC, SAC, and DQC can be conducted.

• Initial development of a new system is under way: During the initial devel-
opment, teams are ramped up and the system is developed under high time
pressure. Questions pop up continually that are not yet answered by the archi-
tecture design so far: In such cases, a quick SAC is advisable from time to time
to check whether the architecture should be changed. There is the risk that
architectural ideas and the implementation might diverge and that uniformity
may be missing. Thus, ACC can help to avoid a very early drift, which will be
very expensive to correct later on.

142 13 How to Start and Institutionalize Architecture Evaluation?

http://dx.doi.org/10.1007/978-3-319-34177-4_1

• Legacy system has to be renovated or replaced: Decisions about the future of
legacy systems are strongly dependent on the architecture of the system (as
implemented) and the overall quality of artifacts such as documentation and
code quality. To allow making informed decisions about legacy systems,
architecture evaluation provides a full set of means to reveal the facts needed for
making a decision. CEC and SAC are needed to check the current set of
architecture drivers and the adequacy of the implemented architecture, which
often has to be reconstructed first. DQC helps to check whether the documen-
tation is still useful or rather outdated and useless. ACC helps to analyze the
current implementation and how far it has drifted away from the assumed and
formerly intended architecture. Additionally, ACC can be used to monitor the
progress in migration projects towards a new target architecture. CQC helps to
assess the code quality of the legacy system in general.

• Software system or technology to be acquired; several candidates have to
be compared: Every system or technology acquired comes with its own
architecture, which has implications on its usage and integration into other
systems or system landscapes. Thus, checking whether a system to be acquired
is adequate for one’s own drivers is very advisable (SAC). Not so obvious is the
fact that it may also be advisable to conduct an ACC and a CQC of such systems
since these report on the inner quality of the system or technology. This inner
quality has impact on maintenance cost in the later lifecycle.

Q.113. What Are Best Practices for Starting
and Institutionalizing Architecture Evaluation?

• Qualify people: Architecture evaluation is only meaningful if skilled people do
it. In the beginning, learning from experienced external people can help. Qual-
ification should aim in particular at methodical skills; architectural skills have to
be acquired through experience over many years of work.

• Define evaluation goals: Clear goals help to shape clear expectations, to select
the right methodology, and to estimate the level of confidence needed as well as
the resulting effort.

• Evaluate early and regularly: Every software project should have an early
quality gate where an architecture evaluation is conducted.

• Start small: Do not overwhelm people with heavyweight evaluation activities.
Rather start with lightweight activities and systematically produce fast results.
To do so, a selective evaluation focusing on the evaluation goals and archi-
tecture drivers with the highest priority is beneficial.

• Emphasize importance and allocate effort: Make clear to all involved
stakeholders that architecture evaluation is an important means of risk man-
agement and quality assurance. Make adequate provision for it in the project
plan.

13.1 What Is the Point? 143

• Turn results into visible actions: Evaluation results that are simply ignored
have a very demotivating impact. Thus, make it clear early on how the evalu-
ation results are treated and maintain a visible backlog of derived actions.

• Create success stories: There will always be people who have to be convinced
of the benefits of architecture evaluation. In the early phase, make sure to spend
time on doing it according to the methods and to create transparency with regard
to the architecture evaluation activities. Invest rather a bit more effort into the
presentation of the results and keep all stakeholders involved through intense
communication.

• Proliferate culture of cooperation: This point is not restricted to the topic of
architecture evaluation, but architecture evaluation strongly depends on an open
and cooperative climate. Changing the overall climate in an organization is a
broad topic and requires time, and is beyond the scope of this book. However,
we often recognize its impact and thus want to emphasize its importance.

• Institutionalize quality gates: Every organization can find situations that are
perfectly suited as quality gates that require an architecture evaluation. For
example, the procurement of new software products could be such a situation
(“architecture-centric procurement”).

Q.114. How to Make Architecture Evaluation Sustainable
Within a Development Organization?

We recommend applying a goal-oriented measurement approach (for instance, the
GQM paradigm, see Basili and Weiss 1984) to facilitate successful institutional-
ization of architecture evaluation. Architecture evaluation as an instrument for
ensuring the quality of the software system needs to be aligned with the overall
business and development goals when developing software. We further believe that
incremental introduction leads to increased adoption over time. Tailoring architecture
evaluation to the characteristics of the work environment is another crucial aspect.

The main task of a development organization is to deliver products to the
market; hence, they have only limited resources available for learning new
approaches and applying tools to produce architecture evaluation results. Conse-
quently, architecture evaluation must be customized to allow smooth integrated into
an organization.

We recommend raising architectural awareness within the organization. We
think that one key enabler for technology transfer in general is to build up
knowledge in the minds of the affected stakeholders. Thus, to raise awareness for
architecting and for the need for architecture evaluation in the minds of stake-
holders, it is not sufficient to provide them with documentations of the approach or
presentations about it. The support of a team of champions (a special team of skilled
evaluators spreading the word, communicating success stories, and being available
for support) is required. These people need to possess the skills that are necessary
for architecture evaluation.

144 13 How to Start and Institutionalize Architecture Evaluation?

Q.115. What Are Promising Improvements of the Evaluation
Methods?

Architecture evaluation has a sound foundation in research and industry. Although
successfully applied for many years and across thousands of systems, there is still a
lot of methodical and technical improvement potential. In this section, we will
sketch promising areas that we think would bring further benefits to practitioners. In
part, they are already available in research prototypes, but they are not widely
adopted in practice.

• Automated and high-frequency checks: Mostly, architecture evaluations are
triggered manually and conducted in rather longer intervals. However, the
longer the time from one check to the next, the larger the drift can get. Thus,
high-frequency checks are desirable. Checks such as compliance checking,
which, once initialized, can be run automatically can also be integrated into
continuous integration and build environments (Knodel 2011).

• Integration with runtime operation monitoring: Architecture evaluation is
mainly a design time/development time activity. Observing the real behavior of
a system while it is being operated can deliver further insights and can be used
for calibrating prediction and simulation models.

• Better tool support of architecture reconstruction: Architecture reconstruc-
tion from code is still a cumbersome and highly manual effort. Many research
activities are ongoing to provide further tool support, but they are mostly not
ready yet for practical application.

• More specific quality models: In their most general form, architecture evalu-
ation methods are applicable for all types of requirements and quality attributes.
This means, on the other hand, that there is not much guidance with respect to
quality attributes. The impact of the evaluator’s experience is then pretty high.
There are already specializations for several quality attributes such as modifi-
ability (Bengtsson et al. 2004; Naab 2012; Stammel 2015), security (Ryoo et al.
2015), performance (Becker et al. 2009), and others. Such specializations
always come with trade-offs such as learning effort and limited generality.

• Integration with effort estimation: Evaluating an architecture is often done
with respect to upcoming changes and evolution. The respective changes to a
system result in effort and time being needed and strongly depend on the current
situation of the architecture and on the code quality (including also the effects of
accumulated technical debt). Thus, combining the evaluation of the architecture
and the estimation of efforts seems to be a promising synergy (Stammel 2015).

• Better tool support for documenting workshops and evaluation projects:
Today, conducting architecture evaluation workshops and preparing results and
presentations is still tedious manual work, which is mostly done using standard

13.1 What Is the Point? 145

office tools. A better supported workflow with more automation would be
beneficial. This could include:

– Taking pictures of whiteboard sketches
– Generating scenario lists and prioritization tables
– Managing the traces between scenarios and solution concepts and generating

readable tables
– Generating expressive charts about the evaluation results for management

presentations
– Automatically updating charts in all presentations following parameter

adjustment and recalculation of evaluations
– And a lot more …

Despite all potential improvements of architecture evaluation techniques and
tools, architecture evaluation will remain an area that requires experienced people
and manual effort. However, recurring and tedious tasks could be gradually elim-
inated and tools could guide architects with more and more meaningful suggestions.

13.2 What Mistakes Are Frequently Made in Practice?

Postponing the start of architecture evaluation activities.

Waiting for the point in time in a software project where the architecture is stable
enough or when enough time is available often leads to continuous postponing of
architecture evaluation activities.

! Questions Q.111 and Q.112

Always giving the architecture evaluation reduced priority.

Short-term fixes, firefighting, or continuous release pressure often have higher
priority than architecture evaluation, as these are directly visible, constructive
activities. As time is always scarce, we have often observed that future-oriented and
risk-mitigating activities such as architecture evaluation get neglected.

! Questions Q.028, Q.029, Q.031 and Q.113

146 13 How to Start and Institutionalize Architecture Evaluation?

http://dx.doi.org/10.1007/978-3-319-34177-4_4

14What Are the Key Takeaways
of Architecture Evaluation?

Q.116. What Is the Key Message of This Book?

Thorough and continuous architecting is the key to overall success in software
engineering, and architecture evaluation is one crucial part of architecting.

• Evaluate your architecture—early and regularly, and exploit the results!

– Be aware of goals and evaluation questions when selecting checks!
– Tailor and adapt to the software system, its context, and the situation at hand!
– Be careful in the interpretation of results as this is the most challenging step!

• Increase the value of the software system!

– Turn results into improvement actions—if not, all effort was invested in
vain!

– Start small and convince with success stories!

© Springer International Publishing Switzerland 2016
J. Knodel and M. Naab, Pragmatic Evaluation of Software Architectures,
The Fraunhofer IESE Series on Software and Systems Engineering,
DOI 10.1007/978-3-319-34177-4_14

147

Q.117. What Is the Essence of Architecture Evaluation?

The essence of architecture evaluation is summarized in the following figure
(Fig. 14.1).

• To make informed business decisions
• To make informed technical decisions
• To make informed evolution decisions
• To increase the confidence in decisions
• To answer questions about software systems
• To check and assure product quality

Why?
• Systematic analysis of product quality
• Identification of risks
• Evaluation of alternatives

What?

How?
Concerns

Knowledge

Models

Documents

Source Code

Code Metrics 0110
01

Driver Integrity Check (DIC)

Architectural
Drivers

Rating

Solution Adequacy Check (SAC)

Documentation QualityCheck (DQC)

ArchitectureCompliance Check (ACC) 0110
01

Code Quality Check (CQC)

Interpretation

• At any time in the product lifecycle: New development,
evolution, creation of variants, retirement

• At any time in development: Elicitation of architectural
requirements, early design, implementation, evolution

• For different types of decisions: Product strategy,
selection of technologies, acquisitions

When?
• Influencing factors: Evaluation goals, stakeholders,

organizational complexity, system size, criticality
• Confidence levels: Believed, predicted, probed, tested,

inspected, measured
• Risk-based approach: Selection of adequate techniques

and confidence levels | Design to cost and time

How much?

Fig. 14.1 The essence of architecture evaluation

148 14 What Are the Key Takeaways of Architecture Evaluation?

About Fraunhofer IESE

Fraunhofer IESE in Kaiserslautern is one of the worldwide leading research
institutes in the area of software and systems engineering. A major portion of the
products offered by its customers is defined by software. These products range from
automotive and transportation systems via automation and plant engineering,
information systems, healthcare and medical systems to software systems for the
public sector. The institute’s software and systems engineering approaches are
scalable, which makes Fraunhofer IESE a competent technology partner for
organizations of any size—from small companies to major corporations.

Under the leadership of Prof. Peter Liggesmeyer and Prof. Dieter Rombach, the
contributions of Fraunhofer IESE have been a major boost to the emerging IT hub
Kaiserslautern for more than 20 years. In the Fraunhofer Information and
Communication Technology Group, the institute is cooperating with other
Fraunhofer institutes to develop trendsetting key technologies for the future.

Fraunhofer IESE is one of the 67 institutes of the Fraunhofer-Gesellschaft.
Together they have a major impact on shaping applied research in Europe and
contribute to Germany’s competitiveness in international markets.

© Springer International Publishing Switzerland 2016
J. Knodel and M. Naab, Pragmatic Evaluation of Software Architectures,
The Fraunhofer IESE Series on Software and Systems Engineering,
DOI 10.1007/978-3-319-34177-4

149

Bibliography

(aim42 2014) aim42, Gernot Starke, “Architecture Improvement Method”, http://aim42.org/, 2014.
(Ayewah et al. 2007) N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, Y. Zhou, “Evaluating

static analysis defect warnings on production software”. ACM SIGPLAN-SIGSOFT Workshop
on Program analysis for software tools and engineering, 2007.

(Babar & Gorton 2009) M.A. Babar, I. Gorton, “Software Architecture Reviews: The State of the
Practice”, IEEE Computer, 42(7): pp. 26-32, 2009.

(Baggen et al. 2012) R. Baggen, J.P. Correia, K. Schill, J. Visser. “Standardized Code Quality
Benchmarking for Improving Software Maintainability”, Software Quality Journal, Volume 20
- 2, 287-307, 2012.

(Basili & Weiss 1984) V.R. Basili, D.M. Weiss, “A Methodology for Collecting Valid Software
Engineering Data,” IEEE Transactions on Software Engineering, vol. SE-10, no. 6,
pp. 728–738, 1984.

(Basili et al. 1996) V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Sørumgård, M.
V. Zelkowitz. “The empirical investigation of Perspective-Based Reading“. Empirical Software
Engineering, January 1996, Volume 1, Issue 2, pp 133-164, 1996.

(Basili et al. 2014) V. Basili, A. Trendowicz, M. Kowalczyk, J. Heidrich, C. Seaman, J. Münch, D.
Rombach, `̀ Aligning Organizations Through Measurement'', Berlin: Springer-Verlag, 2014.

(Baxter et al. 1998) I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, L. Bier. “Clone detection using
abstract syntax trees”. IEEE International Conference on Software Maintenance (ICSM), 1998.

(Becker et al. 2009) S. Becker, H. Koziolek, R. Reussner, “The Palladio component model for
model-driven performance prediction“, Journal of Systems and Software, vol. 82(1), pp. 3-22,
January 2009.

(Bellomo et al. 2015) S. Bellomo, I. Gorton, R. Kazman, “Toward Agile Architecture – Insights
from 15 Years of ATAM Data”. IEEE Software, vol 32, no 5, pp. 38-45, 2015.

(Bengtsson et al. 2004) P. Bengtsson, N. Lassing, J. Bosch, H. van Vliet, “Architecture-level
modifiability analysis (ALMA)”, Journal of Systems and Software, vol 69(1-2), pp. 129-147,
January 2004.

(Bessey et al. 2010) A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S Hallem, D. Engler.
“A few billion lines of code later: using static analysis to find bugs in the real world”.
Communication of ACM, 53(2), 66-75, 2010.

(Boehm 1981) B.W. Boehm, “Software Engineering Economics”, Englewood Cliffs, NJ :
Prentice-Hall, 1981.

(Bosch 2000) J. Bosch, “Design and use of software architectures. Adopting and evolving a
product-line approach”, ACM Press, 2000.

(Bourquin & Keller 2007) F. Bourquin, R.K. Keller, „High-impact Refactoring Based on
Architecture Violations”. European Conference on Software Maintenance and Reengineering
(CSMR), 2007.

(Chidamber & Kemerer 1994) S.R. Chidamber, C.F. Kemerer, “A metrics suite for object oriented
design”, IEEE Transactions on Software Engineering, 20:476–493, 1994

© Springer International Publishing Switzerland 2016
J. Knodel and M. Naab, Pragmatic Evaluation of Software Architectures,
The Fraunhofer IESE Series on Software and Systems Engineering,
DOI 10.1007/978-3-319-34177-4

151

http://aim42.org/

(Clements et al. 2001) P. Clements, R. Kazman, L. Bass, “Evaluating Software Architectures”,
Addison Wesley, 2001.

(Clements et al. 2010) P. Clements, D. Garlan et al., “Documenting Software Architectures: Views
and Beyond”. 2nd Edition. Pearson Education, 2010.

(Deissenboeck et al. 2009) F. Deissenboeck, E. Juergens, K. Lochmann, S. Wagner. ”Software
quality models: Purposes, usage scenarios and requirements” ICSE Workshop on Software
Quality, 2009.

(Dobrica & Niemela. 2002) L. Dobrica, E. Niemala, “A survey on software architecture analysis
methods”, IEEE Transactions on Software Engineering, vol 28(7), pp. 638-653, July 2002.

(Ferenc et al. 2014) R. Ferenc, P. Hegedűs, T. Gyimóthy. ”Software Product Quality Models”
Evolving Software Systems. Springer, pages 65-100, 2014.

(Fjelstad & Hamlen 1983) R. K. Fjelstad, W. T. Hamlen, “Application program maintenance
study: report to our respondents”, G. Parikh and N. Zvegintzov, eds. “Tutorial on Software
Maintenance”. Los Angeles, CA: IEEE Computer Society Press, 11 27, 1983.

(Forster et al. 2013) T. Forster, T. Keuler, J. Knodel, M. Becker, “Recovering Component
Dependencies Hidden by Frameworks – Experiences from Analyzing OSGi and Qt” European
Conference on Software Maintenance and Reengineering (CSMR), 2013.

(Garlan & Ockerbloom 1995) D. A. Garlan, J. R. Ockerbloom, „Architectural mismatch: Why
reuse is so hard” IEEE Software, 12(6), 17 26, 1995.

(Godfrey & Lee 2000) M. W. Godfrey, E. H. S. Lee, “Secrets from the monster: Extracting
Mozilla's software architecture”, International Symposium on Constructing software engineer-
ing tools (CoSET), 2000.

(Halstead 1977) M. H. Halstead, “Elements of Software Science”, Ser. Operating, and
Programming Systems. New York: Elsevier, vol. 7, 1977.

(Heitlager et al. 2007) I. Heitlager, T. Kuipers, J. Visser, “A practical model for measuring
maintainability”. International Conference on Quality of Information and Communications
Technology (QUATIC), pages 30–39, 2007.

(ISO 25010, 2011) ISO/IEC 25010, “Systems and software engineering – Systems and software
Quality Requirements and Evaluation (SQuaRE) – System and software quality models”, 2011.

(ISO/IEC 42010, 2011) ISO/IEC 42010, “Systems and software engineering — Architecture
description”, 2011

(Kazman et al. 1994) R. Kazman, L. Bass, M. Webb, G. Abowd, “SAAM: a method for analyzing
the properties of software architectures”, International Conference on Software Engineering
(ICSE), 1994.

(Keuler et al. 2011) T. Keuler, J. Knodel, M. Naab. Fraunhofer ACES: Architecture-Centric
Engineering Solutions. Fraunhofer IESE, IESE-Report, 079.11/E, 2011.

(Keuler et al. 2012) T. Keuler, J. Knodel, M. Naab, D. Rost, “Architecture Engagement Purposes:
Towards a Framework for Planning `̀ Just Enough''-Architecting in Software Engineering”,
WICSA/ECSA, 2012.

(Knodel 2011) J. Knodel, “Sustainable Structures in Software Implementations by Live
Compliance Checking”. Dissertation, Fraunhofer Verlag, 2011.

(Knodel et al. 2009) J. Knodel, S. Duszynski, M. Lindvall, “SAVE: Software Architecture
Visualization and Evaluation” European Conference on Software Maintenance and Reengi-
neering (CSMR), 2009.

(Knodel et al. 2006) J. Knodel, D. Muthig, M. Naab, M. Lindvall, “Static Evaluation of Software
Architectures. Conference on Software Maintenance and Reengineering (CSMR), 2006.

(Knodel et al. 2008) J. Knodel, D. Muthig, U. Haury, G. Meier, “Architecture Compliance
Checking - Experiences from Successful Technology Transfer to Industry”, European
Conference on Software Maintenance and Reengineering (CSMR), 2008.

(Knodel & Popescu 2007) J. Knodel, D. Popescu, “A Comparison of Static Architecture
Compliance Checking Approaches”, Working IEEE/IFIP Conference on Software Architecture
(WICSA), 2007

152 Bibliography

(Knodel & Muthig 2008) J. Knodel, D. Muthig, “A Decade of Reverse Engineering at
Fraunhofer IESE - The Changing Role of Reverse Engineering in Applied Research”, 10th
Workshop Software Reengineering (WSR), 2008.

(Knodel & Naab 2014a) J. Knodel, M. Naab, “Mitigating the Risk of Software Change in Practice
- Retrospective on More Than 50 Architecture Evaluations in Industry (Keynote Paper)”, IEEE
CSMR-18/WCRE-21 Software Evolution Week, 2014.

(Knodel & Naab 2014b) J. Knodel, M. Naab, “Software Architecture Evaluation in Practice:
Retrospective on more than 50 Architecture Evaluations in Industry”, International Working
Conference on Software Architecture (WICSA), 2014.

(Kolb et al. 2006) R. Kolb, I. John, J. Knodel, D. Muthig, U. Haury, G. Meier, “Experiences with
Product Line Development of Embedded Systems at Testo AG”. International Software
Product Line Conference (SPLC), 2006.

(Koschke & Simon 2003) R. Koschke, D. Simon, “Hierarchical Reflexion Models”. Working
Conference on Reverse Engineering (WCRE), 2003.

(Koziolek 2011) H. Koziolek, “Sustainability evaluation of software architectures: A systematic
review”. QoSA, 2011.

(Kruchten 1995) P. Kruchten, “The 4+1 View Model of Architecture,” IEEE Software, vol. 12,
no. 6, pp. 42–50, 1995.

(Kuhn et al. 2013) T. Kuhn, T. Forster, T. Braun, R. Gotzhein, “FERAL - Framework for
simulator coupling on requirements and architecture level”. MEMOCODE, 2013.

(Lehman & Belady 1985) M. M. Lehman, L. A. Belady, “Program evolution: processes of
software change”. Academic Press Professional, Inc, 1985.

(Lilienthal 2015) C. Lilienthal, “Langlebige Software-Architekturen: Technische Schulden
analysieren, begrenzen und abbauen“. dpunkt Verlag, 2015.

(Lindvall et al. 2005) M. Lindvall, I. Rus, F. Shull, M. V. Zelkowitz, P. Donzelli, A. Memon et al.,
“An Evolutionary Testbed for Software Technology Evaluation”, Innovations in Systems and
Software Engineering - a NASA Journal,, 1(1), 3-11, 2005.

(McCabe 1976) T. McCabe, `̀ A Complexity Measure''. IEEE Transaction on Software
Engineering, 308–320, 1976.

(MISRA 2004) MISRA, “Guidelines for the use of the C language in critical systems”, MIRA Ltd.,
2004.

(Mordal-Manet et al. 2009) K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz,
J. Laval, F. Bellingard, P. Vaillergues, “The Squale Model – A Practice-based Industrial
Quality Model”, IEEE International Conference on Software Maintenance (ICSM), 2009.

(Murphy et al. 2001) G. C. Murphy, D. Notkin, K. J. Sullivan, “Software reflexion models:
bridging the gap between design and implementation”, IEEE Transactions on Software
Engineering, 27(4), 364-380, 2001.

(Naab 2012) M. Naab, “Enhancing Architecture Design Methods for Improved Flexibility in
Long-Living Information Systems”. Dissertation, Fraunhofer Verlag, 2012.

(Pollet et al. 2007) D. Pollet, S. Ducasse, L. Poyet, I. Alloui, S. Cimpan, H. Verjus, “Towards A
Process-Oriented Software Architecture Reconstruction Taxonomy”, European Conference on
Software Maintenance and Reengineering (CSMR), 2007.

(Rosik et al. 2008) J. Rosik, A. L. Gear, J. Buckley, M.A. Babar, “An industrial case study of
architecture conformance”, ACM-IEEE international symposium on Empirical Software
Engineering and Measurement (ESEM), 2008.

(Rost et al. 2015) D. Rost, B. Weitzel, M. Naab, T. Lenhart, H. Schmitt, “Distilling Best Practices
for Agile Development from Architecture Methodology – Experiences from Industrial
Application”. ECSA, 2015.

(Roy et al. 2014) C. K. Roy, M. F. Zibran, R. Koschke, “The vision of software clone
management: Past, present, and future (Keynote paper)”, IEEE CSMR-18/WCRE-21 Software
Evolution Week, 2014.

(Rozanski & Woods 2005) N. Rozanski, E. Woods, “Software Systems Architecture : Working
With Stakeholders Using Viewpoints and Perspectives”, Addison-Wesley, 2005

Bibliography 153

(Ryoo et al. 2015) J. Ryoo, R. Kazman, P. Anand, “Architectural Analysis for Security”. IEEE
Security & Privacy 13(6): 52-59, 2015.

(Schulenklopper et al. 2015) J. Schulenklopper, E. Rommes, “Why They Just Don’t Get It:
Communicating Architecture to Business Stakeholders”. SATURN, https://youtu.be/_
PY2ZRgesEc, 2015.

(Stammel 2015) J. Stammel, “Architektur-Basierte Bewertung und Planung von Änderungsan-
fragen”, Dissertation, KIT Scientific Publishing, 2016.

(Starke & Hruschka 2015) G. Starke, P. Hruschka, “arc42: Pragmatische Hilfe für
Software-architekten“, Hanser Verlag, 2015.

(Smit et al. 2011) M. Smit, B. Gergel, H.J. Hoover, E. Stroulia, “Code convention adherence in
evolving software”. IEEE International Conference on Software Maintenance (ICSM), 2011.

(Toth 2015) S. Toth, “Vorgehensmuster für Softwarearchitektur: Kombinierbare Praktiken in
Zeiten von Agile und Lean“, 2. Auflage, Hanser Verlag, 2015.

(Visser et al 2016) J. Visser, P. van Eck, R. van der Leek, S. Rigal, G. Wijnholds, “Building
Maintainable Software – Ten Guidelines for Future-Proof Code”. O’Reilly Media, 2016.

(Wagner et al. 2015) S. Wagner, A. Goeb, L. Heinemann, M. Kläs, C. Lampasona, K. Lochmann,
A. Mayr, R. Plösch, A. Seidl, J. Streit, A. Trendowicz, ”Operationalised product quality
models and assessment: The Quamoco approach.” Information & Software Technology 62:
101-123, 2015.

(Zakrzewski 2015) S. Zakrzewski, “An Overview of Mechanisms for Improving Software
Architecture Understandability”. Bachelor Thesis, Department of Computer Science, Technical
University of Kaiserslautern, http://publica.fraunhofer.de/dokumente/N-382014.html, 2015.

(Zörner 2015) S. Zörner, “Softwarearchitekturen dokumentieren und kommunizieren: Entwürfe,
Entscheidungen und Lösungen nachvollziehbar und wirkungsvoll festhalten“. 2. Auflage,
Hanser Verlag, 2015.

154 Bibliography

https://youtu.be/_PY2ZRgesEc
https://youtu.be/_PY2ZRgesEc
http://publica.fraunhofer.de/dokumente/N-382014.html

	About this Series
	Foreword
	Preface
	Acknowledgments
	Contents
	Table of Questions
	Table of Frequent Mistakes and Lessons Learned

	Part I What Is the Point of Architecture Evaluation?

	1 Why Architecture Evaluation?
	1.1�What Is the Point?
	Q.001. What Is Architecting?
	Q.002. Why Invest in Software Architecture, Which Is Only an Auxiliary Construct in Software Engineering?
	Q.003. What Is the Role of Architecture Evaluation in Software Engineering?
	Q.004. What Are the Benefits of Architecture Evaluation?
	Q.005. Who Should Ask for an Architecture Evaluation?
	Q.006. Who Executes Architecture Evaluations?
	Q.007. What Is the Return on Investment for Architecture Evaluations?

	1.2�What Mistakes Are Frequently Made in Practice?

	2 What Is the Background of Architecture?
	2.1�What Is the Point?
	Q.008. What Causes Complexity in Software Engineering and Architecting?
	Q.009. What Drives Architecting?
	Q.010. How Does Architecting Work?
	Q.011. Why Is Architecting Complicated in Practice?
	Q.012. How Do I Bridge the Gap Between “What & How”?
	Q.013. What Are Context Factors for Architecting and for Evaluating Architectures?

	2.2�What Mistakes Are Frequently Made in Practice?

	3 What Is Architecture Evaluation?
	3.1�What Is the Point?
	Q.014. What Is the Mission of Architecture Evaluation?
	Q.015. What Does Our Architecture Evaluation Method Consist of?
	Q.016. What Determines the Scope of an Architecture Evaluation?
	Q.017. What Are the Basic Confidence Levels in Architecture Evaluation?
	Q.018. What Is the Outcome of an Architecture Evaluation?
	Q.019. How to Interpret the Findings of an Architecture Evaluation?
	Q.020. How to Aggregate the Findings of an Architecture Evaluation?
	Q.021. What Are the Limitations of Architecture Evaluation?
	Q.022. What Is a Good Metaphor for Architecture Evaluation?

	3.2 �What Mistakes Are Frequently Made in Practice?

	4 How to Perform an Architecture Evaluation?
	4.1�What Is the Point?
	Q.023. When Should an Architecture Evaluation Be Conducted?
	Q.024. What Are the Steps to Follow When Performing Architecture Evaluations?
	Q.025. How to Define Evaluation Goals?
	Q.026. How to Shape the Context of an Architecture Evaluation Project?
	Q.027. How to Set up an Architecture Evaluation Project?
	Q.028. Who Should Be Involved in an Architecture Evaluation?
	Q.029. How to Involve Stakeholders in Architecture Evaluation Projects?
	Q.030. Why Manage Stakeholders’ Expectations?
	Q.031. How to Conduct an Architecture Evaluation Project?
	Q.032. How to Interpret the Evaluation Results?
	Q.033. How to Present Evaluation Results?

	4.2�What Mistakes Are Frequently Made in Practice?

	Part II How to Evaluate Architectures Effectively and Efficiently?

	5 How to Perform the Driver Integrity Check (DIC)?
	5.1�What Is the Point?
	Q.034. What Is the DIC (Driver Integrity Check)?
	Q.035. Why Is the DIC Important?
	Q.036. How to Exploit the Results of the DIC?

	5.2�How Can I Do This Effectively and Efficiently?
	Q.037. What Kind of Input Is Required for the DIC?
	Q.038. How to Execute the DIC?
	Q.039. What Kind of Output Is Expected from the DIC?
	Q.040. What Do Example Results of the DIC Look like?
	Q.041. How to Rate the Results of the DIC?
	Q.042. What Are the Confidence Levels in a DIC?
	Q.043. What to Do with the Findings of the DIC?
	Q.044. What Kind of Tool Support Exists for the DIC?
	Q.045. What Are the Scaling Factors for the DIC?

	5.3�What Mistakes Are Frequently Made in Practice?

	6 How to Perform the Solution Adequacy Check (SAC)?
	6.1�What Is the Point?
	Q.046. What Is the SAC (Solution Adequacy Check)?
	Q.047. Why Is the SAC Important?
	Q.048. How to Exploit the Results of the SAC?

	6.2�How Can I Do This Effectively and Efficiently?
	Q.049. What Kind of Input Is Required for the SAC?
	Q.050. How to Execute the SAC?
	Q.051. What Kind of Output Is Expected from the SAC?
	Q.052. What Do Example Results of the SAC Look Like?
	Q.053. How to Rate the Results of the SAC?
	Q.054. What Are the Confidence Levels in an SAC?
	Q.055. What Kind of Tool Support Exists for the SAC?
	Q.056. What Are the Scaling Factors for the SAC?
	Q.057. What Is the Relationship Between the SAC and Architecture Metrics?

	6.3�What Mistakes Are Frequently Made in Practice?

	7 How to Perform the Documentation Quality Check (DQC)?
	7.1�What Is the Point?
	Q.058. What Is the DQC (Documentation Quality Check)?
	Q.059. Why Is the DQC Important?
	Q.060. How to Exploit the Results of the DQC?

	7.2�How Can I Do This Effectively and Efficiently?
	Q.061. What Kind of Input Is Required for the DQC?
	Q.062. How to Execute the DQC?
	Q.063. What Kind of Output Is Expected from the DQC?
	Q.064. What Do Example Results of the DQC Look Like?
	Q.065. How to Rate the Results of the DQC?
	Q.066. What Are the Confidence Levels in a DQC?
	Q.067. What Kind of Tool Support Exists for the DQC?
	Q.068. What Are the Scaling Factors for the DQC?

	7.3�What Mistakes Are Frequently Made in Practice?

	8 How to Perform the Architecture Compliance Check (ACC)?
	8.1�What Is the Point?
	Q.069. What Is the ACC (Architecture Compliance Check)?
	Q.070. Why Is the ACC Important?
	Q.071. How to Exploit the Results of the ACC?

	8.2�How Can I Do This Effectively and Efficiently?
	Q.072. What Kind of Input Is Required for the ACC?
	Q.073. How to Execute the ACC?
	Q.074. What Kind of Output Is Expected from the ACC?
	Q.075. What Do Example Results of the ACC Look Like?
	Q.076. How to Rate the Results of the ACC?
	Q.077. What Are the Confidence Levels in an ACC?
	Q.078. What Kind of Tool Support Exists for the ACC?
	Q.079. What Are the Scaling Factors for the ACC?

	8.3�What Mistakes Are Frequently Made in Practice?

	9 How to Perform the Code Quality Check (CQC)?
	9.1�What Is the Point?
	Q.080. What Is the CQC (Code Quality Check)?
	Q.081. Why Is the CQC Important?
	Q.082. How to Exploit the Results of the CQC?

	9.2�How Can I Do This Effectively and Efficiently?
	Q.083. What Kind of Input Is Required for the CQC?
	Q.084. How to Execute the CQC?
	Q.085. What Kind of Output Is Expected from the CQC?
	Q.086. What Do Example Results of the CQC Look Like?
	Q.087. How to Rate the Results of the CQC?
	Q.088. What Are the Confidence Levels in a CQC?
	Q.089. What Kind of Tool Support Exists for the CQC?
	Q.090. What Are the Scaling Factors for the CQC?

	9.3�What Mistakes Are Frequently Made in Practice?

	Part III How to Apply Architecture Evaluation in Practice?

	10 What Are Example Cases of Architecture Evaluation?
	10.1�What Are Typical Evaluation Questions and Example Cases?
	Q.091. What Is an Example Case of Critical Decision-Making Regarding a System’s Future (Example 1)?
	Q.092. What Is an Example Case for Risk Management (Example 2)?
	Q.093. What Is an Example Case of Making a Decision Between Two Technology Candidates (Example 3)?
	Q.094. What Is an Example Case of Institutionalizing Architecture Compliance Checking at an Organization (Example 4)?

	10.2�What Lessons Can Be Learned from Architecture Evaluations?
	Q.095. What Did We Learn About Architecture During System Construction and Software Change?
	Q.096. What Did We Learn About Maintainability as a Quality Attribute?
	Q.097. What Did We Learn About the Interpretation of the Results from Architecture Evaluation?
	Q.098. What Did We Learn About Risk Mitigation in General?
	Q.099. How Did Our Evaluation Approach Evolve Over Time?

	11 How to Engage Management in Architecture Evaluation?
	11.1�What Is the Point?
	Q.100. Why Does Management Need to Be Engaged in Architecture Evaluation?
	Q.101. How to Convince Management of the Need for Architecture Evaluation?
	Q.102. What Are the Scaling Factors for Effort Spent on Architecture Evaluations?
	Q.103. What Are Typical Figures for Architecture Evaluation Activities?
	Q.104. What Are Typical Findings and Potential Gains of Architecture Evaluation?
	Q.105. Why Turn Architecture Evaluation Results into Actions?
	Q.106. What Are Possible Improvement Actions?
	Q.107. Why Is Architecture Evaluation Worthwhile?

	11.2�What Mistakes Are Frequently Made in Practice?

	12 How to Acquire Architecture Evaluation Skills?
	12.1�What Is the Point?
	Q.108. What Is the Relationship to Architecture Skills in General?
	Q.109. What Sources of Learning Are There?
	Q.110. How Does the Approach of This Book Relate to Other Methods?

	12.2�What Mistakes Are Frequently Made in Practice?

	13 How to Start and Institutionalize Architecture Evaluation?
	13.1�What Is the Point?
	Q.111. Why Is It Often Difficult to Start Architecture Evaluation?
	Q.112. What Opportunities Exist for Starting with Architecture Evaluation?
	Q.113. What Are Best Practices for Starting and Institutionalizing Architecture Evaluation?
	Q.114. How to Make Architecture Evaluation Sustainable Within a Development Organization?
	Q.115. What Are Promising Improvements of the Evaluation Methods?

	13.2�What Mistakes Are Frequently Made in Practice?

	14 What Are the Key Takeaways of Architecture Evaluation?
	Q.116. What Is the Key Message of This Book?
	Q.117. What Is the Essence of Architecture Evaluation?

	About Fraunhofer IESE
	Bibliography

