
Lecture Notes in Computer Science 3775
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jürgen Schönwälder Joan Serrat (Eds.)

Ambient Networks

16th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management, DSOM 2005
Barcelona, Spain, October 24-26, 2005
Proceedings

13

Volume Editors

Jürgen Schönwälder
International University Bremen
P.O. Box 750 561, 28725 Bremen,Germany
E-mail: j.schoenwaelder@iu-bremen.de

Joan Serrat
Universitat Autonòma de Barcelona
Computer Vision Center
Edifici O, 08193 Cerdanyola, Spain
E-mail: joan.serrat@uab.es

Library of Congress Control Number: 2005934373

CR Subject Classification (1998): C.2.4, C.2, D.1.3, D.4.4, K.6, K.4.4

ISSN 0302-9743
ISBN-10 3-540-29388-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29388-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© 2005 IFIP International Federation for Information Processing, Hofstrasse 3, 2361 Laxenburg, Austria
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11568285 06/3142 5 4 3 2 1 0

Preface

This volume of the Lecture Notes in Computer Science series contains all the
papers accepted for presentation at the 16th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management (DSOM 2005), which was
held at the University Politècnica de Catalunya, Barcelona during October 24–
26, 2005.

DSOM 2005 was the sixteenth workshop in a series of annual workshop and
it followed the footsteps of highly successful previous meetings, the most re-
cent of which were held in Davis, USA (DSOM 2004), Heidelberg, Germany
(DSOM 2003), Montreal, Canada (DSOM 2002), Nancy, France (DSOM 2001),
and Austin, USA (DSOM 2000). The goal of the DSOM workshop is to bring
together researchers in the areas of networks, systems, and services management,
from both industry and academia, to discuss recent advances and foster future
growth in this field. In contrast to the larger management symposia, such as IM
(Integrated Management) and NOMS (Network Operations and Management
Symposium), the DSOM workshops are organized as single-track programs in
order to stimulate interaction among participants.

The focus of DSOM 2005 was “Management of Ambient Networks”. Ambient
networks is a new vision to provide accessibility and distributed services through
the dynamic composition of networks. The wide adoption of packet switched net-
working technologies and the fast growing wireless networking infrastructures in
public as well as in private spaces allow systems to choose how to obtain con-
nectivity. Systems may also dynamically form new networks and the devices or
the whole network may be mobile. Furthermore, many ambient networks will
be in private spaces, owned and “operated” by non-technical users (home net-
works). The heterogeneity of the services and resources participating in ambient
networks and the dynamics associated with the composition of networks poses
new management challenges. While some papers presented at the workshop ad-
dress some of these challenges, there was also room for papers addressing general
topics related to the management of distributed systems.

This year, DSOM 2005 was for the first time co-located with several related
events, namely the 8th International Conference on Management of Multime-
dia Networks and Services (MMNS 2005), the 5th IEEE International Work-
shop on IP Operations & Management (IPOM 2005), the 2005 Symposium on
Self-Stabilizing Systems (SSS 2005), and the 1st IEEE/IFIP International Work-
shop on Autonomic Grid Networking and Management (AGNM 2005). All these
events together formed the 1st International Week on Management of Networks
and Services (MANWEEK 2005).

DSOM 2005 attracted a total of 87 papers with authors from 23 different
countries. Every submitted paper received at least three reviews. The authors
were invited to write a rebuttal to the reviews while the members of the Technical

VI Preface

Program Committee discussed the papers online. The final paper selection was
based on the reviews, the author’s feedback and the online discussions within the
Technical Program Committee. Out of the 87 submitted papers, 23 were finally
accepted for presentation in eight paper sessions.

This workshop owes its success to all members of the Technical Program Com-
mittee who did a great job of encouraging their colleagues to submit high-quality
papers. The Technical Program Committee members and all the reviewers also
deserve special thanks for their constructive and detailed reviews, which were
key to assuring the high quality of the workshop. We also thank Lisandro Zam-
benedetti Granville for running the online paper submission system JEMS which
again proved to be invaluable.

Last but not least, we thank all sponsors and patrons who helped to make
DSOM 2005 a success and a very enjoyable experience.

August 2005 Jürgen Schönwälder
Joan Serrat

Organization

Conference Chairs

Jürgen Schönwälder International University Bremen, Germany
Joan Serrat . University Politècnica de Catalunya, Spain

Local Arrangements

Joan Serrat . University Politècnica de Catalunya, Spain

Technical Program Committee

Ehab Al-Shaer .DePaul University, USA
Nevil Brownlee . University of Auckland, New Zealand
Raouf Boutaba .University of Waterloo, Canada
Marcus Brunner . NEC Europe Ltd., Germany
Mark Burgess . Oslo University College, Norway
Omar Cherkaoui University of Quebec in Montreal, Canada
Alexander Clemm . Cisco Systems, USA
Luca Deri . ntop.org, Italy
Gabi Dreo Rodosek University of Federal Armed Forces Munich, Germany
Metin Feridun . IBM Research, Switzerland
Olivier Festor .LORIA – INRIA Lorraine, France
Alex Galis .University College London, UK
Lisandro Z. GranvilleFederal University of Rio Grande do Sul, Brazil
Takeo Hamada .Fujitsu Labs of America, USA
Heinz-Gerd Hegering Leibniz Supercomputing Center, Germany
Joseph HellersteinIBM T.J. Watson Research Center, USA
James Hong .POSTECH, Korea
Cynthia Hood . Illinois Institute of Technology, USA
Gabriel Jakobson .Altusys Corp., USA
Alexander Keller . IBM T.J. Watson Research Center, USA
Yoshiaki Kiriha .NEC, Japan
Lundy Lewis . Southern New Hampshire University, USA
Antonio Liotta . University of Essex, UK
Emil Lupu .Imperial College, London, UK
Hanan Lutfiyya . University of Western Ontario, Canada
Jean-Philippe Martin-Flatin University of Quebec in Montreal, Canada
Jose Luis Marzo . University de Girona, Spain

VIII Organization

Jose Marcos Nogueira Federal University of Minas Gerais, Brazil
George Pavlou .University of Surrey, UK
Aiko Pras .University of Twente, The Netherlands
Jürgen Quittek . NEC Europe Ltd., Germany
J. Christopher Ramming .SRI International; DARPA, USA
Danny Raz . Technion, Israel
Akhil Sahai .HP Laboratories, USA
Adarsh Sethi .University of Delaware, USA
Rolf Stadler .KTH Royal Institute of Technology, Sweden
Burkhard StillerUniversity of Zurich and ETH Zurich, Switzerland
Joe Sventek .University of Glasgow, UK
Radu State .LORIA – INRIA Lorraine, France
Frank Strauß . TU Braunschweig, Germany
John Vicente . Intel, USA
Victor Villagrá .University Politécnica de Madrid, Spain
Vincent Wade .Trinity College Dublin, Ireland
Felix Wu .University of California at Davis, USA
Makoto Yoshida . University of Tokyo, Japan

Additional Reviewers

Constantin Adam KTH Royal Institute of Technology, Sweden
Anatoly Andrianove . DePaul University, USA
Bassam Aoun . University of Waterloo, Canada
Marco Ballette . University of Essex, UK
Eusebi Calle . Universitat de Girona, Spain
Adel El Atawy . DePaul University, USA
Lluis Fabrega . Universitat de Girona, Spain
David Fernandez Universidad Politécnica de Madrid, Spain
Carlos Mauricio Figueiredo Federal University of Minas Gerais, Brazil
Joao Girao . NEC Europe Ltd., Germany
Alberto GonzalezKTH Royal Institute of Technology, Sweden
Hazem Hamed .DePaul University, USA
David Hausheer .ETH Zurich, Switzerland
Vasil Hnatyshin . Rowan University, USA
Roy Ho .University of Surrey, UK
Khaled Ibrahim . DePaul University, USA
Brent Ishibashi .University of Waterloo, Canada
Teodor Jove .Universitat de Girona, Spain
Hiroaki Kamoda . NTT DATA Corporation
Torsten Klie .L3S Research Center, Germany
Noura Limam .University of Waterloo, Canada
Apostolos Malatras .University of Surrey, UK
Cesar A Mantilla .Universitat de Girona, Spain

Organization IX

Shin’ichiro Matsuo . NTT DATA Corporation
Loubna Mekouar .University of Waterloo, Canada
Giorgio Nunzi . NEC Europe Ltd., Germany
Carmelo Ragusa . Southampton University, UK
Helmut Reiser . University of Munich, Germany
Lopa Roychudhari .DePaul University, USA
Nina Saxena . Intel Corporation, USA
Stefan Schmid . NEC Europe Ltd., Germany
Fabricio Silva .Federal University of Minas Gerais, Brazil
Sharad Singhal . HP Laboratories, USA
Siva Sivavakeesar . University of Surrey, UK
Yongning Tang . DePaul University, USA
Hector Trevino . Cisco Systems, USA
Hector Velayos KTH Royal Institute of Technology, Sweden
Pere Vila . Universitat de Girona, Spain
Sonia Waharte . University of Waterloo, Canada
Fetahi Wuhib . KTH Royal Institute of Technology, Sweden
Alvin Yew .University of Essex, UK
Bin Zhang .DePaul University, USA
Joanna Ziembicki . University of Waterloo, Canada

Sponsoring Institutions

Institute of Electrical and Electronics Engineers (IEEE)
IEEE Communications Society (ComSoc)
International Federation for Information Processing (IFIP)
Universitat Politécnica de Catalunya, Spain

Table of Contents

Information Models and Metrics

On the Formalization of the Common Information Model Metaschema
Jorge E. López de Vergara, Vı́ctor A. Villagrá, Julio Berrocal 1

Ontology-Based Integration of Management Behaviour and Information
Definitions Using SWRL and OWL

Antonio Guerrero, Vı́ctor A. Villagrá, Jorge E. López de Vergara,
Julio Berrocal . 12

On the Impact of Management on the Performance of a Managed
System: A JMX-Based Management Case Study

Abdelkader Lahmadi, Laurent Andrey, Olivier Festor 24

Security and Privacy

Improving the Configuration Management of Large Network Security
Systems

João Porto de Albuquerque, Holger Isenberg, Heiko Krumm,
Pauslo Ĺıcio de Geus . 36

An Architecture for Privacy-Aware Inter-domain Identity Management
Wolfgang Hommel . 48

Data on Retention
Ward van Wanrooij, Aiko Pras . 60

Policy-Based Management

SLA Design from a Business Perspective
Jacques Sauvé, Filipe Marques, Antão Moura, Marcus Sampaio,
João Jornada, Eduardo Radziuk . 72

Generic Policy Conflict Handling Using a priori Models
Bernhard Kempter, Vitalian A. Danciu . 84

An Approach to Understanding Policy Based on Autonomy
and Voluntary Cooperation

Mark Burgess . 97

XII Table of Contents

Deployment, Auditing and Tuning

Towards Automated Deployment of Built-to-Order Systems
Akhil Sahai, Calton Pu, Gueyoung Jung, Qinyi Wu, Wenchang Yan,
Galen S. Swint . 109

A Generic Model and Architecture for Automated Auditing
Hasan, Burkhard Stiller . 121

Utilization and SLO-Based Control for Dynamic Sizing of Resource
Partitions

Zhikui Wang, Xiaoyun Zhu, Sharad Singhal . 133

Performance and Quality of Service

A Decentralized Traffic Management Approach for Ambient Networks
Environments

Maŕıa Ángeles Callejo-Rodŕıguez, Jorge Andrés-Colás,
Gerardo Garćıa-de-Blas, Francisco Javier Ramón-Salguero,
José Enŕıquez-Gabeiras . 145

Performability Analysis of an Adaptive-Rate Video-Streaming Service
in End-to-End QoS Scenarios

I. Mart́ın, J. Alins, Mónica Aguilar-Igartua, Jorge Mata-Dı́az 157

Design and Implementation of Performance Policies for SMS Systems
Alberto Gonzalez Prieto, Rolf Stadler . 169

Routing

Detection and Diagnosis of Inter-AS Routing Anomalies by Cooperative
Intelligent Agents

Osamu Akashi, Atsushi Terauchi, Kensuke Fukuda,
Toshio Hirotsu, Mitsuru Maruyama, Toshiharu Sugawara 181

Discovery of BGP MPLS VPNs
Sarit Mukherjee, Tejas Naik, Sampath Rangarajan 193

Policy-Based Adaptive Routing in Autonomous WSNs
Carlos M.S. Figueiredo, Aldri L. dos Santos, Antonio A.F. Loureiro,
José M. Nogueira . 206

Table of Contents XIII

Fault Management

Decentralized Computation of Threshold Crossing Alerts
Fetahi Wuhib, Mads Dam, Rolf Stadler, Alexander Clemm 220

Control Considerations for Scalable Event Processing
Wei Xu, Joseph L. Hellerstein, Bill Kramer, David Patterson 233

Can Dynamic Provisioning and Rejuvenation Systems Coexist in Peace?
Raquel Lopes, Walfredo Cirne, Francisco Brasileiro,
Eduardo Colaço . 245

Distributed Management

A Hierarchical Architecture for a Distributed Management of P2P
Networks and Services

Guillaume Doyen, Emmanuel Nataf, Olivier Festor 257

Enhancements to Policy Distribution for Control Flow and Looping
Nigel Sheridan-Smith, Tim O’Neill, John Leaney, Mark Hunter 269

Author Index . 281

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 1 – 11, 2005.
© IFIP International Federation for Information Processing 2005

On the Formalization of the Common Information Model
Metaschema

Jorge E. López de Vergara¹, Víctor A. Villagrá², and Julio Berrocal²

1 Departamento de Ingeniería Informática, Universidad Autónoma de Madrid,
Escuela Politécnica Superior, Francisco Tomás y Valiente, 11, E 28049 Madrid, Spain

jorge.lopez_vergara@uam.es
2 Departamento de Ingeniería de Sistemas Telemáticos, Universidad Politécnica de Madrid,

ETSI de Telecomunicación, Ciudad Universitaria, s/n, E 28040 Madrid, Spain
{villagra, berrocal}@dit.upm.es

Abstract. Integrated network management frameworks include a common
definition of the managed resources, known as an information model, which is a
key factor to describe the domain to be managed. In this scope, it is important to
understand the semantics each information model provides to allow
interoperation among different integrated management architectures. For this,
ontology languages have recently been proposed, because thanks to their
formalization they can deal with the semantics of information. Nevertheless,
they need to be adapted to meet the management requirements. An alternative
to the use of ontology languages can be the formalization of the management
information languages to cope with the semantics of the information models.
This paper provides a way to formalize one of these management languages: the
Common Information Model metaschema. The formalization is based on the
use of the Object Constraint Language to define in a formal way the set of
natural language rules that describe this metaschema, improving its semantics,
comparing also this solution to those based on ontologies.

1 Introduction

Network and service management has been a field in which traditionally proprietary
solutions from different vendors were usually imposed. In these solutions the
management of those equipments could only be performed with those vendor
products. Then, integrated network management architectures appeared that defined
standard protocols and information models allowing the interoperability between
multiple vendors managers and managed elements.

Due to historical reasons, two different management frameworks have survived the
standardization process: Internet network management framework (also known as
SNMP, Simple Network Management Protocol) and OSI network management
framework (also known as its protocol: CMIP, Common Management Information
Protocol). These frameworks are incompatible, so finally each one has got its own
application field, even though both frameworks have to coexist in some environments,
such as telecommunication companies.

2 J.E. López de Vergara, V.A. Villagrá, and J. Berrocal

Later on, other integrated network management architectures have appeared that
use other technologies for resources management, different to SNMP or CMIP. The
most significant example is the Web-Based Enterprise Management (WBEM) and its
associated Common Information Model, CIM.

Each integrated management architecture deals with its own information, defined
in a different language: same concepts can be defined to model a resource using
incompatible formats, which cannot be directly translated. This issue is a combination
of syntax and semantic problems. One way to deal with the semantics of the
management information is the use of ontologies: they are formal [1], and thus, the
meaning of this information is machine-interpretable.

By applying this knowledge representation technique, the work presented in [2]
provided a way to analyze management information languages, being useful to
identify their semantic expressiveness. One of the results obtained was that the
Common Information Model (CIM) had most of the elements usually contained in
ontology languages. However, it was not a model appropriate to deal with the
semantics of the information because of its lack of formalization: rules about its
structure have been defined in natural language, which is not machine interpretable,
so that they cannot be processed and checked.

Then, ontology languages have been proposed to describe the management
information [3, 4, 5, 6]. In this case, these languages have a formalized semantics.
Still, they have to be adapted to the management scope, as there are some constructs
they do not include.

Another way to deal with the semantics of management information is the
formalization of the CIM metaschema: in this case a management specific
information model is used, and a computer would be able to interpret the information
defined in such way. With respect to the formalization of a management language,
some works have been found [7, 8], but they are related to GDMO (Guidelines for the
Definition of Managed Objects), the language used for OSI Systems Management,
which had less constructions in common with ontology languages than CIM, as stated
in [2]. The formalization of the CIM metaschema also reinforces the information
defined in the CIM schema, which currently includes in its last release more than a
thousand classes that base their relationships on that metaschema.

This paper presents an approach to formalize the CIM metaschema. For this, first
of all, an analysis of this metaschema is given. Then, it is also compared to UML
(Unified Modeling Language) metamodel. Next, a set of rules defined in OCL (Object
Constraint Language) are shown that match natural language rules about CIM
elements, providing a formalization of the metaschema. After that, this approach is
compared with the use of a formal ontology language. Finally, conclusions and future
works are also presented.

2 CIM Metaschema Analysis

CIM [9] is the information model defined by DMTF to be used in the Web Based
Enterprise Management architecture, and has a considerable acceptation in the
industry. This model is object-oriented and much more powerful than SNMP SMI
(Structure of Management Information). However, its complexity is lower than

 On the Formalization of the Common Information Model Metaschema 3

GDMO, as discussed in [2]. With this format, classes can have properties (the name
they use for attributes) and methods. Other facets can be defined, thanks to the
possibility of specifying new qualifiers [9]. This information model can also be
expressed in XML (Extended Markup Language) to exchange the information.

As stated before, CIM has the information model metaschema with a largest
number of elements usually included in ontology languages. It includes these
characteristics, when comparing it to ontology languages [2]:

• Concepts or classes: They are a collection of instances with the same properties
and methods. CIM can define:
− Metaclasses: This item deals with the possibility of defining classes as instances

of other ones. In CIM it is possible to define new statements with qualifiers,
which indirectly makes feasible the redefinition of classes.

− Attributes: Concepts usually have attributes. In CIM they are defined in the
local scope of a class and can be instance attributes, class attributes, and
polymorph attributes.

− Facets: Attributes usually have a set of predefined properties or facets. In CIM
default value, data type constraint, cardinality constraint, and documentation can
be found among other facets such as the access, the key or index, and the
identifier. In addition, CIM can define new facets by using qualifiers.

• Taxonomy: Concepts are usually organized in taxonomies, with generalization/
specialization relationships among them. CIM allows the definition of subclasses
with simple inheritance.

• Relations and functions: Relations represent a type of interaction between
concepts. Functions provide a unique value from a list of valued arguments. CIM
can define both relations among classes and functions for every class, with data
type constraints.

• Instances: They represent elements of a given concept, a relation or an assertion.
CIM allows the definition of class and relation instances.

• Axioms: They model expressions that are always true, and are usually used to
define constraints. CIM does not currently support constraints, although a qualifier
could be defined with this purpose.

Also, CIM schemas are structured in a similar way to ontology libraries [10]. In
this way CIM schemas could be considered an ontology except for their lack of
formalism. On the other hand, CIM uses the Unified Modeling Language (UML)
class diagrams to model the management information, and several works [11, 12]
have identified UML as a valid ontology modeling language.

This set of reasons presents CIM as a good candidate to define management
information from a semantic viewpoint. Nevertheless, there is a problem that has to be
solved to achieve this goal: as stated before, CIM is not formal (the rules about its
metaschema are written in natural language, which cannot be processed and checked
by computers), so it is not valid for the definition of heavyweight ontologies. To solve
this problem it will be necessary the formalization of its metaschema. For this, the
Object Constraint Language (OCL) [13], used in UML to define constraints can be
applied, rewriting CIM metaschema rules, avoiding existing ambiguities that are
caused because they are currently written in natural language. Other rule languages
such as SWRL (Semantic Web Rule Language) [14] would also be useful for this

4 J.E. López de Vergara, V.A. Villagrá, and J. Berrocal

task, but OCL has been chosen because of its integration with UML, and because it is
being studied by the DMTF to specify constraints for management classes and objects
in the CIM schemas.

3 CIM and UML

CIM semantics has been defined in its metamodel or CIM metaschema, depicted in
Fig. 1, which describes the elements existing in this model by representing them in a
UML class diagram and defining a set of rules about these elements in natural
language.

Element Trigger

1..*

0..*

Named Element

+Name: String

Class

Method

Trigger
Qualifier

+Value: Variant

Schema

Association IndicationReference

Property

Characteristics

0..*

Element Schema0..*

2..*

Property Domain

0..*

Method Domain

0..*

Property Override

0..1

0..*

Range

0..*

Method Override 0..*

0..1

SubType Supertye

0..1

0..*

Fig. 1. CIM Metaschema [9]

Given that UML metamodel [15] includes a set of constraints defined in OCL that

formalizes the behavior of its elements, a question arises: if CIM metaschema uses
UML, are its elements as formal as UML? To answer it, a comparison between CIM
and UML is provided, which shows that there are important differences between
them.

The first difference is related to abstraction levels: Table 1 shows a comparison
between CIM and the four-layer metamodel architecture used in UML: CIM meta-
metamodel (the model used to define the CIM metaschema) is directly UML; the
metamodel (the model used to define the models) is the CIM metaschema; the set of
CIM schemas are in the model level; finally, CIM schema class instances are the user
objects.

If the comparison is focused in the metamodel layer, CIM metaschema is also
different to UML metamodel. Fig. 2 shows a subset of the UML metamodel that

 On the Formalization of the Common Information Model Metaschema 5

includes a set of elements which could be equivalent to CIM metaschema, shown in
Fig. 1. Although they share a similar structure there is a different number of elements
in both figures, as there are more specialization degrees in UML.

Table 1. Comparison of UML and CIM layers

Layer UML CIM
Meta-metamodel OMG MOF meta-metamodel UML
Metamodel UML metamodel CIM Metaschema
Model UML models CIM schemas
User objects UML model instances CIM class instances

ModelElement

+name

Namespace GeneralizableElement

+isRoot

+isLeaf

+isAbstract

Feature

+ownerScope

+visibility

Classifier

StructuralFeature

+multiplicity

+final changeability

+targetScope

+ordering

BehavioralFeature

+isQuery

Attribute

+initialValue

Method

+body

Class

+isActive
AssociationClass

Package

Transition

Signal

TaggedValue

+dataValue: String

Association

0..*

0..*

importedElement

0..*

taggedValue

0..*

ownedElement

0..1

namespace

0..*

feature

0..1
owner

0..*

typedFeature

type

0..*

context

0..*

raisedSignal

0..*

referenceTag

0..*

referenceValue

Fig. 2. UML metamodel subset

As a result, UML formalization rules are not directly applicable to CIM
metaschema. New rules have to be defined to achieve this goal, as shown in next
section.

4 CIM Metaschema Formalization

This section presents a formal specification of CIM metamodel. For this, a set of rules
have been defined in OCL, trying to cover the set of rules defined in natural language
in CIM specification [9]. During this process, some incongruities were found among

6 J.E. López de Vergara, V.A. Villagrá, and J. Berrocal

existing rules, which were solved when possible. This formalization does not modify
existing information defined in CIM, but on the other side it allows its validation with
OCL constraints.

To carry on this formalization, all information given in CIM specification has been
taken into account: This specification first describes the CIM metaschema with a
UML class diagram (as shown in Fig. 1). Then, it provides a set of rules written in
natural language (and thus, not formal). Next, it specifies in ABNF (Augmented
Backus-Naur Form) the MOF (Managed Object Format) syntax. Finally, it presents
the CIM metaschema written in MOF format. This specification has been revised by
DMTF [16], but defined rules are mostly similar to prior version, and are still in
natural language. Some conflicts have been found among these sections:

The UML class diagram that models the CIM metaschema is not complete. It does
not include constraints related to each element, neither other elements named in the
natural language rules or in the MOF syntax (e.g. Instance element).

Some natural language rules are incongruous, as there exist different properties for
an element in different rules (e.g. rules about the Qualifier element).

Other rules are redundant with respect to the class diagram (e.g. cardinality
relationships, or element specialization), so that it is not necessary their definition.

Taking into account these conflicts, a formalization has been performed on the
CIM metaschema, as shown in Fig. 3.

The formalized diagram includes these points:

1. All elements named in rules or in MOF syntax have been added, including those
that were not depicted previously (e.g. DataType and Instance elements, and some
associations between elements).

2. All association ends have been named when they start and finish in the same
element, to improve the diagram semantics and to make easier the definition of
OCL rules (e.g. Overriding and Overridden in Property and Method elements, or
Subtype and Supertype in Class element). For the rest of associations the name of
the association end is directly the name of the associated element, except when the
constraint rule uses other name (e.g. Range in the association end of Class with
Reference, or Domain in the aggregation end of Class with Property and Method).

All those rules defined in English that could be formalized have been written in
OCL, defining invariants inside the scope of each element. Other rules about the
utility of each element were not formalized. Following lines present most important
ones:

The rule that says that “A Class must belong to only one schema” has been
specified as:

context Class

 inv: self.Schema->size()=1

The rule about overriding properties “The Domain of the overridden Property must
be a supertype of the Domain of the overriding Property” has been defined as:

context Property

 inv: self.Domain.Supertype->includes(self.Overriden.Domain)

 On the Formalization of the Common Information Model Metaschema 7

A similar rule has been defined for methods: “The Domain of the overridden
Method must be a superclass of the Domain of the overriding Method”.

context Method

 inv: self.Domain.Supertype->

 includes(self.Overridden.Domain)

There are some interesting rules about associations, such as “Associations are
classes with an Association qualifier”, “An Association cannot inherit from a non-
association Class”, or “Any subclass of an Association is an association”.

context Association

 inv: self.Supertype->isEmpty() or

 self.Supertype->forall(st |

 st.oclIsTypeOf(Association))

 inv: self.Qualifier->includes(q |

 q.Name='Association')

 inv: self.Subtype->forall(st |

 st.oclIsTypeOf(Association))

Named Element

+Name: String

Class

Method

+Return Type: Data Type

+Parameter List: Set

Trigger

Qualifier

+Value: Data Type

+Scope: Set

+Flavor: Set

+Default Value: Data Type

Schema

Association Indication

Reference

Property

+Default Value: Data Type

context Class
inv: self.Schema->size()=1

inv: Class.allInstances()->
forall(c1, c2 | c1.Schema.Name.concat(’:’).concat(c1.Name).toUpper()=
c2.Schema.Name.concat(’:’).concat(c2.Name).toUpper()
implies c1=c2)

inv: self.Trigger->
forall(t1, t2 | t1.Name.toUpper()=t2.Name.toUpper()
implies t1=t2)

inv: self.Method->
forall(m1, m2 | m1.Name.toUpper()=m2.Name.toUpper()
implies m1=m2)

inv: self.Property->
forall(p1, p2 | p1.Name.toUpper()=p2.Name.toUpper()
implies p1=p2)

Data Type

context Reference
inv: self.Range=self.Overriden.Range
or self.Overriden.Range.Subtype->includes(self.Range)

inv: self.Domain.oclIsTypeOf(Association)

Instance

context Association
inv: self.Qualifier->includes(q |q.Name=’Association’)

inv: self.Supertype->isEmpty() or
self.Supertype->forall(st | st.oclIsTypeOf(Association))

inv: self.Subtype->forall(st | st.oclIsTypeOf(Association))

inv: self.Reference->
forAll(r1, r2 | r1.Name.toUpper()=r2.Name.toUpper()
implies r1=r2)

context Method
inv: self.Domain.Supertype->includes(self.Overriden.Domain)

inv: self.Trigger->
forall(t1, t2 | t1.Name.toUpper()=t2.Name.toUpper()
implies t1=t2)

context Named Element
inv: self.Qualifier->
forall(q1, q2 | q1.Name.toUpper()=q2.Name.toUpper()
implies q1=q2)

context Property
inv: self.Domain.Supertype
->includes(self.Overriden.Domain)

inv: self.Trigger->
forall(t1, t2 | t1.Name.toUpper()=t2.Name.toUpper()
implies t1=t2)

Characteristics

0..*

Element Schema0..*

2..*

Property Domain

0..*

Property

Domain

Method Domain
Domain

0..*

Method

Element Trigger1..*

0..*

Property Override

0..1Overridden

0..*

Overriding

Range

0..*
Reference

Range

Method Override0..*

Overriding

0..1

Overridden

QualifierType Subtype Supetype
0..1

Supertype

0..* Subtype
0..*

0..*

PropertyType

Fig. 3. CIM Metamodel formalized with OCL

8 J.E. López de Vergara, V.A. Villagrá, and J. Berrocal

For references, rules like “The Class referenced by the Range association of an
overriding Reference must be the same as, or a subtype of, the Class referenced by the
Range associations of the Reference being overridden” or “The Domain of a
Reference must be an Association” have been defined as follows:

context Reference

 inv: self.Range=

 self.Overridden.Range or

 self.Overriden.Range.Subtype->

 includes(self.Range)

 inv: self.Domain.oclIsTypeOf(Association)

There are some rules about qualifiers, but they reference elements that are not in
the CIM metaschema class diagram, such as “A Qualifier Type (not shown in Fig. 1)
is a Named Element and must be used to supply a type for a Qualifier (that is, a
Qualifier must have a Qualifier Type). A Qualifier Type can be used to type zero or
more Qualifiers” or “A Qualifier is a Named Element and has a Name, a Type
(intrinsic data type), a Value of this type, a Scope, a Flavor and a default Value. The
type of the Qualifier Value must agree with the type of the Qualifier Type”. They
could be defined as:

context QualifierType

 inv: self.oclIsKindOf(NamedElement)

 inv: self.Qualifier->size()>=0

context Qualifier

 inv: self.QualifierType->size()=1

 inv: self.oclIsKindOf(NamedElement)

 inv: self.attributes()->

 includesAll(Set { 'Name', 'Type', 'Value', 'Scope',

'Flavor', 'Default-Value' })

 inv:

 self.Value.oclIsTypeOf(self.Type)

Other rules have been defined mainly to constraint that element names are case
insensitive.

Redundant rules about multiplicity or specialization have not been included,
because metaclasses associations already define them graphically in the diagram.

This formalization allows a compiler to check the defined information, by
automatically processing the UML diagram with OCL rules, with just one possible
interpretation, avoiding rules with multiple meanings.

5 Comparison with an Ontology Language

The approach given in this paper can be compared to other one presented in [4],
where the use of the Web Ontology Language (OWL) [17] has been proposed to
define management information. In this other work, the elements of this language

 On the Formalization of the Common Information Model Metaschema 9

have been studied, mapping them with management language constructions, and
adding those facets not included in OWL that are common in management languages.

Both approaches could be valid depending on the application scope to enhance the
semantic expressiveness of the information, as they provide different advantages and
drawbacks, which can be taken into account when choosing the language more
suitable for each case:

• CIM formalized version allows a smooth transition from the network management
domain to the ontology domain. Moreover, with this approach it is not necessary to
translate every CIM schema to other language, as they can be directly validated
with defined OCL rules because the metamodel has been formalized. OCL can also
be used in CIM to define constraints about the behavior of classes, methods and
properties. Other UML artifacts different from OCL have also been used to
describe behavior in [18]. Nevertheless, currently there are not tools to work with
this information model from a semantic viewpoint. Another drawback is that this
solution is CIM-centric: other management information defined in other language
(for instance, SNMP MIBs) cannot directly profit from this approach.

• An ontology language such as OWL provides all the expressiveness of this kind of
languages, because they are formalized. Also, there are many tools developed to
use and validate it. In addition, other rule languages such as the Semantic Web
Rule Language (SWRL) [14] can be used to define constraints about the behavior
of that information. However, its main drawback is that all already defined
management information has to be translated to OWL. Moreover, OWL does not
allow the definition of class methods, so that part of the information can get lost.

These advantages and drawbacks can be compared in Table 2. As a conclusion, it
can be said that CIM is better for current management tools, but OWL is better if
ontology engines are used that analyze information to infer knowledge. The final
decision can be based on the tools that are going to be used to handle the management
information.

Table 2. Comparison of formalized CIM metaschema and OWL approaches

 Advantages Drawbacks
Formalized
CIM
metaschema

• Smooth transition to the use
of ontologies

• CIM schemas are kept the
same

• OCL can also be used to
define constraints for CIM
schemas

• Semantic tools have to be
developed

• It only deals with CIM
information

OWL • Already formalized
• Many developed tools
• Definition of constraints with

SWRL

• All management information
has to be translated to OWL

• Class methods cannot be
defined in OWL

10 J.E. López de Vergara, V.A. Villagrá, and J. Berrocal

6 Conclusions

This paper has presented a proposal to formalize the CIM metaschema. For this, OCL
has been used, rewriting the rules defined in natural language. With this, a compiler
can load and interpret these rules to automatically check the semantics of defined
information. This approach has also been compared with the use of an ontology
language, obtaining that both solutions can be valid, providing each one some
advantages and drawbacks.

There are some open issues. For instance, this formalization has been applied to
CIM metaschema qualifiers, but not to qualifiers instances. This can be a problem,
because these elements are used to extend the metaschema. However, in ontology
languages every element is formalized. Thus, it would be necessary to carry out a
formalization for every qualifier instance as performed above, specifying which
invariants must be true for every element that have such qualifiers. This task is more
complicated, because due to the qualifiers nature, metamodel and model levels get
mixed.

Another future task is related to the measurement units. Currently, CIM only
defines a list of values for the Units qualifier, but not their relationship. If they are
formalized a property can be directly translated from a measurement unit to another.
This formalization is useful if different classes are going to be compared. Then, for
instance, two classes that measure the throughput of a channel can be mapped, even if
one is in bits per second and the other in Megabits per second. Existing ontology
libraries such as Ontolingua STANDARD-UNITS or DAML GNU Units can be
leveraged with this purpose.

Acknowledgements

This work has been partially funded by the Spanish Ministry of Education and
Science under the project GESEMAN (TIC2002-00934).

References

1. R. Studer, V.R. Benjamins, and D. Fensel: Knowledge Engineering: Principles and
Methods. Data & Knowledge Engineering. Vol. 25 (1998) 161-197.

2. J. E. López de Vergara, V. A. Villagrá, J. I. Asensio, J. Berrocal, Ontologies: Giving
Semantics to Network Management Models. IEEE Network, Vol. 17, No. 3 (2003) 15-21.

3. E. Lavinal, T. Desprats, Y. Raynaud: A Conceptual Framework for Building CIM-Based
Ontologies. In: Proc. of the Eighth IFIP/IEEE International Symposium on Integrated
Network Management (IM’2003), Colorado Springs, Colorado, U.S.A., (2003)

4. J. E. López de Vergara, V. A. Villagrá, J. Berrocal: Applying the Web Ontology Language
to management information definitions. IEEE Communications Magazine, Vol. 42, Issue 7
(2004) 68-74.

5. G. Lanfranchi, P. Della Peruta, A. Perrone, D. Calvanese: Towards a new landscape of
systems management in an autonomic computing environment. IBM Systems Journal, Vol.
42, No. 1 (2003) 119-128

 On the Formalization of the Common Information Model Metaschema 11

6. S. Quirolgico, P. Assis, A. Westerinen, M. Baskey, E. Stokes: Toward a Formal Common
Information Model Ontology. Lecture Notes in Computer Science, Vol. 3307, Springer
Verlag (2004) 11-21

7. S. Bapat: Towards Richer Relationship Modeling Semantics. IEEE Journal on Selected
Areas in Communications, Vol. 11, No. 9 (1993) 1373-1384

8. T. Zhang, PanosGavriil Tsigaridas: A Knowledge-based Model for Network Service
Management. In Proceedings of the First IEEE Symposium Global Data Networking
(December 1993)

9. Distributed Management Task Force, Inc.: Common Information Model Specification,
Version 2.2. DMTF Standard DSP0004 (June 1999)

10. J. E. López de Vergara, V. A. Villagrá, J. Berrocal, J. I. Asensio, R. Pignaton: Semantic
Management: Application of Ontologies for the Integration of Management Information
Models. In: Proc. of the Eighth IFIP/IEEE International Symposium on Integrated
Network Management (IM’2003), Colorado Springs, Colorado, U.S.A. (2003)

11. S. Cranefield, M. Purvis: UML as an Ontology Modelling Language. In Proc. of the
Workshop on Intelligent Information Integration, Sixteenth International Joint Conference
on Artificial Intelligence (IJCAI-99), Stockholm, Sweden (1999)

12. P. Kogut, S. Cranefield, L. Hart, K. Baclawski, M. Kokar, J. Smith: UML for Ontology
Development. Knowledge Engineering Review Journal, Special Issue on Ontologies in
Agent Systems, Vol. 17, Issue 1 (2002) 61-64

13. Object Management Group: Object Constraint Language Specification. OMG document
formal/03-03-13 (March 2003)

14. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission
(21 May 2004)

15. Object Management Group: Unified Modeling Language (UML), version 1.5. OMG
document formal/03-03-01 (March 2003)

16. Distributed Management Task Force, Inc.: Common Information Model (CIM)
Infrastructure Specification, Version 2.3 Preliminary. DMTF Standard DSP0004 (October
2004)

17. D. L. McGuinness, F. van Harmelen: OWL Web Ontology Language Overview. W3C
Recommendation (10 February 2004)

18. M. Sibilla, A. Barros de Sales, J. Broisin, P. Vidal, F. Jocteur-Monrozier: Behaviour
modelling: a contribution to CIM. DMTF Academic Alliance Paper (2004)

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 12 – 23, 2005.
© IFIP International Federation for Information Processing 2005

Ontology-Based Integration of Management Behaviour
and Information Definitions Using SWRL and OWL

Antonio Guerrero¹, Víctor A. Villagrá¹, Jorge E. López de Vergara²,
and Julio Berrocal¹

1 Dpto. de Ingeniería de Sistemas Telemáticos, Universidad Politécnica de Madrid
2 Dpto. de Ingeniería Informática, Universidad Autónoma de Madrid

antonio.guerrerocasteleiro@telefonica.es, villagra@dit.upm.es,
jorge.lopez_vergara@uam.es, berrocal@dit.upm.es

Abstract. Current network management architectures are using different
models to define management information objects. These definitions actually
also include, in a non-formal way, the definition of some behaviour information
that a manager should accomplish related to the managed objects. So, a
manager is not able to make an automatic processing of this behaviour
information. Prior research work proposed the use of formal ontology
languages, such as OWL, as a way to make a semantic integration of different
management information definitions. This paper goes further proposing a
formal definition of the different management behaviour specifications
integrated with the management information definitions. Thus, usual behaviour
definitions included implicitly in the management information definitions and
explicitly in policy definitions can be expressed formally, and included with the
information definitions. This paper focuses on the definition of behaviour rules
in management information with SWRL, a rule language defined to
complement OWL functionality.

1 Introduction

The heterogeneity of the resources found in telecommunications networks and
services has led to the definition of several integrated management architectures,
which are intended to manage a heterogeneous environment by using a common
mechanism for accessing the management information. Initially, two frameworks
emerged: the OSI management architecture and the Internet management architecture.
While the Internet management architecture has gained widespread acceptance, OSI
management is still used in some cases, especially in telecommunications networks
managed with the TMN architecture.

In addition, by the end of the 1990’s, a new framework, which makes use of the
web protocols, came onto scene with the same goal of achieving integrated
management: the WBEM architecture (Web Based Enterprise Management).
Nevertheless, this new architecture did not exclude the previous ones, including some
interoperability with different integrated network management architectures.

In this environment with multiple integrated management frameworks, the initial
problem that those architectures tried to solve arises once again, since one manager

 Ontology-Based Integration of Management Behaviour 13

has to interact with different resources using several different mechanisms. Even so,
the manager cannot achieve a truly integrated management of the environment: since
it cannot know about the semantics of the managed resources defined in the different
models, it cannot apply common policies to manage those resources, which are in fact
the same. Policies should be generic and independent of the model in which the
resources are defined.

In order to solve this problem, a proposal of the so-called Ontology-based
Semantic Management is included in [1]. This semantic management allows a
manager working with a unique information model, which integrates all the different
definitions of the managed resources, taking into account the semantic aspects of
those definitions (i.e. their meaning). Another advantage of this approach was also
pointed out in that proposal: it allows the integration, in that same unified
management information model, of the definition of behavioural characteristics of the
manager and of the resources. These behavioural aspects are usually found as
comments inside the definitions, or explicitly declared outside of the definitions of the
managed resources. With this approach, all the definitions (information and
behaviour) are integrated, so they can be jointly processed automatically.

This paper proposes a starting point for this integration: beginning with the unified
information model, defined in an ontology language such as OWL, it proposes
inclusion in this model of the behaviour definitions, expressing them by means of the
Semantic Web Rule Language, SWRL. For this purpose, next section shows the
semantic management architecture and the SWRL language. This language will allow
definition of the behaviour as part of the definitions of the management information,
as will be shown. Also, the different types of behaviour are explained: implicit
restrictions, explicit behaviour of the manager, and behaviour of the managed
elements. Example definitions in SWRL are included for each one of these types.
Lastly, the most relevant concepts are summarized.

2 Semantic Management

The global architecture proposed in [2] is based on a manager that works and reasons
with a unique information management model, represented by means of ontologies.
This system manages elements from different domains (SNMP, CIM, etc.) from a
common and neutral perspective. Fig. 1 shows the proposed architecture of the
semantic manager.

The main goal is the usage by the manager of only one information model, but, in
many cases, the different network resources are defined in different management
domains (SNMP MIBs, CIM schemas, etc.), so they have to be accessed by using the
predefined protocols for those domains. Therefore, it is necessary to translate and
integrate those definitions into one unified specification, taking into account the
semantics of the initial definitions. In other words, the same resource, defined twice in
two different models, will have one single representation in the unified model, and
will have two translations to the original models. So, the goal is not just to make a
syntactic translation of the definitions, but also about their integration from a semantic
viewpoint.

14 A. Guerrero et al.

The resulting mappings from the original definitions to the ontology specification
are then used by the so-called “providers” or gateways in Fig. 1. They are responsible
for translating the information of the network elements in the unified model back into
the information in their original management models.

Using an ontology language for defining the management information has
additional advantages, such as the possibility to use existing tools in order to work
and to reason with the ontologies (for example inference engines used in artificial
intelligence).

Another advantage, already mentioned in the previous section, is that a
management ontology allows the integration of rules defining the expected behaviour
of the management information. In this way, the behaviour definitions that are usually
implicitly included in the management information definitions (declared in natural
language, or tacitly supposed), can now be formally expressed as an integrated part of
the management information definitions, and in their same language (ontology
language). This approach implies that the behaviour definitions are now formally
expressed in the same definition language, and that they can be interpreted and
validated or enforced by the same semantic manager, in order to work and reason with
them. All definitions, information management (MIBs) and behaviour rules (policies),
are now integrated in the same network management ontology. One of the main
advantages of this approach is that it will permit generic managers to behave
depending on definitions, instead of having embedded encoded behaviour.

OWL [3] is proposed [4] as the ontology language for the definitions, a general
purpose ontology language defined for the Semantic Web that contains all the
necessary constructors to formally describe most of the information management
definitions: classes and properties, with hierarchies, and range and domain
restrictions. SWRL [5] extends the set of OWL axioms in order to include conditional
rules (Horn clauses), of the form if… then …

Axioms and rules can be used in this management framework in order to:

1. Further constrain or define more precisely the behaviour of the OWL management
information. This will guarantee the correct use and implementation of the
management information.

Each provider or gateway
loads its mapping
ontology (M.O.) for its
information model

Written in an ontology
language.
Generated by merging
different management
specifications.
Contains behaviour
rules

Manager

CORBA
gateway

CMIP
gateway

SNMP
gateway

DMI
gateway

CORBA
agents

CMIP
agents

SNMP
agents

DMI
agents

Common
model

IIOP CMIP SNMP IPC/RPC

M.O. M.O. M.O. M.O.

It has an inference engine
to check constraints

Fig. 1. Proposed architecture for the semantic manager [2]

 Ontology-Based Integration of Management Behaviour 15

2. Formally define the behaviour of the manager. This allows the declaration of the
manager actions when certain conditions are met on the managed elements.

3. Formally define the behaviour of the managed objects. This allows the definition
of what the managed resources should do upon certain events or conditions.

The purpose of this paper is to integrate the definition of the management
information (expressed in OWL) with the definition of the management behaviour
(expressed in SWRL). The next section explains briefly the SWRL language, used to
define rules for OWL ontologies.

3 SWRL: Definition of Rules for OWL Ontologies

An OWL ontology contains a sequence of axioms and facts. It includes several types
of axiom, such as subclass axioms, equivalent Class axioms and property constraints.
SWRL proposes to extend these with rule axioms.

A rule axiom consists of an antecedent (body) and a consequent (head), each of
which consists of a (possibly empty) set of atoms.

In the “human-readable” syntax of SWRL, a rule has the form:

antecedent ⇒ consequent

Informally, a rule may be read as meaning that if the antecedent holds (is "true"),
then the consequent must also hold. Using this syntax, a rule asserting that the
composition of parent and brother properties implies the uncle property would be
written:

Person(?x) ∧ isFather(?x,?y) ∧ isBrother(?y,?z) ⇒
isUncle(?x,?z)

An SWRL rule has therefore the form of an implication relationship between the
head and the body. The SWRL specification [5] provides an abstract syntax that
extends the OWL abstract syntax described in [6] to include this relationship in the
ontology language. The XML labels used for defining rules include:

• <ruleml:imp>: it is the element that relates the body of the rule with the head (the
label of the relationship).

• <ruleml:_body>: it is the element that contains the atoms that form body of the
rule.

• <ruleml:_head>: it is the element that contains the atoms that form the head of the
rule.

• <ruleml:var>: it allows the definition of the variables used in the evaluation of
rules.

• <swrlx:individualPropertyAtom>: it allows the definition of atoms that refer to
specific properties. It is also possible to define atoms that refer to classes, data
ranges, valued properties, or typed functions such as mathematical, dates and
strings.

As is shown, many of these labels are not defined inside the SWRL namespace, but
in RuleML’s [7], a rule language previously defined that has been taken as the base
for SWRL definition. SWRL mainly brings the definition of atoms and the integration
of these rules into an ontology written in OWL.

16 A. Guerrero et al.

4 Definition of Management Behaviour in OWL+SWRL

4.1 Types of Management Behaviour

In order to define management behaviour let us first classify which types of behaviour
can exist. Concretely, three types of management behaviour have been identified:

1. Implicit constraints and rules about the behaviour of the modelled objects in the
MIBs and CIM schemas

2. Explicit behaviour of the manager, in the traditional manager-agents architecture,
which defines how the manager should behave upon analysing the information
obtained from the agents

3. Explicit defined policies to specify the dynamic behaviour or dynamic
configuration of the managed resources (Policy-Based Management [8])

In this semantic management framework, policies can be defined in the same
management language – OWL+SWRL – in which the objects of the management
information base (MIB) are defined, with the advantage of working with a unified model.

Going back to the management architecture proposed in Fig. 1, the constraints,
rules, and policy definitions would be stored in the rule information base – part of the
common model, whose purpose is verifying the integrity of the information, and
automating the control of the managed elements.

The following sections focus on each of the identified behaviour types.

4.2 Implicit Restrictions on the Management Information

This kind of rules refers to restrictions in the data type, cardinality, or access. They
are typical restrictions upon the properties and classes of the managed objects. In this
case SWRL rules complement the existing mechanisms in OWL to form the
management information definitions, in the sense that they allow expressing more
complex restrictions: values that depend on the values of other variables, relationships
among objects, state-machine behaviour of the values, etc.

In a general way, SWRL allows the representation of behaviour restrictions that
can be expressed in a natural language as conditional clauses (if… then …). This
includes, for example, values that depend on other values, state-machine behaviour,
temporal behaviour, or complex types such as composed functions. The following
subsections present some examples of these kinds of behaviour found in SNMP
MIBs, and how SWRL is used to formally define these restrictions. In many cases, the
definition of the restrictions will require the creation of new classes and properties
that would extend the management ontology.

Example 1
This first example shows how to specify in SWRL that the value of one variable
depends on the value of another variable. It is based on a definition from SNMP’s
MIB II, which restricts the value of the mask for route entries, in the routing table:

ipRouteMask OBJECT-TYPE
 SYNTAX IpAddress
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION

 Ontology-Based Integration of Management Behaviour 17

 "… If the value of the ipRouteDest is 0.0.0.0 (a
default route), then the mask value is also 0.0.0.0 …"
 ::= { ipRouteEntry 11 }

This implicit restriction is expressed in natural language in the DESCRIPTION
clause, but it is not formally defined in SMIv2, so it cannot be automatically
implemented by a manager when the MIB is compiled.

If theMIB II has been mapped and integrated in the management information base
in OWL, the SWRL rule to define this example restriction would be the following:

ipRouteEntry(IR?) ∧ swrlb:equal (ipRouteDest(IR?), "0.0.0.0")
⇒ swrlb:equal(ipRouteMask(IR?), "0.0.0.0")

where ipRouteDest and ipRouteMask are properties of the class ipRouteEntry.
It is interesting to notice that this kind of restriction, hereby expressed in a simple

manner, is not currently supported by existing management definition languages. In
fact, the IETF’s SMIng Working Group proposed the following objective for the next
generation of the SMI definition language, stated in [9]: “SMIng should provide
mechanisms to formally specify constraints between values of multiple attributes”, but
its implementation was not accomplished: “This objective as is has been rejected as
too general, and therefore virtually impossible to implement”.

On the other hand, further reinforcing the idea under study, it so happens that OWL
without SWRL can neither express this constraint: a restriction on a property
(owl:restriction clause) cannot be made to depend on the value of another property of
the same object.

Example 2
This second example, also obtained from SNMP’s MIB II, can be used to show how
to define state-machine behaviour with SWRL. It is based on the column of the TCP
connection table which shows the state of each connection.

tcpConnState OBJECT-TYPE
 SYNTAX INTEGER {
 closed(1),
 listen(2),
 synSent(3),
 synReceived(4),
 established(5),
 finWait1(6),
 finWait2(7),
 closeWait(8),
 lastAck(9),
 closing(10),
 timeWait(11),
 deleteTCB(12)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION “…”
::= { tcpConnEntry 1 }

ESTABLISHED

CLOSED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2 CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

CLOSED

Active open / SYNclose
Passive open close

SYN / SYN+ACK Send / SYN

SYN / SYN+ACK

ACK SYN+ACK / SYN

Close / FIN

Close / FIN

FIN / ACK

ACK + FIN / ACK
ACK

FIN / ACK

ACK
Timeout after two segment
lifetimes

Close / FIN

ACK

FIN / ACK

Fig. 2. TCP state machine and definition

18 A. Guerrero et al.

Since this parameter has a read/write access, this example is intended to define the
state-machine diagram shown also in Fig. 2, so that a manager could check that all
connections comply with the state machine.

For this purpose, in the management ontology we define a new class of objects
called tcpConnEntry, with a property that indicates the actual state of the connection,
tcpConnEntry, and auxiliary properties tcpConnPreviousState and tcpConnNextState,
which indicate the list of possible before and after states. The following is an example
rule that could be used to define the state-machine:

tcpConnEntry(cx?) ∧ swrlb:equal(tcpConnState(cx?),
"fin_wait_1") ⇒ swrlb:member(tcpConnNextState(cx?),
nextStatesForFin_Wait_1_List)

where nextStatesForFin_Wait_1_List would be a list (rdf:list) with the values
“closing”, “time_wait” and “fin_wait_2”.

Example 3
The third example is a case of defining a temporal constraint, also described in natural
language in SNMP MIB II. It is a constraint upon the value of the column of the
interfaces table which indicates the latest time at which the interface changed. The
constraint definition for the property ifLastChange that can be represented in SWRL
is marked in bold letters:

ifLastChange OBJECT-TYPE
 SYNTAX TimeTicks
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The value of sysUpTime at the time the interface
entered its current operational state. If the current state
was entered prior to the last re-initialization of the local
network management subsystem, then this object contains a
zero value."
 ::= { ifEntry 9 }

To implement this constraint it is also needed to use auxiliary classes and
properties. In this case, the temporal comparison can be made making use of the
property sysUpTime of the class system.

system(?x) ∧ ifEntry(?y) ∧ isInterfaceOf(?y, ?x) ⇒
swrlb:lessThan(ifLastChange(y?), sysUpTime(?x))

4.3 Explicit Behaviour of the Manager

The behaviour of the manager when certain conditions are met on the network or the
managed systems, can also be specified by means of conditional rules if condition
then action, which become the following in SWRL

condition ⇒ action
or, making use of the broader definition of SWRL:
condition set ⇒ action set

Actions
As a management information definition language, OWL lacks the explicit ability to
define operations or methods on the managed objects that are typical in other
management information languages such as CIM or GDMO. In order to solve this

 Ontology-Based Integration of Management Behaviour 19

problem, actions in OWL can be represented by means of the OWL-Services
ontology, OWL-S [10], which allows an easy integration with the rest of definitions.
One of the classes that this ontology defines, among many others, is the Process class
that can be used for this purpose. In this way, “executing an action” can be interpreted
as “calling a service” that executes that action, and so it is possible to define that
action as an OWL-S Process, and then instantiate an object of the class Perform, with
such process as its argument:

Perform(MyProcess)

The class Perform is an auxiliary class used in OWL-S to represent the execution
of atomic processes inside a composite process, e.g. Perform(Reset), Perform
(SendAlarm(…)), Perform(SetIPRoute(…)), etc.

These processes can be either newly defined actions or the result of integrating
existing operations or methods of the merged information models (CIM methods,
SNMP “set” operations, etc.)

In the proposed architecture in Fig. 1, which follows the traditional manager-agent
paradigm, the manager would invoke the service calls that the providers would offer,
and these providers would in turn execute the requested operations upon the managed
elements, in their native languages and protocols.

The following example shows this type of definition of the behaviour of the
manager upon the existence of certain conditions on the network:

Example 4
This example makes use of the class CIM_SystemDevice from the CIM schema, with
two instances that are port devices. With this SWRL rule, the manager will activate
the second port if the first port is not working, i.e.:

If LogicalPort #1 is “Operatively Down”, then enable
LogicalPort #2

In SWRL:

CIM_SystemDevice(LP1?) ∧ swrlb:equal(deviceName(LP1?),
“Lport1”) ∧ CIM_SystemDevice(LP2?) ∧
swrlb:equal(deviceName(LP2?), “Lport2”) ∧
swrlb:equal(StatusInfo(LP1?), "OPERATIVELY_DOWN") ⇒
Perform(SetAdminAvailability(LP2?, "ENABLE"))

In this case, the rule is applied upon certain instances of a class, not upon all
elements of the class.

In the same way as it occurred with implicit restrictions, this type of explicit
definitions could neither be expressed in OWL without SWRL, as it is a restriction
upon the values of a property. Also, there is a clear difference in this example with the
example #1 in the previous section, because in this case the related values are the
values of the same property, from two different objects of the same class, instead of
values from different properties of the same object.

4.4 Explicit Behaviour of the Managed Elements: Application to Policy-Based
Management

If the rules being defined in the information model are not rules for the behaviour of
the manager, but rules that define the behaviour of the managed elements, then we

20 A. Guerrero et al.

need an architecture that supports the distribution of the rules or policies to those
managed elements. This type of architectures is defined in the PBM framework
(Policy-Based Management) or policy-based networking (PBN). This work references
the following elements of the PBM architecture, proposed by the IETF/DMTF [8]:

• PEP Devices (Policy Enforcement Point): those elements that can apply or execute
the policies.

• PDP Devices (Policy Decision Point): they act as proxy between the PEPs and the
policy repository, being responsible for interpreting the policies from the
repository and indicating the corresponding actions to the PEPs.

• Policy Repository: it stores the defined policies that will be distributed to the PDPs.

A policy-based architecture presents the following key characteristics:

• Centralization: definition of behaviour is made in a single point and can be
massively distributed throughout the network, instead of being defined and applied
individually for each element

• Abstraction Levels: policies can be defined at different level: high level policies
(i.e. business rules), intermediate level (i.e. service level rules), and lower level
(i.e. policies applied by the network elements). It might be necessary to translate
policies among levels, in order to convert high level rules into the lower level
policies that will be applied by the network elements. For this task it will be useful
to define models (business models, service models, network models). Existing
policy definition languages can be oriented to policy definition at determinate
levels. For example, PONDER and RBAC would be classified as high-level policy
definition languages, since the information model is closer to natural language and
human thinking. On the other hand, PCIM and COPS-PR PIB allow the definition
of lower level policies, closer to the management languages used by the network
elements.

In this section, we will attempt a first approach to the possibility of using
ontologies in OWL+SWRL as a definition language for those kinds of high and low
level policies, through the following examples.

Example 5: High Level Policy in PONDER
This example matches in SWRL a policy previously defined in PONDER, extracted
from [11]:

type rel ReportingT (ProjectManagerT pm, SecretaryT secr) {
 inst oblig reportWeekly {
 on timer.day ("monday") ;
 subject secr ;
 target pm ;
 do mailReport() ;
 }
 // . . . other policies
}

The obligation policy reportWeekly specifies that the subject of the SecretaryT role
must mail a report to the subject of the ProjectManagerT role every Monday. In
SWRL it could be expressed like this

 Ontology-Based Integration of Management Behaviour 21

ProjectManagerT(pm?) ∧ SecretaryT(secr?) ∧ Timerday(t?) ∧
swrlb:equal (t?, "monday") ⇒ Perform(mailReport(secr?, pm?))

In a similar way, other kinds of policies could be mapped to SWRL: authorization
policies, obligation policies, filtering policies, etc.

Example 6: Low Level Policy
Next, an SWRL definition will be shown of a low level policy that could be executed
by a network element.

The following rule would set to “0100” the ToS (Type Of Service) field of each IP
packet whose destination address belonged to the specified address range.

IPpacket(ippacket?) ∧ InsideIPRange(DestAddress(ippacket?),
"192.168.1.0 – 192.168.1.255") ⇒
Perform(SetTOSlabel(ippacket?, "0100"))

While this example demonstrates the possibility of defining these kinds of lower
level policies, it might be too simple and not very useful in a real case. A better
approach to integrate these kind of policies into the unified management ontology
would be to attempt the mapping of the existing PIBs (Policy Information Base), or
mapping the existing policy definition languages that the network elements or PDPs
understand. Two kinds of necessary mappings can be identified: on one side, the
mapping of the conditions that trigger the policies, or condition sets; on the other side,
the mapping of the operations to be performed, or action sets. If the same kinds of
policy are defined in different definition languages, the integration approach could
use the M&M (Merge and Map) method [2], proposed for the integration of
management information definitions coming from different management models to a
common ontology. The application of this method would in turn allow a reverse
translation, from the policies represented in the OWL+SWRL ontology, to the native
management languages that the PDPs would understand.

At this point it is necessary to notice that the policies represented in the examples
hereby included (such as “<condition set> then do <action list>”) are policies
without events. There are no explicit events to trigger the evaluation of the policies,
but the agents must do this task whenever there is an implicit event, as would be
starting a new session, or periodically. This would be the case of the PCIM definition
language, but not of COPS and PONDER, since these languages allow the definition
of policies with this kind of event-condition-action.

Policy-based management also deals with translation of policies among different
abstraction levels, so policies defined at higher levels (i.e. business level and service level)
can be translated down to lower level policies (i.e. network and system levels). In the
semantic management approach, policy definitions at all levels would be defined in the
same definition language, OWL+SWRL, which could facilitate the process of translating
among levels. Nevertheless, this is currently out of the scope of the present work.

5 Conclusions

As it has been shown in previous research work [1,2,4], ontology languages such as
OWL include the constructions necessary to define the typical aspects of the network
management information that can be found in other management definition languages

22 A. Guerrero et al.

such as SMI-SNMP, MOF-CIM, etc., so it is possible to make a mapping and
merging process which integrates definitions in different languages from a semantic
point of view.

In this semantic management framework, the present work has shown how SWRL:

1. adds expressiveness power for defining constraints and rules for the proposed
network management information ontology in OWL. This means that more
complex constraints and policies can be formally expressed in the OWL
management information model, therefore enriching and empowering the overall
semantic framework for network management

2. allows explicitly defining the behaviour of the manager, and of managed objects, in
the same language – OWL+SWRL – that is used for the definitions in the
management information base. This includes:
− Actions that will be performed by the manager upon certain conditions on the

network objects or the manager itself
− Actions that will be performed by the network elements upon the existence of

certain conditions (policies that define the behaviour of these managed
elements)

In this semantic management framework, some management architecture elements
have yet to be defined, including events, translation and distribution of policies, and
other elements from policy-based networking.

Another direction for future work is the approach to be followed for accomplishing
the formal definition of the existing restrictions and rules implicitly or explicitly
defined. For this work it would be useful to develop tools that propose these
restrictions using heuristic searches of constraints described in the “description fields”
(e.g. strings including “if*then”, “have to” or “must” will have a high probability of
being part of these natural language constraint definitions), and their final
representation in SWRL making use of the existing OWL definitions.

Acknowledgements

This work has been partially funded by the Spanish Ministry of Education and
Science under the project GESEMAN (TIC2002-00934).

References

1. J. E. López de Vergara, V. A. Villagrá, J. I. Asensio, J. Berrocal: Ontologies: Giving
Semantics to Network Management Models, IEEE Network, Vol. 17, No. 3 (2003) 15-21

2. J. E. López de Vergara, V. A. Villagrá, J. Berrocal: Benefits of Using Ontologies in the
Management of High Speed Networks. In High Speed Networks and Multimedia
Communications – Proceedings 7th IEEE International Conference, HSNMC 2004.
Toulouse, France, June 2004. LNCS 3079: 1007-1018, Springer-Verlag (2004)

3. M. K. Smith, C. Welty, D. L. McGuinness: OWL Web Ontology Language Guide, W3C
Recommendation (10 February 2004)

4. J. E. López de Vergara, V. A. Villagrá, J. Berrocal: Applying the Web Ontology Language
to management information definitions, IEEE Communications Magazine, Vol. 42, Issue 7
(2004) 68-74

 Ontology-Based Integration of Management Behaviour 23

5. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML, W3C Member Submission
(21 May 2004)

6. P. F. Patel-Schneider, P. Hayes, I. Horrocks: OWL Web Ontology Language Semantics
and Abstract Syntax”, W3C Recommendation (10 February 2004)

7. Rule Markup Initiative: http://www.ruleml.org/
8. A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog, A. Huynh,

M. Carlson, J. Perry, S. Waldbusser: Terminology for Policy-Based Management, IETF
Request For Comments 3198 (2001)

9. C. Elliott, D. Harrington, J. Jason, J. Schoenwaelder, F. Strauss, W. Weiss: SMIng
Objectives, IETF Request For Comments 3216 (2001)

10. D. Martin, editor: OWL-S: Semantic Markup for Web Services, W3C Member
Submission (22 November 2004)

11. N. Damianou, N. Dulay, E. Lupu, M. Sloman: The PONDER Policy Specification
Language. In Proc. International Workshop of Policies for Distributed Systems and
Networks (Policy 2001). Bristol, UK, January 2001. LNCS 1995: 18-39, Springer-Verlag
(2001)

On the Impact of Management on the Performance
of a Managed System: A JMX-Based Management

Case Study

Abdelkader Lahmadi, Laurent Andrey, and Olivier Festor

LORIA - INRIA Lorraine - Université de Nancy 2,
615 rue du Jardin Botanique, F-54602 Villers-lès-Nancy, France

{Abdelkader.Lahmadi, Laurent.Andrey, Olivier.Festor}@loria.fr

Abstract. Studying the performance of a distributed system without taking care
on the impact of its management system will falsify the understanding of its over-
all performance, especially its productivity. We propose a metric called MIM
(Management Impact Metric) to evaluate this impact by varying one or several
impact factors related to the management system within a management strategy
of the managed system. We show the accuracy and interest of our metric on a
managed J2EE application server that uses a management architecture based on
the JMX standard.

Keywords: Managed systems performance, productivity, manageability.

1 Introduction

The essence of modern networks and services (home gateways, sensor networks, appli-
cation servers, grids) lies in the optimal utilization of resources within a dynamic and
large working environment. A key component required in this respect is the manage-
ment framework that monitors these systems and orchestrates their activities to improve
and maintain their performance. The goal of management is to ensure that the managed
systems operate with the efficiency and effectiveness predefined in the quality of ser-
vice parameters. Since current network management architectures are often integrated
in the service activities, it is essential to be able to know the overhead of these manage-
ment activities and their impact on the overall performance of the managed systems. A
basic question we are trying to answer here is: How do management activities impact
the overall managed system performance ? and How can we minimize this impact ?

Management architectures and their associated activities are becoming very com-
plex and diverse. Over the last 20 years, new and enhanced management architectures
appeared, varying from OSI and SNMP(v1,v2,v3) to Web Sservices-based management
including Java specific approaches like the JMX standard which became very popular.
Such management architectures have the following characteristics:(1) their activities
are essential to manage the system;(2) they offers a set of management strategies that
operate differently on the managed system (e.g., polling vs notification); (3) they can
severely impair the performance of the user’s work (referred to as productivity) if their
overhead cost per management strategy is not well defined and studied. In the litera-
ture, many studies [1,2] evaluate the performance of these management architectures,

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 24–35, 2005.
c© IFIP International Federation for Information Processing 2005

On the Impact of Management on the Performance of a Managed System 25

and they focus especially on comparing their performance. However, the question of
how management activities impacts the performance of managed systems has not been
studied so far. The variability of performance captures the impact of management on
the performance of a managed system.

A metric that quantifies this impact should be defined. It must put in relation the
performance of management and managed systems. To address this issue, we propose
an analytical model of this impact that combines the performance of the management
and the managed systems over varying management profiles and under an impact factor.

The paper is structured as follows: Section 2 reviews related works. Section 3
presents the set of the impact modifiers and factors of a management system that impact
the performance of a managed system. Section 4 introduces the analytical model of our
impact function. Section 5 presents an example of using the impact metric on a JMX
based management activity of the JBoss application server. Section 6 contains a brief
summary of this contribution as well as an outlook.

2 Related Work

Several papers separate investigations on the performance of distributed systems and the
performance of management systems. Woodside and al. [3] define the performance re-
ferred as productivity of a system as the relation between the rate of providing valuable
services, the quality of those services and the cost of providing those services. Another
definition is proposed in [4], where performance is viewed as the response time, seen by
a user under normal working conditions, coupled with the cost of the system - hardware
requirements - per user. We will adopt the performance metric proposed for distributed
systems to assess the performance of the managed and management systems. In fact, we
will use the same productivity definition as defined in [3] to quantify the performance
of the managed system under an impact factor.

Several studies are related to the performance evaluation of specific management
systems. The focus of most of these studies has been to model the performance of man-
agement architectures and their associated cost. Their performance models quantify re-
sponse time of agents [1,5], the volume of management traffic [2] and resources usage
[6,7]. Nevertheless, all performance studies related to management architectures that
take as elementary performance metrics : response time, management requests rate and
resource usage will benefit from our management impact metric. Our proposed metric is
based on the efficiency [8] of the managed system. This function is defined as the useful
work of the managed system divided by the total work (productivity+manageability).
By continuously computing the impact metric, a management system will regulate its
activities to minimize its impact or adapt the management profile (strategy) parameters
within the managed system. This metric provides an auto-tuning criterion for the man-
agement system [9], which allows the managed system to be more self-managing and
more efficient.

3 Management Profiles

Despite the wide variety of management technologies and products, most management
system infrastructures fall into an architecture pattern referred to as Manager-Agent.

26 A. Lahmadi, L. Andrey, and O. Festor

Fig. 1. The Management system components

Table 1. The management profile parameters and impact factors

There are three basic components in this architecture: managed system, agent and man-
agement applications. The management application is responsible for providing the in-
frastructure and user interfaces to manage a system and it is conducted by a management
profile or strategy that defines manageability tasks and patterns (see figure 1.)

Definition: A management profile is a quantitative characterization of how a
system is managed. The profile summarizes key interaction parameters be-
tween the management system environment and the managed system.

A management profile covers the most important parameters related to the man-
agement system and its interaction with the managed one. It is important to identify
those parameters, which, if varied, will change the management profile within the man-
aged system. Parameters that are changed from a management profile to another are
called impact modifiers. These modifiers, if varied, will have a significant impact on
the performance of the managed system. The impact modifiers might improve, main-
tain or degrade a given managed system performance. Examples of impact modifiers

On the Impact of Management on the Performance of a Managed System 27

are the agent deployment patterns within the managed system, management tasks and
their operation patterns (polling-driven or events-driven), the design patterns of man-
agement objects within the managed system. The management profile is controlled by
the management workload that includes management requests. The management work-
load characterization parameters represents the set of impact factors.The impact fac-
tors denote a set of impact variables, determined by the management profile within the
managed system. The impact metric is analysed by varying the impact factor within a
management profile. Table 1 displays a non exhaustive list of management profiles and
factors that affect the performance of a managed system. Within these profiles, three
parameters are chosen and studied in more details in the paper. For each parameter, the
intuitive impact on the performance of the managed system is listed.

3.1 Management Tasks

As defined in [10], management system tasks are the following:

– Monitoring: the ability to capture runtime and historical events from a particular
component. This task is continuous over the execution time of the managed system
and it is executed concurrently with users on each monitoring cycle.

– Tracking: the ability to observe aspects of a single unit of work or thread of ex-
ecution across multiple components (e.g., tracking messages from senders to re-
ceivers). This task is executed less frequently than the monitoring on a period from
the execution time of multiple components within the managed system.

– Control: the ability to alter the runtime behavior of a managed component (e.g.,
changing the logging level of an application). The execution of this task can result
from the first two ones when problems detected by monitoring or tracking need to
be resolved by controlling the managed system. This task is executed on a precise
period from the execution time of the managed system.

Thus, it is easy to see that the monitoring task will introduce a periodically im-
pact on the performance of a managed system. However, the control and tracking tasks
do not permanently affect the performance of the managed system (An example of a
management profile for the JBoss server is given in section 5).

3.2 Management Agents Deployment Models

The way in which the management agent is deployed within the managed system is an
impoortant profile parameter. In [11], the authors identify 3 management agent deploy-
ment models: daemon, component, and driver. In the daemon model, the agent owns its
own process separate from the application. In this case, the managed component and the
agent do not share the same resources and may running on two different hosts. The sole
overhead introduced by the agent on the managed component is the communication cost
to retrieve management data from the managed resource. In the component model, the
agent runs in the process owned by the application and they share the same resources.
Hence, the overhead of the managers interacting with the agent is added to the resources
used by the managed application. The driver deployment model is similar to the com-
ponent model. Rather than a component, the agent become the core of the system. In
this case, all manageability work is executed concurrently with the users work.

28 A. Lahmadi, L. Andrey, and O. Festor

3.3 Management Instrumentation Patterns

This management profile parameter specifies the way in which the management object
(e.g.,MBeans for JMX) retrieves the management data from the managed resource. Two
patterns are identified [11]: internal instrumentation and external instrumentation. In
the internal instrumentation the management object is part of the managed resource and
management tasks are executed directly on it. External instrumentation is defined and
executed outside the managed resource. From these definitions, internal instrumentation
might affect more significantly the performance of the managed resource rather than the
external one.

We can see clearly that the choice of a management profile or a strategy rather than
another will modify the potential impact of the management system on the performance
of the managed system.

4 The Impact Function

The impact function is designed to capture the performance variability of a managed
system under a management profile at a given impact factor value. We named the impact
metric MIM as Management Impact Metric. MIM(k) is a function that maps the impact
factor k to a value within the closed interval [0, 1]. It indicate whether a performance
degradation has occurred, and includes an indication of the degree of that degradation.
The MIM(k) function distinguishes between an unacceptable impact of a management
system (for which MIM(k) is close to 1) and an acceptable impact (for which MIM(k)
is close to 0).

Instead of productivity, which is the performance metric (production work) related
to the managed system, we name the performance of the management system as man-
ageability (management work) [10]. We denote F(k) as the productivity of the man-
aged distributed system and G(k) as the manageability of the management system at an
impact factor k. Hence, the efficiency of the managed system at the impact factor k is
given by:

E(k) =
F(k)

F(k)+G(k)
(1)

We adopt the productivity F(k) of the managed system or the manageability G(k) of the
management system defined in [3] as follows:

F(k) = λ1(k).
f (k)
C(k)

,G(k) = λ2(k).
g(k)
C(k)

(2)

Where λ1(k), λ2(k) are respectively the users work throughput in responses/sec of the
managed system and the management throughput in responses/sec of the management
system at an impact factor k. The function f (k), respectively g(k), is an average value
of each response calculated from its quality of service at the impact factor k. The value
function f (k) is determined by evaluation of the performance of a system (managed and
management ones), and may be a function of any appropriate system measure including
delay measures (mean, variance or jitter, probability of delay exceeding a threshold). In
this work we will consider only the mean response time T (k) at the impact factor k,

On the Impact of Management on the Performance of a Managed System 29

normalized to a target value T̄ (response time quality of service), in the following value
function [12]:

f (k) =
1

1+(T (k)
T̄)

(3)

The target value T̄ is an optional upper bound for the delay that can be specified for
an impact state to be acceptable. If we do not specify the delay target value, the value
function f (k) (respectively g(k)) will be the following [3]: f (k) = 1

T (k) . In this case the
productivity is given by:

F(k) =
λ1(k)
T1(k)

.C(k),G(k) =
λ2(k)
T2(k)

.C(k) (4)

C(k) is the cost function at the impact factor k, expressed as the running cost per sec-
ond to be uniform with λ1 (respectively λ2). The cost may be a function of any ap-
propriate weighted sum of resources utilization metrics such as cpu, memory and net-
work. The weight coefficients imply their importance on the managed system. Then
C(k) = a.CPU(k)+ b.Memory(k)+ c.Network(k), where a,b and c are the weights of
the resources consumed either by the managed system or the management one. The
function E(k) denote the efficiency of the managed system associated with an impact
state k, under a management profile characterized by its manageability G(k). The im-
pact function MIM(k) relating the efficiency of the managed system at two different
impact states is then defined as:

MIM(k0,k) = 1− E(k)
E(k0)

∈ [0,1] (5)

This is the impact function that is used through the paper. The intuition behind our func-
tion is to capture the behavior of the performance of the managed system. This behavior
is observed from a baseline configuration and define which cases the performance of the
system is unacceptable under a management impact factor. The efficiency E(k0) denote
a baseline configuration of the managed system with a value k0 of the impact factor. A
way to determine the baseline configuration is to suspend all management activities for
a period and measure the performance of the target managed system during that period
as the baseline. In this case, the value of the manageability G(0) = 0 and E(0) = 1.
Then, for the baseline configuration of the managed system, the baseline efficiency is
equal to 1 and the impact function is given by :

MIM(k) = 1−E(k) = 1− F(k)
F(k)+G(k)

; where k ≥ 1 (6)

From the management efficiency aims, a managed system is isoefficiency managed
if its overall efficiency is maintained at a desired value such as 0 ≤ E(k) ≤ 1 which
implies that the useful work performed by the managed system (productivity) should
grow at least at the same rate as the management overhead (manageability) to keep
managed system efficiency constant. Let α denote the value of G(k) normalized with
respect to F(k). α denotes the fraction from the managed system productivity attributed
to the management activities. Then, G(k) = α.F(k) and we obtain MIM(k) = α

1+α .

30 A. Lahmadi, L. Andrey, and O. Festor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1

productivity=manageability

Isoeffective management Ineffective management

2

Im
pa

ct
fu

nc
tio

n

Fraction of management overhead α

Fig. 2. The impact metric behavior of a linear model between manageability and productivity

Figure 2 depicts the behavior of the impact metric according to a linear fashion of man-
ageability work and the managed system productivity. When α = 1, the manageability
has the same rate as productivity and in this case we reach the bound of the isoeffective
management. Beyond that value, the management strategy becomes ineffective.

4.1 Computing the Impact Function

Calculation of this metric depends on the performance technique used to evaluate both
the performance of the managed system and the management one. Analytical and sim-
ulation techniques are more suitable to calculate it. These two techniques are more flex-
ible [13] than the measurement technique and they can handle a wide variety of config-
urations of the managed system by varying the impact factor and management profiles.
Their disadvantage is that they need the availability of analytical models both for the
managed system and the management one. It is not easy to obtain them for complex
distributed systems. We define the following steps to calculate the impact function. We
first determine the baseline performance of the target system. The baseline value will
capture the performance of the system under fixed states of user’s work and scalability
values (e.g, a fixed number of users, a fixed number of requests per unit of time, a fixed
number of servers, etc). By varying the baseline configuration of the managed system
we can capture its performance under different users workload or scalability factors.
Secondly, we define the management profile of the managed distributed system and the
impact factor. The productivity of the managed system and the manageability of the
management one are computed as follows:

1. Fix a management profile which includes management strategy parameters as de-
scribed in section 3.

2. Choose an impact factor and fix other factors.
3. Managed system productivity prediction: the productivity is computed by measur-

ing the average system throughput in number of responses per second and the
average response time per response. Measure the running cost per second on the
managed system. The cost is the sum of resources utilization expressed on a mea-
surement unit (e.g., average percent).

4. Management system manageability prediction : needs measurement of the average
management throughput in number of management responses per second from the

On the Impact of Management on the Performance of a Managed System 31

agent and the average response time. The cost represents the overhead running cost
per second due to management activities.

5. Compute the impact function according to equation 2 in case of use of the value
function f (k) or equation 4 in case of use of only the response time T (k).

6. Vary the chosen impact factor value and goto the step 3.

Computing the impact metric by varying the impact factor k within an interval allows us
to find its bound value, beyond which the management highly impacts the productivity.
In that case, a stronger justification for its benefit on the overall service delivery is
required. The bound value of the impact factor k correspond to an impact metric value
equal to 0.5.

5 Experimental Assessment

To assess the applicability of our impact metric, we did study it in the context of a JMX
based management of a J2EE application server such as JBoss [14]. The management
profile that we evaluate from the MBean server within the JBoss server is the following
management profile

– Client-Server approach,
– JMX based management,
– Monitoring task,
– Polling based monitoring by using getAttribute operation.
– The JMX agent is deployed as a driver: the MBean server within the JBoss server

is implemented as the kernel of the server,
– The management instrumentation is internal and the attribute that we solicit is re-

trieved from the system. The getFreeMemory operation, at the JMX level, calls the
JVM system function Runtime.freeMemory to retrieve the amount of free memory
in the JVM.

We take the management input workload expressed in number of requests per sec-
ond as the impact factor. Previous work [15] gives us an idea of a realistic range for
this factor. We vary the management workload from 1 to 400 requests/s. If we go be-
yond this value, the number of lost management requests increase consequently due
to timed-out RMI connections (we keep the default value of 15 seconds of the RMI
timeout).

5.1 Testbed Setup

We used a JBoss v3.2.1, running on a Sun JDK v1.4.2 and hosted on a bi-processor PIII
550MHZ with 512MB RAM, with the Slackware 9.1 operating system. The testbed
workstations are connected to a 100Mbps Ethernet switch. The testbed is alone on this
network, and we can assume that network is not a limitation. To emulate users activity
against the JBoss server, we use RUBiS [16] as a benchmarking tool to evaluate the per-
formance of the JBoss server and to measure its productivity. RUBis is modeled after
an auction site (eBay.com). For our experiments, we chose to use an EJB variant from
RUBiS, which is entirely based on stateless session beans, as it is the best performing

32 A. Lahmadi, L. Andrey, and O. Festor

EJB variant according to [17]. For the measurements shown here, we used a steady
users workload. The number of emulated users is kept constant (100 clients) and they
have a mean thinking time of 7 seconds. To capture the management impact, we de-
veloped an emulator management client that implements only the monitoring task. The
management emulator client sends a number of requests per second, that represents the
impact factor, by using the getAttribute operation exposed by the MBeanServer within
the JBoss server. We retrieve the value of the FreeMemory attribute from the ServerInfo
MBean. In the current work, all management requests solicited the same MBean and the
same attribute. Each measurement has a duration of 15 minutes and a warm-up period
of 2 minutes both for users emulator client and management emulator client. Our exper-
iments proceed as follows. The set of 100 emulated users were running. They execute
browsing-only transactions against the JBoss server. The response time and the average
number of responses per second is measured on the users client emulator side. Con-
currently to users workload, the management client emulator executes a fixed number
of getAttribute requests per second against the MBeanServer within the JBoss server.
On the management client side, we measure the number of management responses per
second and the response time per request. We use the sar [18] tool to measure the re-
source utilization (cpu,memory and network) on the JBoss server side. Response times
measurements are taken using the System.currentTimeMillis() method included in the
API of Sun’s JDK.

5.2 Experimental Results

In a first step, we measure the baseline performance of the JBoss server without man-
agement workload and where only the users steady workload is executed against the
server. Table 2 displays baseline average values of the throughput, response time and
resource utilization and their corresponding baseline productivity of the JBoss server. In
a second step, we vary the management input workload and measure the productivity,
the manageability and the impact metric at each impact factor value. From the plot of
figure 3 we can observe a decrease of the server productivity values due to the high man-
agement input load and the management overhead within the server. The productivity
degradation from the baseline configuration, where only the users workload is executed
against the JBoss server, varies between 24% for 50 management requests per second
and 74% for 400 requests/s. The JBoss server productivity degradation is caused by
the increase of response times T (k) and the decrease of the throughput λ(k) as shown
in figure 4. From figure 5, we see the increase of manageability. This is trivial, due to
the increase of the management load. Figure 6 shows the increase of the impact metric.

Table 2. Results of the baseline productivity of the JBoss server without any ongoing monitoring
activity and under a steady users workload (100 browsing clients)

On the Impact of Management on the Performance of a Managed System 33

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250 300 350

P
ro

du
ct

iv
it

y
va

lu
es

Input management workload (requests/second)

Baseline productivity = 3688.84

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350

P
ro

du
ct

iv
it

y
de

gr
ad

at
io

n
(%

)

Input management workload (requests/second)

(a) JBoss server productivity decrease (b) JBoss server productivity degradation in (%)

Fig. 3. Productivity decrease of the JBoss server (a) and the corresponding degradation from the
baseline server state for a steady users workload and under an increasing management work-
load input in number of requests per second using the getAttribute operation that retrieves the
FreeMemory attribute from the ServerInfo MBean

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 50 100 150 200 250 300 350

R
es

po
ns

e
ti

m
e

(m
s)

Input management workload (requests/second)

12

12.5

13

13.5

14

14.5

15

0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t

(r
es

po
ns

es
/s

)

Input management workload (requests/second)

(a) JBoss server response times increase (b) JBoss server throughput decrease

Fig. 4. Response times increase (a) and throughput decrease (b) of the JBoss server under an
increasing management workload and a steady users workload (100 browsing clients)

0

10000

20000

30000

40000

50000

60000

70000

80000

0 50 100 150 200 250 300 350

M
an

ag
ea

bi
li

ty
va

lu
es

Input management workload (requests/second)

Fig. 5. Manageability growth by increasing the management workload input in requests per sec-
ond by using the getAttribute operation that retrieves the FreeMemory attribute from the Server-
Info MBean

34 A. Lahmadi, L. Andrey, and O. Festor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40

M
an

ag
em

en
t

Im
pa

ct

Input management workload (requests/second)

0.96

0.965

0.97

0.975

0.98

0.985

0.99

50 100 150 200 250 300 350 400

M
an

ag
em

en
t

Im
pa

ct

Input management workload (requests/second)

(a) Low management workload (b) High management workload

Fig. 6. Management Impact Metric behavior for the JBoss server under a low management work-
load input less than 50 req/s (a) and a high management workload input greater than 50 req/s (b)
by using the getAttribute operation that retrieves the FreeMemory attribute from the ServerInfo
MBean

Here we note that the management agent (the MBeanServer from the JMX terminology)
of the JBoss server is the core of the application server (driver model). It is the compo-
nents container for the server design level (not ejb level). Thus, the input management
workload is executed concurrently with user’s workload and the impact is quickly seen.

6 Conclusion and Future Work

We defined a metric that captures the impact of a management profile or strategy on the
performance of a managed system. The objective is to provide a metric that evaluates a
management strategy and enables it to support its intended target environment. Our ex-
periments confirmed that a management strategy within a managed system is associated
with a degradation of the overall system efficiency, which may not be acceptable in all
cases. Here we should note that our experiments overestimated the manageability, be-
cause we take into account a high management input rates and we use the same value of
the running resource consumption both for computing manageability and productivity
on the server side, which explains the fast growth of the impact metric. A more accu-
rate analysis and estimation of the running resource utilization of manageability should
be done by using complementary techniques such as the profiling component resource
consumption presented in [19]. Our impact metric is computed using the measurement
technique to evaluate the performance of the managed JBoss server. This technique
needs a lot of time to collect measurements to be credible and requires available sys-
tem prototypes. Other techniques (analytical modeling or simulation) are more flexible
and less time consuming than the measurement technique [13]. They will be used for
evaluating the performance of the managed system under a given management impact
factor and computing the impact metric. In this work, we examine only the case of a
degradation impact of management activities on the performance of a managed system.
We plan to investigate other cases where the impact of management activities, such as
load balancing and admission control, might improve and maintain the performance
of a managed system. In parallel, we continue to setup and run performance tests of

On the Impact of Management on the Performance of a Managed System 35

the mannagemet plane on large sale systems e.g. Grids to massively deploy agents and
evaluate the behavior of both manager and agent systems.

References

1. Pavlou, G., Flegkas, P., Gouveris, S., Liotta, A.: On management technologies and the poten-
tial of web services. Communications Magazine, IEEE 42 (2004) 58–66 ISSN: 0163-6804.

2. Neisse, R., Vianna, R.L., Granville, L.Z., Almeida, M.J.B., Tarouco, L.M.R.: Implementation
and bandwidth consumption evaluation of SNMP to web services gateways. In: NOMS
(Network Operations & Managament Symposium). Volume 9. (2004)

3. Jogalekar, P., Woodside, C.: Evaluating the scalability of distributed systems. IEEE Trans.
Parallel Distrib. Syst. 11 (2000) 589–603

4. Burness, A., Titmuss, R., Lebre, C., Brown, K., Brookland, A.: Scalability evaluation of a
distributed agent system. Distributed Systems Engineering 6 (1999) 129–134

5. Pattinson, C.: A study of the behaviour of the simple network management protocol. In:
12th International Workshop on Distributed Systems: Operations and Management (DSOM).
(2001) 305–314

6. Subramanyan, R., Miguel-Alonso, J., Fortes, J.: A scalable SNMP-based distibuted monitor-
ing system for heterogeneous network computing. In: Proceedings of the 2000 ACM/IEEE
conference on Supercomputing, IEEE Computer Society (2000) 14

7. Pras, A., Drevers, T., de Meent, R.V., Quartel, D.: Comparing the performance of SNMP
and web services-based management. eTransactions on Network and Service Manage-
ment(eTNSM) 1 (2004)

8. Mitra, A., Maheswaran, M.: Measuring scalability of resource management systems. Tech-
nical Report SOCS-04.5, School of Computer Science,McGill University (2004)

9. Diao, Y., Hellerstein, J., Parekh, S., Griffith, R., Kaiser, G., Phung, D.: Self-managing sys-
tems: A control theory foundation. In: 12th IEEE International Conference and Workshops
on the Engineering of Computer-Based Systems (ECBS’05), Greenbelt, Maryland (2005)
441–448

10. Murray, J.: Designing manageable applications. WEB Developper’s Journal (2003)
11. Kreger, H., Harold, W., Willamson, L.: Java and JMX: Building Manageable Systems.

Addison-Wesley (2003) ISBN: 0672324083.
12. Grama, A., Gupta, A., Kumar, V.: Isoefficiency function: A scalability metric for parallel

algorithms and architectures. IEEE PDT 1 (1993) 12–21
13. Jain, R.: The art of Computer Systems Performance Analysis. John Wiley & Sons, Inc (1991)

ISBN : 0-471-50336-3.
14. JBoss: The professional open source company. http://www.jboss.org (1999)
15. Lahmadi, A., Andrey, L., Festor, O.: Performances et résistance au facteur d’échelle d’un

agent de supervision basé sur jmx : Méthodologie et premiers résultats. In: Colloque GRES
2005 : Gestion de REseaux et de Services, Luchon, France. Volume 6. (2005) 269–282
ISBN : 2-9520326-5-3.

16. ObjectWeb: Rubis: Rice university bidding system. http://rubis.objectweb.org (2002)
17. Cecchet, E., Marguerite, J., Zwaenepoel, W.: Performance and scalability of ejb applications.

In: Oopsla’02. (2002) http://rubis.objectweb.org/download/perf scalability ejb.pdf.
18. Godart, S.: system performance tools for linux os. http://perso.wanadoo.fr/sebastien.godard/

(2003)
19. Stewart, C., Shen, K.: Performance modeling and system management for multi-component

online services. In: The 2nd Symposium on Networked System Design and Implementation
(NSDI2005),Boston, MA, USENIX (2005)

Improving the Configuration Management of
Large Network Security Systems

João Porto de Albuquerque1,2,�, Holger Isenberg2, Heiko Krumm2,
and Paulo Ĺıcio de Geus1

1 Institute of Computing, State University of Campinas, 13083-970,
Campinas/SP Brazil

{jporto, paulo}@ic.unicamp.br
2 FB Informatik, University of Dortmund, 44221 Dortmund Germany

{joao.porto, heiko.krumm, holger.isenberg}@udo.edu

Abstract. The security mechanisms employed in today’s networked en-
vironments are increasingly complex and their configuration manage-
ment has an important role for the protection of these environments.
Especially in large scale networks, security administrators are faced with
the challenge of designing, deploying, maintaining, and monitoring a huge
number of mechanisms, most of which have complicated and heteroge-
neous configuration syntaxes. This work offers an approach for improving
the configuration management of network security systems in large-scale
environments. We present a configuration process supported by a mod-
elling technique that uniformly handles different mechanisms and by a
graphical editor for the system design. The editor incorporates focus and
context concepts for improving model visualisation and navigation.

1 Introduction

In today’s large networked environments security is a major concern. A great
variety of security technologies and mechanisms are employed in these environ-
ments in order to offer protection against network-based attacks. Whilst signifi-
cant progress has been made on improving network security technology in recent
years, only quite modest attention has been given to its configuration interface.
In practice, a security administrator must deal with a variety of complex and
heterogeneous configuration syntaxes, most of which are unintuitive and in some
cases even misleading.

The situation is especially dramatic in large-scale environments where it is
very hard to have a global view of the numerous security mechanisms that have to
be put into harmonic cooperation. In these situations, a single maladjustment be-
tween two mechanisms can leave the whole system vulnerable. Approaches that
offer proper abstraction, integration and tool support for managing the configu-
ration of security mechanisms are thus key factors for making the configuration
process less error-prone and more effective.

� Scholarship funding by the German Academic Exchange Service (DAAD).

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 36–47, 2005.
c© IFIP International Federation for Information Processing 2005

Improving the Configuration Management 37

Four basic tasks of the network security configuration management can be
distinguished: i) the design of the security system, including the definition of
technologies and mechanisms to be employed, as well as the placement of the
diverse security components over the network; ii) the deployment of the de-
signed configuration; ii) configuration maintenance, enabling the introduction of
changes to achieve adaptability in face of new requirements; iv) monitoring of
the system during run-time to assure compliance with expected behaviour.

This paper addresses the three first phases of the configuration management
process. To support the design phase, we use a modelling technique that allows
the design of the security system to be managed in a modular fashion, by means
of an object-oriented system model [8]. This model is segmented into logical units
(so-called Abstract Subsystems) that enclose a group of security mechanisms and
other relevant system entities, and also offer a more abstract representation of
them. In this manner, the system administrator is able to design a security
system—including its different mechanism types and their mutual relations—by
means of an abstract and uniform modelling technique.

A software tool supports the modelling, providing a graphical editor. This
editor incorporates the concept of focus & context—that originated from re-
search on information visualisation—through the techniques of fisheye-view [11]
and semantic zooming [3,7]. Furthermore, our work builds upon the policy hi-
erarchy [6] and model-based management [5] approaches in order to assist the
above-mentioned configuration management phases of deployment and main-
tenance. A system model organised in different abstraction layers thus affords
a step-wise, tool-assisted system modelling, along with an automated policy re-
finement that culminates in the generation of low-level configuration parameters.
While this guided derivation of parameters contemplates the deployment of the
security configuration, its maintenance is supported by the possibility of editing
the models and repeating the automated generation process.

The rest of the paper is organised as follows: Sect. 2 presents the main el-
ements of our modelling technique, and Sect. 3 describes the focus & context
techniques incorporated into the support tool. Subsequently, Sect. 4 presents a
case study that exemplifies the practicality of these approaches within a typical
large-scale networked environment. In Sect. 5 our results are compared to related
work. Finally, Sect. 6 casts conclusions for this paper.

2 Modelling Technique

Our modelling builds upon the Model-based Management approach [5] and em-
ploys a three-layered model whose structure is shown in Fig. 1. The horizontal
dashed lines of the figure delimit the abstraction levels of the model: Roles &
Objects (RO), Subjects & Resources (SR), and Diagram of Abstract Subsystems
(DAS). Each of these levels is a refinement of the superior one in the sense of a
“policy hierarchy” [6]; i.e. as we go down from one layer to another, the abstract
system’s view contained in the upper level is complemented by the lower-level
system representation, which is more detailed and closer to the real system. As

38 J.P. de Albuquerque et al.

DAS

S & R

R & O

Managed System Policies

Fig. 1. Model Overview

for the vertical subdivision, it differentiates between the model of the actual
managed system and the security policies that regulate this system.

As the lowest level of the model (DAS) is the focus of the present work, it is
explained in detail in the next section. The two uppermost levels (RO and SR)
have been adopted from previous work on model-based management, and thus
will be presented briefly.

The RO level is based on concepts from Role-Based Access Control (RBAC)
[10]. The main classes in this level are: Roles in which people who are working in
the modeled environment act; Objects of the modeled environment that should
be subject to access control; and AccessModes; i.e. the ways of accessing objects.
The class AccessPermission expresses a security policy, allowing the performer
of a Role to access a particular Object in the way defined by AccessMode.

The second level (SR in Fig. 1) offers a system view defined on the basis of
the services that will be provided, and it thus consists of a more complex set
of classes. Objects of these classes represent: (a) people working in the modeled
environment (User); (b) subjects acting on the user’s behalf (SubjectTypes); (c)
services in the network that are used to access resources (Services); (d) the
dependency of a service on other services (ServiceDependency); and lastly (e)
Resources in the network.

2.1 Diagram of Abstract Subsystems

The main objective of the Diagram of Abstract Subsystems (DAS) is to describe
the overall structure of the system in a modular fashion; i.e. to cast the system
into its building blocks and to indicate their interconnections. As such, a DAS
is, formally speaking, a graph comprised of Abstract Subsystems (ASs) as nodes
and edges that represent the possibility of bi-directional communication between
two ASs. An AS, in turn, contains an abstract view of a certain system segment;
i.e. a simplified representation of a given group of system components that may
rely on the following types of elements:

Actors: groups of individuals which have an active behaviour in a system; i.e.
they initiate communication and execute mandatory operations according to
obligation policies.

Mediators: elements that intermediate communication, in that they receive
requests, inspect traffic, filter and/or transform the data flow according to

Improving the Configuration Management 39

the authorisation policies; they can also perform mandatory operations based
on obligation policies, such as registering information about data flows.

Targets: passive elements; they contain relevant information, which is accessed
by actors.

Connectors: represent the interfaces of one AS with another; i.e. they allow
information to flow from, and to, an AS.

Each element of the types Actors, Mediators or Targets represents a group of
system elements that have a relevant behaviour for a global, policy-oriented view
of the system. As for the Connectors, they are related to the physical interfaces
of an AS (for a detailed explanation on the modelling of abstract subsystems we
refer to [8]). In this manner, a DAS supports the reasoning about the structure
of the system vis-à-vis the executable security policies, thus making explicit the
distribution of the different participants of these policies over the system.

Furthermore, in order to model the security policies themselves, another ob-
ject type is also present in a DAS: ATPathPermissions (ATPP). An ATPP is
associated with a path (p) in a DAS that connects an Actor (A) to a Target
(T), possibly containing a number of Mediators and Connectors along the way.
It expresses the permission for p to be used by A in order to access T . In this
manner, each ATPP models an authorisation policy. The ATPP objects in the
system are not defined by the modeller, but rather derived automatically in a
process that is explained later in Sect. 4.4.

Additionally, each AS in a DAS is also associated with a detailed view of
the system’s actual mechanisms. This expanded view encompasses objects that
represent hosts, processes, protocols and network interfaces of the system (this
detailed view is related to the level PH of the works on model-based manage-
ment [5]) and supports the process of automated generation of configuration
parameters (Sect. 4.4).

Example of DAS. An example of DAS is shown in Fig. 2. This diagram
corresponds to a simple network environment with three ASs: “internal network”,

external network

Internet web sites

Internal network

internal web clients

Web proxy

dmz

firewall 1 firewall 2

int_clients may surf on inet_sites

internal web clients

Squid−Proxy

eth0

Netscape

WS 4

Internal Net

Proxy−Server

UserCredential

Login

Web proxy

WS 1 WS 2 WS 3

Firefox IE Opera

AS Expanded

AS

Fig. 2. Example of DAS
Fig. 3. Expanded AS

40 J.P. de Albuquerque et al.

“dmz” (demilitarised zone) and “external network”. In the “internal network”,
the object “internal web clients” is an Actor representing a group of processes
that are authorised to access the processes mapped by the Target “internet web
sites” (in the “external network”) through the Mediator “Web proxy”, by the
ATPP “int clients may surf on inet sites”.

Figure 3 shows both the abstract and the expanded view for the AS “internal
network” (leftmost of Fig. 2). Each object in the abstract view of the AS is then
related to the elements that model the corresponding real entities of the system;
for instance, the Actor “internal web clients” is associated with its respective
Process-typed objects. This double representation of an AS provides the designer
with a flexible model of the system that offers not only a more abstract, concise
and understandable description of the system’s structure, but also a detailed
view of its mechanisms. It also constitutes the basis for applying the techniques
presented in the next section.

3 Focus and Context

The term focus & context refers to techniques that allow a user to centre his
view on a part of the model that is displayed in full detail (focus), while at the
same time perceiving the wider model surroundings in a less detailed manner
(context). The major advantage of using these techniques is the improved space-
time efficiency for the user; i.e. the information displayed per unit screen area
is more useful and, consequently, the time required to find an item of interest is
reduced as it is more likely to be already displayed [7]. We employ the focus &
context concept within two different methods, described in the next sections in
turn.

3.1 Semantic Zooming

The concept of semantic zooming [7,3] is based on the ability to display model
objects in different abstraction levels, depending on their distance from the fo-
cus. Thus, objects inside the focused region of a diagram are exhibited in their
full detailed form, whereas objects located at the borders are shown in the most
simplified way. The regions between these two extremes are displayed with inter-
mediary levels of detail. In this manner, the presented information is selectively
reduced by adjusting the level of detail in each region to the user’s interest in
this region.

In our context, there are two classes of compounded objects to which semantic
zooming is applied: typed folders and Abstract Subsystems. A typed folder is an
object that aggregates a group of objects of same class (or type), for the sake of
the representation conciseness. On the other hand, Abstract Subsystems contain
objects of various classes (Sect. 2.1) and may also enclose typed folders. In BOTH
cases, the level of detail shown can be changed by the selective display of internal
objects.

In the simplest situation, two different representations of typed folders are
available: a closed (all internal objects are hidden) and an open folder view. As

Improving the Configuration Management 41

for the ASs, three different levels of abstraction are used: i) a full detailed view
that includes all the internal objects (as in Fig. 3); ii) an abstract representation
encompassing only the objects of the abstract view (as in Fig. 2); and iii) a
“closed” view in which none of the internal objects are displayed.

3.2 Fisheye View

The term fisheye view is used for the type of projection created by a fisheye
lens used in photography. This type of lenses achieves a 180◦ field of view and
is uncorrected. It results in an optical enlargement of objects near the centre
in relation to those at the borders. This feature emulates the human visual
perception, which by the effect of the eye movements has a clear focused area
and a gradual loss of visual resolution in the direction of the peripheral regions.
A fisheye view combines thereby a complete image overview with a gradual
degradation of detail that increases with the distance from the focus—and it
is thus well suited to implement the concept of focus & context. In contrast to
semantic zooming, the fisheye view manipulates the displayed size of the objects
in order to change the amount of information shown.

We build upon the practical application of fisheye views for graph visuali-
sation offered by Sarkar and Brown [11]. In our tool, the focus area can also
be freely moved by the user throughout the model. In this way, objects within
the focused area are displayed in an enlarged scale whereas the others become
gradually smaller as they are approach the model borders.

4 Configuration Design and Deployment Process

To illustrate the practical application of the previously described concepts, in
this section we analyse a paradigmatic case study. The considered scenario is
that of an enterprise network, composed of a main office and branch office, that
is connected to the Internet. Our main goal is to assist the security administrator
in the task of designing the configuration for the security mechanisms that are
required to enable and control web-surfing and e-mail facilities for the company’s
office employees.

Therefore, the highest-level security policies for this environment can be
stated as follows: P1: The employees may surf on the Internet from the comput-
ers in the main and branch offices; P2: The employees may read their internal
e-mails from the main and branch offices, and from home; P3: The employees
may send e-mail to external and internal addresses; P4: Internet users may ac-
cess the corporate web server; P5: Internet users may send e-mail to internal
mail addresses.

Having as input the above abstract policy statements and previously de-
scribed scenario, we apply our modelling technique by providing in the next
sections a step-by-step description of the configuration design process, passing
through the different abstraction layers.

42 J.P. de Albuquerque et al.

Internal Users

WWW proxy service

@main office

LDAP directory

remote access@branch office

WebPages

WWW service
Internet webservice

Internet webpages

@InternetAnonymous

Communication−encryption service

Service dependency association Incoming e−mail

Company’s Worker

Internal e−mailfetching

sending to the Internet

Internet WWW

surfing

Anonymous Internet user

Websiteacessing

allow sending e−mail

sending to the Company

Internet e−mail

Internal mail service

Internal message storage Radius service

Mail−forwarding service incoming mail Mail−forwarding service outgoing mail

Internet mail−service
Internet message storage

Ldap service

Service dep.assoc. incoming radius

permit receiving e−mail

allow internet surfing

allow fetching internal mail

permit access to company’s web

ServiceDependencyAssociation outgoing Web

ServiceDependencyAssociation outgoing Mail

RO level

SR level

Fig. 4. Model of the levels RO and SR

4.1 Modelling of the RO Level

Since the highest level in our model is based on RBAC concepts (Sect. 2), the
designer starts the development process by mapping the abstract policies, ex-
pressed in natural language, to the more formal syntax of RBAC. The top of
Fig. 4 shows the resulting model at the RO level for our considered scenario.
The basic objects are: the Roles “Company’s Worker” and “Anonymous Inter-
net User”, and the Objects “Internal e-mail”, “Website”, “Internet e-mail” and
“Internet WWW”. These objects are associated to AccesModes by means of five
AccessPermissions (at the top, on the right of Fig. 4), each of the latter corre-
sponding to one of the abstract policy statements of the previous section. Thus,
for instance, the AccessPermission “allow Internet surfing” models the policy
statement P1, associating the role “Company’s Worker” to “surfing” and “In-
ternet WWW”. The other policy statements are analogously modeled by the
remaining AccessPermissions.

4.2 Modelling of Users, Services and Resources

The second step in the design process consists of the definition of the services
that the system must provide, the resources they need, and the users who may
take advantage of them. In our example, the User “Anonymous” and the Subject-
Type “@Internet” are defined in association with the role “Anonymous Internet
User”. For the role “Company’s Worker”, several User objects are grouped in
the TypedFolder (Sect. 3.1) “Internal Users”, and three SubjectTypes are de-
fined: “@main office”, “@branch office” and “@remote access” (at the bottom of
Fig. 4). These objects map the three types of session that can be established by
an employee in the considered scenario, depending on his physical location.

Improving the Configuration Management 43

Internal Users

User Credentials

User Logins

internal web clients
internal mail clients Internal mail server Web proxy LDAP server

Squid−Proxy

eth0
eth0

Netscape
Exchange−Server

eth0

10.1.1.8

Mail−Server

Outlook
Internal Mail Files

Internal Net

Proxy−Server
LDAP−Server

eth0

LDAP−Prozess

Ldap Pages

Firefox IEThunderbird OperaThunderbird K−MailFirefoxIE Thunderbird KMailIEOutlook

10.1.2.* 10.1.20.* 10.2.1.* 10.2.4.* 10.2.3.* 10.2.7.*

10.1.1.80 10.1.1.7

10.4.5.*

WWW proxy service@main office
LDAP directory

Internal mail service

Internal message storage Ldap service

Fig. 5. Extract of a DAS and its relation to the SR level

As for the modelling of services and resources, a Service object will be ba-
sically defined for each AccessMode in the RO level, whereas RO Objects will
be mapped to SR Resources. In case where more than one service is needed
to provide access to a resource, this fact is expressed by a ServiceDependency.
This is what happens in our example model, for instance, with the AccessMode
“sending to the company” that is related to the Service “Mail-forwarding service
incoming mail”. This service must rely on the “Internal mail service” in order
to provide access to the resource “Internal message store” (which is associated
with the RO Object “Internal e-mail”).

4.3 Modelling of Abstract Subsystems

In order to produce a Diagram of Abstract Subsystems, the designer shall start
with the identification of the major segments in which the system is subdivided.
Considering our example and also accounting consolidated network security tech-
niques, a structural subdivision into five blocks can be defined: the internal net-
work, the demilitarised zone (dmz), the branch office network, the remote access
points and the remaining external network (the Internet). Therefore, the DAS
for this example has an AS for each one of these segments.

Afterwards, the modeller must define, for each subsystem, the security mech-
anisms and other relevant network elements with respect to the security policies;
i.e. to model the expanded view of each AS (Sect. 2.1). The bottom of Fig. 5
shows the expanded AS “internal network”. It has objects that represent pro-
cesses running on seven workstations, one mail server, one web proxy and one
LDAP server. Each one of these processes is connected through the adequate
protocol stack—modeled by a series of interconnected corresponding protocol
objects—to their network interfaces.

44 J.P. de Albuquerque et al.

Subsequently, the abstract view of each AS must be defined by the creation
of objects for Actors, Mediators, Targets and Connectors, and their associations
to the objects of the SR level must be established. This is accomplished by
classifying the behaviour of the elements of the expanded view into one of these
classes (the mapping of the abstract view in ASs is further elaborated in [8]).

The Actors “internal mail clients” and “internal web clients” (see Fig. 5) are
created in the “internal network” to map the processes of this subsystem with
active behaviour in our example. They are also both connected to the objects in
the SR level that map the same behaviour: “Internal Users” and “@main office”.
Due to their intermediary or supporting functions, the Mediators “Web proxy”
and “LDAP Server” are created and connected to the corresponding processes
in the expanded view; they also connect these processes with the appropriate
services in the SR level. Proceeding in an analogous manner for all of the re-
maining ASs in our example, a complete DAS is achieved and the whole system
model is complete.

4.4 Policy Refinement and Configuration Generation

After inputting all model levels, the system design phase is complete and the
security administrator can take advantage of our support tool to deploy the con-
figuration parameters for the security mechanisms modeled. This is accomplished
by an automated building of a policy hierarchy, starting from the abstract se-
curity policy defined by the designer in the RO level (Sect. 4.1) and deriving
lower-level policies on the basis of the model entities of the levels SR and DAS.

Thus, the support tool first derives each one of the given AccessPermis-
sions through a series of intermediary objects, ultimately generating a set of
ATPathPermissions (Sect. 2.1). Finally, for the last step of the configuration
deployment, a series of back-end modules are executed, where each module cor-
responds to a special security service product (e.g. Kerberos, FreeS/WAN, Linux
IP tables etc.). These back-end functions evaluate the ATPathPermissions and
the expanded views of the ASs in order to automatically generate the adequate
configuration files for each of the security mechanisms (an extensive explanation
on the policy refinement process is beyond the scope of this paper and can be
found in [9,5]).

4.5 Model Editing, Navigation and Visualisation

During the model editing needed to accomplish the tasks described in the pre-
vious sections, in order to edit specific parts of large models (such as the one
used for our case study), a designer must rely on model cutout enlargement tech-
niques; i.e. on zooming. However, with the standard method of zooming that is
based on linear enlargement of a fixed-size model cutout, the model navigation
and visualisation are problematic. Consider, for instance, the simple design task
of connecting an object in the model area that is currently edited to another one
that is located at the opposite extreme of a large model. In this case, “large”
means that the whole model does not fit into the screen when scaled to a size
that makes its editing possible. With the standard zooming method one needs

Improving the Configuration Management 45

to perform the following steps: 1) scale down, in order to be able to see the
entire model; 2) estimate the locations of the target and source objects in the
out-zoomed view, and the angle of the edge needed to connect them; 3) enlarge
the area around the source object, in order to be able to select it; 4) select the
source; 5) drag a new edge from the source into the direction of the previously
estimated angle (the enlarged region of the model moves automatically following
the mouse); 6) stop the dragging once the target can be seen on the screen; 7)
drop the edge on the target object.

On the other hand, with the use of a fisheye view only the following steps are
needed: 1) activate the fisheye view mode; 2) select the source object, which is
displayed inside the enlarged focus area (as in the left hand picture of Fig. 6); 3)
drag a new edge from the source into the direction of the target, whose location
can be simultaneously seen in the down-scaled surroundings; (the focus follows
the mouse during this process, so that the target can eventually be seen in detail,
as in the right hand picture of Fig. 6); 4) drop the edge on the target object.

Target
Source

Target

Source

Fig. 6. Fisheye view with focus centred at the source and target nodes

Therefore, using a fisheye view reduces the number of steps needed by almost
half. Furthermore, the usage is immediately intuitive, since the designer never
loses of sight the full context of the model, and the non-linear adaptive scaling
seems “natural” in contrast to the sharp border between linear enlarged cutouts
and their surroundings.

Combined Focus and Context. Since the two techniques introduced in
Sect. 3 operate on orthogonal subjects—namely, fisheye view on graphics and
semantic zooming on structure—they can be combined. We accomplish this by
using the scale factor resulting from the fisheye transformation function to adjust
the abstraction level which is used to display compound elements.

The result of this is that as the distance between the focus and a certain ob-
ject increases, this object is gradually presented in a more abstract view—which
per se has a smaller graphical representation—and also graphically miniaturised
by the fisheye function. Thus, a larger focused area is made possible even if the
context is still visible, which leads to an optimisation of the screen space.

46 J.P. de Albuquerque et al.

In Fig. 6, the effect of this combined use can be seen. In the left hand picture,
the AS “remote access point” (that encloses the source node) has the focus: it is
thus displayed in a higher scale and in its full level of details, allowing editing.
The ASs “dmz” and “Internet” pertain to a close context and are shown in their
abstract representation, gradually smaller in size; whereas the miniaturised and
“closed” views of the remaining ASs save screen space while still enabling the
user to perceive their existence.

5 Related Work

Though there are several applications of focus & context techniques for improving
the usability of generic graph editors (including the recent applications to UML
in [7] and the more generic approach in [3]), as far as we know, they have not
yet been used in the context of model visualisation and navigation for network
security system design.

In a wider context, Damianou et al. [2] present a set of tools for the specifica-
tion, deployment and management of policies specified in the Ponder language.
The tool prototype includes a domain browser that uses fisheye views to handle
large structures. While centring the approach in the policies, this work does not
provide a representation of the architecture of the system to be managed, mak-
ing it hard for the system designer to associate the policies with his/her mental
model of the system. A further work by these authors offers an approach to the
implementation and validation of Ponder policies for Differentiated Services us-
ing CIM to model network elements [4]. CIM concentrates on the modelling of
management information (e.g. device’s capabilities and state) while our model
represents the whole relevant structure of the managed system together with the
management components.

The graphical tool Firmato [1] seems to be the closest approach to ours, since
it supports the interactive policy design by means of diagrams and automatically
derives the corresponding configurations for mechanisms. However, since the
abstraction levels of policy definitions and configuration parameters are relatively
near to each other, its support is restricted to an abstraction level that is close
to the mechanisms.

6 Conclusion

This paper has presented an approach for the configuration management of large
network security systems that builds upon and extends previous work on Model-
based Management [5] and on the Diagram of Abstract Subsystems [8,9]. We add
to these works by proposing a general design process that is centred around the
system administrator and encompasses four steps that range from the abstract
policy modelling to the generation of low-level configurations. In this manner,
the abstract policy representation is gradually brought into a more concrete sys-
tem view, bridging the gap between high-level security policies and real system
implementation.

Improving the Configuration Management 47

We also combine the use of a modelling technique specially conceived to
achieve scalability with focus and context techniques, thereby allowing the de-
signer to define in detail a certain model part without losing sight of the system
as a whole. Therefore, we expect our methodology to contribute to making the
configuration management of security technologies in large-scale network envi-
ronments more effective and closer to the security administrator. Current work
concentrates on the representation of policies at the lower model levels, in order
to enhance their handling.

References

1. Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool. Firmato: A novel firewall man-
agement toolkit. ACM Transactions on Computer Systems, 22(4), November 2004.

2. N. Damianou, N. Dulay, E. Lupu, M. Sloman, and T. Tonouchi. Tools for domain-
based policy management of distributed systems. In IEEE/IFIP Network Opera-
tions and Management Symposium (NOMS2002), Florence, Italy, 2002.

3. O. Köth and M. Minas. Structure, abstraction, and direct manipulation in dia-
gram editors. In Diagrammatic Representation and Inference, Second International
Conference (Diagrams 2002), volume 2317 of Lecture Notes in Computer Science,
Callaway Gardens, GA, USA, 2002. Springer.

4. L. Lymberopoulos, E. Lupu, and M. Sloman. Ponder policy implementation and
validation in a CIM and differentiated services framework. In IFIP/IEEE Network
Operations and Management Symposium (NOMS 2004), Seoul, Korea, April 2004.

5. I. Lück, S. Vögel, and H. Krumm. Model-based configuration of VPNs. In Proc.
8th IEEE/IFIP Network Operations and Management Symposium NOMS 2002,
pages 589–602, Florence, Italy, 2002. IEEE.

6. J. D. Moffett and M. S. Sloman. Policy hierarchies for distributed system manage-
ment. IEEE JSAC Special Issue on Network Management, 11(9), 11 1993.

7. B. Musial and T. Jacobs. Application of focus + context to UML. In Australian
Symposium on Information Visualisation, volume 24 of Conferences in Research
and Practice in Information Technology, Adelaide, Australia, 2003. ACS.

8. J. Porto de Albuquerque, H. Krumm, and P. L. de Geus. On scalability and
modularisation in the modelling of security systems. In 10th European Symposium
on Research in Computer Security (ESORICS 05), volume 3679 of LNCS, pages
287–304, Heidelberg, Germany, September 2005. Springer Verlag.

9. J. Porto de Albuquerque, H. Krumm, and P. L. de Geus. Policy modeling and
refinement for network security systems. In POLICY ’05: Proceedings of the Sixth
IEEE International Workshop on Policies for Distributed Systems and Networks
(POLICY’05), pages 24–33, Washington, DC, USA, 2005. IEEE Computer Society.

10. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Computer, 29(2):38–47, 1996.

11. M. Sarkar and M. H. Brown. Graphical fisheye views of graphs. In Proceedings of
ACM CHI’92 Conference on Human Factors in Computing Systems, Visualizing
Objects, Graphs, and Video, pages 83–91, 1992.

An Architecture for Privacy-Aware Inter-domain
Identity Management

Wolfgang Hommel

Munich Network Management Team,
Leibniz Supercomputing Center Munich

hommel@lrz.de

Abstract. The management of service oriented architectures demands
an efficient control of service users and their authorizations. Similar to
structured cabling in LANs, Identity & Access Management systems
have proven to be important components of organizations’ IT infras-
tructures. Yet, due to new management challenges such as virtual or-
ganizations, on-demand computing and the integration of third party
services through composition, identity information has to be passed to
external service providers; this decentralization inherently leads to inter-
operability and privacy issues, which existing management standards are
not dealing with appropriately yet. We present an architecture, based on
SAML, XACML and XSLT, which provides a tight integration of cross-
organizational identity data transfer into the local provisioning business
processes along with a policy-driven inter-domain privacy management
system, and its implementation.

1 Introduction and Problem Statement

Besides network components and systems, the operation of complex IT infras-
tructures more and more has to focus on the management of application-level
services offered to end users. An essential part of service provisioning is the setup,
configuration, maintenance and deletion of user accounts, also known as Iden-
tity & Access Management (I&AM). The I&AM paradigm demands to provide
a holistic view of a user instead of administrating each account on each service
independently. Typically, a central identity repository, such as an LDAP-based
enterprise directory, provides the user data required for authentication, autho-
rization and accounting, as well as for service personalization. I&AM systems are
usually fed by an organization’s human resources (HR) system and customer re-
lationship management (CRM) database; they thus contain sensitive data, which
must be protected due to privacy and governance aspects.

However, in an increasing number of scenarios, cross-organizational identity
data transfer is required. If, for example, IT services are outsourced to third
parties, personalization and accounting data must be made available to the ser-
vice provider (SP), as they are required for service provisioning and billing.
Similarly, aligning with other organizations to form a virtual organization, e.g.
in Grid projects, requires to pool together parts of the resources and user data

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 48–59, 2005.
c© IFIP International Federation for Information Processing 2005

An Architecture for Privacy-Aware Inter-domain Identity Management 49

alike. To avoid redundant and inconsistent storage of identity information, as
well as the administrative overhead to acquire and maintain this data multiple
times, dedicated languages and web services based management protocols exist
for the exchange of identity information. Standards like the Security Assertion
Markup Language (SAML, [1]), the Liberty Alliance specifications [2] and the
Web Services Federation Language (WS-Federation, [3]) provide methods which
allow an SP to retrieve information about a user from the user’s so-called Iden-
tity Provider (IDP). Especially SAML is in wide-spread use, as it has served
as basis for Liberty Alliance and because WS-Federation has adopted SAML
support meanwhile. The application of these standards to inter-domain service
provisioning is also known as Federated Identity Management (FIM).

While those standards provide a lot of much needed inter-domain provision-
ing functionality, we have shown in previous work that they have several defi-
ciencies in common [4]. In this paper, we present solutions for two of the most
urgent problems of the current FIM standards and their existing implementa-
tions. First, the demand for an identity federation wide common data schema is
not considerate of the syntax and semantics of local I&AM solutions and thus
makes the seamless integration of FIM into existing provisioning business pro-
cesses next to impossible in practice. Second, none of the standards specifies
how administrators and users can control and restrict which information about
a user is allowed to be sent to which provider, as is urgently required to protect
the user’s privacy.

We address these issues in this paper by extending the standard SAML ar-
chitecture by two IDP-side components, while still maintaining full SAML com-
pliance. First, we introduce an Attribute Converter component. It translates
incoming requests from the federation-wide data schema into the one used by
the local I&AM solution; then, it converts outgoing responses back into the fed-
eration’s data schema. Second, we demonstrate how the eXtensible Access Con-
trol Markup Language (XACML, [5]) can be used efficiently to specify which
service providers can access which identity information. We have implemented
both components prototypically as extensions to the well-known Shibboleth soft-
ware [6].

After discussing the state of the art in section 2, we present the concept of
our SAML architecture extensions in section 3. We focus on implementational
aspects and the introduction of our prototype in section 4 and give an outlook
to our further research in section 5.

2 Towards Federated Identity Management

Because more and more services and applications supported the LDAP pro-
tocol for both authentication and storage of configuration data, LDAP-based
enterprise directories have been widely adopted as basis for intra-organizational
I&AM solutions, which focus on the integration and centralized management
of an organization’s employees, customers and users and their access rights to
the local services. Unfortunately, as in many other management areas, no single

50 W. Hommel

data schema standard exists, and thus default vendor configurations, such as
those found in Microsoft Active Directory or Novell eDirectory, compete with
non-proprietary LDAP schema definitions such as inetOrgPerson [7]. In practice,
many organizations even create their own LDAP schema to cover their individual
needs.

To facilitate cross-organizational identity data exchange, early attempts to
grant other organizations access to own enterprise directories quickly turned out
to be tedious and suffer from bad scalability. Having to set up accounts for users
from other organizations and getting applications to work with different schemas
leads to massive administrative overhead and is impractical when more than a
handful of organizations is involved.

Thus, dedicated management standards were created, out of which SAML [1]
has found wide-spread adopters and is supported by the recent versions of iden-
tity management solutions by most big vendors, including HP, IBM, Novell, and
Sun. SAML establishes a web services based back channel between the service
provider (SP) and the user’s home organization, which is called Identity Provider
(IDP). Over this back channel, the SP can request information about the user,
as shown in figure 1:

Enterprise
Directory

SAML PDP Attribute
Requester

Service Provider

1

3

Identity Provider

2a

2b

Fig. 1. Identity data exchange through a standard SAML back channel

1. The SP sends a SAML request to the IDP’s SAML Policy Decision Point
(PDP), e.g. it queries the user’s billing address. The user is identified by a
handle known to both providers, and the billing address consists of attributes
such as name, street, postal code and city, which must have been defined
in a federation-wide data schema a priori.

2. Those attributes are looked up in the IDP’s local identity repository, which
is typically the enterprise directory also used by the local I&AM solution.
The result is returned to the IDP’s SAML component.

3. The data is wrapped into a SAML attribute assertion and sent back to
the SP.

An Architecture for Privacy-Aware Inter-domain Identity Management 51

Having to use a federation-wide data schema in a SAML architecture raises
two problems: First, finding a common data schema for all involved parties is
a non-trivial task due to different technical demands, e.g. different syntactical
requirements of applications, and each involved organization’s political goals.
Second, as an IDP’s SAML component must be able to look up the attributes in
this schema, the organization either has to use this schema internally as well or
provide an extra repository which is synchronized with the local I&AM solution
regularly; either way, this causes costs for the extra hardware, synchronization
software and operation. Two solution attempts are presently available:

1. The Liberty Alliance provides two standardized schemas, called employee
and personal profile ([8], [9]). However, these schemas provide only the great-
est common divisor of potentially required identity information, and thus are
per se insufficient and have to be extended by other required attributes, sim-
ilar to their LDAP counterparts.

2. Most vendors support a technique called attribute mapping. For example,
if an SP requests the dateOfBirth attribute, it could be mapped to the
DOB attribute in the local repository. However, more complex transforma-
tions than just renaming an attribute, such as changing the date format
from YYYY-MM-DD to DD.MM.YY, or composing the result from three separate
attributes day, month and year, are not possible.

As can also be seen from figure 1, there is no filtering mechanism in place
that restricts which attributes are allowed to be sent to the SP. Yet, it is crucial
to protect the users’ privacy and empower each user to control and restrict which
SP has access to which attributes. This issue is also dealt with insufficiently:

– Of the three FIM standards, only Liberty Alliance introduces the idea of
Attribute Release Policies (ARPs). However, it does neither specify the
content of such ARPs nor how they should be implemented.

– Only Shibboleth [6], a SAML-based open source FIM software, which is the
de-facto standard among higher education institutions, supports ARPs, but
in a proprietary format and with rather limited functionality, i.e. the release
of each attribute to each SP can be restricted only based on this attribute’s
current value.

More complex conditions, such as granting access to one’s credit card data
only if one is actually buying something from a shop and not just browsing for
information, cannot be modelled with current ARP concepts and implementa-
tions. Also, no obligations can be specified, such as informing a user whenever
an SP accesses certain attributes, e.g. by means of an e-mail or a log file.

As both an integration of FIM into existing local business processes and an
enhanced privacy protection are urgently required to achieve a smooth setup of
identity federations and earning of user acceptance, we have extended the SAML
architecture by schema conversion and privacy management components, which
are described in the next sections.

52 W. Hommel

3 An Extended SAML Architecture with Schema
Conversion and Privacy Management Support

Figure 2 shows our extended SAML architecture; as only the IDP-internal work-
flow has been modified and the SAML PDP is still the only point of contact
to the outside world, we preserve full SAML compliance. We now describe the
overall workflow and then go into conceptual details of the attribute conversion
component in section 3.1 and specify the privacy management mechanism in
section 3.2:

XACML
ARP

Component

Enterprise
Directory

Policy
Repository

SAML PDP Attribute
Requester

Attribute
Converter

Service Provider

Identity Provider

Policy
Administration

Point
Our extension to the SAML architecture

A

1

2

3

4

6

7
8

9

10

11

5

Fig. 2. Extended SAML architecture and workflow

1. The SAML attribute request is sent by the service provider (SP) to the
IDP’s SAML PDP as before. The data schema used in the request is the
federation-wide.

2. The IDP’s SAML PDP extracts the list of the wanted attributes from the
SAML request; instead of looking them up in the enterprise directory di-
rectly, it forwards this list to our attribute converter, which is described in
more detail in section 3.1. It also passes information about the requesting
SP and the affected user, which are required later to pick the appropriate
policies.

3. The attribute converter contacts the IDP’s policy repository. It stores pairs
of conversion rules which are used to first convert incoming requests from
the federation-wide into the locally used data schema, and then convert the
results from the locally used to the federation-wide data schema. The rules
can be administrated via the policy administration point (see arrow A).

4. The rules required to convert the actually requested attributes to and from
the locally used data schema are returned to the attribute converter.

An Architecture for Privacy-Aware Inter-domain Identity Management 53

5. The attribute converter translates the list of originally requested attributes
into the list of attributes which need to be looked up in the local enterprise
directory. By doing so, the names of the attributes can be changed, but
attributes may also be added to or deleted from the list, depending on which
attributes are required in the local schema to provide the content for the
requested attributes in the federation-wide schema. This list of attributes is
then looked up in the enterprise directory.

6. Before those attributes can be returned to the SP, Attribute Release Policies
(ARPs) are used to protect the user’s privacy. We are using the eXtensi-
ble Access Control Markup Language (XACML, [5]) to model and enforce
ARPs as described in section 3.2. The attributes and their values, which have
been retrieved from the enterprise directory, are forwarded to our XACML
component.

7. The XACML component looks up the applicable ARPs in the IDP’s policy
repository. The selection of ARPs depends on various factors, such as the
requesting SP, the affected user and the attributes which have been looked
up.

8. The relevant ARPs, which typically include IDP-wide ARPs defined by an
administrator and user-specific ARPs, are returned to the XACML compo-
nent. Details are provided in section 4.

9. The XACML ARP component filters the list based on the rules specified by
XACML policies as described below and returns only those attributes whose
release is allowed back to the attribute converter.

10. This time, the attribute converter has to convert the attributes from the
locally used schema back to the federation-wide schema. The necessary rules
have already been fetched in step 3. The final result is returned to the IDP’s
SAML PDP.

11. The IDP’s SAML PDP wraps the result in a SAML assertion, which is finally
sent to the SP as result of the original attribute request.

The following sections describe the internals of the attribute converter and
the XACML ARP component in detail.

Requests
DOB

Expects
YYYY-MM-DD

Converts request
into bd_day,

bd_month and
bd_year

Composes return
value from

attribute values

1967-03-25

bd_year = 67
bd_month = 03
bd_day = 25

Service Provider
Identity Provider,

Attribute Converter

Identity Repository

Fig. 3. Solution workflow for a simple schema mismatch example

54 W. Hommel

3.1 Cross-Organizational Identity Schema Conversion

The attribute converter’s purpose is to enhance the interoperability of FIM so-
lutions with existing I&AM systems by letting all IDP components work with
the IDP’s locally established data schema and nevertheless communicate with
federation partners transparently.

An example of its use is shown in figure 3. It assumes that a federation
has defined a DOB attribute which holds the user’s date of birth in the format
YYYY-MM-DD; however, the IDP, which receives the request, stores the user’s date
of birth in three separate attributes for day, month and year of birth. Even such
seemingly simple problems cannot be solved with the existing FIM standards.

The figure also shows the attribute conversion relevant steps of the workflow
described above. First, the incoming request for one attribute is modified, so the
three locally required attributes are looked up. Then, before returning the result
to the SP, the return value for the originally requested attribute is composed
from the three separate attributes.

Three kinds of conversions can be made:
1. The names of the requested attributes can be changed, e.g. from DOB to

dateOfBirth. This is equivalent to the attribute mapping approach de-
scribed in section 2.

2. The attribute’s value can be text-processed, in order to fulfill syntactical
requirements of the target data schema, or to compose or split up attributes.

3. The attribute’s value can be modified to adapt different semantics; for exam-
ple, the value of a user’s nationality attribute may have to be German in
the local schema but DE in the federation-wide. Such semantical conversions
are eased in practice because many attributes can only have discrete values.

The actual conversion rules are specified as XSLT [10] stylesheets, i.e. XML
transformations are performed; an example is given in section 4. XSLT is an ob-
vious choice, as all FIM standards are XML-based and most of their implementa-
tions use XML internally as well. Furthermore, also well-established products for
local I&AM, such as Novell’s Nsure Identity Manager 2, are using XSL trans-
formations for intra-organizational data conversions, so existing programming
experience and code can be reused efficiently in the federated case.

3.2 Inter-domain Policy-Based Privacy Management

Privacy management is a well-studied field; standards such as P3P [11] and
EPAL [12] have been widely adopted. However, they are intended to specify,
publish and enforce privacy policies on the service provider side; they do not
specify how the user’s preferences shall be stored on the client or identity provider
side. Existing implementations, such as Shibboleth [6], use proprietary privacy
policy formats on the IDP side; thus, users cannot reuse their policies at other
IDPs if they use a different implementation.

We have chosen the eXtensible Access Control Markup Language (XACML,
[5]) as basis for the implementation of Attribute Release Policies (ARPs) for the
following reasons:

An Architecture for Privacy-Aware Inter-domain Identity Management 55

– XACML and SAML have been paired before to achieve fine-grained inter-
domain access control, e.g. in well-known systems such as PERMIS [13] and
Cardea [14]; a detailed overview can be found in [15].

– XACML is a OASIS standard with a reference implementation available as
open source [16]. As XACML is a generic access control language, the pol-
icy format can be tailored to individual needs and still be evaluated by any
standard compliant XACML PDP; this ensures interoperability and elim-
inates the need to implement a dedicated PDP. XACML’s relationship to
P3P, which has been outlined in [17], allows us to leverage a proven privacy
standard to FIM applications.

– XACML already provides functionality which is required for advanced ARPs
but not available in current proprietary implementations, e.g.
• Support for multiple roles of a user, e.g. one used at work and one used

in spare time.
• Grouping of attributes, i.e. release rules do not have to be specified for

each attribute separately, e.g. as in Shibboleth.
• Arbitrarily decentralized management, i.e. multiple XACML policies can

be combined to form the effective policy. Typically, an IDP administrator
will specify default policies which each user can override individually on
demand.

• Very flexible condition formulation; for example, certain attributes may
only be released for a certain purpose which the SP has to disclose.
Conditions may also contain environmental data such as the current
date and time.

• Formulation of obligations. Logging an SP’s access to selected attributes
and informing the user by e-mail are two popular obligations which are
already part of the XACML standard; arbitrary other obligations can be
implemented through XACML’s extension mechanisms.

• Policy protection, i.e. an existing public key infrastructure (PKI) can be
used to sign and encrypt the ARPs to prevent unauthorized modification
and disclosure.

The XACML PDP component shown in figure 2 consists of an XACML
policy enforcement point (PEP) and a standard XACML PDP. The PEP creates
XACML requests based on the attributes which are passed in from the enterprise
directory (see step 6 of the workflow on page 52). It then fulfills any obligations
returned by the XACML PDP and returns the attribute values to the converter
component if their release was allowed. An example can be found in the next
section.

4 Implementation Details

We will now describe our implementation of the SAML architecture extension
and the integration of its components into Shibboleth.

As described in section 3.1, the attribute converter uses XSLT stylesheets to
transform incoming requests and outgoing responses. We have implemented this

56 W. Hommel

<request user="johndoe"
requestor="sp.example.com">

 <attribute> DOB </attribute>

</request>

<xsl:template match="/">
<attributes>
<xsl:attribute name='name'>

 <xsl:value-of select="request/@user"/>
</xsl:attribute>
<xsl:apply-templates select="request/

attribute"/>
</attributes>

</xsl:template>

<xsl:template match="request/attribute">
<xsl:if test="normalize-space(.) = 'DOB'">

 <attribute> bd_day </attribute>
 <attribute> bd_month </attribute>
 <attribute> bd_year </attribute>

</xsl:if>
</xsl:template>

<attributes name=“johndoe“>
 <attribute> bd_day </attribute>
<attribute> bd_month </attribute>

 <attribute> bd_year </attribute>
</attributes>

<response user="johndoe">
 <DOB>1967-03-25</DOB>

</response>

<xsl:template match="/">
<response>

 <xsl:attribute name='user'>
 <xsl:value-of select="user/@name"/>

 </xsl:attribute>
 <xsl:apply-templates select="user/db_year"/>

</response>
</xsl:template>

<xsl:template match="user/db_year">
 <DOB> <!-- simplified assume fixed '19'

as century here -->
 <xsl:value-of select="concat('19',

normalize-space(.), '-',
normalize-space(../db_month), '-',
normalize-space(../db_day))"/>

</DOB>
</xsl:template>

<user name="johndoe">
<db_year> 67 </db_year>

 <db_month> 03 </db_month>
<db_day> 25 </db_day>

</user>

Incoming request

Request conversion stylesheet

Converted request

Retrieved attributes

Response conversion stylesheet

Outgoing response

Fig. 4. An example for request and attribute conversions using XSLT

functionality using Xalan [18] as XSLT processor through the standard JAXP
Java API. Our prototype uses the local file system as XSLT stylesheet repository;
additionally, a web server can be used as policy administration point (PAP) to
upload new stylesheets and edit them online (see arrow A in figure 2). Example
stylesheets which solve the date of birth schema problem discussed in section 3.1
are shown in figure 4.

Shibboleth provides data connectors for relational databases, LDAP servers
and flat text files; it also has an extension mechanism which can be used to
hook in custom connectors. By implementing such a custom connector, attribute
lookups can be redirected to the attribute converter, which in turn uses the Java
JNDI API to retrieve the attributes from the enterprise directory in the local
data schema. It passes their values and the meta-data about the service provider,
which is delivered by Shibboleth, on to the XACML ARP component.

The XACML ARP component is also implemented in Java, facilitating Sun’s
XACML PDP implementation [16]. The attribute values and meta-data are re-
ceived by a custom XACML PEP, which assembles an appropriate XACML
request; this request is then evaluated by the PDP, which returns the decision
whether the attribute may be released to the given service provider under the
given conditions, along with optional obligations. The following example shows
an XACML policy which grants access to the user’s credit card number to an

An Architecture for Privacy-Aware Inter-domain Identity Management 57

online shop only if an actual order is placed; an obligation specifies that each
allowed release must be logged:
1 <Pol i cy id=”xacmlARP1” RuleCombiningAlg=” f i r s t −app l i c ab l e ”>
2 <CombinerParameters>
3 <CombinerParameter ParameterName=”ARPpriority”>
4 100
5 </CombinerParameter>
6 </CombinerParameters>
7 <Desc r ip t i on> ARP by user John Doe </ Desc r ip t i on>
8 <Rule id=”CreditCardToBookShop” e f f e c t=”permit ”>
9 <Desc r ip t i on> Release c r e d i t card number to bookshop </ Desc r ip t i on>

10 <Target>
11 <Resources>
12 <Resource>
13 <ResourceMatch MatchId=” st r ing−equal ”>
14 <Attr ibuteValue>
15 idp . example . com/ johndoe / d e f a u l t r o l e /creditCardNumber
16 </Attr ibuteValue>
17 <ResourceAttr ibuteDes ignator Att r ibute Id=” resource−id ” />
18 </ResourceMatch>
19 </Resource>
20 </Resources>
21 <Subject s>
22 <Subject>
23 <SubjectMatch MatchId=” st r ing−equal ” Attr ibuteValue=”shop . example . com”>
24 <Subjec tAtt r ibuteDes ignator Att r ibute Id=” s e r v i c e p r o v i d e r ” />
25 </SubjectMatch>
26 <SubjectMatch MatchId=” st r ing−equal ” Attr ibuteValue=”bookshop”>
27 <Subjec tAtt r ibuteDes ignator Att r ibute Id=” s e r v i c e ” />
28 </SubjectMatch>
29 <SubjectMatch MatchId=” st r ing−equal ” Attr ibuteValue=”purchase ”>
30 <Subjec tAtt r ibuteDes ignator Att r ibute Id=”purpose ” />
31 </SubjectMatch>
32 </ Subject>
33 </ Subject s>
34 <Actions>
35 <Action>
36 <ActionMatch MatchId=” st r ing−equal ” Attr ibuteValue=” read”>
37 <Act ionAttr ibuteDes ignator Att r ibute Id=” act ion−id ” />
38 </ActionMatch>
39 </Action>
40 </Actions>
41 </Target>
42 <Obl igat ions>
43 <Obl igat ion Id=”Log” Fu l f i l lOn=”Permit”>
44 <AttributeAssignment Id=” text ”>
45 Your c r e d i t card number has been r e l e a s ed t o :
46 <Subjec tAtt r ibuteDes ignator Att r ibute Id=” s e r v i c e p r o v i d e r ” />
47 </AttributeAssignment>
48 </ Obl igat ion>
49 </ Obl igat i ons>
50 </Rule>
51 <Rule id=”DoNotReleaseAnythingElse” e f f e c t=”deny”/>
52 </ Pol i cy>

As can be seen from lines 2–6 of the example, we are using a priority based
policy combining algorithm which composes the effective policy out of an arbi-
trary number of optionally distributed ARPs. In practice, ARPs created through
the user’s PAP typically have a higher priority than the administrator-specified
ARPs, so users can override the IDP’s defaults. The attributes to which ac-
cess is controlled are specified as XACML resources, as shown in lines 11–20 of
the example; each attribute is identified globally by its name, which is a URN
composed of the IDP identifier, the person, its role and the attribute name as
specified in the federation-wide data schema. Three consecutive XACML subject
matches control which service provider is actually requesting the attributes for
the provisioning of which service and which purpose (see lines 21–33).

An integration into Shibboleth’s IDP component can be achieved by first
adapting the listPossibleReleaseAttributes() method, which must return
the names of the user attributes which should be retrieved; second, filter-
Attributes() has to remove all attributes whose release is not permitted by
the ARPs. The user’s and service provider’s ids are passed to both methods,

58 W. Hommel

which provides sufficient information for the XACML PEP to identify, combine
and let the PDP evaluate the relevant XACML-based ARPs.

Shibboleth’s proprietary ARPs can be lossless converted to XACML ARPs.
Basically, Shibboleth ARP targets become XACML subjects and Shibboleth
ARP attribute elements are converted to XACML resources. As release de-
cisions are made on attribute and not on rule level in Shibboleth ARPs, each
Shibboleth attribute has to be converted into a dedicated XACML rule. We
have automated this transformation by also using an XSLT stylesheet.

5 Summary and Outlook

In this paper, we presented a SAML-based architecture for privacy-aware dis-
tributed service provisioning, which allows a tight integration of inter-domain
provisioning workflows into the individual local identity management business
processes. Two urgent problems of current standards have been addressed while
still maintaining full compliance. First, we added an attribute converter to the
standard SAML architecture; it utilizes XSLT stylesheets to convert incoming
SAML attribute requests and outgoing responses from the federation-wide data
schema to the locally used one and vice versa, so SAML can be integrated into
the local I&AM infrastructure transparently and at minimum cost. Second, to
protect each user’s privacy across administrative domains, we specified Attribute
Release Policies based on XACML, a generic access control language, which has
been successfully paired up with SAML for various other purposes before. We
demonstrated our implementation and its use on simple real-world problems.

Our further research will focus on improving other weak spots of current FIM
standards; in particular, we will study the use of data pushing mechanisms to
complement the current pull-only SAML protocol bindings.

Acknowledgment

The authors wish to thank the members of the Munich Network Management
(MNM) Team for helpful discussions and valuable comments on previous versions
of the paper. The MNM Team directed by Prof. Dr. Heinz-Gerd Hegering is
a group of researchers of the University of Munich, the Munich University of
Technology, and the Leibniz Supercomputing Center of the Bavarian Academy
of Sciences. The web server of the MNM Team is located at http://www.mnm-
team.org/.

References

1. Cantor, S., Kemp, J., Philpott, R., Maler, E., (Eds.): Security Assertion Markup
Language v2.0. OASIS Security Services Technical Committee Standard (2005)

2. Wason, T., Cantor, S., Hodges, J., Kemp, J., Thompson, P., (Eds.): Lib-
erty Alliance ID-FF Architecture Overview. http://www.projectliberty.org/

resources/specifications.php (2004)

An Architecture for Privacy-Aware Inter-domain Identity Management 59

3. Kaler, C., Nadalin, A., (Eds.): Web Services Federation Language (WS-
Federation). http://www-106.ibm.com/developerworks/webservices/library/

ws-fed/ (2003)
4. Hommel, W., Reiser, H.: Federated Identity Management: Shortcomings of existing

standards. In: Proceedings of the 9th IFIP/IEEE International Symposium on
Integrated Management (IM 2005), Nice, France (2005)

5. Moses, T.: OASIS eXtensible Access Control Markup Language 2.0, core specifi-
cation. OASIS XACML Technical Committee Standard (2005)

6. Cantor, S., Carmody, S., Erdos, M., Hazelton, K., Hoehn, W., Morgan, B.: Shib-
boleth Architecture, working draft 09. http://shibboleth.internet2.edu/docs/
(2005)

7. Smith, M.: Definition of the inetOrgPerson LDAP Object Class. IETF Proposed
Standard, RFC 2798 (2000)

8. Kellomki, S.: Liberty ID-SIS Employee Profile Service Specification. http://

project-liberty.org/specs/liberty-idsis-ep-v1.0.pdf (2003)
9. Kellomki, S.: Liberty ID-SIS Personal Profile Service Specification. http://

project-liberty.org/specs/liberty-idsis-pp-v1.0.pdf (2003)
10. Clark, J.: XSL Transformations (XSLT), Version 1.0. W3C Recommendation,

http://www.w3.org/TR/xslt/ (1999)
11. Reagle, J., Cranor, L.F.: The Platform for Privacy Preferences. In: Communica-

tions of the ACM. Volume 42., ACM Press (1999) 48–55
12. Powers, C., Schunter, M.: Enterprise Privacy Authorization Language, W3C mem-

ber submission. http://www.w3.org/Submission/2003/SUBM-EPAL-20031110/

(2003)
13. Chadwick, D., Otenko, A.: The PERMIS X.509 Role Based Privilege Management

Infrastructure. In: Proceedings of the 7th ACM Symposium on Access Control
Models and Technologies. SACMAT, ACM Press (2002) 135–140

14. Lepro, R.: Cardea: Dynamic Access Control in Distributed Systems. Technical
Report TR NAS–03–020, NASA Advanced Supercomputing Division, Ames (2003)

15. Lorch, M., Proctor, S., Lepro, R., Kafura, D., Shah, S.: First Experiences Using
XACML for Access Control in Distributed Systems. In: Proceedings of the ACM
Workshop on XML Security, ACM Press (2003)

16. Proctor, S.: Sun’s XACML implementation. http://sunxacml.sf.net/ (2004)
17. Anderson, A.H.: The Relationship Between XACML and P3P Privacy Policies.

http://research.sun.com/projects/xacml/ (2004)
18. Apache Software Foundation: Xalan XSLT Processor. http://xml.apache.

org/xalan-j/ (2005)

Data on Retention

Ward van Wanrooij and Aiko Pras

University of Twente, PO Box 217,
7500 AE, Enschede, The Netherlands

w.a.h.c.vanwanrooij@student.utwente.nl, pras@cs.utwente.nl

Abstract. Proposed EU regulations on data retention could require ev-
ery provider to keep accounting logs of its customers’ Internet usage.
Although the technical consequences of these requirements have been
investigated by consultancy companies, this paper investigates what this
accounting data could be, how it can be obtained and how much data
storage is needed. This research shows that every gigabyte of network
traffic results in approximately 400 kilobyte of accounting data when us-
ing our refinements to existing methods for storing accounting data –
less by a factor twenty than previously assumed.

1 Introduction

Recently the discussion regarding the controversial European proposal for a
framework decision on the retention of telephone and Internet data [1] stirred
emotions across Europe. If enacted this could require every Internet service
provider to keep detailed logs of the Internet usage of its customers. Incompre-
hension about the supposed effectiveness of the proposals and lack of knowledge
about the technical implications of the requirements cause an opaque debate
dominated by emotions [2] and not by facts.

One major source of confusion appears to be the uneducated guess made
by studies regarding the technical consequences [3,4] of the volume and cost
of storing so-called “IP accounting data”, a term coined in these papers. The
amount of and way to store all other relevant traffic data, namely authentication
and e-mail logs, is fairly straightforward; however the report estimates that a
typical, large access provider needs to store 72 terabytes of IP accounting data
yearly. This paper focuses on the definition of this IP accounting data, the way
it can be obtained and making an educated guess towards establishing a relation
between network data and IP accounting data. Finally, this data is used to
establish the expected technical implications for several providers. Note that this
paper only documents research into technical aspects of the storage of accounting
data and does not give any indication of the effectiveness or efficiency of the
proposal and neither approves nor endorses it.

Although much research has been done on traffic analysis, this paper presents
a new challenge in storing specific logical connection information while mini-
mizing storage requirements without sampling packets. The resulting process is
based on and validated using reliable, real world data. The study “Storage and

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 60–71, 2005.
c© IFIP International Federation for Information Processing 2005

Data on Retention 61

bandwidth requirements for passive Internet header traces” [5] is based on sam-
pling; the study by KPMG [4] is based on the extrapolation of one unspecified
2 Mbit connection and likewise unspecified “accounting data” to a 25 Gbit load
and Cisco [6] specifies a reduction rate for full “netflow data” of 98.5%.

The results of this paper are not only important to law-makers but also to
network managers, both policy-makers and administrators, because the enact-
ment of the proposed law can require serious network infrastructure changes.
The information in this paper can be used to determine its impact.

The structure of this paper is as follows. Section 2 phrases the research ques-
tions, followed by a discussion of the definition of IP accounting data (Sect. 3).
Section 4 addresses the way accounting data can be obtained and the results
of this process are commented on in Sect. 5. Finally the outcomes of this re-
search are compared to the conclusions of the aforementioned KPMG paper in
our conclusion.

2 Research Questions

The three research questions can be summed up as: what is IP accounting data,
how can it be obtained and how much storage capacity is needed. More formally,
these are the questions:

1. What is, for the purpose of data retention, the description of IP accounting
data?

2. In what ways can accounting data be extracted from network traffic?
3. How much accounting data has to be stored ?

3 What Is Accounting Data?

Conceptually, IP accounting data in the context of the data retention initiative
has been defined as data pertaining to a connection using “subsets of Internet
Protocol numbers” and satisfying one or more of the following criteria [1]:

a. Data necessary to trace and identify the source of a communication which
includes personal details, contact information and information identifying
services subscribed to.

b. Data necessary to identify the routing and destination of a communication.
c. Data necessary to identify the time and date and duration of a communica-

tion.
d. Data necessary to identify the telecommunication.
e. Data necessary to identify the communication device or what purports to be

the device.
f. Data necessary to identify the location at the start and throughout the

duration of the communication.

Concrete storage proposals based on these requirements for each connection
(referred to as communication in the initiative) have been recorded in [7] and

62 W. van Wanrooij and A. Pras

include: user, IP addresses, port numbers, date and time and “type of service”
(fulfilling conditions a, b and c). For the purpose of this research we assume [3]
that all access providers save network authentication logs and consequently are
able to map a local IP address to a unique user, based on the combination of
local address and time of the connection. We do not expand on this aspect of
accounting data in this work.

Now the recordable properties of a connection have been defined, however
the definition of a connection has not been. Technically, a connection exists af-
ter e.g. a three-way handshake has been made using TCP. For other Internet
protocols, like UDP, a similar notion does not exist – therefore a more logical
than technical definition has to be used. For this purpose, a modified version
of a NetFlow [6] flow has been adapted: a network flow is defined as a bidirec-
tional stream of packets between a given source and destination within a certain
time frame. A flow is defined by its recordable properties. To avoid confusion, in
this document connection refers to a single IP session (TCP connection, UDP
message and reply) and flow refers to a stream of packets, possibly spanning
multiple connections.

4 How Can Accounting Data Be Obtained?

Several possibilities exist to obtain and store the required accounting data. Three
evident options exist:

1. Capturing packet dumps by configuring a special monitoring device on a
network link. Because these dumps contain a copy of all network traffic the
size is equal to amount of used network bandwidth. Compressing these files
results in an average size reduction of 42% [5], nonetheless practically not
manageable due to their size.

2. Capturing packet dumps and saving only the first 68 bytes of each Ethernet
frame. Depending on the protocol used, these trimmed packets contain at
least the full header containing the necessary accounting data and possibly
even some payload. A major advantage over plain packet dumps is the re-
duction in the amount of stored data, compressed a scaling down of up to
90% may be achieved [5]. Such a reduction still results in a 100 MB file for
a continuous loaded 2 Mbit/s link for one hour.

3. Saving NetFlow data. Cisco’s NetFlow technology, included in many high-
end routers and switching devices, generates a flow record (47 bytes) for
each unique connection through the network device. The definition of this
NetFlow is a superset of the accounting flow definition of Sect. 3. Because
the latest incarnation of NetFlow technology has been selected as the ba-
sis for IETF’s IPFIX (Internet Protocol Flow Information eXtract) [8] and
some other vendors1 already include NetFlow compatible technology in their
routers and switches [9], the usage of this technology is a viable choice. In

1 The competitor sflow can currently not be used for gathering accounting data be-
cause sflow is based on sampling.

Data on Retention 63

conjunction with a NetFlow Collector, it allows for realtime network traffic
overview on a relatively small scale. However, Cisco’s estimate is that the
amount of log data is approximately 1.5% of the network traffic and that
is undeniably too much for very large scale deployments like the EU data
retention initiative.

In the next subsection we introduce a method of processing the input data, be
it a (partial) packet dump or NetFlow log, to a format that minimizes long term
storage requirements while still conforming to the requirements of accounting
data as set forth in Sect. 3. This method extends on the NetFlow data and prin-
ciples and is referred to as accounting flows for the remainder of this document.

4.1 Accounting Flows Data Definition

First we establish what traffic data we choose to save based on the definition of
accounting data and the most efficient way of storing it.

The source port number is typically semi-random and conveys no information
so it can be omitted2 from stored records. The destination port number (when
available) expresses important information about the supposed type of service
that has been provided (e.g. TCP/80 means HTTP, UDP/53 means DNS). This
information is also the only reasonably reliable indicator about the type of service
that can be obtained without inspecting, analyzing and possibly decrypting each
packet.

Many other NetFlow fields, like number of packets, number of bytes trans-
ferred and AS numbers, are irrelevant to this application and can be dropped.

We need to to store two temporal characteristics for each flow: the start and
end date. The proposal prescribes a one second resolution for all time related
data, but a full timestamp (e.g. seconds since the epoch) requires 4 bytes, each.
We opt to instead file the data in units (files, tables, folders) spanning 12 hours
of traffic so we can store 2 byte offsets: the offset since the start of the unit for
the start date and the duration for the end date.

Summarized, each accounting flow is an instance of this tuple (15 bytes):

Source address. IPv4 address of the host that initiated the flow (4 bytes).
Destination address. IPv4 address of the host that received or rejected the

flow (4 bytes).
Destination port number. Port number of this flow on the destination host

(2 bytes).
Flow start. Seconds since the epoch when the flow was initiated (2 bytes).
Flow duration. Duration of the flow in seconds (2 bytes).
Protocol. (1 byte) Protocol number used for this flow (e.g. TCP is 6, UDP is

17, GRE is 47).

Further minimization of this data can be obtained by using compression tech-
niques (instead of removing information), e.g. dictionary coding the IP addresses.
2 In rare cases, the source port number is used for authentication; it can also be used

for operation system fingerprinting.

64 W. van Wanrooij and A. Pras

Fig. 1. Steps to obtain accounting flows

No special provisions have been made for IPv6 since its use in connecting
end-users is negligible at the moment. However, the above tuple layout is also
applicable to IPv6 without changing the size: assuming that the number of con-
nections does not increase when IPv6 is deployed then the total practical number
of possible source and destination IP addresses also does not change nor does
its storage size. Using a translation table for each unit, an IPv6 address can be
mapped to a virtual IPv4 address solely used in the unit for storing the data.

4.2 Obtaining Accounting Flows

Having defined our target data, we need to extend the NetFlow process to out-
put this data and allow two types of input data: realtime data from e.g. NetFlow
collectors or a monitoring device and offline data to assist us in testing its per-
formance.

If deployed in production use, the input data will most probably be NetFlow
logs because this is more efficient, scalable and reliable than using full or partial
packet traces.

The procedure to go from network traffic to accounting flows can be charac-
terized as a seven step process (Fig. 1):

Data on Retention 65

Capture. The action of capturing the packets, we use dagsnap and libpcap
based tools.

Preprocess. Processing the captured data to provide suitable input to the next
step (e.g. collecting, assembling, converting). In this paper, data captured
using DAG [12] cards needs to be converted to libpcap format.

Flow creation. Creating flows from the preprocessed data. The algorithm has
been specified in [6]: in essence NetFlow groups related packets together in a
flow (logical connection) based on, among other things, IP addresses and port
numbers. After the end of the connection or a certain period of inactivity
the flow is expired and exported. We utilized the package softflowd3 [10] for
the conversion of libpcap dumps. The parameters for flow expiration are 5
minutes of inactivity on a flow or a maximum life of 12 hours or a maximum
traffic of 2 gigabytes. NetFlow enabled routers natively export NetFlow data
and combines this and the previous two steps.

Post process. (optional) Processing the flows to provide storable output.
When using NetFlow, the flows are gathered by a NetFlow collector in this
step.

Analyze. Transforming the netflows into accounting flows. For this paper the
step is achieved by running the data through a custom Perl program that
removes and regroups data based on the data definition. Its main effect is
achieved by removing the source port and grouping tuples of equal properties
(source address, destination address, destination port, protocol) together
while still considering the other (time, space) constraints.

Extract. Extracting the relevant data from the analyzed data and saving it in
binary format. We use a simple script to perform these tasks.

Store. Storing the extracted accounting flows in compressed form for archival
purposes. For this evaluation we make use of the general purpose program
bzip2 [11] to pack the data.

5 How Much Accounting Data Has To Be Stored?

To accurately measure the storage requirements to save the accounting data and
substantiate the refined method we need representative input data of several
types of locations. Further, this input data needs to be available in packet dumps
and not NetFlow logs because dumps offer greater insight during development
and are more prevalent than NetFlow logs. For our research we have selected
over 30 traces from six different locations (table 1), together representative for
most public networks.

These six locations can be classified into three categories of samplepoints:

1. End-users network uplink: m2c-loc4 monitors basic broadband (ADSL, vary-
ing speeds from 256 Kbit/s to 8 Mbit/s) connections, m2c-loc1 captures

3 Several patches (file output, report aggregates, distinguish between source and
destination of a flow) have been made to enhance softflowd. The complete set
is available at http://wwwhome.cs.utwente.nl/˜wanrooij/papers/dataonretention/-
softflowd.patch

66 W. van Wanrooij and A. Pras

Table 1. Samplepoints

name type date #traces #days time traffic
(hr:mn) (GB)

m2c-loc1 [13] student dorms 2002Q2 4 4 01:00 51
m2c-loc3 [13] college 2003Q3 8 5 02:00 16
m2c-loc4 [13] broadband homes 2004Q1 15 8 03:45 184
sigcomm-01 [14] conference 2001Q3 1 3 52:00 4
nzix-II [15] Internet exchange 2000Q3 3 3 14:30 37
mawi-b [16] transatlantic link 2005Q1 12 1 03:00 23

packets from heavy broadband users (Ethernet, 100 Mbit/s), m2c-loc3 is a
college allowing 9 to 5 usage of its network by students (comparable to an
office setting) and sigcomm-01 is a trace of a wireless 802.11b conference
network.

2. Inter-network point: nzix-II is a set of traces of the NZIX when it served as
a peering point for six major New Zealand ISPs. These files, captured by a
DAG [12] card, need to be converted to libpcap format before use.

3. Intra-network link: mawi-b is a transpacific (Japan - United States) 100
Mbit/s line.

The last category of intra-network link serves as verification whether possible
conclusions about the amount of accounting data might also be applicable to
other links.

5.1 Results

For each of the categories of Sect. 5 the amount of stored date for each of the
methods in Sect. 4 and the new accounting flows refinement has been determined
using the steps of Sect. 4.2. These amounts have been visualized in figures 2 and
3; when applicable, charts have separate data series for different times of the
day. Along the X axis in Fig. 2 are the different methods: full dump (traffic),
header dump (header), netflow, accounting flows (accflow) and the compressed
version of accounting flows (bzip2). Finally each graph contains an indicator on
the optimality of the accounting flow algorithm: this calculated value is based on
the principle that every combination of source and destination address should at
least appear once in the flows. Each combination of two addresses that appears
more than once in the accounting flows, e.g. due to different port number or
expiration, is only present once in this indicator.

Table 2 shows the ratio (compressed accounting flows)/(traffic data) for each
of the locations.

The four end-user locations share the common impression of a steep descend-
ing line in the graphs, but some variation in the resulting ratios still exist. The
differences can be explained by looking at the usage of the connection at the
respective location:

Data on Retention 67

Table 2. Unweighed ratio compressed accounting data/traffic

name category ratio name category ratio

m2c-loc1 end-user 0.00367% nzix-II inter-network 0.04116%
m2c-loc3-night end-user 0.07485% sigcomm-01 end-user 0.03670%
m2c-loc3-morning end-user 0.00892% mawi-b-03h intra-network 0.17977&
m2c-loc3-afternoon end-user 0.03019% mawi-b-15h intra-network 0.26824%
m2c-loc4 end-user 0.02646% mawi-b-21h intra-network 0.01137%

– Student dorms (Fig. 2(a)): Probably the most notable aspect are the small
ratios for m2c-loc1 in comparison with all other locations. The explanation
for this phenomenon is straightforward: when connections are stable (same
characteristics) and relatively large amounts of data are transferred using
these connections then a smaller set of flows is produced than when the
connections are used for e.g. browsing or messaging. This location connects
student dorms using 100 Mbit/s endpoints: an adequate interpretation of this
data, also glancing over the used port numbers and direction of connections,
is up and downloading of large files (sharing).

– College (Fig. 2(b)): The traffic dump for this location has been preprocessed
before flow creation was attempted due to large inexplicable amounts of
ICMP traffic. Because “normal” traffic data does not exhibit this pattern this
ICMP data has been filtered out; all figures (e.g. amount of traffic data) have
also been corrected for this filtering. The diverging ratios for different times
of the day are striking. However, considering the type of location (college, no
student dorms) and the observations of m2c-loc1 the explanation is obvious:
at night the Internet traffic is limited to e.g. DNS lookups, some mails and
some background traffic (all activities resulting in very high ratios); in the
morning students come in and start sharing files (low ratio), most of them
already left the building by the end of the afternoon (higher ratio).

– Broadband homes (Fig. 2(c)) and sigcomm-01 (Fig. 2(c)) represent typical
web activities and share similar results. Sigcomm being a conference engages
in more casual, quick browsing and net accessing while m2c-loc4 (ADSL
network) has more transfer of files.

The inter-network point shows a declining curve for nzix-II (Fig. 2(d)) that
approximately matches the results of the end-users connections. The free fall in
the graph near the indicator is caused by the fact that the traces used cover a
period of six hours, so expired flows, e.g. POP3 sessions and news websites, are
more prevalent than in a short trace. This also applies to the sigcomm-01 trace
of several days.

The intra-network samplepoint differs from the others in it being an arbitrary
link in a network that connects two large IP networks in different time zones.
Because we used parts of a 24 hour long trace and initial analysis revealed
wildly varying traffic patterns throughout the day, the graph has been set-up
in a different way: the x-axis is now time measurement and the data series are
the amount of data of the respective steps (Fig. 3). Because the link primarily

68 W. van Wanrooij and A. Pras

(a) student dorms (m2c-loc1)

(b) college (m2c-loc3)

(c) broadband homes (m2c-loc4) and conference (sigcomm-01)

(d) internet exchange (nzix-II)

Fig. 2. Accounting data per 100 MB traffic

Data on Retention 69

Fig. 3. Accounting data for mawi-b per 100 MB traffic

connects Japan and USA, time has been marked in local (Tokyo) and Central
Standard Time. Upon investigation (destination port, traffic patterns), a lot of
virus related activity seems to be going on on the link (scans for targets by
worms), especially during the spikes around 03:00 and 16:00. Now the value of
the two timelines comes around: when intentional traffic is only unidirectional,
because the other side is mostly asleep, traffic can become distorted because
worms and viruses don’t ever sleep. These malignant programs usually scan
complete networks just by sending a few UDP or TCP packets, thereby creating
a different flow entry for each target, hence the amount of accounting flows
substantially increases per 100 MB traffic. The fact that the second spike is
higher than the first one does not conclusively prove anything; this may be
caused by:

– Larger IPv4 network in Japan reachable through the link (more targets:
more traffic).

– Larger IPv4 network in USA reachable through the link (more perpetrators:
more traffic).

– Larger percentage of infected workstations in USA
– Different browsing habits in Japan and USA

Aside from these interesting observations, the traffic patterns, although always
distorted by worms due to the nature of the link, confirm that our other observa-
tions are approximately on target, even though these results are higher. This is
easily explained due to the nature of the link: bidirectional, not only connecting
end users to servers but also servers and worms to end users.

5.2 Comparison

Based on the results in tables 1 and 2, we can make the cautious, but reasonable
estimate for the ratio (compressed accounting data in bytes)/(network traffic in

70 W. van Wanrooij and A. Pras

bytes) of 0.04%. This figure is applicable to both traffic on network uplinks as
well as traffic on network exchanges; graph 3 established that this figure could
also be applied to other links, except for special circumstances.

These results differ from previously published findings by KPMG. This report
[4] asserted that one provider stated that one hour of 2 Mbit/s traffic generates
8 megabyte accounting data (ratio of 0.89%). Based on the average throughput
of AMSIX [17], the major Internet exchange in the Netherlands, of 25 Gbit/s,
an estimate of 60 terabyte accounting data per month (0.76%) is reasoned out
in the report. Although not specified in the report, we assume that the format
for saving data is compressed NetFlow.

Using our refinements to the NetFlow technology for storing accounting flows
requires just 0.04% disk space of the original traffic, a twenty fold increase in
efficiency. Instead of 60 terabyte of storage, now only an estimated 3 terabyte is
required monthly to store all the logs.

6 Conclusion

Motivated by the confusion surrounding the storage requirements of the possi-
ble EU regulations on data retention [1], we have investigated the definition of
accounting data and ways to extract this data from network traffic.

During our research we have refined the NetFlow method to allow for efficient
storage of the information required by the data retention proposal. The testing
of these enhancements on several representative data sets shows a reduction in
storage data of about 99.96% – equal to approximately 400 kilobyte of accounting
flows for every gigabyte of bandwidth used. Previous research into this area by
the consultancy company KPMG [4] documents a ratio of about 0.8% percent;
this specialized method performs better by a factor twenty. For the Netherlands
this represents a reduction of 57 terabyte of total monthly storage needed to
comply with the data retention initiative.

The results of this research can and should be used to make the debate on
the EU data retention laws more transparent and factually correct. Because the
findings on the definition, process and ratios are universal, they can also be used
in any debate on or application of data retention – whether in public law by
policy makers or private venue by network managers.

References

1. Presidency of Council of the European Union: Draft Framework Decision on the
retention of data processed and stored in connection with the provision of publicly
available electronic communications services or data on public communications
networks for the purpose of prevention, investigation, detection and prosecution
of crime and criminal offences including terrorism, Brussels, Belgium, November
2004, http://register.consilium.eu.int/pdf/en/04/st14/st14190.en04.pdf

2. Persson, M., Trommelen, J.: Ten aanval, Volkskrant 12 April 2005, PCM Uitgevers,
Amsterdam, The Netherlands, April 2005

Data on Retention 71

3. Stratix: Onderzoek “Bewaren Verkeersgegevens door Telecommunicatieaan-
bieders”, Schiphol, The Netherlands, August 2003, http://www.bof.nl/docs/-
stratix verkeersgegevens eindrapport.pdf

4. KPMG Information Risk Management: Onderzoek naar de opslag van historische
verkeersgegevens van telecommunicatieaanbieders, Amstelveen, The Netherlands,
November 2004, http://www.bof.nl/docs/bewaarplicht KPMG.pdf

5. Micheel, J., Braun, H.-W., Graham, I.: Storage and Bandwidth Requirements for
Passive Internet Header Traces, Workshop on Network-Related Data Management,
in conjunction with ACM SIGMOD/PODS 2001, Santa Barbara, California, USA,
May 2001, http://moat.nlanr.net/Papers/nrdm2001.pdf

6. Cisco: NetFlow Services Solutions Guide, San Jose, USA, October 2001,
http://www.cisco.com/univercd/cc/td/doc/cisintwk/intsolns/netflsol/nfwhite.pdf

7. Working party on co-operation on criminal matters: Non paper data retention,
Leiden, The Netherlands, September 2004, http://www.bof.nl/docs/non-paper.pdf

8. IETF Secretariat: IP Flow Information Export (ipfix) Charter, May 2005,
http://www.ietf.org/html.charters/ipfix-charter.html

9. Kretchmar, J.: Open Source Network Administration, Prentice Hall PTR, Upper
Sadle River, New Jersey, USA, September 2003, Section 5.1

10. Miller, D.: Software NetFlow probe, May 2005, http://www.mindrot.org/-
softflowd.html

11. Seward, J.: bzip2, May 2005, http://www.bzip.org/
12. Endace Measurement Systems: Network Monitoring Cards, May 2005, http://-

www.endace.com/networkMCards.htm
13. Van de Meent, R.: M2C Measurement Data Repository, Enschede, The Nether-

lands, December 2003, http://arch.cs.utwente.nl/projects/m2c/m2c-D15.pdf
14. Balachandran, A.: Wireless LAN Traces from ACM SIGCOMM’01, San Diego,

California, USA, August 2001, http://ramp.ucsd.edu/pawn/sigcomm-trace/
15. WAND Research Group: NLANR MOAT NZIX-II trace archive, May 2005,

http://pma.nlanr.net/Traces/long/nzix2.html
16. WIDE MAWI Working Group: MAWI Working Group Traffic Archive, May 2005,

http://tracer.csl.sony.co.jp/mawi/
17. AMS-IX B.V.: AMS-IX Homepage, May 2005, http://www.ams-ix.net

SLA Design from a Business Perspective

Jacques Sauvé1, Filipe Marques1, Antão Moura1, Marcus Sampaio1,
João Jornada2, and Eduardo Radziuk2

1 Universidade Federal de Campina Grande, Brazil
{jacques, filipetm, antao, sampaio}@dsc.ufcg.edu.br

2 Hewlett-Packard-Brazil
{joao.jornada, eduardo.radziuk}@hp.com

Abstract. A method is proposed whereby values for Service Level Ob-
jectives (SLOs) of an SLA can be chosen to reduce the sum IT infras-
tructure cost plus business financial loss. Business considerations are
brought into the model by including the business losses sustained when
IT components fail or performance is degraded. To this end, an impact
model is fully developed in the paper. A numerical example consisting of
an e-commerce business process using an IT service dependent on three
infrastructure tiers (web tier, application tier, database tier) is used to
show that the resulting choice of SLOs can be vastly superior to ad hoc
design. A further conclusion is that infrastructure design and the result-
ing SLOs can be quite dependent on the “importance” of the business
processes (BPs) being serviced: higher-revenue BPs deserve better in-
frastructure and the method presented shows exactly how much better
the infrastructure should be.

1 Introduction

Service Level Agreements (SLAs) are now commonly used to capture the
performance requirements that business considerations make on information
technology (IT) services. This is done both for services provided in-house and
for outsourced services. An SLA defines certain Service Level Indicators (SLIs)
and restrictions that such indicators should obey. Restrictions are frequently ex-
pressed in the form of Service Level Objectives (SLOs), threshold values that
limit the value of SLIs. Some typical SLIs are service availability, service response
time, and transaction throughput. The problem examined in this paper is that of
designing SLAs; the SLA design problem is informally defined as that of choosing
appropriate values for SLOs. For example, should service availability be 99.9%,
99.97%? How is one to choose adequate values? There are other aspects to SLA
design (choosing SLIs, choosing measurement methods and periods, choosing
penalties, etc.) but these are not considered here.

It is interesting to examine how choosing SLOs is typically done today. Nat-
urally, since SLOs are chosen according to how important a service is to the
business, the IT client (a senior business manager) is involved in choosing SLOs.
However, as reference [11] has vigorously shown, the methods used are almost

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 72–83, 2005.
c© IFIP International Federation for Information Processing 2005

SLA Design from a Business Perspective 73

always pure guesswork, frequently resulting in drastic loss or penalties. It is clear
that one needs more mature and objective models to properly design SLAs. An
approach based on Business Impact Management [3,12] is presented in this pa-
per.

The remainder of the paper is organized as follows: section 2 informally dis-
cusses the approach while section 3 formalizes it; section 4 considers an applica-
tion of the method through a full numerical example; section 5 discusses related
work; conclusions are provided in section 6.

2 Gaining a Business Perspective on IT Operations

An informal discussion of the approach adopted here will help the reader follow
the formal treatment presented in the next section.

2.1 Addressing IT Problems Through Business Impact Management

SLOs must be chosen by taking into account the importance of the IT service
on the business. In the approach being described here, this is done by capturing
the impact of IT faults and performance degradations on numerical business
metrics associated with the business. By considering business metrics, one may
say that the approach is part of a new area of IT management called Business
Impact Management (BIM) [3,12]. BIM takes Service Management (SM) to a
new maturity level since metrics meaningful to the customer such as financial or
risk measures are used to gauge IT effectiveness rather than technical metrics
such as availability and response time.

For BIM to be successfully applied to the problem at hand, one needs to
construct an impact model. Since it is quite difficult to bridge the gap between
events – such as outages – occurring in the IT infrastructure and their financial
effect on the business, an intermediate level is considered: that of the business
processes (BPs) using the IT services. Thus, an impact model is used to map
technical service metrics to BP metrics such as BP throughput (in transactions
per second) and a revenue model to map BP throughput to a final business
metric such as revenue throughput.

Thus, this paper essentially investigates how BIM can be useful in addressing
some common IT problems. SLA design was chosen as an example of an activity
performed by IT personnel that can be rethought from a business perspective
using BIM.

2.2 SLA Design: An Optimization Problem

The IT infrastructure used to provision IT services is designed to provide par-
ticular service levels and these are captured in SLAs. Intuitively, a weak infras-
tructure (with little redundancy or over-utilized resources) has the advantages of
having low cost but may generate high business losses – as captured by the BIM
impact model – resulting from low availability and customer defections due to
high response times. An infrastructure with much better availability and lower

74 J. Sauvé et al.

response times will possibly generate lower business losses but may have a much
higher total cost of ownership (TCO). Thus, in both cases, total financial outlay
(TCO plus business losses) may be high. It thus appears that a middle ground
can be found that will minimize this sum. Once this infrastructure yielding min-
imal financial outlay is found, one may then calculate SLOs such as availability
and response time. As a result, SLO thresholds will be outputs from the method
rather than being chosen in an ad hoc way. These SLOs will be optimal in the
sense that they will minimize total financial outlay.

3 Problem Formalization

The optimization problem considered aims to calculate the number of load-
balanced resources and the number of fail-over resources to be used in provi-
sioning IT services so as to minimize overall cost (TCO plus business losses).
The model considers workloads with fixed averages and static resource alloca-
tion. Once this infrastructure is found, SLOs such as service availability, average
response time, etc. can be calculated and inserted in the SLA. This section for-
malizes the SLA Design problem.

3.1 The Entities and Their Relationships

Figure 1 shows the entities and their relationships used in the problem formal-
ization. It can also be useful to the reader as a quick reference to the notation
employed. The model includes entities both from the IT world and the business
world. The business (top) layer consists of several business processes. For sim-
plicity, assume that there is a one-to-one relationship between business processes
and IT services. Extension to several services is straightforward but would need-
lessly complicate the formalism for this presentation. We thus have a set BP
of BPs and a set S of services: S = {s1, . . . , s|S|}. The infrastructure used to
provision these services consists of a set RC of resource classes.

Service si depends upon a set RCS
i of these resource classes. For example,

a service could depend on three resource classes: a Web resource class, an ap-
plication server resource class and a database resource class. Class RCj consists
of a cluster of IT resources. This cluster has a total of nj identical individual
resources, up to mj of which are load-balanced and are used to provide adequate
processing power to handle incoming load. The resources that are not used in a
load-balanced cluster are available in standby (fail-over) mode to improve avail-
ability.

Finally, an individual resource Rj ∈ RCj consists of a set P = {Pj,1, . . . , Pj,k,
. . .) of components, all of which must be operational for the resource to also be
operational. As an example, a single Web server could be made up of the fol-
lowing components: server hardware, operating system software and Web server
software. Individual components are subject to faults as will be described later.

An SLA is to be negotiated concerning these services. For service si, the
SLA may specify Service Level Objectives (SLOs). The impact model to be
presented assumes that BP throughput is lost if the service is unavailable or

SLA Design from a Business Perspective 75

Fig. 1. Entities and their relationships

if response time exceeds a certain threshold. The following SLO parameters are
considered for service si and will constitute the promise made to the customer in
the SLA: AMIN

i , the minimum service availability, T̄i, the average response time,
TDEF

i , the response time threshold causing customer defection and Bi

(
TDEF

i

)
=

BMAX
i , the probability that response time is larger than the threshold.

One may thus summarize the SLA as the four sets: AMIN =
{
. . . , AMIN

i , . . .
}
,

T =
{
. . . , T̄i, . . .

}
, TDEF =

{
. . . , TDEF

i , . . .
}
, BMAX =

{
. . . , BMAX

i , . . .
}
.

3.2 The Cost Model

Each infrastructure component Pj,k has a cost rate cActive
j,k when active (that is,

used in a load-balanced server) and has a cost rate cStandby
j,k when on standby.

These values are cost per unit time for the component and may be calculated
as its total cost of ownership (TCO) divided by the amortization period for
the component. The cost of the infrastructure over a time period of duration
∆T can be calculated as the sum of individual cost for all components. In the
equation below, j runs over resource classes, l runs over resources and k runs
over components.

C (∆T) = ∆T ·
|RC|∑

j=1

⎛

⎝
mj∑

l=1

|Pj |∑

k=1

cActive
j,k +

nj−mj∑

l=1

|Pj |∑

k=1

cStandby
j,k

⎞

⎠ (1)

76 J. Sauvé et al.

3.3 Loss Considerations

A weak infrastructure costs little but may generate large financial losses due to
low availability or high response time. The converse situation is an infrastructure
that causes little loss but is expensive to provision. In order to evaluate this
tradeoff, financial loss must be calculated. In general, the model used is that
at time t, the imperfect infrastructure produces adverse impact on business –
or simply business loss – at rate l (t); the rate is expressed in units appropriate
to the business metric used per time unit. As an example, loss rate could be
expressed in dollars per second when using dollar revenue as a business metric.

For simplicity, assume that all SLOs are evaluated at the same time and that
the evaluation period is ∆T . Thus, the accumulated business impact over the eval-
uation period is L (∆T) =

∫ ∆T

0
l (t) dt. Assuming a constant rate (l) of faults over

time, we have L (∆T) = ∆T · l. A specific loss model will be discussed below.

3.4 The SLA Design Problem

The SLA Design problem may be stated informally as follows: one wishes to
determine the number of servers – both total number of servers and number of
load-balanced servers – that will minimize the financial impact on the enterprise
coming from two sources: infrastructure cost and financial loss. Formally, a first
SLA Design problem may be posed as follows:

Find: The SLA parameters, the sets AMIN , T , BMAX

By minimizing: C(∆T) + L(∆T), the total financial impact on the business over
evaluation period ∆T

Over:
{
n1, . . . , n|RC|

}
and

{
m1, . . . , m|RC|

}

Subject to: nj ≥ mj and mj ≥ 1
Where: C(∆T) is the infrastructure cost over the SLA evaluation period ∆T ;

L(∆T) is the financial loss over the SLA evaluation period ∆T ;
nj is the number of resources in resource class RCj ;
mj is the number of load-balanced resources in RCj .

The set TDEF =
{
. . . , TDEF

i , . . .
}

which indicates the response time thresh-
old from which defections start to occur is given as input. A typical value is
8 seconds for web-based e-commerce [13]. As a result of the optimization, val-
ues for the three sets of SLA thresholds availability: AMIN =

{
. . . , AMIN

i , . . .
}
,

average response time: T =
{
. . . , T̄i, . . .

}
, and defection probability: BMAX ={

. . . , BMAX
i , . . .

}
will be found. These are the values to be used in an SLA.

In order to complete the model, one needs to define an impact model and
a way to calculate loss L(∆T), and the SLOs AMIN , T , and BMAX . The next
sections cover this.

3.5 A Specific Loss Model

When IT problems occur, the impact on business may be decreased revenue or
increased costs or both. In this paper only decreased revenue is considered, a

SLA Design from a Business Perspective 77

situation applicable to revenue-generating BPs typical in e-commerce. Each BP
has an input load (in transactions per second). Some of this load is lost due to
a loss mechanism with 2 causes: service unavailability and customer defection
due to high response times. Subtracting lost load from the input load results in
the BP transaction throughput (denoted by X). The revenue throughput due
to any given business process is V = X · φ where φ is the average revenue per
transaction for the business process. The total loss rate, over all BPs is

l =
|BP |∑

i=1

li

where BP is the set of BPs and li is the loss rate due to BP bi. In the above,
we have li = ∆Xi · φi . Here, ∆Xi is the loss in throughput (in transactions per
second) for BP bi and φi is the average revenue per transaction for process bi.

We consider that the BP is heavily dependent on IT, and thus BP availability
Ai is equivalent to the availability of the IT service (si) used by the BP. When
service si is unavailable, throughput loss is total and this occurs with probability
1−Ai. We thus have ∆XA

i = γi ·(1 − Ai) where ∆XA
i is loss attributable to ser-

vice unavailability, γi is the input load incident on BP bi and Ai is the availability
of service si. When service is available (this occurs with probability Ai), loss oc-
curs when response time is slow. Thus, we have ∆XT

i = γi ·Bi

(
TDEF

i

) ·Ai where

∆XT
i is loss attributable to high response time, Bi

(
TDEF

i

)
= Pr

[
T̃i > TDEF

i

]

is the probability that the service response time (the random variable T̃i) is
larger that some threshold TDEF

i . This models customer defection and assumes
that a customer will always defect if response time is greater than the threshold
(typically 8 seconds for an e-commerce BP).

The total loss in BP throughput is simply the sum of losses due to unavail-
ability and losses due to high response time:

∆Xi = ∆XA
i + ∆XT

i = γi · (1 − Ai) + γi · Bi

(
TDEF

i

) · Ai (2)

3.6 The Availability Model

In order to calculate lost throughput, one needs to evaluate the availability Ai

of an IT service, si. This is done using standard reliability theory [15]. Indi-
vidual component availability may be found from Mean-Time-Between-Failures
(MTBF) and Mean-Time-To-Repair (MTTR) values. Since all components must
be available for a resource to be available, the component availabilities are com-
bined using “series system reliability” to yield resource availability AR

j . Combin-
ing resource availability to compute resource class availability (ARC

j) uses “m-
out-of-n reliability” since the resource class will be available and able to handle
the projected load when at least mj resources are available for load-balancing.
Finally, for service si to be available, all resource classes it uses must be available
and “series system reliability” is used to calculate service availability (Ai).

78 J. Sauvé et al.

3.7 The Response Time Performance Model

The loss calculation depends on Bi

(
TDEF

i

)
, the probability that the service

response time is larger that some threshold TDEF
i . In order to find this proba-

bility, the IT services are modeled using an open queuing model. This is adequate
for the case of a large number of potential customers, a common situation for e-
commerce. Each resource class RCj consists of a cluster of nj resources, of which
mj are load-balanced. Let us examine service si. The input rate is γi transac-
tions per second. Each transaction demands service from all resource classes in
the set RCS

i . Demand applied by each transaction from BP bi on class RCj is
assumed to be Di,j seconds. In fact this is the service demand if a “standard”
processing resource is used in the class RCj resources. In order to handle the
case of more powerful hardware, assume that a resource in class RCj has a pro-
cessing speedup of αj compared to the standard resource. Thus, service time
for a transaction is Di,j/αj and the service rate at a class RCj resource for
transactions from business process bi is µi,j = αj/Di,j . Finally, since there are
mj identical load-balanced parallel servers used for processing in resource class
RCj , response time is calculated for an equivalent single server [13] with input
load λi,j = γi/mj . Thus the utilization ρi,j of class RCj resources in processing
transactions from business process bi is:

ρi,j =
λi,j

µi,j
=

γi · Di,j

mj · αj
(3)

The total utilization ρj of class RCj resources due to transactions from all
services is:

ρj =
|S|∑

i=1

ρi,j (4)

Observe that, when load is so large that any ρj ≥ 1, then any service de-
pending on that resource class will have Bi

(
TDEF

i

)
= 1, since response time is

very high for saturated resources.
Now, in order to find Bi

(
TDEF

i

)
when ρj < 1, let us find the cumulative dis-

tribution of response time, Ti (y) = Pr
[
T̃i ≤ y

]
. In this case, the total response

time for a transaction from BP bi is the sum of
∣∣RCS

i

∣∣ random variables, one for
each resource class used by service si. In order to find the probability distribu-
tion of a sum of independent random variables, one may multiply their Laplace
transforms [14]. In order to make mathematical treatment feasible, assume Pois-
son arrivals (this is a reasonable assumption for stochastic processes with large
population) and exponentially distributed service times. (Observe that although
service times may not be independent and exponentially distributed in practice,
the optimization step compares design alternatives and that is probably insensi-
tive to particular distributions – if they are the same when comparing results.)
From queuing theory, the Laplace transform of response time (waiting time plus
service time) for a single-server queue is T ∗ (s) = a/(s+a) where a = µ · (1 − ρ),
µ is the service rate and ρ is the utilization. Recall that input load from several

SLA Design from a Business Perspective 79

services is going to the same resource class. Thus, for the combination of resource
classes used by service si, we have:

T ∗ (s) =
∏

j∈RCS
i

ai,j

s + ai,j
(5)

where ai,j = µi,j ·(1 − ρj). Inverting the transform yields the probability density
function of response time, which is integrated to find the cumulative probability
distribution function (PDF) of response time, Ti (y). Finally:

Bi

(
TDEF

i

)
= Pr

[
T̃i > TDEF

i

]
= 1 − Ti

(
TDEF

i

)
(6)

Additionally, average response time is typically defined in an SLA and may
be found from the Laplace transform as follows:

T̄i = −dT ∗
i (s)
ds

∣∣
∣∣
s=0

(7)

4 A Numerical Example of SLA Design

The purpose of this section is to go through a complete example and verify the
extent to which the method proposed can be useful in designing SLAs, i.e., choos-
ing SLO values. Assume the existence of a single service (the index i is dropped)
using three resource classes: a Web resource class (RCweb), an application server
resource class (RCas) and a database resource class (RCdb). In the example,
the parameters shown in Table 1 are used, typical for current technology [8]. In
that table, tuples such as (a,b,c) represent parameter values for the three re-
source classes (web, application, database); furthermore, each resource is made
up of three components: hardware (hw), operating system (os) and application
software (as).

Let us now first get a feeling for the variation of some of these measures.
Figure 2 shows how the loss component due to response time (∆XT

i) indeed
varies as response time rises with increased load. Similarly, one can get a feel
for the loss component due to availability (∆XA

i) from Figure 3. In that figure,
availability is made to improve by changing the number of database machines
from 2 to 6, while keeping other infrastructure components constant. The loss
due to high response time is very low and is thus not shown in the figure. As one
can see, cost increases, loss due to unavailability decreases while “cost + loss”
reaches a minimum value for 4 machines.

It is now time to consider the main problem of interest in this paper: that
of SLA design. If one were to design the SLA in an ad hoc way, one could ap-
proach the problem from the infrastructure side and try to minimize cost while
maintaining reasonable service availability and response time. The cheapest in-
frastructure here is (nweb, nas, ndb, mweb, mas, mdb)=(1,1,1,1,1,1). However, this
design cannot handle the applied load (average response time is very high) due

80 J. Sauvé et al.

Table 1. Parameters for example

Parameters Values Parameters Values

T DEF 8 seconds αj (1,1,3)

φ $1 per transaction hw =(1100, 1100, 4400)
cActive
j,k os=(165, 165, 165)

($/month) as=(61, 30, 660)

γ 14 transactions per second hw =(1000, 1000, 4000)

cStandby
j,k os=(150, 150, 150)

($/month) as=(55, 0, 600)

∆T 1 month Dj (0.05, 0.1, 0.2) seconds

AR
j 99.81% (this value is

(resource calculated from
availability appropriate MTBF
for Rj) and MTTR values)

to saturation of the application server. A second try yields (1,2,1,1,2,1) – more
power in the application tier. This yields a monthly cost of $9141, and SLOs of
(average response time=1.5 s, service availability=95.32%). Since this availabil-
ity is not typically considered adequate, the designer may increase the number
of machines in other tiers yielding a design with infrastructure (3,3,3,1,2,1), cost
$22201 and SLOs of (1.5 s, 99.96%). There the designer may rest. We will shortly
show that this is not an optimal design.

17 17.2 17.4 17.6 17.8 18 18.2
0

1

2

3

4

5

6

7

8

9
x 10

4

Load (transactions/second)

Lo
ss

 d
ue

 to
 R

es
po

ns
e

T
im

e
($

)

Infrastructure Cost

Loss

Fig. 2. Effect of Load on Loss Fig. 3. Sensitivity of Loss due to Redun-

dancy

Alternatively, the designer may base the design on the customer and over-
design with (5,5,5,2,3,1), cost $37152 and SLOs (0.39 s, 99.998%). None of the
above design decisions take loss into account. It is instructive to discover the
values for loss for the above designs as well as for the design which minimizes
the sum of cost plus loss as shown in section 3.4 (see Table 2).

For the best design, the SLOs are (average response time=0.625 s, availabil-
ity=99.998%). It has lowest overall financial outlay, and the table clearly shows

SLA Design from a Business Perspective 81

Table 2. Comparing designs

Infrastructure Cost Loss due to Loss due to Cost The cost of
Response unavailability plus loss choosing

($) ($) ($) ($) wrong ($)

(1,2,1,1,2,1) 9141 20886 1697369 1727396 1698274
(3,3,3,1,2,1) 22201 21902 15428 59531 30409
(5,5,5,2,3,2) 37152 0 608 37760 8638
(3,4,4,1,2,2)(best) 28576 0 546 29122 0

the high cost of choosing SLOs in an ad hoc fashion: a wrong choice can cost
tens or even hundreds of thousands of dollars per month.

As a final experiment, it is instructive to see that the best design depends
quite heavily on the importance of the business process being serviced. If one
lessens the importance of the BP by diminishing the average revenue per trans-
action by a factor of 10, the best design is (2,4,2,1,2,1), cost $17396, total loss
$3243 and SLOs: (average response time=1.5 s, availability=99.97%). In this
case, a much lower availability is best and the design is cheaper by $11180 a
month than if BP importance were not considered.

5 Related Work

Business Impact Management is a very new area of interest to researchers and
practitioners that has not yet been consolidated. In the recent past, some prob-
lems typically faced in IT management are being studied through a business per-
spective [1,2,3,4,5,6,7]. Some examples include incident prioritization [2], man-
agement of Web Services [5], Business Process Management [4], etc. These ref-
erences confirm a general tendency to view BIM as a promising way of better
linking IT with business objectives. However, these references offer little in terms
of formal business impact models to tie the IT layer to BP or business layers.
This is one of our main contributions.

Although this paper stresses aspects of SLA Design, it is also licit to view
the work as a method for IT infrastructure design (capacity planning). In this
particular area, [8] describes a tool – AVED – used for capacity planning to meet
performance and availability requirements and [9] describes a methodology for
finding minimum-cost designs given a set of requirements. However, none of these
references consider the problem of capacity planning from a business perspec-
tive, using business metrics. Furthermore, response time considerations are not
directly taken into account. Finally, [10] considers the dynamic optimization of
infrastructure parameters (such as traffic priorities) with the view of optimizing
high-level business objectives such as revenue. It is similar in spirit to the work
reported here, although the details are quite different and so are the problems
being solved (SLA design is not the problem being considered). The model is
solved by simulation whereas our work is analytical.

82 J. Sauvé et al.

In the area of SLA design, HP’s Open Analytics [11] is a response to the
downside of designing SLAs with current practices leading to a more formal
approach as presented here. Open Analytics dictates that all assumptions leading
to a performance decision must be made explicit and that all technical and
financial consequences must be explained. “Open auditable mathematics, rather
than wet finger in the air responses to requests [...]” must be used although
details are not given.

Management by Contract [12] investigates how IT management can decide
when it is better to violate an SLA or to keep compliance, according to a utility
function that calculates the business impact of both alternatives. It is similar in
spirit to our work, although it does not specifically address the problem of SLA
design.

6 Conclusions

This paper has proposed a method whereby best values for Service Level Objec-
tives of an SLA can be chosen through a business perspective. Business consid-
erations are brought into the model by including the business losses sustained
when IT components fail or performance is degraded. This is done through an
impact model, fully developed in the paper. A numerical example consisting of
a single e-commerce business process using a single IT service dependent on
three infrastructure tiers (web tier, application tier, database tier) was used to
show that the best choice of SLOs can be vastly superior to ad hoc design. A
further conclusion is that infrastructure design and the resulting SLOs can be
quite dependent on the “importance” of the BPs being serviced: higher-revenue
BPs deserve better infrastructure and the method presented shows exactly how
much better the infrastructure should be.

Much work can be undertaken to improve the results, among which the fol-
lowing are worth noting: a better availability model (such as presented in [8]) can
be used to approximate reality more faithfully; the load applied to the business
process can be better modeled by following the Customer Behavior Model Graph
approach [13]; variations in the load applied to the BPs should be investigated;
more complete impact models should be developed to be able to deal with any
kind of BP, not only e-business BPs heavily dependent on IT; finally, the work
should be extended to adaptive infrastructures and dynamic provisioning.

Acknowledgments. We would like to acknowledge and thank the Bottom Line
Project team. This work was developed in collaboration with HP Brazil R&D.

References

1. V. Machiraju, C. Bartolini and F. Casati (2004), “Technologies for Business Driven
IT Management”, In L. Cavedon, Z. Maamar, D. Martin, and B. Benatallah (ed-
itors) Extending Web Services Technologies: the Use of Multi-Agent Approaches,
Kluwer Academic Publishers, 2004.

SLA Design from a Business Perspective 83

2. C. Bartolini and M. Sallé (2004), “Business Driven Prioritization of Service Inci-
dents”, In Proc. 15th IFIP/IEEE Distributed Systems: Operations and Manage-
ment (DSOM 2004), 15-17 November 2004, Davis, CA, USA.

3. P. Mason, A New Culture for Service-Level Management: Business Impact Man-
agement, IDC White Paper.

4. F. Casati, M. Castellanos, U. Dayal, M. Hao, M. Sayal and M.C. Shan, Business
Operation Intelligence Research at HP Labs, In Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, 2002.

5. F. Casati, E. Shan, U. Dayal and M.C. Shan, Business-Oriented Management of
Web Services, In Communications of the ACM, October 2003.

6. Z. Liu, M. Squillante and J. Wolf, On Maximizing Service-Level Agreement Profits,
In ACM Electronic Commerce Conference, October 2001.

7. Y. Diao and J. Hellerstein and S. Parekh, A Business-Oriented Approach to the
Design of Feedback Loops for Performance Management, In Proc. of the 12th In-
ternational Workshop on Distributed Systems: Operations and Management, 2001.

8. G. Janakiraman, J. Santos, Y. Turner; Automated Multi-Tier System Design
for Service Availability, In Proceedings of the First Workshop on Design of Self-
Managing Systems, June 2003.

9. D. Ardagna, C. Francalanci, A Cost-Oriented Methodology for the Design of Web-
Based IT Architectures, In Proceedings of the 2002 ACM symposium on Applied
Computing, 2004.

10. S. Aiber, D. Gilat, A. Landau, N. Razinkov, A. Sela, and S. Wasserkrug, “Auto-
nomic Self-Optimization According to Business Objectives”, In Proceedings of the
International Conference on Autonomic Computing, 2004.

11. R. Taylor, C. Tofts; Death by a thousand SLAs: a short study of commercial suicide
pacts, HP Technical Report, January 2005.

12. M. Sallé and C. Bartolini (2004), “Management by Contract”, In Proceedings of the
2004 IEEE/IFIP Network Operations and Management Symposium, Seoul, Korea,
April 2004.

13. D. Menascé, V. Almeida and L. Dowdy, “Performance by Design”, Prentice Hall
PTR, 2004.

14. L. Kleinrock, Queuing Systems, Vol I: Theory, Wiley, New York, 1975.
15. K. S. Trivedi, Probability & Statistics with Reliability, Queuing and Computer Sci-

ence Applications, Prentice-Hall, 1982.

Bernhard Kempter1 and Vitalian A. Danciu2

1 Siemens Corporate Technology,
bernhard.kempter@siemens.com

2 Munich Network Management Team�, University of Munich
danciu@mnm-team.org

Abstract. The promise of policy-based management is lessened by the risk of
conflicts between policies. Even with careful conception of the policies it is dif-
ficult if not impossible to avoid conflicts completely. However, it is in principle
possible to detect and resolve conflicts either statically or at runtime. Taking ad-
vantage of existing managed systems models it is even possible to detect and re-
solve policy conflicts not addressed until now. In this paper we present a generic
approach to automated policy conflict detection based on existing knowledge
about a managed system. We describe a methodology to derive conflict defini-
tions from invariants of managed systems models, and show how these can be
used to detect and resolve policy conflicts automatically.

1 Introduction

As organisations grow – be they corporations, educational facilities or governmental
agencies – the number of decision-makers within increases. Business goals formulated
by different decision-makers are divergent or conflicting in some cases. When these
goals are projected onto IT management, these conflicts will manifest as management
conflicts. In principle they will result in conflicting actions, independently of the man-
agement architecture deployed, or the associated programming paradigm. Conflicting
actions lead to unpredictable results: mild effects could be the failure of single tasks,
while more serious cases could lead to faultily configured or malfunctioning systems.
Since often business goals are implemented by scripting for management tools, the res-
olution of conflicts is a task performed after the detection of a conflict and needs to be
executed by personnel with insight into the management system, thus incurring high
cost. As management evolves in the direction of self-managed systems, automation of
conflict handling becomes indispensable.

An important approach to pursuing management goals is the derivation of policy
from these goals. Policies at an operational, technical level can be enforced by means
of a policy architecture that guides the execution of management actions on a distributed
system. Policy-based managment is the only management paradigm that allows, plau-
sibly, conflict detection and resolution. In this paper we present a solution to conflict
handling in policy-based systems that exploits a priori models of managed systems.

� The authors wish to thank the members of the Munich Network Management Team for help-
ful discussions and valuable comments on previous versions of this paper. The MNM Team
directed by Prof. Dr. Heinz-Gerd Hegering is a group of researchers of the University of Mu-
nich, the Munich University of Technology, the University of the Federal Armed Forces and
the Leibniz Supercomputing Center.

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 84–96, 2005.
c© IFIP International Federation for Information Processing 2005

Generic Policy Conflict Handling Using a priori Models

85

A generic approach to automated resolution of conflicts between obligation policies
is still missing, since such conflicts cannot be resolved from the information given in the
policies alone. They are dependent on the structure and setup of the managed system.
Thus, a model of the managed system is necessary for determining whether a set of
policies is in conflict or not.

Driven by the ever increasing complexity of today’s systems, organisations create
models of their systems. The advent of service-orientation entices them to model sys-
tems in detail and as a whole, in contrast to modeling isolated components. Frameworks
like the Common Information Model (CIM) [4] provide a base for such efforts. The re-
sulting models describe the nominal state of the deployed system by not only represent-
ing attributes of system components but also relations between them, e.g. functional or
structural dependencies. Hence, a finished model can be seen as a specification of the
managed system in case.

In this paper we demonstrate how such a priori (i.e. existing) models can be lever-
aged to detect and solve policy conflicts (Section 3). This allows us to address policy
conflict types that until now have been inaccessible to automated detection and resolu-
tion. The core of the approach is a methodology for deriving reusable, formal conflict
definitions from model aspects and management action sets. These definitions yield
constraints that allow automated detection of policy conflicts (Section 4). The broad ap-
plicability of the methodology is demonstrated by means of a static relationship model
for functional dependency. It can also be applied to other static models, such as con-
tainment models, as well as dynamic models, e.g. state models. We use the results of
the methodology in Section 5, where we show how automated policy conflict detection
can be performed and discuss strategies for automated conflict resolution. We present
related work regarding policy conflict resolution and selected modeling techniques and
standards in Section 6.

2 Models of Managed Systems

In this section we discuss aspects of object oriented models instrumental to automated
conflict detection and resolution. We bootstrap the approach to policy conflict handling
by assessing a general work process of an administrator who enforces policy by hand.
Based on that motivation we discuss characteristics of model hierarchies that are useful
to our conflict handling approach.

2.1 Manual Conflict Handling

policy {
 event { }

target {
action {

/terminals
shopCloses

shutdown()
}
}

}

policy {
}

action {
/terminals

shopCloses
}

}
update(secPatch)}

target {
event {

Fig. 1. Simple conflict

Consider the two obviously conflicting policies
shown in Fig. 1: one policy specifies that all ter-
minals be shut down after working hours, the
other specifies that security patches should be
installed at that time. A human administrator is
able to solve the conflict by allowing the patches
to be installed before shutting down the termi-
nals. He assigns an explicit ordering to the policy set to be enforced; in consequence,
both policies are enforced and a desired result is achieved.

In order to find this solution, the administrator uses his knowledge about the man-
aged system: he knows beforehand that patches cannot be installed after the terminals
have been shut down. By means of this a-priori model of the system he can conclude
that he encountered a policy conflict. He uses this model to find an alternative execution
path, thus resolving the conflict.

Generic Policy Conflict Handling Using a priori Models

86 B. Kempter and V.A. Danciu

2.2 Hierarchy of Models

To describe systems, we usually model them at some level of abstraction. The mod-
els normally cover specific static or dynamic aspects of the system they represent, e.g.
states and transitions in that system, its structure or its attributes. Hence, models consti-
tute views from different perspectives onto the system.

D
er

iv
e

in
va

ria
nt

s

D
er

iv
e

co
nf

lic
t d

ef
in

iti
on

s
fr

om
 in

va
ria

nt
s.

Antecedent Dependent

1..

1..

...

m
od

el
In

st
an

ce
Si

ze
Le

ve
l o

f a
bs

tra
ct

io
n

C
on

fli
ct

de
te

ct
io

n

<<instantiate>> <<instantiate>>

<<instantiate>>

C
or

e
S

ch
em

a
m

od
el

C
us

to
m

iz
ed

Dependency

StateManagedObj StateManagedObj

FunctionalDependency

:

TerminalDHCPServer

BootDependency

dep1

:t1

BootDependency

TerminalDHCPServer:d1

Fig. 2. Hierarchy of models

A given managed object (MO) is embedded in
different kinds of models, e.g. it can be a node of a
containment tree and, at the same time, a partition
of an automaton describing states of the system.

Fig. 2 gives an example of the abstraction hi-
erarchy of models belonging to or derived from
CIM. Traversing the diagram from its top down-
wards, the level of abstraction decreases and the
size of models increases. In common practice, a
standard like CIM defines abstract classes and as-
sociations that are independent of any managed
system or vendors (CIM core schema). The core
schema is specialized into customized models (of-
ten including some levels of abstraction in the cus-
tomization as well) to fulfill the requirements of an organisation. The resulting cus-
tomized model is then instantiated according to the infrastructure it represents.

The diagram shows an example including an abstract dependency from the core
schema, the specialization to the abstract class of a functional dependency, and finally
to a boot dependency in the customized model. The boot dependency describes that a
terminal is dependent on a DHCP server at boot time. Instantiation of the classes of the
customized model produces the instance model which represents the managed system
at runtime.

Leveraging Model Derivation. The models on adjacent levels are related to each other
in that the more concrete model is derived from the more abstract, shown with grayed
lines in the diagram. Two different derivation alternatives are employed: inheritance and
instantiation, both imparting features to the more concrete model.

This circumstance can be exploited to minimize the effort needed in conflict detec-
tion, since any aspect of an abstract model will be present in the more concrete ones.
Rightmost in Fig. 2 the activities described in the following sections of this paper are
mapped to model abstraction levels. Note that derivation of invariants and conflict defini-
tions (done manually) are performed on the abstract levels, where model size is small or
moderate. In contrast, automated conflict handling resides on the most concrete model.

3 Using Models to Support Conflict Handling

Setting for policy-based management. Policies that are to be evaluated concurrently
(e.g. because they triggered on the same event) are said to compose a situation. This
situation may contain a conflict or not. The detection scheme presented in this paper
determines the existence of a conflict and identifies the conflicting policies based on a
frequently encountered situation definition. The last section hints at how to redefine the
situation in order to extend or adapt the conflict handling approach.

Informal conflict notion. Before detailing the application of models, we need to differ-
entiate actual conflicts from other misbehavior of a policy system. The following three
common conditions must be satisfied for a policy conflict to be possible ([13])

87

• Conflicts occur between two or more policies.
• Policies are evaluated concurrently.
• Goals of policies cannot jointly be reached.

In this paper’s perspective, these conditions can be summarised as:
• Constraints extracted from a priori models must not be violated by policies in the
same situation. Though we rule out ´conflicts´ occurring from the execution of a single
policy, the model based approach could be used to detect such faulty policies as well.

To clarify the settings assumed for a policy-based management scenario, Fig. 3
shows three abstraction planes relevant to the approach presented in this paper. The
management plane at the top includes the set of policies, where decisions are made and
the execution of operations is initiated.

ap
pr

oa
chou

r

policy policypolicypolicypolicy A

:dep1 BootDependency

Layer2Dependency:l1

MySwitch:s1 MyWebServer:w1

l1 :Layer2Dependency

policy Dpolicy Cpolicy B

Terminal:t1DHCPServer:d1

l1 :Layer2Dependency

M
an

ag
em

en
t

M
od

el
In

fra
st

ru
ct

ur
e

�
�
�

�
�
�

�������������
���
���
���

Fig. 3. Model and Views

In the model plane, which corresponds to the in-
stance model in Fig. 2, an implementation view is as-
sumed in addition to the model view depicted. Thus,
the MOs also imply agents, specifically policy execu-
tion points (PEP) able to enforce policies by execut-
ing actions on the underlying infrastructure. From the
model perspective, the MOs hold a representation of
an element while from the implementation perspec-
tive they constitute a middleware layer, obscuring the
heterogeneity of the infrastructure. To avoid crowding
the diagram, these two perspectives are not differen-
tiated between. Finally, the infrastructure plane at the
bottom includes all resources (hardware, applications,
services etc.) to be managed.

Required Policy Components. Policies can be specified at different abstraction layers,
ranging from corporate or high-level policies at an abstract level, down to operational
policies at a technical level. Though the methodology presented in this paper may work
at a higher level of abstraction, it is targeted at the operational policy level. It is a
requirement that policies be expressed in a formal policy language, rather than in prose.

Policy languages provide different sets of language elements. While the conflict
detection methodology is applicable to any language, the latter must provide a minimum
expressiveness (see also Fig. 1):

Event. The concept of a situation mentioned in Section 3 implies that the language have
an event clause. (Examples are time, alarm etc.)
Target. Since our approach focuses on models of the target MOs, we need a target
clause stating the MOs (or management domains) which are to be manipulated.
Action. Finally, an action clause is necessary to determine the concrete action to be
executed on target objects.

3.1 Approaching Conflict Formalisation

The example in Fig. 4 shows an obvious conflict that cannot be detected or resolved
without knowledge from models. It serves as motivation for the approach proposed in
this paper while indicating in general the information needed to tackle conflicts of this
type. The two policies A and B shown in the figure manipulate DHCP servers resp.
the terminals (more precisely: call operations on the managed object boundary of the
MOs). The notation in the target field of policies describes a domain which is a set of
MOs build along management aspects [11].

Generic Policy Conflict Handling Using a priori Models

88 B. Kempter and V.A. Danciu

Using an approach that only considers the management plane from Fig. 3 (i.e. solely
the policies themselves) the conflict will not be detected, since the policies address dif-
ferent objects in different domains. Moreover, the goals to enable and disable different
MOs are not per se conflicting.

If we consider the management plane and the model plane in addition (see Fig. 3),
we can determine that the terminal t1 has a boot dependency (which is a kind of a
functional dependency, see Fig. 2) on the DHCP server

policy {
 event {

target {
action {

}

id="A"

/terminals
enable()

}
}

}

8 am
policy {

}

action {
}target {

event {

update(secPatch)
disable() ;

}

id="B"
8 am

/DHCP

}

Fig. 4. Example of conflicting
policies: Is there a conflict be-
tween policies A and B?

d1. This circumstance is reflected in the instance
model (Fig. 2). To achieve the goal of policy A (the de-
pendent terminal can be used), the DHCP server also
has be to usable. Policy B prohibits this goal by dis-
abling the DHCP server. With the dependency infor-
mation gathered from the model it becomes obvious
that achieving the goals of both policies at the same
time is not possible. Thus, a conflict between policies
A and B has been detected.

3.2 Invariants of Managed Systems

Every managed system is governed by implicit rules resulting from its design. They
range from very simple ones (e.g. a unit cannot perform its tasks while switched off)
to complex dependencies between components or services. Invariants that formally de-
scribe these rules can be extracted from the models of the managed system. Again,
different types of models will yield invariants of a different perspective.

A similar concept is found in the integrity constraints common in relational database
management systems (RDBMS). An example for their purpose is to ascertain that a data
set is not deleted as long as a dependent data set exists. Attempted violations of these
constraints are interdicted by the DBMS.

The realization of this concept is eased by the fact that the number of actions is
small (for an SQL-DBMS: insert, update, drop . . .) as is the number of different data
structures (relation, set/row etc). The concise action set found e.g. in DBMS is the result
of well-adopted standardization. In systems and service management, the number of
available management actions as well as their semantics is far from uniform.

Invariants are Indicators for Conflicts. A management action resulting in the violation
of an invariant suggests a management problem, since with it an intrinsic rule of the
system has been broken. A conflict between actions is indicated when the combined ex-
ecution of two or more actions in the same situation results in the breach of an invariant.

4 Conflict Detection: Step by Step to Conflict Definition

In this section we outline the methodology for extracting conflict definitions and detec-
tion clauses from models. In the following, conflict definition refers to specific kinds
or classes of conflicts (as in Fig. 8), not the generic policy conflict as such. A conflict
is defined by stating model inherent requirements that are violated when a conflict oc-
curs. Below, we present the steps necessary to distill such conflict definitions based on
models at a high abstraction level. These definitions are still valid in the more concrete,
derived layers of the model hierarchy, thus reducing the effort for conflict definition.

Step 1: Select a type of model. Any one of the available models can be selected
in this step and it makes sense to perform these steps for more than one model. To

89

illustrate the principle by example, we will demonstrate the methodology for functional
dependencies.

Example. Selecting functional dependencies as the focused type of association, the
level of abstraction to define invariants has to be chosen. To reach optimal reusability
of definitions we chose the highest level of abstraction — here it is the level of abstract
classes. Fig. 5 shows a section of a object oriented class hierarchy which might be
derived from the generic CIM schema.

Dependent

Antecedent

..

.
EnabledLogicalElement (from CIM)

EnabledState:{Enabled, Disabled,...}

enable():void
disable():void

StateManagedObj

enable():void
disable():void

StateManagedObj

FunctionalDependency

Fig. 5. Detailed cus-
tomized model of
functional dependency

An MO StateManagedObject has possible states
Disabled and Enabled and two methods to change the
state. Enabled means that the resource is ready to exe-
cute user requests while Disabled means that usage is
prohibited. A StateManagedObject can be linked with
another StateManagedObject by an association called
FunctionalDependency. Thereby, an MO can have the
role of a (functional) dependent or an MO provides functional-
ity (antecedent). The exact definition of this association class is
made in the next step.

Step 2: Extract invariants from the model. An invariant de-
scribes a model aspect in a formal, machine processable way
and it can be evaluated to boolean values. Invariants can be classified into general in-
variants and specific ones. An example for a general invariant of a containment relation-
ship is: the enclosing managed object (MO) must exist at least as long as the contained
MOs. Such an invariant is inherent to a model; it is not related to the policies specified
for the system. In order to specify invariants, an appropriate language has to be chosen.

Object Constraint Language (OCL). The Unified Modeling Language (UML) defines a
formal language to describe constraints for any (UML) model. OCL [12] can be used
to define invariants, pre- and postconditions as necessary for our methodology. For our
purpose, all invariants are defined for classes and must hold for all instances of that
class. Though any equivalent formalisms can be used instead, UML does provide a
common language for graphical presentation of object models and OCL offers the op-
portunity of using an OCL compiler to translate invariants (and consequently conflict
definitions) to executable code, thus enabling their direct use.

FunctionalDependency
funcdep:
self.Dependent (mo | mo.status=’Enabled’)

self.Antecedent.status=’Enabled’

context
inv

exists
implies

Fig. 6. Invariant 1

Example. An invariant consists of two parts:
the context part which describes the start-
ing point of the invariant (here it is the class
FunctionalDependency from Fig. 5)
and the inv part which contains the con-
straint. To specify an invariant for functional dependencies, we have to reflect which
condition has to hold (is always evaluated to ´true´) for the whole life time of that as-
sociation: the invariant in Fig. 6 states that if an instance exists in the dependent
role and its status is Enabled then the antecedent has also to be in its Enabled state
to ensure proper execution of the dependent. (The authors are aware that this is only
one possible definition out of a huge set. As the paper focus on conflicts we leave a
discussion of optimal dependency definition.)

The keyword self refers to an instance of the class FunctionalDependency.
With help of a dot you can navigate through the model: self.Dependent is the set

Generic Policy Conflict Handling Using a priori Models

90 B. Kempter and V.A. Danciu

of instances of the class StateManagedObject which hold the dependent role in
this concrete instance (self) of FunctionalDependency.

Step 3: Derive relationships of invariants to policies. In this step, invariants are
mapped to policy actions. For this purpose, the general invariants mentioned in the
previous step are considered along with the policies.

StateManagedObject :: disable () : void
self.status = ’Disabled’

context
post:

Postcondition 1

context
post:

StateManagedObject :: enable () : void
self.status = ’Enabled’

Postcondition 2

Fig. 7. Postcondition1and2

While policies contain actions to be executed,
invariants do not. Therefore, the effect of the
actions on the model needs to be specified. As
shown in the example in step 2, all actions chang-
ing the state of the associated MOs are described
there by describing the effect of an MO´s method
as postconditions.

Example. The abstract class StateManagedObject consists of two methods
disable() and enable() which are described in OCL (Fig. 7). Postcon-
dition 1 states, that after termination of the method the attribute of the class
StateManagedObject has the value Disabled. Postcondition 2 is defined in the
same way.

Step 4: Create conflict definition. The conflict definition “parts” determined in the
preceding steps are combined in this step. A conflict definition describes the circum-
stances in which conflict occurence is certain. Having defined an invariant (step 2) and
post conditions for the methods (step 3) this step analyzes if the invariant can be evalu-
ated to ´false´ and if so, a conflict definition is generated.

Example. As the functional dependence has two different ends (dependent and an-
tecedent) and the objects associated have two different methods (disable() and
enable()) there are 4 pairs of methods call to examine (Fig. 8).

FuncDepDisable
FunctionalDependency
MO[mo1] :: disable()

self.Antecedent = mo1

conflict
context
conflict

pre:

space: MO[mo2] :: disable()

and self.Dependent = mo2
refers to: inv FunctionalDependency

Conflict 1

FunctionalDependency

self.Antecedent = mo1

conflict
context
conflict

pre:

space:

and self.Dependent = mo2
refers to: inv FunctionalDependency

MO[mo2] :: enable()

FuncDep

MO[mo1] :: disable()

Conflict 3

FunctionalDependency

self.Antecedent = mo1

conflict
context
conflict

pre:

space:

and self.Dependent = mo2
refers to: inv FunctionalDependency

Conflict 2
FuncDepEnable

MO[mo1] :: enable()
MO[mo2] :: enable()

Method pairing

4

1

2

3Antecedent.disable()

Antecedent.enable()

Dependent.enable()

Dependent.disable()

Fig. 8. Conflict definitions and method pairs

For the first pair, the in-
variant cannot be evaluated to
´false´ in any execution order,
hence this pair is always conflict
free. The next two pairs are in
conflict depending on the exe-
cution order (and are therefore
race conditions). Conflict defini-
tion 1 and 2 in Fig. 8 reflects this
situation. The last pair is in con-
flict disregarding the execution
order (see Conflict 3).

To describe a conflict defi-
nition OCL is extended by the
following keywords: conflict to
denote the name of the conflict,
conflict space to identify the actions/operations relevant to the conflict and refers to to
identify the invariant that the conflict references.

As the execution of operations always is the cause conflicts, naming the involved
operations is an important part of the definition. The optional precondition narrows the
context of the operations when a conflict occurs.

91

Precondition 1 Precondition 2
MO :: disable() : void
self.Antecedent

context
pre:

self.Antecedent.Dependent.forall(
implies

mo | mo.status = ’Disabled’)

self.Antecedent
context

pre:

self.Antecedent.Dependent.forall(
implies

MO :: enable() : void

mo | mo.status = ’Enabled’)

Fig. 9. Preconditions

Step 5: Provide conflict
detection clause. For a
conflict definition, a detec-
tion clause is sought that
accounts for the character-
istics specific to the con-
flict definition. In our ex-
ample, if a StateManagedObject is in the role of the antecedent , and wants to
disable() then it must be ensured that all dependents are already in the state ´Dis-
abled´ (see Precondition 1 in Fig. 9).

With respect to this precondition, a sequential execution of policies could resolve a
conflict.

5 Conflict Handling

In this section we show how the concepts developed in Sections 3 and 4 can be applied
to detect and handle policy conflicts. During operation of the managed system, policies
are triggered by events generated in the system. Before their actions are executed, the set
of policies in a situation (see Section 3) are analysed with respect to possible conflicts.
If a conflict is detected, the strategies presented in Section 5.2 can be applied to attempt
its resolution.

5.1 Application of Conflict Detection

Fig. 12 shows an activity diagram of the algorithm for conflict detection and resolution.
Since the algorithm works on sets of policies, it depicts such sets (instead of objects) as
input and output of the activities.

To illustrate the conflict handling algorithm, we use the situation shown in Fig. 10
as an example. In addition to the two policies (A and B) from Fig. 4, two other policies
are triggered by the same event: one that specifies that the webserver should reread its
configuration files (C), and one that enables the printing service (D).

In an example using as few as four policies, some of the steps described in the
following may seem redundant. When considering a large number of policies operating
on large models, these steps ensure that all situations are handled correctly.

Prerequisites. Three information sets are needed for conflict handling: policies in a
situation, e.g. those shown in Fig. 10; conflict definitions, e.g. those described in Section

policy {
 event {

target {
action {

}

id="A"

/terminals
enable()

}
}

}

8 am
policy {

}

action {
}target {

event {

update(secPatch)
disable() ;

}

id="B"
8 am

/DHCP

}

policy {
 event {

target {
action {

}

}
}

}

8 am
policy {

action {
target {
event { 8 am

id="C"

/webserver
rereadConfig()}

/printer

id="D"

}

}
}

enable()

Fig. 10. Example situation

Action

MO

Association

Model

definition
Conflict

Policy

Fig. 11. Information sets

Generic Policy Conflict Handling Using a priori Models

92 B. Kempter and V.A. Danciu

4; models of the system, as shown in the model plane of Fig. 3. These sets are related,
as shown in Fig. 11:

The policies contain actions and references to MOs (targets). Actions relevant to
policy conflicts are found in the conflict definitions, as are MOs and associations of
MOs. In addition, the conflict definition specifies patterns of association between MOs
in the models. To perform conflict handling, we leverage the relation between these
information sets.

Match Conflict Definitions. The policies in a situation are tested against the conflict
definitions acquired by means of the procedure described in Section 4. Specifically, the
actions of the policies are compared to the conflict space fields of conflict def-
initions. Matching policies constitute a matching set within the potentially conflicting
set.

In our example situation, the actions of the policies A - D are matched to the actions
of the conflict definitions 1-3 (Fig. 8). It is obvious that the policies containing methods
enable() and disable() will match. Thus, the matching set contains policies A,
B and D. These are used as input to the next activity.

Sort by Conflict Definition. From the matching set, a number of sets cd(i) are created,
each corresponding to exactly one conflict definition i. The sets may overlap, since a
single policy may match several conflict definitions.

[success]

Match
conflict definitions

Sort by
conflict definition

Matching set

cd(i)

cd(i,j)

Determine
related MOs

Test invariant

Select strategy

"Situation"

conflicting set
Confirmed

Execute strategy

C
on

fli
ct

in
g

se
t

P
ot

en
tia

lly

Conflict
free set

models
A−priori

\

Conflict
resolution

detection
Conflict

Fig. 12. Conflict handling algorithm

In our example, the conflict space of all con-
flict definitions contain the methods enable()
and disable(). Hence, all the policies in the
matching set match all conflict definitions, so that
three sets cd(1), cd(2) and cd(3) result, each
one of them containing policies A,B,D. Thus:
cd(1) = cd(2) = cd(3) = {A,B,D}
Determine Related MOs. The previous activity
has correlated the policy actions and the conflict
definitions, thus identifying potentially conflict-
ing policy sets. To violate an invariant, actions
must be executed on objects that are related according to the invariant. To test this con-
dition, we compare the targets of every policy in every set cd(i) with MOs referenced
in the conflict definitions and determine whether the roles they carry in the model (e.g.
a dependency) corresponds. Again, the policies in a set cd(i) can be related to several
model partitions, and several roles j may have to be tested. All possible combinations
of policies from a set cd(i) result in sets cd(i, j). As in the previous step, the resulting
cd(i, j) may overlap.

To clarify this step, consider the following procedure:

1. Select a set to begin with, e.g. cd(1)
2. Find all instances j of the class from the invariant of i: results in all instances of

FunctionalDependency.
3. Determine targets of policies in the set cd(1) selected: result is terminal,

DHCPserv and printer
4. For all j, find instances containing the targets above: results in sets cd(1, j), where

j is the current instance of i’s invariant’s class.
5. Repeat the steps for all remaining cd(i).

93

The example model only has one association that is relevant for conflict detec-
tion, thus the only set yielded by this procedure is cd(3, 1): it matches the pat-
tern Antecedent.disable/Dependent.enable. Since there is no dependency between the
printer MO and the other two MOs, only policies A and B are left in the set.

At this point, both actions and targets have been accounted for. Further analysis of
a set cd(i, j) can be performed disregarding the other sets.

Test Invariant. The previous activity has created sets that correspond to single con-
flict definitions and contain only policies with a high potential of conflict. This activity
corresponds to a simulation of the execution of the policy actions. It divides the sets
yielded by the previous step into a confirmed conflicting set of policies and conflict-free
policies. For each policy set cd(i, j), the invariant referenced in the conflict definition
i is tested and evaluated under the assumption that the actions of the policies in the set
are executed. Since policies are executed in parallel, the invariant must be tested for
all permutations of the serialization of the set. If the set passes all tests, the policies in
the set are released from the potentially conflicting set into the conflict-free set. If the
invariant evaluates to false for at least one permutation, the set is conflicting.

In our example, the terminal is dependent on the DHCP server in that that service
must be available for the terminal to boot. The invariant of conflict definition 3 is vi-
olated, since the object in the dependent role (terminal) is enabled, while the object
in the antecedent role (DHCP server) is disabled. In consequence, the set cd(3, 1) is
transferred to the confirmed conflicting set.

Select/execute Strategy. For each conflicting cd(i, j), a resolution strategy must be se-
lected and executed. As shown in Fig. 12, more than one of the strategies discussed
in Section 5.2 may be tested, resorting to Strategy A if all others failed. An optimal
selection of strategy depends on the number of policies in a set, how time-critical their
execution might be and possibly other factors not taken into consideration yet. The ef-
fectiveness of the resolution strategy can be tested by applying the same steps as for
conflict detection to a modified set of policies.

For our example, a sequential execution of the conflicting policies in appropriate
order resolves the conflict (let the terminal boot before disabling the DHCP server).

5.2 Strategies for Conflict Resolution

As discussed in Section 5.1, conflict detection determines a policy set where two or
more policies are in conflict with each other. Once this set is known, attempts can be
made to resolve the conflicts in an automated fashion, or at least minimize their impact.
This section presents strategies to that end.

Existing strategies exhibit an all-out approach to conflict resolution, as the following
two alternatives show:

A. The most drastic measure is for the policy service to abstain from enforcing any of
the policies. This could prove to be a viable approach in applications that are not
time critical, but it still requires manual intervention.

B. Another approach found in the literature ([5,8]) is to enforce only the policy with
the highest priority in the set – assuming policies have been assigned priorities.
This scheme is often mentioned in the context of quality of service policy, and its
usefulness may be constrained to that niche.

Generic Policy Conflict Handling Using a priori Models

94 B. Kempter and V.A. Danciu

Strategies using the automated conflict detection presented in this paper allow for
a differentiated resolution. Since conflicts can be detected in an automated manner in
any set of policies, combinations of the policies in the set can be tried. This yields the
following strategies:

C. Try to enforce as many policies as possible, excluding the minimal number of poli-
cies for the set to be conflict free. We can determine the set to be enforced by
iteratively applying conflict detection to parts of the conflict set.

D. Serialising parts of the policy set and finding an appropriate synchronous enforce-
ment order can resolve the conflict in some cases. This solution appears to be the
least invasive, though it will slow down the enforcement of the policies. Again, the
enforcement order is found by applying the conflict detection algorithm to permu-
tations of the conflict set.

E. Create conflict free subsets and serialise the enforcement of subsets. This is an
optimisation of the above strategy. While the policy subsets are enforced syn-
chronously, the enforcement of the policies in one subset can be parallelised. Nor-
mally, i.e. in cases where the number of sets is small compared to the mean number
of policies per set, this strategy should execute faster.

These alternatives are orthogonal: any combination of serialisation and reduction of
the policy set is possible. Unfortunately, seeking the optimal solution implies testing a
large number of policy sets, which may not be practical to do at runtime.

6 Related Work

Policy conflict handling. We imposed the requirement that the conflict handling scheme
presented in this paper be independent of a specific policy language, the type of policy
and overlap of policy domains as a necessary prerequisite. In the following, we present
work related to the approach presented here.

At Imperial College much valuable work in the area of policy conflicts has been
published. The result of [10] is a conflict classification. Conflicts are classified along
the number of overlaps (at least one) of domains (given in subject, target or action)
between two or more policies.

Another conflict detection approach exploiting domain overlapping is found in [8].
It focuses on modality conflicts, where policies are typed (positive and negative autho-
risation and obligation policy). A triple overlap (subject and target and action) indicates
a conflict. This approach is effective in detecting conflicts between authorisation and
obligation policies, but limited regarding conflicts between obligation policies.

Damianou [5] uses so called meta policies, which are part of the Ponder specifica-
tion, to formalize policy conflicts. A meta policy specifies constraints regarding a set of
policies. As this approach is language specific and not all policy languages support the
concept of constraint-based meta policies, the general applicability is limited. Also, to
apply the general-purpose tool of meta policies to conflict handling, a methodology for
the specification of appropriate meta policies would have to be created.

The scope of [1] is to support policy refinement. A formal language (event calcu-
lus) is used to represent the state of a system allow reasoning about possible future
states. Policy language, policy execution and the managed system are formalised using
event calculus. Based on the resulting model, conflicts can be defined in event calculus,
overlap of domains being a prerequisite for conflict definition.

95

This approach takes into account the managed system allowing calculus represen-
tation of static and dynamic aspects of a whole managed system. However, since since
special models must be created, the effort introduced seems to be quite high, especially
when considering large scale, complex systems.

In [2,3] a policy conflict resolution approach is shown for the Policy Description
Language PDL, a rule-based language which omits the policy element subject and tar-
get. Conflicts are defined by monitors which evaluate action constraints. An action con-
straint has the form: never Action1 ∧...∧ ActionN ∧ condition . A method-
ology to derive action constraints is not given, also the application of the approach to
other policy languages and architectures is not discussed.

Management Object Modeling. To be able to derive conflict definitions we need the
concept of object orientation especially the concept of classes and methods. Manage-
ment classes provide abstraction of resources for management purposes.

The instances of a management class and their embedding in a management in-
formation base (MIB) is standardised. Well known object oriented MIBs are DMTF’s
Common Information Model (CIM)[4] and ISO’s Structure of Management Informa-
tion (SMI) [6,7]. For these standards our approach can be applied directly.

For IETF’s SNMP-SMI [9] (also known as Internet MIB), which is not object ori-
ented, a wrapper needs to be designed in order to allow our approach to be applied to
MIB attributes.

7 Conclusions

In this paper we have discussed an approach to conflict handling relying on a priori
models. Different types of models represent static and dynamic aspects of managed
systems. They can be leveraged to derive invariants that, in turn, yield conflict defini-
tions. Aided by these conflict definitions, policy sets can be checked for conflicts either
statically or at runtime. In the following we summarize the key concepts of the paper
and point to further topics of study.

We presented a methodology to derive conflict definitions from object oriented man-
agement models. In addition, we have shown how to perform automated conflict detec-
tion based on these conflict definitions. Also, we presented conflict resolution strategies
for the policy sets found to be in conflict. The approach presented is generic in that it
has no dependency regarding type of policy, the policy language used or management
model type. Merely three policy elements are prerequisite to using the approach.

Yet, several important topics of study in the area of conflict handling remain. An im-
portant issue would be the integration of conflict handling methods for different types of
policies, e.g. approaches targeting authorisation policies using a model based scheme.

We assumed that a situation consists of policies that have been triggered by one
event. Keeping in mind that a situation is merely a set of policies, the same concepts can
be extended to support policy sets created in other ways, e.g. by observing a sequence of
events. For that purpose, the only thing that needs to be changed is the definition of the
situation itself. As a related issue, using invariants to identify faulty policy specification
seems to be a rewarding topic.

Generic Policy Conflict Handling Using a priori Models

96 B. Kempter and V.A. Danciu

References

1. Arosha K. Bandara, Emil C. Lupu, and Alessandra Russo. Using event calculus to formalise
policy specification and analysis. In Proceedings of HPOVUA 2003, 2003.

2. J. Chomicki, J. Lobo, and S. Naqvi. A logic programming approach to conflict resolution in
policy management. In 7th International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR’2000), pages 121–132, Breckenridge, Colorado, Morgan Kauf-
man, 2000.

3. J. Chomicki, J. Lobo, and S. Naqvi. Conflict resolution using logic programming. Transac-
tion on Knowledge and Data Engineering, 15(1):244–249, 2003.

4. Common Information Model (CIM) Specification Version 2.8. Specification, January 2004.
5. N. C. Damianou. A Policy Framework for Management of Distributed Systems. PhD thesis,

Imperial College of Science, Technology and Medicine, University of London, Department
of Computing, February 2002.

6. Information Technology – Open Systems Interconnection – Structure of Management Infor-
mation – Part 4: Guidelines for the Definition of Managed Objects. IS 10165-4, International
Organization for Standardization and International Electrotechnical Committee, 1992.

7. Information Technology – Open Systems Interconnection – Structure of Management In-
formation – Part 7: General Relationship Model. IS 10165-7, International Organization for
Standardization and International Electrotechnical Committee, 1997.

8. Emil C. Lupu and Morris Sloman. Conflicts in policy-based distributed systems management.
IEEE Transactions on Software Engineering, 25(6):852–869, November 1999.

9. K. McCloghrie and M.T. Rose. RFC 1065: Structure and identification of management in-
formation fo r tcp/ip-based internets. RFC, Internet Engineering Task Force (IETF), August
1988.

10. Jonathan D. Moffett and Morris S. Sloman. Policy conflict analysis in distributed system
management. Journal of Organizational Computing, 1993.

11. Morris S. Sloman and Kevin Twidle. Domains: A Framework for Structuring Management
Policy, chapter 16. 1994.

12. OMG Unified Modeling Language Specification, Version 1.5. Technical Report
formal/03-03-01, Object Management Group, March 2003. http://www.omg.org/cgi-
bin/doc?formal/03-03-01.

13. A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog, A. Huynh,
M. Carlson, J. Perry, and S. Waldbusser. RFC 3198: Terminology for policy-based manage-
ment. RFC, Internet Engineering Task Force (IETF), November 2001.

An Approach to Understanding Policy Based on

Autonomy and Voluntary Cooperation

Mark Burgess

Oslo University College, Norway
mark@iu.hio.no

Abstract. Presently, there is no satisfactory model for dealing with
political autonomy of agents in policy based management. A theory
of atomic policy units called ‘promises’ is therefore discussed. Using
promises, a global authority is not required to build conventional man-
agement abstractions, but work is needed to bind peers into a traditional
authoritative structure. The construction of promises is precise, if te-
dious, but can be simplified graphically to reason about the distributed
effect of autonomous policy. Immediate applications include resolving the
problem of policy conflicts in autonomous networks.

1 Introduction

One of the problems in discussing policy based management of distributed
systems[1,2] is the assumption that all of the nodes in a network will follow
a consistent set of rules. For this to be true, we need either an external authority
to impose a consistent policy from a bird’s eye view, or a number of independent
agents to collaborate in a way that settles on a ‘consistent’ picture autonomously.

Political autonomy is the key problem that one has to deal with in ad hoc /
peer-to-peer networks, and in pervasive computing. When the power to decide
policy is delegated to individuals, orders cannot be issued from a governing
entity: consistency and concensus must arise purely by voluntary cooperation.
There is no current model for discussing systems in this situation.

This paper outlines a theory for the latter, and in doing so provides a way to
achieve the former. The details of this theory require a far more extensive and
technical discussion than may be presented in this short contribution; details
must follow elsewhere.

It has been clear to many authors that the way to secure a clear and con-
sistent picture of policy, in complex environments, is through the use of formal
methods. But what formalism do we have to express the necessary issues? Pre-
vious attempts to discuss the consistency of distributed policy have achieved
varying degrees of success, but have ultimately fallen short of being useful tools
except in rather limited arenas. For example:

– Modal logics: these require one to formulate hypotheses that can be checked
as true/false propositions. This is not the way system administrators work.

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 97–108, 2005.
c© IFIP International Federation for Information Processing 2005

98 M. Burgess

– The π-calculus: has attractive features but focuses on issues that are too low-
level for management. It describes systems in terms of states and transitions
rather than policies (constraints about states)[3].

– Implementations like IPSec[4,5], Ponder[6] etc. these do not take explicitly
into account the autonomy of agents and thus while these implement policies
well enough, they are difficult to submit to analysis.

In each of the latter examples, one tends to fight two separate battles: the
battle for an optimal mode of expression and the battle for an intuitive interface
to an existing system. For example, consider a set of files and directories, which
we want to have certain permissions. One has a notion of policy as a specification
of the permission attributes of these files. Policy suggests that we should group
items by their attributes. The existing system has its own idea of grouping
structures: directories. A simple example of this is the following:

ACL1: ACL2:
1. READ-WRITE /directory 1. READ-ONLY /directory/file
2. READ-ONLY /directory/file 2. READ-WRITE /directory

Without clear semantics (e.g. first rule wins) there is now an ordering ambiguity.
The two rules overlap in the specifically named “file”, because we have used a
description based on overriding the collection of objects implicitly in “directory”.

In a real system, a directory grouping is the simplest way to refer to this col-
lection of objects. However, this is not the correct classification of the attributes:
there is a conflict of interest. How can we solve this kind of problem?

In the theory of system maintenance[7], one builds up consistent and sta-
ble structures by imposing independent, atomic operations, satisfying certain
constraints[8,9]. By making the building blocks primitive and having special
properties, we ensure consistency. One would like a similar construction for all
kinds of policy in human-computer management, so that stable relationships
between different activities can be constructed without excessive ambiguity or
analytical effort. This paper justifies such a formalism in a form that can be
approached through a number of simplifications. It can be applied to network
or host configuration, and it is proposed as a unifying paradigm for autonomous
management with cfengine[10].

2 Policy with Autonomy

By a policy we mean the ability to assert arbitrary constraints of the behaviour
of objects and agents in a system. The most general kind of system one can
construct is a collection of objects, each with its own attributes, and each with
its own policy. A policy can also be quite general: e.g. policy about behaviour,
policy about configuration, or policy about interactions with others.

In a network of autonomous systems, an agent is only concerned with asser-
tions about its own policy; no external agent can tell it what to do, without its

An Approach to Understanding Policy Based on Autonomy 99

consent. This is the crucial difference between autonomy and centralized man-
agement, and it will be the starting point here (imagine privately owned devices
wandering around a shopping mall).

Requirement 1 (Autonomy). No agent can force any other agent to accept
or transmit information, alter its state, or otherwise change its behaviour.

(An attempt by one agent to change the state of another might be regarded as
a definition of an attack.) This scenario is both easier and harder to analyze
than the conventional assumption of a system wide policy. It is easier, because it
removes many possible causes of conflict and inconsistency. It is harder because
one must then put back all of that complexity, by hand, to show how such
individual agents can form collaborative structures, free of conflict.

The strategy in this paper is to decompose a system into its autonomous
pieces and to describe the interactions fully, so that inconsistencies become ex-
plicit. In this way, we discover the emergent policy in the swarm of autonomous
agents.

3 Promises

The analysis of ‘promises’ is naturally motivated by the theory of games and
voluntary cooperation[11,12] and has, to the author’s knowledge, only previously
been mentioned in a recent context of economics[13].

A promise is a general and abstract unit of intent. Promises, between agents,
can deal with things like quality of service, quality of behaviour, specifications
of state, etc. Policies of various types have been identified. For instance, in the
Ponder model[6], one has authorizations (promises to grant access) and obliga-
tions (promises to follow up on a different promise) or dependency, etc. These
can all be translated into the notion of promises.

Consider, then, a set of autonomous agents of objects represented as nodes
N = {n1, n2, . . . , nN} in a graph.

Definition 1 (Promise). A promise is a labelled directed edge (link) that con-
nects two nodes. The promise label represents a specifically intended range of
behaviour χ from within a domain of possible behaviours. i.e. n1

χ−→ n2. A
promise is thus made by a node n1 to a node n2. A promise is assumed to be
always kept.

Although it will be important, at a later stage, to discuss whether or not promises
are kept, we wish to avoid this issue in the initial discussion; we assume it to be
true. Notice also that, in the definition, the agent-nodes, between which promises
are made, are kept separate from the constraints between them. This is important
for avoiding the kinds of ordering ambiguities alluded to in the introduction.

Example 1 (Service Level Agreement (SLA)). Agent n1 promises agent n2 to
provide service of type ‘database access in time q’, τ is the type domain q ∈ [0,∞]
and the constraint χ(q) : 0 < q < 10ms.

100 M. Burgess

The formulation of a promise, above, has obvious characteristics of a directed
graph. It is not a particularly novel construction. It bears a passing resemblance
to the theory of capabilities in ref. [14], for instance. Graphs have many de-
sirable properties for defining relationships between entities[15], and there is
good reason to retain these properties in describing the relationships between
agents. In subsequent work, it will become clear that graphs will prove a useful
abstraction of themselves, for management; it is possible to transform graphs
and use their spectral properties to discover useful and important properties for
management[16,17,18].

Two special types of promise will be identified below, in order to rebuild
conventional structures from these basic atoms.

– A promise to agree to behave like another.
– A promise to utilize the promise of another.

The first of these is essential for defining groups, roles and social structures with
concensus behaviour. The latter is crucial for client-server interactions, depen-
dencies and access control. The rest of this paper is about logically combining
individual promises into collective and consistent policies that allow cooperation
between autonomous agents.

4 What Is an Inconsistency?

In the extreme case, in which every agent were independent and could only see
its own world, there would be no need to speak of inconsistency: unless agents
have agreed to be similar, they can do as they please. The only problem that
might occur is if an agent promised two contradictory things to a second agent.

Definition 2 (Broken promise). A promise of χ1 from agent n1 to agent n2

is said to be broken if there exists another promise from n1 to n2, of χ2, in which
χ1 �= χ2.

This definition is very simple, and becomes most powerful when one identifies
promise types which is beyond the present scope. It says that an agent can only
break its own promises: if an agent promises two different things, it has broken
both of its promises. One might feel the need to define ‘redundant’ promises as
being different from broken promises, e.g. if one promise merely extends another
then the other is unnecessary; but this opens up an unnecessary subjectivity
into the comparison and leads us into trouble straight away. The definition un-
ambiguously identifies a conflict of intention and it can be left up to a human
to decide which of the promises is correct, incorrect, redundant etc.

5 Promise Analysis

Logic is a way of analysing the consistency of assumptions. It is based on the
truth or falsity of collections of propositions p1, p2, One must formulate these

An Approach to Understanding Policy Based on Autonomy 101

propositions in advance and then use a set of assumptions to determine their
status. The advantage of logic is that is admits the concept of a proof.

Is there a logic that is suitable for analyzing promises? Modal logic has been
considered as one possibility, and some authors have made progress in using
modal logics in restricted models[19,20]. However, there are basic problems with
modal logics that limit their usefulness[21].

More pragmatically, logic alone does not usually get us far in engineering.
We do not usually want to say things like “it is true that 1 + 1 = 2”? Rather
we want a system, giving true answers, which allows us to compute the value of
1 + 1, because we do not know it in advance. Ultimately we would like such a
calculational framework for combining the effects of multiple promises. Never-
theless, let us set aside such practical considerations for now, and consider the
limitations of modal logical formalism in the presence of autonomy.

5.1 Modal Logic and Kripke Semantics

Why have formalisms for finding inconsistent policies proven to be so difficult? A
clue to what is going wrong lies in the many worlds interpretation of the modal
logics[22]. In the modal logics, one makes propositions p, q etc., which are either
true or false, under certain interpretations. One then introduces modal operators
that ascribe certain properties to those propositions, and one seeks a consistent
language of such strings.

Modal operators are written in a variety of notations, most often with or
�. Thus one can say p, meaning “it is necessary that p be true”, and variations
on this theme:

p �p = ¬ ¬p

It is necessary that p It is possible that p
It is obligatory that p It is allowed that p
It is always true that p It sometimes true that p

A system in which one classifies propositions into “obligatory”, “allowed” and
“forbidden” could easily seem to be a way to codify policy, and this notion has
been explored[19,20,23,21].

Well known difficulties in interpreting modal logics are dealt with using
Kripke semantics[24]. Kripke introduced a ‘validity function’ v(p, w) ∈ {T, F},
in which a proposition p is classified as being either true of false in a specific
‘world’ w. Worlds are usually collections of observers or agents in a system.

Consider the formulation of a logic of promises, starting with the idea of a
‘promise’ operator.

– p = it is promised that p be true.
– �p = ¬ ¬p = it is unspecified whether p is true.
– ¬p = it is promised that p will not be true.

and a validity function v(·, ·).

102 M. Burgess

5.2 Single Promises

A promise is something that is shared between a sender and a recipient. It is
not a property of agents, as in usual modal logics, but of a pair of agents. Logic
says nothing about this topology of a promise (indeed, we would like to keep
this separate, for reasons that become clearer in section 5.7), so one attempts to
build this into the semantics.

Consider the example of the Service Level Agreement, above, and let p mean
“Will provide data in less than 10ms”. How shall we express the idea that a node
n1 promises a node n2 this proposition? Consider the following statement:

p, v(p, n1) = T. (1)

This means that it is true that p is promised at node n1, i.e. node 1 promises
to provide data in less than 10ms – but to whom? Clearly, we must also provide
a recipient. Suppose, we try to include the recipient in the same world as the
sender? i.e.

p, v(p, {n1, n2}) = T. (2)

However, this means that both nodes n1 and n2 promise to deliver data in less
than 10ms. This is not what we need; a recipient is still unspecified. Clearly what
we want is to define promises on a different set of worlds: the set of possible links
or edges between nodes. There are N(N − 1) such directed links. Thus, we may
write:

p, v(p, n1 → n2) = T. (3)

This is now a unique one-way assertion about a promise from one agent to
another. A promise becomes a tuple 〈τ, p, �〉, where τ is a theme or promise-type
(e.g. Web service), p is a proposition (e.g.deliver data in less than 10ms) about
how behaviour is to be constrained, and � is a link or edge over which the promise
is to be kept. All policies can be written this way, by inventing fictitious services.
Also, since every autonomous promise will have this form, the modal/semantic
content is trivial and a simplified notation could be used.

5.3 Regional or Collective Promises from Kripke Semantics?

Kripke structures suggest ways of defining regions over which promises might be
consistently defined, and hence a way of making uniform policies. For example,
a way of unifying two agents n1, n2 with a common policy, would be for them
both to make the same promise to a third party n3:

p, v(p, {n1 → n3, n2 → n3}) = T. (4)

However, there is a fundamental flaw in this thinking. The existence of such
a function that unifies links, originating from more than a single agent-node, is
contrary to the fundamental assumption of autonomy. There is no authority in

An Approach to Understanding Policy Based on Autonomy 103

C(p) C(p)

p

p

3

2

1

RO

RW

C

C

C

C

file

RO

RO

RO

Fig. 1. (Left) Cooperation and the use of third parties to measure the equivalence of

agent-nodes in a region. Agents form groups and roles by agreeing to cooperate about

policy. (Right) This is how the overlapping file-in-directory rule problem appears in

terms of promises to an external agent. An explicit broken promise is asserted by file,

in spite of agreements to form a cooperative structure.

this picture that has the ability to assert this uniformity of policy. Thus, while it
might occur by fortuitous coincidence that p is true over a collection of links, we
are not permitted to specify it or demand it. Each source-node has to make up its
own mind. The logic verifies, but it is not a tool for understanding construction.

What is required is a rule-based construction that allows independent agents
to come together and form structures that span several nodes, by voluntary
cooperation. Such an agreement has to be made between every pair of nodes
involved in the cooperative structure. We summarize this with the following:

Requirement 2 (Cooperative promise rule). For two agents to guarantee
the same promise, one requires a special type of promise: the promise to cooperate
with neighbouring agent-nodes, about basic promise themes.

A complete structure looks like this:

– n1 promises p to n3.
– n2 promises n1 to collaborate about p (denote this as a promise C(p)).
– n1 promises n2 to collaborate about p (denote this as a promise C(p)).
– n2 promises p to n3

By measuring p from both n1 and n2, n3 acts as a judge of their compliance
with the mutual agreements between them (see fig. 1). This allows the basis of
a theory of measurement, by third party monitors, in collaborative networks. It
also shows how to properly define structures in the file-directory example (see
fig 1).

5.4 Dependencies and Handshakes

Even networks of autonomous agents have to collaborate and delegate tasks,
depending on one another to fulfill promised services. We must find a way of
expressing dependency relationships without violating the primary assumption
of autonomy.

104 M. Burgess

db

use db

www/db

1 2 3

Fig. 2. Turning a conditional dependency into a real promise. The necessary structure

is shown in graphical form.

Consider three agents n1, n2, n3, a database server, a web server and a client.
We imagine that the client obtains a web service from the web server, which, in
turn, gets its data from a database. Define propositions and validities:

– p1 = “will send database data in less than 5ms”, v(p1, n1 → n2) = T .
– p2 = “will send web data in less than 10 ms”, v(p2, n2 → n3) = T .

These two promises might, at first, appear to define a collaboration between the
two servers to provide a promise of service to the client, but they do not.

The promise to serve data from n1 → n2 is in no way connected to the
promise to deliver data from n2 → n3:

– n2 has no obligation to use the data promised by n1.
– n2 promises its web service regardless of what n1 promises.
– Neither n1 nor n3 can force n2 to act as a conduit for database and client.

We have already established that it would not help to extend the validity
function to try to group the three nodes into a Kripke ‘world’. Rather, what is
needed is a structure that complete the backwards promises to utilize promised
services – promises that completes a handshake between the autonomous agents.
We require:

– A promise to uphold p1 from n1 → n2.
– An acceptance promise, to use the promised data from n2 → n1.
– A conditional promise from n2 → n3 to uphold p2 iff p1 is both present and

accepted.

Thus, three components are required to make a dependent promise (see fig. 2).
This requirement cannot be derived logically; rather, we must specify it as part
of the semantics of autonomy.

Requirement 3 (Acceptance/usage promise rule). Autonomy requires an
agent to explicitly accept a promise that has been made, when it will be used to
derive a dependent promise.

One thus identifies a second special type of promise: the “usage” or “acceptance”
promise.

5.5 Autonomous, Voluntary Cooperation

What use is this construction? First, it advances the manifesto of making all
policy decisions explicit. In the example in fig. 2, it shows explicitly the roles and

An Approach to Understanding Policy Based on Autonomy 105

responsibilities of each of the agents in the diagram. Furthermore, the graphical
representation of these promises is quite intuitive and easy to understand. The
construction has two implications:

1. The component atoms (promises) are all visible, so the inconsistencies of a
larger policy can be determined by the presence or absence of a specific link
in the labelled graph of promises, according to the rules.

2. One can provide basic recipes (handshakes etc.) for building concensus and
agent “societies”, without hiding assumptions. This is important in pervasive
computing, where agents truly are politically autonomous and every promise
must be explicit.

The one issue that we have not discussed is the question of how cooperative
agreements are arrived at. This is a question that has been discussed in the
context of cooperative game theory[25,11], and will be elaborated on in a future
paper[26]. Once again, it has to do with the human aspect of collaboration. The
reader can excerise imagination in introducing fictitious, intermediate agents to
deal with issues such as shared memory and resources.

5.6 Causality and Graph Logic

As an addendum to this discussion, consider temporal logic: this is a branch of
modal logic, in which an agent evolves from one Kripke world into another, ac-
cording to a causal sequence, which normally represents time. In temporal logic,
each new time-step is a new Kripke world, and the truth or falsity of propositions
can span sequences of worlds, forming graph-like structures. Although time is
not important in declaring policy, it is worth asking whether a logic based on
a graph of worlds could be used to discuss the collaborative aspects of policy.
Indeed, some authors have proposed using temporal logic and derivative for-
malisms to discuss the behaviour of policy, and modelling the evolution systems
in interesting ways[27,28,29].

The basic objection to thinking in these terms is, once again, autonomy. In
temporal logic, one must basically know the way in which the propositions will
evolve with time, i.e. across the entire ordered graph. That presupposes that such
a structure can be written down by an authority for the every world; it supposes
the existence of a global evolution operator, or master plan for the agents in a
network. No such structure exists, a priori. It remains an open question whether
causality is relevant to policy specification.

5.7 Interlopers: Transference of Responsibility

One of the difficult problems of policy consistency is in transferring responsibil-
ities from one agent to another: when an agent acts as as a conduit or interloper
for another. Consider agents a, b and c, and suppose that b has a resource B
which it can promise to others. How might b express to a: “You may have access
to B, but do not pass it on to c”?

106 M. Burgess

b

a

cB

b

a

c

B

?

"not B"

"not B"

C
("

no
t B

")

us
e

se
nd

 B

se
nd

 B

Fig. 3. Transference of responsibility

The difficulty in this promise is that the promise itself refers to a third party,
and this mixes link-worlds with constraints. As a single promise, this desire is
not implementable in the proposed scheme:

– It refers to B, which a has no access to, or prior knowledge of.
– If refers to a potential promise from a to c, which is unspecified.
– It preempts a promise from a to b to never give B along a → c.

There is a straightforward resolution that maintains the autonomy of the nodes,
the principle of separation between nodes and constraints, and which makes the
roles of the three parties explicit. We note that node b cannot order node a to
do anything. Rather, the agents must set up an agreement about their wishes.
This also reveals that fact that the original promise is vague and inconsistent, in
the first instance, since b never promises that it will not give B to c itself. The
solution requires a cooperative agreement (see fig. 3).

– First we must give a access to B by setting up the handshake promises: i)
from b → a, “send B”, ii) from a → b, accept/use “send B”.

– Then b must make a consistent promise not to send B from b → c, by
promising “not B” along this link.

– Finally, a promises b to cooperate with b’s promises about “not B”, by
promising to cooperate with “not B” along a → b. This implies the dotted
line in the figure that it will obey an equivalent promise “not B” from a → c,
which could also be made explicit.

At first glance, this might seem like a lot of work for express a simple sentence.
The benefit of the construction, however, it that is preserves the basic principles
of make every promise explicit, and separating agents-nodes from their inten-
tions. This will be crucial to avoiding the contradictions and ambiguities of other
schemes.

6 Conclusions

A graphical scheme for analysing autonomous promises has been outlined in
a stripped-down form. Cooperative behaviour requires the presence of mutual
agreements between nodes. The value of the promise idiom is to make difficult

An Approach to Understanding Policy Based on Autonomy 107

algebraic constraints into a simple graphical technique that is intuitive for man-
agement. A number of theorems can be proved about promises (elsewhere). The
promise paradigm forces one to confront the fundamental issues in cooperative
behaviour, and can be used to build up systems from scratch, seeing the incon-
sistencies that arise visually. This also opens the way to make analysis tools and
incorporate a wider range of policies in cfengine[10].

In such a short paper, it is not possible to expand on the detailed defini-
tions, proofs or numerous applications of this idea. Some applications include,
the analysis of management conflicts (especially in autonomous agencies e.g. in
BGP), identification of important and vulnerable nodes, by spectral analysis, and
providing a language for a general theory of pervasive, autonomous computing.
These will be discussed in future work.

Acknowledgement. I am grateful to Jan Bergstra, Siri Fagernes and Lars
Kristiansen for helpful discussions.

References

1. M.S. Sloman and J. Moffet. Policy hierarchies for distributed systems management.
Journal of Network and System Management, 11(9):1404, 1993.

2. E.C. Lupu and M. Sloman. Towards a role based framework for distributed systems
management. Journal of Network and Systems Management, 5, 1996.

3. J. Parrow. An Introduction to the π-Calculus, in The Handbook of Process Algebra,
page 479. Elsevier, Amsterdam, 2001.

4. Z. Fu and S.F. Wu. Automatic generation of ipsec/vpn security policies in an intra-
domain environment. Proceedings of the 12th internation workshop on Distributed
System Operation and Management (IFIP/IEEE)., INRIA Press:279, 2001.

5. R. Sailer, A. Acharya, M. Beigi, R. Jennings, and D. Verma. Ipsecvalidate - a tool to
validate ipsec configurations. Proceedings of the Fifteenth Systems Administration
Conference (LISA XV) (USENIX Association: Berkeley, CA), page 19, 2001.

6. N. Damianou, N. Dulay, E.C. Lupu, and M. Sloman. Ponder: a language for spec-
ifying security and management policies for distributed systems. Imperial College
Research Report DoC 2000/1, 2000.

7. M. Burgess. On the theory of system administration. Science of Computer Pro-
gramming, 49:1, 2003.

8. A. Couch and N. Daniels. The maelstrom: Network service debugging via ”ineffec-
tive procedures”. Proceedings of the Fifteenth Systems Administration Conference
(LISA XV) (USENIX Association: Berkeley, CA), page 63, 2001.

9. M. Burgess. Cfengine’s immunity model of evolving configuration management.
Science of Computer Programming, 51:197, 2004.

10. M. Burgess. A site configuration engine. Computing systems (MIT Press: Cam-
bridge MA), 8:309, 1995.

11. R. Axelrod. The Complexity of Cooperation: Agent-based Models of Competition
and Collaboration. Princeton Studies in Complexity, Princeton, 1997.

12. R. Axelrod. The Evolution of Co-operation. Penguin Books, 1990 (1984).
13. J.D. Carrillo and M. Dewatripont. Promises, promises. Technical Report

172782000000000058, UCLA Department of Economics, Levines’s Bibliography.

108 M. Burgess

14. L. Snyder. Formal models of capability-based protection systems. IEEE Transac-
tions on Computers, 30:172, 1981.

15. M. Burgess. Analytical Network and System Administration — Managing Human-
Computer Systems. J. Wiley & Sons, Chichester, 2004.

16. Tuva Hassel Stang, Fahimeh Pourbayat, Mark Burgess, Geoffrey Canright, Kenth
Engø, and Åsmund Weltzien. Archipelago: A network security analysis tool. In
Proceedings of The 17th Annual Large Installation Systems Administration Con-
ference (LISA 2003), San Diego, California, USA, October 2003.

17. G. Canright and K. Engø-Monsen. A natural definition of clusters and roles in
undirected graphs. Science of Computer Programming, 53:195, 2004.

18. M. Burgess, G. Canright, and K. Engø. A graph theoretical model of computer
security: from file access to social engineering. International Journal of Information
Security, 3:70–85, 2004.

19. R. Ortalo. A flexible method for information system security policy specifications.
Lecture Notes on Computer Science, 1485:67–85, 1998.

20. J. Glasgow, G. MacEwan, and P. Panagaden. A logic for reasoning about security.
ACM Transactions on Computer Systems, 10:226–264, 1992.

21. E. Lupu and M. Sloman. Conflict analysis for management policies. In Proceedings
of the Vth International Symposium on Integrated Network Management IM’97,
pages 1–14. Chapman & Hall, May 1997.

22. B.F. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.
23. H. Prakken and M. Sergot. Dyadic deontic logic and contrary-to-duty obligations.

In Defeasible Deontic logic: Essays in Nonmonotonic Normative Reasoning, volume
263 of Synthese library. Kluwer Academic Publisher, 1997.

24. S.A. Kripke. Semantical considerations in modal logic. Acta Philosophica Fenica,
16:83–94, 1963.

25. S. Fagernes and M. Burgess. The effects of ‘tit for tat’ policy for rejecting ‘spam’
or denial of service floods. In Proceedings of the 4th System Administration and
Network Engineering Conference (SANE 2004), 2004.

26. M. Burgess and S. Fagernes. Pervasive computing management ii: Voluntary co-
operation. IEEE eTransactions on Network and Service Management, page (sub-
mitted).

27. A.K. Bandara, E.C. Lupu, J. Moffett, and A. Russo. A goal-based approach to
policy refinement. In Proceedings of the 5th IEEE Workshop on Policies for Dis-
tributed Systems and Networks, 2004.

28. A.K. Bandara, E.C. Lupu, J. Moffett, and A. Russo. Using event calculus to for-
malise policy specification and analysis. In Proceedings of the 4th IEEE Workshop
on Policies for Distributed Systems and Networks, 2003.

29. A.L. Lafuente and U. Montanari. Quantitative mu-calculus and ctl defined over
constraint semirings. Electronic Notes on Theoretical Computing Systems QAPL,
pages 1–30, 2005.

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 109 – 120, 2005.
© IFIP International Federation for Information Processing 2005

Towards Automated Deployment
of Built-to-Order Systems

Akhil Sahai1, Calton Pu2, Gueyoung Jung2,
Qinyi Wu2, Wenchang Yan2, and Galen S. Swint2

1 HP Laboratories, Palo-Alto, CA
akhil.sahai@hp.com

2 Center for Experimental Research in Computer Systems,
College of Computing, Georgia Institute of Technology,

801, Atlantic Drive, Atlanta, GA 30332
{calton, helcyon1, qxw, wyan, galen.swint}@cc.gatech.edu

Abstract. End-to-end automated application design and deployment poses a
significant technical challenge. With increasing scale and complexity of IT sys-
tems and the manual handling of existing scripts and configuration files for ap-
plication deployment that makes them increasingly error-prone and brittle, this
problem has become more acute. Even though design tools have been used to
automate system design, it is usually difficult to translate these designs to de-
ployed systems in an automated manner due to both syntactic obstacles and the
synchronization of multiple activities involved in such a deployment. We de-
scribe a generic process of automated deployment from design documents and
evaluate this process for 1, 2, and 3-tier distributed applications.

1 Introduction

New paradigms, such as autonomic computing, grid computing and adaptive enter-
prises, reflect recent developments in industry [1, 2, 3] and research [4]. Our goal is to
create “Built-to-Order” systems that operate in these new computing environments.
This requires easy and automated application design, deployment, and management
tools to address their inherent complexity. We must support creating detailed designs
from which we can deploy systems. These designs, in turn, are necessarily based on
user requirements that take into account both operator and technical capability con-
straints. Creating design in an automated manner is a hard problem in itself. Quarter-
master Cauldron [5], addresses the challenge by modeling system components with an
object-oriented class hierarchy, the CIM (Common Information Model) metamodel,
and embedding constraints on composition within the models as policies. Then, Caul-
dron uses a constraint satisfaction approach to create system designs and deployment
workflows. However, these workflows and designs are expressed in system-neutral
Managed Object Format (MOF).

MOF workflows typically involve multiple systems and formats that have to be
dealt with in order to deploy a complex system. For example, deploying a three-tier e-
commerce solution in a virtualized environment may involve interactions with blade

110 A. Sahai et al.

servers, VMWare/Virtual Servers, multiple operating systems, service containers for
web servers, application servers, databases, before, finally, executing clients scripts.
This problem of translating generic design in a system independent format (e.g.,
MOF) to the multiple languages/interfaces demanded by the system environment is
thus nontrivial.

The main contribution of the paper is a generic mechanism for translating design
specifications written in a system independent format into multiple and varied de-
ployment environments. To achieve this generic translation, we use an XML based
intermediate representation and a flexible code generation method [6, 7] to build an
extensible translator, the Automated Composable Code Translator (ACCT). Transla-
tion between the two models is non-trivial and significant result for two reasons. First,
the models are quite dissimilar in some aspects; the translation is not a straightforward
one-to-one mapping. For example, we describe the translation between significantly
different workflow models in Section 0. Second, the ACCT design is deliberately
generic to accommodate the multiple input and output formats encountered in multi-
ple design and d environments. ACCT accepts MOF-based design specifications of
CIM instance models and converts them into input specifications for SmartFrog, a
high-level deployment tool [8]. SmartFrog uses on a high-level specification language
and Java code to install, execute, monitor, and terminate applications. The generic
architecture supporting multiple input/output formats is described elsewhere [6, 7].

2 Automated Design and Automated Deployment

2.1 Automated Design Environment

At the highest level of abstraction, automated design tools offer streamlined and veri-
fied application creation. Quartermaster is an integrated tool suite built around MOF
to support automated design of distributed applications at this high level of abstrac-
tion [9, 10]. Cauldron, one of its key components, supports applying policies and rules
at design-time to govern composition of resources. Cauldron’s constraint satisfaction
engine can generate system descriptions that satisfy these administrative and technical
constraints. In this paper, we concentrate on deployment constraints for distributed
applications. Since each component of an application often depends on prior deploy-
ment of other components or completion of other components’ work, deployment is
non-trivial.

To model deployment, we use a MOF Activity comprised of a number of sub-
activities. Each of these activities has a set of constraints to meet before execution and
also parameters that must receive values. At design time, Cauldron generates configu-
ration templates and also pairwise deployment dependencies between deployment
activities. Between any pair of activities, there are four possible synchronization de-
pendencies.

SS (Start-Start) – activities must start together; a symmetric, transitive depend-
ency.

FF (Finish-Finish) –activities must finish together (synchronized); also a sym-
metric, transitive dependency.

FS (Finish-Start) – predecessor activity must complete before the successor ac-

 Towards Automated Deployment of Built-to-Order Systems 111

tivity is started, i.e., sequential execution. This dependency implies a strict
ordering, and the MOF must assign either the antecedent or the dependant
role to each activity component.

SF (Start-Finish) – predecessor activity is started before the successor activity is
finished. Similar observations on its properties follow as from FS. (As an
SF example, consider producer-consumer relationships in which the pro-
ducer must create a communication endpoint before the consumer attempts
attachment.)

Cauldron, however, is solely a design tool and provides no deployment tools,
which require software that initiate, monitor, and kill components in a distributed en-
vironment.

2.2 Automated Deployment Environment

Automated deployment tools serve to ameliorate the laborious process of preparing,
starting, monitoring, stopping, and even post-execution clean-up of distributed, com-
plex applications. SmartFrog is an open-source, LGPL framework that supports such
service deployment and lifecycle management for distributed Java applications [11,
12]; it has been used on the Utility Computing model for deploying rendering code on
demand and has been ported to PlanetLab [13]. Expertise gained applying SmartFrog
to grid deployment [14] is being used in the CDDLM standardization effort currently
underway.

Conceptually, SmartFrog comprises 1) a component model supporting application-
lifecycle operations and workflow facilities, 2) a specification language and validator
for these specifications, and 3) tools for distribution, lifecycle monitoring, and con-
trol. The main functionalities of SmartFrog are as follows:

Lifecycle operations – SmartFrog wraps deployable components and transitions
them through their life phases: initiate, deploy, start, terminate, and fail.

Workflow facilities – Allows flexible control over configuration dependencies be-
tween components to create workflows. Examples: Parallel, Sequence, and
Repeat.

SmartFrog runtime – Instantiates and monitors components; provides security. The
runtime manages interactions between daemons running on remote hosts. It
provides an event framework to send and receive events without disclosing
component locations.

SmartFrog’s specification language features data encapsulation, inheritance, and
composition which allows system configurations to be incrementally declared and
customized. In practice, SmartFrog needs three types of files to deploy an application:

1. Java interface definitions for components. These serve analogously to
the interface exposure role of the C++ header file and class construct.

2. Java source files that implement components as objects. These files corre-
spond one-to-one with the above SmartFrog component descriptions.

3. A single instantiation and deployment file, in a SmartFrog specific language,
defining the parameters and proper global deployment order for components.

112 A. Sahai et al.

2.3 Translating Between Design Specifications and Deployment Specifications

This section describes ACCT, our extensible, XML-based tool that translates generic
design specifications into fully parameterized, executable deployment specifications.
First, we describe ACCT’s design and the implementation and then the mapping ap-
proach needed to resolve mismatches between the design tool output (MOF) and de-
ployment tool input (SmartFrog).

There are several obstacles to translating Cauldron to SmartFrog. First, there is the
syntax problem; Cauldron generates MOF, but SmartFrog requires a document in its
own language syntax as well as two more types supporting of Java source code. Ob-
viously, this single MOF specification must be mapped to three kinds of output files,
but neither SmartFrog nor Quartermaster supports deriving Java source from the de-
sign documents. Finally, Cauldron only produces pairwise dependencies between
deployment activities; SmartFrog, on the other hand, needs dependencies over the
entire set of deployment activities to generate a deployment workflow for the system.

In ACCT, code generation is built around an XML document which is compiled
from a high-level human-friendly specification language (MOF) and then transformed
using XSLT. So far, this approach has been applied to a code generation system for
information flow architectures and has shown several benefits including support for
rapid development, extensibility to both new input and output languages, and support
for advanced features such as source-level aspect weaving. These advantages mesh
well with ACCT’s goals of multiple input languages and multiple output languages,
and SmartFrog deployments, in fact, require ACCT to generate two different output
formats.

The code translation process consists of three phases which are illustrated in Fig. 1.
In the first phase, MOF-to-XML, ACCT reads MOF files and compiles them into a
single XML specification, XMOF, using our modification of the publicly available
WBEM Services’ CIM-to-XML converter [15].

Fig. 1. The ACCT code generator

In phase two, XML-to-XACCT, XMOF is translated into a set of XACCT docu-
ments, the intermediate XML format of the ACCT tool. During this transformation,
ACCT processes XMOF in-memory as a DOM tree and extracts three types of Caul-
dron-embedded information: components, instances, and deployment workflow. Each
data sets is processed by a dedicated code generator written in Java. The component
generator creates an XML component description, the instance generator produces a

 Towards Automated Deployment of Built-to-Order Systems 113

set of attributes and values, as XML, for deployed components, and the workflow
generator computes a complete, globally-ordered workflow expressed in XML. (We
will describe the workflow construction in more detail later.) These generated struc-
tures are passed to an XML composer which performs rudimentary type checking (to
ensure instances are only present if there is also a class), and re-aggregates the XML
fragments back into a whole XML documents. This may result in multiple XACCT
component description documents, but there is only one instantiation+workflow
document which contains the needed data for a single deployment.

Finally, in the third phase ACCT forwards each XACCT component description,
instantiation, and workflow document to the XSLT processor. The XSLT templates
detect the XACCT document type and generate the appropriate files (SmartFrog or
Java) which are written to disk.

XACCT allows components, configurations, constraints, and workflows from input
languages of any resource management tool to be described in an intermediate repre-
sentation. Once an input language is mapped to XACCT, the user merely creates an
XSLT template for the XML-to-XACCT phase to perform the final mapping of the
XACCT to a specific target language. Conversely, one need only add a new template
to support new target languages from an existing XACCT document.

Purely syntactic differences between MOF and SmartFrog’s language can be re-
solved using solely XSLT, and the first version of ACCT was developed on XSLT
alone. However, because the XSLT specification version used for ACCT had certain
limitations, we incorporated Java pre- and post- processing stages. This allowed us to
compute the necessary global SmartFrog workflows from the MOF partial workflows
and to create multiple output files from a single ACCT execution.

Overall system ordering derives from the Cauldron computed partial synchroniza-
tions encoded in the input MOF. As mentioned in Section 0, MOF defines four types
of partial synchronization dependencies: SS, FF, SF, and FS. To describe the sequen-
tial and parallel ordering of components which SmartFrog requires, these partial de-
pendencies are mapped via an event queue model with an algorithm that synchronizes
activities correctly. It is helpful to consider the process as that of building a graph in
which each component is a node and each dependency is an edge. Each activity com-
ponent has one associated EventQueue containing list of actions:

Execute – execute a specific sub-component.
EventSend – send a specific event to other components. This may accept a list of

destination components.
OnEvent – the action to wait for an incoming event. This may wait on events

from multiple source components. It is the dual of EventSend.
Terminate – the action to remove the EventQueue.

Table 1. Possible event dependencies between components

Given this model, any
two components may have
one of three synchroniza-
tion relations, as shown in
Table 1. Fig. 2 applies these

C A component, C.
Ca Cb Component Ca sends event to Cb.
Ca Cb Component Ca waits for event from Cb.
Ca — Cb Components must perform action together

114 A. Sahai et al.

synchronization semantics to
the pairwise MOF relation-
ships. In SS, two activity
components are blocked until
each event receives a “start”
event from the other. In
ACCT, this translates to en-
tries in the EventQueues to
send and then wait for an
event from the peer compo-
nent. The FF scenario is han-
dled similarly. In SF, since
Cb’s activity must be finished
after Ca starts to deploy, Cb is
blocked in its EventQueue

until Ca’s “start” is received at
Cb. In FS, since Cb may deploy only after Ca completes its task, Cb blocks until a “fin-
ished” event from Ca is received at Cb. (For now, we assume the network delay be-
tween two components is negligible.)

Fig. 3 illustrates the XACCT for the FS dependency. The SS and FF operations are
parallel deployment activities while SF and FS represent sequential deployment ac-
tivities.

The exact content of each EventQueue depends on its dependencies to all other ac-
tivity components. Since each activity component frequently has multiple dependen-

cies, we devised an algorithm to calculate
EventQueue contents.

The algorithm visits each activity component, Ci,
in the XMOF to build a global action list. If a de-
pendency of the component is a parallel dependency
(SS or FF), then the algorithm transitively checks
for dependencies of the same type on related activ-
ity components until it finds no more parallel. For
example, if there is a dependency in which Ci is SS
with Cj, and Cj is also SS with Ck but FF (a different
parallel dependency) with Cm, it records only “Cj
and Ck” as SS on its action list before proceeding to
check component Ci+1. If it is a sequential depend-
ency (FS or SF), the algorithm adds the dependency
to the global action list and proceeds to component
i+1. That is, if Ci has FS with Cj, and Cj has FS with
Ck, only the pairwise relation “Ci and Cj with FS” is
entered into the global action list before proceeding
to Ci+1.

Then the algorithm implements deadlock avoid-
ance by enforcing a static order of actions for each
activity component Ci based on the component’s

Fig. 2. Diagrams and dependency formulations of SS, FF,
SF, and FS

<Instance Name="Ca" Class="Activity">
 <Workflow>
 <Work Name="--" Type="Execute">
 </Work>
 <Work Name="--" Type="EventSend">
 <To>Cb</To>
 </Work>
 <Work Name="--" Type="Terminator">
 Ca</Work>
 </Workflow>
</Instance>
<Instance Name="Cb" Class="Activity">
 <Workflow>
 <Work Type="OnEvent">
 <From>Ca</From>
 </Work>
 <Work Name="--" Type="Execute">
 </Work>
 <Work Name="--" Type="Terminator">
 Cb</Work>
 </Workflow>
</Instance>

Fig. 3. XACCT snippet for the FS
dependency

 Towards Automated Deployment of Built-to-Order Systems 115

role, antecedent or dependant, in each relationship. The algorithm checks the six pos-
sible combinations of roles and dependencies as follows:

1. If Ci participates as a dependant in any FS relationship, then it adds one On-
Event action to the EventQueue per FS-Dependancy.

2. If Ci has any SS dependencies, then it adds all needed EventSend and On-
Event actions to the EventQueue.

3. If Ci functions as antecedent in SF dependencies, then per dependency it
adds an EventSend action to the EventQueue followed by a single Execute
action.

4. If Ci participates as a dependant in an SF dependency, then one OnEvent ac-
tion per dependency is added to the EventQueue.

5. If Ci has any FF dependencies, it adds all EventSend and OnEvent actions to
the EventQueue.

6. Finally, if Ci serves as an antecedent roles with FS, then it adds one Event-
Send action per FS occurrence.

Finally, the workflow algorithm appends the “Terminate” action to each Ci’s
EventQueue.

XACCT captures the final workflow in a set of per-component EventQueues,
which ACCT then translates to the input format of the deployment system (i.e.,
SmartFrog). The Java source code generated by ACCT is automatically compiled,
packaged into a jar file, and integrated into SmartFrog using its class loader. An
HTTP server functions as a repository to store scripts and application source files.
Once a SmartFrog description is fed to the SmartFrog daemon, it spawns one thread
for each activity in the workflow. Subsequent synchronization among activities is
controlled by EventQueues.

3 Demo Application and Evaluation

We present in this section how Cauldron-ACCT-SmartFrog toolkit operates from
generating the system configurations and workflow, translating both into the input of
SmartFrog, and then automatically deploying distributed applications of varying
complexity. In the subsection 0, we describe 1-, 2-, and 3-tier example applications
and system setup employed for our experiments. Following that, we evaluate our
toolkit by comparing the deployment execution time of SmartFrog and automatically
generated deployment code to manually written deployment scripts.

3.1 Experiment Scenario and Setup

We evaluated our translator by employing it on 1-, 2-, and 3-tier applications. The
simple 1- and 2-tier applications provide baselines for comparing a generated Smart-
Frog description to hand-crafted scripts. The 3-tier testbed comprises web, applica-
tion, and database servers; it is a small enough size to be easily testable, but also has
enough components to illustrate the power of the toolkit for managing complexity.
Table 2, below, lists each scenario’s components.

116 A. Sahai et al.

Table 2. Components of 1-, 2-, and 3-tier applications

Scenario Application Components
1-tier Static web page Web Server : Apache 2.0.49
2-tier Web Page Hit Counter Web Server : Apache 2.0.49

App. Server : Tomcat 5.0.19
Build System: Apache Ant 1.6.1

3-tier iBATIS JPetStore 4.0.0 Web Server : Apache 2.0.49
App. Server : Tomcat 5.0.19
DB Server : MySQL 4.0.18
DB Driver : MySQL Connector to Java 3.0.11
Build System : Apache Ant 1.6.1
Others : DAO, SQLMap, Struts

We installed SmartFrog 3.04.008_beta on four 800 MHz dual-processor Dell Pen-
tium III machines running RedHat 9.0; one SmartFrog daemon runs on each host.

In the 1-tier application, we deploy Apache as a standalone web server, and con-
firmed successful deployment by visiting a static web page. The evaluation used two
machines: the first for the web server and a second to execute the generated Smart-
Frog workflow.

In the 2-tier Hit Counter application, we used Apache and the Tomcat application
server with Ant. Each tier specified for deployment to a separate host. To verify the 2-
tier deployment, we visited the web page multiple times to ensure it recorded page
hits. The application simply consists of a class and a jsp page. The 2-tier evaluation
required three machines. As in the 1-tier test, we used one machine to run the de-
ployment script; then, we dedicated one machine to each deployed tier (Apache; Ant
and Tomcat).

Finally, the 3-tier application was the iBATIS JPetStore, a ubiquitous introduction
to 3-tier programming. In the 3-tier application evaluation, we used four machines.
Again, we dedicated one machine for each tier (Apache; Tomcat, JPetStore, Ant,
MySQL Driver, Struts; MySQL DB) and used a fourth machine to run the SmartFrog
workflow.

Fig. 4 illustrates the dependencies of components in each testbed. We consider
three types of dependencies in the experiment; installation dependency, configuration
dependency, and activation dependency. The total number of dependencies in each
testbed is used as the level of the complexity. In Figure 6, 1-, 2-, and 3-tier testbeds
are considered as simple, medium, and complex cases respectively. Intuitively, the
installation, configuration, and activation dependencies of each component in each
testbed must be sequenced. For instance, the Apache configuration must start after
Apache installation completes, and Apache activation must start after Apache con-
figuration completes. (For space, we have omitted these dependencies from the
figure.)

We modeled 1-, 2-, and 3-tier applications in Quartermaster with and Cauldron
module created the configurations and deployment workflows. The resultant MOF

 Towards Automated Deployment of Built-to-Order Systems 117

a) b) c)

Fig. 4. Dependency diagrams of (a) 1-tier, (b) 2-tier, and (c) 3-tier application

files were fed into ACCT and yielded a set of Java class files, SmartFrog component
descriptions, and a SmartFrog instances+workflow specification for each application
tested. Fig. 6. on the following page illustrates the transformation process as ACCT
translates the MOF file of the 3-tier application to intermediate XACCT and then fi-
nally to a SmartFrog description. For demonstration, we highlight the FS dependency
between the Tomcat installation and MySQLDriver installation and how this informa-
tion is carried through the transformation process.

3.2 Experimental Result

The metric we choose for evaluating the 1-, 2-, and 3-tier testbeds is deployment exe-
cution time as compared to manually written scripts. We executed SmartFrog and
scripts 30 times each for each tier application and report the average. Fig. 5 shows
that for simple cases (1- and 2-tier) SmartFrog took marginally longer when com-
pared to the scripts based approach because SmartFrog daemons running in the Java
VM impose extra costs when loading Java classes or engaging in RMI communica-
tion. The trend favors SmartFrog as the time penalty of the medium case becomes less
(in absolute and relative terms) and for the complex case, SmartFrog took less time
than the scripts based approach.

In the complex case, SmartFrog was
able to exploit concurrency between
application components since it had a
computed workflow. The simple and
medium cases contain fewer concurrent
dependencies than the 3-tier case. Nev-
ertheless, in all cases our toolkit retains
the important advantage of an auto-
matically generated workflow, while in
scripts based approach, system admin-
istrators must manually control the
order of installing, configuration, and
deployment.

0

100

200

300

400

500

600

700

800

900

1000

Simple(1-tier) Medium(2-tier) Complex(3-tier)

Complexity

T
im

e
(s

ec
)

SmartFrog

Scripts

Fig. 5. Deployment Time using SmartFrog and
scripts as a function of the complexity

118 A. Sahai et al.

(a
) M

O
F

(b
) X

A
C

C
T

(c

) S
m

ar
tF

ro
g

in
st

an
ce

 o
f L

og
ic

al
Se

rv
er

 {

Id
 =

 "
T

om
ca

t_
L

S1
";

C
ap

tio
n

=
"T

om
ca

t L
og

ic
al

 S
er

ve
r"

;

D
es

cr
ip

tio
n

=
"L

og
ic

al
 S

er
ve

r
fo

r
T

om
ca

t "
;

Ip

A
dd

re
ss

 =
 "

13
0.

20
7.

5.
22

8"
;

H

os
tN

am
e

=
"a

rt
em

is
.c

c.
ga

te
ch

.e
du

";

};

in
st

an
ce

 o
f

L
og

ic
al

Se
rv

er
In

L
og

ic
al

A
pp

lic
at

io
n

{

L

og
ic

al
A

pp
lic

at
io

n
=

"T
om

ca
t\"

;

L
og

ic
al

Se
rv

er
 =

T
om

ca
t_

L
S1

\"
;

};

in
st

an
ce

 o
f L

og
ic

al
A

pp
lic

at
io

n
{

Id

 =
 "

T
om

ca
t"

;

V
er

si
on

 =
 "

5.
0.

19
";

C
ap

tio
n

=
"T

om
ca

t"
;

D

es
cr

ip
tio

n
=

"T
om

ca
t a

pp
lic

at
io

n
Se

rv
er

";

};

in
st

an
ce

 o
f L

og
ic

al
A

pp
lic

at
io

n
{

Id

 =
 "

M
yS

Q
L

D
ri

ve
r"

;

V
er

si
on

 =
 "

3.
0.

11
";

C
ap

tio
n

=
"M

yS
Q

L
D

ri
ve

r"
;

D

es
cr

ip
tio

n
=

"M
yS

Q
L

dr
iv

er
";

};

in

st
an

ce
 o

f A
ct

iv
ity

 {

Id
 =

 "
T

om
ca

t_
In

st
al

la
tio

n"
;

A

ct
iv

ity
T

yp
e

=
"s

cr
ip

t"
;

};

in
st

an
ce

 o
f A

ct
iv

ity
 {

Id

 =
 "

T
om

ca
t_

In
st

al
la

tio
n"

;

A
ct

iv
ity

T
yp

e
=

"s
cr

ip
t"

;
};

In

st
an

ce
 o

f A
ct

iv
ity

Pr
ed

ec
es

so
rA

ct
iv

ity
 {

D

ep
en

de
nc

eT
yp

e=
”F

in
is

h-
St

ar
t”

;

A
nt

ec
ed

en
tA

ct
iv

ity
=”

T
om

ca
t_

In
st

al
la

tio
n”

;

D
ep

en
de

nt
A

ct
iv

-
ity

=”
M

yS
Q

L
D

ri
ve

r_
in

st
al

la
tio

n”
;

};

<I

ns
ta

nc
e

N
am

e=
"T

om
ca

t"
 C

la
ss

="
L

og
ic

al
A

pp
lic

at
io

n"
>

<V
ar

ia
bl

e
N

am
e=

"I
d"

T
yp

e=
"s

tr
in

g"
>T

om
-

ca
t<

/V
ar

ia
bl

e>

<V
ar

ia
bl

e
N

am
e=

"V
er

si
on

"T
yp

e=
"s

tr
in

g"
>

5.

0.
19

</
V

ar
ia

bl
e>

<V

ar
ia

bl
e

N
am

e=
"E

nt
ity

"
T

yp
e=

"s
tr

in
g"

>

A
ct

iv
ity

_T
om

ca
t_

In
st

al
la

tio
n<

/V
ar

ia
bl

e>

<V
ar

ia
bl

e
N

am
e=

"H
os

t"
 T

yp
e=

"s
tr

in
g"

>

ar
te

m
is

.c
c.

ga
te

ch
.e

du
</

V
ar

ia
bl

e>

</

In
st

an
ce

>

<W

or
kf

lo
w

>

<W
or

k
T

yp
e=

”E
xe

cu
tio

n”
><

/W
or

k>

<W

or
k

T
yp

e=
”E

ve
nt

Se
nd

”>

<T
o>

 M
yS

Q
L

D
ri

ve
r_

In
st

al
la

tio
n<

/T
o>

</
W

or
k>

<W
or

k
T

yp
e=

”T
er

m
in

at
e”

>

 T
om

ca
t_

In
st

al
la

tio
n

</
W

or
k>

</

W
or

kf
lo

w
>

<I

ns
ta

nc
e

 N
am

e=
"M

yS
Q

L
D

ri
ve

r"

C

la
ss

="
L

og
ic

al
A

pp
lic

at
io

n"
>

<V
ar

ia
bl

e
N

am
e=

"I
d"

 T
yp

e=
"s

tr
in

g"
>

M

yS
Q

L
D

ri
ve

r<
/V

ar
ia

bl
e>

<V

ar
ia

bl
e

N
am

e=
"V

er
si

on
"

T
yp

e=
"s

tr
in

g"
>

3.

0.
11

</
V

ar
ia

bl
e>

<V

ar
ia

bl
e

N
am

e=
"E

nt
ity

"
T

yp
e=

"s
tr

in
g"

>

A
ct

iv
ity

_M
yS

Q
L

D
ri

ve
r_

In
st

al
la

tio
n<

/V
ar

ia
bl

e>

<V
ar

ia
bl

e
N

am
e=

"H
os

t"
 T

yp
e=

"s
tr

in
g"

>

de
m

et
er

.c
c.

ga
te

ch
.e

du
</

V
ar

ia
bl

e>

</

In
st

an
ce

>

 <
W

or
kf

lo
w

>

 <

W
or

k
T

yp
e=

”O
nE

ve
nt

”>

 <

Fr
om

>
T

om
ca

t_
In

st
al

la
tio

n<
/F

ro
m

>
</

W
or

k>

 <
W

or
k

T
yp

e=
”E

xe
cu

tio
n”

><
/W

or
k>

 <

W
or

k
T

yp
e=

”T
er

m
in

at
e”

>

 M
yS

Q
L

D
ri

ve
r_

In
st

al
la

tio
n<

/W
or

k>

 <

/W
or

kf
lo

w
>

sf
Pr

oc
es

sC
om

po
ne

nt
N

am
e

 "
T

om
ca

t_
In

st
al

la
tio

n"
;

L
og

ic
al

A
pp

lic
at

io
n_

T
om

ca
t

ex
te

nd
s

L
og

ic
al

A
pp

lic
at

io
n

{

Id

"T

om
ca

t"
;

V
er

sio
n

 "
5.

0.
19

";

A
ct

iv
ity

 L
A

ZY
 A

T
T

R
IB

A

ct
iv

ity
_T

om
ca

t_
In

st
al

la
tio

n;

sf
Pr

oc
es

sH
os

t
 "

ar
te

m
is

.c
c.

ga
te

ch
.e

du
";

}

A

ct
iv

ity
_T

om
ca

t_
In

st
al

la
tio

n
 e

xt
en

ds
 A

ct
iv

ity
 {

Id

"T
om

ca
t_

In
st

al
la

tio
n"

;

E

nt
ity

L

A
ZY

 A
T

T
R

IB
 L

og
ic

al
A

pp
lic

at
io

n_
T

om
ca

t;

}

--
 e

xt
en

ds
 E

ve
nt

Se
nd

 {

se
nd

T
o

ev
en

tQ
ue

ue
:q

ue
ue

_T
om

ca
t_

Ig
ni

tio
n;

ev

en
t "

A
ct

iv
ity

_T
om

ca
t_

In
st

al
la

tio
n_

FS
";

} --

 e
xt

en
ds

 T
er

m
in

at
or

 {

ki

ll
ev

en
tQ

ue
ue

:q
ue

ue
_T

om
ca

t_
In

st
al

la
tio

n;

} sf
Pr

oc
es

sC
om

po
ne

nt
N

am
e

"M
yS

Q
L

D
ri

ve
r_

In
st

al
la

tio
n"

;
--

 e
xt

en
ds

 O
nE

ve
nt

 {

 r
eg

is
te

rW
ith

 q
ue

ue
_M

yS
Q

L
D

ri
ve

r_
In

st
al

la
tio

n
;

 A

ct
iv

ity
_T

om
ca

t_
In

st
al

la
tio

n_
FS

 e
xt

en
ds

 D
oN

ot
hi

ng

} L
og

ic
al

A
pp

lic
at

io
n_

M
yS

Q
L

D
ri

ve
r

ex
te

nd
s L

og
ic

al
A

pp
lic

at
io

n
{

Id

"M
yS

Q
L

D
ri

ve
r"

;

V

er
sio

n
 "

3.
0.

11
";

A

ct
iv

ity
L

A
ZY

A
T

T
R

IB
A

ct
iv

ity
_M

yS
Q

L
D

ri
ve

r_
In

st
al

la
tio

n;

sf
Pr

oc
es

sH
os

t
 "

de
m

et
er

.c
c.

ga
te

ch
.e

du
";

}

A

ct
iv

ity
_M

yS
Q

L
D

ri
ve

r_
In

st
al

la
tio

n
ex

te
nd

s A
ct

iv
ity

 {

Id

"M

yS
Q

L
D

ri
ve

r_
In

st
al

la
tio

n"
;

 E

nt
ity

 L
A

ZY
 A

T
T

R
IB

L

og
ic

al
A

pp
lic

at
io

n_
M

yS
Q

LD
ri

ve
r;

}

--

 e
xt

en
ds

 T
er

m
in

at
or

 {

 k
ill

 e
ve

nt
Q

ue
ue

:q
ue

ue
_M

yS
Q

L
D

ri
ve

r_
In

st
al

la
tio

n;

}

 F
ig

.
6.

 (
a)

 M
O

F,
 (

b)
 I

nt
er

m
ed

ia
te

 X
M

L
,

an
d

(c
)

S
m

ar
tF

ro
g

co
de

 s
ni

pp
et

s.
 T

he
 s

ol
id

 l
in

e
bo

x
in

di
ca

te
s

th
e

FS
 w

or
kf

lo
w

 b
et

w
ee

n
T

om
ca

t
an

d
M

yS
Q

L
D

ri
ve

r
ap

pl
ic

at
io

ns
. O

th
er

s
in

di
ca

te
 c

on
fi

gu
ra

ti
on

s.
 C

le
ar

ly
, M

O
F

 o
ff

er
s

su
pe

ri
or

 u
nd

er
st

an
da

bi
li

ty
 f

or
 a

 d
ep

lo
ym

en
t

sc
en

ar
io

 a
s

co
m

pa
re

d
to

th

e
S

m
ar

tF
ro

g
sp

ec
if

ic
at

io
n.

 A
s

V
an

is
h

et
 a

l s
ho

w
ed

 in
 [

16
],

 a
ut

om
at

in
g

de
pl

oy
m

en
t v

ia
 S

m
ar

tF
ro

g,
 f

or
 w

hi
ch

 w
e

ge
ne

ra
te

 c
od

e,
 is

 g
en

er
al

ly
 s

up
er

io
r

in
 p

er
fo

rm
an

ce
 a

nd
 m

or
e

m
ai

nt
ai

na
bl

e
w

he
n

co
m

pa
re

d
to

 m
an

ua
l o

r
ad

 h
oc

 s
cr

ip
te

d
so

lu
tio

ns
.

 Towards Automated Deployment of Built-to-Order Systems 119

4 Related Work

Recent years have seen the advent of wide-ranging resource management systems.
For e-business, OGSA Grid Computing [17] aims to provide services within an on-
demand data center infrastructure. IBM’s Autonomic Computing Toolkit [1], the HP
Utility Data Center [18] and Microsoft’s DSI initiative [3] are examples of this. The
distinction of our toolkit, however, is that Cauldron logic and a theorem prover to
meet resource allocation constraints. There are several efforts related to specifying
conditions and actions for policies, e.g., CIM [19] and PARLAY [20]. However, to
the best of our knowledge, none of them have used a constraint satisfaction approach
for automatic resource construction.

Another trend is deployment automation tools. CFengine [22] provides rich facili-
ties for system administration and is specifically designed for testing and configuring
software. It defines a declarative language so that the transparency of a configuration
program is optimal and management is separate from implementation. Nix [21] is
another popular tool used to install, maintain, control, and monitor applications. It is
capable of enforcing reliable specification of component and support for multiple
version of a component. However, since Nixes does not provide automated workflow
mechanism, users manually configure the order of the deployments. For deployment
of a large and complicated application, it becomes hard to use Nixes. By comparison,
SmartFrog provides control flow structure and event mechanism to support flexible
construction of workflow.

The ACCT translator adopts the Clearwater architecture developed for the Infopipe
Stub Generator + AXpect Weaver (ISG) [6, 7]. Both ACCT and ISG utilize an XML
intermediate format that is translated by XSLT to target source code. Unlike ACCT,
however, ISG is designed for creating information flow system code. There are other
commercial and academic translation tools, like MapForce [23] and CodeSmith [24].
Similar to ISG, they target general code generation and do not support deployment
workflows.

5 Conclusion

We outlined an approach for Automated Deployment of complex distributed applica-
tions. Concretely, we described in detail the ACCT component (Automated Compos-
able Code Translator) that translates Cauldron output (in XMOF format) into a
SmartFrog specification that can be compiled into Java executables for automated
deployment. ACCT performs a non-trivial translation, given the differences between
the XMOF and SmartFrog models such as workflow dependencies. A demonstration
application (JPetStore) illustrates the automated design and implementation process
and translation steps, showing the increasing advantages of such automation as the
complexity of the application grows.

Acknowledgement. This work was partially supported by NSF/CISE IIS and CNS
divisions through grants IDM-0242397 and ITR-0219902, DARPA ITO and IXO
through contract F33615-00-C-3049 and N66001-00-2-8901, and Hewlett-Packard.
We thank our anonymous reviewers and M. Feridun for their very helpful comments.

120 A. Sahai et al.

References

1. IBM Autonomic Computing. http://www.ibm.com/autonomic.
2. SUN N1. http://www.sun.com/software/n1gridsystem/.
3. Microsoft DSI. http://www.microsoft.com/windowsserversystem/dsi/.
4. Global Grid Forum. http://www.ggf.org.
5. Sahai, A., Singhal, S., Joshi, R., Machiraju, V.: Automated Policy-Based Resource Con-

struction in Utility Computing Environments. NOMS, 2004.
6. Swint, G. and Pu, C.: Code Generation for WSLAs using AXpect. 2004 IEEE Interna-

tional Conference on Web Services. San Diego, 2004.
7. Swint, G., Pu, C., Consel, C., Jung, G., Sahai, A., Yan, W., Koh, Y., Wu, Q.: Clearwater -

Extensible, Flexible, Modular Code Generation. 20th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2005.

8. SmartFrog. http://www.hpl.hp.com/research/smartfrog/.
9. Salle, M., Sahai, A., Bartolini, C., Singhal, S.: A Business-Driven Approach to Closed-

Loop Management. HP Labs Technical Report HPL-2004-205, November 2004.
10. Sahai, Akhil, Sharad Singhal, Rajeev Joshi, Vijay Machiraju: Automated Generation of

Resource Configurations through Policies. IEEE Policy, 2004.
11. Goldsack, Patrick, Julio Guijarro, Antonio Lain, Guillaume Mecheneau, Paul Murray, Pe-

ter Toft.: SmartFrog: Configuration and Automatic Ignition of Distributed Applications.
HP Openview University Association conference, 2003.

12. Smartfrog open source directory. http://sourceforge.net/projects/smartfrog.
13. Peterson, Larry, Tom Anderson, David Culler, and Timothy Roscoe: A Blueprint for In-

troducing Disruptive Technology. PlanetLab Tech Note, PDN-02-001, July 2002.
14. CDDLM Foundation Document. http://www.ggf.org/Meetings/ggf10/GGF10%

20Documents/CDDLM_Foundation_Document_v12.pdf.
15. WBEM project. http://wbemservices.sourceforge.net.
16. Talwar, Vanish, Dejan Milojicic, Qinyi Wu, Calton Pu, Wenchang Yan, and

Gueyoung Jung: Comparison of Approaches to Service Deployment. ICDCS
2005.

17. Foster, Ian, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke: The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integration. Globus
Project, 2002.

18. HP Utility Data Center. http://www.hp.com/products1/promos/adaptive_enterprise/
us/utility.html.

19. DMTF-CIM Policy. http://www.dmtf.org/standards/cim/cim_schema_v29.
20. PARLAY Policy Management. http://www.parlay.org/specs/.
21. Dolstra, Eelco, Merijn de Jonge, and Eelco Visser: Nix: A Safe and Policy-free System for

Software Deployment. 18th Large Installation System Administration Conference, 2004.
22. Cfengine. http://www.cfengine.org/.
23. Altova Mapforce. http://www.altova.com/products_mapforce.html.
24. Codesmith. http://www.ericjsmith.net/codesmith.

1 Computer Engineering and Networks Laboratory TIK, ETH Zürich, Switzerland
{hasan, stiller}@tik.ee.ethz.ch

2 Computer Science Department IFI, University of Zürich, Switzerland
stiller@ifi.unizh.ch

Abstract. Research has been performed in areas of auditing, a.o. security audit-
ing, compliance auditing, financial auditing. In order to increase the efficiency of
and to allow for continuous auditing, auditing tasks must be automated, which is
only possible if audit data are available digitally and suitable algorithms exist.
Different areas of auditing follow different objectives, thus require different de-
tailed tasks to be performed, yet they share a common auditing model. This is
based on the consideration that in general auditing deals with the evaluation or
examination of facts against a set of compliance specifications. The objective of
this paper is to develop a generic model and architecture for automated auditing,
thus providing the basis for the development of auditing work for specific appli-
cations. To show its general applicability, the proposed model is applied to dif-
ferent areas including Service Level Agreement (SLA) compliance verification
and Intrusion Detection Systems. A full-fledged example is discussed showing in
detail how the generic architecture is applied to the SLA compliance verification.

1 Introduction

Auditing is a widely applied concept for investigating the adequacy of a system against
a set of requirements. Traditional areas of auditing comprise amongst others financial
audits, compliance audits with respect to laws and regulations, performance audits, and
quality audits. The wide use of the Internet by research and government institutions,
companies, and individuals, as well as the commercialization of Internet services have
opened up a new and important area of auditing including information system security
audits and Service Level Agreements (SLA) compliance audits.

The development and deployment of the Internet has bridged the path to the infor-
mation era, where information becomes a vital resource. Usually information, in form
of digital objects, is stored in a computer system, which is connected to the Internet.
Since access to the Internet can be gained by anyone, the Internet is subject to attacks.
To cope with attacks, various Intrusion Detection Systems (IDS) have been developed.
An IDS is a security audit tool to reveal unauthorized access attempts.

Today, many business relationships between a service provider and a customer are
formally defined in terms of SLAs, which specify contractual commitments of a pro-
vider on which services and with which measurable quality level the provider will fur-
nish [4]. The committed quality level of a service is specified in a set of Service Level

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 121 – 132, 2005.

A Generic Model and Architecture for
Automated Auditing

Hasan1 and Burkhard Stiller1,2

© IFIP International Federation for Information Processing 2005

Objectives (SLOs) in form of service metrics, threshold values, and tolerances [16].
Failure to perform contractual obligation is a contract violation. In order to detect this
violation all related business transactions have to be accounted for and audited. Further-
more, for Internet services many communication protocols have been standardized and
policy-based network management systems have been developed, where auditing can
be useful to find non-compliances in protocol implementations and policy decisions.

Traditionally, auditing is accomplished by human auditors through a manual audit
of paper documentation, which is very time-consuming. This leads to the question
whether, at least, parts of the auditing process can be automated. Automation is easier
to achieve in those areas of auditing, where materials are available in a structured digital
format. Auditing deals with varieties of information, which often have a complex inter-
relation. In many cases, auditing requires a strong analytical skill of the auditor, and the
transfer of this skill to an automated auditor poses a challenge. The two main reasons
for automated auditing are a high degree of efficiency in processing a large number of
audit data and earlier detection of non-compliances through continuous auditing.

Thus, the key goal of this paper is to develop the common denominator of auditing
tasks in different areas and to design a generic model and architecture for automated au-
diting. Based on this model and architecture a framework for various auditing purposes
is derived to minimize further efforts in implementing specific auditing applications.

The remainder of the paper is organized as follows. Section 2 discusses related
work from different auditing areas. While Section 3 presents a generic auditing model,
Section 4 develops the generic architecture. The application of the model and architec-
ture is presented in Section 5. Finally, Section 6 concludes the paper.

2 Related Work

Most of existing approaches in auditing are dedicated to specific objectives. Although
some proposals show to a certain extent a general approach, a generic auditing model
and architecture—to the best knowledge of the authors at the moment of writing—is not
yet available. Hence, this section describes major related work in specific areas of au-
diting, including security auditing and SLA compliance verification.

IDSs have been a research area of security auditing since the beginning of the
1980s. In 1987 [5] presented a model for a real-time intrusion detection expert system,
which provides the basis for many IDSs. The model can be regarded as a rule-based pat-
tern matching system and contains the following six main components: subjects, ob-
jects, audit records, profiles, anomaly records, and activity rules. In this model actions
performed by subjects on objects are essential, which is valid for an IDS, but not in all
areas of auditing. For example, in the case of SLA compliance verifications services de-
livered by objects to subjects are relevant. Therefore, the relation between subjects and
objects is not described in a generic auditing model. Furthermore, profiles in this model,
which describe a normal behavior of subjects on objects, are updated based on audit
records. Here, profiles define the specifications to be met. However, general auditing
does not modify compliance specifications so that they are met by the normal behavior.

The architecture of a general IDS comprises of event generators within a target sys-
tem, analysis engines, and a response unit [11]. Components can be distributed; analysis

122 Hasan and B. Stiller

engines can form a hierarchy. Recent architectures use autonomous and mobile agents
to perform the task of event generators and analysis engines. Distribution of IDS com-
ponents happens within a single administrative domain, whereas general auditing can
stretch across multiple ones.

Academia and industries have performed research and developed prototypes or
even products for SLA management and monitoring of SLA compliances. However,
most of these approaches are dedicated to specific services, e.g., web services, or a cer-
tain set of SLA parameters, e.g., availability, round-trip time, and response time [3], [6],
[7], [9], [10], [15]. The IBM’s Web Service Level Agreement (WSLA) Framework
shows a general concept for SLA management and defines a language to specify SLAs,
focusing on web services [10]. It defines five stages of the SLA management lifecycle:
negotiation and establishment, deployment, measurement and monitoring, corrective
management action, and termination. The functionality needed for these various stages
is implemented as WSLA services, which are intended to interact across domains. The
SLA Compliance Monitor comprises of three WSLA services: SLA Deployment,
Measurement, and Condition Evaluation. However, in order to be a generic auditing
framework SLA specific elements in the WSLA Framework need to be generalized.

In other more traditional areas of auditing, continuous efforts are done in providing
software tools and expert systems to aid human auditors in carrying out the audit. There
are approaches to automate certain tasks of financial audit, e.g., through the use of Ar-
tificial Intelligence [18], electronic audit data warehouses, and data marts [12]. In this
area, audit software tools are utilized to help a human auditor in the analysis of transac-
tional data [1], [2]. However, human interventions are still needed.

3 A Generic Model for Automated Auditing

The different areas of auditing follow different auditing objectives and have different
tasks and characteristics, but they share a common model. A general model for auto-
mated auditing requires a general definition of auditing. The definitions given by the
International Telecommunication Union Telecommunication Standardization Sector
(ITU-T) and the Internet Engineering Task Force (IETF) focus on auditing in the area
of security [13], [14]. Both define the term Security Audit in a similar way. The U.S.
Committee on National Security Systems defines the term Audit instead of Security Au-
dit [17]. Although this definition does not emphasize security, several other auditing ar-
eas are not covered. Therefore, a concise, general definition of Audit is given: “An Au-
dit is a systematic and independent examination of facts on system activities to deter-
mine the degree of compliance with a pre-defined set of specifications.” Auditing is the
process of conducting an Audit, and an Auditor is an entity that carries out the Audit.

Fig. 1 depicts a class diagram of the generic auditing model in the UML (Unified
Modeling Language) notation. The model consists of 8 classes divided into 3 roles, i.e.,
Auditor, Auditee, and Accountant, and 5 data, i.e., Audit References, Compliance Spec-
ifications, Activities, Facts, and Audit Reports. Compliance Specifications are a set of
specifications derived from laws or regulations, contracts or agreements, pre-estab-
lished policies, and procedures, which the particular system under audit, i.e., the Au-

A Generic Model and Architecture for Automated Auditing 123

ditee, has to follow. Note that “follow” means either to meet a specification to achieve
an expected state or to avoid meeting a specification to not reach an unexpected state.

An Auditee carries out Activities to achieve a certain goal. The goal itself is irrele-
vant, however, it is expected that in performing those Activities the Auditee follows the
Compliance Specifications. Therefore, those Activities are observed by an Accountant,
who records and stores them as Facts. Facts about such Activities reveal whether the
targeted Compliance Specifications hold. A Fact is, therefore, a piece of information
presented as having an objective reality. A Fact can be accompanied by an Evidence
which furnishes a proof, i.e., that ascertains the truth of a matter, thus, increases the in-
formational reliability of a Fact. Evidences are obtained technically through non-repu-
diation mechanisms, which can be used, e.g., to prove service consumptions [8].

An Auditor conducts an Audit by evaluating Facts based on related Compliance
Specifications to detect violations. An Audit has to be conducted according to valid pro-
cedures, standards, laws, or regulations, being termed Audit References. Hence, Audit
References define the legal or generally accepted way to conduct an Audit in a particu-
lar area of auditing. While an Auditee has to follow Compliance Specifications, an Au-
ditor has to follow Audit References. Thus, activities of an Auditor can be subject to the
Audit by another Auditor. The Auditor generates an Audit Report based on the result of
the Audit. This report can be consulted by the Auditee to avoid further violations.

4 Architecture

Driven by the general model, the generic auditing architecture is designed, which is ap-
plicable to different auditing areas. Architectural components can be distributed across
domains, and a suitable approach for an efficient Automated Auditor is included.

4.1 The Design of the Generic Auditing Architecture

Fig. 2 depicts the generic auditing architecture having the Auditing Unit as a major
component, which contains a set of Automated Auditors. Automated Auditors may in-

Fig. 1. Generic auditing model Fig. 2. Generic auditing architecture

AuditeeActivities

0..*

0..*

carries out

11..*

1

1..*

Audit
References

Compliance
Specifications

1..*
follows

1..*

Auditor

1..*
bases examination on

1..*

1..*
follows

1..*

Audit Reports

generates
and consults

1 0..*

Accountant

Facts

records
1..*

1

examines

1..* 1..*

observes

consults
AuditeeActivities

0..*

0..*

carries out

11..*

1

1..*

Audit
References

Compliance
Specifications

1..*
follows

1..*

Auditor

1..*
bases examination on

1..*

1..*
follows

1..*

Audit Reports

generates
and consults

1 0..*

Accountant

Facts

records
1..*

1

examines

1..* 1..*

observes

consults
Data
Control

Facts

Accounting
Unit

Audit
Reports

Report
Handling Unit

Compliance
Specifications

Controlling
Unit

Policies

Policy
Definition

Unit

Audit
AlgorithmAuditing

Unit

Executing
Unit

Auditee Data
Control
Data
Control

Facts

Accounting
Unit

Audit
Reports

Report
Handling Unit

Compliance
Specifications

Controlling
Unit

Policies

Policy
Definition

Unit

Audit
AlgorithmAuditing

Unit

Executing
Unit

Auditee

Facts

Accounting
Unit

Audit
Reports

Report
Handling Unit

Compliance
Specifications

Controlling
Unit

Policies

Policy
Definition

Unit

Audit
AlgorithmAuditing

Unit

Executing
Unit

Auditee

teract with each other, if required, in conducting a particular Audit. The Auditing Unit

124 Hasan and B. Stiller

implements the Audit Algorithm of a particular auditing application. An Audit Algo-
rithm is a technical description of Audit References.

An auditing process requires at least two types of inputs: Compliance Specifica-
tions and Facts. Facts describe what actually happens, whereas Compliance Specifica-
tions describe expected situations. An Auditee should follow Compliance Specifica-
tions in carrying out Activities, hence, an Auditee is divided into a Controlling Unit and
an Executing Unit. The Controlling Unit defines Activities to be carried out by the Ex-
ecuting Unit and makes sure that the Compliance Specifications are held. The Control-
ling Unit provides for Compliance Specifications, whereas the Accounting Unit deliv-
ers Facts about Activities performed by the Executing Unit to the Auditing Unit.

The result of an Audit is a report with statements on the degree of compliance of the
Auditee’s Activities with respect to pre-defined Compliance Specifications. In certain
cases, results of previous Audits serve as an input to the current Audit, therefore, the
flow of Audit Reports between Auditing Unit and Report Handling Unit is bi-direction-
al. The Report Handling Unit is responsible for maintaining Audit Reports.

The generic auditing architecture uses a policy-based approach to configure and to
control the behavior of different units. The policy-based approach offers the advantage
of being able to separate decision taking instances from executing instances, hence, it
allows for a modular structure. Of course, different modular decision systems may be
applied as well. Policies are defined and managed by a Policy Definition Unit. As an
example, Audit Policies can be defined to influence the behavior of an Auditing Unit in
conducting an Audit without violating Audit References.

In many cases, if the result of an Audit reveals violations to a particular Compliance
Specification, a pre-defined corrective action needs to be taken. The action is carried
out either by the Report Handling Unit, Policy Definition Unit, or Controlling Unit.
Therefore, Audit Reports are also accessible by the Policy Definition Unit and Control-
ling Unit (cf. Fig. 2). There are three possible causes of a violation: (1) Inappropriately
set up Audit Policies, (2) Imprecise Compliance Specifications, and (3) Executing Unit
did not perform as expected. In general, cause (1) and (2) should not happen in normal
operation, but can happen during learning or experimenting phase. Hence, the generic
architecture foresees 3 different feedback control mechanisms to cope with violations:

1. Feedback to the Auditor through changing Audit Policies. This is useful, when vi-
olations have occurred unexpectedly due to Audit Policies being inappropriately
set up. The Policy Definition Unit must be able to decide whether an Audit Policy
is appropriately set up or not, which is a difficult task without human intervention.

2. Feedback to the Auditor through modifications of Compliance Specifications.
This is useful, when violations have occurred unexpectedly due to imprecise
Compliance Specifications. Here, the Controlling Unit must be able to decide,
whether a Compliance Specification is precisely specified or not, which is also a
difficult task without human intervention.

3. Feedback to the Executing Unit by the Controlling Unit through reconfiguration.
This should be the case if the Executing Unit did not perform as expected.

Obviously, the use of one mechanism does not preclude the use of other mecha-
nisms at the same time, because each mechanism serves a different purpose.

A Generic Model and Architecture for Automated Auditing 125

4.2 Distributed Architecture cross Administrative Domains

In some areas, e.g., SLA compliance verification, auditing is applied in a multi-admin-
istrative domain (AD) environment. The application of the generic auditing architecture
is not restricted to a single AD, instead, architectural components can be distributed
across several ADs. However, such a distributed architecture requires trust among ADs.

4.3 Automated Auditor’s Internal Architecture

As described, an Auditing Unit contains a set of Automated Auditors and it implements
the Audit Algorithm of a particular auditing application. This means that Automated
Auditors have the task to execute the Audit Algorithm. In order to reduce implementa-
tion complexity and to achieve modularity, the following assumptions are made in de-
signing the architecture of an Automated Auditor:

• An Auditing Unit deals with a set of Compliance Specifications. Without loss of
generality each Automated Auditor is assumed to be responsible for a particular
Compliance Specification.

• Each Compliance Specification contains a set of Compliance Conditions linked
by a logical expression. Hence, the result of the evaluation of each condition as
well as the evaluation of the logical expression linking all the conditions deter-
mine the compliance of relevant Facts with a Compliance Specification.

• A common Audit Algorithm exists which is valid for most auditing applications.

The approach developed here proposes the following common Audit Algorithm:

1. Interpret and apply valid Audit Policies during the Audit.

2. Interpret the assigned Compliance Specification, for which the Automated Audi-
tor is responsible.

Fig. 3. Multi-administrative domain architecture

A

P

F

F A

P

CS

R

AD 3

AD 1

AD 4

R

CS

AD 2
P

P

F

A

P

CS

R

Auditing Unit

Policy Definition
Unit

Controlling Unit

Accounting
Unit

Report Handling
Unit

Legends:

Data
Control

AD = Adm. Domain

A

P

F

F A

P

CS

R

AD 3

AD 1

AD 4

R

CS

AD 2
P

P

A

PP

FF

FF A

PP

CSCS

RR

AD 3

AD 1

AD 4

RR

CSCS

AD 2
PP

PP

F

A

P

CS

R

Auditing Unit

Policy Definition
Unit

Controlling Unit

Accounting
Unit

Report Handling
Unit

Legends:

Data
Control

AD = Adm. Domain

FF

A

PP

CSCS

RR

Auditing Unit

Policy Definition
Unit

Controlling Unit

Accounting
Unit

Report Handling
Unit

Legends:

Data
Control

AD = Adm. Domain

An AD can offer an accounting or auditing function as a service to other ADs. In
Fig. 3 the AD 1 provides an auditing service, whereas the AD 3 offers an accounting
service. The AD 2 uses the auditing service of AD 1, who further makes use of the ac-
counting service of the AD 3. Here, AD 4 implements all the functions, but still needs
additional accounting information from the AD 3 to conduct the Audit. Note that the
Executing Unit and the feedback arrows are not shown to avoid overloading.

126 Hasan and B. Stiller

A

3. Retrieve relevant Facts and Audit Reports based on the Compliance Conditions.

4. Evaluate Facts and Audit Reports whether they meet Compliance Conditions.
Evaluate the logical expression linking all Compliance Conditions.

5. Generate a report as a result of the evaluation.

Fig. 4 shows the architecture of the Automated Auditor to execute the proposed Au-
dit Algorithm. The Policies Interpreter (PI) takes policy decisions and configures other
components based on Audit Policies. The Compliance Specification Interpreter (CSI)
retrieves the Compliance Specification assigned to the Auditor based on the configura-
tion information from PI. It instantiates Compliance Condition Evaluators (CCE) and
gives each CCE a Compliance Condition to evaluate. Each CCE subscribes relevant
types of Facts and Audit Reports from the Facts Dispatcher (FD) and the Report Dis-
patcher (RD), respectively.

FD is responsible for retrieving, filtering, and distributing Facts to the respective
CCE. A similar function is assigned to RD. Each CCE examines received Facts and rel-
evant Audit Reports in evaluating the condition given by the CSI and sends the result
of this evaluation to the CSI. The CSI determines whether there is a violation of the
Compliance Specification based on the result of each CCE. The decision of the CSI is
sent to the Report Generator which is responsible for composing the Audit Report in a
pre-defined format and storing it into a pre-configured location. If interactions among
Automated Auditors are required to conduct a particular Audit, interactions are handled
by the Inter Auditor Interaction Unit (IAIU). This requirement is stated either in Audit
Policies or Compliance Specifications. In both cases the CSI is generally involved.

5 Application of Auditing Model and Architecture

The model developed and the generic architecture designed are applicable to various
auditing areas, especially, SLA compliance verification.

5.1 Application of the Model

To start with the verification, Table 1 maps each generic class of the diagram in Fig. to
different entities of three different auditing areas: SLA compliance verification, intru-
sion detection, and financial auditing.

Fig. 4. Automated Auditor’s internal architecture

Data
Control

Compliance Specification
Interpreter

Facts
Dispatcher

Reports
Dispatcher

Report
Generator

Policies
Interpreter

Compliance
Condition
Evaluator

Compliance
Specifications

Facts

Audit Policies

Audit
Reports

Auditor

Auditors
Inter Auditor

Interaction Unit

Data
Control
Data
Control

Compliance Specification
Interpreter

Facts
Dispatcher

Reports
Dispatcher

Report
Generator

Policies
Interpreter

Compliance
Condition
Evaluator

Compliance
Specifications

Facts

Audit Policies

Audit
Reports

Auditor

Auditors
Inter Auditor

Interaction Unit

Compliance Specification
Interpreter

Facts
Dispatcher

Reports
Dispatcher

Report
Generator

Policies
Interpreter

Compliance
Condition
Evaluator

Compliance
Specifications

Facts

Audit Policies

Audit
Reports

Auditor

Auditors
Inter Auditor

Interaction Unit

A Generic Model and Architecture for Automated Auditing 127

5.2 Application of the Architecture: SLA Compliance Verification

To outline the application of the generic architecture to the Internet, the SLA compli-
ance verification is taken. An SLA contains amongst others: customer ID, subscription
start date, subscription end date, subscribed services and service classes, prices, SLOs,
remedies in case of SLA violations, and limiting conditions. Information in an SLA is
used for access control, meter configuration, and SLA compliance verification.

The following example in Fig. 5 provides a basis for the detailed description on the
application of the generic architecture to SLA compliance verification. Provider P is a
network operator providing QoS-enabled network services to her customers. The pro-
vider’s network is connected to the Internet via two Border Routers (BRs), and custom-
ers can access the Internet via one of the three Access Routers (ARs). Provider P offers
different network service classes to meet different customer and application needs.

The throughput parameter is part of SLAs between Provider P and her customers,
and this parameter shall be guaranteed. In order to be fully precise in the definition of
this guarantee, downlink and uplink traffic as well as incoming and outgoing traffic
need to be distinguished (Fig. 5). The traffic coming from a terminal is the uplink traffic
of this terminal and the traffic going to a terminal is the downlink traffic. Traffic enter-
ing the network is the incoming traffic, whereas traffic leaving the network is the out-

Table 1. Application of the generic auditing model to different auditing areas

Model
SLA Compliance
Verification Intrusion Detection Financial Auditing

Auditor SLA Compliance Audi-
tor

Intrusion Detection
Engine

Auditor

Auditee Service provisioning
entities

Users of network infra-
structures and services

Company, including its
Accountants

Accountant Meter and accounting
entities

Sensors (usage monitor-
ing and logging entities)

Company’s Accountants

Audit Refer-
ences

Agreed procedures to
conduct an Audit

Intrusion detection meth-
ods

Auditing standards, e.g.,
Generally Accepted
Auditing Standards
(GAAS)

Compliance
Specifications

Service Level Agree-
ments

Signature-based: intru-
sion rules, patterns (sig-
natures) vs. anomaly-
based: heuristic rules,
normal states or behavior

Accounting standards,
e.g., Generally Accepted
Accounting Principles
(GAAP)

Activities Service deliveries Usage of network infra-
structures and services

Accounting of business
transactions, in particular
generation of financial
statements

Facts Meter data or account-
ing data, and event logs

Network traffic data and
event logs

Financial statements

Audit Reports SLA violation reports Intrusion reports and
alarms

Audit reports

going traffic. Based on the above description two kinds of throughput guarantee can be
defined: downlink and uplink throughput guarantee. Each guarantee is held in an SLO.

128 Hasan and B. Stiller

Downlink throughput guarantee is defined as follows: “The percentage rate reduc-
tion in downlink traffic of a network Service Class between the incoming and outgoing
traffic will be within dRd (downlink rate reduction tolerance) in every pre-defined Me-
tering Interval (MI) during the whole session. The rate of the downlink incoming traffic
used in the calculation is at most equal to the downlink committed rate Rcd.” This guar-
antee defines a condition which can be expressed mathematically using the formula:

In (1) Rod(t) is the downlink outgoing rate, whereas Rid(t) is the downlink incoming
rate. Values of Rcd, dRd, and MI are determined by the service class. Uplink throughput
guarantee is defined in a similar way.

Executing Unit. Service provisioning entities are the provider’s network infrastructure,
in particular QoS-enabled routers and switches. They must deliver services according
to SLAs, hence, they determine the Executing Unit.

Controlling Unit and Compliance Specifications. Provider P defines and manages
SLAs. She configures and operates service provisioning entities. Therefore, Provider P
represents the Controlling Unit. In the area of SLA compliance verification, Compli-
ance Specifications (CS) are derived from concluded SLAs and Compliance Conditions
(CC) within a CS are determined by the related SLO. Obviously, an SLA contains more
information than needed for defining CSs. Here, it is sufficient if a CS comprises of
SLO metrics, service class, and condition expression. As Provider P only provides a sin-
gle service, namely a network service, it is not required to have the name “network serv-
ice” as subscribed services in the CS. An example of a CS reads as follows:

Specification Number: 001,
Metrics: Downlink Throughput,
Service Class: A (Rcd = 1 Mbps, dRd = 0.05),
Conditions: 1 - Rod(t) / Min(Rcd, Rid(t)) < dRd,

CS 001 is valid only for customers of service class A, but an explicit list of customer
IDs in CS 001 is not needed due to the fact that this case does not deal with auditing of
access control or intrusion detection, but with auditing of SLA compliance. Access con-
trol entities are responsible to ensure that only authorized customers can access servic-
es. Hence, recorded Facts are assumed to contain correct/authorized customer IDs.

.
(1)

Fig. 5. Different traffic for throughput definition

Uplink incoming
Uplink outgoing
Downlink incoming
Downlink outgoing

AR = Access Router
BR = Border Router

AR 3

AR 2

Terminal

BR 1

Internet

BR 2

Administrative
Domain

Provider P

AR 1

Uplink incoming
Uplink outgoing
Downlink incoming
Downlink outgoing

AR = Access Router
BR = Border Router

Uplink incoming
Uplink outgoing
Downlink incoming
Downlink outgoing

AR = Access Router
BR = Border Router

AR 3

AR 2

Terminal

BR 1

Internet

BR 2

Administrative
Domain

Provider P

AR 1

AR 3

AR 2

Terminal

BR 1

InternetInternet

BR 2

Administrative
Domain

Provider P

AR 1

1 − Rod(t)
Min (Rcd, Rid(t))

< dRd

A Generic Model and Architecture for Automated Auditing 129

CS 001 is a simple CS, where parameter Conditions comprise of a single relational
expression. Other CSs can be very complex, in which parameter Conditions contain
several relational expressions linked by logical operators, and the evaluation is trig-
gered by the occurance of some other Facts.

Accounting Unit and Facts. A meter is deployed in each AR and BR to capture the
data rate of customers’ traffic. To allow for rate measurements of different service
classes, the traffic of each service class must be marked accordingly, e.g., by using Dif-
ferentiated Service Code Points (DSCP). For the examination of downlink throughput
guarantees the following information must be collected by meters: router interface,
DSCP, destination IP address, meter interval start time, meter interval end time, and
volume. The router interface determines whether the traffic being metered is an outgo-
ing or incoming traffic. The DSCP determines the service class, i.e., the agreed Rcd and
dRd. The destination IP address represents the customer of the downlink traffic. Time
interval and volume are used to calculate the traffic rate.

To ease auditing, related meter data need to be pre-processed by accounting entities.
This pre-processing includes data aggregation from different meters and information
mapping. In case of downlink throughput guarantee, the resulting accounting record
contains the following information: customer ID, service class, meter interval end time,
downlink incoming rate, and downlink outgoing rate. Obviously, meter data and ac-
counting data represent Facts about service deliveries and their quality level. Hence,
meters and accounting entities build up the Accounting Unit of the generic architecture.
To avoid manipulation of meter data or accounting data by provider (or customer) the
measurement and accounting task can be carried out by a third party.

Auditing Unit: Automated Auditors. Automated Auditors have the task to evaluate
whether the accounting data meet the SLOs specified in SLAs. Auditors deal with a set
of CSs and a large number of accounting data recorded during service usage by a large
number of customers. Therefore, it is reasonable to run a set of Automated Auditors,
where each is responsible for a single CS and a fraction of the accounting data. In the
example with Provider P, one way to divide the accounting data is by grouping them
based on any combination of SLO metrics, service class, and customer ID. For example,
an Automated Auditor AA1 is assigned to evaluate downlink throughput of traffic of
service class A addressed to customer with ID ranging from 101 to 200. This means, an
Accounting Unit must be able to selectively distribute accounting data to each Auditor.

As already described, CSI determines the core component of an Automated Audi-
tor. The CSI of AA1 interpretes CS 001 and instantiates a single CCE, since parameter
Conditions in CS 001 consist only of one relational expression. The CCE configures the
FD to retrieve customer ID, downlink incoming rate Rid(t), and downlink outgoing rate
Rod(t) from accounting data with parameters: Metrics = Downlink Throughput, Service
Class = A, and Customer ID between 101 and 200. If there is a Fact with Rid(t) and
Rod(t) values which do not satisfy the specified condition, a violation report is created.

Report Handling Unit and Audit Reports. Based on the evaluation result of the Au-
diting Unit, the Report Handling Unit determines, which SLA is violated and what ac-
tions, if any, need to be performed. It also keeps Audit Reports in a pre-defined format

130 Hasan and B. Stiller

for later use. In the example the violated SLA is found by matching the customer ID in
the SLA with the customer ID of the violating accounting record.

Policy Definition Unit and Policies. Provider P configures various units and defines
policies to be consulted by those units, hence, Provider P represents the Policy Defini-
tion Unit. An example for a configuration item is the communication interface of an Au-
tomated Auditor. An Automated Auditor communicates with a Controlling Unit, a set
of Accounting Units, a set of Report Handling Units, and if required, other Automated
Auditors. Which Accounting Units and Report Handling Units have to be contacted de-
pends on which Facts and Reports are to be retrieved and where to store all resulting
Reports. Configuration parameters include a URL, i.e., IP address or hostname, port
number, and protocol. The following configuration example states that in order to ob-
tain data on downlink throughput of class A traffic for all customers, the Accounting
Unit running at host testbed_db.ethz.ch should be contacted via port 13000 using the
Diameter protocol.

Metrics: Downlink Throughput
Service Class: A
Customer IDs: ALL
Accounting Unit: testbed_db.ethz.ch:13000:diameter

Audit Policies are useful to influence the behavior of an Automated Auditor. For
example, a policy can be defined for the Automated Auditor AA1 to treat specific ac-
counting records differently. Assume that Customer ID 113 is allowed to send traffic
with a downlink committed rate 10% above the rate for service class A during the month
April 2005. In this regard an Audit Policy for AA1 reads as follows:

if (Customer ID = 113 and Meter Timestamp within April 2005)
then use Rcd = 1.1 Mbps.

Policies for other units may also be defined, if needed. For example, a Meter Policy
for the Accounting Unit can be specified to adapt metering intervals to network load,
because the smaller the interval, the more meter data need to be transfered. However,
the chosen interval may not lie outside of the range defined in the SLA.

6 Summary, Conclusions and Outlook

Although different auditing areas require different audit tasks, they share a common
model, which is shown by developing a generic auditing model and mapping elements
of this model to entities in different auditing areas. A generic auditing architecture has
been designed based on this model and applied to SLA compliance verification.

The implementation of an auditing framework has been planned and a first effort to
develop a Compliance Specification Interpreter is being made. This requires the defini-
tion of a general compliance specification language, which is currently being studied.
The ultimate goal is to show that it is feasible to provide a generic framework for most
areas of automated auditing. In this regard, the model and architecture must be support-
ed with formalizations of various aspects of auditing, including algorithm, policy defi-
nition, compliance specification, fact representation, and interface definition between
those architectural components. Additionally, the privacy concern in inter-domain ap-

A Generic Model and Architecture for Automated Auditing 131

plications needs to be solved, and a set of use cases needs to be analysed. These form
the main part of further research work.

Concluding, the generic model and architecture provide a common and flexible ba-
sis for further development in various auditing areas, in particular security auditing,
SLA compliance verification, and business auditing. The availability of an auditing
framework based on this generic model and architecture is very important, as automated
auditing becomes crucial in many business and security processes, and a fast as well as
efficient automated auditing is essential. In turn, future efforts to implement the audit-
ing for specific applications are reduced heavily with the help of this framework.

References

1. ACL Services Ltd.: ACL Tops 2004 Internal Auditor Software Survey. (2004)
2. CaseWare IDEA Inc.: IDEA: Product Profile. (2004)
3. Daidalos: A4C Framework Design Specification. Deliverable D341 (2004)
4. D'Antonio, S., Esposito, M., Gargiulo, M., Romano, S.P., Ventre, G.: A Component-based

Approach to SLA Monitoring in Premium IP Networks. First Intl. Workshop on Inter-Do-
main Performance and Simulation, Salzburg (2003)

5. Denning, D. E.: An Intrusion-Detection Model. IEEE Transactions on Software Engineering,
Vol. SE-13, No.2 (1987) 222-232

6. G-NE GmbH: Konzeptionsansatz: Qualitätssicherung in IT-Outsourcing-Projekten mittels
einer unabhängigen Prüfinstanz. Confidential Document (2002)

7. Hasan, Stiller, B.: Auditing Architecture for SLA Violation Detection in QoS-Supporting
Mobile Internet. IST Mobile and Wireless Comm. Summit, Vol. 1. Aveiro, Portugal (2003)

8. Hasan, Stiller, B.: Non-repudiation of Consumption of Mobile Internet Services with Privacy
Support. IEEE Intl. Conf. on Wireless and Mobile Computing, Networking and Communi-
cations (to be published), Montreal, Canada (2005)

9. Itellix Software: Wisiba: Datasheet. (2003)
10. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level

Agreements for Web Services. Journal of Network and Systems Management, Vol. 11, Issue
1 (2003) 57 - 81

11. Lundin, E., Jonsson, E.: Survey of Intrusion Detection Research. Technical Report 02-04,
Department of Computer Engineering, Chalmers Univ. of Technology, Göteborg (2002)

12. Rezaee, Z., et. al.: Continuous Auditing: Building Automated Auditing Capability. Auditing:
A Journal of Practice & Theory, Vol. 21 Issue 1 (2002) 147-163

13. Shirey, R.: Internet Security Glossary. IETF, RFC 2828 (2000)
14. Study Group on Communication Systems Security: Compendium of approved ITU-T Secu-

rity Definitions. (2003)
15. Softek Storage Solutions Corporation: SOFTEK EnView: Datasheet. (2004)
16. Telemanagement Forum: SLA Management Handbook, V1.5. GB917 (2001)
17. U.S. Committee on National Security Systems: National Information Assurance Glossary. (2003)
18. Vasarhelyi, M.A.: Artificial Intelligence in Accounting and Auditing, Volume IV: Towards

New Paradigms. (1997)

132 Hasan and B. Stiller

Acknowledgments

The work has been performed partially in the framework of the EU IST project
Daidalos (FP6-2002-IST Contract No. 506997), where ETH Zürich has been funded
by the Swiss Bundesministerium für Bildung und Wissenschaft (grant No. 03.0141).
The authors would like to thank their project partners, especially Portugal Telecom
Inovação and Fraunhofer-Gesellschaft FOKUS.

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 133 – 144, 2005.
© IFIP International Federation for Information Processing 2005

Utilization and SLO-Based Control for Dynamic Sizing
of Resource Partitions

Zhikui Wang, Xiaoyun Zhu, and Sharad Singhal

Hewlett Packard Laboratories,
1501 Page Mill Rd, Palo Alto, CA 94304

{zhikui.wang, xiaoyun.zhu, sharad.singhal}@hp.com

Abstract. This paper deals with a shared server environment where the server is
divided into a number of resource partitions and used to host multiple
applications at the same time. In a case study where the HP-UX Process
Resource Manager is taken as the server partitioning technology, we investigate
the technical challenges in performing automated sizing of a resource partition
using a feedback control approach, where the CPU entitlement for the partition
is dynamically tuned to regulate output metrics such as the CPU utilization or
SLO-based application performance metric. We identify the nonlinear and
bimodal properties of the models across different operating regions, and discuss
their implications for the design of the control loops. To deal with these
challenges, we then propose two adaptive controllers for tracking the target
utilization and target response time respectively. We evaluate the performance
of the closed-loop systems while varying certain operating conditions. We
demonstrate that better performance and robustness can be achieved with these
controllers compared with other controllers or our prior solution.

1 Introduction

Resource partitioning is a type of virtualization technology that enables multiple
applications to share the system resources on a single server while maintaining
performance isolation and differentiation among them [1][2][3]. On most current
systems, partition sizes are pre-determined and allocated to applications by system
administrators, posing a challenging configuration problem. On the one hand, each
partition has to be provided with enough resources to meet service level objectives
(SLOs) of the applications hosted within it in spite of changes in workloads and the
underlying system. On the other hand, excessive over-provisioning makes inefficient
use of resources on the system. Offline capacity planning or calendar-based
scheduling using profiles of past application resource usage are not always accurate or
up-to-date and cannot handle unexpected short-term spikes in demand.

Our work aims to develop formal control-theory based techniques to automatically
size a resource partition based on its CPU utilization, the SLO and the time-varying
workload of its hosted applications. This work is the continuation of our earlier work
in [4] where we used a resource partition to host an Apache Web server and designed
and implemented an adaptive PI controller to regulate the mean response time (MRT)
of HTTP requests around a target value. The controller self-tunes its gain parameters

134 Z. Wang, X. Zhu, and S. Singhal

based on online estimation of the dynamic model. In this paper, we describe a new set
of modeling experiments and demonstrate how the system’s input-output relation
changes with various operating conditions of the system. As a result, we show that
controlling the MRT using the CPU entitlement alone is effective when the Web
server partition’s CPU utilization is close to its CPU entitlement, but may not work
well when the application is underutilizing its entitled CPU. We present an alternative
design for controlling the relative utilization of the partition, scalable to the time-
varying workload. We also propose to incorporate CPU utilization information into
the control of SLO-based metrics so that the closed-loop system achieves more robust
performance across different operating regions.

This paper is organized as follows. In section 2, we describe the technology, the
overall architecture and the test bed in our case study. Related work is reviewed in
Section 3. Section 4 describes how the input-output behavior of the system was
modeled, and discusses its implication on control designs. Section 5 presents different
controllers and their performance evaluation using our test bed. Finally, we
summarize our results, along with directions for future work in Section 6.

2 A Case Study Using a Feedback Control Approach

We conducted the case study where we used the HP-UX Process Resource Manager
(PRM) [1] as an example of the resource partitioning technology. PRM is a resource
management tool that can be used to partition a server into multiple PRM groups,
where each PRM group is a collection of users and applications that are joined
together and allocated certain amounts of system resources, such as CPU, memory,
and disk bandwidth. If CPU or memory capping is enabled, PRM ensures that each
PRM group’s usage of CPU or memory does not exceed the cap regardless of whether
the system is fully utilized. We consider an FSS (Fair Share Scheduler) PRM group
that is assigned a percentage of the CPU cycles (referred to as “CPU entitlement”) by
specifying a number of shares. Because this percentage is enforced by the scheduler
in the HP-UX kernel, it can be changed at any time thereby enabling dynamic sizing
of the PRM group. We describe the architecture and test bed setup in this section.

Figure 1 illustrates a shared server that has m resource partitions, where each
partition can be a PRM group. We consider the scenario where each PRM group is
used to host one application. The resource controller interacts with each partition i
through two modules, Ai and Si, where Si is the sensor that periodically measures the
performance metric for application i, and Ai is the actuator that dynamically sets the
CPU entitlement for partition i according to the output of the resource controller. The
timing of the controller is based on the notion of a “sampling interval”. At the
beginning of each sampling interval, the controller collects from Si the measured
performance for the last sampling interval, compares it to the desired performance,
computes the needed CPU entitlement for the current sampling interval using certain
control algorithms and passes it to Ai for actuation. In the remainder of this paper, we
focus on resource control for one such partition. The results should be extensible to
controlling multiple partitions with multiple resource types using any partitioning
technology.

 Utilization and SLO-Based Control for Dynamic Sizing of Resource Partitions 135

Partition 1

(application 1)

A1

S1

Partition 2

(application 2)

A2

S2

Partition m

(application m)

Am

Sm

Resource
Controller

Shared Server
CPU entitlement

Measured
utilization/performance

Desired
utilization/
performance

Fig. 1. CPU entitlement control system architecture

In the case study, we took the Apache Web server (version 2.0.52) as an example
of the hosted applications. We set up an FSS PRM group on an HP-UX server to host
the Web server. We refer to this PRM group as the “Web server partition”. We used a
modified version of httperf 0.8 (ftp://ftp.hpl.hp.com/pub/httperf) on a Linux 2.4.18-3
client to continuously send HTTP requests to the Web server and to log the response
time of every request. We developed a sensor module that parses the httperf log and
computes the mean response time (MRT) of all the requests completed during each
sampling interval. We also used a PRM provided utility prmmonitor to measure the
average CPU utilization of a partition for every interval. The CPU entitlement (with
capping enabled) for the Web server partition can be adjusted at the beginning of
every interval to bound the percentage of CPU cycles used by the Web server in that
interval. We chose the simplest possible workload where a single static page was
repeatedly fetched from the Web server at a fixed rate, ensuring that CPU was the
only potential bottleneck resource in the system as the workload intensity varied.

3 Related Work

Our approach differs from prior work on operating systems support for server
resource reservation and enforcement [5]-[7] or scheduling [8][9] in that it is more
generic and can be used on any commodity operating system that supports a resource
partitioning technology, and applications that can be hosted inside a partition. In [10]
a feedback-driven adaptive scheduler was presented to allocate a percentage of CPU
cycles to a thread. In contrast, our controller allocates a percentage of CPU cycles to a
whole application so that the assigned CPU entitlement can be tied directly to the
application’s SLO. Although the proposed feedback loop is already in use in some
existing workload management tools [11][12], our approach is distinct in that we rely
on classical control theory to guide the design of the algorithms.

Feedback control theory has been applied to solve a number of performance or
quality of service (QoS) problems in computer systems in recent years. (See [13][14]

136 Z. Wang, X. Zhu, and S. Singhal

and the references therein.) The effect of this approach depends heavily on the fitness
of the mathematical models used to characterize the dynamic behavior of the systems.
Much prior work employs a “black-box” approach and uses linear input-output
models to capture the dynamic relation between control knobs (inputs) and
performance metrics (outputs). However, a single linear model is often insufficient to
uniformly capture a system’s behavior under all operating conditions. More recent
work addresses this issue by applying adaptive control theory to computer systems
such as storage systems [15], resource containers [4] and caching services [16]. This
approach allows the parameters of the linear models to automatically adapt to changes
in operating conditions using online system identification. In [17] the authors offered
insights into how to obtain appropriate models for the actuator, sensor, and the
controlled system using benchmarking and linear regression based estimation
techniques, while using CPU utilization as the output. The resulting relation between
the adaptation level and the CPU utilization is a time-varying static gain with no
dynamics but with a time delay. In this paper, we focus on the system’s nonlinear and
bimodal behavior, and present quantitative study on model fitness and variability.

Performance control of Web servers has been studied extensively in the literature.
For instance, application-level mechanisms were proposed in [18][19][20] to provide
different levels of service to requests of different classes. While these approaches
were mainly based on heuristics or queuing models, other work has applied classical
control theory to manage Web server delay or server resource utilization using
admission control [21] and content adaptation [17], connection scheduling and
process reallocation [22], or application parameter tuning [23]. All of these methods
require modification to the server application software (with the exception of [20]),
which may not be feasible for other enterprise applications. Our focus is not
controlling Web server performance in particular, but rather providing a general
approach for dynamic sizing of any resource partitions.

4 Modeling of the Input-Output Relation

We first describe a set of modeling experiments and demonstrate the nonlinear and
bimodal behavior of the system.

4.1 Static Input-Output Relation

To understand the system’s long-term average behavior in the whole operating range,
we varied the CPU entitlement (denoted by u) for the Web server partition from 0.2 to
0.9, at 0.05 increments. At each setting, the Web server was loaded for 60 seconds
with a fixed workload, while the average CPU utilization (denoted by v) of the Web
server partition was observed and the MRT of all requests returned during this period
was computed. Figure 2 shows the static relation between the CPU entitlement, the
(absolute and relative) CPU utilization, and the MRT for different workload
intensities ranging from 200 to 1100 requests/second (or r/s). Note that each data
point is the average of 10 samples obtained from 10 repeated experiments. In addition
to u and v, let y denote the inverse of MRT (1/MRT), and r denote the relative CPU
utilization of the partition, i.e., r = v / u.

 Utilization and SLO-Based Control for Dynamic Sizing of Resource Partitions 137

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CPU Entitlement (u)

C
P

U
 U

til
iz

at
io

n
 (v

)

Rate=200
Rate=400
Rate=600
Rate=700
Rate=900
Rate=1100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

3.5

CPU Entitlement (u)

M
R

T

Rate=200
Rate=400
Rate=600
Rate=700
Rate=900
Rate=1100

 (a) CPU utilization vs. CPU entitlement (b) MRT vs. CPU entitlement

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

CPU Entitlement (u)

C
P

U
 R

e
la

tiv
e

 U
til

iz
a

tio
n

 (r
)

Rate=200
Rate=400
Rate=600
Rate=700
Rate=900
Rate=1100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

1.2

1.4

CPU Entitlement (u)

1/
M

R
T

 (
y)

Rate=200
Rate=400
Rate=600
Rate=700
Rate=900
Rate=1100

(c) Relative CPU utilization vs. CPU entitlement (d) 1/MRT vs. CPU entitlement

Fig. 2. Long-term relation between CPU entitlement, CPU utilization and MRT

Our key observations from these figures follow:

• As shown in Figure 2(a), for any given request rate, as the CPU entitlement varies,
the CPU utilization demonstrates a clear bimodal behavior that can be
approximated using the following equation:

⎩
⎨
⎧

>=
<

=
.if,

,if,

Vuv

Vuu
v

(1)

Here V is the maximum portion of CPU needed for a given workload. Figure 2(c)
shows a different visualization of the same behavior through the relative CPU
utilization. The following equation is equivalent to (1), except expressing the CPU
utilization in a relative term:

⎩
⎨
⎧

>=
<

=
.if,/

,if ,1

VuuV

Vu
r

(2)

• Similarly, the same bimodal behavior is observed in the relation between the MRT
and the CPU entitlement in Figure 2(b). Since the MRT is clearly a nonlinear
function of the CPU entitlement, we plot 1/MRT vs. CPU entitlement in Figure
2(d) to better illustrate the relation. As we can see, when the system is overloaded

138 Z. Wang, X. Zhu, and S. Singhal

(r = 1 in Figure 2(c)), there exists a linear mapping from the CPU entitlement to
1/MRT, and its slope is independent of the request rate. However, when the system
is underloaded (r < 1 in Figure 2(c)), 1/MRT increases rapidly with increasing
CPU entitlement, indicating a sharp drop in the MRT.

The linear mapping between the CPU entitlement and 1/MRT for the overload
region implies that a linear input-output model is plausible for this region if 1/MRT is
chosen as the system output. When the system is reasonably underloaded (r < 0.8), the
MRT becomes independent of the CPU entitlement setting. Therefore, we expect that
the MRT is uncontrollable using the CPU entitlement in this region. In the next
Section, we verify this behavior using model identification.

4.2 Dynamic Linear Model Identification

We chose the following linear auto-regressive model as the potential one to represent

the dynamic relation between the CPU entitlement and the inverse of MRT:

,)()()()(
1

01
∑ +−−+∑ −=
−

==

m

j

n

i
i kjdkuibikyaky ε

(3)

where the parameters ai, bj, the orders m, n, and the delay d characterize the dynamic
behavior of the system, y(k) is the inverse of MRT for sampling interval k, u(k) is the
CPU entitlement for sampling interval k, and)(kε is the residual term. For

convenience, we refer to such a model as “ARXmnd” in the following discussion.
In the experiments, the CPU entitlement was randomly varied in [0.2, 0.8]. The

sampling interval was fixed at 15 seconds while the rate varied from 200 r/s to 1100
r/s. The experiment was repeated for each rate. The model in (3) was estimated
offline using least-squares based methods [24] in the Matlab System ID Toolbox [25]
to fit the input-output data collected from the experiments. The models are evaluated
using the r2 metric defined in Matlab as a goodness-of-fit measure. In general, the r2
value indicates the percentage of variation in the output captured by the model.

Table 1. r2 values (in percentage) of first-order models

 (a) under different workloads (b) for different input-output pairs

200 400 600 700 900 1100
ARX110 -10.2 12.8 2.8 63.1 70.3 78.3
ARX111 -1 6.7 2.7 -5 0.09 6.4

Model
Rate (r/s)

Range of Entitlement [0.2, 0.5] [0.5, 0.8]
Ent --> 1/MRT 77.6 26
Util --> 1/MRT 84.3 65.5

Ent --> Util 86 31.5

From the data in Tables 1(a), we can find that a simple linear model does not fit the
input-output data when the system is significantly underloaded, i.e., with a rate below
or equal to 600 r/s. This is consistent with our earlier observation from Figure 2(d).
In contrast, when the request rate is above 600 r/s, the ARX 110 model fits quite well,
providing a good basis for controller design. Moreover, ARX111 (first-order model
with one-step delay) does not explain the system behavior for any request rate,
showing that no significant delay is observed in the system dynamics for a sampling

 Utilization and SLO-Based Control for Dynamic Sizing of Resource Partitions 139

interval of 15 seconds. Other observation can be made on time-varying parameters
along with change of workload, different model delays when the sampling interval
was changed significantly. For more detailed analysis, see [26].

Similar experiments and analysis were repeated for a different server, and the same
qualitative results were observed. Our main conclusion is that, due to the existence of
first-order ARX models for the dynamic relation between the CPU entitlement and
1/MRT when the system is overloaded, the MRT should be controllable using simple
controllers such as the adaptive PI controller used in [4]. On the other hand, it will be
quite challenging to regulate the MRT in the underload region because our
observations from the modeling exercise suggest that the MRT is simply
uncontrollable using the CPU entitlement as the only input.

From Figure 2, we know that the MRT is not correlated with the CPU entitlement
in the underload region. However, the MRT should always be dependent upon the real
CPU utilization of the Web server process. This was confirmed from the following
exercise, where offline identification experiments were repeated when the CPU
entitlement was randomly varied in the two regions, as shown in Table 1(b), under a
fixed workload of 900r/s. In the underload case where the entitlement range is [0.5,
0.8], 1/MRT is only weakly correlated with the CPU entitlement with r2=26%.
However, the r2 value of the models between the CPU utilization and 1/MRT is
always much higher. Therefore, it should be helpful to introduce the CPU utilization
into the control loop for the MRT so that more robust performance can be achieved.

5 Controller Design and Performance Evaluation

The CPU utilization of a Web server is a common metric that is monitored to
determine whether more or less CPU resource should be allocated to the server.
Compared to SLO-based metrics such as response times, the relative utilization of the
resource partition is easier to measure on the server side, more directly related to the
CPU entitlement and its control is more intuitive. The downside is that the relation
between a given relative utilization level and the client-perceived service level varies
with the resource demand of the workload. No guarantees can be given to metrics
such as the MRT for an arbitrary workload when only the relative utilization is being
controlled. This is in contrast to using the MRT as the controlled output that is more
directly related to the SLO but its relation with the CPU entitlement is rather complex.
In this section, we present controller designs for dynamic sizing of the Web server
partition using both output metrics, and discuss possible ways to combine these two
metrics to provide more effective control across the whole operating region.

5.1 Control of Relative Utilization

We first consider dynamic sizing of the Web server partition using its relative
utilization, r(k), as the output and the CPU entitlement, u(k), as the input. The goal is
to maintain dynamically the relative utilization at a reference value, rref. This value
can be chosen higher for more predictable workloads, and lower for more variable
workloads. From offline identification experiments, we observed that r(k) responds
quickly to changes in u(k) with negligible delay and inertia when the sampling

140 Z. Wang, X. Zhu, and S. Singhal

interval is set at 15 seconds. Therefore, the nonlinear static model (2) can be used to
represent the input-output relation.

Define the tracking error at sampling interval k as

).()(krrke ref −= (4)

We can then use the classical integral (I) controller,

)1()1()(−−−= keKkuku i , (5)

to dynamically tune the CPU entitlement based on the tracking error. In theory,
integral control ensures zero steady state error, i.e., the measured relative utilization
should converge to rref, and the integral gain Ki determines the aggressiveness of the
tuning. The main challenge here is to choose the right gain parameter such that the
closed-loop system is stable, and the relative utilization tracks the reference value as
quickly as possible. Although an optimum Ki value may be chosen carefully for
certain workload, it may not be applicable to a different workload. Based on the
analysis in Section 4, we propose an I controller:

)1()()1()(−−−= kekKkuku i (6)

with a time-varying adaptive gain:

⎩
⎨
⎧

−>−−

−=−−
=

).1()1(when,/)1(

),1()1(when,/)1(
)(

2

1

kvkurkv

kvkurku
kK

ref

ref
i λ

λ

(7)

The intuition behind this adaptive gain is from the bimodal property of the relative
utilization w.r.t. CPU entitlement. When the system is overloaded, the CPU utilization
is actually capped by the entitlement. The system needs to react fast to the increase of
the workload. When underloaded, it is desirable for the system to be conservative to
avoid going into the overload region, which may lead to unavailability and large
response times. The controller (6-7) can act as expected with different gains in the
two regions. It is scalable and adaptive to the workload, and shows good convergence
performance when

2λ is in (0, 2). More analysis can be found in [26].

0 50 100 150 200
0

200

400

600

800

No. of Sample

W
or

kl
oa

d
In

te
ns

ity
 (

r
/ s

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Relative Utilization (r)

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

I (K
i
=2)

I (K
i
=1)

I (K
i
=0.5)

Adaptive

 (a) Time-varying workload (b) CDFs of relative utilization

Fig. 3. Performance of controllers from entitlement to relative utilization

 Utilization and SLO-Based Control for Dynamic Sizing of Resource Partitions 141

The performance of the adaptive controller (6-7) was tested in an experiment
where a synthetic workload as shown in Figure 3(a) was applied. For comparison, our
adaptive controller was used along with an I controller with different fixed gains to
regulate the relative utilization at around 75%. The target (relative utilization)
tracking performance for different controllers is shown in Figure 3(b) by the
cumulative distributions of the resulting relative utilization, where the vertical dashed
line indicates the ideal distribution. Other performance measures such as average
CPU entitlement, throughput, and mean and 95th percentile of response times are
compared in Table 2. It can be observed that the adaptive controller achieves better
tracking performance upon change of the workload, lower CPU consumption, higher
throughput and smaller response times compared to the I controller with fixed gains.

Table 2. Average performance of the utilization controllers

Controller CPU Ent Throughput (r/s) MRT (sec) 95-p RT (sec)
I (Ki=2) 0.43 359 1.02 4.15
I (Ki=1) 0.38 368 0.51 2.49

I (Ki=0.5) 0.38 363 0.64 2.71
Adaptive 0.37 370 0.31 1.69

5.2 Control of Mean Response Time

In this section, we highlight the challenges in controlling the mean response time
(MRT). Using examples, we show that even the adaptive PI controller presented in [4]
may not work well when a sudden change in the workload pushes the system into the
underload region. We then describe a new controller design by introducing the CPU
utilization measurement into the control loop.

Based on the analysis in Section 4, we consider an ARX110 model to represent the
dynamic relation between the CPU entitlement (u) and the inverse of MRT (y), which
is estimated online as done in [4]. Define the tracking error

),()(kyyke ref −= (8)

where yref(k) is the target value for 1/MRT. Then a PI controller implements the
following algorithm:

)2()1()()1()(−−−++−= keKkeKKkuku pip (9)

The closed-loop system is of second order and the gain parameters, Kp and Ki, can be
chosen using the pole placement algorithm according to design specifications such as
overshoot, rising time and settling time [28].

The controller (9) with adapted parameters was tested in an experiment where the
target MRT was fixed at 1.5 seconds, but the rate of the workload was changed from
900 r/s to 500 r/s at the 30th sampling interval, which pushes the system suddenly into
the underload region. Figure 4(a) shows the performance of the closed-loop system,
where we can see that both the CPU entitlement and the resulting MRT became
unstable because the loss of controllability of the MRT by the CPU entitlement leads

142 Z. Wang, X. Zhu, and S. Singhal

0 10 20 30 40 50 60
0

2

4

0 10 20 30 40 50 60
0

0.5

1

0 10 20 30 40 50 60
0

500

1000

MRT Reference
MRT

Entitlement (u)
Utilization (v)

Workload

No. of Sample

0 10 20 30 40 50 60
0

2

4

0 10 20 30 40 50 6060
0

0.5

1

0 10 20 30 40 50 60
0

500

1000
Workload

Entitlement (u)
Utilization (v)

MRT Reference
MRT

No. of Sample
 (a) Adaptive PI Controller (b) Improved Adaptive PI controller

Fig. 4. Performance of controllers from CPU entitlement to MRT

to over-provisioning of the CPU resource. This is consistent with our observation
from Figure 3(b) that the MRT is not a stable metric in the underload region.

Given the suggestion of Figure 3(a) that the CPU utilization is a more stable
metric, we propose one design that attempts to incorporate the measured CPU
utilization into the control loop to extend the controllable region, as illustrated in
Figure 5, where G2 is the mapping from CPU entitlement to CPU utilization, and G1 is
the mapping from CPU utilization to 1/MRT.

PI
Controller

G2

EstimationDesign

1/MRTref e

Specification

Ent 1/MRTG1
Util

(a,b)

(Kp, Ki)

Fig. 5. An adaptive control loop with incorporation of measured CPU utilization

From Table 1(b) in Section 4.2, we know that the CPU utilization has a tighter
relation with the MRT than the CPU entitlement does in the underload region. In the
following design, the ARX110 model was estimated online between the measured
CPU utilization (v(k), as the input) and 1/MRT (y(k), as the output). Moreover, the
term u(k-1) in the PI controller in (9) is replaced by v(k-1) as follows:

)2()1()()1()(−−−++−= keKkeKKkvku pip (10)

The parameters were chosen according to the same specification as in the prior
designs. The previous experiments with varying workload intensity were repeated
using the new controller in (10). The closed-loop performance is shown in Figure
4(b), which shows that the stability of the system is maintained, even with a
significantly reduced workload. In this control design, introducing the CPU utilization
into the model estimation leads to a more truthful and stable model. Moreover, over-

 Utilization and SLO-Based Control for Dynamic Sizing of Resource Partitions 143

tuning of the CPU entitlement can be avoided since it is based on the measured
utilization. However, one implicit assumption in this solution is that the utilization
measurement tracks the entitlement immediately, that is, G2=1. This is satisfied in the
overload region where v(k)=u(k). Offset exists in the underload region between the
expected value of the utilization and its measurement. That is why, as shown in
Figure 4(b), the measured MRT is above the target value when the system is
underloaded. This steady-state error can be estimated approximately and fixed
partially as suggested in [26]. Therefore, the proposed solution can improve the
robustness of the controller (9) significantly only in or close to the overload region.

6 Conclusions

This paper identifies challenges in applying control theory to dynamic sizing of a
resource partition using CPU entitlement as the input and the mean response time or
the relative CPU utilization as the output. We recognize that this input-output relation
varies significantly as the resource partition moves between the overload and the
underload regions, which has a noticeable impact on the performance of any
controller design. We evaluate the closed-loop performance of an adaptive integral
controller for controlling relative utilization of a resource partition. We also present a
new adaptive controller design for regulating the mean response time that
incorporates information on measured CPU utilization and improves the robustness of
prior adaptive algorithms.

To make the system work well across all operating regions, we need to respect the
bimodal behavior of the system and develop a better way to integrate the control of
relative utilization (using controller (6-7)) and the response time (using controller
(10)) in possibly different regions. This is one topic of our ongoing work. Another
interesting direction is to apply the same approach to dynamic sizing of a resource
partition in terms of its physical memory allocation. The distinct interaction between
application performance and its memory may make it much more challenging to
design a sensible controller that works under all operating conditions.

References

[1] HP Process Resource Manager, http://h30081.www3.hp.com/products/prm/index.html
[2] IBM Application Workload Manager, http://www.ibm.com/servers/eserver/xseries/

systems_management/director_4/awm.html
[3] SUN Solaris Resource Manager, http://www.sun.com/software/resourcemgr/index.html
[4] X. Liu, X. Zhu, S. Singhal, and M. Arlitt, “Adaptive entitlement control of resource

partitions on shared servers,” 9th International Symposium on Integrated Network
Management, May, 2005.

[5] G. Banga, P. Druschel, and J.C. Mogul, “Resource Containers: A new facility for
resource management in server systems,” 3rd USENIX Symposium on Operating
Systems Design and Implementation, Feb. 1999.

[6] M.B. Jones, D. Rosu, and M.-C. Rosu, “CPU reservations and time constraints: Efficient,
predictable scheduling of independent activities,” 16th ACM Symposium on Operating
Systems Principles, 1997.

144 Z. Wang, X. Zhu, and S. Singhal

[7] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource Kernels: A resource-
centric approach to real-time and multimedia systems,” ACM Conference on Multimedia
Computing and Networking, 1998.

[8] P. Goyal, X. Guo, and H. Vin, “A hierarchical CPU scheduler for multimedia operating
systems,” 2nd USENIX Symposium on Operating System Design and Implementation,
October, 1996.

[9] C. Waldspurger and W. Weihl, “Lottery Scheduling: Flexible proportional-share resource
management,” 1st USENIX Symposium on Operating System Design and
Implementation, 1994.

[10] D.C. Steere, et al., “A feedback-driven proportion allocator for real-rate scheduling,” 3rd
USENIX Symposium on Operating System Design and Implementation, 1999.

[11] HP-UX Workload Manager, http://h30081.www3.hp.com/products/wlm/index.html
[12] IBM Enterprise Workload Manager, http://www.ibm.com/developerworks/

autonomic/ewlm/
[13] J.L. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback Control of Computing

Systems, Wiley-Interscience, 2004.
[14] T.F. Abdelzaher, Y. Lu, R. Zhang, and D. Henriksson, ``Practical application of control

theory to Web services,'' invited paper, American Control Conference, June 2004.
[15] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage: Performance isolation and

differentiation for storage systems,” 12th IEEE International Workshop on Quality of
Service, 2004.

[16] C. Lu, T.F. Abdelzaher, J. Stankovic, and S. Son, “A feedback control approach for
guaranteeing relative delays in Web servers,” IEEE Real-Time Technology and
Applications Symposium, 2001.

[17] T.F. Abdelzaher, K.G. Shin, and N. Bhatti, “Performance guarantees for Web server end-
systems: A control-theoretical approach,” IEEE Transactions on Parallel and Distributed
Systems, vol. 13, 2002.

[18] J. Almeida, M. Dabu, A. Manikutty and P. Cao (1998), “Providing differentiated levels of
service in Web content hosting,” SIGMETRICS Workshop on Internet Server
Performance, June 1998.

[19] L. Eggert and J. Heidemann, “Application-Level differentiated services for Web servers,”
World Wide Web Journal, Vol. 3, No. 1, pp. 133-142, March, 1999.

[20] V. Kanodia and E. Knightly, “Multi-Class latency-bounded Web services,” 8th IEEE
International Workshop on Quality of Service, June, 2000.

[21] P. Bhoj, S Ramanathan, and S. Singhal, “Web2K: Bringing QoS to Web servers,” HP
Labs Technical Report, HPL-2000-61, May 2000.

[22] Y. Lu, C. Lu, T. Abdelzaher, and G. Tao, “An adaptive control framework for QoS
guarantees and its application to differentiated caching services,” IEEE International
Workshop on Quality of Service, May, 2002.

[23] Y. Diao, N. Gandhi, J.L. Hellerstein, S. Parekh, and D.M. Tilbury, “MIMO control of an
Apache Web server: Modeling and controller design,” American Control Conference,
2002.

[24] L. Ljung, System Identification: Theory for the User (2nd Edition), Prentice Hall, 1999.
[25] Matlab System Identification Toolbox, http://www.mathworks.com/products/sysid/
[26] Z. Wang, X. Zhu, S. Singhal, “Utilization and SLO-Based Control for Dynamic Sizing of

Resource Partitions”, HP Labs Technical Report, HPL-2005-126, July 2005.
[27] Apache Web server, http://www.apache.org/
[28] K. Astrom and T. Hagglund, PID Controllers: Theory, Design, and Tuning (2nd Edition),

Instrument Society of America, 1995.

A Decentralized Traffic Management Approach
for Ambient Networks Environments

Maŕıa Ángeles Callejo-Rodŕıguez, Jorge Andrés-Colás, Gerardo Garćıa-de-Blas,
Francisco Javier Ramón-Salguero, and José Enŕıquez-Gabeiras

Telefónica I+D,
Advanced Networks Planning Department,

Emilio Vargas 6, 28043 Madrid, Spain
{macr327, jorgeac, ggdb, fjrs, jeg}@tid.es

Abstract. This paper presents a decentralized traffic management solu-
tion suitable for Ambient Networks environments, where heterogeneous
networks will have to cooperate with a high degree of dynamicity, both
in traffic patterns and network topologies. Considering IP as the base
inter-network technology in these environments, the proposed mecha-
nism autonomously interacts with existing intra-domain routing proto-
cols to improve traffic performance. The proposal has been evaluated by
simulation and has been shown how it significantly improves the traffic
performance with respect to the solutions currently deployed in networks.
For the two simulated scenarios, the proposed solution is able to man-
age 38% and 15% more traffic than current solutions when the network
starts to be congested. Anyway, the behavior of the proposed solution is
currently being analyzed in more dynamic scenarios in order to check its
goodness for different Ambient Networks environments.

1 Introduction

The Ambient Networks concept [1] aims to provide open and scalable solutions
for the near-future networking world where heterogeneous networks, from per-
sonal and vehicular networks to access and core transport networks, will have to
cooperate to offer ubiquitous communication services to the end-users.

In addition, these scenarios include a wide range of traffic patterns to be
carried, with different mobility degrees and performance requirements. Consid-
ering IP as the base inter-network technology for Ambient Networks, this paper
proposes a decentralized traffic management solution based on the extension of
existing static IP intra-domain routing protocols to automatically adapt their
routing tables to current traffic dynamics. In this way, traffic management mech-
anisms autonomously interact with the control plane of the network.

It has to be noted that the work described in this paper focuses on an intra-
domain scope. Inter-domain solutions implying routing information exchange
among different operators are left for further study.

Regarding intra-domain IP routing algorithms, traditional proposals are
based on the dissemination of the network topology in order to allow each router

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 145–156, 2005.
c© IFIP International Federation for Information Processing 2005

146 M.Á. Callejo-Rodŕıguez et al.

in the network to infer the path with the minimum associated cost. Thus, new
routing algorithms are required in order to achieve traffic flows to be forwarded
through the available network resources in such a way that no link becomes
overloaded and congestion is avoided. For this objective, the usage of routing
algorithms based on multipath schemes is required, although their use entails
the usage of sub-optimal paths, that is, those paths with costs higher than the
optimal ones. This situation can generate routing loops decreasing the efficiency
of the routing mechanism. Moreover, routing loops make worse the traffic perfor-
mance in those scenarios where multipath routing proposals are most interesting:
networks with high traffic load, near to or already in a congestion state. There-
fore, a thorough study is needed to avoid these loops in the most suitable way.
In this paper, a new mechanism for the avoidance of routing loops, called LAP
(Loop Avoidance Protocol), is presented. LAP can be used as an extension of
any intra-domain IP multipath routing mechanism.

It has to be noticed that solutions based on packet tunneling, such as MPLS-
TE (MultiProtocol Label Switching Traffic Engineering) [2] have been discarded
beforehand, since they are considered as not flexible enough for the high-dynamic
environments envisaged for Ambient Networks. Besides, an IP native solution
for traffic management benefits from the scalability and simplicity of IP, which
are strongly reduced with the usage of tunneling solutions.

The rest of the paper is structured as follows. In Section 2, a state of the art
of routing alternatives for Ambient Networks are presented and the reasoning
behind the selection of the MRDV (Multipath Routing with Dynamic Variance)
mechanism [3] as the most suitable approach is introduced. Then, a detailed
description of LAP is shown in Section 3. Next, Section 4 presents simulation
results showing the performance of LAP jointly with MRDV. Finally, Section 5
includes conclusions and further steps.

The research work presented in this paper has been developed within the
framework of the Ambient Networks project, partially funded by the European
Commission under the Information Society Technology (IST) priority within the
Sixth Framework Programme.

2 Routing Alternatives for Ambient Networks

This section surveys existing intra-domain IP multipath routing solutions that
can be used in order to optimize network resources in an Ambient Networks
environment.

The most deployed multipath routing algorithm in current IP networks is
ECMP (Equal-Cost MultiPath) [4], which is inherently supported by common
intra-domain routing protocols, such as OSPF (Open Short Path First) [5] and
ISIS (Intermediate System to Intermediate System) [6]. In ECMP, all paths with
minimal cost are equally used to route traffic. Nevertheless, its scheme does not
split the traffic according to a balanced load criterion, as all paths are required
to have the minimal cost.

As a more dynamic approach, OMP (Optimized Multi-Path) [7] allows
routers to shift load from heavily loaded paths to less loaded ones by means

A Decentralized Traffic Management Approach 147

of the use of the global state-network information: new paths can be inferred by
other routers in the network since updated and accurate information about the
link loads of all the nodes in the network must be exchanged; and thus make
OMP not scalable enough in those scenarios where traffic demands are highly
variable. Another algorithm, AMP (Adaptive MultiPath) [8] is based on local
network-state information for path selection. Thus, each router only distributes
information about the load on each link to only its immediate neighbors.

With a similar approach, MRDV [3] does not require the exchange of any load
information: each router running MRDV algorithm allows non-optimal paths
to be used according to a variance factor reflecting the load on the next hop.
Consequently, a MRDV router only has to monitor the load on its own links and
can coexist with non-MRDV routers in the network. This approach is interesting
for Ambient Networks environments due to both its decentralized scheme and
the ability of its gradual introduction in networks allowing a smooth migration
towards a full MRDV-enabled network. Next subsection briefly describes the
MRDV basis.

2.1 Overview of Multipath Routing with Dynamic Variance
(MRDV)

MRDV combines multipath routing with variance and distributed dynamic rout-
ing protocols. The core concept of the MRDV algorithm is that the number of
alternative paths towards a destination depends on how occupied the links are.
Multipath with variance routing algorithms allow traffic to each destination to
be carried by other paths in addition to the paths with the minimum cost if the
comparison between its metric and a threshold meets the following rule:

M ≤ Mmin · V (1)

where M is the metric of the path, Mmin is the metric of the optimal path and
V is the variance parameter of the output interface towards the next hop in the
optimal path.

MRDV adjusts the variance parameter dynamically, according to the average
load that the router detects in the next hop of the optimal path towards the
destination. A different variance is defined for each output interface: every router
monitors load in its adjacent links and modifies the variance of those interfaces
according to their load.

According to the variance, new paths will be considered as suitable: load is
distributed among these suitable paths, but the traffic offered to every path is
inversely proportional to the path cost, so that the less cost a path has, the
more traffic it receives. MRDV distributes traffic properly even when not all
the interfaces are overloaded. In this case, only these overloaded links overflow
traffic to other interfaces. Therefore, this algorithm is decentralized and IP com-
patible, and also adds the ability to adapt the variance to the traffic demand
automatically.

With this approach, every router reacts to its own view of the network state:
the average load of its adjacent links. The forwarding decisions are only based on

148 M.Á. Callejo-Rodŕıguez et al.

local information and not on global information, as happens with other routing
solutions that modify link costs according to the network status. However, two
issues must be considered to prevent instability problems in MRDV. First, the
variance must describe a hysteresis cycle, where relative increments in variance
are proportional to relative increments in average load. Considering that the
minimum variance is 1 (ECMP situation), the expression will be the following:

∂V
V = K ∂ρ

ρ

V (ρ = 0) = 1
V (ρ = 1) = Vmax

⎫
⎬

⎭
⇒ V = 1 + (Vmax − 1) · ρK (2)

where K is any real positive number and a design parameter, and Vmax is the
maximum possible variance.

Therefore, the hysteresis cycle is defined by the values of K for each of
the two sections (from now on, Kup for the ascending curve Vup, and Kdn for
the descending curve Vdn) and a common parameter Vmax for the maximum
variance. These parameters define the behavior of the algorithm. For simplicity,
Kup = 1/Kdn is proposed.

The other key issue regarding MRDV stability is the choice of the frequency
to refresh the variance parameter as a trade-off between response time and accu-
racy in measures. Based on our experience with MRDV simulations, the update
interval should never be less than about ten seconds, since a shorter update
interval could lead to a too unstable behavior in the presence of bursty traffic.

MRDV has been implemented in Network Simulator 2 (ns-2) [9] and evalu-
ated in different scenarios. Detailed results can be seen in [3], where MRDV is
compared with OSPF without and with ECMP. In a realistic scenario with a
typical backbone topology composed of 12 nodes and traffic with different bursti-
ness degrees, the network is able to carry around 35% more traffic with MRDV
than OSPF without ECMP, and around 15% more than OSPF with ECMP. In
spite of these promising results, routing loops were affecting negatively to the
traffic performance in these simulations. Thus, a mechanism to avoid them was
considered as a key requirement for a satisfactory traffic management solution.

3 Description of Loop Avoidance Protocol (LAP)

In order to develop an algorithm for avoiding loops, a distinction between pri-
mary and secondary loops has been made. Primary loops, as Fig.1.a shows,
appear when a node A tries to introduce a new sub-optimal path to reach D
through B, which has A as the next hop of the optimal path to D.

Secondary loops are shown in Fig.1.b and Fig.1.c. In the first one (primary
path sees a secondary one), there are both an optimal path (from B to A, however
B has not A as its next hop in the optimal path to D) and also a secondary one
(from A to B) to reach the same destination. In Fig.1.c (secondary path sees a
secondary one), a loop is caused by two secondary paths, each one with its own
percentage of routed traffic, α and β.

A Decentralized Traffic Management Approach 149

Fig. 1. Types of loops

Fig. 2. Structure of the LAPM. LAPM is composed of the next fields: SourceNode (id.
of the node wanting to establish the secondary path), DestinationNode (id. of the des-
tination node), NextHopNode (id. of the next hop of the secondary path SourceNode

wants to establish to reach Destination), SinkNode (id. of the node starting the return
phase), Proportion (direct proportion of the traffic sent by SourceNode to Destination

through NextHop that reaches SinkNode), ReturnProportion (proportion of the traf-
fic sent by SinkNode to Destination that reaches SourceNode) and Hops (number of
hops that can be still leaped)

Taking into account this classification, two different mechanisms are proposed
when a node is going to install a new secondary path: avoidance of primary loops
and avoidance of secondary loops, described in Sections 3.1 and 3.2, respectively.

3.1 Avoidance of Primary Loops

Avoiding primary loops only requires a simple process to be computed at each
router: when a router X is going to install a new sub-optimal path, if the candi-
date to new Next Hop (NH) to reach a destination has the router X as the next
hop of its optimal path to reach the same destination, this new secondary path
is discarded. Since X knows both the topology and the link-state information of
the network, it is able to infer the optimal paths of NH by means of applying a
Dijkstra algorithm [10] and no additional information exchange is required.

3.2 Avoidance of Secondary Loops

An information exchange is required in order to know whether a secondary loop
will exist if the secondary path is installed and, if so, avoid it. We define the
LAPM (Loop Avoidance Protocol Message) as the normalized message required
for this information exchange, whose structure is shown in Fig.2.

This mechanism defines three main phases: a forward phase (calculation of
the percentage of traffic routed by the forward path), a return phase (calcu-
lation of the percentage of traffic routed by the reverse path) and a discovery

150 M.Á. Callejo-Rodŕıguez et al.

phase (triggered if a loop is discovered, where the secondary path is deleted if
Proportion is lower than ReturnProportion).

The forward phase is triggered by a node (N), trying to establish a new
secondary path to a destination (D) by routing a traffic percentage (p) through
the next hop (NH). This node sends a new LAPM to NH, initialized with
the set of values (N , D, NH, −1, p, −1.0, MaxHops) according to the LAPM
format defined in Fig.2. MaxHops is a configurable parameter that defines the
depth of the algorithm and represents a trade-off between loops avoidance and
extra load in the network.

Once N sends the LAPM to NH, it is processed according to a defined set
of actions to be triggered when a LAPM arrives.

When a node receives a LAPM, it firstly checks if the received message is a
forwarding LAPM (ReturnProportion is equal to −1). In this case, if Hops is
greater than zero, the node must resend the message to its next hops to reach

Fig. 3. Example of the avoidance of secondary loops. The figure shows a topology
(top-left), the paths to reach C from all the nodes in the network (top-right) and a
sequence diagram with all the messages exchanged by the nodes in the network when
A wants to establish a new secondary path to reach C (bottom). In this example, we
can distinguish the forward phase (A sends a new LAPM to F , F resends this message
to its next hops with updated values of Proportion and so on), the return phase (e.g.
when the timer expires, F sends to all its next hops to reach C a new LAPM with
the initialized value of ReturnProportion) and final the discovery phase (A receives a
LAPM with Source equals to A, and compares the values of the Proportion fields and
deletes from its routing table F as a possible next hop to reach C).

A Decentralized Traffic Management Approach 151

D with updated values of Proportion, taking into account the percentage of
traffic that the node routes through each one, pi; therefore, for each next hop
to reach D, the node has to resend the received LAPM with updated values for
Proportion (Proportion ∗ pi) and Hops (Hops − 1).

In addition to the sending the updated LAPM to its next hops, the node
starts the return phase. In order to aggregate the forwarding proportions belong-
ing to the same routing tree (whose key is defined by SourceNode, Destination
and NextHop), each node must maintain a list with the sum of the Proportion
fields received in different LAPMs for the same routing tree. Consequently, when
the return phase starts, if there is another registry in the list for that routing
tree, the value of its proportion is updated (the received Proportion is added
to the stored value). If not, a new registry is added to the list with the val-
ues included in the received LAPM, and a timer is triggered for that registry.
When this timer expires, the node sends a new LAPM to each next hop of
its routing table to reach D. The node initializes a new LAPM with the val-
ues stored in the list for SourceNode, Destination, NextHop and Proportion
and for ReturnProportion, SinkNode and Hops it uses pi (traffic proportion
routed to reach D from the specific next hop), the identifier of the node and the
configurable parameter MaxHops, respectively.

On the other hand, when a returning LAPM is received (ReturnProportion
different from −1), the node checks if the value of SourceNode is equal to its own
node identifier. If this condition is met, a secondary loop has been discovered and
the discovery phase starts. Otherwise, if Hops is greater than zero, the return
phase continues and the LAPM is resent to all the next hops to reach D by
updating the values of ReturnProportion (ReturnProportion ∗ pi, where pi is
the proportion of traffic sent by this hop) and Hops (Hops − 1) fields.

Similarly to the return phase policy, in the discovery phase each node must
also maintain a list to manage the received return LAPMs containing informa-
tion about Destination, initial NextHopNode, SinkNode (that one that ini-
tialized the return phase), Proportion, ReturnProportion and a timer to check
if the path must be deleted. Therefore, when a loop is discovered, the node
firstly checks if ReturnProportion of the received LAPM is greater than the
Proportion contained in the same message. In this case, the node deletes from
its routing table the NextHop to reach Destination. If this is not the case,
and there is another registry in the list with the same values of Destination,
NextHop, Proportion and SinkNode, the value of ReturnProportion is up-
dated by means of adding the just-received ReturnProportion. If not, the node
introduces a new registry in the list with the values received in the LAPM and
the initial value of the timer (also proportional to the MaxHops configuration
parameter). When the timer expires the node checks if fixed Proportion is equal
or lower than the store, and maybe updated, ReturnProportion. In this case,
the secondary path to reach Destination through NextHop is deleted.

Fig.3 shows how the phases defined above converge and allow a router want-
ing to establish a new secondary path to avoid loops.

152 M.Á. Callejo-Rodŕıguez et al.

4 Evaluation of the Proposal by Simulation

The proposed solution for intra-domain traffic management in Ambient Net-
works, (MRDV+LAP), has been implemented in Network Simulator 2 (ns-2) [9]
in order to evaluate by simulation the efficiency of the proposal. Two different
topologies have been used in these simulations: a basic low-meshed topology
with seven nodes and a more realistic and meshed topology with twelve nodes.

The traffic pattern used to feed these topologies is composed of both TCP
and UDP traffic. For each pair of nodes in the network, each node contains at
least one FTP application (and sends/receives TCP traffic to/from the other
nodes in the network) and both constant and exponential bit rate applications
are established. All the nodes send traffic rate to all the other nodes in the
network, which is multiplied by a scale factor to increase the traffic load level,
as it can be seen in further graphs.

In order to evaluate the performance perceived by this traffic, the evolution of
the loss ratio and the mean delay for the UDP traffic and the average throughput
obtained for the FTP applications have been analyzed. Moreover, the evolution
of the loop probability has been monitored in order to analyze the efficiency of
LAP.

For each simulated traffic level, ten simulations with different seeds have
been performed, in order to estimate the error associated to a given statistical
confidence interval. The further graphs show the mean value, while the highest
values of the errors for a confidence interval of 90% are given in the figure
captions for reference.

The following subsections present these scenarios and analyze the obtained
results.

4.1 Basic Scenario

Firstly, we have evaluated the performance of the protocol in a basic scenario,
whose topology is shown in Fig.4. The traffic matrix of this scenario is defined
according to the principles explained above; however, in order to simulate a
typical interconnection point to external networks, traffic rates of UDP flows
sent or received by node 1 are increased a 30%. Regarding FTP applications,
the file sizes sent by the sources depend on the traffic level of each mecha-
nism.

This scenario has been simulated with different routing options: OSPF with
ECMP (ECMP), ECMP with MRDV (MRDV), MRDV avoiding primary loops,

Fig. 4. Topology used in the basic scenario. Link delays set to 5 ms, link capacities to
STM1 (155 Mbps) and STM4 (622 Mbps).

A Decentralized Traffic Management Approach 153

and MRDV with full LAP up to 1-hop loops. It has been monitored the UDP loss
ratio, the TCP throughput and the loop probability and looped traffic obtained
in each option. Fig.5 shows the mean values of these parameters.

Due to the usage of basic MRDV with respect to ECMP, it can be seen that
UDP losses are postponed with MRDV and the congestion point for TCP traffic
also appears later. For example, if we compare the traffic level when the loss
ratio in both options overpasses a threshold of 1%, basic MRDV can manage
around 38% more traffic than ECMP. Moreover, for a traffic level resulting in
a loss ratio for UDP traffic of 1% in the case of MRDV, ECMP obtains 2.5%
of losses. For this same traffic level, the average number of bytes received by a
FTP application is 19.5% higher in the case of MRDV with respect to ECMP. As
these results show, the use of MRDV can significantly improve the performance
in the network for both UDP and TCP traffics.

The simulation results also show how LAP clearly improves the MRDV per-
formance with respect to the basic MRDV option: for the same traffic level
resulting in a loss ratio of 1% in MRDV, the avoidance of primary loops reduces
to 0.19% the loss ratio and with the use of LAP with one hop, 0.18%. This small
difference is due to the low possibility of routing loops with more hops since the
topology is low-meshed. Looking at the obtained the loop probability in each
case, it is reduced from 4.6% to 0.9%.

If we compare the traffic level when the loss ratio exceeds a 1%, LAP al-
lows to duplicate the traffic level carried by the network. Finally, regarding the
performance of TCP traffic, the congestion point, located where the number of
received packets decreases for higher traffic levels, appears with a traffic incre-
ment of around 33% in the case of MRDV+LAP with respect to the congestion
point of ECMP.

As expected, loop probability has been decreased and is even maintained
when the traffic level is increased, as Fig.5 shows. This is because, although
new routing loops appear, LAP discovers them and removes them from the
routing tables. The remaining loops are those with more hops, which LAP is not
considering in exchange of introducing less traffic overhead in the network.

4.2 Realistic Scenario

We have also evaluated the performance of MRDV with LAP in a more meshed
topology (shown in Fig.6) based on the core network of the reference transport
network presented in the IST-LION project [11].

In order to make TCP traffic more realistic, five Edge Nodes (EN) have been
attached to a Core Node (CN) with links of 1ms delay and 10 Mbps capacity.
These ENs run FTP applications and establish TCP connections with other ENs
in such a way that fifteen FTP transactions running during the whole simulation
time are established between each pair of CN nodes, that is, three per each EN
associated. Regarding the UDP traffic, a rate proportional to the population of
both source and sink cities has been set between the CNs.

Fig.7 presents the obtained simulation results, where MRDV without any
mechanism for avoiding loops performs worse than ECMP due to the high ap-

154 M.Á. Callejo-Rodŕıguez et al.

Fig. 5. Results obtained from the basic scenario. Top-left: Loss ratio of UDP traffic
(max. error: 2.5%). Top-right: throughput of TCP traffic (max. error: 1.3%). Bottom-
left: loop probability. Bottom-right: looped traffic.

Fig. 6. Topology for the realistic scenario: backbone topology used (left) and topology
of the simulated scenario, including TCP traffic sources and sinks (right)

pearance of loops, even with low traffic levels. As it can be seen, loop probability
rapidly increases and goes over 50%. Therefore, this scenario justifies the use of
mechanisms for avoiding loops.

Nevertheless, the results also show how the use of LAP can significantly
improve the performance of MRDV. Specifically, the avoidance of only primary
loops, for a traffic level value that causes a loss ratio of 5.8% for UDP traffic,
MRDV+LAP obtains a loss ratio of 2.9%, reducing UDP losses around 50%. If

A Decentralized Traffic Management Approach 155

Fig. 7. Results obtained from the realistic scenario. Top-left: Loss ratio of UDP traffic
(max. error: 0.4%). Top-right: Mean delay of UDP traffic (max. error: 0.6% and 9% for
MRDV and ECMP respectively). Bottom-left: Throughput of TCP traffic (max. error:
0.2%). Bottom-right: loop probability.

we compare the traffic level when the loss ratio in both options overpass a 5%,
MRDV with LAP can manage around 15% more traffic than ECMP. However, if
we evaluate the TCP performance for the same traffic level (20), the throughput
only increases by 2% due to the use of MRDV+LAP instead of ECMP. It is
needed a higher traffic level to obtain significant benefits; e.g. for a traffic level
of 30, this benefit is around 8%.

The results obtained with one-hop LAP are not significantly better than those
ones with just avoiding primary loops because most of the loops are primary ones.
In fact, the avoidance of primary loops reduces loop probability to 6%. Anyway,
one-hop LAP removes all the existing loops.

5 Conclusions and Further Steps

This paper presents the combination of MRDV and LAP as a satisfactory solu-
tion for the traffic management in Ambient Networks. The proposal presents a
decentralized friendly-migrable solution to distribute traffic load in the network
thanks to the use of MRDV, whose performance is improved by LAP by suc-
cessfully removing secondary paths that can cause loop appearance. Specifically,

156 M.Á. Callejo-Rodŕıguez et al.

the use of LAP is interesting in those scenarios where loop probability is very
high, as it has been shown in the realistic scenario.

Moreover, at least in the studied scenarios, only with the avoidance of pri-
mary loops, traffic performance is significantly improved. So, the second phase
of LAP would not be necessary since the improvement in the traffic performance
is negligible. Nevertheless, more simulations with different scenarios are needed
to have more confidence in this conclusion.

Another issue that must be analyzed in further steps is the behavior of
MRDV+LAP in case of variations during the simulation time in both the traffic
matrix (sudden changes in traffic patterns) and the network topology (link and
node failures). Also, we have to evaluate how configuration of timers used in the
return and discovery phases of LAP can affect the performance of the protocol.

References

[1] Niebert, N., Schieder, A., Abramovicz, H., Malmgren, G., Sachs, J., Horn, U.,
Prehofer, C., Karl, H.: Ambient Networks: An Architecture for Communication
Networks Beyond 3G, IEEE Wireless Communications, Abril 2004.

[2] Awduche, D., Malcolm, J., Agogbua, J., O’Dell, M., McManus, J.: Requirements
for Traffic Engineering Over MPLS, Request for Comments 2702, Internet Engi-
neering Task Force (1999).

[3] Ramón-Salguero, F.J., Enŕıquez-Gabeiras, J., Andrés-Colás, J., Moĺıns-Jiménez,
A.: Multipath Routing with Dynamic Variance, COST 279 Technical Report
TD02043 (2002).

[4] Hopps, C.: Analysis of an equal-cost multi-path algorithm, Request for Comments
2992, Internet Engineering Task Force (2000).

[5] Moy, J.: OSPF Version 2, STD 54, Request for Comments 2328, Internet Engi-
neering Task Force (1998).

[6] Callon, R.: Use of OSI IS-IS for Routing in TCP/IP and Dual Environments,
Request for Comments 1195, Internet Engineering Task Force (1990).

[7] Villamizar, C.: OSPF optimized multipath (OSPF-OMP), Internet Draft, draft-
ietf-ospf-omp-03 (1999).

[8] Gojmerac, I., Ziegler, T., Ricciato, F., Reichl, P.: Adaptive Multipath Routing for
Dynamic Traffic Engineering, IEEE Globecom (2003).

[9] The Network Simulator - ns-2, http://ww.isi.edu/nsnam/ns.
[10] Cormen, T.H., Leiserson C.E., Rivest R.L.: Introduction to Algorithms, MIT Press

(1990).
[11] Reference Transport Network Scenarios, IST COST/COST 266,

http://www.ibcn. intec.rug.ac.be/projects/IST/NRS.

Performability Analysis of an Adaptive-Rate
Video-Streaming Service in End-to-End QoS Scenarios�

I.V. Martín, J.J. Alins, Mónica Aguilar-Igartua, and Jorge Mata-Díaz

Telematics Engineering Department, Technical University of Catalonia (UPC), Jordi Girona 1-3,
08034, Campus Nord, Barcelona, Spain

{isabelm, juanjo, maguilar, jmata}@entel.upc.es.

Abstract. Nowadays, dynamic service management frameworks are proposed
to ensure end-to-end QoS. To achieve this goal, it is necessary to manage Ser-
vice Level Agreements (SLAs), which specify quality parameters of the services
operation such as availability and performance. This work is focused on the eval-
uation of Video-on-Demand (VoD) services in end-to-end QoS scenarios. Based
on a straightforward Markov Chain, Markov-Reward Chain (MRC) models are
developed in order to obtain various QoS measures of an adaptive VoD service.
The MRC model has a clear understanding with the design and operation of the
VoD system. In this way, new design options can be proposed and be easily evalu-
ated. To compute performability measures of the MRC model, the randomization
method is employed. Predicted model results fit well to the ones taken from a real
video-streaming testbed.

1 Introduction

During the last years, Video-on-Demand (VoD) applications for the transmission and
distribution of video have experienced a growing development and acceptance from
the users. Video-streaming systems have a special relevance in wired and wireless net-
works. In these systems, the video is distributed for its reproduction in real-time [1].
The video server of a video-streaming system stores a set of movies that can be re-
quested by any client. If the connection request is accepted, a session is initiated; then a
multimedia stream flows through a set of heterogeneous networks from the video server
to the client terminal.

In end-to-end Quality of Service (QoS) scenarios, QoS measures such as packet
loss, packet delay and jitter must be guaranteed when the connection is accepted. These
real-time guarantees required by the VoD systems could be achieved using QoS differ-
entiation between traffic classes over heterogeneous networks. On the other hand, with
the aim of reducing the huge amount of information generated by the video source, loss
compression techniques are applied. The most common coding techniques are H.26x
and MPEG standards [2]. The price to pay for a high compression level is a degradation
level in the image quality.

VoD systems with QoS guarantees might be designed to provide a uniform level
of image quality to their users. The video flows coded with a constant image-quality

� This work has been financed by the Spanish investigation projects DISQET (CICYT TIC2002-
00818), CREDO (CICYT TIC2002-00249) and ARPA (CICYT TIC2003-08184).

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 157–168, 2005.
c© IFIP International Federation for Information Processing 2005

158 I.V. Martín et al.

present a high variability in their transmission bit rate. In this way, the amount of net-
work resources required for the transmission fluctuates notably.

The adaptive VoD services employ a set of policies for dynamic resource allocation.
It is accomplished by means of signalling protocols used between the service and the
network. Thus, related to the bit rate variability of the flow, the service raises renegotia-
tions to the network in order to modify the allocated resources during the session. These
renegotiations are performed at the temporal-scale of the scenes in a video sequence.
In this way, the amount of network resources reserved during the session are reduced
substantially, and a more efficient exploitation of these resources is achieved [1,3,4].
Therefore, the number of concurrent streaming sessions in the system is incremented.
However, the image quality will be reduced in some congestion moments when the
flow with the selected quality cannot be transmitted. In these congestion situations, the
service adapts the transmission bit rate to the available network resources applying a
higher compression level or managing the enhanced layers when scalability techniques
are employed [1]. Thus, the final QoS provided to the customers of these streaming
services depends on the available network resources.

Both the service providers and the customers are indeed interested in tools which
support to quantify the performance of these systems from their points of view. Ana-
lytical tools are the most appropriate mechanisms to facilitate the required evaluation.
Moreover, these tools should provide feasibility to incorporate modifications into the
system in an easy way. Further, they also must admit a computational evaluation. This
kind of analytic tools help to address some of the typically required main objectives: to
maximize the use of network resources and the QoS offered to the users and, to define
billing metrics. Likewise, these tools could compute diverse parameters in order to spec-
ify, to manage and to control the fulfilment of the Service Level Agreements (SLAs).
The management of SLAs is a current challenge into the multimedia services area. Fur-
ther, it has a great commercial interest. There are diverse recent proposals about SLA
management (e.g. [5,6]), although none of them specifies how to quantitatively evaluate
the user-level SLA parameters.

One of the main objectives addressed in the present work is to compute a priori the
QoS offered to the user of a video-streaming application. In particular, we are interested
in the evaluation of adaptive VoD systems, in which video sources are capable to adapt
their output bit rate to the time-varying available network resources.

Some proposals of design and evaluation of adaptive VoD systems are presented
in [3,7,8,9,10]. However, most of these proposals use either simulation models or real
platforms to carry out the performance evaluation of these systems. These evaluation
techniques hinder the system analysis and also the study of several design options. In
addition, some analytical proposals do not regard the interaction between the different
video sources sharing the network resources. On the other hand, works focused on
characterizing and modelling a single video flow [4,11,12] are not enough to evaluate
an adaptive VoD session because they do not take into consideration the dynamism of
the video quality changes all over the transmission of the stream.

In [13] we proposed a generic method to develop Performability models [14] for
VoD systems. This method solves the lacks above mentioned. The applicability of this
method is based on the characterization of the coded multimedia flows and the channel

Performability Analysis of an Adaptive-Rate Video-Streaming Service 159

behaviour. This characterization requires suitable markovian models of both the flows
and the channel. In addition, an analytical model developed with this generic method
for a VoD service was presented in [13]. This model provides accurate results for the
measures of user-level QoS parameters such as the image quality, reserved resources, or
effectively-used resources. However, a problem of this model is that the computational
cost may increase dramatically when the amount of accepted connections or the amount
of user-classes increase.

In the present work, we obtain other two new analytical models based on the method
presented in [13]. These models reduce the states space to characterize the resources
reserved by a group of users. Using these proposed models, we have analyzed the per-
formance of a VoD service varying some design parameters.

The rest of the work is organized as follows. Section 2 describes the evaluated VoD
system. In section 3, a background of the previous work presented in [13] is sum-
marized. In section 4 we propose two new simpler analytical models of the adaptive
VoD service. Next, in section 5 some numerical results evaluating both VoD models
are shown. The results of these models are compared with experimental measurements
obtained from the SSADE project (http://ssade.upc.es) implemented by the Telematics
Services Research Group of the Polytechnic University of Catalonia. Finally, conclu-
sions and future work are presented in section 6.

2 The System Description

Figure 1 depicts the VoD system analysed in this work. Video sequences have pre-
viously been coded using the VBR MPEG-II algorithm and then, stored in the video
server. When any customer of the VoD service demands one of these sequences, a con-
nection is established if the video service has enough resources to provide the con-
tracted user’s profile, i.e. the agreements specified in the service contract. In many IP
QoS-aware networks, the RSVP (Resource reSerVation Protocol) is employed as sig-
nalling protocol to manage resource reservation requests [15]. Video-streaming services
that use RSVP send requests to the network in order to adjust the required resources of
the video-stream transmitted. The description of these resources is specified by means
of the Traffic Specification (TSpec) parameters carried in the PATH messages of the
RSVP. The VoD server requests resource reservation for each session dynamically, i.e.
the amount of required resources are calculated and adapted for smaller intervals than
the length of the sequence. So, different network resources are requested over the whole
transmission of a sequence. Moreover, this renegotiation process yields that the avail-
able network resources change due to the interaction between the multiplexed connec-
tions. With the aim that the video sources are capable to adapt their output bit rate to
the time-varying network resources, each available sequence has a set of MPEG flows
coded with different quantization step (Q). Then, each available flow offers a different
image quality according to Q [2]. For each accepted session, the transmitted stream will
match with one of the different available coded flows of the requested sequence. This
selection changes depending on the image quality contracted by the user and on the
result of the reservation request produced by the end-to-end admission control of the
RSVP-based system.

160 I.V. Martín et al.

Fig. 1. System model for the VoD service Fig. 2. Required bit rate

To carry out the system functions, three blocks have been designed as it is sketched
in Fig. 1. These blocks are performed as follows. For each available flow, the Statisti-
cal Planner block has previously calculated and stored the TSpec parameters of each
scene and the events of resources renegotiation in each sequence. When scene changes
or variations of the available resources happen, the Regulator/Negotiator block decides
which flow (Qi) will be transmitted. To guarantee a minimum video quality, the minimum
reservation needed to transmit the lower image quality flow must always be assured. The
Traffic Shaper block extracts the variability introduced by the frame coding modes (Intra,
Predicted and Bidirectional-Predicted) of the MPEG algorithm. In this way, the bit rate
is smoothed and it is maintained constant (rGoP) for a GoP (Group of Pictures) interval.

As an example of the transmitted stream, Fig. 2 shows the bit rate required to trans-
mit the sequence "The Graduate" coded with a quantification step Q equals to 4, 8 and
16. The dark line shows the bit rate reserved to the connection, when the total resources
for the video service are 270,000 Bytes per second. Notice that this stream matches
with one of the available flows for each moment of transmission time.

3 Background

3.1 Scene-Based Markovian Models for a Video Sequence

In order to efficiently characterize the network resources required by a constant-quality
flow of a video sequence, we need to identify the groups of frames with same complex-
ity or activity in the sequence. The identification process of these consecutive groups
of frames has been called in the literature as Segmentation [16]. The segmentation of a
video sequence results on series of groups of pictures with similar requirements of net-
work resources [17]. These segments, also named scenes, define different complexity
levels within the sequence. Through the classification of the scenes into activity levels,
scene-based models have been proposed in previous works [18]. Some of the more rel-
evant works have developed analytical models based on Markov chains. These models
set the number of scene classes heuristically. Straightforward scene-based Markovian
models represent scene changes by means of transitions between states, where states
identify classes of scenes. For the sake of the simplicity, we will refer to each class of
scenes as an activity level. An example of the Markovian scene-based model is shown
in Fig. 3, where L activity levels are defined.

The segmentation process of different constant-quality flows of the same movie
gives rise to the same scene bounds. Consequently, for a set of video-flowmodels

Performability Analysis of an Adaptive-Rate Video-Streaming Service 161

Fig. 3. Scene-based Markovian model Fig. 4. Generic model of an accepted connection

related to the same movie, the changes of scene occur at the same time. Fig. 2 remarks
how these flows are time-tracked. Hereafter, we will indistinctly refer to a change of
the activity level of the sequence as well as a change of the activity level in anyone of
its coded flows. In this work, the amount of resources required to transmit the scenes of
each available flow are considered to be known and they have previously been calcu-
lated for all the stored sequences at the video server.

3.2 Generic Method to Develop Analytical Models of VoD Systems

A generic method to construct Markov Reward Chain (MRC) models for VoD systems
was proposed in [13]. Finally, to carry out computations of QoS measures, the method
of Randomization [19] was applied to the MRC. The generic modelling methodology
presented there consists on 5 steps that obtain a MRC that statistically characterizes
the network resources required by a connection and the available resources for this
connection. Also, applying this methodology, an analytical model of a particular VoD
system was derived in [13]. For more information of this model and the generic method,
please refer to [13]. Below, we summarize this model and later on in section 4 we
propose some modifications to this model obtaining new models which reduce the space
of states and provide a faster computation of expected results.

In Step 1, a markovian model for each available fixed-quality video flow in the VoD
system is derived in a similar way as it was developed in [3]. This model is composed
by three states that define three activity levels (as it is presented in section 3.1).

The Continuous-Time Markov Chain (CTMC) shown in Fig. 4 is an example de-
rived from Step 2. For the sake of the clarity, only 3 different constant image-quality
flows have been depicted in the draw. Each column corresponds with the model of each
available flow, which was obtained in step 1. This CTMC models the behaviour of a
connection in the system, where ea

f is a connection state where flow of quality f (1:
worst quality. . . F: best quality) in the activity level a (0: regular, 1: medium, 2: high)
is transmitted through the connection. The transitions between states reflect the scene
changes and renegotiation decisions that have been designed in the VoD system. In ad-
dition, in this example while the stream remains in the same activity level, the system
periodically tries to improve sending requests for the next better image-quality. We call
this process polling of improvement. The transition rates in this CTMC depend on the
required resources and on the available resources. In order to formally express these
dependencies, two boolean factors are defined:

162 I.V. Martín et al.

α(ea
f) =

{
1 , if RSV (ea

f) ≤ RSavailable

0 , otherwise.
(1)

and

β(ea
f , e

b
g) =

{
1 , if RSV (ea

f) ≤ RSV (eb
g)

0 , otherwise.
(2)

whereRSavailable is the amount of available resources for the connection andRSV (ea
f)

is the amount of network resources that the system reserves for the connection when the
server transmits a flow of quality f in activity level a.

Let Ψ(ea
f , e

b
g) be the transition rate from state ea

f to state eb
g for a connection. These

rates in the CTMC, related to increments or decrements of the activity level in the video
sequence, are formulated by means of equations which depend on the rates λa,b and
the factors β (see [13]). Finally, transitions owing to the polling of improvement are
formulated as a function that depends on the poll rate λp and the factor α. Note that
the factors α and β provide the general characterization of the adaptive VoD service by
means of the proposed CTMC. Different behaviours for the renegotiation mechanism
can simply be designed using these factors. When several connections are being served,
RSavalaible vary during the time. In this case, it is mandatory to know the state of all
the connections that interact with the one under analysis.

In Step 3 the model of N accepted sessions is achieved. Firstly, the state of all the
connections with a same QoS profile is defined. In this case, that we called homoge-
neous case, each connection is characterized with the same parameter values of the
generic connection model that has been described in step 2. Let S∗ =

{
(n0

1, n
1
1, n

2
1),

(n0
2, n

1
2, n

2
2), . . . , (n0

F , n
1
F , n

2
F)

}
be the system state, where each component na

f is the

number of connections transmitting a flow of quality f in activity level a. Let S−(f,a)
+(g,b) be

a system state with one more connection transmitting a flow of quality g in activity level
b and one less connection transmitting a flow of quality f in activity level a, regarding
state S∗. If all transmissions are uncorrelated, only transitions from state S∗ to state
S
−(f,a)
+(g,b) can occur. Then, the transition rates Ψ(S∗, S−(f,a)

+(g,b)) are expressed as a function
of rate ψ multiplied by na

f . Where, generalizing (1) for N connections and taking into
account a conservative admission control, the factor α(S∗) is expressed as follows:

α(S∗) =
{

1 , if
∑

∀f

∑
∀a n

a
f · RSV (ea

f) ≤ RStotal

0 , otherwise.
(3)

To develop the case of heterogeneous customers, the simpler way is to define the
system state as the joining state of each user class, this is: S = S1, S2, . . . , SC .

Step 4 is applied to evaluate the performance of a session in the system with other N
accepted sessions. Let ea

f , S be a system state, where ea
f describes the state of the con-

nection under evaluation and S characterizesRSavailable. The state S may be described
e.g. as the one obtained in step 3 or any markovian model of channel capacity.

4 The New Analytical Models

The analytical model we presented in [13] provides accuracy results for the perfor-
mance measures of the VoD system. Moreover, with this model we accomplish the

Performability Analysis of an Adaptive-Rate Video-Streaming Service 163

performance computations and system modifications in an easy way. Nevertheless, as
N grows, this model increases combinatorially the number of states and therefore the
computational cost increases in the same way [20]. Several methods have been pro-
posed to improve the evaluation efficiency for models with these characteristics [19].
However, these methods may be insufficient to reach the objective of developing a tool
to compare different design options of the system at a low calculation time (real time,
if possible). To address this issue, we have investigated how to reduce the states space
of the model to evaluate the QoS provided to a customer of the VoD system.

In our VoD service, a characterization of the resources reserved by the other N
sessions accepted in the system is necessary to provide the available resources for the
session under evaluation, RSavailable. This characterization can be reached with the
analytical model of N accepted sessions depicted in step 3 of section 3.2, where the
states space equals to (N +3F −1)!/(N !(3F −1)!) for F available video-qualities and
each ones modelled with 3 activity levels. Further, after applying the step 4 to evaluate
the session under analysis, the states space of the model is equal to 3F · (N + 3F −
1)!/(N !(3F −1)!). We have reduced to two states the model of each available flow (see
Fig. 3) for the N sessions that are not under analysis. Applying this reduction of states,
the states space in step 4 is reduced to 3F · (N + 2F − 1)!/(N !(2F − 1)!) for the two
models proposed following (see Table 2).

4.1 Analytical Model 1

We have observed that, for any video sequence, the probability to achieve the highest
activity level is very low for the model with three activity levels. Based on this obser-
vation, we propose to maintain the same regular activity level (level 0) and to establish
just one state to define jointly the medium (level 1) and high (level 2) activity levels to
model the resources required by each available flow of the sessions that are not under
analysis. We do not need to carry out any new statistical analysis of the sequences to
develop this new model. We only need to adjust the parameters of the new level 1. We
called to this new level as level 1∗. The transition rates between level 0 and level 1∗ are
the same ones that between level 0 and level 1 in the analytical model with three levels.
The resources required to be in level 1* are calculated as

RSV (e1
∗

f) =
(RSV (e1f) · time_medium+RSV (e2f) · time_high)

(time_medium+ time_high)
(4)

where time_medium = 1/(λ1,0 + λ1,2) and time_high = 1/λ2,1.
To characterize the resources reserved by the sessions that are not under analysis,

we use the generic method where the model of each available flow includes the mod-
ifications above described. This way, we can characterize RSavailable included in the
model of the session under analysis. This latter model is based on three activity levels
to characterize each available flow.

We also have evaluated different options beside (4) to approximateRSV (e1
∗

f). For

example,RSV (e1
∗

f) equals to (RSV (e1f)+RSV (e2f))/2 and equals toRSV (e1f). But
(4) has been the option that gives the most accuracy results.

We have compared numerical results of this analytical model with the ones of the
original model presented in [13], showing a considerable improvement in the run-time

164 I.V. Martín et al.

(see Table 2) and the same accuracy. From the analysis of these numerical results, we
have been able to adjust some parameters associated to each state leading to the follow-
ing analytical model.

4.2 Analytical Model 2

We have observed that the regular level is the level with the longest scene length. There-
fore, this level is the most influential in the evaluation measures. In addition, the stan-
dard deviation of the required resources of the regular level is higher than for the other
levels. Then, we propose to modify the parameter RSV (e0f) of the model as follows.
For each flow in the regular activity level (level 0), a threshold is established to reach
a new classification of the scenes in this activity level. Depending on the activity level
of these scenes, we have the set of scenes which required resources are lower than the
threshold and the set of scenes which required resources are higher than the threshold.
We called these new sets of scenes as the lower and the higher sublevel of the regular
level, respectively. The amount of required resources associated to the regular level may
be any statistical measure of the required resources of all the scenes classified into one
of the both sublevels: the lower or the higher. The selection of suitable statistical mea-
sures will lead to an analytical model that offers an lower bound or a upper bound for
the evaluation measures of our VoD system. We call level 0* to this new regular level.

From the statistical study of different sequences, we have empirically established
that best computation for the threshold is to average the required resources for all the
scenes classified into level 0, weighted by their scene lengths. In addition, we computed
this statistical measure in each resulting sublevel. With this choice, obtained results,
compared to the ones from the real system, are very adjusted. However, we are taking
additional mathematical methodologies into consideration for future works.

5 Numerical Results

In this section, numerical examples from the evaluation of the VoD system are pre-
sented. Several measures of the QoS offered to a customer of the VoD service have
been computed, such as the PSNR, the failure time, the transmitted bit-rate and the
reserved BW. The expected mean value of these measures for an observed user and
the standard deviation between all the users are presented as well. The computation of
these measures from the analytical models has been reached using the solution of the
moments of cumulative reward presented in [20]. These results have been compared
with experimental values from the SSADE video distribution testbed that provides an
adaptive video-on-demand service. The configuration parameters of the VoD system
used here are the same ones that in [13]. Likewise, the transmitted sequence is “The
Graduate”, where the available flows are coded with quantization step Q equals to 4,
8 and 16. For simplicity, we refer to the model presented in [13] as model_old which
parameters were defined in [13]. We use model1 and model2 to refer the two new an-
alytical models presented in sections 4.1 and 4.2, respectively. Table 1 summarizes the
values of the modified parameters used for model1 and model2, this is level 0* and
level 1* for each available flow of the sequence “The Graduate”. The lower sublevel of
the regular level has been chosen as level 0*.

Performability Analysis of an Adaptive-Rate Video-Streaming Service 165

Fig. 5. Mean PSNR provided to a customer for the transmission of “The Graduate” movie

Fig. 6. Mean PSNR provided to a customer Fig. 7. PSNR standard deviation

Figures 5 to 7 illustrate some evaluation results of the proposed analytical models.
The measurements taken from our testbed are pointed out as SSADE. Figure 5 depicts
the Mean PSNR provided to a user and the standard deviation of this measure for all
the accepted sessions. These figures are represented as a function of the total BW as-
signed to the VoD service and for a variable number of accepted streaming sessions
(N). For each N, the curves start at the minimum BW required to accept the Nth session
in the VoD system. Discontinuities in the analytic curves are produced as a result of
the discretization of the activity levels of the flows. Therefore, the performability re-
sults are discretized and softened as N grows. This happens since the connections are
multiplexed and the values associated to the MRC states are softened as N increases.
The light grey values (SSADE) depict measurements of each one of all the sessions
accepted in our testbed. Note that, analytical curves of both the model1 and the model2
provide a good approximation as a lower and a higher bound with respect to the values
from SSADE. Both the reserved and the transmitted rates present a similar behaviour
(for space reasons they are not shown here).

The numerical results from the models are also sufficiently accurate to analyze the
behaviour of the VoD service from the point of view of standard deviation.
Fig. 7 presents the standard deviation for PSNR measurement of the 10 customers in the
VoD service. Generally, the evaluation results from model1 are very close to the ones
from model_old for any value of N (e.g. see Fig. 6). However, run-time of 1st and 2nd
moments for model1 is considerable lower than run-time for model_old, as shown in
Table 2, without losing precision. Another QoS measure that interests to both customers

166 I.V. Martín et al.

Table 1. Estimated required re-
sources1 [bits/GoP]

level 0* level 1*

Vbr4 504715.88 782343.95

Vbr8 364476.06 421790.50

Vbr16 364476.06 364476.06

Table 2. Comparison of run-times2 [seconds] and
states space for N sessions, F=3, in the system

model_old model1 and model2

N #states run-time # states run-time
5 4455 ∼30 1134 ∼5
8 218790 ∼950 11583 ∼60

12 1133730 ∼35000 55692 ∼740

Fig. 8. Failure Total Time for 5 and 11 accepted sessions

Fig. 9. Comparison between different VoD services (see text for explanation)

and service providers, is the total time when the service does not provides the committed
QoS level to the customer. This measure can be interpreted as failure time (e.g. the
service is in failure when the delivered flow is coded with a quality lesser than the video-
quality contracted by the customer). Fig. 8 shows numerical results of this measure for a
session for 5 and 11 accepted sessions, where a failure is defined when the service does
not deliver the flow coded with Q=4 (i.e., the maximum video-quality available by the
users of our VoD service) to the session under evaluation. In Fig. 8 the total failure time
is normalized to the total time of the transmitted sequence. The SSADE curve depicts
this measure for the last session accepted in the system. For a given total BW assigned to
the video service, evidently the failure time increases as N increases. On the other hand,

1 The level 1* is used by model1 and model2 and the level 0* is only used by model2.
2 The solutions are implemented on Delphi 4 and executed on Pentium 1.4GHz, 768MB.

Performability Analysis of an Adaptive-Rate Video-Streaming Service 167

when the total BW assigned to the video service is the minimum such as N sessions
can be accepted, we observe that the failure time decreases if N increases. For example;
when N=5, total BW=10Mbps, the service is in failure approximately 40% of the total
transmission time (see left graph in Fig.8). When N=11, total BW= 21Mbps, this time
is 30% (see right graph in Fig. 8). Notice that the QoS provided by this VoD system
never experiments a high degradation level. The designed user profile is such that each
accepted connection can access to all the available resources, without distinction among
the users. So the connections quickly acquire a high level of resources sufficient to reach
the maximum quality. Therefore, the admission control designed for this VoD service
provides suitable QoS guarantees and a strictly access to the system. In this way, once
the connection is accepted, the user will perceive a video quality close to the maximum.

Other VoD system configurations or heterogeneous user profile yield other ser-
vice behaviours. For example, Fig. 9 presents the Mean PSNR and reserved BW pro-
vided to a session in the system described above (pointed out as system1 in Fig. 9)
where three coded flows are available (Q=4, 8 and 16) and an other system which dif-
ference is that the flow coded with Q=8 is not available (pointed out as system2 in
Fig. 9). The curves in Fig. 9 verify that mean PSNR is lower in system2 than in sys-
tem1 for the same reserved BW in both systems. We can establish that the VoD sys-
tem1 has a higher efficiency than the VoD system2, since it provides a more adaptive
service.

6 Conclusions and Future Work

The end-to-end QoS provisioning in IP-based networks is a current challenge. Many
QoS management frameworks available in the literature need additional mechanisms
and procedures to quantitatively evaluate the user-level SLA parameters. The generic
methodology proposed in [13] utilizes the characterization of the available constant-
quality flows with the aim to develop an adaptive model for the video-streaming ser-
vice. Models obtained with this methodology capture the dynamism of the transmitted
stream taking into account the activity variations of the sequences and the interaction
with the network. In the present work we propose two new analytical models of an
adaptive VoD system employing this methodology. These models are simpler than the
example presented in [13]. The computational cost is considerably reduced for both
new models. The key of the goodness of these models has been to reduce the states
space to characterize the resources reserved by a group of users. Different measures
of performance evaluation of the VoD service have been calculated using these mod-
els. The precision of computed results allow us to verify that the developed models
give a good estimation of the performance of adaptive multimedia systems in end-to-
end QoS scenarios. The adjustment of the obtained results will depend on the suitable
characterization of the multimedia sources and the transmission channels using suitable
Markovian models. As future lines of research, we are studying others efficient ways
to develop the heterogeneous problem, where diverse QoS customer profiles are con-
sidered. Likewise, well-known models in the literature can be integrated to characterize
time-varying available resources produced by variations in wireless channel capacity.

168 I.V. Martín et al.

References

1. Wu, D., Hou, Y., Zhu, W., Zhang, Y., Peha, J.: Streaming Video over Internet: Approaches
and Directions. IEEE Trans. On Circuits and Systems for Video Technology 11 (2001)

2. Ghanbari, M.: Video Coding: An Introduction to Standard Codecs (IEE Telecommunications
Series 42). IEE Publishing (1999)

3. De la Cruz, L.J., Mata, J.: Performance of Dynamic Resource Allocation with QoS Guaran-
tees for MPEG VBR Video Traffic Transmission over ATM Networks. In: Proceedings of
the IEEE GLOBECOM’99, IEEE Communications Society. (1999)

4. Manzoni, P., Cremonesi, P., Serazzi, G.: Workload Models of VBR Traffic and Their Use in
Resource Allocation Policies. IEEE/ACM Transactions on Networking 7 (1999)

5. Cortese, G., Cremonese, P., D’Antonio, S., Diaconescu, A., Esposito, M., Fiutem, R., Ro-
mano, S.P.: CADENUS: Creation and Deployment of End-User Services in Premium IP
Networks. IEEE Communications Magazine (2003)

6. IST Project: TAPAS– Trusted and QoS-Aware Provision of Application Services (2001)
http://www.newcastle.research.ec.org/tapas/.

7. Muntean, G., Murphy, L.: A New Adaptive Multimedia Streaming System for All-IP Multi-
Service Networks. IEEE Transactions on Broadcasting 50 (2004)

8. Lombardo, A., Schembra, G.: Performance Evaluation of an Adaptive-Rate MPEG Encoder
Matching IntServ Traffic Constraints. IEEE/ACM Transactions on Networking 11 (2003)

9. Luna, C., Kondi, L., Katsaggelos, A.: Maximizing User Utility in Video Streaming Applica-
tions. IEEE Trans. on Circuits and Systems for Video Technology 13 (2003)

10. Ramanujan, R.S., Newhouse, J., Kaddoura, M., Ahamad, A., Chartier, E., Thurber, K.: Adap-
tive streaming of MPEG video over IP networks. In: Proceedings 22nd Annual Conference
on Local Computer Networks, IEEE. (1997)

11. Adas, A.: Traffic Models in Broadband Networks. IEEE Communications Magazine 35
(1997)

12. De la Cruz, L.J., Fernández, M., Alins, J., Mata, J.: Bidimensional Fluid Model for VBR
MPEG Video Traffic. In: 4th International Conference on Broadband Communications, IFIP,
TC6/WG6.2. (1998)

13. Martín, I.V., Alins, J., Aguilar-Igartua, M., Mata, J.: Modelling an Adaptive-Rate Video-
Streaming Service Using Markov-Rewards Models. In: Proc. of the First International Con-
ference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE04),
IEEE. (2004)

14. Meyer, J. Teletraffic Science for Cost-Effective Systems, Network and Services, ITC-12. In:
Performability Evaluation of Telecommunication Network. Elsevier Science Publishers B.
V. (North Holland) (1989)

15. Bernet, Y.: RFC 2998: A framework for integrated services operation over diffserv networks
(2000)

16. Sarkar, U., Ramakrishnan, S., Sarkar, D.: Study of long-duration MPEG-trace segmentation
methods for developing frame-size-based traffic models. In: Computer Networks. Volume 44.
(2004)

17. Wu, M., Joyce, R.A., Wong, H., Guan, L., Kung, S.: Dynamic Resource Allocation via Video
Content and Short-Term Traffic Statistics. IEEE Transactions on Multimedia 3 (2001)

18. Mashat, A., Kar, M.: Performance Evaluation of a Scene-based Model for VBR MPEG
Traffic. Performance Evaluation IFIP WG7.3 36 (1999)

19. Haverkort, B.R., Marie, R., Rubino, G., Trivedi, K.: Performability Modelling. Techniques
and Tools. John Wiley & Sons (2001)

20. Vallejos, R., Barria, M.: Evaluation of Moments of Cumulative Reward in Reparaible Sys-
tems (2005) Submitted to the PERFORMANCE 2005 Conference, Jean le Pins, France.

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 169 – 180, 2005.
© IFIP International Federation for Information Processing 2005

Design and Implementation of Performance Policies
 for SMS Systems

Alberto Gonzalez Prieto and Rolf Stadler

KTH Royal Institute of Technology, Sweden
{gonzalez, stadler}@imit.kth.se

Abstract. We present a design for policy-based performance management of
SMS Systems. The design takes as input the operator’s performance goals,
which are expressed as policies that can be adjusted at run-time. In our specific
design, an SMS administrator can specify the maximum delay for a message
and the maximum percentage of messages that can be postponed during periods
of congestion. The system attempts to maximize the overall throughput while
adhering to the performance policies. It does so by periodically solving a linear
optimization problem that takes as input the policies and traffic statistics and
computes a new configuration. We show that the computational cost for solving
this problem is low, even for large system configurations. We have evaluated
the design through extensive simulations in various scenarios. It has proved ef-
fective in achieving the administrator’s performance goals and fast in adapting
to changing network conditions. A prototype has been developed on a commer-
cial SMS platform, which proves the validity of our design.

1 Introduction

The Short Message Service (SMS) is based on out-of-band message delivery, which
permits subscribers to send and receive text messages to/from their mobile phones.
SMS was introduced in 1992 and, since then, has experienced a remarkable success:
45 billion messages are sent per month [1], which makes SMS to represent about 10%
of the revenue of mobile operators [4].

Controlling a SMS system’s performance, especially during congestion periods, is
a key management task. This work focuses on a design for performance management
of SMS systems that (i) dynamically reconfigures, following the manager’s policy, a
messaging gateway in response to load changes and network conditions, and (ii) al-
lows a manager to dynamically change management policies if needed.

We apply our design to one specific SMS component: the SMS Gateway (SMSG).
The SMSG is a key functional block in the SMS architecture. It is responsible for
routing messages between different networks and domains.

We take a policy-based approach to performance management for two main rea-
sons. First, the use of policies permits us to raise the level of abstraction of the inter-
action with the managed device[2][9][10]. This is particularly relevant due to the lack
of specialists in SMSGs. Second, policies can be used to specify the operation of
automated management systems. In this paper, we aim at automating a system that
controls the performance of an SMSG.

170 A. Gonzalez Prieto and R. Stadler

We consider both single-class, as well as multi-class SMS services. A multi-class
service provides different performance guarantees to different customers or applica-
tions. While service providers currently offer only a single class of service, they are
considering the introduction of service differentiation. The rationale for service dif-
ferentiation comes from new uses of SMS messaging such as emergency alarms and
promotional messages, which differ in performance requirements. For instance,
alarms require low delays, while promotional messages tolerate higher delays or even
losses.

The design in this paper supports two classes of SMS services. The first is the pri-
ority service; it guarantees delivery with a maximum delay on the gateway. The sec-
ond is the non-priority service. Messages using this service may be postponed during
congestion: they are stored and will be forwarded when congestion is over. The de-
sign in this paper dynamically reconfigures an SMS gateway to provide maximum
throughput, while observing the quality of service objectives of maximum delays and
maximum percentage of postponed messages for the above classes.

Adapting this design to a single-class or more than two classes is straightforward.
The paper extends our previous work on SMS management [17][18] as follows.

First, an earlier design has been extended to support additional quality of service pa-
rameters, such as the maximum delay. Second, we studied the computational cost of
policy re-evaluation. Third, we present results on the trade-off between postponed
messages and system throughput. Fourth, we benchmark the performance of our de-
sign against that of an ideal system. Finally, we include our experience with imple-
menting our design on a commercial SMS gateway.

The rest of the paper is organized as follows: section 2 discusses performance poli-
cies; section 3 describes the SMS architecture; section 4 describes our design for per-
formance management; in section 5, we evaluate our design through simulations in
different scenarios; section 6 discusses our prototype implementation; section 7 pre-
sents related work; section 8 contains the conclusions the paper.

2 Performance Policies

Administrators want to specify their performance goals in form of performance poli-
cies. In general, performance policies are derived from business objectives and SLAs.
Such policies include performance goals in form of metrical bounds and utility func-
tions that must be maximized. In the general case, performance policies assume a
multi-class service system.

Some examples of performance policies are: (i) maximize the number of processed
messages, (ii) maximize the number of served customers, (iii) provide low delays for
premium customers, (iv) limit the number of postponed messages for customer A to
X%, and (v) provide a minimum throughput to customer B of Y messages/second.

Performance policies are given as input to a management system, which maps
them into executable functions to achieve the administrator’s goals [10][11].

The design for a management system presented in this paper considers an SMS
gateway that supports two service classes, priority and non-priority. It supports the
following policies: (1) Maximize the system’s throughput in messages per second.

 Design and Implementation of Performance Policies for SMS Systems 171

(2) Limit the postponement of non-priority messages to a configurable maximum per-
centage. (3) Limit the maximum delay of priority messages to a configurable value.

Note that an alternative to postponing a message is to drop it. This is not an option
for emergency alarms. However, this might be an attractive solution for handling
promotional messaging. Our design supports both alternatives and the results we pre-
sent hold for both of them.

3 SMS Architecture

Figure 1 positions our work within the network architecture for SMS deployment in
the GSM context.

The SMSC acts as a store-and-forward system for short messages. Upon receiving
an SMS, it queries the HLR database to get the location of the addressee of the mes-
sage. With this information, the SMSC determines the servicing base station for the
addressee and delivers the message to the terminal of the receiver. The SMSC re-
ceives messages from two different parties: mobile terminals and SMS gateways.

The SMS Gateway (SMSG) is the functional block in the SMS architecture that in-
terconnects the wireless network to others, such as other mobile operator's network or
TCP/IP networks. The gateway’s administrator agrees to a traffic profile with the op-
erators of its neighboring SMSCs/SMSGs, typically in the form of a maximum rate.

We use a model for an SMSG that is similar to an IP router. It consists of incoming
ports, a routing engine and outgoing ports. Incoming ports receive the messages the
gateway has to deliver. On reception, the message is routed to the appropriate outgo-
ing port. After that, the message may need to be converted to a protocol understood
by the receiving network. This conversion phase is not considered in this work.

Each outgoing port of the gateway has an associated queue. This permits the gate-
way to cope with brief periods of congestion. However, longer periods of congestion
require control mechanisms.

SMSC

Operator A Network Operator B Network

The Internet

SMS
Application

HLR

SMSC

HLR

SMSC SMSC

SMSG

Fig. 1. Functional Architecture for SMS. This work focuses on the SMS Gateway Performance
Management.

172 A. Gonzalez Prieto and R. Stadler

The SMSCs and SMSGs form an overlay network on top of an IP network. The
overlay links are created on top of TCP connections. Therefore, ports in a SMSG are
software ports, not hardware ones.

A typical port configuration for a large operator has a small number of ports (< 10)
with message rates in the order of some tens messages per second. For small opera-
tors, configurations often consist of a large number of ports (~20) and lower message
rates (< 10 msg/sec).

4 System Design

Functional Architecture for Performance Management. Figure 2 presents the
functional architecture of our design. It permits the SMS system to achieve the admin-
istrator’s performance goals, while adapting dynamically to changes in the load
pattern.

 βmax Maximum percentage of non-

priority messages that can be
postponed

δmax Maximum allowable delay for
priority messages

αi Acceptance rate at port i
βj Percentage of postponed non-

priority messages on outgoing
port j

Ii Traffic offered to port i
Tij Traffic matrix
Oj Traffic rate sent to outgoing

port j
Outj Traffic rate sent by outgoing

port j
µj Service rate of port j
σ Percentage of priority mes-

sages
qj Occupancy of outgoing port j

queue
Qj Capacity of outgoing port j

queue
τ Policy Reevaluation interval

Fig. 2. Functional Architecture for SMS Gateway Management. The management interface is
on top. The PDP block is responsible for the dynamic configuration of the gateway. The bottom
block represents the gateway.

The throttles in the incoming ports are responsible for limiting the acceptance
rates. The traffic estimators estimate (i) the traffic matrix, and (ii) the percentage of
priority messages. These estimations are used for re-computing the gateway configu-
ration. The routing engine decides the outgoing port for each message. It takes this
decision based on the information stored in the routing table. The postponer is re-
sponsible for postponing messages, if needed.

The administrator specifies her performance policies for the gateway through the
management interface depicted on the upper part of figure 2. In this paper, we con-
sider the policy of maximizing the overall throughput, while observing a maximum

 Design and Implementation of Performance Policies for SMS Systems 173

Maximize:

∑
j

jO (Eq. 1)

Subject to:

j
i

ijiT µβσα ≤−−∑))1(1(max
∀j (Eq. 2) ∑≤

i
ijij TO α ∀j (Eq. 4)

0max ≥≥≥ iiI αα ∀i (Eq. 3) jjO µ≤ ∀j (Eq. 5)

The decision variables are αi.

The values for β j are determined by:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−
=

∑
∑

0,
)1(

max

i
iji

j
i

iji

j T

T

ασ

µα
β

∀j (Eq. 6)

Fig. 3. Optimization Problem to determine the gateway configuration

delay in seconds for priority messages (δmax) and a maximum percentage of non-
priority messages that can be postponed (βmax).

We use three mechanisms to achieve the administrator’s performance goals for the
SMS system. The first controls the acceptance rate in the incoming port. In our de-
sign, the acceptance rate can be set per port. Note that reducing the acceptance rate on
a specific incoming port results in reducing the load on all outgoing ports. The spe-
cific values depend on the traffic matrix.

The second mechanism postpones, if needed, some of the non-priority messages
routed to congested ports. This mechanism permits having a higher overall throughput
at the cost of postponing messages.

These two mechanisms allow the system’s administrator to control a trade-off:
achieving high system throughput vs. postponing a low percentage of messages. βmax
is the management parameter that controls this trade-off. It defines the maximum per-
centage of non-priority messages that can be postponed and takes values from 0% (no
messages postponed) to 100% (highest throughput).

The third mechanism sets the buffer capacity in the outgoing ports, which controls
the maximum queuing delay. In practice, the queuing delay dominates the overall de-
lay of a message passing through the gateway (up to several seconds during conges-
tion periods), while other sources of delay are comparatively small (well below one
second).

The PDP (Policy Decision Point). This is the main block of the architecture: it is re-
sponsible for dynamically adapting the gateway configuration to achieve the perform-
ance goals. The PDP evaluates the performance policies and periodically re-calculates
the optimal configuration for the gateway.

The PDP calculates the values for αi (acceptance rates) and βj (fraction of non-
priority postponed messages). This computation maximizes, for the steady state, the
overall throughput, while keeping the postponed non-priority messages below βmax
and the maximum delay for priority messages below δmax.

174 A. Gonzalez Prieto and R. Stadler

This computation re-
evaluates the performance
policies every τ seconds as fol-
lows. If the occupancy of any
queue j is larger that δmax * µj,
which means that the maxi-
mum delay policy is being
broken, then αi will be set to 0
for all i’s. Otherwise, the PDP
predicts for each queue the fu-
ture occupancy after the next τ
seconds, based on the traffic
estimates. If any queue is ex-
pected to overflow, then the
PDP computes a new gateway

configuration by solving the linear optimization problem discussed below. Otherwise,
if no queue is expected to overflow, the gateway will be configured to αi=αmax for all
i’s and βj=0 for all j’s. This means that incoming traffic will be accepted at the maxi-
mum rate and no messages will be postponed.

Figure 3 shows the optimization problem that the PDP solves. The objective func-
tion (eq. 1) refers to the overall throughput that is to be maximized. The first con-
straint (eq. 2) states that traffic sent to an outgoing port is limited by the port’s service
rate. The second constraint (eq. 3) indicates that an incoming port cannot receive
more traffic than what it is offered. Equation 6 implies that βj ≤ βmax. For a detailed
discussion, see [16]. This problem is solved using the well-known Simplex algorithm
[5]. Simplex will always find the global solution for all instances of our problem [16].

We have evaluated the computational cost of the Simplex algorithm for re-
computing the gateway configuration on the PDP in function of the problem size,
which is the number of incoming and outgoing ports. The PDP has been written in
C++ and uses the COIN library implementation of the Simplex algorithm [6]. The ex-
periments have been run on an Intel Pentium 1.6 Ghz with 512 MB of RAM with
Windows XP Professional 2002 and Cygwin [7]. For a detailed description of the ex-
periments see [16].

Figure 4 shows the results of our evaluation. As expected, the execution times in-
crease with the problem size. However, the algorithm is very efficient in computa-
tional terms: it determines the global maximum within a few milliseconds of CPU
time, permitting hundreds of policy evaluations per second, even for large configura-
tions. We conclude that performance wise, our design is feasible to realize using cur-
rent technology.

5 Evaluation Through Simulation

We have evaluated our design through extensive simulation. For this purpose, we
have developed a simulator for an SMS gateway that allows us to exercise our design.
For details on the simulator implementation, see [16].

Computational Cost

0

1

2

3

4

5

6

0 25 50 75 100

Problem size (#ports)

C
P

U
 t

im
e

(m
il

lis
ec

on
d

s)

Fig. 4. Computation Cost of the Simplex Algorithm to
re-compute the gateway configuration on the PDP

 Design and Implementation of Performance Policies for SMS Systems 175

We present simulation results for two scenarios: service rate decrease in one port,
and traffic matrix change. The analysis for a third scenario (service rate increase in
one port) can be found in [16]. The scenarios share the following characteristics: (i)
the port configuration of the gateway consists of three incoming and three outgoing
ports; (ii) under normal conditions, the service rate of each outgoing port is 50
msg/sec, and the acceptance rate of each incoming port is 50 msg/sec. The chosen
port configuration and rates correspond to a typical configuration for a large operator.
(iii) 10% of the messages use the priority service; (iv) the PDP re-calculates the opti-
mal configuration every ten seconds.

The offered load used in the scenarios is based on traces from a commercial
SMSG. These traces exhibit low average message rates. To simulate scenarios that are
representative for large operator scenarios, we superimposed several of those traces to
achieve an average offered load of 50 msg/sec.

We used three different traffic matrices in our experiments. For the first one, each
incoming port distributes its traffic roughly evenly among the outgoing ports, each
outgoing port receiving about one third. We call this matrix a uniform matrix. The
second matrix is a non-uniform matrix, where the traffic of an incoming port is split
unevenly among the outgoing ports. None of these matrices causes congestion under
normal conditions. For the third matrix, the congested matrix, each incoming port,
sends 50% of its traffic to outgoing port 1, 40% to port 2, and 10% to port 3. This
causes congestion in outgoing ports 1 and 2.

In the following descriptions, throughput figures refer to 1-second averages; statis-
tics on postponed messages refer to 10-seconds averages; maximum delays are instant
values.

Service Rate Decrease in Port 3. In this scenario, we analyze the behavior of our
system when the service rate of outgoing port 3 slows down. The experiment starts
with all outgoing ports serving at 50 msg/sec. At time=70 sec, outgoing port 3 slows
down to 20 msg/sec following a step function, which causes congestion, since the

Maximum Delay

0
10
20
30
40
50

30 60 90 120 150 180 210Time (sec)

se
c

Overall Throughput and Postponed Messages

0

20

40

60

80

100

30 60 90 120 150 180 210Time (sec)

%
 p

o
st

p
o

n
ed

0

40

80

120

160

m
es

sa
ge

s/
s

Postponed at Port #3 (%) Overall Throughput (msg/s)

`

Service
Rate
Decreases

SMSG
Re-configures

Port 1,2
Port 3

Maximum Delay

0

5

10

15

20

30 60 90 120 150 180 210Time (sec)
se

c

Overall Throughput and Postponed Messages

0

20

40

60

80

100

30 60 90 120 150 180 210Time (sec)

%
 p

o
st

p
o

n
ed

0

40

80

120

160

m
es

sa
g

es
/s

Postponed at Port #1 (%) Postponed at Port #2 (%)
Overall Throughput (msg/s)

`

Traffic
Matrix
Changes

SMSG
Re-configures

Port 1

Port 3
Port 2

Fig. 5. Evaluation through Simulation. (Left) Service Rate Decrease: µ3=20msg/sec, βmax =
30%, δmax = 50sec, uniform traffic matrix. (Right) Traffic Matrix Change: βmax = 30%, δmax =
20sec, non-uniform traffic matrix.

176 A. Gonzalez Prieto and R. Stadler

offered load to this port is higher than its service rate. For this experiment, βmax=30%
and δmax=50 secs. The traffic matrix is uniform.

Figure 5 (left) shows that the system re-configures the gateway 30 seconds after
the service rate decreases. This reaction time depends on δmax, µj, and the traffic ma-
trix. The dependency on δmax is linear. Higher values of δmax permit the system to cope
with longer congestion periods without throttling or postponing messages.

After the system re-configures the gateway, there is a short transient period of
about 12 seconds. We consider the system stable again when all the outgoing queues
are empty, except those of the congested ports. The time to empty the queues depends
on βmax and on the traffic matrix. It is longer for higher values of βmax, since more traf-
fic can be sent to the outgoing ports.

In this scenario, the average throughput in steady state is 87 msg/sec, and 29% of
the non-priority messages are postponed.

Traffic Matrix Change. In this scenario, we analyze the behavior of our system, in
reaction to a change of the traffic matrix. All outgoing ports serve at 50 msg/sec. The
experiment starts with the non-uniform traffic matrix. At this stage, there is no con-
gestion in any outgoing port. At time=70 secs, the traffic matrix changes to the con-
gestion matrix following a step function. This change causes congestion in outgoing
ports 1 and 2. For this experiment, βmax=30% and δmax=20 seconds.

Figure 5 (right) shows that the system re-configures 40 seconds after the traffic
matrix changes.

Note that the gateway re-configuration has a marginal effect on the overall
throughput. The reason is that only limited throttling is applied, and the postponement
mechanism copes with the congestion almost entirely. In outgoing port 1, postponing
βmax of the non-priority messages reduces the traffic so that it is slightly higher than
the service rate. In outgoing port 2, the values for β2 are well below βmax, which is
enough to address congestion in this port.

In this scenario, the average throughput in steady state is 113 msg/sec, and 31%
(8%) of the non-priority messages are postponed in ports 1 (port 2).

Minimizing Postponed Messages vs Maximizing Throughput. As previously
stated, βmax controls the trade-off between (i) minimizing the number of postponed
non-priority messages and (ii) maximizing the overall throughput. Higher values of

Utilization

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100Beta Max

serv rate 10
serv rate 20
serv rate 35

Fig. 6. Controlling the Tradeoff between Achieving Higher Overall Throughput vs. Postpon-
ing Fewer Messages

 Design and Implementation of Performance Policies for SMS Systems 177

βmax allow the system to reach higher throughputs. Lower values of βmax result in
lower throughputs. Next, we analyze this trade-off.

We have run a number of ‘service rate decrease’ experiments. Figure 6 shows the
system utilization (overall throughput divided by the sum of the service rates) as a
function of βmax. Each line in the graph represents a different service rate for port 3.
The statistics we present for each experiment are 140-second averages in steady state.

Our results show that the throughput in steady state depends on βmax. This depend-
ency is not linear. The derivative of this function increases with βmax, until the system
is fully utilized.

The throughput also depends on the traffic matrix. The experiments included in
[16] show that the throughput is higher in the case of the non-uniform matrix than for
the uniform matrix. This is because the non-uniform matrix permits the system to dis-
criminate better among the sources of messages routed to the congested port. In other
words, incoming ports with a small traffic contribution to the congested ports do not
need to reduce their acceptance rates significantly.

Benchmarking Against an Ideal System. An ideal system always achieves the ad-
ministrator’s performance goals for a given policy re-evaluation interval: it (i) keeps
the maximum delay at δmax, (ii) never postpones more than βmax non-priority messages
in a given re-evaluation interval, (iii) ensures that the average traffic sent to an outgo-
ing port never exceeds its service rate in a given re-evaluation interval, and (iv) al-
ways achieves the maximum overall throughput.

In contrast to an ideal system, which has complete knowledge of the traffic statis-
tics at any time, a real system or our simulated system has to estimate or predict them.
Since the estimation/prediction process is prone to errors, a real system generally per-
forms worse than the ideal one. In our case, the system sometimes breaks the per-
formance constraints. As a consequence, the obtained throughput can occasionally be
higher than in the ideal system. For the same achieved performance constraints, the
throughput of an ideal system is higher than that of our system.

We compared our design with the ideal system with respect to the overall through-
put, the rate of postponed messages, and the maximum delay in steady state. For do-
ing this, we have run a number of ‘service rate decrease’ experiments. Each of them
has a different combination of βmax and service rate values. The statistics we present
for each experiment are 140-second averages in steady state.

In all the experiments we conducted with our design, the constraint on maximum
delay has never been broken. We explain this by the fact that, when the arrival of a
new message in the output queue would break the δmax constraint, a non-priority mes-
sage from this buffer is postponed.

Our experiments (included in [16]) show that the simulated system tends to slightly
outperform the ideal one in terms of overall throughput. This is possible since our
system occasionally breaks the constraints, caused by inaccurate predictions of the
traffic matrix. For most of our experiments, the performance of our design is within
1.5 % of that of the ideal system.

Our experiments (included in [16]) show that the system tends to slightly break the
constraint on postponed non-priority messages. In most cases, it is not more than 2%
above βmax. The reasons for this are inaccurate predictions of the traffic matrix and
burstiness of the offered load. For a more in-depth discussion, see [16].

178 A. Gonzalez Prieto and R. Stadler

6 Prototype Implementation

A prototype of our architecture has been implemented on a commercial SMSG: the
Enterprise Messaging Gateway (EMG), version 3.0 [3]. The prototype runs on an In-
tel Pentium 850 Mhz with 384 Mb of RAM with Linux 2.4 (Debian).

Next, we present our experience with the prototype implementation. Specifically,
we discuss how it differs from the simulated model.

In the prototype, the acceptance rate is enforced by controlling the TCP connection
with the sender. The SMSG rejects or closes TCP connections to enforce the accep-
tance rates in each port.

In the simulated model of the gateway, the acceptance and service rates are en-
forced for control intervals of 0.01 seconds. In a real system, the control interval is
generally larger, permitting small bursts of messages. The effect of such bursts is out-
lined in [16].

In the current version of the prototype, the traffic estimator is the processing bot-
tleneck of the system. The implementation of the traffic estimator is based on analyz-
ing the routing logs generated by the EMG and stored in a database (mysql 4.0 [8]) on
the same machine. Currently, it takes between two to four seconds to retrieve and
process the data required by the estimators. While the performance of this block limits
the time between policy evaluations, an effective re-evaluation period of ten seconds
can be achieved.

The reconfiguration of the EMG is not instantaneous as assumed in the simula-
tions. It takes about one second for the EMG to read the new configuration and to
apply it.

7 Related Work

Performance and congestion management in routing engines has been extensively
studied in the context of IP routers [15]. Our work differs from that work in both the
problem space and the solution space. First, congestion management for IP routers
considers physical networks. In contrast, an SMSG is a node in an overlay network,
where the service rate of outgoing ports can vary, depending on the state of (i)
neighboring SMS systems and (ii) the links that connect them. The overlay links are
created on top of TCP-IP networks. Therefore, the links’ performance is that of a TCP
connection.

 Second, the approaches to congestion management in IP networks often focus on
per-flow end-to-end feedback. Flow-based mechanisms are not relevant in the SMS
context, since an SMS message fits into a single packet. In addition, currently, it is not
possible to provide congestion-related feedback to the SMS sources. Therefore, such
mechanisms are not applicable directly. They would require a major change in the
SMS architecture, which is unlikely in the short or medium term.

Congestion control has also been studied by the ATM community. Two main lines
were studied [12]. One of the lines was rate-based control, which is based on end-to-
end control mechanisms. Such approaches are limited by the lack of support to end-
to-end feedback.

 Design and Implementation of Performance Policies for SMS Systems 179

The other line was credit-based control [13], which is based on link by link back-
pressure mechanisms, as our design is. However, there are two main differences with
respect to our work. First, it makes use of per virtual-circuit (VC) control. This allows
reducing selectively the rates of the VCs that traverse the congested port, without af-
fecting others. This is not possible for us due to the lack of flows or VCs. TCP con-
gestion mechanisms as RED [14] also benefit from selective reductions of TCP-flows
rates. A second difference is a consequence of having per-VC control. These ap-
proaches aim at avoiding losses and do not consider postponing/dropping packets.

8 Discussion

In this paper, we presented a policy-based design for congestion management of SMS
systems. The design has been evaluated through extensive simulation studies, out of
which we described in detail two scenarios: service rate decrease and traffic matrix
change.

The results from our experiments are that the system performs remarkably close
the administrator’s performance goals. First, the overall throughput is within 1.5 % of
that of the ideal system. Second, the maximum delay constraint for priority messages
is always met. Third, while the system has a tendency to postpone slightly more mes-
sages than the given objective, the achieved rate is (in absolute terms) 2% above the
given upper bound in most experiments. In addition, our experiments show that the
system adapts fast to variations in service rate and traffic matrix.

The simulation studies in [16] suggest that the system is not very sensitive to the
traffic characteristics of the offered load. In [16], we present the results for the same
scenarios shown in this paper, but using Poisson sources instead of SMS traces. In
both cases, the measured performance values, in terms of throughput, postponement
rates and delays, are within a few percentage points. We explain this by the fact that
the incoming traffic is shaped by the throttles in the incoming ports.

We showed that the computational cost of the policy evaluation, which is per-
formed periodically, is low, even for large system configurations. Policy evaluations
can be run on standard microprocessors in the order of milliseconds.

The prototype demonstrates the feasibility of implementing our design on a com-
mercial platform.

Our design facilitates the management of messaging gateways. Compared to to-
day’s practices, where administrators often manipulate individual message queues,
our design raises the level of abstraction in that an administrator specifies perform-
ance goals, and the system adapts its configuration to network conditions. This per-
mits any administrator with a basic understanding of performance metrics to control a
gateway, without the need for detailed knowledge of the device internals.

In this paper, we have considered two classes of SMS services. The adaptation of
our design to a single-class or more than two classes is straightforward.

We have studied a specific objective function, the overall throughput. Extending
our design to alternative objective functions involves the modification of the PDP.

180 A. Gonzalez Prieto and R. Stadler

Acknowledgments

We thank Roberto Cosenza from Infoflex Connect AB for his information about SMS
systems and their management in commercial environments and for implementing the
prototype. We also thank Ulf Brännlund from KTH for his advice on the optimization
problem in this paper. This work has been supported in part by VINNOVA under the
project Policy-Based Network Management.

References

[1] S. Coulombe and G. Grassel, “Multimedia Adaptation for the Multimedia Messaging
Service”, IEEE Communications, Vol. 42, No.7, July 2004

[2] M. J. Masullo, S. B. Calo, “Policy management: an architecture and approach”. Proc.
of IEEE Workshop on Sys. Management, UCLA, Cal., April 1993

[3] Nordic Messaging, www.nordicmessaging.se, August 2005
[4] GSM Association, www.gsmworld.com, May 2005
[5] G.B. Dantzig, “Maximization of linear function of variables subject to linear

inequalities”, in T.C. Koopmans, editor, “Activity Analysis of Production and
Allocation”, pages 339-347, 1951

[6] Computational Infrastructure for Operations Reseach, http://www.coin-or.org/index.html,
July 2005

[7] Cygwin, http://cygwin.com, August 2005
[8] MySQL, http://www.mysql.com, May 2005
[9] A. Polirakis, R.Boutaba, “The Meta-Policy Information Base”, IEEE Network, special

issue on Policy-Based Networks, Vol.16, No. 2, pp. 40-48 2002
[10] D. Verma, “Simplifying Network Administration Using Policy-Based Management”,

IEEE Network, special issue on Policy-Based Networks, Vol.16, No. 2, pp. 20-26 2002
[11] J. Moffett, M. Sloman, “Policy Hierarchies for Distributed Systems Management”, IEEE

Journal on Selected Areas in Communications, Vol.11, No. 9, pp 1404-1414, Dec 1993
[12] D. Cavendish, M. Gerla, S. Mascolo, “A Control Theoretic Approach to Congestion

Control in Packet Networks”, IEEE/ACM Transactions on Networking, Vol. 12, No. 5,
October 2004

[13] H.T. Kung, R. Morris, “Credit-Based Flow Control for ATM Networks”, IEEE Network
Magazine, pp. 40-48, March-April 1995.

[14] Floyd S., Jacobson, V., “Random Early Detection gateways for Congestion Avoidance”,
IEEE/ACM Transactions on Networking, Vol.1 No.4, pp. 397-413, August 1993.

[15] A. Mankin, K. Ramakrishnan, “RFC 1254- Gateway Congestion Control Survey”
[16] A. Gonzalez Prieto, R.Stadler, “Policy-based Performance Management for SMS

gateways”, Technical Report, KTH Royal Institute of Technology, August 2005
[17] A. Gonzalez Prieto, R.Stadler, "Evaluating a Congestion Management Architecture for

SMS Gateways", 9th IFIP/IEEE International Symposium on Integrated Network
Management (IM 2005), Nice, France, May 15-19, 2005

[18] A. Gonzalez Prieto, R. Cosenza, and R. Stadler, “Policy-based Congestion Management
for an SMS Gateway”, IEEE 5th International Workshop on Policies for Distributed
Systems and Networks (POLICY 2004), Yorktown Heights, New York, June 7-9, 2004

Detection and Diagnosis of Inter-AS Routing

Anomalies by Cooperative Intelligent Agents

Osamu Akashi1, Atsushi Terauchi1, Kensuke Fukuda1, Toshio Hirotsu2,
Mitsuru Maruyama1, and Toshiharu Sugawara3

1 NTT Network Innovation Labs., 3-9-11 Musashino-shi, Tokyo 180-8585, Japan
{akashi, terauchi, fukuda, mitsuru}@core.ecl.net

2 Toyohashi University of Technology, Aichi, Japan
hirotsu@ics.tut.ac.jp

3 NTT Communication Science Labs., Kyoto, Japan
sugawara@core.ecl.net

Abstract. Verifying whether the routing information originating from
an AS is being correctly distributed throughout the Internet is impor-
tant for stable inter-AS routing operation. However, the global behav-
ior of routing information is difficult to understand because it changes
spatially and temporally. Thus, rapid detection of inter-AS routing fail-
ures and diagnosis of their causes are also difficult. We have developed
a multi-agent-based diagnostic system, ENCORE, to cope with these
problems, and improved its functions (ENCORE-2) through our expe-
rience in applying the system to commercial ISPs. Cooperative actions
among ENCORE-2 agents provide efficient methods for collecting, in-
tegrating, and analyzing routing information observed in multiple ASes
to detect and diagnose anomalies that human operators have difficulty
in handling. ENCORE-2 is also applied to the hijacked route problem,
which is one of recent major inter-AS issues.

1 Introduction

The Internet currently consists of more than 15000 ASes (autonomous systems),
and this number is still increasing. Inter-AS routing controlled by BGP-4 [1],
however, is not stable [2]. Various analyses of this routing behavior and causes
of routing instability have been reported [3]. An essential problem is the diffi-
culty of understanding the spread of routing information advertised by an AS
[4]. Unlike intra-AS anomalies, the causes of inter-AS anomalies typically exist
outside network operator’s domain, while the effects of anomalies are sometimes
observed only in the advertising AS. This situation is illustrated in Fig. 1. ASself

can see the routing information advertised by ASx and forward packets to ASx

accordingly. On the other hand, packets directed to ASself from ASx are for-
warded according to the routing information advertised from ASself . In this case,
ASself has difficulty determining whether its routing information has reached
ASx or was discarded at an intermediate AS where some filter was applied. The
operators of an intermediate AS have difficulty detecting this anomaly because

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 181–192, 2005.
c© IFIP International Federation for Information Processing 2005

182 O. Akashi et al.

AS self AS z AS x

Operators
in AS self

Flow of route information about AS x

Outgoing packets

AS self AS z AS x

Flow of route information about AS self

Incoming packets

 Routing
 information

 Routing
 information

Can see.

?

Fig. 1. Problem of verifying spread of routing information

incoming and outgoing packets concerning the intermediate AS are not affected
by the filter. Thus, information from other observation points is needed to diag-
nose this kind of anomaly.

The difficulty of inter-AS routing management comes from noncentralized
and autonomous operations. ASes dynamically change their routing relationships
with respect to each other. Such temporal changes require on-demand verifica-
tion and thus invalidate any analysis done in advance. For example, declarative
data about each AS’s relationships with neighboring ASes are stored in the In-
ternet Routing Registry (IRR) [5], but these data do not necessarily reflect the
current statuses of all ASes [6]. Therefore, the data cannot be directly applicable
to reachability verification. Moreover, accurate detection of anomalies requires
statistical analysis to extract local trends from continuously observed routing
information at each observation point. The statistical data, such as the aver-
age number or range of BGP full-routes, are required to isolate an anomalous
state from a normal one with greater probability. These data are also used to
determine when to invoke diagnostic actions.

Centralized analytical approaches [3], some of which use BGP update data
collected from multiple ASes, have been proposed, but the autonomy and dynam-
ics of the Internet make performing their analysis difficult and all possible cases
are not covered. A method using a cooperative distributed solution (CDS) coin-
cides with this control structure and supplements these other analytical methods.
In addition to handling the autonomy of each AS, a CDS would have several ad-
vantages over the centralized system approach. From the viewpoint of diagnostic
systems, a CDS can be efficient and scalable because 1) statistical calculation to
extract local trends in traffic or routing information is performed at the observa-
tion points; and 2) the distributed entities, agents, exchange only abstracted, an-
alyzed results, rather than raw data. A simple repeated query-and-reply scheme
produces a lot of traffic. From the viewpoint of diagnostic functions, a CDS of-
fers higher availability because an agent can act even under the condition where
some paths on certain IP networks are unreachable. Agents can try to commu-
nicate with each other by relaying messages through a number of cooperative
agents. Moreover, a CDS can perform effective analysis because an agent can
request other agents to invoke various sensing tools, such as traceroute or ping,
to obtain the remote data and accurately isolate causes of problems. Centralized
approaches are, however, incapable of performing these actions at remote points.

Detection and Diagnosis of Inter-AS Routing Anomalies 183

To achieve rapid detection and real-time diagnosis of inter-AS routing anoma-
lies, we first analyzed a few years of BGP-related troubleshooting records in our
AS to determine the basic functions required for an inter-AS diagnostic sys-
tem. Then, we designed and implemented a multi-agent-based diagnostic sys-
tem, called ENCORE [4], which has been applied in actual networks including
those of major commercial ISPs for several years and is currently used in com-
mercial operation [7]. The next generation of ENCORE (ENCORE-2) has now
developed based on this experience, in order to adapt to recent changes in inter-
AS problems. A previous paper [4] described ENCORE’s basic diagnostic model
and agent architecture, and gave some application examples. This paper focuses
on the diagnostic functions of ENCORE-2, which have been extended based on
our experience: data collection by agents at multiple observation points, finding
indications of anomalies, and analyzing their causes, including the problem of
how to handle the hijacked route problem, which is one of recent major inter-AS
issues [8]. Anomalies caused by this kind of advertisement were observed a few
times a year and were serious problems for commercial ISPs.

2 Analysis of Inter-AS Anomalies

2.1 Difficulties in Inter-AS Routing Management

The difficulties in understanding inter-AS routing can be summarized as follows.

1. [Spatial changes]. The routing information is physically and geographically
distributed and may vary depending on the observation points.

2. [Temporal changes]. The routing information changes over time.
3. [Administrative domain]. Routing is controlled independently by each

AS. Any operators in other ASes cannot directly access these routing data.
4. [Local trend]. Each observation point has its own local trends in the dy-

namics of routing information. Information about these trends can be ac-
quired only through actual observation at each point and statistical analysis
of the observed data.

5. [Limitation of human operators]. Detection and diagnosis require hu-
man operators to repeatedly observe and analyze large amounts of routing
information, including raw data such as BGP update messages. They also
require operators to have sophisticated expertise on where and how to collect
and analyze data.

The spatial changes easily lead to inconsistent routing states among several
ASes, even though each AS is working consistently with respect to neighbor
ASes. Moreover, the ASes experiencing anomalies may be different from those
causing the anomalies. Therefore, we need to obtain a global view of routing
information to verify whether advertised routing information is spreading as the
originating AS intends. The temporal changes make advance analysis invalid.
Overcoming this problem requires verification at multiple observation points
on an on-demand basis. Operators can use tools such as ping, traceroute, and
looking glass [9], but they have to use these tools repeatedly over a long period
to confirm their own AS’s advertisement and find an anomaly as soon as possible.

184 O. Akashi et al.

Table 1. Categories of BGP-related anomalies

category rate

R1: Received-policy (local) 19%
R2: Received-others (local) 9%
B: Border-area 15%
A1: Advertised (remote) 42%
A2: Advertised-complicated 15%

2.2 Taxonomy of Anomalies

The results of our analysis of BGP-related troubleshooting records from our
AS are summarized in Table 1. 28% of the records, denoted R1 and R2, con-
cern received BGP information. R1 is the set of anomalies caused by erroneous
operations when applying our AS’s policy by adjusting the attribute values of re-
ceived BGP information. R2 is the set of anomalies whose causes do not directly
concern BGP, but concern local errors that indirectly affect BGP control. For
example, the loss of reachability to the next hop IP address caused by an IGP
configuration error belongs to R2. No collaborative analysis with other ASes is
required because these two groups of anomalies can be locally analyzed.

The remaining 72% of the records cannot be analyzed without BGP infor-
mation obtained from outside the AS. These records therefore require inter-AS
coordination. The third category B involves anomalies that occurred in the area
bordering the neighbor ASes. Analysis of anomalies in B requires status data
about the border area such as the connection status of BGP processes and the
IP reachability status in the segment used for BGP peering. A part of the data
can be observed from the local AS. Their further analysis, however, often re-
quires information observed from neighboring ASes. The A1 and A2 categories
of anomalies occurred in remote ASes and have almost the same features. They
are distinguished by the types of collaborative actions. A1 accounts for more
than 40% of the records and is the set of anomalies that required confirmation
in a simple Q&A fashion between the local AS and remote major transit ASes.
These anomalies typically occurred after some modification due to configuration
changes or maintenance work. Another 15% of the records, which are catego-
rized in A2, can also be handled by inter-AS cooperation, but they require more
sophisticated actions to analyze the anomalies than those for A1. Such actions
would include execution of sensing tools from other ASes after exchanging obser-
vation results. In some cases, these actions would require changes in cooperative
agents to obtain more suitable observation points.

3 Multi-agent-Based Diagnosis

3.1 Required Cooperative Functions

According to the analysis in section 2, a global view of the current routing
information that has spread among different administrative domains is essential

Detection and Diagnosis of Inter-AS Routing Anomalies 185

for diagnosing inter-AS routing anomalies. Since complete understanding of the
global view is impossible, we adopt the use of routing information observed
almost simultaneously at multiple ASes. By integrating these observed results,
we can infer a part of the global view for the purpose of diagnosis. To achieve
these coordinated actions, we have proposed a diagnostic system called ENCORE
that adopts a multi-agent architecture and utilizes cooperative actions to resolve
problems described in section 2.

The basic idea of this system is the reflector model as illustrated in Fig. 2.
The essence of this model is to provide a function by which an agent can request
a remote agent to observe routing information about a specific AS, which is
usually the AS of the requesting agent. The routing information observed and
analyzed by remote agents is sent to the requesting agent. Although the reflector
model can provide a cooperative function, this function should be performed on
an on-demand basis. Thus, a function that enables an agent to request a remote
agent to continuously observe the routing information of a specified AS and to
notify the requesting agent when specified events occur is required for efficient
verification and rapid detection. For example, if the remote agent finds a change
in the origin AS number of the BGP attribute value of a specified IP address, it
notifies the requesting agent of this observed change. This function is effective
because the remote ASes receiving routing information usually become aware of
failures earlier than the originating AS.

Another useful function enables the relay of messages to appropriate agents.
The relay function is necessary to cooperatively deliver important messages to
destination agents even when direct IP routes for message delivery become un-
available. This function is achieved by having the agents act as application gate-
ways. This function is useful because 1) the system can use paths that are not
used in usual IP routing, and these paths can include non-transit ASes; and 2)
messages whose source IP addresses have changed can pass misconfigured filters
with a high probability. Message loops and a significant increase in the number
of copied messages are prevented by utilizing information about the path that a
message has traversed and restricting the maximum number of hops over which
a message can be delivered. When failures are caused by filter setting errors,
which are typical configuration mistakes, exchanging messages at the end-to-
end level is sometimes impossible. In the case of Fig. 2, if an intermediate AS
filters routing information advertised from ASself , ASself cannot access ASx to
verify reachability. In this situation, ASself can exchange messages with ASx

by having an agent in an intermediate AS relay messages because the source

Operators
in AS self

Reflected routing information
and/or observing results

AS self AS z AS x

Flow of route information about AS self

Incoming packets

 Routing
 information

Can see.
Mirror

Fig. 2. Reflector model: basic idea for observing spread of information

186 O. Akashi et al.

 agent head

diagnostic
knowledge
(variables)

database

router
monitor

router

the Internet

IRR
application
monitor

statistical
analysis

 agent body

 agent

 cooperation
(on RPC/SSL)

��������
��������
��������sensing tools
(ping, traceroute, etc.)

inference engine
observation strategy controller

cooperation controller

execution module

agent platform
(basic action primitives)

values

BGP updates
analysis tools

BGP
monitor

agent group management system
(ARTISTE)

 agent

event monitor

diagnosis
-planner

executer

evaluator feedback

 diagnostic knowledge

coordinator

monitoring

observation
strategy

diagnostic rules

operator
event

environmental changes

reactor

heuristics and
local trends

monitoring and
sensing tools

monitoring
-planner

scheduler

intention

observation
 rules

other agents

cooperative actions
(request, reply)

observed results
and statistically
analyze results

thread pools

cache

basic action primitives

Fig. 3. ENCORE-2 system structure and knowledge processing architecture

IP address of relayed messages changes to another address and this enables the
relayed messages to pass the filter.

Each agent needs a strategy that defines how to cooperate with other agents
because we cannot assume that agents are located in all ASes in the actual Inter-
net, or agents can act with a large number of agents in all diagnosis phases. For
example, the strategy determines a small number of agents that an agent should
first access for diagnosis. When an agent starts performing detailed analysis,
the agent may need information about other topologically suitable agents. This
reorganization requires an on-demand search. Such location information on the
BGP topology map is maintained by an agent organization management system
called ARTISTE [10], which is an independent system of ENCORE-2. ARTISTE
can search agents that match a given requirement, such as “Find agents that
can relay messages and are located within 2 AS-hops from ASx”.

3.2 ENCORE System Structure

The ENCORE system was designed based on two assumptions: 1) An ENCORE
agent can get the BGP information in the deployed AS; and 2) ENCORE does
not require other, special communication facilities. ENCORE-2 consists of sev-
eral modules classified according to their functions as shown in Fig. 3, and it has
been modified and extended based on the design in [4]. The ENCORE-2 agent
module is constructed on a network agent platform that provides basic action
primitives on distributed environments. They are implemented by using Allegro
Common Lisp/CLOS, although the first version of ENCORE was a hybrid sys-
tem on Gnu Common Lisp, C, and Perl. ENCORE-2 agents use RPC/SSL for
authentication and secure communication with each other. ARTISTE is an inde-
pendent management system that organizes agents located on a BGP topology
map. The knowledge processing part of an ENCORE-2 agent, which is based
on the BDI (belief, desire, and intention) architecture [11], is also shown. It
makes plans for verifying hypotheses, schedules executions of verification rules,
and controls monitoring and statistical analysis based on given description. In
ENCORE-2, these internal modules works as threads and verification rules are
also executed as threads.

Detection and Diagnosis of Inter-AS Routing Anomalies 187

3.3 Cooperative Action Management

Agent’s roles in the basic cooperative strategy in ENCORE, which are investiga-
tion, relay, and friend, are statically assigned to perform required functions for
inter-AS diagnosis. ENCORE-2 dynamically searches agents suitable for three
roles based on their functional capability and topological conditions. When co-
operative diagnosis is performed, an agent sends a query to ARTISTE and it then
responds with a list of active agents that can perform the requested role and sat-
isfy a given topological requirement on the BGP map. ENCORE-2 agents can
also form groups where role assignments are independently defined. The forma-
tion of groups is useful from some political reasons because that can restrict pos-
sible cooperative agents and separate management information into each group.

An investigation agent is used to send back requested information observed in
its environment. This role is typically assigned to agents located in major transit
ASes as in ENCORE, because they can observe the large amount of routing in-
formation exchanged there. In ENCORE-2, investigation agents in transit ASes
are also used at an early stage of each diagnostic action and are considered as first
contact points. In the case these agents would receive a lot of queries from other
agents and thus should be able to handle them. Then diagnosis starts and the next
investigation agents would be designated for isolating the cause of anomalies in
detail and/or identifying an area where that anomaly affects routing. An agent
that resides in a stab-AS could be used as an investigation agent although the
agent does not have to handle a lot of queries from other agents. A friend agent
is utilized to continuously observe the state from outside the AS. In ENCORE-2,
candidates for friend agents can be selected using topological requirements such
as agents in a neighbor AS, a transit AS, or an AS on the other side of central
ASes of the Internet. A relay agent is utilized to control the routing at the appli-
cation level. If an agent cannot obtain results within a predefined time, the agent
selects other investigation or relay agents and requests them to do the job. An
initial set of relay agents can also be selected like candidates of friend agents.

An agent may need to find 1) other investigation agents located in ASes down-
stream from the initially selected investigation agent; or 2) other investigation
agents located near the AS in which hijacked routes were observed. These newly
selected agents are considered suitable because they could have BGP data to de-
termine the location of the anomaly’s cause or the extent to which the anomalous
state, such as a hijacked route, is spreading. More comprehensively, ENCORE-2
agents are able to issue search queries to ARTISTE including condition terms
such as group, role, designated-AS, AS-hop-count, and topology, where topology

is downstream, upstream, or neighbor. Conditions can be combined using logical
terms such as and and or.

4 Diagnostic Knowledge

4.1 Data Acquisition and Local Trends

According to given strategy description, ENCORE-2 statistically analyzes lo-
cal data and collects analyzed results, if necessary, from multiple ASes. These

188 O. Akashi et al.

include actions that are difficult for human operators: 1) Continuous coopera-
tive confirmation of a route advertisement, which requires repeated actions of
human operators over a long period. 2) Parameterization of local trends, such
as the number and fluctuation of BGP full-route entries, that are also utilized
as triggers for starting diagnostic actions. 3) Detailed data analysis using BGP
update-level information.

Most of the trends cannot be specified as static values in advance. As an
example, one agent in our AS monitors the total number of BGP route en-
tries, which can be an important status indicator. This number differs widely
among ASes and changes over time. The total number of BGP route entries
in the Internet is currently over 150000 in our AS and can only be acquired
through observation. According to our past records, some fatal errors in which
many illegal route entries were inserted into a routing table by unintentional
advertisement were detected from sudden increases in the total number of BGP
entries.

In addition to providing observation functions like a human expert, an agent
can provide a more detailed level of monitoring and analysis in terms of frequency
and granularity for more accurate diagnostic capability. For example, an agent
can monitor BGP update messages [1], while human operators usually see only a
part of snapshots of the BGP routing tables in border routers. By monitoring the
messages at a lower layer than what humans usually observe, the agent can rec-
ognize faults more effectively, as described in subsection 4.3. Consider the case of
illegal route insertion. An agent monitoring BGP updates can detect the sudden
increase in the number of update messages and easily determine that they orig-
inate from the same AS, even if unintentionally advertised routes just overwrite
the legal routes and the total number of BGP entries is almost the same.

4.2 Action Strategy

Each ENCORE-2 agent has given action strategies both for the observation and
diagnosis phases, which are described based on each AS’s policy. For example,
an agent Rself in ASself may require a friend agent Rx to observe BGP entries
and notify it of target IP addresses in ASself and trap conditions. A typical trap
condition is “Notify Rself if the origin AS number in target IP address entries is
changed or some of these BGP entries disappear.” When Rself is notified that
the origin AS number is changed in ASx, Rself schedules possible hypotheses
for verification, which include a hypothesis that some routes are hijacked. Rself

then gets a list of investigation agents from ARTISTE and sends queries about
suspicious routes to these agents as shown in Fig. 4. Rself can infer the area
more completely by repeatedly inquiring of investigation agents near, upstream,
or downstream from ASes where unintentional advertisement is detected. The
addresses of incrementally required investigation agents are also obtained from
ARTISTE. In such partially hijacked cases, relay agents could effectively work
to deliver messages among agents. Although serious failures like one in 1997 that
disturbed all of the Internet by unintentional advertisement of full-routes might
not happen because of careful filters in several major ISPs, partial or small-scale

Detection and Diagnosis of Inter-AS Routing Anomalies 189

AS self

The Internet

R self

ARTISTE

Continuous
observation
requests

Ra(relay) Rb(relay)

R2(investigation)

R1(investigation)

Notification

Rx (friend)

R3(investigation)

Ry(friend)

On-demand queries

Continuous
observation requests

!
 Hijacked
 routes

Fig. 4. Cooperative actions for analyzing hijacked route anomalies

unintentional advertisement was observed several times in past few years. Thus,
continuous observation in multiple ASes by friend agents and diagnosis using
multiple investigation agents is yet to be useful. The former is for rapid detection
and the latter is utilized to find out the area where unintentional advertisement
affects reachability.

Another scenario is as follows. ENCORE-2 agent Rself in stub-AS ASself

observes various network status parameters to find indications of anomalies. In
this example, suppose a border router in a transit AS, which is located up-
stream from ASself , fails, and previous router configurations, in which a newly
connected ASself is not described, are restored. Then, the advertisement from
ASself is filtered. Rself finds that it cannot access some hosts, because a rule uti-
lizing ping periodically fails. At the same time, friend agent Rn, which observes
ASself from the viewpoint of ASn, can also find these routing changes and try
to send a notify message to Rself . If this leads to a timeout, Rn then uses relay
agents. Rself starts diagnosis and tries to send requests to investigation agents,
which are Rx, Ry, and Rz. If direct IP forwarding from ASx, ASy, and ASz to
ASself is impossible, this step also leads to a timeout. Then, Rself asks Ra and
Rb to relay the previous request to ASx, ASy, and ASz. Reply messages via Ra

and Rb can also be delivered because Ra and Rb reside in the ASes that are
not affected by the filter. According to these results, Rself generates the next
diagnostic plans.

4.3 BGP Update-Level Analysis

For a hijacked route problem, all IP addresses and their AS number in a specific
AS can be registered in ENCORE-2 for verifying that the advertised routes
from the AS are not hijacked. This verification is achieved by comparing the
registered information and observed results in remote ASes. In contrast, for
verifying validity of routes from other ASes, the diagnostic system also has to
analyze temporal sequences to accurately detect the problem, because the IRR
does not necessarily reflect the current status, and the verification method using
automatic comparison of the IRR data is not suited for this purpose.

190 O. Akashi et al.

The ENCORE-2 system can act as a BGP peer to monitor and record BGP
update-level messages, periodically inserting a short statistical summary. This
enables more detailed analysis than snapshot-based data acquisition from a rout-
ing table. In this configuration, the short summary contains the times and num-
bers of update messages, withdrawn routes, and advertised routes per minute.
These values are used to efficiently extract the periods in which large numbers
of route entries are changed. In the case of the illegal route advertising from ASz

in June 2003, we found illegal update messages from ASz in a huge number of
records. 1) We extracted update records by specifying duration using the from

time and to time, which included the period when we observed some routing
failures. In this example, a sufficiently large duration was used to include this
period, namely 4 hours. 2) We extracted the ASes that appeared in these records
more than 1000 times. At this step, there were four ASes, but ASz appeared as
the origin AS 30 times more often than the other ASes. Thus, ASz was identified
as the origin of the illegal route insertion.

4.4 Applicable Class and Limitations

From the definitions of the basic cooperative functions, this diagnostic model
using a multi-agent architecture can be applied to analyze the class of anomalies
whose effects can be observed as non-oscillating changes in routing information
from outside an AS. According to our analysis, this class covers more than 90%
of BGP-related anomalies. On the other hand, there are two types of anomaly
records that cannot be analyzed in the current framework. These records belong
to categories B and A2. One type was caused by oscillating changes in routing
information both in the local AS and outside the AS through unintended inter-
action between BGP and an IGP. The second was caused by illegal interaction
between the transport layer and the application layer. A hardware failure in a
router prevented the router from forwarding IP packets including a specific bit
sequence in the data parts. This led to repeated TCP retransmission, and these
TCP sessions failed due to timeout errors. Although the latter case can be man-
aged by adding a special heuristic rule, the number of possible hypotheses would
increase significantly.

As described above, when an agent finds an anomaly of a given class and
tries to diagnose it, the agent must be able to access at least one investigation
agent. The model thus inherently requires access to outside the AS, meaning that
it cannot cope with anomalies in which some ASes become completely isolated
or inaccessible from the Internet. On the other hand, this limitation could be
resolved by extending capability of relay agents to use another communication
line. Note that unchanged BGP information among multiple observation points
outside the AS does not necessarily verify routing validity. There are some cases
in which confirmation using only BGP information is insufficient. For example,
the IP address designated by the next hop, which is one of the BGP attributes,
should be reachable in an AS by using some IGP. If the next hop address is
unreachable in the AS, IP packets cannot be forwarded there even if the BGP
information is delivered beyond the AS and observed at multiple ASes. In this

Detection and Diagnosis of Inter-AS Routing Anomalies 191

case, the results of traceroute from the outer ASes, which can be performed on
the CDS, should be examined as described in a diagnostic rule to reduce the
number of possible hypotheses.

5 Related Work

There are several diagnostic tools for analyzing inter-AS routing anomalies.
WWW-based systems such as looking glass [9], RIS tools [12], RouteViews [13],
and various visualization tools are widely used by network operators to monitor
routing information and the states at specific points. These systems, however,
are designed to be used by humans, and cannot be straightforwardly applied. Al-
though analysis of temporal and topological behavior of BGP path changes [14]
and centralized analysis approaches [3] were reported, all possible cases are not
covered. As real-time anomaly detection by analyzing BGP updates, signature-
based method and statistics-based method were proposed [15]. These methods
can effectively identify anomalous BGP events, but they also cannot cover all
cases. Our analysis approach about BGP update events, which utilizes a kind
of learned parameters and human operator’s heuristics, is less automatic than
these methods, it can complementally work with them. As a hybrid system of
human and statistically analyzed results [16] is unique and effective. Although it
is a kind of visualization tools and cannot be directly applied, it could be com-
plementally work if some patterns were extracted as interpretable rules. Listen
and Whisper [17] can eliminate large number of problems due to misconfigura-
tion considering network topology, but Listen only treats verification in the data
plane. Whisper can verify routes in the control plane, but it requires another
protocol over BGP.

Several advantages provided by the CDS-based approach would be effective
to supplement them. From the viewpoints of data availability and cooperation
among different administrative domains, some agent-based intra-AS diagnostic
systems have been proposed, but these systems only offer restricted cooperation
to obtain targeted information. These systems operate under the assumption
that the targeted information exists in the management domain of the agent
recognizing a problem. This means that the agents in these systems cannot deal
with situations in which an anomaly or its effect is observed in a different man-
agement domain from that in which the cause exists. This situation is actually
quite common in inter-AS diagnosis.

6 Conclusion

To support autonomous and stable operation in the Internet, we have proposed
an inter-AS cooperative diagnostic system called ENCORE-2, which is extended
through deployment in some commercial ISPs. By using ENCORE-2, an AS can
continuously verify that routing is being performed as intended, and can rapidly
detect and diagnose a certain class of inter-AS routing failures, which include

192 O. Akashi et al.

recent major inter-AS issues such as a hijacked route problem. This CDS ap-
proach can effectively supplement other analytical methods through each agent’s
autonomous actions and cooperation among distributed agents considering the
BGP topology.

References

1. Rekhter, Y., Li, T.: “A Border Gateway Protocol 4 (BGP-4)” (1995) RFC1771.
2. The North American Network Operators’ Group: (NANOG mailing list)

http://www.nanog.org.
3. Feldmann, A., Maennel, O., Mao, Z., Berger, A., Maggs, B.: “Locating Internet

Routing Instability”. In: Proc. of SIGCOMM, ACM (2004) 205–218
4. Akashi, O., Sugawara, T., Murakami, K., Maruyama, M., Koyanagi, K.: “Agent

System for Inter-AS Routing Error Diagnosis”. IEEE Internet Computing 6 (2002)
78 – 82

5. Internet Routing Registry: (http://www.irr.net/)
6. Nagahashi, K., Esaki, H., Murai, J.: “BGP Integrity Check for the Conflict Origin

AS Prefix in the Inter-domain Routing”. In: Symposium on Applications and the
Internet, IEEE/IPJS (2003) 276–282

7. : (http://www.ntt.com/release_e/news04/0002/0226.html)
8. Mahajan, R., Wetherall, D., Anderson, T.: “Understanding BGP Misconfigura-

tion”. In: Proc. of SIGCOMM, ACM (2002) 3–16
9. Kern, E.: (http://nitrous.digex.net)

10. Terauchi, A., Akashi, O., Maruyama, M., Fukuda, K., Sugawara, T., Hirotsu, T.,
Kurihara, S.: “ARTISTE: An Agent Organization Management System for Multi-
agent Systems”. In: 8th Pacific Rim Int’l Workshop on Multi-Agents (PRIMA)(To
be appeared). (2005)

11. O’Hare, G.M.P., Jennings, N.R.: “Foundations of Distributed Artificial Intelli-
gence”. Wiley-Interscience (1996)

12. RIPE: (http://www.ripe.net/)
13. Meyer, D.: (http://www.routeviews.org)
14. Chang, D., Govindan, R., Heidemann, J.: “The Temporal and Topological Char-

acteristics of BGP Path Changes”. In: Proc. of Int’l Conf. on Network Protocols,
IEEE (2003) 190–199

15. Zhang, K., Yen, A., Zhao, X., Massey, D., Wu, S., Zhnag, L.: “On Detection of
Anomalous Routing Dynamics in BGP”. In: Proc. of Networking, IFIP (2004)
259–270

16. Teoh, S., Ma, K., Wu, S., Massey, D., Zhao, X., D.Pei, Wang, L., Zhang, L.,
Bush, R.: “Visual-Based Anomaly Detection for BGP Origin AS Change (OASC)
Events”. In: Proc. of 14th IFIP/IEEE DSOM. (2003) 155–168 LNCS2867.

17. Subramanian, L., Roth, V., Stoica, I., Shenker, S., Katz, R.: “Listen and Whis-
per: Security Mechanisms for BGP”. In: Proc. of Networked Systems Design and
Implementation, USENIX (2004) 127–140

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 193 – 205, 2005.

Discovery of BGP MPLS VPNs

Sarit Mukherjee, Tejas Naik, and Sampath Rangarajan

Center for Networking Research,
Bell Labs, Holmdel, NJ

sarit@bell-labs.com,
{tnaik, sampath}@research.bell-labs.com

Abstract. BGP/MPLS VPN is a mechanism defined in IETF RFC 2547 that
allows service providers to use their IP backbone to provide VPN services. This
mechanism is based on using BGP to distribute VPN routing information to the
routers in the backbone network and using MPLS to forward VPN traffic.
MPLS tunnels are created dynamically when needed, which relieves service
providers of pre-provisioning tens of thousands of tunnels. BGP/MPLS VPNs
allow service providers to define any arbitrary topology with any number of
nodes in a VPN. The service provider can create multiple VPNs using the same
core network. Currently most of the service providers track 2547 VPNs either
manually or by using a provisioning database. Algorithms described in this
paper aims at automating this VPN discovery procedure. Using our algorithms
service providers can automatically discover VPNs that have already been
configured using the current network configuration information.

Keywords: BGP, MPLS, VPN, Discovery, 2547, Route Target, VRF,
Topology.

1 Introduction

BGP MPLS VPNs as defined in IETF RFC 2547 [1] provide the capability for service
providers to use their IP backbone to provide VPN services to their customers. BGP is
used to distribute VPN routing information to the routers in the backbone network and
MPLS is used to forward VPN traffic. MPLS tunnels are created dynamically when
needed. BGP/MPLS VPNs allow service providers to define any arbitrary topology
with any number of nodes in a VPN. The service provider can create multiple VPNs
using the same core network. Within the context of RFC 2547, a customer site (or
more specifically a customer router referred to as a CE router) is connected to the
service provider network (or more specifically an edge router on the provider's core
network referred to as the PE router) by one or more ports [2][3]. In Figure 1,
customer router CE-A is connected to provider edge router PE-A through one port
and customer router CE-C is connected to the same provider’s edge router PE-A
through another port. Thus, multiple CEs could be connected to the same PE as
shown in the figure. Within the core network, provider routers (or P routers) function
as MPLS Label Switch Routers when forwarding VPN traffic between PE routers.

CE and PE routers exchange routing information using static routing, RIPv2, OSPF
or EBGP. A CE router advertises the customer site's local VPN routes to the PE router
and learns remote VPN routes from the PE router. After learning local VPN routes

© IFIP International Federation for Information Processing 2005

194 S. Mukherjee, T. Naik, and S. Rangarajan

from CE routers, a PE router exchanges this VPN routing information with other PE
routers using IBGP. The service provider associates each of the incoming ports at a
PE router to a VPN routing and forwarding (VRF) table. This table contains VPN
routing information exchanged by the PE router with the CE router connected to that
port. In Figure 1, PE-A has two VRFs, VRF-A that contains VPN routing and
forwarding information exchanged with CE-A and VRF-C that contains information
exchanged with CE-C. A BGP extended community attribute called the Route Target
(RT) attribute identifies a collection of VRFs to which a PE router distributes routes.
A PE router uses this attribute to export local routes to other VRFs and to constrain
the import of remote routes into its own VRFs. For example, in Figure 1 assume that
VRF-A exports a RT and VRF-B on PE-B imports this RT This means, the CE router
(CE-B) corresponding to VRF-B knows how to reach hosts behind the CE router (CE-
A) corresponding to VRF-A. In order for CE-A to reach hosts behind CE-B, VRF-B
needs to export a RT and VRF-A needs to import this RT as well. Once this is done,
bi-directional traffic can flow between hosts behind CE-A and hosts behind CE-B.
This means, a bi-directional VPN link is established between VRF-A and VRF-B.
Thus, the VRFs together with the RTs define the topology of VPNs. In the rest of the
paper, when we refer to traffic flow between VRFs we indeed are referring to traffic
flow between the CEs connected to the ports on the PE routers on which these VRFs
are defined.

Fig. 1. Example of a BGP MPLS VPN

As illustrated above, a VPN topology can be provisioned using RTs and the export
and import of these RTs by the VRFs. Different VPN topologies can be provisioned
[2]. Some of the topologies that are normally provisioned include:

• Single-hub-and-spoke: In this topology, a single hub VRF can send and receive
VPN traffic to a set of spoke VRFs who are not capable of exchanging VPN traffic
with each other.

• Full mesh: In this topology, a set of VRFs can all exchange VPN traffic with each
other. That is, the VRFs are completely connected.

• Multi-hub-and-spoke: In this topology, a set of hub VRFs can exchangeVPN
traffic among each other as well exchange VPN traffic with a set of spoke VRFs.
The spoke VRFs cannot exchange VPN traffic with each other.

 Discovery of BGP MPLS VPNs 195

Fig. 2. Different Atomic and Molecular VPN Components

Figure 2 illustrates these topologies. Figure 2(a) shows a single-hub-and-spoke
topology where VRF v1 is the hub and VRFs v2,v3,v4 and v5 are spokes. Figure 2(b) is
a full-mesh where all VRFs can exchange VPN traffic with each other and Figure 2(c)
is a multi-hub-and-spoke where VRFs v1,v2 and v3 form a full-mesh and a multi-hub
and the spokes are v4,v5,v6 and v7.

2 Related Work

One important issue that arises after the VPNs are configured is the problem of
tracking the configurations of already existing VPNs using the network configuration
information. Although tools are available that provide the ability to configure VPNs,
locate physical faults that may occur within the VPNs and measure MPLS VPN
traffic and quality of service [4][5], to the best of our knowledge, we are not aware of
tools that, given the current VRF and RT relationship information, automatically
generate the different components that make up the VPN. Such a discovery tool
would provide the necessary information to ascertain a) if the VPNs are configured
according to specifications, b) find redundancy in the configurations, and c) provide
information to visualize the VPN in terms of component topologies described earlier.
In this paper, we present an algorithm to implement such a discovery tool. Our
algorithm is not specific to any vendor so it can be applied across any vendor. The
IETF draft [6] talks about how one PE can discover other PEs in a VPN using a
protocol. Our algorithm discovers global view of all the VPNs using offline
algorithm. We implemented mandatory steps of algorithm in our company product.

3 Algorithm for Topology Discovery

When the VRFs are provisioned, they may be provisioned using a minimum number
of RTs. For example, to provision a full-mesh, only one RT is needed. As long as a
single RT is defined on all the VRFs and is exported and imported by all the VRFs,
VPN connectivity is established between every pair of VRFs thus leading to a full-

196 S. Mukherjee, T. Naik, and S. Rangarajan

mesh topology. Similarly, to provision a single-hub-and-spoke or a multi-hub-and-
spoke only two RTs are needed. One RT will be exported by the (multi) hub which
will be imported by all the spokes and all the spokes will import a single RT which
will be imported by the (multi) hub. We refer to the largest such components
provisioned using the minimum number of RTs as atomic and molecular components
as defined below.

Definition 1 [Atomic Component]: The largest single hub-and-spoke with two RTs
and the largest full-mesh with one RT are atomic components. Figure 2 (a) and (b) are
examples of atomic components.

Definition 2 [Molecular Component]: The largest multi hub-and-spoke with two
RTs without any restriction on overlapping links and nodes with atomic components
is called a molecular component. Figure 2 (c) is an example of molecular component.
Note that it is composed of four atomic components, one full-mesh and three single
hub-and-spokes.

In Figure 2, a VRF-RT table is used to represent the export-import relationship
between VRFs and RTs. An E entry denotes that the RT represented by the row is
being exported by the VRF represented by the column. Similarly, an I entry denotes
an import. An entry of B denotes that the RT represented by the row is being both
imported and exported by the VRF represented by the column. From the VRF-RT
tables above it can be seen that they do represent atomic and molecular components.

An important problem to be solved is the discovery of different components that a
VPN is comprised of (that is, the topology of the VPN in terms of different
components) and this problem is the focus of this paper. In addition to discovering
atomic and molecular components, which are provisioned using minimum number of
RTs, we are also interested in discovering basic components such as full-mesh,
single-hub-and-spoke and multi-hub-and-spoke even if they are provisioned using
more than the minimum number of RTs. In this regard, we define two other types of
components.

Definition 3 [Composite Component]: The largest single hub-and-spoke or the
largest full-mesh or the largest multi hub-and-spoke components without any
restriction on the number of RTs are composite components. Therefore, by definition
all atomic and molecular components are composite components.

Definition 4 [Complex VPN]: A complex VPN is a union of composite components.
A composite component is either a single-hub-and-spoke or mult-hub-and-spoke or

full-meshes without any regard to the number of RTs that are used. It is clear that
each of these components is a union of unique atomic and molecular components (that
use the minimum number of RTs). This means, a composite component could be
represented as a union of unique atomic and molecular components. By definition, a
complex VPN is a union of composite components. Given this definition, it is clear
that a) the set of atomic components in a complex VPN is unique, and b) The set of
atomic and molecular components in a complex VPN are unique after the links and
nodes belonging to set of atomic components that overlaps with set of molecular
components are taken out of the set of atomic components.

The above observation implies that a complex VPN topology can be uniquely
represented using a set of atomic and molecular components, whereas representation

 Discovery of BGP MPLS VPNs 197

using composite components may not be unique. The goal of our algorithm is to
discover complex VPNs as a composition of atomic and molecular components and in
order to do that, we first identify all the atomic components, construct molecular
components from the atomic components, if any and then represent a complex VPN
as a union of these atomic and molecular components. The optional goal is to
represent a complex VPN as a set of composite components.

3.1 Requirements of the Discovery Algorithm

In addition to discovering complex VPNs, we pose some additional requirements on
our algorithm that optimizes the discovery process as outlined below.

1. Find all the redundant RTs, that is the RTs that are not producing any new
topology which is already not discovered. Denote the set of redundant RTs as

2. Find all the unidirectional links. Denote the set of unidirectional links as
3. Find all the atomic and molecular components of the complex VPN. Denote the set

of atomic full-mesh components as , atomic single hub-and-spoke as S and
molecular multi hub-and-spoke components as

4. Find and express the topology of the complex VPN if it is made of composite
components

3.2 The Discovery Algorithm

We assume that route distribution is purely due to BGP MPLS VPN. It is not affected
by route redistribution, filter or route maps on PE or CE routers.

Given a description of a VPN (using RTs), it can be decomposed into different sets
of components. We use (f1, f2, …, fx) to denote a full-mesh created using nodes fi, i =
1, …, x. We use (h → s1, s2, …, sx) to denote a single hub-and-spoke with h as the hub
and si, i = 1, …, x as the spokes. Similarly we use (h1, h2, …, hy → s1, s2, …, sx) to
denote a multi hub-and-spoke with hi, i = 1, …,y as the hubs and si, i = 1, …, x as the
spokes. Note that (h1, h2, …, hy) is a full-mesh. The steps of our algorithm are
enumerated below.

Step 1: Prepare VRF-RT Table: For the given network, let the number of VRFs be n
and the number of unique RTs be m. Number the VRFs as v1, v2, …, vn and number
the RTs as r1, r2, …. rm. Prepare a m×n table, referred to VR, where RT rk, 1 ≤ k ≤ m
forms the kth row and VRF vi, 1 ≤ i ≤ n forms the ith column of the table. Fill in the
entries in the VR table with B, E or I according to the specified RTs. The preparation
of this table would take O(nm) time.

Note: Remove a row from the VRF-RT table if the row has only one B, all E’s or
all I’s

Above step will remove all RTs that are not capable of forming unidirectional or
bidirectional link and hence do not form participate in any VPN. This removes the
corresponding RT from the set of RTs.

Step 2: Construct Adjacency Matrix: Construct a graph based on the VRF-RT table as
follows [7]. The VRFs are the nodes of the graph. Put a directed edge with label rk
from node vi to node vj, i ≠ j, if RT rk from VRF-RT table is exported by node vi and

R.
U.

F
M.

.

198 S. Mukherjee, T. Naik, and S. Rangarajan

imported by node vj. Let the edge be represented by (vi, vj)rk. Treat B's as both E and
I. In an adjacency matrix (AM) representation of the graph, create a n×n matrix with
AM(vi, vj) = rk if there is an RT rk, 1 ≤ k ≤ m in the VRF-RT table that is exported by
node vi and imported by node vj and i ≠ j; i, j = 1, …, n. Note that the diagonal entries
of the matrix are left empty. In Step 1, all redundant RTs would have been removed.
This means, a directed edge between two VRFs would exist only due to one RT.
Even then, in the worst case, to determine the existence of an edge between two VRFs
(say vi and vj), all the column entries in the VRF-RT table corresponding to VRF vi
need to be checked. This means, to find all edges between all pairs of nodes would
take O(n2m) time.

Step 3: Determine Unidirectional Links: A link qualifies as unidirectional if the nodes
it is directed between do not have another link going in the opposite direction. In the
adjacency matrix representation, if AM(vi, vj) exists, but AM(vj, vi) does not, then (vi,
vj) is an unidirectional link, i ≠ j; i, j = 1, …, n. Remove all the unidirectional links
from the graph and put them in . Therefore,

={ (vi, vj)rk | AM(vi, vj) = rk ∧ AM(vj, vi) = Φ, i ≠ j, 1 ≤ i, j ≤ n, 1 ≤ k ≤ m}.

A simple algorithm to determine this would require all entries in the adjacency
matrix to be checked once and thus would take O(n2) time.

Step 4: Reduce Set of RTs: The general RT reduction algorithm is the following:

1. Denote by binary variable xri, 1 ≤ i ≤ m if RT ri is present in the set of minimal
RTs.

2. Consider each cell in the adjacency matrix. Let (r1, r2, …, rp) represent the set of
RTs in that cell. Introduce a constraint as xr1 + xr2 + ··· + xrp > 1.

3. Minimize ∑
=

m

i 1

xri subject to the above set of constraints.

4. Solve the minimization problem and the xri's thus achieved give the minimal RT
set.

Note that if we want to keep some RT i for some reason then we should make that xi
= 1 in the constraint set. If we want to give preference on removal of one RT over
another, then the objective function can be changed to

Minimize ∑
=

m

i 1

 wi xri,

where wi is a relative weight on the RT. If we want to remove a RT in preference of
another, then the former should be given higher weight.

Remove the rows containing the redundant RTs from the VRF-RT Table. Also
remove the redundant RT from the cells in the VRF-VRF Table. For the rest of the
algorithm, assume that the set of RTs has been reduced following the algorithm. The
number of RTs may have been reduced, and the reduced number is still denoted by m,
and there is no gap in the sequence of RTs. The algorithm to reduce the set of RTs to
a minimum number of RTs reduces to a node covering problem in a graph and is

U

U

 Discovery of BGP MPLS VPNs 199

known to be NP-complete. The discovery algorithm does not require this reduction to
work correctly and hence this is an optional step.

Step 5: Determine Set of Atomic Full-Mesh Components: If an RT in VRF-RT table
has more than one B's then output the set of nodes with B's as a full-mesh. Put them in

. Now remove the B's from the table. The effect of this is to remove all the
corresponding links in the graph, i.e., the entries in AM, but not the nodes. We define
bk = {vi | VR(rk, vi) = B, 1 ≤ i ≤ n}, which is the set of all the VRFs which both
imports and exports rk (i.e., B in the cell in the VRF-RT table for row rk). Therefore,

 = {bk | |bk| > 1, 1 ≤ k ≤ m}.

This step requires all entries in the VRF-RT table to be checked once in the worst
case and thus would require O(nm) time.

Step 6: Create Set of Candidate Hubs: In order to discover all the atomic single hub-
and-spoke components, we start with selecting a hub. A node with out-degree one or
more qualifies for this1. The set is referred to as the set of candidate hubs and is
denoted by .

 = {vh | ∃ i, k, s.t. VR(vh, vi) = rk, 1 ≤ i ≤ n 1 ≤ k ≤ m }.

A simple implementation of this step which consults, in the worst case all entries in
the VRF-VRF adjacency matrix, would require O(n2) time.

Step 7: Create Set of Preferred Hubs: A node in an atomic full-mesh component may
become a hub in a molecular multi hub-and-spoke component. It can happen only if
the RT used for determining the atomic full-mesh has I in some its entries. In order to
facilitate the determination of molecular components, we prepare a set of preferred
hubs denoted as . Therefore,

 = U
m

k 1=

{fk | (fk ∈ F) ∧ (∃ i VR(rk, vi) = I, 1≤ i ≤ n)}.

In the worst case, the set may consist of all n VRFs (that is, the complex VPN is
made up of one single atomic full-mesh) and this means all entries in each of the
columns of the VRF-RT table may have to be checked. This would require O(nm)
time.

Step 8: Determine Set of Atomic Single Hub-and-Spokes: We determine how many
of hubs from becomes part of an atomic single hub-and-spoke. In order to qualify,
there must be two distinct RTs, one where the candidate hub exports to a set of nodes
and the other where the candidate hub imports from the same set of nodes.

While there are elements in do the following:

1. For each node vh ∈ , find all the distinct RTs rk, 1 ≤ k ≤ m,used to export
from vh. Form the set of spokes S(vh, rk) for each distinct RT rk.

S(vh, rk) = {s | VR(vh, s) = rk}.

1 Note that since the unidirectional links are removed, in-degree and out-degree of a node are

the same.

F

F

CH

CH

PH

PH

F

CH

CH

CH

200 S. Mukherjee, T. Naik, and S. Rangarajan

2. For each of the set of spokes S(vh, rk), 1 ≤ k ≤ m, find the largest subset of nodes
that uses the same RT to export to the hub. The cardinality of the largest subset is
the in-degree of the hub.

In-Degree(vh) = max1 ≤ k ≤ m | {s | VR(s, vh) = rj, s ∈ S(vh, rk), rj ≠ rk, 1 ≤ j, k ≤ m}|.
3. Find the hub vh ∈ with the largest in-degree. If multiple hubs qualify, then

select a hub vh ∈PH. Make (vh → {si | VR(si, vh) = rj, si ∈ S(vh, rk), rj ≠ rk, 1 ≤
j,k ≤ m}). Include this single hub-and-spoke, (vh → s1, …, sx) in S. Therefore,

S = S U {(vh → s1, …, sx)}.

4. Remove all links associated with this single hub-and-spoke component (vh → s1,
…, sx) from the graph. That is assign AM(vh, si) = AM(si, vh) = .

5. Remove singleton nodes (i.e., nodes with no incoming and outgoing links) from
.

For each of the VRFs, the (sub) step 1 would take O(m) time. To find the in-degree
of each of the hubs in (sub) step 2 would take O(m) time in the worst case considering
all nodes that form the spoke for the hub. To find the hub with the largest in-degree in
(sub) step 3 would require O(n) time in the worst case. Sub steps 4 and 5 take
constant amount of time. Thus, for each of the elements in the time spent in the
above steps is O(m+n). The set may contain all n VRFs and thus it would take
O(mn + n2) time to execute the above sub steps.

Step 9: Determine Set of Molecular Multi Hub-and-Spokes: The following steps
prepare the set .

1. From the set , take a new full-mesh component all whose nodes are members of
. That is, bk ∈ ∧ bk ⊆ , 1 ≤ k ≤ m. Stop if there are no new full-mesh

components for consideration.
2. Check if each of the nodes of the full-mesh component bk is a hub in the set of

single hub-and-spoke.
3. Check for each atomic single hub-and-spoke (where the hub ∈ bk) the RT

exported by the hubs is the same and the RT exported is the same one for creating
full-mesh bk. Also check that the RT imported by the hubs is the same.

4. If the test passes, put the full-mesh and the associated single hub-and-spoke
components into the multi hub-and-spoke set and remove them from and ,
respectively. Otherwise go back to step 1.

Each node in set could be such that it is not part of a full-mesh component. In
this case, for each of these nodes, sub-step would take O(m) time as each RT may
have to be checked. Thus, the time required to execute the above sub-steps would be
O(nm).

Steps 8 and 9 are the core of the algorithm where the complex VPN is discovered
and represented as a composition of atomic and molecular components. This is the
main goal of the algorithm. The steps described below are optional and serve to
provide more information about the Complex VPN in terms of composite
components.

CH

Φ

CH

CH
CH

M

F
FPH PH

S

M F S

F

 Discovery of BGP MPLS VPNs 201

Step 10: Check if the Complex VPN is a Composite Full-Mesh: We determine if the
complex VPN is a composite full-mesh. That is every node is directly reachable from
every other node. This is verified from the adjacency matrix if each entry in the upper
triangular matrix without the diagonal has a valid RT entry in it. If so, the complex
VPN is a composite full-mesh. The adjacency matrix can be checked in O(n2) time.

Step 11: Check if the Complex VPN is a Composite Single Hub-and-Spoke: We
determine if the complex VPN is a composite single hub-and-spoke. It is straight
forward by making sure that and are empty and all the single hub-and-spoke
components in have the same hub. The time for this step in the worst case is O(n) if
all VRFs form the hub for some single-hub-and-spoke component.

Step 12: Check if the Complex VPN is a Composite Multi Hub-and-Spoke: We
determine if the complex VPN is a composite multi hub-and-spoke by doing the
following:

1. Determine the largest full-mesh component in the graph. This is done by finding
the largest square sub-matrix with same set of nodes in the rows and columns from
the adjacency matrix such that each entry of the sub-matrix has a valid RT in it,
except for the diagonal of the sub-matrix which may or not have any entry. Denote
by the set of composite full-mesh which is composed of the nodes of the sub-
matrix.

2. From the set , combine two single hub-and-spokes into one single hub-and-spoke
if they both have the same hub. Continue till no more combinations are possible.
The set thus formed is called the composite single hub-and-spoke and represented
by .

3. Check if the set of hubs formed from is same as the set . If so check if each
single hub-and-spoke component of has the same set of spokes. If the test
passes, and contains all the nodes of the network, then the complex VPN is a
multi hub-and-spoke topology.
This step requires the largest clique to be identified within a graph [8] as indicated

in sub-step 1 and hence is NP-complete [9].
Note that if the RT reduction phase of the algorithm is not conducted, then

• It is possible that after the determination of Set of Molecular Multi Hub-and-
Spokes there are still some entries left in the adjacency matrix. The corresponding
RTs will be unidirectional and redundant and will not produce any new topology.

• During step 8, remove unidirectional links, if any.

The above algorithm finds all atomic and molecular components and thus the
complex VPN that is composed of these components. Ignoring the optional steps
(Step 4 and Steps 10, 11 and 12), the complexity of the algorithm is bounded by Step
2 which is the time for constructing the adjacency matrix. Thus the running time of
the algorithm is O(n2 m) where n is the number of VRFs and m is the number of RTs.

We have implemented all the non-optional steps of the algorithm and the algorithm
has been used to discover large complex VPNs in terms of atomic and molecular
components as part of a Lucent Technologies’ network management product. An
illustrative example of the steps of the algorithm can be found in the appendix.

F M

CF

CS

S

CS
CS

CF

CS

S

202 S. Mukherjee, T. Naik, and S. Rangarajan

4 Open Issues and Future Work

We presented the design of an algorithm for VPN discovery that analyzes complex
VPN configurations and represents these VPNs in terms of simple atomic and
molecular components. Our algorithm uses a graph model to represent a complex
VPN and decomposes this graph to identify the simple components.

The proposed algorithm uses two optional steps, i.e., reduction of set of RTs and
determining if the complex VPN is a composite hub-and-spoke, which are NP-
complete. For large complex VPNs and open issue is to design efficient
approximation algorithms to solve these steps. Another open issue is to extend the
algorithm to incrementally discover VPN topology changes. That is, when changes
are made in the VRFs of the PE routers, VPN topologies are modified without
rerunning the entire algorithm.

In the future, we plan to extend the algorithm to differentiate between intranets and
extranets. This involves associating the customer profile information from a
provisioning database with the output of our algorithm. In addition we intend to apply
the proposed techniques on other types of VPNs that are similar to BGP/MPLS VPNs
such as VPLS. Future work also includes integrating the output of our algorithm to
BGP MPLS VPN monitoring systems.

References

[1] E. Rosen, Y. Rekhter, “BGP/MPLS VPNs”, Internet RFC-2547, available at
http://www.ietf.org/rfc.html, March 1999.

[2] P. Tomsu, G. Wieser, “MPLS-Based VPNs Designing Advanced Virtual Networks”,
Pearson Education, December 2001)

[3] C. Semeria, “RFC 2547bis: BGP MPLS VPN Fundamentals”, available at
http://www.juniper.net/solutions/literature/white_papers/200012.pdf.

[4] HP Openview Network Services Management Solution for MPLS Networks, Available at
http://www.hp.com.

[5] Youngtak Kim, Hyung-Woo Choi, Hyo-Sung Kim, “A QoS-guaranteed DiffServ-aware-
MPLS VPN and its Network Management System”, SNPD, 2003

[6] Hamid Ould-Brahim, Eric C. Rosen, Yakov Rekhter, “Using BGP as an Auto-Discovery
Mechanism for Layer-3 and Layer-2 VPNs”, IETF draft, June 2005

[7] Aho, J.Hopcroft, J. Ullman, “The Design and Analysis of Computer Algorithms”,
Addison-Wesley Longman Inc., April 1978.

[8] Harary, “Graph Theory”, Addison Wesley Publishing Company, January 1995.
[9] Garey and D. S. Johnson. Computers and Intractability, “A Guide to the Theory of NP-

Completeness”, Freeman, 1979

Appendix

The following example explains important steps of the algorithm to discover all 2547
VPNs using a sample network whose VRF-RT table is shown below. Due to space
limitation, we do not elaborate some of the steps.

 Discovery of BGP MPLS VPNs 203

Step1: Construct VRF-RT Table

Step 2 and 3: Construct adjacency matrix and remove unidirectional links
 = { (v1,v3)r1,r8, (v1,v6)r1, (v6,v3)r3 }

r7v10

r7v9

r2r2r2v8

r5,r6r5,r6r2,r6r2r2v7

r2r2r2r3v6

r2r2r2r4r4v5

r4r4v4

r3,r8v3

r1r1r1r1,r8r1v2

r1r1r1,r8v1

v10v9v8v7v6v5v4v3v2v1

VRF

VRF

r7v10

r7v9

r2r2r2v8

r5,r6r5,r6r2,r6r2r2v7

r2r2r2r3v6

r2r2r2r4r4v5

r4r4v4

r3,r8v3

r1r1r1r1,r8r1v2

r1r1r1,r8v1

v10v9v8v7v6v5v4v3v2v1

VRF

VRF

v

1

v

2

v

3

v

6

v

5

v

8

v

7

v

4

v1

0

v

9

r2

r5 r7r3r1

r4 r8r6

v

1

v

2

v

3

v

6

v

5

v

8

v

7

v

4

v1

0

v

9

r2

r5 r7r3r1

r4 r8r6r2

r5 r7r3r1

r4 r8r6

Step 4: Reduce Set of RTs: Minimize ∑ =

8

1i
xi

 subject to 0 ≤ xi ≤ 1, 1 ≤ i ≤ 8

and x1 ≥ 1, x2 ≥ 1, x3 ≥ 1, x4 ≥ 1, x7 ≥ 1; x1 + x8 ≥ 1, x2 + x6 ≥ 1, x3 + x8 ≥ 1, x5 + x6 ≥ 1.

The solution to this problem is x1 = x2 = x3 = x4 = x7 = 1 and either x5 or x6 is 1. We
choose x5 = 1. So the reduced set of RTs is {r1, r2, r3, r4, r5, r7}.

Step 5: Determine Set of Atomic Full-Mesh Components. = {(v1,v2), (v5,v6,v7,v8)}

r7v10

r7v9

v8

r5r5v7

r3v6

r4r4v5

r4r4v4

r3v3

r1r1r1r1v2

r1r1v1

v10v9v8v7v6v5v4v3v2v1

VRF

VRF

r7v10

r7v9

v8

r5r5v7

r3v6

r4r4v5

r4r4v4

r3v3

r1r1r1r1v2

r1r1v1

v10v9v8v7v6v5v4v3v2v1

VRF

VRF

r7v10

r7v9

v8

r5r5v7

r3v6

r4r4v5

r4r4v4

r3v3

r1r1r1r1v2

r1r1v1

v10v9v8v7v6v5v4v3v2v1

VRF

VRF

v

1

v

2

v

3

v

6

v

5

v

8

v

7

v

4

v1

0

v

9

r2

r5 r7r3r1

r4 r8r6

v

1

v

2

v

3

v

6

v

5

v

8

v

7

v

4

v1

0

v

9

r2

r5 r7r3r1

r4 r8r6r2

r5 r7r3r1

r4 r8r6

 B B E r8

E E I r7

I I I B r6

I I E
 E E I I r4

 E B I r3

 BBB B r2

 I I I B B r1

v10v9 v8v7v6 v5 v4 v3 v2 v1 VRF
 RT

U

F

204 S. Mukherjee, T. Naik, and S. Rangarajan

Step 6: Create Set of Candidate Hubs. = {v1, v2, v3, v4, v5, v6, v7, v9, v10}.

Step 7: Create Set of Preferred Hubs. = {v1, v2}.

Step 8: Determine Set of Atomic Single Hub-and-Spokes. For each element of the
candidate hub set, we find the set of spokes reachable using one RT. From the set of
spokes we then find subsets of nodes that use the same RT to export to the hub. Then
we compute the cardinality of the largest such subset.

max |{v7}| = 1{v7} to v10 using r5{v7}S(v10, r7)

max |{v7}| = 1{v7} to v9 using r5{v7}S(v9, r7)

max |{v9, v10}| = 2{v9, v10} to v7 using r7{v9, v10}S(v7, r5)

max |{v2}| = 1{v2} to v6 using r1{v2}S(v6, r3)

max |{v1, v2}| = 2{v1, v2} to v5 using r1{v1, v2}S(v5, r4)

max |{v1, v2}| = 2{v1, v2} to v4 using r1{v1, v2}(v4, r4)

max |{v2}| = 1{v2} to using r1{v2}S(v3, r3)

max{|{v3,v6}|,|{v4,v5}|} = 2{v3, v6} to v2 using r3

and {v4, v5} using r4

{v3, v4, v5, v6}S(v2, r1)

max |{v4, v5}| = 2{v4, v5} to v1 using r4{v4, v5}S(v1, r1)

In-DegreeExport to hubElementsSpoke set

max |{v7}| = 1{v7} to v10 using r5{v7}S(v10, r7)

max |{v7}| = 1{v7} to v9 using r5{v7}S(v9, r7)

max |{v9, v10}| = 2{v9, v10} to v7 using r7{v9, v10}S(v7, r5)

max |{v2}| = 1{v2} to v6 using r1{v2}S(v6, r3)

max |{v1, v2}| = 2{v1, v2} to v5 using r1{v1, v2}S(v5, r4)

max |{v1, v2}| = 2{v1, v2} to v4 using r1{v1, v2}(v4, r4)

max |{v2}| = 1{v2} to using r1{v2}S(v3, r3)

max{|{v3,v6}|,|{v4,v5}|} = 2{v3, v6} to v2 using r3

and {v4, v5} using r4

{v3, v4, v5, v6}S(v2, r1)

max |{v4, v5}| = 2{v4, v5} to v1 using r4{v4, v5}S(v1, r1)

In-DegreeExport to hubElementsSpoke set

Hubs qualified for selection are v1, v2, v4, v5, v7. We select (v1 → v4, v5) since v1∈
 Therefore, = {(v1 → v4, v5)} and now = {v2, v3, v4, v5, v6, v7, v9, v10}.

After removal of this atomic component the graph is as follows.

r7v10

r7v9

v8

r5r5v7

r3v6

r4v5

r4v4

r3v3

r1r1r1r1v2

v1

v10v9v8v7v6v5v4v3v2v1

VRF

VRF

r7v10

r7v9

v8

r5r5v7

r3v6

r4v5

r4v4

r3v3

r1r1r1r1v2

v1

v10v9v8v7v6v5v4v3v2v1

VRF

VRF

r7v10

r7v9

v8

r5r5v7

r3v6

r4v5

r4v4

r3v3

r1r1r1r1v2

v1

v10v9v8v7v6v5v4v3v2v1

VRF

VRF v1 v2 v3

v6v5

v8 v7

v4

v10

v9

r2

r5 r7r3r1

r4 r8r6

v1 v2 v3

v6v5

v8 v7

v4

v10

v9

r2

r5 r7r3r1

r4 r8r6r2

r5 r7r3r1

r4 r8r6
Similarly we find atomic components (v2 → v3,v6), (v2 → v4,v5) and (v7→ v9,v10).
Therefore = {(v1 → v4, v5), (v2 → v3, v6), (v2→ v4,v5), (v7→ v9,v10)} and now =
{ }.

Step 9: Determine Set of Molecular Multi Hub-and-Spoke. We see that (v1,v2) ∈ ,
and both v1 and v2 are hubs in . We see that (v1→ v4,v5) and (v2→ v4,v5) are present
in . RT exported by v4 and v5 is r4 and it is the same as the one imported by v1 and
v2. Therefore,

 = {v5, v6, v7, v8}, S = {(v2→ v3,v6), (v7→ v9,v10)}, M = {(v1,v2→ v4,v5)}

CH

PH

PH. S CH

S CH

S
S

F

F

 Discovery of BGP MPLS VPNs 205

v1 v2 v3

v6v5

v8 v7

v4

v10

v9

r2

r5 r7r3r1

r4 r8r6

v1 v2 v3

v6v5

v8 v7

v4

v10

v9

r2

r5 r7r3r1

r4 r8r6r2

r5 r7r3r1

r4 r8r6
The complex VPN used in this example is neither a composite full mesh, nor a
composite single-hub-and-spoke or a composite multi-hub-and-spoke. Thus, steps 10,
11 and 12 do not apply.

Policy-Based Adaptive Routing in
Autonomous WSNs

Carlos M.S. Figueiredo1,2, Aldri L. dos Santos3, Antonio A.F. Loureiro1,
and José M. Nogueira1

1 Dept. of Computer Science, Federal University of Minas Gerais,
Belo Horizonte-MG, Brazil

{mauricio, loureiro, jmarcos}@dcc.ufmg.br
2 FUCAPI - Research and Tech. Innovation Center, Manaus-AM, Brazil

3 Dept. of Computer Science, Federal University of Ceará, Fortaleza-CE, Brazil
aldri@lia.ufc.br

Abstract. Wireless sensor networks (WSNs) are employed in different
domains and applications. The resource constraint on such networks,
many times composed of hundreds to thousands of devices, and the re-
quirement of autonomous operation become their management a chal-
lenging task. This work applies policies, a well-known approach in net-
work management, in the core task of routing in autonomous WSNs.
Policies are used to establish rules to take dynamic actions on the net-
work according to its state. Our scheme offers a high-level and flexible
way to realize management tasks related to routing in WSNs, which can
be defined in a progressive way as knowledge from the environment is
acquired or application requirements change. Case studies employing a
policy-based adaptive hybrid solution allows the autonomous selection of
the best routing strategy in view of network conditions and application
requirements. Simulation results show the benefits and resource savings
offered by the use of policies for adaptive routing in WSNs.

Keywords: Wireless Sensor Networks, Routing, Policy-based design.

1 Introduction

A wireless sensor network (WSN) consists of sensor nodes connected among
themselves by a wireless medium to perform distributed sensing tasks [21,1].
These networks are employed in different applications such as environmental
and health monitoring, surveillance, and security. An important aspect of WSNs
comes from the fact that many sensors generate sensing data for the same set
of events. The integration of sensing, signal processing, and data communica-
tion functions allows a WSN to provide a powerful platform for processing data
collected from the environment.

WSNs diverge from traditional networks in many aspects due to a large
number of nodes with strong energy restrictions and limited computational ca-
pacity. In general, WSNs demand self-organizing features, i.e., the ability of

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 206–219, 2005.
c© IFIP International Federation for Information Processing 2005

Policy-Based Adaptive Routing in Autonomous WSNs 207

autonomously adapt to the changes resulted from external interventions, as
topological changes (due to failures, mobility or node inclusion), reaction to
a detected event, or requests performed by an external entity.

The objective of such network is to collect and process data from the en-
vironment and send it to be further processed and evaluated by an external
entity connected to a sink node (or gateway). Consequently, routing towards the
sink node is a fundamental task and different algorithms have been proposed
to this purpose [2]. However, different applications and scenarios demand algo-
rithms with different features. Thus, given a specific scenario, the WSN can be
designed to operate with the most appropriated routing algorithm, which can
be defined a priori. However, in some cases the variations of these scenarios can
be constant or even unpredictable. For example, an event-driven scenario may
present a low incidence of events and, at a given moment several events can
be detected generating a high traffic. Thus, a WSN should support autonomic
solutions appropriated for different periods, since it might be infeasible or unde-
sirable to an external entity to act dynamically on the network in order to adapt
its behavior.

Adaptive and hybrid approaches for routing in WSNs consist of viable solu-
tions to deal with variable scenarios (e.g. [23,7,22]); but, they generally provide
rigid solutions for some specific cases. Policies are a well-known approach in net-
work management that give a high-level and flexible way to realize management
tasks [24]. This work shows how policies can effectively be used in autonomous
WSNs for the task of routing. Further, it is illustrated an adaptive hybrid case
for the autonomous selection of the better routing strategy taking into account
both network conditions and application requirements. Simulation results show
that the usage of policies for adaptive routing in WSNs can provide resource
savings and benefits.

The rest of the paper is organized as follows. Section 2 extends the discus-
sion on routing in WSNs and the usage of policies found in related proposals.
Section 3 considers the conception and implementation of policies on these net-
works. Section 4 describes case studies of adaptive routing using policies, and
the associated results are discussed in Section 5 showing the advantages of this
approach. Section 6 presents our final considerations and future work.

2 Routing and Policies

In this section, we briefly discuss the main approaches to routing in WSNs and
the usage of policies on networks.

2.1 Routing in WSNs

Routing in WSNs differs from traditional networks in many aspects. Essentially,
energy efficiency is the main requirement in such constrained-resource networks
and the routing activity should also consider it. Further, the basic goal of a WSN
is to collect and process data from the environment and send it to be processed
and evaluated by an external entity. Thus, routing towards the sink node is a

208 C.M.S. Figueiredo et al.

fundamental task and different algorithms have been proposed [2], each one of
them being more suitable for a given case or scenario due to its specific features.

Basically, we found the following classes of protocols with respect to routing
infrastructure building for WSNs: Flooding or Gossiping are classical mecha-
nisms to forward data in sensor network that do not need to maintain any
routing infrastructure or topology [8]. In the flooding mechanism, every node
forwards data by broadcasting it to all its neighbors until it reaches the des-
tination. Gossiping differs from flooding by choosing random nodes to forward
the data. Although these mechanisms disable the cost of route creation and
maintenance, they cause the data packet implosion problem which represents
an excessive cost for WSNs. Proactive protocols are routing algorithms that cre-
ate and maintain the routing infrastructure no matter the network behavior. In
general, this process is realized by the destination nodes. Examples of proac-
tive protocols are DSDV [20] for MANETs and various tree-based protocols for
WSNs such as One-Phase Pull Diffusion [9], SAR [26], and some implementa-
tions in [28]. Although this approach can result in a better routing process, it
has the disadvantage of a constant resource consumption. Reactive protocols are
routing algorithms that build the routing infrastructure only when a node wants
to transmit a packet, i.e., it is a source-based approach. AODV [19] is a well-
known protocol for ad hoc networks and Push Diffusion [9] is an example for
WSNs with such behavior. This approach turns resource savings in possible in-
activity periods, but it may cause the overhead of path discovery for each source
node.

Depending on the application, routing can be performed considering different
models [27], such as continuous, event-driven, and observer-initiated. Continu-
ous and observer-initiated models are favorable for proactive protocols, whereas
event-driven are adequate for reactive ones. Thus, given a fixed scenario, the
WSN can be designed to operate using the most adequate routing algorithm
defined a priori. But, the application requirements may change as well as may
exist scenarios where the behavior of the network varies in an unpredictable way
along the time. Such situations aim different (pro-active, reactive) algorithms
at different instants, becoming infeasible or undesirable to an external entity to
act dynamically on a network to change its behavior. Given these scenarios, we
should design routing protocols based on autonomic principles.

Adaptive and hybrid approaches for routing in WSNs are viable solutions to
deal with variable scenarios. For example, in [7] we considered an event-driven
scenario previously illustrated, where the data traffic is monitored in time inter-
vals and a reactive or proactive behavior is taken if this traffic stays below or
above a specified threshold, respectively. In [23], Shen et al. presented a hierar-
chical architecture with a query language such that different routing strategies
can be taken autonomously according to the application requirements and the
query nature. However, these solutions treat some specific cases previously con-
sidered by the designers. Our intention in this work is to discuss a flexible way
to implement an adaptive hybrid routing solution using policies.

Policy-Based Adaptive Routing in Autonomous WSNs 209

2.2 Policies on Networks

Policy-based systems have been studied mainly in management tasks for distrib-
uted systems and networks [24]. Policies can be specified as rules governing the
choices on the behavior of a system, allowing changes in such system without the
requirement of rebulding it. Thus, such systems must support dynamic update
of policy rules interpreted by distributed entities to modify their behavior.

Different proposals have been presented in the literature on specification and
deployment of policies, such as languages, frameworks and deployment mod-
els. Typically, policies are established by low-level specific rules which consider
individual configuration parameters. However, high-level abstractions, through
the specification of system goals, may turn easier the administrator task. For
example, the framework described in [12], which is contextualized in autonomic
computing, interrelates three types of policies: Action Policies, which dictate the
actions that should be taken whenever the system is in a given current state,
typically in the form of “IF(Condition) THEN(Action)” clauses; Goal Policies,
which specify either goals for a desired system state or criteria that characterize
them, rather than specifying exactly what to do in the current state; and Utility
Function Policies, which define an objective function that expresses the value of
each possible state, thus providing a more fine-grained and flexible specification
of behavior than the Goal Policy.

Action Policies compose the low-level specific rules, and the other policy
types are high-level abstractions which must be translated in a sequence of spe-
cific rules to be executed by the system components. Clearly, policies can be used
in the design of WSNs. They establish a way to formalize the actions that will
be taken from local interactions among network elements or from network per-
ceptions. Flexibility is provided with the redefinition capacity of policies. Thus,
new local rules can be established due to a new global goal or an unpredictable
situation, for example.

Regarding network routing, some studies [4,5] propose the use of policies in
order to obtain cost savings and quality of service (QoS) in the routing task. In
this work, we deal with specific characteristics and solutions of WSNs.

3 Policy-Based Adaptive Routing in WSNs

We propose the use of policies in the task of adaptive routing in WSNs. The
objective is to provide a flexible mechanism to define autonomous routing oper-
ation to achieve a better efficiency. Policies must establish rules to dynamically
act on WSNs based on analysis of collected data. In the routing context, these
actions can trigger changes in the routing strategy, such as an adaptive solution
that chooses dynamically either a reactive or a proactive behavior based on the
measured traffic [7], or still in the case of a proactive tree [29], change the parent
selection strategy according to a specific routing metric.

Generally, existing adaptive routing solutions for WSNs are rigid and do not
allow changes in their adaptive rules. The great advantage of a policy-based
solution is its possibility to be redefined by the management entity for matching

210 C.M.S. Figueiredo et al.

new application requirements, fixing or improving the network performance due
to an unpredictable situation.

3.1 A General Model

A generic model for the use of policies in WSNs is shown in Fig. 1. The main
idea is to separate basic routing mechanisms, difficult to implement and change,
from the strategy of the adaptive process, usually defined by high-level rules,
which are easy to build and can lead to better performance. In fact, basic routing
mechanisms, or even the entire node, can be reprogrammable to allow the desired
flexibility (e.g. dynamic code load [11]). But, such process can be highly complex
for a management entity or demand more computacional resources from nodes
to update and execute larger and more complex dynamic code.

...(1)

Policy

(2)
Analysis

(3)
Action

Basic Routing Mechanisms

Network

Policy Processor

Received
Data

State
Information

Applications
 Profile

Network
ApplicationP1 P2 Pn

Monitoring

Fig. 1. A generic model for policies in
WSNs

Nodes that run policies must con-
tain a module called policy processor.
This module provides to the network
nodes the ability to store, interpret,
and execute specific policies. It can be
a virtual machine that runs a script,
the capacity of loading code dinam-
ically or simply the execution of a
parameter assignment, depending on
how policies are defined and imple-
mented in a given architecture. These
policies can interact with the applications and other nodes in order to achieve
their goals.

Sink

User
Applications

Management
Applications

Physical Level

Policy−based
Adaptation Level

Application Level

Common Node Cluster−head

Cluster 1

Cluster 3

Cluster 4

Cluster 2

Fig. 2. Hierarchical structure

Policies must include functionali-
ties to monitor, analyse, and act on
a network. The monitoring phase (1)
uses both data and state information
collected from the network to ana-
lyze and use it in future actions. The
profile (requirements) of each appli-
cation running on the network can
also be taken into account when mak-
ing an action decision. The analysis
phase (2) may use techniques from
data fusion, intelligent agents, such as
accounting, comparison with thresh-
olds, prediction or inference tech-
niques, and others to better detect sit-
uations where an action is needed (3).

This policy model can be applied
to an individual network node, deter-
mining its own routing strategy based
on its network perceptions, but it may be very difficult to keep the consistency

Policy-Based Adaptive Routing in Autonomous WSNs 211

of the entire network to perform the cooperative data collection task. Thus,
this model is more viable only to strategic nodes, as sink nodes, which have
more visibility of the network for monitoring and can take a proper autonomous
monitoring decision for the whole network.

Hierarchical structures are very common in the network management and,
in particular, in WSNs through clustering [10,14,13], allowing the grouping of
related nodes for some collaborative task, minimizing the number of message
transmissions, providing scalability, and dividing the complexity of the network
management in sub-domains. Thus, such organization is also considered in the
policy-based routing as depicted in Fig. 2. In the physical level, clusters are com-
posed of common nodes coordinated by a cluster-head node. These cluster-heads
usually compose an intermediate level where policies can be defined to provide
the better routing strategy or parameter optimization in different moments for
each cluster. Such policies follow the model previously described and use net-
work perceptions collected from the cluster to choose its routing strategy. In the
top level, applications, often external to the network, enable users and manage-
ment entities to interact with the network, access data collected from clusters,
and assign policies to different nodes in the network. The interaction between
external entities and nodes happens through the sink node.

This hierarchical scheme for adaptive routing can provide resource savings
and benefits. In particular, different parts of large scale networks are subjected to
different kinds of queries (determined by the applications), different traffic char-
acteristics and environment influence, which may cause topological changes on
network. Thus, the creation of various adaptive subdomains allows the adoption
of the best routing strategy for each one of them.

3.2 Implementation

A Basic Routing Mechanism Set. We propose the use of flooding, proactive
and reactive routing mechanisms since they enable a WSN to operate in the
three forms as described in Section 2.1. Flooding is fully infrastructureless and
does not require any action from the receiver; thus, all data are propagated by
broadcasts. The proactive mechanism, used is the classical tree-based approach
that enables periodical constructions of a routing tree rooted at the destination
node to create paths towards every network node. An implementation where the
parent adoption strategy of a node is based on the firstly tree-build message
received from its neighbors, called EF-Tree (Earliest-First Tree), is used in this
work. The reactive mechanism adopted is based on the AODV behavior [19],
where the routing process is triggered by source nodes only when a data is avail-
able. The routing process starts with a data flooding on the network. When a
data message arrives at the destination node, that node will respond with peri-
odical requisition messages to the neighbor node that sent the first data message.
Thus, the response is recursively propagated in the same manner towards the
data source node, establishing a route and inhibiting new floodings. The SID
(Source Initiated Dissemination) protocol [7], which also provides similar behav-
ior, is used in this work.

212 C.M.S. Figueiredo et al.

In the mechanisms described above, we note that the routing infrastructure
starts at the destination node, generally the sink node in WSNs. To apply these
mechanisms in a transparent way, we propose an integrated forwarding rule to
change the routing algorithm based on the destination node decision, which can
be defined by a policy. The rule is defined as follows: every data packet (generated
or to be forwarded) is sent through a routing tree if it exists and it is valid (EF-
Tree behavior); otherwise, the data is sent to the neighbor in which a specific
and valid requisition was received (SID behavior); In latter case, data is sent
by flooding. All nodes respond to control messages as their original protocols
determine, but the validity is ensured by a timestamp and a predefined time
period.

With this forwarding rule, anticipated tree-building messages (as EF-Tree)
are used to achieve a proactive behavior. Such messages can also carry commands
or queries to define data collection parameters (e.g., continuous collection and
data rate). In the absence of proactive messages, nodes operate in an event-
driven mode. Previously configured parameters characterize the events that need
to be notified. When such events occur, the source nodes flood their data on the
network. If the receiver desires to create a reactive routing infrastructure, it
responds using the SID algorithm. If flooding is preferred to be maintained, the
receiver only needs to receive data without any reaction.

Policy Implementation. There are several forms to implement policies in
distributed systems and networks (Section 2.2). Scripts are preferable because
they are codified in high-level languages, which give more versatility and power to
the administrators. Further, there are solutions based on scripts to WSNs, such
as the TinyScript of the Maté platform [15], found in the Mica2 architecture [6].
TinyScript is a high-level script language that is compiled to a bytecoded version
to be distributed to the sensor nodes and executed in a specific virtual machine.
This encoding allows resource savings and simpler interpretation on distribution
and execution, which is needed in this kind of network.

privatecounter;
counter=getNumNodes();
if counter > THRESHOLD then

takeAction(PROACTIVE);
else

takeAction(REACTIVE);
endif

(a) Policy script

getnn // read number of nodes
pushc THRESHOLD // puts THRESHOLD on operand stack
inv // invert the THRESHOLD
add // number of Nodes − THRESHOLD
blez 8 // if ((NN − THRESHOLD) > 0)

// go to proactive
pushc REACTIVE // puts REACTIVE on operand stack
act // take a REACTIVE action
halt
pushc PROACTIVE // puts PROACTIVE on operand stack
act // take a PROACTIVE action
halt

(b) Bytecode encoding

Fig. 3. Policy implementation

An implementation of the routing rule of Fig. 4, described in Section 4,
using Maté’s specification is exemplified in Fig. 3. It shows a simplified script,

Policy-Based Adaptive Routing in Autonomous WSNs 213

Fig. 3(a), and its bytecoded version, Fig. 3(b), configured to check periodically
the number of nodes sending data in a cluster, getNumNodes() function, in order
to select the routing strategy empsloyed (PROACTIVE or REACTIVE). If such value
is higher or lower than a threshold, a proactive or reactive strategy is assumed,
respectively, using takeAction function. Both functions must be built
in the application to be executed on the node together with the Maté virtual
machine.

A limitation of the Maté platform is the restrict set of instructions, reducing
the policy codification possibilities. More powerfull script approaches exist for
WSNs, such as the Sensorware platform [3], however it requires a more complex
interpreter in the nodes and increases the number of data bytes transmitted on
the network.

Policy Deployment. An advantage of the policy-based adaptive routing is the
flexibility to redefine the rules when the network is in operation and based on
the knowledge acquisition. Some strategies must be used to deploy them in the
nodes. A flooding scheme is a simple solution to reach all nodes, although it
may add a significant over-head for WSNs. We expect policy implementations
to be small (simple rules) and their redefinitions not a frequent task. But, robust
mechanisms are required to keep the network in a consistent state, since a new
node or a sleeping one can be (re)joined to the network with an older policy
version. Some solutions have proposed energy-efficient and robust code update
mechanisms for WSNs, such as Trickle [16], which can be applied in our proposed
approach.

4 Case Studies

Next we present two case studies showing the use of policy-based adaptive rout-
ing. The first case considers a scenario where different routing strategies are ap-
plied autonomously according to a policy definition. The second case deals with
an adaptive parameter set instead of a constant default value. In both cases,
the goal is to achieve a better performance regarding energy consumption, a
constrained resource in WSNs.

4.1 Changing the Routing Strategy

We consider an unpredictable scenario where traffic variations may occur or
the application requirements can change along the time. In such cases, different
routing strategies may be more appropriated for different moments. Thus, an
adaptive rule can be applied to achieve a hybrid behavior by switching among
different routing strategies according to the monitored network condition. For
example, in an event-driven scenario, the network may remain with a very low
activity for days, favoring a reactive algorithm. But, in a given moment, a num-
ber of events may occur, generating a traffic large enough to use a proactive
algorithm.

(〈type〉)

214 C.M.S. Figueiredo et al.

For this scenario, we have proposed an adaptive hybrid algorithm which
determines the best routing strategy (reactive or proactive) based on the number
of sources sending data [7]. This number can be counted observing the different
source node identifiers (ids) and storing them in a bit-array to save memory,
for example. A threshold used by the sink node evaluates the measured network
traffic (number of source nodes sending data). If the traffic is lower than the
given threshold, a reactive strategy is adopted; otherwise, a proactive strategy
is taken. A rule that represents this routing strategy is shown in Fig. 4.

Although this simple implementation can lead to better performance than
the specific algorithms, the traffic measurement does not show the advantage of
a proactive action if a threshold is reached but no new detections happen. For
example, occasional distribution of event detections can lead to a concentrated
measurement, higher than the established threshold, leading to a proactive be-
havior, which may be not necessary.

As a better adaptive model, we consider the use of the simple signal process-
ing method of Moving Average Filter (MAF) [25] on the number of nodes that
are starting to detect events. Thus, a detection is counted observing when a
source node starts to send data after its innactivity. The filter smoothes possible
measurement noises and captures the seasonal component of event-occurrence
on the last n monitoring periods (n is the filter window size). Hence, the filter
can give a good estimation for the next time period, helping in the decision to
take a proactive behavior or not. Assuming the basic mechanisms described be-
fore, if more than one new source is expected for the next period, the proactive
behavior can be used to build the routing infrastructure for the entire network
with the cost of a route discovery. Fig. 5 shows a routing strategy rule for this
solution.

if Num of Sources > THRESHOLD then
proactive action();

else
reactive action();

endif

Fig. 4. Routing rule 1

Next Est=MovingAverage(Num of Detections);
if Next Est > 1 then

proactive action();
else

reactive action();
endif

Fig. 5. Routing rule 2

if Num of Sources < old Num then
proactive action();

endif
old Num = Num of Sources;

Fig. 6. Optimization rule

4.2 Adaptive Routing Optimization

Often, routing algorithms for WSNs define different parameters that must be
configured according to a given application and network situation to achieve a
better performance. But if the network condition changes, a policy can detect
it and set dynamically the better routing parameter. For example, in routing
solutions presented in Section 2.1, it is common the use of periodical updates
to support topological changes caused, for instance, by failures. Pre-defined fre-
quent updates can be set to a scenario with common failures, but this config-
uration is not appropriated to a stable scenario with a low failure rate due to
the consequent communication overhead. If it is possible to determine the fail-
ure occurrence rate, a policy can dynamically change this routing parameter,

Policy-Based Adaptive Routing in Autonomous WSNs 215

or even define when to take the corrective action, which optimizes the routing
performance.

In this case study, let us consider that a given application starts requiring
continuous environmental measurements. Thus, a proactive routing strategy such
as EF-Tree is more adequate. Instead of setting a constant periodical rebuilding
rate, in [17] we apply data fusion techniques in a solution that monitors the traffic
and infers about failure occurrence to take this action only when necessary to
save energy. This failure detection is possible by assuming a continuous traffic,
thus, downsteps in the received traffic mean a failure possibility. In this work,
we build a simplified similar rule, shown in Fig. 6, in which the number of nodes
sending data (counted as described in Rule 1) is observed in the periods of the
data generation rate. A reduction of this number means a failure, which triggers
a tree building to recover it.

5 Simulation and Evaluation

We evaluated the viability of our policy-based scheme through simulations. Ex-
periments were performed using the ns-2 simulator [18]. The simulation para-
meters were based on the Mica2 node [6] using the 802.11 protocol in the MAC
layer. Through its datasheet, bandwidth is 19200bps, radio range is 40m and
Tx. and Rx. power consumption are 45 and 24mW, respectively. In all simula-
tions, we assumed a network size of 50 nodes randomly distributed in an area
of 100 × 100 m2 with only one sink, and transmission of data and control mes-
sages (tree-building or requisition messages) of 20 bytes every 10 s and 100 s,
respectively. The graphics show the summary result of 33 simulations and the er-
ror bars (vertical bars) represent the confidence interval of 95%. The evaluated
metric was the total energy consumed by all sensor nodes. Simulation results
consider scenarios and routing rules described in Section 4. For simplicity, we
embedded the basic routing mechanisms and the policies at sensor nodes.

5.1 Changing the Routing Strategy

In a non-correlated event-driven scenario, we varied the number of sources gen-
erating data randomly, with a uniform distribution, along the simulation time
of 4000 s. A policy equivalent to the routing rule of Fig. 4 was set to run in
intervals of 10 s, the same period of data messages, and the traffic collected in
an n-interval is compared with a static threshold in order to set the strategy
activated in the (n + 1)-interval. Thus, it is expected that different thresholds
lead to different results, as in Fig. 7, where it is shown the behavior of a network
running with EF-Tree and SID algorithms alone, which compose the basic rout-
ing mechanism set described in Section 3.2, as well as the Policy-Based scheme
with traffic thresholds (limit of the number of source nodes sending data to
take an adaptive behavior) of 1, 2 and 3, called PB-1, PB-2 and PB-3. This
scheme autonomously adapts the routing mechanisms during the simulation, as
described before. A threshold higher than 3 leads to a performance very close to

216 C.M.S. Figueiredo et al.

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30 35 40 45 50

T
ot

al
 E

ne
rg

y
(J

ou
le

s)

Source Nodes

Total Energy

SID
EF-Tree

PB-1
PB-2
PB-3

Fig. 7. Energy with routing rule 1

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30 35 40 45 50

T
ot

al
 E

ne
rg

y
(J

ou
le

s)

Source Nodes

Total Energy

PB-1
PB-3

PB-MAF

Fig. 8. Energy with routing rule 2

SID, because proactive behavior is rarely taken with the simulated parameters,
thus their results were omitted.

The results for PB-2 and PB-3 are closer to the SID algorithm when the num-
ber of source nodes is less than 30. When a low traffic is measured, such policies
do not assume the proactive behavior. Some differences are due to the random
nature of the traffic, because source node data generations can be concentrated
in a time interval without implying in a high occurrence ratio. In these cases,
the performance of EF-Tree and PB-1 are not so good because they assume an
unnecessary proactive behavior. But, when traffic increases, the EF-Tree and
PB-1 have a better performance than PB-2 and PB-3 because their proactive
behaviors avoid the cost of creating a routing infrastructure for new sources.
PB-1 never reaches the EF-Tree performance for situations of high traffic since
it always starts with a reactive mode, before changing to a proactive behavior.

In the previous results, the management entity perceives that the chosen
policy is not so precise in the traffic evaluation. But, we can have advantages
with the flexibility of the policy redefinition. For instance, that policy may be
replaced by the one found in Fig. 5 that applies a Moving Average Filter (MAF).
Fig. 8 shows the results of the new policy called PB-MAF. We can see that the
PB-MAF results are closer to the best performance of PB-1 and PB-3, thus
it is a more adaptable solution to respond to traffic changes by autonomously
adjusting to its behavior.

5.2 Adaptive Routing Optimization

In this case study, we consider a continuous traffic scenario where the rule of
Fig. 6 is applied to detect failures and rebuild the routing tree. We fixed the
number of source nodes in 20, randomly chosen to send their data periodically
towards the sink from the beginning to the end of the simulation. We varied the
node failure ratio from 0 to 0.012 failures per second randomly distributed during
the simulation. When a node fails, it stays inactive until the end of simulation.
Fig. 9 shows the delivery rate improvement of the adaptive rule solution (EF-
Tree adap) compared with the EF-Tree with fixed rebuildings (EF-Tree orig). It
shows the advantage of failure detection to take an adaptive behavior. Fig. 10
shows the relative energy usage of the solutions. We note the better performance

Policy-Based Adaptive Routing in Autonomous WSNs 217

 88

 90

 92

 94

 96

 98

 100

 102

 0 0.002 0.004 0.006 0.008 0.01 0.012

D
el

iv
er

ed
 P

ac
ke

ts
 (

%
)

Failure Rate (Failures/second)

Packet Delivery Rate

EF-Tree adap
EF-Tree orig

Fig. 9. Delivery rate with optimiza-
tion rule

 0.002

 0.0022

 0.0024

 0.0026

 0.0028

 0.003

 0.0032

 0 0.002 0.004 0.006 0.008 0.01 0.012

E
ne

rg
y

(J
ou

le
s/

N
od

es
/D

el
iv

er
ed

 P
ac

ke
ts

)

Failure Rate (Failures/second)

Energy/Nodes/Delivered Packets

EF-Tree adap
EF-Tree orig

Fig. 10. Energy usage with optimiza-
tion rule

of the adaptive solution when the failure rate is low due to rare tree rebuildings.
However, with higher failure rates, the energy usage between the adaptive and
original solutions approximates because more tree rebuidings are needed by the
latter to maintain the delivery rate.

5.3 Policy Redefinition Cost

The advantage of redefining a policy depends on its gain versus the cost of
its redefinition and redistribution. To take an idea of this cost, we assumed a
byte-coded script of 20 bytes (large enough to store the script of Fig. 3(b)),
totalizing an estimated packet size of 36 bytes with the control header. We used
the classical flooding (broadcasts in the network) to redistribute policies to the
entire network. The energy cost of a single distribution was 1.29 Joules, which is
compensated by the difference of the PBs performance with different thresholds
or with the dynamic one. In addition, this advantage may be higher if the network
remains more time in the new situation.

5.4 Hierarchical Structure Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 10 15 20 25 30 35 40 45 50

T
ot

al
 E

ne
rg

y
(J

ou
le

s)

Source Nodes

Total Energy

1 cluster
2 clusters
4 clusters

Fig. 11. Energy with 1, 2 and 4 clus-
ters

To show the gain of a hierarchical scheme
and the independent application of poli-
cies, we created a scenario like the event-
driven where the sensing area is divided
in quadrants defining separated clusters.
We compare the performance of the PB
scheme running with 2 and 4 clusters with
a scenario with no clustering. Fig. 11 de-
picts the energy consumed by the algo-
rithms with different number of source
nodes. We observe a better performance
as the number of clusters grows since independent actions are taken by their
cluster-head’s policies. An event may be restricted to a location and its detec-
tion in a partition does not imply in its detection in another area. Thus, a high

218 C.M.S. Figueiredo et al.

traffic in a partition activates the proactive behavior only inside itself, whereas
other partitions may keep a reactive behavior saving their resources.

6 Final Considerations

In WSNs, routing algorithms are specific for the scenario of a given applica-
tion. In scenarios of high variability, a given routing algorithm cannot achieve
its best performance all the time. Thus, adaptive hybrid approaches, providing
autonomic behavior, can be better than a single algorithm. This work discussed
the usage of policies to establish adaptive routing rules for WSN elements to
become more flexible and accessible development and maintenance tasks of a
network. Although we focused on low-level policies, they are necessary for high-
level policy building. Case study scenarios revealed that the usage of policies in
autonomous WSNs can provide resource savings.

The next step of our work is to enable and evaluate the implementation
of policy-based routing rules on real sensor nodes. Future work includes the
implementation of policy-based routing rules to change the routing QoS metric,
and the use of policies to dictate how the data is collected, aggregated and
forwarded through the routing infrastructure with resource savings.

References

1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cyirci, Wireless
sensor networks: A survey, Computer Networks, 38 (2002), pp. 393–422.

2. J. N. Al-Karaki and A. E. Kamal, Routing techniques in wireless sensor net-
works: a survey, IEEE Wireless Communications, 11 (2004), pp. 6–28.

3. A. Boulis, C.-C. Han, and M. B. Srivastava, Design and implementation of a
framework for efficient and programmable sensor networks, in MobiSys, May 2003.

4. I. CISCO Systems, White paper: Policy-based routing, Access: May 2005. [Online]
Available: http://www.cisco.com/warp/public/cc/techno/protocol/tech/.

5. D. Clark, RFC 1102: Policy Routing in Internet Protocols. MIT Lab for Com-
puter Science, 1989.

6. Crossbow, Mica2 platform, Access: February 2004. [Online] Available:
http://www.xbow.com/.

7. C. M. Figueiredo, E. F. Nakamura, and A. A. Loureiro, Multi: A hy-
brid adaptive dissemination protocol for wireless sensor networks, in Algosen-
sors, vol. 3121 of Lecture Notes in Computer Science, Turku, Finland, July 2004,
Springer, pp. 171–186.

8. S. Hedetniemi and A. Liestman, A survey of gossiping and broadcasting in
communication networks, Networks, 18 (1988), pp. 319–349.

9. J. Heidemann, F. Silva, and D. Estrin, Matching data dissemination algorithms
to application requirements, in 1st SenSys, Los Angeles, CA, USA, 2003, ACM
Press, pp. 218–229.

10. W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, Energy-efficient
communication protocols for wireless microsensor networks, in 33rd HICSS, Maui,
Hawaii, USA, January 2000.

Policy-Based Adaptive Routing in Autonomous WSNs 219

11. C. T. Inc., Mote in-network programming user reference, Access: August 2004.
[Online] Available: http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/xnp.pdf.

12. J. O. Kephart and W. E. Walsh, An artificial intelligence perspective on au-
tonomic computing policies, in 5th Int’l Workshop on Policies for Dist’d Systems
and Networks, 2004.

13. M. Kochhal, L. Schwiebert, and S. Gupta, Role-based hierarchical self orga-
nization for wireless ad hoc sensor networks, in Proc. of the 2nd ACM Int’l Conf.
on Wireless Sensor Networks and Applications, ACM Press, 2003, pp. 98–107.

14. R. Krishnan and D. Starobinski, Message-efficient self-organization of wireless
sensor networks, in IEEE WCNC 2003, March 2003, pp. 1603–1608.

15. P. Levis and D. Culler, Maté: A tiny virtual machine for sensor networks, in
10th Int’l Conf. on Architectural Support for Prog. Lang. and Operating Sys.,
ACM Press, 2002, pp. 85–95.

16. P. Levis, N. Patel, D. E. Culler, and S. Shenker, Trickle: A self-regulating
algorithm for code propagation and maintenance in wireless sensor networks., in
1st NSDI, 2004, pp. 15–28.

17. E. F. Nakamura, C. M. Figueiredo, and A. A. Loureiro, Information fusion
for data dissemination in self-organizing wireless sensor networks, in 4th ICN,
April 2005.

18. NS-2, The network simulator - ns-2, Access: February 2004. [Online] Available:
http://www.isi.edu/nsnam/ns/.

19. C. Perkins, E. Belding-Royer, and S. Das, Ad-hoc on-demand distance vector
routing. RFC 3561, 2003.

20. C. Perkins and P. Bhagwat, Highly dynamic destination-sequenced distance-
vector routing (DSDV) for mobile computers, in ACM SIGCOMM’94, 1994,
pp. 234–244.

21. G. J. Pottie and W. J. Kaiser, Wireless integrated network sensors, Commu-
nications of the ACM, 43 (2000), pp. 51–58.

22. V. Ramasubramanian, Z. Haas, and E. Sirer, SHARP: A hybrid adaptive
routing protocol for mobile ad hoc networks, in 4th MobiHoc, 2003, pp. 303–314.

23. C. Shen, C. Srisathapornphat, and C. Jaikaeo, Sensor information network-
ing architecture and applications, IEEE Personal Communication, 8 (2001), pp. 52–
59.

24. M. Sloman, Policy driven management for distributed systems, Journal of Network
and Systems Management, 2 (1994), pp. 333–360.

25. S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing,
California Technical Publishing, San Diego, CA, USA, 2nd ed., 1999.

26. K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie, Protocols for self-
organization of a wireless sensor network, IEEE Personal Communications, 7
(2000), pp. 16–27.

27. S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, A taxonomy of wire-
less micro-sensor network models, ACM Mobile Computing and Communications
Review (MC2R), 6 (2002), pp. 28–36.

28. A. Woo, T. Tong, and D. Culler, Taming the underlying challenges of reliable
multihop routing in sensor networks, in 1st SenSys, ACM Press, 2003, pp. 14–27.

29. C. Zhou and B. Krishnamachari, Localized topology generation mechanisms for
self-configuring sensor networks, in IEEE Globecom, San Francisco, USA, Decem-
ber 2003.

Decentralized Computation of
Threshold Crossing Alerts

Fetahi Wuhib1, Mads Dam1, Rolf Stadler1, and Alexander Clemm2

1 KTH Royal Institute of Technology,
Stockholm, Sweden

{fzwuhib, mfd, stadler}@kth.se
2 Cisco Systems

San Jose, California, USA
alex@cisco.com

Abstract. Threshold crossing alerts (TCAs) indicate to a management system
that a management variable, associated with the state, performance or health of
the network, has crossed a certain threshold. The timely detection of TCAs is
essential to proactive management. This paper focuses on detecting TCAs for
network-level variables, which are computed from device-level variables using
aggregation functions, such as SUM, MAX, or AVERAGE. It introduces TCA-
GAP, a novel protocol for producing network-wide TCAs in a scalable and robust
manner. The protocol maintains a spanning tree and uses local thresholds, which
adapt to changes in network state and topology, by allowing nodes to trade un-
used “threshold space”. Scalability is achieved through computing the thresholds
locally and through distributing the aggregation process across all nodes. Fault-
tolerance is achieved by a mechanism that reconstructs the spanning tree after
node addition, removal or failure. Simulation results on an ISP topology show
that the protocol successfully concentrates traffic overhead to periods where the
aggregate is close to the given threshold.

1 Introduction

Threshold crossing alerts (TCAs) indicate to a management system that some monitored
MIB object, or management variable, has crossed a certain preconfigured value - the
threshold. Objects that are monitored for TCAs typically contain performance-related
data, such as link utilization or packet drop rates. In order to avoid repeated TCAs in
case the monitored variable oscillates, a threshold is typically accompanied by a second
threshold called the hysteresis threshold, set to a lower value than the threshold itself.
The hysteresis threshold must be crossed, in order to clear the TCA and allow a new
TCA to be triggered when the threshold is crossed again (Fig. 1).

TCAs represent an important mechanism in proactive management, as they allow
for management that is event-based and does not need to rely as much on centralized
polling.

Today, TCAs are generally set up per device, e.g., for monitoring packet drop rates
on a particular link. In addition, Service Level Agreements (SLAs) are often articulated
similarly, on a per-device basis, reflecting the limitations of today’s technology. How-
ever, there is a definitive need for management functionality that provides cross-device
TCAs, which are applied to parameters that are aggregated across the network. Exam-
ples include management applications that alert an operator whenever (a) the average
link utilization in a domain rises above certain threshold, or (b) whenever the number

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 220–232, 2005.
c© IFIP International Federation for Information Processing 2005

Decentralized Computation of Threshold Crossing Alerts 221

Fig. 1. Threshold Crossing Alerts: an alert is raised when a network-wide variable, the aggregate,
exceeds a given global threshold T+

g . The alert is cleared when the aggregate has decreased below
a lower threshold T−

g .

of currently active voice calls on a network, as aggregated across IP PBXs or voice
gateways, exceeds a given value.

This work focuses on supporting TCAs for thresholds on network-wide manage-
ment variables, which are computed by aggregating local variables across many devices.
We will refer to such TCAs as network TCAs (NTCAs) and to network-wide manage-
ment variables as aggregates. Typical NTCAs involve aggregates that are computed
from device variables, using functions, such as SUM, AVERAGE, COUNT, MAX, or
MIN. (For a discussion on the practical relevance of NTCAs, see [1].)

The hard part in determining when to trigger NTCAs is to ensure scalability and
fault-tolerance of the approach. Traditionally, the aggregation of local variables from
different devices has been performed in a centralized way, whereby an application,
running on a management station, first retrieves state variables from agents in network
devices and then aggregates them on the management station. Such an approach has
well-known drawbacks with respect to scalability and fault tolerance.

We propose that NTCAs be computed in a distributed way. To this end, we assume
that each network device participates in the computation by running a management pro-
cess, either internally or on an external, associated device. These management processes
communicate via an overlay network for the purpose of monitoring the network thresh-
old. Throughout the paper, we refer to this overlay as the network graph. A node in this
graph represents a management process together with its associated network device(s).
While the topology of this overlay can be chosen independently from the topology
of the underlying physical network, we assume in this paper, for simplicity, that both
topologies are the same, i.e., that the management overlay has the same topology as the
as the underlying physical network.

A straightforward solution to the NTCA problem can be constructed by using a
protocol for distributed state aggregation, such as [2,3]. These protocols provide a con-
tinuous estimate of the network-wide aggregate on a dedicated root node, by setting up
a spanning tree on the network graph, along which updates are reported. NTCAs can be
detected by a filter on the root node. However, such a solution is inherently inefficient
in terms of traffic overhead on the network graph and processing load on the manage-
ment nodes. For the purpose of triggering NTCAs, we are not interested in receiving
estimates about the dynamically changing aggregate, but only in receiving alarms when

222 F. Wuhib et al.

it crosses certain thresholds. For instance, no estimate of the aggregate is needed if its
value is well below a threshold.

In this paper, we present TCA-GAP, a novel protocol for computing NTCAs in a
scalable and robust manner. The protocol is based on the Generic Aggregation Protocol
(GAP), which provides support for creating and maintaining a spanning tree on the
network graph and for distributed aggregation of local variables [3]. The basic idea
behind our protocol is the use of local thresholds that control whether a node reports a
change in aggregate of its subtree. These thresholds are locally recomputed whenever
local threshold rules are violated, which can be triggered, e.g., by a “significant change”
in a device variable or a node failure. Scalability is achieved through computing the
thresholds locally and through distributing the aggregation process across all nodes of
the spanning tree. Fault-tolerance is achieved by a mechanism that reconstructs the
spanning tree after node addition, removal or failure. We evaluate the protocol on an
ISP topology and compare its performance to a naı̈ve solution to the NTCA problem
and to a centralized scheme for NTCA detection proposed by Dilman and Raz [4].

The paper is organized as follows. Section 2 reviews related work. Section 3 for-
mally defines the NTCA problem. Section 4 provides GAP in a nutshell, and section
5 presents our protocol. Section 6 gives simulation scenarios, simulation results and a
discussion of those results. Finally, section 7 provides some additional comments to the
results and gives an outlook on further work.

2 Related Work

Dilman and Raz [4] study the NTCA problem for a centralized management system,
where the management station communicates directly with the network elements. The
authors assume that the aggregation function is sum and that a single global threshold T
is given. In one solution, which the authors call ‘simple-value’, local threshold value of
T/n where n is the number of nodes in the network is assigned to all nodes. Whenever
the local weight becomes larger than this threshold, the node sends a trap with the
current weight to the management station. Periodically, if the management station has
received traps during the previous period, it polls all nodes that did not send a trap for
their local weights. Then, it aggregates the local weights of all nodes and determines
whether the global threshold has been crossed. This scheme performs well for “small”
networks, where polling is feasible, where weights are evenly distributed, and where the
likelihood of a node exceeding its threshold is small. In 6 we compare the performance
of TCA-GAP to this simple-value scheme for a specific scenario. In the same paper, the
authors propose a second scheme, called ‘simple-rate’, which assumes an upper bound
on ∆w/∆t, the range of change of weights per unit time. This assumption leads to an
upper bound on the aggregate and thus allows nodes to be sampled less frequently.

Decentralized solutions for problems closely related to the NTCA problem have
been proposed by Breitgand, Dolev and Raz in the context of estimating the size of a
multicast group [5]. There, the task is to determine whether the group size is within a
prescribed interval for which pricing is constant. Several schemes are proposed, based
on the concept that nodes intercept traps generated by their children, in order to suppress
false alerts.

Outside the specific domain of TCA generation, the problem of distributed state ag-
gregation has recently received considerable attention (cf. [6, 7, 2, 8, 9]). An approach
common to several authors (ourselves including) is to reduce traffic load by installing

Decentralized Computation of Threshold Crossing Alerts 223

filters at each node of the aggregation tree. Olston et al. [10] propose a scheme whereby
filters installed at each node continually shrink, leaving room for a central processor
to reallocate filter space where needed most. This scheme was later refined in [11],
by using statistics on the local aggregates held at each node, in order to allow filters
to dynamically adjust to the data sources. One drawback of this approach is that it is
not temporally local, because the criteria for setting the filters depend on the histories
of previously sampled values. This makes the approach vulnerable to failures and dy-
namic changes, since these can affect the shape of the aggregation tree in unpredictable
ways. (This approach though is spatially local, since each node makes local decisions
to set the filters for its children.) By way of comparison, the solution we propose is
both spatially and temporally local and applies a rather simple, history-free scheme to
transfer threshold space between siblings in an aggregation tree.

3 The NTCA Problem

We are considering a dynamically changing network graph G(t) = (V (t), E(t)) in
which nodes i ∈ V (t) and edges/links e ∈ E(t) ⊆ V (t) × V (t) may appear and
disappear over time. To each node i is associated a weight, wi(t) ≥ 0. The term weight
is used to represent a local state variable or a device counter that is being subjected to
threshold monitoring. For the main part of the paper we assume that weights are integer
valued quantities, aggregated using SUM. In section 7 we discuss extensions to support
other aggregates such as those mentioned in section 1.

The objective is to raise an alert on a distinguished root node, the management
station, when the aggregate weight Σiwi(t) exceeds a given global threshold T+

g , and
to clear the alert on the root when the aggregate has decreased below a lower threshold
T−

g .
The design goals for the protocol are as follows:

– Scalability: the protocol must scale to networks of very large size. To this end,
the protocol must ensure that the load on nodes and links is small and evenly dis-
tributed. In addition, for practical network topologies, the maximum processing
load on each node and the maximum traffic load on each link should increase sub-
linearly with the network size.

– Accuracy:the accuracy requirement is subdivided into the following
• (Soundness) An NTCA is raised only if the aggregate crosses T +

g , and cleared
only if the aggregate falls below T−

g ;
• (Accuracy) An NTCA is raised if the upper threshold T+

g is exceeded for a cer-
tain minimal duration ∆talert. For clearing the NTCA, the condition is sym-
metric;

• (Timeliness) If an NTCA is raised (cleared), then it is raised (cleared) within
some given minimal time tdelay after the relevant threshold crossing.

– Robustness: the protocol must adapt gracefully to changes in the underlying net-
work topology, including node and link failures. This means that, for practically
relevant scenarios involving node failures and/or topology changes, the protocol
must produce output that is of practical use.

The ∆talert condition is needed in order to adequately disregard transient behav-
ior. A strict solution that does not allow for some such form of temporal imprecision

224 F. Wuhib et al.

cannot in fact be realized (cf. [12]). The soundness and timeliness conditions need to
be interpreted in a similar way. We turn to this issue in section 7.

4 The GAP Protocol

The TCA-GAP protocol introduced in this paper is based on an earlier protocol, GAP
- Generic Aggregation Protocol [3], for building and maintaining aggregation trees.
GAP is a modified and extended version of the BFS (Breadth First Spanning) tree con-
struction algorithm of Dolev, Israeli, and Moran [13]. The protocol of [13] executes in
coarsely synchronized rounds, where each node exchanges with its neighbors its belief
about the minimum distance to the root and then updates its belief accordingly. Each
node also maintains a pointer to its parent, through which the BFS tree is represented.

The above work by Dolev et al. [13] exhibits similarities to the 802.1d Spanning
Tree Protocol (STP) [14, 15]. STP is a distributed protocol that constructs and main-
tains a spanning tree among bridges/switches, in order to interconnect LAN segments.
Similar to [13], a node in STP chooses its parent, such that its distance (measured in ag-
gregate link costs) to the root node is minimized. The initialization phase though is very
different between the two protocols. While STP uses broadcast in LAN segments and
a leader election algorithm to determine the root node, [13] assumes a given root node
and an underlying neighbor discovery service. Also the failure discovery mechanism is
very different in both protocols.

GAP extends [13] in a number of ways. First, GAP uses message passing instead
of shared registers. Second, in GAP, each node maintains information about its children
in the BFS tree, in order to compute the partial aggregate, i.e., the aggregate value of
the weights from all nodes of the subtree where this node is the root. Third, GAP is
event-driven. That is, messages are only exchanged as results of events, such as the
detection of a new neighbor, the failure of a neighbor, an aggregate update, a change in
local weight or a parent change. Fourth, since a purely event-driven protocol can cause
a high load on the root node and on nodes close to the root, GAP uses a simple rate
limitation scheme, which imposes an upper bound on message rates on each link.

In GAP, each node maintains a neighborhood table shown in Fig. 2(a), associating
a status, a level, and an (aggregate) weight to each neighboring node. The status field
(with values self, child, parent and peer) defines the structure of the aggregation tree.
The value peer denotes a neighbor in the network graph that is not a neighbor in the
aggregation tree. The level field indicates the distance, in number of hops, to the root.
It is used to construct the BFS aggregation tree, whereby each node chooses its parent
in such a way that its level is minimal. The weight field refers to the cached partial
aggregate for a neighboring node and to the local weight for the local node.

GAP relies on underlying failure and neighbor discovery services, which are as-
sumed to be reliable.

5 TCA-GAP: A Distributed Solution to the NTCA Problem

TCA-GAP assumes a designated root node to report NTCAs. Upon starting the proto-
col, the root node will map the global thresholds into local thresholds for its children
on the aggregation tree, and each child will then, recursively, assign local thresholds to
its own children. During the operation of the protocol, each node that has an aggregate

Decentralized Computation of Threshold Crossing Alerts 225

(a) Sample neighborhood table for GAP (b) Local hysteresis mechanism in TCA-GAP that decides
whether a node is active or passive.

Fig. 2. The GAP neighborhood table and the local hysteresis mechanism in TCA-GAP

far below (or above) the local threshold will enter a passive state, where it refrains from
forwarding changes of its aggregate to its parent. Once a node’s aggregate gets close
to its local threshold, it will become active and start reporting changes of the aggre-
gate to its parent. A passive node will adapt to changes in network state and to failures,
by dynamically recomputing the local thresholds of its children. In the following, we
describe the main features of TCA-GAP in more detail.

Local Hysteresis Mechanism: A local hysteresis mechanism determines whether a
node sends updates of its aggregate to its parent. A node that sends updates is called ac-
tive. One that does not send updates is called passive. The local hysteresis mechanism is
similar to the global hysteresis mechanism (see Fig. 1), but it serves a different purpose,
namely, to correctly sample the aggregate when the global threshold is crossed. The
local threshold assigned to node i is T +

i . From T +
i the upper and lower local hysteresis

thresholds T +
i,u and T +

i,l are computed, such that T +
i,u = k1T

+
i and T +

i,l = k2T
+
i . Here,

k1 and k2 are some global control parameters. Using these threshold values, a node will
decide when to send its aggregate value as shown in Fig. 2(b). The transition between
active and passive states occurs as follows. When the local aggregate of a passive node
grows beyond the upper threshold T +

i,u, the node becomes active. It will stop perform-
ing threshold recomputations (see below), start sending aggregate updates (just as in
the GAP protocol), and reset the thresholds of its children to 0. When the aggregate
of an active node decreases below T +

i,l, then the node becomes passive and recomputes
the thresholds of its children. The threshold of child j with aggregate aj will be set to
T +

i ∗ (aj/ai), where ai is the aggregate of the local node.

Threshold Rules: The (local) threshold rules guarantee that, if a global threshold is
crossed, then there is at least one node, for which these rules are violated. They are:

(1) T +
i ≥ Σj∈JT +

j where J is the set of children of node i;

(2) If J ′ is the set of active children, then Σj∈J′T +
j ≥ Σj∈J′aj where aj is the local

aggregate reported by child j.

226 F. Wuhib et al.

As long as these two rules remain valid on a node, it stays passive. Once one of them is
violated, the node will recompute the thresholds of its children.

Threshold Recomputation: threshold recomputation allows an active node to “receive
threshold space” from one or more passive siblings. The purpose of this is to reinstate
the threshold rules on the node.

It is generally difficult to recompute thresholds with a small overhead. For in-
stance, a greedy approach to threshold recomputation will attempt to give an active
child enough threshold space to make it passive. Such a solution, however, is prone
to oscillation, since it can lead to two children alternately borrowing threshold space
from each other. For this reason, we take a conservative approach that allows an active
child of a passive node, under certain conditions, to remain active, without threshold
recomputation having to occur.

Recomputation of local thresholds can happen for two reasons:

– Event #1: a node receives from its parent a new, lower threshold T ′, causing thresh-
old rule (1) above to fail;

– Event #2: a child reports an increased aggregate, causing threshold rule (2) to fail.

These events can have several causes. For instance, the change of a local weight in some
subtree can cause event #2 at the root of that subtree. When a device fails or is removed
from the network, the topology of the aggregation tree may change, which in turn may
cause events #1 or #2 to occur at different nodes in the network. The same can happen
in the case where a device recovers from failure or is added to the network.

As a reaction to one of the above events, a node recomputes the local thresholds as
follows:

i. For event #1, we reduce the threshold of one or more passive children by Σj∈JT +
j −

T ′, where J is the set of children of the current node. Observe that, if such a reduc-
tion is not possible, then T ′ will be less than the sum of the thresholds of the active
children, and, therefore, has reverted to active state.

ii. For event #2, we reduce the threshold of one or more passive children by some
value δ > Σj∈J′aj − Σj∈J′T +

j , where J ′ is the set of active nodes, and increase
the assigned threshold value of an active child by the same amount.

In case [ii.], there is some freedom in choosing δ and the child j whose threshold we
increment. However, δ should not exceed aj

k2
− T +

j , since, as we noted, there is risk

for oscillation. For our protocol, we choose j such that aj − T +
j is maximized, and we

choose δ = aj

k1
−T +

j . Observe that, since the threshold rules are evaluated at the end of
each protocol cycle, only an aggregate update from a single child can have caused event
#2. Therefore, some j can be found, such that the resulting δ will satisfy [ii.]. To reduce
the threshold of the passive children by δ, the threshold of each passive child is reduced,
in turn, in the order of decreasing thresholds. This solution attempts to minimize the
threshold updating overhead at the cost of a substantial risk that at least one child will
become active in the next round.

Topology Changes and Failures: When a node is removed or fails, the protocol follows
the GAP design, i.e., the failure detector informs all neighbors, and, as a result, the
parent updates its neighborhood table by removing the failed node and recomputing its

Decentralized Computation of Threshold Crossing Alerts 227

aggregate accordingly. When a new node is discovered, or a failed node recovers, the
protocol again follows the GAP design by attaching it to a suitable parent. The parent
receives an update message from the new node, creates an entry for the node in the
neighborhood table, and updates the aggregate accordingly. In all of the above cases,
the threshold rules are evaluated at the end of the protocol cycle, which may include
threshold recomputation, etc., as described above.

Symmetric Modes: Once the aggregate exceeds T +
g , then all nodes will have become

active, and the overhead of TCA-GAP increases to that of GAP. To a large extent, this
problem of a large overhead can be addressed by exploiting the inherent symmetry in
the NTCA problem: detecting an upwards crossing of an upper threshold level is not
different from detecting a downwards crossing of the lower one. In the first case, nodes
will be passive on small aggregates and set to trigger when aggregates become large. In
the second case, nodes will be passive on large aggregates and trigger when aggregates
become small. Reflecting this, the protocol can work in one of two symmetric modes,
positive or negative, depending on which threshold and which direction of threshold
crossing it is set to trigger. The switch between modes is done at the root, as a result
of global threshold crossings, and propagated down the aggregation tree, by adding the
mode to the update messages exchanged between neighbors. Locally, each node i is
assigned either an upper threshold T +

i or a lower threshold T−
i . In positive mode, the

objective is to detect upwards crossings of T +
i . In negative mode, the objective is sym-

metric, i.e., to detect downwards crossings of T−
i . The local hysteresis thresholds in the

latter case are computed as T−
i,u = T−

i /k1 and T−
i,l = T−

i /k2. Note that, for simplicity
of presentation, the discussion in the previous subsections refers to the positive mode.
The extension to negative mode is straightforward.

Initialization: The protocol initializes in the same way as GAP, which constructs the
BFS spanning tree and populates the local neighborhood table [3]. As part of this initial-
ization process, the local thresholds in all nodes are set to 0 in positive mode, causing
weight changes to be reported up the aggregation tree to the root node. In the sec-
ond phase of the initialization process, the root node sets its two global thresholds as
instructed by the management station, which causes the recomputation of local thresh-
olds to be propagated from the root down the aggregation tree. As a result, nodes start
filtering weight and aggregate changes.

Code: The main data structure manipulated by TCA-GAP is the neighborhood table,
which, in addition to the four columns of Fig. 2(a), contains a fifth column for thresh-
olds. All numerical fields in the neighborhood table are arbitrarily initialized to 0. The
update vector in TCA-GAP serves a similar purpose as in GAP, namely, informing a
neighbor of a node about changes in the node’s neighborhood table. This vector is a tu-
ple of the form (update,From,Weight,Level,Parent,ThresholdList,
Sign) where ThresholdList is a list of (node, threshold) pairs, and Sign is the
mode. The protocol assumes an external, virtual root with level 0. Further, it assumes
underlying services for failure detection and neighbor discovery. Local weight changes
are handled by assuming that two instances of TCA-GAP run on every node, one, a leaf,
for local weight changes, and one for aggregation. The main operation embodying the
TCA-GAP semantics is the function restoreTableInvariant, which is respon-
sible for maintaining the TCA-GAP invariants. These invariants ensure, for instance,
that each node has a unique parent, and that the local threshold rules hold. In case the

228 F. Wuhib et al.

invariants are violated, actions are performed, such as selecting a new parent, switching
between passive and active operation, or recomputing thresholds. The pseudo code for
TCA-GAP can be found in [1].

6 Experimental Evaluation

We evaluated the functionality and performance of TCA-GAP through simulation, un-
der varying topologies, thresholds, weight change and node failure models. The main
hypotheses we wanted to test were:

– At low aggregate/threshold ratios the TCA-GAP scheme produces a management
traffic overhead several orders of magnitude below that of a scheme for continuous
monitoring such as GAP;

– The performance of TCA-GAP degrades gracefully as the aggregate/threshold ratio
approaches 1.

The simulation results we have obtained are very encouraging. In the paper, we show
results for two scenarios using an ISP network as the underlying topology. The first
scenario involves several sinusoidal threshold crossings and shows how TCA-GAP suc-
cessfully manages to reduce traffic when the aggregate is far from the thresholds. The
second scenario shows the behavior of TCA-GAP at a low static aggregation level.

For the simulations we used a 221 node grid network topology and the topology
of an ISP, Abovenet, from [16]. In this paper we mainly report on simulation results
from Abovenet, a network with 654 nodes and 1332 links. The simulation studies were
conducted with the SIMPSON network simulator [17]. The experiments were run with
a uniform message size of 1Kbyte, a bandwidth of 100MB/sec, a processing delay of
1ms, and a communication delay of 4ms.

In the simulation runs, rate limitation was ignored to better compare the key prop-
erties of TCA-GAP versus the other two schemes. The main effect of rate limitation is
to smooth peak traffic volumes, by imposing an upper bound on the traffic on each link.
Secondly, the overall traffic is reduced since each node has the ability to process several
messages before an output is produced.

Local weights are constrained to the interval [0, . . . , 100]. Weight changes are sim-
ulated using a random walk model with random step sizes. Changes occur at randomly
selected nodes, following a Poisson distribution with an average change rate per node
of 1 weight change per second.

For the simulations shown in this paper, the global thresholds have been chosen at
T +

g = 80% and T−
g = 70% of the maximally achievable aggregate, i.e., the aggregate

value where all nodes have the maximum possible weight of 100.
In the first scenario, nodes are initialized with weight values that are uniformly dis-

tributed in [0, . . . , 100] and the step size of the random walk model is biased with a
sinusoidal input, such that wi(t + ∆t) = wi(t) + ∆w + b ∗ sin(t/ω) + k where ∆w is
chosen to be uniformly distributed in an interval [−x, . . . , x], and the constants b and ω
are chosen to obtain a suitable period and amplitude for the superimposed sinusoid on
the aggregate. The constant k is a bias added to tune the aggregate to a desired long term
average value. In Fig. 3(a), we show the aggregate, upper and lower global thresholds
and, for both GAP and TCA-GAP, the total number of messages over a 200ms sam-
pling period. The local thresholds are computed using k1 = 0.9 and k2 = 0.85. Three
threshold crossings are shown in the figure. Each of them involves a gradually increas-
ing number of active nodes, until a point is reached where all nodes are active. In the

Decentralized Computation of Threshold Crossing Alerts 229

plot shown, this state is retained for a couple of seconds, until, after mode switching, the
root reverts to passive state by crossing the relevant lower local threshold. (Note that,
for any given node i in negative mode, the ‘lower’ threshold T−

i,l is actually higher than

the ‘higher’ threshold T−
i,u.) During the interval where all nodes are active, TCA-GAP

behaves roughly as GAP. The large peaks are due to the root node propagating new
threshold values, along with the sign, down the aggregation tree.

(a) Scenario 1: Messages generated by TCA-GAP
and GAP; global aggregate over time; upper and
lower values of global thresholds

(b) Total number of messages produced during
a simulation run for TCA-GAP, SV and GAP in
function of the average global aggregate

Fig. 3. Simulation Results

An interesting feature of TCA-GAP which is brought out in Fig. 3(a) is that traffic
is concentrated around the global threshold crossings, and not where aggregates are
maximal. This is attractive, since large aggregates are often indicative of congestion or
overload situations in the network where it is desirable to keep management overhead
to a minimum.

In the second scenario, the average aggregate weight has been chosen to be well
below the global threshold, at about 5%. For modeling the weight changes, we used a
biased version of the random walk model, such that wi(t + ∆t) = wi(t) + ∆w + k,
where ∆w is chosen to be uniformly distributed in an interval [−x, . . . , x].

The simulation results show that, on average, TCA-GAP generates 1.7% of the
messages that are generated by GAP. At any given time, 95% of the nodes were passive
and therefore did not produce messages. Graphs of the simulation results can be found
in [1].

For the second scenario, we performed similar simulation studies with higher vari-
ability of the weight changes. As expected, the traffic and processing overhead of TCA-
GAP was larger than above, but still substantially smaller than that of GAP.

For both of the above scenarios, we performed the same simulations for a 221 node
grid network. The simulation results were similar to those for the Abovenet topology,
used in scenarios 1 and 2.

We have also compared our scheme to other schemes for detecting threshold cross-
ing alerts [4] in the number of messages consumed in the whole network. To compare
the performance of TCA-GAP with the simple-value scheme (SV) by Dilman-Raz [4],

230 F. Wuhib et al.

we performed a number of simulations using scenario 2 with various average aggre-
gates. Fig. 3(b) shows the results of the simulations. It gives the number of messages
generated by TCA-GAP, SV and GAP, as a function of the average aggregate during the
simulation run of 900secs. As one can see, in GAP, the number of messages is hardly
affected by the level of the aggregate. We explain this by the fact that, this protocol
does not attempt any filtering and propagates all changes, no matter how small. The SV
scheme by Dilman and Raz distributes static thresholds to all nodes, and determines
whether a global TCA has occurred by polling all nodes whenever a node reports cross-
ing of its locally assigned threshold level. From the measurements, we conclude that,
for aggregate levels of less than 5%, SV produces a low number of messages compared
to both GAP and TCA-GAP, since local thresholds are almost never crossed. However,
as the aggregate level grow larger than 10%, the probability of local threshold cross-
ings increases significantly, which is reflected by a large increase in traffic volume. The
subsequent reduction in traffic for SV is due to the fact that, in SV, nodes sending traps
do not subsequently need to be polled. For TCA-GAP the traffic volume increases at a
much smaller rate.

7 Discussion and Future Work

In this section, we evaluate our simulation results against the design goals of TCA–GAP
concerning accuracy, scalability and robustness set out in section 3, and point to areas
of future work.

Accuracy: As we have pointed out, a protocol that does not allow some temporal im-
precision cannot be engineered. In particular, in a practical system, threshold crossings
must have some minimum duration ∆talert to guarantee detectability. Moreover, for a
deterministic solution such as TCA-GAP, threshold detection can only be guaranteed
when the network is stable: it is not hard to come up with failure patterns that con-
spire to continuously reconfigure the aggregation tree, such that threshold crossings
never get detected at the root. For a stable network an upper bound on ∆talert, the
amount of time a threshold must remain crossed for TCA-GAP to guarantee detection,
is O(n ∗ (td + tl) ∗ h) where:

– n is the degree of the network graph = maximal number of neighbors for any node;
– td is the rate limitation timeout;
– tl is the maximum communication delay between nodes;
– h is the height of the aggregation tree = the network diameter.

This bound is obtained, since, in the worst case, the threshold crossing has to be prop-
agated to the root from the furthest distant leaf. Along each node, threshold violation
has to be propagated through all neighbors in turn. Observe that the parameters n and h
are determined by the choice of the management overlay topology, which, for this pa-
per, is chosen to be identical to the underlying physical network topology. Soundness,
in that NTCA’s are raised only if the aggregate actually crosses T+

g , is conjectured to
hold in similar terms: if an NTCA is raised for at least the duration ∆talert then it can
be guaranteed that the threshold was also crossed some time during this interval. The
timeliness requirement needs to be similarly adapted.

Scalability and Robustness: TCA-GAP uses a simple rate limitation scheme to impose
an upper bound on the management traffic on each link. This by itself is not sufficient to

Decentralized Computation of Threshold Crossing Alerts 231

guarantee scalability, however, unless a bound on the degree of nodes is also imposed.
The effect of this is not trivial, and left for future work. For robustness, the protocol is
certainly capable of adapting to topology changes in a graceful way. We confirmed this
in simulations using scenarios with node failures and recoveries with results consistent
with the other results we have reported.

Aggregation Functions: Above,we have used SUM as the aggregation function. Other
simple aggregates like COUNT, MIN, and MAX can be supported with no modifica-
tions other than replacement of the aggregation function. For instance, to count the num-
ber of nodes with some local attribute exceeding c the local weight function wi(t) will
return 1, if the attribute value exceeds c and 0 otherwise, and the aggregation function
will be SUM. One way of handling AVERAGE in our framework could be to extend
the underlying tree management protocol to maintain also node counts. This can be
done by adding a further “tree size” field to the neighborhood table. Moreover, the cost
of maintaining node counts only amounts to extending the topology update messages
which are already exchanged by a node count field.

Future Work: For the evaluation of our protocol in this paper, we have used a random
walk model to capture the fluctuations of the device variables, i.e., the local weights.
While random walk models have been used before to model the changes of device
variables (e.g., changes in load on host interfaces [10]), we plan to further evaluate
TCA-GAP using real traces. Further, we plan on analyzing the effect of using differ-
ent overlay topologies on the performance of TCA-GAP and on making our protocol
resilient with regard to root failures. Also, we plan to investigate proactive threshold
recomputation schemes and more complex aggregation functions. Finally, an imple-
mentation of TCA-GAP on the Weaver platform [18] is under way in our laboratory at
KTH.

Acknowledgments. This work has been supported by a grant from Cisco Systems and
a personal grant from the Swedish Research Council.

References

1. F. Wuhib M. Dam R. Stadler and A. Clemm. Decentralized computation of threshold crossing
alerts. Technical report, KTH Royal Institute of Technology, 2005.

2. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A Tiny AGggretation
service for ad-hoc sensor networks. In Proc. 5th Symposium on Operating Systems Design
and Implementation, pages 131–146, 2002.

3. M. Dam and R. Stadler. A generic protocol for network state aggregation. In Proc. Ra-
diovetenskap och Kommunikation (RVK), 2005.

4. M. Dilman and D. Raz. Efficient reactive monitoring. IEEE Journal on Selected Areas in
Communications (JSAC), 20(4), 2002.

5. David Breitgand, Danny Dolev, and Danny Raz. Accounting mechanism for membership
size-dependent pricing of multicast traffic. In Networked Group Communication, pages 276–
286, 2003.

6. R. van Renesse. The importance of aggregation. In In (A. Schiper, A.A. Shvatsman, H.
Weatherspoon, and B. Y. Zhao, eds.), Future Directions in Distributed Computing, Lecture
Notes in Computer Science, volume 2584, pages 87–92. Springer-Verlag, 2003.

7. I. Gupta, R. van Renesse, and K. Birman. Scalable fault-tolerant aggregation in large process
groups. In Proc. Conf. on Dependable Systems and Networks, pages 433–442, 2001.

232 F. Wuhib et al.

8. David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate
information. In FOCS ’03: Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science, page 482, Washington, DC, USA, 2003. IEEE Computer Society.

9. Mohamed A. Sharaf, Jonathan Beaver, Alexandros Labrinidis, and Panos K. Chrysanthis.
Tina: a scheme for temporal coherency-aware in-network aggregation. In MobiDe ’03: Pro-
ceedings of the 3rd ACM international workshop on Data engineering for wireless and mo-
bile access, pages 69–76, New York, NY, USA, 2003. ACM Press.

10. Chris Olston, Jing Jiang, and Jennifer Widom. Adaptive filters for continuous queries over
distributed data streams. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD inter-
national conference on Management of data, pages 563–574, New York, NY, USA, 2003.
ACM Press.

11. N. Roussopoulos A. Deligiannakis, Y. Kotidis. Hierarchical in-network data aggregation with
quality guarantees. In Proc. 9th International Conference on Extending Database Technology
(EDBT), March 2004.

12. M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani. Estimating aggregates on a peer-
to-peer network. In Manuscript, 2003.

13. S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming only
read/write atomicity. Distributed Computing, 7:3–16, 1993.

14. IEEE. ANSI/IEEE Std 802.1D, 1998 Edition. IEEE, 1998.
15. R. Perlman. Interconnections, Second Edition. Addison Wesley Longman, 2000.
16. N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies with Rocketfuel. In

Proc. ACM/SIGCOMM, 2002.
17. K. S. Lim and R. Stadler. SIMPSON — a SIMple Pattern Simulator fOr Networks.

http://www.comet.columbia.edu/adm/software.htm, 2005.
18. K. S. Lim and R. Stadler. Weaver — realizing a scalable management paradigm on com-

modity routers. In Proc. 8th IFIP/IEEE Int. Symp. on Integrated Network Management (IM
2003), 2003.

Control Considerations for Scalable Event

Processing

Wei Xu1, Joseph L. Hellerstein2, Bill Kramer1, and David Patterson1

1 Computer Science Dept., University of California, Berkeley, CA
{xuw, pattrsn}@cs.berkeley.edu, kramer@lbl.gov

2 IBM T.J. Watson Research Center, Hawthorne, NY, USA
hellers@us.ibm.com

Abstract. The growth in the scale of systems and networks has created
many challenges for their management, especially for event processing.
Our premise is that scaling event processing requires parallelism. To this
end, we observe that event processing can be divided into intra-event
processing such as filtering and inter-event processing such as root cause
analysis. Since intra-event processing is easily parallelized, we propose an
architecture in which intra-event processing elements (IAPs) are repli-
cated to scale to larger event input rates. We address two challenges in
this architecture. First, the IAPs are subject to overloads that require
effective flow control, a capability that was not present in the compo-
nents we used to build IAPs. Second, we need to balance the loads on
IAPs to avoid creating resource bottlenecks. These challenges are fur-
ther complicated by the presence of disturbances such as CPU inten-
sive administrative tasks that reduce event processing rates. We address
these challenges using designs based on control theory, a technique for
analyzing stability, accuracy, and settling times. We demonstrate the
effectiveness of our approaches with testbed experiments that include a
disturbance in the form of a CPU intensive application.

1 Introduction

The advent of the Internet, sensor networks, and peer-to-peer networks has
greatly increased the scale of distributed systems, making it more difficult to
process events to detect and diagnose problems. Scaling event processing re-
quires an architecture that incorporates parallelism. Herein, we address con-
trol challenges in providing such parallelism, namely: (a) providing flow control
within replicated elements to avoid overload conditions and (b) balancing load
in the presence of variable processing demands and other disturbances. Our so-
lution to both of these challenges employs control theory, a formal approach to
designing feedback loops.

Event streams consist of many kinds of data. For example, there are notifica-
tions of requests for service such as requests to a DNS (Domain Name Service)
for name resolution; performance statistics such as response times; and trouble
tickets that describe actions taken. These data are input to event processing

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 233–244, 2005.
c© IFIP International Federation for Information Processing 2005

234 W. Xu et al.

components that detect abnormal situations, anticipate future problems, and
diagnose existing problems.

Our motivation for scaling event processing comes from a company that is key
to the eCommerce ecosystem. At the heart of this business is a DNS root server
that generates events at a rate of 11 million to 42 million per hour. Many off-the-
shelf products provide event processing capabilities, such as HP OpenView[5],
IBM Tivoli[6] or Microsoft Operations Manager[7]. However, all are severely
challenged by such high event rates.

Much related work exists in the area of event processing. Yemini et al. con-
sider how to associate problem causes with symptoms using a code book algo-
rithm [15]. Hofmeyr et al. develop techniques that discriminate between normal
and abnormal operations [10]. Pinpoint System deals with the localization of
failures on a production eCommerce system based on decision trees that analyze
event data [3] and further extended to detect anomalies and failed components
by automated analysis of execution paths in J2EE(Java 2 Enterprise Edition)
applications [4]. Vilalta et al. predict critical events in computer system such
as high CPU utilization and router failures by applying temporal data mining
and time series analysis [14]. Burns et al. describe how to construct processing
rules from event data [1]. These results identify requirements for event analysis,
such as the need to have events in time serial order and to estimate accurately
statistics such as the distribution of event sources and response times.

Supporting large scale event processing requires a scalable infrastructure.
Astrolabe [13] and PIER [11] provide scaling by collecting and analyzing data
on the nodes where they are generated. However, this approach limits the scope
of the events analyzed to a single node. The Siena system [2] provides a pub-
lish/subscribe event-notification service with considerations for efficiencies and
scaling. However, since this is a general infrastructure, it does not exploit the
characteristics of event processing such as the opportunity to do intra-event
processing in parallel.

From the foregoing, it seems that there has been little focus on scaling event
processing. Thus, we introduce an approach that provides scaling through par-
allelism by identifying two kinds of processing that take place in event process-
ing. Inter-event processing, such as problem diagnosis, analyzes multiple events
in combination. Intra-event processing, such as filtering events from specific
sources, considers events in isolation. Intra-event processing is easily parallelized
by replicating the elements used for intra-event processing. We refer to these as
intra-event processing elements (IAPs). We have encountered two challenges in
scaling intra-event processing. First, IAPs are subject to overloads that require
effective flow control, a capability that is often missing in off-the-shelf compo-
nents. Second we must balance the load placed on IAPs to avoid bottlenecks.
These challenges are further complicated by the presence of disturbances such as
CPU intensive administrative tasks (e.g., Java Virtual Machine (JVM) garbage
collection) that reduce event processing rates.

The remainder of this paper is organized as follows. Section 2 presents our
architecture for scalable event processing. Section 3 applies control theory to

Control Considerations for Scalable Event Processing 235

designing key elements of a scalable event processing system. Section 4 reports
the results of experiments we conducted to assess scaling. Our conclusions are
contained in Section 5.

2 Architecture

This section describes our architecture for scalable event processing.
Event processing operates on the attributes of events and the relationships

between these attributes. For example, performance events may have attributes
such as IP address, memory utilization, swap utilization, and load average. For
example, an event processing system might employ rules (or other representa-
tions) such as the following:

– Rule 1: Discard performance events from the subnet 92.126.10/24.
– Rule 2: Send an alert if the largest load average exceeds 2 for the hosts on

subnet 92.126.11/24.

Rule 1 might be used to filter events from a test machine. Rule 2 is useful if
all machines on the subnet 92.126.11 are production servers and we want to
determine if there is a resource bottleneck.

Rules 1 and 2 suggest that there are two kinds of event processing: (1) intra-
event processing such as filtering events that are not of interest and (2) inter-
event analysis such as detecting a resource bottleneck. By definition, intra-event
analysis is done on events in isolation. Inter-event analysis establishes relation-
ships between events and so typically processes events in time serial order.

In the sequel, we focus on intra-event processing because of the opportunity
to scale event processing by distributing the work to multiple nodes. Exam-
ples include: sampling events to obtain a representative distribution of response
times; cleansing data to eliminate ill-formed events and unnecessary attributes;
and augmenting events to associate the host name and host type based on host
IP address. Through we only look at one event at a time, the processing can
be expensive. We see that many of these operations require access to other in-
formation sources, such as a table that relates IP address to host name and
type.

These observations led us to the two tier architecture that is depicted in Fig-
ure 1. Incoming events arrive in (rough) time sequence order. The first tier pro-
vides scalable intra-event processing, such as projections to eliminate unwanted
attributes and joins to include additional attributes. There are three types of ele-
ments in this tier: the load splitter, the IntrA-event Pprocessing elements (IAP),
and the combiner. Scaling is provided by having multiple IAPs that operate in
parallel, possibly with different processing speeds and other characteristics. The
load splitter assigns events to an IAP, and the combiner consolidates the results
in time sequence order. We must be sure that we can implement the load splitter
in a very efficient way so that it is not a bottleneck. As we show in Section 3.2,
because the load splitter does not look into the event, it is much faster than the
IAPs.

236 W. Xu et al.

Tier 1:
Intra-Event Processing

Intra-event
Processing
Element
(IAP)

Load
Splitter Combiner

Monitor

Tier 2:
Inter-Event Processing

Events

Alerts

Statistics

Intra-event
Processing
Element
(IAP)

Inter-event
Processing
Element
(IEP)

Fig. 1. A two tier architecture for scalable event processing. The first tier processes

events in isolation. The second tier addresses relationships between events. Scaling is

achieved in the first tier by having multiple IAP elements.

The second tier in Figure 1 performs inter-event processing. The IntEr-event
Processing element (IEP) inputs events in time serial order, and outputs alerts
and higher level events. The monitor calculates statistics that are used as filtering
criteria by the first tier, such as quantiles of response times contained in the
attributes of incoming events that are used to identify exceptional situations.

E

E E
E

E

E E

E

E

E

E

Tier 1

Tier 2

E

E

E

E

E E

E

E

E

E

E

E

Tier 1

Tier 1

Tier 1

Tier 2

Event
Sources

Fig. 2. Generalized architecture for scalable event processing

Figure 2 generalizes the architecture in Figure 1 to handle large scale dis-
tributed systems by treating tier 1 and tier 2 as components that can be repli-
cated as needed. For example, network utilizations and communication delays
are reduced by filtering events close to their origin. This argues for having in-
stances of the first tier in many locations, such as satellite campuses and local

Control Considerations for Scalable Event Processing 237

area networks for critical servers. In contrast, a second tier instance may be quite
distant from event sources in order to have a sufficient scope of events to do root
cause analysis and obtain accurate statistical distributions. Thus, multiple first
tier instances may feed into a single second tier. It may also be that there is
a hierarchy of second tier instances, such as for event processing that occurs
based on geographic scale (e.g., city, state, country). Thus, multiple second tier
instances may input events to another second tier instance.

We focus on the requirements for scaling in the first tier. To better understand
these issues, we implemented an IAP that embeds a TelegraphCQ (TCQ) system
[12] to handle SQL based processing of event streams within the IAP. Our studies
reveal two issues with increasing the event input rate. The first issue relates to
flow control within IAP nodes. The second concerns balancing the loads of the
IAPs.

3 Control Design

This section describes how we address issues in scaling intra-event processing,
namely—(1) flow control within IAP nodes and (2) load balancing across IAPs.

3.1 Flow Control Within IAP Nodes

We begin by studying the effect of load on an IAP. Since our IAPs embed a TCQ,
we represents events as data tuples in a object-relational schema and quantify
throughput by using the TCQ metric tuples/sec, which is the same as events/sec.
Figure 3 reports the results of experiments conducted on a single IAP node. We
see that at moderate to heavy loads, tuples are dropped. This is problematic
for two reasons. First, drops are not selected at random and so the presence of
drops can bias the event statistics that are used for threshold-based filters and
other purposes. Second, as we can see in the next paragraph, the drop happens
after all processing on that tuple is done. Thus, dropping a tuple does not reduce
workload on a server.

Going into more detail, a TCQ is structured into two parts: (a) a front-end
process that interacts with requesters, parses inputs and translates them into in-
ternal data structures and (b) a set of back-end processes that perform relational
database operations. The output of the back-end is placed into a result queue
whose entries are retrieved by the front-end to respond to in-coming requests.
The drops are a consequence of an overflow of the result queue, which is evident
in Figure 3 since drops occur as the free space goes to 0.

One solution to the drops problem is to have front-end processes block when
the result queue is full. Thus, the tuple is either dropped or throttled via admis-
sion control. Unfortunately, this can cause unpredictable effects on other queries
because of the complex sharing that takes place. A second approach is to make
the result queue very large to avoid having drops. But this means there is less
memory available for front-end and back-end processes, which reduces through-
put. A third technique is to do off-line experiments to determine the processing

238 W. Xu et al.

0 100 200 300 400 500 600 700 800 900
0

1000

2000

3000

Time (sec)

T
up

le
s

pe
r

se
c

0 100 200 300 400 500 600 700 800 900
0

2

4

6
x 10

5

Time (sec)

F
re

e
sp

ac
e

(K
B

)

free space

source data rate
rate to TCQ
end−to−end drop rate

Tuples dropped

Fig. 3. Behavior of a TCQ node without regulating result queue length. The top plot

shows the event input rate, and the drop rate. The bottom plot depicts the free space

in the result queue. The drop rate increases with the event input rate.

capacity of an IAP node for a representative set of events. However, this is dif-
ficult to do because certain dynamics affect free space of the result queue, such
as changes in the distribution of event types that in turn affects the amount of
processing done (especially due to the selectivity of database queries).

Our approach to eliminating drops is to implement flow control within the
IAPs by regulating the rate at which events are accepted by front-end processes.
Thus, events are held in a queue within the IAP until there is sufficient space
in the result queue. Such a design avoids the complexities of blocking front-end
processes that hold resources associated with partially completed requests.

Disturbance

u(k)

z –1
(KP+KI)z–KP ++

+

− z –0.985
-134

IAPPI Controller

y(k)e(k)r(k)

Measured free space

Desired
free space

Event
input
rate

Fig. 4. Block diagram of IAP admission control

Figure 4 is a block diagram of the IAP flow control that we propose. This
control system seeks to maximize throughput without dropping events by regu-
lating the free space of the result queue. The reference input is the desired free
space. The controller uses the difference between this reference and the measured
free space of the result queue to adjust the event input rate.

We design the controller as described in [9]. The first step is to model how
the event input rate affects free space of the result queue. Let y(k) be the free
space at time k, and let u(k) be the event input rate. We use the first order
model

Control Considerations for Scalable Event Processing 239

y(k + 1) = ay(k) + bu(k) (1)

since [9] contains many examples in which this works well for real systems.
Values of the parameters a and b are estimated from data obtained from studies
of a testbed system, yielding a = 0.985 and b = −134. With this, we express
the relationship in Equation (1) as a transfer function, a representation that
expresses time serial effects in terms of z (which can be interpreted as a delay
operator). The transfer function here is

−134
z − 0.985

. (2)

The transfer function in Equation (2) provides several insights. First, consider
the transfer function’s steady state gain, a quantity that indicates the effect of a
small change in event input rate on free space. Steady state gain is obtained by
evaluating Equation (2) at z = 1, which is -3,190. Having a negative steady state
gain means that free space declines as the event input rate increases, which is
consistent with intuition. A second insight from Equation (2) relates to its poles,
the values of z for which the denominator is zero. Equation (2) has a single
pole at 0.985. The poles of the transfer function must lie within the unit circle
of the complex plane for the system to be stable, which is the case for this
transfer function. Further, poles that are closer to the unit circle indicate a
system with a longer settling time (convergence time). From [9], settling time ks

is approximately
ks ≈ −4/ln|a|. (3)

Applying Equation (3) to Equation (2), we determine that the open loop settling
time is approximately 264 sec. That is, if there is a transitory change in the event
input rate, it will take the IAP 264 sec to return to its previous state.

We design the controller with two objectives in mind. First, we want to accu-
rately regulate free space. Second, we want to minimize the effect of disturbances
such as changes in the types of events and the execution of administrative tasks
(e.g., garbage collection) on IAP nodes. We employ proportional-integral (PI)
control, an approach that is widely used because it ensures that the measured
output converges to the reference input, and a PI controller is easy to under-
stand and implement. The control law for a PI controller is:

u(k) = u(k − 1) + (KP + KI)e(k) − KP e(k − 1) (4)

where KP and KI are controller parameters that are determined by design.
We want the controller to settle (converge) quickly and so choose as our ob-

jective that the closed loop settling time should be 5 time units. This is achieved
by properly choosing the parameters Kp and KI . The first step is to invert
Equation (3), yielding a ≈ e−ks/4. For ks = 5, a ≈ 0.449. Next, we derive
the denominator of the transfer function of the closed loop system, which is the
polynomial z2− (134KP +134KI +1.985)z+134KP +0.985. Setting the poles of
the polynomial according to ks and a, we get KP = −0.00614 and KI = 0.02168
causes this polynomial to have zeros at 0.046 ± 0.4i. Since |0.046 ± 0.4i| ≈ 0.4,
the closed loop system has a settling time of approximately 5 time units.

240 W. Xu et al.

3.2 Load Balancing Between IAPs

Load balancing provides a way to reduce response times by reducing the uti-
lization of bottleneck resources, those resources that largely determine the re-
sponse time of a system. Load balancing is particularly important in parallel
computation systems involving synchronization because having an imbalance in
processing speeds causes faster nodes to wait for slower nodes. In our system,
the combiner is a barrier coordinator. A slow IAP forces the combiner to wait,
slowing the progress of events to the second tier. The load balancer must be
efficient enough to avoid being a bottleneck. It must decide where the event
should go upon event arrival. It does not have time to route based on the content
of the event, or hold events in a buffer for delayed decision making.

Let L = (L1, · · · , LN) be the load in events/sec applied to the N IAPs, and
let R1, · · · , RN be their response times at these loads. One way to formulate the
objective of load balancing is to find L that minimizes

∑
i(Ri − R̄)2 (where R̄

is the average response time) subject to the constraint that
∑

i Li is constant.
Unfortunately, this is a non-linear optimization that is quite complicated to
solve.

d1(k)

−+
++

+

− ++

IAP 1
1N,1

N

dN(k)

R1(k)

RN(k)

e1(k)

eN(k)
uN(k)

u1(k)

I

I

w(k)

++

++

d1(k)O

dN(k)O

w1(k)

wN(k)

Load Splitter

IAP N

Controller 1

Controller N

Fig. 5. Block diagram of a load balancing controller

Figure 5 depicts an approach to load balancing based on classical control
theory. Employing the results in [8], load balancing is accomplished through
regulatory control by having the reference input be the mean value of the (dis-
turbance adjusted) response times of the IAPs. Such an approach allows us to
regulate the IAPs so that they converge to the same value, the mean response
time. In the studies we conduct in Section 4, only two IAPs are used and so
the foregoing is simplified in that we need only to regulate the difference in the
outputs from the two IAPs (a design that requires only one controller in the load
splitter).

Control Considerations for Scalable Event Processing 241

For small values of N , the controller can be derived in a manner similar
to that done in the last section. However, for larger N , more sophistication is
required. A control theory technique that is well suited to this situation is linear
quadratic regulation (LQR). LQR provides a framework for constructing optimal
controllers. [8] describes how to use LQR for the block diagram in Figure 5.

4 Experiments

This section describes experiments conducted to assess the control designs in
Section 3.

First, we evaluate the effectiveness of the flow control system in Section 3.1
for regulating free space of the result queue. The controller is implemented as
the manager of an input buffer. Every 2 sec, the controller reads the TCQ log
to obtain the current size of the result queue, and uses the PI control law to
calculate the number of events to send to the IAP over the next 2 seconds.
Tuples that are not sent remain in the input buffer.

0 100 200 300 400 500 600 700 800 900
0

1000

2000

3000

Time (sec)

T
up

le
s

pe
r

se
c

source data rate
rate to TCQ
end−to−end drop rate

0 100 200 300 400 500 600 700 800 900
0

2

4

6
x 10

5

Time (sec)

F
re

e
sp

ac
e

(K
B

)

free space

Fig. 6. Regulation of TCQ free space using a PI controller. The reference input is 400

MB. A CPU hog is introduced at time 180. The system quickly adapts the input rate

so that free space returns to 400 MB.

Figure 6 plots the results of an experiment in which the reference input
for the result queue is 400 MB. In the figure, the decline in free space at 100
sec is the result of a TCQ start-up effect that the controller corrects in a very
short time. An input disturbance in the form of a CPU intensive application
(hereafter CPU Hog) is introduced at time 160 sec, which causes a reduction in
the TCQ throughput. However, when the CPU Hog completes at time 500, TCQ
throughput returns to its previous level. Note that from time 100 sec through
500 sec, the input load on the TCQ is greater than its maximum capacity. Even
so, the controller maintains the free space at 400 MB, and the excess load is held
on the input queue for further processing, such as load balancing.

Next we assess the load balancing controller described in Section 3.2 for use
as the load splitter in Figure 1. The testbed developed for this assessment is

242 W. Xu et al.

Load
Splitter

TCQ 1

IAP 1

TCQ 2

IAP 2

Combiner

Fig. 7. Testbed used to evaluate the load balancing controller used as a load splitter.

Boxes with solid lines are separate dual CPU computers with 1.5GB of RAM.

0 50 100 150 200 250 300 350 400
0

5000

10000

15000

Time (sec)

E
nd

−
to

−
E

nd
 D

el
ay

 (
m

s)

0 50 100 150 200 250 300 350 400
0

5000

10000

15000

Time (sec)

E
nd

−
to

−
E

nd
 D

el
ay

 (
m

s)

Fig. 8. LEFT: Average delay using a round-robin scheme to assign events to IAPs.

RIGHT: Average delay using a well designed controller.

0 50 100 150 200 250 300 350 400 450 500
0

5000

10000

Time (sec)

T
up

le
s

pe
r

se
c source data rate

rate to TCQ
end−to−end drop rate

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6
x 10

5

Time (sec)

F
re

e
sp

ac
e

(K
B

)

free space

Fig. 9. Performance of an incorrectly constructed load balancing controller

depicted in Figure 7. There are two IAP nodes, and all boxes with solid lines
indicate separate dual CPU computers with 1.5GB of RAM.

Figure 8 (LEFT) plots response times using a round robin scheme for the load
balancing controller. This assessment includes a disturbance in the form of a CPU
Hog that is started on one IAP node at time 160. We see that end-to-end delays
grow to be quite large. In contrast, Figure 8 (RIGHT) plots response times when
the load balancing controller is used. As in the plot on the LEFT, a CPU Hog is
started on one IAP node at time 180. The load balancing controller handles this
disturbance well, moderating the impact of this disturbance so effectively that
there is almost no detectable change in end-to-end delays.

Control Considerations for Scalable Event Processing 243

Last, we describe an experiment that we conducted by accident. Figure 9
plots the end-to-end delays for the system in Figure 7 using an incorrectly de-
signed flow controller. We see that the system is unstable in that there are
oscillations that increase in amplitude with time. At first, these characteristics
seemed to be inconsistent with our control analysis, which predicted a stable
system. Since control theory derives the controller from the model of the target
system, we re-visited the model and discovered that it failed to consider that
control actions take place in the next time interval. Correcting our models and
re-designing the flow controller resulted in the performance displayed in Figure 6.

5 Conclusions

Scaling event processing requires an event processing architecture that incorpo-
rates parallelism. Intra-event processing is easily parallelized. We propose an
architecture to support this parallelism in which intra-event processing elements
(IAPs) are replicated to scale the system to larger event input rates. We address
two challenges in this architecture. First, the IAPs are subject to overloads that
require effective flow control. Second, we need to balance the load placed on
processing elements to avoid resource bottlenecks. These challenges are further
complicated by the presence of disturbances such as administrative tasks (e.g.,
garbage collection) that reduce event processing rates. We employ control theory
to address both challenges since control theory provides a systematic approach
to design that includes considerations of disturbances. Our solution for the flow
control problem is based on regulatory control of the free space of the result
queue, a key resource in our IAP implementation. Our solution for load balanc-
ing employs a technique that transforms an apparent optimization problem into
a regulatory control problem. Studies done on a testbed system show that our
control designs provide good performance under time varying loads and distur-
bances in the form of a CPU intensive application.

One area of future research is to explore the use of techniques from adaptive
control and statistical learning theory to deal with stochastics and nonlinearities
that are more difficult to address with classical control theory. Another direction
is to expand the set of scaling experiments to gain more insight into the limita-
tions of our current designs. Last, we want to make our IAP system available to
system operators and researchers so that others can benefit from our work.

Acknowledgements

This work is in part supported by NSF grant number CNS-0509559 and Micro
award number is 04-072.

References

1. L Burns, JL Hellerstein, S Ma, CS Perng, DA Rabenhorst, and D Taylor. A
systematic approach to discovering correlation rules for event management. In
IEEE/IFIP Integrated Network Management, May 2001.

244 W. Xu et al.

2. Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Achieving scal-
ability and expressiveness in an internet-scale event notification service. In Pro-
ceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed
Computing, pages 219–227, Portland, Oregon, July 2000.

3. Mike Chen, Alice Zheng, Jim Lloyd, Michael Jordan, and Eric Brewer. A statistical
learning approach to failure diagnosis. In International Conference on Autonomic
Computing (ICAC-04), New York, NY, May 2004.

4. Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric A. Brewer.
Pinpoint: Problem determination in large, dynamic internet services. In DSN,
pages 595–604, 2002.

5. Hewlett-Packard Development Company. Hp OpenView. http://www.openview.-
hp.com/, 2005.

6. IBM Corporation. Tivoli. http://www.ibm.com/software/tivoli/.
7. Microsoft Corporation. Microsoft Operations Manager. http://www.microsoft.

com/mom/.
8. Yixin Diao, Joseph L. Hellerstein, Adam Storm, Maheswaran Surendra, Sam Light-

stone, Sujay Parekh, and Christian Garcia-Arellano. Using MIMO Linear Control
for Load Balancing in Computing Systems. In American Control Conference, pages
2045–2050, June 2004.

9. Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury. Feedback
Control of Computing Systems. Wiley-IEEE Press, Aug 2004.

10. Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection
using sequences of system calls. Journal of Computer Security, 6(3):151–180, 1998.

11. Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo, Scott
Shenker, and Ion Stoica. Querying the internet with PIER. In Proceedings of
the 29th VLDB Conference, 2003.

12. Sailesh Krishnamurthy, Sirish Chandrasekaran, Owen Cooper, Amol Deshpande,
Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, Samuel Madden, Frederick
Reiss, and Mehul A. Shah. Telegraphcq: An architectural status report. IEEE
Data Eng. Bull., 26(1):11–18, 2003.

13. Robbert van Renesse, Kenneth P. Birman, and Werner Vogels. Astrolabe: A robust
and scalable technology for distributed system monitoring, management, and data
mining. ACM Transactions on Computer Systems, 21(2):164–206, 2003.

14. Ricardo Vilalta, Chidanand Apté, Joseph L. Hellerstein, Sheng Ma, and Sholom M.
Weiss. Predictive algorithms in the management of computer systems. IBM Sys-
tems Journal, 41(3):461–474, 2002.

15. S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. High speed and robust
event correlation. IEEE Communications Magazine, 34(5):82–90, 1996.

Can Dynamic Provisioning and Rejuvenation
Systems Coexist in Peace?

Raquel Lopes, Walfredo Cirne, Francisco Brasileiro, and Eduardo Colaço

Universidade Federal de Campina Grande,
Departamento de Sistemas e Computação,

Laboratório de Sistemas Distribúıdos,
Av. Apŕıgio Veloso, 882 - 58.109-970, Campina Grande, PB, Brazil

Phone: +55 83 310 1365
{raquel, walfredo, fubica, eduardo}@dsc.ufcg.edu.br

Abstract. Dynamic provisioning systems change application capacity
in order to use enough resources to accommodate current load. Rejuve-
nation systems detect/forecast software failures and temporarily remove
one or more components of the application in order to bring them to a
clean state. Up to now, these systems have been developed unaware of
one another. However, many applications need to be controlled by both.
In this paper we investigate whether these systems can actuate over the
same application when they are not aware of each other, i.e., without co-
ordination. We present and apply a model to study the performance of
dynamic provisioning and rejuvenation systems when they actuate over
the same application without coordination. Our results show that when
both systems coexist application quality of service degrades in compar-
ison with the quality of service provided when each system is acting
alone. This suggests that some level of coordination must be added to
maximize the benefits gained from the simultaneous use of both systems.

Keywords: Interacting systems, dynamic provisioning, rejuvenation.

1 Introduction

There are many systems that aim at automating management tasks and deci-
sions. We are particularly interested in two of them: dynamic provisioning sys-
tems (DPS) and Rejuvenation/Restart1 systems (RRS). DPSs have been pro-
posed to automatically adjust the application capacity to its demand [1,2,3].
RRSs have been proposed to tackle software failures by detecting such failures
and bringing the system to a clean state [4,5,6,7]. These systems have been stud-
ied separated from each other. For instance, DPSs do not take software failures
nor restarts into account, while RRSs do not consider the dynamic capacity
changing and the strict matching between capacity and demand provided by a
DPS.
1 Restart and rejuvenation are used here as synonyms.

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 245–256, 2005.
c© IFIP International Federation for Information Processing 2005

246 R. Lopes et al.

Nevertheless, one would expect that some applications could benefit from the
use of two or more automated management systems simultaneously. In fact, in [8]
we have implemented a DPS with RRS features and have obtained good results.
When both features coexist application quality of service (QoS) was better and
resource savings were higher. Since we built that system from scratch, it was
natural to introduce some coordination between the management systems. By
coordination we mean that some information can be exchanged between the DPS
and the RRS in order to improve their performance. Two coordination features
were implemented: (i) whenever the capacity decreases the nodes more prone to
failure were selected to be removed. This information is provided for the DPS
component by the RRS monitor; and (ii) instead of restarting a node, the RRS
component asks the DPS component to add one more node, if possible, and then
to remove the faulty one.

Ideally, instead of developing new systems, we would like to harness the
potential of legacy systems independently designed. Since these systems are de-
signed independently, they do not assume the existence of the other and, there-
fore, do not exchange any information. In orther words, there is no imposed
coordination between their actions; they do not interact directly, but the actions
of one system may interfere in the actions of the other and their actions together
may influence the QoS of the managed application and its operational cost. We
argue it is crucial to identify whether some imposed coordination is really needed
to make these systems harmoniously coexist. This work is a first step towards
better understanding the effects of having an application managed by both a
DPS and an RRS that act independently.

Contributions of this paper are twofold. First, we propose a component based
model to study interactions between dynamic provisioning and restart systems.
Instances of this model can consider different sets of components, allowing the
evaluation of different situations. Second, we instantiate different model compo-
sitions to qualitatively identify interactions between DPS and RRS that actuate
independently. Our results suggest that these systems do not provide good per-
formance when they coexist without coordination.

The remaining of this paper is organized as follows. In the next section we
present a model that can be used to study interactions between DPS and RRS.
In Section 3 we present an instantiation of this model. In Section 4 we analyze
the results of simulations of several possible compositions of the instantiated
model. Then, in Section 5 we present some related work. Finally, in Section 6,
we conclude the paper and point future directions.

2 A Model to Study Interactions Between Dynamic
Provisioning and Rejuvenation Systems

In order to qualitatively identify uncoordinated interactions between a DPS and
an RRS, we developed a model that encompasses an application, a software error
injection system (SEIS), a DPS, an RRS and a load generator system (LGS), as

Can Dynamic Provisioning and Rejuvenation Systems Coexist in Peace? 247

Fig. 1. Complete model view

illustrated in Figure 1. We see this model as a component-based model, in which
the application and the LGS are mandatory components.

The application is a service that runs on a cluster with load balancing such
as a Web based application. Both management systems (DPS and RRS) collect
monitoring information which serves as basis for management decisions. While
the DPS flexes the application capacity according to its demand, the RRS de-
tects and restarts faulty components of the application. While a node is being
rejuvenated, it is not able to service requests. The SEIS changes the application
behavior in order to model the effects of software faults. Finally, the LGS sends
requests to the application according to some trace. Each request comes with
the time required to service it (inherent service time).

2.1 The Application Model

We consider scalable applications, i.e applications whose capacity can be easily
changed by changing the number of active nodes that run them. In fact, many
applications satisfy this requirement; for instance, Web based applications such
as e-commerce and auction sites. We consider an application with a load balancer
LB and one tier with nt active nodes at time t, as depicted in Figure 2(a). A
node is active if it is expected to process requests. The LB receives requests
from clients which are redirected to one of the nt nodes following a round robin
order. Requests arrival rate (λ(t)) can be highly variable.

Servers such as Apache and Tomcat run multiple processes or threads that
process the requests. Each process/thread computes one request at a time. The
maximum amount of processes/threads dictates the level of concurrency. The
system administrator is allowed to change this number to tune the server to the
amount of underneath resources. By following this idea, in each node i and every
time t, there is an admission controller, composed by a pool of mt,i tokens. To
be served, a request must first acquire a token. Requests that arrive when all
tokens are in use wait in a queue called Backlog until tokens are released due to
request completions. The Backlog queue has capacity K and follows a first-come,
first-served (FCFS) discipline. Requests that arrive when the Backlog is full are
dropped. This admission control system is illustrated in Figure 2(b).

When a request gets a token it starts to be processed. In practice, this request
would be served by a network of queues composed by hardware and software

248 R. Lopes et al.

Fig. 2. Application model view

resources. We do not intend to find out what the bottlenecks of a system are,
but to model the influence that the number of requests has in the system response
time. Thus, we simplify the model by considering that all the admitted requests
enter into a processor sharing (PS) system called Server and get equal share of
system resources. If one request alone in the system is processed in t time units,
when there are n requests each of them is processed in t × n time units. This
system is illustrated in Figure 2(c).

2.2 The Software Error Injection System

The SEIS changes the application behavior to model the effects of software faults.
We use Laprie’s dependability terminology defined in [9]. He considers faults as
defects that exist in the system. Faults may stay in a dormant state, or they can
be activated, leading to errors. Error conditions may lead the system to a failure
when the expected behavior of the system is violated.

The SEIS introduces software errors into the managed application. Such er-
rors can lead to performance degradation or to crash/hang failures. Software
errors are modeled by changing the inherent service demands that come with
requests based on a particular degradation function. Errors that lead to per-
formance degradation failures occur when the application is available but does
not accomplish its expected performance. They can be modeled by incrementing
inherent service demands, as we exemplify in Section 3. When inherent service
demands tend to infinite we consider the occurrence of a crash/hang failure.

2.3 The Rejuvenation System

An RRS monitors each component of the application, detects/forecasts failures
and restart components in order to bring them to a clean state. The granularity of

Can Dynamic Provisioning and Rejuvenation Systems Coexist in Peace? 249

these components may change from system to system. Candea et al [6] considers
JavaBeans components, while [8,7] consider a whole process. The output of an
RRS determines which nodes or components must be restarted.

2.4 The Dynamic Provisioning System

A DPS changes application capacity to accommodate the current load. It en-
compasses a feedback control loop. Monitoring information about the application
and/or its environment is gathered and used to decide on the best number of
machines to give to the application. DPSs differ from each other due to the mon-
itoring information gathered and the objective function pursued. The output of
a DPS indicates the number of nodes that must be active. Actions are needed
when this number differs from the current number of active nodes. When this
new value is greater than the current one, nodes must migrate from a pool of
free machines to the application. Otherwise, nodes must be released. In this case,
the LB immediately stops sending requests to that node, but the node remains
active until all requests already in place are processed [1].

2.5 Metrics of Interest

Management systems (including the automated ones) typically aim at delivering
the expected QoS at the lowest cost. Thus, an automated management system
can be measured by two classes of metrics: (i) QoS metrics and (ii) cost metrics.

Two metrics related to the application QoS are going to be computed: average
response time (R) and average availability (A). For response times we consider
only the amount of time a request stayed in the server side. Moreover, we only
consider the response times of successful responses. Availability is computed as
the percentage of requests successfully processed during a measurement interval.

When a node of the data center is allocated to the application, it is in the
active state; otherwise, it is in the inactive state. In order to infer the operational
cost of an application we use the average number of active nodes that run the
application. If we know the the amount of time the application ran and the cost
of an active node per time unit we can compute the application operational cost.

3 Instantiating the Component-Based Model

In this section we present an instantiation of the generic model presented in the
last section. In Subsection 3.1 we define the behavior of some components of
the model and in Subsection 3.2 we present the simulation parameters used to
instantiate the model compositions.

3.1 Components Behavior

The DPS aims at maintaining nodes utilization around a target, as proposed
in [1]. It periodically queries the application nodes for monitoring information.

250 R. Lopes et al.

After each measurement interval the DPS queries nodes for the following mea-
surements, computed for the previous interval: X , the number of request comple-
tions; A, the number of request arrivals; and U , the average CPU utilization (over
all nodes). Given N , the current number of nodes, and ρtarget, the target uti-
lization, the DPS computes the required number of servers for the next interval
as follows: (i) it computes the average demand per completion as D = U/X ; (ii)
it computes the normalized utilization as U ′ = max(A, X)×D; and (iii) it com-
putes the number of servers needed to achieve ρtarget as �N ′ = N × U ′/ρtarget�.

The set of failures chosen to be modeled must be representative of the real
world, since we want to uncover plausible interactions. We only consider per-
formance degradation failures seen by other researchers. We use results of ex-
periments carried out by Li et al [5] with Apache Web server. By generating a
constant connection rate to the Web server they observed that response times
become longer over time, degrading around 0.03 ms per hour. Based on these re-
sults we translated Li’s equation into one that relates service time to the amount
of requests already serviced by a node. Let δi(t) be the number of requests served
by the node i since its last restart (or since it was activated). Each request r
that arrives into a node has its service demand changed according to the fol-
lowing function: Sr,i(t) = S0,r + Saging(t); where Sr,i is the new service time;
Saging(t) = 2.4 × 10−8δi(t) and represents the addition due to aging in service
time; and S0,r is the inherent service time of the request.

The RRS works as follows. After each measurement interval, the RRS gathers
the current Saging of each node and their availabilities. It restarts a node when:
(i) the node’s Saging value reaches a threshold; or (ii) the node’s availability is
smaller than the minimum expected availability (Amin) for y consecutive mea-
surement intervals. When a rejuvenation action is triggered, the RRS serves all
requests already in place before restarting the node process [10].

3.2 Simulation Parameters

Both DPS and RRS are configured with 5 minutes measurement intervals. The
DPS target utilization may assume three values in different simulation experi-
ments: 65%, 75% and 85%. The RRS’s Saging threshold is configured as 1 second.
The minimum availability (Amin) and y are set to 99.99% and 6 respectively.

The application parameters are set as follows. The Server system timeslice is
110 ms. The Backlog queue capacity is 1024. Both are in accordance with Linux
default. Migration time and effective restart time obey a normal distribution
with averages of 60 and 120 seconds, respectively. This is in accordance with
some experiments we conducted using JBoss [8]. The capacities of the nodes
can assume different values in different simulation experiments: around 100, 300
and 500 rps (requests per second). Nodes of low, medium and high capacity
respectively have a total number of tokens (mt,i) of 200, 500 and 1000. These
numbers were chosen to avoid a request to stay more than two seconds in the
Server queue.

Our simulation experiments use a 17-hour workload generated by GEIST [11].
This workload is variable and presents an average request rate of 670 rps.

Can Dynamic Provisioning and Rejuvenation Systems Coexist in Peace? 251

The component based model allows us to build different compositions to
reproduce different situations. The simplest composition is called AWoF (appli-
cation without failure). The second one is called AWF (Application with fail-
ures) and is composed by the application and the SEIS. The third model is the
AWF+RRS, which encompasses the application, the SEIS and the RRS. These
three models use a static number of nodes calculated from results of simulations
of the AWoF model. The number allows an application without failures to han-
dle the workload without violating the 99.99% of minimum availability and the
2 seconds of maximum response times. The fourth and fifth model compositions
are called AWoF+DPS and AWF+DPS. Finally, the most complete model is the
AWF+DPS+RRS, which encompasses the application, the SEIS, the DPS and
the RRS. In these models, DPS defines the amount of nodes to be operational
on the fly. All these compositions are necessary in order to allow us to compare
results of the most important model (the AWF+DPS+RRS) with results of the
other intermediary models.

4 What Happens When an Application Is Controlled by
a Dynamic Provisioning and a Rejuvenation System?

We ran all simulation scenarios 5 times, which resulted in 180 simulation ex-
periments. Average application availability and response times measured for all
compositions are presented in Figures 3 and 4. Average utilizations and number
of nodes used are presented in Tables 1 and 2 respectively.

Fig. 3. Average availability Fig. 4. Average response times

Our results show that the DPS is an efficient system. Application QoS mea-
sured for AWoF+DPS is near to the one delivered by AWoF, the model that
provides the best result in terms of application QoS. However, AWoF+DPS, on
average, uses 11.8% less nodes than AWoF which is statically overprovisioned.
Thus, the DPS not only delivers a good application QoS but also reduces oper-
ational costs.

The RRS also proved to be efficient. When the application with failure ran
without an RRS its QoS degraded, as the results of the AWF and AWF+DPS
models show. These two compositions resulted the two worst QoS for the appli-
cation. It is clear that the DPS is not able to manage applications with software

252 R. Lopes et al.

Table 1. Average number of active nodes

100
rps

300
rps

500
rps

AWF+DPS+RRS 9.25 3.64 2.39
AWoF+DPS 9.19 3.55 2.25
AWoF, AWF,
AWF+RRS

10 4 3

AWF+DPS 9.46 3.76 2.19

Table 2. Average utilization

100
rps

300
rps

500
rps

AWF+DPS+RRS 70.1% 63.6% 59.9%
AWoF+DPS 70.2% 63.2% 59.6%
AWoF 66.2% 55.6% 44.8%
AWF+RRS 66.9% 57.8% 49.5%

faults. When the RRS runs (AWF+RRS composition) application QoS increased
and was near that of AWoF.

Although DPS and RRS perform very well in isolation, application QoS de-
grades when they coexist. For nodes of low, medium and high capacities, appli-
cation availability of the AWF+DPS+RRS model is respectively 0.59%, 0.30%
and 0.73% worse than the minimum availability between the ones measured for
AWoF+DPS and AWF+RRS. At a first glance, availability does not seem to
vary substantially. However, small variations in availability represent big differ-
ences in terms of number of requests served. With a request arrival of 670 rps,
an availability loss of 0.30% leads the application to drop almost 180,000 more
requests per day. For nodes of low, medium and high capacities, response times
of the AWF+DPS+RRS model are 60.4%, 30,8% and 17.9% higher than the
the maximum response times between the ones measured for AWoF+DPS and
AWF+RRS.

By comparing the number of nodes used by AWoF+DPS and AWF+DPS-
+RRS we find out if the DPS changes its decisions due to the RRS actuation
or aging. On average, the number of nodes used by AWF+DPS+RRS is greater
than the number of nodes used by AWoF+DPS (Table 1): 0.6%, 2.5% and 5.9%
greater for nodes of low, medium and high capacities. The AWF+DPS+RRS
composition uses more nodes than the AWoF+DPS one because of the way fail-
ures are modeled. The SEIS models performance degradation faults. Requests
in a faulty node require more time to be served. This failure presents two conse-
quences. First, response times are greater, since service times are greater. Second,
faulty nodes present greater utilizations, because requests stay longer in the sys-
tem. Since the DPS goal is to maintain nodes’ utilizations around a target, it
adds more nodes when there are faulty nodes. Besides, when a node is selected
for rejuvenation the DPS is influenced even more and augments the amount of
nodes used. Nodes are added during or immediately after rejuvenation, proba-
bly to suppress the lack caused by the node being restarted, and are removed
shortly after being added. During a restart, the difference in terms of number
of nodes used by AWoF+DPS+RRS and AWoF+DPS increases to 1.6%, 12.5%
and 27.7% for nodes of low, medium and high capacities respectively (Table 3).

Let us now discuss what happens with the application QoS during the restarts.
We present average application availability and response time during restarts in
Figures 5 and 6. The average number of nodes used and their utilizations during
restarts are presented in Tables 3 and 4 respectively.

Can Dynamic Provisioning and Rejuvenation Systems Coexist in Peace? 253

Fig. 5. Average availability (restart) Fig. 6. Average response times (restart)

Table 3. Average number of active
nodes during rejuvenation

100
rps

300
rps

500
rps

AWF+DPS+RRS 8.94 3.91 2.92
AWoF+DPS 8.80 3.42 2.11
AWF+RRS 10 4 3

Table 4. Average utilization during re-
juvenation

100
rps

300
rps

500
rps

AWF+DPS+RRS 74.3% 77.2% 68.3
AWoF+DPS 71.8% 65.3% 60.2%
AWF+RRS 72.0% 72.7% 62.8%

Overprovisioned applications cope better with rejuvenation than the appli-
cations managed by a DPS. We found out that, during restarts, for low, medium
and high capacity nodes respectively, average application availability measured
for the AWF+RRS is 0.25%, 0.56% and 1.16% better than the availability mea-
sured for the AWF+DPS+RRS composition. The application response time dur-
ing rejuvenation of nodes of low, medium and high capacities is 16.1%, 4.0% and
19.3% better for the AWF+RRS model than for the AWF+DPS+RRS one.

When both systems coexist the average utilization of the nodes during restart
is greater than the utilization of the nodes from the AWF+RRS (Table 4).
The overprovisioned AWF+RRS composition always uses more nodes than the
AWF+DPS+RRS one. The number of nodes used by the DPS during the restart
of a node for the AWF+DPS+RRS model is not enough to suppress the lack of
the node being restarted. As a result, the active nodes of the AWF+DPS+RRS
model become more saturated during restarts, increasing the probability of re-
quest rejection (when the Backlog is full) and increasing response times.

The rejuvenation time for the AWF+DPS+RRS composition is 0.33, 0.40
and 0.56 hours for nodes of low, medium and high capacity respectively. For the
AWF+RRS model, the average restart time is almost equal those ones: 0.34,
0.41 and 0.55 hours for nodes of low, medium and high capacity respectively.
Thus, the AWF+DPS+RRS composition spends, on average, the same time
rejuvenating nodes, however, during these moments, application QoS degrades
more when both DPS and RRS coexist then for the AWF+RRS composition.

To sum up, our results suggest that when both systems coexist application
QoS may degrade in comparison with the QoS provided when each system is
acting alone. This is an indicative that they are not orthogonal systems, in the
sense that they are not independent. We believe that some level of coordination

254 R. Lopes et al.

must be added to maximize the benefits gained from the simultaneous use of
both systems. In fact, our previous experience [8] shows that some coordination
between DPS and RRS can provide good results.

5 Related Work

The dissemination of overlay networks over IP (Internet Protocol) networks re-
sults in two independent systems coordinating data routing. In [12] interactions
between these systems are studied. When failures occur, these interactions inter-
fere in some traffic engineering tasks and, when there are overlay networks that
span different autonomous systems, they allow the network status of a system
to influence the network status of others, which is undesirable. We here also
investigate interactions between systems that act over the same target.

Systems with conflicting goals is presented in [13]. Some conflicting relation-
ships arise when a complex application presents both real time and fault tol-
erance requirements. In fact, some middlewares offer real time guarantees and
others offer fault tolerance behavior. However, when real time requirements co-
exist with fault tolerance ones, the simple union of systems exclusively designed
to deal with individual cases is not enough [13,14]. DPS and RRS systems have
sometimes conflicting goals. For instance, RRS can restart a saturated node that
was delivering low availability during a load surge.

Graupner et al [15] alert to interactions among traditional management sys-
tems and virtualization management systems, which recently arose as sepa-
rated management systems. Associations among applications and underneath
resources change more often in virtualized environments, under the control of
the virtualization layer. If no information is exchanged between the traditional
management system and the virtualization system, the traditional management
system becomes unaware of these dynamic associations. It is difficult to separate
the virtualization and the traditional management and these activities should
be made in a combined way. This vision of various management systems which
interact among them is exactly the vision we consider here. Interactions between
these systems must be known in order to allow them to coexist synergistically.

Finally, control theory researchers study how independent control systems
acting under the same plant (controlled system) and in the presence of uncer-
tainties actuate such as the desired global state of the system is reached. This
problem is known as the decentralized adaptive control problem [16]. According
to [16,17,18] distributed control systems need to exchange information in or-
der to reduce the error of control actions. In [17], for instance, control systems
actuate in different and pre-scheduled moments and when one system makes a
decision about a control action the others must be aware of that. In [18] the
control system which actuate over a subsystem must know the desired status
of all subsystems that compounds the plant. It is clear that an extra effort is
needed to coordinate the actions of control systems which actuate over the same
plant. In the future, similar techniques may be introduced into DPS and RRS
behavior in order to make their coexistence more efficient. This work provides
some insights on how these systems coexist without these techniques.

Can Dynamic Provisioning and Rejuvenation Systems Coexist in Peace? 255

6 Conclusions and Future Research

In this paper we propose a component based model used to better understand the
interactions between dynamic provisioning and restart systems that act without
coordination over the same application. We implemented the model and in-
stantiated many different compositions. Then, we evaluated the model through
simulation experiments.

Even in the very simple scenario studied, where only one node can be reju-
venated at a time, we can see that DPS and RRS may interact in a way that ap-
plication QoS is degraded when both systems run simultaneously if compared to
performance of systems that use each of the management services independently.
Even worse, performance degrades when a slightly great number of resources are
used. We believe that for more complex applications, with many tiers, and higher
failure rates these unwanted interactions will be even more present.

According to our results, it is inefficient to join a DPS and an RRS that
are not aware of each other. We believe they can exchange some information
to allow the coordination of their actions in a synergistic manner. The way the
application fail and the moments when one or more nodes are restarted influence
not only the application QoS but also DPS actions. If DPS is aware of failure
information and RRS actions it could act in a more efficient manner. One of
these positive manners was presented in [8], where aged nodes were released
when a capacity decreasing was performed.

Our next step is to propose an coordination module that makes the coexis-
tence of these systems completely harmonic. This additional module is interest-
ing because it allows us to harness mature dynamic provisioning and rejuvenation
systems. We plan to analyze and validate this coordination module by carrying
out simulations and measurement experiments.

Acknowledgments. We would like to thank Dr. Alexander Keller and the
anonymous reviewers for their helpful comments. This work was developed in col-
laboration with HP Brazil R&D and funded by CNPq/Brazil grants 141655/2002-
0, 302317/2003-1 and 300646/1996-8.

References

1. Ranjan, S., Rolia, J., Fu, H., Knightly, E.: Qos-driven server migration for internet
data centers. In: Proceedings of the International Workshop on Quality of Service.
(2002) 3 12

2. Lassettre, E., et al: Dynamic surge protection: An approach to handling unexpected
workload surges with resource actions that have dead times. In: 14th IFIP/IEEE In-
ternational Workshop on Distributed Systems: Operations and Management. Vol-
ume 2867 of Lecture Notes in Computer Science., Springer (2003) 8292

3. Urgaonkar, B., Shenoy, P.: Cataclysm: Handling extreme overloads in internet ap-
plications. In: Proceedings of the Fourteenth International World Wide Web Con-
ference (WWW 2005). (2005)

256 R. Lopes et al.

4. Garg, S., et al: Analysis of preventive maintenance in transactions based software
systems. IEEE Transactions on Computers 47 (1998)

5. Li, L., Vaidyanathan, K., Trivedi, K.S.: An approach for estimation of software
aging in a web server. In: International Symposium on Empirical Software Engi-
neering. (2002)

6. Candea, G., et al: Microreboot a technique for cheap recovery. In: Proceedings of
the 6th Symposium on Operating Systems Design and Implementation. (2004)

7. Hong, Y., Chen, D., Li, L., Trivedi, K.: Closed loop design for software rejuvenation.
In: Workshop on Self-Healing, Adaptive, and Self-Managed Systems. (2002)

8. Lopes, R., Cirne, W., Brasileiro, F.: Improving dynamic provisioning systems using
software restarts. In: Fifteenth IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management. LNCS. Volume 3278., Springer (2004)

9. Anderson, T., ed.: Edpendability of Resilient Computers. Blackwell Scientific Pub-
lications, Oxford (1989)

10. Candea, G., Fox, A.: Recursive restartability: Turning the reboot sledgehammer
into a scalpel. In: Proceedings of the Eighth Workshop on Hot Topics in Operating
Systems. (2001) 125132

11. Kant, K., Tewari, V., Iyer, R.: Geist: A generator of e-commerce and internet server
traffic. In: Proceedings of the 2001 IEEE International Symposium on Performance
Analysis of Systems and Software, IEEE Computer Society (2001) 4956

12. Keralapura, R., Taft, N., Iannaccone, C.N.C.G.: Can isps take the heat from overlay
networks? In: ACM SIGCOMM Workshop on Hot Topics in Networks. (2004)

13. Narasimhan, P.: Trade-offs between real-time and fault tolerance for middleware
applications. In: Workshop on Foundations of Middleware Technologies. (2002)

14. Stankovic, J.A., F.Wang: The integration of scheduling and fault tolerance in real-
time systems. Technical report, UM-CS-1992-049, Department of Computer Sci-
ence, University of Massachusetts (1992)

15. Graupner, S., et al: Impact of virtualization on management systems. Technical
report, Hewlett-Packard Laboratories (2003)

16. Mukhopadhyay, S.: Distributed control and distributed computing. SIGAPP Appl.
Comput. Rev. 7 (1999) 2324

17. Mukhopadhyay, S., Narendra, K.S.: Decentralized adaptive control using partial
information. In: American Control Conference. Volume 1. (1999) 34 38

18. Narendra, K.S., Oleng, N.O.: Decentralized adaptive control. In: American Control
Conference. Volume 5. (2002) 3407 3412

A Hierarchical Architecture for a Distributed

Management of P2P Networks and Services

Guillaume Doyen, Emmanuel Nataf, and Olivier Festor

The Madynes Research Team, Loria,
615, rue du Jardin Botanique,
54602 Villers-lès-Nancy, France

{doyen, nataf, festor}@loria.fr

Abstract. We propose a management architecture for the P2P model
which respects its distributed nature while building a hierarchical struc-
ture. This architecture enables the distribution of management functions,
avoids an excessive centralization of the manager role and fits the dy-
namic of the P2P model well. The architecture is evaluated through an
implementation in the Pastry framework.

1 Introduction

Nowadays, P2P networking is an emerging model that extends the limits of
the client/server approach. Indeed, applications built on top of it present bet-
ter scalability, load balancing and fault tolerance. Enterprises, administrations
or universities are interested in the deployement of P2P applications for pur-
poses like the distribution of networked file systems, including data replication
mechanisms, or the use of distributed collaboration tools for projects that count
remote participants. Network and service providers also see a good opportunity
in supporting P2P applications with service level agreements. In this context,
the need for a management framework for these services is obvious in order to
ensure service levels for value-added applications.

The power of the P2P model relies on the distribution of all resources, knowl-
edge and load. We believe that the management of a P2P community cannot
be achieved in a centralized way mainly because such a centralization can po-
tentially strongly affect the advantages brought by the P2P model. It does not
make sense for a P2P community to have a central authority which manages
all the peers: all the efforts done to increase the service level by the use of a
distributed model will be impacted by the addition of a centralized framework,
which actually owns the same goal of service operating improvement. This is
why, in the same way peers act both as client and server, they have to act both
as manager and agents for their management plane. Thus, the management of
P2P services should be achieved through a P2P approach and, in this paper,
we present a framework which takes the advantages of both the P2P model for
management task distribution and the centralized management approach with
the use of the standard manager and agent roles, to build a hierarchical man-
agement architecture for P2P networks and services. This architecture fits the

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 257–268, 2005.
c© IFIP International Federation for Information Processing 2005

258 G. Doyen E. Nataf, and O. Festor

P2P model characteristics, which are decentralization, dynamic of peers naming
and presence, heterogeneous nature of involved devices, and behavior of partici-
pants. Moreover, it presents interesting properties concerning the load-control of
manager nodes, the structure balance and the choice of nodes for crucial points.

The paper is organized as follows: motivations are given in section 2. section
3 deals with the current research works that address the management of P2P
networks and services. Work on tree-based infrastructures for P2P networks is
also addressed in this section. Section 4 presents the objectives we want to reach
through our proposal and the general algorithm we designed for the tree con-
struction. The way we distribute this algorithm among peers is shown in section
5 and deployment aspects are treated in section 6. Finally, some conclusions and
directions for future works are given in section 7.

2 Motivation

The proposal of a hierarchical distributed management model that is aligned
with the underlying P2P framework it manages is driven by the following moti-
vations:

Resist to scale: P2P infrastructures involve a large number of components
often spread among multiple administrative domains. Only self-management
capabilities built in these complex infrastructures can provide scalable and
efficient management;

Master the dynamics: The individual components of a large P2P infrastruc-
ture are expected to be very dynamic (i.e. versatile presence and contribution
to a service). Traditionnal management systems in which all participating
components and ressources are known in advance and registered cannot be
applied there.

Our approach is based on a partial integration of the management plane in
the service plane of the P2P infrastructure. Such an integration avoids developers
and service operators to have to deal with two different worlds (naming schemes,
access protocols, security issues, . . .). JMX is a good example of such successful
integration in the Java world. Moreover, the merging of dedicated management
signaling with the existing inftrastructure signaling potentially reduces the man-
agement overhead.

Our architecture is hierarchical since it has proven efficient for many monitor-
ing operations, i.e. those based on monotonic functions (e.g. Sum, Min, Max,
Count and Average) [1]. It is also very well adapted to the dynamics of the
underlying environment.

3 Related Work

3.1 P2P Management

Currently, a lot of applications, built over different protocols, allow users of a
community to share files. Besides the fact that shared data are copyrighted, the

A Hierarchical Architecture for a Distributed Management 259

major problem content sharing applications have to face concerns the free riding
which consists, for a peer, in the use of other peers’ resources without providing
any themselves [2]. This phenomenon clearly shows the need for a management
framework able to ensure service levels. From this point, several proposals have
emerged. They are service-embedded and use incentive approaches which rely on
economic models [3]. For example, the MMAPPS (Market Management of Peer-
to-peer Services) project proposes a cost evaluation for resources that depends
on their availability, interest and quality [4].

Concerning performance management, [5] proposes to use an active network
framework dedicated to Gnutella-like applications. First, it enables the scattering
of a community into sub domains, thus limiting the scope of messages which
rely on a flooding method. Then, messages routing adapts itself to the traffic
load between peers. Thirdly, the virtual topology is adapted to the physical
underlying network, which increases the global overlay performance. This work
presents interesting results and is deployed over a Gnutella like infrastructure.

The major work concerning the deployment of a management infrastructure
for P2P networks and services concerns the MMP1 project of Jxta [6]. Jxta is a
generic platform for the development of P2P services. From a functional perspec-
tive, Jxta provides an abstraction of basic P2P mechanisms like routing, lookup,
organization or communication. It makes the development of services easier and
allows their interoperability. The MMP project aims at providing a management
infrastructure for Jxta communities. To do that, it provides an instrumentation
of Jxta peers, a remote monitoring service and a management console applica-
tion. The idea of this work is very interesting but actually, the instrumentation
of Jxta peers is incomplete and the MMP project is now abandoned.

3.2 Our Previous Work

One of our goals is to design and deploy a management infrastructure which
can be independent from the underlying services and which relies on standard
approaches of network management. A first instrumentation experiment of a in-
stant messaging P2P application clearly expressed the need for a management
framework for such a class of application [7]. Then, we designed a generic man-
agement information model for P2P networks and services [8]. The latter enables
a manager to build an abstract view of a P2P community, participating peers,
shared resources and deployed services. We used CIM (Common Information
Model) [9] as a formalism to express our model. In a second step, we refined our
model towards the performance management of DHTs2 [10]. As a case study, we
considered Chord [11] and we defined a set of metrics which feature the perfor-
mance of this DHT. Then, we integrated these metrics into our model. By this
way, we enable a manager to evaluate the global performance of a Chord ring.

Our current work concerns the architectural aspects for the management of
P2P networks and services. We are working on a proposal for a management

1 Metering and Monitoring Project - meter.jxta.org.
2 Distributed Hash Tables.

260 G. Doyen E. Nataf, and O. Festor

architecture that is compliant with the characteristics of the P2P model, and we
present it in this paper.

3.3 Existing Overlay Tree Proposals

We propose to use a tree structure to enable a root manager to aggregate man-
agement information provided by sub-manager and agents in order to build an
abstract view of a P2P community. Nevertheless, there are many other use cases
where building a tree structure is required.

El-Ansary et al. [12] propose the building of a broadcast tree for structured
P2P networks. Despites it presents interesting properties, their algorithm is
strongly dependent on specific components of Chord [11].

From a theoretical perspective, our approach presents many similarities with
[13]. The authors propose to use a binary tree structure to build a DHT. Their
building principle and simulations provide very interesting results, such as the
cost for node insertion or removal which falls from log2(N), in [11,14] to log(N).
For management purpose however, the use of a binary tree is not the best choice,
mainly because the tree is too thin and deep and this can be problematic, for
instance, to propagate alarms from a leaf to the root.

Current work which our work is the most closest to is proposed in [15].
Its objective is to build an aggregation tree over any DHT that enables the
computation of aggregation functions. The definition of a Parent function allows
any node to establish a link towards its parent in the tree. Such a function has
to be well chosen, so that it ensures a good tree balance. Our work is very
similar, but it achieves a broader objective in the sense that if our management
tree enables the computation of aggregation functions, in a more general way, it
defines the roles of manager and agent for nodes.

4 Foundations and Principle

4.1 Goal

There are several objectives we want our management architecture to reach.
These are:

Optimal manager role distribution: The P2P model is a distributed model
where there is potentially no central point; each peer acts as both a client
and a server. From a management perspective, we want to distribute the
manager role among most peers so that they act as agent and manager.

Structure balance: To fit the distributed aspect of the P2P model, we want
our tree to be well balanced so that a node cannot act as an excessive central
point of failure and be stressed more than others.

Manager election: The more managers are close to the tree root, the more
their role is crucial to achieve management functions. This is why we want
to be able to choose managers according to any application context criteria
such as the hardware resources or the user behavior.

A Hierarchical Architecture for a Distributed Management 261

Depth constraint: To ensure a minimum performance level of the manage-
ment architecture, we want to control the tree depth so that a manager can
contact any agent in a controlled number of hops as well as an agent, located
as a leaf to contact the root manager.

4.2 General Tree Construction Principle

In order to build our hierarchical structure, we define the following axioms:

1. Each node is an agent and eventually a manager (at most once);
2. Each leaf represents an agent;
3. Each intermediate node, up to the root, represents a manager;
4. Each node owns an identifier which is the one given at the DHT level.
5. Each node owns a metric, called Weight, which represents the quality of the

node for the manager role. This metric is based on any relevant criteria such
as the hardware capabilities, the behavior or the participation level of the
node. It used to choose the managers so that nodes with the highest weight
are the managers of the highest levels in the hierarchy.

Then, we define that: each manager of level L is responsible for nodes of level
L + 1 that present a common prefix of L digits. Moreover, managers are chosen
through an election process. The construction principle used here is very similar
to the one proposed in [16].

Figure 1 shows a simple tree example applied to a Pastry-like DHT. One can
see that each leaf represents an agent and appears zero or one time in upper
levels where the managers are placed. Moreover, each manager owns a common
prefix with its children that depends on its level. For example, node 001 located
at level 2 presents the common prefix 00 with each of its agents that are 001,
002 and 003.

4.3 Formal Definition

Our structure follows a formal definition that is expressed using a first order
logic statement. Consider the following construction parameters:

B The identifiers’ base

D The number of identifier’s digits

N The set of nodes in the community

Then, we define the following sets and variables:

di The digit of rank i of an identifier with 0 ≤ di < B and 1 ≤ i ≤ D

d1 . . . dD A node identifier

L The number of digits of a prefix

λ The set of all levels present, that is the set of all L

Qd1...dL The set of nodes that own the prefix d1 . . . dL

PL The set of set of nodes Qd1...dL which owns a common prefix of L digits

G The set of manager nodes.

262 G. Doyen E. Nataf, and O. Festor

001 010

003

120

123

012

002

001

010

002 123120012010003

001 120

012

002

Distributed hash table
overlay layer

Management layer

Level 0

Level 1

Level 2

Fig. 1. Management tree example applied to a DHT

The statement below is always true with nodes that are involved in any
management process. As we will see in the next section, only arriving nodes or
temporarily disconnected nodes are not involved in management functions.

Tree definition ()
1 P−1 ← {∅}
2 ∀L ∈ λ
3 ∀n ∈ N
4 Qd1...dL ← Qd1...dL ∪ {n | n.Prefix(L) = d1 . . . dL}
5 PL ← {Qd1...dL | Qd1...dL �= {∅}, 0 ≤ di < B, 1 ≤ i ≤ L}
6 ∀P ∈ PL \ {PL ∩ PL−1}
7 G← G ∪ {n | n ∈ P, n /∈ G, n.Weight() = max(p.Weight(), p ∈ P)}

where n.Prefix(L) returns a list of L former digits from the node n identifier
and n.Weight() gives the node’s quality according the metric defined in section
4.2.

In line 4, we build Qd1...dL the sets of nodes that own a common prefix of L
digits. Then, in line 5 we gather all the non empty Qd1...dL sets in the PL set
of sets. Finally, in line 7, if needed, we elect a free manager which presents the
highest weight. This way, we construct a tree that fulfills the goals presented in
section 4.1.

5 Distribution of the Algorithm

We have designed two protocols for each event that can occur in the life of a P2P
community. These events are: the arrival of a new node requiring an attachment

A Hierarchical Architecture for a Distributed Management 263

to the community and the departure of a node. Together with them, a regular
maintenance process triggers structure update when the above mentioned events
occur.

5.1 Node Insertion

The insertion process aims at adding a new node in the structure at its right
location. It consists in looking for the manager that owns the longer prefix with
the arriving node. In current DHTs, such an operation is not trivial since DHT
functions do not enable semantic lookup. One solution could rely on a method
of successive approaches: an arriving node looks for a node that owns a D − 1
prefix, then a D − 2 one, until it finds a manager. But, the method is costly in
term of number of messages.

To overcome the above constraints, we propose to use the following method:
when a node joins the tree, it generates a request with a random identifier.
According to the DHT properties, a node with an identifier close to the required
one responds. Then, the arriving node requests the manager of the latter node
for its management. Thus, the new node is inserted, but the tree is not consistent
regarding our formal description. This is not a problem because the new node
will be involved, as either agent or manager, until it is correctly placed in the
management architecture through the maintenance process.

5.2 Maintenance

The maintenance process is executed by manager nodes. It aims at maintaining
the structure consistent. It is composed of two functions: the first consists in
enforcing that the tree construction rules are effectively applied, and the second
consists in verifying that referenced nodes are still alive.

This is why the maintenance process is executed in several contexts: (1) when
a manager detects a new node insertion, to check that the arriving node is well
located, and (2) at regular intervals, to check for any node departure.

The different operations executed by the maintenance process are:

1. Presence checking: For an L level manager, it consists in checking the
presence of each of its children and its father. To do that, maintenance
requests are sent to each child. Whenever a child doesn’t respond, it is re-
moved from the children list. Moreover whenever no maintenance request is
received from its father, the manager is considered orphan and restarts the
join process.

2. Prefix checking: For an L level manager, it consists in checking the chil-
dren prefixes consistency. Two cases of reorganization are possible:
– Too short prefixes: Whenever a child doesn’t own a prefix of L digits

with the considered manager, it transfers the child to its father;
– Longer prefixes: Whenever two or more children share a prefix longer

than L, two cases are possible:
• Agent and manager children: If agents and managers share a

common prefix longer than L, then the manager with the highest
weight will manage the other ones.

264 G. Doyen E. Nataf, and O. Festor

• Identical children: If children that share a longer prefix are ex-
clusively a set of managers or agents, the child of higher weight will
manage the other ones.

3. Weight checking: For an L level manager, it consists in checking that
it does not reference any child, that is not a manager, and that owns a
higher weight than its own weight. Each time this case occurs, the child of
highest rank will take the place of the current manager and the latter loses
its manager role.

5.3 Node Departure

When a node leaves the management structure and informs its father, all its chil-
dren will be managed temporarily by the father, until the maintenance process
reorganizes the structure. In case a node leaves the tree without informing its
father, the maintenance process of neighbor nodes will detect its absence. The
father will detect the absence of response from one of its children, and the chil-
dren of the failing node will detect that they have not received any maintenance
message for a given time. These orphan nodes will therefore use the insertion
process to join the tree again.

6 Deployment

We have designed a prototype implementation of our architecture. It is built
over the Java Free-Pastry3 implementation of Pastry [14]. In this section, we
first detail some implementation aspects. Then, we present the tests we have
performed and the results they provide.

6.1 Node Architecture

The code we have deployed follows the functionnal architecture shown on Figure
2. Each Pastry node is composed of two different parts: an agent and a manager.
The manager part is activated if the node endorses a manager role.

The agent part is composed of two main entities. The first one is a JMX
MBean server. It hosts standard MBean objects coming from the instrumenta-
tion of Pastry presented below. The second entity of the agent part concerns core
agent functionalities (requests processing, father soft state maintenance, . . .).

The manager part is, as for the agent part, composed of two entities: the man-
ager core and the maintenance process. The core entity is in charge of standard
management functions of the tree, like requests forwarding or partial compu-
tations of a management function. The maintenance process is responsible for
ensuring the consistency of all meta-data stored in the state manager, repre-
sented in the upper part of Figure 2. This process periodically executes the
operations described in section 5.2.

3 freepastry.rice.edu

A Hierarchical Architecture for a Distributed Management 265

Core

Message
Dispatcher

State Manager

JMX Mbean
Server

HTTP
Adaptor

Pastry Routing Layer

Core

Message
Dispatcher

Core

Message
Dispatcher

Agent Manager Maintenance

Pastry node

RMI
Connector

Fig. 2. Node architecture

Concerning the communication, all the tree construction and maintenance
related messages are exchanged through the Pastry routing layer. Management
access to JMX MBean servers is achieved through a RMI as defined in JMX.

6.2 Node Instrumentation

To design a manageable DHT community, we have instrumented Pastry nodes.
Managed objects are CIM instances which follow the information model proposed
in [10]; we collect information concerning routing tables, leaf sets and lookup
and maintenance services. In fact, our management plane addresses two levels: a
local one where managed objects stand for data related to their host node, and
a global level, addressed by a manager (which can be centralized, hierarchical
or distributed) which aggregates local information to provide an abstract global
view of a community.

All the local and global managed objects are registered into a JMX MBean
server as standard MBeans and we use RMI to enable the communication be-
tween these entities. To validate this instrumentation, we have designed a small
application which draws a topological view of a managed Pastry community.
We have chosen to use the leaf associations as a topological criterion because it
respects the neighborhood semantic.

6.3 Evaluation

We present here the results of a small scale test that evaluates the construction
cost of our management architecture according to the number of nodes. We have
considered scenarios which involve from 1 to 20 nodes. Identifiers of nodes are
set randomly using the Pastry factory. The nodes’ weight, represented as a byte
value, is chosen randomly. Concerning timing aspects, the node arrival rate has
been fixed to 1 node per minute. The maintenance process is executed every 15
seconds and a timeout for messages has been set to 30 seconds.

266 G. Doyen E. Nataf, and O. Festor

0

200

400

600

800

1000

0 5 10 15 20

Average number of messages (with nodes’ weight)

� � � � � � � � � � � �
�

� � �

�

� � �

�

Standard deviation (with nodes’ weight)

+ + + + + + + + + + + + +
+

+ +

+ + +
+

+
Average number of messages (without nodes’ weight)

� � � � � � � � � � � � �
� � �

�
�

�

�

�

Standard deviation (without nodes’ weight)

× × × × × × × × × × × × ×
× × ×

× ×

×

×

×

(a)

0

10

20

30

40

50

0 5 10 15 20

Individual insertion cost (with nodes’ weight)

�

� �
�

�
� � � �

� �
�

�
� �

�

�

�
� �

�

Individual insertion cost (without nodes’ weight)

+ + + + + + + + + + + + +
+ + + +

+
+

+

+

(b)

Fig. 3. (a) Evaluation of the global tree construction cost. (b) Evaluation of the indi-

vidual insertion cost.

We did perform two tests. The first one considers the nodes’ weight while
the second one doesn’t, i.e. step 3 of the maintenance process is executed in the
first case only. Figure 3.a depicts the global construction cost. The metric we
have considered is the number of messages exchanged between nodes to build
the tree. For each of the two tests, we have represented the average value and
the standard deviation. Figure 3.b represents the insertion cost for one node
expressed in term of the number of messages exchanged. On this Figure, we
have represented the average value of this metric for the two tests.

When considering the nodes’ weight, one can see that from 1 to 16 nodes, the
individual insertion cost is constant with a mean value of 12 messages per node.
From 16 nodes, the insertion cost doubles. This phenomenon is due to the fact
that statistically, up to 16 nodes with random identifiers, the tree contains only
one level: a root manager in charge of agents; but from 16 nodes, the tree tends
to present a second level; this is why the insertion cost increases. Then from
16 nodes, the standard deviation increases, because, the more nodes join the
tree, the more different scenarios leading to different tree construction operating
occur.

Concerning the second test, Figure 3.a and 3.b show that the tree construc-
tion cost is lower when the structure does not consider the nodes’ weight. More-
over, the evolution of the construction cost is more regular than in the first test.

A Hierarchical Architecture for a Distributed Management 267

Finally, one can remark that, in the latter case, the two cases which count 18
and 20 nodes are not statistically correct and show that the more nodes there
are in the community, the more tests we have to perform to obtain meaningful
results.

To conclude, this test shows that the consideration of a weight metric in-
creases the construction cost strongly and may be removed to improve the per-
formance of the tree structure.

7 Conclusion and Future Works

In this paper, we expressed the need for a management framework for P2P net-
work and services; a management infrastructure is essential to enable a common
use of the P2P model in sensitive value-added services. We proposed a hier-
archical management architecture that fits the P2P model characteristics and
that relies on the naming properties of peers. Our structure enables an strong
distribution of the manager role, provides a balanced structure and a tree depth
control. Moreover, the addition of a weight metric to peers ensure that criti-
cal places will be used by best participants. To implement our model, we have
proposed a distributed algorithm which consists of three processes: insertion,
removal and maintenance, responsible for enforcing the structure consistency.

Free Pastry was used to implement our model . We have instrumented nodes
and integrated managed objects into a JMX MBean server. A prototype has
been deployed and the tree structure building algorithm validated.

We plan to test our architecture in a cluster of five hundred nodes. In this
context, we will be able to perform tests for communities containing up to 10000
virtual nodes and check the scalability of our proposal. Future tests will ad-
dress (1) the tree resistance to nodes failures and (2) the way we can tune the
prefix consideration to reach particular management objectives; for example, a
management infrastructure which deals with fault management and alarm prop-
agations requires a very short tree depth but the manager nodes will be strongly
loaded. Besides this case, applications which want to spread management func-
tions among peers will require a deep tree involving as most peers as possible.

References

1. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: a tiny aggregation
service for ad-hoc sensor networks. SIGOPS Operating System Review 36 (2002)
131–146

2. Saroiu, S., Gummadi, P.K., Gribble, S.: A measurement study of peer-to-peer file
sharing systems. In: Proceedings of Multimedia Computing and Networking 2002
(MMCN ’02), San Jose, CA, USA (2002)

3. Hellerstein, J.L.: A comparison of techniques for diagnosing performance problems
in information systems (extended abstract). SIGMETRICS Perform. Eval. Rev.
22 (1994) 278–279

4. Antoniadis, P., Courcoubetis, C.: Market models for p2p content distribution.
AP2PC’02, Bologna, Italy (2002)

268 G. Doyen E. Nataf, and O. Festor

5. deMeer, H., Tutschuku, K.: A performance management architecture for peer-to-
peer services based on application-level active networks. In Stadler, R., Ulema,
M., eds.: Networks operations and management symposium (NOMS 2002), IEEE
(2002) 927–929

6. Oaks, S., Traversat, B., Gong, L.: Jxta in a nutshell. O’Reilly (2002)
7. Doyen, G., Festor, O., Nataf, E.: Management of peer-to-peer services applied to

instant messaging. In Marshall, A., Agoulmine, N., eds.: Management of Multi-
media Networks and Services. Number 2839 in LNCS (2003) 449–461 End-to-End
Monitoring Workshop 2003 (E2EMON’03).

8. Doyen, G., Festor, O., Nataf, E.: A cim extension for peer-to-peer network and
service management. In De Souza, J., Dini, P., eds.: Proceedings of the 11th In-
ternational Conference on Telecommunication (ICT’2004). Number 3124 in LNCS
(2004) 801–810

9. Bumpus, W., Sweitzer, J.W., Thompson, P., R., W.A., Williams, R.C.: Common
Information Model. Wiley (2000)

10. Doyen, G., Nataf, E., Festor, O.: Performance management of distributed hash
tables. In: To appear in The European summer School (EUNICE’2005). (2005)

11. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the 2001 conference on applications, technologies, architectures, and protocols for
computer communications, ACM Press (2001) 149–160

12. El-Ansary, S., Alima, L.O., Brand, P., Haridi, S.: Efficient broadcast in structured
p2p networks. In: 2nd International Workshop on Peer-to-Peer Systems - IPTPS
’2003. (2003) 304–314

13. Buccafurri, F., Lax, G.: Tls: A tree-based dht lookup service for highly dynamic
networks. In: CoopIS, DOA, and ODBASE. Number 3290 in LNCS (2004) 563–580

14. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware). (2001) 329–350

15. Li, J., Lim, D.Y.: A robust aggregation tree on distributed hash tables. In Sinha,
V., Eisenstein, J., Sezgin, T.M., eds.: Proceedings of the 2004 Student Oxygen
Workshop. (2004)

16. Plaxton, C.G., Rajaraman, R., W., R.A.: Accessing nearby copies of replicated
objects in a distributed environment. In: ACM Symposium on Parallel Algorithms
and Architectures. (1997) 311–320

Enhancements to Policy Distribution for Control

Flow and Looping

Nigel Sheridan-Smith1, Tim O’Neill1, John Leaney1, and Mark Hunter2

1 Institute of Information and Communication Technologies,
University of Technology, Sydney

{nigelss, toneill, jrleaney}@eng.uts.edu.au
2 Alcatel Australia

Mark.Hunter@alcatel.com.au

Abstract. Our previous work proposed a simple algorithm for the dis-
tribution and coordination of network management policies across a num-
ber of autonomous management nodes by partitioning an Abstract Syn-
tax Tree into different branches and specifying coordination points based
on data and control flow dependencies. We now extend this work to sup-
port more complex policies containing control flow logic and looping,
which are part of the PRONTO policy language. Early simulation results
demonstrate the potential performance and scalability characteristics of
this framework.

1 Introduction

Policy-based Network Management (PBNM) systems require many additional
capabilities in carrier-class networks - a service management orientation, and a
capacity for adaptive and dynamic behaviour to respond to user and business
needs. However, the dynamic behaviour required could cause scalability issues in
large-scale networks when millions of policy decisions are required every minute
for complex services. Policy-based management can potentially increase perfor-
mance and scalability though the distribution of policies to multiple management
nodes, but very little work has been done in this crucial area.

We are developing a policy-based service description language and manage-
ment system called PRONTO [1] that manages dynamic and adaptive end-to-end
services, whilst allowing for system evolution over time. Whilst some policies can
be easily distributed according to different regions of the network, other policies
will require coordination to ensure the correct sequencing of event, condition and
action evaluation and information distribution. We now deal with more complex
policies, involving control flow and looping. Sec. 2 briefly discusses the man-
agement system, and Sec. 3 and 4 discuss the existing work and the proposed
extensions respectively. Sec. 5 presents the results of our discrete event simulator,
and Sec. 6 examines related work.

2 The PRONTO Management System and Language

The PRONTO management system allows the specification of dynamic and
adaptive services through a policy-based service description language. This

J. Schönwälder and J. Serrat (Eds.): DSOM 2005, LNCS 3775, pp. 269–280, 2005.
� IFIP International Federation for Information Processing 2005

270 N. Sheridan-Smith et al.

language allows services to be readily changed or replaced as market require-
ments dictate. Each service description defines the parameters, roles (e.g.
devices and systems), resources, software components, and event-condition-
action (ECA) policies involved in each service. Policies are written with regard
to virtual model of the devices that has hierarchically structured model ele-
ments, or software components called domain experts that carry out different
management tasks and strategies (at different levels of abstraction and accord-
ing to feedback from the network). The domain experts are interchangeable,
allowing Service Providers to change management functionality to suit their
individual needs.

More complex policies are
service /mplsService {

params {
required CEs: collection;
n: int = CEs.size(); }

components {
mpls: [/mgmt/coreMplsDomainExpert]; }

resources { LSPs[n*(n-1)]: LSPResource; }
events { pathFail(path): LSPs[all].failure; }

concurrent policies {
on (enable) {

// Setup full mesh of LSPs between CEs
for (int i = 0; i <n; i++) {

for (int j = i; j <n; j++) {
LSPs[i*n+j].signalling = LDP;
LSPs[i*n+j].source =

mpls.selectPhysConn(CEs.get(i));
LSPs[i*n+j].target =

mpls.selectPhysConn(CEs.get(j));
mpls.consume (LSPs[i*n+j]);

} } }

on (pathFail) {
// Release the existing path
mpls.release (path);
// Initiate another LDP path
mpls.consume (path);

} } }

Fig. 1. Management of VPN service

required in network manage-
ment to have precise control
over behaviour, particularly
when different customers have
conditional requirements, or
when different behaviours need
to be assigned to different de-
vices in the network. PRONTO
policies supports many ad-
ditional actions that are not
present in other policy lan-
guages, giving the policy writer
greater flexibility in describ-
ing their service and network
policies. An example service is
shown in Fig. 1 for the manage-
ment of a full mesh of MPLS
LSPs. The LSP resources are
allocated when the service is
put into the enable state, and
re-requested when any given
Label Switch Path fails. The
’mpls’ domain expert allocates the required resources using LDP signalling.
Whilst this demonstrates the versatility of the language, implementing most
complex behaviour in a policy-controlled domain expert will simplify the policy
specification.

3 Policy Distribution and Coordination

Some complex dynamic services, though, will put incredible demands on cen-
tralised PBNM systems. For example, the admission control function on an pay-
per-channel IPTV service could be swamped with hundreds or thousands of
policy decision requests during commercial breaks as users change channels re-
peatedly. In these cases, it is desirable to distribute such decisions to increase the

Enhancements to Policy Distribution for Control Flow and Looping 271

service /testservice
{

events {startService;}
concurrent policies
{

on (startService)
{

x = y + z;
a = x * y;

}
}

}
(a) Service policies

AS

=

NA

x

BI

+

NA

y

NA

z

AS

=

NA

a

BI

*

NA

x

NA

y

CO

{ }

PO

on

NA

startService

SE

service

EV

:

RO

...

Symbol: startService

Concurrency: true

Name: /testservice

(b) Annotated Abstract Syntax Tree (AST)

Fig. 2. Service to AST transformation

potential management load that can be handled. Our earlier work [2] described
how the principles of automatic parallelising compilers and Abstract Syntax Tree
(AST) partitioning could be used to distribute and coordinate policies to man-
agement nodes that are assigned the responsibility of different geographic parti-
tions of the network. By adjusting the demarcation, the policy load on different
management nodes can be adjusted. We give an overview of the basic algorithm
here, but for simplicity, we only show the distribution and coordination of actions
- events and conditions are treated similarly.

The sequential and concurrent keywords can be applied at different gran-
ularities to policies, to allow policy execution to be parallelised where required.
However, sequential execution semantics are still obeyed for correct evaluation.
Policies without inter-dependencies are simply distributed, as coordination is not
required. Fig. 2(a) shows two policy actions, where there is a dependency be-
tween the expressions, enforcing sequential execution. We build an AST (similar
to a normal compiler) as shown in Fig. 2(b): each node is marked with a type
(two-letter abbreviation)1 and the equivalent token text.

The different branches of the tree are partitioned by examining the name ex-
pression (NA) nodes that define different symbols (e.g. devices and their model
elements, variable names). There are three major types of coordination mes-
sages: data distributions (DI) when data is exchanged, sequence points (SP)
when sequential ordering is important, and event notifications (EN) to initi-
ate distributed policy execution. We annotate the AST with additional DI and
SP nodes, transforming it into a graph, so as to indicate where coordination is
required between the AST partitions.

Using depth-first traversal to emulate sequential execution ordering of each
policy action, we mark each AST node with directional arrows to indicate re-

1 The nodes shown in this figure are as follows: Root (RO), Service (SE), Event (EV),
Policy (PO), Compound Statement (CO), Assignment (AS), Name Expression (NA)
and Binary Operator (BI).

272 N. Sheridan-Smith et al.

gions of responsibility around different NA nodes. Descendants of NA nodes are
marked with up arrows, and if all the children of any unmarked node have the
same responsibility, they are marked with a down arrow. Any other unmarked
nodes are assigned up arrows (or left arrows in the case of assignment opera-
tors). We then insert DI nodes between the partitions of the AST to indicate
that some data needs to be exchanged between two or more management nodes,
such as a calculated value or data that is retrieved from a device.

Whilst this simple process identifies some simple data dependencies, other
types of dependencies go unnoticed. Wolfe [4] defines three types of dependen-
cies: flow dependence when an assigned variable is later used; anti-dependence
where a variable is used, and then reassigned; and output dependence when a
variable is assigned twice at two different points in time. We perform a modified
IN/OUT set analysis [4] to identify these dependencies; values and references
are distinguished (INVAL and OUTVAL; INREF and OUTREF), and differ-
ent parts of statements rather than whole statements are analysed to maximise
parallelisation.

A post-order depth-first traversal is used to simulate the execution of policy
expressions and statements in an sequential interpreter, and a backpatch list is
maintained to keep track of prior IN/OUT markings, which are generated as each
NA node (i.e. symbolic name) is encountered. The backpatch list stores pointers
to the most recent OUTVAL for each symbol, and all INVAL/INREF markings
since that NA node. Flow dependencies occur where an OUTVAL is followed
by an INVAL for a symbol. A new DI node is inserted between these NA nodes
to indicate this data dependency. Anti- and output dependencies occur when
INVAL is followed by an OUTVAL, or OUTVAL is followed by another OUTVAL
for any given non-temporary2 symbol. New SP nodes are inserted between these
NA nodes to indicate that sequencing of these actions is important, due to side-
effects. Finally, setting references (i.e. OUTREF) results in one symbol aliasing
another, and the backpatch list must maintain a pointer to the other symbol
record to ensure that the history of IN/OUT markings for the correct symbol
are used. Fig. 3 shows the semantic execution order and the generated IN/OUT
markings and Fig. 4 shows the resulting dependency graph.

4 Extensions to the Distribution Algorithm

4.1 Control Flow Statements and Expressions

PRONTO supports statements and operators that require strict sequential eval-
uation order, such as if-then-else, switch, break and continue statements. It
also supports exception handling, with a throw statement altering control flow.
We continue to use sequence points, as these avoid the need for global synchro-
nisation locking across all management nodes. Rather, sequencing only occurs
between nodes that are directly inter-related.

2 Temporary variables are implicitly duplicated, eliminating dependencies.

Enhancements to Policy Distribution for Control Flow and Looping 273

Ma

My
MxMzMy

Mx

AS
=

NA
x

BI
+

NA
y

NA
z

AS
=

NA
a

BI
*

NA
x

NA
y

CO
{ }

1 INREF(x)
INREF(y)
INVAL(y)
INREF(z)
INVAL(z)
Exec y + z
Exec x =

OUTVAL(x)

2 INREF(a)
INREF(x)

3 INVAL(x)
INREF(y)
INVAL(y)
Exec x * y

4 Exec a =
OUTVAL(a)

x

Backpatch list 1 - after (1)

1 -

x

Backpatch list 2 - after (4)

1 3 3 -

a 2 -

lob
my

S

L
A

V
T

U
O

L
A

V
NI

F
E

R
NI

S
AIL

A

1
2

4

3

Fig. 3. Semantic execution order, IN/OUT markers and backpatching

Ma

My
MxMzMy

Mx

AS
=

NA
x

NA
y

NA
z

AS
=

NA
x

NA
y

Symbol: x

Symbol: y

Symbol: z

DI

Ma = management node for device with property a
Mx = management node for device with property x
My = management node for device with property y
Mz = management node for device with property z

Fig. 4. Dependency graph

In the case of if-then-else or switch statements, a SP node is inserted to
connect the conditional expression to any children of the statement or expression
nodes that are conditionally executed, whenever a partition boundary is crossed
(i.e. at an inserted DI node). All partitions hierarchically down the tree must
be associated with an appropriate SP node. Each SP node is then marked with
information describing its purpose. In Fig. 5(a), the if-then-else (IF) node has
up to three child nodes - the evaluated boolean expression, and optional true and
false outcome statements. Once the conditional expression is evaluated, other
management nodes are notified of the outcome. Management node Ma must
notify Mx and My when the condition evaluates to true, or notify Mx and
Mz when the condition evaluates to false. In the case of break, continue and
throw statements, SP nodes can also be inserted into the AST to ensure that any
partitions containing statements following the conditional logic are not executed,
based on the outcome of the conditional expression.

4.2 Loops with Counters

Loops can often be unravelled or sub-divided to maximise parallelisation [3],
depending on the presence of any loop-carried dependencies. The PRONTO lan-

274 N. Sheridan-Smith et al.

M
z

M
x

M
y

M
x

M
a

IF

if

BI

>

AS

+=

AS

+=

DI

NA

a

LI

0

NA

x

NA

y

D
I

D
I

NA

x

NA

z

D
I D

I

SP

true

SP

false

(a) if statement AST

1

1 100

1
1

1

x[2*i,j]=y[i,j-1]
1 i 5, 2 j 6

i

j

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

1

1 100

2
3

100
2
2
2

100

1
2
3

100

In
i j

Out Dep

1 0 N
1 1 N
1 2 N

1 99 N
2 0 N
2 1 Y
2 2 Y

100 99 N

i
2
2
2

2
4
4
4

200

j
1
2
3

100
1
2
3

100

(b) Iteration spaces and tables

M
y

M
a

M
x

M
y

FO

for

BI

<

VA

int i = 0

CO

{

NA

i

NA

i

LI

5

PF

++

AS

=

AS

=

NA

y

NA

x

NA

a

NA

y

DI DI D
I D

I

BR

[

NA

i

NA

i

LI

1

for (int i = 0; i < 5; i++)

{

 y[i] = x[i-1];

 a.b = y[i];

}

BR

[

BI

-

DT

.b

BR

[

NA

i

DI

[1 -1]

Local?Symbol INVAL OUTVAL Pre-dep Post-dep Deps

Ny[i] Y Y N N i

Nx[i-1] Y Y N N i

Na.b N Y N N

Count

N

N

N

Yi Y Y N NY

Loop Symbol List

DI

[1 0]

DI

(c) for loop AST

Fig. 5. Complex policies and SP/DI insertion

guage has four types of loops: for, foreach, while and do..while. Different loops
have various levels of complexity, so we deal with the most common varieties and
revert to sequential execution when it is too difficult to predict loop behaviour.
The counter symbols which are modified in each iteration (with OUTVAL mark-
ings) are identified, as loop-carried dependencies are reliant on the counters and
are modified during loop iterations. Dependency analysis then then used to de-
termine a suitable execution ordering of the partitions within the loop.

Firstly, we build a table of symbols contained within the loop, identifying if
they are local or global symbols, if they result in INVAL or OUTVAL markings,
if they have pre- or post-loop dependencies, and if they depend on other symbols
(e.g. the counters). An example is shown in Fig. 5(c). Symbols updated in every

Enhancements to Policy Distribution for Control Flow and Looping 275

iteration with no other dependencies are treated as counters3. We must then
identify the expressions that lead to changes in the counters. If these expressions
do not rely on any other symbols, then the counter behaviour can be predicted
in advance, allowing localised counters at each management node.

The second stage is to identify relationships between the symbols dependent
on the counters, and which loop iterations have dependencies on other iterations.
To cover the majority of simple loops, we focus on array indices of the form
a1i + a2j + . . . + amn + b when retrieving values set in previous loop iterations
(i.e. INVAL operations). i, j, . . . , n are the counter variables and a1, . . . , am, b
are constants, and these values are stored in matrix M = [a1 . . . am b]. For
example, the expression x[2 ∗ i− 1] with counters i and j has the values a1 = 2,
a2 = 0, b = −1 and m = 2. Using the constructed symbol table and by examining
the INVAL and OUTVAL markings on symbols (in relation to counter variable
updates), we can identify flow dependencies between iterations of the loop. If the
dependency is between distinct AST partitions, DI nodes are inserted into the
graph between the NA nodes, indicating the direction of the flow dependency
and the matrix M . The antecedent management node must notify the dependent
management node of the calculated value when complete. For an example using
matrices M , see Fig. 5(c).

In other cases where array indices do not fit a linear equation, or where the
index equation is used on an OUTVAL operation, we can model an iteration
space [4], simulating the loop and keeping a list of counter values that lead to
dependencies. The list is then kept with the DI node added between NA nodes.
The antecedent management node consults the list and notifies the dependent
management node when a dependency exists - see Fig 5(b). The difficulty with
this scheme is the potential table size, but non-shaded entries can be eliminated
after dependencies are identified.

Special care is required when previous indexed variables are not set during
the loop itself, according to sequential ordering. The expression y[i] = y[i + 1]
would access prior values for monotonically increasing i. We also have to ensure
that prior values are retrieved before being overwritten. We can insert additional
SP nodes into the AST, annotated with either the M matrix or an iteration table.
Another difficulty is counters being modified in the middle of the loop - the first
and last iterations are shortened, and execution of each partition must occur
with the correct counter values.

4.3 Loops with Conditions

Loops based on conditional expressions require the expression to be evaluated
before each iteration executes. An SP node is inserted to ensure that partitions
contained within the loop are not evaluated prior to the conditional test, with
notification being given on the first run and when the condition changes. This is
similar to the control flow approach above. There are some difficulties though:

3 We do not currently deal with complex counters with multiple updates per iteration
or with dependencies.

276 N. Sheridan-Smith et al.

how do we guarantee the loop is executed the correct number of times if there
are side-effects between the conditional expression and the loop actions?

In these situations, we can enforce sequential ordering by using additional SP
nodes. If the conditional expression or the loop actions are known to have side-
effects that influence each other, or if it is unknown, then lock-step notifications
are needed between the management nodes. This ensures that the condition is
evaluated prior to other loop partitions and vice versa, so that execution occurs
the correct number of times for both. Other more optimistic approaches could
evaluate the conditional expression when only some of the loop actions have
finished executing, or allow evaluation of the conditional expression whilst the
other partitions are not lagging too far behind.

We anticipate that we might have access to additional meta-data, that would
be beneficial in determining when side-effects might occur. Such meta-data, de-
scribed as part of the management models or contained within descriptors for
each vendor’s devices, could indicate when property dev001.x has an impact on
property dev001.y, and would be used similarly to other meta-data for detecting
and resolving conflicts. This is an area of future investigation.

4.4 Distributed Execution

Different management nodes take responsibility for different sets of devices in
the network and the associated policies, and most policies are carried out au-
tonomously. The EN, DI and SP messages must be exchanged at suitable times
so that the behaviour is coordinated appropriately, depending on the policy
complexity. EN messages must be sent to all participating management nodes
whenever any given node recognises that a policy has been triggered, due to
conditions or events that have been evaluated. The source of the EN message
creates a unique execution identifier to ensure that each the policy executes
exactly once, and so that later SP/DI messages apply to the same execution
instance.

Once a management node receives a EN message, it can start executing any
AST partitions that is has responsibility for, as long as they do not require
an SP message (i.e. some other actions must occur first). If a DI message is
required, the partition can commence execution, but the execution will halt
until information that needs to be exchanged is received. Execution of the AST
partition at each management node occurs independently, either sequentially or
concurrently, depending on the current policy. However, localised analysis must
be done, to ensure that concurrent statements are executed correctly, in the same
manner as for policies that are distributed across multiple nodes. As each AST
partition finishes executing, any outgoing SP and DI messages must be sent if
they go to other management nodes. If the messages go to the same node, then
other partitions can be triggered or finished locally. DI messages must contain
calculated values which are to be exchanged between management nodes. Once
each management node completes its own AST partitions, the policy finishes at
each node.

Enhancements to Policy Distribution for Control Flow and Looping 277

5 Simulation

We are constructing a distributed policy simulator (based on OMNET++) to
predict and examine the anticipated performance of this algorithm with differ-
ent types of policies, with unique network and management architectures and
different dynamic loads. The simulator models execution units representing the
different partitions of the AST. Management nodes are informed of their respon-
sibilities, and then retrieve policies and other data from a centralised relational
database with ideal, localised caching at each management node. Devices gener-
ate events using an exponential distribution, resulting in policies being executed
across one or more management nodes. We model the exchange of EN, DI and
SP messages during execution. Each management node has a coordinator and
executor with thread-pooling architectures.

Although the simulation system is not complete, we have been able to get
some early simulation results based on preliminary real-system measurements
and estimated model characteristics. Our initial profile consists of: device re-
sponse (uniform: µ = 3.431ms, σ = 799.8µs), database response (uniform:
µ = 1.445ms, σ = 1.6µs), cache response (exp: µ = 500µs), coordination delay
(exp: µ = 500µs) and execution delay (exp: µ = 5ms). The simulation allows
the calculation of the utilisation, throughput and response time (measured from
the initial event timestamp) at each management node.

To evaluate performance, we simulate an increasing device load, with devices
sending events every 5 seconds. As seen in Fig 6(a), four types of policies result
in different load capacities. P1 involves setting a device property from a single
node. P2 involves retrieving a device property on one node, followed by writing
a property on a second node using a sequence point. P3 is identical to P2, except
the value is exchanged between the nodes by using a data distribution (DI)
message. P4 models retrieving two device properties on management nodes 1
and 2, followed by writing of a device property on management node 3.

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000

Devices

T
h

r
o

u
g

h
p

u
t

(p
o

li
c
ie

s
 p

e
r
 s

e
c
o

n
d

)

P1 - MN1

P2 - MN1

P2 - MN2

P3 - MN1

P3 - MN2

P4 - MN1

P4 - MN2

P4 - MN3

(a) Throughput

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 200 400 600 800 1000

Devices

U
ti

li
s
a
ti

o
n

 (
%

)

P1 - MN1

P2 - MN1

P2 - MN2

P3 - MN1

P3 - MN2

P4 - MN1

P4 - MN2

P4 - MN3

(b) Utilisation

Fig. 6. Performance of single management node set

278 N. Sheridan-Smith et al.

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

Request rate (events per second)

T
h

r
o

u
g

h
p

u
t

(p
o

li
c
ie

s
 p

e
r
 s

e
c
o

n
d

)

3 PDP - MN1

6 PDP - MN1

9 PDP - MN1

12 PDP - MN1

15 PDP - MN1

(a) Throughput

0

1

2

3

4

5

6

7

0 200 400 600 800

Request rate (events per second)

A
v
g

 c
o

m
p

le
ti

o
n

 t
im

e
 (

s
e
c
s
)

3 PDP - MN3

6 PDP - MN3

9 PDP - MN3

12 PDP - MN3

15 PDP - MN3

(b) Response time

Fig. 7. Scalability of management node sets

Increasing the number of management nodes increases event load capacity,
but leads to a worsening of response time and capacity per node, due to coordi-
nation overheads. Furthermore, the final management node (MN3) under policy
P4 is heavily overloaded by multiplexing competing events from MN1 and MN2,
although selective discarding of queued messages improves the throughput and
utilisation responses under excessive load conditions.

In Fig. 7(a) and Fig. 7(b), we examine scalability by simulating 540 devices
with varying request rates on policy P4 (2 x reads + 1 x write over 3 man-
agement nodes), with equal device load on each management node. Here, the
throughput clearly benefits from increasing the number of nodes. The response
time is slightly worse with more nodes, but higher event loads are handled.

These preliminary results are promising, since they show that the distributed
algorithm has the potential to scale easily, simply by adding management nodes
and distributing the device load where necessary to alleviate bottlenecks. Addi-
tional nodes increases the overall throughput and load handling with a minimal
impact on response time. We estimate that a single management node could
handle approximately 47 policy events per second, or 240 devices with an event
every 5 seconds. This compares well against the 20 events/s reported by Pon-
nappann et al. [5]. Eddie and Law [6] claim 400 events/s per node, although it
is unclear whether caching is used and how the directory or database server is
accessed.

The throughput appears to be highly sensitive to changes in the processing
delays involved within each node. However, there are many factors that have an
influence on performance - the complexity of the policies, the choice of language
constructs used and the network and management architectures. Complex poli-
cies tend to increase the number of SP and DI coordination messages needed,
and this has implications for response times. Ideally, the simulator will help in
building a database of the metric cost of different policy constructs, or assist
engineers in the design of dynamic and adaptive services that can meet oper-

Enhancements to Policy Distribution for Control Flow and Looping 279

ational load demands. Several improvements to the simulation are yet to be
made, to more accurately model real conditions and more complex policies (as
discussed in this paper) with different coordination strategies (e.g. optimistic vs.
pessimistic).

6 Related Work

Policy distribution is occasionally mentioned in the literature but coordination
has gone largely unnoticed.

The IETF policy architecture allows for some distribution through replicating
PDPs and PEPs, but the responsibilities for policies must be manually config-
ured. If two or more PDPs attempt to control the same device with overlapping
configurations, the results would be unpredictable. Hamada et al. [7] attempted
to increase scalability using hierarchical LDAP repositories and multicasted up-
dates. Law and Saxena [6] also increased the scalability of the IETF architecture
using transparent load-balancing agents. Corrente [8] showed that the PDP was
a bottleneck in COPS-PR protocol handling. Strassner [9] introduces the concept
of a policy broker for communication, but provides only limited suggestions for
how conflict management should take place. Wies et al. [10] uses management
by delegation to distribute policy management to extensible intelligent agents
to increase scalability, but he does not characterise the global conflict resolution
module proposed.

Howard et al. [11] provided separate event and policy statements, and these
were deployed to separate management components by a Policy Distribution
Service (PDS). The Policy Validation Service (PVS) generated events according
to conditions that needed to be watched on the managed objects. However, they
do not suggest how particular management components are selected. Similarly,
Koch et al. [15] had separate event and policy languages, and policy objects were
distributed to monitoring agents to poll managed objects and generate events
when appropriate. However, a method of distributing policy actions was not
discussed. Marriott and Sloman [12] distributed policy information and TCL
scripts to obligation management agents using CORBA. Later work by Dulay et
al. [13] allowed Ponder policies to be distributed to Policy Management Agents
(PMAs) using Java RMI. However, both these two approaches require the agents
to be identified by the subject in the policy, limiting the migration of policies
between agents. Kohli and Lobo [14] created policy elements from PDL policies,
which could be hosted between multiple policy servers to perform coordination.
However, no clear method of doing this was specified.

7 Conclusion

We have demonstrated an algorithm for distributing policies amongst a num-
ber of management nodes based on geographical segregation, and extended this
algorithm for flow control, loops and exception handling. Our early simulation
results show that this approach offers great potential for scalability, with only

280 N. Sheridan-Smith et al.

a marginal impact on response time when management nodes are correctly pro-
visioned for the anticipated load. The algorithm and its simulator will be im-
mensely helpful in the design of complex, adaptive and dynamic services based
on policy-based management techniques. We would like to acknowledge the gen-
erous financial support of Alcatel Australia and the Australian Research Council
through Linkage Grant LP0219784.

References

1. Sheridan-Smith, N., Leaney, J., O’Neill, T., and Hunter, M.: A Policy-Driven Au-
tonomous System for Evolutive and Adaptive Management of Complex Services
and Networks. Eng. Comp. Based Sys. (ECBS 2005)

2. Sheridan-Smith, N., O’Neill, T., Leaney, J., and Hunter, M.: Distribution and Co-
ordination of Policies for Large-scale Service Management. LANOMS (2005)

3. Grune, D., Bal, H. E., and Jacobs, C. J. H.: Modern Compiler Design. John Wiley
& Sons, West Sussex (2000)

4. Wolfe, M.: High Performance Compilers for Parallel Computing. 1st edn. Addison-
Wesley, Redwood City CA (1996)

5. Ponnappan, A., Yang, L., Pillai, R., and Braun, P.: A Policy Based QoS Manage-
ment System for the IntServ/DiffServ Based Internet. POLICY (2002)

6. Law, K. L. E., and Saxena, A.: Scalable Design of a Policy-Based Management
System and its Performance. IEEE Comm. Mag. 41(6) (2003) 72-79

7. Hamada, T., Czezowski, P., and Chujo, T.: Policy-based Management for Enter-
prise and Carrier IP Networking. Fujitsu Science and Technology 36(2) (December
2000) 128-39

8. Corrente, A., De Bernardi, M., Rinaldi, R.: Policy Provisioning Performance Eval-
uation using COPS-PR in a policy based network. IM (2003)

9. Strassner, S.: Policy-Based Network Management: Solutions for the Next Genera-
tion. Morgan Kaufmann. ISBN 1-55860-859-1 (2003)

10. Wies, R., Mountzia, M.-A., and Steenekamp, P.: A practical approach towards
a distributed and flexible realization of policies using intelligent agents. DSOM
(1997)

11. Howard, S., Lutfiyya, H., Katchabaw, M., Bauer, M.: Supporting Dynamic Policy
Change Using CORBA System Management Facilities. IM (1997) 527-38

12. Marriott, D., Sloman, M.: Implementation of a management agent for Interpreting
obligation policy. DSOM (1996)

13. Dulay, N., Lupu, E., Sloman, M., Damianou, N.: A Policy Deployment Model for
the Ponder Language. IM (2001) 529-43

14. Kohli, M., Lobo, J.: Policy Based Management of Telecommunication Networks.
Policy Workshop (1999)

15. Koch, T., Krell, C., Kramer, B.: Policy Definition Language for Automated Man-
agement of Distributed Systems. Systems Management (1996)

Author Index

Aguilar-Igartua Mónica 157
Akashi, Osamu 181
Alins, J. 157
Andrés-Colás, Jorge 145
Andrey, Laurent 24

Berrocal, Julio 1, 12
Brasileiro, Francisco 245
Burgess, Mark 97

Callejo-Rodŕıguez, Maŕıa Ángeles 145
Cirne, Walfredo 245
Clemm, Alexander 220
Colaço, Eduardo 245

Dam, Mads 220
Danciu, Vitalian A. 84
de Albuquerque, João Porto 36
de Geus, Pauslo Ĺıcio 36
de Vergara, Jorge E. López 1, 12
dos Santos, Aldri L. 206
Doyen, Guillaume 257

Enŕıquez-Gabeiras, José 145

Festor, Olivier 24, 257
Figueiredo, Carlos M.S. 206
Fukuda, Kensuke 181

Garćıa-de-Blas, Gerardo 145
Guerrero, Antonio 12

Hasan 121
Hellerstein, Joseph L. 233
Hirotsu, Toshio 181
Hommel, Wolfgang 48
Hunter, Mark 269

Isenberg, Holger 36

Jornada, João 72
Julio, Berrocal 12
Jung, Gueyoung 109

Kempter, Bernhard 84
Kramer, Bill 233
Krumm, Heiko 36

Lahmadi, Abdelkader 24
Leaney, John 269

Lopes, Raquel 245
Loureiro, Antonio A.F. 206

Marques, Filipe 72
Mart́ın, I. 157
Maruyama, Mitsuru 181
Mata-Dı́az, Jorge 157
Moura, Antão 72
Mukherjee, Sarit 193

Naik, Tejas 193
Nataf, Emmanuel 257
Nogueira, José M. 206

O’Neill, Tim 269

Patterson, David 233
Pras, Aiko 60
Prieto, Alberto Gonzalez 169
Pu, Calton 109

Radziuk, Eduardo 72
Ramón-Salguero, Francisco Javier 145
Rangarajan, Sampath 193

Sahai, Akhil 109
Sampaio, Marcus 72
Sauvé, Jacques 72
Sheridan-Smith, Nigel 269
Singhal, Sharad 133
Stadler, Rolf 169, 220
Stiller, Burkhard 121
Sugawara, Toshiharu 181
Swint, Galen S. 109

Terauchi, Atsushi 181

van Wanrooij, Ward 60
Villagrá, Vı́ctor A. 1, 12

Wang, Zhikui 133
Wu, Qinyi 109
Wuhib, Fetahi 220

Xu, Wei 233

Yan, Wenchang 109

Zhu, Xiaoyun 133

	Front matter
	Chapter 1
	Introduction
	CIM Metaschema Analysis
	CIM and UML
	CIM Metaschema Formalization
	Comparison with an Ontology Language
	Conclusions
	Acknowledgements
	References

	Chapter 2
	Introduction
	Semantic Management
	SWRL: Definition of Rules for OWL Ontologies
	Definition of Management Behaviour in OWL+SWRL
	Types of Management Behaviour
	Implicit Restrictions on the Management Information
	Explicit Behaviour of the Manager
	Explicit Behaviour of the Managed Elements: Application to Policy-Based Management

	Conclusions
	Acknowledgements
	References

	Chapter 3
	Introduction
	Related Work
	Management Profiles
	Management Tasks
	Management Agents Deployment Models
	Management Instrumentation Patterns

	The Impact Function
	Computing the Impact Function

	Experimental Assessment
	Testbed Setup
	Experimental Results

	Conclusion and Future Work

	Chapter 4
	Introduction
	Modelling Technique
	Diagram of Abstract Subsystems

	Focus and Context
	Semantic Zooming
	Fisheye View

	Configuration Design and Deployment Process
	Modelling of the RO Level
	Modelling of Users, Services and Resources
	Modelling of Abstract Subsystems
	Policy Refinement and Configuration Generation
	Model Editing, Navigation and Visualisation

	Related Work
	Conclusion

	Chapter 5
	Introduction and Problem Statement
	Towards Federated Identity Management
	An Extended SAML Architecture with Schema Conversion and Privacy Management Support
	Cross-Organizational Identity Schema Conversion
	Inter-domain Policy-Based Privacy Management

	Implementation Details
	Summary and Outlook

	Chapter 6
	Introduction
	Research Questions
	What Is Accounting Data?
	How Can Accounting Data Be Obtained?
	Accounting Flows Data Definition
	Obtaining Accounting Flows

	How Much Accounting Data Has To Be Stored?
	Results
	Comparison

	Conclusion

	Chapter 7
	Introduction
	Gaining a Business Perspective on IT Operations
	Addressing IT Problems Through Business Impact Management
	SLA Design: An Optimization Problem

	Problem Formalization
	The Entities and Their Relationships
	The Cost Model
	Loss Considerations
	The SLA Design Problem
	A Specific Loss Model
	The Availability Model
	The Response Time Performance Model

	A Numerical Example of SLA Design
	Related Work
	Conclusions

	Chapter 8
	Introduction
	Models of Managed Systems
	Manual Conflict Handling
	Hierarchy of Models

	Using Models to Support Conflict Handling
	Approaching Conflict Formalisation
	Invariants of Managed Systems

	Conflict Detection: Step by Step to Conflict Definition
	Conflict Handling
	Application of Conflict Detection
	Strategies for Conflict Resolution

	Related Work
	Conclusions

	Chapter 9
	Introduction
	Policy with Autonomy
	Promises
	What Is an Inconsistency?
	Promise Analysis
	Modal Logic and Kripke Semantics
	Single Promises
	Regional or Collective Promises from Kripke Semantics?
	Dependencies and Handshakes
	Autonomous, Voluntary Cooperation
	Causality and Graph Logic
	Interlopers: Transference of Responsibility

	Conclusions

	Chapter 10
	Introduction
	Automated Design and Automated Deployment
	Automated Design Environment
	Automated Deployment Environment
	Translating Between Design Specifications and Deployment Specifications

	Demo Application and Evaluation
	Experiment Scenario and Setup
	Experimental Result

	Related Work
	Conclusion
	References

	Chapter 11
	Introduction
	Related Work
	A Generic Model for Automated Auditing
	Architecture
	The Design of the Generic Auditing Architecture
	Distributed Architecture Across Administrative Domains
	Automated Auditor’s Internal Architecture

	Application of Auditing Model and Architecture
	Application of the Model
	Application of the Architecture: SLA Compliance Verification

	Summary, Conclusions and Outlook
	Acknowledgments
	References

	Chapter 12
	Introduction
	A Case Study Using a Feedback Control Approach
	Related Work
	Modeling of the Input-Output Relation
	Static Input-Output Relation
	Dynamic Linear Model Identification

	Controller Design and Performance Evaluation
	Control of Relative Utilization
	Control of Mean Response Time

	Conclusions
	References

	Chapter 13
	Introduction
	Routing Alternatives for Ambient Networks
	Overview of Multipath Routing with Dynamic Variance (MRDV)

	Description of Loop Avoidance Protocol (LAP)
	Avoidance of Primary Loops
	Avoidance of Secondary Loops

	Evaluation of the Proposal by Simulation
	Basic Scenario
	Realistic Scenario

	Conclusions and Further Steps

	Chapter 14
	Introduction
	The System Description
	Background
	Scene-Based Markovian Models for a Video Sequence
	Generic Method to Develop Analytical Models of VoD Systems

	The New Analytical Models
	Analytical Model 1
	Analytical Model 2

	Numerical Results
	Conclusions and Future Work

	Chapter 15
	Introduction
	Performance Policies
	SMS Architecture
	System Design
	Evaluation Through Simulation
	Prototype Implementation
	Related Work
	Discussion
	Acknowledgments
	References

	Chapter 16
	Introduction
	Analysis of Inter-AS Anomalies
	Difficulties in Inter-AS Routing Management
	Taxonomy of Anomalies

	Multi-agent-Based Diagnosis
	Required Cooperative Functions
	ENCORE System Structure
	Cooperative Action Management

	Diagnostic Knowledge
	Data Acquisition and Local Trends
	Action Strategy
	BGP Update-Level Analysis
	Applicable Class and Limitations

	Related Work
	Conclusion

	Chapter 17
	Introduction
	Related Work
	Algorithm for Topology Discovery
	Requirements of the Discovery Algorithm
	The Discovery Algorithm

	Open Issues and Future Work
	References

	Chapter 18
	Introduction
	Routing and Policies
	Routing in WSNs
	Policies on Networks

	Policy-Based Adaptive Routing in WSNs
	A General Model
	Implementation

	Case Studies
	Changing the Routing Strategy
	Adaptive Routing Optimization

	Simulation and Evaluation
	Changing the Routing Strategy
	Adaptive Routing Optimization
	Policy Redefinition Cost
	Hierarchical Structure Evaluation

	Final Considerations

	Chapter 19
	Introduction
	Related Work
	The NTCA Problem
	The GAP Protocol
	TCA-GAP: A Distributed Solution to the NTCA Problem
	Experimental Evaluation
	Discussion and Future Work

	Chapter 20
	Introduction
	Architecture
	Control Design
	Flow Control Within IAP Nodes
	Load Balancing Between IAPs

	Experiments
	Conclusions

	Chapter 21
	Introduction
	A Model to Study Interactions Between Dynamic Provisioning and Rejuvenation Systems
	The Application Model
	The Software Error Injection System
	The Rejuvenation System
	The Dynamic Provisioning System
	Metrics of Interest

	Instantiating the Component-Based Model
	Components Behavior
	Simulation Parameters

	What Happens When an Application Is Controlled by a Dynamic Provisioning and a Rejuvenation System?
	Related Work
	Conclusions and Future Research

	Chapter 22
	Introduction
	Motivation
	Related Work
	P2P Management
	Our Previous Work
	Existing Overlay Tree Proposals

	Foundations and Principle
	Goal
	General Tree Construction Principle
	Formal Definition

	Distribution of the Algorithm
	Node Insertion
	Maintenance
	Node Departure

	Deployment
	Node Architecture
	Node Instrumentation
	Evaluation

	Conclusion and Future Works

	Chapter 23
	Introduction
	The $PRONTO$ Management System and Language
	Policy Distribution and Coordination
	Extensions to the Distribution Algorithm
	Control Flow Statements and Expressions
	Loops with Counters
	Loops with Conditions
	Distributed Execution

	Simulation
	Related Work
	Conclusion

	Back matter

