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Foreword

As generation of academics and practitioners follows generation, it is worthwhile
to compile long views of the research and practice in the past to shed light on
research and practice going forward. This collection of peer-reviewed chapters is
intended to provide such a long view. The effort is motivated by the views of
Professor Arthur M. Geoffrion, who we seek to honor for not only his consider-
able contribution to OR/MS research in the past decades but also his continuing
championship and involvement in matters pertaining to the education and practice of
OR/MS.

Professor Geoffrion’s contributions are well highlighted in “About Professor
Arthur M. Geoffrion,” but I would like to add a personal note. When I was an un-
known first year assistant professor and Art was an established superstar, he took the
trouble to obtain a copy of my thesis, read it, and call me to offer advice and encour-
agement. His advice covered both high-level direction and important details and was
delivered with a charm and humor that made it easy to accept. For example, I was
pretty green then as a mathematician and had used the term “cycle-less graph” in my
thesis. Art’s wry remark was “‘Cycle-less graph,’ that must be an east coast term.
Here in California, and I think most of the world, that’s called an ‘acyclic graph’.”
My thesis concerned using Lagrange multipliers to solve job shop scheduling prob-
lems. Art subsequently described in the article Geoffrion, AM. (1974) Lagrangean
relaxation for integer programming. Math Program Stud 2:82–114 how this work
and several other problem-specific uses of Lagrange multipliers could be embraced
within a powerful concept he called “Lagrangian Relation.”

The target audience of this book is young researchers, graduate/advanced under-
graduate students from OR/MS and related fields like computer science, engineer-
ing, and management as well as practitioners who want to understand how OR/MS
modeling came about over the past few decades and what research topics or model-
ing approaches they could pursue in research or application.

This book contains a collection of chapters written by leading scholars/
practitioners who have continued their efforts in developing and/or implementing
innovative OR/MS tools for solving real-world problems. In this book, the contribu-
tors share their perspectives about the past, present, and future of OR/MS theoretical
development, solution tools, modeling approaches, and applications. Specifically,
this book collects chapters that offer insights about the following topics:
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• Survey articles taking a long view over the past two or more decades to arrive
at the present state of the art while outlining ideas for future research. Surveys
focus on use of a particular OR/MS approach, e.g., mathematical programming
(LP, MILP, etc.), and solution methods for particular family of application, e.g.,
distribution system design, distribution planning system, health care.

• Autobiographical or biographical accounts of how particular inventions (e.g.,
structured modeling) were made. These could include personal experiences in
early development of OR/MS and an overview of what has happened since.

• Development of OR/MS mathematical tools (e.g., stochastic programming, opti-
mization theory).

• Development of OR/MS in a particular industry sector such as global supply
chain management.

• Modeling systems for OR/MS and their development over time as well as specu-
lation on future development (e.g., LINDO, LINGO, and What’s Best!).

• New applications of OR/MS models (e.g., happiness).

I believe this book will stimulate others to follow Professor Geoffrion’s footsteps
in making OR/MS a vibrant community.

The Wharton School, Marshall Fisher
University of Pennsylvania,
Philadelphia, PA, USA
February 2010
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Chapter 1
Introduction: A Long View of Research
and Practice in Operations Research
and Management Science

ManMohan S. Sodhi, Christopher S. Tang

1.1 The Roots of Operations Research

Operations Research (O.R.) is rooted in three fields: military operations, economics,
and computer science. Operations Research (O.R.)—or, Operational Research—as
a field was formally created by scientists in the UK, in particular by researchers
working for the Royal Air Force. At the same time, there were parallel efforts in
the US to examine ways of making better decisions in the different areas of military
operations during WWII [15]. Still, research in operations already had a long his-
tory in England rooted in economics, going back to Charles Babbage’s study of the
pin industry (that following Adam Smith’s “division of labor” study of the same
industry) and of the postal system resulting in “penny post” that continues to be
the model in most countries, thus justifiably earning Babbage the “father of opera-
tional research” [23]. It is interesting that Babbage also designed the analytic engine,
essentially a programmable computer, because modern O.R.’s insistence on mathe-
matical theory lie in the work of von Neumann and Alan Turing among others who
laid down the foundations of the modern computer and of computer science. This
book, with a long view of research and practice in O.R., reflects these three roots of
operations research.

We can view O.R. as a kind of “management engineering”; in fact the name
“management science” co-evolved and the field is sometimes called “operations
research/management science” (OR/MS). In this, it follows the path of many
engineering fields having originated as military engineering over the past two cen-
turies. The success of OR/MS military applications motivated others to develop and
apply OR/MS tools to solve similar problems arising in industry starting in the
late 1940s. Many companies created OR/MS departments for internal consulting.
Gradually, many engineering and business schools created new groups and
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programs—OR, MS, Operations Management, Decision Sciences, System Engi-
neering, etc.—to meet the need for OR-trained graduates and better OR methods.
OR/MS continued to flourish during 1970s and 1980s in universities and in indus-
try despite questions about the directions of development within the community
[16, 17].

Since the 1950s, OR/MS has expanded rapidly both in terms of the application
domains and in terms of modeling and solution approaches, drawing strengths from
its three roots. Growing from a group of researchers solving military problems, the
field now has a well-developed community comprising of practitioners and aca-
demics developing modeling approaches and tools for solving problems arising in
different functional areas, e.g., finance, marketing, and operations, and in different
sectors, e.g., manufacturing, telecommunications, and government. The domains
of OR/MS applications rooted in military logistics alone expanded to production
planning, distribution planning, and eventually to global supply chain planning.
Likewise, the focus on manufacturing or transportation operations broadened to in-
clude health care, finance, and many other fields. At the same time, the underlying
modeling and solution approaches have evolved from deterministic to stochas-
tic models [5]. The computing platforms also diversified, starting from the main-
frame to minicomputers, personal computers, or even mobile computing platform
[13]. Finally, on the economics front, the objectives for improvement have evolved
from simple single-firm-single-objective to multi-firm-multi-objective models and a
typical journal article will encompass the divergent objectives of multiple players.

1.2 About This Compilation

This book is divided into two sections, the first section with chapters taking a long
view of the past few decades and the second section with chapters taking a long
view of the future. The first section sheds light on where we are and how we got
here and the second section provides opportunities for application and research
for the coming decades. Our concluding chapter attempts to span both, viewing
the community of OR professionals—practitioners, researchers and teachers—as an
ecosystem in which the evolution of OR has taken place and can continue to thrive
to take advantage of these opportunities.

1.3 Part I—A Long View of the Past

The chapters in Part I take a retrospective look spanning decades.

1.3.1 Use of OR for Economic Development

Use of OR for economic development goes back quite far although Leontief [19, 20]
devised “input–output” modeling. As a result many countries adopted input–output
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modeling. Over time, this also gave impetus to application of a broader base of
OR tools for economic development. Consider, for example, India. Erlenkotter [8]
provides an account of modeling applications from the 1960s, considered “large-
scale” in those times, to explore options for the economic development of India.
Erlenkotter’s account includes institutional environment, application and evolution
of the models, and political and economic ramifications thus capturing a reality of
OR/MS that is rare in the professional literature describing such models and their
application.

1.3.2 The Principal Approaches for Solving Large-Scale
Mathematical Programs

As computers become more powerful and efficient, OR professionals (practitioners
and researchers) are aspired to solve real-world problems that can involve millions
of decision variables. Consequently, there is a constant need to develop more
efficient approaches for solving large-scale mathematical programming problems.
Birge [4] provides a thoughtful review of fundamental methods for solving large-
scale problems that are based on three principal approaches described in Geoffrion
[10], namely, projection, outer linearization, and inner linearization. In addition,
Birge establishes a link between these three approaches and recent advances in
mathematical programming and how they form a basis for solving a variety of real-
world problems.

1.3.3 Efficient Distribution System Designs

Distribution system design typically involves the optimal location of intermediate
distribution facilities between plants and customers. Geoffrion and Graves [12],
whose paper is reprinted here, presented a multi-commodity capacitated single-
period version of this problem as a mixed integer linear program. They developed a
solution technique based on Benders Decomposition and describe its implemen-
tation and application for a major food manufacturing company and obtained a
provably optimal solution with a surprisingly small number of Benders cuts. Their
method provided a computationally efficient technique that became the basis of
application of math programming models to large-scale problems in industry and
government; see for instance, Geoffrion and Powers [14] who described the sub-
sequent evolution of distribution design system over the period between 1976 and
1995.

1.3.4 Modeling and Modeling Frameworks

Dolk [7] offers a historical perspective on modeling and model management sys-
tems. He uses Geoffrion’s Structured Modeling [11], developed in the 1980s, to
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address such questions as, Is model management relevant? Can we reframe the basic
objectives of such research in today’s network-driven, simulation-centric technolo-
gies? Answers to these questions remain relevant today in guiding further develop-
ment of modeling systems.

1.3.5 Distribution and Supply Chain Planning from 1985 to 2010

Next, Powers [22] shares his perspectives regarding the evolution OR/MS applica-
tions to logistics planning systems from 1985 to 2010, 25 years of applying OR/MS
to corporations and governments all over the world. He argues that the impact of this
work resulted in top companies recognizing the value of OR/MS in making resource
allocation decisions.

1.3.6 Insight from Application

Providing decision support in the real world is difficult because it necessarily re-
quires dealing with enterprise data systems, legacy procedures, and people with
agendas different from the one you are charged with. Brown and Rosenthal [6]
provide key insights obtained from his field experience of completing hundreds of
optimization-based decision-support engagements over several decades.

1.4 Part II—A Long View of the Future

The other contributing authors present emerging trends for future development of
OR/MS tools and applications.

1.4.1 Extending Modeling Interfaces to Deal with Uncertainty

Increasing perception of risk and improved computation technology have resulted
in extension of mathematical programming models to stochastic programming.
However, tools for modeling practical situations using stochastic programming and
thereby creating a broad base of experience are still in short supply. Atlihan et al.
[1] describe the stochastic programming (SP) capabilities added to LINDO API
(Application Programming Interface) optimization library, as well as how these SP
capabilities are presented to users in the modeling systems What’sBest! and LINGO.
They discuss the features needed to make SP both easy to use and yet powerful. For
instance, they discuss generality in terms of number of stages of the stochastic pro-
gramming model and allowing integer variables in any stage. Constraints may be
linear or nonlinear. Achieving such goals is a challenge because of adding stochas-
tic features to already difficult deterministic optimization problems. They discuss
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how developers of such systems need to decide where a particular computational
capability should reside: in the frontend that is seen by the user or in the computa-
tional engine that does the “heavy computational lifting.”

1.4.2 Extending Applications in the Supply Chain

This chapter presents four applied research projects that extend supply chain ap-
plications [3]. These projects are being undertaken by the Business Optimization
Lab of Hewlett-Packard (HP) Labs to address HP’s business needs in diverse ar-
eas. The first project describes HP Labs’ work in product variety management,
which is at the interface of marketing and supply chain management decisions. HP
Labs introduced a new metric, coverage, for evaluating product portfolios in con-
figurable product businesses and an accompanying Revenue Coverage Optimization
tool (RCO). The project focuses on developing prediction markets for forecasting
business events, involving a handful of busy experts, who do not constitute an ef-
ficient market. The work entails harnessing the distributed knowledge of these ex-
perts using a two-stage mechanism. The third project encompasses modeling of rare
events for the purpose of marketing, for instance, to estimate the response proba-
bilities at the customer level to a direct mail campaign when the campaign sizes
are very large (in millions) and the response rates are extremely low. The fourth
project involves a mathematical programming model that is the core of a number
of decision-support applications that range from design of manufacturing and dis-
tribution networks to evaluation of complex supplier offers in logistics procurement
processes.

1.4.3 Global Trade

To sustain profitable growth, many multinational firms focused on two basic
strategies. To reduce cost, many firms source from developing countries. To increase
revenue, these firms are also selling in various development countries because of
their market potentials. To operate these global supply chains effectively, one needs
to align the operations of these supply chains with the global trade process. Lee [18]
describes how trade agreements, regulations, and local requirements can affect sup-
ply chain efficiency. Also, he explains how process re-engineering and information
technologies can be helpful in reducing the logistics frictions involved in the global
trade processes.

1.4.4 Globally Integrated Enterprises

As more multinational firms launch their global initiatives, many firms find it dif-
ficult to obtain competitive advantages mainly due to “the world is flat” syndrome.
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To compete successfully in the global marketplace, firms need to differentiate
themselves by creating unique value. To do so, Lin and Wang [21] argue that multi-
national firms must make structural, operational, and cultural changes. Using IBM
as a case in point, they show how IBM has transformed itself from a high-tech firm
to a “globally integrated enterprise” that utilizes global resources to compete glob-
ally without losing sight on its social and environmental responsibilities.

1.4.5 The Internet

Fourer [9] describes three types of projects that fall into the intersection of cyber-
infrastructure and large-scale optimization. First, there are the frameworks for
making optimization software more readily available. Second, there are projects
related by the goal of helping people make better use of available optimization soft-
ware. Finally, there are projects that apply diverse high-performance computing fa-
cilities to problems of optimization. He presents these as having an encouraging
future, especially in the context of emerging business models.

1.4.6 Health Care

With ageing population in the developed countries and “western-style” diseases on
the rise in emerging economies, health care is an area of national importance in
countries around the globe. Turner et al. [26] review resource management as an
important area within health care because of the system’s unique objectives and
challenges. They review recent papers in planning and scheduling along four dimen-
sions: (a) who or what is being scheduled, (b) the planning or scheduling horizon,
(c) the level of uncertainty inherent in the planning, and (d) the decision criteria.
They point out that the problems at the extreme ends of the planning/scheduling
horizon deserve more attention: long-term planning/staffing and real-time task as-
signment.

1.4.7 Happiness

As societies around the world are getting more affluent, questions are increasingly
arising about the pursuit of happiness. Studies have suggested that happiness or
even “satisfaction” remained flat over the past few decades (reference? Economist?)
even as personal wealth or income has risen, thus raising questions about “utility”
as a monotonically increasing function of wealth. Baucells and Sarin [2] seek to ex-
plain this anomaly and key empirical findings in the happiness literature. They con-
sider a resource allocation problem in which time is the principal resource. Utility
is derived from time-consuming leisure activities, as well as from consumption that
comes from time-consuming income-generating activities. They examine the impact
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of projection bias on time allocation between work and leisure and show how this
bias can cause an individual to overrate the utility derived from income, causing him
to allocate more than the optimal time to work and producing a scenario in which a
higher wage rate results in a lower total utility.

1.4.8 The OR/MS Ecosystem as the Context for the Future

Based on the collected thoughts of many researchers, we wrap up this book with our
perspectives about the future of OR/MS as an ecosystem [25] based on an earlier
paper [24]. While research and practice in OR/MS is flourishing, we believe that as
a whole the area is at threat in that research, teaching, and practice are becoming
increasingly disengaged from each other in the OR/MS ecosystem. This ecosys-
tem comprises researchers, educators, and practitioners in its core along with end
users, universities, and funding agencies. It is possible that OR/MS in the future
will occupy only niche areas but disappear as a distinct field even though its tools
would live on. We present the ecosystem’s strengths, weaknesses, opportunities, and
threats before discussing the activities the community needs to undertake to mitigate
threats and overcome weaknesses so as to use our strengths to exploit the opportu-
nities that lie ahead. These activities can strengthen the interactions among different
interest groups of our OR/MS ecosystem, creating a virtuous cycle associated with
healthy flows between the various communities in the OR/MS ecosystem.
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Chapter 2
Economic Planning Models for India
in the 1960s

Donald Erlenkotter

Abstract In the 1960s two major linear programming models were constructed to
provide guidance for planning the economic development of India. These multi-
sectoral, multiperiod models, although modest in size compared to present linear
programming applications, were regarded as large according to the standards and
computing capabilities of that time. We review the experiences with these two ap-
plications and discuss how they demonstrate the need for Geoffrion’s subsequent
research in large-scale mathematical programming, data aggregation in models, and
structured modeling.

2.1 Preface

The early and seminal work in mathematical programming by Art Geoffrion in-
cluded major contributions in three important areas: large-scale programming, data
aggregation in models, and structured modeling. Through large-scale programming
approaches, specific model structures are exploited to enable solution of much larger
problems than would be possible with standard methods. Data aggregation seeks to
reduce model size by justifiable combination of activities and their data into aggre-
gate activities. Structured modeling stresses the separation of the actual mathemati-
cal model from its specific realization in data.

Here we provide an account of some modeling applications from the 1960s
that were considered as large scale by the standards of the time. This experi-
ence provides insight into the need for innovations of the sort subsequently de-
veloped by Geoffrion. These models were designed to explore options for the
economic development of India, a country then with some 500 million people. Our
account covers the total modeling experience as it evolved, including institutional
environment, application and evolution of the models, and political and economic
ramifications. Real applications of models invariably are linked to such broader
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contexts, even though this is often excluded from the professional literature describ-
ing the models.

2.2 Introduction

In 1966 I went to India to work on sectoral and industrial planning studies for
the US Agency for International Development (USAID) Mission in New Delhi.
This work was in support of projects that USAID had under consideration for
financing. During my 3-year assignment in India, I became involved in the na-
tional economic modeling effort that was conducted to explore the potential impact
of different levels of economic assistance on India’s development. Here I discuss
the use and evolution of these national economic models in India from the per-
spective of my experiences. Most of what I say about modeling efforts there prior
to 1966 is based on recollections of contemporary conversations and experiences
with those who were close to these efforts and who had no reason to give biased
views. These recollections correspond reasonably well with published accounts of
this work.1

The use of national planning models in India for exploring growth options had
its heritage in the simple growth models developed by Frank Ramsey in the 1920s.2

This type of model is solved by the calculus of variations. While such models pro-
vide some insight into the relationship between savings and growth, they are far
from adequate as guides to economic policy. Growth models are heavily depen-
dent on one magical parameter, the capital–output ratio. In reality, there are dis-
tinct capital–output ratios for each economic sector and the allocation of investment
among these sectors influences the overall capital–output ratio. Allocation of invest-
ment among sectors also implies decisions about imports and exports and so one is
led to expand models to include international trade possibilities.

Multisectoral economic growth models became feasible with the development of
computer codes for solving mathematical programming problems. The first models
of this sort were devised by Ragnar Frisch of Norway and Jan Tinbergen of The
Netherlands in the 1950s, and in 1969 these two men shared the first Nobel Memo-
rial Prize in Economic Sciences for their work. The underlying structure of these
models was based on the interindustry input–output framework devised at Harvard
by Wassily Leontief, for which he received the Nobel Memorial Prize in Economic
Sciences in 1973.

2.3 The MIT Model for India

In the early 1960s, a project was launched to develop and apply such models in
India. At the time, India had carried out, more or less, a series of 5-year plans
beginning from 1951 and was the largest experiment in economic planning in the
non-totalitarian world. In reality, these plans were far removed from the rigid format
of their counterparts in the Soviet Union, and I don’t believe that anyone expected an
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economic planning model to provide an exact prescription for action. These models
were intended more as information systems that would provide guidance as to the
potential impact of various policy options.3

The initial modeling effort in India was launched by the Massachusetts In-
stitute of Technology’s Center for International Studies, which was located in
Cambridge, Massachusetts, with a branch office in New Delhi. The project team
was international, with leadership provided by Sukhamoy Chakravarty, Richard
Eckaus, Louis Lefeber, and Kirit Parikh.4 For short, their model was known as the
CELP model. India then had little in the way of resources for high-speed comput-
ing and so the project team was divided into two groups. Chakravarty and Lefeber
were mainly in India and they had the primary responsibility for data acquisition.
Eckaus and Parikh were in Cambridge and they were in charge of carrying out
the computations. International communications were not easy at this time, since
mail was slow and telephone service was erratic and very expensive. Communi-
cations difficulties were to play a critical role in the outcome of this modeling
exercise.

In any modeling effort, the model is regarded as “on probation” until its structure
and data have been thoroughly checked and the model’s results are understood and
regarded as reliable. As data were acquired for the CELP model, preliminary runs
were being made at MIT. In October 1964, during these runs of the model and while
the data were still being checked, the MIT Center in Cambridge was visited by
India’s Ambassador to the United States, B. K. Nehru.5 The ambassador was very
interested in the model and its results, and when he returned to Washington, he sent
a cable back to New Delhi reporting his findings. Then the fun began.

At that time, India was in the process of formulating its Fourth 5-Year Plan,
which was intended to span the period from 1966 to 1971. There were two major
factions involved in the preparations for this plan. The Planning Commission was
responsible for the final dimensions of the plan. In particular, the detailed parameters
underlying the plan were overseen by the Perspective Planning Division, headed by
Pitambar Pant. The Planning Commission generally favored an “ambitious” plan
with high-growth targets, since the need for rapid development in India was obvious.
The other major faction was represented by the Ministry of Finance (MoF), which
had the responsibility for raising the resources necessary to carry out the plan. Not
surprisingly, the MoF tended to favor a less ambitious plan than did the Planning
Commission.

The Indian Ambassador in Washington was aligned with the MoF faction. He had
reported back to New Delhi that the MIT experts’ calculations showed the Planning
Commission’s announced targets for the Fourth Plan could not be attained. This, of
course, provided major support for the MoF’s campaign for a less ambitious plan.
And, not surprisingly, these latest developments in the ongoing controversy over the
plan soon appeared in the press.

On the other hand, Chakravarty and Lefeber, in New Delhi, had been working
closely with the Planning Commission and they immediately lined up on that side
of the dispute. The computer runs at MIT, they said, were preliminary and hadn’t
used the most recent data available in India. In particular, there was one crucial
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and difficult-to-estimate parameter that made a significant difference in the model’s
results. This was the capital–output ratio for the housing sector, which is a substan-
tial portion of the Indian economy. Output for housing typically is an imputed figure,
and a number of assumptions must be made to arrive at an imputation. Once the data
were adjusted, the Planning Commission’s targets actually were reasonable, in the
opinion of Chakravarty and Lefeber.

The impact of press involvement on the modeling process was devastating. In
a reaction typical for India, the next charge was that the MIT Center was a front
for CIA espionage in the country and that a large safe in the Center’s New Delhi
office was used to store clandestine intelligence materials. As this political storm
grew, the New Delhi office was closed and the Center’s operations in India ceased.
The project team split, with Eckaus and Parikh publishing a book on their modeling
efforts6 while Chakravarty and Lefeber published separately in India on their work.7

According to Rosen, the alleged CIA involvement here “helped to start a process
leading to a more or less steady decline of opportunities for academic social science
(and economic) research by American scholars in India.”8

2.4 The Manne–Weisskopf Model for India

I arrived in New Delhi in August 1966 from Stanford University, where I had been
working on my Ph.D. dissertation. Already there was Alan Manne, my dissertation
advisor at Stanford, who had come on a 1-year assignment with USAID as the eco-
nomic adviser to the Mission Director, John P. Lewis. Alan had been in India 2
years before with the MIT Center, working on sectoral planning studies involving
the sizes, locations, and time phasing of plants in various industries. He and I would
continue that line of work. In addition, following another research track initiated
during his earlier stay in India, he would establish a multiperiod, multisectoral
national planning model that could be used to explore the impact of different
economic assistance strategies.9

Scheduled to join us was Thomas E. Weisskopf, who had been finishing his dis-
sertation at MIT on a programming model for import substitution for India.10 How-
ever, by the time I had reported to Washington for my USAID orientation, Tom had
resigned his position in protest over the US bombing of Hanoi and Haiphong. Under
a last-minute arrangement, he came over to join the Planning Unit of the Indian
Statistical Institute in New Delhi. There he would carry out economic modeling
work as one of his assignments.

Alan and Tom began work on the dynamic multisectoral (DMS) model for
India in close association with Pitambar Pant and the Perspective Planning Division,
which was a primary source of data. India’s Fourth 5-Year Plan had been delayed
for several years due to the 1965 war with Pakistan and two successive years of dis-
astrous droughts. The model would span the time interval from 1967 through 1975,
which included the revised Plan period. It differed from previous efforts both in its
scope and in the incorporation of new theoretical ideas that Manne had developed to
enable a model with just a few periods to approximate reasonably well the reality of
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an unlimited horizon.11 It also employed the objective of maximizing a “gradualist”
consumption path, which increased at an increasing rate over time. Although I was
involved mainly with industry studies at the time, I kept abreast of the work on the
DMS model.

The DMS model was not large by present-day standards, but in 1966 it required
what was considered a very large computer.12 There was no such computer in New
Delhi at the time. The Ford Foundation had brought in several IBM 1620s, but these
were much too small for our purposes. The Indian Institute of Technology at Kanpur
had an IBM 7044, but this was an inconvenient site and the availability of software
was problematical. Our choice for a computational facility was the Tata Institute for
Fundamental Research (TIFR) on Colaba Point in Bombay (now Mumbai). TIFR
had a Control Data Corporation (CDC) 3600 with a linear programming package
known as CDM4.

The initial trial runs with the DMS model began in August 1967 and continued
into the following month.13 On our trips to Bombay, we had to use the 3600 late
at night and in the wee hours of the morning since the Institute’s physicists had
priority. The first runs there were an education for all. In India there was quite a rigid
division of tasks among project personnel. The scientists would design the program
and hand it to the programmers for coding. The programmers would then give the
code to clerical staff for keypunching and if corrections had to be made these would
go back to the keypunching staff.14 This time-consuming process would not work
with the limited time we had on our trips to Bombay, especially since there was no
clerical staff available at night. The breakthrough came when Alan Manne sat down
at the keypunch and banged out cards with the corrections he needed. Our assistants
quickly got the message that the work was to be done expeditiously, regardless of
who had to do it.

As we began our computer work, I was able to learn some useful information
about the CDM4 linear programming code. “CD” was short for “Control Data,”
obviously. The actual name of the code was “M4.” In the summer of 1964 I had
worked in the Mathematical Modeling Group at Standard Oil of California (SOCal)
in San Francisco. They had a linear programming code named “M3,” which was
the third generation of codes originally developed jointly by SOCal and the RAND
Corporation in Santa Monica. At that time, development of a fairly reliable linear
programming code had been at least a million dollar undertaking. The names of
various subroutines in the CDM4 code verified its pedigree to me and provided a
great deal of information about how the code operated. This turned out to be quite
useful later on.

TIFR provided a very pleasant working environment, even late at night. One
could look out over the Arabian Sea or watch the rain squalls sweep in. The institute
was in a striking modern building, with walls well decorated with contemporary
Indian paintings. These were much appreciated as we waited for the whirring tape
drives to complete our runs with the model. Even on this large and high-speed
computer, and under the best of circumstances, each run could easily take 45 min.

We were able to complete our runs and the results were recorded in a prelimi-
nary paper.15 Manne returned to Stanford shortly after these preliminary runs were
made, taking a copy of the model to run there. A paper describing a revised version
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of the DMS model with new computational results was presented by Manne and
Weisskopf in January 1968 at the Fourth International Conference on Input–Output
Techniques held in Geneva. The final version of this paper was published in the
proceedings volume for that conference.16

In mid-1968 we ran the DMS model again to obtain updated calculations for
the impact of various aid levels on the Indian economy. These results were used in
the Country Field Submission forwarded by USAID-New Delhi to Washington to
support the annual aid request.17 Later that summer Weisskopf left India to join the
economics faculty at Harvard University. I continued to maintain and use the model
at USAID through mid-1969.

Early in 1969 we had the opportunity to prepare a report for the World Bank
(Pearson) Commission on International Development using the DMS model. This
report assessed the impact of one billion dollars in additional foreign aid provided
over a 10-year period and coupled with a set of socially oriented government expen-
diture programs intended to attack the “low end” poverty problem in India.18 For
this exercise, the model was modified slightly to incorporate a constant per capita
marginal savings rate and a maximand of terminal year net national product.19 We
also extended the model’s time frame to include a fifth time period. Although this
had seemed to be a relatively straightforward undertaking, the first time we tried
to find a solution with the expanded model the computer run exceeded the time
available and we had to stop prematurely. This was very puzzling and a postmortem
examination revealed that the program had essentially reached a final solution but
had failed to terminate normally because of difficulties with minor numerical errors
in the computations.

Solving models of this size at TIFR was never a straightforward undertaking,
not so much because of inadequacies of the software but more because of hardware
breakdowns. Replacement parts often were impossible to obtain because of India’s
strict controls over imports. Normally we could stop and restart a computational run
by saving an intermediate solution. However, this required a free tape drive. Usually
there was one free drive in addition to the one needed for saving the intermediate
solution, but at the time this spare drive was out of order and would be so until a
CDC technician was able to come to India and smuggle in the needed parts. The
night we made our run, the operator had sheared off the mounting spindle on one
of the other drives while mounting a tape. Without this drive, we could not stop a
run and restart—any stop meant starting again from scratch. This is why we had
watched the tape drives whir back and forth for several hours without stopping to
check the intermediate results.

Analyzing the run log revealed that the program had continued for well over an
hour to exchange one variable for another and then to reverse this exchange over
and over. This is called “cycling,” and any mathematician will provide proof that it
is impossible. But mathematicians do not consider numerical error in their analysis,
and with a large model there can be enough numerical errors to cause such cycling.
Meanwhile, our team at USAID was waiting for our results so the report could be
completed in time for the Pearson Commission’s deadline.

This is where my knowledge of the CDM4 code saved us. I knew that the code
used what is called the “product form of the inverse” to calculate successive trial
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solutions for the model. And, the earlier versions of the code I had used at SOCal
had naively introduced each variable into the calculations in the order provided in
the input. We had placed all the data for the investment variables at the beginning
of the input card deck, followed by sets of variables that appeared only in each indi-
vidual time period. The investment variables linked all the periods together and by
including these linking variables first we were causing the variables for the differ-
ent time periods to be linked together as they were brought in. By simply moving
the cards for the investment variables to the end of the deck, we kept the individual
period variables disconnected until all the periods had been processed. It turned out
that this not only eliminated the problem caused by numerical error, it also substan-
tially reduced the time for each run.20

By the time all this was figured out, I had to return to Delhi to wrap up the
report. I left my assistant, S. M. Luthra, to complete the runs, keeping my fingers
crossed, and flew back. Luthra worked through several nights and returned with all
the results and we were able to complete the report on time. For his efforts, he was
given an award by USAID. By this time our enchantment with TIFR and Colaba had
diminished considerably, especially when we found that taxis couldn’t be obtained
out there in the very wee hours of the morning and the trek of several miles back to
Bombay on foot in the dark was something less than enjoyable.

One of the features of our Pearson Commission report was an exploration of
the consequences of imperfect forecasting of aid amounts. In particular, the report
demonstrated the value of reduction in uncertainty through long-term commitment
of aid levels.21 As events turned out, uncertainty rather than long-term commitment
was to rule the future of the USA’s aid to India.

The new variant of the DMS model was used once more in mid-1969 to
support the aid requests in that year’s Country Field Submission. For these calcu-
lations, further revisions were made in the model to incorporate information about
India’s economic performance in 1969/1970 and to introduce recent estimates of
underutilized capacity in several industries. Including this underutilized capacity,
which was a consequence of the recession induced by the drought years, led to in-
creased short-term productivity for aid.

2.5 Epilogue

Use of the DMS model at USAID did not survive very long after my departure from
India in July 1969 and the changes brought by the Nixon administration. Follow-
ing Nixon’s “tilt” to Pakistan in 1971 during the turmoil that led to the creation of
Bangladesh, American aid to India was suspended. The American staff at USAID
in New Delhi was cut from 260 in 1968 to just 8 at the beginning of 1974.22

In the various computational runs with the DMS model, the long-run target
for economic growth typically had been set at 8% per year. Short-term growth
rates varied with the level of economic assistance, but were substantially lower.
India’s actual economic performance during the 1970s and 1980s exhibited growth
rates more in the range of 4–5% per year. But from 1990 on, economic growth
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accelerated, and over the past 3 years India’s annual growth in gross domestic prod-
uct (GDP) has averaged 8.1%—virtually the same as the long-run target used in the
model.23 This accelerated growth is widely attributed to the removal in 1991 of crip-
pling restrictions on trade and investment that had been imposed for many years by
the Government of India through its licensing procedures. Such a “liberalization,”
or decontrol had been encouraged for many years by USAID, the World Bank, and
other international and domestic institutions.

Among those involved in the modeling efforts discussed here, Sukhamoy Chak-
ravarty continued his career as a leading economist in India and internationally. He
was a member of India’s Planning Commission from 1971 to 1977 and served as
Chairman of the Economic Advisory Council of the Prime Minister from 1983 until
his death in 1990.24 Richard Eckaus remained at MIT for many years and continued
to work on problems of economic development. He was made Ford International
Professor there in 1977 and served as head of the Department of Economics in the
late 1980s. Louis Lefeber was denied promotion to full professor by the administra-
tion at MIT in 1965, reportedly because he had objected to the MIT Center’s use of
research on Indian planning for political purposes. He moved to Brandeis University
and eventually to York University, where he was the founding director of the Center
for Economic Research in Latin America and the Caribbean. Kirit Parikh returned
to India, where he continued fundamental work in economic modeling, particularly
in agriculture and energy. From 1980 to 1986 he was Program Leader of the Food
and Agricultural Program at the International Institute for Applied Systems Analy-
sis (IIASA) in Austria. In 1986 he became Founder-Director of the Indira Gandhi
Institute of Development Research in Mumbai and was appointed as a member of
India’s Planning Commission in 2004. Alan Manne returned to Stanford, where he
carried out modeling studies on the Mexican economy and then in the 1970s turned
to large-scale energy and environmental modeling research. He continued work in
this area up to his death in 2005. Tom Weisskopf went on to become a founder and
leader of the Radical Political Economics movement, moving from Harvard to the
University of Michigan in 1972.

As part of the evaluation of these past modeling efforts, the data for a version
of the DMS model were exhumed and incorporated into a program written in the
GAMS modeling language.25 The effects of the advances in modeling and compu-
tation over the intervening years were dramatic. Even on a relatively slow desktop
computer, compilation and solution of the “large” model by 1960s standards took
no more than a couple of seconds, less than the preparation time for just one of the
more than 2000 punched data cards required for the original model.

2.6 Concluding Reflections

As we have seen here, advances in modeling and computation over the past half-
century have had an enormous impact on the concept of model size. Much of this,
of course, is due to dramatic increases in computational speed and memory capacity.
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But what of more model-specific innovations? The recent DMS computations were
performed by the CPLEX linear programming system, as integrated with the GAMS
modeling language. Although this system does not directly include approaches
usually classified under the heading of “large-scale mathematical programming,” it
does exploit model structure and data sparsity through basis inversion techniques
that use LU decomposition. This approach is especially well suited to dynamic
planning models, which primarily have a “staircase” data structure.

As for advances in modeling, the algebraic statement of the DMS model remains
valid and now can be implemented directly and conveniently through modeling lan-
guages such as GAMS. But the original structure of the model was reduced in size
for computational purposes by using rather ad hoc aggregation procedures. These
aggregations were based on preliminary inspections of the structure of the data.
Does this violate the principle of separation of model and data or can it be viewed
as an example of skillful modeling practice? We leave it to the reader to ponder this
issue.

A major innovation brought by modeling languages is the capability for spec-
ifying each data element uniquely and then using the language to perform all the
required data calculations. This also provides documentation and transparency that
were lacking in modeling efforts of the 1960s, where each data coefficient was cal-
culated separately and punched into an 80-column card. The advantages here for
avoiding computational errors and the improved capability for performing revisions
to the model are evident.
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Chapter 3
The Persistence and Effectiveness of Large-Scale
Mathematical Programming Strategies:
Projection, Outer Linearization, and Inner
Linearization

John R. Birge

Abstract Geoffrion [19] gave a framework for efficient solution of large-scale
mathematical programming problems based on three principal approaches that
he described as problem manipulations: projection, outer linearization, and inner
linearization. These fundamental methods persist in optimization methodology and
underlie many of the innovations and advances since Geoffrion’s articulation of their
fundamental nature. This chapter reviews the basic principles in these approaches
to optimization, their expression in a variety of methods, and the range of their
applicability.

3.1 Introduction

Optimization methodology development has been characterized by regular and rapid
decreases in solution times. At the same time, problem sizes have also increased dra-
matically. These efficiency gains derive not just from hardware advances but equally
from improvements in the underlying methodology (see, e.g., [10]). While such ad-
vances continue to expand the reach and effectiveness of optimization methodology
in addressing practical decision problems, much of the fundamental properties in
these innovations relate to a set of approaches described in Geoffrion [19].

Geoffrion [19] describes three principal problem manipulations: projection, outer
linearization, and inner linearization. This chapter describes how these approaches
relate to many of the more recent advances in mathematical programming and how
they form a basis for the consideration of a variety of problems associated with
decision modeling in general. In the following sections, I describe each of the
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basic manipulations and relate them to more recent uses, their applicability, and
effectiveness.

3.2 Projection

The fundamental approach in projection is to manipulate the domain of an opti-
mization problem, generally from a higher to a lower dimension, but also from
unbounded to bounded domains. As described in Geoffrion [19], a fundamental
problem might be described in two sets of variables x and y 1 as

min
x∈X ,y∈Y

f (x,y) s. t. g(x,y)≤ 0, (3.1)

where X ⊂ℜn, Y ⊂ℜp, f : ℜn×ℜp→ℜ, and g : ℜn×ℜp→ℜm. Geoffrion [19]
defines a projection of X ×Y to X ∩V where V = {x | g(x,y)≤ 0 for some y ∈ Y},
with objective v(x) such that

v(x) = inf
y∈Y,g(x,y)≤0

f (x,y), (3.2)

creating the equivalent problem to (3.1) in x alone as

min
x∈X∩V

v(x). (3.3)

As Geoffrion [19] notes, this manipulation forms the basis of several classical
methods in mathematical programming, such as Benders’ [5] decomposition and
Rosen’s [26] partitioning method. He also observes that the fundamental basis of
dynamic programming, as in Bellman [4] and Dantzig [11], is to use this form
of projection with decisions sequentially determined at each stage. Projection also
forms the core of more recent methods that are now the most efficient algorithms
for various problem structures. Interior point methods, for example, which started
from early descriptions by Fiacco and McCormick [17], and which spread broadly
in applications following Karmarkar’s [20] discovery of their efficient application
for linear programs, can be viewed as applications of projection.

3.2.1 Projection in Interior Point Methods

To see how interior point methods fit the general projection in (3.3), consider, as an
example, the linear program with g(x,y) = (Ax+ Iy−b,−Ax− Iy+b,−Iy), so that
g(x,y) = {x,y | Ax+ Iy = b,y≥ 0} and f (x,y) = cT x. Directly using the projection
steps above would, of course, yield

mincT x s. t. Ax≤ b. (3.4)

1 The roles of x and y are reversed from Geoffrion [19] to be consistent with later descriptions.
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Instead of directly reducing (3.2) to (3.4), interior point methods with projection
use two additional projection steps to produce a different iteration. They start with a
current iterate (xk,yk) and search for (x,y) = (xk +s,yk +t) for some search direction
(s, t). Relative to the current iterate, problem (3.4) is equivalent to

mincT (xk + s) s. t. As≤ yk, (3.5)

or, for Y k = diag(yk),

mincT s(+cT xk) s. t. (Y k)−1As≤ 1, (3.6)

where 1 is a vector of ones. The first application of projection is to make the region
in (3.6) compact by projecting the region in (3.6) into a simplex using the pro-
jective transformation, z = s/

(
1− 1

m+1 eT (Y k)−1As
)
, which also yields an inverse,

s = z/
(
1+ 1

m+1 1T (Y k)−1Az
)
, when the denominator is positive. Now, substituting

for s and imposing the feasible constraint yields an equivalent feasible region in z as

Lk = {z | Akz≤ 1}, (3.7)

where

Ak =

(
(Y k)−1A−1 1

m+1 1T (Y k)−1A

− 1
m+1 1T (Y k)−1A

)

.

The algorithm then make an appropriate approximation of cT s (through some form
of linearization, the theme discussed in the next section) as (dk)T z to yield a surro-
gate problem

min(dk)T z s. t. Akz≤ 1, (3.8)

which with w = Akz can in turn be written as

min(λ k)T w s. t. w≤ 1,w−ΠAk w = 0, (3.9)

where dk = (Ak)T λ k and ΠAk corresponds to projection onto the column space of Ak.
The representation in (3.9)shows how the algorithm can be interpreted as optimizing
a linear function over a simplicial region. The algorithm then solves for a search
direction over a restriction on (3.9) that can be given as the inner sphere, W =
{w |wT w≤m+1}, intersected with the projection constraint. Since a magnification
by m of this inner sphere circumscribes the region in (3.9), with a consistent defi-
nition of the objective approximation, each step can then be shown to attain a fixed
rate of convergence that yields a computationally efficient method overall.

3.2.2 Projection in Discrete Optimization

Another significant application area for projection has been in discrete optimization.
In this case, the basic problem in (3.1) is assumed to correspond to Y = {y j | y j ∈
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{0,1}, j = 1, . . . , p}. The methods first raise the dimension of the problem and then
project back into the original dimension to obtain stronger linear approximations of
the original feasible region than would be obtained with a direct continuous relax-
ation of the original problem. The lift-and-project method by Balas et al. [2] and
similar approaches from Lovász and Schrijver [23] and Sherali and Adams [28] all
have this feature.

The lift-and-project method proceeds again with a set of linear constraints
g(x,y) = Ax +Cy− b, which here includes restrictions implying that x ≥ 0, y ≥ 0,
and y ≤ 1. Let K = {(x,y) | g(x,y) ≤ 0} and K0 = {(x,y) | (x,y) ∈ K,y ∈ Y}, i.e.,
such that y j ∈ {0,1}, for j = 1, . . . , p. The method constructs a sequence of approx-
imations Pj(K) through the following procedure:

1. Let K′ = {(x,y) | (1− y j)(Ax+Cy−b)≤ 0,y j(Ax+Cy−b)≤ 0}.
2. Replace all xiy j terms in the constraints of K′ by a new variable ui, all yiy j,

i 	= j terms by a new variable vi, and y2
j by y j. Let the resulting feasible region

(a polyhedron) in (x,y,u,v) be Mj(K).
3. Project Mj(K) onto (x,y)-space as Pj(K)= {(x,y) | ∃u,v s. t. (x,y,u,v)∈Mj(K)}.

By defining these projections iteratively as P1,...,p(K) = P1(P2(· · ·(Pp(K)) · · ·)), it
can be shown (Corollary 2.3 in Balas et al. [2]) that P1,...,p(K) = co(K0), the convex
hull of K0. By iteratively generating facets of Pj(K), a finite algorithm can then be
obtained that follows the basic procedure below (Theorem 3.1 in Balas et al. [2]).

Lift-and-Project Cutting Plane Algorithm

1. Let K1 = K. k = 1.
2. Solve for (xk,yk) = argmin{cT x+dTY | (x,y) ∈ Kk}. If yk ∈ Y , stop.
3. Let j be the largest index when 0 < yk

j < 1. For αk(x,y) ≤ bk, a facet identified

on Pj(K), let Kk+1 = Kk ∩{(x,y) | αk(x,y)≤ bk}.
4. Set k = k +1 and go to Step 2.

3.3 Outer Linearization

The lift-and-project cutting plane algorithm in the previous section involves both
projection in the construction of the Pj(K) relaxations and also outer linearization
through the progressive identification of facets and their inclusion into the kth iter-
ate feasible-region relaxation, Kk. As Geoffrion [19] observes, projection is often
combined with outer linearization in the form of the cutting planes as, for example,
used in the lift-and-project method.

Broadly, for a problem defined as

min
x∈X

f (x) s. t. g(x)≤ 0, (3.10)
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outer linearization can apply either to the objective (or some part of the objective)
or to the constraints. In this way, f (x) is replaced by f q(x) = maxi=1,...,q(αT

i x+βi),
where f (xi) = αT

i xi + βi, and g(x) ≤ 0 is replaced by gr(x) ≤ 0, where gr
i (x) =

ET
i x− ei ≤ 0 for i = 1, . . . ,r. For these linearizations to be outer, f q(x)≤ f (x) and
{x | gr(x)≤ 0} ⊃ {x | g(x)≤ 0}.

Outer linearization is motivated by convexity. For any point xi, if f is convex,

f (x)≥ f (xi)+∇ f (xi)T (x− xi); (3.11)

so that αi = ∇ f (xi)T and βi = f (xi)−∇ f (xi)T xi can yield the form of f q for outer
linearization applied at successive iterates, x1, . . . ,xq. Similarly, this approach can
be used to approximate each constraint gi(x) ≤ 0 or other relaxations as in the lift-
and-project method.

The value of outer linearization in convex optimization extends from the ability to
capture global properties of the objective and constraints using only local informa-
tion. Complex nonlinear structures can often be rendered with a parsimonious use
of linearizations at a relatively small number of points. New methods built on this
approach continue to be developed to take advantage of this property. The following
two approaches from nonlinear, discrete optimization and from dynamic optimiza-
tion, respectively, provide examples.

3.3.1 Nonlinear Mixed-Integer Programming Methods

Outer linearization is the basis for the nonlinear approaches described by Duran
and Grossmann [16], Fletcher and Leyffer [18], and the extension in Quesada and
Grossmann [24] that is implemented in the solver, FilMINT, by Abhishek et al. [1].
The method applies to the general formulation in (3.1) where Y includes integer
restrictions (i.e., Y ⊂ ZZp). The method solves a relaxation on a branch of a branch-
and-bound tree defined by bounds l ≤ y≤ u, as (NLPR(l,u)) given by

min
x∈X

f (x,y) s. t. g(x,y)≤ 0, l ≤ y≤ u. (3.12)

This solution provides a lower bound on the given branch
(
or overall on (3.1) if

Y ⊂ [l,u]
)
.

The method then applies outer linearization again using a form of projection by
considering sub-problems, (NLP(k)), given by

min
x∈X

f (x,yk) s. t. g(x,yk)≤ 0. (3.13)

Solving (NLP(k)) for xk (or solving a corresponding feasibility problem) yields the
linearization from the gradient information at xk as in (3.11) for both the objec-
tive and constraints. The outer linearization problem, (MP(k)), at iteration k is then
defined by
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min
x∈X ,y∈Y

f k(x,y) s. t. gk(x,y)≤ 0, (3.14)

and its continuous relaxation on a branch with restriction [l,u] is (CMP(k)) given
by

min
x∈X ,y∈[l,u]

f k(x,y) s. t. gk(x,y)≤ 0. (3.15)

The algorithm proceeds by solving (CMP(k)) at a given node of the branch-and-
bound tree to obtain (xk,yk). If yk ∈ Y , then (NLP(k)) is solved, the current upper
bound is updated if (NLP(k)) is feasible, and additional cuts are added to CMP(k),
which is then solved again. If yk 	∈ Y , then either additional cuts are generated or a
new branch is formed.

3.3.2 Outer Approximation for Convex, Dynamic Optimization

The general form of outer linearization for convex optimization extends at least
back to Kelley [21]. The methodology also has appeared frequently in the context
of dynamic optimization, particularly for stochastic programs with two and more
stages (in, e.g., Dantzig and Madansky [13], Van Slyke and Wets [29], and Birge
[7]). This principle can also apply to infinite-horizon dynamic programs as described
in Birge and Zhao [9] and summarized here.

The goal is not just to find a single optimum but to find an entire value function
V ∗ of the infinite-horizon problem

V ∗(x) = min
y1,y2,...

∞

∑
t=0

δ t ct(xt ,yt) (3.16)

s.t. xt+1 = Atxt +Btyt +bt , for t = 0,1,2, . . . , (3.17)

x0 = x, (3.18)

where 0 < δ t < 1 is a discount factor, and the equation, xt+1 = Atxt + Btyt + bt ,
characterizes the dynamics of the state transition from stage t to t +1. The problem
may also include random parameters in ct and the dynamics (in which case, the
objective is an expectation functional).

The above problem can be represented as

min
y0
{c0(x0,y0)+δ min

y1
{c1(x1,y1)+δ min

y2
{c2(x2,y2)+ . . .}}}

s.t. xt+1 = Atxt +Btyt +bt , for t = 0,1,2, . . . ,

x0 = x.

The value function V ∗ defined by (3.16) is a solution of V = M(V ), where the
mapping M is defined by

M(V )(x) = min
y
{c(x,y)+δV (Ax+By+b)}. (3.19)
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For the algorithm to find V ∗, suppose that the domain (feasible set) is D∗ =
dom(V ∗), which is compact and polyhedral. The outer linearization for this method
progressively refines an approximation V k of V ∗. Unlike the standard outer lin-
earization, however, each new approximation is only based on an approximation
M(V k) and is not necessarily a support of V ∗. The algorithm also must sample
throughout D∗ to converge to V ∗. We let

V k(x) = max{Qix+qi : i = 1, . . . ,uk},

for a set of cuts defined by Qi and qi as in the definition of f k and gk above. We
maintain that V k ≤V ∗ and continue to iterate as long as there exists x∈D∗ such that
M(V k)(x) > V k(x).

Outer Approximation for Infinite-Horizon Dynamic Programs

1. Initialization: Find a piecewise linear convex function V 0 satisfying V 0 ≤V ∗. Set
k← 0.

2. If V k ≥ M(V k), stop, V k is the solution. Otherwise, find a point xk ∈ D∗ with
V k(xk) < M(V k)(xk).

3. Find a supporting hyperplane of M(V k) at xk, e.g., Qk+1x+qk+1.
Define V k+1(x) = max{V k(x),Qk+1x+qk+1}.
k← k +1. Go to Step 2.

3.4 Inner Linearization

Outer linearization relies on forming an outer approximation of a convex func-
tion or convex constraint, while inner linearization, as the name suggests, builds
the approximation from within the epigraph of the function or within the feasible
region defined by the constraints. In this way, inner linearization implies a restricted
version of the original problem while outer linearization implies a relaxation.

The basic approach in inner linearization to a problem of the form (3.10) is to
search for a solution in the convex hull of a set of candidate points, x1, . . . ,xk, with
variables corresponding to weights λ1, . . . ,λk on those points. Problem (3.10) then
becomes

min
λ≥0,1T λ=1

k

∑
i=1

λi f (xi). (3.20)

Assuming that g(xi) ≤ 0 for each i = 1, . . . ,k ensures that g(x) ≤ 0 for any x =
∑k

i=1 λi f (xi). To define the inner linearization for a given point x, let

Fk(x) = min
λ≥0, 1T λ=1, x=∑k

i=1 λixi

k

∑
i=1

λi f (xi). (3.21)
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In general, inner linearization methods, such as Dantzig–Wolfe decomposition
(Dantzig and Wolfe [14]), solve the restricted problem in (3.20) and then search
for a new solution xk+1 that optimizes an auxiliary objective to improve the current
approximation. This method is also known as column generation, which allows the
solution of problems with large numbers of variables without explicitly represent-
ing all of them, a particularly valuable strategy in integer programming (see, e.g.,
Barnhart et al. [3] and Wilhelm [30]). The approach also forms the basis of general-
ized linear programming (Dantzig ([12], chapter 24)) to solve convex programs. In
addition, inner linearization forms the foundation for more recent methods as well.
As examples, I will describe a recent convex optimization method by Bertsekas and
Yu [6] and the linear programming approach to approximate dynamic programming,
as described by Van Roy and de Farias [15].

3.4.1 Inner and Outer Approximations for Convex Optimization

The generalized polyhedral approximation algorithm in Bertsekas and Yu [6]
assumes that (3.10) can be written as

min
(x0,...,xm)∈S

m

∑
i=0

fi(xi), (3.22)

where S is a sub-space and xi ∈ℜni , i = 1, . . . ,m. A problem of the form (3.10) might
be represented in this way by re-writing all of the constraints gi(x)≤ 0 as fi(x) using
the corresponding indicator function that vanishes ( fi(x) = 0) when gi(x) ≤ 0 and
has infinite value ( fi(x) = +∞) when gi(x) > 0. The constraints then follow from
S = {xi | xi− x j = 0,∀i, j}.

This method uses a duality result that the convex conjugate (see Rockafellar [25])
( f k)∗ of an outer linearization f k of a function f is an inner linearization of the
convex conjugate f ∗ of f . With this observation, each iteration of the algorithm
identifies a set of primal solutions xk and a corresponding set of dual solutions
λ k that correspond to sub-gradients of the relevant approximation of each fi or,
equivalently, are points in the approximation of f ∗i . The algorithm partitions I0 =
{0, . . . ,m} as I0 = I ∪ Iinner ∪ Iouter, where Iinner will correspond to fi that are inner
linearized and Iouter corresponds to fi that are outer linearized. The iteration is then
to solve

min
(x0,...,xm)∈S

∑
i∈I

fi(xi)+ ∑
i∈Iinner

f k
i (xi)+ ∑

i∈Iouter

Fk
i (xi), (3.23)

where the approximations in f k and Fk are updated on each iteration. The method
either obtains a strictly improving inner or outer linearization in Iinner and Iouter,
respectively, or obtains an optimal solution to (3.22).
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3.4.2 Linearization in Approximate Dynamic Programming

The goal of this method is to solve for a value function V ∗ as in (3.16) with a general
set of dynamic equations. In this approach, inner approximation is used instead of
outer approximation. An approximation in this case can be written as

V k(x) = min

{ nk

∑
i=0

λiV
k
i

∣
∣
∣
∣

nk

∑
i=0

λix
i = x,

nk

∑
i=1

λi = 1,λ ≥ 0

}
, (3.24)

where V k
i = V k(xi) represents an approximation value at xi that may be generalized.

To achieve efficiencies in this approach, the points can be chosen so that x0 is a
centering point and x = x0 +∑nk

i=1 λ i(xi−x0), where each λ i can be found quickly as,
for example, when xi−x0 corresponds to positive and negative coordinate directions
or when co{xi, i = 1, . . . ,nk} is a simplex containing x0 and x and the λ i values
correspond to the unique barycentric coordinates around x0. If each V k is conical in
the sense that the epigraph of V k is a cone centered at x0, then V k

i can be extended
to obtain approximations throughout the space spanned by {xi− x0} by centering
at x0 and noting that V k(xi)−V k(x0) is such that V k(x0 + ρ(xi− x0)) = V k(x0)+
ρ(V k(xi)−V k(x0)) for any ρ ≥ 0. Conditions for this conical property arise in linear
optimal control problems (see Birge and Takriti [8]), allowing efficient solutions for
that structure.

If each xi = x0 + 1i (i.e., a unit increase in the ith coordinate), the values
φi(x) = (xi−x0

i )(V
k(xi)−V k(x0))+V k(x0) can be used as a general approximation

of V ∗(x) in the ith coordination direction. The principle in approximate dynamic
programming, as, for example, given in Schweitzer and Seidmann [27], is that this
form of linearization can be applied by defining each φi as a basis function with
a linear or affine form as here or with more general characteristics. The solution
procedure then searches for consistent λi values to solve the equation V k = M(V k),
where V k(x,λ ) is now given as

V k(x,λ ) =
nk

∑
i=0

λiφi(x). (3.25)

As discussed by de Farias and Van Roy [15], this problem can be solved by the
(possibly infinite) linear program

min
∫

x∈X
V k(x,λ )μ(dx) s. t. M(V k)≥V k, (3.26)

where μ is a weighting measure that assigns positive weight on all possible states
x ∈ domV ∗. When X is finite, de Farias and Van Roy show that the error in using
this approximation can be bounded by a multiple (that depends on the discount
factor and weighting measure) of the error in the best approximation V k to V ∗ for
any λ . The approximations can also be improved to obtain convergence by suitably
choosing the set of φi functions (see Adelman and Klabjan [22]).
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3.5 Conclusions

Geoffrion’s [19] description of fundamental problem manipulations for solving
large-scale mathematical programs gave a framework for ongoing research to develop
increasingly efficient methods to apply to ever wider domains of application.
Geoffrion’s clear description and unifying treatment of those ideas has provided
many subsequent researchers with the insight to make improvements to previous
approaches and to uncover new possibilities. The themes of projection, outer
linearization, and inner linearization in that paper are indeed the basis for many of
the optimization methods that have been proposed since Geoffrion [19] appeared. In
this chapter, I have attempted to describe a few of the more recent developments that
have built on those fundamental themes. Those fundamental ideas and Geoffrion’s
clear articulation of them will without a doubt continue to provide researchers with
inspiration and guidance for many years to come.
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4.1 Introduction

4.1.1 The Model

The simplest version of the problem to be modeled is this. There are several com-
modities produced at several plants with known production capacities. There is a
known demand for each commodity at each of a number of customer zones. This
demand is satisfied by shipping via regional distribution centers (abbreviated DC),
with each customer zone being assigned exclusively to a single DC. There are lower
as well as upper bounds on the allowable total annual throughput of each DC. The
possible locations for the DC’s are given, but the particular sites to be used are to be
selected so as to result in the least total distribution cost. The DC costs are expressed
as fixed charges (imposed for the sites actually used) plus a linear variable charge.
Transportation costs are taken to be linear.

Thus the problem is to determine which DC sites to use, what size DC to have at
each selected site, what customer zones should be served by each DC, and what the
pattern of transportation flows should be for all commodities. This is to be done so
as to meet the given demands at minimum total distribution cost subject to the plant
capacity and DC throughput constraints. There may also be additional constraints
on the logical configuration of the distribution system.

The mathematical formulation of the problem uses the following notation.

i index for commodities,
j index for plants,
k index for possible distribution center (DC) sites,
l index for customer demand zones,

Si j supply (production capacity) for commodity i at plant j,
Dil demand for commodity i in customer zone l,

V k,V̄k minimum, maximum allowed total annual throughput for a DC at site k,
fk fixed portion of the annual possession and operating costs for a DC at site k,
vk variable unit cost of throughput for a DC at site k,

ci jkl average unit cost of producing and shipping commodity i from plant j
through DC k to customer zone l,

xi jkl a variable denoting the amount of commodity i shipped from plant j through
DC k to customer zone l,

ykl a 0–1 variable that will be 1 if DC k serves customer zone l, and 0 otherwise
zk a 0–1 variable that will be 1 if a DC is acquired at site k, and 0 otherwise.

The problem can be written as the following mixed integer linear program.

Minimize
x�0;y,z=0,1

∑
i jkl

ci jklxi jkl +∑
k

[
fkzk + vk ∑

il

Dilykl

]
(1)

subject to
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∑
kl

xi jkl ≤ Si j, all i j (2)

∑
j

xi jkl = Dilykl , all ikl (3)

∑
k

ykl = 1, all l (4)

V kzk ≤∑
il

Dilykl ≤ V̄kzk, all k (5)

Linear configuration constraints on y and/or z. (6)

The notation y,z = 0,1 means that every component ykl and zk must be zero or
one. It is understood that all summations run over the allowable combinations of
the indices, since many combinations are either physically impossible (such as an
i j combination which signifies a commodity that cannot be made at plant j) or
so obviously uneconomical as not to merit inclusion in the model (such as a kl
combination that would serve customers in Miami from a DC in Seattle).

The correspondence between this model and the verbal problem statement should
be apparent. The quantity ∑il Dilykl is interpreted as the total annual throughput of
the kth DC. Constraints (2) are the supply constraints, and (3) stipulates both that
legitimate demand must be met (when ykl = 1) and that xi jkl must be 0 for all i j
when ykl = 0. Constraints (4) specify that each customer zone must be served by
a single DC. Besides keeping the total annual throughput between V k and V̄k or at
0 according to whether or not a DC is open, (5) also enforces the correct logical
relationship between y and z (i.e., zk = 1⇐⇒ ykl = 1 for some l). Constraints (6)
are deliberately not spelled out in detail for the sake of notational simplicity. The
only requirement is that they be linear and do not involve any x-variables.

4.1.2 Discussion of the Model

There are several features of the model which warrant some discussion either to
point out the flexibility they afford or to indicate the manner in which they differ
from related models to be found in the literature.

The reader may have noticed that the transportation variables are quadruply sub-
scripted, whereas previous intermediate location models (Bartakke et al. [2]; Ell-
wein and Gray [8, p. 296]; Elson [9]; Marks, Liebman and Bellmore [19]) employ
separate transportation variables for plant-to-DC and DC-to-customer shipments.
That is, we might have used two sets of triply subscripted variables (xi jk and xikl ,
say) linked by a flow conservation constraint for each commodity-DC combination.
This alternative suffers from a lack of flexibility for some applications because it
“forgets” the origin of a commodity once it arrives at a DC. In the real application
which sired the work reported in this paper, for instance, the so-called “storage-in-
transit” privilege was a very important determinant of rail transportation costs for
several of the commodities. A transit rate is figured as the direct plant-customer rate
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plus a nominal charge for stopping over at the DC which serves the customer, so
long as this DC is not too far off the direct line. The transit rate is usually smaller
than the simple sum of the plant-DC rate and the DC-customer rate. Obviously the
xi jk and xikl formulation cannot cope with the transit feature. Another advantage
of the xi jkl formulation over the xi jk & xikl formulation arises when some com-
modities are perishable; it may be necessary to disallow the possibility of shipping
such commodities over jkl routes for which the total journey times are likely to be
excessive.

The quadruply subscripted transportation variables also make it easy to accom-
modate direct plant-customer zone shipments so long as a customer zone does not
try to receive a given commodity both from a DC and a plant. For instance, suppose
that a certain subset of customer zones is to obtain all commodities directly from the
plants instead of via DC’s. Then one simply adds a fictitious DC site k0, say, with
the associated zk0 and yk0l’s fixed at unity, and specifies the rates ci jk0l appropriately
for each associated i jl (there is no need for (5) to include a constraint for k0). One
may also accommodate the situation in which a customer zone obtains some com-
modities directly from the plants and the others through its DC. Just make the ci jkl’s
corresponding to the direct commodities independent of the possible DC’s for such
a customer zone, and omit the il combinations corresponding to the directly shipped
commodities from both ∑il Dilykl terms in the model.

Another unique feature of the model is that no customer zone is allowed to deal
with more than one DC, since the ykl’s must be 0 or 1 and not fractional. Thus each
customer’s demands must be satisfied by a single DC or directly from a producing
plant (as described above). This assumption, which is required by the decomposi-
tion technique developed below, is frequently justified in practice. Our first-hand
experience with three firms, each in a different industry, is that their accounting
systems and marketing structures are geared to serving each customer zone from
a single DC. Any change in this convention would be expensive both in terms of
added administrative costs and in terms of less convenient service as perceived by
customers. There would also be economic disadvantages due to reduced economies
of scale in DC-to-customer shipments. Evidently a similar situation exists for other
firms, as the desirability of this feature is frequently mentioned by other authors
with practical experience [2], [6], [9], [10].

Notice that lower bounds as well as the customary upper bounds may be stip-
ulated on warehouse throughput. This is useful for its own sake when there are
reasons why each DC must be larger than a certain minimum size, and also to facil-
itate using a simple trick to permit a piecewise-linear representation of economies
of scale and other nonlinearities (or even discontinuities) in DC costs as a function
of throughput: simply introduce alternative DC’s at a given site with different size
ranges controlled by V k and V̄k, with fk and vk specialized accordingly. For instance,
a piecewise-linear DC cost function with three pieces would require three alternative
DC’s (small, medium and large) each with fk and vk dictated by the corresponding
piece of the DC cost function. A simple configuration constraint can be included
among (6) to ensure that at most one of the alternative DC’s is opened at each site
if this is not an automatic economic consequence of the model. The same trick also
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allows some economies-of-scale in transportation costs to be incorporated. This is
especially useful for the in-bound (plant-to-DC) component of transportation costs
for nontransit commodities. The larger the size range of an alternative DC, the lower
should be the unit in-bound rates. The annual throughput of a DC has a much smaller
influence on economies-of-scale for the out-bound rates, because the mode of trans-
portation and delivery requirements are largely determined by the customers. This
is especially true in view of the model assumption that each customer zone must
be supplied by a single DC (the degree of consolidation of out-bound shipments is
therefore relatively predictable for a given DC-customer zone pair).

The arbitrary configuration constraints (6) give the model quite a lot of flexibil-
ity to incorporate many of the complexities and idiosyncrasies found in most real
applications. For instance, (6) permits:

• upper and/or lower bounds on the total number of open DC’s allowed;
• specification of subsets of DC’s among which at most one, at least one, exactly

two, etc., are required to be open;
• precedence relations pertaining to the open DC’s (not A unless B, etc.);
• mandatory service area constraints (if DC A is open, it must serve customer

zone B);
• more detailed capacity constraints on the size of a DC than (5) permits, as by

weighting the capacity consumption characteristics of each commodity differ-
ently or by writing separate constraints for individual or subsets of commodities;

• constraints on the joint capacity of several DC’s if they share common resources
or facilities;

• customer service constraints like
(

∑
kl

tiklDilykl

)/

∑
l

Dil ≤ Ti,

where tikl is the average time to make a delivery of commodity i to customer zone l
after receiving an order at DC k, and Ti is a desired bound on the average delivery
delay for commodity i.

A few additional remarks are in order concerning how the present model fits
into the existing literature. Its chief ancestors are, of course, the well-known and
much simpler “plant location” models (see Balinski and Spielberg [1, p. 268ff.];
Gray [16]; Ellwein [7] for surveys). These are basically single commodity trans-
portation problems with fixed charges for the use of a source. Often the sources are
assumed to have unlimited capacity. Recent work on capacitated problems of this
type includes Davis and Ray [5], Ellwein and Gray [8], Fieldhouse [10], Geoffrion
and McBride [13], Khumawala and Akinc [17], and Soland [21]. These authors all
use branch-and-bound, which has emerged clearly as the most practical optimizing
approach.

A natural extension of the capacitated plant location problem to the optimal loca-
tion of intermediate facilities in multi-echelon systems has been studied by Marks,
Liebman and Bellmore [19]. They report reasonably good computational experi-
ence with a conventional branch-and-bound algorithm in which the linear programs,
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which specialize to capacitated trans-shipment problems, are solved by an out-of-
kilter routine. The same model is considered very briefly by Ellwein and Gray [8],
who indicate that their capacitated plant location algorithm can be generalized to
this case but give no computational experience.

If we now add the multicommodity feature, there appears to be no existing litera-
ture on special purpose optimizing algorithms. The only studies of multicommodity
intermediate facilities location problems of which we are aware have used general
purpose mixed integer linear programming systems. Bartakke et al. [2] describe
an application of Bonner and Moore’s Functional Mathematical Programming Sys-
tem for the Univac 1108 to an industrial problem with 4 plants, 4 commodities, 10
intermediate distribution sites with 3 possible sizes for each, and 39 customer points.
It reportedly required 45 minutes of CPU time to optimize the resulting model with
210 rows, 30 binary variables and 1600 continuous variables. Elson [9] describes a
specialized matrix generator and report writer for use in conjunction with the OPHE-
LIE MIXED system for multicommodity intermediate location problems. Compu-
tational experience is given for one relatively small problem. The author refers to
other computational experience with problems of similar size, from which he esti-
mates that problems with 15 plants, 3 commodities, 45 DC sites, and 50 customer
zones can be solved in about 8 1

2 system minutes on the CDC 6600 (assuming a 3:1
conversion ratio of billable system time to central processor time).

The reader who wishes to delve into the literature more deeply is encouraged to
consult the excellent and massive (273 page) annotated bibliography on location-
allocation systems prepared recently by Lea [18].

4.1.3 Plan of the Paper

§2 specializes Benders’ well-known partitioning procedure to our problem in such a
way that the multicommodity LP subproblem decomposes into as many
independent classical transportation problems as there are commodities. This
decomposition makes it possible to solve problems with virtually any number of
commodities. Possible points of interest in this section include the technique used to
recover the optimal multipliers for each LP subproblem from its analytically reduced
and separated components, a variation of Benders’ original procedure which has
proven effective in this context, and some remarks on the reoptimization capability
of this approach via the use of previously generated Benders constraints for revised
problems.
§3 briefly describes a full-scale computational implementation which we have

used to redesign the national distribution system of a major food firm. This
application is discussed at some length in §4, with considerable stress placed on the
importance of certain types of pre- and postoptimality runs to the professional suc-
cess of this study. Actual computational experience is quoted in detail. The reader
will be surprised, as we were, that in every run just a few iterations of Benders’
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procedure sufficed to find and verify a solution optimal to within a few tenths of
one percent. Since this was also true for another large (unrelated) practical problem,
it would seem that the class of problems studied herein is unusually amenable to
solution by Benders’ method.
§5 passes along a lesson learned from early computational experience concerning

alternative logically equivalent model representations which are really not equiva-
lent at all when solved by Benders Decomposition. We found that the representation
used here is far superior to the natural more compact one we had tried earlier. This
phenomenon is examined and implications emerge which may well be useful in
other applications of Benders’ method.

Some conclusions from our experience to date are offered in §6.

4.2 Application of Benders Decomposition

Most real-life applications of problem (1)–(6) are too large to be solved economi-
cally by existing general mixed integer linear programming codes [12]. The applica-
tion addressed below had 11,854 rows, 727 binary variables and 23,513 continuous
variables. The model does, however, have a conspicuous special property that en-
ables it to be decomposed in such a way that the multicommodity aspect becomes
much less burdensome: when the binary variables are temporarily held fixed so as
to satisfy (4)–(6), the remaining optimization in x separates into as many indepen-
dent classical transportation problems as there are commodities. This can be seen
either from the physical interpretation of the problem or directly from (1)–(3). The
transportation problem for the ith commodity is of the form

Minimize∑
jl

ci jk̄(l)lxi jk̄(l)l

subject to

∑
l

xi jk̄(l)l ≤ Si j, all j

∑
j

xi jk̄(l)l = Dil , all l

xi jk̄(l)l ≥ 0, all jl,

(7i)

where k̄(l) is defined, for each l, as the k-index for which ykl = 1 in the temporarily
fixed y-array (by (4), k̄(l) is unique for each l).

The simplicity of the problem for fixed (y,z) suggests the application of Ben-
ders Decomposition [4]. A conventional specialization of this approach is given
in §2.1, and the following section explains how the necessary multipliers of the full
subproblem may be analytically synthesized from the multipliers of the reduced and
separated subproblems (7i). §2.3 describes a variant of Benders’ approach which we
have found to be more suitable for computational purposes. Finally, the cost-saving
reoptimization capability inherent in this approach is pointed out in §2.4.
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4.2.1 Specialization of Benders Decomposition

Application of Benders Decomposition to (1)–(6) in the standard fashion leads to
the following algorithm.

Step 0. Select a convergence tolerance parameter ε ≥ 0. Initialize UB = ∞, LB =
−∞, H = 0. If a binary airay (y1,z1) satisfying (4), (5) and (6) is given, go to
Step 2; otherwise, go to Step 1.

Step 1. Solve the current master problem

Minimize
y,z=0,1;y0

∑
k

[
fkzk + vk ∑

il

Dilykl

]
+ y0 (8)

subject to (4), (5), (6) and

yo +∑
ikl

πh
iklDilykl ≥−∑

i j
uh

i jSi j, h = 1, . . . ,H (9)

by any applicable algorithm. Let (yH+1,zH+1,yH+1) be any optimal solution. Put
LB equal to the optimal value of (8), which is a lower bound on the optimal value
of (1)–(6). Terminate if UB≤ LB+ ε .

Step 2.

(a) Solve the linear programming subproblem

Minimize
x�0

∑
i jkl

ci jklxi jkl (10)

subject to (2) and (3)
with y = yH+1 by any applicable algorithm. Denote the optimal value by
T (yH+1) and the optimal solution by xH+1. Then the quantity

∑
k

[
fkzH+1

k + vk ∑
il

Dily
H+1
kl

]
+T (yH+1) (11)

is an upper bound on the optimal value of (1)–(6). If (11) is less than UB,
replace UB by this quantity, store (yH+1,zH+1,xH+1) as the Incumbent, and
terminate if UB≤ LB+ ε .

(b) Determine an optimal dual solution for (10) with y = yH+1: denote it by uH+1

(corresponding to (2)) and πH+1 (corresponding to (3)). Increase H by 1 and
return to Step 1.

A few remarks on this procedure are in order. First, note that an ε-optimal termi-
nation criterion has been used. The available upper and lower bounds on the optimal
value of (1)–(6) coincide to within ε upon termination, at which time the Incumbent
has been demonstrated to be ε-optimal in (1)–(6). Prior to termination it is known
only that the Incumbent is within (UB− LB) of the optimal value. Finite conver-
gence is assured for any ε ≥ 0.
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Second, note that no provision is made at Step 2 for the possibility that (10) may
be infeasible for some choices of y. This possibility can be handled easily within the
standard framework of Benders Decomposition by slightly complicating the above
algorithm, but we elect to preclude it here by assuming without loss of generality
that ∑ j Si j ≥ ∑l Dil for all i (otherwise (1)–(6) is infeasible) and that all possible
jk combinations are technically allowed (if j0k0 corresponds to an uneconomical
route, take ci j0k0l equal to any comparatively large number). It is not difficult to
verify that these innocuous assumptions imply that (10) is feasible and has a finite
optimal solution for every binary y satisfying (4).

Third, as indicated previously, the LP subproblem (10) is most easily solved by
solving an equivalent collection of independent classical transportation problems—
one for each commodity. This can be demonstrated by observing that since yH+1

satisfies (4), (3) implies

xH+1
i jkl = 0 for all i jkl with k 	= k̄(l)

where k̄(l) is the k-index for which yH+1
kl = 1. Thus (10) simplifies to

Minimize ∑
i

(

∑
jl

ci jk̄(l)lxi jk̄(l)l

)

subject to

∑
l

xi jk̄(l)l ≤ Si j, all i j

∑
j

xi jk̄(l)l = Dil , all il

xi jk̄(l)l ≥ 0, all i jl.

This problem obviously separates on i into independent transportation problems of
the form (7i). If the optimal value of (7i) is denoted by Ti(yH+1), then T (yH+1) =
∑i Ti(yH+1).

The reduction of (10) to independent problems of the form (7i) greatly simplifies
Step 2a, but Step 2b then becomes less straightforward. The required optimal dual
solution for (10) must be synthesized from the optimal dual solutions of (7i). The
relationship between the optimal primal solutions of (10) and (7i) is obvious, but
the relationship between the optimal dual solutions requires some analysis. This
analysis is as follows.

4.2.2 Details on Step 2b

Step 2b requires an optimal dual solution (uH+1,πH+1) to (10) with y fixed at yH+1.
Since (10) is solved via (7i) rather than directly, the required dual solution must be
synthesized from the available dual optimal solutions to (7i).
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For notational simplicity, the superscript H + 1 will be replaced by an overbar
(e.g., yH+1 becomes ȳ). Denote the available optimal dual variables of (7i) by ūi j

(corresponding to the supply constraints) and v̄il (corresponding to the demand con-
straints). It will be shown that the appropriate formulae to be used at Step 2b are:

ūi j = μ̄i j, all i j (12a)

π̄ikl = Max
j
{−μ̄i j− ci jkl}, all ikl. (12b)

To derive (12), one must compare the duals of (10) with those of (7i), where y is
fixed at ȳ. The dual of (10) is

Maximize
u�0;π

∑
ikl

πikl(−Dil ȳkl)+∑
i j

ui j(−Si j)

subject to (13)

−ui j−πikl ≤ ci jkl , all i jkl.

Notice that for any fixed u, the optimal choice of π is obvious since there are no
joint constraints on π and each πikl is constrained only from below by the bound

bikl(u) � Max
j
{−ui j− ci jkl}.

If (−Dil ȳkl) < 0 then the best choice of πikl is bikl(u), while if (−Dil ȳkl) = 0 then
the optimal choice is any number greater than or equal to bikl(u).

Notice also that when (−Dil ȳkl) = 0, as when k 	= k̄(l), the corresponding con-
straints may simply be dropped from (13) since they may always be satisfied without
any effect on the value of the objective function. Thus (13) is equivalent to

Maximize
u�o;πik̄(l)l ,∀ il

∑
il

πik̄(l)l(−Dil ȳk̄(l)l)+∑
i j

ui j(−Si j)

subject to (14)

−ui j−πik̄(l)l ≤ ci jk̄(l)l , all i jl,

with the understanding that for ikl with k 	= k̄(l), π̄ikl is any number greater than or
equal to bikl(ū).

Now consider the duals of (7i) for each i, which may be combined into a single
linear program since there are no variables in common. That is, (μ̄, v̄) is an optimal
solution of

Maximize
μ�0;v

∑
i

[

∑
j

μi j(−Si j)+∑
l

vil(−Dil)
]

subject to (15)

−μi j− vi j ≤ ci jk̄(l)l , all i jl.

Comparison of (14) and (15) reveals that these are identical optimization problems
(remember that ȳk̄(l)l = 1), and hence the choice
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ūi j = ūi j, all i j (16a)

πik̄(l)l = v̄il , all il (16b)

is optimal in (14). In view of the previous discussion, we also have the following
necessary (given (16a)) and sufficient condition on the remaining π̄ik̄l’s:

π̄ikl ≥Max
j
{−μi j− ci jkl}, for all ikl with k 	= k̄(l). (16c)

Relations (16a)–(16c) give the desired complete optimal solution to (13). Since
(16a) is identical to (12a), it remains but to reduce (16b) and (16c) to the form (12b).

Relation (16c) is easily converted to the form of (12b) by selecting π̄ikl in (16c)
to be as small as possible, that is, so that equality holds—for, by the nonnegativity
of Dilykl in (9), this gives the best approximation to the optimal transportation cost
function T . Second, by inspection of (15) we see that

v̄il = Max
j
{−μ̄i j− ci jk̄(l)l}, all il: −Dil < 0 (17a)

v̄il ≥Max
j
{−μ̄i j− ci jk̄(l)l}, all il: −Dil = 0. (17b)

We may assume without loss of generality that equality holds in (17b), for if not
then one may simply redefine v̄il so that it does hold without upsetting the optimality
of (μ̄, v̄) in (15). Hence

v̄il = Max
j
{−μ̄i j− ci jk̄(l)l}, all il,

which shows that (16b) reduces to (12b) and concludes the proof of (12).

4.2.3 The Variant Actually Used

There are numerous variants of the pure Benders Decomposition algorithm
described in §2.1. One variant of particular interest is not to solve the current master
problem at Step 1 to optimality, but rather to stop as soon as a feasible solution to it
is produced which has value below UB− ε . This implies, of course, that the master
problem no longer produces a lower bound on the optimal value of (1)–(6) and so
LB must be inactivated. The termination criterion of Step 2a must be deleted and
that of Step 1 must be replaced by: “terminate if the current master problem has no
feasible solution with value below UB− ε; the current Incumbent is an ε-optimal
solution of (1)–(6).”

It is not difficult to see that this variant must converge to an ε-optimal solution
within a finite number of iterations. This follows from the finiteness of the number
of dual solutions of (10) and from the easily verified fact that if any dual solu-
tion should be produced more than once at Step 2b, then the Incumbent must be
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improved by at least ε at each such repetition. There can be no more than a finite
number of repetitions because the optimal value of (1)–(6) is bounded below.

The principal motivation behind this variant is that the early master problems
have too little information about transportation costs to be worth optimizing very
strictly. It takes several “Benders cuts” of the form (9) in order to give accurate
information concerning these costs. This suggests that the master problems should
be suboptimized, particularly when H is small. The degree of optimality achieved
by this variant increases with H for two reasons: the minimal value of the master
problem increases as H increases due to the accumulation of cuts, and the threshold
UB− ε decreases each time an improved Incumbent is found.

A second motivation is that the variant’s master problems are feasibility-seeking
only:

Find y,z = 0,1 and y0 to satisfy (4),(5),(6),(9) and

∑
k

[
fkzk + vk ∑

il

Dilykl

]
+ y0 ≤UB− ε

or, equivalently upon elimination of y0,

Find y,z = 0,1 to satisfy (4),(5),(6) and

∑
k

[
fkzk + vk ∑

il

Dilykl

]
−∑

i j
uh

i jSi j−∑
ikl

πh
iklDilykl ≤UB− ε,

h = 1, . . . ,H.

(9a)

Thus we may literally introduce any appealing (linear) objective function, say
φ(y,z), and take the master problem to be:

Minimize
y,z=0,1

φ(y,z) subject to (4), (5), (6) and (9a). (8a)

It is not necessary to optimize (8a), of course, but merely to produce a feasible
solution if one exists. The choice of φ should be so as to encourage the production
of useful feasible solutions. We have found the last (Hth) function appearing on the
left-hand side of (9a) to be a good choice in practice.

We remark that (8a) is a pure 0–1 integer program, whereas (8) is a mixed integer
program due to the appearance of y0. This gives (8a) the added advantage of being
somewhat more convenient to work with.

4.2.4 Re-Optimization

One of the advantages of the Benders Decomposition approach is that it offers the
possibility of making sequences of related runs in considerably reduced comput-
ing times as compared with doing each run independently. The need for multiple
runs is particularly acute in distribution system design studies because of the great
economic consequences of the final solution, the difficulties of ascertaining
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future demands and costs with precision, and other reasons discussed at some length
in §4.2.

The reoptimization capability of Benders’ approach is due to the fact that the cuts
(9a) generated to solve one problem can often be revised with little or no work so
as to be valid in a modified version of the same problem. Assume for a moment that
this is so. Then the modified problem can be started with these old (possibly revised)
cuts included in the initial master problem and each master thereafter. If the optimal
(y,z) solution of the modified problem is not too far from the optimal (y,z) solution
of the original problem, then one would expect termination of the procedure in fewer
major iterations than would be the case if it were begun from scratch.

The revision of cuts so as to be valid in a modified version of the problem is an
easy matter so long as the ci jkl coefficients do not decrease. This limitation is due to
the requirement that (uh,πh) in (9) and (9a) must be feasible in the dual subproblem
(13) corresponding to the modified version. Thus, increasing some ci jkl’s and mak-
ing arbitrary changes in the V k’s and V̄k’s and in the configuration constraints (6)
require no revisions at all in (9a); except, of course, that appropriate values of UB
and ε must be used. Changing an fk or vk is easily accomplished by a simple revi-
sion formula. Changing an Si j or Dil , on the other hand, requires forethought in that
the ui j’s and πikl’s themselves enter into the revision formulae; normally these duals
will not be saved since there is no need for them once a cut is calculated. Saving the
ui j’s poses no particular problem because the number of allowable i j combinations
is relatively small in most applications. This would permit arbitrary changes in the
Si j’s. Saving all of the πikl’s would be burdensome storage-wise, so it is best to re-
construct them from the ui j’s via (12). Thus arbitrary changes in the Dil’s are only
slightly more difficult to accommodate than changes in the Si j’s.

The usefulness of this reoptimization capability is indicated by the computational
experience presented in §4.3.

4.3 Computer Implementation

An elaborate all-FORTRAN implementation has been carried out for the variant of
Benders Decomposition described in §2. The objective of solving large problems in
moderate computing times required the use of efficient algorithms for solving the
master problems and subproblems, and careful data management techniques. These
matters are discussed briefly in this section.

4.3.1 Master Problem

The master problems, of the form (8a), are pure 0–1 integer linear programs with
a variable for every allowable DC-customer zone combination (ykl) and for every
possible DC site (zk). Typically this leads to at least several hundred binary
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variables. Thus it was necessary to devise a specialized method which exploits
the special structure of (8a). The method we employ is a hybrid branch-and-
bound/cutting-plane approach with numerous special features.

The cuts employed are the original mixed integer cuts proposed by Gomory in
1960, and are applied to each node problem in order to strengthen the LP bounds and
to drive variables toward integer values in preparation for the choice of a branching
variable. Absolute priority is given to z-variables over y-variables in branching. Re-
versal bounds are calculated for variables which are branched upon using relaxed
versions of (8a) which drop the integrality requirements on y (while keeping the inte-
grality requirements on z) and transfer a linear combination of all constraints except
(5) and individual variable bounds up into the objective function [11]. The multipli-
ers which determine the linear combination are the appropriate dual variables of a
node problem solved as a linear program (ignoring the integrality requirements on
both y and z).

The linear programming subroutine takes full advantage of the generalized up-
per bounding constraints (4), and also exploits certain other aspects of the problem
structure. It economizes on the use of core storage by generating columns as needed
from compactified data arrays.

Finally, it should be mentioned that a number of logical relationships between
the variables are built in at various points of the master problem algorithm so as to
detect several kinds of infeasibility and “fix” the free variables when this is justified.

4.3.2 Subproblem

The transportation subproblems (7i) are solved using a new primal simplex-based
algorithm with factorization (Graves and McBride [15]). Contrary to the conven-
tional wisdom, such methods are superior to out-of-kilter type algorithms for most
network flow applications [14], [15]. This is certainly true for the present applica-
tion, where only the costs of the transportation subproblems change between suc-
cessive solutions. An earlier implementation using an out-of-kilter algorithm was an
order of magnitude slower on the average.

4.3.3 Data Input and Storage

Core storage requirements are economized by extensive use of overlay, cumulative
indexing, and the creation of compact data sets from which model coefficients can
be generated conveniently as needed. Most of the larger of these data sets are kept
on disk. Raw problem data pertaining to permissible i jkl combinations, transporta-
tion costs, and customer demands are input from tape to a preprocessor program
which creates the appropriate data sets on disk. These are then accessed directly
by the main program, which receives the rest of the problem data (Si j, V k, V̄k, fk,
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vk and configuration data for (6)) from direct keyboard input using the URSA con-
versational CRT-display remote job entry system at UCLA. The editing and scope
display facilities of URSA make this an ideal means of entering and revising all but
bulk data. Matrix generation and similar chores are accomplished entirely by the
preprocessor and main programs.

The specific types of configuration constraints (6) accommodated in the current
program include: fixing selected ykl and zk variables at specific values to set up
regional or otherwise reduced versions of the full problem; mutual exclusivity con-
straints on DC sites; mandatory service area constraints for each DC; and a limit on
the maximum number of DC’s that may be open.

Newly generated cuts are stored on disk for use in the reoptimization mode
described in §2.4. The last primal transportation solution is also stored on disk to
serve as an advanced start in subsequent runs for which it is still feasible.

4.4 Solution of a Large Practical Problem

4.4.1 Overview

Hunt-Wesson Foods, Inc., produces several hundred distinguishable commodities
at 14 locations (Wesson refineries, Hunt canneries, and co-packers) and distributes
nationally through a dozen distribution centers. The firm decided in 1970 to under-
take a thorough study of its distribution system design with particular emphasis on
the question of distribution center locations. The study was prompted both by the
need to resolve several expansion and relocation issues that had arisen, and by the
recognition that a systematic global study of the entire distribution system would
be likely to disclose opportunities for improvement that could not be identified by
conventional analyses of individual cases and geographic regions.

The primary outcome of the study was that five changes were recommended
in the firm’s configuration of distribution centers (the movement of existing DC’s
to different cities and the opening of new DC’s). The three most urgent of these
changes have been carried out as of this writing and the other two are in process.
The realizable annual cost savings produced by the study are estimated to be in the
low seven figures.
§4.2 describes the various types of computer runs needed to carry out the study.

Actual computational experience is summarized in §4.3.

4.4.2 Eight Types of Computer Runs

It is obvious that most distribution system design problems are of sufficiently major
economic consequence to warrant the most careful computational treatment. Yet
we were surprised by the large number of runs needed to deal properly with the
various aspects of a real application. No less than 8 different types of runs can
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be distinguished, each of which may require several—sometimes many—distinct
submissions:

• probationary exercises
• regional optimization
• global optimization
• “what if . . .?”
• sensitivity analysis
• continuity analysis
• tradeoff analysis
• priority analysis.

For obvious reasons we cannot go into detail on all of these phases of the study, but
we would like to make some general remarks on each in the light of our experience.

The purpose of the probationary exercises is to expose any possible shortcomings
of the model, data, or computer code that may compromise their managerial useful-
ness. They must be regarded as “on probation” until proven otherwise, no matter
how meticulous have been the data verification and program debugging efforts. A
series of exercises is required in which the computer competes with management in
carefully designed decision situations. Each situation must be limited in scope, as
by restricting the number of free optimization variables, so that its complexity does
not overwhelm the managers’ ability to apply experience and familiar analytical
techniques—yet it should be broad enough to exercise a significant portion of the
model. The computer’s solution and the managers’ solution must be compared and
any significant discrepancies must be reconciled, by hand calculation if necessary.
For instance, it is useful to run the problem locked in to the current configuration of
distribution centers so that the only optimization required is service area design and
transportation flows. The series of exercises should involve each part of the model
at least once. In this fashion the model, data and computer code truly earn their
credibility.

Regional optimizations focusing on natural geographical regions are bridges
between probationary exercises and global optimizations runs, to help tune internal
algorithmic parameters and tactics while producing useful results. Four such regions
were sufficient in our application.

Far from being the climax of a study, a global optimization run with all decision
variables free requires considerable further study to confirm its validity and enhance
its usefulness. It spawns additional runs to answer management’s many inevitable
“what if . . .?” questions (what if a certain DC were kept open, or a certain customer
zone were serviced by another DC, or a better rail rate negotiated here or DC lease
there, etc.). It also raises questions concerning the sensitivity of the optimal solution
to variation of the data. The need to address such questions is taken for granted in
applications of linear programming but they are often slighted in large-scale integer
programming applications—presumably on the grounds of their excessive computa-
tional cost. Our experience, however, is that such runs are indispensable as a source
of useful insight into the behavior of the model and its tolerance for estimation
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errors. For instance, they revealed a serious error made during the initial formula-
tion of the model concerning the specification of the lower limits V k on distribution
center throughput. Runs done using demand projected for several years beyond the
primary target period of the study gave reassurance that dynamic factors were not
unduly difficult to cope with via the static model used here.

Continuity analysis is similar to sensitivity analysis except that the purpose is to
discover a possible pathology which cannot arise for ordinary linear programming
models. We are referring to the possibility that a small change in the data may in-
duce a sudden incommensurately large decrease in the optimal value of (1)–(6), a
situation to which a modeler is likely to be quite averse since almost any datum can
be changed by a small amount for a commensurately small cost (see Williams [23]).
This situation can occur when the data changes lead to a discontinuous change in the
feasible region. Changes in data appearing only in the objective function (1) [i.e., in
the ci jkl , vk and fk coefficients] cannot lead to such behavior. The other data should
be checked by doing a run which relaxes each such coefficient somewhat; that is,
each V k should be decreased and each V̄k and Si j should be increased (it can be
shown that relaxation of the V k’s and V̄k’s precludes the need to perturb the Dil’s). If
the decrease in the optimal value of (1)–(6) is excessively large by comparison with
the estimated economic cost of changing these coefficients,1 then additional more
specific runs must be undertaken to localize the source of difficulty. A managerial
decision would then have to be made concerning possible revisions of the problem
data or even of the model itself. No serious discontinuities were detected for this
application.

Tradeoff analysis runs are appropriate when there are other major quantifiable
criteria besides cost in evaluating the desirability of a given distribution system de-
sign. Perhaps the most important secondary criterion is the quality of customer ser-
vice as it depends upon the distance between a DC and the customer zones it serves.
One possibility is to adopt the average delivery delay criterion suggested in §1.2 and
to solve the problem with successively tighter Ti’s. In this manner one may generate
the tradeoff curve between total distribution cost and the average delivery delay for
any given product or weighted combination of products.

The last type of run on the list is priority analysis. When a study reaches the point
where management is ready to consider practical implementation of the results, it
is useful to distinguish the aspects of the solution yielding the largest savings from
those of relatively marginal significance. Runs done to help refine this distinction
suggest which aspects of the solution most urgently call for implementation and
which should be postponed or even dropped as too marginal to be worth the orga-
nizational upset. In the present application this mainly involved trying to assess the
relative economic value of each of the major changes recommended for the distribu-
tion center configuration then extant. The actual process is summarized in Table 1,
which focuses on the distribution center locations because these are the decisions
of primary managerial concern. As the first row indicates, the optimal DC config-
uration can be viewed as requiring 6 changes to the current (1970) configuration.

1 Only the coefficient changes actually required for feasibility of the new solution would, of course,
enter into this estimation.
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Table 1 Priority analysis results

Service Areas Total
DC Locations and Transport Cost Differences

OPT Optimum (6 changes) Optimum 100.00
A Current Current 103.15
B Current
B.1
B.2
B.3 Current & One
B.4 Change:
B.5
B.6
B.7 Current & Best
B.8 Subset of Changes
B.9 Omitting:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2
3
4
5
6⎧⎨

⎩
1
2
4

Optimum

“
“
“

“
“
“

“
“
“
“
“
“

101.43
101.45
101.34
101.14
101.42
101.37
100.71
100.01
100.12
100.13

1.72 save over A
−0.02

0.09
0.29
0.01
0.06
0.72

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

0.01
0.12
0.13

⎫⎬
⎭

save
over
B

loss
over
OPT

C Current & Changes 3,5,6
C.1 Current & Changes
C.2 3, 5, 6 and Also:
C.3 4

⎧⎨
⎩

1
2
4

Optimum 100.30
100.29
100.17
100.13

1.13 save over B
0.01
0.13
0.17

⎫⎬
⎭

save
over
C

D Current & Optimum 100.01 0.29 save over C
Changes 2, 3, 4, 5, 6

Some of the changes require relocating an existing DC to a different city and the
others require opening a new DC. The total distribution costs corresponding to the
optimal configuration are normalized to 100. Row A gives the relative total cost
corresponding to the current DC configuration and also the current service areas
and transportation flows. Row B retains the current DC configuration but optimizes
the service areas and transportation flows. Notice that slightly more than half of
the total possible savings could be achieved by service area and transportation flow
realignments alone.

Now comes the analysis of the relative value of each of the 6 changes, from
which some subset is to be selected for implementation. Runs B.1–B.6 indicate
the savings of each change if done individually. Changes 3 and 6 appear to be very
attractive, changes 2 and 5 only moderately attractive, and changes 1 and 4 unattrac-
tive. Change 5, however, was quite appealing to management on the grounds that it
would give additional warehousing space in a region of the country where space
was in particularly short supply. Management therefore was inclined to give top
implementation priority to changes 3, 5 and 6. This inclination was supported by
the results of runs B.7–B.9, which examine the effect of omittinig one of the other
changes and selecting the best subset of the remainder. It turned out that changes 3,
5 and 6 were among those selected in every case. Top priority was therefore given
to changes 3, 5 and 6 which, row C reveals, jointly save a little more than one would
expect from simply adding their individual savings (1.13 versus 1.07). Changes 1, 2
and 4 were examined again individually given the acceptance of 3, 5 and 6. Changes
2 and 4 now look quite attractive, while 1 continues to be borderline. This conclusion
is supported by runs B.7–B.9 because the same results would have been obtained if
changes 3, 5 and 6 had been mandatory in these runs. In light of this analysis and of
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factors outside the scope of the model, management gave second priority to changes
2 and 4. Change 1 was considered too marginal for implementation. Row D shows
that changes 2 through 6 are only 1/100 of 1% away from the system optimum.

4.4.3 Computational Performance

This section summarizes the code’s computational performance on the Hunt-Wesson
problem. All computing times refer to UCLA’s IBM 360/91.

Table 2 presents ten representative runs without use of the reoptimization tech-
nique discussed in §2.4, and three with it (labeled R). None of these runs incorpo-
rated any type (6) configuration constraints beyond the locking open or closed of
certain distribution center sites, so that the reader would be assured that the problem
was not so severely constrained as to greatly facilitate optimization (our experience
has been that while configuration constraints do tend to make the problem easier,
the influence on computing times is rarely dramatic). Runs 6 and 7 are identical
except for the specification of ε . Runs 8 and 9 are identical except that the V k’s
were all 10% higher in run 8. Runs 2R, 3R and 6R are identical to runs 2, 3 and 6
respectively, except that each was initiated using all of the cuts generated by runs
1, 5 and 4, respectively. The largest number of free DC sites in any of these runs
is 30 because the remaining sites were determined to be dominated as obviously
uneconomical during the probationary exercises and regional optimizations.

The most striking conclusion to be drawn from Table 2, and indeed from our
entire computational experience, is the surprisingly small number of iterations

Table 2 Representative runs

DC’s
Locked Free 0–1 Major Execution

Run No. Free Open Variables(a) Rows (%)b Iter. Time (Sec.)(c)

1 0 16 249 4,403 0.06 3 16.7
2 0 16 254 4,488 0.03 4 23.8
2R 0 16 254 4,488 0.03 4 16.6
3 7 11 287 4,944 0.03 5 25.5
3R 7 11 287 4,944 0.03 4 17.5
4 15 4 336 5,657 0.06 4 23.2
5 20 1 349 5,783 0.15 4 24.9
6 20 5 411 6,857 0.06 7 50.5
6R 20 5 411 6,857 0.06 5 38.1
7 20 5 411 6,837 0.15 4 29.4
8 25 1 427 7,054 0.15 5 43.8
9 25 1 427 7,054 0.15 5 37.7
10 30 1 513 8,441 0.15 5 191.0

(Notes: (a) zk’s corresponding to the free DC’s plus ykl’s corresponding to DC’s either free or
locked open; (b) percentage of the optimal total cost; (c) in addition to execution time, each run
required about one second of link editing time.)
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required for convergence even with very small values of the optimality tolerance ε .
The number of iterations increases only slowly with the size of the problem. Some
partial explanations for this fortunate state of affairs are offered in the next section.

Table 3 gives further details on the runs listed in Table 2. For convenience, the
optimal value of each run is normalized to 100. The difference between the “total”
and “master” columns is the time at each major iteration spent extracting and solving
the 17 transportation problems plus cut generation time. About half of this time,
which runs quite consistently around 5 seconds, is spent performing the extraction
from the data sets on disk.

Table 3 Detailed results for the runs of Table 2

Execution Time (Sec.)Major Value of Design from
Run No. Iteration Current Master (11) Master Total
1 1 103.51 5.8 11.5

2 100.00 0.2 5.1
3 Termination 0.1 0.1

2 1 102.78 7.5 13.1
2 100.00 0.2 5.3
3 100.01 0.6 5.1
4 Termination 0.3 0.3

2R 1 100.02 0.9 6.9
2 100.04 0.2 4.5
3 100.00 0.3 5.0
4 Termination 0.2 0.2

3 1 102.96 3.7 9.4
2 100.04 0.2 5.3
3 100.01 0.4 5.4
4 100.00 0.3 5.3
5 Termination 0.1 0.1

3R 1 100.04 0.9 6.9
2 100.02 0.4 5.1
3 100.00 0.5 5.3
4 Termination 0.2 0.2

4 1 102.00 1.3 6.9
2 100.01 0.5 5.3
3 100.00 3.7 8.6
4 Termination 2.4 2.4

5 1 101.94 1.3 6.8
2 100.30 0.5 5.5
3 100.00 5.4 10.4
4 Termination 2.2 2.2

6 1 102.95 1.4 7.2
2 100.40 0.6 5.7
3 100.35 2.5 7.5
4 100.29 2.6 7.5
5 100.19 1.1 6.1
6 100.00 0.3 5.3
7 Termination 11.2 11.2

6R 1 100.39 0.8 7.3
2 100.34 0.2 5.0
3 100.30 5.9 10.8
4 100.00 0.9 6.0
5 Termination 9.0 9.0
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Table 3 (Continued)

Execution Time (Sec.)Major Value of Design from
Run No. Iteration Current Master (11) Master Total
7 1 102.90 1.5 7.1

2 100.36 0.5 5.4
3 100.00 3.3 8.8
4 Termination 8.1 8.1

8 1 103.86 0.7 7.3
2 100.37 0.7 5.7
3 100.15 4.6 9.8
4 100.00 0.5 5.4
5 Termination 15.6 15.6

9 1 104.09 1.5 7.0
2 100.37 0.6 5.6
3 100.20 2.7 7.8
4 100.00 0.5 5.5
5 Termination 11.8 11.8

10 1 105.51 1.6 6.9
2 100.38 0.5 5.3
3 100.19 2.7 7.6
4 100.00 0.3 5.1
5 Termination 166.1 166.1

From Table 3 it can be seen that suboptimizing the master problem as described
in §2.3 is generally successful in helping to keep the time spent on it quite small.
As one might expect, the final master problem tends to be relatively difficult for
the larger problems. Notice also that the actual cost of the designs produced by the
successive master problems usually (but not always) improves monotonely. Finally,
we can observe that reoptimization saves computing time but not necessarily major
iterations, and that it tends to yield a good first design.

It should be emphasized that the same standard internal and external parameter
settings have been used in all of the runs. This was done in the interest of compa-
rability. But, obviously, many useful alternatives exist which may lead to improved
performance in specific cases. For instance, gradually reducing ε at each major it-
eration is a more effective way to achieve a desired low final ε at termination than
keeping it constant. Initializing UB at a good known upper bound less than +∞ is
also possible and beneficial in most runs. And selectivity in choosing which prior
cuts to use for reoptimization is helpful. All such ad hoc adjustments have been
avoided here.

4.5 A Lesson on Model Representation

Anyone accustomed to working with linear programming applications is inclined to
economize on the number of constraints he uses in a large-scale model. The model
(1)–(6) presents an obvious opportunity to economize on the number of type (3)
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constraints without changing the logical content of the model in any way: replace
(3) by

∑
jk

xi jkl = Dil all il (3a)

∑
i j

xi jkl =
(

∑
i

Dil

)
ykl , all kl. (3b)

This formulation performs the two functions of (3) separately, namely ensuring that
all demands are met and enforcing the appropriate logical relationship between the
x’s and the y’s. The resulting representation of the problem is equivalent (has the
same set of feasible solutions), and usually has fewer constraints. For the Hunt-
Wesson application, the representation using (3a) and (3b) in place of (3) has 8,855
fewer constraints!

It turns out, however, that it would be a serious mistake to use this representation
with any type of Benders Decomposition approach. The reason is that it leads to
much weaker cuts. To see this, recall that all variants of Benders Decomposition
work by accumulating linear supports to T (y), which is defined in Sec. 2.1 as the
optimal total transportation cost as a function of the configuration design y. For a
given binary ȳ satisfying (4),

−∑
i j

ūi jSi j +∑
kl

(
−∑

i
Dil π̄ikl

)
ykl (18)

is such a support, where ū and π̄ are defined as in (12). This support is derived from
the original formulation of the problem using (3) and is implicit in (9) and (9a). The
corresponding support for the revised formulation using (3a) and (3b) in place of (3)
can be written as:

−∑
i j

ūi jSi j +∑
kl

[
−∑

i
Dil

(
π̄ik̄(l)l +Max

i′
{π̄i′kl− π̄i′k̄(l)l}

)]
ykl . (18a)

It is evident by inspection (subtract π̄ik̄(l)l from both sides) that

π̄ikl ≤ π̄ik̄(l)l +Max
i′
{π̄i′kl− π̄i′k̄(l)l} for all ikl,

with the magnitude of the difference increasing with the number of commodity
classes. Hence every ykl-coefficient of (18) must be at least as large as the cor-
responding coefficient of (18a). That is, (18) uniformly dominates (18a) over the
region of interest (y � 0); it is a “tighter” support for the function T (·). The
more commodity classes there are the greater will be the improvement of (18)
over (18a).

The result that (18) dominates (18a) implies that the representation using (3)
is to be preferred over the “equivalent” more compact representation using (3a)
and (3b). Any variant of Benders Decomposition should converge in fewer major
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Table 4 First comparisonl of Benders decomposition for two alternative
model representations

Representation
(3a) and (3b) Representation (3)Major Iteration

Number LB UB LB UB
1 — 5.410 — 5.053
2 4.150 5.023

“
“
“
“
“
“
“
“
“
“
“
“
“
“
“
“

5.000 5.028
3 4.349 ≥5.008 (Convergence)
4 4.415
5 4.534
6 4.601
7 4.631
8 4.661
9 4.714

10 4.716
11 4.750
12 4.750
13 4.774
14 4.774
15 4.808
16 4.817
17 4.817
18 4.839

(No convergence)

iterations for the first formulation than for the second. We have direct computa-
tional confirmation of this fact as a result of having turned to the first representation
only after experiencing disappointing results with the second. Tables 4–6 show three
approximately comparable disjoint regional optimizations using the original Ben-
ders Decomposition approach for both representations. We say “approximately”
comparable because some internal parameters of the master problem algorithm were
changed slightly during the time lapse between the runs, but we are confident that
this does not alter the comparison significantly. The convergence parameter ε was
set at 0.02 in all runs.

These comparative results indicate that the more compact representation con-
sistently requires many more iterations for convergence, due principally to poorer
lower bounds from the master problem. The time per iteration is approximately the
same for both representations because the size and structure of the master prob-
lem and the individual transportation subproblems is exactly the same in both cases.
Thus the representation using (3) is far superior. The other representation was all but
unuseable in our application, considering the many validation and post-optimization
runs required.

A closely analogous observation concerning the crucial importance of model rep-
resentation has been reported recently by Beale and Tomlin [3]. They undertook to
solve a practical problem concerning the optimal decentralization of office facili-
ties using a direct branch-and-bound approach with a problem formulation which
turns out to be very close to the one considered here. Their experience was that
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Table 5 Second comparison of Benders decomposition for two alternative
model representations

Representation
(3a) and (3b) Representation (3)Major Iteration

Number LB UB LB UB
1 — 5.134

“
“

— 5.083
2 3.892 4.937 4.960
3 4.245 ≥4.940 (Convergence)
4 4.453 5.046

“
“

5 4.534
6 4.544
7 4.574 5.043

“
“
“
“
“

8 4.680
9 4.680

10 4.735
11 4.735
12 4.749
13 4.749 5.027

“
“
“
“

14 4.749
15 4.759
16 4.768
17 4.768
18 4.785 5.010

“
“

19 4.785
20 4.785

(No convergence)

Table 6 Third comparison of Benders decomposition for two alternative
model representations

Representation
(3a) and (3b) Representation (3)Major Iteration

Number LB UB LB UB
1 — 5.158 — 5.158
2 4.425 5.036

“
“

4.925 4.957
3 4.431 ≥4.937 (Convergence)
4 4.436
5 4.438 4.967

“
“
“
“
“
“
“

6 4.461
7 4.494
8 4.494
9 4.496

10 4.505
11 4.508
12 4.512

(No convergence)

the problem proved to be much more tractable computationally when some of their
constraints like (3a) and (3b) were replaced by constraints like (3).2

2 The authors are grateful to K. Spielberg for pointing out the following early reference containing
related ideas: Guignard, M. and Spielberg, K. “Search Techniques with Adaptive Features for
Certain Mixed Integer Programming Problems,” Proceedings IFIPS Congress, Edinburgh, 1968.
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In this connection, we would like to point out an interesting relation between
the two representations which becomes pertinent when problems of this sort are ad-
dressed by LP-based branch-and-bound. It can be shown that the convex hull of the
feasible solutions to (3a), (3b), (4), x � 0 and y = 0, 1 is given by the constraints (3),
(4), x � 0 and y � 0. Thus the common practice of dropping integrality requirements
in order to produce an LP relaxation at each node yields a tighter relaxation when
(3) is used than when (3a) and (3b) are used. The price of this tighter bound and the
reduction in branching which it affords is, of course, the additional time required
to solve a larger LP at each node. It seems probable that some mixture of the two
representations will be superior to either one alone in terms of total computing time
(e.g., the separability of (3), (3a) and (3b) with respect to l suggests that (3) might
be used just for the l’s corresponding to the largest total demand). This appeared to
be the case in Beale and Tomlin’s study. It should be emphasized that the extra size
of (3) by comparison with (3a) and (3b) does not offer any difficulty whatever when
Benders’ approach is used, thanks to the analytic reduction which takes place prior
to setting up the continuous subproblems to be solved at each major iteration. The
ease with which Benders Decomposition can use such superior model representa-
tions is a comparative advantage over direct branch-and-bound which does not seem
to be generally appreciated.

The theoretical result stated above also suggests a general methodology for dis-
covering improved model representations: for various subsets of constraints involv-
ing some of the integer variables, try to explicitly derive the convex hull of the
integer feasible points. Another related instance where this can be done is given in
Geoffrion and McBride [13].

4.6 Conclusion

The major conclusion arising from this study is the remarkable effectiveness of Ben-
ders Decomposition as a computational strategy for static multicommodity interme-
diate location problems. The numerical experience quoted in §4.3 shows that only
a few cuts are needed to find and verify a solution within one or two tenths of one
percent of the global optimum. The same type of behavior was observed in another
full-scale application carried out recently for a major manufacturer of hospital sup-
plies with 5 commodity classes, 3 plants, 67 possible DC’s and 127 customer zones.
This behavior, together with the advantages of being able to decouple the multi-
commodity capacitated multiechelon transportation portion of the problem into a
separate classical transportation problem for each commodity, yields an extraordi-
narily powerful computational approach.

The reasons why Benders’ approach requires so few cuts for this problem class
are not yet clearly understood. The discussion of §5 shows that one essential ingre-
dient is making an appropriate choice among alternative mathematical representa-
tions of the same physical problem. We were able to employ a representation which
incorporates the many constraints describing the convex hull of a portion of the
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problem’s integer feasible solutions. This was workable because of special oppor-
tunities for analytic simplification inherent in Benders’ approach (it would not have
been computationally feasible to use the same representation with a branch-and-
bound approach to the problem). We hope that others will be motivated to study
the questions raised by our observations with the objective of understanding more
clearly the convergence behavior of Benders Decomposition and how to enhance it
through appropriate choice of model representation.

Another conclusion we have reached on the basis of our experience is that every
effort must be made to make it easy and economical to carry out the numerous pre-
and postoptimality runs required to properly execute a practical application. This
point, discussed in §4.2 and so well appreciated in the domain of linear program-
ming, is rarely addressed in the existing integer programming literature. The burden
of this requirement is exacerbated by the fact that many of the required runs must
achieve very nearly optimal solutions if they are to be useful. This is certainly true
of the probationary exercises, where significant suboptimality could shake manage-
ment’s confidence in the entire project, and is also true for “what if . . .?,” sensitivity,
continuity, tradeoff and priority analysis runs as well because their very usefulness
depends on the ability to measure differences between the solutions of different runs
in a series. Obviously the tolerance on optimality must be quite tight if one is to
avoid reaching spurious conclusions when making such comparisons. The results
of §4.3 show that the approach developed here meets this requirement at reasonable
computational cost.

The success with the present model suggests the desirability of expanding its
scope. We shall mention here but two of the more appealing and easily accom-
plished possibilities. One is to include selection among alternative plant sites and
plant capacity expansion projects via some additional 0–1 variables. Another is to
take account of the service elasticity of demand, that is, of the fact that a customer
zone’s demand for various commodities tends to increase with the proximity of its
assigned distribution center due to the advantages of decreased delivery delay [20],
[22]. One way to incorporate this effect is to replace Dil in the model by Dikl , the
demand for product i by customer l if assigned to distribution center k. A (negative)
net revenue term would also have to be appended to the objective function since
total revenues to the firm would no longer be constant. Both of these extensions
require but simple modifications to the algorithmic approach and do not upset the
major factors controlling its efficiency (the use of a model representation yielding
powerful Benders cuts and the separability of the multicommodity transshipment
subproblem into an independent transportation problem for each commodity). We
hope to be able to report on these and other extensions in a future paper.

References

1. Balinski ML, Spielberg K (1969) Methods for integer programming: Algebraic, combinato-
rial and enumerative. In: Aronofsky JS (ed) Progress in operations research, Vol. III, Wiley,
New York



4 Multicommodity Distribution System Design by Benders Decomposition 61

2. Bartakke MN, Bloomquist JV, Korah JK, Popino JP (1971) Optimization of a multi-national
physical distribution system, Sperry Rand Corporation, Blue Bell, Pa. Presented at the 40th
National ORSA Meeting, Anaheim, California, October

3. Beale EML, Tomlin JA (1972) An integer programming approach to a class of combinatorial
problems. Math Programming 3(3)(December):339–344

4. Benders JF (1962) Partitioning procedures for solving mixed-variables programming prob-
lems. Numerische Mathematik 4:238–252

5. Davis PS, Ray TL (1969) A branch-bound algorithm for the capacitated facilities location
problem. Naval Research Logistics Quarterly 16(3)(September):331–344

6. De Maio A, Roveda C (1971) An all zero-one algorithm for a certain class of transportation
problems. Operations Research 19(6):(October):1406–1418

7. Ellwein LB (1970) Fixed charge location-allocation problems with capacity and configuration
constraints. Ph.D. Dissertation, Dept. of Industrial Engineering, Stanford University, August

8. Ellwein LB, Gray P (1971) Solving fixed charge location-allocation problems with capacity
and configuration constraints. AIIE Transactions III(4)(December):290–298

9. Elson DG (1972) Site location via mixed-integer programming. Operational Research Quar-
terly 23(1)(March):31–43

10. Fieldhouse M (1970) The depot location problem. University Computing Company, Ltd., Lon-
don. Presented at the 17th International Conference of TIMS, London, July

11. Geoffrion AM (1973) Lagrangean relaxation and its uses in integer programming. Work-
ing Paper No. 195, Western Management Science Institute, UCLA, December 1972 (revised
September 1973)

12. Geoffrion AM, Marsten RE (1972) Integer programming algorithms: A framework and state-
of-the-art survey. Management Science 18(9)(May):465–491

13. Geoffrion AM, McBride RD (1973) The capacitated facility location problem with additional
constraints. Working Paper, Western Management Science Institute, UCLA, December

14. Glover F, Karney D, Klingman D, Napier A (1974) A computational study on start procedures,
basis change criteria, and solution algorithms for transportation problems. Management Sci-
ence 20(5)

15. Graves GW, McBride RD (1973) The factorization approach to large-scale linear program-
ming. Working Paper No. 208, Western Management Science Institute, UCLA, August

16. Gray P (1967) Mixed integer programming algorithms for site selection and other fixed charge
problems having capacity constraints. Ph.D. Dissertation, Dept. of Operations Research, Stan-
ford University, November 30

17. Khumawala B, Akinc V (1973) An efficient branch and bound algorithm for the capacitated
warehouse location problem. Presented at the 43rd National ORSA Meeting, Milwaukee, May

18. Lea AC (1973) Location-allocation systems: An annotated bibliography. Discussion Paper
No. 13, Dept. of Geography, University of Toronto, May

19. Marks DH, Liebman JC, Bellmore M (1970) Optimal location of intermediate facilities in a
trans-shipment network. paper R-TP3.5 presented at the 37th National ORSA Meeting, Wash-
ington, DC, April

20. Mossman FH, Morton N (1965) Logistics of distribution systems. Allyn and Bacon, 245–256
21. Soland R (1973) Optimal facility location with concave costs. Research Report CS 126, Center

for Cybernetic Studies, University of Texas at Austin, February
22. Willett RP, Stephenson PR (1969) Determinants of buyer response to physical distribution

service. J Marketing Research VI(August):279–283
23. Williams AC (1973) Sensitivity to data in LP and MIP. Presented at VIII International Sym-

posium on Mathematical Programming, Stanford, California, August





Chapter 5
Structured Modeling and Model Management

Daniel Dolk

Abstract We discuss Geoffrion’s contribution to model management and the
practice of modeling through his structured modeling formalism. We review the
trajectory of structured model management research, enumerating the contributions
and limitations of both structured modeling and model management in general. We
summarize by suggesting how Geoffrion’s work could be leveraged to contribute to
a next generation of model management.

5.1 Introduction

It is a distinct pleasure and privilege to contribute to book honoring Art Geoffrion.
My chapter discusses just one facet of the many areas where Art has made pro-
lific research contributions, namely the foundations of modeling as embodied in his
development of structured modeling. Structured modeling is essentially a formal-
ism for meta-modeling which relies heavily upon the conceptual modeling practices
used in information system design, especially those relevant to database design.
I will provide a retrospective of structured modeling in the overall context of model
management, which hopefully will serve as a comprehensible introduction to this
research for those unfamiliar with it, highlight the substantial contributions Art has
made in this field, and suggest ways in which structured modeling and model man-
agement may still be relevant today.

Modeling plays a central role not only in the disciplines of operations research
and management science (OR/MS) but also in the process of information systems
analysis and design. Indeed, modeling and simulation have become the third pillar
of scientific inquiry in addition to theory and experimentation. Yet, though models
are apparently sacrosanct in so many areas of intellectual endeavor, there appears
to be no sense of urgency to cataloguing and managing the processes, contents,
assumptions, results, and impacts of these artifacts we call models. This, despite the
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significant body of work done in the area called model management in the last two
decades of the 20th century.

The inability of model management to catch the attention of a broader
community, particularly the organizations and associated decision makers who stand
to benefit the most from it, and suffer the most from lack of it, is a curious pheno-
menon. One wonders whether the times have not yet caught up with this oppor-
tunity or whether there is a deeper cultural rift that leaves the art and practice of
modeling beyond the pale of ordinary organizational concerns. Perhaps it is a
propitious time to launch a modest retrospective of model management to ascer-
tain what lessons may be learned and what promise, if any, the discipline may still
hold. Specifically, I address the following questions: “Is model management still
relevant?” “Can we reframe the basic objectives of this research to be relevant to
contemporary network-driven, simulation-centric technologies?” “If so, what would
it look like in today’s landscape?”

In order to address these questions succinctly, Geoffrion’s structured modeling
[25] will serve as the operative lens. Although structured modeling is only one of
many knowledge representation schemes for models, it is the most fully developed
theoretically and practically, so it will serve by authorial fiat as the exemplar for
model representation in this discussion. As a result, I will address the same questions
specifically to structured modeling as to model management in the large.

5.2 A Brief History of Model Management

Around 1980, the research climate in the field of management information systems
(MIS) was rife with opportunities. MIS itself was a brand new discipline, and there
were cross-currents from many exciting developments taking place in other areas.
Database theory as embodied in the relational data model [13] was still a very
active arena (recall that the first commercial relational system did not appear
until 1982). Artificial intelligence was experiencing a renaissance buoyed by a surge
of optimism in the possibility of generating in silico human-like behavior. Decision
support systems were also just emerging as a special class of information system
transcending mere operational systems to provide more complex information to aid
human decision making. The confluence of these streams of research in concert
with the rapid development of computing languages and object-oriented methodol-
ogy in computer science provided a wide open playing field for those who saw an
opportunity for integrating information technology with existing OR/MS modeling
techniques.

Model management was born from this landscape of developments in computer
science and database management and was initially conceived as a modeling
counterpart to data management [53]. The main tenet followed accordingly, namely
that models, like data, should be treated as a shared corporate resource requiring
systematic management and control. This would be aided and abetted by the func-
tionality of a model management system (MMS) which would be the model coun-
terpart of a database management system (DBMS). Implicit in this vision was the
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recognition of the already existing rich vein of models and solvers which emanated
from the OR/MS research and practitioner communities.

Buttressing this vision of model management was the concurrent emergence of
the decision support phenomenon, which, in the spirit of [21, 48], posited models
as the linchpins of decision making. Simon [49] in his seminal work portrayed a
decision support system (DSS) as consisting of three major architectural compo-
nents: data, models, and dialogue, each of which required an associated management
system. Thus, the model management system was situated, conceptually at least, in
a very strategic position as a promising research undertaking.

The corollary with data management naturally led to the question, “if we have
a DBMS for the description, manipulation, and control of data, why not a model
management system with the counterpart functionality for models?” As researchers
began to think about what an MMS should be able to do, it quickly became clear
that an MMS was a much more complicated beast than a DBMS. The prime
directive for such a system was “support all phases of the modeling life cycle,”
which as Figure 5.1 shows entails significantly more than the data management
dimension [41]:

Fig. 5.1 Modeling life cycle (adapted from [41])

• Problem identification is similar to requirements specifications in information
system development, wherein user/client requirements, model objectives, and
data sources are identified.

• Model creation involves formulation of a conceptual representation of the model.
Typically for OR/MS models, this representation consists of a mathematical
description of the problem. However, as we argue below in the discussion of
structured modeling, a conceptual model which subsumes the mathematical des-
cription as just one of many views of the overall representation is a highly
desirable objective. Formulation may reuse an existing formulation, or incorpo-
rate a composition of two or more existing formulations, subject to revision and
modification.
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• Model implementation is the development of a computer executable represen-
tation of the model either through ad hoc program development or preferably
using existing modeling languages and environments. Also, critically, this stage
encompasses the identification, collection, and quality control of the associated
data that will instantiate the model.

• Model solution requires identification of an appropriate solution algorithm, data
preprocessing for providing input to the solver and delivering results to the
database, and solver sequencing and execution.

• Model interpretation involves analyzing the results, understanding and debug-
ging the model, and performing sensitivity analysis.

• Model distribution and application refers to the process of making a model op-
erational and accessible to the user community on a need to know basis. Model
and data security are mission-critical functions in the Internet age of information
assurance.

• Model evolution. Model versions reflecting different sets of assumptions, data,
and/or insights can proliferate rapidly and must be managed carefully. This may
well result in a reformulation of the model, occasioning additional iterations
through the life cycle process.

• Model validation is a persistent process occurring throughout the life cycle. This
may range from dimensional and unit consistency analysis at the Formulation
stage to the traditional internal and external validation processes at the Solution
and Interpretation stages that the model solution is consistent with the initial
assumptions and with the “real world.”

In addition to the rather high-level life cycle requirements, more detailed func-
tionality and design guidelines began to emerge as researchers delved more deeply
into the architecture of an MMS. A majority of the work at this stage of research was
focused upon environments for optimization models since they are generally well
structured and there exists a large universe of models and solvers available for de-
ployment. Some of the major requirements and associated guiding design principles
emerged from the limitations of second-generation optimization software:

• An MMS should have a uniform computer executable model representation. The
desideratum would be a representation formalism equal in power to the relational
data model which underlies the database management environment. Addition-
ally, the model representation should support multiple views of a model as the
relational model does for data.

• An MMS should support modeling languages. The ability to describe models in a
sufficiently general and abstract form, especially in a pseudo-mathematical rep-
resentation, streamlines the ability to formulate models and widens the audience
for model builders [22]. Earlier generations of software for optimization models,
for example, required a matrix representation of models which one could corre-
late to programming assembly language in the software development arena. This
restricted model formulation to a relatively small cadre of dedicated analysts.

• An MMS should support cross-paradigm models. The OR/MS world is an archi-
pelago of modeling silos. A powerful alternative is a single environment which
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simultaneously supports optimization, regressions, simulations, queuing,
dynamic programming, etc., and reduces the need to learn a new software sys-
tem for each different modeling paradigm. The potential of such a system to
facilitate model integration is large. The OR/MS community has developed, and
continues to develop, a broad portfolio of single paradigm models, access to any
combination of which in a single environment would be a powerful tool in model
integration (see below).

• An MMS should have access to a library of solvers. The OR/MS community
has developed a multitude of solution algorithms and meta-heuristics for specific
classes of models. As above, access to these solvers widens the range of models
which can be usefully solved in this environment.

• Models and model data should be separate in an MMS. Early modeling sys-
tems required data to be in a very application-specific format which reduced or
obviated the ability to reuse the data. Data should be independent of model rep-
resentations until such time as a model instance is required. An MMS should
leverage relational technology for managing the data. Data can be bound to a
model representation using the powerful capabilities of relational databases. This
underscores the separation of models and data mentioned above.

• Models and solvers should be separate in an MMS. Many models can be solved
in different ways, for example, an LP model may be solved using simplex or
branch-and-bound if an integer solution is desired. A model should not be bound
to a particular solver until model solution time. The MMS should then be able
to convert the data of the model instance to the appropriate format for the solver,
and back again for the solution vector(s).

• An MMS should support the reuse and integration of models. Models are typi-
cally built for a single application and rarely ever reused beyond that application.
The ability to reuse models not only has the potential for reducing model formu-
lation costs but can significantly increase ROI from model development as well.
Further, the ability to link existing models into composite models facilitates the
development of more complex models.

The central theme which emerged from the list of requirements above was the
need for a powerful model representation which is simultaneously comprehensible
to a variety of different users (clients, analysts, mathematicians) and computer
executable. The theoretical driver behind this quest started naturally enough with
a database analogy: Is there a way to represent models that is comparable in power
to the relational theory representation of data?

The first attempts at model representation leveraged artificial intelligence
techniques for representing knowledge: semantic networks of nodes and edges for
representing knowledge about models [19], first order predicate calculus to repre-
sent mathematical programming models in a way that allows useful inferences to
be made [6] and frames for representing mathematical programming and economet-
ric forecasting models [15]. Frames provided a basis for thinking about models in
terms of object-oriented representations; many authors subsequently proposed vari-
ous object-oriented representations for model management (see e.g., [24, 42]).
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Early attempts to apply relational theory directly to model representation found
that the transitive closure property which unifies relational theory does not carry
over to its modeling counterpart [4, 5]. Thus, two or more models that are somehow
joined with one another do not necessarily yield another model. The lack of a direct
relational corollary led researchers to consider different alternatives.

Geoffrion developed a full model representation formalism called structured
modeling based roughly on the entity-relationship data model, but which included
significant extensions accommodating the ability to represent OR/MS models,
particularly mathematical programming models [27]. Details of structured model-
ing will be discussed below, but it is interesting to note that structured modeling
was the first contribution with respect to model representation which came from the
OR/MS, rather than the information systems, research community. Other powerful
representation techniques were developed as well including a relational version of
structured modeling [16], logic modeling [2], graph grammars [37, 38], systems
theory [45], and metagraphs [1].

5.3 Structured Modeling

Of the model representation approaches summarized above, Geoffrion’s structured
modeling has received the most attention by researchers. We provide a general
recapitulation of this model representation formalism and show its vital role in
the model management movement. This will by no means constitute a full and
thorough review; readers are directed to [25, 27] for such a treatment.

Structured modeling (SM) is a semantic framework for representing wide classes
of models, primarily from the domain of operations research and management
science. Although many of the applications that structured modeling addresses in
the research literature tend to be optimization models, Geoffrion went to great pains
to show that models from a broad array of domains, some outside OR/MS altogether,
could be represented using structured modeling.

SM has roots in the entity-relationship data model [12] but goes well beyond
that in terms of formalism and extensions which accommodate modeling
languages and indexing semantics. Every structured model is a collection of dis-
tinct elements, namely the primitive entity (/pe/), the compound entity (/ce/), and
attributes. Attributes can be of four types: a regular attribute (/a/), a variable
attribute (/va/) to designate decision variables in a model, a function element (/f/)
based on the mathematical idea of a function, and a test element (/t/) which is
a special Boolean case of a function, used, e.g., to represent constraints within
optimization models.

Elements are grouped into classes called genera; a single such class is called
a genus. A genus is in an “IS A” relationship with the elements comprising it. For
example a supply constraint test genus may consist of an indexed set of supply cons-
traint test elements, one for each supplier. Genera may be organized hierarchically
to reflect high-level structures and to manage model complexity. This is done using
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modules which are collections of genera constituting a subgraph of the overall genus
graph (see below).

5.3.1 Structured Model Schema

Structured models are represented in three basic modalities: the schema, the genus
graph, and the elemental detail (data) tables. The schema shown in Figure 5.2 is a
full structured model schema representation of a simplified blending problem called
FeedMix which determines amounts of materials to be used in animal feed that
must satisfy certain nutritional requirements. The mathematical description of the
model is

min ∑
m

Cm∗Qm (5.1)

s.t. ∑
m

Aim∗Qm≥MRi ∀i (5.2)

Qm≥ 0 ∀m (5.3)

Fig. 5.2 Structured modeling schema for FeedMix model
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where m = material, i = nutrient, Cm = unit cost of material m, MRi = minimum
requirement of nutrient i, Qm = quantity of material m, Aim = amount of nutrient i
in material m.

The schema contains a full description of each of the genera and modules
according to a pre-specified format. Genus information in a schema includes the
genus name, associated index(es), any other genera it depends upon, genus type
(/pe/, /ce/, /a/, etc.), domain (Real, Integer, etc.), and computable function (for test
and function genera). Module information includes name and description. By con-
vention modules are designated by a leading “&.” Underlined and capitalized words
in the descriptions are intended to be the main identifiers for the associated genus or
module.

Structured models are built from the primitive entities outward. Primitive
entities do not depend on any other genera so they form the foundation of the
model. A typical building sequence is to identify each primitive entity and its
associated attributes (NUTR/MIN and MATERIAL/{UCOST, Q}, for example),
any compound entities and their associated attributes (NUTR MATERIAL and
ANALYSIS in this example), test genera (T:NLEVEL), function genera (TOTCOST
and NLEVEL), and modules (&NUTR and &MATERIALS). Note that NLEVEL is
used to compute the test genus T:NLEVEL and is more of an intermediary compu-
tation whereas TOTCOST is a terminal computation (leaf node) which may likely
serve as an objective function for the model. Typically model building is more
easily accomplished using the genus graph than working directly with the schema
representation.

The schema is a textual description represented as a hierarchical structure in out-
line form. Each entry in a schema line is either a genus or a module (prefaced by
“&”) name. Modules are aggregations of genera and/or modules which allow sub-
sets of a model to be collected into a higher order structure. &NUTR DATA, for
example, captures the part of the model that deals solely with nutrients, specifically
the genera NUTR and MIN. The genus is the basic component and may be of several
different types as designated within the “//” separators: primitive entity (/pe/), com-
pound entity (/ce/), attribute (/a/), function (/f/), and test (/t/). Primitive entities will
usually have an associated index which is specified as part of the name, e.g.,
MATERIALm. For mathematical programming models, primitive entities corre-
spond to index sets.

Each genus has a calling sequence, which may be null, specifying all genera the
current genus may reference. The genus MIN, for example, references the primi-
tive entity NUTR since it is an attribute of NUTR; therefore, NUTRi is contained
within its calling sequence. Note the indexes are carried forward into the calling
sequences; the indexing specification can become quite convoluted ([32] for more
details). Primitive entities have no calling sequences; they are in effect a root of the
genus graph tree (see below).

Attributes are equivalent to parameters in math programming models and thus
have a data type; in our example, all attributes are in the set of positive real num-
bers. Test and function elements such as T:NLEVEL and TOTCOST, respectively,
are typically described by equations represented in a modeling language (SML:
Structured Modeling Language in this case).
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Finally, each entry has a documentation segment with the potential for hyperlink-
ing among them (words in all caps above). The documentation provides a medium
for descriptions of the entry as well as any attendant model assumptions.

The schema is flexible in that different subsets, or views, can be displayed to
appeal to different audiences. For example, one could provide an outline containing
only the names and descriptions for end users and decision makers. Alternatively,
one could suppress the documentation and only display the more analytical aspects
of the model (material in bold face) for analysts and modelers.

5.3.2 Genus Graph

The genus graph shown in Figure 5.3 is an acyclic directed graph which shows
the relationships among the various model genera as specified in the schema. It
resembles an entity-relationship diagram in many respects. Entities come in two
forms: primitive entities and compound entities. Note that the root nodes of the tree
are the primitive entities which in the case of optimization models typically corre-
spond to the indexes of the mathematical model. Compound entities represent the
equivalent of relationships between two or more primitive and/or compound entities.
In Figure 5.3, for example, the compound entity NUTR MATERIAL represents two
relationships between the primitive entities NUTR and MATERIAL, namely “each
MATERIAL contains one or more NUTRIENTs” and “each NUTRIENT may be
present in one or more MATERIALS.” Genera which depend on other genera such
as NUTR MATERIAL are connected by a directed arc to the antecedent genera.
Structured modeling does not provide an explicit way to designate the cardinality of

Fig. 5.3 Structured modeling genus graph for FeedMix model
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a relationship between two entities as is the case with entity-relationship diagrams
where each arc is labeled with the cardinality.

The parameters of the mathematical model are attributes of primitive or com-
pound entities such as Q, the quantity of MATERIAL. Other dependencies cascade
down the graph to the leaf nodes, which typically correspond to the constraints and
objective function of the corresponding optimization model. We must emphasize,
however, that the structured model does not specify the decision variables or ob-
jective functions explicitly. This binding takes place only at solution time when the
user identifies the objective function(s), the constraint(s), the decision variable(s),
and the solver, perhaps using a notional modeling language statement similar to

SOLVE FEEDMIX
MIN TOTCOST
SUBJ TO T:NLEVEL
VARYING Q
USING CPLEX

5.3.3 Elemental Detail

The elemental detail aspect of a structured model is the relational table equivalent of
the genus graph. Like entity-relationship diagrams and unified modeling language
(UML) diagrams, a relational database schema of tables can be automatically cre-
ated from a well-formed genus graph. The associated set of tables for the FeedMix
genus graph is shown in Figure 5.4. These tables can be populated manually or
by using more sophisticated SQL and XML commands to import data from external
source databases. Note that this enforces the independence between model represen-
tations and data in the sense that we can add nutrients and/or materials by simply
making additional entries in the data tables without changing the model representa-
tion at all.

A model that has its elemental detail tables populated is called a model instance.
A model instance will be solved as indicated above, which in turn requires the ability
to convert the elemental detail tables into the format required by the solver and then

Fig. 5.4 Elemental detail (data) tables for the FeedMix model
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conversely to translate the solution from the solver back into the elemental detail
tables. In our example the column Q in table Q and the singleton table TOTCOST
would both receive values from the solver indicating the optimum levels of Q and
resultant TOTCOST, respectively.

5.3.4 Modules

Structured modeling also supports the hierarchical decomposition of models and the
notion of multiple views via Modules which allow users to group related genera into
a compressed subgraph for subsequent drill-down. Figure 5.5 shows the modular-
ization of the Nutrient and Materials components of the FeedMix model.

Fig. 5.5 The use of modules to compress the FeedMix model

5.3.5 Structured Modeling Language (SML)

Structured modeling strongly supports the technology of modeling languages
through its Structured Modeling Language (SML) [30, 31]. The objective of
algebraic modeling languages is to formulate models in relatively abstract,
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quasi-mathematical form which allows a parsimonious, computer executable
description of a model. The effect of such modeling languages is to place a higher
level of the processing costs on the modeling software rather than the user. SML
differs from two of the most popular algebraic languages, GAMS and AMPL, in
that it includes four different semantic levels, of which only one is algebraic. Level
1 is for simple, definitional systems and directed graph models. Level 2 includes
Level 1 plus the ability to express numeric formulae and propositional calculus
expressions. Level 3 encompasses Level 2 with simple indexing capabilities as well
as predicate calculus expressions. Level 4 subsumes Level 3 plus the ability to han-
dle more complex indexing expressions as well as relational and semantic database
models. SML levels are upward compatible in that a model expression at any level
is valid at any higher level. The FeedMix schema shown above is an example of
Level 3 SML.

5.3.6 Structured Modeling Environments

As research in structured modeling evolved, the concept of a model management
system also evolved into a more general version called a modeling environment
or integrated modeling environment [28]. A modeling environment is based less
upon the notion of a single, stand-alone RDBMS-like counterpart and more upon
the premise of a resource-rich infrastructure for supporting most, if not all, of the
modeling life cycle as shown in Figure 5.1. Modeling environments may even be
relatively application specific (e.g., [43]), but nevertheless transcend the narrow,
single-platform focus of existing decision support and modeling software.

Many prototypes of structured modeling environments have been developed with
varying degrees of success; we will mention only a few here (see [33] for references
to some of the earlier versions). Geoffrion’s own FW/SM [29] was built using the
Framework system, a personal productivity tool from the late 1980s. Framework
was an unfortunate choice for such a prototype because it lacked scalability and
also had a short shelf-life in the software marketplace. Nevertheless, the platform
was coaxed into supporting a robust version of structured modeling which did all
the complex parsing of schemas and was able to generate database schemas au-
tomatically from the structured modeling descriptions. This proof of concept en-
forced many of the design principles mentioned in Section 5.2 such as model–data
independence, model–solver independence, leveraging relational databases for data
management, and linking with actual solvers in real time. There was not, however,
a graphical user interface to ease model formulation, a serious shortcoming which
we address in more detail later.

An ambitious implementation of structured modeling in the form of VMS/SM
(Visual Modeling System for Structured Modeling) did include a GUI and imple-
mented a substantial subset of structured modeling principles [55]. The GBMS/SM
prototype also featured a genus graph GUI for the specification of structured
models [11]. Later, a spreadsheet-based version of structured modeling was
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developed as part of providing service-oriented, Web-based model management
[36]. Their prototype GUI, although a simplification of the genus graph, is
notable for using spreadsheets as the underlying platform for model management
and structured modeling implementation. It would have been most interesting to see
whether a GUI-driven FW/SM using a spreadsheet rather than Framework would
have gained more traction for structured modeling and model management in gen-
eral. Several other prototypes emerged based on object-oriented methodologies,
including the ASUMMS/DAMS project [47] and BLOOMS [24]. All of these
implementations represented valiant attempts at producing a generalized modeling
environment for widespread usage; however, none of them survived with one
notable exception.

The most enduring implementation of structured modeling is the Structured
Modeling Technology (SMT) project at IIASA [43]. SMT supports a very large and
complex optimization model called RAINS which is used to support international
negotiations over European air quality. RAINS consists of several sub-models con-
taining over 30,000 variables and 30,000 constraints in aggregate. Updated versions
of the model will be even larger. Some of the interesting aspects of this implemen-
tation are as follows:

• No genus graph GUI has been implemented. The rationale for this design deci-
sion was that the complexity of the model in terms of the number of variables
and their attendant interactions prevents a concise graphical representation. Even
with larger contemporary monitors, one could see only an insignificantly small
subset of the model at any one time.

• The centrality of data management. SMT leverages relational DBMS technology
heavily to integrate and manage not only data sets but also model versions, model
results, and model documentation.

• Multiple views of models and data. SMT supports a large community of users
with diverse requirements. This results in the need for viewing models from
a number of different perspectives. The structured modeling representation is
leveraged to provide these model views.

• Open source. SMT subscribes to the open source philosophy to make the plat-
forms as universally accessible as possible.

• No dimensional or unit specifications. An attempt at implementing units for each
of the parameters led to the proliferation of such complex, non-intuitive unit spec-
ifications in the composite variables that this effort was eventually abandoned.

• Enforced documentation. SMT generates automatically human-readable docu-
mentation at each step of the model life cycle process.

• No model integration. The SMT philosophy is that it is easier to construct models
from “scratch” than attempt to reuse already built models.

SMT remains heavily used to this day. It demonstrates the utility and scalabil-
ity of the generalized structured modeling approach for large, complex optimiza-
tion models with a diverse community of users. As a case study, it is invaluable in
highlighting which of the tenets of model management and structured modeling are
critical and which are optional or even dispensable.
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5.4 Structured Modeling Contributions to Model Management

The contributions of structured modeling to model management are numerous. First
and foremost, it provides a formal semantic ontology for models within a rigorously
developed framework based on graph theory. In this formalism, mathematical mod-
els can be represented as conceptual models, thus unifying mathematical modeling
as practiced in the OR/MS fields with the disciplines of information and data model-
ing. This cross-fertilization, it should be noted, was unusual in that it emanated from
a research luminary in operations research adopting IS approaches rather than the
more common situation at the time of IS researchers trying to extend data and infor-
mation modeling concepts to operations research. Geoffrion’s high standing in his
field lent tangible momentum to the model management movement and generated a
flurry of research on this topic from both communities.

Another advantage of structured modeling, as with most forms of conceptual
modeling, is that it provides a bridge that allows analysts to communicate more
effectively with decision makers. The ability to view the model structure as an in-
fluence diagram separate from the mathematical description provides, in principle,
less analytically gifted players the ability to question assumptions and better com-
prehend the relevance of the model to the business environment. The commercial
AnalyticaTM system relies heavily upon this model representation which offers the
advantage of a more “user friendly” view of mathematical models while simultane-
ously providing computer executability.

Another major contribution of structured modeling was the furthering of alge-
braic modeling languages as an accepted way of formulating computer executable
mathematical models. The powerful modeling language, SML, with sophisticated
indexing capabilities augmented the seminal work done in the development of the
GAMS [9] and AMPL [23] languages. Although we take such modeling languages
for granted today, the path from “horseblanket” matrix generators to algebraic rep-
resentations was a rather slow and arduous process that spanned quite a few comput-
ing generations. The emphasis on model representation which structured modeling
embodied served as an important catalyst for this transition.

Structured modeling also contributes to the goal of model reuse and integration.
The lack of reuse is frequently cited as one of the factors in the relatively high cost
of model development. In the same way that relational databases free data from be-
ing too tightly tied to specific applications, it is also desirable for models to escape
the “one time only” application label. As shown in [26], genus graphs can be saved
in model libraries and ultimately reused either by revising existing templates for
applications with similar assumptions and structures or by composing more elab-
orate models from the linkage of two or more templates. Although genus graphs
provide a fruitful medium for identifying potential sources of this latter form of
model integration, it is by no means an easy task to carry out the integration itself.
Not surprisingly, it appears this process cannot usually be done completely automat-
ically but requires manual intervention to resolve semantic incongruencies between
genus graphs, for example, in the resolution of naming differences and dimensional
inconsistencies [7, 3].
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There is a very large body of research dealing with structured modeling and
related model management issues, much of it chronicled by Geoffrion [33]. I be-
lieve it is safe to say that this research has demonstrated structured modeling to
be a powerful representational basis for comprehensive modeling environments that
support OR/MS models. However, it is also safe to say that, with a few exceptions,
structured modeling is not widely used today and never gained wide acceptance even
among practitioners in the OR/MS community. The following section will attempt
to address why this is the case.

5.5 Limitations of Structured Modeling

The limitations of structured modeling and the obstacles toward adopting it as
a standard model representation form can be attributed to both endogenous and
exogenous factors. Among the inherent limitations of structured modeling which
have impeded its use by a wider audience is the high degree of complexity of
the schema representation itself, particularly with respect to indexing semantics.
Even seasoned modelers have been known to struggle when working at the struc-
tured modeling schema level. Generating a formal, correct schema even for a simple
model such as that shown in Figure 5.2 is challenging in that each segment of the
schema has its own precise syntax which leads to a steep learning curve.

One obvious way to mitigate this problem would have been to create a graph-
ical user interface (GUI) for constructing genus graphs which could automatically
generate most of the needed syntax. Although several graphical prototypes of struc-
tured modeling were implemented, e.g., [11, 36], none reached effective operational
status. Surprisingly, Geoffrion’s own FW/SM prototype did not include a GUI but
rather required users to input the schema textually. As a result, there was never a full
“cradle-to-grave” structured modeling implementation with a “user friendly front
end.” Without a GUI feature, structured modeling was regrettably confined to a rel-
atively small cadre of experienced modelers and acolytes. It should be mentioned
that at the height of the research into model management, graphics software was
still a relatively immature technology. Graphics libraries were relatively expensive,
typically not widely available or particularly easy to use, and tended to be confined
to high end, programming intensive applications. There was no VisioTM equivalent
at that time which could have solved this problem handily.

Another major shortcoming of structured modeling is that its strength lies in the
representation of static models vis-à-vis dynamic models. It is not by chance that
optimization models were the most successfully rendered examples in structured
modeling. Their high degree of structure is well suited to the structured modeling
formalism. However, when we consider the class of discrete event simulation mod-
els, for example, representation becomes inexorably more complex. Now we must
deal not only with structures but also with events and processes that are time driven
as well. There are no available means within structured modeling for representing
event-driven processes in an elegant or concise fashion. Nor are there ways to in-
corporate the stochastic nature of such models. Although some suggestions were
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made to address this shortcoming such as extending structured modeling to include
a new random-valued attribute genus type [46], this avenue of research never gained
a foothold.

In this vein, technology to some extent overcame structured modeling as well.
During the past decade, the object-oriented Unified Modeling Language (UML) has
become the prevalent data modeling methodology, overtaking the entity-relationship
approach in system development. Although UML is anything but a polished model
representation system, it does provide capabilities for representing both the static
and dynamic dimensions of a model. Nevertheless, UML still does not offer a natural
way to represent decision models in its environment [17].

There were also significant exogenous factors affecting the acceptance of struc-
tured modeling. Perhaps of primary importance from an organizational perspec-
tive is that most organizations do not support a modeling culture in which models
are viewed as a sustainable asset. Models are too often consigned to spreadsheet
exercises or ad hoc, application-specific projects. Thus, it is difficult in this setting
to see any payoff for a general methodology such as structured modeling.

In the academic world, a cultural factor weighing against the adoption of struc-
tured modeling is that OR analysts, who would comprise the most likely user com-
munity, tend to be primarily mathematically trained and solver oriented. In that user
group, mathematics is the lingua franca of model representation, and reframing the
formulation of models into a conceptual modeling context is likely to be seen as an
extra, undesirable layer in model development. Structured modeling forces general
model structure to be specified before any model instance can be specified, and this
is resisted for all the same reasons that documentation of models (and software)
is always resisted. Even in the field of database design, the birthplace of concep-
tual modeling, database analysts often circumvent this phase and jump directly to
building tables. Perhaps then, structured modeling might best be used in the class-
room as a way of developing sound modeling practices that transcend simply the
mathematical dimension.

5.6 Limitations of Model Management

One cannot easily view structured modeling outside the context of model manage-
ment, and “model management” is a term that is rarely used today. It is neither
commercially nor academically viable. Both model management and structured
modeling faded away with the advent of the Internet and distributed computing.
Some of the reasons for this are conjectured below.

• No demand for MMS. To the chagrin of those involved in this research over the
years, it is not clear that there is, or ever was, a market demand for a model
management system [54]. Although researchers heroically assumed that such an
artifact would be valuable, no business value proposition was ever formulated or
tested to verify this hypothesis. Few organizations support a modeling culture to
the extent that development or purchase of a model management system could be
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easily justified. Further, for many organizations, modeling begins and ends with
the spreadsheet, so it would not be an exaggeration to say that, in the commercial
world, “the spreadsheet is the MMS.” Unfortunately, the spreadsheet is a fairly
primitive modeling platform, which suffers from a spate of problems not the
least of which is the widespread abuse of modeling practices by vast hordes of
amateur modelers. Nevertheless, I believe the model management community
could have benefitted, and could still benefit, from more research into the use
of the spreadsheet as a model management generator. The spreadsheet-driven
structured modeling prototype described in [36] not only showed the promise of
this approach for smaller applications but also demonstrated that a conceptual
modeling interface could serve as an effective vehicle for enforcing improved
integrity in model formulation. With the advent of more scalable spreadsheets in
contemporary software suites, much larger models would lend themselves to this
approach as well.

• Modeling too infrequently used in decision making. This is the eternal complaint
of the OR/MS community so shall not be dwelt upon further here. Despite the
best efforts of our MBA and masters programs in management, end users of
models, namely decision makers in organizations, are all too often either “model
adverse,” or less charitably, “model challenged.”

• Cross-paradigm myopia. Selling model management in the academic community
was not much more successful than in the commercial marketplace. Even in the
analyst world where one might expect a more cordial reception to the concept of
an MMS, cross-paradigm myopia tends to be prevalent, and this undermines the
objectives of a generalized system. People tend to see the world in terms of the
modeling paradigm in which they specialize, whether it be optimization, multi-
criteria decision analysis, simulation, statistics, etc., and subsequently become
familiar with one or two “stand-alone” software systems which solve only those
kinds of models. The benefits of a generalized system which could handle models
across multiple paradigms as is required for integrated supply chain management,
for example, are thus not highly valued, and the stovepipe mentality persists.

• Data but not models. Models in general do not command the same respect as data
in organizations. Everyone in this age is familiar with the need for data manage-
ment, the value of institutional data for data mining purposes, and the challenge
of and necessity for data security. A similar awareness about models is simply not
prevalent; the fact is that the basic assumptions about model management articu-
lated 30 years ago simply do not hold up in practice. Perhaps this will change as
information technology evolves, but it is difficult to be confident about this con-
jecture. Underscoring this pessimism is the current landscape where enterprise
resource planning (ERP) vendors are now including basic optimization models
as part of their integrated architectures, particularly with respect to supply chain
management. However, these models are essentially “black boxes” to the users
who generally have little or no idea about the structure or details of the models
being implemented and presumably used in decision making. In fact, this “stealth
modeling” contravenes every principle of model management, obscuring rather
than revealing the true purpose and value of modeling in an organization.
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5.7 Trajectory of Model Management in the Internet Era

The concept of model management changed dramatically with the advent of the
Internet. The emergence of the Internet shifted attention away from the generalized,
monolithic system concept to a distributed resources perspective as we discuss
below. Some of the well-known transitions which the Internet effected are shifts in
perspective from stand-alone machine centric systems to network-centric systems,
from top down to bottom up, from MMS as a single monolithic system to MMS as
dynamic, configurable software components, from software as a product to software
as a service, and from individual problem solving to collaborative problem solving.

In the model management domain this manifested in projects such as Decision-
Net [3] which effectively decomposed model management systems into distributed
resources managed by a centralized registry and directory. In this highly distributed
environment, model representations, solvers, data, and sensitivity analysis software
are all presumed to reside at distributed locations rather than in a centralized sys-
tem. The environment is responsible for registering various resources, ensuring the
availability of appropriate interfaces, and facilitating the necessary integration of
resources for modelers to accomplish specific tasks in the life cycle. This network-
centric version of model management views software as a service rather than a prod-
uct, to be priced on a “per-use” basis as opposed to a one time purchase. In fact much
of the work done in DecisionNet prefigured the more recent trends toward Web ser-
vices and cloud computing.

The Internet also changed the kinds of models that organizations cared about.
The flattening of organizational hierarchies manifested in Internet-based business
led directly to a much higher requirement for, and interest in, collaboration, which,
in turn, put a very strong emphasis upon business process and workflow models.
These models are much more dynamic and therefore, akin to simulations than those
with which structured modeling dealt.

The service-oriented Internet paradigm effectively eliminated most of the interest
in the concept of a unified model management system. In principle, the ability to
access modeling resources on demand, and only those resources which are required
for any particular application at hand, is a much cleaner business model than the
“all singing, all dancing” MMS. By the turn of the century, model management and
structured modeling were no longer seen as central to the paradigm of dynamic,
distributed computing. As a result, research interest in these areas per se began to
fade and fragment into other related channels of inquiry. Nevertheless, pockets of
research in model management persist to this day, and perhaps it is possible to build
upon them and retrench as we discuss in the next section.

5.8 Next Generation Model Management

We now address the central question posed at the beginning, “Is model manage-
ment relevant today?” Certainly research that incorporates this term has diminished
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in recent years; however, we note that modeling itself is still a vibrant activity and
continues unabated in organizations in the areas of information system develop-
ment (e.g., business process modeling and enterprise integration architectures) as
well as OR/MS-based decision models (e.g., supply chain management). The ag-
gregate levels of modeling activity remain high, but the recognition of the need to
manage these models still goes unheeded. We assume that model management is
still a vital requirement but that we need to look at it in new ways that are consis-
tent with advances in technology. We begin with the work that is still ongoing in
model management augmented by suggestions which might be considered a partial
blueprint for a “next generation model management”.

5.8.1 Enterprise Model Management

The benefits of bringing model management to the field of enterprise and business
process modeling are described in [34]. A unified enterprise modeling language
(UEML, not to be confused with UML) is specified in [51] as a vehicle for bringing
coherence to this endeavor in much the same way Geoffrion envisioned structured
modeling serving the needs of the OR/MS modeling community. The UEML is
intended to represent business logic in a platform-independent manner which nev-
ertheless can be mapped to specific enterprise modeling toolkits and “that can, in
theory, be merged, integrated, composed or otherwise operated upon to provide a
larger subset of an enterprise model, thereby providing . . . a composed EM view
of the enterprise” [34, p. 919]. This sounds very much like model–solver indepen-
dence in the structured modeling world, model integration in the model management
world, and service composition in the SOA world (see below). The UEML is itself a
static conceptual model which could be rendered as a structured model schema thus
possibly integrating decision models as an ingredient in the overall enterprise ar-
chitecture. Regardless of the model representation employed, it is heartening to see
that there is a realization of the need for model management in this arena. Hopefully,
we can avoid reinventing the wheel and leverage the substantial model management
research to move this agenda forward.

5.8.2 Service-Based Model Management

Another closely related opportunity for model management is the emergence of the
service science, management and engineering (SSME) movement, which empha-
sizes service-dominant logic over the historically prevalent product-dominant logic
[50]. This change in perspective from production to services changes the Producer–
Customer relationship to a Provider–Consumer relationship in which both parties
strive to “co-create value.” This again will put emphasis on business process mod-
els, particularly collaborative models, but it will also require, in turn, a rethinking
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of the more traditional quantitative modeling approaches which tend to optimize
manufacturing efficiency over customer satisfaction.

On the information technology side of SSME, contemporary service-oriented ar-
chitectures for delivering modeling and decision support will be required as well.
Many of the problems faced by model management researchers in addressing the is-
sue of model integration have resurfaced recently in the context of service-oriented
architectures (SOAs). Specifically, an SOA must meet the challenge of composing
services “on the fly” in order to satisfy a user’s “on demand,” and often ad hoc, re-
quest. This issue of service composition is very similar to that of model composition
when trying to link existing models and data to satisfy a particular application (e.g.,
[10, 40, 45]). Interestingly, the SOA literature seems to show little, if any, awareness
of the model management work already done in this area (e.g., [3, 35, 36]).
However, research is beginning to resurface on service-oriented architectures for
model management which redresses this situation [8, 14].

5.8.3 Leveraging XML and Data Warehouse/OLAP Technology

Even today, neither the entity-relationship model nor the UML model support the
representation of decision models, so almost by definition there is room for a con-
ceptual modeling approach which does. Because structured modeling has such a
strong definitional character, it would also seem logical as a medium for some kind
of ontological XML model interchange standard. This is consistent at a low level of
implementation with the notion of model management as knowledge management
proffered above. See [36] for an example of an XML representation of structured
models.

Another immediate application for structured modeling would be to link SML
representations with data warehouses and their associated online analytical process-
ing (OLAP) environments. This provides an opportunity for accessing multidimen-
sional data that align rather naturally with the mathematical index representation
of OR/MS models [18]. Thus, it should be significantly easier to overlay a model-
ing system on a data warehouse than on a traditional relational database. The SMT
system mentioned earlier adopts this approach, using a data warehouse as its data
engine. In general, however, it seems that the modeling community has been slow
to adopt this technology, and it is certainly the case that the data warehouse/OLAP
vendors have been very slow to add significant modeling capabilities to their OLAP
tools.

5.8.4 Model Management as Knowledge Management

As mentioned at the beginning of this retrospective, model management grew as a
corollary to data management. Given the contemporary focus on knowledge flow,
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the learning organization, and the knowledge society, a more robust metaphor may
be model management as knowledge management. And even the term “manage-
ment” has perhaps historically been used in too limited a scope, often implying a
concern more with the management control issues of data, models, and knowledge
than with their uses in conducting business more effectively.

When one looks at the modeling life cycle, it is difficult to escape the conclusion
that modeling deals with anything less than the flow of knowledge. The purpose
of building and solving models is to illuminate decision landscapes by identifying
viable choices and evaluating trade-offs among the choice set. As such, models,
properly fashioned, are knowledge creators. The stages of problem identification
and model interpretation, for example, require extensive knowledge about the
domain(s) for which the model is being developed. Model creation and solution, on
the other hand, require specialized knowledge about mathematics and algorithms.
Every aspect of the life cycle can be characterized in a similar knowledge-based
idiom. I believe it is necessary to position modeling within the larger context of
knowledge and to establish the “management” designation as the entire spectrum of
management rather than focusing solely upon the control aspects. This perspective
is examined in more detail in [44, 52].

Models from the decision support perspective are primarily used to guide and
enlighten decision making. Too much of decision support, however, has dealt
with isolated decision situations, for example, budget planning or optimal resource
allocation. Experience with information system development over the past 15 years
has shown us the primacy of business processes in the systems analysis process.
Decisions need to be similarly cast not just as point events but as processes with
overarching organizational objectives. Supply chain management is an excellent
example often requiring multiple decisions which are highly interconnected and
dependent on each other. The models which support these decisions must capture
these interconnections and interdependencies. This puts a high premium upon model
integration.

Simon’s science of design philosophy has had a major impact on research in
the areas of information system development, decision support, and operations re-
search/management science. Too often, however, the focus from his approach has
been on individual decision making in relatively narrow contexts. The Internet with
its flattening of hierarchies increases the criticality of collaborative decision making,
and the “new” model management must be able to marshal the flow and synthesis
of modeling knowledge within collaborative environments.

At a higher level of knowledge sharing, one might imagine a Wikipedia counter-
part for models, a knowledge-based equivalent of an open source operating system
perhaps, where a community of committed scholars and practitioners creates and
sustains an encyclopedia of information about a particular domain of applications
and their attendant models. Consider supply chain management as an example. A
knowledge environment for the supply chain world might contain a high level con-
cept map, a semantic network of sorts, containing among other things, a taxonomy
of supply chain functions. The concept map would contain for each function links
to case studies, scholarly articles, and models suitably represented in structured
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modeling or an equivalent robust representation. These models could serve peda-
gogical purposes as well as be computer executable in the distributed computing
sense of DecisionNet.

5.8.5 Search-Based Model Management

Although decision support speaks of semi-structured and unstructured decision
making, the majority of applications developed deal with quite structured data. The
emergence of search engine technology provides a powerful capability to manipu-
late semi-structured data, especially documents. Thus we need to reconsider what
models might look like that use these semi-structured data rather than, or in addi-
tion to, the typical data stored in relational databases. Can this kind of knowledge
be used to refine model assumptions, amplify model interpretation, guide us to new
solution heuristics, or build model taxonomies for model formulation? The “new”
model management must leverage search engine technology to access and manip-
ulate a wider range of knowledge. One interesting avenue of attack in this regard
is the use of “mash ups” for identifying domain-specific indicators which could be
marshaled toward a preliminary stage of model formulation; [39] gives an example
of this in the area of clean energy.

5.8.6 Computational Model Management

For structured modeling to be truly relevant, I believe it is necessary to revisit the
dynamic model representation issue to examine whether structured modeling can be
extended elegantly and naturally to accommodate dynamic models such as discrete
event and agent-based simulation models. The prevalence of computational model-
ing, particularly in the biological sciences, with its emphasis on bottom up complex-
ity, cellular automata, agents, and emergent behavior, presents a distinct challenge to
the relatively static forms of structured modeling. Yet this form of modeling seems
to be gaining ascendancy and may lead us into another complete iteration of how
we view models, what model management entails, and what modeling environments
will look like.

In the new perspective on complexity that has resulted from research in the evolu-
tionary and biological sciences, systems are simulated as “bottom up” phenomena,
often represented as cellular automata, exhibiting emergent macro behavior from the
repeated interaction of localized agents following (usually) relatively simple rules
[20]. Interestingly, however, the software platforms which support these classes of
agent-based simulations (ABS) seem hauntingly reminiscent of optimization soft-
ware as it existed before modeling languages or representational formalisms such
as structured modeling were developed. Other than the use of object-oriented archi-
tectures, there do not seem to be any uniform model representations for agent-based
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models and simulations, and each model is built in an ad hoc, stand-alone mode.
Each platform has its own protocol for representing and constructing simulations,
and oftentimes its own community of practice for sharing knowledge. Given the ex-
tensive interest that currently exists about ABS, perhaps there is an opportunity for
applying model management design principles that can accelerate the evolution of
this modeling paradigm.

Agent-based simulations have evolved from cellular automata into elaborate vir-
tual environments which pose different challenges for model management, espe-
cially around the issue of external model validation. This proliferation of what is
sometimes termed computational modeling quickly outstrips the older, rather static,
notions of model management and requires a more fluid, knowledge-based approach
for the related processes of computational experimentation and computational
explanation. The “new” model management must be able to handle a much more
dynamic kind of model and oftentimes a fuzzier notion of validation, while perhaps
simultaneously relying upon the more conventional OR/MS models as validation
and calibration vehicles.

5.8.7 Model Management: Dinosaur or Leading Edge?

It is difficult to know, even in retrospect, whether model management has been over-
come by events or whether it perhaps may still be ahead of its time. One can see in
the agent-based simulation environment and the enterprise modeling endeavors the
same phenomenon which occurred in the evolution of OR/MS modeling languages.
The unregulated proliferation of different low level languages and methodologies,
each with its relative strengths and weaknesses, leads to a recognition of the need for
some uniform, integrative, higher level modeling methodology (“meta-models” in
today’s terminology) which allows a wide range of models to be described in “busi-
ness friendly” or “decision friendly” terms while simultaneously being computer
executable. Structured modeling, among other methodologies, played this evolu-
tionary role in the world of OR/MS models, and it will be interesting to see whether
it, or derivatives thereof, may eventually find purchase in other environments.

5.9 Summary

Geoffrion’s foray into meta-modeling via structured modeling represented a signi-
ficant intellectual departure for the majority of the operations research community
which, at least in the mathematical programming arena, typically focused princi-
pally upon generating and demonstrating the relative efficiency of new
solution algorithms and meta-heuristics. This shift of attention from model solu-
tion to the overall modeling life cycle and subsequently to the conceptualization of
models and modeling languages was strongly cross-fertilized by the disciplines of
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computer science and information systems. Structured modeling is an admirable
blend of operations research, management science, programming languages,
database management systems, software engineering, and information systems mod-
eling. This union, it seems to me, has been underutilized by all the communities
involved. The processes of building models and building information systems are re-
markably similar as are, in a more focused context, the processes of building solvers
and writing application programs. Yet, too often the software engineering world all
but ignores model-based decision making, and too often the OR/MS world ignores
proven system and software development methodologies in the course of model
building. Geoffrion’s signature contribution in the creation of structured modeling
was to illuminate both these landscapes and show where and how they could be
fruitfully combined.

I would like to conclude on a personal note of deep gratitude. My own career
would not have been nearly as enjoyable or as fruitful without Art Geoffrion’s
friendship; working with Art and the structured modeling community he generated
has been the most rewarding part of my academic life. It has been a distinct honor
to see a Master Scholar at work and to be invited to participate in some of that
work. I celebrate Art for his mentorship and support, for his boundless intellectual
energy, his ability to see beyond boundaries and across the horizon, and for being a
generous, wise, congenial, and committed colleague.
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Chapter 6
Retrospective: 25 Years Applying Management
Science to Logistics

Richard Powers

Abstract A management science practitioner recounts his 25 years of providing
the corporate world with logistics optimization software and consulting. Clients
included a substantial portion of the world’s largest businesses as well as the US
Department of Defense and General Services Administration. Significant contribu-
tions were made to the profitability and return on assets of these client organizations.
At the same time the members of the author’s company contributed to the ongoing
development of optimization technology and large-scale data management to sup-
port logistics modeling. These efforts led to the publication of dozens of articles in
first-rate logistics and management science journals as well as the election of two
of the company’s principals to the National Academy of Engineering.

6.1 Where It All Began

In the spring of 1975 I was working in the Office of the Secretary of Defense (OSD)
when I received orders from the Chief of Naval Personnel to “report immediately”
to a special study group that was being formed to revamp the logistics infrastructure
of the Department of Defense (DOD). For the previous few years I had been work-
ing on the realignment of force structures of the military services as we departed
from Vietnam and on the introduction of the All Volunteer Force (AVF). This new
assignment would in a way be an extension of that work because the logistics infras-
tructure which was in place to support the war in Southeast Asia was still in place
in 1975 although the force levels had been reduced significantly.

When I reported to the Department of Defense Material Distribution System
(DODMDS) study, a group made up of about 50 military and civilian personnel
from all of the military services and the Defense Logistics Agency (DLA), I was as-
signed the tasks of developing and applying analytical tools, defining and acquiring
the data necessary to do the analysis, and managing the contracts that we would let
with the private sector to assist our efforts.

Richard Powers
Former CEO and President, Insights, Inc., Redwood City, CA, USA
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This admittedly seemed an overwhelming task to me at first blush. I had been
doing manpower and cost modeling in OSD, but I had no relevant experience in the
sort of resource allocation optimization implied by a “restructuring” of the DOD
logistics system. In 1975 there were 34 wholesale distribution facilities across the
four military services and DLA. Those facilities were scattered across the continen-
tal United States (CONUS) and Hawaii, with major concentrations along the coastal
areas of the country. In 1975 there were 50,000 separate customers of the wholesale
logistics system who received 27.4 million shipments worth almost $100 billion in
2008 dollars. Material moved into the DODMDS from 19,000 separate procurement
sources. There were 3.7 million stock keeping units (SKUs) stored in 866 separate
buildings within the 34 facilities. Just the base year warehousing and transportation
costs, excluding inventory holding costs, were $4.6 billion in 2008 dollars.

As usual in Washington when the word gets around that a major effort like the
DODMDS study is cranking up, numerous government contractors start pleading
their cases about how they are the right ones to undertake this massive effort. We
talked with all of those who claimed they knew just what to do, given that they
received seven or eight figure contracts, but I was not convinced any of those con-
tractors truly understood the magnitude of the task or had the tools and expertise to
do it right. From day one we knew that it was highly likely that we had excess ca-
pacity in the DODMDS and that the results of our study would be the recommended
closure of some of those DODMDS facilities, thus a political hot potato. This expec-
tation pretty well guaranteed that our conclusions and recommendations would be
severely scrutinized, challenged, and opposed as our report worked its way through
DOD, OMB, and the Congress. For that reason I believed we should first explore
conducting the data development and modeling work ourselves rather than just turn
it over to a third party.

Fortunately there was a young Air Force officer, Lt. Jeffrey Karrenbauer, serv-
ing at the Air Force Logistics Command (AFLC) in Dayton, OH, who had recently
completed his course work for a doctorate in logistics at Ohio State University, at
that time arguably the best logistics academic program in the country. I requested
that Karrenbauer be transferred to the DODMDS study group as he seemed to know
a good deal about logistics modeling and the sorts of tools that were available to do
it. Karrenbauer educated me about both goal-seeking and simulation models for lo-
gistics analysis and was aware of a recent article published in Management Science
by Arthur Geoffrion and Glenn Graves at UCLA that appeared to hold some poten-
tial for our modeling requirements. We contacted Geoffrion and asked him to visit
us in Washington to see if the approach he and Graves had developed could work for
us. We concluded that adopting a location optimization model of the sort Geoffrion
described was the way to go and set on that course and contracted with Geoffrion
and Graves to work with us to do that. Looking inside the DOD for some further
optimization expertise, we solicited the assistance of a relatively new member of the
faculty of the Naval Postgraduate School in Monterey, Jerry Brown. Brown was a
recent graduate of the doctoral program at UCLA and had worked with Graves and
Geoffrion during his time there.
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At the same time, we knew that to withstand the scrutiny and challenges that
would inevitably come with results based solely on least cost we would have to be
able to show that the structure we would recommend could support mobilization
requirements in the time specified by the Joint Chiefs of Staff (JCS). To satisfy the
questions about mobilization and operational requirements of our least cost structure
we adopted a dynamic simulation model, LREPS, which had been developed at
Michigan State University and was offered commercially by Systems Research in
East Lansing. Meantime we had initiated a data call to all of the military services
and DLA to provide to us all of the logistics transaction data for a year.

The DODMDS study group concluded its analytical work in the spring of 1978.
We had processed over 3000 magnetic tapes of logistics data and consumed thou-
sands of hours of large-scale computer resources at two DOD computer facilities.
The two models we used served us well and gave us great confidence that we had
done it right. Although our recommendations took several months to work their
way through the various echelons of DOD, OMB, and Congress, the results were
never successfully challenged on technical grounds. However, the political process
in Washington has a way of altering and delaying the actions that appear to be
warranted from a study as thorough and comprehensive as the DODMDS study.
Nonetheless, over the roughly 20 years following the completion of the DODMDS
study in 1978, virtually all of our recommendations were implemented in one form
or another. I have no way of knowing the actual savings that did accrue for DOD and
the American taxpayers over those 20 some years, but in 1975 we estimated that an-
nual savings of 10% could be achieved by implementing our recommendations. The
number of distribution facilities could be reduced by one-third and annual savings
would be $500 million in 2008 dollars.

In the summer of 1978 I had 20 years service in the Navy. Those 20 years had
been most rewarding and enjoyable, but as I thought about what we had accom-
plished with the DODMDS project I believed we should take the technology we
had developed and the experience we had and take it to corporate America. Looking
down the road it was clear that global competition was going to play a larger and
larger role in the affairs of American companies. It seemed to me that if we could
increase the productivity of American businesses, they could compete more effec-
tively in this emerging global economy. So I decided to exchange my Navy blue
uniform for pin stripes. Brown, Geoffrion, Graves, and Karrenbauer joined with me
in 1978 to form INSIGHT, Inc., a company to be devoted to providing the best
possible optimization-based management support systems to corporate America.

Within a couple of years we added several notable management scientists to IN-
SIGHT’S professional stable of optimization expertise: Gordon Bradley and Rick
Rosenthal from the Naval Postgraduate School, David Ronen from the University
of Missouri, St. Louis, Richard McBride from USC, Shao Ju Lee from Cal State
Northridge, John Mamer from UCLA, and Terry Harrison from Penn State.

Although we perceived some of them, but not all, a fortuitous confluence of fac-
tors was coming together in the late 1970s and early 1980s as we were getting
started: a recognition of logistics as a crucial corporate function; the rise of finance
as a driving force in corporate America; the emerging globalization of markets and
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manufacturing; the spectacular increases in computing power; and the development
of powerful new mathematical techniques for solving large, complex optimization
problems of the sort encountered in logistics.

Before delving a bit into each of those converging forces let me explain my pref-
erence for the term “logistics network” rather than the frequently used term “supply
chain.” To me supply chain implies a hierarchical singularity that is seldom found
in the business world, whereas a logistics network conveys the correct image of a
highly complex, inter-related set of relationships within and between echelons of a
sourcing, manufacturing, and distributing network.

6.2 The Rise of Logistics

Perhaps Peter Drucker was the first to see it in 1962 when he wrote about physical
distribution as the “dark continent” of the US economy. The traditional
business functions of warehousing and transportation were relegated to the bottom
of the organizational hierarchy in most businesses. However, by the late 1970s and
into the 1980s old hierarchical organization models for control and communica-
tions were proving to be inadequate in the rapidly changing global market place.
Speed and flexibility became the name of the game, and the technologies of com-
munications and computers were the enablers of that speed and flexibility. The old
organizational structure of the pyramid, which had served well for decades, was too
slow and cumbersome. Information systems replaced the middle echelons of the
old pyramid structure, and the old ways of ordering business and making decisions
about sourcing, manufacturing, and distribution were giving way to a need for in-
tegrating a diversity of players in a logistics network. Outsourcing many activities
became an effective strategy and that required information and coordination. The
logistics organization became that coordinating center for sourcing, manufacturing,
and distribution. Wal-Mart recognized that before most other organizations. Wal-
Mart recognized early-on the name of the game was logistics. Worth noting, Lee
Scott, the third CEO of Wal-Mart following Sam Walton and David Glass, began
with the company in the transportation department and moved up in the company
through logistics.

6.3 The Rise of Finance

The early part of the twentieth century saw manufacturing people rising to the top
of the corporate hierarchy—that was where the problems and leverage were as we
became a mass-producing economy. After WWII manufacturing gave way to the
rise of marketers to the top who could promote and sell the mass-produced goods.
By the 1980s those with finance backgrounds were emerging to the top of many
companies. With the emphasis on profitability and return on investment that came
with greater numbers of powerful institutional investors, companies that wanted to
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grow had to show returns on assets that would attract the capital they needed. As
the well-known DuPont model made quite clear in simple terms, return on assets
(ROA) is the product of capital turnover X profit margin. By finding effective ways
to reduce capital committed to the business (close unneeded facilities, contract out
warehousing, vehicle fleets, etc.) and to increase profit margins by decreasing all the
operating costs associated with sourcing, manufacturing, and distributing products,
ROA could be improved.

6.4 Globalization

The globalization of capital flows, manufacturing, and markets has had a profound
effect on business organizations throughout the world. As Asian, Latin American,
and European countries took on more and more of the manufacturing of products
and components sold in the United States, the complexities of effectively
managing these world-wide logistics networks became highly challenging. The
amount of information required to envision the entire logistics network of a size-
able business was not only difficult to collect, it was equally difficult to assimilate
in a meaningful way to support resource allocation decisions.

6.5 Computer Technology

Little needs to be said here other than that the incredible advances in computational
capability over the past 30 years have been an absolutely critical enabler of the ap-
plication of management science methods to complex logistics network issues. I do
not think many people in 1978 really grasped the profound implications of “Moore’s
Law” for the kinds of complex logistics analyses that would be possible within a few
short years. Today a reasonably well-configured laptop has more computing power
than a roomful of mainframe computers in 1980.

6.6 Optimizing Solver Technology

Great strides were made in the late 1970s and early 1980s in creating optimizing
solver technologies that enabled the solution of the huge and extremely complex
resource allocation problems inherent in logistics networks. Mention was made ear-
lier of the work of Geoffrion and Graves that was applied in the DODMDS project
and that was followed quickly by network optimization codes developed by Brown,
Bradley, and McBride. Of course, the rapidly evolving computer power was a potent
enabler of these new optimizing solvers, which have continued a steady evolution
ever since.
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6.7 Insight Takes Off

With our objective of applying the best optimization technology available to the
resource allocation problems of corporate America we launched in the summer of
1978. We were convinced that logistics management and management science were
made for each other. INSIGHT’s vision was from the beginning to marry research
in large-scale optimization with application to real-world business problems. The
manifestation of that vision and the delivery of INSIGHT’s technology and exper-
tise have changed with the times over the past 30 years, but the vision has been
constant. INSIGHT has always had close ties to academia to assure the continuing
focus on research. Although INSIGHT grew and added marketing, administrative
and support staff, the heavy emphasis on research in large-scale optimization was
maintained.

In the first few years, INSIGHT performed consulting engagements for corporate
clients using our proprietary network optimization and data management software.
Our earliest clients were Becton-Dickinson, Maryland Cup, and Glidden. The only
computers capable of handling the huge databases and optimization programs were
large mainframes. Our early computation work was done at UCLA and Geico In-
surance where we bought computer time. When a logistics network optimization
project started we would meet with the client management to get a clear under-
standing of their objectives and then work with them to build the model of their
production–distribution system. We would then tell the clients what data they would
need to provide us and set up a task plan to get the project done. After all the required
data were collected and validated we would make a baseline model run, followed
by optimization scenarios at our contract computer center. With printed outputs in
hand we would then sit down again with client management to analyze modeling
results and work through the “why” of those results. If more optimization model
runs were necessary at this point we would do those and wrap up the project with a
written report describing what had been done, the results, and recommended courses
of action.

In 1980 Baxter Healthcare came to INSIGHT with a request to license our pro-
prietary logistics network optimization software, ODS, and the data management
software that built the databases and input files for ODS, DATA-1. (In 1984 ODS
and DATA-1 were incorporated with a transportation simulator, SHIPCONS, into
a fully integrated logistics network optimization and data management package,
SAILS.) After creating some documentation and “hardening” the software, a license
agreement was set up and Baxter became INSIGHT’s first software licensee. This
started a trend, and over the next several years more large companies wanted to in-
stall our software in-house. These companies included Abbott Laboratories, Nestle,
Mars, Pet, Sun Oil, Bristol-Myers, and Clorox. We continued to do logistics opti-
mization projects in the early 1980s for Basic American Foods and R&G Sloane
Manufacturing, but the trend was clearly shifting toward in-house licensing of IN-
SIGHT software. This trend reflected the existence of competent corporate plan-
ning staffs and management science professionals who wanted to acquire powerful
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optimization software to use themselves to support their organizations’ strategic and
tactical planning activities.

In addition to SAILS consulting and licensing, INSIGHT had an increasing flow
of custom optimization work through the 1980s. Indeed, by the mid-1980s roughly
70% of our revenues were from custom optimization work with 30% coming from
licensing and consulting with SAILS. This custom modeling work came mainly
from large companies with management science staffs who were trying to solve
large and complex resource allocation problems. We often joked that INSIGHT was
the stop of last resort when in-house modeling groups had tried everything else to
solve their models and failed. These corporate management science professionals
were familiar with the management science literature and found INSIGHT to be a
company with outstanding representation in relevant research published in the top
refereed journals. The results we were delivering to our clients and that were pub-
lished in Interfaces, Management Science, and The Journal of Business Logistics,
among other top-rated journals, were evidence that if you had been struggling with
a tough resource allocation optimization problem without success, it was worth a
call to INSIGHT.

Although we developed and implemented powerful optimization systems for
capital budgeting and portfolio selection (GTE, Mobil Oil), petroleum dispatch-
ing (Chevron, Mobil Oil, Getty Oil), and airline crew scheduling (United Airlines),
the greatest amount of our custom optimization work involved various aspects of
production planning and scheduling (Basic American Foods, Clorox, M&M/Mars,
Nabisco, Eli Lilly, Kellogg’s, Iowa Beef Processors, Anheuser-Busch).

During the last half of the 1980s the licensing of SAILS for in-house company
use increased steadily. The gap between license revenue and custom software
development was narrowing. Then, in 1989, two large custom projects were
launched which came to play a significant role in INSIGHT’s already shifting
emphasis toward licensing packaged products. These projects were the Global
Supply Chain Model (GSCM) for Digital Equipment Corporation and the Heavy
Products Computer Assisted Dispatch (HPCAD) system for Mobil Oil. Both of
these projects were completed with great success and reported in Interfaces.
A decision was made to put these two modeling systems into packaged form for
stand-alone use on the increasingly powerful PCs of the mid-1990s.

In this same period, 1991–1992, we moved SAILS to the PC from the mainframe.
PCs had finally become serious computing platforms where large optimization pro-
grams could be executed in reasonable times. Many clients continued to use SAILS
on their mainframes, but there was rapidly increasing demand for “easier-to-use”
and graphically appealing software which could be used independent of the cor-
porate information system bureaucracy. The logistics analysts wanted to have their
own models on their own machines on their desks. Our first PC-based SAILS client
was GE Appliances in 1992. Many other PC implementations of SAILS quickly fol-
lowed, and by the mid-1990s our revenue pattern had flip-flopped in that 70% was
now from licenses for SAILS and our “new” packages, GSCM and SHIPCONS II,
while 30% was from custom optimization work.
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A significant phenomenon was becoming apparent by the mid-1990s which con-
tinued up until the time I retired as CEO of INSIGHT in 2003. As corporate America
“re-engineered” to be more competitive in a global economy many large businesses,
including our client base, reduced or eliminated their corporate management science
and planning staffs. Those groups of management science and logistics planning
professionals which had been our key contacts and users of our software in client
organizations started disappearing. As a consequence more businesses started look-
ing to buy turn-key solutions from outside sources. This was reflected in the move
to buy enterprise resource planning (ERP) and supply chain management (SCM)
suites. It was also reflected in more companies asking for consulting support to
do logistics optimization projects, even when they had already licensed the SAILS
software for in-house use. Ironically, this change in the environment for our services
took us full circle back to where we began in 1978, using our proprietary software
to conduct analyses for our clients. That pattern continued until my retirement in
2003.

6.8 Bumps in the Road

Every business has the same set of obstacles to overcome to achieve success:
financial, technical, organizational, and market presence. We had all of those to be
sure, but they were always met and overcome. However, we did have a consistent
set of issues that caused frustration. The first source of frustration was the orga-
nizational inertia of some of our clients and potential clients. Notwithstanding the
frequent admonishments in the management literature of the dysfunctional effects
of organizational silos, we found that for most organizations those silos were well
entrenched. The traditional functional divisions of manufacturing, finance,
marketing and logistics viewed the world and their businesses from the narrow
perspectives of their own divisions’ best interests. This view of the world was
reinforced, and indeed caused, by the compensation systems that existed in most
client companies. As a consequence, when a cross functional analysis was done that
looked at the business as a whole one or more of the functional divisions would view
the results as detrimental to its own division’s interests. The response, not surpris-
ingly, would be to try to torpedo or discredit the analytical results and thus prevent
the implementation of what we proposed as a way to increase the overall return on
assets for the business.

A second source of frustration was the frequent inclination of client organiza-
tions to seek “simple solutions.” We published an article on this very subject in
INTERFACES in 1983, The Myth of the Simple Model. Although analyzing the
entire logistics system of a major business organization was an inherently data-
intense and complex undertaking, many potential clients wanted a methodology
like spreadsheets that they understood. We often commented that an organization
would rather accept an inferior or wrong solution than accept one they did not fully
understand. Many potential client organizations did not have trained management
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scientists who were comfortable with mathematical optimization technology. Logis-
tics planners were uneasy trusting the results of a process they did not fully grasp.
Consequently we sometimes lost assignments to competitors who offered simple
heuristic or simulation approaches. The fact that we could demonstrate with exam-
ples that such “simple” approaches not only did not guarantee the best result but
sometimes the wrong result, did not carry the day.

A third source of frustration was the emergence of Enterprise Resource Plan-
ning (ERP) systems. Those who adopted such systems became captives of what
data were readily available in the ERP databases as well as warnings by the vendors
of those systems that any analytical programs other than what they provided were
incompatible with the ERP package. As the ERP systems were usually committed
at very high levels in client organization, and for a different set of reasons than the
support of logistics network analysis, we sometimes found ourselves excluded for
fallacious reasons. We even had existing clients who had been using our software for
years who had to spend large amounts of time and money to simply extract the data
from ERP systems that had always been available in legacy systems that were
displaced.

6.9 The View Ahead

As was noted earlier, the loss of management science professionals in many client
and potential client organizations has continued. It seems the currency has been de-
based in far too many instances to the point that client organizations want grand
consulting solutions using simple tools inadequate to the task of modeling highly
complex logistics networks. Without the management science expertise in-house to
adequately evaluate options offered, low-technology solutions are quite often pre-
ferred because they seem easy to understand.

On the other hand, for those organizations that do have the expertise to grasp the
value of truly globally optimal solutions more complexity and richness are being in-
corporated into logistics network models, thus placing ever greater demands on the
solution technology. Forward-looking companies want to consider “green supply
chains” where energy consumption is a component of the optimal solution. Rather
than the classic logistics network of producer–distribution center–customer, much
more comprehensive logistics network models are sought: incorporation of raw ma-
terial sources, marketing impacts of various configurations, seasonality of demand
or materials, and multiple stages of production and conversion. Postponement strate-
gies and inventory stratification and staging are increasingly looked at with compre-
hensive network design models. So we have two almost opposite effects occurring
at the same time: organizations that will settle for “simple” methodology in a larger
consulting context, and organizations with management science professionals who
are demanding ever more capable solution technologies to handle far more complex
model features than in the past.
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6.10 In Sum

My 25 years applying management science not only to corporate America, as we
started out to do, but to corporations and governments all over the world, has been
stimulating, challenging, and I believe for our clients, quite profitable. We executed
scores of client engagements and license support assignments for the top companies
in the world. At one point in 2001 I counted 40% of the Fortune 50 as our clients
and, excluding purely financial firms like banks and insurance companies, 45% of
the top 50 companies in the Business Week Global 1000 were our clients. We had
long observed that our clients were consistently among the most profitable firms in
their industries. We believe we contributed to that, but more importantly it reflected
that the top companies recognized the value of management science and modeling in
making resource allocation decisions. Although many of our clients did not divulge
to INSIGHT the magnitude of their ROA that resulted from using our software or
from our consulting engagements, I am confident the savings in operating costs
and asset reductions ran to the tens of billions of dollars. One client alone, Digital
Equipment, reported savings in operating costs over 4 years of $1 billion and asset
reductions of $400 million from decisions made based on the use of GSCM.

On the professional side, INSIGHT’s staff has had a tremendous record of
articles published in the top refereed journals in management science and logis-
tics. Many of the scores of articles published by INSIGHT’s staff members have
described modeling work done with our clients. In addition to a prodigious volume
of seminal articles in the professional literature there has been recognition of other
sorts. INSIGHT clients were runners-up for the Edelman Prize on three occasions.
INSIGHT staff members were frequent speakers at national conferences for man-
agement science and logistics as well as invited guest faculty for several university
executive management programs. Several INSIGHT members have played promi-
nent leadership roles in the top professional organizations for management science
and logistics. Finally, and most significant, Geoffrion and Brown, two of the original
members of INSIGHT, were elected to the National Academy of Engineering.

It was a wonderful 25 years spent with top-notch associates and loyal clients,
many of whom became and remain good friends.
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“Thou shalt never get such a secret from me but by a parable.”
Shakespeare, The Two Gentlemen of Verona

This paper honors the memory of deceased coauthor Richard E. Rosenthal

Abstract Practitioners of optimization-based decision support advise commerce
and government on how to coordinate the activities of millions of people who
employ assets worth trillions of dollars. The contributions of these practitioners
substantially improve planning methods that benefit our security and welfare. The
success of real-world optimization applications depends on a few trade secrets that
are essential, but that rarely, if at all, appear in textbooks. This paper summarizes a
set of these secrets and uses examples to discuss each.

Clients consult specialists because they have real-world problems to be solved. Clar-
ifying a problem statement by talking with a client or, better, getting first-hand
experience with the client organization is very different from reading a textbook
case study. (However, some clients might feel that your success would threaten their
jobs.) In this paper, we offer advice that we learned from completing hundreds of
optimization-based decision-support engagements over several decades. These are
hard-won lessons based on field experience. As a practitioner of our optimization
art, you must obtain some experience beyond textbook coursework before these
suggestions will make complete sense to you. Thus, you will not find this material
highlighted in any textbook. Providing decision support in the real world is difficult
because it requires that you deal with enterprise data systems, legacy procedures,
and human beings who might not share your passion for making things better.
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We receive many phone calls from colleagues and ex-students who are working
with optimization. Sadly, too many of these callers do not extol the wonders of
optimization; rather, they lament practitioner problems in getting things to work
right. Unfortunately, this may have given us a distorted view of the issues we address
here.

In this paper, we present our tradecraft in the topical categories that we have used
to collect our lessons learned. Even if you are not a practicing optimizer, we suspect
you will find insights here.

7.1 Design Before You Build

We have had an astonishing number of opportunities to address problems with op-
timization models that have been implemented, but are behaving badly (e.g., they
are very hard to solve, too large to solve, or produce strange results) and are not
documented. They have been built without a design!

Documentation must—not should, must—include these three critical compo-
nents:

• A nonmathematical executive summary,
• A mathematical formulation, and
• A verbal description of the formulation (Figure 1).

A nonmathematical executive summary must answer the following five ques-
tions, preferably in this order (Brown 2004a):

• What is the problem?
• Why is this problem important?
• How would the problem be solved if you were not involved?
• What are you doing to solve this problem?
• How will we know when you have succeeded?

Express your executive summary in your executive sponsor’s language, rather
than in technical jargon. If you have trouble writing such a summary in less than
five pages, you are not ready to proceed. The following tricks will make writing
your summary easier and more effective:

• Have a nonanalyst read your executive summary to you, out loud,
• Ask this reader to explain your executive summary to you,
• Listen well, and
• Revise and repeat.

A mathematical formulation should include the following in this order (Brown
and Dell 2007):

• Index use (define problem dimensions),
• Given data (and units),
• Decision variables (and units),
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• Objectives and constraints, and
• (perhaps) a dual formulation.

Remember to define terms before using them. The earliest definition of such a
standard formulation format appears in Beale et al. (1974). To distinguish inputs
from outputs, adopt a convention such as using lowercase for indexes and data, and
uppercase for decision variables.

A verbal description of the formulation (Figure 7.1) explains, in plain English
and in your executive sponsor’s language, what each decision variable, objective,
and constraint adds to the mathematical model. It gives you the opportunity to define
what the mathematics means and why each feature appears in your model. Avoid lit-
erally translating mathematics into English. For example, avoid saying “the sum of
X over item subscripts i must be no more than m for each time subscript t.” Instead,
say “the total production of all items must not consume more raw material than will
be available in any year.” Do state and justify any simplifying assumptions (some
examples include “our planning time fidelity is monthly, with a 10-year planning
horizon,” and “we allow fractional production quantities of these large volumes”).

Nonmathematical
executive problem

summary

Verbal description
of problem

Model
implementation

Mathematical
formulation

SPONSOR

Fig. 7.1 The model sponsor will only likely see the nonmathematical executive problem summary
and the verbal problem description. The actual model implementation must be embedded with
these two essential documents and with a mathematical formulation. In our experience, there is no
substitute for any of these components.

7.2 Bound All Decisions

Bounds restrict the domain of every decision. An unbounded variable does not exist
in our real, OR analyst’s world. Establishing bounds for each decision variable is a
trivial concept that is often ignored. While any reasonable optimization solver will
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do this automatically, the solver cannot tell you that its analysis is based on bogus
data or missing features in your model. If you manually apply simple ratio tests
(e.g., “If I had all the steel the world produced this year, how many automobiles
could I build?”) and get ridiculous answers (e.g., “2.1 autos,” or “10 trillion autos”),
you have discovered an error either in the data or in the description of the manner
in which automobile production consumes steel. These conversions reveal an erro-
neous steel consumption rate per auto or a constraint that has no influence on your
model; thus, you can jettison them.

Do you remember all the formal “neighborhood” assumptions that underlie your
optimization method? Taylor’s theorem makes any continuous function appear lin-
ear if you bound your decision neighborhood tightly enough. All your costs and
technology likely exhibit nonlinear effects across widely varying magnitudes; how-
ever, they might not exhibit the same effects over a small neighborhood—the do-
main for which you are planning.

It is easier to branch-and-bound enumerate models with integer variables if the
bounds on the integer variables are as tight as possible. This is worth addressing
before you try to solve large models. If the tightest bounds that you can state permit
a “large” integer domain, relax the integrality requirement and round the continuous
result to the nearest integer. The inaccuracy that rounding inflicts will be no worse
than one divided by the final value of the variable.

Bounding all your decision variables pays an unexpected bonus. Pull out your
favorite optimization textbook and look at the basic theorems that might have
seemed so hard in class. Notice how much mathematical lawyering becomes
superfluous when you rule out the unbounded case. Voila!

7.3 Expect Any Constraint to Become an Objective, and Vice
Versa

Important planning models almost always exhibit multiple, conflicting objectives.
Get familiar with a “weighted average objective,” and what it really means. Learn
about “hierarchical (i.e., lexicographic) objectives,” and how to coerce off-the-shelf
optimization software into following your hierarchy. For example, you might max-
imize the highest-priority objective, and then add a constraint on this objective to
maintain this performance in all subsequent solutions. Repeat this process with each
lower-priority objective until these successive restrictions have addressed your en-
tire hierarchy, or your model is so overconstrained that further restriction would be
pointless. Using some algebraic modeling languages, you can automate all of this
as a single model excursion.

You can see that there is a continuum (sic) between weighted objectives in a
single monolithic model, and strictly hierarchical ones in a sequence of succes-
sive restrictions. It is possible to force hierarchical results by using wide-ranging
values for weights; however, you might regret the attempt. Take care to use your
model-generation logic to control a hierarchal-solution sequence, rather than try to
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force your optimization model to make this asymptotic transition from finite weights
to the infinite weights required to render absolutely lexicographic results. Floating-
point numerical errors increase in direct proportion to the relative magnitude of
the terms in your additive weighted objective. You might be able to express such
an objective; however, your solver will not see what you intend to be lower in the
objective hierarchy.

In one of our engagements, we dealt with an extreme case with 14 objectives,
each weighted at least an order of magnitude more than its predecessor in the
weighted hierarchy. This was not a pretty numerical experience for the solver.

Expert guidance from senior executives frequently filters down to modelers as
constraints (i.e., orders). In our experience, constraints deriving from literal inter-
pretation of such guidance inevitably lead to an infeasible planning model. Dis-
covering what can be done changes your concept of what should be done. This
leads you to “aspiration constraints,” a situation in which you determine how much
of something you can maximize in isolation; you can then write a constraint say-
ing, for example, “I’ll settle for 90 percent of this isolated maximum.” If you work
with your senior sponsors using these simple methods, you will be able to guide
them to give you better advice. As OR analysts, we may think that our job is to
give advice; however, our real objective is to help our sponsors to make the right
decisions.

Much of the relevant literature advises us on how to deal with multiple objectives.
It does a nice job of defining and explaining concepts, such as pareto-optimality.
However, simple ideas usually work best.

7.4 Classical Sensitivity Analysis Is Bunk—Parametric Analysis
Is Not

Blind application of dual values, right-side ranging, and other textbook tricks offer
little useful advice on how the solution will respond as the inputs all change. Even
for the few models that are continuously linear, classical textbook sensitivity analy-
sis is rarely useful. Some of the best off-the-shelf mathematical modeling languages
and solvers do not support such analysis. We professors love to teach this “stuff.”
We will continue to teach it because it conveys lessons on the foundations of our
optimization methods, and on how to interpret the quantitative (how much to do)
and qualitative (what to do) influence of restrictions and relaxations.

However, in the real world, plan on solving many model excursions; do not hes-
itate to try this approach because “it may take weeks to complete.” In the past
15 years, improvements in linear program (LP) solvers and, in particular, in inte-
ger linear program (ILP, aka MIP) solvers and their controls have improved perfor-
mance by a factor of at least 10,000 independent of the much faster speeds of newer
computers. Some in our profession, especially the senior, experienced professors
and textbook authors, still recall overnight batch processing of mathematical pro-
gramming system (MPS) tapes. This is not a fond memory; therefore, our advice
is simple—“get over it.” All you need today is a reasonably endowed desktop or
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laptop computer. For almost any modeling engagement, we can expect to set up an
optimization model that allows us to express a question and get an answer while our
sponsor still remembers the question.

7.5 Model and Plan Robustly

Ensure that your model considers alternative future scenarios and renders a robust
solution. There are many ways to capture this in your model; all boil down to arriv-
ing at a single plan that, if applied to any of your scenarios, solves that scenario with
acceptable quality, and which you can express as some combination of feasibility
and optimality.

In the military, we plan for what is possible, not what is likely; therefore, we sel-
dom employ random variables to represent the likelihood of each alternative future.
We use simulation to make quantitative (perhaps random) changes to data elements;
however, we rarely randomly sample qualitative future changes. Senior planners
use judgment to arrive at what they think is a fully representative set of determinis-
tic scenarios. While there could be many theater-war plans, we normally only have
one chance per year to request what we need to prepare for all of them.

We pay attention to the current defense-planning guidance. As we develop our
model, we try to address the sponsor requirements. For example, suppose that our
guidance is to fight and win one engagement while suppressing another, and then to
fight the other and win it. If we do not have the option of selecting our favorites of
20 available war plans for such potential engagements, we might have to plan for
20-times-19 permutations of engagement pairs.

You might not be able to develop a plan that addresses all scenarios; thus, you
could be motivated to search for a worst-case plan, which will distort your results.
It is better to convey truthful insights to your sponsor than to delude yourself with
baseless optimism. From the full scenario set, we can devolve to, for example, meet-
ing a maximum subset of scenario requirements, or maximizing some gauge of sce-
nario fulfillment. Whatever plan you select, do your best to document with exquisite
clarity your assumptions and compromises that differ from the overarching defense-
planning guidance. Despite apocryphal tales of the demise of analysts bearing bad
news, an OR analyst who uses diplomatic, unambiguous language and careful anal-
ysis to deliver bad news will be a hero.

We seek the worst case among a reasonable set of outcomes that we control
because that is what we are obligated to worry about and defend against. There are
many commercial analogs to this advice. We find little to distinguish private-sector
competition from military planning.

7.6 Model Persistence

Optimization has a well-earned reputation for amplifying small changes in inputs
into breathtaking changes in advice.
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Decision-support engagements typically require many model excursions, fol-
lowed by analysis, followed by revisions and more model runs. When we have
invested heavily in analyzing a legacy scenario, and must make some trivial ad-
justment to attend to some minor planning flaw, the last thing we want is a revision
that advises major changes. This is always an issue with rolling-horizon models; it
also arises when you make iterative refinements to a static model.

If your model is unaware of its own prior advice, it is ignorant. You can expect
annoying turbulence and disruption when solving any revision of a legacy model.
Any prescriptive model that suggests a plan, and, if used again, is ignorant of its
own prior advice, is free to advise something completely, needlessly different. This
will surely cost you the faith of your sponsor. Sometimes, there are many nearly
optimal policies; however, if you have already promulgated one of these, it is now a
legacy-planning standard that is worth trying to preserve.

Persistence means “continuing steadily in some course of action.” This is exactly
what we do with long-term optimization-based decision-support engagements. We
must successively meld our sponsor’s expert judgment with our model’s optimal
advice.

It is easy to add model features that limit needless revisions. To do this, you need
to make a published legacy solution a required input, and then add model features to
retain attractive features or limit needless revisions of this legacy. These persistent
features might include the following (Brown et al. 1997):

• Do not change this legacy resource consumption by more than 2 percent,
• Between this legacy solution and any revision, add (or delete or change) no more

than three of the binary options in this set,
• Do not change X unless you also change Y.

We give our students a handout showing them how to state integer linear con-
straints that express the ubiquitous logical relationships required in decision support
(for example, for binary options A and B, “A only if B,” “A and B, or neither,” “A
or B, but not both,” or “A or B, or both”). We also show them how to state persis-
tent guidance for revisions (because this information rarely appears in textbooks).
For example, the Hamming distance between a legacy vector of binary decisions
and a revision counts only the bit-wise number of changes. To solve a sequence of
revisions, you can use constraints either to limit the number of revisions; in cases
in which you are looking for a set of alternative courses of action to present to your
sponsor for subjective evaluation, you can force diversity of each revision from any
legacy solution (Brown and Dell 2007).

The literature suggests widely that in a facility location, for example, one should
use a binary variable to represent each close-open decision with a fixed cost inflicted
when we choose open. We rarely get to apply this in the real world because each
facility might be in one of several states (e.g., open, open but idle, mothballed,
closed, or disposed); the real problem is to decide which state transitions are best for
the client. In even the simplest case, we have preexisting legacy facilities and their
states and we choose revisions of those states; in these revisions, each before-after
state pair has its own distinct, fixed transition cost. Multiperiod planning requires a
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binary variable for each state transition and a constraint to force choice of only one
transition per decision.

Solution cascades (Brown et al. 1987, p. 341) solve a window of active con-
straints and variables moved over, e.g., time, fixing the values of each variable as
the value determined when it was last in a window, for several reasons. For example,
omniscient long-term optimization models sometimes are too clever about anticipat-
ing the distant future; we prefer more realistic time-myopic planning. We can also
use persistent cascades to incrementally revise a plan locally while preserving its
overall scheme. Sometimes, the cascade subproblems are much easier and faster to
solve in large numbers than the seminal, monolithic model.

We also wonder why our literature pays scant attention to end effects. When we
plan on using periodic state reviews over a finite number of planning periods, how
do we plan to leave our system at the end of this planning horizon? There may be
industry rules of thumb or policies on the admissible state of your enterprise (e.g.,
always have sufficient supply on hand to satisfy the next 90 days of demand). Lack-
ing such guidance, we often plan further into the future than the planning horizon
requires because we want to get some realistic representation of the actions up to
exactly the end of the planning horizon (and discarding the further future results)
(Brown et al. 2004).

7.7 Pay Attention to Your Dual

A conventional linear program equality constraint has an unrestricted dual variable
that we can interpret as “this is how much it would be worth to relax this constraint
by one unit.”

An elastic linear program equality constraint uses a linear penalty per unit of
violation below (or above) its minimal (or maximal) range. Allowing this constraint
to be violated below (or above) either range at some finite penalty cost-per-unit
violation bounds its dual variable (i.e., “this is the most it is worth to me to satisfy
this constraint; otherwise I’ll violate it, pay this penalty, and deal with the con-
sequences”). There is no such thing as an infinitely valuable constraint. Decision
makers get paid to deal with infeasibilities and cannot rule them out in the real
world.

When you convince your sponsor to work with you to state each constraint with a
well-planned penalty for its violation, you have enormously enhanced your control
and understanding of your decision-support model. Remember that a phone call
beats a clever planning method every time. That phone call could be between you
and your sponsor, or between the sponsor and a supplier, superior, or even the IRS.
A written problem description or model statement could never have the level of
impact that relaxing exasperating restrictions does. Managers are paid to make these
calls and deal with infeasibilities.

Elastic constraints provide another surprise bonus: integer linear programming
is much easier to deal with when you know a priori that every candidate integer
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solution in an enumeration is, by definition, admissible (i.e., satisfies the constraints,
albeit perhaps with some penalties). In addition, if you set your elastic penalties
carefully, you will be rewarded with remarkable improvements in linear-integer so-
lution quality and solver responsiveness.

If you have a linear program, or can relax to one, state its dual. If you cannot
write an abstract of the meaning of this dual, if you cannot interpret your dual at all,
or if your dual is nonsense (e.g., unbounded or infeasible), your primal problem is
ridiculous. OK, this is strong language. Amend this to read “your primal problem
needs more attention before you are ready to use it.”

Consider this example of a simple maximum-flow model that we have used for
military planning and, since 9/11, for planning homeland defense. It includes a
source node, a destination node, and a capacitated, directed network through which
we wish to push the maximum-flow volume from source to destination. Write this
primal linear program and solve it. Now, recover the dual solution. Admire these
dual values and note that each arc on a minimum cut is distinguished by two inci-
dent dual values that differ. If you want to attack this maximum-flow network and
can cut these arcs, you have decapitated it.

Interpreting linear programming duals is the foundation of decomposition (Brown
et al. 1987) and the bilevel defender-attacker or attacker-defender models (Brown
et al. 2006).

7.8 Spreadsheets (and Algebraic Modeling Languages) Are Easy,
Addictive, and Limiting

OK, we have a new problem; we need a quick answer; we need database support for
model development and cataloging solutions; and we need a graphical user interface
that supports ad-hoc analysis and graphical output. Thus, we must either spend a
long time and a small fortune developing a purpose-built graphical user interface or
use our off-the-shelf office software suite.

Spreadsheets with embedded optimization solvers are inviting. Even executive
sponsors likely know how to bring up a spreadsheet; therefore, you will gain imme-
diate acceptance by adopting this familiar “look and feel” standard. In addition, you
will be able to catalog and display a spreadsheet solution immediately by using the
tools you use in your integrated office software suite daily.

However, spreadsheets support only two-dimensional views (and pivot tables) of
many-dimensional models; they exhibit “dimensional arthritis”—they can support a
many-dimensional model; however, they do not do it easily or naturally (Geoffrion
1997).

We get many calls from spreadsheet users who wonder why their optimization
results either take forever or generate incorrect results. One of the first questions that
we ask is, “how much did you pay for the solver you used?” Consider spending a
few thousand dollars per seat on a well-known, off-the-shelf, supported, and docu-
mented, commercial-quality optimization package. In addition, before you commit
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to using any solver, check the credentials of the optimization software provider and
verify how you will get help if you have problems.

Modeling languages are crafted to accommodate multidimensional models; they
feature interface links to all contemporary database, spreadsheet, and presentation
managers, and make great prototypes. However, even if a prototype works and gains
acceptance, the modeling language used for prototypic implementation might not
make a good decision-support tool. Some modeling languages isolate models from
off-the-shelf commercial solvers. They do not provide good support for large-scale,
indirect-solution methods (for example, column generation or decomposition). If
you are working on an important problem, why would you jettison 40 years of expe-
rience in solving it well, and, instead, simplify and aggregate away essential details
merely to be able to mechanically generate and solve problem instances?

The transition from hasty prototype to production-model generator and interface
is not easy. However, in our experience, the results always justify the investment.
The use of a commercial-quality optimization package could reduce your model-
generation and solution times from hours to just seconds (Brown and Washburn
2007).

7.9 Heuristics Can Be Hazardous

A heuristic—whether a simple rule of thumb or a well-known local search method—
is so easy to explain and implement that we are often tempted to use one in lieu of
more formal methods. Heuristics might not require optimization software and might
offer a tantalizing first choice to quickly assess a “common sense” solution. How-
ever, heuristics should rarely be your first (or only) choice. Geoffrion and Van Roy
(1979) offer some simple, exquisite examples that they have used with executives to
show how blind adoption of common-sense heuristics can bring you grief.

We can also develop bounds on the best solution possible, although this is not as
much fun to do as building a solution-seeking method. Without some similar bound,
our advice is of unknown quality. This quality certification is important: a bound on
the value of the best possible solution is just as important as the best solution you
have.

A mathematical optimization model takes longer than a heuristic to develop, and
perhaps to solve; however, it can provide a bound. We develop models of relaxations
of very hard problems merely to recover the bounds that they provide. Lacking a
trustworthy assessment of the quality of your advice, you are betting your reputation
that nobody else is more scrupulous or just plain luckier than you are.

While publishing a bound with your solution is the right thing to do, there is a
risk. We have been told: “Hey, you’re leaving money on the table!” Well, maybe we
are and maybe we are not. At least, we are honest about the possibility.

The interval of uncertainty is what we call the interval between the value of a
solution and a bound on the value of the best-possible solution (various sources ex-
ist, including integrality gap, decomposition gap, Lagrangean gap, and duality gap).
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When you compare two alternative scenarios, you can be absolutely sure about the
winner if the two intervals of uncertainty are disjoint, no matter how large each of
these intervals is. Realizing this, you can work only hard enough to find a distin-
guishing difference—and no harder.

We have also been in a private-sector competition in which our heuristic competi-
tors wrote the sponsor and said, “these guys admit their solutions may not be right.”
Boy, they thought they got us there, didn’t they? To this, they responded “but, our
method gets better solutions the longer you run it.” This reminds us of the difference
between “known unknowns” and “unknown unknowns.” We can work with the for-
mer; we get nightmares from the latter. While a heuristic might suggest a provably
better plan than the plan the enterprise is using currently, you will never know how
much more you might have discovered. Would we implement a solution with no
quality assessment? No, thanks.

We have also been told (sigh, and have read in the literature) that “this ILP is
NP-hard, so we use a heuristic.” Please. Even if (ahem) you prove that your ILP is
NP-hard (an essential reduction proof that is still absent from our literature too fre-
quently), this only means it is as hard as many other problems that are routinely and
reliably solved to good tolerance. How much better is a heuristic with polynomial
run time than a bounded ILP enumeration, which benefits from hundreds of years
of research and experience by our optimizers? In addition, is the heuristic really any
faster?

The simplex method has been criticized for its exponential worst-case run time
on polynomially complex linear programs. Given its excellent average performance
on an immense diversity of real-world linear programs, the worst-case run time limit
is a poor excuse to adopt an alternative solution method. We have a good idea of the
classes of problems for which the simplex method works well.

We prefer to solve any model that we can, even approximately, using conven-
tional mathematical optimization and the best software we have. If we convince our
client that our suggested planning tool is worthy, software that costs a few thousand
dollars per seat should not be a problem.

In cases in which the cost per seat would be too high to distribute the best soft-
ware we have, or the number of seats required is necessarily high, and the model
admits a heuristic solution, we try to develop a heuristic. Using our best software,
we test empirically to assess performance. If we distribute the heuristic, we main-
tain a backup with our more-expensive software to objectively assess any curious
performance in the field. At the Naval Postgraduate School, this means that we
must maintain computers and software at various classification levels in appropri-
ately secured facilities. While this requires a significant investment in hardware and
software, it is essential to providing a safety net for fielded heuristic solvers.

We have encountered other obstacles both in the government and in the pri-
vate sector with “enterprise standard” computers that are not allowed to run “for-
eign” executables and “exotic” applications, such as our optimization models. For
example, Navy Marine Corps Intranet (NMCI), which governs 351,000 comput-
ers, is the largest standardized internal computer network worldwide (Electronic
Data Systems 2006). Presumably this standardization has had benefits for “one size



110 Gerald G. Brown, Richard E. Rosenthal

fits all” IT support. However, it has been a continuing headache to us. We cannot
afford to have each of our models “vetted” and “approved” (a process that takes
many months and many thousands of dollars) for NMCI. Accordingly, we have de-
veloped heuristics that can run, for example, with Visual Basic within Microsoft
Excel on a standard NMCI computer. We have also developed applications that run
exclusively on a universal serial bus (USB) drive that can be connected to a NMCI
computer.

We have also had to purchase computers, install our applications, and ship these
to our clients. We refuse to confirm or deny where these clients serve, or if they also
have their own private computers to do mission-essential work outside of NMCI.
We do whatever is necessary to complete our missions.

Perversely, one of the most influential arguments for heuristics, and against excel-
lent, off-the-shelf commercial optimization solvers, is the Draconian license man-
agers of these solvers, which treat paying clients like criminals. We have seen many
cases, in academe and in industry, where a good solver would have helped; how-
ever, it was rejected because of the sheer IT burden it would cause—that of strug-
gling with optimization-provider sales persons, computer-specific, immobile license
keys, and license-manager hassles.

7.10 Modeling Components

Models usually exhibit a variety of functional components that express different as-
pects of the modeled enterprise. Observe how this enterprise is organized and mimic
this with your model. For example, when production plans influence financial plans,
link these components with “passenger variables” (a passenger variable does not
change the degrees of freedom in your model because it is defined by an equation)
that isolate and highlight this communication between components. Choosing pas-
senger variables deserves some care; you are trying to capture how the connected
enterprise components communicate with each other.

You might think that cluttering your model with superfluous passenger variables
and defining equations makes the resulting, larger model harder to solve. Fortu-
nately, solvers employ “presolve” features that quickly identify “rank-one” alge-
braic redundancies (e.g., those that are identifiable without substituting more than
one variable for its defining equation); remove them from the model before you
solve it; then substitute them back in when you have completed the solution.

Incremental development of components offers an added benefit. During this
phase of development, you need only work with representatives of the enterprise
component that you are currently modeling; thus, you can focus without dis-
traction on the lexicon, operation, fidelity, and key issues to capture. Better yet,
you can arrange each component to be optimized in isolation during development
and testing. Fix or constrain the passenger variables linking to other components,
run the component alone, and unwind any mischief that appears in this localized
exercise.
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7.11 Designing Model Reports

Design model reports to match those that planners are already using.
It is not unusual to spend as much time in reporting as in modeling. For example,

if you find that a Gantt chart is a key display that manual planners use, mimic it. If
your model has significance for the enterprise, i.e., if your optimized plans can ma-
terially change profitability, plan on producing a set of operating statements. Such
statements might contain a cash flow report, income statement, and balance sheet,
including the most important gauge—return on owners’ equity. This is difficult work
because preparing such statements requires much enterprise operating data that you
would not otherwise need. The payback for doing this foundation work is two-fold:
you gain a deeper appreciation for where and how your model can influence the
enterprise, and these synthetic reports will get the attention of your sponsor.

For example, if your advice might require raising significant amounts of funding
(e.g., by borrowing, selling stock, issuing bonds, or diverting funds from other uses),
the sources, methods, and forecast consequences of such fundraising are essential
features of your model. If your objective is earnings per share, and both earnings
and number of shares are discretionary, you have a ratio of decision variables that
you might (or might not) be able to back out algebraically into a linear (sic) inte-
ger program. While this greatly complicates your modeling, it is essential to your
reporting.

To our knowledge, the earliest example of such operating-statement reporting
appears in paired papers by Bradley (1986) and Geoffrion (1986), who advised the
board of directors of General Telephone and Electric (GTE) Corporation how to
commit huge capital improvements with substantial impact on corporate results.
Contributions by their GTE cohorts in this modeling project accompanied these
papers. These authors generously provided us with all their historical client notes
and model source code; we have dissected these and reapplied their methods.

We have had the distinct pleasure of working with both closely held compa-
nies and sole proprietorships. These owners quickly grasped optimization and its
nuances, including integrality gaps, duality gaps, model fidelity, and uncertainty.
Because their own money is at stake, they really engaged with the details and val-
ued these operating statements. We have also had experience with scrupulously run,
publicly held corporations; they also valued operating-statement outputs, but with
not with the level of intensity of private entrepreneurs.

An added advantage accrues from reporting in terms of operating statements.
The managers of various “stovepipes” (i.e., enterprise components that are strongly
intraconnected, but weakly interconnected) in the enterprise can see their business
component and its interaction with others. This provides a level playing field among
these managers, and encourages them to plan, negotiate, and speak in a common
language. We have seen cases where, for example, marketing wants to make its
quarterly “numbers” for incentive bonuses, finance seeks goals that are stated in
terms of float, accounts receivable currency, and cash-versus-debt positions, and
manufacturing strives to meet production-standard goals. This is akin to the fable of
blind men each touching one part of an elephant’s anatomy, and guessing what the
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animal looks like. If you gather these managers in the same room and ask them to
look at the same integrated operating reports, wondrous insights will follow.

Optimization also enables the generation of reports that management might not
have known were possible. For example, it is easy to embellish a customary demand-
fill rate report with an estimate of the total landed profit (or loss) accruing from those
sales. Wow, this gets attention!

Design model outputs that are directly useable as model inputs. In practice,
we frequently repeat model applications to iteratively revise our advice with small
changes.

7.12 Conclusion

You may ask “why aren’t these simple topics part of basic optimization course
work?” We have been asked this before, and respond: “where were you when these
pages were blank?” These ideas may be simple; however, we know of no other
source of instructional materials that addresses these real-world concerns.

While many analysts have successfully applied optimization to real-world prob-
lems, few will admit the failures and false starts that too frequently delay a planning
project. For example, INFORMS Edelman presentations include some very impres-
sive results; understandably, however, they rarely discuss the failures that occur on
the path to completion. You might seek out these authors to learn, as we have, that
the topics we report here are ubiquitous.

We have invested heavily to incorporate these principles into our graduate
courses. In our program, each student is part of a group; the students attend a tightly
coordinated, lengthy sequence of optimization core classes as a cohort. Thus, we
have the luxury of getting to know and teach them individually and as a group over
an extended period. While we have had some success in helping them to understand
the material, it is not at a sufficiently high level. We have concluded that the only
way students will appreciate the value of some of our advice, which might admit-
tedly be tedious to implement, is through experience.

Accordingly, we try to convey these ideas to our military-officer students using
both humorous, self-deprecating case studies of our past peccadilloes and homework
exercises. However, we also realize that this will not make much of an impression
until the student has had some seasoning. We include a continuing, evolving copy
of this document in our course materials; we also give each graduate a “lifetime
money-back guarantee” to call us later, admonishing them to have this document in
hand when they do (Rosenthal 2007).

Suffice to say we have seen the same problems arise scores of times, even for very
experienced operations researchers; we have cataloged some in this paper, along
with our prescriptive cures.

We wish you the best of luck in helping us to extend our reach with prescriptive
optimization-based decision support to make our world better and more secure.
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erences are postcards home from a life journey in optimization. We credit our close
colleague, Art Geoffrion, for his many insightful observations about the conduct of
decision-support engagements (Geoffrion 1976a, b; Geoffrion and Van Roy 1979;
Geoffrion and Powers 1980; and Geoffrion 1986, 1997). Most of all, we are grateful
to so many students who have confronted real-world problems using the optimiza-
tion tools we teach, and have claimed the “lifetime money-back guarantee” that we
grant each of them to come back at us and complain that “neither my textbooks nor
my notes from our courses explain this.” You students were right. We fixed this with
each of you and learned a lot along the way. We thank each of you. (And, every one
of Distinguished Professor Rosenthal’s many such warranties, public and personal,
will be honored by me, and by my colleagues. Just get in touch with us.)
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Chapter 8
Challenges in Adding a Stochastic
Programming/Scenario Planning Capability
to a General Purpose Optimization Modeling
System

Mustafa Atlihan, Kevin Cunningham, Gautier Laude, and Linus Schrage

Abstract We describe the stochastic programming capabilities that have recently
been added to LINDO application programming interface optimization library, as
well as how these stochastic programming capabilities are presented to users in the
modeling systems: What’sBest! and LINGO. Stochastic programming, which might
also be suggestively called Scenario Planning, is an approach for solving problems
of multi-stage decision making under uncertainty. In simplest form stochastic pro-
gramming problems are of the form: we make a decision, then “nature” makes a
random decision, then we make a decision, etc. A notable feature of the implemen-
tation is the generality. A model may have integer variables in any stage; constraints
may be linear or nonlinear. Achieving these goals is a challenge because adding
the probabilistic feature makes already complex deterministic optimization prob-
lems even more complex, and stochastic programming problems can be difficult to
solve, with a computational effort that may increase exponentially with the number
of stages in the “we, nature” sequence of events. An interesting design decision for
our particular case is where a particular computational capability should reside, in
the front end that is seen by the user or in the computational engine that does the
“heavy computational lifting.”

8.1 Introduction

We describe the stochastic programming (SP) capabilities that have recently been
added to LINDO API (Application Programming Interface) optimization library, as
well as how these SP capabilities are presented to users in the modeling systems:
What’sBest! and LINGO. SP, which might also be suggestively called Scenario
Planning, is an approach for solving problems of multi-stage decision making un-
der uncertainty. In simplest form SP problems are of the form: we make a decision,
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then “nature” makes a random decision, then we make a decision, etc. An underly-
ing theme of our design of SP capabilities is, what are the features that are needed
to make SP both (a) easy to use for relatively unsophisticated decision makers, but
nevertheless (b) a powerful and useful tool. A notable feature of the implementation
is the generality. A model may have integer variables in any stage. Constraints may
be linear or nonlinear. Achieving these goals is a challenge because (a) adding the
probabilistic feature makes already complex deterministic optimization problems
even more complex and (b) SP problems can be difficult to solve, with a computa-
tional effort that may increase exponentially with the number of stages in the “we,
nature” sequence of events. An interesting design decision for our particular case
is where a particular computational capability should reside, in the front end that is
seen by the user or in the computational engine that does the “heavy computational
lifting.”

8.1.1 Tribute

When we were designing the LINGO and What’sBest! modeling systems in the
1980s, we benefited substantially from interactions with and from reading the
papers of Art Geoffrion. In particular, as Art was writing the paper on indexing
in modeling languages (Geoffrion [14]), we had regular interactions with him. The
set handling capabilities of LINGO were much improved as a result. Art provided
a general philosophy of modeling as outlined in his papers such as his “Insight,
not Numbers” paper (Geoffrion [12]), and his “structured modeling” papers, see
Geoffrion [13]. We found these papers very useful in providing general direction in
designing a modeling system. Internally, we succinctly referred to these papers and
their author as “The Art of Modeling.” At one point in our discussions, Art made
the comment that “One man’s parameter is another man’s variable.” This particular
comment affected the design of LINGO in two ways. In the declarations section of
LINGO, a numeric attribute of a set element does not receive a type declaration such
as parameter, variable, or integer. So, (a) an attribute becomes a variable only as a
result of not being set to a value as part of data input and (b) a variable is declared
integer or not as part of the model statements. Thus, in a multi-stage planning model
we may want Produce(1) and Produce(2) to be restricted to integer values, whereas
it may be convenient to allow the later Produce(3), Produce(4), etc. to be allowed
continuous. In our design of SP capabilities for a modeling system, we have tried to
remain true to what Art taught us.

8.2 Statement of the SP Problem

SP is concerned with solving multi-stage problems of decision making under un-
certainty. An important concept in these problems is that of a “stage.” Various
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researchers have used various definitions of a stage. We have found the following
description of SP and the role of a stage useful:

(0) In stage 0 we make a decision, e.g., how much to order, taking into account that
later,

(1) At the beginning of stage 1, “Nature” makes a random decision, e.g., demand,

1.a) At the end of stage 1, having seen Nature’s decision, as well as our pre-
vious decision, we make a decision, e.g., order some more, taking into
account that . . .

(2) Later, at the beginning in stage 2, “Nature” makes a random decision, etc.
. . .

n) At the beginning of stage n, “Nature” makes a random decision, and

n.a) At the end of stage n, having seen all of Nature’s n previous decisions, as
well as all our previous decisions, we make a decision.

Thus, a stage is defined as an ordered pair (random event, decision). Stage 0 is
special in that there is no random event. The last stage may be special in that there
may be no terminating decision. In some settings, e.g., Markov decision processes,
one may be interested in problems with an infinite number of stages. We are here
interested only in problems with a finite number of stages. We also assume that we
are dealing with an indifferent nature, i.e., Nature’s random decisions do not depend
on our decisions, although Nature’s decision in stage n, may depend on Nature’s
decisions in earlier stages. If there are only a finite number of outcomes (which is
true computationally) for nature at each stage, then it may be helpful to visualize
the process by a tree, as in Figure 8.1.

8.2.1 Applications

SP has been applied, or proposed, for a wide range of problems. A collection of
examples appear in the book edited by Wallace and Ziemba [25]. Specific examples
therein are fleet management, production planning, metal blending, mortgage refi-
nancing, electricity generator unit commitment in the face of uncertain demand, and
telecommunications planning over unreliable networks. Additional examples else-
where are financial portfolio planning over multiple periods for insurance and other
financial companies, in the face of uncertain prices, interest rates, exchange rates,
and bankruptcies, see Carino and Ziemba [5]; capacity and production planning in
the face of uncertain future demands and prices, Eppen, Martin, and Schrage [8];
fuel purchasing when facing uncertain future fuel demand and prices, Knowles and
Wirick [18]; metal blending in the face of uncertain input scrap qualities, Gaustad
et al. [11]; fleet assignment: vehicle type to route assignment in the face of uncertain
route demand, Dantzig [6]; and hydroelectricity generation in the face of uncertain
rainfall, Pereira and Pinto [22];
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Fig. 8.1 A scenario tree for a stochastic program

8.2.2 Background and Related Work

There has been substantial effort in adding explicit SP capabilities to modeling
languages. Some examples are Bisschop [2], Brooke et al. [3], Buchanan et al.
[4], Entriken [7], Fourer and Lopes [9], Gassman and Ireland [10], Infanger [15],
Kall and Mayer [16, 17], Kristjansson [19], Messina and Mitra [21], and Valente
et al. [24].

With regard to the general theory of SP, there is an extensive literature. Birge
and Louveaux [1] give a good introduction to all aspects of SP. Ruszczynski and
Shapiro [23] contain a collection of 10 chapters by various SP experts on theoretical
underpinnings of SP.

8.3 Steps in Building an SP Model

The approach we have taken in both LINGO and What’sBest! for constructing an
SP model is based on the following steps.

(1) Write a standard deterministic model (the core model) as if the random variables
were constants.
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(2) Identify the random variables, and decision variables, and their staging, i.e., the
sequence in which random events occur and decisions are made.

(3) Specify the distributions describing the random variables,
(4) Specify manner of sampling from the distributions (mainly the sample size) and

by implication the scenario tree,
(5) Optionally, list the variables for which we want a scenario-by-scenario report

and the variables for which we want a histogram.

We illustrate above steps in both the LINGO modeling language and in the
What’sBest! spreadsheet modeling system. Our first example will be perhaps the
simplest SP model possible, the newsvendor model for deciding how much to stock
in advance of uncertain demand.

8.3.1 Statement/Formulation of an SP Model in LINGO

We illustrate first in LINGO.

! LINGO model of Newsvendor as a stochastic program.
DATA:
C = 30; ! Purchase cost/unit;
H = 5; ! Holding cost/unit on surplus;
P = 20; ! Penalty cost/unit unmet demand;
R = 65; ! Revenue/unit sold;
MU = 80; ! Mean demand;
SD = 20; ! Standard deviation in demand;

ENDDATA

! Step 1: Core model ------------------------------------+;
MAX = PROFIT;
PROFIT = R * SALES - C * Q - DISPOSAL COSTS - SHORTAGE COSTS;
SALES + SHORT = DEMAND;
SALES + SURPLUS = Q;
DISPOSAL COSTS = H * SURPLUS;
SHORTAGE COSTS = P * SHORT;
@FREE(PROFIT); @FREE(SALES);

! SP related declarations -------------------------------+;
! Step 2: Stage information;
! Q = stage 0 decision of how much to stock;
@SPSTGVAR( 0, Q);

! Demand is a random variable observed (at beginning) in stage 1;

@SPSTGRNDV(1, DEMAND);
! 3) Distribution information;
@SPDISTNORM(MU, SD, DEMAND);

! 4) Sample size information;
@SPSAMPSIZE( 1, 1000);

Giving a guided tour of the model, the DATA section, as advised by Geoffrion in
various papers, separates the data for a specific application instance from the general
model equations. The Core model set of statements describe the objective and give
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two equations that relate lost sales (SHORT) and left-over inventory (SURPLUS) to
the amount stocked (Q) and the actual demand (DEMAND).

In step 2 we use the two qualifier functions, @SPSTGVAR(stage, decision vari-
able) and @SPSTRNDV(stage, random variable) to tell LINGO that the decision
variable Q must be chosen in stage 0 before the demand random variable is observed
at the beginning of stage 1. An interesting feature of LINGO is that the user does
not have to specify the stage of every variable. LINGO automatically infers the
appropriate stage for variables for which a stage is not specified.

In step 3 the qualifier function @SPDISTNORM(MU, SD, DEMAND) tells
LINGO that the random variable DEMAND has a normal distribution with mean
MU and standard deviation SD. Step 4 tells LINGO to use 1000 scenarios or sam-
ples in stage 1.

Later we will describe and discuss the solution results for this model. For now
we simply mention that the solution recommends setting Q = 85.6466 and to expect
a profit of 2109.68. This newsvendor model is simple enough to be solved ana-
lytically. The analytical or “true” solution says that Q should be 85.6443 and the
expected profit is 2109.94. Later we will discuss why the results based on optimiz-
ing over a sample of size 1000 are so close to the analytical solution.

8.3.2 Statement/Formulation of an SP Model in the What’sBest!
Spreadsheet System

We next illustrate the same model in What’sBest! The model specification is very
similar to that in LINGO in that “qualifier” functions are used in steps 2, 3, and
4 to provide the SP-specific information. All information about the SP features is
stored explicitly/openly on the spreadsheet, so that using standard Excel navigation
or viewing of cells allows one to observe the SP features of the model. Figure 8.2
illustrates.

Providing a guided tour of the model, in (1) the core model is a regular, valid
deterministic What’sBest! model. You may plug in real numbers in a random cell to
check results. (2) Staging information is stored about decisions in cells with qualifier
functions of the form WBSP VAR(stage, cell list). A cell is identified as a random
cell of a specified stage with a qualifier function of the form: WBSP RAND(stage,
cell list). (3) Distribution specification is stored in a cell with the qualifier func-
tion like WBSP DIST NORMAL(mean, standard deviation). (4) Sample size or
number of scenarios for each stage is stored in a qualifier function of the form:
WBSP STSC(table). (5) Cells to be reported are listed in a qualifier function of the
form WBSP REP(cell list). A cell for which we want a histogram is specified in a
function of the form: WBSP HIST(number bins, cell);

It is possible to produce a large amount of information from an SP solution.
Information on the cells listed in the WBSP REP(cell list) specification is sent to a
separate tab of the worksheet as shown in Figure 8.3.

At the top of Figure 8.2 we see some summary information. In particular, the
expected value for the profit is estimated to be 2109.68. We willpostpone until
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Fig. 8.2 A newsvendor model specified in What’sBest!

Fig. 8.3 Solution information generated from the Newsvendor model

later a discussion of the other “Expected Value” lines. One line is generated for each
scenario. In Figure 8.2 we see that scenario 1 had a probability of 0.001, the amount
stocked was about 85.65 (which must be the same in all scenarios), the Demand D
was 104.552. This resulted in a lost sales of 18.905 and a total profit of 2619.52.
Any kind of statistical analysis, such as computing standard deviations or higher
moments, can be performed on the scenario data using standard Excel tools.
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8.3.3 Multi-stage Models

The previous example was a model with two stages. Multiple stage models with
more than two stages can be formulated and solved in the similar fashion. Below
we show the formulation in LINGO of the well-known three-stage college plan-
ning model of Birge and Louveaux [1]. Some of the key things to note are the use
of SPSTGVAR and SPSTGRNDV qualifier functions to specify the stages of the
investment decisions and the random return outcomes.

! Three stage financial portfolio model. Ref. Birge & Louveaux;
! Step 1: Core Model in LINGO-------------------------------+;
SETS:

TIME; ! Set of time periods/stages;
ASSETS; ! Assets to invest in;
TXA( TIME, ASSETS): RETURN, INVEST;

SCENARIO; ! Set of possible outcomes each period;
! Combinations of outcomes & assets;

SXA( SCENARIO, ASSETS): S RETURN;
ENDSETS
! Decision variables...

INVEST(t,a) = amount to invest in asset a, at end of period t.
Random variables...
RETURN(t,a) = growth factor for asset a, observed beginning
period t;

DATA:
INITIAL = 55; ! Start with $55K;
GOAL = 80; ! Want to get at least $80K after 3 period;
PENALTY = 4; ! Penalty for falling short of goal;
TIME = T0..T3;
ASSETS = BONDS, STOCKS; ! Investments available;

SCENARIO = BONDSHI, STOCKSHI; ! Two scenarios;
! Outcomes for BONDS & STOCKS in each scenario;

S RETURN = 1.14 1.25
1.12 1.06 ;

ENDDATA

! The core model;
! Maximize overage minus penalty for under target;
MAX = OVER - PENALTY * UNDER;

! Initial allocation;
[R INIT] @SUM( ASSETS( A): INVEST( 1, A)) = INITIAL;

! Portfolio value in period t;
@FOR( TIME( T) | T #GT# 1:
@SUM( ASSETS( A): INVEST( T, A)) =
@SUM( ASSETS( A): RETURN( T, A) * INVEST( T - 1, A));

);
FINAL = @SUM( ASSETS( A): INVEST( @SIZE( TIME), A));
OVER - UNDER = FINAL - GOAL ;

! SP Related Declarations -----------------------------+;
! Step 2) Stage information;
! Declare the stage of each decision variable;
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@FOR( TXA( T, A):
@SPSTGVAR( T-1, INVEST( T, A));
);

! The stages of the return random variables;
@FOR( TXA( T, A) | T #GT# 1:

@SPSTGRNDV( T-1, RETURN( T, A));
);

! Step 3, the distributions;
! Construct a discrete distribution table, D1;
! Declare a discrete distribution table D1;
@SPTABLESHAPE( ’D1’, @SIZE( SCENARIO), @SIZE( ASSETS));
! Fill the distribution D1,...;
@FOR( SCENARIO( s):
@SPTABLEOUTC( ’D1’, 1/@SIZE( SCENARIO)); ! Probabilities 1st;
! and then the actual outcomes;
@FOR( ASSETS( A): @SPTABLEOUTC( ’D1’, S RETURN( s, A)));

);
! Now specify that each stage has the same distribution D1;

@FOR( TIME( T) | T #GT# 1:
! Declare an instance of our parent distribution;
@SPTABLEINST( ’D1’, TIME( T));
! Bind the random variables to the instance;
@FOR( ASSETS( A):

@SPTABLERNDV( TIME( T), RETURN( T, A))
);

);

The same three-stage model in What’sBest! is shown in Figure 8.4.

Fig. 8.4 Optimal portfolio reinvestment over three periods
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The essential formulae of the core model are in column D where the begin-
ning wealth in stage t is set equal to the amount invested in each of stocks and
bonds, columns G and H in the preceding stage, times the (random) growth fac-
tors in columns B and C, e.g., D12 = SUMPRODUCT(G10:H10,B12:C12). The
over- or underachievement of goal is computed with D17 = D14 − D3 + D16. Cell
E17 constrains D17 >= 0. Columns K and M specify the stages for the decision
variables, columns G and H, and the random cells, columns B and C. The distribu-
tion of two possible outcomes each period is specified in the cell range O10:T14.
Thus, there are two possible stage scenarios in each stage, see cells K16:O20.
Cell K21 asks for a scenario-by-scenario report of certain cells with the qualifier:
WBSP REP(F9,G9,H9,D10,G10,H10,D12,G12,H12,D14,D16,D17,D18).

Two possible outcomes in each of three periods mean 23 = 8 full scenarios
in total. This scenario-by-scenario report appears in the Excel tab displayed in
Figure 8.5. Notice the interesting behavior of the optimal policy in stage 2. We want
to maximize the wealth at the end of stage 3; however, there is a heavy penalty (of 4)
for falling short of the target of 80. Notice that if the beginning wealth is either very
low (64) or very high (83.8399), we invest everything in STOCK, the investment
with the higher expected return, even though it is the riskier one. The reasoning is if
we are at 64, we know we will fall short of the goal, so we might as well minimize
the expected amount short. If we are at 83.8399, we know we will achieve our goal,
so we might as well maximize the expected amount by which we exceed our goal.

If we are at an intermediate level (71.428571), we invest everything in bonds
because it will safely guarantee that we will just achieve our goal, regardless of
which two scenarios next occur.

Fig. 8.5 Optimal policy for portfolio reinvestment over three periods
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8.4 Scenario Generation

A crucial capability of an SP modeling system is that of populating the scenario tree
with appropriate random values. We break this down into three steps: (1) generating
uniform random numbers, (2) converting uniform random numbers into random
numbers of a specified general distribution, and (3) inducing correlation between
two or more random variables, or more generally, generating a vector of random
variables with an appropriate joint distribution. In terms of design, all aspects of
scenario generation are contained in random variable generation component of the
LINDO API. The user front end, LINGO or What’sBest! in our case, need not be
concerned with scenario generation other than getting from the user the stage infor-
mation, the distribution information, and the sampling choices.

8.4.1 Uniform Random Number Generation

An important component of any Monte Carlo package is a pseudo-uniform ran-
dom number generator. The LINDO API has three options for generating uniforms:
(1) the classic 31 bit linear congruential generator, (2) a composite linear congruen-
tial generator, and (3) a Mersenne twister generator. The default generator is (2), the
composite generator, see L’Ecuyer et al. [20]. The stream of uniforms in (0,1), u[n]
is generated by the recursion:

x[n] = (1403580 · x[n−2]−810728 · x[n−3]) mod 4294967087;

y[n] = (527612 · y[n−1]−1370589 · y[n−3]) mod 4294944443;

z[n] = (x[n]− y[n]) mod 4294967087;

u[n] = z[n]/4294967088 if z[n] > 0;

= 4294967087/4294967088 if z[n] = 0.

This generator has cycle length of about 2191 = 3.14 ·1057. This is a considerable
improvement over 231 = 2.15 · 109 cycle length for tradition single stream 31-bit
generators. It has good multidimensional uniformity up to about 45-dimensional
hypercubes.

8.4.2 Random Numbers from Arbitrary Distributions

The LINDO API is able to generate random variables from about two dozen
standard distributions, including Beta, Binomial, Cauchy, Chisquare, Exponential,
F, Gamma, Geometric, Gumbel, Hypergeometric, Laplace, Logarithmic, Logistic,
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Lognormal, Negative binomial, Normal, Pareto, Poisson, Student t, Triangular, Uni-
form,Weibull. In addition jointly distributed random variables can be generated from
a user specified Discrete/Empirical/Joint table of outcomes.

All general random variables are generated by the inverse transform method.
Suppose a random variable has a cumulative distribution function (cdf), F(x) =
Prob{the random variable ≤ x}. The basic steps are as follows:

(1) Generate a uniform random number, u, in (0,1).
(2) Convert the uniform to the desired distribution by inverting the cdf, that is, invert

the function u = F(x) to solve for x in terms of u: x = F−1(u). A graph, see
Figure 8.6, perhaps explains it best.

Fig. 8.6 Inverse transform method, graphically

8.4.3 Quasi-random Numbers and Latin Hypercube Sampling

The default sampling method in LINDO API is Latin hypercube sampling. If you
ask it to generate 100 random numbers uniformly distributed in (0,1), it will (1) di-
vide the interval (0,1) into 100 equal subintervals and (2) generate one random
number uniformly distributed over each subinterval. This method has an important
qualitative feature and an important theoretical feature, namely (a) the distribution
appears more uniform than if one had taken a purely random sample and (b) nev-
ertheless, it is unbiased in that every point in (0,1) has equal probability of being
chosen. The inverse transform method works nicely with Latin hypercube sampling.
If we generate a sample of 100 normal random variables using this combination of
methods, the sample has the nice feature that each percentile of the normal distribu-
tion will have one sample drawn from it. Figures 8.7 and 8.8 illustrate this feature.
We took a sample of 100 from a normal distribution with mean 100 and standard de-
viation 10. Notice that the Latin hypercube sample not only looks more normal, but
the sample mean and standard deviation more closely approximate the population
mean.
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Fig. 8.7 Sample of 100 normal deviates using pure random sampling; mean = 100.31, sd = 10.14

Fig. 8.8 Sample of 100 normal deviates using Latin hypercube sampling; mean = 99.98, sd = 9.98

8.4.4 Generating Correlated Random Variables

There are three traditional ways of measuring correlation between two random vari-
ables x and y, the traditional Pearson “linear” correlation taught in Stat 101 and two
rank correlation methods, Spearman rank and Kendall tau rank. The LINDO API
allows the user to choose which of the three is to be used in generating correlated
random variables. Pearson correlation makes sense for normal random variables. For
arbitrary distributions, the two rank correlation measures may be more convenient.
All three are summarized below.
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Pearson

Define

x̄ =
n

∑
i=1

xi/n; sx =

√
n

∑
i=1

(xi− x̄)2/(n−1),

then the Pearson correlation is defined as

ρs =
n

∑
i=1

(xi− x̄)(yi− ȳ)/(nsxsy).

Spearman Rank

Same as Pearson, except xi and yi are replaced by their ranks, with minor adjust-
ments if there are ties, e.g., if xi = xi+1.

Kendall Tau Rank

Here

ρτ =
n

∑
i=1

n

∑
k=i+1

2sign[(xi− xk)(yi− yk)]/[n(n−1)],

where sign(x) =−1, 0, or +1 depending on whether x < 0, x = 0, or x > 0.
The Kendall correlation has a simple probabilistic interpretation. If (x1,y1) and

(x2,y2) are two observations on two random variables that have a Kendall corre-
lation of ρk, then the probability that the two random variables move in the same
direction is (1+ ρk)/2. That is,

Prob{(x2− x1)(y2− y1) > 0}= (1+ρk)/2.

For example, if the weekly change in the DJI and the SP500 has a Kendall corre-
lation of 0.8, then the probability that these two indices will change in the same
direction next week is (1+0.8)/2 = 0.9. Although the Kendall rank correlation has
this simple interpretation, the Spearman correlation contains more information. For
example, if you have a sample of size four for two random variables, there are only
seven possible values, −1, −2/3, −1/3, 0, 1/3, 2/3, 1, for the Kendall correlation,
whereas there are 11 possible values for the Spearman correlation.

A useful feature of rank correlation is that it is unchanged by a monotonic in-
creasing transformation, such as the inverse transform method. Thus, if we can gen-
erate two uniform random variables u and v with a certain rank correlation and we
generate two random variables x and y from arbitrary distributions by the inverse
transform method, i.e., x = F−1

x (u) and y = F−1
y (v), then x and y will have the same

rank correlation as u and v.
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8.5 Solution Output for an SP Model

In the process of solving an SP model, a lot of information is generated. How is this
information best summarized and presented to the user?

8.5.1 Histograms

One advantage of SP, as well as simulation, relative to an analytic solution of a
model is that a good portrayal of the distribution of various outcomes such as profit
is available. Sometimes the distribution of an outcome random variable may be sur-
prising. In What’sBest!, one can request a histogram with 15 bins of cell TOT PROF
by inserting the qualifier = WBSP HIST(15,TOT PROF) somewhere in the sheet.
As an example, consider the standard newsboy problem with normal distributed de-
mand. One might expect that if demand is normal distributed, then profit might also
be approximately normal distributed. The histogram in Figure 8.9, based on our
earlier newsboy example, shows that such is definitely not the case.

Fig. 8.9 Empirical distribution of profit from newsvendor optimal policy

Another example is a put option, i.e., the ability to sell a share of a specific stock
at a specified strike price at some point in the future. You do not want to exercise
the option in the current period if the current price is above the strike price. If the
current price is below the strike price, you may want to exercise, but you may also
want to consider waiting in case later the price drops even lower. SP can be used to
find an optimal exercise policy. An important question is the expected value of such
an option, assuming an optimal exercise policy is followed. For a certain such option
the optimal policy was found by SP and its expected present value was determined
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Fig. 8.10 Empirical distribution of present value of a put option under optimal policy

to be $3.845. One might expect that the typical value of the option would be about
$3.85. The graph in Figure 8.10 shows that, in fact, outcomes near $3.85 are rather
unlikely. About 60% of the time the option expires, unused, and is worthless. About
20% of the time the option is worth around $12.

Making histograms available to the user presents an interesting design question:
where should histogram construction be implemented, in the front end or in the
solver engine? We have implemented histogram construction in the solver engine,
LINDO API, but leave display of the histogram to the front end. The user has the
option of specifying the number of bins in advance. If the number of bins is not
specified, then the API chooses the number of bins based on aesthetic considerations
and the number of scenarios. If a histogram has too few bins, then the histogram will
look “saw-toothed” or lumpy. If the histogram has too many bins, then the histogram
may look ragged or erratic because of randomness in the number of scenarios that
fall in a given bin. A heuristic is used to strike a compromise between these two
considerations.

8.5.2 Expected Value of Perfect Information and Modeling
Uncertainty

A current user of SP is interested in two things, what is the expected profit of an
optimal policy and what are the actions or decisions to be taken now in stage 0 in
order achieve this profit in expectation? Both LINGO and What’sBest! report the
expected profit in solution summary information and directly display the optimal
stage 0 decisions.

Before even using SP, a thoughtful user might ask the following two questions:
(1) How much can I improve my expected profits by using SP and (2) How much is
uncertainty costing me, e.g., if I had perfect forecasts, how much could I improve
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profits? The answers to these two questions can be any one of the four combinations
of “a lot” and/or “not much.” For example, in a newsvendor-like inventory problem,
if the cost/unit of carrying too much is about equal to the cost/unit of carrying too
little, then the value of using SP is not much relative to just stocking as if demand
will always be equal to the mean. On the other hand, if the variance in demand is
high, then the value of having better forecasts may be a lot. There are other situations
where just the reverse is true, i.e., the value of using SP is a lot, even though the
value of better forecasts is not much. LINGO and What’sBest! supply two statistics,
EVMU (Expected Value of Modeling Uncertainty) and EVPI (Expected Value of
Perfect Information). Slightly more explicitly

EVPI = Expected increase in profit if we know the future in advance.
EVMU = Expected decrease in profit if we replaced each random variable by a

single estimate and act as if this value is certain.

In the SP literature, EVMU is sometimes called VSS (Value of Stochastic Solu-
tion). Let us look at how EVMU and EVPI are provided in LINGO for the Newsven-
dor model considered previously. The solution summary section is as follows:

Objective (EV): 2109.684
Wait-and-see model’s objective (WS): 2799.685
Perfect information (EVPI = |EV - WS|): 690.0007
Policy based on mean outcome (EM): 2081.542
Modeling uncertainty (EVMU = |EM - EV|): 28.14211

The first line says that, given the problem as stated, the estimate of expected
profit is 2109.684. The second, “Wait-and-see,” line says that if we could postpone
our inventory stocking decision until we saw demand (alternatively, we have perfect
forecasts), then our expected profit is estimated to be 2799.685. The third line, EVPI,
is the estimated amount of additional profit from having this information.

The fourth line, EM, reports our estimated expected profit if we acted as if the
demand would always be the mean. In this case we would stock the mean, 80, rather
than the SP recommended level of 85.647. Thus, we would incur higher shortage
costs than under the optimal policy.

Figure 8.11 lays out graphically the relationship between doing the best job pos-
sible with the available information (EVMU) and the benefit of getting perfect in-
formation (EVPI).

Profit →

EVMU EVPI

Disregard
uncertainty

Use SP Have perfect
forecast  

[2081.542] [2109.684] [2799.685] 

Fig. 8.11 Relationship between good decision making plus good information
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The above is for a two-stage SP. EVPI generalizes easily to more than two stages;
however, it is not so straightforward to generalize EVMU to more than two stages.

8.6 Conclusions

We have shown two approaches, in a modeling language and in a spreadsheet, to
making SP available to typical modeling analysts. There are two challenges in mak-
ing SP available to wider audience: computability and usability. Users expect to be
able to solve nontrivial problems with an SP modeling capability. In this sense, SP
is similar to integer programming. Unsophisticated users can easily formulate rel-
atively simple looking models that take very long to solve. Much good effort by
talented researchers has been devoted to methods for solving SP problems. Less ef-
fort has been devoted to usability, although our experience is that the challenge there
is almost as great. We hope that this chapter illustrates that many of the traditional
theories of good modeling and good model system design apply to SP just as well
to more traditional types of operations research models.
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Chapter 9
Advances in Business Analytics at HP
Laboratories

Business Optimization Lab, HP Labs, Hewlett-Packard

Abstract HP Labs’ Business Optimization Lab is a group of researchers focused
on developing innovations in business analytics that deliver value to HP. This chap-
ter describes several activities of the Business Optimization Lab, including work
in product portfolio management, prediction markets, modeling of rare events in
marketing, and supply chain network design.

9.1 Introduction

Hewlett-Packard is a technology company that operates in more than 170 countries
around the world. HP explores how technology and services can help people and
companies address their problems and challenges and realize their possibilities, as-
pirations, and dreams.

HP provides infrastructure and business offerings ranging from handheld devices
to some of the world’s most powerful supercomputer installations. HP offers con-
sumers a wide range of products and services from digital photography to digital
entertainment and from computing to home printing. HP was founded in 1939. Its
corporate headquarters are in Palo Alto, CA. HP is among the world’s largest IT
companies, with revenue totaling $118.36 billion for the fiscal year that ended Oct
31, 2008.

HP’s three business groups drive industry leadership in core technology areas:

• Personal Systems Group: business and consumer PCs, mobile computing devices
and workstations.
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• Imaging and Printing Group: Inkjet, LaserJet and commercial printing, printing
supplies, digital photography and entertainment.

• Enterprise Business Group: enterprise services, business products including stor-
age and servers, software and technology services for customer support.

At its heart, HP is a technology company, fueled by progress and innovation. The
majority of HP’s research is conducted in our business groups, which develop the
products and services we offer to customers. As Hewlett-Packard’s central research
organization, HP Labs’ role is to invent for the company’s future.

HP Labs’ function is to deliver breakthrough technologies and technology
advancements that provide a competitive advantage for HP and to create business
opportunities that go beyond HP’s current strategies. The lab also helps shape HP
strategy, and it invests in fundamental science and technology in areas of interest
to HP.

For more than 40 years, HP Labs has been advancing technology and improv-
ing the way our customers live and work. From the invention of the desktop sci-
entific calculator and the HP LaserJet printer to blade technology innovations and
power-efficiency improvements for data centers, HP Labs is continuously pushing
the boundaries of research to deliver more valuable technology experiences.

With 600 researchers across 23 labs in seven worldwide locations, HP Labs
brings together some of the most distinguished researchers across a diverse set
of scientific and technical disciplines—including experts in economics, science,
physics, computer science, sociology, psychology, mathematics, and engineering.

These dedicated researchers are tackling some of the most important challenges
of the next decade through a focus on high-impact research, a commitment to open
innovation, and a drive to transfer technology to the marketplace. HP Labs’ goal is to
create breakthrough technology experiences for individuals and businesses around
the world.

HP’s deep roots in technologies and very competitive business environment pro-
vide a very rich set of opportunities for applied research in advanced analytics. Some
of this applied research thrust in analytics is directed toward new product or service
creations, though the major share of activities is geared toward operational pro-
cesses innovation. This chapter describes selected activities of HP Labs’ Business
Optimization Lab, a group focused on advancing technologies and building high-
impact innovative applications for operations and personalization, both driven by
advanced analytics.

The researchers in the Business Optimization Lab exploit opportunities to build
upon existing methodologies and create advanced analytics models and solutions
for a comprehensive array of business contexts. The applications of this work span
a wide range of areas including marketing, supply chain management, enterprise-
wide risk management, service operations, and new service creation. Methodolo-
gies driving this applied research at HP Labs include operations research, industrial
engineering, economics, statistics, marketing science, and computer science. For a
summary of these activities see Jain [15].
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9.1.1 Diverse Applied Research Areas with High Business Impact

This chapter presents four applied research projects conducted in the Business
Optimization Lab that address HP’s business needs in diverse areas.

The first study describes HP Labs’ work in product variety management, which
is at the interface of marketing and supply chain management decisions. Conven-
tional wisdom suggests that a manufacturer should offer a broad variety of products
in order to meet the needs of a diverse set of customers. While this is true to an ex-
tent, product variety comes with significant operational costs, which in excess may
be counter-productive to profitability. Since the 1990s HP has faced many of these
challenges due to its vast product portfolio. Business units sought methods to under-
stand the costs of complexity and to identify which products were truly important to
their business, so that they could refine their product offering without compromising
revenue. To address these challenges, HP Labs introduced a new metric, coverage,
for evaluating product portfolios in configurable product businesses. Coverage looks
beyond the individual performance of products and considers their interdependence
through orders. This metric, and HP Labs’ accompanying Revenue Coverage Opti-
mization tool (RCO), enables HP to identify products most critical to its offering, as
well as candidates for discontinuance. As a result, HP has improved its operational
focus on key products while also reducing the complexity of its product offering,
leading to significant business benefits.

The second section describes the methodology and application of prediction
market for forecasting business events, when markets are not efficient. Forecast-
ing has been important since the dawn of business. There are two approaches in the
context of using information for forecasting. The popular approach, backed up by
decades of development of computing technologies, is the use of statistical analysis
on historical data. This approach can be very successful when the relevant infor-
mation is captured in historical data. In many situations, however, there is either
no historical data or the data contain no patterns useful for forecasting. A good
example is forecasting the demand of a new product. Thus, a second approach is to
tap into tacit and subjective information in the minds of individuals. This so-called
wisdom of crowds phenomenon has been documented over the centuries. The pre-
diction markets, where people are allowed to interact in organized markets governed
by well-defined interaction rules, have been shown to be an effective way to tap into
the collective intelligence of crowds. If these markets are large enough and properly
designed, they can be more accurate than other techniques for extracting diffuse in-
formation, such as surveys and opinions polls. Forecasting business events, on the
other hand, may involve only a handful of busy experts, and they do not constitute
an efficient market. We describe an alternate method of harnessing the distributed
knowledge of a small group of individuals by using a two-stage mechanism. This
mechanism is designed to work on small groups, or even an individual. This tech-
nique has been applied to several real-world demand forecasting problems. We will
present a case study of its use in demand forecasting a technology hardware product
and also discuss issues about real-world implementation.
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In the third area, we describe modeling of rare events in marketing. A rare event
is an event with a very small probability of occurrence. Typical examples of such
events from social sciences that readily come to mind are wars, outbreak of in-
fections, and breakdown of a city’s transport system or levies. Examples of such
events from marketing are in the area of database marketing (e.g., catalogs, news-
paper inserts, direct mailers sent to a large population of prospective customers)
where only a small fraction (less than 1%) responded resulting in a very small prob-
ability of a response (event). More recent examples of rare events have emerged in
marketing with the advent of the Internet and digital age and the use of new types of
marketing instruments. A firm can reach a large population of potential customers
through its web site, display ads, e-mails, and search marketing. But only a very
small proportion of those exposed to these instruments respond. To make business
and policy planning more effective it is important to be able to analyze and pre-
dict these events accurately. Rare event variables have been shown to be difficult
to predict and analyze. There are two sources of the problem. The first source is
that standard statistical procedures, such as logistic regression, can sharply under-
estimate the probability of rare events. The second source of the problem is that
commonly used data collection strategies are grossly inefficient for rare events
data. In this study we share a choice-based sampling approach to discrete-choice
models and decision-tree algorithms to estimate the response probabilities at
the customer level to a direct mail campaign when the campaign sizes are very large
(in millions) and the response rates are extremely low. We use the predicted response
probabilities to rank the customers which will allow the business to run targeted
campaigns.

In our fourth and last study, we describe a mathematical programming model
that constitutes the core of a number of analytical decision support applications for
decision problems ranging from design of manufacturing and distribution networks
to evaluation of complex supplier offers in logistics procurement processes. We pro-
vide some details on two applications of the model to evaluate various distribution
strategy alternatives. In these applications, the model helps answer questions such
as whether it is efficient to add more distribution centers to the existing network and
which distribution centers and transport modes are to be used to supply each cus-
tomer location and segment, by quantifying the trade-off between the supply chain
costs and order cycle times.

9.2 Revenue Coverage Optimization: A New Approach
for Product Variety Management

HP’s Personal Systems Group (PSG) is a $40B business that sells workstations,
desktops, notebooks, and handheld devices to consumers and businesses. In
October 2004, PSG offered tens of thousands of distinct products in its product
lines. PSG’s Global Business Unit Team knew their large and complex product
offering led to confusion among sales people and customers, high administrative
costs for forecasting and managing inventory of each product, and, most seriously,
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poor order cycle time (OCT). A typical PSG order consists of many products, and
an order does not ship until each of its products is available, so a stock-out of a sin-
gle product delays the entire order. Because PSG’s product line was so large, it was
difficult and costly to maintain adequate availability for all products. Consequently,
PSG’s average OCT ranged from 11 to 14 days in North America (depending on
the product line) compared to 5–7 days for the leading competitor. This difference
adversely affected HP’s customer satisfaction and market share.

The PSG team sought to identify a “Core Portfolio” of products that were most
important to achieve their business goals. Once these Core products were identified,
PSG could reduce the wait time for these products by renegotiating supply contracts
and increasing inventory as needed. PSG also hoped to identify lower-priority prod-
ucts and either eliminate them from the product offering or offer them with longer
lead times than Core Portfolio products. Prior to 2004, PSG used revenue thresholds
as the measure for product importance. However, revenue is an insufficient criterion
because it fails to recognize that some low-revenue products, such as power sup-
plies, are critical to fulfilling many orders. PSG needed a more effective way to
measure each product’s importance.

Similar product proliferation issues affected other parts of HP, including Busi-
ness Critical Systems (BCS). Business leaders sought the help of OR researchers
and practitioners in the company to manage HP’s product portfolio in a disciplined
manner. As a result, HP created two powerful OR-based solutions for managing
product variety (see Ward et al. [29].) The first solution, developed by HP’s Strategic
Planning and Modeling (SPaM) group, is a framework for screening new products
prior to introduction. It uses custom-built return-on-investment (ROI) calculators to
evaluate each proposed new product; those that do not meet a threshold ROI level
are targeted for exclusion from the proposed lineup. The second, HP Labs’ Revenue
Coverage Optimization (RCO) tool, is used to manage product variety after intro-
duction. RCO enables HP businesses to increase operational focus on their most
critical products. Together, these tools have enabled HP to streamline its product
offerings, improve execution, achieve faster delivery, lower overhead, and increase
customer satisfaction and market share.

This chapter focuses on the second solution. It describes the RCO technology
for managing product variety after it has been introduced into the portfolio and its
implementation in HP. The next section introduces the metric of coverage for evalu-
ating a product portfolio and describes the evolution of approaches that led to a fast
new maximum flow algorithm for revenue coverage optimization. The subsequent
sections present the results achieved through the use of RCO in HP, followed by
concluding remarks.

9.2.1 Solution

9.2.1.1 Coverage: A New Metric for Product Portfolios

The joint business unit and HP Labs team knew that when determining the impor-
tance of products in an existing product portfolio, it would not suffice to examine
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each product in isolation in order history, particularly in a business where orders
consist of many interdependent items. As mentioned previously, a product that gen-
erated relatively little revenue of its own could, in fact, be a critical component
to some large-revenue orders, and therefore be essential to order fulfillment. To
address this, HP Labs developed a new metric of a product portfolio that captures
the interrelationship among products and orders. This metric, called order coverage,
represents the percentage of past orders that could be completely fulfilled from the
portfolio. Similarly, revenue coverage of a portfolio is the revenue of its covered
orders as a percentage of the total revenue of orders in the data set. The concept
of coverage provides a meaningful way of measuring the overall impact of each
product on a business. The tool we developed, called the Revenue Coverage Opti-
mization (RCO) Tool, finds the smallest portfolio of products that covers any given
percentage of historical order revenue.1 More generally, given a set of historical or-
ders, RCO computes a nested series of product portfolios along the efficient frontier
of order revenue coverage and portfolio size.

The black curve in Figure 9.1 illustrates this efficient frontier. In this exam-
ple, 80% of order revenue can be covered with less than 27% of the total prod-
uct portfolio, if those products are selected according to RCO’s recommendations.
One can use this tool to select the portfolio along the efficient frontier that offers
the best trade-off—relative to their business objectives—between revenue coverage
and portfolio size. The strong Pareto effect in the RCO curve presents an important

Fig. 9.1 This chart shows revenue coverage vs. portfolio size achieved by RCO (black) and four
other product ranking methods, applied to the same historical data. The four other curves, in de-
creasingly saturated grays, are based on ranking by the following product metrics: revenue impact
(the total revenue of orders containing the product); maximum revenue of orders containing the
product; number of units shipped; and finally, individual product revenue

1In a nutshell, the RCO tool answers questions like “If I can pick only 100 products, which ones
should I choose so I can maximize the revenue from orders that only have these products in it?” We
argue, this is a better question to ask than “Which 100 products sold the most units?” or “Which
100 products show the highest line-item revenue?”



9 Advances in Business Analytics at HP Laboratories 143

opportunity to improve on-time delivery performance. A small investment in im-
proved availability of the top few products will significantly reduce average OCT.

In the remainder of this section, we describe the evolution of the RCO tool.

9.2.1.2 Math Programming Approaches to Optimize Coverage

The HP Labs team started by formulating the problem of finding the portfolio of
size at most n that maximizes the revenue of covered orders as an integer program,
IP(n):

IP(n): Maximize ∑o royo subject to:

(1) yo ≤ xp for each product-order combination (o, p)
(2) ∑p xp ≤ n

(3) xp ∈ {0,1}, yo ∈ {0,1},

where ro is the revenue of order o, and binary decision variables xp and yo represent
whether product p is included in the portfolio and whether order o is covered by the
portfolio, respectively.

Solving this integer program can be difficult in practice. Typical data sets have
hundreds of thousands of product–order combinations, leading to hundreds of thou-
sands of constraints of type (1). The integer program can take many hours to solve,
and in some very large cases cannot be solved at all due to computer memory limi-
tations.

However, it does have the nice property that constraints (1) are totally unimodu-
lar. This observation led to the following Lagrangian relaxation, denoted by LR(λ ),
in which we replace constraint (2) with a term in the objective penalizing the number
of products used in the solution by a nonnegative scalar λ :

LR(λ ): Maximize ∑o royo−λ ∑p xp subject to:

yo ≤ xp for each product–order combination (o, p)
xp ∈ [0,1], yo ∈ [0,1].

The Lagrangian relaxation offers several advantages over the integer program. As
mentioned previously, the remaining constraints are totally unimodular and so its
optimal solution to a linear program is integer. Moreover, if a set of orders and
products (O, P) is the optimal solution to LR(λ ), then it will be an optimal solution
to the original integer program IP(|P|).

One very nice property of the series of solutions generated by this method is
that they are nested, as is shown in the proof of the following theorem. This nested
property is essential to application of the approach in business decisions, where a
range of alternative portfolio choices are desired. Let O(λ ) denote the set of orders
covered in the optimal solution to LR(λ ), and let P(O) denote the set of all products
appearing in at least one order in O.
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Theorem 1 If λ1 < λ2, then O(λ2)⊆ O(λ1).

Proof Suppose Oλ2 	⊆ O(λ1). Then let O′ = O(λ2)\O(λ1) 	= /0. Then

0≥|O′|−λ1|P(O′)\P(O(λ1))|
>|O′|−λ2|P(O′)\P(O(λ1))|
≥|O′|−λ2|P(O′)\P(O(λ1))|.

The first inequality holds by the optimality of O(λ1) for λ1; if this inequality were
not true, then one could increase the objective function of LR(λ1) by adding the
orders in O′ to O(λ1). The second inequality follows from the fact that λ1 < λ2.
The third inequality is true because, by the definition of O′, the set of orders
O(λ2)\O′ is contained in O(λ1) and so P(O(λ2)\O′) ⊆ P(O(λ1)). However, if
|O′|−λ2|P(O′)\P(O(λ2)\O′)| ≤ 0, then one could improve the objective of LR(λ2)
by removing O′ from O(λ2), which contradicts the optimality of O(λ2) for LR(λ2).
Thus O(λ2)⊆ O(λ1). ��

Solving LR(λ ) for a series of values of λ generates a series of solutions to IP(n)
for several values of n. These solutions lie along the efficient frontier of revenue
coverage vs. portfolio size. This series does not provide an integer solution for every
possible value of n; solutions below the concave envelope of the efficient frontier are
skipped. However, a wise selection of values of λ produces quite a dense curve of
solutions for typical HP data sets; the number of distinct solutions is typically at
least 85% of the total product count. To obtain a complete product ranking, we must
break ties among products that are added between consecutive solutions to LR(λ ).
We employ a product’s revenue impact, the total revenue or orders containing the
product, as a tie-breaking metric. This metric proved to be the best approximation
to RCO among the heuristics we tried (see Figure 9.1).

Our original implementation of RCO used a linear programming solver (CPLEX)
to solve the series of problems LR(λ ). However, for very large problems containing
millions of order line items, each such problem can take several minutes to solve.
To solve it for many values of λ in order to create a dense efficient frontier can take
many hours. Large problems called for a more efficient approach to solve the series
of problems LR(λ ).

9.2.1.3 Relationship to Maximum Flow Problem

We learned that the problem LR(λ ) for fixed λ is an example of a selection problem
introduced independently in Balinski [4] and Rhys [25]. The former paper showed
that a selection problem is equivalent to the problem of finding a minimum cut in
a particular bipartite network. To see how LR(λ ) can be viewed as a minimum cut
problem, consider the network in Figure 9.2. Adjacent to the source node s is a set
of nodes, each corresponding to one product. Adjacent to the sink node t is a set
of nodes, each corresponding to one order. The capacity of the links adjacent to s
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Fig. 9.2 A bipartite minimum cut/maximum flow problem corresponding to the Lagrangian
relaxation LR(λ ).

is λ . The capacity of the link from the node for order i is the revenue of order i. The
capacity of links between product nodes and order node is infinite.

For the network shown in Figure 9.2, the set T in a minimum cut corresponds
to the products selected and orders covered by an optimal solution to LR(λ ). To
see why, first observe that since the links from product nodes to order nodes have
infinite capacity, they will not be included in a finite capacity cut. Therefore, for any
order nodes in the T set of a finite capacity cut, each product that is in the order must
also have its node in T . So a finite capacity cut corresponds to a feasible solution to
LR(λ ). Moreover, the value of an s–t cut is ∑o ro(1− yo)+λ ∑p xp; in other words,
the revenue of the orders not covered by the portfolio, plus λ times the number
of products in the portfolio. Minimizing this quantity is equivalent to maximizing
∑o royo−λ ∑p xp; therefore a minimum cut is an optimal solution to LR(λ ).

It is a well-known result of Ford and Fulkerson [11] that the value of a maximal
flow equals the value of a minimum cut. Moreover, the minimum cut can be obtained
by finding a maximal flow.

If λ is allowed to vary, the problem LR(λ ) becomes a parametric maximum
flow problem, since the arc capacities depend on the parameter λ . There are
several known algorithms for parametric maximum flow, such as those in Gallo
et al. [12] for general networks and Ahuja et al. [1] for bipartite networks. In most
prior algorithms for parametric maximum flow, a series of maximum flow problems
is solved, and previous problem’s solution is used to speed up the solution to the next
one. By comparison, the HP Labs team developed a new parametric maximum flow
algorithm for bipartite networks that finds the maximum flow for all breakpoints of
the parameter values simultaneously (Zhang et al. [28], Tarjan et al. [30–32]). If we
look at the maximum flow from the source s to the target t as a scalar function of
the parameter λ , this maximum flow is a piecewise linear function of λ . A break-
point of the parameter value is where the derivative of the piecewise linear function
changes.
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9.2.1.4 Parametric Bipartite Maximum Flow Algorithm

As mentioned above, the problem LR(λ ) is equivalent to finding a feasible assign-
ment of flows in the graph that maximizes the total flow from s to t. The SPMF
algorithm takes advantage of the special structure of the capacity constraints.

The intuition behind the algorithm is as follows. First assume that λ=∞. Then the
only constraints on flows result from the capacity limitations on arcs incident to t.
It is easy to find flow assignments that saturate all capacitated links, resulting in a
maximum total flow.

The next step is to find such a maximum flow assignment that distributes flows
as evenly as possible across all arcs leaving s. The property “evenly as possible”
means that it is impossible to rebalance flows between any pair of arcs in such a
way that the absolute difference between these two flows decreases. Note that even
in this most even maximum flow assignment, not all flows will be the same.

Now, with the most even assignment discussed above, impose capacity con-
straints of λ < ∞ on the arcs leaving s. If the flow assignment for one of these given
arcs exceeds λ , reduce the flow on this arc to λ and propagate the flow reduction
appropriately through the rest of the graph.

Since the original flow assignment was most evenly balanced, the total flow lost
to the capacity constraint is minimal and the total flow remaining is maximal for the
given parameter λ .

More formally, the algorithm works as follows:

Step 1. For a graph as in Figure 9.2 with λ = ∞, select an initial flow assignment
that saturates the arcs incident to t. This is most easily done backward, starting
from t and choosing an arbitrary path for a flow of size ri from t through oi to s.

Step 2. Rebalance the flow assignment iteratively to obtain a “most evenly bal-
anced” flow assignment. Let f (a→ b) denote the flow along the link from node
a to node b. The rule for redistributing the flows is as follows. Pick i and j
for which there exists an order node ok as well as arcs pi → ok and p j → ok

such that f (s→ pi) < f (s→ p j) and f (p j → ok) > 0. Then, reduce f (s→ p j)
and f (p j → ok) by min{( f (s→ p j)− f (s→ pi))/2, f (p j → ok)} and increase
f (s→ pi) and f (pi → ok) by the same amount. Repeat Step 2 until no such
rebalancing can be found.

The procedure in Step 2 converges, as proven in Zhang et al. [30, 31]. The limit
is a flow assignment that is “most evenly balanced.” In addition, since total flow is
never reduced, the resulting flow assignment is a maximum flow for the graph with
λ = ∞.

Step 3. To find a maximum flow assignment for a given value of λ , replace flows
exceeding λ on arcs leaving the source s by λ and reduce subsequent flows
appropriately to reconcile flow conservation. The resulting flow assignment
is a maximum flow for λ .

For more details and a rigorous mathematical treatment of the problem, see
Zhang et al. [31]. In Zhang et al. [30] it is shown that the algorithm generalizes
to the case where arc capacities are a more general function of a single parameter.
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In addition, since our application requires only knowledge of the minimum cut,
one only needs to identify those arcs that exceed the capacity limit of λ after Step 2.
Those arcs will be part of the minimum cut, and the ones leaving s with flows less
than λ will not. To find the remaining arcs that are part of the minimum cut, one
only has to identify which order nodes connect to s through one of the arcs with
flows less than λ and cut through those nodes’ arcs to t.

As discussed earlier, a bipartite minimum cut/maximum flow problem corre-
sponds to the Lagrangian relaxation problem LR(λ ). It can be shown that the t-
partition of the minimum cut with respect to λ contains products whose flows from
the source equals λ and the orders containing only those products. These products
constitute the optimal portfolio for parameter λ .

Note that Steps 1 and 2 are independent of λ . The result of Step 2 allows us
immediately to determine the optimal portfolio for any value of λ .

Since the flows are balanced between two arcs s→ pi and s→ p j, in the algorithm
described above, we call it arc-balancing method. Arc-balancing SPMF reduced the
time for finding the entire efficient frontier from hours to a couple of minutes.

Another version of SPMF algorithm was developed based on the idea of redis-
tributing the flows going into a node o in a single step so that for all pairs pi → o
and p j → o, flows f (s→ p j) and f (p j → ok) are “most evenly balanced.” This
method of redistributing flows around a vertex o is named vertex-balancing method
[32]. Vertex-balancing SPMF further reduces the time for finding the entire efficient
frontier to seconds.

9.2.1.5 Comparison to Other Approaches

Because the Lagrangian relaxation skips some portfolio sizes in its series of solu-
tions, the worst-case difference between the RCO coverage and the optimal integer
program’s coverage can be significant. This can be illustrated through a simple ex-
ample with four products and three orders shown in Table 9.1. The solutions to
the integer program, Lagrangian relaxation, and RCO for this example are shown
in Table 9.2. In this example, solving the Lagrangian relaxation LR(λ ) for any
λ ∈[0,21/4] generates the portfolio {1, 2, 3, 4}; any larger value of λ yields the
empty portfolio. Portfolio sizes 1, 2, and 3 are skipped and the corresponding rev-
enue covered is zero. RCO invokes the revenue-impact heuristic to break ties among
products, thereby achieving better coverage than the Lagrangian relaxation alone.

Table 9.1 A simple example of order data

Order Products Order Revenue

A {1,2,3} $12
B {3,4} $6
C {1} $3



148 Business Optimization Lab, HP Labs, Hewlett-Packard

Table 9.2 Solutions to example problem for several approaches

Integer Lagrangian
Program Relaxation RCO

Portfolio Revenue Revenue Revenue
Size Solution Covered Solution Covered Solution Covered

1 {1} $3 skipped $0 {3} $0
2 {3,4} $6 skipped $0 {1,3} $3
3 {1,2,3} $12 skipped $0 {1,2,3} $12
4 {1,2,3,4} $21 {1,2,3,4} $21 {1,2,3,4} $21

While this example illustrates worst-case behavior, in practice, RCO typically
performs very close to optimal because the Lagrangian relaxation skips few solu-
tions when applied to large order data sets from HP’s business. RCO also has the
added benefit of producing a nested subset of solutions, which is not true in general
of the series of solutions to the integer program. Moreover, RCO compares favor-
ably to other heuristics for ranking products (Figure 9.1). The gray curves show the
cumulative revenue coverage achieved by four heuristic product rankings, in com-
parison to the coverage achieved by RCO. The best alternative to RCO for typical
data sets is one that ranks each product according to its revenue impact, a metric our
team devised to represent the total revenue of orders in which the product appears.
The revenue-impact heuristic comes closest to RCO’s coverage curve, because it is
best among the heuristics at capturing product interdependencies. Still, in our empir-
ical tests, we found that the revenue-impact ranking provides notably less revenue
coverage than RCO’s ranking. Given that RCO runs in less than 2 min for typical
data sets and requires no more data than the heuristics, HP had no reason to settle
for inferior coverage.

Another advantage of the RCO model is in its data requirements. Unlike metrics
based on individual product performance, RCO does not require the metric associ-
ated with orders to be broken down to individual products in the order. This is an
advantage in applying RCO to real-world data, where it is often difficult to break
down an order-level metric to the product level.

9.2.1.6 Generalizations

While the discussion thus far has emphasized the application of maximizing histor-
ical revenue coverage subject to a constraint on portfolio size, this approach is flex-
ible enough to accommodate a much wider range of objectives, such as coverage of
order margin, number of orders, or any other metric associated with individual or-
ders. It can easily accommodate up-front strategic constraints on product inclusion
or exclusion. RCO can also be applied at any level of the product hierarchy, from
SKUs down to components. Moreover, our algorithm has broader applications, such
as in the selection of parts and tools for repair kits, terminal selection in transporta-
tion networks, and database record segmentation. Each of these problems can be
naturally formulated as a parametric maximum flow problem in a bipartite network.
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The SPMF algorithm has applications well beyond product portfolio manage-
ment, such as in the selection of parts and tools for repair kits, terminal selection
in transportation networks, and database record segmentation. The team’s extension
of SPMF to non-parametric max flows in general networks (Tarjan et al [28]) has
an even broader range of applications in areas such as airline scheduling, open pit
mining, graph partitioning in social networks, baseball elimination, staff scheduling,
and homeland security.

9.2.1.7 Implementation

HP businesses typically use the previous 3 months of orders as input data to RCO,
because this duration provides a representative set of orders. Significantly longer
horizons might place too much weight on products that are obsolete or nearing end
of life. When analysis on longer horizons is desired, RCO allows weighting of orders
in the objective, thus placing more emphasis on covering the most recent orders in
a given time window.

The RCO tool was not meant to replace human judgment in the design of the
product portfolio. Portfolio design depends critically on knowledge of strategic new
product introductions and planned obsolescence, which historical order data do not
reveal. Instead, RCO is used to enhance and facilitate interactive human processes
that include such strategic considerations.

9.2.2 Results

Various HP businesses have used RCO in different ways to manage their product
portfolios more effectively. This section describes benefits obtained in several busi-
nesses across HP.

PSG Recommended Offering Program. PSG has used RCO to improve competi-
tiveness by significantly reducing order cycle time. PSG used RCO to analyze order
history for the USA, Europe, Middle East and Africa (EMEA), and Asia/Pacific
(APJ). RCO revealed that roughly 20% of products, if optimally selected, would
completely fulfill 80–85% of all customer orders. When these 20% of items are
stocked to be ready-to-ship, they help significantly decrease order cycle time for a
majority of orders. Using this insight, PSG established Recommended Offering for
each region.

Today, the Notebook Recommended Offering ships 4 days faster than the overall
Notebook offering. In EMEA, the Desktop Recommended Offering ships on aver-
age 2 days faster than the rest of the offering. The savings are impressive. Lower
order cycle time improves competitiveness, each day of OCT improvement across
PSG saves roughly $50M annually. PSG management estimates they have realized
savings of $130M per year in EMEA and the USA. APJ is also anticipating strong
benefits as they roll out the program there.
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PSG Global Series Offering Program. RCO is used on an ongoing basis by the
PSG Global Business Team to define the Global Series Offering for commercial
notebooks. The Global Series Offering is the set of products available to HP’s largest
global customers. As a result of RCO, global customers are now ordering over 80%
of their notebook needs from the global series portfolio, compared to 15% prior to
the use of RCO. The total notebook business for global customers is $2.6B. PSG es-
timates the benefits of this 18% increased utilization of the recommended portfolio
to be $130M in revenue.

BCS Portfolio Simplification. BCS runs RCO quarterly to evaluate its product
portfolio. In the last 2 years, RCO has been used to eliminate 3,300 products
from the portfolio of over 10,000 products. BCS Supply Chain Managers estimate
that this reduction has resulted in $11M cost savings due to reduced inventory
and planning costs. Moreover, BCS has used RCO to design options for new
product platforms based on order history for previous generation platforms.

9.2.3 Summary

The coverage metric provides a new way to evaluate product portfolios. Coverage
looks beyond the individual performance of products and considers their interde-
pendence through orders, which is particularly important in configurable product
businesses. This metric, and HP Labs’ accompanying optimization tool, RCO, en-
ables HP to identify products most critical to its offering, as well as candidates for
discontinuance. As a result, HP has improved its operational focus on key prod-
ucts while also reducing the complexity of its product offering, leading to improved
execution, significant cost savings, and increased customer satisfaction.

9.3 Wisdom Without the Crowd

Forecasting has been important since the dawn of business. Fundamentally, it is
an exercise of using today’s information to predict tomorrow’s events. The popular
approach, backed up by decades of development of computing technologies, is the
use of statistical analysis on historical data. This approach can be very successful
when the relevant information is captured in historical data.

In many situations, there is either no historical data or the data contain no useful
pattern for forecasting. A good example is the forecast of the demand of a new
product. A new approach is to tap into tacit and subjective information in the minds
of individuals. Groups consistently perform better than individuals in forecasting
future events. This so-called wisdom of crowds phenomenon has been documented
over the centuries. The prediction market, where people are allowed to interact in
organized markets governed by well-defined interaction rules, was shown to be an
effective way to tap into the collective intelligence of crowds. Real-world examples
include the Hollywood Stock Exchange and the Iowa Electronic Markets. There
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are also several companies providing services of conducting prediction markets for
business clients.

Prediction markets generally involve the trading of state-contingent securities.
If these markets are large enough and properly designed, they can be more accu-
rate than other techniques for extracting diffuse information, such as surveys and
opinion polls. However, there are problems, particularly in the context of business
forecasting. In particular, a market works when it is efficient. That is, the pool of
participants is large enough, and there are plenty of trading activities. Forecasting
business events, on the other hand, may involve only a handful of busy experts, and
they do not constitute an efficient market.

Here, we describe an alternate method of harnessing the distributed knowledge
of a small group of individuals by using a two-stage mechanism. This mechanism
is designed to work on small groups, or even an individual. In the first stage, a cali-
bration process is used to extract risk attitudes from the participants, as well as their
ability to predict given outcome. In the second stage, individuals are simply asked
to provide forecasts about an uncertain event, and they are rewarded according to
the accuracies of their forecasts. The information gathered in the first stage is then
used to de-bias and normalize the reports gathered in the second stage, which is ag-
gregated into a single probabilistic forecast. As we show empirically, this nonlinear
aggregation mechanism vastly outperforms both the imperfect market and the best
of the participants. This technique has been applied to several real-world demand
forecasting problems. We will present a case study of its use in demand forecast-
ing of a technology hardware product and also discuss issues about real-world
implementations.

9.3.1 Mechanism Design

We consider first an environment in which a set of N people have private informa-
tion about a future event. If information across individuals is independent, and if the
individuals truthfully reveal their probability beliefs, then it would be straightfor-
ward to compute the true aggregated, posterior, probabilities using Bayes’ rule. If
the individual i receives independent information then the probability of an outcome
s, conditioned on all of their observed information I, is given by

P(s | I) =
ps1 ps2 · · · psN

∑all s ps1 ps2 · · · psN

, (9.1)

where psi is the probability that individual i predicts outcome s. This result allows
us simply to take the individual predictions, multiply them together, and normalize
them in order to get an aggregate probability distribution.

However, individuals do not necessarily reveal their true probabilistic beliefs. For
that, we turn to scoring rule mechanisms. There are several proper scoring rules (for
example, Brier [8]) that will solicit truthful revelation of probabilistic beliefs from
risk-neutral payoff maximizing individuals. In particular we use the information
entropy score. The mechanism works as follows. We ask each player to report a
vector of perceived state probabilities {q1,q2, . . .qN} with the constraint that the
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vector sums to one. Then the true state x is revealed and each player paid c1 +
c2 log(qx), where c1 and c2 are positive numbers. It is straightforward to verify that if
an individual believes the probability to be {p1, p2, . . . , pN} and he or she maximizes
the expected payoff, he or she will report {q1 = p1, q2 = p2, . . ., qN = pN}.

Furthermore, there is ample evidence in the literature that individuals are not
risk-neutral payoff maximizers. In most realistic situations, a risk-averse person will
report a probability distribution that is flatter than their true beliefs as they tend to
spread their bets among all possible outcomes. In the extreme case of risk aver-
sion, an individual will report a uniform probability distribution regardless of their
information. In this case, no predictive information is revealed by the report. Con-
versely, a risk-loving individual will tend to report a probability distribution that
is more sharply peaked around a particular prediction, and in the extreme case of
risk-loving behavior a subject’s optimal response will be to put all the weight on
the most probable state according to their observations. In this case, their report will
contain some, but not all the information contained in their observations.

In order to account for both the diverse levels of risk aversion and information
strengths, we add a first stage to the mechanism. Before each individual is asked to
report their beliefs, their risk behavior is measured and captured by a single param-
eter. In the original research, and subsequent experiments that validated the effec-
tiveness of the mechanism, we use a market mechanism, designed to elicit their risk
attitudes and other relevant behavioral information. We use the portfolio held by in-
dividuals to calculate their correction factor. The formula to calculate this factor is
determined empirically and has little theoretical basis.2

The aggregation function, after behavioral corrections, is

P(s | I) =
pβ1

s1 pβ2
s2 · · · pβN

sN

∑all s pβ1
s1 pβ2

s2 · · · pβN
sN

, (9.2)

where βi is the exponent assigned to individual i. The role of βi is to help recover
the true posterior probabilities from individual i’s report. The value of βi for a risk-
neutral individual is one, as this individual should report the true probabilities com-
ing out of their information. For a risk-averse individual, βi is greater than one so as
to compensate for the flatter distribution that such individuals report. The reverse,
namely βi smaller than one, applies to risk-loving individuals. The technique of so-
liciting this behavior adjustment parameter βi has evolved over time. In some of the
later applications, surveys were used for initial estimations and the estimates were
updated using historical performance measures. Finally, a learning mechanism was
used to only aggregate the best performing individuals on a moving average basis.

2 In terms of both the market performance and the individual holdings and risk behavior, a simple
functional form for βi is given by βi = r(Vi/σi)c, where r is a parameter that captures the risk
attitude of the whole market and is reflected in the market prices of the assets, Vi is the utility of
individual i, and σi is the variance of their holdings over time. We use c as a normalization factor so
that if r = 1, βi equals the number of individuals. Thus the problem lies in the actual determination
of the risk attitudes both of the market as a whole and of the individual players.
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9.4 Experimental Verification

A number of experiments were conducted at Hewlett-Packard Laboratories in Palo
Alto, CA, to test this mechanism. Since we do not observe the underlying infor-
mation in real-world situations, a large forecast error can be caused by either a
failure to aggregate information or the individuals having no information. Thus,
laboratory experiments, where we know the amount of information in the sys-
tem, are necessary to determine how well this mechanism aggregates informa-
tion. We use undergraduate and graduate students at Stanford University as sub-
jects in a series of experiments. Five sessions were conducted with 8–13 subjects
in each.

The two-stage mechanism was implemented in the laboratory setting. Possible
outcomes were referred to as “states” in the experiments. There were 10 possi-
ble states, A through J, in all the experiments. The information available to the
subjects consisted of observed sets of random draws from an urn with replace-
ment. After privately drawing the state for the ensuing period, we filled the urn
with one ball for each state, plus an additional two balls for the just-drawn true
state security. Thus, it is slightly more likely to observe a ball for the true state
than others. We also implemented the prediction market in the experiment, as a
comparison.

The amount of information given to subjects is controlled by letting them observe
different number of draws from the urn. Three types of information structures were
used to ensure that the results obtained were robust. In the first treatment, each sub-
ject received three draws from the urn, with replacement. In the second treatment,
half of the subjects received five draws with replacement and the other half received
one. In a third treatment, half of the subjects received a random number of draws
(averaging three, and also set such that the total number of draws in the community
was 3N) and the other half received three, again with replacement.

We compare the scoring rule mechanism, with behavioral correction, to three
alternatives: the prediction market, reports from the best player (identified
ex post, with behavioral correction), and aggregation without behavioral correction.
Table 9.3 summarizes the results.

The mechanism (aggregation with behavioral correction) worked well in all the
experiments. It resulted in significantly lower Kullback–Leibler measures than the
no information case, the market prediction, and the best a single player could do. In
fact, it performed almost three times as well as the information market. Furthermore,
the nonlinear aggregation function, with behavioral correction, exhibited a smaller
standard deviation than the market prediction, which indicates that the quality of its
predictions, as measured by the Kullback–Leibler measure,3 is more consistent than
that of the market. In three of five cases, it also offered substantial improvements
over the case without the behavioral correction.

3 The Kullback–Leibler measure (KL measure) is a relative entropy measure, with respect to the
distribution conditioned on all information available in an experiment. A KL measure of zero is a
perfect match.
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Table 9.3 Kullback–Leibler measure (smaller = better), by experiment

No Information
Prediction
Market Best Player

Aggregation
Without
Behavioral
Correction

Aggregation With
Behavioral
Correction

1.977 (0.312) 1.222 (0.650) 0.844 (0.599) 1.105 (2.331) 0.553 (1.057)
1.501 (0.618) 1.112 (0.594) 1.128 (0.389) 0.207 (0.215) 0.214 (0.195)
1.689 (0.576) 1.053 (1.083) 0.876 (0.646) 0.489 (0.754) 0.414 (0.404)
1.635 (0.570) 1.136 (0.193) 1.074 (0.462) 0.253 (0.325) 0.413 (0.260)
1.640 (0.598) 1.371 (0.661) 1.164 (0.944) 0.478 (0.568) 0.395 (0.407)

9.5 Applications and Results

This mechanism was implemented into a web application called BRAIN (Behav-
iorally Robust Aggregation of Information in Networks). The process is used for
forecasting tasks in several companies including a major European telecommunica-
tion company and several divisions of the largest technology company in the USA.
Participants enter their reports through a web site. The behavioral corrections are
carried out automatically and management can access the results directly from the
web site.

A project was started in spring 2009 to make use of this process to forecast sales
of a technology product. Two business events are to be forecasted. The first is the
worldwide monthly shipment units of this product. This product sells into two dif-
ferent customer segments (designated A and B). The second is the percentage of the
worldwide shipment going into customer segment A for a particular month.

For each event (for example, worldwide shipment in September 2009), there are
six forecasts, two in each month for the 3 months leading up to the event. The
forecasts are typically conducted in the first and third week of the month. For the
September 2009 shipment, the forecasting process is conducted in late June, twice
in July, twice in August and in early September. Note that partial information about
shipment of September is available when the forecasting process is conducted. The
design allows the forecasts to be updated if new information is available to the in-
dividuals. For each event, the real line is divided into distinct intervals and each
interval is considered a possible outcome. Individuals are asked to “bet” (report)
on each of the possible interval. Twenty-five individuals from different parts of the
business organization, including marketing, finance, and supply chain management
functions, were recruited for this process. The first forecast was conducted in late
May 2009. Participation fluctuated. In the forecasts conducted in early August 2009,
16 out of the 25 recruits (64%) submitted their reports. A small budget was autho-
rized as incentive to pay the participants.

The following figure shows the predictions and the actual events for July 2009.
The predictions for Shipments and Customer Segment A have varied over the course
of the predictions. The ranges are the bin widths. Prediction starts with the Early
June forecasts, beginning about 7 weeks prior to the actual event.
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Fig. 9.3 Shipment forecast (units not available). Note: Rectangles: most likely interval; thick line:
actual outcome

Fig. 9.4 Customer Segment A % forecast. Note: Rectangles: most likely interval; thick line: actual
outcome

As one can see, the BRAIN process has provided accurate forecast at least 1
month in advance for the shipment prediction and 3 months in advance for July
consumer percentage. BRAIN is also more accurate in comparison to other internal
business forecasts. In particular, the shipment forecasts made 1 month prior for each
month from May through July had an absolute error of 2.5% using BRAIN vs. an
absolute error of 6.0% for the current forecasting method.

9.6 Modeling Rare Events in Marketing: Not a Rare Event

A rare event is an event with a very small probability of occurrence. Rare event
data could be of the form where the binary dependent variable has dozens to thou-
sands of times fewer ones (“events”) than zeros (“nonevents”). Typical examples
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of such events from social sciences that readily come to mind are wars, outbreak
of infections, breakdown of a city’s transport system, or levies. Past examples of
such events from marketing are in the area of database marketing (e.g., catalogs,
newspaper inserts, direct mailers sent to a large population of prospective cus-
tomers) where only a small fraction (less than 1%) responded resulting in a very
small probability of a response (event) [6, 18]. The examples of rare events where
they occur infrequently over a period of time can be thought of as longitudinal rare
events, while the examples where a small subset of the population responds can be
thought of as cross-sectional rare events.

More recent examples of rare events have emerged in marketing with the advent
of the Internet and digital age and the use of new types of marketing instruments.
A firm can reach a large population of potential customers through its web site,
display ads, e-mails, and search marketing. But only a very small proportion of
those exposed to these instruments respond. For example, of the millions of visitors
to a firm’s web site only a handful of them click on a link or make a purchase.
To make business and policy planning more effective it is important to be able to
analyze and predict these events accurately.

Rare event variables have been shown to be difficult to predict and analyze. There
are two sources to the problem. The first source is that standard statistical proce-
dures, such as logistic regression, can sharply underestimate the probability of rare
events. The intuition is that there are very few values available for the independent
variables to understand the circumstances that cause an event and these few values
do not fully cover the tail of the logistic regression. The model infers that there are
fewer circumstances under which the event will occur resulting in an underestimate.
Additionally, parametric link functions such as those used for probit or logit assume
specific shapes for the underlying link functions implying a given tail probability
expression that remains invariant to observed data characteristics. As a result these
models cannot adjust for the case when there are not enough observations to fully
span the range needed for estimating these link functions. The second source of the
problem is that commonly used data collection strategies are grossly inefficient for
rare events data. For example, the fear of collecting data with too few events leads
to data collections with huge numbers of observations but relatively few, and poorly
measured, explanatory variables, such as in international conflict data with more
than a quarter-million dyads, only a few of which are at war [6, 16, 18].

Researchers have tried to tackle the problem of using logistic regression (or
probit) to analyze rare events data in three ways [6]. First approach is to adjust
the coefficients and predictions of the estimated logistic regression model. King and
Zeng [18] describe how to adjust the maximum likelihood estimates of the logistic
regression parameters to calculate approximately unbiased coefficients and predic-
tions. Second approach is to use choice-based sampling where the sample is con-
structed based on the value of the dependent variable. This can cause biased results
(sample selection bias) and corrections must be undertaken. Manski and Lerman
[21] developed the weighted exogenous maximum likelihood (WESML) estimator
for dealing with the bias. Third approach is to relax the logit or probit parametric
link assumptions which can be too restrictive for rare events data. Naik and Tsai
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[24] developed an isotonic single-index model and developed an efficient algorithm
for its estimation.

In this study we apply the second approach of choice-based sampling to discrete-
choice models and decision-tree algorithms to estimate the response probabilities
at the customer level to a direct mail campaign when the campaign sizes are very
large (in millions) and the response rates are extremely low. We use the predicted
response probabilities to rank the customers which will allow the business to run
targeted campaigns, identify best and at-risk customers, reduce their cost of running
the campaign, and increase response rate.

9.6.1 Methodology

9.6.1.1 Choice-Based Sampling

In a discrete-choice modeling framework sometimes one outcome can strongly out-
number the other such as when many households do not respond (e.g., to a di-
rect mailing). Alternative sampling designs have been proposed. A case–control
or choice-based sample design is one in which the sampling is stratified on the
values of the response variable itself and disproportionately more observations are
sampled from the smaller group. This ensures that the variation in the dependent
variable is maximized with subsequent statistical analysis accounting for this sam-
pling strategy to ensure the estimates are asymptotically unbiased and efficient
[10, 21, 22].

In the biostatistical literature, case–control studies were prompted by studies in
epidemiology on the effect of exposure to possible hazards such as smoking on the
risks of contracting a disease condition. In a prospective study design, a sample of
individuals is followed and their responses recorded. However, many disease condi-
tions are rare and even large studies may produce few diseased individuals (cases)
and little information about the hazard. In a case–control study separate samples are
taken of cases and controls—individuals without the disease [27].

In the economics literature, estimation of models to understand choices for travel
modes or recreation sites has used different sampling designs to collect data on
consumer choices. For example, studies of participation levels and destinations for
economic activities such as recreation have traditionally been analyzed using ran-
dom samples of households, with either cross-section observations or panel data on
repeat choices obtained from diaries. In travel demand analysis, an alternative sam-
pling design is to conduct intercept surveys at sites. This can result in substantial
reductions in survey costs and guarantee adequate sample sizes for sites of interest,
but the statistical analysis must take into account the “choice-based” sample frame
[23].

There is a well-developed theory for this analysis in the case of cross-section
observations, where data are collected only on the intercept trip. In site choice mod-
els when subjects are intercepted at various sites, a relevant statistical analysis is
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the theory of estimation from choice-based samples due to Manski and Lerman
[21] and Manski and McFadden [22]. This theory was developed for situations
where the behavior of a subject was observed only on the intercept choice occa-
sion and provided convenient estimators when all sites were sampled at a positive
rate. One of these estimators, called weighted exogenous sample maximum likeli-
hood (WESML), reweights the observations so that the weighted sample choice
frequencies coincide with population frequencies. A second, called conditional
maximum likelihood (CML), weights the likelihood function so that the weighted
sample choice probabilities average to the sample choice frequencies. The WESML
setup carries out maximum pseudolikelihood estimation with a weighted log like-
lihood function where in conventional choice-based sampling the weights are the
sampling rates for the alternatives, given by the sample frequency divided by the
population frequency for each alternative. The CML setup carries out maximum
conditional likelihood estimation with a log likelihood function.

However, recently sampling schemes have emerged in the literature on recre-
ational site choice that combine interception at sites with diaries that provide panel
data on intercept respondents on subsequent choice occasions. McFadden’s [23]
paper provides a statistical theory for these “Intercept and Follow” surveys, and in-
dicates where analysis based on random sampling or simple choice-based sampling
requires correction.

9.6.1.2 Modeling Approach

We developed a discrete-choice (logit) model and a classification-tree algorithm
(aucCART) for predicting a user’s probability of responding to an e-mail. The
discrete-choice model is statistical based while the classification-tree algorithm is
machine-learning oriented. Both response modeling methods use as input dozens
of columns (or attributes) from the data sample and identify the most important
(relevant) columns that are predictive of the response. By employing different types
of response models for predicting the same response behavior, we were able to
cross-check the models and discover predictors and attribute transformations that
would be overlooked and missed in a single model. We then performed hold-
out (or out-of-sample) tests on the accuracy of both methods and select the best
model.

The output of each model consists of the probability that each customer will re-
spond to a campaign and the strength of each attribute that influences this probabil-
ity. We extracted about 80 explanatory attributes from the transaction and campaign
databases. These may be broadly classified as (1) customer static (nontime-varying)
attributes such as gender and acquisition code; (2) customer dynamic attributes just
prior to the campaign, which include the recency, frequency, and monetary (RFM)
attributes for customer actions, responses to previous campaigns, etc.; and (3) cam-
paign attributes such as the campaign format and the offer type (e.g., fixed price and
percentage discounts, free shipping, and freebies).
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Choice-Based Sampling

A typical campaign gets very low response rate. To learn a satisfactory model, we
would need thousands of responses and hence millions of rows in the training data
set. Fitting models with data of this size requires a considerable amount of memory
and CPU time. To solve this problem, we used choice-based sampling [21]. The
idea is to include all the positive responses (Y =1) in the training data set, but only a
fraction f of the non-responses (Y =0). A random sample, in contrast, would sample
the same fraction from the positive responses and the negative responses. Choice-
based sampling dramatically shrinks the training data set by about 20-fold when
f = 0.05. To adjust for this “enriched” sample, we used case weights that are in-
versely proportional to f . We found that this technique yields the same results with
only a very slight increase in the standard errors of the coefficients in the learned
model [10].

Discrete-Choice Logit Model

The logit (or logistic regression) model is a discrete-choice model for estimating
the probability of a binary response (Y =1 or 0). In our application, each user i is
described by a set of static attributes Xs(i)(such as gender and acquisition source);
each campaign j is described by a set of attributes Xc( j) (such as campaign offer
type and message style type); each user has dynamic attributes Xd(i, j) just before
campaign j (such as recency of action, i.e., the number of days between the last
action and the campaign start date). Our pooled logit model postulates

P{Y (i, j) = 1}=
exp[Xs(i)βs +Xc( j)βc +Xd(i, j)βd ]

1+ exp[Xs(i)βs +Xc( j)βc +Xd(i, j)βd ]
.

A numerical optimization procedure finds the coefficient vectors (β s, β c, β d) that
maximize the following weighted likelihood function:

L =
N

∏
i=1

[P{Y (i, j) = 1}]Y (i, j) [1−P{Y (i, j) = 1}][1−Y (i, j)]/ f ,

where f is the choice-based sampling fraction.

Decision-Tree Learner aucCART

We developed a new decision-tree model, aucCART, for scoring customers by their
probability of response. A decision tree can be thought of as a hierarchy of questions
with Yes or No answers, such as “Is attribute1 > 1.5?” Each case starts from the root
node and is “dropped down the tree” until it reaches a terminal (or leaf) node; the
answer to the question at each node determines whether that case goes to the left
or right sub-tree. Each terminal node is assigned a predicted class in a way that
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minimizes the misclassification cost (penalty). The task of a decision-tree model is
to fit a decision tree to training data, i.e., to determine the set of suitable questions
or splits.

Like traditional tree models such as CART (Classification and Regression Trees)
[7], aucCART is a non-parametric, algorithmic model with built-in variable selec-
tion and cross-validation. However, traditional classification trees have some
deficiencies for scoring:

They are designed to minimize the misclassification risk and typically do not per-
form well in scoring. This is because there is a global misclassification cost function,
which makes it undesirable to split a node whose class distribution is relatively far
away from that of the whole population, even though there may be sufficient in-
formation to distinguish between the high- and low-scoring cases in that node. For
example, assume that the two classes, say 0 and 1, occur in equal proportions in the
training data and the costs of misclassifying 0 as 1 and 1 as 0 are equal. Suppose
that, while fitting the tree, one finds a node with 80% 1s (and 20% 0s) which can
be split into two equally sized children nodes, one with 90% 1s and the other with
70% 1s. All these nodes have a majority of 1s and will be assigned a predicted class
of 1; any reasonable decision tree will not proceed with this split since it does not
improve the misclassification rate. However, when scoring is the objective, this split
is potentially attractive since it separates the cases at that node into a high-scoring
group (90% 1s) and a lower-scoring group (70% 1s).

A related problem is the need to specify a global misclassification cost. This is
not a meaningful input when the objective is to score cases.

The aucCART method is based on CART and is designed to avoid these prob-
lems. It combines a new tree-growing method that uses a local loss function to
grow deeper trees and a new tree-pruning method that uses the penalized AUC risk
Rα(T ) = R(T ) + α|T |. Here, the AUC risk R(T ) is the probability that a randomly
selected response scores lower than a randomly selected non-response, |T | is the
size of the tree, and α is the regularization parameter, which is selected by cross-
validation. This method is (even) more computationally intensive than CART, in
part because it runs CART repeatedly on subsets of the data and in part because
minimizing the penalized AUC risk requires an exhaustive search over a very large
set of sub-trees; in practice, we avoid the exhaustive search by limiting the search
depth. Our numerical experiments on specific data sets have shown that aucCART
performs better than CART for scoring.

9.6.2 Empirical Application and Results

9.6.2.1 Background

Customers continue to use e-mails as one of their main channels for communicating
and interacting online. According to Forrester Research (2007) 94% of online cus-
tomers in the USA use e-mails at least once a month. Customers also ranked opt-in
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e-mails among their top five sources of advertisements they trust for product infor-
mation (Forrester Research 2009). E-mail marketing has become an important part
of any online marketing program. In fact, according to the 2007 Forrester Research
report, 60% of marketers said that they believe marketing effectiveness of e-mail as
a channel of communication will increase in the next 3 years.

An HP online service with millions of users uses e-mail marketing as one of
their marketing vehicles for reaching out to its customers with new product an-
nouncements and offers. In general, each e-mail campaign is sent to all users and
on a regular basis with millions of customers contacted during any specific cam-
paign. One drawback of this “spray-and-pray” approach is the increased risk of
being blacklisted by Internet Service Providers (ISPs) when they receive too many
complaints. In addition to direct loss of revenue when an e-mail program is stopped
early, it increases the risks of using e-mail as a regular channel for communication
in the future. So the marketing team was interested in methods that would help them
to identify who their best customers and “at-risk” customers were and understand
what key factors are that drive customer response. This would enable them to send
more targeted e-mail campaigns with relevant messages and offers.

9.6.2.2 Data Set and Variables

We selected a subset of past e-mail campaigns from the marketing campaigns
database that were representative of (and similar to) the planned future campaigns.
We, then, selected a subset of customers from the sent list of these past campaigns.
Each campaign had a date–time and a number of attributes associated with it. The
campaign date allowed us to “go back in time” and derive the user’s behavioral at-
tributes just before each of the past campaigns. We, a priori, split the customers into
two customer segments based on whether they did a specific action in the past (in
line with the business practice). Table 9.4 gives some descriptive statistics of the
two samples.

The outcome variable, response to a campaign, indicates whether or not (1 or 0)
the user responded to each of the selected campaigns. For each campaign we used
the campaign database to create the campaign-specific attributes. Some examples of
these attributes are the e-mail message’s subject line, the format of the e-mail, the
value offered in the e-mail (percentage discounts, dollar amount of free products, the

Table 9.4 Descriptive statistics of the data samples

Customer
Segment

Number of
Campaigns

Number of
Observations
(Customer
campaign)

Number of
Observations
Choice-based
Sample

Number of
Customers
Choice-based
Sample

Action-Active 32 4.2 X 0.21 X 0.16 X
Action-Inactive 25 7.8 X 0. 39 X 0.33 X

Note: We depict the sample sizes as multiples of X to anonymize the data
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type of product featured), the time-of-the-year occasion of the e-mail timing (such
as Christmas shopping season).

For each customer we used the full history of their transactions since registration,
available in the transaction database, to create customer-specific attributes just prior
to the beginning of each campaign. These attributes included recency (how many
days prior to the campaign did the user take an action), frequency (how many times
in the month, quarter, or year prior to the campaign did the user undertake an action),
and monetary (how much in dollars did the user spend in the month, quarter, or year
prior to the campaign and in which product categories). In addition, we used data
sources like the US Census Bureau and other sources of first names and gender to
create a first-name-to-gender translator which predicted the probability of a person
being male or female given the person’s first name.

We tried all reasonable transformations of the attributes and selected the ones
that yielded the best model. We determined the best transformation by investigat-
ing the residual plots for the logit model. Furthermore, the output produced from
our classification tree-based aucCART algorithm (which automatically transforms
some attributes) also gave us some suggestions for the most appropriate transfor-
mations. In the logit model, we selected the final set of attributes by using both
forward and backward step-wise selection. In forward selection, we started with a
single predictor variable (attribute) and added variables (with appropriate variable
transformations) one by one, until no statistically significant variable can be added,
or AIC (Akaike Information Criterion) value can be improved. In backward selec-
tion, we started with all attributes (properly transformed) included in the model and
delete statistically insignificant variables one at a time, until all remaining variables
are statistically significant. For the classification tree-based aucCART algorithm,
variable selection was automatically performed (a built-in feature of classification
tree-based algorithms).

The final data sample had several hundred thousands of data rows (each row
represents a user) and approximately 80 columns (each column is an attribute de-
scribing the user at various points of time). We randomly selected 50% of the rows
in the data sample as training data and the rest as testing data to evaluate the two
approaches and select the best one.

9.6.2.3 Validation, Model Selection, and Results

We validated our models on holdout data sets with different customers and cam-
paigns than the training data. Our holdout tests were designed to simulate an
in-the-field application of our models to existing and new customers and new
campaigns.

In addition to the two approaches outlined, various heuristics or scoring rules
have been commonly used by marketing professionals to predict responses and
selecting target recipients. One such heuristic for selecting recipients is by action
recency, which ranks recipients by the most recent to least recent in their last action;
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the more recent a user’s action is, the higher the probability of responding to an
e-mail the heuristic predicts. We used the action recency heuristic as the baseline of
what the business is using and compare it to our two approaches.

To evaluate various rules, models, and algorithms, we needed a metric that is
applicable to a wide variety of models, and that is also relevant to how the models
will be used.

Figure 9.5 shows a capture curve for each model or scoring rule. The capture
curve measures the percentage (Y -axis) of positive responses captured (in a holdout
data set) if the model is used to select a given percentage (X-axis) of customers. The
capture curves indicate that the logit model approach was the most effective in pre-
dicting and capturing customer responses to e-mails than the simple RFM method
(action recency) or the decision-tree approach. For example, the logit model for
action-active users is able to capture 92.1% of the campaign responses by selecting
only the top 50% of the users.

The model results also indicated the strongest predictors of customer response.
We are not sharing those numbers to preserve business confidentiality. In general,
recency of action, the dollar amount of the user’s past purchases, and the user’s
recorded responses to prior e-mail campaigns were significant. Additional predictors
were gender, e-mail format, and offer type.

HP business group is incorporating the scoring model into their customer seg-
mentation strategy for e-mail marketing. One of the key findings was that the busi-
ness can generate 90% of the total expected response by contacting just the top 50%
of users. By identifying this high-response half of its user base, they will be able to
(1) tailor the message content and frequency to specific user segments based on the
likelihood of response, (2) greatly increase the average response per message, and
(3) reduce the total volume (and cost) of messaging.

Fig. 9.5 Comparison of capture curves
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In future studies we want to see if our conclusions hold for direct mail. Further
we want to examine if the customers with low ranks based on the model are also the
ones most likely to unsubscribe, complain, and create negative word-of-mouth.

9.7 Distribution Network Design

Hewlett-Packard provides a wide range of products and services for a diverse set
of customers located across the globe leveraging a worldwide network of suppliers,
partners, and facilities. As the operator of the largest supply chain in the IT industry
HP relies on analytical modeling to support many strategic and operational deci-
sions with detailed optimization models enabling evaluation of alternative supply
chain strategies—procurement, location, inventory—to investigate opportunities to
decrease supply chain-related costs and improve order cycle times. HP has a long
tradition of employing operations research for its supply chain problems [20]. Some
recent examples include reverse supply chain redesign for Personal Systems Group
(PSG) in Europe [14], network design for Imaging and Printing Group (IPG) in Eu-
rope [19], production line design for IPG in the USA [9], and inventory management
for former network server division [5].

In this section we describe a mathematical programming model that constitutes
the core of a number of analytical decision support applications for decision prob-
lems ranging from design of manufacturing and distribution networks to evaluation
of complex supplier offers in logistics procurement processes. We provide some
details on two applications of the model to evaluate various distribution strategy
alternatives—to answer questions such as whether it is efficient to add more distri-
bution centers to the existing network and which distribution centers and transport
modes are to be used to supply each customer location and segment—by quantifying
the trade-off between the supply chain costs and order cycle times.

9.7.1 Outbound Network Design

HP provides personal computers, workstations, handheld computing devices, dig-
ital entertainment systems, calculators and other related accessories, software and
services for commercial and consumer markets. The customers in the commercial
segment include direct customers such as big corporations, small and medium size
businesses (SMB), government agencies and indirect channel partners. Supply chain
configurations vary by product as well as by customer segments. HP utilizes a num-
ber of contract manufacturers (CMs) and original design manufacturers (ODMs) to
manufacture certain HP-designed products to generate cost efficiencies and reduce
time to market. There are three types of nodes in a typical supply chain: inbound
hubs, manufacturing sites, and outbound hubs. The inbound hubs store components
and are usually situated close to the manufacturing sites. The inventory at these
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locations is owned by the suppliers and is pulled by the manufacturing sites per cus-
tomer order. For some critical parts, the inventory may also be owned by HP. Once
the products are manufactured, they are shipped to outbound hubs (or distribution
centers) for further shipment to customer locations. Certain products may also be
shipped directly to customers from the manufacturing sites.

The outbound hubs play a number of critical roles in a typical supply chain.
First, outbound hubs are used to consolidate shipments from manufacturing sites to
customer locations for a portion of the trip. Finished goods are first shipped to an
outbound hub in a bulk mode. Individual customer shipments are then scheduled for
a shorter distance. Thus outbound hubs are used to leverage from volume of ship-
ments for a particular region. Second, outbound hubs are used to merge shipments
from different manufacturing sites into a single shipment to customer locations.
Finally, outbound hubs are used to carry finished goods inventory for certain cus-
tomers with short order cycle time requirements and for certain stable SKUs (e.g.,
certain standard configurations).

Given the existing and potential outbound hubs, the model is used to seek an-
swers to the following questions: Which of the existing and potential outbound hubs
should HP use in its operations? Which customer locations and segments should be
assigned to each outbound hub? Which product groups should be assigned to each
outbound hub? What should be the mode of transportation in meeting customer de-
mands for each customer location and segment?

The answers to these questions hinge on various aspects of the fundamental trade-
offs between customer service levels and supply chain-related costs. The former is
measured by Order to Delivery Time (ODT), the time between customer order and
order delivery to customer. The latter, supply chain costs, fall in four broad cate-
gories: First, Inventory-Driven Costs (IDC) include all of the costs that derive from
the level of inventory in the regions, such as obsolescence and component devalua-
tions. Second, Trading Expenses (TE) include freight, duties, taxes, allocations, and
warehousing. Third, Manufacturing Expenses (MOH) include the cost of manufac-
turing products, as well as any costs related to the support of that manufacturing
activity including customization and rework. Finally, Cash to Cash (C2C) takes into
account how long inventory is held in the region and how long it takes to pay the
suppliers and to receive payment from customers.

ODT is an important metric for a product division’s supply chain. Service level
agreements with customers usually involve explicit ODT requirements. ODT is
composed of several components such as order entry time, material wait time, fac-
tory cycle time, and delivery time. Of these components, material wait time and the
delivery time are likely to get impacted by the supply chain configuration. Further-
more, for a given supply chain configuration, the three components of ODT—order
entry, factory cycle time, and the delivery time—are not likely to change from one
order to another (for the same customer location and product group), while the mate-
rial wait time can be considerably variable depending on the immediate availability
of the components at the designated inbound hub. Also note that from the above
four components, delivery time is the only component that will be impacted by
the outbound strategy. Different customer groups—corporate, small and medium
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businesses, public sector, indirect channel partners—may have distinct ODT re-
quirements. Any outbound strategy should ensure that the ODT requirements are
satisfied for each customer segment.

Trading expenses and inventory-driven costs are likely to be impacted most by
the outbound strategy. Major components of Trading Expenses are transportation
costs from manufacturing sites into the outbound hubs and from outbound hubs to
the customer locations, material handling costs, and facility costs. Main elements of
Inventory-Driven Costs are costs due to inventory in transit from manufacturing sites
to the outbound hubs, and from outbound hubs to customer locations, and inventory
in the outbound hubs.

The decision problem is to minimize trading expenses and inventory-driven costs
while satisfying order to delivery time targets set by management. Various business
constraints such as limiting the total number of outbound hubs that will be used,
forcing a particular outbound hub to stay open or closed will also need to be incor-
porated as constraints in the model.

Products can be modeled at the SKU level or at the product category level af-
ter aggregation. Customer segments are modeled separately as shipment volumes
and ODT requirements vary by segment. For customer locations various levels of
aggregation—by state, zip code, etc.—are possible. HP works with many different
transportation service providers including parcel carriers, airfreight companies, less-
than-truckload (LTL) and full truckload (FTL) carriers. Transportation mode can be
modeled using the physical mode of transportation (type of vehicle or type of com-
pany) or using delivery times to code transportation modes—e.g., 1-day service,
2-day service, 3-day service.

In order to capture the variability in ODT targets, two modes of delivery are
defined. For a fraction θ r

js of orders originating from customer segment s for product
j, the order needs to be shipped from the factory with regular delivery within wr

js.
Likewise, for a fraction θ e

js = 1−θ r
js of orders originating from customer segment

s for product j, the order needs to be shipped from the factory with emergency
delivery within we

js.

9.7.2 A Formal Model

We next introduce the notation needed for a formal presentation of the mathematical
model. Let M denote the set of manufacturing sites, I denote the set of potential
outbound hub sites, K denote the set of customer locations, S denote the set of
customer segments, J denote the set of product groups, and T denote the set of
transportation modes available.

The following variables define the parameters of the model:

dks j : demand in location k for customer segment s for product j
cmitks j : cost to satisfy demand in location k for customer segment s for product j

by manufacturing in site m through outbound hub i with transport mode t
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�mitks j : delivery time to satisfy demand in location k for customer segment s for
product j by manufacturing in site m through outbound hub i with transport
mode t

fi : fixed operating cost of outbound hub site i
Ci : capacity of outbound hub site i

wr
js : time window specified for product j for customer segment s for regular

delivery
we

js : time window specified for product j for customer segment s for emergency
delivery

θ r
js : fraction of orders in segment s for product j requiring regular delivery

θ e
js : fraction of orders in segment s for product j requiring emergency delivery

We also define the following variables to be used in the mathematical program:

δ r
mitks j =

{
1 if �mitks j ≤ wr

s j
0 otherwise

δ e
mitks j =

{
1 if �mitks j ≤ we

s j
0 otherwise

The following parameters are used to enforce a specific scenario for the network
design:

αi =
{

1 if outbound hub i needs to be open in a scenario
0 otherwise

βi =
{

1 if outbound hub i needs to be closed in a scenario
0 otherwise

γi =
{

1 if outbound hub i’s capacity needs to be enforced in a scenario
0 otherwise

The following variables are the decision variables of the problem:

xr
mitks j =

⎧
⎪⎪⎨

⎪⎪⎩

1 if segment s’s regular demand in location k for product j is
satisfied by manufacturing site m through outbound hub i
with mode t

0 otherwise

xe
mitks j =

⎧
⎪⎪⎨

⎪⎪⎩

1 if segment s’s emergency demand in location k for product j is
satisfied by manufacturing site m through outbound hub i
with mode t

0 otherwise

yi =
{

1 if outbound site i is used
0 otherwise

With the notation introduced the mathematical program is written as

min ∑
m∈M

∑
i∈I

∑
t∈T

∑
k∈K

∑
s∈S

∑
j∈J

dks jcmitks j[θ r
s jx

r
mitks j+θ e

s jx
e
mitks j]+∑

i∈I
fiyi, (9.3)
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∑
m∈M

∑
i∈I

∑
t∈T

δ r
mitks jx

r
mitks j = 1 for all k ∈ K,s ∈ S, j ∈ J, (9.4)

∑
m∈M

∑
i∈I

∑
t∈T

δ e
mitks jx

e
mitks j = 1 for all k ∈ K,s ∈ S, j ∈ J, (9.5)

xr
mitks j− yi ≤ 0 for all m ∈M, i ∈ I, t ∈ T,k ∈ K,s ∈ S, j ∈ J, (9.6)

xe
mitks j− yi ≤ 0 for all m ∈M, i ∈ I, t ∈ T,k ∈ K,s ∈ S, j ∈ J, (9.7)

yi ≥ αi for all i ∈ I, (9.8)

yi ≤ (1−βi) for all i ∈ I, (9.9)

γi

(

∑
m∈M

∑
t∈T

∑
k∈K

∑
s∈S

∑
j∈J

dks j[θ r
s jx

r
mitks j +θ e

s jx
e
mitks j]

)
≤Ci for all i ∈ I, (9.10)

xr
mitks j ∈ {0,1} for all m ∈M, i ∈ I, t ∈ T,k ∈ K,s ∈ S, j ∈ J, (9.11)

xe
mitks j ∈ {0,1} for all m ∈M, i ∈ I, t ∈ T,k ∈ K,s ∈ S, j ∈ J, (9.12)

yi ∈ {0,1} for all i ∈ I. (9.13)

The objective in (9.3) minimizes all incoming and outgoing transportation costs, ma-
terial handling, inventory, and the facility costs. The constraints in (9.4) and (9.5)
ensure that each customer segment in each location is assigned to one outbound
site, manufacturing site, and one transportation mode for each product group that
are within delivery time requirements for regular and emergency demands, respec-
tively. Note that the product groups from a single customer location and segment
can be assigned to different manufacturing sites, outbound hubs, and transportation
modes. The constraints in (9.6) and (9.7) ensure that service from an outbound
hub is available only if the facility is open. The constraints in (9.8) and (9.9) en-
sure that the outbound hubs are forced to be open or closed based on the scenario
specification.

The constraints in (9.10) ensure that the capacity of the outbound hub is enforced
if specified in the scenario. The constraints in (9.11), (9.12), and (9.13) ensure that
all decision variables are binary. Note that the formulation in (9.3)–(9.13) assumes
that the model is full, e.g., every customer location has demand from all |S| segments
and for all |J| product groups. This is only to make the exposition simple. The actual
model used in implementation takes advantage of the link sparsity.

9.7.3 Implementation

The model in the previous section was implemented using ILOG’s OPL Studio and
solved using CPLEX. The raw data are stored in several tables in a database and can
be imported from a spreadsheet or a flat file. A typical implementation may involve
up to 1,000 customer locations (actual customer locations aggregated at the 3 digit
zip code), 5–10 customer segments, 5–10 transport modes, up to 10 product groups,
and up to 100 potential outbound hub sites. Standardized forms are used to allow
the user to specify the parameters for what–if scenarios in order to see the impact
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of several critical variables. Through various forms the user can change the deliv-
ery time targets, enforce a particular outbound hub to stay open or closed, activate
or deactivate the capacity constraint on a particular hub, and limit the number of
outbound hubs. The user sees the results of the model via several reports. Location
Summary report shows which outbound hubs are open and what costs are incurred
in doing so. Location Usage report shows the total number of units in each product
category that flows through each outbound hub. Delivery Performance report shows
the resulting average delivery times for each customer segment and product group.
Location Customer Assignment report shows the detailed assignment of customer
locations/customer segments to manufacturing sites/outbound hubs/transportation
modes.

9.7.4 Regarding Data

The data requirements can be categorized into four groups: logistics, financial, de-
mand, and customer service requirements. Some critical data elements need to be
estimated from various data sources. Transportation costs and times between manu-
facturing sites and outbound hubs are estimated assuming that a bulk mode is used
and scale economies are fully utilized, considering the typically large volume of
shipments. Based on the manufacturing scenario, the shipments can be originating
from various locations worldwide. Depending on the origin, the shipments may be
made over the ocean by major carriers or by FTL carriers. Cost and time estimates
are created using data on rate tables and maps from major carriers. Estimation of
transportation costs and times between outbound hubs and customer locations is
based on data on shipment histories and representative carrier cost and time informa-
tion for various weight categories. Annual demands at the product group, customer
segment, and customer locations were estimated from data on shipment history. In
addition to these three items, data such as material handling and facility setup costs
for outbound hubs, unit manufacturing costs (estimates) at different manufacturing
sites, inventory holding cost rates and customer service level requirements are ob-
tained from various sources in finance, logistics, and procurement operations.

9.7.5 Exemplary Analyses

The outbound model proved to be very useful for internal consulting teams for eval-
uating alternative distribution strategies for various product groups. The outbound
model was also used as a primary input to the assessment of end-to-end manufac-
turing scenarios for a product group.

The model described above provides the core for analysis of a number of broader
supply chain strategy decisions including the selection for manufacturing sites.
The analysis for the outbound strategy clearly depends on the locations of the
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manufacturing facilities. For this purpose, viable scenarios included the baseline
scenario describing the manufacturing locations at the time of implementation.
These manufacturing scenarios specify manufacturing location(s) for each product
category.

For each manufacturing scenario, various analyses can be carried out. The first
category of analysis takes the current level of OTD targets as input and develops
an outbound strategy for each manufacturing scenario. The analysis in this category
was used to determine the optimal outbound hub locations and to assess the value
of additional outbound hubs for each manufacturing scenario. The analysis proved
very useful in understanding the marginal value of each additional outbound hub.
An example of this analysis (with fictitious data) is provided in Figure 9.6.

Fig. 9.6 Impact of number of hubs

In the example, we consider a manufacturing scenario with a single manufac-
turing location co-located with one of the outbound hubs. Since each additional
hub provides the flexibility to consolidate a portion of the trip for shipments to
customer locations, the total costs decline. However, as expected, there are
decreasing marginal returns. Understanding the exact value of each additional out-
bound hub, together with an evaluation of operational complexity, provides valu-
able guidance for the management decisions on the number and locations of each
outbound hub. In Figure 9.6, we also show the percentage of products shipped di-
rectly from the outbound hub co-located with the single manufacturing site for two
product groups: bulky products (product group 1) and small/light products (prod-
uct group 2). Clearly, shipment consolidation is more beneficial for bulkier items
(product group 1), and we see that more of this group of products are shipped
via additional hubs than the second group. The analysis is also useful in esti-
mating the transportation cost component of different manufacturing scenarios.
In addition to the strategic insights, the analysis can also be used to support de-
tailed operational decisions such as which manufacturing sites, outbound hubs, and
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Fig. 9.7 Impact of delivery time targets

transportation modes should be used to deliver orders of a particular region and a
customer segment.

The model can also be used to study the trade-off between the supply chain costs
and OTD targets. Naturally, this trade-off varies with manufacturing scenarios. In
Figure 9.7 we present an example of such analysis (with fictitious, but representa-
tive data). In this example, we consider three manufacturing scenarios. In the first
scenario, the products can be manufactured in an offshore location as well as locally
in the USA. Modifying the per unit costs cmitks j in the mathematical model to in-
clude manufacturing costs, the model is used to select a manufacturing site among
the set of possible sites for satisfying demand in a particular customer location. In
the second scenario, all manufacturing is done at an overseas site. Finally in the
third scenario, all manufacturing is done locally in the USA. Each manufacturing
scenario is combined with various target delivery time levels starting from a case
where there is no time constraint on shipping a customer order.

The analysis reveals that, for all three manufacturing scenarios, the total costs
increase as the delivery time targets are more aggressive. The mixed scenario out-
performs the other two scenarios for all target levels, since it has the flexibility of
employing offshore as well as local manufacturing. For this scenario, as the de-
livery time targets get more aggressive, more manufacturing is moved to domestic
sites. Note also that while the total cost for the offshore-only scenario is quite sen-
sitive to the delivery time targets, the total cost for the US-only scenario is rather
insensitive.
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9.8 Collaborations and Conclusion

For development and deployment of decision sciences solutions, the HP Labs team
works very closely with business units. In addition, in most cases HP’s Information
Technology (HP IT) group has a significant role in the success of the projects. The
HP Labs team takes the ownership of development of underlying algorithms and
core algorithmic software engine. HP IT is generally responsible for integration of
the core analytical engine with back-end IT systems, database design and develop-
ment, system architecture, deployment, and support of the complete system.

Over the years, HP Labs’ Business Optimization Lab has built strong research
collaborations with leading faculty members in several areas of interests to HP and
the academic community. The university collaboration for the work presented in this
chapter is reflected in the author list.

This chapter covers a very narrow slice of advanced analytics project at HP Labs
and at HP. It is safe to say that the creation and application of rigorous mathemat-
ical models is well established throughout the company. Applied researchers and
practitioners are making contributions that directly impact the top and bottom line.
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Chapter 10
Global Trade Process and Supply Chain
Management

Hau L. Lee

Abstract As a result of increased globalization of industrial supply chains, effective
supply chain management requires sound alignment with the global trade processes.
The design of the global supply chain and the determination of the right level of
postponement are both tied intimately to the prevailing network of trade agreements,
regulations, and local requirements of the countries in which the company is oper-
ating in. Moreover, the dynamic changes and uncertainties of these agreements and
requirements must be anticipated. In addition, the complexity of the cross-border
trade processes results in uncertainties in the lead time and costs involved in global
trade, which naturally forms part of the consideration of global sourcing, and the re-
sulting safety stocks or other hedging decisions. Governments, exporters, importers,
carriers, and other service providers have to work together to reduce the logistics
frictions involved in the global trade processes. The benefits accrue not only to the
exporters, importers, and the intermediaries but ultimately they could foster bilateral
trade. The only way to reduce the frictions is to gain a deep understanding of the de-
tailed process steps involved to improve upon it by using information technologies
and potentially re-engineer the processes. But the payoffs to such investments can be
huge. This chapter provides some preliminary discussion of the inter-relationships
between global trade processes and supply chain management, with the objective to
stimulate research in this area.

Prelude

Supply chain management has been my research focus for most of my professional
career. I started research in this area in the last year of my PhD program at Wharton.
My advisor, Professor Morris Cohen, and I were looking at how companies should
structure their supply chain network, i.e., where to locate their manufacturing and
distribution centers and how customers were to be served by this network. We later
extended considerations of this problem when the network was global. The very first
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step of our research involved a thorough literature review, and at that time, the most
important and relevant paper that impacted the way we thought of our research ap-
proach was the paper by Geoffrion and Graves [5], as well as some follow-on papers
by the same authors. In a way, Geoffrion and Graves [5] was the starting point of my
supply chain research. It was a great pleasure to me that I eventually came to know
Professor Geoffrion, the person behind the very paper that was the anchor point of
my early supply chain research. I also learnt about the many contributions that he
has made to the OR/MS field. It was therefore a great honor for me to contribute
to this book to show our respect, admiration, and recognition of Professor Art Ge-
offrion. It is also very fitting that I use this opportunity to write about supply chain
design and global trade, a topic that is quite linked to the Geoffrion and Graves [5]
article.

10.1 Introduction

For most industries, supply chains today are increasingly global, with suppliers,
manufacturers, distributers, and retail markets located globally. Companies are look-
ing for new and perhaps lower cost sources of supply and production, new part-
ners to innovate and develop new products, and expanding the markets to new and
emerging economies. Outsourcing and offshoring have become key focal points
for management. Indeed, as a recent study by Accenture showed that companies
were increasingly sourcing from and selling to markets outside of where the core of
the companies resided (see Figure 10.1). The globalization of supply chains conse-
quently led to an explosion of world trade, since raw materials, components, semi-
finished products, and finished products flowing through the global supply chain
would need to cross country borders many times. Indeed, in the last 10 years, the

Selling to and Outsourcing from Outside of Home Market

FY08
38%

42%

FY05
31%

35%

FY02
22%

27%

Sourcing

Revenue Generated

Source: Accenture Global Operations Survey, 2005

Fig. 10.1 Global sourcing and selling
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volume of global trade has increased by almost 6% annually, while the growth of
global GDP has been only 3% annually.

While global trade has exploded over the years, barriers to trade and other protec-
tionism measures have also skyrocketed. Figure 10.2 shows the exponential growth
of regional trade agreements globally. The increase of such trade agreements means
that many countries have set up special rules and regulations for some specific prod-
ucts with some specific trading partners. Although these trade agreements often
mean lower customs or special treatment if some requirements are met for some
specific products and trading partners, their existence also means that higher cus-
toms and more restrictions are then created for other products and other trading
partners.

Fig. 10.2 Increasing regional trade agreements

There are several implications for both researchers and practitioners as a result of
the increasing globalization of supply chains. I will focus on two. First, the design of
the supply chain is a complex decision. Take sourcing as an example. Companies of-
ten compute the “total landed cost” of the various alternative sources for evaluation.
The total landed cost consists of the cost of acquisition, freight cost, customs and
duties, transaction costs, other logistics costs (such as documentation), potential tax
subsidies, and inventory holding costs. But customs and duties is a very complex
factor, as it depends on the trade agreements between the exporting and import-
ing countries, the trade policies of these countries, duty drawback allowances, and,
as we will show later, potentially all the trade agreements among all the countries
involved in the supply chain of the product. We have already seen the escalation of
regional trade agreements globally, making customs consideration a very difficult
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and complex one. The additional challenge is that there are still a lot of uncertain-
ties involved—the trade agreements, regulations, and requirements may change over
time.

Moreover, given the trade agreements and the customs duties in place, companies
should design the right postponement strategies so that the right level of customiza-
tion of the product can occur in the market regions instead of centrally at the factory.
The key question often is what should be the portion of the product to be built at the
factory and what should be the portion to be built at the (multiple and distributed)
distribution centers that are in the market regions. There are certainly economies of
scale and easier production and quality control to build products at the factory; but
the increasing protectionism and resulted tariffs for products can motivate having
some portion of the product, i.e., some of the customization steps to be carried out
in distribution. The right level of postponement must take account of the associated
customs and duties implications.

Second, cross-border trade processes are non-trivial. From the initiation of ex-
port/import, to the physical movement of goods across the borders, and then the
arrival at the final destination, the trade process can be complex, time-consuming,
and costly. This process can also become even more complex when some nations,
such as the United States, are concerned with the threat of security when container
shipments can be used by terrorists as a weapon of mass destruction. The result is
added documentation requirements, inspection, and delays. In the total landed cost
analysis, the logistics and transaction costs, and the inventory holding costs, can be
greatly affected by the cross-border trade processes. For example, if such processes
are long and unreliable, then the inventory in transit will be high, and the safety
stocks that the importing company need to carry would have to be increased.

In this chapter, I do not attempt to give a complete treatment of these two impli-
cations. Instead, I like to highlight some important considerations that practitioners
should pay attention to, and some possible research that can be carried out.

10.2 Supply Chain Design and Trade Processes

10.2.1 Supply Chain Design

In classic supply chain design problems, the key factors for considerations include
fixed and variable costs of the sites for manufacturing and distribution, the trans-
portation costs, and inventory costs (see the classic work of Geoffrion and Graves
[5]). There is a rich literature on this topic, ranging from deterministic applications
(e.g., [1]) and stochastic demand versions (e.g., [2]). Extending this to global sup-
ply chain design often requires modeling additional factors such as local content
requirements, customs and duties rates, differential tax rates in different countries,
transfer pricing schemes, and in some cases, exchange rate fluctuations (e.g., [3]).

The proliferation of trade agreements has added a new dimension of complex-
ity to the supply chain design problem. Prior to the Agreement on Trade-Related
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Investment Measures (TRIMS Agreement), in an effort to increase labor participa-
tion in their country and attract investment, some developing countries had included
particular rules that provide incentives for companies in a particular industry to en-
ter the respective countries. These incentives often included duty-free rates or a
reduction in duties paid on imports; the result was that companies increased their
use of local contents in the final exported product or so-called local contents and
trade balancing requirements. Under these regimes, companies could only achieve
reduced duties on their imports used to serve the domestic market, by increasing
the country’s exports. Otherwise, companies were forced to use local contents to
serve the domestic market and, in some cases, it was not possible and too costly
to source the parts that the company needed. The use of the previously mentioned
incentive schemas was prohibited when the TRIMS Agreement of the Multilateral
Agreements on Trade in Goods was negotiated during the Uruguay Round of WTO
negotiations and came into force in 1995. This agreement applied to trade in goods
and generally prohibited trade-related investment measures.

Such agreements can complicate the supply chain design problem. At the same
time, clever exploitation of such agreements can lead to significant savings to the
firm! It was due to such duty savings that Crocs used to manufacture its plastic shoes
in Canada to serve the demands in Israel, since the special trade agreement between
Canada and Israel resulted in zero duty for shoes made in Canada, versus 40% other-
wise [8]. Consider the Logan car of Renault (see [12]). The Logan was designed as a
car for new markets with high potential growth. Renault initially targeted customers
in Colombia, Iran, Romania, Russia, and the Maghreb region. However, the Logan
was also designed to be sold in markets throughout Africa, Asia, Eastern Europe,
and South America.

Automobiles sold in a given country could be built with a range of local con-
tents. At one extreme, a company could export a car to its customers abroad as a
completely built-up vehicle (CBU), where the importing country received a fully
assembled vehicle ready for sale in the local market. CBU were advantageous in
that all vehicle production and assembly could be centralized. Only the logistics
would thus be required to transport the vehicle from its origin to its destination.
However, duties on vehicles imported as CBUs were traditionally exorbitant, rang-
ing from 35% in South America to 90% in Iran and 100% in India. An alternative
approach was to export vehicles as completely knocked down units (CKDs). While
the definition could vary by importing country where the final assembly took place,
CKDs described the entire kit of parts that would be required to assemble the final
vehicle.

Consider the Pitesti plant in Romania as a production site of the Logan. The
Pitesti factory could be used to support Logan assembly plants in Russia, Morocco,
Colombia, Brazil, India, and Iran by providing them with CKD parts.
Romania could also produce Logan as CBUs for export to European countries,
Croatia, and Turkey, where customs unions or free trade agreements allowed for
duty-free import of CBUs, by following the rules of origin. When Romania joined
the European Union (EU) in 2007, a whole new set of trade agreements became
effective, and the customs and duties implications to the supply chain turned out to
be huge.
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The immediate consequence of Romania entering the EU was that Renault could
now import parts from several countries using the free trade agreements available
as a member of the EU. This was also the case for mechanical parts supplied from
Brazil, which were subject to an MFN duty rate of 30% prior to 2007. Accord-
ingly, Romanian vehicles would be considered as European vehicles. For example,
the duty rate on the import of vehicles into Mexico was 50% (before Romania’s
accession) and 0%, with a certificate of origin (after accession).

Another outcome of Romania’s membership in the EU was that, under rules of
origin requirements for CBU imports into the EU, Romanian parts would be counted
as local contents. Prior to its EU membership, Morocco had been importing parts
from Romania, using these parts to assemble CBUs in Morocco, and attempting to
export these CBUs to Europe. Since these Romanian parts did not qualify as local
contents of the EU, the Logan did not have enough European parts to satisfy the
rules of origin requirements for CBUs imported into the EU and was subject to the
10% duty rate on imported CBUs. However, with Romania’s accession into the EU,
the Romanian parts could qualify as European parts, and the Logan could satisfy the
rules of origin to achieve a duty-free rate on CBU imports from Morocco to Europe.
While Logan was introduced as a product for developing countries, the car was
unexpectedly successful in Europe. Making use of the network of trade agreements,
Renault was able to make use of the Morocco plant to fill European demands without
having to pay hefty duties.

Figure 10.3 illustrates the supply network of the Logan car and the resulting
duty-free flows as a result of Romania’s accession into the EU.

This case example shows that, to fully capture the impact of regional trade agree-
ments on customs and duties, it is not sufficient for us to simply look at the custom
duty rate of a particular product from one country to another. In fact, we need to first
examine the complete bill of materials of the product, and then the trade agreements
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of the components and the product among all the trading countries. For example, if
Country A supplies CKD parts to Country B, which then supplies CBU to Country
C, the trade agreements between Country A and B, Country B and C, and Country
A and C must all be considered. Just as we need to consider the supply network, we
now have to consider the network of trade agreements.

10.2.2 Trade Process Uncertainties and Risks

The complex trade agreements, regulations, and requirements set up by countries for
trade could give rise to one big challenge to companies involved in trade. Even if
one was able to figure out how to design the supply chain network to take advantage
of the existing trade agreements and regulations, there is still a very high degree of
risk that these agreements and regulations would change over time.

To illustrate, we return to the Logan car example of Renault. To reach the Egyp-
tian market, Renault relied on the opportunities available by using Morocco as a
trading center. As it was possible to import CKD parts into Morocco at a duty-free
rate, Renault could import European parts into Morocco at a 0% duty and assem-
ble the vehicles in that country. Renault could then export CBUs to Egypt from
Morocco and obtain a 0% duty rate on these imports, a benefit of the free trade
agreement between Morocco and Egypt. It was not possible, however, to export
CBUs from Europe to Morocco and then export these to Egypt, as the CBU import
rate into Morocco from the EU was 25% by the end of 2006. So using Morocco as
the place to assemble the CKUs into CBUs for the Egyptian market seemed to be a
smart move. However, such a design may not be optimal in 2009 as the duty rates on
CBUs between Europe and Egypt were expected to decrease according to the Pan
Euro Med protocol of origin. By 2019, a 0% duty rate for exports of CBUs from
Europe to Egypt could be possible. Morocco may not be the optimal final assembly
site then.

Apparel manufacturers have learnt first hand the uncertainties in trade agree-
ments. When China entered WTO, the apparel quota for Chinese apparel products
entering the United States was supposed to be phased out. Some manufacturers have
closed down factories in other parts of the world, since these factories were not as
efficient as the ones in China, in anticipation of the phasing out of quota from China.
Of course, we soon learnt that the quota was not to be lifted totally. Some of these
manufacturers were caught off guard.

10.2.3 Postponement Design

High technology products with a modular product structure can postpone some of
the assembly processes to multiple global distribution points instead of integrat-
ing the complete product at the factory. Distribution points are much closer to the
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customers, and so by allowing them to perform some of the final assembly pro-
cesses, the point of differentiation of the product into multiple end-products can be
deferred. Defining what is to be assembled in the factory, and what is to be assem-
bled in distribution, is termed the postponement boundary problem. The labor cost
rates, productivity, and customs and duty rates in the countries in which the DCs
reside can be very different from those of the factory. These differences can have a
significant impact on determining the best postponement boundary of a product.

Consider Hewlett Packard’s (HP) workstation businesses in the late 1990s (see
[10]). At the time, HP manufactured the workstation in two factories: one in the
United States and the other in Germany. The factories distributed partially com-
pleted products to distribution centers in Europe and Asia as well as to a reseller
network. This particular business also worked with six major resellers in the North
American market and five major European resellers. The US and German facto-
ries also built fully configured systems for direct shipments to customers in North
America and Europe, respectively, effectively serving as integrated factories and
distribution centers.

When HP planned to introduce a new line of product with a modular design,
it considered postponing some of the computer configuration processes to its DCs
and even to its resellers. The two HP factories would continue to serve as their own
distribution centers for their regions, which accounted for about 60% of all orders.
For the rest of the orders, the postponement boundary problem would amount to
defining the steps that were to be performed at the factories and those which were
to be performed at the DCs.

The workstation product was sold in developed countries with high labor costs
and moderate or high customs and duties levied on the product, such as Japan and
parts of Europe that are outside of the EU; and in developing countries with lower
labor costs but very high customs and duties levied on the product, such as Korea
and Eastern Europe.

Figure 10.4 displays the total annual costs and the cost components for differ-
ent postponement boundaries—the factory could build the complete product; or
the product without storage and memory; or without storage, memory, and graphic
boards; or without storage, memory, graphic boards, and processor; or without all
the above plus the backplane; or delegate all key modules to be assembled at the
DC. The bulk of the total costs were materials, and to highlight the cost differen-
tials, we have chosen to show only the differential material and processing costs for
each alternative relative to the least cost alternative for those particular costs.

The analysis showed that the best alternative was to assemble the chassis, power
supply, and backplane assembly in the factory; this meant postponing the remaining
steps, starting with the processor board, to the distribution centers and resellers. The
U-shape result for the costs of the various options clearly indicated that the extreme
options, building to order at the postponement sites and stocking fully configured
units at the factories, were not cost effective.

As expected, inventory was the primary driver of the product configuration point;
its effect followed the trade-off between the parts inventory created by postponing
the activities and the stock of configured product. As the product content at the
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Fig. 10.4 Postponement boundary analysis

factories increased, the cost due to customs and duties also increased, since the
configured product shipped from the factory to the DCs increased in its dutiable
value. In addition, the duty rate applied to a product can also change depending
on whether the product contained no processor, a processor, or a processor plus
memory. This application case shows that, in a global supply chain, customs and
duties can constitute a major cost driver in evaluating the postponement boundaries.
Freight and processing costs did not factor as heavily in this particular example. The
chassis accounted for the majority of the weight of the product, so there was little
difference in freight expense between the different alternatives (we assumed high
percentages of inbound surface transportation and outbound air transportation). The
fixed costs of adding postponement capabilities to the distribution network were
relatively insignificant. Because these other factors had so little effect, inventory
and customs and duties made the difference in every scenario.

Hence, trade agreements and the resulting customs and duties affect the design
of the supply chain, as well as the design of the postponement boundary.

10.3 Improving Global Trade Processes in Supply Chains

10.3.1 Logistics Efficiency and Bilateral Trade

As noted, the times and costs in global cross-border trade processes affect the total
landed costs, which affect companies’ sourcing decisions. Consequently, the effi-
ciency of global trade processes could impact trade flows between two countries.
The significance of this effect has been established by Hausman et al. [6].
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Economists have long attempted to explain the variations of bilateral trades
among nations by examining measures such as distances, the GDPs, and institu-
tional quality factors (such as corruption and infrastructures). The gravity model has
been a common means to perform statistical studies to examine the contributions of
these factors toward explaining bilateral trade (see the review in [6]). Distance as
a measure could certainly serve as a surrogate for the friction between two trading
partners, negatively impacting trade. But in practice, this is only one of many factors
that serve as frictions of cross-border trade flows. There are many process steps in-
volved in cross-border trade, e.g., the times and costs required to make declaration,
waiting for containers to be loaded on ships, customs clearance at both the export-
ing and the importing countries, the transportation time, inspection times at ports,
and the times waiting for local transportation companies to bring goods to the final
destination. There are also variances of these times that could also result in added
frictions.

The Hausman et al. [6] study collected logistics performance metrics on some
key cross-border trade flows across 80 countries, based on container flows of three
key types of products: textile yarn, fabrics, made-up articles; apparel and clothing
accessories; and coffee, tea, cocoa, spices, and manufactures thereof. These metrics
were used in statistical analysis of an augmented gravity model, and the result was
that cross-border global trade efficiencies (or the lack of) significantly impacted
bilateral trade. While the best gravity model was able to explain about 66% of the
adjusted R2 of bilateral trade variation, the addition of cross-border logistics metrics
improved the R2 to 72%. As expected, the average process time to cross borders
would negatively impact trade, but the variation of process times (the study used
the difference between the maximum time and the average time as a surrogate for
variation) also negatively impact trade. Hence, it is important for governments and
companies to work on reducing both the mean and variance of times and costs of
cross-border trade processes. Figure 10.5 shows the results of the augmented model
in Hausman et al. (2009)

Hausman et al. [6] described some implications from the results of Figure 10.5.
For example, the results can be used to see the benefits from reducing total process
times through deregulating transportation, expanding ports to increase capacity, and
promoting the growth of the third-party logistics industry to allow more consolida-
tion of cargo flows. Trade-related processing time and cost can also be improved by
re-engineering processes to eliminate unnecessary steps and streamline others (such
as by introducing more parallel processing rather than sequential processing), in-
troducing advanced information technologies (such as electronic customs clearance
and documentation flows), using data mining and screening methods to identify
only high-risk containers for security inspections, and adopting advanced scanning
technologies to shorten cargo inspection times.

The model result can also be used to calculate the elasticity of the key logistics
metrics to bilateral trade [6]. Let

S(i, j) = value of bilateral trade from country i to country j;
d(i, j) = distance from country i to country j;
T (i, j) = average total time (transport and trade-related processing) from i to j;
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Independent variable Coefficient T-statistic

Log of exporter’s GDP 1.265 72.57

Log of importer’s GDP 0.956 54.17

Log of distance –1.390 –39.02

Exporter’s Corruption Perception Index 0.188 10.82

Importer’s Corruption Perception Index 0.134 6.27

Regional trade agreement dummy variable 0.343 4.73

Log of average time for all procedures –0.373 –5.24

Log of total cost of procedures –0.492 –10.68

Log of Maximum time-Average time –0.236 –4.28

Adjusted R-squared: 0.716; Observations: 5149: F-statistic: 1287
Dependent variable is total bilateral exports (in logs) in 2003 or latest year 
available. Corruption Perception Index is for 2004, from Transparency 
International. OLS estimates; constant term not shown

Fig. 10.5 Augmented gravity model

C(i, j) = total processing cost from country i to country j;
σ(i, j) = maximum time minus average time from country i to country j.

Here, the (i, j) term in the variables can be suppressed without loss of generality.
Figure 10.5 shows that

logS = K′ −1.390logd−0.373logT −0.492logC−0.236logσ ,

where K′ is a constant representing the non-logistic independent variables. It is easy
to see that −1.390, −0.373, −0.492, and −0.236 represent the elasticities of the
logistics metrics in bilateral trade. Thus a 1% reduction in the “distance” measure
would be associated with an increase of 1.39% in bilateral trade. Regarding pro-
cessing time, a 1% reduction would be associated with a 0.37% increase in bilateral
trade. Similarly, a 1% reduction in the total trade-related processing cost would be
associated with a 0.49% increase in bilateral trade, while a 1% reduction in the vari-
ability measure (maximum time−average time) would be associated with a 0.24%
increase in bilateral trade.

10.3.2 Cross-Border Processes for Supply Chain Security

After September 11, 2001, the security of a supply chain has become a major con-
cern to the public and the private sector. In particular, the ocean segment of a
supply chain is most vulnerable to security threats, as more than 90% of world
trade involves containers aboard ships [4]. The US government, in particular, has
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been concerned with the threat of terrorism and the potential of having weapons
of mass destruction (WMD) in materials flowing through a supply chain. WMD
can result in significant loss in human lives, destruction of infrastructure, and ero-
sion of public and business confidence. Ultimately, global trade and prosperity are
threatened.

On the other hand, the private sector is concerned about the costs of assuring
security and the potential disruptions associated with real or potential terrorist acts.
Governments and industry have responded with proposals, such as increased infor-
mation exchange among trading partners, ports, shipping companies, and the gov-
ernments; and heightened inspection and scrutiny of the goods flowing through a
supply chain. Increased inspection at the destination ports as a way to assure secu-
rity can add tremendous cost, delays, and uncertainties in the supply chain.

US Customs has also launched the Container Security Initiative (CSI) and the
Customs-Trade Partnership Against Terrorism (C-TPAT) in January and April of
2002, respectively. The C-TPAT program involves multiple countries and promotes
the use of best security practices. Shippers and carriers that certify the use of best
security practices are given expedited processing at US ports of entry. Manufactur-
ers, importers, carriers, and third-party logistics service providers can all participate
by completing detailed questionnaires and self-appraisals of their supply chain se-
curity practices, while Customs would perform periodic audits and verifications of
such practices.

Another proposal was the Smart and Secure Tradelane (SST) initiative. This ini-
tiative has some similarities to total quality control (see [14]), which calls for having
quality inputs and tight process control to assure quality, instead of relying on final
inspection. Hence, rather than relying on inspecting containers arriving at the des-
tination ports, we would focus on having containers inspected at the source and
using technologies to monitor the transportation process to assure the integrity of
the containers. Any tampering of the containers during the journey would have to
be detected. To do this effectively, we do need to use modern technologies. One
promising technology is the use of electronic cargo seals and sensors (smart con-
tainers). Such an initiative is not free, and so proper quantification of its benefits is
crucial for general adoption.

The SST process starts with the identification of personnel, cargo, and transporta-
tion information about the container and its contents at the point of origin. This is
followed by providing real-time supply chain security and management informa-
tion to partners involved in the end-to-end shipment, through integrating data from
Active-RFID (radio frequency identification) tags and intrusion-detection sensors
attached to the containers. The RFID tags are read by stationary and mobile readers
at key nodes.

Simple models can be developed to assess the benefits of SST (see [13]). Let

p = the inspection rate of containers arriving at a destination port;
x = transit lead time in days, a random variable;
y = inspection dwell time in days, a random variable;
T = total lead time in days.
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Note that

E(T ) = E(x)+ pE(y) and Var(T ) = Var(x)+ pVar(y)+ p(1− p)[E(y)]2.

μ = mean daily demand of a product;
σ = standard deviation of the daily demand of the product;
R = inter-replenishment time in days for the DC;
k = safety stock factor;
p′ = new inspection rate under SST;
1−θ = percentage reduction of the transit time variance as a result of SST.

Hence, the new transit time variance under SST is given by θ Var(x).
Without SST, i.e., in the current process, the safety stock is given by (see, for

example, [15]):

S0 = k
√

μ2 Var(T )+σ2E(T +R).

With SST, we have advanced information about the lead time statistics and so could
adjust the safety stock based on the knowledge of whether inspection is needed or
not. The resulting expected safety stock is

S1=k
{

p′
√

μ2 [θ Var(x)+Var(y)]+σ2 [E(x)+E(y)+R]

+ (1− p′)
√

μ2θ Var(x)+σ2 [E(x)+R]
}

.

Lee and Whang [13] showed that S1 ≤ S0, providing one benefit of SST.

10.3.3 IT-Enabled Global Trade Management for Efficient Trade
Process

Using advanced information technologies (IT) on some process steps in cross-
border processes to assure supply chain security is one way in which we can im-
prove the trade process and gain some benefits. But there are many other process
steps that could also benefit from process improvements through the use of IT. IT
can of course potentially reduce the mean and variance of the lead time in a process
step (through direct work savings and reduction in errors and reworks). But it can
also enable, in some cases, parallel processing of some process steps instead of se-
quential. It can allow for some re-sequencing of the process steps that could lead to
overall savings. Finally, it is also possible that some process steps can be eliminated
(e.g., if IT results in a process with zero defects, then another subsequent step for
the purpose of checking and verification can be eliminated). Hence, investment in
IT can be a powerful way to improve cross-border trade processes, which would
then lead to supply chain performance improvements.

To do a complete analysis of the potential process improvements, we need to (1)
characterize all the process steps involved in trade flow, as well as their precedence
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relationships; (2) estimate the current duration and cost for each of the process step;
(3) estimate new process flow with IT fully implemented, and the resulting duration
and cost for each of the process step; and (4) given these changes, quantify the bene-
fits to the exporters, importers, and other intermediaries involved in trade processes.
Teamed with TradeBeam, a leading IT provider of trade processes, Stanford Univer-
sity has developed the Stanford Trade Process Model for the purpose of performing
such an analysis (see [7]).

The trade process is extremely complex. This is partly due to the proliferation
of regional trade agreements described earlier. Compliance to these agreements re-
quires extensive documentation, tracking, and verification, all of which become part
of the cross-border processes. The term Global Trade Management (GTM) refers
to the processes required to support cross-border transactions between importers,
exporters, their trading partners, and governments. GTM encompasses network
planning, sourcing, order collaboration, compliance with government regulations,
transportation, inventory, and warehousing management, as well as financial settle-
ment. GTM can be performed manually, or in a highly automated fashion, and with
poor or efficient processes. Information Technology-Enabled Global Trade Man-
agement (IT-GTM) is the set of information technologies and software solutions
that can be used by companies to streamline and perform their global trading pro-
cesses. They can include automation of export and import management and compli-
ance, electronic integration with trading partners, trade financing, and trade content
management.

The Stanford Trade Process Model is focused on apparel trade from China to
the United States and is based on extensive interviews and data collection with trade
experts and companies involved in such trades [7]. It involves over 100 process steps
that cover broadly the following processes (Figure 10.6):

Fig. 10.6 Stanford trade process model
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Pre-export: initiation of the global trade process, e.g., import screening, price ne-
gotiation price, contract and payment terms, creation of purchase/sales orders,
and export screening;

Transport arrangement and export declaration: preparation for exportation, in-
cluding arrangement of transportation carriers, obtaining approval from inspec-
tion agencies, export declaration, and preparation and transmission of security
filings to US Customs and Border Protection;

Transport and import declaration: ocean or air transport of the goods, generation
and submission of import documents, and import customs clearance;

Post-import customs clearance and payment: inland delivery from the border to
the importer’s site, receipt of goods, review of landed cost, settling payment with
the forwarder, broker and exporter, and filing for foreign exchange verification
and tax refund if applicable.

IT-Enabled GTM could result in direct process improvements or process re-
engineering which have tremendous benefits (Figure 10.7).

Process
Excellence

Process
Redesign

Focus

• Faster

• More accurate

• More reliable

• Re-sequencing

• Parallel processing

• Elimination

Values

• Shorter cycle time

• Less delays & reworks

• Lower capital tied up

• Faster cash cycle

• Less penalties from 
   errors

• Accurate duty payment 
  and refunds

Fig. 10.7 Values of IT-enabled innovations

To quantify the benefits of such improvements, one needs to develop models
to capture the benefits in the form of inventory savings, savings in financing costs,
speeding up tax rebates, reduction in expedite costs, reduction in fines, logistics cost
savings, labor cost savings, potential reduction in procurement, markdown and lost
revenues for importers, and customs savings due to accurate classification of prod-
ucts. Intermediaries (such as banks, freight forwarders, and other service providers)
can also benefit through workload reduction and reduced cost of receivables financ-
ing. The benefits to exporters, importers, and intermediaries have to be modeled
separately. The analysis of the apparel trade from China to United States shows that
the value of IT-Enabled GTM can be significant (see Figure 10.8).

To illustrate, Hausman et al. [7] show that, for exporters, the order to receipt cy-
cle could reduce from 104 to 68 days; the number of days outstanding could drop
from 42 to 30; and the manufacture to invoice cycle could be shortened from 45 to
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41 days. The annual benefits of IT-Enabled GTM are 1.7 and 1.4% of annual
sales for the exporter and importer, respectively. Assuming net profit is approxi-
mately 6% of sales for both exporters and importers, these improvements represent
a 28% increase in annual profit for exporters and a 23% increase in annual profit
for importers. Intermediaries for exporters and importers could also realize benefits
amounting to 3 and 5.5% of annual sales, respectively.

10.3.4 Empirical Analysis of Trade Processes

Given the importance of a deep understanding of the trade processes, it is crucial
to have a solid picture of the performances of the trade process steps empirically.
The Stanford Trade Process model [7] made use of interviews and questionnaires
sent to trade experts and practitioners for data collection on the performances of
the process steps. A more concrete approach is to obtain the information from real
data. This was the approach undertaken by Lee and Lim [9]. The study focused on
cross-border processes between Shenzhen, China, and Hong Kong. It detailed all the
process steps involved in clearing customs, transporting goods, and other logistics
processes. There were heavy cross-border traffic between China and Hong Kong, but
the study was based on trade flows related to the Outward Processing Arrangement
(OPA). Under OPA, some core apparel products made in China would be shipped to
Hong Kong for some assembly steps, then back to China for some finishing steps,
after which the products would pass through the Hong Kong port and be exported to
the United States with the origin declared as Hong Kong, thereby avoiding the quota
constraints imposed by the US government on Chinese imports. OPA is a legitimate
process, provided that the right job content is carried out (and verifiable) in Hong
Kong. Hence, the products would have crossed the China–Hong Kong border three
times (first China to HK, then HK to China, and then China to HK).
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To collect real data, the researchers installed GPS and RFIDs on a sample of
trucks and had readers mounted at some key choke points along the China–Hong
Kong border. Figure 10.9 shows the points in which readers were installed so that
the movements of the trucks were tracked. Consequently, the actual times required
to go through all the cross-border process steps could be recorded, leading to some
very concrete estimates.

• Total: 17 points along the cross-border route 
      between China and Hong Kong

• Lok Ma Chau yellow bus stop: A1-A4

• Lok Ma Chau Hong Kong Customs: B1-B5

• Huanggang customs: C1

• Pedestrian bridge at Huanggang customs: D1

• Pedestrian bridge besides Guangyin building:
      E1

• Riverside besides Guangyin building: F1

• Southern point of crossroad outside 
     Huangyuyuan north gate: G1

• Customs truck north exit: H1

• Truck park north entrance: H1

• Huanggang Customs truck entrance: J1

Fig. 10.9 Data collection for sample points

HK SZ

Queue Process Inspection Queue Process Inspection

HK to SZ 
(5,258 trips)

Rate 17% 14%

Mean 3.00 1.25 6.54 18.93 3.03 20.81

Std Dev 5.17 2.38 14.36 39.46 7.51 30.48

SZ to HK 
(4,662 trips)

Rate 8% 19%

Mean 1.03 1.01 9.44 3.17 3.08  58.62

Std Dev 2.15 2.00 23.57 5.74 5.32 70.61

Fig. 10.10 Cross-border cycle times (hours)
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After extensive data collection, the study was able to have very accurate esti-
mate of the inspection rate performed by customs office, the means and standard
deviations of the queueing and process times in crossing the border on the Hong
Kong (HK) side as well as the Shenzhen (SZ), China, side. Figure 10.10 shows the
statistics.

Hence, using GPS and RFID can be one way to get real-life data on the trade
processes.

10.4 Concluding Remarks

As a result of increased globalization of industrial supply chains, effective sup-
ply chain management requires sound alignment with the global trade processes.
I have discussed how the design of the global supply chain and the determination
of right level of postponement are both tied intimately to the prevailing network of
trade agreements, regulations, and local requirements of the countries in which the
company is operating in. Moreover, the dynamic changes and uncertainties of these
agreements and requirements must be anticipated.

In addition, the complexity of the cross-border trade processes results in uncer-
tainties in the lead time and costs involved in global trade, which naturally forms
part of the consideration of global sourcing, and the resulting safety stocks or other
hedging decisions. Governments, exporters, importers, carriers, and other service
providers have to work together to reduce the logistics frictions involved in the
global trade processes. The benefits accrue not only to the exporters, importers, and
the intermediaries, but ultimately, they could foster bilateral trade. The only way
to reduce the frictions is to gain a deep understanding of the detailed process steps
involved, to improve upon it by IT, and potentially re-engineer the processes. But
the payoffs to such investments can be huge.

The inter-relationships between global trade processes and supply chain man-
agement form a fertile ground of research. I hope that the above discussion can
stimulate ideas for this purpose.
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Chapter 11
Sustainable Globally Integrated Enterprise
(GIE)

Grace Lin, Ko-Yang Wang

Abstract In this chapter, we present the globally integrated enterprise (GIE) as
an emerging business model with strong implications for how companies run and
operate their global supply-and-demand chains. The GIE shifts the focus from an
efficiency-driven model to a value-driven one which leverages and integrates global
capabilities to deliver value speedily, seamlessly, and in a flexible way, while max-
imizing profits. A GIE is a complex organization that faces many challenges. The
evolution of the supply chain in the last 20 years has paved the way for the Oper-
ation Research (OR)-enabled Sense-and-Respond Value Net that supports today’s
GIE needs. We present a GIE case study of a business transformation journey. We
then describe the next steps for GIEs to become more socially, economically, and
environmentally responsible through the use of OR, business analytics, and IT.

11.1 Introduction

A Globally Integrated Enterprise (GIE) is an open, modular organization that is integrated
into the fabric of the networked economy and operates under a business model that makes
economic sense in the new global landscape [14].

Several fundamental changes in the last 20 years have caused multinational compa-
nies to rethink their approach:

1. The breakdown of economic nationalism caused trade/investment barriers to re-
cede, accelerating the globalization trend.

2. Advances in technology and open standards have significantly improved the
speed and reduced the cost of global communication.

3. Geopolitical changes opened up new markets and skill pools which had been
unexplored by multinational corporations.
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These changes have caused companies to re-evaluate how they manage their busi-
ness since where and how business value is created in this new environment is evolv-
ing. For example, sharing work across country or continent borders becomes pos-
sible, and outsourcing and global operations seem much more appealing. Many US
and European companies have moved or outsourced some or all of their manufactur-
ing or services to Asia, South America, and East Europe, with increasing speed. The
multinational companies’ traditional approach of replicating themselves and build-
ing plants locally while maintaining some key corporate functions such as R&D and
product design in their home countries is no longer sustainable. They need to create
flatter, more efficient operating models while building new innovative capabilities
globally to drive profitable growth. This new model has implications for how com-
panies run and operate themselves and their global supply chains. Fundamentally,
the focus has shifted from simply managing the supply chain for greater efficiency
to leveraging it to drive revenue, profit, and customer satisfaction. In the 2008 IBM
Global CEO study, CEOs indicated that they were embracing the global integration
and unpredictability as the new routine [22]. They were also anticipating the need
for their business to respond seamlessly and globally with unprecedented speed and
flexibility. In his 2006 article in “Foreign Affairs,” Sam Palmisano, IBM’s CEO,
coined the term “Globally Integrated Enterprise” (GIE) for this emerging business
model [45].

In his article, Mr. Palmisano pointed out four major challenges for a GIE: (1) se-
curing a supply of high-value skills; (2) creating sensible worldwide regulation of
intellectual property; (3) determining how to maintain trust in enterprises based on
increasingly distributed business models; and (4) managing requirements for long-
term vision and continuous investment from business leaders. Recognizing the scale
of these challenges, Mr. Palmisano called for the leaders in business, government,
education, and civil society to learn the emerging dynamics of GIEs and to help
GIEs mature in ways that would contribute to social, economic, and environmental
progress around the planet. Two years later, in his 2008 speech to the Council on
Foreign Relations, Mr. Palmisano discussed “A Smarter Planet: The Next Leader-
ship Agenda” [46]. He described the IBM vision for a Smarter Planet and the way in
which the world is becoming instrumented, interconnected, and intelligent. He laid
out visionary scenarios that lead the way to transforming companies into GIEs and
also pointed out a new direction toward sustainability, asking IBM, business, and
civil leaders to jointly work on specific solutions.

The key motivations for the multinational companies to go global have remained
the same: to improve revenue and profits by entering new markets, reducing pro-
duction costs, and seeking skilled workers at low costs [24]. However, in the face
of accelerating change brought about by globalization, technology advances, stan-
dardization, competition, and geopolitical evolution, as well as the skills evolution
of both developing and developed countries, the operational model of the multina-
tional companies is undergoing fundamental changes structurally, operationally, and
culturally and at an unprecedented pace. The benefits of a well-run GIE are obvious:
With the support of global skills and communication, the GIEs are able to strategi-
cally place their operations anywhere in the world that offers the lowest cost or the
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best strategic value. However, transforming companies into well-run GIEs is not
an easy task. They require fundamentally different approaches to production, dis-
tribution, workforce management, product design, and risk management, etc. Any
misstep or miscalculation can cause significant cost and damage to the company.

In the last few years, more and more companies have started to examine their
sustainability. For example, IBM and its clients’ Smarter Planet efforts [Smarter
Planet, Web], Dubai’s SmartCity [SmartCity, Web], US government and utility com-
panies’ Smart Meters, and Intelligent Grids initiates [48]. Thus, we define the sus-
tainability of GIEs: The ability to improve business performance while reconciling
the company’s needs with those of its supporting ecosystems from an environmen-
tal, social, and economic perspective. We believe that (1) the emerging GIE trend is
accelerating and it is important for enterprises and society to embrace it and focus
on maximizing the positive impact of GIEs on business performance while mini-
mizing the negative impact of GIEs on the economy, society, and the environment
and (2) sustainability is a critical success factor for the GIEs. This means that
enterprises have a social responsibility to ensure that their pursuit of maximizing
profits and minimizing costs has a positive impact on the sustainability of the econ-
omy, society, and environment. Also, the transformation of GIEs should improve
their own sustainability, i.e., their ability to manage, survive, and even prosper while
facing unexpected environmental changes, disasters, or disruptive events.

In this chapter, we focus on the supply-chain and value-net aspects of the GIEs
and their sustainability. We will examine the recent advances in supply-chain man-
agement (SCM) and information technology and their critical role in GIEs. In
Section 11.2, we briefly touch on the key challenges that today’s GIEs face. In
Section 11.3, we discuss the evolution of SCM and how it has driven the major
changes seen in today’s GIEs. We will also discuss using the OR-based adaptive
Sense-and-Respond Value Net to better enable GIE. In Section 11.4, we review a
case study and examine some best practices in improving business performance and
the process of transforming a company into a GIE. Finally, in Section 11.5, we
discuss the characteristics of effective GIEs and how these companies can become
more sustainable and socially responsible by leveraging advanced SCM solutions.

11.2 An Overview of GIEs and the Challenges they Face

“The crisis in our financial markets has jolted us awake to the realities and dangers of highly
complex global systems. But in truth, the first decade of the 21st century has been a series
of wake-up calls with a single subject: The reality of global integration.” Sam Palmisano
[45]

Companies started to move or outsource their operations abroad in the late 1980s
but the trend toward GIEs has accelerated in the last 10 years. With the advances
in technology, we see communication and collaboration becoming easier and less
costly and location, distances, and geographic borders becoming less relevant. The
decisions about where, whom, and how products and services are made or provided
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are driven less by the “where” and more by cost, skills/knowledge, and even eco-
political considerations. We are not only seeing companies moving labor-intensive
manufacturing to lower cost countries such as China, India, or Brazil but also wit-
nessing components of skill-intensive products/parts/services being moved in the
same manner and integrated back into the corporate processes on a global scale. To
understand these changes and how to transform enterprises into successful GIEs, we
will first examine the key challenges that GIEs face today.

The financial meltdown of October 2008 and the subsequent collapse or near col-
lapse of the financial, housing, construction, automotive, and many other industries
did not happen overnight. The problems were years in the making. However, for
most enterprises, the sudden realization of the realities and the dangers of venerable
business models and financial stability had executives scrambling to rethink their
strategy and operational models and to seek new solutions. The scale and reach of
the crisis and the speed with which some seemingly infallible companies crumbled,
as well as the vulnerability of companies in general, surprised virtually everyone.

The crisis highlighted several key realities of today’s business environment:

1. We are all connected. This close interdependence exposes enterprises to risks
that they cannot totally control. Today’s enterprises operate in a complex web
of business relationships so that interdependence is deeply rooted in the fabric
of the business model. Close collaboration with business partners is essential for
performance improvement.

2. It’s a small world. The financial crisis triggered by the US mortgage industry
would have brought down almost all major financial institutions in the major
financial markets had central governments not intervened and saved them. This
crisis revealed the fragility of the business models of many enterprises (e.g. the
auto industry’s crisis triggered by consumers tightening up during the financial
crisis). Sustainability should be a key focus of any enterprise.

3. When the market changes faster than a company’s ability to react to it, the com-
pany is in trouble. Unfortunately, not every company can keep pace with the ac-
celeration of market changes. For example, the major American auto companies
that relied heavily on SUV and truck sales for profit found that consumers had
changed their buying habits in the face of the great financial crisis in 2008. As the
crisis deepened, auto sales slowed to half their size from the previous year. Al-
though some companies recognized the peril of the market earlier (with the auto
market slowdown beginning in early 2008), they were unable to adjust quickly
enough which resulted in the auto industry bailout in 2009. This highlights the
importance of agility and flexibility.

Another incident in the auto industry, the Toyota “sticky gas paddle and sudden
acceleration” issue which continues to involve millions of car recalls in 2010 also
demonstrates that a company is only as strong as the weakest link in its supply
chain. Toyota, with its stellar reputation of reliability, stopped selling half of its cars
overnight because of a faulty part from a weak link in its supply chain causing the
recall. The problem was compounded by Toyota’s initial slow response to a key
crisis. The long-term damage to this widely admired company is immeasurable.
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Today, enterprises face the following key challenges:

1. Labor is only one of the many costs of global operation. Relocating operations
to low-cost areas also increases the risks of disruptive missteps due to increased
complexity, communication, and logistics issues. Simply replicating existing op-
erating models will not work well.

2. The rapid pace of market changes often renders business models obsolete before
transformation is complete or becomes effective.

3. Technology advances are accelerating process automation and enterprise collab-
oration but many companies are confused by different incompatible technology
standards in business modeling and process automation.

4. Information integration is a critical step in enabling intelligence business analysis
but to integrate monolithic applications and clean up data is expensive and time
consuming. Intelligence and business analysis too have to be explored.

5. Agility and flexibility are a reflection of the business model and operational pro-
cess model. IT technologies are critical enablers but resistance to change often
reduces or prevents a company’s form being agile or flexible.

6. The social and economic impact of GIEs’ “cherry picking” can have a profound
impact on the communities/countries they abandon; and the backlash can impact
the customer relationship/markets as well.

Enterprises can leverage experience, R&D, technology, and natural evolution in a
holistic approach that will allow them to transform into GIEs, enhance their agility
and flexibility to improve business performance, and, more importantly, become
more sustainable.

11.3 The Evolution of Supply Chains and the
Sense-and-Respond Value Net

Business and information technology advances in the last decade, particularly in business
analytics, process modeling and automation, information integration, and business perfor-
mance management, present new opportunities for enterprises to enhance their ability to
compete. At the same time, converging social and technological trends are changing the na-
ture of decision-making to create a more collaborative approach [37]. The evolution of the
supply chain in the last 20 years has paved the way for the OR-enabled Sense-and-Respond
Value Net to leverage these technologies to support today’s GIE needs.

Over the last two decades, companies have evolved from the internal functional and
process efficiency transformation toward collaborative and adaptive GIEs. SCM has
been vital in many companies’ transformation success such as Toyota [31], Nokia
[16], Dell [17], Amazon, and IBM . In this section, we will discuss the supply-
chain evolution and lessons learned. We will also describe the adaptive Sense-and-
Respond (S&R) Value-Net model and its applicability for GIEs.

In the early 1990s, Enterprise Resources Planning (ERP) was adopted by many
companies as a means for automation and improving transactional efficiency.
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However, we have seen the top-down, ERP-based processes being stressed past their
intended capabilities for transitional efficiency. A major issue with the ERP systems
is their lack of flexibility and speed to support decision making throughout the inter-
nal and extended supply chain to meet changing business needs. By the mid-1990s,
various Advanced Planning and Scheduling (APS) tools implemented with legacy
and ERP systems were developed to support the optimization of supply chains dur-
ing planning and execution cycles. Business Process Reengineering, Just-in-Time,
and Lean Supply-Chain process implementation were also becoming major trends.
In the late 1990s and early 2000s, the development of e-commerce and e-business
tools offered Internet connectivity and some limited capability for supply-chain col-
laboration and near real-time information sharing (see Figure 11.1).

Sustainable
GIT

„Those companies with high performance supply 
chains carry less inventory, have shorter, cash-to-
cash cycle times and are more profitable.“

– Source: “The AMR Research Supply Chain Top 25 and the New Trillion-
Dollar Opportunity” - AMR Research.
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Fig. 11.1 The evolution of the enterprise—Enterprises have been evolving from functional and
process efficiency to a collaborative and adaptive globally integrated enterprise (Source: IBM
Sense-and-Respond Presentation, 2004)

However, despite the implementation of supply-chain management tools and In-
ternet connectivity, the ROI of supply-chain management package implementation
has constantly come under question. Based on interviews with senior executives
from 25 firms, Forrester reported that companies overspent on supply-chain opti-
mization packages and received diminished returns: 80% of the companies spent
more time than expected and, on average, companies spent 74% over budget to
implement supply-chain optimization tools [49]. It was also reported that product
markdowns due to excess inventory jumped from 10% to 30% of total units sold
while customer satisfaction with product availability plummeted [30].

Why did efficiency gains and automation fail to delivery business value? In the
changing business environment, disruptive business and technical events can occur
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any time and at every level. Major business disruptions and inefficiencies can be
the result of the inability to handle these events quickly and intelligently due to
(1) a lack of information visibility across internal and external supply chains; (2) in-
sufficient partner collaboration; (3) a lack of customer intimacy; (4) an inability to
leverage knowledge and manage uncertainty; and (5) a lack of flexibility in business
processes, applications, and infrastructure. The just-in-time supply-chain model per-
formed well in improving supply-chain efficiency and minimizing product defects.
However, the model depends on the ability of its supply network to control their
inventory and deliver parts “in time.” If not, the process breaks down. Furthermore,
local supply-chain optimization based on incomplete or disjointed information un-
der rigid top-down planning models can not only result in sub-optimization but also
cause significant adverse effects. Therefore, since early 2000, many supply-chain
experts have vigorously started to explore new models that expand the supply-chain
scope and allow more agility and flexibility. Studies of some of the more successful
supply chains of the early 2000s revealed that supply-chain optimization depends on
their ability to streamline operations while processing information intelligently and
holistically, allowing quick, proactive, and effective responses to frequent changes
in the market place. This includes understanding the needs of customers and the
needs and capabilities of business partners and employees, as well as gathering rel-
evant information to analyze risks and opportunities and gain situational awareness
in changing environments [2, 21, 27–29, 35, 39, 51].

These studies concluded that the key to successful, adaptive organizations is to
ensure continued focus on responsiveness and agility. This, however, cannot be
achieved through technology implementation alone but by transformation into a
business model supported by real-time business processes and performance manage-
ment that will allow to quickly evaluate situations and determine how best to adjust
business models, processes, applications, or partnerships to key issues and events.
This is what we called the “Sense-and-Respond Value-Net Model” [39], what Hau
Lee called the “Triple A Model,” [29, 36] and what AMR called “Demand-Driven
Supply Chain” [10].

AMR in particular defined the “demand-driven supply network” (DDSN) model
that transforms a factory-oriented “push” set of activities to an innovation and sup-
ply capability driven by the demands of customers. AMR research has benchmarked
business processes in detail [e.g., 16] and found a clear correlation between lead-
ership in the use of demand-driven principles and tools and higher level financial
metrics. Professor Hau Lee identified the three characteristics of successful supply
chains based on supply-chain success stories including Wal-Mart, Dell, and Ama-
zon: Agility, Adaptability, and Alignment. Lee concluded that to achieve a sustain-
able competitive advantage, a supply chain needs all three of these qualities simul-
taneously.

The Sense-and-Respond Value-Net model was introduced by Lin et al. at IBM
in 2000. The objective was to build an open and adaptive framework to enable
value-driven business optimization. A Sense-and-Respond Value Net was then a
new paradigm that integrates real-time decision support, risk and resource man-
agement, supply-chain optimization, business processes automation, and partner
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alliances in an integrated management system. Through its sensing, responding, and
analyzing capabilities, a Sense-and-Respond enterprise monitors and evaluates real-
time business performance and market conditions, aligns operations with strategy
and customer requirements, proactively detects events, and engages value-net part-
ners in collaborative decision making (see Figure 11.2). It could be viewed as a
digital brain with sensors reaching all the way from a company’s global value chain
to the Internet world, blending business and IT to support value-net optimization in
uncertain and dynamic environments [39].

In 2004 Lin et al. [36] presented a framework for S&R value-net transforma-
tion as well as a maturity model for identifying gaps and defining roadmaps. They
defined the five areas needed to support the development and adoption of the Sense-
and-Respond model: (1) Adopting Sense-and-Respond Managerial and Technology
Transformation with a focus on culture, (2) Support for Integration, Collaboration,
and Security, (3) Information Intelligence, Analysis and Trustability of Data and
Their Aggregated Impacts, (4) Modeling Uncertainty and Managing Performance,
and (5) Support for Agent Systems and Distributed Decision Support. In 2006, they
further identified and studied the S&R technology enablers and concluded that most
enabling technologies are actually available today (see Figure 11.3).

Within the last 10 years, the Sense-and-Respond model has been adopted by
many companies and software vendors, as well as by United States and international
defense agencies [9]. We will discuss IBM’s success story in Section 11.4.
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Fig. 11.2 The Sense-and-Respond operational model (Source: [36])
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Fig. 11.3 Most key technologies needed for enabling Sense-and-Respond value nets are available
today (Source: [7])

To summarize, we have seen the supply-chain transformation focus change
from efficiency-driven automation, cost reduction, and streamlining of the supply-
chain processes to information- and collaboration-driven extended supply-chain
integration to value-driven adaptive Sense-and-Respond value net, which combine

Fig. 11.4 VCC provides end-to-end visibility to enable value-net partners to collaboratively sup-
port chain performance (Source: IBM VCC Presentation, 2008)
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information integration, adaptive process enablement, and business analytics to im-
prove collaboration and the quality of decisions.

The next logical step for GIEs is to fully utilize S&R to integrate supply, demand,
logistics, and other key business functions globally and to perform S&R culture
transformation to become a true GIE.

IBM’s recent 2008 CEO study of more than 1,000 C level executives found that
the vast majority of companies are becoming globally integrated, with 75% actively
entering new markets [22]. Of those, 84% plan to partner with local companies to
become truly globally integrated. Companies that can master the enabling technolo-
gies shown in Figure 11.4 and integrate them into the fabric of their business to
transform their business model to become more instrumented, connected, and intel-
ligent will have significant competitive advantages.

Some success stories in GIE are already being reported, such as already men-
tioned Wal-Mart, Nokia, and IBM. In Section 11.4, we will discuss how
analytics/OR was used in combination with business process modeling and inno-
vative business models to support IBM’s GIE Transformation.

11.4 A Case Study

IBM has one of the largest and most complex supply chains in the world. Being a technol-
ogy leader in the Industry, IBM needs pragmatic and powerful supply-chain technology to
address its business challenges driven by rapidly changing business environments. Over the
last 20 years, it has demonstrated a compelling story in business transformation and global
integration.

IBM’s transformation in the last 20 years makes a great case study for the Global
Integrated Enterprise. The company’s reengineering effort of the 1990s began out
of necessity. From the late 1980s to the early 1990s, only several years after record-
ing its record-high revenue, IBM suffered a remarkably rapid fall from grace due
to its slow reaction to a market transformation from mainframe computing to a dis-
tributed computing model. Both its technology and its relationship with customers
were viewed as antiquated. In 1993, a victim of its size, bureaucracy, insular culture,
and the workstations and PCs that it had helped invent, the company lost a record
$8.1 billion. At that time, IBM’s cost structure was too high; the company was too
decentralized; it stayed with an old strategy too long; and it had lost touch with both
industry changes and its customers. IBM and its mainframe were dubbed dinosaurs
and their imminent extinction was predicted [43]. With a pending plan to break up
the company, IBM hired Lou Gerstner as CEO in 1993. Realizing that the real value
IBM offered its customers was its ability to provide end-to-end solutions to busi-
ness problems, Gerstner [18] reversed course and set a strategy to create a unified,
integrated company. As part of this effort, IBM brought together its operations into
a globally integrated supply-chain organization. It changed its manufacturing from
build-to-plan to build-to-order. It started its services business and aligned its prod-
ucts and solutions to provide end-to-end solutions to their clients. The strategy paid



11 Sustainable Globally Integrated Enterprise (GIE) 205

off. By the year 2000, IBM’s net income had grown to $8 billion—a $16 billion
turnaround from the dark days of 1993.

Beginning in 2002, IBM embarked on the second phase of its transformation
journey. Its strategy was to become the showcase example of an on-demand busi-
ness and innovation company. This transformation was no longer made critical by a
burning platform and a struggle for survival but rather driven by a collective aspira-
tion to turn a good company into a great company again. IBM continued to change
its business model, its operations, its processes, and its culture to respond to the
changing demands of globalization in the 2000s. In 2008, IBM posted excellent re-
sults despite an ailing global economy: the company had record revenue of $103
billion, a profit of $16 billion, earnings per share of $8.93, and a record cash flow of
$15 billion, up almost $2 billion year to year.

IBM’s Integrated Supply-Chain transformation is a cornerstone of IBM’s trans-
formation success over the past decade, coupled with the applications of advanced
OR and BPM technology. The company has turned the management of its nearly
$40 billion in annual spend into a disciplined application of services science, one
that has produced billions of dollars in cost savings and contributed in a major way
to IBM’s steady improvement in earnings per share over the past several years.

A decade ago, IBM’s supply chain was fragmented throughout the company in
various business units and operating structures. Bringing together these organiza-
tions into a globally integrated supply chain can be complex and risky. The Inte-
grated Supply-Chain (ISC) organization was created in 2002 as a single business
unit, charged with making the company’s supply chain a competitive advantage,
i.e., an operational difference-maker to help IBM become adaptive and responsive,
gain market share, reduce costs, grow revenue and profit, improve cash flow, and
enhance client satisfaction.

Today, IBM’s supply chain is managed on a global basis, leveraging costs
through an integrated network of global suppliers and partners. The ISC encom-
passes manufacturing, procurement, customer fulfillment, and global logistics and
includes nearly 20,000 employees spread across 56 countries. In 2006, the head of
procurement, a major element within ISC, was relocated to Shenzhen, China, from
the corporate headquarters in Armonk, New York.

Within ISC, the customer fulfillment process offers a good example of the bene-
fits of global integration. Its transformation began in the early 1990s, just as the In-
ternet was transforming the way individuals and organizations work. IBM began to
extend electronic links for collaboration to suppliers, partners, and clients to stream-
line its process, improve its visibility into the supply chains, reduce inventory, and
enhance its collaboration with their partners. The new single globally integrated op-
eration immediately started realizing savings of 10–15% year after year. ISC elim-
inated steps in some fulfillment processes and automated others: For example, the
order process was streamlined, eliminating the redundancy of having clients order
from business partners and then business partners order from IBM. Today, clients
order directly from business partners’ Web sites using B2B systems with orders
automatically feeding into the IBM order system. In fact, 95% of orders through
business partners in the United States are automated. Client support processes have
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been automated through a variety of Web tools, telewebs, and self-service applica-
tions that enhance client satisfaction, reduce support cost, and improve productivity.
For example, the combined effort cut the average processing time for a purchase or-
der from a month to a few hours, driving substantial savings in the form of paperless
processes and automation.

Through this transformation and the use of business analytics, IBM componen-
tized the customer fulfillment processes, deciding which process steps were best
done close to the client and which ones could be handled globally. This assess-
ment led IBM to extract transaction processing and data entry work and consolidate
it in global delivery centers in Malaysia, Slovakia, Spain, and Brazil. As a result,
roughly 20% of customer fulfillment resources are in low-cost countries. For the
other 80%, these resources have been redirected toward higher value work, closer
to client teams. For example, in Europe, customer fulfillment resources are working
on high-value tasks and new roles such as customer relationship and proposal team
coordinator. This has helped reduced the time that sales teams spend on fulfillment
activities by 25%, allowing them to spend nearly 40% more time with clients.

As the globally integrated supply chain became a model of integration for IBM,
the company began applying the experience to all its operations. For example,
supply-chain principles and tools are being adapted to apply to managing hardware
and software assets to increase competitiveness in the services business. In addition,
IBM also takes its ISC know-how to help its clients manage and improve their own
supply chains.

One of the key areas in which IBM differentiates itself and takes the lead in the in-
dustry is its use of Operations Research/Business Analytics (OR/BA) and informa-
tion technology coupled with innovative business models and disciplined business
process reengineering to transform its supply chain into a “smarter supply chain”
to achieve a competitive advantage. The innovative use of OR along with process
and information technology in the following four interrelated areas have supported
IBM’s supply-chain transformation in the last 15 years:

• Extended Enterprise Supply-Chain Management
• Innovative Business Models and Business Optimization
• Adaptive Sense-and-Respond Value Net
• Value-Driven Sales and Delivery

11.4.1 Extended Enterprise Supply-Chain Management

In 1993, IBM launched an internal reengineering effort to streamline business pro-
cesses. The reengineering effort focused on improving customer satisfaction and
market competitiveness by increasing the speed, reliability, and efficiency with
which IBM delivers products to the marketplace. In 1994, the company added an
asset management reengineering initiative to the effort.

A cross-functional team identified five areas that needed modeling support:
(1) design of methods for reducing inventory within each business unit;
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(2) development of alternatives for achieving inventory objectives for senior man-
agement consideration; (3) development and implementation of a consistent process
for managing inventory and customer-service targets—including tool deployment—
within each business unit; (4) complete evaluation of such assets as service parts,
production materials, and finished goods in the global supply network; and (5) eval-
uation of cross-brand product and unit synergy to improve the management of inven-
tory and risk. The Asset Management Tool (AMT), an OR-based strategic decision-
support tool, was developed to address these issues. AMT integrates graphical pro-
cess modeling, analytical performance optimization, simulation, activity-based cost-
ing, and enterprise database connectivity into a system that allows quantitative anal-
ysis of extended supply chains. The central function of the optimization engine
is a constrained multi-echelon inventory optimization model for large-scale sup-
ply networks which couple nonlinear programming with gradient search, heuristic
clustering, and queuing analysis [15]. IBM has used AMT to study such issues as
inventory budgets, turnover objectives, customer-service targets, product simplifica-
tion, and new-product introductions.

This work became the backbone of the successful reengineering of many IBM
business units in North America and Europe, as well as for customers such as GE
Capital, Best Buy, and Xilinx [38]. Financial savings through the AMT implemen-
tations amounted to more than $750 million at IBM Personal System Group in 1998
alone. Furthermore, AMT has helped IBM’s business partners to meet their cus-
tomers’ requirements with much lower inventory and has led to a co-location policy
with many business partners. In 1999, The IBM AMT team received the 1999 IN-
FORMS Franz Edelman Award as well as IBM’s Outstanding Technical Achieve-
ment Award.

11.4.2 Innovative Business Models and Business Optimization

In early 2000, a major IBM effort was to transition from an indirect build-to-
plan business model to a flexible build-to-order and configure-to-order (CTO) busi-
ness model to support a hybrid indirect and direct (Web-based) business [11]. A
configure-to-order (CTO) system is a hybrid of build-to-plan and build-to-order op-
erations. In a traditional build-to-plan or build-to-order environment, there usually
is a pre-fixed set of end-product types from which customers must choose, as well
as a pre-specified notion of demand types. In contrast, a CTO system allows each
customer to configure his/her own product in terms of selecting a personalized set
of components that go into the product. Therefore, the CTO system appears to be
an ideal business process model that provides both mass customization and a quick
response time to order fulfillment.

To support this transition, a set of OR-based initiatives were formed to perform
supply-chain assessment, examine and enhance business processes, and optimize
supply-chain policies and control parameters in the CTO environment [4]. Many
interesting and new OR problems such as building-block-based forecasting [20],
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[19], pricing, [1], [8] inventory optimization for CTO products [5], flexible supply
contract, and reverse logistics [39] were discovered and analyzed. One example was
about exploring flexible supply contracts as a means to facilitate coordination among
supply partners [12]. Properly designed supply contracts allow value-net partners to
share demand-and-supply risks and enable better coordination between decentral-
ized supply chains while lowering costs. Quantity flexibility can be specified in a
supply contract to allow a buyer to adjust its order quantities after the initial order is
placed. Such flexibility enables buyers to reduce its risk of overstock or understock,
which naturally comes at an extra cost to buyers. The extra cost gives the supplier
incentive to offer flexibility while undertaking more risk. The model also generates
qualitative insights to support channel coordination through a profit-sharing mech-
anism. This kind of analysis can be leveraged to evaluate the shared risks and fair
compensations in a globally integrated supply network for GIEs.

Recognizing the value of OR/Business Analytics to business, the Value Chain In-
novation Center (VCIC) was formed in 2002 with support from both IBM ISC and
IBM Research. The mission of this center has been to create a cross-business and
cross-functional “incubator” to develop advanced technologies and thought leader-
ship for value-net collaboration and optimization, to create a value-net community,
and to build a knowledge repository for assets. This center became the key technol-
ogy center for delivering advanced technologies for ISC value-net transformation
and is still actively supporting ISC technology needs today.

11.4.3 Adaptive Sense-and-Respond Value Net

Following the transition from Build-to-Plan to a hybrid of Build-to-Order and
Configure-to-Order business model, it was time to explore more flexible and re-
sponsive models to help IBM leapfrog the competition. As discussed in Section 11.3
above, the Sense-and-Respond Value-Net effort was first initiated in 2000 to build
an open and adaptive framework, using intelligent decision making and IT tech-
nology for business optimization. There have been several successful S&R pilots/
implementations since then. Sense-and-Respond Value Net was adopted by IBM
as a key supply-chain strategy in 2003. We will discuss two S&R implementations
below: Sense-and-Respond Demand Conditioning and Virtual Command Center.

11.4.4 Sense-and-Respond Demand Conditioning

Sense-and-Respond Demand/Supply Conditioning Solution enables the supply chain
to sense fluctuations in demand early on, intelligently analyze the signals, and seam-
lessly adjust itself in real time [6]. It allows a better understanding of
transactional data representing customer needs, provides visibility of real-time
supply-and-demand conditions, identifies supply–demand imbalances, and indicates
out-of-threshold situations on an enterprise dashboard to allow proactive decision
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making and needed adjustments. The system analyzes the order loads, shipments,
supply commits, and demand forecasts data from enterprise-planning systems, cor-
relates and analyzes the information, identifies imbalance events, alerts the appro-
priate business users, and recommends corrective actions. A key analytics system is
the Order-Trend Analysis. “Order Analyzer” uses both historical demand and partial
demand signals that are visible in a current time period, as well as other demand-
related signals that can serve as headlights for future demand.

The implementation of S&R Demand Conditioning at IBM Personal Computing
Division (PCD) in 2004 has produced great business benefits and improvements, in-
cluding better data integration and visibility for earlier, more efficient responses
and fast resolution. The order-trend analysis gives PCD earlier headlights into
customer needs and supply constraints and excesses. Before the new process was
implemented, demand-and-supply imbalance would need to contact each function
separately, identify solutions to imbalances, and reach consensus on the best solu-
tion. The resolution of an imbalance issue that could take as long as 2 months was
dramatically reduced. Sales also became more efficient and overall sales volume has
increased through improved product availability or substitution. In the last quarter
of 2004, time spent on administrative activities declined by 20% and sales increased
by 5%. In addition, there was a 40% reduction in unfilled orders worldwide with
$200 million in additional revenue.

Virtual Command Center

The Virtual Command Center (VCC) is a multi-enterprise, supply–demand balanc-
ing and collaboration solution based on the S&R model. It is composed of three
major hubs which manage and synchronize demand, supply, and logistics (see
Figure 11.4). It offers visibility, real-time performance management, event man-
agement, collaboration enablement, analytical platform, and intelligence. IBM is
currently using the VCC Demand Hub in its own supply chains so as to collaborate
with channel partners in order to support smart alignment of demand and inventory
supply decisions and execution for selected products in North America and Europe
[26].

Three key analytical capabilities were developed and incorporated. The Channel
Sales Forecasting function predicts demand at business partners, analyzes entire
sales out profile, incorporates headlights such as future marketing campaign data
and promotion, detects abnormal events that deviate significantly from historical
profile, and captures order skew by placing larger weights on historical sales in
the same week within a quarter. The Optimized Buy Recommendations function
captures price protection expenses, inventory carrying costs, and customer service;
analyzes “lumpiness” of historical sales out; and minimizes costs while achieving
a target service level (98% product availability at distributor). Finally, the Demand
Shaping function identifies viable product alternatives if preferred product choices
are unavailable to support “sell-what-you-have.”
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The business benefits of VCC have been significant. Within 1 year of VCC
implementation along with related business process transformation initiatives, the
total inventory is now down by 50% for the selected products in the United States.
Promotion payments and price protection payouts were also reduced. The VCC has
been deployed in more than 20 countries with more than 40 distributors in North
America and Europe with more and more business partners increasingly accepting
the VCC’s purchase recommendations.

11.4.5 Value-Driven Services and Delivery

In recent years, IBM has undergone a transformation from a hardware company
into a major services and software business. The company’s revenue from Services
has increased from $11B in 1993 to $59B in 2008. In 2005, a key effort, Value-
Driven Sales and Delivery (VDSD)—later renamed the “Financial Transformation
Workbench” (FTW)—was initiated to support Service Sales and Delivery [32]. The
motivation was that enterprises increasingly focus on delivered values rather than
on product, function, or initiatives. When buying an external service, enterprises
expect the service provider to demonstrate the value of its services throughout the
sale and delivery phases. If it is an internal initiative, they expect to see value be-
fore, during, and after implementation. Figure 11.5 shows the VDSD model. It pro-
vides an environment for enterprise-wide capability assessment and a comprehen-
sive framework for design, development, deployment, and operation of services/
initiatives.

Given
business
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business map

Identify
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business
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Fig. 11.5 Value-driven services and delivery model (Source: [32])

This model combines OR quantitative modeling with component-based qualita-
tive modeling to help enhance sales and services based on business value. More
specifically, VDSD leverages advanced business modeling techniques including
Component Business Modeling (CBM) and semantic modeling and value modeling
to assist customers in identifying areas for business transformation and operational
improvement, recognizing and categorizing deficiencies in existing IT systems, cal-
culating business values of transformational and IT initiatives, and prioritizing IT
initiatives based on business values.
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At the forefront of the industry trend of focusing on value in sales and services
[25], VDSD is a pioneering effort of integrating business, IT and delivery, risk anal-
ysis and management, and of creating tools that link, calculate, monitor, and demon-
strate value delivered. An IBM research and service team filed five VDSD patents
[32]. CNN reported that “This Finance Transformation Workbench tool underscores
the future of IBM’s services business. The services’ model of the future includes
analytical software coupled with high-value consulting services and world-class re-
search underpinning it” [CNN News, July 2008].

IBM has demonstrated a core competence in business transformation. It has cre-
ated a new business model—the GIE—and delivered significant financial perfor-
mance. State-of-the-art business analytics and information technology have been
used through the transformation journey to help enable growth and productivity. The
resulting transformation showcases how science was brought to the art of decision
making to help optimize business performance. However, culture change always
plays a key role in any business transformation.

11.5 Sustainability of the Globally Integrated Enterprise

Sustainable GIEs are enterprises that participate in global commerce and leverage
global resources and capabilities to improve their business performance smartly
while reconciling their needs with those of their supporting ecosystems from an en-
vironmental, social, and economic perspective. They are often Globally Distributed
and Economy Driven; Integrated; Agile; Performance Driven and Technology En-
abled; Skills, Innovation, and People Focused; and Environmentally, Socially, and
Economically Responsible.

1. Globally Distributed and Economy Driven Competition has forced companies
to seek global markets and operations but globalization has also greatly increased
complexity and risks. With ever-increasing competition and narrowing operating
margins, it has become more important than ever for companies to understand
end-to-end performance, to make intelligent use of available resources, and to
invest in moving their operations to where they will be most cost effective. It
may also require decomposing the company into modular functions according to
needs. These modular functions can be either supported within the organization
or outsourced to different areas.

A GIE therefore needs to strategically distribute its operations globally and the
distributed entities need to perform their operations efficiently as an integrated
enterprise. This requires the GIE to know its own capabilities and those of its
partners as well as the values and costs/risks of each potential participant or solu-
tion component. It needs to evaluate the merits/impacts of the operational design
and the adjustments needed to improve business performance. The Value-Driven
Sales and Services-Delivery model (VDSD) that we describe in Section 11.4 can
be used to model the values and costs of value-net participants and help an enter-
prise design its GIE operational model.
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2. Integrated A key challenge that GIEs face is to integrate distributed opera-
tions and get partners across the globe to work in tandem despite the difficulties
introduced by time, distance, communication, and culture barriers. To operate
efficiently, participants in the value net need to share critical information to
improve the situational awareness of the entire value net as well as that of the
environment in which they operate. They also need to coordinate and synchronize
their operations and collaboratively make decisions to address unexpected events.
In the event of a supply-chain disruption, real-time assessment of the impact
across the value chain is crucial for corrective actions. The IBM Virtual Com-
mand Center is a supply-chain/value-net solution that not only visualizes but also
manages supply-chain visibility and real-time events based on integrated infor-
mation. It was designed for collecting and integrating information from a het-
erogeneous global environment of business units and value-net partners. Its three
major hubs manage and synchronize demand, supply, and logistics needs and
provide analytics that greatly enhance related real-time decision making for har-
monizing these needs.

3. Agile In the new global, continuously changing environment, events such as fi-
nancial market disruptions, customer buying behavior changes, pandemic threats,
terrorist attacks, and natural disasters, once considered rare, are becoming more
commonplace. Disruptive technologies are also increasingly affecting business.
Companies can no longer ignore the threats of a changing environment and need
to prepare themselves to effectively adopt new technology for evolving situa-
tions. In this fast-changing environment, agility is a critical capability for an
enterprise to remain sustainable. The faster a company can change its opera-
tional model to adjust to environmental changes, the more competitive it be-
comes. However, enabling a large enterprise to become agile is no simple task.
The business processes need to be streamlined and, more importantly, the oper-
ational model needs to be flexible for quick reconfiguration. The changes need
to be automated with application support such as the performance-, model-, and
value-driven VDSD described in detail in Section 11.4.

4. Performance Driven and Technology Enabled A GIE employs Communica-
tion, Operation Research, Business Analytics, and Information Technologies to
improve its business performance and to react to environmental changes. In addi-
tion, business leaders are looking for technology that will help them analyze large
amounts of data collected from different sources so that they can, proactively
and, if possible, in real time, detect exceptions and conduct root-cause analysis
quickly and effectively and make an optimal use of resources. They seek technol-
ogy that will generate alerts and quickly communicate those alerts to concerned
parties [32]. GIEs need technology support for accurate and timely performance
reports, disruptive events recognition, and role-based event notification with in-
tegrated information that can be presented to executives, managers, and opera-
tors ensuring their timely and fast communication and action [33]. The VDSD
model-driven framework enables rapid process and application integration at
build time and performance monitoring and quick operation reconfiguration at
runtime.
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Fig. 11.6 Continual innovation is a fundamental source of competitive advantage (Source: [52])

5. Skills, Innovation, and People Focused An efficient GIE will continue to train
its workforce and develop a culture of continuous innovation so it can remain the
leader in its field (see Figure 11.6). It also has to pay attention to how global-
ization and the e-commerce transformation of the last 20 years have changed the
enterprise landscape. Companies are increasingly forming value nets to collab-
orate with partners and clients, gaining shared situation awareness, and making
quick decisions. This has created a need for state-of-the-art negotiation models
and frameworks that can facilitate collaboration among partners.

A company’s most important resources are its people, skills, and assets. His-
tory shows that a market leader can fail quickly if it stops innovating or fails
to sense and respond to market changes. IBM, Xerox, Kodak, Polaroid, Sears,
Timex, US Steel, etc., are just a few of many great companies which once dom-
inated their industries but then fell from grace because they stayed with their
successful model for too long and failed to change with the environment. Some
of them became great again by reinventing themselves but others faded into
history. For an enterprise to be sustainable, it needs to reinvent itself continu-
ously. In [17], the authors pointed out that the reason Dell’s supply-chain success
was difficult to replicate elsewhere was the company’s culture and people. A cul-
ture of innovation can only take root when the company focuses on its people and
encourages employees and partners to take risks to explore business innovation
and sustainability. An innovative culture encourages taking calculated risks—
even when these may result in occasional failure. Furthermore, the corporation
relies on its people in all countries to self-regulate its operations, to be socially
responsible, and to have a positive impact on the environment, communities, con-
sumers, stakeholders, and employees.
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6. Environmentally, Socially, and Economically Responsible For a company to
transform to a GIE is a complex issue. Cost and skills are not necessarily the
only considerations; environmental, social, and economic impacts are also crit-
ical success factors. Shifting operations can be costly and time consuming and
issues and concerns need to be thoroughly analyzed and confronted. These issues
range from transportation and distribution costs of physical goods and parts and
the potentially positive or negative productivity impact of reduced collaboration
caused by time-zone differences and distances to the much larger and sensitive
geo-social-political issues of outsourcing jobs.

The benefits of the GIE transformation are not always obvious and can be
negated by the adverse impact of the transformation—particularly as related
to economic, societal, and environmental factors. For example, shifting jobs to
lower cost countries often reduces domestic jobs opportunities and brings about
social/political issues which may affect domestic buying power or
customer relationships, thereby lowering the demand for goods. On the other
hand, the exploitation of low-cost skill pools often improves the local economy
thereby increasing local buying power but, at the same time, increasing labor and
other costs. The six characteristics of a well-run GIE that we have just discussed
also apply to the sustainability of the GIE.

Corporate social responsibility is not a new concept but in the past compa-
nies have tended to focus on financial performance and only recently realized that
short-term financial gain at the expense of product safety, social, and environmental
responsibilities can have a long-term negative impact on their brand and business.
The 2010 Toyota gas pedals and brakes issues, the 2007 Mattel toxic toys incident,
the industrial accident of Union Carbide at the Bhopal, India plant, and the Exxon’s
Valdez oil spill in Alaska in 1989 all caused significant damage to these companies’
business and brand equity.

More and more, companies are realizing that they can earn a profit while be-
ing socially and environmentally responsible. For example, British retailer Marks &
Spencer (M&S) has embarked on a £200-million, 5-year plan that impacts almost
every aspect of its operations. One initiative is to simultaneously improve efficiency
and sustainability through its online supplier exchange. For instance, farmers who
create biogases from farm waste are now selling green electricity to M&S—along
with their beef. M&S has proven that it is possible to do well while doing good: the
company’s operating profit has increased at a compound annual growth rate of more
than 14% for 5 consecutive years [42]. Starbucks and many other corporations’ sup-
port of fair-trade coffee and tea have helped both the farmers and the company’s
business. Carbon trading is another example. A recent study found that there is a
correlation between social/environmental performance and financial performance
[44]. IBM’s Smarter Planet initiatives have identified many areas where the compa-
nies can reap financial gains while being socially and environmentally responsible
[Smarter Planet, Web]. Smarter city, Smarter Grid/Meters, Smarter Supply Chains,
Smart Water Management, Smart Health Care, Green Data Centers, etc., are just a
few of the promising examples.
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11.6 Conclusion

We live in a hugely complex and interconnected world where the old criteria for
maintaining a thriving and profitable business no longer apply. Taking the road
to transformation creates immeasurable challenges, with great creativity and inno-
vation as a result. Adapting to evolving technology and to different environments
has created highly efficient new models. The new emerging model is the Globally
Integrated Enterprise (GIE) that shows the way for companies to run and operate
their global supply-and-demand chains. Our own research and the IBM experience
in becoming a Sense-and-Respond GIE demonstrate how a deep awareness on the
part of businesses to go beyond the bottom line and become responsible players on
the global scene is helping companies take the road to transformation. Challenges
remain but opportunities abound. Using the available and continuously refined
Operations Research, business analytics, value-driven methods and tools, and in-
formation technologies, GIEs can become more socially, economically, and envi-
ronmentally responsible and achieve sustainable success.
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Chapter 12
Cyberinfrastructure and Optimization

Robert Fourer

Abstract In 2002 the U.S. National Science Foundation created a Blue-Ribbon
Advisory Panel on Cyberinfrastructure, which submitted in January of 2003 a re-
port entitled “Revolutionizing Science and Engineering Through Cyberinfrastruc-
ture.” Subsequently, the NSF created an Office of Cyberinfrastructure (OCI) inde-
pendent of its directorates in such traditional areas as biology, computer science,
geosciences, physical science, and engineering. In the following 3 years the NSF
sponsored workshops leading to nearly 30 reports (www.nsf.gov/od/oci/reports.jsp)
on the role of cyberinfrastructure in specific areas of research. This chapter de-
scribes a variety of projects that fall into the intersection of cyberinfrastructure with
the study and practice of large-scale optimization. In general, these projects involve
large-scale optimization problems in system design, production planning, and lo-
gistics. However, the notion of large-scale optimization occurs in other disciplines
including physical and biological sciences, engineering, economics. As such, there
is a benefit to establish a community whose members use the same modeling and
algorithmic techniques and who can benefit from the same software and services.

In 2002 the U.S. National Science Foundation created a Blue-Ribbon Advisory
Panel on Cyberinfrastructure, which submitted in January of 2003 a report entitled
“Revolutionizing Science and Engineering Through Cyberinfrastructure” [2]. Sub-
sequently, the NSF created an Office of Cyberinfrastructure (OCI) independent of
its directorates in such traditional areas as biology, computer science, geosciences,
physical science, and engineering. In the following 3 years the NSF sponsored work-
shops leading to nearly 30 reports (www.nsf.gov/od/oci/reports.jsp) on the role of
cyberinfrastructure in specific areas of research.

OCI’s statements of its mission (www.nsf.gov/od/oci/about.jsp) provide a taste
of what the term cyberinfrastructure is intended to encompass:
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The Office of Cyberinfrastructure coordinates and supports the acquisition, development
and provision of state-of-the-art cyberinfrastructure resources, tools and services essential
to the conduct of 21st century science and engineering research and education.

OCI supports cyberinfrastructure resources, tools and related services such as super-
computers, high-capacity mass-storage systems, system software suites and programming
environments, scalable interactive visualization tools, productivity software libraries and
tools, large-scale data repositories and digitized scientific data management systems, net-
works of various reach and granularity and an array of software tools and services that hide
the complexities and heterogeneity of contemporary cyberinfrastructure while seeking to
provide ubiquitous access and enhanced usability.

OCI supports the preparation and training of current and future generations of re-
searchers and educators to use cyberinfrastructure to further their research and education
goals, while also supporting the scientific and engineering professionals who create and
maintain these IT-based resources and systems and who provide essential customer services
to the national science and engineering user community.

The purpose of this chapter is to describe a variety of projects that fall into the
intersection of cyberinfrastructure with the study and practice of large-scale opti-
mization, as explained further in Section 12.1.

Of particular interest in this context are frameworks for making optimization soft-
ware more readily available; Sections 12.2, 12.3, and 12.4 present distinct projects
for this purpose. Several other projects, considered in Section 12.5, are related by
the goal of helping people make better use of available optimization software.
Finally, Section 12.6 describes efforts to apply diverse high-performance comput-
ing facilities to problems of optimization. Concluding remarks in Section 12.7 see
these activities as having an encouraging future, though perhaps less as the sort of
cyberinfrastructure projects that appeal to research sponsors (such as NSF’s OCI)
and more in the context of emerging business models that are beginning to show
promise.

Naturally many of these projects have to do with minimizing costs or maximiz-
ing profits in operations research applications. A great variety of activities in design,
manufacturing, distribution, and scheduling seek to minimize costs or maximize
profits (or surrogates for these). But optimization is also an established paradigm
for problems in the physical and biological sciences, numerous engineering disci-
plines, economics, and business, ranging as broadly as the minimization of energy
in a protein structure, the cost of a circuit configuration, and the total bid price
of a combinatorial auction. Problems of these and many other kinds are addressed
by a large optimization community whose members use the same modeling and
algorithmic techniques and who can benefit from the same software and services.

12.1 Cyberinfrastructure and Optimization

Everyone is familiar with infrastructures: road systems, rail networks, power grids.
An infrastructure does not produce goods or services itself; rather, it makes a wide
range of productive activities possible. The interstate highway infrastructure does
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not itself carry out supply-chain management, for example, but it permits the de-
velopment of supply-chain management systems that would not be possible other-
wise. Indeed, it paves the way for phenomena that were not foreseen when it was
built, such as crossdocks and suburban sprawl. The effectiveness of infrastructures
depends critically on standards (track gauges and time zones for railroads, bridge
heights for highways, voltages for power grids) and on accessibility to a broad base
of users.

Among the major infrastructures of modern life, cyberinfrastructures constructed
from computers, data networks, software, and communication standards are among
the newest and most elaborate instances. The Internet and the Web are the best
known examples. Like other infrastructures, they facilitate myriad applications—the
Web’s use for unexpected purposes is already legendary—and they depend critically
on software standards such as IP, HTTP, and HTML.

Optimization as currently practiced is inherently computational. Of greatest rel-
evance to cyberinfrastructure are optimization software packages that address prob-
lem classes defined by mathematical properties of the objective and constraints, such
as linearity or discreteness of the variables. Hundreds of these solvers are in regular
use, based on a broad variety of optimizing algorithms and combinations of algo-
rithms, many of them quite complex; each offers some trade-off between breadth
of problem, efficiency of solution, convenience of implementation, and cost. At the
same time a variety of modeling languages and support systems have been devel-
oped to translate between the problem representations familiar and convenient to
human modelers and the data structures required for efficiency of the algorithms.
The independent profusion of solvers and of modeling systems is characteristic of
optimization and provides much of the impetus for the creation of independent op-
timization infrastructures.

Indeed, solvers resemble infrastructure tools in several respects. They do not di-
rectly address people’s concerns in science, engineering, or commerce, but rather
serve as tools for bringing optimization models to bear within application areas and
systems. As a result the concept of optimization has been applied to many problems
that were unknown to the creators of the relevant solvers. At the same time optimiza-
tion software has become more accessible through the adoption of interfaces that,
although serving as standards only for certain problem types or product groups,
are at least widely known and readily grasped by individuals who have technical
training in many different fields. These characteristics, together with distribution
through the Internet, underlie the possibilities for optimization cyberinfrastructures
of diverse kinds.

Application-specific optimization software targets models and methods in partic-
ular areas of endeavor such as vehicle routing, pattern cutting, workforce schedul-
ing, circuit design, or portfolio management (to name just a few). These kinds of op-
timization packages are used in relatively predictable ways and tend to be designed
as self-contained “solutions” that have less need for standard interfaces. Neverthe-
less, these packages often use general-purpose solvers as components and in doing
so can also make good use of optimization cyberinfrastructures.
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12.2 COIN-OR

The COIN-OR Foundation (www.coin-or.org) manages an initiative to support
the development of open-source software for the operations research community.
Founded in 2000 as the Common Optimization Interface for Operations Research,
its scope has broadened [14] and its name has been changed to the Computational
Infrastructure for Operations Research. Nevertheless after 9 years its 35 projects
are still predominantly in the optimization field.

COIN-OR acts as a cyberinfrastructure in several ways. It is an Internet reposi-
tory for freely available, general-purpose solvers that can serve as foundations for
optimization applications as previously described. It makes available uniform tools
for developing, managing, and documenting open-source optimization projects. In-
deed it provides tools at a number of levels, in a way that encourages building new
solvers upon routines already available, both for specialized functions (automatic
differentiation, cut generation) and for easier problems (linear programming). This
focus distinguishes COIN-OR from larger, more general open-source repositories
such as SourceForge or the GNU Free Software Directory.

As presented on the COIN-OR home page, open source has a number of attractive
features as a paradigm for software development:

When people can read, redistribute, and modify the source code, software evolves.
People improve it, people adapt it, people fix bugs. The results of open-source devel-
opment have been remarkable. Community-based efforts to develop software under
open-source licenses have produced high-quality, high-performance code—code on
which much of the Internet is run.

This is an appealing context for the development of optimization software. Many
COIN-OR solvers were initially developed in the context of research and then grad-
ually improved through the addition or combination of algorithmic ideas. Addi-
tionally the IBM Corporation contributed many of the initial projects, which were
considered worth the effort of development but perhaps too specialized to justify
commercialization.

By requiring its projects to select from licenses approved by the Open Source Ini-
tiative (www.opensource.org), COIN-OR adopts an expansive view of open source
that does not allow, for example, software that is only free for academic use.
Open-source licenses do differ in the requirements that they impose on reuse and
redistribution, and here COIN-OR has encouraged (though not required) the use of
licenses that permit incorporation of its software into proprietary, non-open projects.
This reflects COIN-OR’s IBM origins as well as a general desire in the OR commu-
nity to promote optimization methods as relevant to operational problems faced by
industry.

12.3 The NEOS Server

Since 1996 a large group of collaborators have developed NEOS, a Network-
Enabled Optimization System, with the goal of making optimization an Internet
resource [4]. The NEOS Server (neos.mcs.anl.gov) in particular has become a key
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online resource in the optimization field, not by providing solvers for download like
COIN-OR, but rather by offering a software service that accepts descriptions of opti-
mization problem instances and sends back solutions. A central server, established at
Argonne National Laboratory, manages solver requests generated through special-
ized Web forms and submission tools; it maintains “job” queues, monitors progress,
and returns results, while hosting guides to solver features and submission proce-
dures. The work of running solvers is farmed out to other computers contributed at
a variety of locations, so that the service is readily scaled up.

The NEOS Server has had a continuing impact on optimization research, teach-
ing, and applications, by providing immediate access to over 60 solvers—far more
than optimization users could hope to install locally. Many are open source (from
COIN-OR and elsewhere), with a strong representation of algorithms based on
recent research in such areas as global optimization, semidefinite programming,
and nonlinear optimization over integer variables. But even commercial solver
developers have made their products available free through NEOS to encourage
potential customers to try them out. In 2009 submissions were averaging about
20,000 a month, predominantly using commercial modeling languages also
provided free by their developers.

For the optimization community, the NEOS Server provides the characteristics
generally associated with a cyberinfrastructure: facilitating applications rather than
directly performing them; enabling more applications than were originally imag-
ined; providing open access to Internet-based resources; and supporting whatever
standards solvers have adopted for the expression of problems. Originally a stand-
alone tool, the Server has adopted the eXtensible Markup Language (XML) standard
for data transfer and XML/RPC [5] for remote procedure calls, so that its facilities
can be invoked from programs running anywhere on the Internet.

The NEOS Server’s success has largely been as a tool for learning, experimenta-
tion, and benchmarking. While there are no rules against its ongoing use in support
of a project or business, it does not provide the guarantees of reliability or confiden-
tiality that would encourage such applications. Its emphasis has reflected in part its
origins, as in the case of COIN-OR, but those origins have been quite different: a
team drawn from the numerical analysis community more than operations research
and a focus at a government laboratory rather than a corporation (though academics
were involved in both cases).

12.4 Optimization Services

Looking forward to a “next generation” of the NEOS Server, a newer project has
been undertaken to design a distributed optimization environment in which model-
ing languages, servers, registries, agents, interfaces, analyzers, solvers, and simula-
tion engines can be implemented as services and utilities under a unified framework.
This work, called Optimization Services or OS (www.optimizationservices.org), de-
fines standards for all activities necessary to support decentralized optimization on
the Internet. A reference implementation [6] is freely available as an open-source
project under COIN-OR.
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The OS framework conceives of optimization as a modern software service,
based on Internet-wide standards such as Web Services, Service-Oriented Archi-
tecture, and XML. Thus it is a specialized cyberinfrastructure, but unlike more tra-
ditional optimization systems it is designed explicitly to integrate optimization into
broader distributed computing environments, using technologies that are already fa-
miliar to the Information Technology community.

Making optimization into the kind of service envisioned by the OS project is
easier said than done. For one thing, optimization currently relies on a hodgepodge
of not-quite-standard formats for problem description, some tracing their origins as
far back as punch card technology. These formats are moreover entirely inadequate
to the needs of powerful modeling languages and analysis tools; as a result each
optimization modeling product has adopted its own proprietary scheme for repre-
senting problems and results. Whereas the NEOS Server leaves it to each solver
host to decide what input formats to accept, the OS project incorporates an initiative
to create a comprehensive standard, the OS instance language or OSiL, for repre-
senting linear, nonlinear, stochastic, and other broadly applicable problem instances
in a consistent way. To meet the needs of varied optimization environments, OSiL
specifies an XML-based file format, a corresponding in-memory data structure, and
a common interface to these forms for data transfer and function evaluation.

The requirements of a comprehensive optimization service demand a variety of
other standards and protocols, moreover, which scarcely exist at present. These serve
purposes such as

• representation of solver algorithms’ options and results;
• communication between clients and solvers;
• registration and discovery of solvers and related software using the concept of

Web Services.

Designing such standards is particularly challenging because optimization ser-
vices exhibit a greater variety and complexity of information to be moved around
than do typical business applications. To further complicate matters, the mathemat-
ical problem types that categorize solvers do not readily correspond to the model
types familiar to human users. Overall, building an OS framework is much more of
a challenge than simply copying XML, SOA, and Web Services ideas from existing
software over to optimization packages.

The OS project’s ultimate goal is to “make optimization as easy as hooking up
to the network.” The vision is for all optimization system components to be imple-
mented as services under the OS framework and for customers to use these com-
putational services much like utilities, with specialized knowledge of optimization
algorithms, problem types, and solver options being potentially valuable but not re-
quired. The OS framework will in turn be built upon standards that are independent
of programming language, operating system, and hardware and that are open and
readily available for use by the optimization community.

The OS project’s success will necessarily depend on developers’ acceptance of its
proposed standards. COIN-OR’s OSI project has shown one way of facilitating this
standardization on the solver side, by creating a more uniform interface to linear
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and mixed-integer solvers. But it will be a greater challenge to get products on
the modeling language side to forego their proprietary interfaces, which have been
tuned and specialized over the years, in favor of a standard representation of solver
inputs and outputs. Initially such a change will only mean more work, but over
the longer term it promises to streamline the creation and maintenance of solver
interfaces.

12.5 Intelligent Optimization Systems

Optimization services have largely been conceived as providing solver access to
people who seek optimal (or at least very good) solutions to optimization prob-
lem instances. Underlying this view has been a confidence that owners of problems
are knowledgeable as to which solvers are appropriate. Yet as previously noted,
solvers are applicable to specific mathematical problem types distinguished by tech-
nical characteristics such as linearity, smoothness, and various discrete and logical
structures. These do not readily correspond to the concerns of modelers who are
thinking in terms of production, distribution, scheduling, design, and other model
types applied in particular areas of science, engineering, and commerce.

It is thus worth considering what might be gained by taking a broader view.
One can imagine an optimization cyberinfrastructure that incorporates software to
aid in the selection of solvers. Features might include converting common nondif-
ferentiable and discontinuous functions to forms that diverse solvers can handle;
identifying convexity, both generally in objective functions and constraint regions
and specifically in the case of constraints that can be viewed as quadratic cones; and
making natural combinatorial and logical operators accessible to both numerical
and logic-based solvers. The DrAMPL project [9] has taken some steps along these
lines, including the matching of deduced problem characteristics against a database
of solver features.

Going further, one can envision a optimization services framework that incorpo-
rates “intelligent” assistance for modeling, tuning of solver options, and analysis of
results. Software embodying aids for these purposes were in existence as far back
as the late 1970s, when ANALYZE [12] was developed at the U.S. Federal Energy
Administration. Greenberg [11] provides an overview and bibliography of develop-
ments through the mid-1990s.

Work in this area has continued, as evidenced by MProbe [3] which offers an
extensive suite of analysis tools and graphics for examining the shape of the ob-
jective function, the effectiveness of constraints, and the characteristics of the fea-
sible region. Other mechanisms for problem analysis and transformation are found
increasingly in implementations of modeling languages and solvers. There remain
many ways in which the power of such systems could be further expanded, however,
and it will be a significant challenge even to adapt existing systems like MProbe to
function as independent services that can be treated as part of the infrastructure of
optimization.
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12.6 Advanced Computing

Software as a service implies the existence of hardware platforms to act as servers.
Current optimization service frameworks, like NEOS and OS, rely on ordinary com-
puters, mainly PCs running Windows or Linux. But there also exists the potential to
enhance the practice of optimization by bringing advanced computing—a concept
widely associated with cyberinfrastructure—to the optimization community.

In the context of optimization, “advanced” may refer to any of several approaches
that employ multiple processors to accomplish what cannot be done effectively by
individual computers, including

• high-performance computing, exploiting large numbers of processors through
specialized, high-speed interconnections;

• distributed computing, using conventional computers working together through
standard networks;

• high-throughput computing, marshalling the computational resources of other-
wise idle networked computers.

A great variety of optimization problems have features that permit advanced
computing to be used to advantage. For example, the metaNEOS project of 1997–
2001 applied advanced computing approaches in solving all of the following:

• the 1010-variable deterministic equivalent of a 107-scenario stochastic program
on a computational grid of about 800 workstations, in about 32 h of wall-clock
time [13];

• a previously intractable quadratic assignment problem using an average of
650 worker machines over a 1-week period, providing the equivalent of almost
7 years of computation on a single workstation [1];

• a mixed-integer nonlinear programming problem with parallel efficiency ap-
proaching 80% on 600 million search-tree nodes [10].

Yet despite the impressive technical achievements of these and similar projects,
they have had a disappointingly limited impact on optimization in practice. Indeed,
experience in the use of advanced computing platforms remains rare among people
trained in large-scale optimization. For most members of the optimization commu-
nity, whose focus is modeling and solving rather than computing, it is a daunting
challenge to arrange for the hardware and software resources necessary to apply or
even experiment with such advanced computational approaches.

The software services concept offers a clear possibility for a remedy to this sit-
uation. An advanced computing platform and the software tailored to it could be
set up to act as an optimization server. Users anywhere on the Internet could send
their problems to be solved, in much the same forms as are sent to ordinary solvers
through NEOS today, and requiring at most a limited knowledge of advanced com-
puting technology. The developers and maintainers of the optimization methods im-
plemented on such servers would need to understand the technology in detail, but
they would see their efforts benefit a great many more applications than at present.
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High-performance computers are already accessed by their users via the Inter-
net, to be sure. But for reasons of scarcity, security, or simply custom, specialized
multiprocessor computers and large multiprocessor networks have been available
only by prearrangement of availability of the software and, in many cases, avail-
ability of hardware time. In contrast, optimization users expect to be able to request
the use of algorithms when they are needed and for unpredictable amounts of time;
that is the level of service available from NEOS, after all. Such needs are inher-
ent in the nature of large-scale optimization, which involves the use of algorithms
that work well in practice but have no theoretical performance guarantees and in
fact exhibit performance that is highly variable (though quite good on average). For
the hardest problems, variability is made even greater by the use of complex itera-
tive schemes that repeatedly apply assorted algorithms to a range of automatically
generated problems.

In sum, an infrastructure for large-scale optimization on advanced computing
platforms will require a sort of supercomputing on demand that does not seem to
have been so necessary for other applications. This is an area where the optimization
and computing communities could benefit from collaboration on substantive and
original cyberinfrastructure research.

12.7 Prospects for Cyberinfrastructure in Optimization

This chapter began by introducing its topic through a description of the National
Science Foundation’s Office of Cyberinfrastructure, whose mandate is to fund basic
research. Do innovations in cyberinfrastructure for optimization have a potential to
be treated as research contributions? Some of the work described herein has been
funded by NSF and other agencies, though not directly by OCI. Yet grant panelists
and journal referees have at times viewed these projects as straightforward applica-
tions of ideas already pioneered more broadly in the context of Information Technol-
ogy. To advance cyberinfrastructure as a research topic in optimization, proponents
of this area of investigation will have to better educate the IT and OR communi-
ties in the aspects of optimization that truly pose challenges for cyberinfrastructure
projects. Some of these aspects have been noted in this chapter.

Perhaps the creation of cyberinfrastructures for optimization will evolve to be as
much a commercial as a scientific activity, however. The last decade has seen an
increasing number of companies that provide or embed optimization in their prod-
ucts and that could benefit from some of the ideas I have described. Bigger players
such as SAS, Microsoft, and IBM are greatly expanding the role of optimization
in their offerings and have the resources to establish the ideas and standards of the
Optimization Services project among a broad range of clients.

Indeed many of the concepts described in this chapter have lately been brought
together under the umbrella of “cloud computing,” which is a predominantly com-
mercial phenomenon. At least one large-scale solver is already being made available
for a fee through Amazon’s Elastic Compute Cloud facility (aws.amazon.com/ec2),
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and this sort of development may further encourage efforts to bring solvers and
modeling languages together as optimization services. Overall, the intersection of
cyberinfrastructure and optimization would seem to have considerable potential for
an exciting and influential future.
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Chapter 13
Perspectives on Health-Care Resource
Management Problems

Jonathan Turner, Sanjay Mehrotra, Mark S. Daskin

Abstract Research devoted to health-care applications has grown increasingly
within operations research over the past 30 years, with over 200 presentations at
the 2008 INFORMS conference. Resource management is of particular importance
within healthcare because of the system’s unique objectives and challenges. We pro-
vide a perspective of the current health-care literature, focusing on recent papers in
planning and scheduling and reviewing them along four dimensions: (1) who or
what is being scheduled, (2) the time horizon of the scheduling or planning, (3) the
level of uncertainty inherent in the planning, and (4) the decision criteria. With this
perspective on the literature we observe that the problems at the extreme ends of the
time dimension deserve more attention: long-term planning/staffing and real-time
task assignment.

13.1 Introduction

The USA spends a larger proportion of its gross domestic product on health-care
expenditures than does any other country in the world. Approximately one in ev-
ery six dollars of GDP is spent on healthcare in the USA [34]. In addition, the
USA spends more per capita on healthcare than any other country in the world [38].
Despite these vast expenditures, the USA ranks 47th in terms of life expectancy at
birth behind virtually all western European countries [36]. Life expectancy at birth
in the USA (78.14 years) is nearly 4 years less than that in Japan (82.07 years) and
3 years less than Canada and Australia (81.16 and 81.53 years, respectively). In the
USA, 6.3 infants die per 1000 live births putting the it behind 41 other countries
including Canada (5.08 deaths), South Korea (4.29 deaths), France (3.36 deaths),
and Singapore (2.3 deaths per 1000 live births), which leads the 226 listed countries
[39]. Of 28 countries for which data are available, the USA is first in the percent
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of the population that is obese (30.6%), with most western countries between 8 and
15% [40]. In Japan and South Korea, the obesity rate is roughly one-tenth that of
the USA.

The availability of health-care services in the USA also lags that of many other
countries. Recent statistics indicate that there are 8.1 nurses per 1000 people in the
USA, compared to over 10 per 1000 people in such countries as Norway (10.3), Aus-
tralia (10.7), Switzerland (10.7), the Netherlands (13.4), Ireland (14), and Finland
(14.7) [37]. If availability is measured in terms of hospital beds per 1000 people,
the USA (at 3.3 beds per 1000 people) lags behind much of the world, ranking 81st
out of 191 countries in a recent data set [35] behind such countries as Japan (14.3),
Germany (8.9), France (7.7), and Israel (6.1).

Thus, in spite of massive spending, the USA trails many countries in terms of
health-care outcomes and in terms of available resources per capita. Hence, us-
ing the limited resources more effectively becomes even more important in US
healthcare to improve the less-than-excellent health outcomes. Planning, schedul-
ing, and assignment of the available resources become critical. The need for using
operations research tools to address such issues has been well recognized. Fries
presented a comprehensive bibliography of 188 papers that had been published in
healthcare over 30 years ago [22]. He noted the then dramatic increase in papers in
the field observing that “more articles were published in the first four years of this
decade [the 1970s] than in the two decades preceding it.” The growth has contin-
ued nearly unabated. The 2008 INFORMS (Institute for Operations Research and
the Management Sciences) annual conference included 57 sessions and over 200
presentations devoted to health-care issues. Two sessions and 26 presentations fo-
cused on scheduling within healthcare. A recent issue of the European Journal of
Operational Research includes nearly a dozen health-care-related papers, at least
four of which relate in some way to planning, scheduling, and allocation issues
(185(3)). Since Fries’ paper, many new journals devoted to health-care management
have been initiated, the most prominent of which may be Healthcare Management
Science. Traditional operations research journals have recently devoted entire issues
to healthcare (e.g., IIE Transactions 40(9), 2008). The literature in this field is truly
vast and it is not possible to capture all that has been done in the available space.
This chapter focuses on planning and scheduling issues in healthcare.

Even though operations research has much to contribute to planning, scheduling,
and assignment problems in healthcare, its attention to date has focused excessively
on a relatively narrow class of problems. While these problems are important from
the operational perspective of a health-care provider, the literature generally fails to
address some of the more critical problems faced by health-care institutions and by
the nation. Our hope is that this chapter will stimulate additional research in these
critical areas.

The remainder of the chapter is organized as follows. In Section 13.2, we out-
line a multi-dimensional framework for planning, scheduling, and allocation prob-
lems in healthcare. The two primary dimensions are (1) who or what is being
planned for and (2) time. In addition, we discuss the impact of (3) uncertainty and
(4) decision criteria on the problems being modeled. Section 13.3 provides a brief,
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and necessarily incomplete, overview of the available literature on health-care
planning, scheduling, and allocation problems. In Section 13.4, we present con-
clusions and suggestions for future work.

13.2 A Multi-dimensional Taxonomy of Health-Care
Resource Management

Major dimensions of a health-care resource management problem are (1) who and
what; (2) the time horizon over which the resources are being managed; (3) the level
of uncertainty inherent in the planning; and (4) the decision criteria. As discussed
below, these dimensions distinguish resource management problems in healthcare
from those arising in manufacturing, transportation, and logistics industries.

13.2.1 Who and What of Health-Care Resource Management

At least three different entities are simultaneously being managed in health-care
systems:

• Physical resources such as surgical theaters, emergency rooms, sterilization labs,
and hospital beds

• Health-care personnel including emergency physicians; residents and interns;
nurses; pharmacological support and technicians

• Patients themselves

The problem complexity will vary with constrained availability of one or more of
these entities, assuming that the rest are unlimited. Consider an example of these
three entities associated with scheduling a vascular surgical procedure. For the
surgery to take place, a surgical suite must be available. Thus, there is a need to
schedule the operating rooms and to assign them to different surgery practices (e.g.,
vascular surgery). Second, a group of physicians, not just the surgeons, must be
available at the same time. For the surgery to occur, surgical nurses, anesthesiolo-
gists, and perhaps other specialists (for example, radiologists) must also be available
at the same time, thus creating the need for more coordinated personnel scheduling.
Physicians have specialty areas and it is often objectionable, if not impossible, to
substitute one surgeon or physician for another. This is in sharp contrast to many
manufacturing operations in which, for example, one lathe operator can readily be
substituted for another. Thus, there is a need to simultaneously schedule surgeons
as well as operating rooms. The necessary surgical equipments (e.g., scalpels, su-
tures, anesthetics, and medicines) must be in place in the surgical suite, creating
scheduling demands for the sterilization lab and pharmacy. A particular patient is
then assigned a time in the operating room, and space must be available for the
patient in an appropriate recovery room.
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Thus health-care scheduling must be done accounting for (1) the other demands
placed on the time of the personnel (e.g., surgeon’s clinical schedule), (2) the other
demands placed on the physical resources (e.g., the operating theater), (3) demand
placed by the schedule on other personnel and resources affected from the schedule,
and (4) the highly uncertain nature of the processes involved as discussed later in
Section 13.2.3.

13.2.2 Decision Horizon

The second dimension along which it is useful to stratify the literature is the tempo-
ral scale or planning horizon affected by the managerial decisions. These decisions
take place at five strategic stages as shown in Fig. 13.1.

PLANNING
Many years 
to a decade

STAFFING
6 months to a 

year

SCHEDULING
4 to 6 weeks

ALLOCATION
A single shift

ASSIGNMENT
Patient level

Fig. 13.1 Temporal dimension of decisions in healthcare

Warner [64] identifies the latter four levels (yearly to patient assignment) of tem-
poral decision making for nurse planning and scheduling and to the best of our
knowledge the operations research literature has focused on these levels only.

Long-term planning should also address questions of national policy in addi-
tion to questions about the sizing of a particular operating facility. At the national
level, how many new physicians should we be training to prepare for future needs
anticipating the aging of the baby boomers with the attendant increase in demand
for healthcare? Who is responsible for making these decisions and are their objec-
tives consistent with those of good public policy? Given that approximately one in
six Americans lack health-care coverage today, what would be the impact on the
demand for medical services in general and physicians and nurses in particular of
mandated health-care coverage? How would the need for physicians break down
by specialty and by region under such a plan? Are there medical needs that are
largely addressed for all patients today independent of whether or not the patients
currently have medical insurance while other needs may dramatically increase in
demand with mandated coverage? Are there some specialties that might experience
a decrease in demand if national health insurance is mandated? What will happen
to the demand for expensive testing equipment if another 15–20% of the population
suddenly has insurance benefits? Will we experience a 15–20% increase in demand
for MRI testing or is there a significant marginal usage of MRI testing (testing that



13 Perspectives on Health-Care Resource Management Problems 235

may be prescribed now simply to ensure full utilization of the facility) that would
simply be driven out of the market by the more critical (and perhaps legitimate)
usage demands of the newly insured?

While these issues have been largely absent from the operations research litera-
ture, others have recognized the need for national projections of supply and demand
for medical personnel. The Bureau of Labor Statistics [62] projects nursing employ-
ment and the Department of Health and Human Services [63] projects physician
supply and demand by specialty. The latter report also examines usage by patient
age and by the type of medical coverage the individual has. Neither report examines
the impact of possible changes in health-care coverage. Also, these reports provide
point estimates only of supply and demand in the case of physicians. As noted in US
Department of Health and Human Services [63] “projecting demand for physician
services [is difficult], where much uncertainty exists regarding the characteristics of
the future healthcare system” (p. 31). Thus, there is a need for improved stochastic
modeling of future supply and demand in healthcare.

Staffing refers to decisions, typically made annually, dealing with the number of
personnel of each type to employ at a health-care institution. For example, a hospi-
tal must decide how many LPNs and RNs to employ, how many hospitalists to have
on staff, and how many internists should be granted admitting privileges. Schedul-
ing decisions, the focus of Warner’s paper and of much of the operations research
literature as indicated below, are made every 4–6 weeks. The key issue is to assign
individual health-care workers (e.g., nurses, emergency room physicians) to shifts
over the time frame in question. As discussed below, there are a myriad of hard re-
quirements which must be satisfied and soft requirements which should be satisfied
if possible. The objective function typically includes penalties for violations of the
soft requirements.

The fourth stage deals with allocation decisions. Allocation refers to the need to
employ temporary or traveling nurses or to use float nurses to handle unexpectedly
large patient demands during particular shifts and to assign individual nurses to
particular units. This allocation phase is done at the shift level, with shifts typically
lasting between 8 and 12 h. Clearly, longer term staffing and scheduling decisions
impact the extent to which temporary or traveling nurses need to be employed [15].

The fifth and final stage of planning deals with assignment of personnel to in-
dividual tasks. For example, in an intensive care unit, as patients arrive from the
emergency room or from an operating room and as other patients leave for less criti-
cal medical-surgical beds over the course of a shift, how should patients be assigned
and re-assigned to the nursing staff that is on duty? How many patients should be
assigned to a nurse? How should new patients be assigned to rooms?

While we have discussed the temporal dimension of planning in terms of nurse
personnel, several of these stages also apply to physicians, attending residents, tech-
nicians, and other medical staff, as well as the physical resources used in healthcare.
For example, a hospital typically decides annually the number of hours per week to
allocate to each surgical specialty. On a weekly or monthly basis, blocks of time
are then assigned to the surgical practices in accordance with these overall hourly
quotas. Each specialty area is then tasked with allocating time within its assigned
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block to individual surgeons who then schedule particular patients for the surgery
that is needed.

13.2.3 Level of Uncertainty

Demand uncertainty is significantly higher in health-care situations that in manufac-
turing. The stochasticity arises not only from the uncertainty regarding the need for
any particular procedure but also from the duration of the procedure. To understand
this issue, let us return to our vascular surgery example. Unlike many manufactur-
ing contexts where demand forecasts with reasonable accuracy are available far in
advance, demand for elective surgery is often unknown until a few weeks before
surgery begins while demand for emergent surgery is often unknown until a few
days or hours before surgery begins. In dealing with uncertain demand in manufac-
turing, we can produce goods in advance of the demand and hold them in inventory.
We cannot maintain an inventory of unused time in a surgical suite. Like many
other services, unused capacity is lost and cannot be inventoried in healthcare. Also,
manufacturers are sometimes willing to incur lost sales if inventory costs are high,
whereas to a physician, rejecting a patient’s need for surgery is inconceivable.

A second source of uncertainty in healthcare arises from the actual surgical
task itself. Differing patient characteristics contribute significantly to this. Wright
et al. highlight the difficulties associated with predicting surgical times [67]. No
two patients are identical, and sometimes it is only after the surgery has begun that
a surgeon knows all that may be required. For example, one coronary artery by-
pass graft (CABG) surgical patient may require only one vascular graft, while a
different patient may require five. One patient may experience a sudden drop in
blood pressure during surgery, requiring additional interventions, while a different
patient surgery may proceed normally. There are also pre- and post-surgical require-
ments that depend on patient characteristics. For example, one CABG patient may
experience a quick recovery requiring limited post-surgical monitoring, while an-
other patient may require dedicated post-surgical support for several hours from the
surgeon.

13.2.4 Decision Criteria

Planning and scheduling decisions in healthcare are fundamentally multi-objective.
While decisions in manufacturing and other service industries are driven primarily
by cost minimization or profit maximization, such is not the case for the health-care
problems. Whereas delays and defects in manufacturing may result in lost revenue,
delays or lack of proper service in healthcare may result in loss of life. Hence, cost
minimization and resource utilization decisions must consider the patient safety con-
sequences of such decisions. While the resources and personnel being scheduled are
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very expensive, and administrators and physicians naturally want to maximize the
utilization of these scarce resources, slack must be incorporated in the schedules in a
strategic manner to accommodate unexpected emergency demands. Other examples
of multiple, often competing, objectives are patient and staff satisfaction, patient
continuity of care, and educational goals in case of residents.

Warner’s [64] paper is seminal for nurse scheduling. It not only outlined the
temporal dimensions along which decisions are made, as discussed above, but also
identified six attributes that a good (nurse) schedule should possess. These include

• Coverage or the ability of a schedule to provide the adequate number of nurses
needed in each shift;

• Quality of the schedule as judged by the nursing staff working the schedule;
• Stability of the schedule or the degree to which the schedule is predictable and

seems to follow prescribed guidelines;
• Flexibility of the scheduling system to handle different schedule requirements;
• Fairness of the schedule across all staff; and the
• Cost of the schedule to the hospital.

Quality, stability, and fairness issues are central to achieving better staff satisfac-
tion. Incorporation of such requirements makes the modeling of health-care resource
management problems more difficult and the models become increasingly difficult
to solve.

In short, resource management in healthcare has multiple temporal stages that
require coordination of multiple personnel and physical resources in a highly un-
certain environment, with multiple competing objectives and requirements that are
often difficult to model.

13.3 Operations Research Literature on Resource
Management Decisions in Healthcare

As indicated above, the operations research literature on resource management prob-
lems in healthcare is vast. Most of it focuses on intermediate-term (4–6 weeks)
scheduling problems. We do not pretend to be able to review all or even a signifi-
cant portion of the literature in a short chapter. Instead, we begin by referring the
reader to a number of recent review papers. Cardoen, Demeulemeester, and Belien
provide a recent review of roughly 125 papers on operating room scheduling prob-
lems and models [10, 11]. Burke summarizes the state of the art in nurse scheduling
[9] as do Cheang et al. [13]. Ernst et al. review staff scheduling in general, but in-
clude a section on health-care applications [19]. The reader is encouraged to consult
these overview papers for a more comprehensive summary of the state of the art in
scheduling.

The rest of this section is organized as follows. In Sections 13.3.1, 13.3.2, 13.3.3,
and 13.3.4, we focus on scheduling problems from the perspective of who or what is
being scheduled. Section 13.3.1 deals with nurse scheduling, Section 13.3.2 focuses
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on scheduling other medical personnel, Section 13.3.3 summarizes patient schedul-
ing, while Section 13.3.4 turns to facility scheduling. In Section 13.3.5, we shift our
focus to examine longer term planning issues.

13.3.1 Nurse Scheduling

Nurse scheduling, or alternatively nurse rostering, is the problem of assigning nurses
to shifts over a 4-to 6-week period of time. Nurse scheduling is difficult because
hospitals must be staffed by nurses (and others) 24 h a day. This gives rise to satis-
faction and fairness issues. Even simple scheduling problems that can be formulated
as network flow problems when the planning day ends at some point in time (e.g.,
the store closes at 8 p.m.) become NP-hard when 24-h staffing is required. From
the perspective of the nurses, poor schedules lead to numerous problems. There is
evidence that increasing the patient-to-nurse ratio correlates with in-patient mor-
tality rates and increased medication errors [20, 24, 29, 47, 52, 53, 56]. Nurses
themselves may suffer adverse health impacts from poor shift schedules including
peptic ulcers, coronary heart disease, and compromised pregnancy outcomes [30],
colorectal cancer [50], and breast cancer [51].

Nurse schedules typically take one of three forms. A cyclic schedule develops a
set of different cycles of work (e.g., schedule 1 might be Monday, Wednesday, and
Friday 8 a.m. to 8 p.m.; schedule 2 might be Tuesday, Wednesday, Thursday, and
Friday 4 p.m. to midnight plus Sunday 8 p.m. to 8 a.m.). Nurses rotate through a
series of schedules in such a way that the staffing needs of all shifts are satisfied
throughout the planning horizon and work rules for the nursing staff are obeyed.
As an example of a violation of a typical work rule, schedule 2 could not precede
schedule 1 since the nurse would then effectively have to work from Sunday at 8
p.m. through Monday at 8 p.m., a 24-h period. Note also that the two schedules
above account for 36 and 40 h of work, respectively, again reflecting the fact that
different nurses may be contracted for different numbers of hours of work each week
and/or the nursing staff may not always work the same number of hours each week.
Cyclic schedules tend to be very inflexible. Some amount of flexibility is necessary
in personnel scheduling so that staff can attend to emergencies or other personal
needs. With the current shortage of nursing staff across the country—a shortage that
most predict will get worse before it gets better—flexible schedules are increasingly
important as hospitals attempt to retain their best staff. Bard and Purnomo applied
Lagrangian relaxation [6] to the cyclic scheduling problem as well as branch and
price techniques [46].

At the other extreme is self-scheduling in which nurses sign up for individual
shifts with limits on the total number permitted per shift by the hospital adminis-
tration. Again, fairness can be an issue in that those who sign up early often get
the preferred schedules while those who sign up late (either due to their own ten-
dency to procrastinate or due to a monthly rotating order of signups) often get the
less desirable ones. Bailyn et al. [7] describe a recent effort in implementing such
approaches at a unit consisting of 70 RNs.
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Preference scheduling allows the medical staff (e.g., the nurses) to express pref-
erences for specific shifts during the planning horizon. Preferences may be either
positive, indicating that the individual wants to work at that time, or negative, indi-
cating that they do not want to be on duty then. The objective is then to maximize the
total staff preferences, perhaps in combination with penalties for violating some of
the soft constraints. Recent efforts to automate generation of nurse schedules based
on mathematical modeling approaches while incorporating nurse preference are de-
scribed in Rönnberg and Larsson [48]. The responses from the nurses in their pilot
study were both expected and skeptical; expected because of the time-consuming
work and difficulties associated with the manual process and skeptical mainly be-
cause of the nurses’ loss of influence on the outcome of the scheduling. These au-
thors conclude, “Because of the nurses’ scepticism it is important to emphasize
that the optimization tool only provides a qualified suggestion for a schedule, and
encourage the nurses to make minor adjustments themselves if beneficial.” An al-
ternative to mathematical programming approach as a means of dealing with nurse
preferences is the use of auctions [17].

Bard and Purnomo identify 13 different categories of constraints that typically
appear in nurse scheduling problems and classify them as either hard constraints—
those that must be satisfied in any schedule—or soft constraints—those that should
ideally be satisfied but whose violation is penalized in the objective function [3].
Most other authors (e.g., Burke et al. [8, 9], Wright et al. [68], Parr and Thompson
[43]) also make such distinctions. A hard constraint might stipulate that there must
be an 8-h break between every shift. Another might stipulate that each nurse must
work at least a given number of hours each week, with the number of hours varying
by nurse according to the type of contract they have with the hospital. Another
hard constraint might be that a nurse cannot work more than six consecutive days.
A related soft constraint might penalize the objective function if a nurse works six
consecutive days in a row as the goal might be to work no more than five consecutive
days.

Bard and Purnomo address the shorter term allocation problem or reactive
scheduling problem as they term it [4]. The problem is formulated as a mixed integer
programming model and is solved with up to 200 nurses. Bard and Purnomo exam-
ine the problem using column generation [3–5]. The models in Burke et al. [8, 9]
were solved using an evolutionary and a neighborhood search heuristic. Wright et al.
[68] develop a bi-criteria scheduling model and perform computational experiments
to evaluate how mandatory nurse-to-patient ratios and other policies impact a sched-
ule’s cost and desirability (from the nurses’ perspective). Their findings suggest
that (i) the nurse wage costs can be highly nonlinear with respect to changes in
mandatory nurse-to-patient ratios of the type being considered by legislators; (ii)
the number of undesirable shifts can be substantially reduced without incurring ad-
ditional wage costs; (iii) more desirable scheduling policies, such as assigning fewer
weekends to each nurse, have only a small impact on wage costs; and (iv) complex
policy statements involving both single-period and multi-period service levels can
sometimes be relaxed while still obtaining good schedules that satisfy the nurse-
to-patient ratio requirements. Thompson and Parr [59] consider a multi-objective
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nurse scheduling problem using a weighted sum cost function and use a simulated
annealing-based heuristic.

Mullinax and Lawley [32] develop an integer linear programming model that
assigns patients to nurses in a neonatal intensive care unit. The nurseries are di-
vided into a number of physical zones. The authors used a zone-based heuristic
that assigns nurses to zones and computes patient assignments within each zone.
Earlier approaches and patient classification systems ignore uncertainty. Punnaki-
tikashem et al. [45] present a stochastic integer programming model for the nurse
assignment problem. This model is further integrated into the staffing problem in
Punnakitikashem [44]. The objective is to minimize excess workload for nurses.
By considering randomness in the models, Punnakitikashem [44] shows that better
staffing and assignments decisions are possible.

13.3.2 Scheduling of Other Health-Care Professionals

The literature on scheduling problems for other health-care professionals is limited.
Scheduling of emergency room physicians was considered in Carter and Lapierre
[12] and subsequently discussed in Gendreau et al. [23]. The types of constraint
used in these papers are similar to those considered in the nurse scheduling/rostering
problem. The latter paper discusses the use of column generation, tabu search, and
constraint logic programming as possible methods for solving this problem. Con-
straint logic programming was also used recently in Edqvist [18] for physician
scheduling in a clinical setting.

The resident scheduling problem is considered in Ozkarahan [42], Sherali et al.
[54], White and White [66], Day et al. [16], and Topaloglu [60, 61]. The educational
benefit of the activities in which residents and interns are engaged [1, 2] is a critical
factor in resident and intern scheduling that is absent from nurse scheduling. Only
one of these papers [16] deals with the educational facets of these problems.

13.3.3 Patient Scheduling

Patient scheduling, in contrast to nurse and resident scheduling, typically operates
at the daily time frame. The key issues in patient scheduling revolve around the need
to minimize (1) the physician’s idle time, (2) the time at which the physician sees
the last patient of the day, and (3) the total patient waiting time. Thus, this problem
is also multi-objective. These times are impacted not only by the scheduled appoint-
ment times—the key decision variables in most of the literature—but also by the
variability in arrival times about the scheduled time, the mean and variability of the
service time(s), and the patient no-show rates. Many of the commonly used schedul-
ing rules, including the well-known Bailey–Welch rule [65], seem to give priority to
the physician-related times as opposed to the patient waiting time. This rule suggests
scheduling two patients at the beginning of the day and scheduling successive pa-
tients at intervals of one mean service time following the initial appointment time.
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Clearly, by ignoring variability in the service times and by initializing the system
with one waiting patient, this model prioritizes physician idle times more highly
than patient delays.

Murthuraman and Lawley consider the problem of dynamically assigning pa-
tients to appointment slots at an outpatient clinic during a day accounting for no
show rates [33]. Liu, et al. also studied the impact of patient no-shows and can-
cellations on outpatient scheduling [31]. They determine optimal scheduling poli-
cies using Markov decision processes comparing them to an open access (OA) pol-
icy. OA policies do not schedule patients very far in advance and are favored by
patients who walk in. Ho and Lau analyzed a variety of factors impacting outpa-
tient scheduling and found that the Bailey–Welch rule is remarkably robust with
respect to a range of input conditions and assumptions [27]. Kaandorp and Koole
[28] also validate the Bailey–Welch rule by formulating a discrete time queueing
model to minimize a weighted sum of patient waiting time, physician idle time, and
tardiness.

13.3.4 Facility Scheduling

Facility scheduling is intimately linked to patient scheduling in many cases, as it is
the patients who are being scheduled for services at a facility. One additional facet
of facility scheduling that is typically not present in scheduling physicians at a clinic
is the need to balance scheduled patient needs with those of unscheduled emergency
patients. Green et al. analyze scheduling problems for a facility that handles inpa-
tients, outpatients, and emergency cases, each with different arrival characteristics,
service needs, and delay costs [25]. Swisher et al. adopt a long-term perspective and
use simulation coupled with experimental design to analyze the impact of facility
design on patient delays and facility costs [57]. Factors considered in the design of
the facility include the number of physician assistants, nurses, and medical assis-
tants, as well as the number of check-in rooms, examination rooms, and specialty
rooms.

Of all the facilities in a health-care institution, operating rooms have attracted the
most attention within the scheduling literature. Cardoen et al. [11] provide an up-
dated review of operating room scheduling literature focusing on manuscripts pub-
lished in or after 2000, which make up around half of the manuscripts they found.
They label each of these papers according to nine different fields, some of which
are methodology, whether the models include stochasticity, and the level of the
decision (date, time, room, or capacity). The vast majority of the papers reviewed
by Cardoen et al. focus on patient level decision making, discipline level (as in
vascular surgery, cardiology, etc.), or other levels. Most also focus on date, time,
or room decisions rather than budgeting capacity. One of these is by Denton and
Gupta [26] and slots patients for operating room times using a stochastic program.
Not all operating room scheduling literature is focused on the short- to medium-
term problem, however. O’Neill and Dexter [41] show how a hospital can analyze
population data and federal surgical rates to plan for operating room capacity needs
by surgical specialty. Others, like Testi et al. [58], bridge decision making across
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short- and long-term planning horizons. They use optimization and simulation mod-
els to budget operating room capacity on a weekly basis, allocate operating room
time to surgical units, and assign patients to time slots.

13.3.5 Longer Term Planning

Longer term personnel planning issues have also been considered. Sinreich and
Jabali [55] focus on the task of determining patient demand and finding work shift
schemes for meeting this demand. They propose a staggered work shift sched-
ule, each starting on the hour, to better match the demand on different emer-
gency room resources. Using a simulation–optimization framework and an iterated
approach to schedule physicians and nurses they show a significant reduction in
the required physician (8–18%), nurse (13–47%), and technician (3–33%) hourly
capacity, while maintaining the current patient length of stay operational
measures.

Franz and Miller [14, 21] formulate an integer programming problem for as-
signing residents to rotations over the course of a year recognizing many of the
critical constraints that limit the possible assignments. Interestingly, although the
[21] project was successful in terms of the ability of the model to solve the prob-
lem at hand, overall it was deemed unsuccessful. The authors state (p. 277), “the
implementation effort must be regarded as a failure at this time.” They cite six pri-
mary causes for the failure, including

1. the senior management who could direct the implementation of the model were
not directly involved in the scheduling task and as such had no vested interest in
altering the status quo;

2. the residents tasked with scheduling are physicians and scheduling is not their
primary concern;

3. the group doing scheduling in a year changes to a different group in the following
year resulting in a lack of continuity;

4. the person who championed the original effort had left the hospital;
5. the confidence of the residents in the automated process inhibits their willingness

to forgo the more transparent manual assignment process, and
6. the residents believe, despite the available evidence, that they can do better than

a computer.

We emphasize that the problems listed above are likely to plague any scheduling
or planning effort if they are not continuously addressed throughout the modeling,
analysis, and implementation processes. It is therefore important to share and benefit
from lessons such as those reported by Cohn et al. [14], who report a more positive
experience with their effort to schedule psychiatric medical residents for the Boston
University School of Medicine. They attribute their success to (1) on-going commu-
nication between their team and the application expert which corrected their earlier
mistakes in problem formulations, (2) not striving for “optimality” as the objective
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but presenting “acceptable” solution choices to the application expert, (3) modify-
ing smaller models rather than focusing on solving one single larger model, (4) the
speed for providing solutions, instead of getting bogged down into technical re-
search questions.

Long-term facility planning has received some, though relatively little, attention
in the operations research literature. Santibáñez et al. [46] report on the use of an
integer programming model to plan for future clinical practices across a 12 hospital
system in Canada. The model assumes that patients can be assigned to hospitals,
whereas many patient/hospital assignments are the result of patient choices and not
system-wide allocation rules. While no final decisions have been made based on the
model, the authors report that they were “successful in that the configurations we an-
alyzed in this planning initiative were useful and relevant to executive management
in developing a hospital configuration plan” (p. 206).

13.4 Summary, Conclusions, and Directions for Future Work

In Section 13.2, we outlined a multi-dimensional framework for examining plan-
ning, staffing, scheduling, allocation, and assignment problems in healthcare. The
first dimension dealt with who or what was being scheduled: (a) healthcare providers
including nurses, residents, and physicians; (b) medical facilities; and (c) patients.
The second dimension dealt with the planning horizon over which the scheduling
decisions were relevant: (a) long-term planning, (b) annual staffing, (c) intermediate-
term or monthly scheduling problems, (d) short-term allocation problems, and
(e) real-time task allocation issues. Uncertainty and the decision criteria were identi-
fied as two additional facets of health-care planning and scheduling that complicate
the problems at hand. In Section 13.3, we provided a sampling of the available lit-
erature, recognizing that a complete analysis is beyond the scope of this (or any)
chapter.

The vast majority of the operations research literature seems to focus on
intermediate-term provider scheduling problems and short-term patient and facil-
ity scheduling. Provider scheduling problems focus on ensuring adequate coverage
of each shift during a month accounting for work rule restrictions (hard constraints)
and employee preferences (often modeled as soft constraints). Short-term and facil-
ity scheduling models try to balance the costs of physician idle time and daily task
completion times with the costs of patient waiting time.

Two directions for research seem to emerge from this review. First, many of the
most critical health-care problems facing the country today are not related to short-
term or intermediate-term scheduling. Instead, they deal with long-term planning
decisions. As indicated above, if mandatory health insurance is adopted nationally,
there are likely to be significant but differential impacts on provider institutions and
the demands placed on health-care facilities. Also, as the population continues to
age, additional demands will be placed on limited facilities and already overworked
personnel. The resolution of these problems is not likely to lie in (marginally)
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improved schedules for outpatients or diagnostic facilities. Thus, some research at-
tention should be devoted directly to these issues.

At the same time, relatively little research seems to have focused on real-time task
assignment problems. These problems are ripe for stochastic optimization in which
a decision must be made, for example, about which nurse to assign to a new patient
entering an intensive care unit, accounting for unknown departure times of current
patients and the arrivals of additional patients. Similarly, real-time rescheduling of
operating rooms in response to unexpected delays, or early terminations of proce-
dures, is also an area for potential research.

Finally, there seems to have been relatively little work that cuts across the two
primary dimensions of planning and scheduling. In particular, long-term planning
should be influenced by the best practices in intermediate-term (monthly) schedul-
ing. Inefficient monthly schedules are likely to result in long-term facility sizing
and employee hiring decisions that incur excess cost. The best models for long-term
annual planning, however, are not likely to include an embedded shift-scheduling
model as this will represent excessive detail. Instead, some good method of approx-
imating the monthly scheduling costs should be developed for long-term scheduling
problems.
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Chapter 14
Optimizing Happiness

Manel Baucells, Rakesh K. Sarin

Abstract We consider a resource allocation problem in which time is the principal
resource. Utility is derived from time-consuming leisure activities, as well as from
consumption. To acquire consumption, time needs to be allocated to income generat-
ing activities (i.e., work). Leisure (e.g., social relationships, family, and rest) is con-
sidered a basic good, and its utility is evaluated using the Discounted Utility Model.
Consumption is adaptive and its utility is evaluated using a reference-dependent
model. Key empirical findings in the happiness literature can be explained by our
time allocation model. Further, we examine the impact of projection bias on time
allocation between work and leisure. Projection bias causes individuals to overrate
the utility derived from income; consequently, individuals may allocate more than
the optimal time to work. This misallocation may produce a scenario in which a
higher wage rate results in a lower total utility.

14.1 Introduction

“The constitution only gives you the right to pursue happiness. You have to catch it
yourself.”

— Benjamin Franklin

The Ancient Greeks believed that happiness was controlled by luck, fate, or the gods
and was beyond human control [38]. Socrates and Aristotle regarded the human
desire to be happy as self-evident and focused instead on how to become happy.
In recent years, the science of happiness has emerged as a new area of research
that attempts to determine what makes us happy. This area of research has at its
foundation the measurement of happiness or well-being by means of self-reports.

Manel Baucells
Department of Managerial Decision Sciences, IESE Business School, Barcelona, Spain

Rakesh K. Sarin
Decisions, Operations & Technology Management Area, UCLA Anderson School of Management,
University of California, Los Angeles. CA, USA

M.S. Sodhi, C.S. Tang (eds.), A Long View of Research and Practice in Operations Research 249
and Management Science, International Series in Operations Research & Management Science 148,
DOI 10.1007/978-1-4419-6810-4 14, c© Springer Science+Business Media, LLC 2010



250 Manel Baucells, Rakesh K. Sarin

In line with Easterlin [16] and Frey and Stutzer [21], we use the terms happiness,
well-being and life satisfaction interchangeably and assume that these measures are
a satisfactory empirical approximation of individual utility.

In developed countries, particularly in the United States, economic progress is
a key factor in improving individuals’ well-being. Tocqueville [55] observed, “The
lure of wealth is therefore to be traced, as either a principle or an accessory mo-
tive at the bottom of all that the Americans do, this gives to all their passions a
sort of family likeness.” Survey results show, however, that happiness scores have
remained flat in developed countries despite considerable increases in average in-
come. In Japan, for example, a fivefold increase in real per capita income has led
to virtually no increase in average life satisfaction (Figure 14.1). A similar pattern
holds for the United States and Britain. In spite of these survey results, we contend
that most people believe that more money will buy them more happiness.

Fig. 14.1 Satisfaction with life and income per capita in Japan between 1958 and 1991. Source:
[21, figure 2]

The purpose of this chapter is twofold. The first is to show that an adaptation
and social comparison model of time allocation is consistent with key empirical
findings on the relationship between money and happiness. The second is to show
that under the plausible psychological assumption of projection bias there could be
a misallocation of time resulting in some paradoxical predictions. It is because of
projection bias that individuals believe that more money will buy them a lot more
happiness than it actually does, and this may even lead to a scenario in which a
higher wage rate results in a lower total utility.
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We present our adaptation and social comparison model of time allocation in
Section 14.2. An individual allocates a fixed amount of time between work and
leisure in each period. The total utility is the discounted sum of utility derived from
consumption and leisure. Leisure (e.g., time spent with friends and family) provides
direct utility and is not adaptive. In contrast, there is evidence in the literature that
beyond a set level of income at which basic needs are met, consumption is adaptive.
The carrier of per-period utility of consumption is therefore the relative consump-
tion with respect to a reference level. In general, the reference level of consumption
depends on past consumption and social comparison. A rational individual will al-
locate the same fixed proportion of time to work and leisure in each period (say 40%
to work and 60% to leisure) and choose an increasing consumption path over time.

In Section 14.3, we summarize some key empirical findings from the “happiness”
literature. Our model, under the assumption of optimizing individual utility, is con-
sistent with some of the findings in the literature. Our model can explain (1) why
happiness scores in developed countries are flat in spite of considerable increases
in average income and (2) why there is a positive relationship between individual
income and happiness within a society at any given point in time. However, this
optimization model cannot explain, without some further assumptions, the puzzle:
Why do we believe that more money will buy us lot more happiness than it actually
does?

In Section 14.4, we introduce projection bias into our model. Projection bias
causes people to underestimate the effects of adaptation, which in turn causes them
to overestimate the utility derived from adaptive goods. This is akin to buying more
food at the grocery store when hungry or ruling out the possibility of a large turkey
dinner for Christmas after finishing a hearty meal at Thanksgiving. Similarly, an in-
dividual who moves to a more prosperous neighborhood may insufficiently account
for the increased desire for fancy cars and a higher standard of living that will occur
once he begins to compare himself to and identify with his new neighbors. A perni-
cious effect of projection bias may be that an individual continues to allocate more
and more time to work at the expense of leisure.

In Section 14.5, we examine the impact of wage rate on total utility. Under pro-
jection bias, an individual may allocate a greater amount of time to work than what
is optimal. The resulting misallocation of time between work and leisure could ac-
tually lower total utility at higher wage rates.

Social comparison has been found to be a determinant of behavior in both human
and animal studies. In Section 14.6, we examine the implications of our model when
reference levels are influenced by social comparison.

An underlying tenet of our human condition is that to gain happiness, you
must either earn more or desire less. Indeed, in our model, initial adaptation
level and social comparison act to reduce the available budget. Reference levels
can be moderated through reframing or perspective seeking activities. Such ac-
tivities, however, require an investment of time. In Section 14.7, we extend the
time allocation model to include the possibility that reference levels can be influ-
enced by investing time in reframing activities such as meditation or other spiritual
practices.
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Finally, we conclude our chapter in Section 14.8 and discuss some implications
of our model to improve individual and societal well-being.

14.2 Time Allocation Model

We consider a simple model of work–leisure decisions. In each period t, t = 1 to
T , an individual divides one unit of time between work, wt , and leisure, �t . Work
produces income at a rate of μ units of money per unit of time spent at work.
For simplicity, this wage rate is constant over the T periods. The individual an-
ticipates the total amount of income generated by work during the entire planning
horizon (μ ∑T

t=1 wt) and plans consumption, ct , t = 1 to T , so that total consump-
tion (∑T

t=1 ct) does not exceed total income. For simplicity, we assume that the
individual borrows and saves at an interest rate of zero percent. We also set the
price of the consumption good to a constant over time that is equal to one unit.

The individual derives utility from both consumption (i.e., necessities and con-
veniences of life) and leisure (e.g., time spent with friends and family, active and
passive sports, rest). We assume that the per-period utility derived from consump-
tion and leisure is separable and that the total utility is simply the discounted sum
of per-period utilities.

We posit that leisure provides direct utility and is not reference dependent. One
always enjoys time spent with friends and family. Sapolsky et al. [47] observed that
amongst the baboons of the Serengeti, those who had more friends suffered from
less stress (measured by levels of stress hormones including cortisol). Cicero said,
“If you take friendship out of life, you take the sun out of the world.” Similarly,
family warmth, sleep, sex, and exercise improve life satisfaction. Some aspects of
leisure could indeed be adaptive, but Frank [19] argues that conspicuous consump-
tion is much more adaptive than leisure. Leisure is often consumed more privately
and is valued for itself and not often sought for the purpose of achieving prestige
or status. Solnick and Hemenway [53] found that vacation days are not reference
dependent. Similarly, consumption of basic goods (food and shelter) is not adaptive.
Since a large part of consumption in affluent societies is adaptive, we assume for
simplicity that consumption is reference dependent, but that leisure is not. Our re-
sults should hold with the weaker assumption that consumption is more reference
dependent than leisure.

There is considerable evidence that the utility derived from consumption depends
primarily on two factors: (1) adaptation or habituation to previous consumption lev-
els and (2) social comparison to a reference or peer group [6, 8, 16–20, 32].

A woman who drives a rusty old compact car as a student may find temporary
joy upon acquiring a new sedan when she lands her first job, but she soon adapts to
driving the new car and assimilates it as a part of her lifestyle. Brickman et al. [6]
find that lottery winners report only slightly higher levels of life satisfaction than the
control group just a year after their win (4.0 versus 3.8 on a 5-point scale). Clark [8]
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finds evidence that job satisfaction—a component of well-being—is strongly related
to changes in pay, but not levels of pay. Klein [30] reports that when monkeys were
offered raisins and not the customary apple, their neurons fired strongly in response
to the welcome change. After a few repetitions, this euphoria stopped as the animals
had adapted to the better food. People also adapt to country clubs and dining in fine
restaurants. A crucial implication of adaptation is that the utility derived from the
same $3,000 per month worth of consumption is quite different for someone who
is used to consuming that amount of goods and services than for someone who is
used to consuming only $2,000 per month. Several authors have proposed models
that account for adaptation in the determination of the total utility of a consumption
stream [42, 45, 59, 60].

In addition to adaptation, the utility derived from consumption also depends on
the consumption of others in an individual’s peer group. Driving a new Toyota sedan
when everyone else in the peer group drives a new Lexus sedan seems quite differ-
ent than if others in the peer group drive economy cars. Frank [18, 19] provides
evidence from the psychological and behavioral economics literature that well-
being or satisfaction depends heavily on social comparison. Solnick and Hemenway
[53, table 2] asked students in the School of Public Health at Harvard to choose be-
tween living in one of two imaginary worlds in which prices are the same. In the first
world, you get $50,000 a year, while other people get $25,000 a year (on average).
In the second world, you get $100,000 a year, while other people get $250,000 a
year (on average). A majority of students chose the first world.

People are likely to compare themselves to those who are similar in income and
status. A university professor is unlikely to compare herself to a movie star or a
homeless person. She will most likely compare her lifestyle to those of other pro-
fessors at her university and similarly situated colleagues at other, comparable uni-
versities. Medvec et al. [39] find that Olympic bronze medalists are happier than
Olympic silver medalists, as the former compare themselves to the athletes who got
no medal at all, whereas the latter have regrets of missing the gold.

Relative social position influences biochemical markers such as serotonin in
vervet monkeys [37]. When a dominant monkey is placed in an isolation cage, a
new monkey rises to the dominant position. The serotonin level increases in the
newly dominant monkey and decreases in the formerly dominant monkey. Elevated
levels of serotonin are found in the leaders of college fraternities and athletic teams.
Higher concentrations of serotonin are associated with better mood and enhanced
feelings of well-being.

We now state our adaptation and social comparison model of time alloca-
tion. We assume the discount factor to be 1. The set of decision variables in
our model comprises three vectors, each with T components. The first vector is
leisure, l = (�1, �2, . . . , �T ), measured in time units. The second vector is work,
w = (w1,w2, . . . ,wT ), also measured in time units. The third vector is consump-
tion, c = (c1,c2, . . . ,cT ), measured in dollars. All three vectors take non-negative
values. The individual’s total utility, interpreted as happiness or life satisfaction, is
given by
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V (l,c) =
T

∑
t=1

u(�t)+
T

∑
t=1

v(ct − rt), (14.1)

rt = σst +(1−σ)at , t = 1, . . . ,T, (14.2)

at = αct−1 +(1−α)at−1, t = 2, . . . ,T, (14.3)

where a1 and st , t = 1, . . . ,T, are given.
In the above model, rt is the reference level in period t. The reference level is

a convex combination of social comparison level, st , and adaptation level, at . The
adaptation level is the exponentially weighted sum of past consumptions in which
recent consumption levels are given greater weight than more distant past consump-
tion levels.

For the remainder of the chapter, the initial adaptation level, a1, will be set to
zero by default. Both u and v are normalized to take a value of zero if evalu-
ated at zero. The first component, u, is the contribution of leisure to happiness;
the second component, v, is the contribution of consumption to happiness. Both u
and v are concave and twice differentiable. To capture the phenomenon of loss aver-
sion [28, 56], we allow v to be non-differentiable at zero, with v′(0−) ≥ v′(0+).1

Loss aversion is an important feature of adaptation models, as it imparts the be-
havioral property that the individual will be reluctant to choose negative values for
the argument of v—that is, to choose consumption below the adaptation level (see
Figure 14.2).

Fig. 14.2 Exemplary per-period utility for leisure and consumption

That leisure is considered a basic good implies that the per-period utility of
leisure depends solely on the leisure time experienced during that period. For basic
goods, the Discounted Utility Model is appropriate [4]. In contrast to leisure, con-
sumption is considered an adaptive good. It contributes positively to happiness dur-
ing a given period only if consumption is above some reference point; consumption

1 It is appropriate to think of v as the value function of prospect theory. This function is usually
taken to be concave for gains and convex for losses. As our focus is on the positive region of v, we
assume for mathematical tractability that v is concave throughout. Empirical evidence shows that
v is close to linear in the negative domain [1], so that the assumption of concavity for gains and
linearity for losses is not farfetched.
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below the reference point yields unhappiness. The dynamics of the adaptation level,
at , are endogenously determined by the individual’s own behavior. Specifically, the
adaptation level is a convex combination of past consumption and past adaptation
level [3, 59]. The parameter α measures the speed of adaptation. If α = 0, then the
reference level does not change and consumption is a basic good (for example, food
and shelter in poor countries). If α = 1, then the reference level is always equal to
the previous period’s consumption (e.g., buying a car in the next period that is worse
than the current car would feel like a loss). For mathematical tractability and insight,
we will often set α = 1 in our examples.

Work does not contribute to utility, but does provide the budget to purchase
consumption. An individual can plan consumption based on their total lifetime in-
come. As there is just one unit of time available per period, time spent at work
reduces the available time for leisure. Work yields μ monetary units per unit of
time. With this in mind, the individual faces the following obvious time and money
constraints:

�t +wt ≤ 1, t = 1, . . . ,T, and (14.4)
T

∑
t=1

ct ≤ μ
T

∑
t=1

wt . (14.5)

14.2.1 Optimal Allocation

The goal is to choose (l,w,c) so as to maximize V (l,c). To explicitly solve for the
optimal time and consumption allocation problem, it is convenient to define effective
consumption as zt = ct − rt . We redefine the problem as one of finding the optimal
values of �t and zt in the usual form of a discounted utility model. The next step is to
express the budget constraint, (14.5), in terms of zt . To do so, we use the definition
of effective consumption and the dynamics of (14.2) and (14.3) to write

ct = zt +σst +(1−σ)at , t = 1, . . . ,T, and (14.6)

at = αct−1 +(1−α)at−1

= αzt−1 +ασst−1 +(1−ασ)at−1, t = 2, . . . ,T +1. (14.7)

One can then recursively calculate the overall lifetime consumption. In the general
case where both α and σ are strictly positive, we have

T

∑
t=1

ct =
T

∑
t=1

κt(zt +σst)+
(κ0−1)

α
a1, where (14.8)

κt =
1− (1−σ)(1−ασ)T−t

σ
, t = 0, . . . ,T. (14.9)

To see this, let C, Z, S, and A denote the summation from t = 1 to T of ct ,zt ,st ,
and at , respectively. Adding expression (14.6) from 1 to T and expression (14.7)
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from 2 to T +1 (defining aT+1 in the obvious way) yields

C = Z +σS +(1−σ)A, and

A+aT+1−a1 = αZ +ασS +(1−ασ)A.

From the second equation, we have that A = Z/σ +S+(a1−aT+1)/ασ , which we
plug into the first equation to obtain

C =
1
σ

(Z +σS)+
1−σ
ασ

(a1−aT+1). (14.10)

Using (14.7), one can verify that

aT+1 = α
T

∑
t=1

(1−ασ)T−t(zt +σst)+(1−ασ)T a1.

Replacing aT+1 in (14.10) produces (14.8) and (14.9).
If σ = 0, then we notice that ct = zt + at and that at = αzt−1 + at−1. Using

induction it follows that

T

∑
t=1

ct =
T

∑
t=1

(1+(T − t)α)zt +Ta1. (14.11)

Finally, if α = 0, adding expression (14.6) from 1 to T produces

T

∑
t=1

ct =
T

∑
t=1

(zt +σst)+(1−σ)Ta1. (14.12)

We assume the general case in which α,σ > 0. Replacing (14.8) in the left-
hand side of (14.5), using ∑T

t=1 wt = T −∑T
t=1 �t in the right-hand side of (14.5) and

rearranging terms produces

max
(l,z)

V (l,z) =
T

∑
t=1

u(�t)+
T

∑
t=1

v(zt), (14.13)

s.t. μ
T

∑
t=1

�t +
T

∑
t=1

κt zt ≤ μT −
T

∑
t=1

σκt st − κ0−1
α

a1. (14.14)

The first order conditions are

u′(�t) = μλ , t = 1, . . . ,T, and (14.15)

v′(zt) = κtλ , t = 1, . . . ,T. (14.16)

It is interesting to examine expression (14.14). The left-hand side contains the
drivers of utility: leisure time and effective consumption. The wage rate increases
not only the price of leisure (in reality, it makes consumption more affordable)
but also the maximum budget, μT . Effective consumption is multiplied by the
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coefficient, κt , which is easy to see from (14.9) that it is decreasing in t. If we
interpret this coefficient as a price, we observe that effective consumption is more
expensive to purchase at the beginning of the planning horizon than at the end. The
reason for this, of course, is that early consumption above the adaptation level in-
creases future adaptation levels.

The right-hand side of (14.14) contains the constraints of the drivers of utility.
The main constraint is the total money that could be earned if all available time were
to be spent working, μT . This maximum budget is reduced by (a weighted sum of)
the social comparison level and the initial adaptation level. Subsequent adaptation
levels are not included, as they follow endogenously from the optimization pro-
gram. In summary, social comparison and current adaptation reduce the available
budget.

We assume that the right-hand side of the modified budget constraint (14.14) is
non-negative. It follows from (14.15) that the optimal time allocated to leisure, �t ,
is the same in every period. Let � denote this constant value. The remaining time is
devoted to work, w = 1− �, which is also constant.

We now examine (14.16). Knowing that κt is decreasing and that v′ is strictly de-
creasing implies that the optimal effective consumption, zt , is necessarily increasing
over time. To ensure that z1 ≥ 0, it is sufficient to have v′(0−) ≥ κ1u′(0)/μ . That
effective consumption is increasing is intuitive. Recall that consumption above the
adaptation level yields positive utility during the current period, but lowers utility
during the subsequent periods as it increases the adaptation levels. This negative
effect fades the closer one gets to the final period. Hence, optimal planning induces
increasing values of zt . Of course, increases in zt produce increases in ct , as is ev-
ident from expression (14.8). This expression shows that an increase in zt directly
translates to an increase in ct and an additional increase in ct+1, . . . ,cT . Hence, con-
sumption increases more than effective consumption.

In the optimal plan, a decision maker follows a regular schedule of w hours of
work and � hours of leisure. Both consumption and effective consumption are in-
creasing, which means saving in early periods, followed by borrowing later in life.
If the consumption good is not adaptive, α = 0, and there is no social comparison,
σ = 0, then it follows from (14.6) that consumption and effective consumption are
constant, as ct = zt +a1.

It is possible to find a closed form solution if both u and v take a power form with
the same exponent β , that is, u(�) = �β and v(z) = zβ , �,z≥ 0. In this case,

� =
μT −∑T

t=1 σκt st − ((κ0−1)/α)a1

μT + μ1/(1−β ) ∑T
t=1(1/κt)β/(1−β )

and (14.17)

zt =
μT −∑T

t=1 σκt st − ((κ0−1)/α)a1

κ1/(1−β )
t (1/μ)β/(1−β )T +κ1/(1−β )

t ∑T
t=1(1/κt)β/(1−β )

. (14.18)

Assuming β > 0, we verify that time spent on leisure decreases with social compar-
ison level, initial adaptation, and wage. In contrast, effective consumption increases
with wage. Actual consumption can be derived from effective consumption using
(14.6) and (14.7).
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14.3 Income–Happiness Relationship

Total utility in our model is regarded as an empirical approximation of happiness.
Aristotle believed that happiness must be judged over a lifetime and that its con-
stituent parts included wealth, relationships, and bodily excellences (e.g., health and
beauty). To Bentham [5], happiness was attained by maximizing the positive balance
of pleasure over pain as measured by experienced utility [29]. He argued that human
affairs should be arranged to attain the greatest happiness for the greatest number of
people.

In recent years, researchers have been able to measure happiness and have col-
lected a great deal of empirical data that relates income, as well as other social and
biological factors, to happiness. Happiness in these surveys is measured by asking
people how satisfied they are with their lives. A typical example is the General
Social Survey [12], which asks “Taken all together, how would you say things are
these days—Would you say that you are very happy, pretty happy, or not too happy?”
In the World Values Survey, Inglehart and colleagues [24] use a 10-point scale with 1
representing dissatisfied and 10 representing satisfied to measure well-being. Pavot
and Diener [41] use five questions each rated on a scale from one to seven to mea-
sure life satisfaction.

Davidson et al. [9, 11] have found that when people are cheerful and experience
positive feelings (e.g., funny film clips), there is more activity in the front left sec-
tion of their brains. The difference in activity between the left and right sides of
the prefrontal cortex seems to be a good measure of happiness. Self-reported mea-
surements of happiness correlate with this measure of brain activity, as well as with
ratings of one’s happiness made by friends and family members [33]. Diener and
Tov [13] report that subjective measures of well-being correlate with other types
of measurements of happiness, such as biological measurements, informant reports,
reaction times, open-ended interviews, smiling behavior, and online sampling. Kah-
neman et al. [26] discuss biases in measuring well-being that are induced by using
a focusing illusion in which the importance of a specific factor (e.g., income, mar-
riage, health) is exaggerated by drawing attention to it. Nevertheless, Kahneman
and Krueger [25] argue that self-reported measures of well-being may be relevant
to future decisions, as idiosyncratic effects are likely to average out in representa-
tive population samples. Frey and Stutzer [21] conclude as follows: “The existing
research suggests that, for many purposes, happiness or reported subjective well-
being is a satisfactory empirical approximation to individual utility.”

If people pursue the goal of maximization of happiness and have reported their
happiness levels truthfully in the variety of surveys discussed above, then how do
we explain that happiness scores have remained flat in spite of significant increases
in real income over time (Figure 14.1)? Of course, happiness depends on factors
other than income such as the genetic makeup of a person, family relationships,
community and friends, health, work environment (unemployed, job security), ex-
ternal environment (freedom, wars or turmoil in society, crime), and personal values
(perspective on life, religion, spirituality). Income, however, does influence an indi-
vidual’s happiness up to a point and has a moderating effect on the adverse effects of
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Fig. 14.3 Mean happiness and real household income for a cross-section of Americans in 1994.
Source: diTella and MacCulloch [14]

some life events [52]. As shown in Figure 14.3, mean happiness for a cross-section
of Americans does increase with income, though at a diminishing rate. In fact, richer
people are substantially happier relative to poorer people in any given society.

Our time allocation model is consistent with the joint empirical finding that hap-
piness over time does not increase appreciably in spite of large increases in real
income, but happiness in a cross-section of data does depend on relative levels of
income. That rich people are happier than poor people at a given time and place is
easy to justify even by the Discounted Utility Model. Income effects are magnified
if the reference level depends on social comparison as, by and large, richer people
have a favorable evaluation of their own situation compared to others. Over time,
though, both rich and poor people have significantly improved their living stan-
dards, but neither group has become happier. Adaptation explains this paradoxical
finding.

Consider Mr. Yoshi, a young professional living in Japan in the 1950s. He was
content to live in his parents’ house, drive a used motorcycle for transportation,
wash his clothes in a sink and listen to the radio for entertainment. Also consider
Ms. Yuki, a young professional living in Japan in the 1990s. She earns five times
the income of Mr. Yoshi in real terms. She wants her own house, automobile, wash-
ing machine, refrigerator, and television. She travels abroad for vacation and enjoys
expensive international restaurants. Because Mr. Yoshi and Ms. Yuki are in simi-
lar social positions for their times, then both will have the same level of happiness.
Happiness does not depend on the absolute level of consumption, which is substan-
tially higher for Ms. Yuki. Instead, happiness depends on the level of consumption
relative to the adaptation level. Ms. Yuki has become adapted to a much higher level
of consumption and therefore finds that she is no happier than Mr. Yoshi. In our
time allocation model, as the wage rate (μ) increases, total utility stands still if the
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initial reference point (r1) also increases in the same manner calculated by the
model. Thus, the “Easterlin Paradox”—that happiness scores have remained flat in
developed countries despite considerable increases in average income—can be ex-
plained by the total utility maximization, provided the initial reference level, which
measures expectations, increases with prosperity. Happiness scores for poorer coun-
tries have in fact increased over time as the increased income has provided for addi-
tional basic goods such as adequate food, shelter, clean water, and health care.

Many authors have given a qualitative argument that the reference point is higher
for a person living in 1990s Japan than in 1950s Japan. Actually, we now show that
as μ increases, total utility stands still if a1 increases. In the following numerical
example, we set α = 1 and σ = 0. An individual with a1 = 0 and μ = 1 would obtain
a total optimal utility of 11.4. This is obtained by solving the leisure–consumption
problem (14.1) assuming the power form for u and v with exponent 0.5. This same
optimal total utility is obtained by setting μ = 5 and a1 = 3.4. Thus, a substantial
increase in wage does not lead to an increase in total utility if the initial reference
level has also increased.

So far, we have seen that our time allocation model is consistent with empirical
findings that within a country richer people are happier than poorer people, but, for
prosperous countries, well-being does not increase over time in spite of permanent
increases in income for all. In a survey in the United States, when asked to specify a
single factor that would most improve their quality of life, the most frequent answer
was “more money.” Thus, the puzzle remains: why do people believe more money
will buy them more happiness when in fact it may not. There is also some evidence
that people are working harder at the expense of leisure; sleep time has gone down
from 9.1 h per night to 6.9 h per night during the 20th century. The misallocation
of time between work and leisure is difficult to prove, but we will show that under
the plausible psychological assumption of projection bias such a misallocation is
indeed possible.

14.4 Predicted Versus Actual Happiness

The great source of both the misery and disorders of human life, seems to arise from over-
rating the difference between one permanent situation and another.

— Adam Smith (1759, Part III, Chapter III]

If people plan optimally, then they will maximize happiness by appropriately bal-
ancing time devoted to work and to leisure and by choosing an increasing consump-
tion path. Optimal planning, however, requires that one correctly predict the impact
of current consumption on future utility. An increase in consumption has two per-
ilous effects on future utility. First, the adaptation level goes up and therefore future
experienced utility declines (e.g., people get used to a fancier car, a bigger house,
or vacation abroad). Second, the social comparison level may go up, which again
reduces experienced utility. When one joins a country club or moves to a more
prosperous neighborhood, the peer group with which social comparisons are made



14 Optimizing Happiness 261

changes. The individual now compares himself with more prosperous “Joneses”
and comparisons to his previous peer group of less prosperous “Smiths” fades. If
the individual foresees all this, then he can appropriately plan consumption over
time and realize higher total utility in spite of a higher level of adaptation and an
upward movement in peer group. The rub is that people underestimate adaptation
and changes in peer group. Loewenstein et al. [35] have documented and analyzed
underestimation of adaptation and have called it projection bias.

Because of projection bias, an individual will realize less happiness than pre-
dicted. The gap between predicted and actual levels of happiness (total utility)
further increases if one plans myopically rather than optimally. An example of a
myopic plan is to allocate a budget or income equally in each period (constant con-
sumption), as opposed to an increasing plan. A worse form of myopic planning
would be to maximize immediate happiness through splurging (large consumption
early on) which is what some lottery winners presumably end up doing.

We buy too much when hungry [40], forget to carry warm clothing during hot
days for cooler evenings, predict that living in California will make us happy [48],
and generally project too much of our current state into the future and underestimate
adaptation [22, 34, 36]. vanPraag and Frijters [57] estimate a rise of between 35 and
60 cents in what one considers required income for every dollar increase in actual
income. Stutzer [54] also estimates an increase in adaptation level of at least 40 cents
for each dollar increase in income. After the very first year, the joy of a one-dollar
increase in income is reduced by 40%, but people are unlikely to foresee this reduced
contribution to happiness. People do qualitatively understand that some adaptation
to the change in lifestyle that comes with higher income will take place; they simply
underestimate the magnitude of the changes.

In our model, the chosen consumption plan determines the actual reference level,
rt , by means of (14.2) and (14.3). In every period, an individual observes the current
reference level, but may fail to correctly predict the value of this state variable in
future periods. According to projection bias, the predicted reference level is some-
where between the current reference level and the actual reference level. The rela-
tionship between the actual and predicted reference levels can be modeled using a
single parameter, π , as follows:

Predicted reference level = π(current reference level)
+(1−π)(actual reference level).

Thus, when π = 0, there is no projection bias, and the predicted reference level
coincides with the actual reference level. If π = 1, then the individual adopts the
current reference level as the future reference level. An intermediate value of π = 0.5
implies that the individual’s predicted reference level is halfway between the current
and actual reference levels. This projection bias model can be extended to any state
variables that influence preferences, such as satiation level [3]. If consumption stays
above the actual reference level over time, then an individual with projection bias
may be surprised that the actual, realized utility in a future period is lower than what
was predicted. The reason, of course, is that the actual reference level is higher than
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anticipated. Actual happiness associated with higher levels of consumption may be
much lower than what was hoped for. This gap may motivate an individual to work
even harder to increase income in the hopes of improving happiness. But this chase
for happiness through higher and higher consumption is futile if the reference level
keeps increasing.

To formalize these ideas, let τ be the current period. The actual and predicted
reference levels for a subsequent period t are rt and r̂τ ,t , respectively. Now,

r̂τ ,t = πrτ +(1−π)rt ,

for which rt follows the dynamics governed by (14.2) and (14.3). The actual utility
is given by the chosen consumption plan according to the time allocation model;
however, the chosen consumption plan might not be the optimal one. The reason for
this is that during period τ , the individual will maximize the predicted utility given
by

V̂τ(�τ , �τ+1, . . . , �T ;cτ ,cτ+1, . . . ,cT |rτ ,π) =
T

∑
t=τ

u(�t)+
T

∑
t=τ

v(ct − r̂τ ,t). (14.19)

The difference between the actual and the predicted utility can be demonstrated
by a simple example. Figure 14.4 compares the optimal plan to the plan imple-
mented by an individual experiencing the most extreme form of projection bias,
namely, π = 1 and α = 1. In this example, wage is set to one, and both u(x) and
v(x) are set to

√
x.

The optimal consumption plan exhibits an accelerating, increasing pattern, as ar-
gued in Section 14.2. This is indeed rational for an individual who is fully aware
of two facts: (1) increments and not absolute levels are the drivers of utility of con-
sumption and (2) high consumption at the beginning of the time horizon heavily
taxes utility in later periods, as it raises the adaptation level in a permanent way.
Hence, it is no surprise that consumption is low in the beginning and high toward
the end of the planning horizon. As expected, the optimal time for work and leisure
is constant over time.

A rational individual would allocate approximately 80% of his time to leisure and
20% to work. Now, consider the projection bias plan; the consumption plan under
projection bias begins in period 1 with a plan to consume 0.5 units. The amount of
time devoted to work and leisure is the same, i.e., 50% to work and 50% to leisure.
This is not a coincidence. If π = 1, then the individual predicts that the reference
point for consumption will remain constant; therefore, this individual treats both
leisure and consumption as basic goods. As u and v are identical, an equal allocation
of time to work and leisure is optimal. Moreover, the individual plans to maintain
the constant level of consumption of five units per period.

In period 2, the individual realizes that the reference level, r2, is higher than
r1; in fact, r2 = c1 = 0.5. This is a cause of concern, as the original plan of flat
consumption of 0.5 units will yield zero utility, v(0.5−0.5) = 0 for the consumption
component. Here, projection bias enters again. The individual again predicts that the
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Fig. 14.4 Impact of projection bias on time allocation [α = 1,π = 1,μ = 1]

future reference level will be the same as the current reference level of 0.5 units. The
individual, therefore, hopes that by increasing consumption above 0.5 units, he can
obtain higher utility. But to do so, he needs to expand the budget, which is not a
problem because he can work for 0.75 units, instead of 0.5. The additional units of
time are taken from leisure time, which now decreases to 0.25 units. In period 3, the
same process repeats itself. The gap between the actual and the predicted reference
level may motivate the person to work even harder to increase income in the hopes
of improving happiness. But this chase for happiness through higher and higher
consumption is futile as the reference level keeps on increasing. Actual happiness
associated with higher levels of consumption may be much lower than what was
hoped for.

The degree of misallocation of time between work and leisure depends on both
the adaptation factor, α , and the projection bias parameter, π . In our example, per-
centage time allocations to work for various combinations of α and π are shown



264 Manel Baucells, Rakesh K. Sarin

Table 14.1 Percent of time allocated to work [μ = 1]

Optimal Projection Bias

Adaptation Factor π = 0 π = 0.1 π = 0.5 π = 1.0

α = 0.1 42 43 50 60
α = 0.5 28 32 54 81
α = 1.0 23 28 64 90

in Table 14.1. For the optimal plan, as the adaptation rate increases, the percent-
age of time allocated to work decreases. Similarly, for a given α , as projection bias
increases, the individual works harder. In all cases, the actual total utility under
projection bias will be lower than that given by the optimal plan because of the
misallocation of time and the excessive consumption in early periods.

14.5 Higher Pay—Less Satisfaction

So far we have demonstrated that projection bias could induce people to work harder
and therefore be left with less leisure time compared to the rational plan. We now
examine the effects of increases in wage rate on total utility. A rational individual
will always experience a higher total utility with a higher wage rate by judiciously
allocating time between work and leisure. Individuals, however, do not always make
sensible tradeoffs between work and leisure. Average sleep hours in the United
States fell from 9 h per night in 1910 to 7.5 h per night in 1975 with a further
decline to 6.9 h per night between 1975 and 2002. A USA Today report on May
4, 2007 titled “U.S. Workers Feel Burn of Long Hours, Less Leisure” reports that
US workers put in an average of 1,815 h in 2002 compared to European workers
who ranged from 1,300 to 1,800 h (see also [32, p. 50]). Schor [49] argues that
Americans are overworked. In some professions in which the relationship between
income and hours worked is transparent (e.g., billable hours for lawyers and con-
sultant), there is a tendency to allocate relatively more time to work due to peer
pressure.

A theory in anthropology holds that the rise of civilization is the consequence
of the increased availability of leisure time [23]; Sahlins [46, pp. 85–89] argues
that the quantity of leisure time proxies for well-being. Putnam [43] observed in
his book, Bowling Alone, that people who engage in leisurely activities with others
were, on average, happier than those who spent their leisure time alone. Aguiar
and Hurst [2], who document an increase in leisure time for less educated people,
observe that there has been a substantial increase in time spent watching television
(passive leisure) and a significant decline in socializing (active leisure) for people
of all education levels from 1965 to 2003.

It is possible that experienced utility in a given period ut +vt may be lower if one
disproportionately allocates more time to work at the expense of leisure. Budding
entrepreneurs, investment bankers, and executives of technology companies may
complain about their “all work and no play” lifestyle, but many of them do retire
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early or change careers and it is hard to argue that their excessive work in the early
part of their careers was not rational. All work and no play may make Jack a dull
boy, but if that is what Jack desires then there can be no disputing his taste. We
show that in the presence of projection bias, an individual may reduce his actual
total utility by choosing a higher wage option. A simple, two-period example will
suffice to illustrate this paradoxical result.

Consider a two-period example with α = 1 and π = 1. In period 1, an individual
maximizes predicted utility over the two periods by planning to work w1,1 in period
1 and w1,2 in period 2. Because leisure is a basic good, the individual plans an equal
amount of leisure in each period. Consequently, the amount of work in each period
is also equal, i.e., w1,1 = w1,2. Under extreme projection bias, π = 1, the individual
considers that consumption also behaves as a basic good. Hence, the per-period
consumption corresponds to the budget generated for that period, namely, μw1,1.
Finally, w1,1 is found by optimizing the predicted total utility given by

V (�,w) = 2[u(1−w1,1)+ v(μw1,1)]. (14.20)

The first-order condition is given by

u′(1−w1,1) = μv′(μw1,1). (14.21)

The individual solves this problem and decides on his allocation of budget to leisure
and consumption.2 During the second period, the adaptation level takes the value
r2 = μw1,1.3 The individual then realizes that the utility of consumption in period
2 will be zero if he stays with the original plan. He therefore revises the plan by
maximizing the utility in period 2:

V (w, �) = u(1−w2,2)+ v(μ(w2,2−w1,1)). (14.22)

The optimal time spent working in period 2, w2,2, is the solution to the first-order
condition:

u′(1−w2,2) = μv′(μ(w2,2−w1,1)). (14.23)

Inspecting (14.21) and (14.23), we observe that if v′(0+) > u′(1), then w1,1 is
strictly positive and w2,2 is strictly larger than w1,1. Therefore, the individual always
revises the plan in favor of increasing work and reducing leisure for the second
period. The increase in work in the second period is bounded, as w2,2−w1,1 ≤ w1,1,
with strict inequality if u is strictly concave.4 Thus, the utility from consumption

2 Applying the implicit function theorem to the first-order condition (14.21), it follows that w1,1
increases with μ if and only if the Arrow–Pratt measure of relative risk aversion of v is less than
1. This same condition also applies to w2,2, the time that the individual decides to work in period 2
after re-optimizing the predicted utility.
3 The conclusions and insights are the same if we use the full model and let r2 = σs2 +
(1−σ)αμw1,1.
4 If w2,2 > w1,1, then using (14.21) and (14.23) yields μv′(μw1,1) = u′(1−w2,2) ≥ u′(w1,1) =
μv′(μ(w2,2−w1,1)). As v′ is non-increasing, it follows that w2,2−w1,1 ≤ w1,1.
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obtained in period 2, in spite of revising the plan, is less than or equal to the predicted
utility v(μw1,1).

The actual total utility is given by

u(1−w1,1)+ v(μw1,1)+u(1−w2,2)+ v(μ(w2,2−w1,1)). (14.24)

It is clear that the actual total utility (14.24) is lower than the predicted total utility
(14.20). In period 1, actual and predicted utilities coincide. However, in period 2,
the actual utility of leisure is lower than the predicted utility of leisure (w2,2 > w1,1).
Similarly, in period 2, the actual utility of consumption is lower than the predicted
utility of consumption (w2,2−w1,1 < w1,1). We now show that the misallocation of
time between work and leisure could lower actual total utility when the wage rate
increases.

In the particular case that u is linear and v(x) = xβ , x ≥ 0, the actual utility is
increasing in μ if β < 2/3 and is decreasing in μ if β > 2/3. That actual utility
may be decreasing with wage rate is puzzling. To see this, notice that planned work
is given by

w1,1 = μβ/(1−β )β 1/(1−β ) and w2,2 = 2w1,1,

Fig. 14.5 Impact of wage rate on total utility under projection bias [T = 10, u(�) = �0.8, v(z) = z0.5,
σ = 0]
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which, when plugged into the equation for actual utility, yields

2+(2−3β )(μβ )β/(1−β ). (14.25)

The puzzling result that total utility can be decreasing with wage rate holds more
generally. Figure 14.5 shows the relationship between total utility and wage rate for
a 10-period case (T = 10) in which both u and v are strictly concave (taking power
forms with exponents 0.8 and 0.5, respectively). Optimal total utility is, of course,
always increasing with wage rate, but projection bias may decrease the actual total
utility as shown in the upper left panel of Figure 14.5.

One must therefore be deliberate in choosing a high wage career (e.g., consulting
or investment banking) and be mindful of Veblen’s [58] observation: “But as fast as
a person makes new acquisitions, and becomes accustomed to the resulting new
standard of wealth, the new standard forthwith ceases to afford appreciably greater
satisfaction than the earlier standard did.”

14.6 Social Comparison

Adam Smith [50] stated “With the greater part of rich people, the chief enjoyment
of riches consists in the parade of riches.” Veblen [58] echoes a similar sentiment:
“The tendency in any case is constantly to make the present pecuniary standard the
point of departure for a fresh increase of wealth; and this in turn gives rise to a new
standard of sufficiency and a new pecuniary classification of one’s self as compared
with one’s neighbors.” Meaning, because most rich people pursue comparative ends,
they will ultimately fail to become happier.

An immediate question arises whether one can improve one’s happiness sim-
ply by imagining less fortunate people. However, Kahneman and Miller [27] as-
sert that to influence our hedonic state, counterfactuals must be plausible, not just
possible, alternatives to reality. The all too common tactic of a parent coaxing a
child to appreciate food by reminding them of starving children in third world
countries does not work. There seems to be a tendency to want conspicuous suc-
cess. In many professions, income has become that measure of success; there-
fore, people pursue higher income not just for consumption, but as a scorecard
of their progress. Conspicuous success also seems to have no end. Russell [44]
wrote, “If you desire glory, you may envy Napoleon. But Napoleon envied Caesar,
Caesar envied Alexander, and Alexander, I dare say, envied Hercules, who never
existed.”

Social comparison levels in our model are exogenous, though a theory in which
the appropriate peer group and social comparison level is endogenous would be
useful. Nevertheless, we can provide some insight into the influence of social com-
parison on happiness. Consider, for example, three groups of people: those in the
highest quintile, in the lowest quintile, and at the median level of income ($83,500,
$17,970, and $42,228, respectively, for the United States in 2001). By and large,
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richer people have a favorable evaluation of their own situation compared to oth-
ers. In contrast, the economically disadvantaged will have an unfavorable evalua-
tion of their relative position in society. Assume that the social comparison level,
S, is equal to the median income. For simplicity, we assume constant consump-
tion around the annual income for each group. If we focus only on the utility of
consumption, then without social comparison (σ = 0) each of the three groups will
converge to the neutral level of happiness as each becomes adapted to their own past
consumption levels. By including social comparison, the happiness levels are pulled
toward, but do not converge on, the neutral level. The long run experienced util-
ity is given by v(σ(x−m)), which is the median income. This heuristic argument
is consistent with the empirical finding that richer people are happier than poorer
people.

Now consider two individuals: Average Joe and Fantastic Sam. Average Joe is a
highly paid stockbroker (μ = 10), but his peer group also has high incomes (S = 8).
Assume that u(x) = v(x) =

√
x, α = 1, σ = 0.5, and a1 = 0. In an optimal plan,

Average Joe would devote 96% of his available time to work and 4% to leisure. His
total consumption would be 96 units and his total utility would be 13.8. In contrast,
Fantastic Sam is an above average journalist who earns half as much as Joe (μ = 5),
but compares favorably with his peer group (S = 1). Planning optimally, Sam would
devote 80% of his time to work and 20% to leisure. His total consumption would
be 40 units and his total utility would be 17.89. Sam would be happier than Joe in
spite of his lower income and lower consumption because his position relative to his
peers is superior to that of Joe’s.

Projection bias could induce Sam to chase the prosperous life of a stockbroker
if offered the opportunity. In this case, projection bias would affect him through
his underestimation of the upcoming change in social comparison level. Sam could
indeed be happier as a stockbroker, but he should put some thought into forecasting
his relative position amongst stockbrokers and how that would impact his future
utility. If he concludes that he would be an average stockbroker, then journalism
might indeed be the right pond for Fantastic Sam [17].

14.7 Reframing

One does not become happy overnight, but with patient labor day after day. Happiness is
constructed, and that requires effort and time. In order to become happy, we have to learn
how to change ourselves.

— Luca and Francesco Cavalli-Sforza (1998)

In our model, the dynamics of adaptation and social comparison are not part of an
individual’s choices. This implies that an individual does not have control over adap-
tation to consumption or over one’s own expectations determined by his peer group.
It is possible to have heterogeneous individuals with different speeds of adaptation
and weights given to social comparison. However, for a given individual, both α and
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σ are fixed, and there is nothing this individual can do to change his speed of adap-
tation or intensity of social comparison. The same can be said about π , the inability
to accurately predict future reference levels.

While adaptation and social comparison are unavoidable to a certain extent, we
believe that individuals do have some tools available to moderate these factors. It is
possible that through reframing activities such as spiritual practices, meditation, or
prayer, one might gain a better perspective on life and reduce the harmful effects of
comparison. Such practices, however, require considerable time, effort, and disci-
pline. An admiring fan congratulated a violinist for playing so beautifully and said
“I would love to play like you.” The violinist answered: “Yes, but would you love it
even if you had to practice 10,000 h?”

We now attempt to introduce the impact of reframing and perspective seeking
into our model. We assume that a new decision variable is available to the individual,
namely the time that he sets aside in each period for “reframing activities.” To keep
things simple, we assume that this time is constant throughout the planning horizon,
which we denote by q.

The choice of q is made in period 1, and after this choice is made the time avail-
able for work and leisure is reduced to 1− q in all periods. In other words, an
individual commits in period 1 to set aside a fixed amount of time to such prac-
tices. Reframing activities contribute to gaining perspective on life, appreciating all
received goods as if had been received for the first time, encountering ways to sup-
press or avoid (unfavorable) social comparison and finding inner happiness. Lama
and Cutler [31] explain “The actual secrets of the path to happiness are determi-
nation, effort, and time.” Neuroscience confirms that repetition is essential for the
brain to be retrained. Cellists have more developed brain areas for the fingers of
their left hand, mechanics for their sense of touch, and monks for the activity in the
left prefrontal cortex, which is associated with cheerfulness.

Devoting time to reframing activities has an opportunity cost (less time available
for work or leisure). We assume that the benefit of reframing activities is in lowering
the reference level. Specifically, we modify the time allocation model by replacing
and updating (14.2) with

rt = e−ρq[σst +(1−σ)at ], t = 1, . . . ,T,

where ρ measures the effectiveness of reframing activities (e.g., competent teacher,
seriousness of commitment) and q is the time devoted to such activities. The mod-
ification simply multiplies the previous reference level by a reduction factor, e−ρq.
This reduction factor is 1 if the time spent in reframing activities is 0; however, if
q > 0, then the factor is strictly less than 1. The value of q is now part of the set of
decision variables.

It is possible that unless ρ is larger than a certain threshold value, the individ-
ual may find that it is not worth spending any time in reframing activities. This is
illustrated in Figure 14.6. Note that the optimal time spent in reframing activities is
non-monotonic with ρ . This is to be expected. If ρ is sufficiently high, then a little
time devoted to reframing can do a lot to reduce reference levels. Of course, total
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Fig. 14.6 Total optimal time spent on spiritual practices and total utility as a function of the effec-
tiveness of these practices [S = 5, σ = 0.5, α = 1]

utility is monotonic with ρ , as the per-period utility of consumption increases as
reference levels decrease.

14.8 Conclusions

No society can surely be flourishing and happy, of which the far greater part of the members
are poor and miserable.

— Adam Smith (1776)

A rational individual chooses an appropriate trade-off between work and leisure,
thereby maximizing happiness. In this chapter, we have proposed a simple adap-
tation and social comparison model of time allocation, which predicts that happi-
ness increases with income at a diminishing rate. Furthermore, the optimal con-
sumption path is increasing over time, as is relative consumption over the reference
level.

Our model is consistent with the empirical findings that richer people are happier
than poorer people, but that happiness scores have remained flat over time in spite
of astonishing increases in real income. Perhaps, the most interesting implications
of our model are obtained under the assumption that people underestimate the rise
in their reference level (due to projection bias) and thus overestimate the utility of
consumption. Projection bias may lead an individual to devote too much time to
work at the expense of leisure. Their predicted utility under projection bias is higher
than the actual realized utility. This is why we believe that more money will buy
us more happiness when in fact it may not. Because of their misallocation of time



14 Optimizing Happiness 271

between work and leisure, the actual realized utility may even decline at higher wage
rates.

In a preliminary attempt, we show that reframing activities, such as meditation or
other spiritual practices, may improve happiness, but these activities require a com-
mitment of time. Davidson and Harrington [10] find that the happiness level of Bud-
dhist monks is higher than the average population in spite of their frugal lifestyle.
Additional empirical and theoretical work is needed to understand the influence of
reframing activities on moderation of reference levels.

Projection bias diverts resources from leisure toward adaptive consumption.
Great discipline is therefore required to give adequate attention to the importance
of leisure (e.g., time spent with family and friends, sleep, and exercise). We are
reluctant to venture into policy prescriptions without a thorough analysis. How-
ever, if there is no awareness of projection bias, then a judicious application of
policies like mandatory leave (2 weeks in the United States versus 6 weeks in
France), restrictions on work hours within limits (recent reforms for medical res-
idents), having higher sales taxes for adaptive goods than for basic goods, and fam-
ily friendly practices, such as flexible hours, could improve happiness. Time is the
ultimate finite resource; therefore, its allocation between work and leisure to
improve happiness needs further empirical and theoretical inquiry. Restoring a har-
monious balance between work and leisure is a precondition to “catching” the
elusive goal of happiness.
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