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Supervisor’s Foreword

Over the past decades, overdevelopment of conventional fossil energy resulted in a
range of problems, such as environmental pollution, which pose threats on human
health and sustainability. In recent years, hydro, wind, solar power, natural gas, and
other clean energy alternatives, which are expected to be dominant forms of energy
in the future, are being developed at rapid speeds to accommodate future energy
demands.

Wind power, as an alternative to fossil fuels, is one of the most important and
prominent renewable resources that is under development in an unprecedented
rapid pace around the world, due to the increasing electricity demands and the need
for more environmentally benign electric power generation. Wind farm develop-
ment in China is in fast lane too. At the end of 2012, the total installed capacity in
China, excluding Taiwan, was 75.32 GW, which topped USA to become the
country with most installed wind power [1, 2]. In China, however, wind resources
are mainly distributed in northern and northwestern areas of the country, which are
far from the major load centers in the eastern and coastal areas. Therefore, wind
power is centrally collected and integrated into the power grid through
long-distance transmission systems to transport the wind power to these load
centers. Take Zhangbei wind farm base in North China; for example, there are
nearly 20 wind farms integrated into the grid via a single 220-kV transmission line,
while in the area there is neither conventional power plant nor load demand. In
addition, several 10-GW-level wind power bases will be built in wind-rich areas,
including Inner Mongolia, Gansu, Xinjiang, Hebei, and Jiangsu, by the end of
2020. These large wind farm bases are expected to be connected to the power grid
via centralized integration.

However, large-scale wind power integrated into power system brings about a
great challenge to traditional power flow analysis and economic dispatch decision.
Unlike traditional thermal generators, the generation output of wind power is
always uncertain and varies with natural conditions including location, wind speed
and direction, air temperature, and humidity. The strong randomness of wind power
makes it difficult to predict and control. Moreover, as mentioned above, when
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compared to other countries, wind power consumptive problem in China is more
prominent since the wind power resource distributes unevenly, mostly in areas far
away from the load and difficult to achieve dispersive elimination locally; thirdly,
the wind farm growth rate is much higher than that of the local power consumption.
Due to the transmission capacity limitation of transmission corridors, safety and
stability may be compromised, resulting in serious wind curtailment.

Therefore, it is urgent to develop new techniques to accommodate wind power in
a secure and economic way. This Ph.D. dissertation mainly focuses on these topics
to address uncertainties. Based on interval mathematics, the wind power uncer-
tainties are modeled as interval numbers, which facilitates the modeling of wind
power. Furthermore, this book studies the mathematical modeling and methods to
interval power flow, interval economic dispatch, and interval robust economic
dispatch. Its breath is impressive and seldom seen in the context of a Ph.D.
dissertation.

Beijng, China Prof. Hongbin Sun
July 2016
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Preface

Large-scale wind power integrated into power system brings about a great chal-
lenge to traditional power flow analysis and economic dispatch decision. This book
mainly focuses on these topics to address uncertainties. Based on interval mathe-
matics, the wind power uncertainties are modeled as interval numbers, which
facilitates the modeling of wind power. Furthermore, this book studies the math-
ematical modeling and methods to interval power flow, interval economic dispatch,
and interval robust economic dispatch.

In Chap. 1, literature review of related works is presented, and their contribu-
tions to the book are summarized.

In Chap. 2, as the basis of this book, mathematical theories of interval calcu-
lation and optimal planning are introduced, including definition of interval number,
the method for the linear equations with right-hand interval, interval optimal
solution, and self-adaptive two-stage robust interval optimization.

Chapter 3 investigates the interval power flow with uncertain wind power,
including DC interval flow, AC interval flow, and distribution system interval flow,
in which a preprocessing iteration and parallel calculation are adopted to prevent
over conservativeness; the DC power flow is taken as an example to discuss power
flow calculation with constraints and dynamic interval power flow model.

In Chap. 4, the traditional economic dispatch is expanded to interval economic
dispatch in which interval of wind power output is considered; in fact, interval
optimization can be seen as the sensitive analysis of the traditional economic dis-
patch, because it provides a reference for system dispatchers about the influence of
wind power uncertainty on the result of economic dispatch; interval optimization is
also different from sensitive analysis because interval optimization can consider
parameters that change over a wide interval while sensitive analysis usually focuses
on the parameters changing within a tight range; it is worth noticing that there might
be no feasible solution under the wind power uncertainty, so a minimal wind
curtailment and soft transmission constraints are adopted to guarantee feasibility.

In Chap. 5, the robust optimization strategy is adopted to search for the optimal
solution. The result from Chap. 3 is usually more suitable for evaluation rather than
dispatching order. Dispatching order should be a concrete number instead of an
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interval number, while robust optimization can provide a concrete dispatching order
that satisfy security constraints in uncertain scenarios. Two types of interval robust
optimization models are discussed in this chapter: One is the self-adaptive interval
robust optimization that can guarantee power balance by the introduction of AGC
participation factor. It is shown that this participation factor has some effect on the
conservativeness of the robust optimization. If the participation factor can be reg-
ulated real time in real-time energy market (within 5 min), then the conservative-
ness of the robust optimization can be reduced; the second type is to perform
economic dispatch under wind power uncertainty considering topology reconfig-
uration, which is a long-term problem in comparison with the first type, which is a
real-time problem. From the perspective of mathematical modeling, two-stage
robust economic dispatch is a tri-level optimization model, which can be turned into
a mixed-integer optimization problem by Benders decomposition, and the optimal
result can be achieved by column constraint generation that introduces cutting
planes; while the self-adaptive interval robust optimization model is a bi-level
problem, which can be turned to a convex second-order model by adding dummy
variables; the most significant problem in the robust optimization is to reduce the
conservativeness, and in this book, the concept of robust cost is introduced to reach
the balance between security and economy. Finally, some practical problems in
power system modeling are discussed, and their mathematical models and algo-
rithms are provided.

In Chap. 6, improved online large-scale economic dispatch problems are studied.
It is not hard to understand that real power system has a quite large scale; therefore,
the dispatching problem under multiple time periods can be very complex. Such
optimization problem is mostly expected to be fast ;and efficiently solved for
real-time market regulation and for intraday dispatching in a rolling horizon. To do
so, two perspectives are provided to improve online economic dispatching: First is
to reduce redundant security constraints through offline simulation to simplify the
model, and second is to use parallel optimization approaches to increase compu-
tation speed.

Chapter 7 summarizes the works and proposes future research direction.
The draft of this book is the Ph.D. dissertation of Tsinghua University. Due to

our limited knowledge, this book might contain mistakes and typos. Please feel free
to e-mail us whenever you find any problems within this book. We are more than
happy to revise this book on your notice.

Xi’an, China Tao Ding
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Chapter 1
Introduction

Abstract Large-scale wind power integrated into power system brings about a
great challenge to traditional power flow analysis and economic dispatch decision.
This book mainly focuses on these topics to address uncertainties. In this chapter,
we will give the brief introduction and the whole flowchart of this book.

1.1 Background and Meaning of the Research

The world is facing energy crisis and the deterioration of the natural environment.
Wind power as the substitute to traditional fossil fuels with the advantages of clean
non-polluting and renewable, has been widely developed and applied. Especially
these years, various states support for wind power, making the wind power tech-
nology is increasingly mature and improved, whose investment price has also been
reduced. The wind power industry got unprecedented development over the world
[1, 2].

As can be seen from Figs. 1.1 and 1.2, by the end of 2013, the world’s total
installed capacity of wind power reached 318.11 GW, about 8.07 times the world’s
total wind power installed capacity over the past decade, which is equivalent that
wind generating had developed an average annual growth rate of 26.19 % since
1996 [3–5]. Among them, China’s wind power industry had made unprecedented
development [6]. Figure 1.3 describes the case of the total installed capacity of
wind power and the new installed capacity since 2008. By the end of 2013, China’s
total installed capacity of wind power had reached 91.41 GW, which had surpassed
the US as the largest wind power installed capacity over the world [6].

However, large-scale wind power is facing a lot of challenges, first and foremost
the wind power consumption problem [9–14]. Compared to other countries, Wind
power consumptive problem in China is more prominent. First of all, China’s wind
power resource distribution is more concentrated, mostly in areas far away from the
load, with more centralized network form. So it is difficult to achieve dispersive
elimination locally, as Europe, North America and other countries; Secondly, the
wind power construction growth rate is much higher than its local power
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consumption. Due to the transmission capacity limitation of transmission corridors,
safety and stability may be reduced, resulting in serious “wind curtailment” phe-
nomenon. By the end of 2013, total hours of wind power utilization in China is
about 2046 h, while wind power plant’s total “wind curtailment” losses is over 16
TWh. “Wind curtailment” has seriously affected China’s large wind power base
construction speed and the return on developers’ investment. Third, wind power
generation is different from the traditional thermal power generation is an important
feature of wind power output has greater uncertainty, more difficult in prediction
and difficult to control the output. Traditional thermal power output can be adjusted
by adjusting the output of each turbine intake air units, while wind power output is
affected by natural conditions, including location, wind speed and direction, air
temperature and humidity, with strong randomness and difficult to predict and
control, which brought certain challenges to the traditional schedule and operation.

To do this, how to consider the intermittency and uncertainty of large-scale wind
power based on traditional operation and scheduling to ensure more economical,
safer and more reliable operation in wind power is the key point of this research.

Countries Installed capacity 
(MW) Countries New installed capacity 

(MW) 
China 91,412 China 16,088 

The US 61,091 Germany 3,238 

Germany 34,250 The Great British 1,883 

Spain 22,959 India 1,729 

India 20,150 Canada 1,599 

The Great British  10,531 The US 1,084 

Italy 8,552 France 953 

France 8,254 Poland 894 

Canada 7,803 Sweden 724 

Portugal 4,772 Romania 695 

others 6,402others48,332

In total 318,105 In total 35,289 

China 29%

America 
15%

German 
11%

Spain 7%

India 6%

England 
3%

Italia 3%

France 3%
Canada 2%

Denmark 
2%

Rest 15%

China 46%

German 
9%England 

5%
India 5%

Canada 4%

America 
3%

Brazil 3%

Poland 3%

Sweden 
2%

Rumania 
2%

Rest 18%

Fig. 1.1 By the end of 2013, the total installed capacity of wind power top 10 countries [7, 8]
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1.2 Research and Research Frontiers

Power flow and optimal dispatch are two important research topics in power sys-
tem. After considering the uncertainty of wind power, both research got new
development and application. This section of the review on the basis of traditional
research, mainly reviewed the current research status in domestic and overseas of
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Fig. 1.2 From 1996 to 2013 the total installed capacity and new installed capacity of wind power
over the world
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power flow calculation and optimization dispatch, considering wind power
uncertainties.

1.2.1 The Method to Power Flow Calculation
with Uncertainty

Power flow calculation as the base for power system analysis, provides dispatchers
intuitive and effective information and is also used as basis for security analysis and
other applications.

The essence of the AC power flow is to solve nonlinear equations, solving
methods including Gauss-Seidel iterative method [15–18], Newton Raphson iter-
ative method [19–23] and etc. It is found in practical engineering applications that
when using Newton’s method for solving the flow, its Jacobian matrix can be
decomposed into two approximately constant block matrix, which will decompose
the original power flow problem into the active and reactive two sub-issues to get
iterative solution, making sure to get the same solution with greatly improved speed
and memory overhead saving. This method is called PQ decoupling method [24].
To further speed up the convergence of the P-Q decoupling, XB method [25] and
BX method [26] has been widely used.

For high-voltage transmission grid, voltage per unit value is usually near 1.0 p.u.
reactive power usually use the principle of balance locally, and most part in
long-distance transmission is active power. So for the high-voltage grid, in practical
applications the active distribution in network branch are usually concerned about,
therefore the DC power flow has been widely used in the actual operation, espe-
cially for advanced applications of the electricity market. DC power flow is actually
approximately linear of the AC power flow, whose essence is to solve linear
equations and relative difficulty is greatly reduced compared with AC power flow.
LU factorization method is an effective method for solving linear equations [27],
which has been widely used in the power system.

To compared with transmission network, distribution network have some dif-
ferences: first, resistance and reactance of the transmission line in distribution
network is roughly equal size, so it often use AC power flow model; Second, its
topology is very special, as a tree structure with no loop, usually the number of
nodes far exceeding than the transmission network. If Newton’s method is still used
to solve distribution network problems, those characteristics may affect its calcu-
lation speed and Jacobian matrix will have huge memory requirements, for which
the distribution network is usually solved by the use of forward and backward
substitution method.

However, when large-scale renewable energy connected to the grid, its ran-
domness and intermittent will bring new challenges to the grid dispatch, due to the
traditional deterministic power flow calculation does not reflect the random infor-
mation, so that potential security issues is difficult forewarned operation crew. To
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this end, the birth of a series of methods for uncertain power flow, such as the
stochastic load flow, fuzzy and probabilistic power flow and so on. Stochastic
power flow is uncertain energy output probability distribution obtained by the
historical data, usually semi-variable method to replace the current system of
convolution operation to give a probability distribution. Fuzzy power flow put
intermittent power output to characterize as uncertain fuzzy numbers and then
follow the fuzzy number algorithms definition, using fuzzy set theory to solve.
Interval power flow places interval manner to model uncertainties, giving the
corresponding boundary information, so it has been widely studied [28].

Reference [29–31] used a Monte Carlo-based Newton Raphson stochastic power
flow algorithm to solve stochastic power flow issues of uncertain distributed
energy; [32] considered the distribution network probability function model of
nodal injection power, and obtained probability distribution of power flow; [33]
adopted the sigma-point transformation algorithm to solve the problem of the
probability power flow, estimating nonlinear flow moments in orders by series
expansion; [34] used the artificial neural network method to solve stochastic power
flow uncertain confidence interval; [35] adopted the point estimates algorithm to
solve the load and generation uncertain probabilistic power flow; [36] discussed the
distribution network probabilistic load flow based on current injection under the
forward and backward substitution algorithm framework; [37] based on
semi-variable method instead of convolution to solve probabilistic power flow
problem with correlation between nodal powers; Ref. [38] combined with
Gram-Charlier series expansion that is semi-invariant method to solve probabilistic
power flow considering static security risks of power grid; according to historical
data, Ref. [39] classified load and generation capacity historical data by time, load
and generation uncertain probability power flow in different periods of time; Ref.
[40] use affine arithmetic to express uncertainty amount, thus, use the method based
on optimizing to research calculation of probabilistic power flow; use of thus the
use of based approach to the probability of the power flow; the literature [41]
considered the power flow calculation of photovoltaic power generation uncertainty
and respectively used Gram-Charlier, Edgeworth and Cornish-Fisher expansion to
solute probabilistic power flow; [42] reviewed the stochastic load flow model,
methods and safety assessment approaches with random wind power; [43] made
probability model for random energy output on microgrid operated in island, and
used semi-in variant method to be the power flow solution; [44] used a combination
of sampling Monte Carlo algorithm for solving probability power flow problems
containing large-scale random variables, and used Latin hypercube sampling to
improve computational efficiency; [45] analyzed the probabilistic load flow prob-
lems based on dynamic flow, respectively considering frequency adjustment and
system frequency response process to improve the practical adjacent degree.

Reference [46] reviewed fuzzy number modeling method of loads, which were
respectively applied to the DC and AC power flow calculation; [47] used the Fuzzy
Set Theory to describe load and power output uncertainty by trapezoidal fuzzy
numbers and to get Ac fuzzy power flow by incremental model; [48] used proba-
bility theory and fuzzy number theory to build a multi-linearized fuzzy power flow
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model; Ref. [49–51] considered about uncertainty of generation and load and
proposed the AC non-linear fuzzy power flow which would be used in power
system operation and planning; [52] used fuzzy power flow in different loads and
failure scenarios to evaluate; [53] used Credibility Theory from Fuzzy Set Theory to
make the uncertainty modeling, and gave out the possibility distribution, expecta-
tion and variance of power flow; [54] used fuzzy logic control to solve the fuzzy
power flow for reducing computation time and the number of iterations, in order to
improve solving convergence; a fuzzy power flow with constraints is put in [55],
considering the constraints on transmission lines and etc. based on traditional fuzzy
power flow, to correct uncertain power flow; [56] adopted trapezoid fuzzy mem-
bership to express uncertainty, and an improved fuzzy power flow calculation
method based on forward and backward substitution method was put forward,
which had the computing speed of linear convergence; [57] discussed that at the
lack of historical information the use of traditional power flow by fuzzy power flow
could considered uncertain information to provide dispatchers help of
decision-making; [58] achieved fuzzy power flow based on fuzzy membership
degree on the Linux operating system project; [59] established the possibility
distribution of wind speed which was based on random fuzzy compatibility prin-
ciple, thereby solving the fuzzy power flow problem based on linear model; [60]
discussed the impact of the wind power uncertainty under a high permeability on
operation and planning, using probability theory and fuzzy sets to establish power
flow model of wind power uncertain with different types of wind turbine; [61]
applied fuzzy set theory to research calculation method of fuzzy power flow after
N-1 line operation.

References [62, 63] used interval mathematics to set an interval model of node
injection power uncertainty, and then used an iterative algorithm to solve the
boundary of power flow results; the literature [64] established a model for the
distribution network operation uncertainty of load, capacitor and phase modifier and
solved interval power flow using forward and backward substitution method;
[65, 66] established a three-phase range power flow model of load, capacitor and
phase modifier, and then considered the three-phase unbalanced load flow calcu-
lations; [67, 68] used Krawczyk-Moore interval iteration method to solve the
problem of the interval power flow; [69, 70] pointed out that the main problem of
interval arithmetic is a little conservative, for this reason, three kinds of represen-
tations were introduced into complex plane for complex interval calculation
including the complex box, complex disk and complex fan, for solving interval
distribution power flow with forward and backward substitution method; [71]
proposed genetic algorithm based on examples learning to be introduced into the
interval flow calculation; [72] considered uncertainties of the distribution network
and the feeder line and used interval mathematics to make a three-phase power flow
calculation; [73, 74] considered the interval uncertainty problems of static security
analysis and N − 1 security check; [75] proposed interval PQ decoupled power
flow calculation method which considered about uncertainty; [76] used interval
analysis method and Interval Gaussian Elimination Method for solving interval DC
load flow problem; [77] established an interval load flow model of wind farm, than
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analyzed the impact of wind power uncertainty on the steady-state analysis of the
wind farm in quantitative; [78] coalesced interval mathematics with interval con-
straint traditional theory for solving nonlinear interval distribution power flow
calculation; [79] used affine mathematics to describe the node inject uncertainty in
order to solve the quasi-steady uncertain power flow; considering uncertainty of
distributed generation, [80] proposed cutting points calculation of interconnection
switch and fast failure recovery method which were based on the analysis of
interval power flow; [81] proposed a method which is the combination of affine and
interval for solving interval exchange; based on Krawczyk algorithm, [82] proposed
a method for solving DC interval power flow, which could obtain a cover better
than interval Gaussian elimination method; [83] adopted optimization algorithm
and put forward an affine non-iterative calculation method for interval AC power
flow; [84] proposed an interval power flow solution based on linear optimization
method; [85] established uncertainty model of wind turbine and photovoltaic by
interval number and used a complex affine algorithm to solve interval three-phase
power flow; [86] made pretreatment on interval DC load flow, forming the main
diagonally dominant coefficient matrix to improve the calculation accuracy.

1.2.2 Economic Dispatch Model and Its Solution

Power system economic dispatch is one of important part of the electricity market,
according to the US Federal Energy Planning Board, to enhance the efficiency of
economic dispatch of small amplitude can cause huge economic savings each year,
especially for Independent System Operators (ISOs) in the new software spending,
the annual cost can be controlled within 10 million dollars [87].

Potential software investment income ratio in the approximate range of 10–1000,
and thus improving the economic scheduling and its solving method is very
important.

Economic dispatch based on minimizing operating costs to achieve a reasonable
distribution between generator units to match the constraints of generation and load
balance. Its essence is to solve the problem of optimal power flow. Depending on
the types of power flow equations, economic dispatch can be divided into AC
power flow based and DC power flow based; depending on the optimization of
time, economic dispatch can be divided into static and dynamic economic dispatch;
according to the different types of electricity market, it can be divided into days of
real-time market economic dispatch and days-ahead market economy dispatch.

1.2.2.1 Alternating Current (AC) and Direct Current (DC) Economic
Dispatch Model

AC economic dispatch model can accurately reflect the characteristics of nonlinear
network, but the optimization model has strong nonlinear and non-convex features,
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which makes the model very complex and great difficult to solve. Existing some
local optimum search algorithms based on Newton descent method [88–90],
sequential quadratic programming method [91], the interior point method [92], trust
region method [93], active-set method [94, 95] and so on. However, these methods
are not particularly robust for large scale power system optimization problems
which cause a convergence issues. From the research of power company in the
Midwest of the U.S., we found that when using the AC economic dispatch, opti-
mization model cannot converge for some time. Optimization Model analysis found
reason why the model don’t converge may be the deviation between power system
input parameters and the actual case, or some constraints are too strict. Secondly, all
of the above algorithms are local optimum search algorithm, which means global
optimization cannot guarantee. The optimal solution is closely related to the choice
of the initial value, for which reason to give a reasonable initial value in the AC
economic dispatch model needs to be noticed.

Compared to AC economic dispatch model, DC economic dispatch model is
based an online network to approximate the AC economic dispatch model, which
makes the optimization model voltage magnitude, voltage angle, power loss and
reactive power some simplify. DC model makes economic dispatch optimization
model into a convex optimization, to greatly improve their convergence of solution
and global optimization, especially when the objective function is linear, the linear
programming model is simple model. Due to the linear programming theory
becoming perfect and mature, large-scale computing and decomposition algorithms
become more sophisticated, so business software for solving linear programming
get rapid development, which makes the DC economic dispatch have been widely
used in the actual production and operation. And based on DC optimal power flow
model the analysis of the electricity market and power system planning obtain
certain income and influence.

AC optimal power flow primarily to get some applications in New York ISO and
California ISO, while the rest ISO are DC optimal power flow model, so the DC
optimal power flow is still the mainstream applications nowadays.

1.2.2.2 Static and Dynamic Economic Dispatch

Static economic dispatch for load information of a single time section, making
generation operation in this time period become the objective function to optimally
distribute contribution of generator. This kind of optimization problem can be
traced back to the 1930s classic economic dispatch model based on equal incre-
mental principle.

However, the static economic dispatch does not consider the coupling between
the various periods of time, in fact, power system is always in operating state of
dynamic equilibrium, while the load demand changes in real time, so the output of
the generator also need to be adjusted in time to meet the dynamic power balance.
However, the generator regulating ability is limited, primarily adjusted the output
by changing the passing gas amount of turbine, this regulating system has inertia
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which cannot always fast real-time adjust. For this, if system are scheduling fol-
lowing the results of static economic dispatch optimization in each time period, the
generator may have physical limitations that cannot transient to the security state,
and the results of such scheduling is actually meaningless. To this end, in a static
economic dispatch need to consider the coupling between the generator in each
period of time, which means constraint climbing ability, thus to form a dynamic
economic dispatch model. Dynamic economic dispatch model can be seen as a
combination of static economic dispatching multiple time periods, taking into
account coupling of each static economic dispatch model variables, forming a
combination optimization model. The objective function of the model is to optimize
the total cost of multiple time periods and to satisfy static constraints and dynamic
constraints of each period of time, with some foresight ability, which can arrange
for the generating units scheduling in advance and has great significance to actual
scheduling operation.

Number of variables and constraints in dynamic economic dispatch model with
respect to the static economic dispatch model is multiplied. Convex and linear
features of the model are retained, but solving efficiency will be affected. In early
times, solving large combinatorial optimization issues had various types of artificial
intelligence algorithms such as particle swarm optimization [96–103], bees algo-
rithm [104], simulated annealing algorithm [105], artificial neural networks [106,
107], genetic algorithm [108–113], evolutionary algorithm [114–117], as well as
some other intelligent methods [118–120]. With the improvement and development
of mathematical optimization algorithms, dynamic model will generally be pre-
treated and reduce dimension, so for large-scale dynamic optimization model,
dimension reduction model can be solved directly, including quadratic optimization
[121], Sequential quadratic programming [122, 123], dynamic programming
algorithm [124].

1.2.2.3 Day-Ahead Market Economic Dispatch and Real-Time Market
Economy Dispatch

Dynamic economic dispatch of power systems considered the variation of load in
multiple time periods in the future and the constraint of dynamic climbing ability of
generator sets, but load data in future is achieved by load forecasting. In reality, the
prediction error will inevitably be brought and the power grid is also in a
real-time-change state, for example, a system failure or a large disturbance,
topology changes, etc., so there will also be certain error between decisions run by a
dynamic model and the actual grid operation. In order to eliminate the error, the
power grid usually dispatch by levels according to different time scales, generally
believed that short-term prediction is more accurate than long-term projections of
results, therefore, according to the real-time updated forecast information to con-
sume error step by step.

Reference [125] divided the economic dispatch process into two sub-problems,
planning and dispatch. Each sub-problem are solving as different optimization
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model. On a longer time scale, dynamic economic dispatch model is adopted to
give the power plan; over a shorter time scale, static economic dispatch model is
adopted, according to the updated prediction information to give amendments on
the plan offered by the model in the longer time scale. This method of decompo-
sition is still used in the US electricity market, such as the American Midwest
power company and the New England electricity market. The electricity market
structure in the U.S. is usually divided into two markets, the day-ahead market and
the real-time market. According to the load forecast of every hour, the day-ahead
market builds dynamic economic dispatch model and gives the value plan of the
next 24 h. The real-time market based on the value forecast of current 5 min, using
static economic dispatch model to amend the plan offered by the day-ahead market.
The temporal level of the real-time market execution is 5 min. And within 5 min,
economic dispatch is no more use to do amendments on instructions, but use
Automatic Generation Control (AGC) of the generator to track the dispatch
instructions given by the real-time market.

Although China has not implemented the fully open electricity market system, in
economic dispatch it also follows a model similar to the hierarchical schedule
adopted by foreign countries. But the difference is, there is a time stage for roll
amendments added between the day-ahead dispatch and the real-time dispatch in
China [126], the in-day rolling dispatch. The most important reason for the dif-
ference is that, in the U.S., thermal power units are mostly gas-fired which has a
very fast rise speed, however, most of China’s thermal power units are coal-fired,
whose rise rate is relatively weak. So for the weak-rise coal-fired units, as the
conclusion taken before, the static dispatch is not forwarding-looking, if the rise rate
constraint of generator not considered, it may not be possible to achieve the effect of
optimization. The in-day rolling dispatch has a temporal level of an hour, namely
the use of the latest short-term load forecasting information, and the subsequent
amendments on the dispatch given by day-ahead forecast, which would relieve the
pressure of real-time dispatch by smoothly linking up the plan given by day-ahead
dispatch plan and the revision by real-time dispatch, and offer a coordinated control
compensation balanced the long-time and short-time dispatch.

In recent years, dynamic dispatch, which is called Look-ahead, is also gradually
used in real-time dispatch model. Same as the day-ahead dispatch model, it con-
siders a combinatorial optimization model in multiple periods with unit ramp
constraints, but the difference lies in the application of results. The day-ahead
dispatch delivers the optimized plan issue of all the periods, but when the
Look-ahead real-time dynamic dispatch produce the optimization issues of several
periods, it will deliver only the optimization issue of first five minutes, but not the
all after. Then in the next period, according to the amended predicted value, the
multi-period dynamic dispatch model analysis the optimization issue and deliver
optimization point of the first 5 min. This kind of optimization control method is
called Model Prediction Control (MPC) in control theory. The MPC theory is
widely applied in latest study, but considering its computational complexity, the
main focus is how to complete the large-scale combination dispatch algorithm
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within a time scale of 5-min, so the key to implement the Look-ahead method is to
develop quick and efficient algorithm.

1.2.3 Economic Dispatch Issues Considered the Security
Constraints

Traditional models of economic dispatch considered only power balancing con-
straint of generation with load and output constraint of generator sets. In early stage
the economic dispatch is considered without security constraint of network trans-
mission line, even the security constraints of N − 1 [125]. Thus, although the
results obtained could offer the best economy, still the security will be lost.
Especially in the peak load, there may be overloaded on transmission lines, which
will lead to out of operation of lines and transfer of the network power flow, and
induce to overload of other lines and to form a chain of off-grid crash. Therefore,
the application of rational models is quite effective in small-scale network system,
but for the online operation of large-scale system, security issues become
increasingly serious. Conventional methods use offline security check to do
amendments on dispatch plans which do not meet the security check, but this often
takes a lot of time and the revised dispatch plans is not necessarily the global
optimal solution, and therefore the economy of the dispatch optimization is also
decreased.

In order to coordinate security and economy of the system, Security Constrained
Economic Dispatch (SCED), which take security constraint as consider, is gradually
replacing the traditional economic dispatch which do not have security constraint.
But compared to the traditional optimization model, SCED model adds a lot of
linear constraints to keep the system security on transmission cross section, which
makes the optimization model becomes relatively complicated, especially the
economic dispatch optimization model with dynamic security constraint on con-
sideration of the multi-period system, which greatly increased the difficulty of
solution. Fortunately, in recent years decomposition-coordination algorithms are
developed. These algorithms typically decompose large-scale combinatorial opti-
mization problem into several sub-problems, which usually has the same structure
and can be solved in parallel. Coupled with the development of parallel computing,
the solving speed of combinatorial optimization has been further improved. The
most representative ones are the Lagrangian relaxation algorithm [127], Augmented
Lagrangian relaxation algorithm [128].

1.2 Research and Research Frontiers 11



1.2.4 Economic Dispatch Problems Considering Wind
Power Uncertainty

The uncertainty from wind output has brought unprecedented challenges to the
optimal operation of the power system. The power system operation has been
dealing with the uncertainty of load, different from load uncertainty, however, wind
output is characterized with large uncertainties and low prediction precision [129–
131], while load uncertainty has an intrinsic pattern, and the load prediction,
especially the short term 24 h load prediction has a significantly high forecast
accuracy [132–135]. Therefore, the optimal operation and dispatching model
considering stochastic wind power output has been a hot topic for research.

Reference [136] studied the effect of wind integration and wind uncertainty on
power system reliability, using an ARMA model to analyze short term wind
forecast; Ref. [137] studied the effect of stochastic wind power on the unit com-
mitment (UC) problem, and constructed a UC stochastic optimization problem with
the objective to minimize the expected operation cost; Ref. [138] tackled the
influence of distribution generation on a heavily loaded distribution system with a
wind forecast model based on statistics; a mixed integer stochastic optimization
model is established in [139], where the wind uncertainty is modeled with ARMA
as well as Latin hypercube sampling, and a scenario reduction method is adopted to
simplify the computation; in [140], an multi-agent framework for microgrids has
been proposed to coordinate distributed resources with distributed smart control
algorithm; Ref. [141] maximized renewable integration and minimized power loss
using an optimal AC power flow for renewable energy planning and operation; in
addition, the N − 1 security constraint and coupling among different time intervals
are considered; a multi-objective stochastic optimization problem which aims to
minimize generation cost and pollution emission is proposed in [142], which
employed a chance constraint for wind power output and is solved by a two stage
method; Ref. [143] studies the influence of wind power uncertainty on economic
dispatch, and a comparison between chance constraint and CVaR is presented; Ref.
[144] proposes a probability distribution model to economically dispatch combined
heat and power plants employing a scenario reduction technique; a security con-
strained stochastic optimization model considering large scale wind integration in
[145] is proposed and verified on a real world power system; Based on ARMA,
Ref. [146] introduced GARCH model to facilitate analysis of dynamic economic
dispatch problem considering wind power; the stochastic optimization is employed
in [147] to investigate the spinning reserve planning problem in a wind integrated
power system; Ref. [148] adopted a Differential Evolution method to solve the
multi-objective optimization problems in the power system with wind integration;
revenue and peak load regulating capacity were investigated in [149] that put
forward a multi-objective optimization problem considering demand response;
another multi-objective optimization problem was proposed in [150] that coordi-
nated revenue and peak load regulating capacity, and used a fuzzy optimization
method to solve the problem; Ref. [151] applied Latin hypercube sampling and
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simultaneous backward substitution method to perform microgrid energy optimal
dispatch while considering economy and fluctuation at the microgrid connection
point; based on α-superquantile stochastic optimization, Ref. [152] considered
combined cooling heating and power optimization model with wind power, and a
discussion of different confidence intervals of wind power is put forward.

Generally speaking, to investigate wind uncertainty, the first step is to model the
uncertain wind output, while often used methods include probability distribution
model, fuzzy model, and interval number model. Furthermore, based on different
modeling, stochastic planning theory, fuzzy optimization theory, and robust opti-
mization theory are proposed.

Stochastic optimization is to sample renewable energy output based on proba-
bility distribution, find typical output scenarios, and construct stochastic planning
modeling; fuzzy optimization is to describe the uncertain characteristics as fuzzy
membership functions, and add these functions into the optimization model; robust
optimization, on the other hand, is to use uncertain sets to represent wind power
uncertain output, and find an optimal solution that will not violate the security
constraint in the worst case scenario. In particular, if the uncertain set is modeled as
an interval, then the robust optimization can be termed as interval robust
optimization.

1.2.4.1 Stochastic Planning Theory

Reference [153] established different forms of linear stochastic optimal power flow
model, and compared their computation complexity; Ref. [154] investigated the
influence of uncertain power output from wind on the reactive power optimization
and built chance constraint stochastic planning problem based on probability dis-
tribution model; Ref. [155] considered load and wind uncertainty, and used particle
swarm optimization (PSO) to perform day ahead stochastic dispatch problem; for
renewable energy in microgrids, Ref. [156] used a heuristic stochastic optimization
that combined PSO with Monte Carlo simulation; Ref. [157] studied the stochastic
dispatch problem for multiple wind farms; based on wind power uncertainty,
stochastic optimization model for post-fault situations was established in [158]; Ref.
[159] considered the influence of stochastic nature of EV charging/discharging and
wind power on power system, and used Weibull distribution for wind power and
normal distribution for EV to build a stochastic optimization model; a stochastic
two stage stochastic unit commitment considering wind power was proposed in
[160], which employed a scenario reduction technique; Ref. [161] discussed the
optimal power flow model considering wind power probability distribution under
security constraint; based on wide area measurement [162], constructed a dynamic
stochastic power flow model for high penetration of renewable power, and to solve
the nonlinear optimal control problem, a dual heuristic dynamic optimization was
employed; Ref. [163] investigated hydro-power-wind cogeneration optimization
model that calculated parameters by Maximum Likelihood Estimation; Ref. [164]
adopted T-S fuzzy neural network to study stochastic optimal dispatch problem, in
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which a nonlinear evolution process is presented for evolution in generations; on
the basis of Copula function, a stochastic optimal dispatch model for renewable
energy is proposed in [165] and PSO is employed for solution; load elasticity and
wind power uncertainty were considered in [166], for which a stochastic opti-
mization model was proposed and was solved by Empire competition algorithm.
Ref. [167] proposed a stochastic power flow model based on Gaussian Mixture
Model for distribution system with uncertain factors; Ref. [168] established a
stochastic optimization model considering voltage stability and small-signal sta-
bility constraints, and applied second order relaxation, using Cornish-Fisher to
solve the problem. A bi-level dynamic stochastic optimization for high penetrating
renewable energy was constructed in [169], and a self-adaptive design algorithm
was used to solve the model; Ref. [170] dealt with power system operation and
planning, in which the stochastic model combined a multi-period UC and AC
optimal power flow to guarantee system security; N-1 security economic dispatch
model was proposed in [171], in which the AC power flow was relaxed and the
chance constraint convex optimization was used to deal with uncertainty; the
optimal power flow problem for flexible AC transmission was discussed in [172] to
optimize wind power shedding, in which the wind power output was modeled with
multiple scenarios, therefore a two stage stochastic optimization model was used;
Ref. [173] adopted a second-order relaxation for the AC power flow, and on that
basis a stochastic second-order optimization considering wind power output
uncertainty was proposed and solved by interior point method; Ref. [174] con-
sidered high voltage DC transmission for a multi-period stochastic optimization
model, considering double fed induction wind turbines to solve active and reactive
combined optimization problems; the reactive power control considering wind
power uncertainty was considered in [175] and solved with PSO-based fast prob-
abilistic power flow algorithm; the reactive optimization with uncertain nodal
injection was investigated in [176], similar to active power optimization, the model
also adopted a point estimation transformation under chance constraint, and used a
genetic algorithm to solve the model; Ref. [177] considered wind and PV output
uncertainty by using multi-scenario generation technique, and a multi-objective
optimization stochastic model was provided for microgrids.

1.2.4.2 Fuzzy Optimization Theory

Reference [178] modeled the uncertain nodal injection as fuzzy number and solved
a DC fuzzy power flow model using Dantzig Wolfe decomposition and dual
simplex method; Ref. [179] employed fuzzy set theory to build a cost minimization
power planning model, and solved the problem with dynamic genetic algorithm.
The fuzzy power flow was used to check security constraint and fuzzy energy loss
costs in fault scenarios; a multi-objective model considering voltage security was
proposed in [180], a fuzzy model is used to overcome the limitation of weights. The
model was solved with nonlinear primal dual interior point method; In [181] and
[182], the short term transmission system planning considering Credibility Theory
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and fuzzy power flow was proposed, and the genetic algorithm was employed to
reach optimality; Ref. [183] built a mix integer linear optimization model that can
consider multiple scenarios for optimal distribution planning; Ref. [184] analyzed
the influence of renewable energy and fault uncertainty on microgrid energy
management, and built a multi-objective economic dispatch model which was
solved by PSO; Ref. [185] studied the influence of load and wind power uncertainty
on capacitor planning, using fuzzy number for voltage constraints; Ref. [186]
established a fuzzy logic controller for maximum wind power tracking, which can
track the maximum wind power by considering wind power uncertainty and pro-
vide real time control parameters; Ref. [187] carried out analysis on the influence of
wind power uncertainty on system sustaining cost, and therefore proposed a
probabilistic model to minimize pollution and costs for static stochastic economic
dispatch, and adopted fuzzy set theory and entropy weight method to solve the
model; concerning renewable energy uncertainty, [188] introduced fuzzy number
theory, and combined the fuzzy number and optimal power flow together to form
fuzzy optimal power flow model, which is turned to deterministic optimization
problem by weighted shift and is solved by primal dual interior point method; Ref.
[189] provided a novel method towards fuzzy stochastic optimal power flow
problem, and used interval constraint to fuzzify the initial population in the genetic
algorithm, and used probability distribution to describe the fuzzy distribution of the
feasible solutions, therefore the optimal solution set can be reached; Ref. [190] used
the demand response to smooth the wind output fluctuation, and proposed a
multi-objective problem of minimizing operating cost and power loss, and used
fuzzy number theory to turn the problem into a single objective problem.

1.2.4.3 Robust Optimization Theories

Reference [191] studied the impact of the uncertain nodal power price on the
self-regulation of power generation. A robust optimization model was established,
the Value-at-risk was taken as a chance constraint, and the model was turned to a
second-order-cone model and solved by the primal dual interior point method;
considering the uncertainty of load and energy price, the robust optimization
problem for generators in an energy market was proposed in [192]; Ref. [193]
discussed the robust unit commitment problem considering wind power uncertainty,
and establish a security constrained mixed integer optimization model; Ref. [194]
proposed a robust wind farm planning problem considering the penetrating power
limit; Ref. [195] introduced the concept of Virtual Power Plant (VPP) to deal with
uncertain renewable power optimization problems, and used robust optimization
and PSO to solve the model; Ref. [196] built a robust unit commitment to deal with
wind power forecast errors, at the same time, this model also considered reserve
constraint and transmission power loss; the objective in [197] was to minimize
power loss while satisfying all constraints, and further, a robust reactive power
optimization model was established, which was turned to a linear optimization by
dual theory; Ref. [198] considered wind power uncertainty and proposed to convex
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robust optimization based on linear theory for system reserve planning; Ref. [199]
studied the two stage unit commitment optimization problem for renewable energy
and demand side response, and adopted cutting plane method to solve the model;
Ref. [200] proposed a robust unit commitment problem considering renewable
energy and storage, and introduced new variables to control the level of conser-
vativeness; Ref. [201] proposed a new real time economic dispatch algorithm that
can consider security and reliability with renewable energy; Ref. [202] studied the
combined dispatch optimization problem, in which a two stage mixed integer robust
planning model was used to consider renewable energy uncertainty; Ref. [203]
investigated the renewable energy uncertainty and its relationship to wind power,
natural gas system and coal system, and built a robust optimization model; Ref.
[204] built a two-stage self-adaptive robust unit commitment problem to consider
the uncertain nodal injection, and adopted a Benders decomposition to solve the
problem; Ref. [205] proposed a Affine robust optimization to determine the best
planning value, the output of thermal plant was presented as a uncertain renewable
energy source, a second-order cone with interior point method is used to reach the
optimal solution; based on wind power uncertainty, [206] took a step further and
considered the elastic demand response, and proposed a multi-level robust mixed
integer planning model, which was solved by Benders decomposition. A robust cost
function was employed to overcome conservativeness brought by the algorithm; to
reduce the issue of over conservativeness brought by robust optimization, [207]
introduced maxmin regret degree into the robust optimization problem and adopted
the Benders decomposition to solve the model; Ref. [208] used robust optimization
for power system reactive optimization; Ref. [209] considered the situation where
wind uncertainty can cause no feasible solution to economy, and proposed
multi-period rolling horizon robust dispatch to minimize wind curtailment; Ref.
[210] introduced dynamic uncertain set for two stage self-adaptive robust opti-
mization and considered the correlation of variables in different time period and
locations; Ref. [211] proposed an efficient microgrid operation algorithm for wind
and storage integration based on optimal order theory; a robust model considering
natural gas pipeline congestion and fast startup/shutdown units was studied in
[212], in which the pipeline constraints were linearized; the robust unit commitment
model with consideration for wind and load uncertainty was put forward in [213],
which did no settle for the worst case scenario, but optimize the base value so as to
have enough regulatory capacity for a certain range of uncertainty; Ref. [214] came
up with a sparse affine robust optimization model to process a multi-period storage
optimization problem that can guarantee real time power balance by constraining
generators; a robust optimal power flow was presented in [215] and an evolutionary
algorithm was adopted to solve the model; to tackle long term planning problem of
microgrid, a two stage robust optimization to determine the size and location of
renewable energy was presented in [216], and was solved by column generation
algorithm; game theory was used in [217] to deal with large scale wind integration
in power system, which was formulated as a two stage relaxed min-max problem;
Ref. [218] adopted robust optimization for AC optimal power flow and nodal price
considering wind and PV uncertainty; the objective in [219] was to minimize wind
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curtailment while finding the robust operating condition of the power system under
security consideration; references [220, 221] introduced robust optimization model
for automatic generation control (AGC) to guarantee the system security by con-
trolling ACG units; In [222, 223] the robust economic dispatch model was divided
into pre-adjustment and re-adjustment, and by adding feasible conditions into the
pre-adjustment problem to achieve the optimal results.

1.3 Limits of Existing Works and Research Motivation
for This Book

Energy management has been widely studied over decades; therefore the algorithms
and application are well developed. However, the large scale integration of
renewable energy, especially wind power, causes large impact on the current energy
management system by their stochastic nature. Consequently a new energy man-
agement system that can accommodate such new features is urgently required.
According to the literature review, intensive study has been carried out in this area,
but some key points remain unsolved.

As mentioned in 1.2, compared with probability distribution or fuzzy formula-
tion, interval number is an easier way to model the uncertain parameters, because
the distribution of the uncertain parameters are not straightforward to get, but the
upper and lower limits are relatively easier to obtain, thus making the interval
method more accessible.

Through interval power flow, the results are in intervals; though the probabilistic
distribution of variables are not deduced, the interval provides clear upper and
lower limits to system operators, which are important Ref. for optimal control; for
optimal operating and dispatching, interval robust optimization is widely used to
guarantee the system security in all possible wind power output intervals;

But there also exits some problems for interval robust power flow, which are
following:

(i) the conservativeness of interval algorithm (algorithm design)

Though interval expression is very straightforward, its calculation has conser-
vativeness issues. For example, assume two interval numbers [−1, +1] and [−2, +2],
then [−1, +1] + [−2, +2] = [−3, +3], but [−3, +3] − [−2, +2] = [−5, +5] ≠ [−1,
+1]. This means that after some rounds of calculation, the interval would be
expanded, which is called the conservativeness. The interval number calculation is
different from real number calculation, such as 1 + 2 = 3 or 3 − 2 = 1. Therefore
how to reduce the conservativeness of the interval calculation is a very important
topic. In Chap. 2 the algorithm for solving interval linear and nonlinear functions
are illustrated in detail.

Secondly, robust optimization in essence is to optimize in the worst case sce-
narios for uncertain factors; however, if the worst case scenario does not happen,
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the economy of the system operation is compromised, which can be considered as
conservativeness. Robust economic dispatch must reduce this conservativeness.

(ii) interval calculation and high efficiency of optimization algorithm (algo-
rithm design)

First, another goal of interval calculation is to find highly efficient algorithm for
interval linear and nonlinear functions. Though iteration algorithm has some
advantages in calculation efficiency, it is not ideal concerning convergence. It is
therefore worth investigating the highly efficient algorithms with good convergence;

Second, speaking from the perspective of algorithm, robust optimization, espe-
cially the max-min model for economic dispatch is hard to solve compared with
traditional linear problem or second order problem. For interval economic dispatch, it
is also worth learning how to reach optimal solution and optimize objective interval;

Finally, most power systems are of a large scale, therefore the scale of variables
can be huge, and more dummy variables can be introduced when considering
uncertain parameters. Methods to reduce computation scale for online dispatch by
parallel calculation is urgently needed.

(iii) modeling of power system practical problems and algorithms (physical
model)

First, in the traditional power flow calculation, the unbalanced power is balanced
at the slack bus. However, in reality the unbalance is taken by all the generators,
thus the dynamic power flow calculation is practical in this sense. Similarly, in
interval power flow all the uncertainty of the wind power output is balanced at the
slack bus, if certain constraints are added to make sure all generators share the
uncertainty, then interval power flow is transformed into a constrained interval
power flow;

Second, with the integration of uncertain wind power, there might be no feasible
solution to the traditional economic dispatch model. It is worth investigating how to
relax certain constraints or produce a closed-loop control strategy to perform wind
shed, or turn constraints into short-term soft constraints;

There are some specific practical problems in the power system operation, such
as the wind turbine has a non-operational range, or N − 1 outage often happens in
mass integration of wind power. Therefore it is worth investigating how to form the
robust economic dispatch model while considering security constraints, e.g. the
non-operational range and N − 1 security.
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Chapter 2
Mathematics for Interval Algebra
and Optimization

Abstract This chapter introduces some mathematical algorithms for solving
interval linear equations, interval nonlinear equations, interval nonlinear equations
and interval robust optimization models.

2.1 Definition of Intervals

Definition: An interval 〈x〉 is a non-empty set of real numbers, satisfying
xh i ¼ x; x½ � ¼ x 2 R : x� x� xf g, where x and x are called as the upper and lower
bound of the interval. Moreover, we have x; x 2 R and x� x. In particular, when
x ¼ x, the interval is degenerated into a real number. The set of all intervals are
called interval space, denoted by IR.

Interval arithmetic operations are defined on interval space IR. Given two
intervals 〈x〉 and 〈y〉, we have

Absolute value of intervals: xh ij j,mag xh ið Þ,max xj j; xj jf g;
Inclusion of intervals: xh i� yh i, y� x and y� x;
Basic arithmetic operations of intervals:

Addition xh iþ yh i, xþ y; xþ y
h i

;

Subtraction xh i � yh i, x� y; x� y
h i

;

Multiplication xh i � yh i, min xy; xy; xy; x y
n o

;max xy; xy; xy; x y
n oh i

;

Division xh i � yh i, 1=x; 1=x½ � � yh i, where 0 62 yh i
Intersection of intervals: xh i \ yh i ¼ ½maxðx; yÞ;minðx; yÞ�;
Union of intervals: xh i [ yh i ¼ ½minðx; yÞ;maxðx; yÞ�;
Comparison of intervals: xh i\ yh i , x\y;

The interval length: length xh ið Þ, x� x;
For an interval vector xh i 2 IRn�1, a norm of an interval vector is given by
xh ik k ¼ max xih ij j : i ¼ 1; . . .; nf g. According to the definition of norm followed

by (i)–(iv), we will show that xh ik k defined above is a norm of xh i:
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(i) Subadditivity: xh ik k ¼ max xih ij j : i ¼ 1; . . .; nf g� 0) xh ik k� 0;
(ii) Existence of zeros: xh ik k ¼ 0) max xj j; xj jð Þ ¼ 0) xj j ¼ xj j ¼ 0)

xh i ¼ 0; 0½ �;
(iii) Homogeneity: c 	 xh ik k ¼ max cxj j; cxj jð Þ ¼ cj jmax xj j; xj jð Þ ¼ cj j xh ik k;

(iv) Positivity:
xh iþ yh ik k ¼ max xþ yj j; xþ y

��� ���� �
�max xj j þ yj j; xj j þ y

��� ���� �
�max xj j; xj jð Þþmax yj j; y

��� ���� �
¼ xh ik kþ yh ik k

The aforementioned definitions of intervals are simple and understood, however,
it needs to know that the interval space is not satisfied with the definition of linear
space.

Example 1: xh i � xh i ¼ 2x; 2x½ � 6¼ 0. It shows that interval space is not a closure
for subtraction.

Example 2: xh i yh iþ zh ið Þ 6¼ xh i yh iþ xh i zh i, instead xh i yh iþ zh ið Þ� xh i yh iþ xh i zh i.
It shows that the distributive law does not hold in interval space.

The two examples above show interval space does not follow operational rules
of linear space, such that the interval solution will be calculated greater and greater,
especially when the same intervals appear several times in one expression, the range
of interval will become conservative. Therefore, it is significant to study how to
reduce the conservatism of interval arithmetic.

Furthermore, define two special interval matrices (M-matrix and H-matrix) and a
special real matrix (comparison matrix). Given an interval matrix 〈A〉 2 IRn×n, 〈A〉
is called an M-matrix if and only if 〈A〉ij ≤ 0 for all i ≠ j and 〈A〉 u > 0 for some
positive vector u 2 Rn; the comparison matrix Ac of 〈A〉 is defined as (2.1), if Ac is
an M-matrix, then 〈A〉 is said to be an H-matrix. Additionally, the central matrix
A 2 Rn×n of interval matrix 〈A〉 2 IRn×n is defined as: for 8[aij] 2 〈A〉,

aij ¼ aijþ aij
� �

=2 2 A

Ac ¼ mig aiih ið Þ i ¼ j
�mag aij

� �� �
i 6¼ j

	
8 aij

 � 2 A ð2:1Þ

2.2 Solutions of Algebraic Equations with Right-Hand
Intervals

2.2.1 Linear Equations with Right-Hand Intervals Using
Kraw Operator Iteration Method with Preconditioner

Given Ah i 2 IRn�n and bh i 2 IRn�1, traditional interval linear equations are defined
as Ah i xh i ¼ bh i to solve xh i. To solve general interval linear equations, four
solution methods are discussed in the paper including interval Gauss elimination
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method, Kraw operator iteration method, interval hull method and optimality-based
method. The details and flow chart of aforementioned four methods can be found in
Appendix A.

Howerver, if the coefficient matrix of interval linear equations is a constant
matrix, the traditional interval linear equations can be simplified as linear equations
with right-hand intervals, such that A xh i ¼ bh i. Thus, the special structural interval
linear equations obviously can be solved by four traditional methods:

(i) For interval Gauss elimination method, interval operations of coefficient
matrix 〈A〉 in the method directly replace by operations of traditional
deterministic coefficient matrix A in the real space, and right-hand intervals
still adopt interval operations. However, the nature of interval Gauss elimi-
nation method is a direct method, and time complexity of the method is
excessive.

(ii) For Kraw operator iteration method and interval hull method, they both need
to compute and express the inverse of central matrix Acð Þ�1. However, for
large system, it is difficult to directly compute the inverse of the matrix.

(iii) For optimality-based method, it is effective to solve this problem, because
interval linear equations can be transformed into linear programming fol-
lowed by (2.2)–(2.3). The linear programming is easy to solve, but we can
find that the interval of every variable need to compute separately. Certainly,
the interval of every variable is independent and can use parallel imple-
mentation. However, if the number of variables are relatively large, it will
need large parallel cores to implement while (i) and (ii) can solve intervals of
all variables simultaneously.

min=max
x;A

xi; i ¼ 1; . . .; n ð2:2Þ

bj�
Xn
i¼1

aijxi� bj; j ¼ 1; . . .; n ð2:3Þ

With respect to conservatism problem, because interval operations are not sat-
isfied with distributive law, LU decomposition will also expand the range of the
interval solution even for interval linear equations with constant coefficient. To
reduce the conservatism of the interval arithmetic, four methods in Appendix A can
overcome conservatism for interval linear equations with constant coefficient.
Therefore, the high efficiency of solution method should be focused on.

Reviewing the four methods, interval hull method needs to solve inverse central
matrix of coefficient matrix, so the complexity of computation is more difficult than
other methods; the relatively direct method (interval Gauss elimination method) and
the general iteration method (Kraw operator iteration method) has a faster solution
speed and a lower space complexity, but iteration method usually has poor
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convergence. Kraw operator iteration method needs to solve inverse of central
matrix to guarantee the convergence. However, the book to compute inverse of a
matrix is much great, and it hard to implement for a large system in practice.
According to the iteration expression of Kraw operator iteration method, we only
need to find a better matrix which is defined to guarantee the convergence, so
krawczyk iteration method with approximate inverse preconditioner can be used [1,
2]. For coefficient matrix A, a state-of-the-art method is to minimize the Frobenius
norm of the residual matrix ||I − CA||F

2 to seek an approximate inverse C. Generally,
we can take the 2-norm into consideration. In addition, the 2-norm can be decou-
pled as the sum of the squares, which can be utilized for the parallel computation.
The optimization model is formulated as following:

min
C

I � CAk k22 ¼
Xn
i¼1

ei � CiAk k22 ð2:4Þ

where Ci
k+1 denotes ith row of C at k + 1 iteration, n is the dimension of coefficient

matrix A, and ei is the ith raw of the identity matrix.
Furthermore, an approximate inverse can be computed using Newton’s method

with the iteration as

Ckþ 1 ¼ Ck � I � CkA
� � �Ck

� � ¼ Ck 2I � ACk
� � ð2:5Þ

Ckþ 1
i ¼ Ck

i � ei � Ck
iA

� � �Ck
� � ¼ Ck

i 2I � ACk
� �

; i ¼ 1; . . .; n ð2:6Þ

Theorem 2.1 To guarantee the convergence of Kraw operator iteration method,
constant matrix C should satisfy I � CAk k ¼ b\1

Proof According to Kraw operator iteration expression, define an interval sequence
xk
� �� 

which satisfies xkþ 1
� � ¼ C bh iþ I � CAð Þ xk� �� �\ xk

� �� C bh iþ I � CAð Þ xk� �� �
.

Then, we introduce a new sequence yk
� �� 

with ykþ 1
� � ¼ C bh iþ I � CAð Þ yk� �� �

.
We can easily derive that 0� xk

� ��� ��� yk
� ��� ��, so if yk

� �� 
converges, xk

� �� 
will be bounded by the limit of y1h if g.

For the sequence yk
� �� 

, it derives

ykþ 1
� � ¼ C bh iþ I � CAð Þ yk� �� �

; ykþ 1
� ��� �� ¼ C bh iþ I � CAð Þ yk� ��� ��

yk
� � ¼ C bh iþ I � CAð Þ yk�1� �� �

; yk
� ��� �� ¼ C bh iþ I � CAð Þ yk�1� ��� ��	

ð2:7Þ

Take the difference of the two equations, and we have

ykþ 1� �� yk
� ��� ��� k yk

� �� yk�1
� ��� ��� k2 yk�1

� �� yk�2
� ��� ��� 	 	 	 � kk y1

� �� y0
� ��� ��
ð2:8Þ
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Next, we will show that if n, m > N for an any given number N (assuming
n > m), then it holds that

ynh i � ymh ik k� kn

1� k
y1
� �� y0

� ��� �� ð2:9Þ

It can be proved as following:

ymþ 1� �� ymh i�� ��� km y1
� �� y0

� ��� ��
ymh i � ymþ 2� ��� ��� ymþ 2� �� ymh i�� ��� ymþ 1� �� ymh i�� ��
þ ymþ 2� �� ymþ 1� ��� ��� kmþ kmþ 1� �

y1
� �� y0

� ��� ��. . .
ynh i � ymh ik k� kmþ kmþ 1þ 	 	 	 þ kn�1

� �
y1
� �� y0

� ��� ��
¼ km 1þ kþ 	 	 	 þ kn�m�1

� �
y1
� �� y0

� ��� ��
� kn 1þ kþ k2þ 	 	 	� �

y1
� �� y0

� ��� �� ¼ kn

1� k
y1
� �� y0

� ��� ��
(Q.E.D.)

Thus, we can conclude that if k\1, yk
� �� 

is a Cauchy sequence, which
converges to a point y
h i that belongs to IR space. Thus, xk

� �� 
will be bound by

y
h if g, such that 0� xh ik k� y
h ik k.
On the other hand

xkþ 1� � ¼ C bh iþ I � CAð Þ xk� �� �\ xk
� �� xk

� �) xkþ 1� ��� ��� xk
� ��� ��

As a result, we can see that xk
� �� 

is a monotonously decreasing and bounded
sequence; therefore, it must be converged after several iterations.

(Q.E.D.)
According to Corollary 2.1, the spectral radius of I � C0A must be less than one

with the aim of convergence. Therefore, if the initial guess of C0 is chosen as
C0 ¼ dAT , it yields

q I � dATA
� �

\1) 0� d� 2
q ATA
� � ð2:10Þ

where ρ denotes the spectral radius of a matrix.
It is easily known from [3] that q ATA

� �� ATA
�� ��, where ||	|| is any subordinate

norm. In practice, we use

d ¼ 1= ATA
�� ��

1 ð2:11Þ

Finally, it is important to point out that the approximate inverse matrix may
become denser and denser as the iterations progress, which will need additional
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communication with memory and will have a side effect on the computation effi-
ciency. Meanwhile, some nonzero elements with small value is extremely close to
zero, but they can not be fully equal to zero because of calculation error. Therefore,
the sparsity representation should be performed during each iteration by dropping
some elements with small value in the approximate inverse matrix. The flowchart of
proposed Kraw operator iteration method with minimum norm preconditioner is
shown in Table 2.1.

Table 2.1 The flowchart of Kraw operator iteration method with minimum norm preconditioner
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2.2.2 Nonlinear Equations with Right-Hand Intervals Using
Optimality-Based Method

It should be noted that the interval nonlinear equations are more difficult than
interval linear equations to be handled. If the intervals only exist in the right hand of
the nonlinear equations, the interval nonlinear equations can be compactly for-
mulated as F xh ið Þ ¼ ph i, where p is the input interval parameters and 〈x〉 is the
interval solution of the nonlinear equations. Generally, the interval nonlinear
equations can be solved by the interval nonlinear Kraw operator iteration method,
the flowchart of which can be found in the Appendix B.

However, the conservatism problem of interval nonlinear equations are more
serious. As Sect. 1.2.1 mentioned, when the same intervals appear several times in
one expression, the range of interval will become conservative. However, in the
computation of interval nonlinear equations, it may have many same elements in
Jacobian matrix and initial equations, so the interval solutions may be greatly
expanded after several iterations, which will lead to serious conservatism problem.
Therefore, the biggest challenge to solve interval nonlinear equations is to over-
come conservatism of interval operations.

Similarly, optimality-based method of interval linear equations can be used. If
p is regarded as a new variable, then in a high-dimensional space with the optimal
variable of (p, x), the optimization model is formulated as following:

min=max
x;p

xi s:t: p�F x; pð Þ� p; i ¼ 1; . . .; n ð2:12Þ

With the objective function of min and max respectively, the lower and upper
bound of the variable i can be solved. Similarly, because the solution of every
variable is independent, it can be divided into n optimizer with parallel imple-
mentation. Compared with Kraw operator iteration method, optimality-based
method is able to attain compact range of interval. However, the aforementioned
model is generally a nonlinear optimization model, and it is hard to compute global
optimal solution. Then, our discussion is based on the common interval quadratic
nonlinear equations.

2.2.2.1 Linear Relaxation Model for Interval Quadratic Equations
with Optimality-Based Method

Consider interval quadratic nonlinear equations xTQjxþ cTj x ¼ dj; dj
h i

, j ¼ 1; . . .;m.

The optimization model based the aforementioned method is formulated as

max=min
x2Rn�1

xTQ0xþ cT0x ð2:13Þ
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s:t: dj� xTQjxþ cTj x� dj; j ¼ 1; . . .;m ð2:14Þ

It notes that the independent variable x generally has a reasonable given range of
interval. Let the range of interval is li� xi� ui; i ¼ 1; . . .; n, then we can get a
general quadratically constrained quadratic programming (QCQP) model:

QCQPð Þ max=min
x2Rn�1

xTQ0xþ cT0x ð2:15Þ

s:t: dj� xTQjxþ cTj x� dj; j ¼ 1; . . .;m ð2:16Þ

li� xi� ui; i ¼ 1; . . .; n ð2:17Þ

where n denotes the number of quadratic constraints, Qj (j = 1,…,m) are indefinite
n × n matrices, cj (j = 0,…,m) are n-dimensional vectors, the set

Sn
i¼1 li; ui½ � is

assumed to be nonempty and bounded.
ϕ(x,y) is called bilinear function if ϕ(x,	) and ϕ(	,y) are both linear functions. For

example, ϕ(x,y) = xy is a bilinear function. Let a mapping f: Ω→ R be a bilinear
function, then vexΩ(f) is the convex envelope of f over Ω, if it is the point-wise
supremum of convex underestimation of f over Ω. Similarly, cavΩ(f) is the concave
envelope of f over Ω, if it is the point-wise infimum of concave overestimation of
f over Ω, then a theorem is given as following.

Theorem 2.2: xy is a bilinear function given in a bounded closed set Ψ. The
convex envelope vexΩ(xy) and concave envelope cavΩ(xy) are determined by (2.58)
and (2.59), and then we can arrive at vexΩ(xy) ≤ xy ≤ cavΩ(xy).

W ¼def x; yð Þ 2 R2
��lx� x� ux; ly� y� uy

�  ð2:18Þ

vexXðxyÞ ¼ maxflyxþ lxy� lxly; uyxþ uxy� uxuyg ð2:19Þ

cavXðxyÞ ¼ minfuyxþ lxy� lxuy; lyxþ uxy� uxlyg ð2:20Þ

Let dummy variable Z ¼ xxT 2 Rn�n and substitute Z for xxT in QCQP model,
the objective and constraints become bilinear. Furthermore, the convex envelopes
and concave envelopes as defined in Theorem 2.2 are introduced to obtain the
tractable linear relaxation (LR) model of the non-convex problem QCQP, formu-
lated as follows:

QCQP�LRð Þ max=min
x2Rn�n;z2Rn�n

cTxþQ0 	 Z ð2:21Þ

s:t: dj� cTj xþQj 	 Z� dj; j ¼ 1; . . .;m ð2:22Þ
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zij � lixj � ljxiþ lilj� 0; j ¼ 1; . . .;m i ¼ 1; . . .; n ð2:23Þ

zij � uixj � ujxiþ uiuj� 0; j ¼ 1; . . .;m i ¼ 1; . . .; n ð2:24Þ

zij � lixj � ujxiþ liuj� 0; j ¼ 1; . . .;m i ¼ 1; . . .; n ð2:25Þ

zij � uixj � ljxiþ uilj� 0; j ¼ 1; . . .;m i ¼ 1; . . .; n ð2:26Þ

li� xi� ui; i ¼ 1; . . .; n ð2:27Þ

where 8A;B 2 Rn�n, A 	 B ¼Pn
i¼1
Pn

j¼1 aijbij.

For minimization problem of the original QCQP, the QCQP-LR is a relaxed
linear programming model and therefore provides a lower bound of the original
QCQP. Similarly, it provides an upper bound for the maximization problem of the
original QCQP.

2.2.3 Optimality-Based Bounds Tightening Method

It can be observed that the relaxed QCQP-LR model is dependent on the
hyper-rectangular variable domain. At the beginning, the initial domain is usually
so large that leads to a conservational interval solution, so it is desirable to schedule
a more rigorous hyper-rectangle domain to achieve an optimal interval solution. For
this reason, the optimality-based bounds tightening (OBBT) method proposed in
[4–6] is employed to solve the QCQP-LR model, which will tighten the relaxed
model QCQP-LR based on linear optimality by cycling through each participating
variable until the volume fails to improve.

Define xk = (ek, fk, yk) to represent the variable set in the kth iteration. Let LRΩ
k

(xk) denote the constraints of QCQP-LR model and let (φΩ)
k(	) be the optimal

objective value of (QCQP-LR) in the feasible domain Xk ¼ xk � x� xk
n o

. Then,

the hyper-rectangular variable domain can be tightened or ‘squeezed’ through an
iterative linear programming solver, which is illustrated in the following three steps.

(a) The initial matrix domain is set as Ω0, set k ← 0;

(b) Solve
xkþ 1
i  max xi s:t: LRXk xk

� �\Xk� 
xkþ 1
i  min xi s:t: LRXk xk

� �\Xk� (
for 8I; set k  kþ 1;

(c) Ωk ← { xk � x� xk }, if Ωk = Ωk−1 stop; otherwise, go to (b).

From iteration process above, we know that interval power flow computation
includes ‘min’ and ‘max’ models simultaneously solved. Based on OBBT method,
the variable domain Xi satisfies Xi�1�Xi, and as such the domain sequence
{Ω0, Ω1, Ω2,…, Ωi, …}, obtained from step (b), is monotonously decreasing and
geometrically a nested sequence of hyper-rectangles, so the domain sequence is a
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Cauchy sequence and has a limit. Additionally, QCQP-LR model is a linear pro-
gramming in a bounded closed set (compact set). For any given solution x and y, we
have ||(φΩ)(x) − (φΩ)(y)||∞ = ||(xTQ0x + c0

Tx) − (yTQ0y + c0
Ty)||∞ ≤ ||u − l||∞	||Q0||∞	||

u − l||∞ <+ ∞, which means operator (φΩ)
i(	) is a bounded operator. Therefore, ||

(φΩ)
i+1(x) − (φΩ)

i(x)||∞ ≤ ||(φΩ)
i(x)||∞	||Ωi+1−Ωi||∞, where ||Ωi||∞ = xi � xi

�� ��
1.

According to functional analysis, the aforementioned expression denotes that a
Cauchy sequence is mapped to a Cauchy sequence by bounded operator. Therefore,
the sequence {(φΩ)

0(x), …, (φΩ)
i(x), …} is also a Cauchy sequence and has a limit,

which demonstrates that the proposed OBBT-based algorithm can converge after
finite number of iterations. Furthermore, the process of gradually tightened
hyper-rectangular variable domain is illustrated in Fig. 2.1, where the solid red area
represents the feasible region of the original non-convex QCQP problem.

After the process stops (and OBBT algorithm converges), the optimally tight-
ened hyper-rectangular variable domain Ω* and the corresponding interval solution
are obtained.

2.3 Optimization Solutions Based Intervals

2.3.1 Optimization Solutions with Right-Hand Intervals

Interval linear optimization model with right-hand interval uncertainties is formu-
lated as

Min Z ¼ cTx ð2:28Þ

s:t: Ax ¼ w�;wþ½ � ð2:29Þ

Bx� d�; dþ

 � ð2:29Þ

k k+1k 1 x

LRFig. 2.1 The process of
gradually tightened variable
domain using OBBT-based
method
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l� x� u ð2:30Þ

where, A 2 Rs�n;B 2 Rm�n, c 2 Rn�1; x 2 Rn�1; m represents the number of
interval inequations, s represents the number of interval equations, n represents the
dimension of variable.

The objective of interval optimization is to find out the optimistic value and
pessimistic value of objective functions and range of interval variables. For
8w 2 w�;wþ½ �, 8d 2 d�; dþ


 �
, solve the deterministic optimization model as

following, and obtain the objective value and the optimal solution. if uncertainty
variables are taken as any possible combinations of intervals, then we can obtain
any possible objective values and optimal interval solutions, and the upper and
lower bounds of which are called the optimal interval function value and the
optimal interval solution, where the upper bound of optimal interval function value
is called pessimistic value and the lower bound is called optimistic value.

Min Z ¼ cTx ð2:31Þ

s:t: Ax ¼ w ð2:32Þ

Bx� d ð2:33Þ

l� x� u ð2:34Þ

We can see that independent variable x and objective value Z of model (2.28)–
(2.30) is the function of uncertainties, which is an optimization model. From this
perspective, interval optimization is a special kind of interval mathematical oper-
ation, which is hard to obtain an explicit expression. Considering to overcome the
conservatism of interval operations, it can be solved by the optimization method.
Therefore, interval optimization can be regarded as the optimization of optimiza-
tion, that is, bi-level programming.

Firstly, assume the interval optimization model is solvable, such that for
8w 2 w�;wþ½ �, 8d 2 d�; dþ


 �
, the optimization model (2.31)–(2.34) is feasible.

Based on the assumption, the solution models of optimistic value and pessimistic
value are obtained according to the two standard bi-level optimization model
(2.35)–(2.39) and (2.40)–(2.44), where optimistic value denotes the optimal value
among the range of uncertain disturbance interval, which is expressed as “min-min”
form while pessimistic value denotes the worst value among the range of uncertain
disturbance interval, which is expressed as “max-min” form

Optimistic valueð Þmin
w;d

min
x

Z� ¼ cTx ð2:35Þ

s:t: Ax ¼ w ð2:36Þ
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Bx� d ð2:37Þ

l� x� u ð2:38Þ

8w 2 w�;wþ½ �; 8d 2 d�; dþ

 � ð2:39Þ

ðPessimistic valueÞ max
w;d

min
x

Z þ ¼ cTx ð2:40Þ

s:t: Ax ¼ w ð2:41Þ

Bx� d ð2:42Þ

l� x� u ð2:43Þ

8w 2 w�;wþ½ �; 8d 2 d�; dþ

 � ð2:44Þ

A. The solution of optimistic model

Because the inner and outer level of bi-level optimistic model are both “min”
problems, it can be combined as single-level programming, and we hope the fea-
sible region is as large as possible to guarantee the lower bound of interval solution.
Then, the inequality constraint is relaxed to the maximum bound d+, and the
simplified single-level optimization is formulated as (2.45)–(2.48). Therefore, the
linear programming problem can be solved effectively by simplex method.

ðOptimistic valueÞ min
x

Z� ¼ cTx ð2:45Þ

s:t:w� �Ax�wþ ð2:46Þ

Bx� dþ ð2:47Þ

l� x� u ð2:48Þ

B. The solution of pessimistic model

However, for bi-level pessimistic model, the inner level is “min” model while the
outer level is “max” model. Because the objectives of inner and outer levels are
different, it can not be transformed as a single-level programming. Generally, it is
easy to handle interval inequality constraints and hard to handle interval equality
constraints. From the view of mathematics, strong duality theorem is employed to
express the inner model as its dual model and a “max” model is obtained. Then the
“max-max” model is transformed into a single-level “max” model is according to
the solution of two-level optimistic model. To pessimistic model, we hope the
feasible region is as small as possible, so the inequality constraint is shrunk to the
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minimum bound d−. In the inner model, the uncertain value is regarded as a
constant and dual model is used, then we have,

Z þ ¼ Max�b�w� b

Min
x

Z ¼ cTx

s:t: Bx� d� the number of constraints is m
Ax ¼ w the number of constraints is s
Ix� l the number of constraints is n
Ix� u the number of constraints is n

8>>>><>>>>:
,

Z þ ¼ Max�b�w� b

Max
y1;y2;y3;y4

d�ð ÞTy1þwTy2þ lTy3þ uTy4

s:t: ET ;AT ; I; I

 � y1

y2
y3
y4

2664
3775 ¼ c the number of constraints is n

y1� 0 the number of constraints is m
�1\y2\þ1 the number of constraints is s
y3� 0 the number of constraints is n
y4� 0 the number of constraints is n

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð2:49Þ

where y1 ¼ yið Þm�1; y2 ¼ yið Þs�1, y3 ¼ yið Þn�1; y4 ¼ yið Þn�1 and

y ¼ yT1 ; y
T
2 ; y

T
3 ; y

T
4

� �T
.

It is obvious from model (2.49) that transformed “max” model is not a linear
programming, but a nonlinear programming with inner product of different vari-
ables (wTy2). This special optimization model is also called bilinear programming.
Certainly, the interior point method of nonlinear programming is only to obtain
local optimal solution, but it is a NP difficult problem to obtain global optimal
solution. For NP difficult problem, a unified and effective method to solve the
problem is not proposed at present. In general, different approximate methods are
used to solve the problem, and the artificial intelligence method and branch and
bound method are mainly used to search. Two branch and bound methods are
proposed in the paper to solve this problem.

Method One: Spatial branch and bound method
The first method to search global optimal solution is to use branch and bound

method based linear relaxation technique. It is branched for continuous variables, so
it is also called spatial branch and bound method or simplicial branch and bound
method [7, 8].

Generally, the objective function of standard model is normalized as “min” form.
Therefore, (2.49) is replaced by (2.50), which have same optimal solutions, and the
model with “min” form is used to analyze and discuss below.

min
w;y

�Z þ ¼ �wTy1 � d�ð ÞTy2 � lTy3 � uTy4 ð2:50Þ
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Firstly, spatial branch and bound method need to relax (2.49) in the continuous
space to find the strict lower bound of the model. Of course, there are many ways to
relax, and we hope to find a linear relaxation model which can be easily solved.
According to Theorem 2.2, the original optimization model (2.49) can be linearly
relaxed on any bounded closed set to obtain global lower bound. However, the
lower bound is not necessarily the infimum, so the branch and bound method is
used to approaching. The initial bounded closed set can be selected as the whole
feasible region. However, because y1 has no limit, a big number Q = 106 is used to

restrict, such that R0 ¼ w� �w0�wþ ;�Q\y01;i\þQ
n o

, i = 1, …, Ng. If f *

denotes exact optimal solution, for the kth region, the feasible region is expanded
after relaxation, so the solution f r,k is obtained and f r,k ≤ f *. If the bounded closed
set is halved into two regions shown in Fig. 2.2 and each region is linearly relaxed,
the new feasible region obtained is smaller than the one after direct relaxation, and
the relaxation solution f r,k is improved. However, the relaxation model is used to
solve after branching, so the solution is always the lower bound of original model,
so that f r,k ≤ f * is always satisfied. After each halving, the subregion with minimum
value is chosen to be branched again, so the sequence solution fr,k is monotonically
increasing with continuous branching.

On the other hand, the solution fr,k of relaxation model can be selected as the
initial value, and interior point method is used to solve model (2.55) directly.
Because only local optimal solution f l,k is obtained by interior point method, and
the local optimal solution must be greater than or equal to global optimal solution,
such that f * ≤ f l,k. Therefore, the upper bound is limited by min(fl,k) in the solving
process, and the upper bound value is continuously decreased.

Considering the upper bound solution sequence and the lower bound solution
sequence, we know that the upper bound solution is continuously decreased and
lower bound solution is continuously increased. The global optimal solution is
between upper and lower bound, and the distance between upper and lower bound
is called gap. Therefore, with the number of branches increased, the gap is deceased
gradually, and if the gap is smaller than the predefined error, then the branching is
stopped and upper bound solution is the global optimal solution, which is the
branch and bound method proceeding in the continuous space.

x

f

Original Feasible 
Region

Relaxed Feasible 
Region

Original Branching

f 0

f 1

Fig. 2.2 The influence of
bounded closed set halved on
feasible region
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In the kth bounded closet set Rk, the linear relaxation model of (2.49) is for-
mulated as following:

min
w;y

�Z þ ¼ �s� d�ð ÞTy2 � lTy3 � uTy4 ð2:51Þ

set ATy1þBTy2þ y3þ y4 ¼ c ð2:52Þ

y2� 0 y3� 0 y4� 0 ð2:53Þ

ski � lky1;iwiþ lkw;iy1;i � lkw;il
k
y1;i ð2:54Þ

ski � uky1;iwiþ ukw;iy1;i � ukw;iu
k
y1;i ð2:55Þ

ski � uky1;iwiþ lkw;iy1;i � lkw;iu
k
y1;i ð2:56Þ

ski � lky1;iwiþ ukw;iy1;i � ukw;il
k
y1;i ð2:57Þ

Rk ¼ wk; yk1 2 RNg�1��lkw�wk � ukw; l
k
y1 � yk1� uky1

n o
ð2:58Þ

The flow chart of spatial branch and bound method is given in Table 2.2. To
express conveniently, Ψlb(Ω) denotes the lower bound solution of region Ω
obtained by relaxtion model (2.43), and Ψub(Ω) denotes the upper bound solution
obtained by interior point method.

Method Two: Integral branch and bound method

Theorem 2.3 [9]: If the polyhedral feasible region W and Y are bounded and
separable, the optimal solution (w*, y*) of bi-linear programming with w 2 W and
y 2 Y is satisfied with w* 2 V(W) and y* 2 V(Y), where V(W) and V(Y) denotes the
vertexes (poles) of polyhedral feasible region W and Y, respectively, then we have

Table 2.2 The flow chart of spatial branch and bound method

Spatial Branch and Bound Method
Step 1 k←0 initial region Ω0 and precision ε is given;
Step 2   L0=Lb.(Ω0) U0=Ψub(Ω0) List={Ω0};
Step 3  while Uk-Lk>ε
Step 4 k =arg j(Ψub(Ωj)==Lk), Ωj List;
Step 5 Halve region Ωk, and form two new region ΩI and ΩII;
Step 6 Remove Ωk of List, and add ΩI and ΩII;
Step 7 Lk+1←min Ψlb(Ωj) Ωj List
Step 8 Uk+1←min Ψub(Ωj) Ωj List
Step 9    k←k+1
Step 10 end

∀

∀
∀
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maxw2W f w; y
ð Þ ¼ f w
; y
ð Þ ¼ maxy2Y f w
; yð Þ ð2:59Þ
Proof If the value of fixed vector y is y*, the bilinear programming model is
transformed into a linear programming with variable w and its optimal solution w*

must be at the poles of the feasible region of W. Similarly, if the value of fixed
vector w is w*, then the bilinear programming model is transformed into a linear
programming with variable y and its optimal solution y* must be at the poles of the
feasible region of Y. It notes that the optimal solution (w*, y*) of the bilinear
programming model is satisfied with w* 2 V(W) and y* 2 V(Y), where V(W) and V
(Y) represents the vertexes (poles) of polyhedral feasible region W and Y,
respectively.

Based on this theorem, for the bilinear programming model of (2.49). The
feasible region of uncertainties is a boxed polyhedron feasible region, so the
optimal solution must be achieved at the interval upper or lower bounds of the
uncertainties. Therefore, “or” constraint can be used to express. Furthermore, with a
dummy integer variable z, “or” constraint can be transformed into a mixed integer
linear programming model, such that

wi ¼ b�i or wi ¼ bþi
for 8i ¼ 1; . . .; s

, wi ¼ biþ zi bi � bi
� �

; zi 2 0; 1f g; 8i ¼ 1; . . .; s

ð2:60Þ

Furthermore, the pessimistic model of (2.49) can be transformed into

Pessimistic valueð Þ
max

y1;y2;y3;y4;w
Z þ ¼ d�ð ÞTy1þwTy2þLTy3þUTy4

s:t: ETy1þATy2þ y3þ y4 ¼ c
y1� 0 �1\y2\þ1 y3� 0 y4� 0
wi ¼ b�i þ zi bþi � b�i

� �
; zi 2 0; 1f g

ð2:61Þ

We can know that, the model (2.61) is a mixed integer bilinear programming.
Fortunately, based on big M theory, the product zy2 of integer variable and con-
tinuous variable can be introduced some dummy variables, and the model is sim-
plified as a simple dummy integer variable as following:

Pessimistic valueð Þ
max

y1;y2;y3;y4;w
Z þ ¼ d�ð ÞTy1þ

Ps
i¼1

y2;ib�i þ xi bþi � b�i
� �� �þLTy3þUTy4

s:t: ETy1þATy2þ y3þ y4 ¼ c
y1� 0 �1\y2\þ1 y3� 0 y4� 0; zi 2 0; 1f g
y2;i �M 1� zið Þ� xi� y2;iþM 1� zið Þ; �Mzi� xi�Mzi

ð2:62Þ
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where M is a sufficient large number. We can know that if zi = 0, xi is 0, and the
value of wiy2i is y2;ib�i ; if zi = 1, xi is y2,I, and the value of wiy2i is y2;ibþi .

The general solution of mixed integer programming is to relax integer variables
into continuous variables, branch and bound next, and stop searching when the
upper bound and lower bound are almost equal. Because the optimal solution of
(2.49) is solution of the dual problem of model (2.40)–(2.44), the optimal solution
of original model (2.40)–(2.44) can be solved by complementary relaxation con-
dition. Another method is to obtain the optimal solution wp of uncertainties based
on (2.62), then fix and bring it into model (2.49). Due to uncertainties defined, the
model can be transformed into:

(Pessimistic value)

min
x

Z þ ¼ cTx ð2:63Þ

s:t: Ax ¼ wp ð2:64Þ

Bx� d� ð2:65Þ

l� x� u ð2:66Þ

It is necessary to know that optimistic value and pessimistic value of interval
optimization model are obtained according to (2.45)–(2.48) and (2.63)–(2.66),
respectively, and the optimal interval of objective function is [Zl, Zu]. Interval
optimization mainly focus on the interval upper and lower bound information of
objective function, so the optimal solution xopt and xopt of interval independent
variables reflect the objective change from the optimistic value to the pessimistic
value, which can not define interval range of optimal independent variables strictly.
To obtain interval of optimal independent variables, a bi-level optimization model
can be formulated as:

x�i ¼ max
x;w;d

=min
x;w;d

xi

s:t: xmin
i � xi� xmax

i
w� �w�wþ

d� � d� dþ ;
xi ¼ argmin

x
cTx

s:t: Ax ¼ w
Bx� d

i ¼ 1; . . .; n ð2:67Þ

The combinatorial nature of bi-level programming can be observed by studying
the single-level reformulation obtained by replacing the inner level problem with its
KKT (Karush-Kuhn-Tucker) condition, which is a necessary and sufficient opti-
mality conditions when the inner optimization model is actually a convex problem.
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However, KKT condition is a set of nonlinear and non-convex equations;
therefore, though KKT condition is used, ti is hard to guarantee the global opti-
mality of programming. Then we consider to transform the KKT condition into an
expression of mixed integer, and by introducing some dummy variables, nonlinear
and non-convex equations can be replaced by non-convex equations of mixed
integer linear programming, which is easier to solve. Furthermore, combined big M
theory, the general complementarity slackness constraints can be exactly linearized
with dummy integer variables z, such that (2.68) is equivalently transformed as
(2.69).

Ax ¼ w
Bx� d

cþATlþBTk ¼ 0
Bx� dð Þ 	 
k ¼ 0

k� 0

ð2:68Þ

Ax ¼ w
cþATlþBTk ¼ 0

�M 1� zð Þ� Bx� dð Þ� 0
Mz� k� 0; z 2 0; 1f g

ð2:69Þ

Furthermore, the model (2.67) is transformed into

x�i ¼ max
x

=min
x

xi

s:t: xmin
i � xi� xmax

i
w� �w�wþ

d� � d� dþ

Ax ¼ w
cþATlþBTk ¼ 0

�M 1� zð Þ�Bx� d� 0
Mz� k� 0; z 2 0; 1f g

; i ¼ 1; . . .; n ð2:70Þ

Moreover, the mixed integer linear programming can be solved by branch and
bound method to obtain upper and lower bound of optimal solution as well as its
interval x�i ; x

þ
i


 �
.

However, when conducting interval optimization, it is necessary to consider
such a problem that whether the objective function and optimal solution are con-
tinuous functions of uncertainties or not. In other words, when the uncertainties are
changed in the range of interval, the objective function and the optimal solution are
also changed in a certain range, but whether they are filled with the entire range of
interval. Next, we will prove that if the objective function and optimal solution are
continuous functions of uncertainties, then they can be filled with the entire range of
interval.
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Mathematically, linear programming (2.28)–(2.30) can be formulated as

min
x2Rn

qTxþ r ð2:71Þ

s:t: Beqx ¼ geqþFeqh ð2:72Þ

Bieqx� gieqþFieqh ð2:73Þ

h 2 h�; hþ

 � ð2:74Þ

where x is an n × 1 vector; θ is an t × 1 parametric vector with its upper bound hþ

and lower bound h�, respectively; Q is an n × n positive definite matrix; q is an
n × 1 vector; Beq is an m × n coefficient matrix; m is the number of equality
constraints; geq is an m × 1 constant vector; Feq is an m × t coefficient matrix; Bieq

is an l × n coefficient matrix; l is the number of inequality constraints; gieq is an
l × 1 constant vector; Fieq is an l × t coefficient matrix.

The KKT conditions of model (2.71)–(2.74) are formulated as

BT
eqpþBT

ieqlþ q ¼ 0 ð2:75Þ

Beqx� geq � Feqh ¼ 0 ð2:76Þ

Bieqx� gieq � Fieqh� 0 ð2:77Þ

li Bi
ieqx� giþFih

� �
¼ 0 ð2:78Þ

p� 0 ð2:79Þ

Definition: For each constraint of (2.75), we define the ith constraint to be an active
constraint with Bi

ieqx� giþFih ¼ 0, and inactive constraint with

Bi
ieqx� giþFih\0. Furthermore, the optimal active set A is defined as the set of

indices of active constraints at the optimum, such that A ¼
i Bi

ieqx� giþFih ¼ 0
���n o

and the optimal inactive set I is defined as the set of

indices of active constraints at the optimum, such that I ¼ i Bi
ieqx� giþFih\0

���n o
.

For the active set A, we have (2.80) and the corresponding Lagrange multipliers
are lA � 0.

BAieqx� gAieq�FAieqh ¼ 0 ð2:80Þ

For the inactive set I , we have (2.81) and the corresponding Lagrange multi-
pliers are lI¼ 0.
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BIieqx� gIieq�FIieqh \0 ð2:81Þ

Furthermore, we assume the original linear optimization model is feasible and

the constraints are satisfied, such that
Beq

BAieq

 !
has full row rank. According to

(2.76) and (2.80), we have

Beq

BAieq

 !
x ¼

geq

gAieq

 !
þ

Feq

FAieq

 !
h ð2:82Þ

Then x yields

x ¼
Beq

BAieq

 !�1
geq

gAieq

 !
þ

Beq

BAieq

 !�1
Feq

FAieq

 !
h ð2:83Þ

From (2.83), we can find that the active set A changes with parameter θ.
Furthermore, the optimal solution x is a piecewise linear function. According to
KKT conditions, because the model is a convex programming, the optimal solution
of (2.75)–(2.79) obtained by KKT conditions is the global optimal solution of linear
programming (2.71)–(2.74) sufficiently and necessarily, and the optimal solution is
unique. Therefore, the optimal solution x is a piecewise linear continuous function,
which further illustrates the optimal solution is the continuous function of uncer-
tainties and they must be able to fill the entire interval range. Take the optimal
solution x into the objective function of (2.71), we can know the objective function
is a piecewise linear continuous function about θ, which can also fill the entire
interval range.

2.3.2 Traditional Interval Robust Optimization Method

Firstly, a traditional robust optimization model is formulated as

min
x

aTx ð2:84Þ

s:t: b�AxþBu� d ð2:85Þ

x 2 Xx ð2:86Þ

8u 2 Xu ð2:87Þ

where Xu denotes the set of uncertainties, if it is an interval number, such as
Xu ¼ u u� � u� uþjf g, the model is called a traditional interval robust
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optimization model. The objective of model is to search an optimal x, and satisfy
constraint (2.85) with any change of uncertainty u. The model (2.84)–(2.87) can be
transformed into a bi-level programming model as following:

min
x

max
u2Xu

aTx ð2:88Þ

s:t: b�AxþBu� d ð2:89Þ

x 2 Xx ð2:90Þ

Because the objective function is not related to u, then (2.88)–(2.90) is equiv-
alent to:

min
x

aTx ð2:91Þ

s:t: Axþ max
u2Xu

Buð Þ� d ð2:92Þ

Axþ min
u2Xu

Buð Þ� b ð2:93Þ

x 2 Xx ð2:94Þ

Considering the interval form of uncertainties in model (2.92) and
(2.93), max

u2Xu

Buð Þ ¼ Bþ uþ þB�u�, min
u2Xu

Buð Þ ¼ Bþ u� þB�uþ , where Bþ ¼
max B; 0ð Þ, such that B+ is the positive elements of B, and B� ¼ min B; 0ð Þ, such
that B− is the negative elements of B. Furthermore, (2.91)–(2.94) is translated into a
bi-level optimization model:

min
x

aTx ð2:95Þ

s:t: Axþmax B; 0ð Þuþ þmin B; 0ð Þu� � d ð2:96Þ

Axþmax B; 0ð Þu� þmin B; 0ð Þuþ � b ð2:97Þ

x 2 Xx ð2:98Þ

It notes that an important characteristic of the model is no equality constraints,
because traditional robust optimization model requires that constraints can not be
violated with any change of uncertainty u. if equality constraints are existed, they
must be violated and robust optimal solution can be obtained. On the other hand,
from model (2.88)–(2.90),we find that the transformation result is the same as the
pessimistic value of interval optimization without equality constraints. It illustrates
that although pessimism value has some sacrifices of objective, it can ensure all
constraints are satisfied with any change of uncertainties.
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An simple example:

min
x1 þ x2

0:1x1þ 0:2x2 s:t
0� 2x1þ x2þ u� 6
0� x1� 3
0� x2� 3

8<: ; 8u 2 �1; þ 1½ �

The objective of the optimization model is to obtain an optimal solution (x1
*, x2

*),
which can ensure all constraints satisfied for any given u 2 [−1 + 1]. The model is
equivalent to:

min
x
1;x



2

0:1x
1þ 0:2x
2 s:t:

max
�1� u� þ 1

�uð Þ� 2x
1þ x
2� min
�1� u� þ 1

ð6� uÞ
0� x
1� 3 ; furthermore; simplified as

0� x
2� 3

8><>:
min
x
1;x



2

0:1x
1þ 0:2x
2 s:t:

1� 2x
1þ x
2� 5

0� x
1� 3

0� x
2� 3:

8><>:

2.3.3 Adaptive Interval Robust Optimization Method

In traditional interval robust optimization model, equality constraints can not be
considered because the model need to obtain an optimal solution x which can
satisfy all constraints with any change of uncertainty u; therefore, equality con-
straints are not always satisfied. On the other hand, traditional interval robust
optimization requires that optimal variable x is not related to uncertainty u. If
equality constraints are existed, we can obtain an optimal variable x irrelevant to u.

However, considering that the independent variable x in the model can follow
the change of uncertainty u, such that ex x,uð Þ, then the optimal x can be solved only
if the adjusted variable ex x,uð Þ can guarantee that all constraints are not violated
with any given uncertainty u. In such situation, after the change of uncertainty u,
the equality constraint can be satisfied because the independent variable x is
changed accordingly. Such model is called adaptive robust optimization model
shown following:

min
x

aTx ð2:99Þ

s:t: Aex x,uð ÞþBu ¼ w ð2:100Þ

b�Cex x,uð ÞþDu� d ð2:101Þ
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x 2 Xx ð2:102Þ

8u 2 Xu ð2:103Þ

Similarly, if the set of uncertainties is an interval form, the model is called an
adaptive interval robust optimization model which has challenge to be solved.
Generally, the equality constraints should be analyzed and ex x,uð Þ related to
uncertainty is strictly expressed, according to the physically practical problems or
the structural characteristics of the model. If u0 is the given value of the uncertainty,
satisfied with AxþBu0 ¼ w, then consider ex x,uð Þ ¼ xþL u0 � uð Þ, and satisfy
AL u0 � uð Þ ¼ B u0 � uð Þ. It illustrates that when the uncertainty is deviated from
u0, the independent variable ex x,uð Þ can be adjusted accordingly to guarantee the
equality constraints, where L is usually a linear function called the affine expansion
of uncertainty u. Nevertheless, if L is given, with any change of u in the Xu, we
should guarantee that ex x,uð Þ can always satisfy equality constraints as well as
inequality constraints. Furthermore, the adaptive robust optimization model can be
transformed into traditional robust optimization model as following:

min
x

aTx ð2:104Þ

s:t: AxþBu0 ¼ w ð2:105Þ

b�Cxþ CL u0 � u
� �þDu

� �� d ð2:106Þ

x 2 Xx ð2:107Þ

8u 2 Xu ð2:108Þ

We should know that the biggest challenge of adaptive robust optimization
model is how to find the strict expression of ex x,uð Þ about uncertainty, such that. If it
can be obtained, then the problem is easily solved.

A simple example:

min
x1;x2

0:1x1þ 0:2x2 s:t

x1þ x2þ u ¼ 4
0� 2x1þ x2þ u� 6
0� x1� 3
0� x2� 3

8>><>>: ; 8u 2 �1; þ 1½ �

The objective of the optimization model is also to obtain an optimal solution (x1
*,

x2
*), which can ensure all constraints satisfied for any given u 2 [−1 + 1]. However,
due to equality constraints, constraints are not always satisfied; therefore, the tra-
ditional robust optimization model can not be obtained. Considering the change of

uncertainties, x1 and x2 is changed accordingly, such that
x1 ¼ x
1þ L1 u0 � uð Þ
x2 ¼ x
2þ L2 u0 � uð Þ

	
.
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Considering the linear expansion of L1 and L2, such as
x1 ¼ x
1þ 0:2 u0 � uð Þ
x2 ¼ x
2þ 0:8 u0 � uð Þ

	
,

then we find x1þ x2þ u ¼ x
1þ x
2þ u0. Therefore, no matter how uncertainty
u changes, as long as x
1þ x
2þ u0 is satisfied, equality constraints will be always
satisfied with the linear adjustment of x1 and x2. To guarantee inequality constraints

satisfied, we have min
x
1;x



2

0:1x
1þ 0:2x
2 s.t.
x
1þ x
2þ u0 ¼ 4
0� 2 x
1þ 0:2 u0 � uð Þ� �þ x
2þ 0:8 u0 � uð Þþ u� 6
0� x
1� 3
0� x
1� 3

8>><>>: ,

8u 2 �1; þ 1½ � it can be further simplified as min
x
1;x



2

0:1x
1þ 0:2x
2

s.t.
x
1þ x
2þ u0 ¼ 4
0� 2x
1þ x
2þ 1:2u0 � 0:2u� 6
0� x
1� 3
0� x
1� 3

8>><>>: , 8u 2 �1; þ 1½ �. We can know that the model is the

same as traditional robust optimization and uncertainty is only existed in the

inequality constrain, so it can be transformed into min
x
1;x



2

0:1x
1þ 0:2x
2

s.t.

x
1þ x
2þ u0 ¼ 4
0:2� 2x
1þ x
2þ 1:2u0� 5:8
0� x
1� 3
0� x
1� 3

8>><>>: . Generally, u0 is considered as the desired value

of u, for example u0 = 0, and the model is formulated as min
x
1;x



2

0:1x
1þ 0:2x
2

s.t.

x
1þ x
2 ¼ 4
0:2� 2x
1þ x
2� 5:8
0� x
1� 3
0� x
1� 3

8>><>>: . It notes that L1, L2 and u0 of the model should be

determined based on the actual situation, and the different choices of L1, L2 and u0

lead to different optimal results.

2.3.4 Two-Stage Interval Robust Optimization Method

Generally, a two-stage robust optimization model can be formulated as

min
y2Xy

cTyþ max
u2Xu

min
x2Xx

aTx ð2:109Þ

where Xy and Xu are both bounded convex sets and Xx ¼ x Ax� d � By� Cujf g.
If uncertainty set is an interval number, then the model is call two-stage interval
robust optimization model.

The objective of two-stage robust optimization is to obtain optimal variable y in
the first stage and optimal variable x* in the second stage. Actually, x* is a function
of uncertainty u, such that x*(u), so the optimal variable and objective function are
changed accordingly with the uncertainties. Robust optimization is to choose
u which can obtain the best y when x*(u) achieves the worst case. If the uncertainty
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set is modeled with intervals, the two-stage robust optimization model based
intervals is formed.

The first-stage variable of the two-stage interval robust optimization model is
generally discrete variable, and the second-stage variable is continuous variable.
Therefore, the two-stage interval robust optimization model is a large-scale com-
binatorial optimization problem which can be solved by decomposition algorithms,
where Benders decomposition method is an effective method and is widely used
[10–13]. For Benders decomposition method, the original problem is decomposed
into master problem and subproblem, by solving each subproblem, generating
Benders cut and adding it to the master problem, and the master problem is solved
to get a better objective function, through several iterations, then the optimal
solution is obtained. In the flow chart of Benders, the most important step is to form
Benders cut, and different cut generation methods have different computational
complexity. Two kinds of Benders cut generation methods are presented.

The inner level of “max-min” is the same as pessimistic model of interval
optimization, so the corresponding method can be used, which is to solve the
duality of “min” model in the “max-min”. The dual model is

ðSPÞ H yð Þ ¼ max
u;p

pT d � By� Cuð Þ ð2:110Þ

s:t: ATp� aT ð2:111Þ

u 2 Xu; ; p� 0 ð2:112Þ

It shows that (SP) is the subproblem of Benders which is an iterative algorithm.
In the kth iteration, for a given yk

*, the subproblem H y
k
� �

can be solve to obtain the
optimal solution u
k ; p



k

� �
. Then two kinds of cuts are designed for iterations.

A. Benders decomposition method based on dual cut

By solving subproblem SP, the dual information p
k of inner problem is obtained.
Based on weak duality theorem, the dual problem of the linear programming model
must be a lower bound of the original problem, so the dual cut is

g� p
k
� �T d � By� Cu
k

� � ð2:113Þ

Add the dual cut (2.113) to Benders main problem, we have

MP1ð Þ min
y;g

cTyþ g ð2:114Þ

s:t: g� p
l
� �T d � By� Cu
l

� �
; l ¼ 1; 2; . . .; k ð2:115Þ
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y 2 Xy ð2:116Þ

We can see the main problem is a simple mixed integer programming model,
which can be solved by branch and bound method, and y
kþ 1; g



kþ 1

� �
denotes to the

optimal solution. The objective functions cTy
k þH y
k
� �

and cTy
kþ 1þ g
kþ 1 of MP1
give the upper and lower bound of original optimization model, respectively. By
continuous iterations, subproblem increases optimal cuts gradually and the upper
bound and lower bound are finally reaching consistently, so the algorithm con-
verges to the global optimal solution.

B. Benders decomposition method based on original cut

The inner-level “max-min” model of original three-level optimization problem is
transformed into a max bilinear programming with duality. The specific structure of
bilinear programming discussed in the interval optimization is that the bilinear
variable ðu; pÞ can be separable, which illustrates that the global optimal solution
must be achieved at the vertices (or poles) of the defined feasible region u and p.
The optimal solution u
k ; p



k

� �
obtained in kth the iteration is only an optimal

solution with the given yk, so an original cut is designed as

Axl� d � By� Cu
l ; g� aTxl ð2:117Þ

Add the original cut (2.117) to Benders main problem, we have

ðMP2Þ min
y;g;xl

cTyþ g ð2:118Þ

s:t: g� aTxl; AxlþBy� d � Cu
l ; l ¼ 1; 2; . . .; k ð2:119Þ

y 2 Xy ð2:120Þ

We can see the main problem is a simple mixed integer programming model,
which can be solved by branch and bound method, and denotes to the optimal
solution. Similarly, the objective functions cTy
k þH y
k

� �
and cTy
kþ 1þ g
kþ 1 of

MP2 give the upper and lower bound of original optimization model, respectively.
By continuous iterations, subproblem increases optimal cuts gradually and the
upper bound and lower bound are finally reaching consistently, so the algorithm
converges to the global optimal solution. The difference between MP1 is when
increasing the original cuts, the extra variables will be added. Therefore, with the
increase of iterations, the number of variables in the model (MP2) is more and
more, and the scale of the model will be increased, but the total number of iterations
will be greatly reduced.
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Theorem 2.4 [14] if p is the pole number of uncertainty set Ωu, q is the pole
number of simplex { ATp� aT , p� 0 }, then the iteration number of Benders
decomposition method based on dual cut is Oðpq); the iteration number of Benders
decomposition method based on original cut is Oðp).

From 2.4, it is obvious that by using original cut, the computation complexity is
greatly reduced, and the solving efficiency is Q times higher. Therefore, the method
based on original cut is mainly used in this paper. Of course, in the actual calcu-
lation, we can also add the original cut and the dual cut into the model, while
preserving the characteristics of the original cut and the dual cut. Next, Benders
decomposition method based on original cut is refined, given convergence
precisionε, and the flow chart is shown following:

(i) Set LB = −∞, UB = +∞, k = 0;
(ii) Solve main problem (MP2), and obtain the optimal solution

y
kþ 1; g


kþ 1; x



1; . . .; x



k

� �
and lower bound of model LB = g
;

(iii) Fix y
 to solve subproblem (SP), if subproblem is feasible, obtain optimal
solution u
k ; p



k

� �
and objective value H y
ð Þ; if not, H y
ð Þ ¼ þ1.

Furthermore, update upper bound of model with UB = min{UB, H y
ð Þ };
(iv) If (UB-LB) < ε, return y
 and stop iterations; otherwise k = k+1, fix u
k ,

design original cut:

(a) If the subproblem of (iii) is feasible, generate new variable xl, and add
cut shown in (2.121) to the main problem (MP);

Axl� d � By� Cu
l ; g� aTxl ð2:121Þ

(b) If the subproblem of (iii) is infeasible, generate new variable xl and add
cut shown in (2.122) to the main problem (MP);

Axl� d � By� Cu
l ð2:122Þ

(v) Go to (ii).

According to the flow chart of Benders decomposition method based on original
cut, in the fourth step, if the subproblem is feasible, the added original cut is called
optimal cut from the mathematical structure, because it is obtained with the
information of optimal solution; but if the subproblem is infeasible, the original cut
is changed and called feasible cut which is only to guarantee the feasibility of
problem.

Another important problem is how to solve the inner-level “maxmin” opti-
mization model. It has been illustrated anteriorly that if the uncertainty set is an
interval form, the “maxmin” optimization is the same as the pessimistic model of
interval optimization. Furthermore, it is proved that optimal solution must be
obtained when uncertainties reach the bounds, so it can be transformed into a mixed
linear programming model to solve. However, if the robust cost is considered, the
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structure of uncertainty set is changed, and optimal solution is not achieved at the
bound (but achieved at the vertices of the simplex). Therefore, new methods need to
solve.

Assume the dual variable of second stage is p. Because the “maxmin” can be
regarded as a bilinear programming where inner-level model is a linear program-
ming, if the inner-level model is feasible, then KKT condition is the sufficient and
necessary condition of optimal solution and we have optimization model as
following:

max
x;u;p

0 ð2:123Þ

s:t: ATp� aT ð2:124Þ

Ax� d � By� Cu ð2:125Þ

u 2 Xu; p� 0 ð2:126Þ

pi Ax� dþByþCuð Þi¼ 0; 8i ð2:127Þ

xj aT � ATp
� �

j¼ 0; 8j ð2:128Þ

u 2 Xu; p� 0 ð2:129Þ

where constraints (2.127) and (2.128) are complementary, which can be trans-
formed into mixed integer programming to solve based on big M theory, and we
have:

max
x;u;p;v;w

0 ð2:130Þ

s:t: ATp� aT ð2:131Þ

Ax� d � By� Cu ð2:132Þ

u 2 Xu; p� 0 ð2:133Þ

pi�Mwi; Ax� dþByþCuð Þi�M 1� wið Þ; 8i ð2:134Þ

0� xj�Mvj; aT � ATp
� �

j�M 1� vj
� �

; 8j ð2:135Þ

u 2 Xu; p� 0; w 2 0; 1f g; v 2 0; 1f g ð2:136Þ
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2.4 Summary

Mathematical theory based on interval computation and optimization is mainly
introduced in this chapter. Interval computation includes interval linear equations,
interval nonlinear equations; optimization methods based interval include interval
optimization and robust optimization, where interval robust optimization include
adaptive interval robust optimization and two-stage interval robust optimization.
This chapter does not involve specific application model in power system, but use
abstract mathematical expressions to describe and obtain some general solution
methods. These methods provide the mathematical basis to solve the power system
model created later in the paper, and can be widely used in other fields referring to
interval models, such as water conservancy, transportation, aviation and so on. In
addition, it notes that each mathematical model has its own solution which may be
more than one, and the computational complexity or result precision may vary with
each method. This paper contains many kinds of mathematical solution method
which will be compared and discussed in the following application.
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Chapter 3
The Research and Application of Interval
Power Flow

Abstract Interval power flow extends deterministic power flow to an interval
based power flow. Mathematically, interval power flow aims to solve interval linear
and nonlinear equations. In this book, Kraw iteration method with approximated
inverse preconditioner is proposed to solve interval linear equations, which is
applied to interval DC power flow and Distflow based interval radial power flow.
Besides, optimization based method is proposed to for solve interval nonlinear
equations, especially for interval quadratic equations, which is applied to interval
AC power flow.

3.1 Summary

As its name implies, the interval power flow is the interval results of power flow
acquired by modeling some parameters as interval numbers based on traditional
power flow. The interval power flow, probabilistic load flow and fuzzy power flow
are belonging to category of uncertainty power flow analysis, and the difference
among them is the modeling for uncertainties.

Considering the randomness and intermittent when a large-scale wind power
integrated to power system, the probability density function is usually difficult to
accurately obtain, which brings about the challenge to probabilistic power flow and
fuzzy power flow analysis. However, the interval number is easier than probability
distribution and fuzzy numbers. With the modeling of interval numbers, there only
need upper and lower bounds which can be acquired by the information of pre-
diction and confidence intervals, while there is no need to find probability density
function. At last, the upper and lower bounds of power flow can be obtained, which
provide intuitive bound information for operators, which can be utilized for the
further optimization of operation.

Traditional power flow analysis includes DC power flow, AC power flow and
power flow in radial network, the essence of which is to solve linear and nonlinear
equations. Therefore, Sect. 2.2 in Chap. 2 will study the mathematical methods for
each model. Specifically, Kraw operator iterative algorithm with approximately
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inverse pretreatment is proposed to DC interval power flow analysis, Distflow
approximation is introduced to distribution network interval power flow analysis,
and optimization based method is developed to interval AC power flow analysis.
Particularly, according to the quadratic characteristic of power flow equations, the
method by relaxing the feasible region to a convex set, and interval solutions are
obtained by tightening bounds. Furthermore, from the perspective of actual physical
modeling of power systems, the power flow result is related to the selection of slack
bus. To obtain the result without the relation to slack bus, dynamic power flow
analysis has been researched and applied.

Interval power flow analysis can obtain the upper and lower bounds of power
flow solution, provide operators intuitive information of upper and lower bounders
and offer the advanced applications in power system. This section will extend
traditional deterministic power flow analysis to an interval flow analysis, forming
DC interval power flow, AC interval power flow, interval distribution power flow
and constrained interval power flow analysis. The flowchart of methods in this
chapter is as follows (Fig. 3.1):

Fig. 3.1 The framework of this chapter
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3.2 The Application of Interval Power Flow

3.2.1 The Interval DC Power Flow

3.2.1.1 Modeling of Interval DC Power Flow

The uncertainty of interval power flow mainly focused on the uncertain wind power
output. Thus, it can put generator output, load demand and wind power output
together to form the injection power at each bus, and then the injection power of
each bus could be expressed as an interval number. Furthermore, the mathematical
description of interval DC flow is (3.1), where B is susceptance matrix and P;P

� �
is

interval injection power at each bus. Interval DC flow can obtain interval trans-
mission flow and interval phase angle based on interval injection power at each bus.

Since the system always maintains the power balance, we will arrive atP
P;P
� � ¼ 0. Usually when calculating power flow, the voltage phase angle slack

bus is known (usually is 0), therefore the reduced admittance matrix is used to
solver interval DC flow, such as (3.2), where, Ω is a collection of PV and PQ buses,
ref are slack bus. Then the reduced admittance matrix B is invertible matrix.

B h; h
� � ¼ P;P

� � ð3:1Þ

BX�X h; h
� �

X�1¼ P;P
� �

X�1�BX�ref href�1 ¼ P;P
� �

X�1 ð3:2Þ

If we suppose Py;Py
� �

¼ P;P
� �

X�1 to be injection vector of power injection,

ByX�X ¼ BX�X and hy; hy
� �

¼ h; h
� �

X�1 as the phase angle of each bus, then

By hy; hy
� �

¼ Py;Py
� �

; and href
� � ¼ 0; 0½ � ð3:3Þ

While Pg;ref ;Pg;ref

h i
is interval flow of slack bus. As the power system needs to

meet the balance of power at each time, so the flow of slack bus can be obtained by
(3.4).

Pg;ref ;Pg;ref

h i
þ
X

Py;Py
� �

¼ ½0; 0� ð3:4Þ

According to the definition of power flow, the flow on branch l can be expressed

as PT ;l ¼ hi�hj
xij

, where i and j are the index of “from” and “to” buses of the branch l;
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xij is reactance of branch l. If considering the interval expression, the interval flow
can be expressed as

PT ;l;PT ;l

h i
¼ ½hi� � ½hj�

xij
ð3:5Þ

However, it should be noted that, when using (3.5) to solve the interval power
flow, the interval phase angle information is needed, and the phase angle range is
obtained by (3.3). Thus, the calculation of interval phase angle appears more than
once, which will inevitably lead to an enlarged interval. In order to overcome
conservativeness of interval arithmetic, the network distribution shift factors can be
used, and we can obtain

PT ;PT
� � ¼ H P;P

� � ð3:6Þ

where H is the network distribution shift factors and PT is transmission flow vector.
Since the interval expression is conducted only once, so the conservativeness
resulted from the interval operation will be greatly reduced. But taking (3.6) into
application also have some challenges, because H is a full array, which needs to
account for much memory space.

3.2.1.2 Method for DC Interval Power Flow

It can be observed from (3.3) that the interval linear equations are very special in
that the intervals only exist in the right hand of equations, and the coefficient matrix
of equations is constant. Intuitively, interval flow of (3.3) can be obtained directly
from (3.7), but computing the inverse of a constant matrix is very difficult.

hy; hy
� �

¼ By
� 	�1

Py;Py
� �

; with href
� � ¼ ½0; 0� ð3:7Þ

For traditional deterministic power flow, LU decomposition is widely used to
solve the DC power equations, but unfortunately LU decomposition cannot apply to
interval flow equations, since it solves linear equations of upper triangular and
lower triangular matrices, which will bring about the conservativeness. Using a
simple linear system as an example:

Given A ¼
0:5973 0:7009 0:7400
0:0493 0:09623 0:4319
0:5711 0:7505 0:6343

24 35, bh i ¼
½�1; þ 4�
½ þ 2; þ 5�
½�3;�1�

24 35, Solving

A xh i ¼ bh i.
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Exact Solutions is:

xh i ¼ A�1 bh i ¼
�4:9898 �1:9325 7:1374
�3:7546 0:7619 3:8617
8:9354 0:8384 �9:4190

24 35 ½�1; þ 4�
½ þ 2; þ 5�
½�3;�1�

24 35
¼
½�51:0338;�6:0125�
½�25:0801; 3:7025�
½2:1603; 68:1903�

24 35
With LU decomposition, we can obtain:

L ¼
1 0 0

0:0825 1 0
0:9560 0:0890 1

24 35; U ¼
0:5973 0:7009 0:7400

0 0:9045 0:3708
0 0 �0:1062

24 35
Solutions using LU decomposition for interval linear equations is

yh i ¼ L�1 bh i ¼
1 0 0

�0:0825 1 0

�0:9487 �0:0890 1

264
375 ½�1; þ 4�
½ þ 2; þ 5�
½�3;�1�

264
375 ¼ ½�1; þ 4�

½1:6700; 5:0825�
½�7:2397;�0:2293�

264
375

xh i ¼ U�1 yh i ¼
1:6741 �1:2972 7:1374

0 1:1056 3:8617

0 0 �9:4190

264
375 ½�1; þ 4�

½1:6700; 5:0825�
½�7:2397;�0:2293�

264
375

¼
½�59:9392; 2:8929�
½�26:1112; 4:7336�
½2:1603; 68:1903�

264
375

It can be observed that for interval linear equations with constant coefficients, the
LU decomposition method will expand the range of the interval solutions.
Therefore, in order to reduce conservativeness of interval arithmetic, four methods
to solve interval linear equations in Appendix A can be used. Furthermore, we can
compare the corresponding efficiency with the preprocessing Kraw operator itera-
tive method presented in Sect. 2.2.

3.2.1.3 Simulation Results

In this book, 9-bus system [1] is used to test the proposed method, where there are 3
loads, 3 generators and 9 branches. Considering power injection of each bus to be
within 10 % of normal condition, the results of the interval power flow solved by
several methods can be presented in Table 3.1, where all the four methods can
accurately solve interval flow, and for the 9-bus small systems, the computational
speed of several methods is nearly the same. Then, the large-scale test system is
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introduced to test the algorithm complexity of several methods. For IEEE 300-bus
system [1], the uncertainty of power injection is set to be 10 %, and the compu-
tational complexity by four methods is shown in Table 3.2. It can be found that
Gaussian elimination method requires the most computing time. Moreover, with the
increasing of the system size, the time of direct inverse method will increase
significantly, especially when solving the matrix inverse on a system with thou-
sands of buses, direct matrix inverse will be a great challenge. Although opti-
mization based method has a fast speed, this method obtains the interval solution
only one bus. That means, we need to solve this optimization model for several
times to obtain the whole intervals for all buses. However, if the hardware is
available for parallel computation, the computational complexity will be greatly
improved. Besides, similar to the direct inverse method, traditional Kraw operator
method also needs to solve inverse of the center matrix, which is not practical for
large-scale test systems. For the IEEE 300-bus system, the computational speed of
the proposed Kraw Method with F-norm preconditioning is twice less than the
direct inverse method, which ensures the convergence by 11 iterations.

Finally, we will study the interval branch flow, which can obtain by (3.6). In
contrast, in accordance with interval phase angle in Table 3.1, interval branch flow
can also be calculated by (3.5). The comparison of the results by the two methods is
shown in Table 3.3. The results show that the traditional deterministic flow by (3.5)
and (3.6) are exactly the same. But for the interval branch flow, the results of (3.5)
have a much larger range than the results of (3.6), It is because (3.6) deals with
uncertain power flow only once, whereas (3.5) needs to get an implicit result of the

Table 3.1 Result of interval DC power flow by different methods

Bus
no.

Deterministic
power flow (MW)

Interval Gauss
elimination (MW)

Kraw Iteration
(MW)

Optimization
based method
(MW)

Matrix inverse
(MW)

1 0.0000 [0.0000, 0.0000] [0.0000, 0.0000] [0.0000, 0.0000] [0.0000, 0.0000]

2 9.7960 [4.1146, 15.4775] [4.1146, 15.4775] [4.1146, 15.4775] [4.1146, 15.4775]

3 5.0605 [0.0207, 10.1004] [0.0207, 10.1004] [0.0207, 10.1004] [0.0207, 10.1004]

4 −2.2111 [−4.0692,−0.3531] [−4.0692,−0.3531] [−4.0692,−0.3531] [−4.0692,−0.3531]

5 −3.7380 [−6.9210,−0.5551] [−6.9210,−0.5551] [−6.9210,−0.5551] [−6.9210,−0.5551]

6 2.2066 [−2.5478, 6.9611] [−2.5478, 6.9611] [−2.5478, 6.9611] [−2.5478, 6.9611]

7 0.8224 [−4.3729, 6.0178] [−4.3729, 6.0178] [−4.3729, 6.0178] [−4.3729, 6.0178]

8 3.9590 [−1.1388, 9.0568] [−1.1388, 9.0568] [−1.1388, 9.0568] [−1.1388, 9.0568]

9 −4.0634 [−7.4393,−0.6875] [−7.4393,−0.6875] [−7.4393,−0.6875] [−7.4393,−0.6875]

Table 3.2 Computational time of each method for interval DC power flow

Deterministic
power flow
(MW)

Interval Gauss
elimination (MW)

Kraw
iteration
(MW)

Optimization
based method
(MW)

Matrix
inverse
(MW)

0.03 s 33.12 s 0.12 s 0.08 s (each bus) 0.24 s
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power angle, and then calculate the branch flow. Thus, interval matrix operations
carry out twice, which will result in an enlarged range. Therefore, using (3.6) to
calculate interval branch flow is very necessary.

3.2.2 Interval AC Power Flow

3.2.2.1 Modeling for Optimization Based Interval Power Flow

For the interval AC power flow, this book proposes an optimization based method.
First, we will define some symbolic variables of interval AC flow as follows:

ei, fi Real and imaginary part of voltage magnitude of bus i

Gij, Bij real and imaginary part of (i,j)th element of bus admittance matrix Ybus = G + jB

n total number of buses

NP set of PQ and PV buses

NPQ set of PQ buses

NPV set of PV buses

NREF reference bus
(continued)

Table 3.3 Comparison of interval branch flow by two methods

Branch
no.

Deterministic power flow Interval power flow

By (3–6)
(MW)

By (3–5)
(MW)

By (3–6) (MW) By (3–5) (MW)

1 67.0000 67.0000 [10.6999, 123.3001] [10.6999,
123.3001]

2 28.9673 28.9673 [3.8332, 54.1015] [−66.6642,
124.5989]

3 −61.0326 −61.0326 [−79.5992,
−42.4660]

[−142.5223,
20.4571]

4 85.0000 85.0000 [76.5000, 93.5001] [−206.7088,
376.7088]

5 23.9673 23.9673 [7.3585, 40.5763] [−148.3099,
196.2447]

6 −76.0326 −76.0326 [−93.2996,
−58.7657]

[−325.5427,
173.4775]

7 −163.0000 −163.0000 [−179.3001,
−146.6999]

[−464.0101,
138.0101]

8 86.9673 86.9673 [65.1801, 108.7547] [−4.8909,
178.8256]

9 −38.0326 −38.0326 [−69.1986, −6.8667] [−145.5016,
69.4364]
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(continued)

Pi, Pi lower and upper bound of Pi

Pi, Qi active and reactive power injection at bus i

Qi, Qi lower and upper bound of Qi

s total number of branches

The energy balance equation in polar coordinates including active and reactive
power flow are represented as (3.8)–(3.9).

The energy balance equation in polar coordinates including active and reactive
power flow are represented as (3.8)–(3.9).

Pi = Ui

Xn
j¼1

Uj Gij cos hijþBij sin hij

 �

i 2 NP ð3:8Þ

Qi = Ui

Xn
j¼1

Uj Gij sin hij � Bij cos hij

 �

i 2 NPQ ð3:9Þ

Note that the energy balance equations contain strong nonlinear functions such
as sin(�) and cos(�), which are difficult to deal with when obtaining the AA form of
the injected powers [2]. Usually, the linear polynomials using Taylor series or
Horner’s rule are introduced to linearize the equation system at the operating point
with respect to the variables, where the omitted remainders in the approximation
might cause additional level of inaccuracy. An iterative method was proposed in [3]
that eliminates the effect of remainders with an initial guess of deviation so as to
narrow the solution’s bounds.

In order to overcome the approximation errors caused by strong nonlinear
energy balance equations in polar coordinates, we transform the original problem
into Cartesian coordinates form in (3.10)–(3.12), which only contain quadratic
polynomials.

Pi = ei
Xn
j¼1

Gijej � Bijfj

 �þ fi

Xn
j¼1

GijfjþBijej

 �

i 2 NP ð3:10Þ

Qi = fi
Xn
j¼1

Gijej � Bijfj

 �� ei

Xn
j¼1

GijfjþBijej

 �

i 2 NPQ ð3:11Þ

U2
i = e2i + f 2i i 2 NPV ð3:12Þ

In interval power flow analysis, power injections are volatile and can be rep-
resented using intervals, such that Pi = Pi;Pi

� �
and Qi = Qi;Qi

� �
. However, the
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maximum (or minimum) voltage magnitude cannot be directly obtained due to the
nonlinear characteristics of the power flow equations. Therefore, we solve the
interval information for each bus one at a time. Take voltage magnitudes for
example (and the branch flow will be studied later): the interval power flow
(IPF) problem can be formulated as a non-convex and nonlinear programming
(NP) in (3.13)–(3.17) with quadratic objective and constraints, which is a standard
QCQP problem and is labeled IPF-QCQP in this paper.

ðIPF�QCQPÞ max/min
e;f

e2i þ f 2i i 2 NPQ ð3:13Þ

s.t. Pi� ei
Pn
j¼1

Gijej � Bijfj

 �

+ fi
Pn
j¼1

GijfjþBijej

 ��Pi i 2 NP ð3:14Þ

Qi� fi
Pn
j¼1

Gijej � Bijfj

 �� ei

Pn
j¼1

Gijfj + Bijej

 ��Qi i 2 NPQ ð3:15Þ

U2
i ¼e2i þ f 2i i 2 NPV ð3:16Þ

ei = eref ; fi = f ref i 2 NREF ð3:17Þ

It can be deduced that the total number of decision variables (e, f) is 2n − 2
according to the linear relaxation model of interval quadratic equations model
which can be solved by the method is Sect. 2.2.2.1 with bound tightening
algorithm.

However, from the model in Sect. 2.3, it can be found that dummy variables as
well as convex and concave envelope will be introduced when using linear relax-
ation techniques, which leads the relaxed QCQP model to be a linear programming
problem. Intuitively, Z has 2n × 2n elements, because any two variables will add a
dummy variable. However, for a large-scale power system, this will greatly increase
the computational burden for computing interval power flow. Fortunately, the
power systems always have a sparse characteristic, so that Zij between any two
variables should only be introduced for the branch lines, because in power flow
equations, the admittance produced by Zij without connected lines is 0. So this will
greatly reduce the computational complexity of linear relaxation model with the
help of sparsity technique.

3.2.2.2 Sparsity Technique for Relaxed Model of Interval Power Flow

Let B be a finite set and denote the pairs of B by L (B) in (3.18).

LðBÞ ¼ ðu; vÞju; v 2 B; u 6¼vf g ð3:18Þ

3.2 The Application of Interval Power Flow 67

http://dx.doi.org/10.1007/978-981-10-2561-7_2
http://dx.doi.org/10.1007/978-981-10-2561-7_2


For a given power network graph G = (B, L) with L � L(B) [4], where the
elements of B are the vertices of G representing all the buses, and the elements of L
are the edges of G representing transmission lines and transformers. According to
the energy functions in (3.10)–(3.11), the quadratic terms in P and Q have the same
structure except for the constant G, B and the operator sign. Note that only up to six
additional dummy variables eiej, eifj, fiej, fifj, eiei and fifi are needed for each edge
l = (i, j) 2 L, and bilinear terms are not needed for l = (i, j) 62 L. Meanwhile, in
order to reduce the number of additional dummy variables, the bus admittance
matrix Ybus = (yij)n × n, describing the bus-bus relationship, should be converted
into bus-branch relationship. An n × s sparse connection matrix Sc is defined such
that its (k, l) element is 1 if branch l is connected to bus k and 0 otherwise.

We firstly define Bc and Gc as the susceptance vector and conductance vector of
the branch admittance, respectively, and define Bb and Gb as the susceptance vector
and conductance vector of the bus self-admittance. Then, utilizing the connection
matrix Sc, we convert those vectors into four matrices WG 2 Rn × s,
WB 2 Rn × s, KG 2 Rn × n and KB 2 Rn × n, as formulated in (3.19)–(3.22).
Figure 3.2 illustrates the data structure of the sparse susceptance and conductance
vectors.

WG

 �

n�s¼ ðScÞn�s � diagðGcÞð Þs�s ð3:19Þ

WB

 �

n�s¼ ðScÞn�s � diagðBcÞð Þs�s ð3:20Þ

KG

 �

n�n¼ diagðGbÞð Þn�n ð3:21Þ

KB

 �

n�n¼ diagðBbÞð Þn�n ð3:22Þ

Further, we define xl = eiej, yl = fifj, ml = eifj, nl = fiej, rl = eiei, hl = fifj,
8l = (i, j) 2 L. Then dummy variable vectors are created, X = (xl)s × 1, Y = (yl)

l

i

j

cB B(i1, j1) B(i2, j2) ... B(is, js)

i1 i2 ... is

1 2 ... s

G(i1, j1) G(i2, j2) ... G(is, js)

j1 j2 ... js

cG

1 2 ... n

B(1,1) B(2,2) ... B(n,n)

k

G(1,1) G(2,2) ... G(n,n)
bB

bG

Element of sparse 
branch 

admittance vector

Element of sparse 
bus self-

admittance vector

branch
Corresponding
“ From”  bus

Corresponding
“ To”  bus

branch susceptance 
vector Bc 

branch conductance 
vector Gc 

bus

bus self-susceptance 
vector Bb 

bus self-conductance 
vector Gb 

Fig. 3.2 Data structure of sparse susceptance and conductance vector
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s × 1, M = (ml)s×1, N = (nl)s × 1, R = (rl)n × 1, H = (hl)n × 1. With the four
susceptance and conductance matrices WG, WB, KG and KB, and the dummy
variable vectors, Eqs. (3.10)–(3.11) can be converted into Eqs. (3.24)–(3.25).
Based on the linear relaxation method for QCQP model introduced in section III-A,
the IPF-QCQP can be converted into IPF-LR expressed in (3.23)–(3.50).

Through this sparse matrix technique, the number of added matrix variable Z is
reduced from 2n × 2n elements to 4s + 2n, which is particularly important for
applications to large-scale systems.

ðIPF� LRÞ max=min
X;Y;M;N;R;H;e;ff g

Zi + Hi i 2 NPQ ð3:23Þ

s:t: Pi�
Ps
l¼1

WG
i;lXl �WB

i;lMlþWG
i;lYlþWB

i;lNl

� 	
þKG

i RiþKG
i Hi�Pi i 2 NP

ð3:24Þ

Qi�
Ps
l¼1

WG
i;lNl �WB

i;lYl �WG
i;lMl �WB

i;lXl

� 	
þKB

i RiþKB
i Hi�Qi i 2 NPQ

ð3:25Þ

RiþHi ¼ U
_2

i i 2 NPV
ð3:26Þ

ei = e_; fi = f
_

i 2 NREF ð3:27Þ

Xl � ei ej � ej eiþ ei ej� 0 l 2 L ð3:28Þ

Xl � ei ej � ej eiþ ei ej� 0 l 2 L ð3:29Þ

Xl � ei ej � ej eiþ ei ej� 0 l 2 L ð3:30Þ

Xl � ei ej � ej eiþ ei ej� 0 l 2 L ð3:31Þ

Yl � fifj � fjfi + fi fj� 0 l 2 L ð3:32Þ

Yl � fifj � fjfiþ fi fj� 0 l 2 L ð3:33Þ

Yl � fifj � fjfiþ fi fj� 0 l 2 L ð3:34Þ

Yl � fifj � fjfiþ fi fj� 0 l 2 L ð3:35Þ

Ml � eifj � fjeiþ ei fj� 0 l 2 L ð3:36Þ
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Ml � eifj � fjeiþ ei fj� 0 l 2 L ð3:37Þ

Ml � eifj � fjeiþ ei fj� 0 l 2 L ð3:38Þ

Ml � eifj � fjeiþ ei fj� 0 l 2 L ð3:39Þ

Nl � fiej � ejfiþ fi ej� 0 l 2 L ð3:40Þ

Nl � fiej � ejfiþ fi ej� 0 l 2 L ð3:41Þ

Nl � fiej � ejfiþ fi ej� 0 l 2 L ð3:42Þ

Nl � fiej � ejfiþ fiej� 0 l 2 L ð3:43Þ

Ri � 2eieiþ e2i � 0 i 2 B ð3:44Þ

Rl � 2eieiþ e2i � 0 i 2 B ð3:45Þ

Ri � ei + ei

 �

eiþ ei ei� 0 i 2 B ð3:46Þ

Hi � 2fifiþ f 2i � 0 i 2 B ð3:47Þ

Hi � 2fifiþ f 2i � 0 i 2 B ð3:48Þ

Hl � fi + fi
� 	

fiþ fi fi� 0 i 2 B ð3:49Þ

ei� ei� ei; fi� fi� fi i 2 NP ð3:50Þ

where U
_

i is the scheduled voltage magnitude for PV bus i; e_ and f
_

are the given real
and imaginary parts of reference bus voltage.

It should be noted that (3.23) formulates the interval voltage magnitude of each
bus. Intervals of other system statuses including voltage angle, branch reactive and
active power of power flow, can be established through changing the model’s
objective as follows and adding additional constraints.

(a) Voltage angle

The voltage angle interval can be obtained by solving the original IPF-QCQP

problem with replaced objective function hi = arctan fi
ei

� 	
.

Note that voltage angles are normally between [−π/2, +π/2], in which tangent
function is monotonous. Therefore, we can firstly solve an IPF-QCQP problem with
(3.51) as objective function to get the interval of a new dummy vector y, where
yi = fi/ei, and then calculate the voltage angle interval using θi = arctan(yi). After
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reformulating yi = fi/ei as a quadratic constraint fi = eiyi, linear relaxation method
in Chap. 2 is used again for eiyi to generate (3.52)–(3.55). Combining (3.24)–(3.50)
and (3.52)–(3.55) together with the objective (3.51), we can obtain the improved
interval solution of yi.

max=min
X;Y;M;N;R;H;e;ff g

yi ð3:51Þ

fi � eiyi � yieiþ ei yi� 0 i 2 B ð3:52Þ

fi � eiyi � yieiþ ei yi� 0 i 2 B ð3:53Þ

fi � eiyi � yieiþ ei yi� 0 i 2 B ð3:54Þ

fi � eiyi � yieiþ eiyi� 0 i 2 B ð3:55Þ

(b) Branch active and reactive power

The original form of branch active and reactive power is formulated in (3.56) and
(3.57). Using the aforementioned susceptance and conductance matrices as well as
the dummy variable vectors, (3.56) and (3.57) can be expressed in linear repre-
sentation as in (3.58) and (3.59) respectively.

max=min Pij ¼ eiGijej � eiBijfj + fiGijfj + fiBijej ð3:56Þ

max=min Qij ¼ fiGijej � fiBijfj � eiGijfj � eiBijej ð3:57Þ

max=min
X;Y;M;N;R;H;e;ff g

WG
i;lXl �WB

i;lMlþWG
i;lYlþWB

i;lNl ð3:58Þ

max=min
X;Y;M;N;R;H;e;ff g

WG
i;lNl �WB

i;lYl �WG
i;lMl �WB

i;lXl ð3:59Þ

(c) Generator’s reactive power

As for generator’s reactive power, the original form is formulated in (3.60).
Similarly, (3.60) can be expressed in linear representation as in (3.61) according to
the aforementioned method. Under power injection variations, generators’ reactive
power output may exceed its limit, given the scheduled voltage. In this situation, the
PV bus will be converted to PQ bus with reactive power assigned to the limiting
value, and the solution needs to be recalculated.

max=min fi
Xn
j¼1

Gijej � Bijfj

 �� ei

Xn
j¼1

GijfjþBijej

 � ð3:60Þ
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max=min
X;Y;M;N;R;H;e;ff g

KB
i Ri + KB

i Hi

þ Ps
l¼1

WG
i;lNl �WB

i;lYl �WG
i;lMl �WB

i;lXl

� 	 i 2 NPV ð3:61Þ

3.2.2.3 Optimality Based Bound Tightening Technique

An initial estimation of the solution interval is obtained as follows by linearizing
power flow at a given operating point (e0, f0) with the Jacobi matrix J calculated by

(3.63) and applying an offset ( eED; eED
h i

, f ED; fED
h i

) to ensure optimal solution

bound is within the initial estimation.

e0; e0
� �
f 0; f

0
h i24 35 ¼ e0; e0½ �

f 0; f 0½ �

" #
þ J�1

P;P
� �
Q;Q
h i24 35þ eED; eED

h i
f ED; fED
h i

264
375 ð3:62Þ

J ¼
@P
@e

@P
@f

@Q
@e

@Q
@f

" #�����
e0;f 0

ð3:63Þ

After the process stops (and OBBT algorithm converges), the optimally tight-
ened convex hull LRΩ* with hyper-rectangular variable domain Ω* and the cor-
responding interval solution are obtained. Because the dummy vector y is a
component of x, the interval solution of bus angle is immediately available. Linear
programming models in (3.64)–(3.67) are solved for interval solution of bus volt-
age, branch active and reactive power and generator’s reactive power respectively.
Linear programming models instead of interval operation using (2.23), (2.58) and
(2.59) are utilized to avoid conservative operations of IA due to the correlation
among dummy variables X, M, Y, N, R and H.

U2
i ;U

2
i

h i
¼ U

2
i  max ð29Þ s:t: LRX	 ðxÞ \X	f g

U2
i  min ð29Þ s:t: LRX	 ðxÞ \X	f g


for 8 i 2 NPQ ð3:64Þ

Pl; Pl
� � ¼ Pl  max ð91Þ s:t: LRX	 ðxÞ \X	f g

Pl  min ð91Þ s:t: LRX	 ðxÞ \X	f g


for 8 l 2 L ð3:65Þ

Ql;Ql
� � ¼ Ql  max ð92Þ s:t: LRX	 ðxÞ \X	f g

Ql  min ð92Þ s:t: LRX	 ðxÞ \X	f g


for 8 l 2 L ð3:66Þ

Qk;Qk
� � ¼ Qk  max ð94Þ s:t: LRX	 ðxÞ \X	f g

Qk  min ð94Þ s:t: LRX	 ðxÞ \X	f g


for 8 l 2 L ð3:67Þ
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It should be noted that, (3.64)–(3.67) represent an improved and tighter outer
hull of original feasible space. Besides, as the interval solutions of bus voltage and
branch active and reactive power can be solved independently, parallel computing
can be utilized to further improve the computing efficiency.

3.2.2.4 Numerical Results

A. 9-bus System and Comparison with Monte Carlo Simulation

A 9-bus test system available in [1] was analyzed using the proposed methodology,
with a ±10 % variation on load and generation. The computation was performed
using MATPOWER, YALMIP and CPLEX 12.4 on a personal computer with
Intel® Core™ i5 Duo Processor T420 (2.50 GHz) and 8 GB RAM. The interval
solutions obtained by solving for the maximum and minimum of voltage magni-
tudes and angles for load bus (a.k.a. PQ buses) and generator bus (a.k.a. PV buses),
as well as line flows, were listed in Tables 3.4 and 3.5 Results for transmission
buses were not presented for simplicity. The results were verified by comparing
with Monte Carlo (MC) stochastic simulation results, which randomly samples
power injection for 5000 trials to get maximum/minimum voltage magnitude and
angle of each bus. Here, we assume Monte Carlo simulation (MC) with sufficient
number of samples can yield the “correct” interval solutions.

From the comparison between proposed method and Monte Carlo simulation,
it’s seen that the proposed method can estimate the upper/lower bound of voltage
magnitude with maximum error no more than 0.5 %. Furthermore, the ratio
between the length of intervals obtained from the MC simulation and those obtained
from the proposed method is presented in the last column of Tables 3.4 and 3.5.
The ratio is mostly in the range of 60–90 %, indicating the estimated interval length
is reasonably enlarged compared to that from MC method.

It should also be noted that, when one variable happens to sit at the interval
lower or upper bound at a given scenario, the other variables don’t necessarily sit at
their respective interval bounds.

B. 57-bus System and Comparison with Affine Arithmetic Method and Monte
Carlo Simulation Method

The proposed method was also verified on the IEEE 57-bus system, with a ±20 %
variation on load and generator powers. The results were compared with those of
Monte Carlo (MC) simulation with 5000 sample size. Figures 3.3 and 3.4 depict
the interval lower and upper bounds for voltage magnitudes and angles;
Figs. 3.5 and 3.6 show the interval results of branch active and reactive power
flows. The comparison between QCQP and MC simulation illustrates the effec-
tiveness of the proposed method, and the maximum error of voltage magnitude is
no more than 3 % and average error is about 1 %. The error of active/reactive
power flow intervals is also very small, which demonstrates the effectiveness of the
proposed method.
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Furthermore, in comparison to Affine Arithmetic method [2], we can see that the
proposed method produces lower bounds and upper bounds that are significantly
closer to the true lower and upper bounds obtained from Monte Carlo Simulation
method, than AA method does. Particularly, estimated intervals for some buses
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Fig. 3.3 Bounds of voltage magnitudes under 20 % variation
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such as bus 23, 31, and 37 using the proposed method are much better than those
using AA method. The performance improvement of the proposed method over AA
method has been observed in both voltage magnitude bounds and voltage angle
bounds, which is because the proposed method only involves very limited interval
arithmetic operations.
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Fig. 3.5 Bounds of active power flows under 20 % variation
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It should also be pointed out that, the proposed method arrives at a better
solution than AA method at the cost of more computation time. For example, it took
the proposed method about 19 s (8 % of simulation time by MC simulation) to
obtain the interval solution whereas it only took AA method 7 s (3 % of simulation
time by MC simulation).

C. Reactive Power Limit

Table 3.6 lists the generator reactive power limit and scheduled voltage, the initial
interval analysis results for reactive power and voltage magnitude before bus type
conversion, and the final interval analysis results after bus type conversion. The
‘Initial solution’ column represents the case without considering reactive power
limit, and ‘Final solution’ column shows the case with reactive power limit con-
sidered. Table 3.6 also shows reactive power outputs of generator 3, 9 and 12 are
out of limit, as highlighted in red and bold font. Therefore, the bus types for those
generator buses are changed from PV to PQ and the solution is recalculated.

Taking generator 9 as an example, the interval results of the proposed method
are compared with those of MC simulation in Figs. 3.7 and 3.8. With the violation
of reactive power limit, generation 9’s bus type is switched to PQ bus, and the
generator bus voltage magnitude will not hold constant any more. Rather, it
becomes an interval [0.977, 0.984] as shown in Fig. 3.7, whereas the true interval
of voltage magnitude is [0.9775, 0.9821].

Figure 3.8 illustrates that estimated reactive power interval for generator bus
with bus type conversion is also very close to the true interval. Furthermore,
Fig. 3.9 and 3.10 show the impact of different uncertainty level on voltage

Table 3.6 Interval solution of generator reactive power and voltage magnitude with reactive
power limit enforced

Gen
No.

Limit Initial solution Final solution

Reactive
power

Voltage Reactive power Voltage Reactive power Voltage

1 [−140,200] 1.040 [114.82,146.72] [1.040,
1.040]

[114.82,146.72] [1.040,
1.040]

2 [−17,50] 1.010 [−2.14,1.74] [1.010,
1.010]

[−2.14,1.74] [1.010,
1.010]

3 [−10,60] 0.985 [−13.20,15.54] [0.985,
0.985]

[−10.00,15.54] [0.980,
0.994]

6 [−8,25] 0.980 [−7.46,10.15] [0.980,
0.980]

[−7.46,10.15] [0.980,
0.980]

8 [−140,200] 1.005 [51.34,73.56] [1.005,
1.005]

[51.34,73.56] [1.005,
1.005]

9 [−3,9] 1.000 [−11.19,16.75] [1.000,
1.000]

[−3.00,9.00] [0.977,
0.984]

12 [−150,155] 1.015 [95.66,169.87] [1.015,
1.015]

[95.66,155.00] [1.006,
1.022]
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magnitude without/with reactive power limit respectively. It is observed that more
generators may reach to their limits with the increase of power injection uncertainty,
and the voltage magnitude intervals of all buses become wider, especially for bus 3
to bus 15 which are close to the generator buses that are converted to PQ buses.

Lastly, it should be pointed out the interval solution from MC method by its
nature is a subset of the true interval, while the solutions from the proposed method
and AA method are supersets of the true interval, as illustrated in Fig. 3.11. In other
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words, MC method gives an underestimated interval length and the proposed
method produces an overestimated interval length. Therefore, the proposed method
is suitable for application where the full range of the true interval needs to be
captured.
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3.2.3 Interval Radial Power Flow

3.2.3.1 Modeling of Interval Distribution Power Flow

It has been well recognized that the power flow in a radial network can be formed
by a set of recursive equations, which was proposed in [5], called DistFlow. Please
keep in mind that a radial network with n buses has n − 1 branches, since there is no
circle; this is also recognized as a spanning tree in the graph theory.

However, the exact DistFlow equations take on a nonlinear characteristic due to
the nonlinear network loss. In order to approximate the nonlinear term to fast
compute the radial power flow, two simplified DistFlow methods had been pro-
posed and identified in [6]. The first method is to directly drop the nonlinear
network loss, and the other method is to approximate the nonlinear term to a
quadratic one. These two simplified methods will be explicitly addressed in the
following work.

Moreover, with the consideration of uncertain active and reactive power injec-
tion, the interval numbers are employed. The uncertain active and reactive power
injection of ith bus are represented by an interval number, respectively (i.e., Pih i
and Qih i). The interval power flow is therefore intended to obtain the interval
voltage magnitude of each bus, active and reactive power of each branch.

A. Dropping network loss

For a simple radial network with n + 1 buses and n branches in Fig. 3.12, the
simplified equations without considering the network loss can be written as

Piþ 1h i ¼ Hiþ 1h i � Hih i
Qiþ 1h i ¼ Giþ 1h i � Gih i
U2

iþ 1

� � ¼ U2
i

� �� 2 ri Hih iþ xi Gih ið Þ

8<: ; i ¼ 1; . . .; n ð3:68Þ

where ri and xi denote the resistance and reactance of the i-th
branch; <Hi> and <Gi> denote the interval active and reactive power on i-th
branch; <Ui>, <Pi>, and <Qi> denote the voltage magnitude, injected active
power, and reactive power at i-th bus, respectively. It can be observed that the
power flow on the i-th branch is from i-th bus to (i + 1)-th bus.

Bound by MC method

True Bound

Bound by proposed method

Bound by AA method

Fig. 3.11 Illustration of interval solution from different methods
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However, there may be multiple feeders for one bus, and the bus and branch
order may not be the same as that in Fig. 3.12. Therefore, in order to obtain a
versatile expression for a general radial network, we will first set up a direction
topology where we let the positive direction of branch power flow from “from” bus
to “to” bus, shown in Fig. 3.13. Furthermore, the simplified DistFlow can be
extended to (3.69).

Pih i ¼
P
l2Lif

Hlh i �
P
l2Lit

Hlh i

Qih i ¼
P
l2Lif

Glh i �
P
l2Lit

Glh i

U2
l�f

D E
¼ U2

l�t
� �þ 2 rl Hlh iþ xl Glh ið Þ

;

8>>>>><>>>>>:
i ¼ 1; . . .; nþ 1
l ¼ 1; . . .; n

ð3:69Þ

where <Ul-f> and <Ul-t> are the “from” and “to” bus of l-th branch; Lif and Lit
are the branch sets with its “from” and “to” bus connected to the i-th bus,
respectively.

In the matrix form, Eq. (3.69) can be reformulated as

P
� � ¼ S

T
Hh i; Q

� � ¼ S
T
Gh i

S U
2

D E
¼ 2R Hh iþ 2X Gh i

8<: ð3:70Þ

with ðSÞn�ðnþ 1Þ ¼ S1; e
ref
; S2

� �
, ðSÞn�n ¼ S1; S2½ �, where S denotes the connection

matrix whose (i, j)-th element equals to 1 if the branch i connects to “from” bus j;
otherwise, it equals to −1 if the branch i connects to “to” bus j, and all other

Fig. 3.12 A simple radial network with active power flow

Fig. 3.13 A general radial
network with active power
flow
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elements are zero (e.g., R = diag(r1,…,rn) and X = diag(x1,…,xn)). However, the
voltage magnitude of reference bus is already given; therefore, the reduced system
is derived by

Ph i ¼ ST Hh i; Qh i ¼ ST Gh i
S U2
� � ¼ � U2

0

� �
eþ 2R Hh iþ 2X Gh i


ð3:71Þ

Where U2
0

� � ¼ U2
0 ;U

2
0

� �
, U0 is the voltage magnitude of the reference bus, and e

is the column of S corresponding to the reference bus. Therefore, the final interval
radial power flow can be written in a matrix form as

S �2R �2X
0 ST 0
0 0 ST

0@ 1A U2
� �
Hh i
Gh i

0@ 1A ¼ � U2
0

� �
e

Ph i
Qh i

0@ 1A ð3:72Þ

B. Linearized approximation for network loss

While considering the nonlinear network loss, the exact DistFlow at the receiving
end of the branch for a simple radial network in Fig. 3.13 can be presented as

Pih i ¼
P
l2Lif

Hlh i �
P
l2Lit

Hlh i � rl
H2

lh iþ G2
lh i

U2
ih i

� �
Qih i ¼

P
l2Lif

Glh i �
P
l2Lit

Glh i � xl
H2

lh iþ G2
lh i

U2
ih i

� �
U2

l�f
D E

¼ U2
l�t

� �þ 2 rl Hlh iþ xl Glh ið Þþ r2l þ x2l

 � H2

lh iþ G2
lh i

U2
th i

8>>>>>>><>>>>>>>:
ð3:73Þ

where the nonlinear term
H2

lh iþ G2
lh i

U2
ih i is approximated as

H2
l

� �þ G2
l

� �
U2

t

� � 
 Hlh iH	l þ Glh iG	l
U	t

 �2 ð3:74Þ

where Hl* and Gl* denote the normal deterministic active and reactive power of
l-th branch; Ui* denotes the normal deterministic voltage magnitude of i-th bus.

In the matrix form, it is derived as

Ph i ¼ ST Hh iþCT RKH Hh ið ÞþCT RKG Gh ið Þ
Qh i ¼ ST Gh iþCT XKH Hh ið ÞþCT XKG Gh ið Þ
S U2
� � ¼ � U2

0

� �
eþ 2R Hh iþ 2X Gh iþ XTXþRTR


 �
KH Hh iþKG Gh ið Þ

8<:
ð3:75Þ

where C is a matrix with (i, j)-th element being 1, assuming that branch i connects
to “to” bus j and zero; otherwise, KH and KG refer to
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KH ¼ diag
H	1

U	1�t

 �2 ; . . .; H	n

U	n�t

 �2

 !
; KG ¼ diag

G	1
U	1�t

 �2 ; . . .; G	n

U	n�t

 �2

 !

For simplification, we will arrive at

S �2R� XTXþRTR

 �

KH �2X � XTXþRTR

 �

KG

0 ST þCTRKH CTRKG

0 CTXKH ST þCTXKG

0@ 1A U2
� �
Hh i
Gh i

0@ 1A
¼

� U2
0

� �
e

Ph i
Qh i

0@ 1A ð3:76Þ

Interestingly, it can be found from (3.75) and (3.76) that the interval DistFlow
with and without considering network loss have the same mathematical formula-
tion, i.e., A xh i = bh i. Moreover, it can be found that the formulation is similar to
the interval DC power flow, where the coefficient matrices are constant and the
intervals exist only in the right hand side. The difference is that the matrix in this
formulation is asymmetric and non-diagonal dominant matrix.

3.2.3.2 Numerical Results

The proposed method in Sect. 2.2 is compared with Monte Carlo Simulation and
interval Gauss elimination method on 33-bus, 69-bus, 123-bus, and several large
radial network test systems, available from [1], where the proposed methodology is
implemented with uncertainties on load and generator powers. The computational
tasks were performed using the MATPOWER toolbox of Matlab on a 2.0 GHz
personal computer with 2 GB RAM.

(a) 33-bus system

A 33-bus radial system was plotted in Fig. 3.14, where the bus 1 is the reference
bus and the others are all load buses (a.k.a., PQ bus). Considering the ±20 %
variation on load demands, it could be observed that this would define an interval
wide enough to properly evaluate the proposed method. Compared with the 5000
Monte Carlo simulation (MCS), interval solutions defined by the upper endpoint
and power endpoint of the voltage magnitude of all buses—as well as line flows—
were obtained by the proposed method in Figs. 3.15, 3.16, and 3.17, respectively.
Here, the method ignoring the transmission loss refers to “M1,” the method with
approximate transmission loss is denoted as “M2,” and the Monte Carlo simulation
is “M3.” Note that we assume results from the MCS are the true value. Observe that
the lower and upper bounds of power flow from the proposed method are very close
to that of the MCS. Notably, the method with approximate transmission loss is more
realistic to the true value—compared to ignoring the loss and the maximum and
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average error of the two methods—for voltage magnitude U, branch active power
H, and branch reactive power G (shown in Table 3.7).

Next, we will study the impact of dropping tolerance on the convergence per-
formance and the sparsity of approximate inverse matrices. Consider the method
ignoring the network loss for instance, and the four choices of tolerance are given as
5, 1, 0.5, and 0 % (no dropping). Figure 3.18 depicts the convergence process of
approximation inverse matrix (left figure) and Krawczyk iteration (right figure). It
shows that the norm λ increases at the beginning and further decreases below 1.
Moreover, it needs more iteration for a larger η, since the dropping technology may
destroy the Newton iteration form of the original 2-norm optimization model. As
for Krawczyk iteration, it can be institutively found from the proof of Corollary 1
that smaller λ for Krawczyk method (i.e., the last value of left by the figure) seems
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Fig. 3.14 A 33-bus radial network topolog
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to have faster convergence. Perhaps it is true for most conditions, but it fails in the
case of η = 5 % and 1 %.

Importantly, it should be noted that η = 5 % comes out with more iterations, but
the computation time for each iteration may be reduced due to the sparsity. In
addition, the number of nnz elements is employed to measure the sparsity of the
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approximate inverse matrix. It is interesting from Fig. 3.19 that the exact inverse
matrix is also a sparse matrix with nnz = 2813 (i.e., the density is 30.52 %), while
the approximate inverse matrix without dropping will lead to a density matrix with
nnz = 9216 (i.e., 100 %). In contrast, the approximate matrix with larger dropping
tolerance results in sparser approximate inverse matrix (i.e., smaller nnz).
Unfortunately, η should not be chosen too large, which would make the Newton
iteration for approximate inverse matrix divergent (e.g., η > 7 %).

(b) 69-bus system

For 69-bus system in Fig. 3.20, we consider 10 renewable resources, which can be
taken as a negative load for power flow at a steady state; the ratio of total renewable
resource generation to the total load demand is 11.4 %. Certainly, the uncertainties
on renewable resources are larger than load demand, so we define βr and βl to
represent the variation on them, respectively. Generally, βr is about 20–40 % and βl
is about 5–10 %. We set three scenarios such that S1 denotes (βr = 20 %,
βl = 5 %), S2 denotes (βr = 40 %, βl = 5 %), and S3 denotes (βr = 20 %,
βl = 10 %). The three scenarios are simulated by the proposed method with the
consideration of the network loss. Figure 3.21 shows that the interval range of
voltage magnitude will be enlarged with an increase of both βr and βl, and in this
case, the load uncertainties have more impact on the bounds of voltage magnitude.

Table 3.7 Error of the proposed methods for interval power flow

M1 M2

Upper bound Lower bound Upper bound Lower bound

Max.
(%)

Ave.
(%)

Max.
(%)

Ave.
(%)

Max.
(%)

Ave.
(%)

Max.
(%)

Ave.
(%)

U 0.65 0.41 2.22 0.13 0.36 0.19 0.35 0.09

H 1.65 0.79 2.38 1.18 1.27 0.54 1.72 0.87

G 2.42 0.79 4.18 1.42 1.19 0.30 1.71 0.49
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(a) Exact inverse matrix (b)Approximate inverse 
matrix (η=5%)
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Fig. 3.19 Influence of dropping tolerance (η) on convergence performance
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Fig. 3.20 A 69-bus radial network topology

88 3 The Research and Application of Interval Power Flow



Additionally, the exact and approximate inverse matrix for the method with and
without network loss by η = 5 % are shown in Fig. 3.22, where we can find that the
inverse matrix becomes denser if considering network loss. Likewise, the inverse
matrix is a full matrix without the dropping strategy (nnz = 416616). That means
the dropping strategy can save nearly half of its memory space (i.e., 57.69 % for the
method without network loss and 47.09 % with network loss).

(c) Computation time on several test systems

Last but not the least, we will focus on computation time so that three large test
systems [including 246-, 615-, and 861-bus systems [4] that derive from a 123-bus
system (seen Fig. 3.23)] are employed to compare the proposed method (KISAP)
considering network loss with the interval Gauss elimination (IGE) method which
can still be given the same rigorous interval solution, and the Monte Carlo simu-
lation with 5000 trials by the forward/backward sweep method. In the simulation,
we only understand the simple serial-computing machine, although the partial
parallel computation is feasible. Furthermore, the results of the three methods are
presented in Table 3.8, where it shows that the computation time of IGE is more
than 100 times significantly slower than KISAP. Additionally, for small systems,
IGE is better than MCS; for large systems, the superior is lost. As for the proposed
KISAP method, it is always the best choice—of the three methods—for all test
systems. However, it should be pointed out the interval solution from MCS method
by its nature is only a subset of the true interval. Therefore, more trials by MCS are
needed to capture the true interval solution.
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3.2.4 Interval DC Power Flow with Constraints

Power system operation needs to consider the specific physical constraints, such as
generator output limits, and etc. Traditionally, interval flow problem should con-
sider some constraints, which have not been addressed, such as generation output
limits. Therefore, the interval power flow solution must be conservative, and even
some interval values have no physical meaning. In addition, the interval results are
often related to the selection the slack bus, for which the dynamic flow has been
widely studied [7]. This paper takes interval DC power flow as an example and set
up the interval DC flow model with the constraints to balance machine output and
dynamic adjustment constraints. We can observe that the results of interval DC flow
model with constraints are closer to the actual physical meaning, and overcome the

(a) Exact inverse matrix 
with network loss  

(b) Appro. inverse matrix 
with network loss 

(c) Exact inverse matrix 
without network loss  
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conservativeness. In addition, after considering the dynamic adjustment of the
generators, the results of interval power flow are no longer related to the selection of
slack bus.

3.2.4.1 Modeling of Interval Power Flow with Constraints

After given the interval expression of power injection, interval branch flow can be
obtained directly by (3.6). In fact, for the interval DC power flow described in (3.3),
the uncertainty of power injection at each bus is within a given interval. However,
in the practical power grid, the power output of generation is often subject to the
physical limit, so that the power output of the slack bus is not arbitrary. This
actually reflects a certain degree of correlation between generation output, which is
not a simple positive and negative correlation among a few units and other units
output, but a more general correlation. That is, besides power flow equations
defined in (3.3), the output of the generator also needs to meet certain additional
equations or inequality (including linear or nonlinear) constraints. The interval DC

Table 3.8 Comparison of
the proposed method, interval
Gauss method, and MCS

Test systems MCS (s) IGE (s) KISAP (s)

33-bus 74.6882 1.5608 0.0128

69-bus 137.2393 7.2391 0.0675

123-bus 197.5357 24.3609 0.2493

246-bus 364.7247 111.8038 0.6545

615-bus 862.4503 979.9895 3.1557

861-bus 1397.5201 1890.4819 6.1490
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flow equations defined in (3.3) with these additional equality and inequality con-
straints, gives the interval DC flow with constraints.

Due to this correlation, the generator output is not independent which results in
different interval flow results, and these results are closer to the realistic power flow
operation than the traditional uncorrelated interval power flow solution.
Furthermore, divide the interval DC power flow equations into two parts: network
load (i.e. the superimposition of wind power and load power injection) and power
generation, giving (3.77). Here, loads are free variables that can be arbitrarily
changed in the interval, and the generator output is required to meet some con-
straints. Accordingly, the slack bus can be described as (3.78).

PT ;PT
� � ¼ HCg Pg;Pg

h i
�HCl Pl;Pl

� � ð3:77Þ

Pg;ref ;Pg;ref

h i
¼
XM
k¼1

Pl;k;Pl;k

h i
�

XN
i¼1;i6¼ref

Pg;i;Pg;i

h i
ð3:78Þ

where N is the number of the generators, M is the number of load sites;
Cg 2 RV × N is an adjacency matrix of generator bus to other buses;
Cg 2 RV × M is an adjacency matrix of load buses to other buses; Pg is generator
output and Pl is equivalent power injection.

(a) With linear inequalities

Similar to traditional power flow computation, interval DC power flow equations
defined in (3.3) does not involve the slack bus. From the physical modeling of the
interval power flow, we can find that the total imbalanced power should be taken by
the slack bus. However, the power output of slack bus should be restricted by its
maximum and minimum range, i.e.

Pmin
g;ref � Pg;ref ;Pg;ref

h i
�Pmax

g;ref ð3:79Þ

where Pmin
g;ref and Pmax

g;ref are minimum and maximum output of the slack bus. Taking
(3.78) into (3.7) obtains

Pmin
g;ref �

XM
k¼1

Pl;k;Pl;k

h i
�

XN
i¼1;i 6¼ref

Pg;i;Pg;i

h i
�Pmax

g;ref ð3:80Þ

For branch flow constituted by (3.77) and (3.80), the equations of interval DC
power flow with constraints are as follows:
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PT ;PT
� � ¼ HCg Pg;Pg

h i
�HCl Pl;Pl

� �
Pg;Pg

h i
� Pmin

g ;Pmax
g

h i
Pg;ref ;Pg;ref

h i
¼ PM

k¼1
Pl;k;Pl;k

h i
� PN

i¼1;i 6¼ref
Pg;i;Pg;i

h i
Pmin
g;ref � Pg;ref ;Pg;ref

h i
�Pmax

g;ref

8>>>>>>>><>>>>>>>>:
ð3:81Þ

Optimization based interval arithmetic method proposed in Sect. 2.2 can still be
used for interval DC power flow equations with constraints. First, consider interval
variables as optimizing decision variables, due to the goal of interval power flow is
to solve the bound of branch flow, so the objective functions are maximizing and
minimizing branch flow, obtaining Z and Z respectively, and the branch interval
flow can be expressed as

PT ;l;PT ;l

h i
¼ Zl; Zl
� �

; l ¼ 1; . . .; L ð3:82Þ

Based on the interval DC power flow with constraint defined by (3.77), Z and Z
can be obtained by optimization model (3.83), such that

Zi ¼ min
Pg;Pl

=Zi ¼ max
Pg;Pl

PT ;i

s:t: PT ;i ¼ HCgPg �HClPl

 �

i

Pmin
g;ref �

PM
k¼1

Pl;k �
PN

i¼1;i 6¼ref
Pg;i�Pmax

g;ref ; l ¼ 1; . . .; L

max Pg;i;Pmin
g;i

� 	
�Pg;i�min Pg;i;Pmax

g;i

� 	
; i ¼ 1; . . .;N & i6¼ref

Pl;k �Pl;k �Pl;k; k ¼ 1; . . .;M

ð3:83Þ

(b) With linear equality

Model (3.83) considers all the imbalanced power to be taken only by the slack bus.
However, in the practical power system, the imbalance power is actually shared by
all generators, thereby forming a dynamic power flow. In general, the generator
output is controllable, and the imbalanced power will lead to the dynamic changes
of the generation output to meet the real-time balance. In this term, considering the

imbalance power allocate proportion of generator i to be βi and
Pn
i¼1

bi ¼ 1. Thus, the

interval power flow with the equality constraints based on the original definition in
(3.3) can be expressed as
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PT ;PT
� � ¼ HCg Pg;Pg

h i
�HCl Pl;Pl

� �
Pg;Pg

h i
� Pmin

g ;Pmax
g

h i
Pg;Pg

h i
¼ bi

PM
k¼1

Pl;k;Pl;k

h i
�PN

i¼1
P	g;i;P

	
g;i

h i� �
þ P	g;i;P

	
g;i

h i
8>>>><>>>>: ð3:84Þ

where P	g;i is active power of the generator i in base case. Based on the interval DC

flow equations with constraints defined in (3.84), Z and Z can be obtained by
optimization model

Zl = min
Pg;Pl

=Zl = max
Pg;P

PT ;i

s:t: PT ;i = HCgPg �HClPl

 �

i

Pg;i = bi
PM
k¼1

Pl;k �
PN
i¼1

P	g;i

� �
þP	g;i; l = 1; . . .; L

max Pg;i;Pmin
g;i

� 	
�Pg;i�min Pg;i;Pmax

g;i

� 	
; i = 1; . . .;N

Pl;k �Pl;k �Pl;k; k = 1; . . .;M

ð3:85Þ

Of course, the interval power flow with constraints is not limited to the above two
cases. According to the practical power system operating conditions, other con-
straints can be proposed, such as wind power correlation constraints, network losses
and so on.

3.2.4.2 Numerical Analysis

At first, a 9-bus system in [1] is employed to test the proposed method, where bus 1
is slack bus, and the injection power of each generator and load buses change
randomly within ±30 % range, while the upper and lower bounds of the slack bus
is [50, 150] MW. Comparing with traditional interval power flow without con-
straints, results are shown in Table 3.9. As it can be found, interval power flow with
constraints is a sub-range of the traditional interval power flow, this is because after
being constrained by the slack bus output, the generator output is not so free,
showing a certain relevance, so that the actual interval branch flow decreases.

To further study the influence of uncertainty on the traditional interval power
flow and interval power flow with constraints, we set the uncertainty degree
as ±10, ±30 and ±50 %, respectively. The width of the interval power flow is
shown in Figs. 3.24 and 3.25. With the increase of uncertainties, the length of
intervals of both the traditional interval power flow and interval power flow with
constraints will monotonously increase. But the length of interval power flow with
constraints is very smaller than that of the traditional interval power flow, since the
constraints of slack bus is considered. In addition, the interval of branch 1 (connect
to the slack bus) takes on a significant improvement.
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Similarly, considering the dynamic allocation for imbalance power with same
proportion on bus-9 system, we can obtain the dynamic interval power flow with
30 % uncertainty using the linear optimization model in (3.23)–(3.50), which is
shown in Table 3.10. The interval range is relatively narrowed and the output of all
generators requires dynamic allocation, representing the correlation between the
multiple generators. As shown in Fig. 3.26, with the increase of the uncertainty
degree, the change of the interval width of the dynamic interval power flow is
relatively small. In addition, the results of selecting a different slack bus results in
the different interval solution of the traditional interval power flow, while the same
dynamic interval power flow solution. This implies that the results of dynamic

Table 3.9 Comparison of the traditional interval power flow and the interval power flow with
constraints

Branch
no.

Traditional interval power flow
(MW)

Interval power flow with constraints
(MW)

1 [−101.90, 235.90] [50.00, 150.00]

2 [−46.43, 104.37] [−9.28, 91.07]

3 [−116.73, −5.33] [−99.09, −9.32]

4 [59.50, 110.50] [59.50, 110.50]

5 [−25.86, 73.79] [−20.00, 73.79]

6 [−127.83, −24.23] [−127.83, −24.23]

7 [−211.90, −114.10] [−211.90, −114.10]

8 [21.61, 152.33] [23.08, 136.22]

9 [−131.53, 55.47] [−111.96, 3.55]
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Fig. 3.24 Impact of uncertainty degree on traditional interval power flow
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interval power flow are not related to the choice of the slack bus and the interval
solution obtained by traditional interval power flow will be larger than dynamic
interval power flow.

Furthermore, when using different dynamic allocation coefficient, the results of
the dynamic interval power flow are compared in Table 3.11. Case 1 represents
allocation with same proportion, case 2 is the allocation with proportion of 3: 1: 1,
case 3 is allocation with proportion of 1: 3: 1, case 4 is allocation with proportion of
1: 1: 3. With the different dynamic allocation, the correlation coefficient between
generators will change and the results will change as well.
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Table 3.10 Comparison of traditional interval power flow and dynamic interval power flow

Branch
no.

Traditional interval power flow (MW) Dynamic interval
power flow (MW)

Slack 1 Slack 2 Slack 3

1 [−101.90, 235.90] [46.90, 87.10] [46.90, 87.10] [50.00, 92.50]

2 [−46.43, 104.37] [−10.40, 68.34] [−25.38, 83.31] [2.63, 55.30]

3 [−116.73, −5.33] [−100.21, −21.85] [−128.90, 6.83] [−85.24, −36.82]

4 [59.50, 110.50] [59.50, 110.50] [−78.50, 248.50] [68.00, 110.50]

5 [−25.86, 73.79] [−27.77, 75.70] [−71.67, 119.60] [1.31, 46.63]

6 [−127.83, −24.23] [−151.42, −0.64] [−150.55, −1.51] [−100.20, −51.87]

7 [−211.90, −114.10] [−303.10, −22.90] [−211.90, −114.10] [−188.50, −146.00]

8 [21.61, 152.33] [22.26, 151.68] [36.52, 137.41] [58.18, 115.76]

9 [−131.53, 55.47] [−82.98, 6.91] [−87.75, 11.68] [−69.37, −6.69]
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Finally, IEEE-118 bus system is used to further compare the two interval DC
power flow with constraints, where each generator uses same proportion to allocate
imbalanced power, and the load uncertainty is 30 %.Simulation results are shown in
Fig. 3.27, which suggests that the traditional interval DC power flow is conser-
vative in large part in (a), and (b) can obtained minimum interval range, since the
generator output is most relevant in this case.
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Table 3.11 Impact of different allocation coefficient on dynamic interval power flow

Branch no. Case 1 (MW) Case 2 (MW) Case 3 (MW) Case 4 (MW)

1 [50.00, 92.50] [50.00, 150.00] [50.00, 94.17] [52.83, 81.17]

2 [2.63, 55.30] [−18.02, 77.09] [−14.46, 72.39] [−11.16, 69.09]

3 [−85.24, −36.82] [−93.89, −30.22] [−102.21, −19.86] [−108.04, −14.02]

4 [68.00, 110.50] [79.33, 112.67] [68.00, 112.17] [42.50, 127.50]

5 [1.31, 46.63] [−8.51, 61.52] [−5.71, 53.64] [−24.06, 71.99]

6 [−100.20, −51.87] [−116.41, −36.20] [−122.65, −30.17] [−113.52, −38.54]

7 [−188.50, −146.00] [−190.67, −157.33] [−244.50, −112.00] [−177.17, −148.83]

8 [58.18, 115.76] [48.86, 127.11] [32.14, 141.79] [37.98, 135.96]

9 [−69.37, −6.69] [−99.48, 10.56] [−82.23, 6.17] [−89.09, 13.02]
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3.3 Chapter Summary

This chapter applied the methods for solving interval linear equations and nonlinear
equations in the second chapter to power flow calculation, formed an interval AC
power flow, interval DC power flow and interval distribution power flow models.
Interval AC power flow is based optimization method, at first relaxing the tradi-
tional flow equations, and then using boundary tightening method. Interval DC
power flow and interval distribution power flow models utilizes Kraw iteration
method with preconditioning. In addition, the paper also studied the interval power
flow with constraints and discussed the impact of slack bus on the interval power
flow. Finally, several test systems are studied to verify the effectiveness of the
proposed method for solving interval power flow. Moreover, the results show that
power flow considering constraints can be address the correlation between uncertain
variables, so that the interval range will greatly reduce, and the results of dynamic
interval power flow are not related to the selection of slack node.
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Chapter 4
Interval Economic Dispatch
and the Tackling of Infeasible Model

Abstract Interval economic dispatch is derived from the traditional economic
dispatch considering the interval numbers for wind power uncertainties to achieve
the upper and lower bound of the optimal objective and generation output.
Mathematically, the interval economic dispatch is to solve the interval optimization
with the right-hand interval numbers. In this book, a general algorithm is proposed
to solve this kind of mathematical problem, which can be extended to other research
area. Furthermore, the infeasibility of interval economic dispatch is dealt with by
two strategies to avoid the loss of dispatch instructions in the close-loop control.
One is to find the optimal curtailment of wind power and the other is transmission
constraints softened using exact penalty function based triple-level optimization
model.

4.1 Introduction

Chapter 3 has discussed the algorithm of power flow considering the interval output
of the uncertain wind power output. In this chapter, we will mainly discuss on
optimal power flow with respect to uncertain wind generation output. Optimal
power flow in power system is widely used in electricity market to schedule and
dispatch the generation units in which the objective is to minimize the costs and
maximize the benefits. In electricity market, DC power flow is often used which is
also called economic dispatch (ED). Consider wind generation output variation is
modeled by intervals, the corresponding objective function and the optimal results
are also in terms of intervals. That is exactly the so-called interval economic dis-
patch. Interval economic dispatch can also be understood in this way: if wind
generation output is an exact value which is contained in the given interval, we can
solve the optimization model to get the optimal objective and the optimal gener-
ation output schedules; if wind generation output takes all the possibilities in the
interval, we can get the corresponding intervals of optimal objectives and optimal
generation outputs schedules respectively. Interval economic dispatch is exactly to
get the optimal interval results.
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On the other hand, the economic dispatch model may be infeasible when the
wind generation output takes some value of the given interval. Therefore, we must
take some special actions to make the model feasible to avoid the failure in the
closed-loop control when the model is infeasible. In this chapter we will implement
two approaches to guarantee the infeasibility of the model: optimal curtailment of
wind generation to guarantee the economic dispatch model to be feasible; another
approach is to utilize the constraint relaxation method in the online dispatch model.
In fact, the real-life power system is operating in a closed-loop framework; so the
power system will take an action to prevent the violations of the transmission
constraints in the next dispatch interval. Now, we can construct the economic
dispatch model with exact penalty function to guarantee the feasibility of the model.
In a word, the economic dispatch model is feasible using the above two approaches
when the wind generation output varies within the given interval. The concrete
research idea is as follows:

4.2 Interval Economic Dispatch Optimization Model

4.2.1 Modeling the Interval Economic Dispatch

Interval economic dispatch optimization model is similar to the conventional eco-
nomic dispatch model. Specifically, we usually take linear or quadratic cost func-
tion as the objective, subjected to the energy balance constraints, generator ramp-up
and ramp-down constraints, generator output constraints and transmission capacity
constraints. The difference is that the right-hand parameters are modeled by interval
numbers, instead of deterministic values, because the uncertain wind generation
output are included in the right-hand parameter of the economic dispatch opti-
mization model. If the wind generation output is deterministic (within the deter-
ministic uncertain interval), then we can get the corresponding optimal objectives.
For any given the wind power output, we can obtain the optimal dispatch and
optimal objective value with respect to the economic dispatch. If we take all the
value of the possible wind power output (may be infinite), we can have the final
optimal interval dispatch and interval objective values. For the decision-makers,
they can get the intuitive interval estimation of the cost, as well as the generation
outputs of each of the thermal units’ variation tendency with the objectives varying
from the optimistic solution to the pessimistic ones. Furthermore, the interval
optimization model is as follows:

Objective function:

min
XT
t¼1

XNg

i¼1

aiPiðtÞþ cið Þ
" #

ð4:1Þ
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where ai and ci are the coefficients of piecewise linear function of the costs; T is the
total number of the time intervals. Ng is the total number of the conventional thermal
units in the power system; PiðtÞ is the generation output of the thermal unit i at time t.

Constraints:

(i) Energy balance constraints:

XNg

i¼1

PiðtÞþ
XNw

k¼1

W�
k tð Þ;W þ

k ðtÞ� � ¼XNd

j¼1

Dj tð Þ; t ¼ 1; 2. . .T ð4:2Þ

Where DjðtÞ refers to the load demand for the site j at time t; and the
non-dispatchable wind power generation of farm k at time t is WkðtÞ, which is
within its forecasted upper and lower bounds W þ

k ðtÞ and W�
k ðtÞ, such that

WkðtÞ 2 W�
k tð Þ;W þ

k ðtÞ� �
. Generally W�

k tð Þ;W þ
k ðtÞ� �

is equivalent to

W f
k �We

k ;W
f
k þWe

k

h i
, where W f

k and We
k are the forecasted values and forecasted

error of the wind farm k respectively. Nw and Nd are the total numbers of the wind
farms and load sites respectively.

(ii) Thermal unit outputs constraint conditions:

Pmin
i ðtÞ�PiðtÞ�Pmax

i ðtÞ; t ¼ 1; 2. . .T ð4:3Þ

where Pmin
i ðtÞ and Pmax

i ðtÞ are generation output upper and lower bounds of the
thermal unit i at time t.

(iii) Thermal unit ramp-up and ramp-down constraints:

�Rdi �PiðtÞ � Pi t � 1ð Þ�Rui; t ¼ 1; 2. . .T ð4:4Þ

where �Rdi and Rui are the ramp-up and ramp-down constraints of i-th unit.

(iv) Transmission capacity constraints:

�Fmax
ij ðtÞ�FijðtÞ�Fmax

ij ðtÞ; t ¼ 1; 2. . .T ð4:5Þ

where Fmax
ij ðtÞ refers to the transmission capacity limit of line l ¼ ði; jÞ at time t. i and

j are the starting and ending bus of line l. Furthermore, the transmission capacity
constrains can be rewritten with the network distribution shift factors as follows:

�Fmax
l �

XNg

i¼1

Sl;iPiðtÞþ
XNw

k¼1

Gl;k W�
k ðtÞ;W þ

k ðtÞ� �
�
XNd

j¼1

Hl;jDjðtÞ�Fmax
l ; t ¼ 1; . . .T; l ¼ 1; . . .;Nl

ð4:6Þ
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where S, G and H are generator, wind farm and load site distribution shift factors of
the network, respectively. Sl;i is the distribution shift factor of power injection at
generator bus i on line l; Hl;i is the distribution shift factor of power injection at load
site j on line l, and Gl;i is the distribution shift factor of power injection at wind farm
bus k on line l. Nl is the total number of the transmission lines. The distribution shift
factor is related to the structures and parameters of the network and it can be
obtained from the node impedance matrix [1, 2].

Therefore, the above mathematical expressions formulate the interval economic
dispatchoptimizationmodel.Without the considerationof the correlationof eachwind
farm, we can obtain (4.7) and (4.12) by combining (4.2) and (4.6). It is obvious that the
uncertainwind generation outputs, which are the inputs of themodel, only occur in the
right hand side of both the equality constraints and the inequality constraints in
theoptimizationmodel.Therefore,wecanwriteanintervaloptimizationmodelwiththe
special structure as follows:

min
XT
t¼1

XNg

i¼1

aiPi tð Þþ cið Þ
" #

ð4:7Þ

s:t:
XNg

i¼1

Pi tð Þþ
XNw

k¼1

W�
k tð Þ;W þ

k tð Þ� � ¼XNd

j¼1

Dj tð Þ; t ¼ 1; 2. . .T ð4:8Þ

Pmin
i tð Þ�Pi tð Þ�Pmax

i tð Þ; t ¼ 1; 2. . .T ð4:9Þ

�Rdi �Pi tð Þ � Pi t � 1ð Þ�Rui; t ¼ 1; 2. . .T ð4:10Þ

�
XNg

i¼1

Sl;iPi tð Þþ
XNd

j¼1

Hl;jDj tð Þ � Fmax
l �

XNw

k¼1

Gl;kW
�
k tð Þ;

XNw

k¼1

Gl;kW
þ
k tð Þ

" #
;

t ¼ 1; . . .T ; l ¼ 1; . . .;Nl

ð4:11Þ

XNg

i¼1

Sl;iPi tð Þ �
XNd

j¼1

Hl;jDj tð Þ � Fmax
l �

XNw

k¼1

�Gl;kW
þ
k tð Þ;

XNw

k¼1

�Gl;kW
�
k tð Þ

" #
;

t ¼ 1; . . .T ; l ¼ 1; . . .;Nl

ð4:12Þ

where (4.7)–(4.12) formulate a classic interval linear optimization model, and the
variables in the intervals can be easily transposed to the right hands of the equality
and inequality constraints. So we can utilize the interval optimization theory with
right hand intervals mentioned in Chap. 2 to solve the problem (Fig. 4.1).
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4.2.2 Numerical Results and Discussion

In this section, the IEEE 118-bus test system with 24 time periods is studied to
investigate the effectiveness of proposed interval SCED model using bi-level pro-
gramming. The detailed parameters information of network and generators can be
found in MATPOWER [3], where the 19 units are in-service for SCED model with
6 wind farms. The maximum capacity of each wind farm is 100 MW. Besides, the
total load demand and wind generation forecasting is shown in Fig. 4.2 where the
shapes are similar to the real operation condition in Jilin province in north China.
The proposed approach is performed using YALMIP, MATLAB and CPLEX 12 on
a personal computer with Intel® Core™ i5 Duo Processor T420 (2.50 GHz) and
8 GB RAM.

Besides, two scenarios are selected as ‘Loose’ and ‘Tight’, to represent different
level of solution condition. The security constraints are not considered in ‘Loose’
case while they are strictly guaranteed in ‘Tight’ case. Furthermore, three different
uncertain levels denoted as α (0,Æ10,Æ20 %) are studied to discuss the impact of
uncertainties on the solution of SCED. Table 4.1 lists the upper and lower bound of
interval SCED under different scenarios and α, as well as the computational per-
formance. It can be observed that the gap between upper and lower bound becomes
larger with the increasing of uncertainty degree. As the lower bound is a simple
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Pessimistic 
objective

Interval solution 
of variable

Model based on the physical 
characteristics of power system

Convex 
optimization

Bilinear non-convex 
programming
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Mixed integer 
programming

Tri-level 
programming

Mixed integer linear programming/mixed integer quadric 
programming

Interval economic 
dispatch

Tackling Interval economic dispatch 
infeasibility

Optimal 
curtailment
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functionInterval optimization

Fig. 4.1 Framework and writing ideas of this chapter
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quadratic programming, the computational time is nearly the same about 0.5 s,
whereas the upper is actually an NP-hard problem, which needs more time con-
sumption under ‘Tight’ case with large uncertainties.

Furthermore, the interval optimal generation of each unit is computed by (4.11).
The results with two scenarios under α = 0.1 are shown in Fig. 4.3, where
Fig. 4.3a, b depict the generation of all units during 11:00–12:00 a.m.; Fig. 4.3c, d
depict the generation of unit 5 during 24 h. It can be observed that the generation of
each unit only has a small variation for ‘Loose’ case, but it may be large for ‘Tight’
case, such as unit 7, 8 and 9 at 11:00–12:00 a.m.. In addition, the impact on upper
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Fig. 4.2 The forecast of load demand and wind power generation

Table 4.1 Solution of interval SCED under different scenarios and α

α = 0 α = 0.1 α = 0.2

Tight Loose Tight Loose Tight Loose

Upper bound Obj/105$ 5.298 4.960 6.360 5.206 7.564 5.658

Time (s) 2.79 2.74 3.85 3.31 14.61 13.17

Lower bound Obj/105$ 5.298 4.960 5.441 4.797 5.277 4.660

Time (s) 0.586 0.463 0.652 0.477 0.694 0.407
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and lower bound is studied under different α in Figs. 4.4 and 4.5. It is interesting to
find that in order to achieve the optimal objective value (minimum fuel costs),
different units at different time period would have probably different response to the
wind variation. Take Fig. 4.4 for instance, under wind power variation, unit 5
during 11:00–12:00 a.m. always ramps down, unit 3 sometimes ramps down and
sometimes ramps up, unit 18 always ramps up and unit 7 always keeps constant. In
other words, it can be known in day-ahead market that the units have different
sensitivity to wind power variation for achieving the optimal objective value. For
example, under different α, the lower bound of unit 14 is different, which illustrates
that the lower bound is sensitive to wind power variation but upper bound is not;
unit 18 is just the opposite. These results could give us some institutive useful
information for a better dispatch in real-time market. Therefore, this should be
further studied in the future work.

Lower bound of generation by SCED model

Upper bound of generation by SCED model

Lower bound of generation physical limit

Upper bound of generation physical limit 

Generation by SCED model without Uncertainty

Fig 2-a: Generation of different units
at T=5 with tight security constraints
Fig 2-b: Generation of different units
at T=5 with loose security constraints
Fig 2-c: Generation of units 11
with tight security constraints

Fig 2-d: Generation of units 11
with loose security constraints
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Fig. 4.3 Comparison of upper and lower bound of generation with tight and loose security
constraints
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4.3 Methods for Infeasible Economic Dispatch

The prerequisite assumption of solving the interval economic dispatch by bi-level
programming is to ensure the infeasibility of the economic dispatch model with any
given uncertainties. However, the assumption may not always hold, so we need
some measures to guarantee a solution for economic dispatch model. In this book,
we will utilize two different methods to handle this problem under two different
given economic dispatch model: for the day-ahead multi-period economic dispatch
model, we utilize optimal curtailment of the wind generation output to ensure the
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feasibility of the model. Since the curtailment of wind generation output will
increase the generation of thermal units and decrease the renewable energy gen-
eration, minimizing the curtailment of wind generation output is considered; for the
real-time single-period economic dispatch model, relaxing the transmission security
constraints is implemented to ensure the feasibility of the model. In real-time
electricity market, transmission constraints could be violated in short term, and we
can get the redispatch in the next dispatch interval. However, the short term vio-
lation of the transmission constraints must be confined within a certain range.
Therefore, how to define the degree of the violation and the exact penalty function
is needed to be studied.

4.3.1 Optimal Curtailment Model

4.3.1.1 Optimal Curtailment for Infeasibility of SCED in the Presence
of Wind Power Uncertainties

In practice, the optimal solution of SCED with wind power generation is related to
the wind power output and the optimal generation will be adjustable under wind
power uncertainties. Then, a question arises: “Is the SCED problem in (4.1) always
feasible for any given wind power output?” If not, the wind power needs to be
curtailed so that SCED is feasible.

To clearly answer the above question, the feasible region of the SCED under a
given wind power output WkðtÞ 2 W�

k tð Þ;W þ
k ðtÞ� �

, t ¼ 1; . . .; T , k ¼ 1; . . .;Nw, is
defined as

C Wð Þ ¼ P

PNg

i¼1
Pi;t þ

PNw

k¼1
Wk;t ¼

PNd

j¼1
Dj;t; t ¼ 1; . . .; T

Pmin
i;t �Pi;t �Pmax

i;t ; i ¼ 1; . . .;Ng; t ¼ 1; . . .; T
�Rdi;t �Pi;t � Pi;t�1 �Rui;t; i ¼ 1; . . .;Ng; t ¼ 1; . . .; T

�Fmax
l;t �

XNg

i¼1

Sl;iPi;t þ
XNw

k¼1

Gl;kWk;t �
XNd

j¼1

Hl;jDj;t �Fmax
l;t

t ¼ 1; . . .; T ; l ¼ 1; . . .;Nl

8>>>>>>>>>>><>>>>>>>>>>>:

�����������������

8>>>>>>>>>>><>>>>>>>>>>>:

9>>>>>>>>>>>=>>>>>>>>>>>;
ð4:13Þ

Here, the feasible region CðWÞ is related to the given wind power outputsW and
then the above question can be mathematically stated as “Is CðWÞ always none-
mpty for 8WkðtÞ 2 W�

k tð Þ;W þ
k ðtÞ� �

?” If so, 8WkðtÞ 2 W�
k tð Þ;W þ

k ðtÞ� �
,

9P 2 CðWÞ.
Obviously, CðWÞ can be empty under certain wind power outputs and the

generation dispatch P cannot always fully satisfy the constraints (4.13). In this case,
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the proper curtailment is required with the objective of changing the wind power
uncertainty set and guaranteeing CðWÞ nonempty.

To be specific, the impact of curtailment on the uncertainty set is depicted in
Fig. 4.6, in whichWr

k;t is the restricted wind power output for k-th wind farm at time
period t.

As shown in Fig. 4.6: (i)Wr
k;t is smaller than the maximum wind power output as

Wr
k;t �W þ

k;t ; (ii) if W þ
k;t �Wr

k;t �W�
k;t, the uncertainty set Xk;t ¼ ½W�

k;t;W
r
k;t�; and

(iii) if Wr
k;t �W�

k;t, the uncertainty set Xk;t ¼ Wr
k;t;W

r
k;t

h i
¼ Wr

k;t. The curtailment

can be expressed as W þ
k;t �Wr

k;t and W þ
k;t ¼ Wr

k;t means no curtailment. Thus, with
the consideration of curtailment, the SCED in this paper aims to find the optimal
restricted wind power Wr

k;t for each wind farm, so that 8WkðtÞ 2 Xk;t, 9P 2 CðWÞ.
Also, (4.13) suggests that the uncertainty only affect the first and last constraints.

8WkðtÞ 2 Xk;t, if 9 P satisfies the first constraint, we have

9P; such that
XNd

j¼1

Dj;t �
XNg

i¼1

Pi;t

 !
2
XNw

k¼1

Xk;t; t ¼ 1; . . .; T ð4:14Þ

If P satisfies the last constraint, we have

XNg

i¼1

Sl;iPi;t þ
XNw

k¼1

Gl;kWk;t �
XNd

j¼1

Hl;jDj;t

 !
� �Fmax

l;t ;Fmax
l;t

h i
ð4:15Þ

XNw

k¼1

Gl;kXk;t� �Fmax
l;t ;Fmax

l;t

h i
þ
XNd

j¼1

Hl;jDj;t �
XNg

i¼1

Sl;iPi;t

 !
ð4:16Þ

Furthermore, it should be noted that Xk;t is a “if-else” interval number in (4.17).
For that, we employ one binary variable yk;t and apply big M approach to
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Fig. 4.6 Impact of
curtailment on the uncertainty
set
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reformulate (4.17) as a simple interval number in (4.18) with some additional
constraints by (4.19).

Xk;t ¼ W�
k;t;W

r
k;t

h i
if Wr

k;t �W�
k;t

Wr
k;t else

(
;with Wr

k;t �W þ
k;t ð4:17Þ

Xk;t ¼ W�
k;t 1� yk;t
� �þWr

k;tyk;t;W
r
k;t

h i
ð4:18Þ

with additional constraints

0�Wr
k;t �W þ

k;t

�Myk;t þW�
k;t �Wr

k;t �W�
k;t þM 1� yk;t

� ��
ð4:19Þ

where M is a large number.
Take (4.18) into (4.13) and it yields (4.20). Hence, if we can find a feasible

solution P which satisfies (4.20), (4.13) will hold.

XNw

k¼1

W�
k;t 1� yk;t
� �þWr

k;tyk;t
� 	

�
XNd

j¼1

Dj;t �
XNg

i¼1

Pi;t �
XNw

k¼1

Wr
k;t ð4:20Þ

Seminally, take (4.18) into (4.15) and it yields (4.21).

XNw

k¼1

Gl;k½W�
k;t 1� yk;t
� �þWr

k;tyk;t;W
r
k;t�� �Fmax

l;t ;Fmax
l;t

h i
þ
XNd

j¼1

Hl;jDj;t �
XNg

i¼1

Sl;jPi;t

 !
ð4:21Þ

From the additional constraints (4.19), it is known that the upper and lower
bound of Xk;t are always positive. Then, (4.21) can be furthermore simplified as

XNw

k¼1

max Gl;k; 0
� �

Wr
k;t þmin Gl;k; 0

� �
W�

k;t 1� yk;t
� �þWr

k;tyk;t
� 	n o

�Fmax
l;t þ

XNd

j¼1

Hl;jDj;t �
XNg

i¼1

Sl;iPi;t

XNw

k¼1

min Gl;k; 0
� �

Wr
k;t þmax Gl;k; 0

� �
W�

k;t 1� yk;t
� �þWr

k;tyk;t
� 	n o

� � Fmax
l;t þ

XNd

j¼1

Hl;jDj;t �
XNg

i¼1

Sl;iPi;t

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð4:22Þ
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Note that the bilinear term Wr
k;tyk;t in (4.20) and (4.22) is difficult to deal with.

Fortunately, this bilinear term is made by one continuous and one binary variable,
and thus the big M approach can be reutilized to obtain simpler constraints:

XNw

k¼1

W�
k;t 1� yk;t
� �þ zk;t

� 	
�
XNd

j¼1

Dj;t �
XNg

i¼1

Pi;t �
XNw

k¼1

Wr
k;t ð4:23Þ

PNw

k¼1
max Gl;k; 0

� �
Wr

k;t þmin Gl;k; 0
� �

W�
k;t 1� yk;t
� �þ zk;t

� 	n o
�Fmax

l;t þ PNd

j¼1
Hl;jDj;t �

PNg

i¼1
Sl;iPi;t

PNw

k¼1
min Gl;k; 0
� �

Wr
k;t þmax Gl;k; 0

� �
W�

k;t 1� yk;t
� �þ zk;t

� 	n o
� � Fmax

l;t þ PNd

j¼1
Hl;jDj;t �

PNg

i¼1
Sl;iPi;t

8>>><>>>:
ð4:24Þ

with the additional constraints

Wr
k;t �M 1� yk;t

� �� zk;t �Wr
k;t þM 1� yk;t

� �
�Myk;t � zk;t �Myk;t

�
ð4:25Þ

For yk;t ¼ 1, (4.24) is equal to
Wr

k;t � zk;t �Wr
k;t

�M� zk;t �M

�
, in which the second

constraint is redundant and zk;t ¼ Wr
k;t. Meanwhile, (4.18) and (4.19) become

Xk;t ¼ Wr
k;t;W

r
k;t

h i
and

0�Wr
k;t �W þ

k;t
�MþW�

k;t �Wr
k;t �W�

k;t

�
; respectively, which leads to

0�Wr
k;t �W�

k;t.

Similarly, for yk;t ¼ 0, (4.25) states
Wr

k;t �M� zk;t �Wr
k;t þM

0� zk;t � 0

�
, in which the

first constraint is redundant and zk;t ¼ 0. Then, (4.18) and (4.19) become Xk;t ¼

Wr
k;t;W

r
k;t

h i
and

0�Wr
k;t �W þ

k;t
W�

k;t �Wr
k;t �W�

k;t þM

�
, respectively, and we have

W�
k;t �Wr

k;t �W þ
k;t .

Now, we can construct a MILP model as follows

min
Wr ;P;y

PNw

k¼1

PT
t¼1

ck;t W þ
k;t �Wr

k;t

� 	
ð4:26Þ

s:t:
XNw

k¼1

W�
k;t 1� yk;t
� �þ zk;t

� 	
�
XNd

j¼1

Dj;t �
XNg

i¼1

Pi;t �
XNw

k¼1

Wr
k;t; t ¼ 1; . . .;T

ð4:27Þ
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Pmin
i;t �Pi;t �Pmax

i;t ; i ¼ 1; . . .;Ng; t ¼ 1; . . .; T ð4:28Þ

�Rdi;t �Pi;t � Pi;t�1 �Rui;t; i ¼ 1; . . .;Ng; t ¼ 1; . . .; T ð4:29Þ

XNw
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max Gl;k; 0
� �
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� �
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�
XNg

i¼1

Sl;iPi;t;

t ¼ 1; . . .; T; l ¼ 1; . . .;Nl

ð4:30Þ

XNw

k¼1

min Gl;k; 0
� �

Wr
k;t þmax Gl;k; 0

� �
W�

k;t 1� yk;t
� �þ zk;t

� 	n o
�

� Fmax
l;t þ

XNd

j¼1

Hl;jDj;t �
XNg

i¼1

Sl;iPi;t;

t ¼ 1; . . .; T; l ¼ 1; . . .;Nl

ð4:31Þ

0�Wr
k;t �W þ

k;t

�Myk;t þW�
k;t �Wr

k;t �W�
k;t þM 1� yk;t

� ��
; k ¼ 1; . . .;Nw; t ¼ 1; . . .; T

ð4:32Þ

Wr
k;t �M 1� yk;t

� �� zk;t �Wr
k;t þM 1� yk;t

� �
�Myk;t � zk;t �Myk;t

�
; k ¼ 1; . . .;Nw; t ¼ 1; . . .; T

ð4:33Þ

where ck;t is the curtailment cost of wind farm k at time period t.

4.3.1.2 Numerical Results and Discussion

In this section, the proposed approach is tested in WSCC 9-bus and IEEE 118-bus
systems [3], respectively. The test is performed using MATLAB and CPLEX 12.5
on a personal computer with an Intel® Core™ i5 Duo Processor T420 (2.50 GHz)
and 4 GB RAM (32 bit system). Besides, we assume ck;t to be the same, so the
objective is essentially to minimize the total curtailment of wind power.

In the 9-bus system, Generator 3 is replaced by a wind farm, in which the
forecasted wind power generation and three load demands over 24 h are depicted in
Fig. 4.7, where the curves are similar to the real operating condition of the Jilin
province in northern China. In addition, ck;t in (4.27) is assumed to be identical to
simplify the problem, the wind power uncertainty level α is set to 20 % of the
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forecasted value, and different transmission capacities are used to simulate the
solutions of different levels.

In one test, we adopt Monte Carlo simulation for the SCED model and find
several infeasible cases, three of which are presented in Fig. 4.8. Then, the pro-
posed method is implemented with different transmission capacity ratios β to the
original values and the corresponding optimal curtailment values are presented in
Figs. 4.9, 4.10 and 4.11 respectively.

As shown in Figs. 4.9, 4.10 and 4.11, the SCED needs 648 MW curtailment for
β = 1, 136 MW curtailment for β = 1.5, and no curtailment for β = 2. The simu-
lation results imply that (i) the SCED may be infeasible due to the uncertain wind
power output, (ii) the curtailment values and the transmission capacities exhibit an
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Fig. 4.7 The forecasted load demands and wind power generation
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inverse relationship, and (iii) when β > 2, the SCED is always feasible under
various wind power variations within the uncertainty set.

Furthermore, the curtailment of wind power with respect to uncertainty levels α
and transmission capacity ratios β is studied in Fig. 4.12. It is shown that for a given
transmission capacity ratio, the curtailment increases with the incremental of the
uncertainty level; whereas for a given uncertainty level, the curtailment decreases
with the incremental of the transmission capacity ratio. In particular, there will be
no curtailment when the transmission capacity expands to certain scale.

Another test is performed on IEEE 118-bus system. Note that the increase of the
time periods and/or wind farms in (4.27) leads to the growth of binary variables,
and the increasing number of the binary variables may affect the computational
performance of the proposed model. Therefore, different scenarios are tested and
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Fig. 4.9 Optimal curtailment for β = 1.0
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Fig. 4.10 Optimal curtailment for β = 1.5
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the corresponding results are presented in Table 4.2. It can be found that the
increasing time periods and/or wind farms require more computing time, but the
proposed model can still be efficiently handled by the branch and bound method
even for the case with 96 time periods and 15 wind farms.
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Fig. 4.11 Optimal curtailment for β = 2.0
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Fig. 4.12 Quantitive curtailment under different α and β

Table 4.2 Computational
time using the proposed
method (seconds)

T = 4 T = 12 T = 24 T = 48 T = 96

Nw = 3 0.1496 0.3429 0.8801 1.4870 4.3241

Nw = 6 0.1600 0.4364 0.9903 1.8377 5.4446

Nw = 9 0.1904 0.6526 1.1403 2.2344 6.1579

Nw = 12 0.2256 0.6779 1.3906 2.7376 6.9643

Nw = 15 0.2581 0.7411 1.9039 3.0243 7.3526
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4.3.2 Exact Penalty Function Model

4.3.2.1 Mathematical Theory of Exact Penalty Function

In the last chapter, we have proposed an optimal curtailment model to ensure the
feasibility of the multi-period economic dispatch model, which is utilized in the
day-ahead SCED model. Moreover, we have presented the reasonable
curtailment-constrained curves to ensure the feasibility of the SCED. However, in
real time market, the forecasted generation output of the wind farms will be updated
with short-term forecasted results, so the forecasted intervals may be different from
the forecasted results of the day-ahead market. Therefore, we need to modify the
input parameters of SCED in real-time market with renewed wind generation
output, so as to modify the scheduling plan in the day-ahead market. The real time
single-period ED can be mathematically formulated as a quadratic programming
(QP) problem, the objective is to minimize the traditional generation cost with the
consideration of specific constraints such as generator physical limits and trans-
mission line capacity limits. Obviously it is a quadratic programming problem, but
the uncertain wind generation output can become the input parameters of the model.

min
PNg

i¼1
ci þ biPi þ aiP2

i

� � ð4:34Þ

s:t:
PNg

i¼1
Pg;i þ

XNw

i¼1

Pw;i ¼
XNl

i¼1

Pl;i ð4:35Þ

Pmin
T �T Pg þPw � Pl

� ��Pmax
T ð4:36Þ

Pmin
g �Pg �Pmax

g ; given Pw � Pmin
w ;Pmax

w

� � ð4:37Þ

Where Pg Pg is the conventional dispatchable (non-wind) generation; Pw is the
wind power generation and Pl is the load; Ng, Nw and Nl denote the total number of
generators, wind units and loads, respectively; ai; bi; cið Þ are the triplet coefficients
of quadratic cost function of generator i; T is the generation shift factors. Pmin

g and
Pmax
g are the minimum and maximum limit of generator output, respectively; and

Pmin
T and Pmax

T are the lower and upper limit of transmission capabilities,
respectively.

In real time market, the forecasted intervals of the wind generation output may
not be the same as the day-ahead forecasted results. Intuitively, for any given Pw in
the range of ½Pmin

g ;Pmax
g �, we may solve the QP problem to get the corresponding

optimal solution, which is therefore a function of Pw. However, with wind output
being an uncertain variable with stochastic features, sometimes the OPF model can
be unsolvable because the feasible region defined by those hard constraints
becomes empty. That is because in the above OPF model, all constraints are
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considered as “hard” constraints, which cannot be violated. In practice, some
constraints can be violated, which are called “soft” constraints, to reach a feasible
solution. When soft constraints are allowed, a slack variable for each of the soft
constraints is added in the OPF model, and the optimization objective function
includes an additional term to represent the cost of constraint violations through
penalty factors. To justify the OPF model with soft constraints, three principles are
presented as follows:

(1) Soft constraints should be physically meaningful and safe in practice for a
short duration.

(2) Soft constraint violation should not be too big.
(3) The OPF with soft constraints should yield the same optimal solution as that of

the original OPF, when the original OPF itself has feasible solutions.

From (4.35)–(4.38) we can see that, the energy balance constraints can be
selected as soft constraints and the objective function can be modified with cur-
tailment of the demand load being selected as penalty function; we can also select
transmission capacity constraints as soft constraints and the objective function can
be modified with the violation of the transmission capacity being selected as penalty
function. From the respective of solving the mathematical model, no matter what
kinds of soft constraints are, the solving method of the optimization model and
exact penalty function are the same.

Based on the above principles, we introduce the OPF with constraint relaxation
as follows:

min
PNg

i¼1
ci þ biPi þ aiP2

i

� �þ q e� dk k1 ð4:38Þ

s:t:
PNg

i¼1
Pg;i þ

XNw

i¼1

Pw;i ¼
XNl

i¼1

Pl;i ð4:39Þ

Pmin
T � e� d�T Pg þPw � Pl

� ��Pmax
T þ e� d ð4:40Þ

Pmin
g �Pg �Pmax

g ; given Pw � Pmin
w ;Pmax

w

� � ð4:41Þ

0� e� emax; d 2 0; 1f g; e� d ¼ e1d1; . . .; emdm½ �T ð4:42Þ

where δ is a pre-determined vector of binary variables and di if constraint i can be
softened and di = 0 otherwise; ε is a relaxation vector; ρ is the penalty factor for
violation; and m is the number of transmission lines.

The OPF model in (4.38)–(4.42) attempts to minimize the total production cost
and the cost of constraint violation. According to principle (1), some transmission
constraints are chosen as soft constraints. Principle (2) is taken into account by
(4.42).
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Selection of penalty factor is the most critical and difficult to the OPF model with
soft constraints for Principle (3). Applying an extremely big penalty factor in model
(4.38)–(4.42) will make it equivalent to the original OPF model (4.35)–(4.37).
However, when the penalty factor is too large, the cost of constraint violations may
dominate the objective function during iterations, which may lead to slow con-
vergence or even retain the no-solution issue for certain scenarios [4]. When the
penalty factor is too small, the soft constraints will be easily violated and objective
function value will be lowered at the expense of higher level of constraint viola-
tions, and dispatch results will therefore be skewed.

Therefore, an “exact penalty function” method is proposed in this book to arrive
at a reasonable and justified penalty factor that meets the requirement set forth in
Principle (3).

According to [5, 6], in order to guarantee the OPF problems with soft constraints
produce the same solution as that of the original OPF problem for any feasible Pw,
penalty factor ρ must be greater than the 1-norm of the Lagrange multipliers of
transmission constraints (4.38), denoted by λ, over all given feasible range of Pw,
which can be formulated in (4.43). To simplify the representation, model (4.35)–
(4.37) is transformed into general formulation (4.44) using matrix expression.

Theorem 4.1: If the penalty factor q�max kp and original model is feasible,
then for any given Pw, the model of (4.38)–(4.42) is strictly equivalent to the model
of (4.35)–(4.37), where Lagrange multipliers are denoted by λ, and 1

p þ 1
q ¼ 1 holds.

For example, if we take e� dk k1 represent penalty function, then p needs to
take norm-1 multiplier, that is kk k1; if we take e� dk k1 represent penalty function,
then p needs to take norm-1 multiplier, that is kk k1. Furthermore, according to
theorem4.1, when q�max kk kp, the objective function denoted by (4.39) is called
exact penalty function. And [6] pointed out that if we take e� dk k1 represent
penalty function, then the numbers of decision variables and constraint conditions
will increase, while if we take e� dk k1 represent penalty function, then the
number of mere decision variables will increase. Therefore, from the respective of
time computational complexity, taking e� d1 as penalty function is better. So we
will study penalty function with norm-1 in this passange.

Then, (4.43) can be subsequently converted to a bi-level optimization problem in
(4.45). The lower-level problem can be replaced by its Karush-Kuhn-Tucker
(KKT) condition to obtain the lower bound of ρ.

q� max
Pw

kk k1 ð4:43Þ

General formulation:

min
Pg

0.5PT
gAPg ð4:44Þ

4.3 Methods for Infeasible Economic Dispatch 119



s:t: BEPg¼ CEPl þDEPw

BIPg �CIPl þDIPw

given Pw � Pmin
w ;Pmax

w

� �
Maximum Lagrange:

max
Pw

kk k1 ð4:45Þ

s:t: min
w �Pw �Pmax

w

min
Pg

0.5PT
gAPg : k

s:t: BEPg¼ CEPl þDEPw

BIPg �CIPl þDIPw

where A denotes the quadratic cost matrix; BE, CE and DE are the coefficients of
equality constraints; BI , CI and DI are the coefficients of inequality constraints.

We can find that (4.45) is actually a bi-level optimization model, for the
lower-level problem we can use KKT condition and big M theory to transform it
into a hybrid integer linear programming and we have:

BEPg ¼ CEDþDEPw

BIPg �CIDþDIPw

APg þBT
I kþBT

El1 ¼ 0
CIDþDIPw � BIPg
� � 	 k ¼ 0
k� 0;�1� l1 � þ1

,

BEPg ¼ CEDþDEPw

APg þBT
I kþBT

El1 ¼ 0
�M 1� sð Þ�BIPg � CID� DIPw � 0
0� k�Ms s 2 f0; 1g

ð4:46Þ

where M is a large number, s is an integer one dummy variable, the model in (4.45)
can be transformed into:

max
Pw

k1 ð4:47Þ

s:t:Pmin
w �Pw �Pmax

w

BEPg ¼ CEDþDEPw

APg þBT
I kþBT

El1 ¼ 0

�M 1� sð Þ�BIPg � CID� DIPw � 0

0� k�Ms s 2 f0; 1g
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From the respective view of mathematics, the sufficient and necessary condition
“KKT condition is a convex quadric programming” is that the model is feasible, but
the lower-level convex quadric programming in the model (4.45) may be infeasible.
At present, KKT condition cannot guarantee the optimality, so that the Lagrange
multiplier k may not be determined solely. Therefore, we can transform (4.47) into
(4.48) to guarantee the uniqueness of k.

max
Pw

kk k1 ð4:48Þ

s:t:Pmin
w �Pw �Pmax

w

BEPg ¼ CEDþDEPw

�M 1� sð Þ�BIPg � CID� DIPw � 0

min 0:5 kTk

APg þBT
I kþBT

El1 ¼ 0

0� k�Ms s 2 f0; 1g

Then the KKT condition will be utilized again to transform the expression of
convex quadric programming into a mixed integer programming, so we have:

c ¼ max
Pw;k;Pg;s

1Tk ð4:49Þ

s:t: 0� k�Ms ð4:50Þ

BEPg ¼ CEDþDEPw ð4:51Þ

�M 1� sð Þ�BIPg � CID� DIPw � 0 ð4:52Þ

APg þBT
I kþBT

El1 ¼ 0 ð4:53Þ

kþ �I; I½ �hþBIl2 ¼ 0 ð4:54Þ

0� h�M
1� s
1� s


 �
ð4:55Þ

Pmin
w �Pw �Pmax

w ; s 2 f0; 1g ð4:56Þ

Obviously, the model in (4.49)–(4.56) is a simple mixed integer quadric pro-
gramming model, and we can use = branch-and-bound algorithm to solve the
model and get the global optimal goal c, and it is just the lower bound of q.
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4.3.2.2 Numerical Example

The proposed method based on exact penalty function has been verified on a
six-bus test system shown in Fig. 4.13 and implemented with MATPOWER
toolbox and CPLEX 12.

Solving model (4.47) gives the lower bound of ρ as 11.4265 $/MW. Assume the
constraint maximum relaxation amount of each line capacity is emax ¼ 10T MW.
When Pw1 ¼ 30 MW, the original OPF is feasible with the objective value
$5261.77, and the constraint relaxation method using ρ = 106 gives the same
solution. However, the iteration increases and numerical problems may occur when
ρ is chosen 1010. When a smaller ρ, such as 10, is selected which does not meet the
criterion 11.4265, the hard constraint is softened and a different solution is pro-
duced. When Pw1 ¼ 25 MW, the original OPF is infeasible. Using the proposed
method, the objective function value is $5351.02 with two soft constraints (SC),
and $5342.84 with three SCs. Because of the lower penalty factor, lower objective
function is achieved with one more SC. It should be pointed out that the same
solution will be obtained for any ρ equal or greater than 11.4265. It demonstrates
the exact penalty function can give the true lower bound of penalty factor ρ that
satisfies Principle (3). Finally, tests on three large IEEE test systems with multiple
wind farms show acceptable computational time (Tables 4.3 and 4.4).

Fig. 4.13 A six-bus test
system

Table 4.3 Solutions of feasible/infeasible OPF for different ρ

Feasible OPF Infeasible OPF

Pw1(MW) 30 25

ρ ($/MW) × 10 11.4265 106 11.4265 10

# of SCs 0 1 0 0 2 3

Objective($) 5261.77 5259.39 5261.77 5261.77 5351.02 5342.84

Iteration 3 6 7 12 8 6

Note × denotes the penalty function is not considered
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4.4 Conclusions

In this chapter, we have mainly addressed two questions: one is to apply the interval
optimization theory into the power system economic dispatch model and establish
the interval economic dispatch model; the other one is to study the methods to deal
with infeasible economic dispatch when considering the stochastic of wind gen-
eration output. With interval economic dispatch model, we can extend the con-
ventional determined economic dispatch model to uncertain interval model, as well
as assume the uncertain wind generation output to be interval numbers as the inputs.
Then we can get the optimization objectives as well as the varying ranges of
optimal solutions. The interval results can be used to evaluate the influence of
uncertainty of wind generation on the economic model and regarded as the
extension of the sensitivity analysis of the economic dispatch optimization model.
Generally speaking, sensitivity analysis is studying the influence of the disturbance
of uncertain parameters on the optimal solutions, while interval optimization allows
the parameters to vary in a large range and gets the interval results of the optimal
solutions. Therefore, interval optimization has a wilder application range.

However, conventional economic dispatch model yields the optimal solutions
under the given wind generation output forecasted values. When considering the
uncertainty of wind generation outputs, we must not only guarantee the feasibility
of the economic dispatch model under the given wind generation output forecasted
values, but also pay attention to whether the economic dispatch model is always
feasible when the wind generation outputs take arbitrary values within the given
varying ranges. In this chapter we have studied two models for the infeasible
economic dispatch model with wind generation outputs varying within the given
ranges: the one is to minimize curtailment of wind generation, the other is to allow
short term violation of transmission capacities. We can use the first solution into
day-ahead dispatch and make a long term dispatch schedule while using the second
one into real time dispatch model when considering the exact penalty function
based constraint relaxation for the short time violation of constraints. Since power
system is operating in the closed loop state, the original dispatch results can be
updated in the next dispatch period and therefore the model may be feasible. So the
economic dispatch model considering short term violation of the constraint can be
used in real time dispatch.

Finally, through numerical results on many test systems, we have verified the
effectiveness of the above methods proposed in this chapter. We have also tested

Table 4.4 Computational time of large systems with multiple wind farms

IEEE 57-bus IEEE 118-bus IEEE 300-bus

# of Pw 1 4 2 6 6 15

ρ ($/MW) 0 6.49 2.08 6.35 47.72 984.33

Time (s) 0.32 1.65 3.62 4.46 12.15 13.42
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the time complexity on large-scale test system and the results illustrate the opti-
mization model can be used in current real time dispatch and can provide some
experience to decision makers.
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Chapter 5
Robust Interval Economic Dispatch
and the Price of Robustness

Abstract Interval economic dispatch only gives an interval solution, which cannot
be used for the practical dispatch schedule, but only be used for evaluating the
impact of wind power uncertainties. To find an optimal dispatch schedule from the
interval solution while providing a “robust” solution for power system operators,
interval robust optimization is proposed, including adaptive interval robust opti-
mization and two-stage interval optimization models. The optimal solution from
interval robust optimization is sacrificed by guaranteeing the whole security within
the uncertainty set, which may lead to the conservatism comparing to the traditional
deterministic economic dispatch. To reduce the conservatism, the price of robust-
ness is introduced for decision makers.

5.1 Introduction

An interval economic dispatch model has been proposed in the last chapter. It’s not
hard to see that interval optimization solution calculated from this model only can
be used for assessing the economic dispatch model considering uncertainty of wind
power and observing the effect of wind power changing on the optimal objective
function and optimal solutions of economic dispatch model. However, in the
practical power system, interval optimization solution cannot be used for direct
dispatch scheduling. In fact, a determined optimal value must be chosen from the
interval solutions. Therefore, this chapter will research the robust interval economic
dispatch model, which could get a robust economic dispatch optimization solution
for decision makers.

The robust interval economic dispatch model can obtain an optimal solution to
guarantee the security for any given realization of wind power output. In other
words, the systems will reach the worst condition within the scope of wind power
output and the robust interval economic dispatch model obtains an optimal solution
in this situation. There are two models to be discussed in this chapter: adaptive
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robust interval economic dispatch model and two-stage robust interval economic
dispatch model. The adaptive robust interval economic dispatch model considers
the AGC control, where the AGC generators output will be adjusted to the
imbalance power resulted from the wind power variation. In this situation, the
objective of the adaptive robust interval economic dispatch model is to obtain the
optimal scheduling, while satisfying all the security constraints after AGC control.
The two-stage robust interval economic dispatch model considers the day-ahead
network topology control. The generation output will be re-dispatched in response
to the uncertainty of wind power output. In the worst wind power output situation,
the objective of two-stage robust interval economic dispatch model is to obtain the
optimal network topology, which ensures the system security. In the perspective of
physical modeling, the two-stage robust interval economic dispatch model contains
long and short time scales. This model obtains the optimization for topology control
in the long time scale and considers the optimal scheduled generation in the short
time scale situation.

Observe that the robust interval economic dispatch model is the coordination of
security and economy, which fully ensures the security of power systems but the
solutions might be conservative compared to the traditional economic dispatch
model. In order to reduce the conservativeness, the price of robustness is introduced
in this chapter, which proposes the optimal solution set under different robustness
prices. This conception can be considered a new Paroto front. Finally, the flowchart
of this chapter can be expressed in the Fig. 5.1.

Robust Economic 
Dispatch

Adaptive Robust 
Economic Dispatch

Two-stage Robust 
Economic Dispatch

Mathematical Modeling of Power Systems

Bilinear Non-convex 
Programming  Tri-level Programming

Convex Programming Mixed Integer 
Programming

Price of 
Robustness

Fig. 5.1 Flowchart of this chapter
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5.2 The Real-Time Robust Interval Economic
Dispatch Model

5.2.1 The Adaptive Robust Interval Economic Dispatch
Model Considering Uncertain Wind Power Output

Typically, the conventional dispatch model considering uncertainties of wind power
is conducted under a single deterministic condition using the forecasted uncertain
generation, which aims to minimize the total generation costs while guaranteeing
the power balance and transmission security within the generator physical capacity.
The fuel cost function usually adopts a quadratic function in electricity markets and
security constraints are made up of several inequalities to ensure the loading of each
transmission line within its capacity. According to the Sect. 4.2, the conventional
dispatch model performs as follows:

ðConventional modelÞ min
Psch

XNg

i¼1

ai P
sch
i

� �2 þ biP
sch
i þ ci

� �
ð5:1Þ
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i ð5:2Þ
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k¼1

Gl;kW
f
k �

XNd

j¼1

Hl;jDj �Fmax
l ; l ¼ 1; . . .;Nl ð5:4Þ

where
Psch
i Scheduled generation of unit i

Dj Forecasted load demand of site j
R f
k

Forecasted generation of renewable resources unit k

(ai, bi, ci) Quadratic fuel cost coefficients of unit i
Ng Total number of dispatchable units
Nd Total number of load nodes
Nr Total number of renewable resources units
Nl Total number of transmission lines
Fmax
l Transmission capacity of line l at period t

GP
l;i Distribution factor of dispatchable generation at bus i on line l

GD
l;j Distribution factor of load at bus i on line l

GR
l;k Distribution factor of renewable resource at bus k on line l

Pmin
i =Pmax

i Maximum/minimum generation of unit i
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Even with better understanding and modeling of both the meteorological and
power conversion processes of renewable resources, an inherent and irreducible
uncertainty will always occur in every forecast which may bring about challenge to
the transmission security. In order to take the uncertainties into account for tradi-
tional DCOPF, the interval-based robust optimization method has been widely used
in recent years, where the uncertainties were usually modeled as interval values.
This can be given by

Wk 2 W f
k �We

k ;W
f
k þWe

k

h i
; k ¼ 1; . . .;Nw ð5:5Þ

where We
k represents the forecast error of renewable resource at bus k. Observe the

model (5.1)–(5.4), the power balance equation constraints will be violated due to
the imbalance resulted from the uncertain wind power output. Actually, the AGC
generators can ensure the power balance through the true control based on the
deviation. Therefore, an adaptive robust interval economic dispatch model is pro-
posed in this paper to optimize the generation cost while ensuring the security of
power systems.

Note that the balance between the total generation including thermal and
renewable resources and the total load demand must be guaranteed at any time. So
the generation of thermal units should be adjusted with the uncertain renewable
resources output [1]. Let βi denote the participation factor of unit i and the actual
generation output can be expressed as in (5.6). Generally, it is desired that the
participation factor is a nonnegative value, since the thermal generators will be
adjusted by the participation factor to meet the energy balance. If a small increment
of uncertainties is added to the studied power system, the generators must
reschedule the output of appropriate generators to move to a new generation level
within a short period of time.

XNd
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Dj �
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where
PNg

i¼1 bi ¼ 1 and 0� bi � 1. E eð Þ ¼ 0 implies that the expectation of wind
power prediction error is 0; Pi is the actual power output of generator i after the
AGC control. Equation (5.7), obtained through (5.6), explains that the generation
and electricity can always be balanced by the participation factor.

128 5 Robust Interval Economic Dispatch and the Price of Robustness



XNg

i¼1

Pi ¼
XNg

i¼1

Psch
i þ bie

� � ¼XNg

i¼1

Psch
i þ e

XNg

i¼1

bi ¼
XNg

i¼1

Psch
i þ e ¼

XNd

j¼1

Dj �
XNw

k¼1

Wk

ð5:7Þ

Taking the Pi in (5.6), the expected value of objective function is

E
XNg

i¼1

ai Pið Þ2 þ biPi þ ci
� � !

¼ E
XNg

i¼1

ai P
sch
i þbie

� �2 þ bi P
sch
i þ bie

� �þ ci
� � !

¼ E
XNg

i¼1

ai Psch
i þbie

� �2 þ bi Psch
i þ bie

� �þ ci
� � !

¼
XNg

i¼1

ai P
sch
i

� �2 þ biP
sch
i þ ci

� �
þE

XNg

i¼1

aib
2
i e

2 þ bibie
� � !

ð5:8Þ

E
XNg

i¼1

aib
2
i e

2 þ bibie
� � !

¼ E
XNg

i¼1

aib
2
i e

2

 !
þE

XNg

i¼1

aib
2
i e

2

 !
¼ E e2

� �þ 0

¼ E e� EðeÞð Þ2¼ E
XNw

k¼1

Wk �W f
k

� � !2

¼ E eTW
� �

eTW
� �T� �

¼ E eTWWeT
� � ¼ eTEðWWÞeT ¼ eTKeT ¼

XNw

k¼1

XNw

j¼1

Kkj

ð5:9Þ

Finally, the objective function is as follows:
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where Λ denotes the covariance matrix of renewable resource generation, which
can be obtained from the historical data. Then taking Pi into (5.4) and (5.4), the
roust DCOPF can be formulated as:
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5.2.2 The Adaptive Robust Interval Economic Dispatch
Model Considering the Price of Robustness

It is widely considered in robust optimization research that the robust optimization
model always produces over conservative solutions in the sense that it gives up too
much optimality for the nominal problem in order to ensure robustness. Therefore,
the price of robustness was proposed in [2–6] to reduce the conservatism, where the
scaled deviations are assumed to belong to a polyhedral uncertainty set such that

Wk ¼ W f
k þWe

k yk; k ¼ 1; . . .;Nw; X ¼ yj
XNw

k¼1

ykj j �C; ykj j � 1; 8k
( )

ð5:16Þ

where Γ is a parameter to adjust the robustness against the conservation level of the
solution and Γ 2 [0, Nw]. Equation (5.16) implies that only a subset of the
uncertainties will change in order to adversely affect the solution. According to the
Central Limit Theory, the arithmetic mean of a sufficiently large number of itera-
tions of independent random variables will be approximately normally distributed.
That is, assuming that a sample is obtained containing a large number of obser-
vations, each observation is randomly generated in a way that is independent on the
values of the other observations, and then the arithmetic average of the observed
values is calculated. In this approach, the worst scenario in robust optimization that
all the uncertainties take their worst cases is reduced.

(i) If Γ = 0, uncertain polyhedral set Ω contains only the zero point such that the
robust optimization equals to traditional deterministic counterpart.

(ii) If Γ = Nw, all the uncertainties take their worst cases, which is the robust
optimization model in (5.11)–(5.15).

(iii) If 0 < Γ < Nw, the conservative robustness is protected and can allow the
decision-maker to make a trade-off.

130 5 Robust Interval Economic Dispatch and the Price of Robustness



With the consideration of the price of robustness, the original adaptive robust
optimal power flow in (5.11)–(5.15) can be reformulated as:

min
Psch

XNg

i¼1

ai P
sch
i

� �2 þ biP
sch
i þ ci þ aib

2
i

XNw

k¼1

XNw

j¼1

Kkj

 !
ð5:17Þ

s:t:
XNd

j¼1

Dj �
XNw

k¼1

W f
k ¼

XNg

i¼1

Psch
i ð5:18Þ

Pmin
i �Psch

i þ bi
XNw

k¼1

W f
k �W f

k �We
k yk

� �
�Pmax

i ; i ¼ 1; . . .;Ng ð5:19Þ

�Fmax
l �

XNg

i¼1

Sl;i Psch
i þ bi

XNw

k¼1

W f
k �W f

k �We
k yk

� � !

þ
XNw

k¼1

Gl;k W f
k þWe

k yk
� �

�
XNd

j¼1

Hl;jDj �Fmax
l ; l ¼ 1; . . .;Nl

ð5:20Þ

XNg

i¼1

bi ¼ 1; 0� bi � 1; 8y 2 X ¼ yj
XNw

k¼1

ykj j �C; ykj j � 1; 8k
( )

ð5:21Þ

5.2.3 Simplification of the Proposed Model

It can be observed that the robust optimal power flow model in (5.17)–(5.21) is
actually to find an optimal solution while satisfying the constraints for any given
uncertain parameter, y. Generally, the “for any” constraint is difficult to deal with.
In order to solve this model, the proposed model is reformulated as a bi-level
optimization model, such that
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For (5.22), we derive
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It can be observed that the last term in (5.27) is a special linear programming that
has only one equality constraint and variable bound constraints. Before any further
discussion, first, we give a corollary as follows.

Corollary 5.1 [7]: For the linear programming model (5.28), let i1, …, in be a
permutation of 1,…,n, such that ci1 � � � � � cin . The optimal objective function
value is given by (5.29)

f ¼ max
x
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132 5 Robust Interval Economic Dispatch and the Price of Robustness



f � ¼
Xk�1

m¼1

cim � cikð Þ�xim þ cik b ð5:29Þ

where k(1 ≤ k ≤ n) is an integer number, such that
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Based on Corollary 5.1, the optimal solution of the optimization model (5.27) is
given by
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where i1; . . .; iNr is a permutation of 1,…, Nr, such that Re
i1 � � � � �Re

iNr
and

k (1 ≤ k ≤ Nr) is an integer number, such that k � 1�C� k. Therefore, (5.24) can
be simplified as
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For (5.25), we derive
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Theorem 5.2 [3]: The following robust optimization formulation in (5.34)–(5.36)
is equivalent to (5.37)–(5.40).
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Based on the above theorem, the robust counterpart of (5.32) yields

XNg

i¼1

Sl;iP
sch
i þ

XNw

k¼1

Gl;kW
f
k �

XNd

j¼1

Hl;jDj þ tlCþ
XNw

k¼1

plk �Fmax
l k ¼ 1; . . .;Nw

ð5:41Þ

tl þ plk �We
k

XNg

i¼1

Sl;ibi þGl;k

 !
l ¼ 1; . . .;Nl; k ¼ 1; . . .;Nw ð5:42Þ

plk � 0; tl � 0 l ¼ 1; . . .;Nl; k ¼ 1; . . .;Nw ð5:43Þ

Thus, the original bi-level adaptive robust optimal power flow considering the
price of robustness can be simplified as a traditional convex quadratic programming
model as:

ðRobustmodel0Þ min
Psch;b;t;p

XNg

i¼1

ai P
sch
i

� �2 þ biP
sch
i þ ci þ aib

2
i

XNw

k¼1

XNw

j¼1

Kkj

 !
ð5:44Þ

s:t:
XNd

j¼1

Dj �
XNw

k¼1

W f
k ¼

XNg

i¼1

Psch
i ð5:45Þ

Pmin
i þ bih�Psch

i �Pmax
i � bih; i ¼ 1; . . .;Ng ð5:46Þ
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�Fmax
l þ tlCþ

XNw

k¼1

plk

 !
�
XNg

i¼1

Sl;iP
sch
i þ

XNw

k¼1

Gl;kW
f
k

�
XNd

j¼1

Hl;jDj �Fmax
l � tlCþ

XNw

k¼1

plk

 !
; l ¼ 1; . . .;Nl

ð5:47Þ

tl þ plk �We
k

XNg

i¼1

Sl;ibi þGl;k

 !
; l ¼ 1; . . .;Nl; k ¼ 1; . . .;Nw ð5:48Þ

plk � 0; tl � 0; l ¼ 1; . . .;Nl; k ¼ 1; . . .;Nw ð5:49Þ

XNg

i¼1

bi ¼ 1 ; 0� bi � 1 ð5:50Þ

where

h ¼ maxPNr
k¼1

yk¼C;0� yk � 1

XNr

k¼1

Re
kyk ¼

Xk�1

m¼1

Re
im � Re

ik

� �
þRe

ikC and k � 1�C� k:

5.2.4 Numerical Results

First, the uncertainty degree and conservatism degree are well defined to study their
impacts on the proposed robust interval economic dispatch model.

Uncertainty Degree η: g ¼ We
k

W f
k

, where Wk 2 W f
k �We

k ;W
f
k þWe

k

h i
.

Conservatism Degree α: a ¼ f r�f u

f u � 100%, where fr and fu are the optimal objec-

tive values calculated by robust optimal power flow and traditional deterministic
optimal power flow, respectively.

It should be noted that f r is always greater than fu, because the optimal solution
of robust model is obtained under the worst-case scenarios. The price of robustness
is employed to avoid the optimal solution overly “robust” such that it is far from the
real world and leads to a solution which is unnecessarily too conservative.

A. IEEE 14-bus test system with 2 wind farms

The IEEE-14 bus test system [8] with two wind farms is studied, where the wind
farms are installed at bus #3 and #6 to replace the original thermal generators and
the rated capacity of the two farms are 20 and 30 MW, respectively. Thus, the test
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system consists of 14 buses, 3 thermal generators, 2 wind farms and 20 transmis-
sion lines. The spatial covariance matrix between the two wind farms is assumed to

be
0:8 0:2
0:2 0:9

� 	
.

It can be easily known that when Γ = 0, the proposed robust optimal model is
equivalent to the traditional deterministic optimal power flow. When Γ = Nw = 2,
the proposed robust model is just the robust optimal power flow without consid-
ering the price of robustness. Therefore, the above two models are the special cases
of the proposed model. Taking Γ from 0 to 2, we obtain the optimal Γ curves.
Figure 5.2a shows the Γ curve of the optimal value of the objective function, where
it is apparent that the objective value of the DCOPF model is the objective value of
DCOPF model is $6443 (i.e., choosing Γ to be 0) and the objective value of
R-DCOPF model is $6558 (i.e., choosing Γ to be 2). In other words, the conser-
vatism degree α increases from 0 to 1.8 %. It implies that the generation cost rises
with the increase of Γ and more robustness is taken into account using large Γ while
sacrificing more optimality of the solution.

Moreover, with the increase of uncertainty degree η, more generation cost will
be sacrificed for the same Γ. It can be observed from Fig. 5.2b that conservatism
degree α is about 0.4 % when Γ = 2 and η = 0.1, while α is around 1.8 % when
Γ = 2 and η = 0.4.

In addition, the optimal generation and participation factor of the three gener-
ators are presented in Figs. 5.3, 5.4 and 5.5. With the increase of Γ, both the power
output of generators 1 and 2 increase but the generator 3 output decreases. As for
participation factors, both generator 1 and 2 are close to 0, while generator 3 tends
to be 1.

The Γ curve offers a tradeoff between the generation cost and the uncertainty
robustness. The decision maker has the flexibility of adjusting the robustness of the
uncertainty against the level of conservatism of the optimal solution.

(a) Γcurve of objective value (b)  Γcurve of conservatism degree
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Furthermore, the probability of satisfying all constraints using 5000 Monte Carlo
simulations based on different probability distribution models is investigated. Here,
we choose three probability distribution models: multivariate uniform distribution
with independent and identical distribution (UD-iid); multivariate normal distri-
bution with independent and identical distribution (ND-iid) with a correlation

matrix of
0:8 0:2
0:2 0:9

� 	
; and multivariate normal distribution with correlation

(ND-C) with a correlation matrix of
0:8 0
0 0:9

� 	
. The results are reported in

Table 5.1, where the probability of constraint satisfaction increases with the
increase of Γ and all constraints can be satisfied when Γ = Nw = 2, i.e., the tra-
ditional robust optimal power flow model (R-DCOPF).

In addition, the comparison between UD-iid and ND-iid shows that in order to
achieve 100 % constraint satisfaction, different probability distribution models lead
to different choice of the price of robustness Γ. The comparison between ND-iid
and ND-C shows that the correlation of wind farms also affects the price of
robustness Γ in order to achieve 100 % constraint satisfaction.

B. Medium-scale test systems with 10 wind farms

Furthermore, the IEEE 118-bus system is studied which contains 118 buses and
186 branches as well as 10 wind farms which are located at bus #100, #103, #104,
#105, #107, #110, #111, #112, #113 and #116.

Here, different transmission line capacity limits are chosen as 150 and 100 MW,
respectively, and the corresponding Γ curves of the objective value and

Table 5.1 Probability of constraint satisfaction using Monte Carlo simulation

Γ UD-iid (η) ND-iid (η) ND-C (η)

0.1
(%)

0.2
(%)

0.3
(%)

0.1
(%)

0.2
(%)

0.3
(%)

0.1
(%)

0.2
(%)

0.3
(%)

0.0 49.8 50.1 50.2 53.6 52.3 53.3 62.3 60.2 63.1

0.2 60.2 60.6 60.3 65.4 67.7 66.6 71.5 71.8 72.4

0.4 69.4 70.6 69.2 72.9 73.3 75.7 86.5 87.8 85.4

0.6 77.3 78.9 78.6 89.4 90.1 89.8 92.8 93.4 93.2

0.8 85.2 85.6 86.6 91.2 93.2 92.8 98.7 98.7 98.9

1.0 91.8 92.0 91.3 97.3 97.5 97.6 99.8 99.9 99.9

1.2 94.4 94.9 95.2 98.8 98.8 99.5 99.9 99.9 99.9

1.4 97.1 97.2 97.3 99.6 99.4 99.9 100 99.9 100

1.6 98.6 98.6 98.2 99.9 99.9 99.9 100 100 100

1.8 99.7 99.8 99.6 100 100 100 100 100 100

2.0 100 100 100 100 100 100 100 100 100
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conservatism degree α are shown in Figs. 5.6 and 5.7. It can be observed that a
tighter line capacity limit will lead to higher generation cost and conservatism
degree α. In addition, for the case of tighter line capacity limit, the conservatism
degree α may reach 18 % without considering the price of robustness, while the
conservatism degree α is no more than 1 % for the case of higher line capacity limit.
The Γ curve of conservatism degree w.r.t. to α increases slowly at first and then
sharply after a “turning point”. The “turning points” decrease with the increase of
the uncertainty degree. For instance, as shown in Fig. 5.6, the “turning point” is at
Γ = 8 when η = 0.1 and at Γ = 6 when η = 0.4.
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5.3 The Day-Ahead Robust Interval Economic
Dispatch Model

5.3.1 The Two-Stage Robust Interval Economic Dispatch
Model Considering the Network Topology Control

In the day-ahead market, the adaptive robust interval economic dispatch model can
also be used. However, the difference is that the coupling between multiple time
periods should be considered. With the development of power systems, the network
topology control presented by some researchers could reduce the cost of power
generation to some extent. Therefore, this method is widely used in economic
dispatch [9–13]. The general optimal transmission switching problem aims to
minimize the total generation cost while satisfying all the operational constraints,
which can be formulated as a mixed integer linear programming (MILP) in a matrix
form as follows:

min
Pt ;Zt ;ht ;yt

XT
t¼1

bTPt þ sumðcÞ� � ð5:51Þ

s:t: CT
f Zt ¼ CgPt � CdDt þCwW f

t ð5:52Þ

Pmin �Pt �Pmax; Rd�Pt � Pt�1 �Ru; htðref Þ ¼ 0 ð5:53Þ

�Fmax � yt �Zt �Fmax � yt ð5:54Þ

�M 1� ytð Þ�Zt � BCf ht �M 1� ytð Þ ð5:55Þ

yt 2 0; 1f g ð5:56Þ

where T means the number of times; Pt and Dt represent the generation variables
and the load level at time t; (b, c) are the linear and constant coefficients of cost
function of generator; θt is the nb × 1 voltage angle variables at time t and “ref”
refers to the reference bus; B is an diagonal nl × nl electrical susceptance matrix of
transmission element; Zt is an l × 1 branch flow variables at time t; M is a big
number; Cf is a sparse nl × nb incidence matrix of directed power network, such
that S(i, j) = +1, if the branch i is connected to its “from” bus j, Cf (i, j) = −1, if the
branch i is connected to its “to” bus j, and 0 otherwise (i.e., not connected); Pmin

and Pmax are the minimum and maximum limits of generator output, respectively;
vector Fmax represents the transmission line limits. Cg is a sparse nb × ng generator
connection matrix, which can be defined such that its (i, j)-th element is 1 if
generator j is located at bus i and 0 otherwise. Similarly, Cd is a sparse nb × nd load
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connection matrix. Cw is a sparse nb × nd wind farm connection matrix. nb, ng, nd
and nl denote the total number of buses, generators, load sites and transmission
lines, respectively. y is an nl × 1 binary variables for transmission line state
(0 open, 1 closed); The operator � represents the Hadamard product (or entrywise
product) that is an operation taking two vectors of the same length, and producing
another vector where each element i is the product of elements i of the original two
vectors.

It’s important to note that the constraints (5.54) and (5.55) are complementary
constraints in this model. They are obtained through the big M theory. These
constraints imply that only one condition is active, and the other is always inactive.

If y = 1, we can get
�Fmax �Z�Fmax

0�Z� BCf h� 0



, which is equivalent to

�Fmax �BCf h�Fmax. This means the line is service, which is limited by line

transmission capacity constraints. If y = 0, we can get
0�Z� 0
�M�Z� BCf h�M



,

which is equivalent to
Z ¼ 0
�M�BCf h�M



. This means the line is out-of-service

and its transmission power is 0.
Interval model is used in this paper due to the uncertainties of the wind power

output. When the power balance constraints are destroyed, the generators will be
rescheduled according to the new wind power output to ensure the real-time balance
of power. To hedge against the contingency uncertainties, in this paper, a two-stage
robust optimization model is formulated to minimize the total cost under the
worst-case contingency scenario. The variable of first stage is the network topology
and which of the second stage is optimal generation output. The robust optimization
focuses on the optimal solution of first stage. The optimal solution of the second
stage changes when the wind power output changed. A comparison of two optimal
transmission switching problems with and without the consideration of corrective
actions by SPSs for N-1 contingency is presented in Fig. 5.8, where it shows that

Optimal Switching Optimal Generation

N-1 Contingencies

Optimal Switching Corrective Actions

N-1 Contingencies

Fig. 5.8 Traditional economic dispatch considering network reconfiguration
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the optimal switching strategy and generation decision are obtained at the same
time to satisfy all the sets of constraints in each contingency. Therefore, for the
second case, different contingency scenarios lead to different optimal corrective
generation strategies.

The interval expression in Sect 5.2 also can be used for the uncertainties of wind
power, which means the wind power output is the random value in the interval

W t 2 W f
t �We

t ;W
f
t þWe

t

h i
, where the W f

t and We
t is the predicted value and

predicted error of wind power output at the time t. The two-stage robust optimal
economic dispatch model is as follows:

min
yt2 0;1f g

max
W t2 W f

t �We
t ;W

f
t þWe

t½ 	
min
Pt ;Zt ;ht

XT
t¼1

bTPt þ sumðcÞ� � ð5:57Þ

s:t: CT
f Zt ¼ CgPt � CdDt þCwW t ð5:58Þ

Pmin �Pt �Pmax; CT
f Zt ¼ CgPt � CdDt þCwW t; htðref Þ ¼ 0 ð5:59Þ

�Fmax � yt �Zt �Fmax � yt ð5:60Þ

�M 1� ytð Þ�Zt � BCf ht �M 1� ytð Þ ð5:61Þ

It is obviously to see that the two-stage robust interval economic dispatch model
is much different from the adaptive robust interval economic dispatch model in the
Sect. 5.2. Compared from the mathematical model, the adaptive robust model is a
bi-level optimal model but the two-stage robust model is a three-level programming
model. Besides, the adaptive robust model only contains continuous variable, which
can be converted into a convex quadratic programming model. But the two-stage
robust model contains the discrete variable in the first stage and the continuous
variable in the second stage, which is a mixed integer programming model.
Therefore, the solution of the two-stage robust model is much more difficult from
the adaptive robust model. An acceleration algorithm is needed for improving the
efficiency of the proposed model, such as the Benders decomposition Method
proposed in Sect. 2.3.4, with adding the primary cuts and dual cuts.

5.3.2 Numerical Results

The proposed method is tested on the IEEE 30-bus system, whose topology is
shown in Fig. 5.9 and the detailed parameters can be found in MATPOWER [8].
Besides, there are six generators and the coefficients of the cost function given in
Table 5.2. The convergence tolerance is assigned to 0.01 %. In addition, to test the
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proposed model and method under different scenarios, let γ be transmission capacity
factor which simulates different transmission capacity as Fmax ¼ cF0;max, where
F0;max is the normal capacity. Furthermore, 24 h are considered in this paper, and
the load and wind power output curves in 24 h are given in Sect. 4.2.2.

A. Comparison of the economical dispatch considering network reconfigu-
ration and the traditional economical dispatch

Firstly, we assume that the wind power output is certain, which means the
uncertainty is 0. At this moment, the two-stage robust optimal economical dispatch
model degrades into an optimal economical dispatch model containing network
reconfiguration. Compared with the traditional optimal economical dispatch model,
the results are shown in Fig. 5.10. As shown in this figure, if γ < 1.3, the optimal
objective value of optimal economical dispatch model considering network
reconfiguration is better than the traditional optimal economical dispatch model
with the γ decreasing. If γ < 1.3, the optimal objective value of optimal economical
dispatch model considering network reconfiguration is the same as the traditional
optimal economical dispatch model. Especially, if γ < 0.8, the optimal economical
dispatch model considering network reconfiguration have feasible solutions, how-
ever, the traditional optimal economical dispatch model does not. For example,

1

13

14

15

12

43

2

5

7

6

16

23

18
19

20
17

10

21

9
11

22

24

30

2927

26
25

28

8

Fig. 5.9 IEEE 30-bus test
system

Table 5.2 Cost efficient of
each unit

Cost
coefficients

Gen 1 Gen 2 Gen 3 Gen 4

b ($/MW) 0.8333 0.7292 1.250 0.4167

c ($) 12.5000 16.6667 14.5833 14.5833
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when γ = 0.7, the target value is $3327, when γ = 0.6, the target value is $3494.
Therefore, compared with the traditional optimal economical dispatch model, the
optimal economical dispatch model considering network reconfiguration have more
feasible region. It can get better optimal solutions and may even change an
infeasibility problem to a feasibility problem.

B. The influences of wind power uncertainties to the robust optimization
model

Furthermore, we consider the influences of wind power uncertainties to the optimal
economical dispatch model considering network reconfiguration. Adopting the
conception of η and α in Sect. 4.2, the solutions of robust optimal model are shown
in Figs. 5.11 and 5.12 considering different uncertainties. It shows that the optimal
solutions will be worse and the α will increase as the uncertainties increasing. At the
same time, the optimal solutions will be better and the α will increase as the γ
increasing. When the transmission power of lines is smaller, the value of robust
optimal model can be better, but the α increases. Therefore, the conception of
robustness price is needed for decreasing the conservatism of robust optimal model.

C. The robust optimization model considering robustness price

After considering the robustness price, the optimal solutions of the two-stage robust
model are shown as Table 5.3. It shows that, the robustness price can decrease the
conservatism of robust optimal model to some degree. For example, when Γ = 1,
the results is between Γ = 0 and Γ = 2. Γ = 0 is the solution of traditional optimal
economical dispatch model. Even though this result is the most optimal solution, it
does not consider the robustness. It means that the transmission power of lines may
be out-of-limit in the worst situation of wind power output. Γ = 2 is the solution of
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considering network
reconfiguration and the
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robust optimal economical dispatch model, which does not consider the robustness
price. Even though this result is the most secure solution, it does not consider the
economics. The meaning of robustness price is to balance the security and eco-
nomics for the decision maker. From Figs. 5.13 and 5.14, it can be seen that the
security is better and the conservatism is less than the previous robust optimal
model after Γ = 1. And they are both less than 5 %.
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5.4 Discussion

5.4.1 The Adaptive Robust Interval Economic Dispatch
Model Containing Prohibited Zones

In the actual power system operation, bearing vibration will be magnified within
some certain range because of the limitation of generator physical conditions. The
prohibited zones are needed for the generators, because bearing vibration has the
negative impact on the security and longevity of generators. According to the
current generator operation conditions, these prohibited zones should be avoided. In
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order to guarantee the optimal objective, the economic dispatch model with pro-
hibited zones is studied [14–27].

It can be seen that the economic dispatch model with prohibited zones is not the
convex programming problem anymore. Up to now, the most popular methods to
solve this model are AI methods, such as genetic algorithm [14], evolutionary
algorithm [15], particle swarm optimization [16–19], chaotic particle swarm opti-
mization [20–22], anti-predator particle swarm optimization [23], improved particle
swarm optimization [25], cross particle swarm optimization [26], neural network
algorithm [27], artificial immune algorithm [21] and tabu search algorithm [24].
Nevertheless, these algorithms above are influenced by the parameters and itera-
tions, which make the results random. A mixed integer programming method is
presented in Appendix C, which can solve this problem effectively.

Furthermore, there are two aspects should be noticed in the economic dispatch
model with prohibited zones. Firstly, how to set up and solve the model with
prohibited zones properly. Secondly, the prohibited zones may jump from one to
another under the uncertain wind power output. This “jump” should be considered,
which increase the volatility of generator output.

5.4.2 Two-Stage Robust Interval Economic Dispatch Model
Considering Reliability Constraints

The economic dispatch model considering network reconfiguration control can
improve the operation cost of economic dispatch by switching some transmission
lines under certain circumstances. But from the perspective of security and relia-
bility of power grid, switching the line can be termed as the occurrence of N − 1
contingency, which could reduce the reliability of power grid. To balance the
security and reliability of power grid, lots of literatures have studied the two fol-
lowing strategies [9, 10]:

(i) Build the optimal scheduling model considering N-1 security constraints,
which means adding N-1 security constraints to economic dispatch model
considering network reconfiguration described in (5.57)–(5.61). Furthermore,
consider the uncertainty of wind power output, and find the robust optimal
solutions while satisfying all the N − 1 security constraints, whose mathe-
matical optimization model is described in Appendix D.

(ii) Increase the constraints for limiting the number of transmission lines available
for switching to guarantee the reliability of systems. The constraints sets for
line switching can be obtained by lots of off-line reliability simulation tests.
The detailed mathematical model is described in Appendix D.

However, there are two problems considering all the N-1 security constraints
into one model. First, from the view of computation complexity, the number of
constraints would substantially increase by considering all the N-1 security
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constraints, forming a larger-scale combinatorial optimization model which leads to
much computational difficulties. Second, from the view of physical modeling, the
model only considers the N-1 contingencies occurring on lines, but in practice, the
N-1 contingencies could also occurs on generators and therefore the power balance
would be broken. To guarantee the real-time power balance, the generator must be
re-dispatched. In traditional N-1 models, it is difficult to consider re-dispatch, which
will lead to a big deviation from the practical operation so that the computed results
are quite conservative. Therefore, the second strategy is widely applied. The sim-
ulation results of strategy (ii) are given in Appendix D.

5.4.3 Multi-solution Problem and Goal Programming
of Two-Stage Robust Interval Optimization Model

In essence, two-stage interval robust interval optimization model can be considered
as a mixed integer-programming problem. It can be solved by benders decompo-
sition method to decompose into the master and sub problems, and some existing
matured commercial software, such as CPLEX, GUROBI, MOSEK, can provide
solutions effectively. However, multi-solution phenomenon may occur in the mixed
integer programming, which means that there are many optimal solutions corre-
sponding to the same optimal objective. Sometimes, decision makers hope to want
to find all the multiple solutions, and then choose the most acceptable and effective
optimal solution based on the operation indices and the actual operation rules of the
power grid. So how to get all the optimal solutions of the model is worth studying.
What’s more, taking network reconfiguration as an example, if the proposed
optimization model has multiple solutions, it means that there are a variety of
combination schemes for line switching. Some schemes need to switch a lot of lines
while others need to switch a few, although all the schemes have the same optimal
objective function. Considering the security and reliability of power grid, it is
naturally expected to switch lines as few as possible while obtaining the same
optimal objective, but sometimes there are hundreds of multiple solutions. At this
point, how to fast obtain the multiple solutions set with switching the least number
of lines is the most concerned by decision makers. The multiple solution problem of
two-stage interval robust optimization model is discussed in detail in Appendix E,
and the method of goal programming is used to obtain all the multi-solution sets.

5.5 Summary

In this chapter, the robust interval optimization method mentioned in Chap. 2 is
introduced to the economic dispatch model with uncertainties of large-scale wind
power integration. In the process of robust interval economic dispatch, different
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robust interval optimization methods can be used in different timescale. For the
day-ahead dispatch model, this chapter adopts two-stage robust interval optimiza-
tion model, for finding the most robust network topology while ensuring the
security of power grid operation under uncertainty of wind power in one day. In
real-time economic dispatch models, this chapter presents an adaptive robust
interval optimization model, for finding the most robust unit output scheduling
value while ensuring that in the process of real-time output balancing, AGC can still
meet the constraints of the unit and the network even under arbitrary disturbance of
wind power output. However, the essence of robust optimization is to optimize the
system in the worst situation, and therefore it is inevitable to make the result
relatively conservative comparing to the results of traditional deterministic opti-
mization. Thus, this chapter introduces the concepts of the price of robustness,
providing the decision-makers with the balance of economy and security, and
yielding an optimal solution set similar to the Pareto frontier.

What’s more, it should be noted that, on studying adaptive robust optimization
in the real-time dispatch, the participation factor of generator is introduced to
allocation unbalanced power for AGC units, and the overall volatility and economic
optimization of the generator should be ensured in the optimal selection of par-
ticipation factor, and consequently a multi-objective optimization model is
obtained.

At last, through the simulation of IEEE test systems, the validity and applica-
bility of the proposed optimization method are verified. But note that the robust
optimization on a large-scale test system could increase the computation com-
plexity. For day-ahead dispatch, the computational time is not very important, but
for the real-time dispatch in 5–15 min, the computational time should be ensured,
which will be studied mainly in the next chapter.
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Chapter 6
Acceleration Strategies for Large-Scale
Economic Dispatch Models

Abstract It should be noted that for the economic dispatch model for the practical
large-scale power system with multiple time periods is a combinatorial problem and
have a great challenge to solve, especially for the robust optimization model. In this
book, spatial reduction and temporal decomposition strategies are proposed to
improve the computational efficiency, where spatial reduction is to identify the
redundant constraints before solving the model and temporal decomposition is to
decompose the multi-period problem into several single-period problems that can
be parallel handled.

6.1 Introduction

In general, there are thousands of buses and transmission lines in the real power
system, so the economic dispatch optimization model is actually a large-scale
combination optimization model. In particular, when the robust optimization model
with the price of robustness is adopted in Chap. 5, constraints will increase sharply.
With respect to the multi-period dynamic economic dispatch, the increasing number
of the time periods results in a time-consuming calculation and it will bring about a
great challenge for on-line applications. Hence, this chapter will study the accel-
eration strategies for large-scale economic dispatch problems by reducing
spatial-dimension and temporal decoupling. For reducing spatial-dimension, most
transmission capacity constraints are inactive and the inactive constraint reduction
strategy is proposed to quickly identify the inactive constraints and then eliminate
them from the model before solving the proposed model. Furthermore, the
multi-period economic dispatch is composed of several single-period economic
dispatch models with inter-temporal constraints such as unit ramp rate constraints.
For temporal decoupling, assuming that the single-period economic dispatch can be
solved quickly, temporal decoupling is studied for decomposed the multi-period
economic dispatch into several independent single-period economic dispatch
problems for parallel computation. The book is organized as follows (Fig. 6.1).
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6.2 Redundant Security Constraints Fast Identification

6.2.1 Redundant Constraints Description and Definition

Recall the interval economic dispatch model defined in Sect. 4.2.1, where Eqs. (4.8
–4.12) construct the feasible region of the security constrained economic dispatch.

XNg

i¼1
PiðtÞþ

XNw

k¼1
W�k ðtÞ;

XNw

k¼1
W þ

k ðtÞ
" #

¼
XNd

j¼1
DjðtÞ; t ¼ 1; . . .T ð6:1Þ

Pmin
i ðtÞ�PiðtÞ�Pmax

i ðtÞ; i ¼ 1; . . .;Ng; t ¼ 1; . . .T ð6:2Þ

�Rdi�PiðtÞ � Pi t � 1ð Þ�Rui; i ¼ 1; . . .;Ng; t ¼ 1; . . .T ð6:3Þ

�Fmax
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XNg
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Sl;iPiðtÞþ

XNw
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Gl;k W�k ðtÞ;W þ
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� �

�
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j¼1
Hl;jDjðtÞ�Fmax

l ; t ¼ 1; . . .T ; l ¼ 1; . . .;Nl ð6:4Þ

where the definition of variables can be found in Sect. 4.2.1. The feasible region
consists of linear constraints, which is defined as a Polyhedron. Equations (6.1) and
(6.4) show the uncertainty of the Polyhedron resulted from the uncertain wind
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power output. Here, we assume the load demand is constant, so the uncertain wind
power and the deterministic load demand can be combined as the net load, giving

X ¼
eTPgþ eTPb ¼ 0
Rdmin�EPg�Rumax;Pmin

g �Pg�Pmax
g

Fmin�GPg �HPb�Fmax

8Pb 2 P�b ;P
þ
b

� �
8>><>>: ð6:5Þ

where Pb is the the net load of load demand plus the wind power. The first con-
straints in (6.5) response to the energy balance constraints in (6.1). The second
constraints refer to the ramp rate constraints in (6.3) and the generation limits in
(6.2). The third constraints are the network security constraints in (6.4). The last
constraints give the stochastic disturbances of the injected power due to
8Wk 2 W�k tð Þ;W þ

k tð Þ� �
.

A large-scale SCED model contains plenty of security constraints. If all security
constraints are considered in the model, the efficiency will be greatly reduced.
Hence, identigying and eliminating redundant constraints will be studied to improve
the efficiency, provide necessary messages for decision-makers, and recognize
active lines.

Note that inactive constraint identification should be a fast algorithm. It is less
meaningful if solving time is longer than that by solving a convex quadratic pro-
gramming directly. In general, the interior-point method is adopted to solve a
convex quadratic programming, whose time complexity is Oðn3Þ. So the time
complexity of the inactive constraint identification must be lower than Oðn3Þ.

Note that a constraint is inactive if the feasible region remains the same after this
constraint is eliminated. Figure 6.2 shows a inactive constraint description: there is
no intersection between inactive constraints and the feasible region or there is a
peak point of the Polyhedron in the intersection. Firstly, the inactive constraints are
studied under the certain condition. Assuming that a Polyhedron is represented as

Deterministic Uncertain

Interval

Feasible 
Region

Feasible 
Region

Fig. 6.2 Certainty and uncertainty of redundant constraint definition
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Ω = {x 2 Rn|Ax ≤ b}, Aix�Bi is defined as i-th constraint of Ω, and the
Polyhedron Ωi− = {x 2 Rn|Ai−x ≤ bi−} is represented as a new feasible region
without i-th constraint. Then, the necessary and sufficient condition of Aix�Bi as
an inactive constraint of Ω is Ω = Ωi−. However, it is difficult to judge the equality
of these two Polyhedrons. So another necessary and sufficient condition to identify
inactive constraint will be provided.

A Polyhedron Ω* = {x 2 Rn|Ai−x ≤ bi−, Aix = bi} is built. The necessary and
sufficient condition to identify i-th constraint to be inactive is that Ω* is an empty set
or a single-point set. So the original problem is converted into a judgement problem
of an empty set or a single-point set. There are many methods to recognize like
Farkas lemma, which turns self-variables into a nonnegative space as well as
inequality constraints into equality constraints, and then recognizes by
Fourier-Monzkin Elimination Method [1]. B-rule based iteration method can also
be used to recoginze the problem [2]. Furthermore, an optimization problem is
adopted based on the simplex. Among these methods, the optimization method is
faster in time complexity [3]. Since Ω* can be representd as Ω* = {x 2 Rn|Ax ≤ b,
Aix ≥ bi}, we have

Theorem 6.1 (necessary and sufficient): In an optimization problem
Z ¼ maxx2Xi� Aix;, if Z ≤ bi is satisfied, i-th constraint is an inactive constraint.

The uncertainty of y is considered. We assume that feasible region of a
Polyhedron is represented as Ω = {x 2 Rn, y 2 Rm|Ax + By ≤ b, Cx ≤ d, 8y 2
[ymin, ymax]}. Based on Theorem 6.1, i-th constraint is an inactive constraint if
Z ¼ max8y;x2Xi� AixþBiy and Z ≤ bi is satisfied. However, uncertain variables are
randomized. So the model can be turned into a bi-level optimization problem based
on (6.6). For optimization of “max-max”, the dimension of variables will be
increased. The bi-level optimization problem can be turned into a single-level
optimization problem.

max
8y;x2Xi�

AixþBiy ¼ max
ymin � y� ymax

max
x2Xi�

AixþBiy ð6:6Þ

“max-max” in (6.6) are combined to “max”. n-dimension variable x can be
expanded to (n + m)-dimension variable z = (xT, yT)T 2 Rn+m, that is, the uncertain
variable is regarded as an optimization variable. Later, (6.6) is rewrited as
Z ¼ maxz2Pi� Diz, Π = {z 2 Rn+m|Dz ≤ f} after increasing dimensions. We have

D ¼
A B
C 0
0 I
0 �I

2664
3775; f ¼

b
d
ymax

�ymin

2664
3775 ð6:7Þ

where I is an m–dimension unit matrix. So i-th constraint is an inactive constraint if
Z ≤ f i is satisfied.
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6.2.2 Greedy-Algorithm Based Fast Relaxation
Identification

In the feasible region of SCED, the third term of (6.4) shows the transmission
capacity constraints, which are bilateral. Bilateral constraints can be converted into
two unilateral constraints and variable dimensions will be increased from Ng to
(Ng + Nd). Moreover, according to the necessary and sufficient conditions above,
the bilateral constraint is inactive if these two unilateral constraints are inactive.

max min
g b g b− ≤ − + ≤ −GP HP F GP HP F ð6:8Þ

However, 2N optimization problem need to be solved for N security constraints,
which is time-consuming. Considering a large transimission capacity in real power
systems. Reference [4] applied a relaxaiton method, which expanded the feasible
region, considered energy balance constraints as well as generation limits, and
neglected the ramp rate constraints. T time periods can be decoupled and l-th
bilateral security constraint can be converted into two unilateral constraints
according to (6.8)

max
Pg;Pb

Z
l
þ ¼
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i¼1
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XNb

j¼1
Hl;jPb;j ð6:9Þ
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XNg
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XNb
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Pb;j ð6:11Þ

Pmin
g;i �Pg;i�Pmax

g;i ; Pmin
b;j �Pb;j�Pmax

b;j ð6:12Þ

where Nb is the bus number. The result of the optimization model of (6.9), (6.11)

and (6.12) is �Zl
þ , and the result of the optimization model of (6.10)–(6.12) is Z

l
�.

Based on Theorem 6.1, the results are Zl
þ and Zl

�, respectively. It is obvious that

Z
l
þ � Zl

þ and Z
l
� � Zl

� are satisfied. l-th bilateral security constraint is inactive if

Z
l
þ �Fmax

l and Z
l
� � � Fmin

l are satisfied at the same time. Otherwise, we cannot

identify if Z
l
þ �Fmax

l and Z
l
� � � Fmin

l cannot be satisfied at the same time. So this
method only gives sufficient but not necessary conditions.

In addition, the optimization model (6.9)–(6.12) can be directly solved by the
simplex algorithm, but this may take much time since the calculation of the inverse
matrix in the simplex method is time-consuming. Note that the optimization model
of (6.9)–(6.12) is particular, where there is one equality constraint as well as upper
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and lower bounds of variables. This problem is similar to a “knapsack problem” in
mathematical programming which can be solved very fast.

Firstly, we have Pg = Pg + ΔPg and Pb = Pb
max − ΔPb. The (Ng + Nb) dimen-

sions optimization model can be converted into (Ng + Nb) dimensions increment
vector space. We have (Pg

T, Pd
T)T → (ΔPg

T, ΔPd
T)T. The objective function is (6.9).

Equation (6.13) is represented as a equivalent form. Later, we have (6.14).
Equation (6.10) can also be converted into (6.15)
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� ¼

XNb

j¼1
Hl;jP

max
b;j �

XNg

i¼1
Gl;iP

min
g;i þ

XNg

i¼1
�Gl;iDPg;iþ

XNb

j¼1
�Hl;jDPb;j ð6:15Þ

Equality constraints can be represented as (6.16) and then converted into (6.17).

XNg

i¼1
Pmin
g;i þDPg;i

� �
¼
XNb

j¼1
Pmax
b;j � DPb;j

� �
ð6:16Þ

XNg

i¼1
DPg;iþ

XNb

j¼1
DPb;j ¼

XNb

j¼1
Pmax
b;j �

XNg

i¼1
Pmin
g;i ð6:17Þ

The generation limits and load demand inequality constraints can be represented
as (6.18), and then converted into (6.19).

Pmin
g;i �Pmin

g;i þDPg;i�Pmax
g;i ; Pmin

b;j �Pmax
b;j � DPb;j�Pmax

b;j ð6:18Þ

0�DPg;i�Pmax
g;i � Pmin

g;i ; 0�DPb;j�Pmax
b;j � Pmin

b;j ð6:19Þ

From what has been discussed above, the optimization result is D�Zl
þ based on

the optimization model of (6.20), (6.22), and (6.23), and the optimization result is

Z
l
� based on the optimization model of (6.21)–(6.23). We have Q ¼PNg

i¼1 Gl;iPmin
g;i

�PNb
j¼1 Hl;jPmax

b;j . Theorem 6.2 is given.
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Theorem 6.2 (sufficient but not necessary): l-th bilateral security constraint is

inactive, if DZ
l
þ þQ�Fmax

l and DZ
l
� � Q� � Fmin

l are satisfied at the same time.

Obviously, ramp rate constraints are relaxed to decouple the time periods and
convert a large problem into a small problem for improving the efficiency. Another
relaxed constraints are the rest Nl-1 security constraints except the present security
constraint. This deduction is only sufficient due to relaxation.

max
Pg;Pb

DZ
l
þ ¼

XNg

i¼1
Gl;iDPg;iþ

XNb

j¼1
Hl;jDPb;j ð6:20Þ

max
Pg;Pb

DZ
l
� ¼

XNg

i¼1
�Gl;iDPg;iþ

XNb

j¼1
�Hl;jDPb;j ð6:21Þ

s:t:
XNg

i¼1
DPg;iþ

XNb

j¼1
DPb;j ¼

XNb

j¼1
Pmax
b;j �

XNg

i¼1
Pmin
g;i ð6:22Þ

0�DPg;i�Pmax
g;i � Pmin

g;i ; 0�DPb;j�Pmax
b;j � Pmin

b;j ð6:23Þ

The Increment optimization model of (6.20)–(6.23) is similar to the model of a
“knapsack problem” [5]. The difference is that the optimization variables of a
“knapsack problem” are integers, and the optimization variables of an increment
model are continuous. When (6.20) is the optimization target, the optimization
variables are represented as (6.24), and the objective price coefficients are repre-
sented as (6.25).

DP ¼ DPg;1;DPg;2; . . .;DPg;Ng ;DPb;Ng þ 1;DPb;Ng þ 2; . . .;DPb;Ng þNb

� �T ð6:24Þ

c ¼ Gl;1;Gl;2; . . .;Gl;Ng ;Hl;Ng þ 1;Hl;Ng þ 2; . . .;Hl;Ng þNb

� �T ð6:25Þ

From the view of a “knapsack problem”, this problem can be described as
follows: There are Ng + Nb kinds of things. The weight of i-th is ΔPi. The price of

unit weight is ci. The knapsack can carry the weight of
PNb

j¼1 P
max
b;j �

PNg

i¼1 P
min
g;i .

How to load things to get the maximum price? The Greedy Algorithm can solve this
problem efficiently. Moreover, it can be called as the continuous Greedy Algorithm
due to continuous and adjustable variables. That is, we can order the price of the
unit weight and load things that have a higher unit weight price first until the limit is
reached.

The procedure of the greedy-algorithm based fast relaxation identification can be
described as below.

From what has been discussed above, we need to order an Ng + Nd—dimensions
vector as well as identify and the summation for Ng + Nb times. We will have D�Zl

þ .
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So the time complexity is (Ng + Nd)log(Ng + Nd), that is, Oðn log nÞ. D�Zl
� can be

obtained for the same reason. Based on Theorem 6.2, the fast identification can be
made.

6.2.3 Inactive Constraint Elimination of Rubost
Optimization Models

It can be easily observed that the original robust optimal power flow model of
Sect. 5.2 can be converted into a simple convex quadratic programming on the
condition that the description of redundant constraints of Sect. 6.2.1 is applied in
the robust optimization models of Sect. 5.2, but the difference from the traditional
deterministic optimal power flow model is that the number of the security con-
straints increases significantly from Nl to Nl × Nr, which may affect the efficiency
of the optimization model. In order to achieve a more applicable solution for on-line
applications, we can identify the inactive constraints before solving the model and
only consider the active constraints in the computation, which is called “inactive
constraint identification technique”. In this context, we consider

Corollary 6.3 For each security constraint, if (6.26) holds, this security constraint
is an inactive constraint.

fmax
l ¼ max

Psch2H
max

W f
k �Re

k �Wk �W f
k þWe

k

PNg

i¼1
GP

l;iP
sch
i þ

PNw

k¼1
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l;kWk�
PNd

k¼1
GD

l;jDj

 !
�Fmax

l

fmin
l ¼ min

Psch2H
min

W f
k �Re

k �Wk �W f
k þWe

k

PNg

i¼1
GP

l;iP
sch
i þ

PNw

k¼1
GW

l;kWk�
PNd

k¼1
GD

l;jDj

 !
�Fmax

l

8>>>><>>>>:
ð6:26Þ

where Θ is the feasible region of the optimal power flow.

Obviously, Corollary 6.3 needs to solve Nl × Nr linear programming to find all
the inactive constraints. It is desired that the inactive constraint identification pro-
cess is not very time-consuming. In order to quickly solve the optimization model,
we can relax the feasible region Θ with the help of relaxation models of (6.26),
which gives a upper bound for “max” model and lower bound for “min” model. If
the feasible region is overly relaxed, only a small amount of inactive constraints
will be identified; but if the feasible region is not relaxed, it costs a lot of com-
putational efforts to find all the inactive constraints. Therefore, a promising relax-
ation method is of the most importance. Section 6.2.2 presents that only the energy
balance constraints and generation limits should be kept which is a good choice to
relax. It has been used in the UC problem [4].

Therefore, this relaxation method of Sect. 6.2.2 is employed in this book, where
the relaxed model for each security constraint l is given by
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ð6:27Þ

Compared with (6.27) and (6.26), the difference is that the feasible region
consists of energy balance constraints and generation limits changed from the
feasible region Θ in the first model of the bi-level model.

On the other hand, the model of (6.27) is a bi-level optimization problem whose
optimization variables are separable and objective function is linear. So, the model
can be in fact separated into two parts. That means, we can have two models, the
inner model and the outer model, which can be optimized separately. This opti-
mization model can be called as Separable Programming. Greedy Algorithm in
Sect. 6.2.2 can solve the outer model which is of course the same as Theorem 5.1 in
Sect. 5.2.3. Therefore, we have the “max” model by using the exact closed forms in
Theorem 5.1, yielding

fmax;1
l ¼

Xh�1
m¼1

Gl;sm � Gl;sh

� �
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g;sm þGl;sh
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W f

k

 !
þ
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� �
Pmin
g;sm

ð6:28Þ

where h(1 ≤ h ≤ Ng) is an integer number, such that

Xh�1
m¼1

Pmax
g;sm � Pmin
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� �
�
XNd

j¼1
Dj �

XNw

k¼1
W f

k �
XNg

i¼1
Pmin
g;i �

Xh
m¼1

Pmax
g;sm � Pmin

g;sm

� �
ð6:29Þ

where S1; . . .; SNg is a permutation of 1,…,Ng, such that Gl;s1 � � � � �Gl;sNg .
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Similarly, the first part of “min” model also can be obtained as follows:

fmin;1
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ð6:30Þ

where h(1 ≤ h ≤ Ng) is an integer number, such that
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It should be noted that the difference between solving “max” and “min” model is
in the permutation of S1; . . .; SNg . The proposed inactive constraint identification
method only needs two permutations, i.e., descending order and ascending order
computation for each security constraint, which can be handled in a very fast speed.

It can be found that the inner model is much easier to solve, compared with the
outer model, since it only contains the upper and lower bound constraints of the
uncertain wind power W. Thus, we have

fmax;2
l ¼

XNw

k¼1
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f
k þ
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e
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Finally, we can conbine the inner model and outer model. If it holds for

fmax;1
l þ fmax;2

l �PNd
j¼1 G

D
l;jDj�Fmax

l

fmax;1
l þ fmax;2

l �PNd
j¼1 G

D
l;jDj� � Fmax

l

(
, the constraint l is inactive and can be

eliminated.
Permuting each security constraint only once will generate the set of active

constraints. Then, the active constraints are kept and the inactive constraints are
eliminated. Let the set of active constraints be Φ and the robust optimization model
considering the eliminated redundant constraints can be finally presented as:

min
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XNg
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where

h ¼ maxPNw
k¼1

yk¼C;0� yk � 1

XNw

k¼1
We

k yk ¼
Xk�1
m¼1

We
im �We

ik

� �
þWe

ikC and k � 1�C� k:

6.2.4 Simulation Analysis

A. Test on a simple example

The feasible region is Ω which represents a simple single time period economic
dispatch model with energy balance constraints, transmission security constraints
and generation limits.

X0
x1;x2
¼

x1þ x2 ¼ ½6; 14� Power Balance
x1þ 2x2þ 2½6; 14� � 55 Security Constraint
2x1þ x2þ ½6; 14� � 22 Security Constraint
�x1þ 2x2þ ½6; 14� � � 4 Security Constraint
x1; x2 2 ½0; 10� Generation Limit

8>>>><>>>>:
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X0
x1;x2;y

¼

x1þ x2 � y ¼ 0 Power Balance
x1þ 2x2þ 2y� 55 Security Constraint
2x1þ x2þ y� 22 Security Constraint
�x1þ 2x2þ y� � 4 Security Constraint
0� x1; x2� 10; 6� y� 14 Generation Limit

8>>>><>>>>:
The new feasible region Ω′ is obtained after variables increase dimensions.

Based on Theorem 6.2, taking the first transmission security constraint for illus-
tration, the relaxation model in the increment space is as follows:

DZ
1 ¼ max Dx1þ 2Dx2 � 2Dy

s:t: Dx1þDx2þDy ¼ 14

0�Dx1;Dx2� 10; 0�Dy� 8

The coefficient permutation of the targets is 2 → 1 → −2 based on the con-
tinuous Greedy Algorithm. Late, the optimal results are Δx2 = 10, Δx1 = 4,

Δx3 = 0. The objective increment is DZ
1
= 24. Q1 = 28. Z

1 ¼ DZ
1þQ1 ¼

52\55: This constraint is inactive.
It is the same to have �Z2 = 38 > 22 and �Z3 = 30 > −4. So we cannot identify

these constraints. Furthermore, the second security constraint is active and the third
one is inactive based on Theorem 6.1.

In Fig. 6.3, the feasible region of (a) is a sub-set of energy balance constraints.
The first security constraint and the third one have no intersection with the feasible
region. That means the original feasible region does not change when these con-
straints are eliminated. Only the second constraint is active. When the energy
balance constraint is kept in the relaxed feasible region based on Theorem 6.2, the
constraint is inactive if the constraint has no intersection with the feasible region
(Theorem 6.2 holds) like the first security constraint. Otherwise, we cannot identify
constraints like the second and the third ones.

When there is an intersection between the third constraint and the relaxed fea-
sible region, but there is no intersection with the original feasible region. Based on
Theorem 6.1, we need to identify whether the new feasible region without the
second one and the third one is the same as the original feasible region or not,
respectively. It is not difficult to find that the second one is active.

B. 24-h IEEE nine-bus test systems economic dispatch

The simulation analysis of 9-bus systems in MATPOWER [6] is studied where
there are three generators and nine lines. The first generator is wind power. Load
demand and wind power are obtained like those in Sect. 4.2.2. There are
2 × 9 × 24 = 432 constraints in all when a bilateral security constraint are trans-
formed into two unilateral security constraints.

Assume that the bus uncertainty is 5 %. There are 1 and 0.9 times transmission
capacity. Theorem 6.1 and Theorem 6.2 is used in the test system.
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In Table 6.1, all security constraints are inactive resulted from the original
transmission capacity. They can be eliminated in SCED models. Based on
Theorem 6.1 to identify all constraints, the total computational time is 20 s.
However, the total computational time is 2.23 s by using Theorem 6.2 to identify
and eliminate 193 constraints first and then using Theorem 6.1 to identify the other
23 constraints.

Moreover, the total computational time is 2.28 s by using both Theorem 6.1 and
Theorem 6.2 to identify all inactive constraints. Compared with Theorem 6.1, the
efficiency is improved. It is the same when the transmission capacity is 0.9 times.
The results are shown in Table 6.2. There are nine active constraints in SCED
models, and other constraints can be eliminated. The total computational time is 20 s
by using Theorem 6.1 to identify all constraints. However, the total computational
time is 3.7 s in all by using Theorem 6.2 to identify and eliminate 178 constraints
first and then using Theorem 6.1 to identify the other 38 constraints. Nine active

x1

x 2

(a)

(c)

Feasible region and 
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(b) Security constraints 1 and 
Relaxed feasible region

Security constraints 2 and
Relaxed feasible region

(d) Security constraints 3 and 
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Fig. 6.3 Certainty and uncertainty of redundant constraints
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constraints are identified by using Theorem 6.1 and Theorem 6.2 which improves the
efficiency compared with using Theorem 6.1 only. It takes only 3.76 s.

Compared with Tables 6.2 and 6.3, there are different active security constraints
resulted from different transmission capacities. This method can identify and
eliminate inactive constraints based on Theorem 6.2.

Moreover, active unilateral security constraints are transformed into active
bilateral security constraints corresponding every line and time period. The array
(t, i) is represented as i-th unit in t-th period. The set of active constraints resulted
from the 0.9 times transmission capacity is given in Table 6.4. They may reach the
bounds and be active in 5-th period.

C. 118-bus test systems economic dispatch in 96 periods

There are 54 generators and 186 lines in IEEE 118-bus test system. There are
2 × 186 × 96 = 35712 unilateral security constraints. The uncertainty of bus
injection is 10 % and the transmission capacity is original. In Table 6.5, it takes 3 h
to identify 74 active constraints based on Theorem 6.1. However, it takes only
8.79 s to identify 881 active constraints based on Theorem 6.2. The computational

Table 6.1 Greedy algorithm based fast relaxation identification

Algorithm : Greedy Algorithm Based Fast Relaxation Identification
Step 1: Order the price of c and have , ,…,

g bN NS +
;

Step 2: V 0, W←0, i←1;
Step 3: ;

Step 4: if

Update W and V as , , i←i+1, and go to Step 3;

else
Update W as , and go to Step 5;

end

Step 5: ;

1S 2S

max min
i i iS S SP P P= −

max min
, ,

1 1

gb

i

NN

S b j g i
j i

V P P P
= =

+ ≤ −∑ ∑

i iS SW W c P← +
iSV V P← +

max min
, ,

1 1

gb

i

NN

S b j g i
j i

W W c P P V
= =

⎛ ⎞← + − −⎜ ⎟
⎝ ⎠
∑ ∑

l
Z W+Δ =

Table 6.2 Results under the original transmission capacity (1 times)

Mehod Theorem 6.1 Theorem 6.2 Theorem 6.1 + Theorem 6.2

Inactive security constraints 0 23 0

Time(s) 20.02 0.046 2.28

Table 6.3 Results under the transmission capacity (0.9 times)

Method Theorem 6.1 Theorem 6.2 Theorem 6.1 + Theorem 6.2

Inactive security constriants 9 38 9

Time(s) 20.13 0.051 3.76
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time is 4.88 min by using Theorem 6.2 to eliminate the inactive constraints first and
then using Theorem 6.1 to identify the others. The number of identified constraints
is the same. When the uncertainty of bus injection is 20 %, Table 6.6 shows that it
takes 3 h to solve 35712 linear programming problems based on Theorem 6.1.
However, it takes 9.13 s when Theorem 6.2 is used to eliminate 34772 inactive
constraints first (97 % of all security constraints) and Theorem 6.1 is used to
identify active constraints later.

D. Acceleration for robust optimization algorithm

IEEE 118-bus systems in Sect. 5.2.4 B is studied, where there are 118 buses in 24-h
periods. Considering different transmission capacity limits under uncertainty degree
η = 0.4, the numbers of inactive constraints found by the proposed inactive con-
straint reduction method are shown in Figs. 6.4 and 6.5. In Fig. 6.4, the black
rectangle denotes the index of inactive lines. According to Fig. 6.5a, all constraints
are inactive which can be eliminated in the model when constraint limit is greater
than 1100 MW.

Active constraints are considered in the model. In addition, there are more active
constraints when the line capacity limit is tighter. From Fig. 6.5b, it can be found
that the computational efficiency is improved with the help of the proposed inactive
constraint reduction strategy. For example, for 1100 MW line capacity limit, the
computational time of the solution process drops from 3.13 to 0.12 s with the
proposed strategy. In addition, the implementation of the inactive constraint
reduction strategy takes only about 0.09226 s. The total time is 0.13 and is improved

Table 6.4 Transmission lines and time periods

Method The array (t, i)

Theorem 6.1 (11,5); (13,5); (15,5); (16,5); (17,5); (18,5); (21,5); (22,5); (23,5)

Theorem 6.2 (1,5); (1,3); (2,5); (2,3); (3,5); (3,3); (4,5); (4,3); (5,5); (5,3); (6,5); (6,3); (7,5);
(7,3); (8,5); (8,3); (9,5); (9,3); (10,5); (10,3); (11,5); (11,3); (13,5); (14,5);
(14,3); (15,5); (15,3); (16,5); (16,3); (17,5); (18,5); (21,5); (22,5); (22,3);
(23,5); (23,3); (24,5); (24,3)

Table 6.5 Results under the original transmission capacity (with 10 % uncertainty)

Method Theorem 6.1 Theorem 6.2 Theorem 6.1 + Theorem 6.2

Inactive security constriants 74 881 74

Time 3 h 8.79 s 4.88 min

Table 6.6 Results under 0.9 times transmission capacity (with 20 % uncertainty)

Method Theorem 6.1 Theorem 6.2 Theorem 6.1 + Theorem 6.2

Inactive security constriants 96 940 96

Time 3 h 9.13 s 5.21 min
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25 times than solving directly. Note that inactive constraint identification is applied
once and can be used again in real-time markets. It will contribute to the large-scale
system operation.

To further demonstrate the effectiveness of the proposed method and show the
computational performance with the introduced inactive constraints reduction
strategy, simulations are performed on six real-world Polish systems with more than
2000 buses and 2500 lines which are available in MATPOWER. The computational
time of the systems is shown in Table 6.6, where Time1 and Time2 denote the time
for solving the robust model without and with using the inactive constraint
reduction strategy, respectively; Time3 represents the time for identifying the
inactive constraint. It can be observed that the robust models may not be directly
handled by commercial solvers because the solver is out of memory resulted from
large amount of dummy variables and additional constraints. In contrast, the
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proposed inactive constraint reduction strategy can help the solver obtain the
optimal solution and the total computational time is less than 10 s. The time to
identify inactive constraints is less than 5 s. It will contribute to the real-time
operation. Interestingly, it can be also found that in real-world power systems, the
number of active constraints only takes a small proportion. For the Polish power
systems showed in Table 6.7, the number of inactive constraints is more than 94 %
of all the transmission lines. Especially in 2736-bus systems and 2746-bus systems,
the ratio of active constraints is less than 1 %. Therefore, the inactive constraint
reduction strategy can greatly improve the computational efficiency.

6.3 Decomposition Method for Multi-period Economic
Dispatch

6.3.1 Mathematical Modeling and Theoretical Method

As an ED model, the economic dispatch (ED) model is widely used in the Energy
Management System (EMS) of RTOs/ISOs, and can be generally expressed as
follows:

Z ¼ min
Pi;t

XN
i¼1

XT
t¼1

f Pi;t
� � ð6:41Þ

s:t:
XNg

i¼1
Pi;t ¼

XNd

j¼1
Dj;t �

XNw

k¼1
W f

k;t; t ¼ 1; . . .T ð6:42Þ

Pmin
i;t �Pi;t �Pmax

i;t ; i ¼ 1; . . .Ng; t ¼ 1; . . .T ð6:43Þ

Table 6.7 Computational time on six large systems

Test
systems

# of
security
constraints

# of active
security
constraints

Ratio of active
constraints (%)

Time
1 (s)

Time
2 (s)

Time
3 (s)

2383-bus 2896 99 3.42 × 3.3242 2.4364

2736-bus 3269 14 0.43 × 0.9189 2.8456

2746-bus 3279 10 0.30 × 0.8333 2.8357

3012-bus 3572 103 2.88 × 3.657 3.2596

3120-bus 3693 211 5.73 × 9.4453 3.3521

3375-bus 4161 176 4.23 × 6.2381 3.5213

Note: “×” means that the problem is unsolvable due to the lack of enough memory space
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�Rdi;t�Pi;t � Pi;t�1�Rui;t; i ¼ 1; . . .Ng; t ¼ 1; . . .T ð6:44Þ

�Fmax
l �

XNg

i¼1
Sl;iPi;t �

XNd

j¼1
Hl;jDj;t

þ
XNw

k¼1
Gl;kW

f
k;t �Fmax

l ; l ¼ 1; . . .;Nl; t ¼ 1; . . .T ð6:45Þ

where the definitions can be found in Sect. 4.2.1. f(∙) is the fuel cost function, which
is usually presented as a quadratic or piece-wise linear function, leading to a
quadratic or linear programming techniques correspondingly. Equations (6.42), (6.
43), (6.44), and (6.45) represent the energy balance constraints, generator capacity
constraints, generator ramp rate constraints, and transmission capacity constraints,
respectively. The feasible region of the ED model is a polyhedron enclosed by
T equalities, NgT + NlT inequalities and NgT element-wise constraints with
NgT variables. It is an extremely large-scale optimization problem with coupled
structure, whose size grows quickly with the increase of time periods T. Moreover,
we are interested in the case when T is very large, which introduces further com-
putational challenges.

In fact, the objective function (6.41) and the constraints except (6.44) are sep-
arable in terms of the decision vectors x1, x2, …, xT, but the linear constraint (6.44)
links them together. To overcome the issue of nonseparability of the linking con-
straint (6.44), we consider the augmented Lagrangian relaxation approach to put it
into objective function and solve the dual problem, where the new model by the
augmented Lagrangian relaxation can be decomposed into several decoupled
sub-problems and computed in parallel. This will greatly alleviate the computa-
tional complexity and may be applied to on-line applications, such as dynamic
economic dispatch, multi-period look-ahead dispatch and so on.

Model (6.41)–(6.45) can be mathematically formulated as a convex optimization
model in matrix form as:

min
x1;...;xT

f xið Þ ð6:46Þ

s:t:
XT
i¼1

Aixi ¼ b ð6:47Þ

xi 2 Xi; i ¼ 1; . . .; T ð6:48Þ

where Ωi is a convex and closed set for decision vector xi; the objective function f is
a separable convex function which satisfies

f ðxiÞ ¼
XT
i¼1

fiðxiÞ ð6:49Þ
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The augmented Lagrangian function can be constructed as

L xi; pð Þ ¼ f xið Þþ pT
XT
i¼1

Aixi � b

 !
þ r

2

XT
i¼1

Aixi � b

 !T XT
i¼1

Aixi � b

 !
ð6:50Þ

Furthermore, the dual function can be formulated as

g pð Þ ¼ min
x1;...;xT

L xi; pð Þ ð6:51Þ

s:t: xi 2 Xi; i ¼ 1; . . .; T ð6:52Þ

where π 2 Rm×1 is the Lagrange multipliers corresponding to (6.47), r is a penalty
parameter and r > 0.

Correspondingly, the dual problem is written as

max
p2Rm�1

g pð Þ ð6:53Þ

If the model is a feasible convex model, there is no gap between the primary and
dual problem, so (6.53) and (6.46)–(6.48) are strictly equivalent. According to the
optimality conditions, we have

PT
i¼1

Aix�i � b ¼0

rfxi x�i
� �þAT

i p� þ r
PT
i¼1

Aix�i � b
	 
	 


¼ 0; i ¼ 1; . . .; T

8>><>>: ð6:54Þ

Since the optimal solution of the primary model xk at k-th iteration is to minimize
the augmented Lagrangian function with a given Lagrange multiplier at k-th iter-
ation, we can easily derive that

rxi L xi; pk
� � ¼ rfxi xkþ 1

i

� �þAT
i pk þ r

XT
i¼1

Aixkþ 1
i � b

 ! !
¼ rfxi xkþ 1

i

� �þAT
i p

kþ 1

ð6:55Þ

As a result, the Lagrange multipliers can be updated by (6.56)

pkþ 1 ¼ pk þ r
XT
i¼1

Aixkþ 1
i � b

 !
ð6:56Þ
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The stopping condition can be defined if the infeasibility of KKT optimality
condition is small enough, such that

XT
i¼1

Aixkþ 1
i � b

�����
�����þXT

i¼1
rfxi xkþ 1

i

� �þAT
i p

kþ 1
�� ��� e ð6:57Þ

where ε is a given precision. Now, the procedure of the augmented Lagrangian
relaxation method can be described in Table 6.8.

But unfortunately, the augmented Lagrangian function introduces a quadratic
penalty, which is not separable for the whole objective function. Therefore, it
greatly challenges the application of parallel computation to solving the problem at
the Step 3. Now, we will employ the diagonal quadratic approximation method
(DQAM) to provide a separable approximation for the third part of the augmented
Lagrangian function in the Step 3. Let x1; . . .; xTð Þ ¼ xk1þ h1; . . .; xkT þ hT

� �
, we

have

v xð Þ ¼ r
2

XT
i¼1

Aixi � b

 !T XT
i¼1

Aixi � b

 !

¼ r
2

XT
i¼1

Ai xki þ hi
� �� b

 !T XT
i¼1

Ai xki þ hi
� �� b

 !

¼ r
XT
i¼1

Aixki � b

 !TXT
i¼1

Aihiþ r
2

XT
i¼1

Aihið ÞTAihi
� �

þ r
2

X
i6¼j

Ajhj
� �T Aihið Þ
� �

þ v xki
� �

ð6:58Þ

Table 6.8 Procedure of augmented Lagrangian relaxation method

Augmented  Lagrangian Relaxation
Step 1: Given π 0 and k0;
Step 2: while 1
Step 3: Fix the π k and solve model (6), such that

( ) ( )
1

1 1
1 ,...,

,..., min ,
T

k k k
iT L+ + ←

x x
x x x π s.t  i i∈ Ωx

Step 4: Update the multipliers by (10) as

11

1

T
k k k

i i
i

r ++

=

⎛ ⎞← + −⎜ ⎟
⎝ ⎠
∑ A x bπ π

Step 5: if the KKT condition has not been met 
Update k← k +1 and go to Step2;                  

else

Return ( )1 1
1 ,...,k k

T
+ +x x and 1k +π ; stop.

end
end
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Observe that only the third term in (6.58) is not separable, and we can ignore this
term and get a separable approximation, which is referred to (DQAM).
Furthermore, the augmented Lagrangian function can be approximated by

L xi; pð Þ 	 eL xi; pð Þ ¼ f xki þ hi
� �þ pT

XT
i¼1

Ai xki þ hi
� �� b

 !

þ v xki
� �þ r

XT
i¼1

Aixki � b

 !TXT
i¼1

Aihiþ r
2

XT
i¼1

Aihið ÞTAihi
� � ð6:59Þ

It should be noted that in optimization problems, the constant numbers in the
objective function can be omitted, so we have

g pð Þ ¼ min
x1;...;xT

eL xi; pð Þ , g pð Þ ¼ min
h1;...;hT

K hi; pð Þ ð6:60Þ

where

K hi; pð Þ ¼ f xki þ hi
� �þ pT

XT
i¼1

Aihi � b

 !

þ r
2

XT
i¼1

Aihið ÞTAihi
� �þ r

XT
i¼1

Aixki � b

 !TXT
i¼1

Aihi ð6:61Þ

By the use of DQAM, it can be easily found from (6.61) that the whole function
of K is separable. It yields

K hi; pð Þ ¼
XT
i¼1

Ki hi; pð Þ � pTb ð6:62Þ

where

Ki hi; pð Þ ¼ fi xki þ hi
� �þ pTAihi

þ r
2

Aihið ÞTAihiþ r
XT
i¼1

Aixki � bT
 !T

Aihi
ð6:63Þ

Moreover, the last term of (6.63) will become a constant number which can be
eliminated when solving the model at the Step 3. Thus, Step 3 can be replaced by
the following flowchart (Table 6.9).
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Another issue that should be carefully addressed is the choice of the penalty
parameter r in the augmented Lagrangian function (6.50). However, it has been
proved in [7] that the augmented Lagrangian relaxation method can converge for
any fixed penalty parameter r, as long as r is strictly positive i.e., r > 0 and the
original convex model (1) is a feasible problem. Note, it is found that small r may
result in many iterations to converge. Therefore, we can use an increasing sequence
{rk} to remedy r, but keep in mind that the difference between augmented
Lagrangian relaxation and the penalty function method is that the sequence of {rk}
in the penalty function method should tend to grow infinitely which may lead to an
ill-conditioning problem. In contrast, the augmented Lagrangian relaxation method
does not require {rk} to be infinite, since for any penalty parameter, the method can
converge. It is the advantage of the augmented Lagrangian relaxation method that
the ill-conditioning problem could be alleviated.

In this term, we can set an upper bound for {rk} based on the one used for
augmented Lagrangian relaxation to avoid numerical performance. On the other
hand, it is not difficult to find that if the constraint violation is too small, we should
increase the penalty rk. In this term, the scheme for parameter choice can be
presented in the Table 6.10, where τ belongs to [1, +∞] and Π is a large number
that relies on the computer performance. The suggested values can be chosen as
τ = 5, Π = 106 and r0 = 0.5.

Then in order to analyze the convergence proper of the DQAM method and
discuss the possible problem in DQAM method solution, we will first give some
basic definitions:

Table 6.9 Procedure of parallel DQAM

Parallel DQAM
for i =1,..,T
Step 3-1: Parallel solve for 

( )min ,
i

kk
i i iK

h
h h π s.t  k

i i i+ ∈ Ωx h

Step 3-2: 1k k k
i i i

+  x x h
end

Table 6.10 The choice of penalty parameters

Parameter Choice

Step 4-1: if 1

1

T
k k

i i
i

η+

=

− ≤∑ A x b

Update the multipliers and penalty as               
11

1

T
k k k k

i i
i

r ++

=

⎛ ⎞
  ⎜ ⎟

⎝ ⎠
∑ A x bπ π and 1k kr r+  ;  

else
Update the multipliers and penalty as       

1k k+ π π and ( )1 min ,k kr rτ+   ;          
end

Step 4-2: Update ( ) 0.1 0.91 kk krη
− −+ = ;
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Partial Separability [8]: A smooth convex function f: Rn → R is partially
separable of degree ω if there exists a collection J of subsets of {1, 2,..,n} such that

( ) ( )J
J

f f
∈

= ∑x x max
J

J ω
∈

≤ ð6:64Þ
where for each J, fJ is a smooth convex function that depends on xi for i 2 J only;
|�| is the cardinality of a set.

Theorem 6.4 [8]: For convex quadratic function given by

f xð Þ ¼ r
2

Ax� bð ÞT Ax� bð Þ ¼ r
2

Xm
i¼1

bi �
Xn
j¼1

aijxj

 !
ð6:65Þ

where A 2 Rm×n, b 2 Rn×1 and x 2 Rn×1. Let

xi ¼ j : aij 6¼ 0
� �� ��; i ¼ 1; 2; . . .;m ð6:66Þ

we conclude that f is partially separable of degree

x ¼ max
i2 1;2;...;mf g

xi ð6:67Þ

According to the definition of partial separability with the Theorem 6.4, the
convergence analysis can be given as

Theorem 6.5 [8]: Let f xð Þ ¼ r
2 Ax� bð ÞT Ax� bð Þ be partially separable of

degree ω > 1. If f is strongly convex, DQAM converges linearly, that is
f xkþ 1
� �� qf xk

� �
, where q is

q ¼ 1� u

16L x� 1ð Þ3þ 4 x� 1ð Þu ð6:68Þ

and L ¼ max1� i� n r Ai;:

�� ��; μ is a positive number that depends on the f.

Remarks When (6.42) and (6.45) are relaxed, there are at less Ng nonnegative
variables in every row of the coefficient matrix of the quadratic term of the aug-
mented Lagrangian function. Hence, the transforming distribution factor is a
full-matrix and there is strong coupling among units. In contrast, when (6.44) is
relaxed, there are two nonnegative variables in every row of the coefficient matrix
of the quadratic term of the augmented Lagrangian function. The matrix with a
smaller separable degree ω which is generated by relaxing (6.44) leads to a better
convergence property theoretically. In addition, the augmented Lagrangian function
is regarded as a separable fuction using Diagonal Quadratic Approximation
Method. Many messages will be losed if “hard constraints” of (6.45) is relaxed,
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which may result in many iterations to converge. Based on the discussion of ramp
rate constraints, relaxing these constraints will have a better parallel performance.

From what has been discussed above, the augmented Lagrangian relaxation
approach of (6.41)–(6.45) is employed to solve the ED models, in which the ramp
rate constraints are chosen as the hard constraints to be relaxed. Note that the
relaxed constraints in the augmented Lagrangian relaxation formulation are gen-
erally utilized for the equalities. As a result, we can introduce dummy variables to
ramp rate constraints, such that

Pi;t � Pi;t�1 � ui;t ¼ 0
�Rdi;t � ui;t �Rui;t

; t ¼ 1; . . .T; i ¼ 1; . . .Ng

�
ð6:69Þ

Consequently, the augmented Lagrangian relaxation of the original DED model
can be formulated as

Zðki;tÞ ¼ min
Pi;t ;ui;t

L Pi;t; ui;t; ki;t
� � ð6:70Þ

s:t:
XNg

i¼1
Pi;t þ

XNw

k¼1
Wk;t ¼

XNd

j¼1
Dj;t; t ¼ 1; . . .T ð6:71Þ

Pmin
i;t �Pi;t �Pmax

i;t ; i ¼ 1; . . .Ng ð6:72Þ

�Rdi;t � ui;t �Rui;t; i ¼ 1; . . .Ng ð6:73Þ

�Fmax
l �

XNg

i¼1
Sl;iPi;t �

XNd

j¼1
Hl;jDj;t

þ
XNw

k¼1
Gl;kW

f
k;t �Fmax

l ; l ¼ 1; . . .Nl; t ¼ 1; . . .T

ð6:74Þ

where

L Pi;t; ui;t; ki;t
� � ¼XT

t¼1

XN
i¼1

f ðPi;tÞþ ki;t Pi;t � Pi;t�1 � ui;t
� �þ r

2
Pi;t � Pi;t�1 � ui;t
� �2� �

ð6:75Þ

The dual problem of (6.70)–(6.74) can be cast as

Z ¼ max
ki;t

Zðki;tÞ ð6:76Þ
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For k-th iteration, we have

K hpi;t; hui;t; k
k
i;t

� �
¼
XT
t¼1

XN
i¼1

fiðPk
i;tþ hpi;tÞþ

XN
i¼1

kki;t � kki;tþ 1

� �
hpi;t �

XN
i¼1

kki;thui;t

 !
þ r

2
ðAhÞTðAhÞþ rðAxkÞAh

ð6:77Þ

where

hp¼ hp1;1; . . .; hpN;1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
hp1

; hp1;1; . . .; hpN;2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
hp2

; . . .; hp1;T ; . . .; hpN;T|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
hpT

0B@
1CA

T

ð6:78Þ

hu¼ hu1;1; . . .; huN;1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
hu1

; hu1;1; . . .; huN;2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
hu2

; . . .; hu1;T ; . . .; huN;T|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
huT

0B@
1CA

T

ð6:79Þ

h¼ hpT ; huT
� �T¼ hpT1 ; . . .; hp

T
T ; hu

T
1 ; . . .;hu

T
T

� �T ð6:80Þ

P¼ P1;1; . . .;PN;1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
P1

;P1;1; . . .;PN;2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
P2

; . . .;P1;T ; . . .;PN;T|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
PT

0B@
1CA

T

ð6:81Þ

u ¼ u1;1; . . .; uN;1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
u1

; u1;1; . . .; uN;2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
u2

; . . .; u1;T ; . . .; uN;T|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
uT

0B@
1CA

T

ð6:82Þ

x ¼ PT ; uT
� �T¼ PT ; . . .;PT

T ; u
T
1 ; . . .; u

T
T

� �T ð6:83Þ

B ¼

IN�N
�IN�N IN�N

�IN�N IN�N
. .
.

�IN�N IN�N

2666664

3777775 ð6:84Þ
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A ¼ [B� I] =

IN�N �IN�N
�IN�N IN�N �IN�N

�IN�N IN�N �IN�N
. .
. . .

.

�IN�N IN�N �IN�N

2666664

3777775
ð6:85Þ

Keep in mind that the model (6.41)–(6.45) is within T time periods, i.e., t = 1,…,
T, so we always assume kki;tþ 1 in (6.77) to be zero. Furthermore, we have

Ah ¼ [B� I] hpT ; huT
� �T¼ Bhp� hu ð6:86Þ

The third term of (6.77) can be reformulated as

ðAxkÞAh ¼ (Axk)(Bhp� hu)

¼ ðAxk)
XT
t¼1

(Bthpt � hut)

¼ (Bpk � uk)
XT
t¼1

(Bthpt � hut) ð6:87Þ

The fourth term of (6.77) can be reformulated as

ðAhÞAh ¼ ðBhp� huÞTðBhp� huÞ

¼
XT
t¼1

(Bthpt � hut)T (Bthpt � hut)

¼
XT
t¼1

(Bthpt)
TBthpt þ

XT
t¼1

(hut)Tut � 2
XT
t¼1

(Bthpt)
Thut

ð6:88Þ

where

Bt ¼
0N�N|ffl{zffl}

1

; . . .; IN�N|ffl{zffl}
t

;�IN�N|fflfflffl{zfflfflffl}
tþ 1

; 0N�N|ffl{zffl}
iþ 2

; . . .; 0N�N|ffl{zffl}
T

24 35T

t ¼ 1; . . .; T � 1

0N�N|ffl{zffl}
1

; . . . 0N�N|ffl{zffl}
t

; . . .; 0N�N|ffl{zffl}
T�1

;�IN�N|fflfflffl{zfflfflffl}
T

24 35T

t ¼ T

8>>>>>>><>>>>>>>:
ð6:89Þ
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It can be observed that hp and hu can be decomposed into T separable parts and
(6.77) can be decomposed as

K hpi;t; hui;t; k
k
i;t

� �
¼
XT
t¼1

Kt hpi;t; hui;t; k
k
i;t

� �
ð6:90Þ

where

Kt hpi;t; hui;t; k
k
i;t

� �
¼
XN
i¼1

fi Pk
i;t þ hpi;t

� �
þ
XN
i¼1

kki;t � kki;tþ 1

� �
hpi;t þ r

2
Bthptð ÞTBthpt

þ r BPk � uk
� �

Bthpt �
XN
i¼1

kki;thui;t � r BPk � uk
� �

huiþ r
2

hutð ÞThutþ r Bthptð ÞThut

ð6:91Þ

Furthermore, the Step 3-1 in the Table 6.8 can be presented as

hpkt ; hu
k
t

� � min
hpt ;hut

Kt hpt; hut; k
k� �

ð6:92Þ

s:t:
PNg

i¼1
Pk
i;t þ hpi;t

� �
¼
XNd

j¼1
Dj;t �

XNw

k¼1
W f

k;t ð6:93Þ

Pmin
i;t �Pk

i;t þ hpi;t �Pmax
i;t ; i ¼ 1; . . .Ng ð6:94Þ

�Rdi;t � uki;t þ hui;t �Rui;t; i ¼ 1; . . .Ng ð6:95Þ

�Fmax
l �

XNg

i¼1
Sl;iPi;t �

XNd

j¼1
Hl;jDj;t þ

XNw

k¼1
Gl;kW

f
k;t �Fmax

l ; l ¼ 1; . . .Nl ð6:96Þ

However, the hpt and hut are coupled at each time period and we should solve
(6.92)–(6.96), so that hpt and hut can be obtained at the same time. However, we
can adopt the idea of the alternating direction method of multipliers method (al-
ternating direction method of multipliers method, ADMM) [9–12], where hpt and
hut can be decoupled. Likewise, solving (6.92)–(6.96) can be transformed to solve
two decoupled sub-problems:

Sub� P1ð Þ hpkt  min
hpt

Kt hpt; hu
k
t ; k

k� �
ð6:97Þ

s:t:
XNg

i¼1
Pk
i;t þ hpi;t

� �
¼
XNd

j¼1
Dj;t �

XNw

k¼1
W f

k;t ð6:98Þ
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Pmin
i;t �Pk

i;t þ hpi;t �Pmax
i;t ; i ¼ 1; . . .Ng ð6:99Þ

�Fmax
l �

XNg

i¼1
Sl;iPi;t �

XNd

j¼1
Hl;jDj;t þ

XNw

k¼1
Gl;kW

f
k;t �Fmax

l ; l ¼ 1; . . .Nl ð6:100Þ

Sub� P2ð Þ hukt  min
hut

Kt hpkt ; hut; k
k� � ð6:101Þ

s:t: � Rdi;t � uki;t þ hui;t �Rui;t; i ¼ 1; . . .Ng ð6:102Þ

The whole procedure of the augmented Lagrangian method using DQAM for
multi-period dynamic economic dispatch can be presented in Table 6.11.

6.3.2 Simulation Analysis

The proposed PALR method using DQAM has been tested on the IEEE 118-bus
and the Polish 2383-bus system with several different time periods. The topology

Table 6.11 The proposed method for multi-period dynamic economic dispatch

The proposed method for multi-period dynamic economic dispatch
Step 1: Given λ0, r0, η0(r0)-0.1, Pt

00, ut
00 and k0;

Step 2: while 1
Step 3: Fix the multipliers λk;
Step 4: for t=1,..,T

Parallel solve model (6-97)-(6-100) and obtain k
thp ; 1k k k

t t t
+  P P hp ;                              

end                                                             
Step 5: fort=1,..,T

Parallel solve model (6-101)-(6-102) and obtain k
thu ;  

1k k k
t t t

+  u u hu ;                               
end

Step 6: Construct ( ) ( ) ( )1 1 1 1
1 2, ,...,

TT T Tk k k k
T

+ + + + ⎤⎡= ⎥⎢ ⎦⎣
P P P P

and ( ) ( ) ( )1 1 1 1
1 2, ,...,

TT T Tk k k k
T

+ + + + ⎤⎡= ⎥⎢ ⎦⎣
u u u u ;

Step 7: if 1

1

T
k k

i i
i

η+

=

− ≤∑ A x b

( )1 1 1k k k k kr+ + +  BP uλ λ and 1k kr r+  ;
else

1k k+ λ λ and ( )1 min ,k kr rτ+   ;
end

Update ( ) 0.1 0.91 kk krη
− −+ = ;

Step 8: if ( )1 1 1 1

1
i

T
k k k T k

i i
i

f ε+ + + +

=

− + ∇ + ≤∑ PBP u P A λ

Stop and return ( 1k
t

+P , 1k
t

+u , 1k +λ );
else

Update kk+1 and go to Step2;
end

end
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parameter and normal load demand can be found in MATPOWER [6]. The 24-h
load demand and wind power can be derived by the use of the load factor shown in
Sect. 3.3.2. The convergence tolerance is assigned as 0.01 %. The tests were
implemented using MATLAB and CPLEX 12.5, and performed on an Intel®
Core™ i5 Duo Processor T420 (2.50 GHz) PC with 4 GB RAM.

A. IEEE 118-bus test systems

For the proposed method, the impact of a ramp rate limit on the total number of
iterations. We choose the ramp rate σ as 5, 10, 15, 20 and 50 % of the capacity of
generators per hour respectively.

The results on IEEE 118-bus systems are shown in Table 6.12. It is observed
that the ramp rate limits have a great impact on the convergence performance of the
proposed method. When the ramp rate is faster, the number of iterations will be
less. When σ is greater than 20 %, only one iteration is needed for convergence.
That means that the ramp rate is so fast that the time coupling can be ignored.
Multi-period ED can be split into T single-period period ED. In addition,
Table 6.12 show the comparison of ALR and LR method. For a fast ramp rate,
PALR and LR both converge fast, but for a small ramp rate, LR may need large
number of iterations, whereas PALR can be much faster.

It should be noted that the benchmark ED solver for a 118-bus system consid-
ering all the security constraints needs no more than 0.1 s. Furthermore, the
computational time for ALR and DED which is solved directly by CPLEX is
presented in Table 6.13. It can be observed that with the increase of T, the scale of
DED becomes large which takes more time using CPLEX. Moreover, with the

Table 6.12 Impact of ramp rate limits on iterations

σ (%) T = 24 T = 48 T = 96 T = 288

ALR LR ALR LR ALR LR ALR LR

5 7 63 8 67 11 76 14 89

10 3 21 3 26 4 29 6 33

15 1 6 1 8 2 11 2 18

20 1 3 1 4 1 6 1 8

50 1 1 1 1 1 1 1 1

Table 6.13 Comparison of computational time between ALR and DED

σ (%) T = 24 (s) T = 48 (s) T = 96 (s) T = 288 (s)

ALR DED ALR DED ALR DED ALR DED

5 0.70 0.29 0.80 0.37 1.10 0.92 1.40 5.10

10 0.30 0.27 0.30 0.33 0.40 0.79 0.60 4.78

15 0.10 0.24 0.10 0.33 0.20 0.78 0.20 4.67

20 0.10 0.24 0.10 0.32 0.10 0.78 0.10 4.69

50 0.10 0.24 0.10 0.32 0.10 0.78 0.10 4.63
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increase of σ, ALR needs fewer iterations, but the time used to directly solve DED
by CPLEX is nearly the same. Even when the ramp rate is large, directly solving
DED by CPLEX cannot be accelerated. In this term, the proposed PALR method is
fairly applicable to the DED with a large number of time periods and a fast ramp
rate.

Figure 6.6 depicts the solution process of the proposed method under σ = 5 %
over iterations. There needs to be 14 iterations for DED with 288 time periods and 7
iterations for DED with 24 time periods. In general, more iterations are needed
based on the increase of the number of time periods.

B. Polish 2383-bus test systems

In order to further verify our proposed method on large-scale systems, we have
performed tests on the Polish 2383-bus system, where there are 2896 transmission
lines and 323 generators in service. Generally, in practical power systems, the gen-
erator ramp rates per hour are about 20–40 % of the maximum capacity for coal
turbines and 50–80 % for gas turbines. In this book, we choose the slow ramp rate of
coal turbines to be 20 % * Pmax/h and the fast ramp rate of gas turbines to be
50 % * Pmax/h. It takes 0.3 s to solve the single-period EDmodel for CPELX solver.
However, the multi-period ED model cannot be solved by CPLEX directly for
T ≥ 24 due to the lack of enough memory space. Considering all transmission
security, the transforming distribution matrix is 2383 × 2383 full matrix.
2896 × 2383 × 24 × 8 bit ≈ 1.234 GB DRAM will be need for all transmission
security. The personal computer with 4 GB RAM has a great challenge to solve 24-h
real ED using 1GRAMdue to operating systems and other softwares likeMATLAB.
For the same test system, since each sub-problem takes 2896 × 2383 × 8
bit ≈ 52.65 MBRAM, we can use PALR to separate a multi-period ED problem into
T single-period ED sub-problems simultaneously, in which the memory requirement
can be greatly reduced for each of those computers.
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Fig. 6.6 Iterations of the proposed method under β = 5 %
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Here, we use 96 time periods in the following study. If all the units are coal
turbines (i.e., σ = 20 %), it needs 10 iterations for convergence; if all the units are
gas turbines (i.e., σ = 50 %), it needs 4 iterations for convergence. As a result, the
number of fast-ramping gas turbines has a large impact on the convergence per-
formance of the ALR method.

However, it should be noted that the location and the number of generators may
have a great impact on the convergence performance of the algorithm. Hence, we
define the Γ index of i-th generator as (6.103). Obviously, a large Γ implies that the
unit needs a high generators’ ramp up/down requirement and heavy ramp pressure.
Particularly, if the generators with large Γ are gas turbines, the proposed method
can be accelerated.

Ci ¼ 1
Pmax
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT
t¼2
ðPi;t � Pi;t�1Þ2

vuut ð6:103Þ

For convenience, let the number of gas turbines be NGas. At first, when NGas = 0,
it needs 10 iterations and the Γ index can be shown in Fig. 6.7. Furthermore, we
sort Γ in descending order and assume NGas units with large Γ to be gas turbines, the
convergence performance is shown in Fig. 6.8. When 11 ≥ NGas ≥ 8, the number
of iterations will reduce from 10 to 5 and furthermore, when NGas ≥ 12, the number
of iteration will reduce to 4 which is the same as that with all units being gas
turbines. For comparison, we choose 20 generators (N 0Gas = 20) with small Γ to be
gas turbines, and the proposed algorithm still needs 9 iterations before convergence.
This illustrates that, even if a small number of generators have fast ramp rate, the
proposed method can still achieve the same best convergence as the case with all
units being gas turbines.
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6.4 Conclusion

This Chapter studied two acceleration strategies for multi-period large-scale eco-
nomic dispatch problems: spatial-dimension reduction and time decoupling.
Spatial-dimension reduction is used by identifying inactive security constraints.
Inactive constraint elimination will reduce the complexity of the optimization
problem. Time decoupling is used through the augmented Lagrangian relaxation
approach to relax ramp rate constraints. In this term, the multi-period economic
dispatch model is decomposed into several single-period economic dispatch
problems that can be efficiently handled in parallel. The Lagrange multipliers can be
updated by the augmented Lagrangian dual model. The optimization results will be
obtained. The spatial-dimension reduction can be used in the robust optimization
problem in the last chapter to reduce the computational time. Moreover, time
decoupling can be used in day-ahead multi-period optimization problems, espe-
cially in the optimization problems with large fast ramp rate generators.
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Chapter 7
Conclusions and Prospects

Abstract This chapter gives the conclusion and further works.

Using the interval analysis method, this paper mainly studied on the power flow
analysis and optimization decisions considering the uncertain large scale wind
power integration from the modeling and algorithm design point of view. In par-
ticular, the technique summarized in Chap. 2 is of generality, which can be applied
to the analysis under interval uncertainty in any other areas. The innovations and
key results are summarized as follows:

1. A novel algorithm for solving linear and nonlinear interval equations and its
employment on the interval power flow model

The key of solving interval power flow relies on solving the linear and nonlinear
interval equations. In this paper in terms of the linear equations, the Krawczyk
iteration method, including approximate inverse preconditioner using Frobenius
norm minimization was proposed to guarantee the convergence of the iterative
method. It was then employed to the DC power flow and extended DistFlow-based
interval radial power flow. As for the nonlinear equations, a solving method for
optimization problem was proposed, especially for the interval quadratic nonlinear
equations. The nonconvex feasible region was relaxed to the convex one, which
was then followed by binding the boundaries to approximate the exact solution in
the interval AC power flow model. Furthermore, as the slack bus may not charge of
all the uncertainties, the uncertainties were therefore dispatched among all the
generators to form the interval dynamic power flow model.

2. A novel interval optimization algorithm including right hand uncertainties and
its implements on the interval economic dispatch model

To address the effect of interval uncertainty of wind power output on the optimal
results of security constrained economic dispatch (SCED), the interval SCED
model was proposed to acquire the optimal objective function and interval values.
The SCED model is mathematically an interval optimal problem including right
hand uncertainty. It can be converted into a bi-level deterministic model, namely,
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“max-min” model, which however challenges to find the global solution.
Fortunately, the paper proved that the “max-min” model is of particularity, which
can be established as a mixed integer linear programming after it is transformed into
the bilinear programming according to the strong duality theorem. Finally, the
general algorithm for solving the interval optimum problem was proposed and
applied to the interval SCED model. It will also bring application value to other
areas when solving the interval optimum problem.

3. A proposed technique dealing with SCED model infeasible for wind power in
the uncertainty set

This paper presented the relaxation technique to tackle with the infeasible SCED
model under the wind power uncertainty set which results in the control failure due
to the lack of instructions in the close-loop control. Two relaxation methods were
given: Considering the optimal wind curtailment in a long time horizon, the cur-
tailment is utilized to guarantee the SCED to be feasible; the other is the relaxation
on short-term power limit of the transmission lines based on the real-time
scheduling. An economic dispatch model with an exact penalty function was then
established which can be transformed to a three-level programming model,
obtaining the global solution by reformulating a mixed integer programming model
according to the KKT condition due to its convexity.

4. Proposing adaptable and two-stage interval robust SCED models in different
time scales respectively

In practice, the dispatching order and schedule cannot be obtained directly by the
interval solution. Two interval robust SCED models, that is, the adaptable opti-
mization model and the two-stage optimization model, were proposed within this
paper to find a robust optimal value contributing to dispatching schedule while
guaranteeing the wind power in the interval within security constraints. The
adaptable interval robust optimization is characterized by the generation governed
by automatic generation control (AGC) to balance the power in real time in
response to the wind power variation, while guaranteeing all the constraints after
adjustment. The two-stage interval robust optimization model is essentially a
scheduling optimization problem which considers various network topologies. To
address the uncertainties of wind power output, the model is established to find the
optimal network topology to guarantee the transmission security under the worst
wind power variation condition. Mathematically, the adaptable model is termed as a
special bi-level optimization model which can be transformed into the convex
optimization through dummy variables in a high dimensional space; and the
two-stage model is the three-level mixed integer optimization model which can be
solved by Benders decomposition. In this paper, two general techniques were given
to design the Benders cut to enhance the efficiency.

Furthermore, as the interval robust economic dispatch was dealt with under the
worst uncertain condition to guarantee the system security, the solution obtained
was conservative compared with the one from non-robust model. The robust cost
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was therefore introduced to reduce its conservative property, providing the optimal
scheduling solution as the new Pareto front under different robust costs for decision
makers.

5. A proposed spatial dimensional reduction and time decoupling algorithm for a
large scale SCED model

In practical, the real power system is a large scale combined optimal model. When
it is applied with the proposed interval robust optimization model with robust cost,
its constraints scale will increase, which challenges its online application.
Therefore, this paper investigated the acceleration techniques for solving large scale
economic dispatch model in two aspects, which are dimension reduction and time
decoupling. From the dimension reducing point of view, most transmission line
constraints are redundant due to the few congested lines in practical, which shows
less influence on the optimal solution. By use of continuous knapsack algorithm
after relaxing the feasible region, the redundant constraints are excluded so that the
complexity of solving is significantly reduced. In terms of time decoupling, the
multi-period economic dispatch model refers to combine the economic dispatch
models in several periods together constrained by unit ramping constraints.
Augmented Lagrangian relaxation and diagonal quadratic approximation technique
enhance the efficiency for solving the unit commitment model by splitting the
multi-period model into several independent models which can be solved in
parallel.

Finally, future works are put forward:

1. Correlation of uncertainties to be considered in interval arithmetic

It is known in Chap. 2 that interval numbers are set in mutual independently
without considering the correlation of interval uncertain variables (i.e. wind power
output). However, the interval power flow with correlation of wind power cannot be
solved using iteration methods like Krawczyk iteration whereas the optimal based
interval power flow technique is able to solve it, just including the correlation
constraint in the optimization model. But it is still worthy to further study on how to
model the correlation of wind power properly and its application on the proposed
optimization model.

2. AC Power Flow Model has yet to determine to be applied to the economic
dispatch optimization

Traditional economic dispatch model was based on the DC power flow in the linear
network to approximate the AC model, enhancing its convergence and global
optimality. In particular, existing robust commercial software enables DC economic
dispatch to be used widely in the practical production and operation.

AC economic dispatch model reflects the nonlinear network characteristics as
well as system reactive power and voltage, modeling the real power system oper-
ation. However, the AC economic dispatch model is complex and difficult to solve
due to its nonlinearity and non-convexity: first, its global optimality is hard to
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guarantee; second, the initial value to obtain optimal solution which is however
local is hard to set; third, the existing commercial software for solving nonlinear
non-convex problem is not robust, where convergence problem may occur.

Fortunately, optimization techniques have been developed, especially for the
nonlinear and non-convex power flow, and methods for convexification have been
widely studied as well. Although those methods are able to find the global optimal
solution in the polynomial time, the challenge is how to revert the optimal solution
of convexification to the one in the original non-convex AC economic dispatch
model.

3. Unit commitment problem

The proposed economic dispatch model and algorithm were achieved after the
optimal unit commitment start-up but without discussion on the unit commitment.
In fact, the unit commitment is an important research topic in the market. The
network reconfiguration considering unit commitment and the unit commitment
considering N − 1 wind farms are deserved to be further studies in the future. It is
mentioned that the economic dispatch model is a convex optimization problem
whereas the unit commitment is termed as a mixed integer programming problem
which is non-convex. Although the mixed integer programming has been developed
rapidly, the computational efficiency to solve large scale unit commitment is still a
challenge. Therefore, how to solve a large scale unit commitment optimization
problem efficiently is to worth studying in the future work.

4. Further study on a combined research of wind power and electricity market

The paper mainly focused on incorporating the large scale uncertain wind power
generation from the power system point of view without considering electricity
market. However, as the electricity market is complete in Europe and North
America, combined study of wind power integration and electricity market is a
work of important application value. Instead of tracing wind power uncertainty
passively, it is active to offset the wind uncertainty to use wind power in financial
ways such as futures, contracts and so on. However, it is deserved to study on how
to establish the electric market considering wind power uncertainties.

5. Research on Reactive power uncertainties

This paper studied on the uncertain real power economic dispatch considering but
without considering reactive power. As reactive power is a main research task in
power system, the proposed interval optimization and robust optimization method
can be applied to such area in the future.
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Appendix A

Solutions of interval linear equations

Set interval linear equations as Ah i xh i ¼ bh i, given Ah i 2 IRn�n and bh i 2 IRn�1,
solve xh i. To solve interval linear equations, the solution methods are presented
following:

A. Interval Gaussian Elimination

Interval Gaussian elimination is similar to traditional Gaussian elimination, the
difference is to use interval operations. It notes that Gauss elimination method
eliminates the coefficient matrix into the upper triangular matrix and the elimination
of each column needs pivoting. The traditional Gauss elimination is to select the
maximum elements below the column diagonal elements as the pivot. For interval
Gaussian elimination, column magnitude pivoting can be used to choose a pivot as
the contender with the largest magnitude, where we recall that the magnitude of x is

defined as mig xh ið Þ ¼ min xj j; xj jf g if 0 62 xh i
0 otherwise

�
. The flow chart of Gaussian

elimination is shown in Table A.1.

B. Kraw operator iteration method

The nature of Kraw operator iteration method is an iteration method, given an
initial value x0

� �
, the iterations are formulated as

xiþ 1� � ¼ C bh iþ I � C Ah ið Þ xi
� �� �\ xi

� � ðA:1Þ

where C is a constant matrix.
To use Kraw operator iteration method, two points should be considered:

(1) Selection problem of initial value

The initial value choice of Kraw operator iteration method requires x0
� � 2 IR

and satisfy x�h i� x0
� �

; due to xh i� C bh iþ I � CAð Þ xh ið Þ,we know

xh ik k� C bh ik kþ k xh ik k. Therefore, xh ik k� a, where a ¼ C bh ik k
1�k .

© Springer Science+Business Media Singapore 2017
T. Ding, Power System Operation with Large Scale Stochastic Wind Power
Integration, Springer Theses, DOI 10.1007/978-981-10-2561-7

191



The initial interval can be chosen as

x0
� � ¼ �a; þ a½ �; �a; þ a½ �; . . .; �a; þ a½ �ð ÞT ðA:2Þ

(2) Selection problem of constant matrix C

[1] proposes that if the constant matrix C is selected as the inverse central matrix
of coefficient matrix, such that C ¼ Acð Þ�1, then C Ah iis an H-matrix, which can
generally guarantee the convergence of the algorithm.

The flow chart of interval linear equations based on Kraw operator iteration
method is shown in Table A.2.

C. Interval hull method

In improve the convergence, the matrix transformation of interval linear equa-
tions is firstly carried out, and the equivalent equations are obtained, so that the
coefficient matrix Ah i can be an H-matrix. Therefore, the two sides of interval linear
equations Ah i xh i ¼ bh i are multiplied by the inverse of the central matrix A, and let

Mh i ¼ A�1 Ah i; rh i ¼ A�1 bh i ðA:3Þ

Table A.1 Interval linear equations based on interval Gaussian elimination
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The original interval linear equations are equivalently transformed into (A.4).

Mh i xh i ¼ rh i ðA:4Þ

Obviously, if coefficient matrix Ah i is degenerated into a real matrix which
upper bound and lower bound are the same, then Mh i is degenerated into a real
identity matrix and the original problem can be solved precisely; however, if range
of intervals in the coefficient matrix Ah i is not very wide, then Mh i is approximate a
real identity where matrix diagonal elements are the intervals around 1 and the
non-diagonal elements are intervals around 0, so coefficient matrix Mh i is an
H-matrix.

It notes that in the equivalence transformation of (A.3), the inverse A−1 of real
central matrix needs to be solved, but central matrix may be degenerated, which can
not solve the inverse. Actually, the inverse of central matrix does not need to solve
precisely, we only need to obtain the approximate inverse of central matrix to make
coefficient matrix Mh i to be an H-matrix. Therefore, in the process of inversion, a
larger number of diagonal elements in A can be added to make the A diagonally
dominant, which can solve the inverse problem when A is degenerated.

Additionally, in the process of interval coefficient matrix transformed into an
H-matrix, because two sides are both multiplied by the inverse of the central matrix
which increases interval operations and may lead to conservatism of solutions. It
also has such problem when using Kraw operator iteration method directly, but
interval hull method can overcome conservatism in some extent and has a certain
robustness. With the increase of the coefficient matrix disturbance, interval hull
method can obtain a smaller range of interval than Gaussian elimination and Kraw
operator iteration method, which is proved in [1].

Table A.2 Interval linear equations based on Kraw operator iteration method
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Theorem A.1[2] If interval matrix Mh i 2 IRn×n is an H-matrix, rh i 2 IRn is an
interval constant vector, then the approximate hull solution is expressed as x:

xi ¼ rih iþ �bi;�bi½ �
Miih iþ �ai;�ai½ � ðA:5Þ

t ¼ Mcð Þ�1mag xh ið Þ ðA:6Þ

di ¼ Mcð Þ�1
ii ðA:7Þ

ai ¼ Mcð Þ�1
ii �1=di ðA:8Þ

bi ¼ ti=di �mag rih ið Þ ðA:9Þ

where Miih i 2 Mh i; rih i 2 rh i; t 2 Rn; d 2 Rn; α 2 Rn; β 2 Rn; Mc is the com-
parison matrix of Mh i.

According to (A.5) and (A.6), to obtain approximate hull solution x, the inverse
of comparison matrix must be solved first. Therefore, a method to solve (Mc)−1 is
introduced next. To obtain the precise hull of x, we should find the supremum of α
and β as precisely as possible. Because coefficient matrix Mh i is an H-matrix, the
inverse (Mc)−1 of comparison matrix is positive semidefinite, which means a real
matrix S 2 Rn×n is existed to be the supremum of (Mc)−1 and it can be formulated
as (A.10) and (A.11). Therefore, if we can find approximate matrix D and two
vectors v and w, the supremum S is obtained. Because the precise inverse of
comparison matrix is hard to obtain, the approximate inverse matrix is introduced.
Combined with interval operations, the error will be increased, so the approximate
inverse matrix should be corrected.

I �McD�McvwT ðA:10Þ

S ¼ Dþ vwT ðA:11Þ

where D 2 Rn×n is the approximate value of (Mc)−1; v 2 Rn; w 2 Rn.
Because Mh i is an H-matrix, according to its definition, a vector v 2 Rn must

exist and satisfy v > 0 and u = Mcv > 0. Therefore, let v to be the vector satisfied
with (A.10), and vector w satisfied with (A.11) is:

wk ¼ max
i

�Kik

ui
ðA:12Þ

K ¼ McD� I ðA:13Þ

Therefore, if vector v is obtained, then according to (A.10)–(A.12), we can get
the supremum S of (Mc)−1. Due to u = Mcv, u is free variable with any value, so
v = (Mc)−1u. Because (Mc)−1 is hard to solve precisely, it is necessary to replace
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(Mc)−1 by approximate inverse D. Considering (Mc)−1 is positive semidefinite, then
let the all elements of u are 1 to guarantee the non-negative v. To guarantee
u = Mcv is strictly satisfied, the obtained v is taken in again to compute u. obvi-
ously, if approximate inverse is good enough, u is greatly close to the vector of full
1 elements:

v ¼ D 1; 1; . . .; 1ð ÞT � Mcð Þ�1 1; 1; . . .; 1ð ÞT [ 0 ðA:14Þ

Finally, to guarantee the precision of supremum matrix S, (A.5), (A.14) need to
be computed with different approximate methods, where v and the approximate
inverse D of comparison can be computed by rounding-off method; u and K can be
computed by downward approximation method; w, S and (A.6)–(A.9) can be
computed by upward approximation method. Downward approximation method
denotes approximation is always approaching to negative infinity, for example,
1.7 ≈ 1, −1.4 ≈ −2; Upward approximation method denotes approximation is
always approaching to positive infinity, for example, 1.7 ≈ 2, −1.4 ≈ −1.

The flow chart of interval linear equations based on interval hull method is
shown in Table A.3.

Table A.3 Interval linear equations based on interval hull method
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D. Optimality-based method

For interval linear equations Ah i xh i ¼ bh i, the interval xh ican be solved by
optimality-based method. Introduce new dummy variable A, the optimization
model is formulated as following:

min=max
x;A

xi i ¼ 1; . . .; n ðA:15Þ

s:t: aij � aij � aij i ¼ 1; . . .; n; j ¼ 1; . . .; n ðA:16Þ

bj �
Xn
i¼1

aijxi � bj j ¼ 1; . . .; n ðA:17Þ

We can know the optimization above is a nonlinear programming, and the lower
and upper bound of the ith variable can be obtained by solving the objective
function of “min” and “max”. Additionally, the solution of every variable is
independent, so n optimizer can be used with parallel implement.

The advantage is this method can obtain the strict upper and lower bound of
interval solution. However, it also has some disadvantages: first, for n variable, we
should solve 2n optimization models, though these model can be parallelly com-
puted, it also needs many parallel cores; second, the model is a nonlinear pro-
gramming, and only global optimal solution can represent real upper and lower
bound of interval, but it is a NP-hard problem for a nonlinear programming to
search the global optimal solution.
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Appendix B

Solutions of interval nonlinear equations solutions

Mathematically, the interval nonlinear equations are formulated as

F xh ið Þ ¼ 0 ðB:1Þ

Assume 0 62 F0 xh ið Þ, and let y ¼ m xh ið Þ, where m xh ið Þ is the middle of interval
xh i, then the Newton iteration of interval is formulated as
xh i ¼ m xh ið Þ � f m xh ið Þð Þ�F�1 xh ið Þ,8y 2 xh i. Obviously, it is much more difficult

to solve inverse F xh ið Þ�1of interval matrix than traditional real matrix. Therefore,
Krawczyk-Moore iteration method is proposed and the iteration is formulated as
following:

K y; xh ið Þ ¼ y� Yf yð Þ � I � YF
0

xh ið Þ
� 	

xh i � yð Þ ðB:2Þ

8y 2 xh i, 8Y 2 n� n nonsingular matrix, where y and Y are defined as

xiþ 1
� � ¼ xi

� �\K xi
� �� �

K xi
� �� � ¼ yi � Y if yi

� �� I � Y iF
0

xi
� �� �� 	

xi
� �� yi
� �

yi ¼ m xih ið Þ Y i¼ m F
0

xih ið Þ� �
 ��1

8>>><>>>: ðB:3Þ

where I is an identity matrix; m is the middle of the interval. Therefore, y is actually
a deterministic vector, and Yi is the inverse of the deterministic matrix. It notes that
the same variable of Kraw operator iteration method of nonlinear equations is used
in F′( xh i) for many times which will expand the range of interval.
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Appendix C

Economic Dispatch Model with Prohibited Zones

C.1 Modeling of Economic Dispatch with Prohibited Zones

As shown in (D.1), the range of the generation output will be divided into several
feasible sub-regions. Suppose that there are 2 prohibited zones, the original con-
tinuous feasible region will be divided into three disjoint sub regions in which only
one is allowed to operate, and the output power could continuously operate within
each chosen sub feasible region. Besides, the beginning and end are always feasible
regions. If not, the region should be cut off. Then, the prohibited zones and feasible
regions are alternating, and the number of feasible regions is one more than that of
prohibited zones. So the economic dispatch model with prohibited zones can be
presented as

min
XNg

i¼1

aiP
2
i þ biPi þ ci

� � ðC:1Þ

s:t:
XNg

i¼1

Pi þ
XNg

k¼1

W f
k ¼

XNd

j¼1

Dj ðC:2Þ

max P0
i � DRi;Pmin

i

� ��Pi �min P0
i þURi;Pmax

i

� �
Pi 2 Pmin

i;1 ;Pmax
i;1

h i
; or . . .; Pmin

i;j ;Pmax
i;j

h i
; or . . .; or Pmin

i;mi
;Pmax

i;mi

h i(
; i ¼ 1; . . .;Ng

ðC:3Þ

�Fmax
l �

XNg

i¼1

GP
l;iPi þ

XNw

k¼1

GW
l;kW

f
k �

XNd

k¼1

GD
l;jDj �Fmax

l ; l ¼ 1; . . .;Nl ðC:4Þ
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XNg

i¼1

Rþ
i 	 SU;

XNg

i¼1

R�
i 	 SD ðC:5Þ

where the parameters are the same as that in Sect. 4.2.1. The differences are
including: (C.3) is the ramp constraints; URi and DRi are the ramp up and ramp
down constraint of ith generator; P0

i is the generation output of ith generator; mi

represents the number of sub-regions of ith generator; Pmin
i;j and Pmax

i;j are the lower
and upper bound of jth sub-region for ith generator; “or” implies that only one
sub-region could be chosen. (C.4) the reserve constraints of generators; Rþ

i and R�
i

are up and down spanning reserve of ith generator; SU and SD total reserve
requirement of up and down spanning reserve (Fig. C.1).

C.1.1 Simplification of the Modeling for Prohibited Zones

Figure C.1 illustrates a binary coding scheme applied on a generator with two
prohibited zones. The shaded areas represent three disjoint feasible zones, and the
gaps among the feasible zones are two disjoint prohibited zones. We assign one
binary variable to each of the two prohibited zones, namely, x1 and x2. If the binary
variable takes 0, the zone to the right of the prohibited zone upper bound is selected;
otherwise, the zone to the left of the prohibited zone lower bound is selected. The
zones selected by the two binary variables may or may not have intersections.
When the intersection exists, it aligns with one feasible zone; otherwise, the feasible
zone is empty. For instance in Fig. C.1, when both binary variables takes 1, the
intersection will be the first feasible zone from left; when x1 takes 1 and x2 takes 0,
there is no feasible zone. As such, each feasible zone can be uniquely represented
by a binary code. For example, the three feasible regions in Fig. C.1 can be denoted
by {11}, {01} and {00} respectively.

Feasible Region

Feasible 
region1

Prohibited
Zone 1

minP maxP

Feasible 
region2

Prohibited
Zone 2

Feasible 
region3

Fig. C.1 Feasible regions and prohibited zones
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Note that the binary variable assigned to any prohibited zone must be equal to or
larger than the binary variable associated with the prohibited zone to its left.
Otherwise, the intersection feasible zone will be empty. For instance, as shown in
second scenario in Fig. C.1, the binary code is {10} and the resulting feasible zone
is empty. Therefore, for generator i with ni feasible zones, we will create mi-1
binary variables, and the binary code for each of the feasible zones will be
000. . .000|fflfflfflfflfflffl{zfflfflfflfflfflffl}

mi�1

, 000. . .001|fflfflfflfflfflffl{zfflfflfflfflfflffl}
mi�1

, 000. . .011|fflfflfflfflfflffl{zfflfflfflfflfflffl}
mi�1

, 000. . .111|fflfflfflfflfflffl{zfflfflfflfflfflffl}
mi�1

; 
 
 
 ; 001. . .111|fflfflfflfflfflffl{zfflfflfflfflfflffl}
mi�1

, 011. . .111|fflfflfflfflfflffl{zfflfflfflfflfflffl}
mi�1

,

111. . .111|fflfflfflfflfflffl{zfflfflfflfflfflffl}
mi�1

, respectively. Not coincidentally, these mi binary-coded sequences

represent the feasible zones from right to left on Pi horizon, respectively (Fig. C.2).
For Ng generators, with mi prohibited zones for ith generator, constraints (C.3)

can be equivalently converted to (C.6)

max P0
i � DRi;Pmin

i

� ��Pi �min P0
i þURi;Pmax

i

� �
Pi �Pmax

i;j þM 1� xi;j
� �

�Pi � � Pmin
i;jþ 1 þMxi;j

xi;j � xi;jþ 1

8>><>>: ;
j ¼ 1; 2; . . .;mi � 1
i ¼ 1; 2; . . .;Ng

�

ðC:6Þ

where M is a big real number; xi,j denotes the binary variable associated with jth
prohibited zone of ith generator. When M is selected such that second and third
constraints are satisfied, the solution is insensitive to the actual value of M. M can
be conservatively selected as M ¼ max Pmax

i

 �þ 1, which is a sufficient but not
necessary condition. It should also be pointed out that, in practice M should not be
selected to be extremely big. Otherwise, it may cause numerical instability.

Besides, it should be noted that the system spinning reverse constraints can also
be taken into consideration. Reserve is essential to deal with uncertainties and
unexpected system conditions. However, the prohibited zones strictly limited units’
ability to regulate load if the load regulation falls into certain prohibited zones.
Therefore, only the units without prohibited zones are taken into account for the

1=1x 2 =1x

Feasible

1=1x 2=0x

Infeasible

1=0x 2=1x

Feasible

1=0x 2 =0x

Feasible

Fig. C.2 Binary coding example for two disjoint prohibited zones
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system spinning reserve requirement. Theoretically, the unit with prohibited zones
can still provide spinning reserve within its sub feasible region. The down/up
spinning reserve of a unit is illustrated in Fig. C.3. When the unit has no prohibited
zone, its reserve capability can reach feasible region A; while with prohibited zones,
its reserve capability shrinks to sub feasible region B to prevent the load regulation
from prohibited operation (Fig. C.3).

The spinning reserve of units with prohibited zones will shrink to its sub feasible
region. In addition, only one sub feasible regions is allowed to operate. Therefore,
the spinning reserve of each unit can be expressed as

Let Θ denote the set of all units with prohibited zones and Ψ denote the set of all
units without prohibited zones. For unit i 2 Ψ, the up and down spinning reserve
Ri
u/Ri

d can be formulated as (C.7), whereas for unit i 2 Θ, the up and down spinning
reserve Ri

+/Ri
− can be cast as (C.8). Here, we let yi;0 ¼ 0 and yi;mi þ 1 ¼ 1.

Ru
i ¼ min URi;P

max
g;i � Pg;i

n o
; i 2 W ðC:7aÞ

Rd
i ¼ min DRi;Pg;i � Pmin

g;i

n o
; i 2 W ðC:7bÞ

Rþ
i ¼ min URi;

Xmi þ 1

j¼1

Pmax
g;i;j yi;j � yi;j�1
� �� Pg;i

( )
; i 2 H ðC:8aÞ

R�
i ¼ min DRi;Pg;i �

Xmi þ 1

j¼1

Pmin
g;i;j yi;j � yi;j�1
� �( )

; i 2 H ðC:8bÞ

Without prohibited zones

Up spinning reserveDown spinning reserve

Down spinning 
reserve

Up spinning 
reserve

With prohibited zones

AA B

Pi

B

Fig. C.3 Spinning reserve of unit with/without prohibited zones
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C.1.2 Mathematical Model

Finally, taking (C.6) into (C.3), and taking (C.7)–(C.8) into (C.5), we can obtain the
final mathematical model with consideration of uncertain wind power and pro-
hibited zones, such that

min
XNg

i¼1

aiP
2
i þ biPi þ ci

� � ðC:9Þ

s:t:
XNg

i¼1

Pi þ
XNw

k¼1

W f
k ¼

XNd

j¼1

Dj ðC:10Þ

max P0
i � DRi;P

min
i

� ��Pi �min P0
i þURi;P

max
i

� �
; i 2 XW ðC:11Þ

max P0
i � DRi;Pmin

i

� ��Pi �min P0
i þURi;Pmax

i

� �
Pi �Pmax

i;j þM 1� xi;j
� �

�Pi � � Pmin
i;jþ 1 þMxi;j

xi;j � xi;jþ 1

;
j ¼ 1; 2; . . .;mi � 1
i 2 XH

�8>><>>:
ðC:12Þ

�Fmax
l �

XNg

i¼1

GP
l;iPi þ

XNw

k¼1

GW
l;kW

f
k �

XNd

j¼1

GD
l;jDj �Fmax

l ; l ¼ 1; . . .;Nl ðC:13Þ

XNg

i¼1

min URi;
Xmi þ 1

j¼1

Pmax
i;j yi;jþ 1 � yi;j
� �� Pi

( ) !
	 SU

XNg

i¼1

min DRi;Pi �
Xmi þ 1

j¼1

Pmin
i;j yi;jþ 1 � yi;j
� �( ) !

	 SD

ðC:14Þ

where XW is the set of generators without prohibited zones and XH is the set of
generators with prohibited zones.

In order to eliminate the “min” constraints in the above, we should give a
transformation. Since the “min” operator in (C.11) and (C.12) is for a constant
number, which is actually a predetermined number before solving the model. In
contrast, the “min” operator is for the variable Pi in (C.14), which can be termed as
a bi-level optimization model. Bur fortunately, the “min” operators are always at the
left side of the inequalities “≥”, which can be transformed to a convex optimization
model by introducing some dummy variables. It should be noted that this trans-
formation is exact when “min” operator is at the left side of “≥” or “max” operator
is at the left side of “≤”, which gives
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min
XNg

i¼1

aiP
2
i þ biPi þ ci

� � ðC:15Þ

s:t:
XNg

i¼1

Pi þ
XNw

k¼1

W f
k ¼

XNd

j¼1

Dj ðC:16Þ

max P0
i � DRi;P

min
i

� ��Pi �min P0
i þURi;P

max
i

� �
; i 2 XW ðC:17Þ

max P0
i � DRi;Pmin

i

� ��Pi �min P0
i þURi;Pmax

i

� �
Pi �Pmax

i;j þM 1� xi;j
� �

�Pi �Pmin
i;jþ 1 þMxi;j

xi;j � xi;jþ 1

8>><>>: ;
j ¼ 1; 2; . . .;mi � 1
i 2 XH

�

ðC:18Þ

�Fmax
l �

XNg

i¼1

GP
l;iPi þ

XNw

k¼1

GW
l;kW

f
k �

XNd

j¼1

GD
l;iDj �Fmax

l ; l ¼ 1; . . .;Nl ðC:19Þ

P
i2XW

Z1;i þ
P
i2XH

Z2;i 	 SuP
i2XW

Z3;i þ
P
i2XH

Z4;i 	 Sd

8<: ðC:20Þ

Z1;i �URi; Z1;i �min P0
i þURi;Pmax

i

� �� Pi i 2 XW

Z2;i �URi; Z2;i �
Pmi þ 1

j¼1
Pmax
i;j yi;j � yi;j�1
� �� Pi i 2 XH

Z3;i �DRi; Z3;i �Pi �max P0
i þDRi;Pmin

i

� �
i 2 XW

Z4;i �DRi; Z4;i �Pi �
Pmi þ 1

j¼1
Pmax
i;j yi;j � yi;j�1
� �

i 2 XH

8>>>>>>><>>>>>>>:
ðC:21Þ

C.2 Adaptive Robust Interval Economic Dispatch
with Prohibited Zones

Since the wind power output is usually stochastic, the thermal generation will be
changed at each time period to guarantee the power balance. Due to the existence of
prohibited zones, the generation output may operate in the prohibited zones under
the wind power disturbances. In order to prevent the prohibited zones, the gener-
ation output may jump from one to another under the uncertain wind power output.
This “jump” should be considered, which increases the volatility of generator
output.
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To address this problem, an adaptive robust optimization model is set up by
extending the proposed model in Sect. 5.2. In addition, the price of the robustness is
also taken into consideration, such that

Wk ¼ W f
k þWe

k yk; . . .k ¼ 1; . . .;Nw; X ¼ y
XNw

k¼1

ykj j
����� �C; ykj j � 1; 8k

( )
ðC:22Þ

Furthermore, the deterministic model (C.15)–(C.21) can be extended to the
robust optimization model (C.23)–(C.32). This robust optimization model implies
that for the given feasible sub-regions of each generator, the participation factors
can be employed to guarantee the real-time power balance. Moreover, the physical
constraints of each generator should be strictly guaranteed when the generation
output is adjusted by the participation factors for any wind power output variation,
which gives

min
Psch

XNg

i¼1

ai P
sch
i

� �2 þ biP
sch
i þ ci þ aib

2
i

XNw

k¼1

XNw

j¼1

Kkj

 !
ðC:23Þ

s:t:
XNd

j¼1

Dj �
XNw

k¼1

W f
k ¼

XNg

i¼1

Psch
i ðC:24Þ

max P0
i � DRi;Pmin

i

� �þ bih�Psch
i �min P0

i þURi;Pmax
i

� �� bih; i 2 XW

ðC:25Þ

max P0
i � DRi;Pmin

i

� �þ bih�Psch
i �min P0

i þURi;Pmax
i

� �� bih

Psch
i þ bih�Pmax

i;j þM 1� xi:j
� �

�Psch
i þ bih� � Pmin

i;jþ 1 þMxi;j
xi;j � xi;jþ 1

8>>>><>>>>: ;

j ¼ 1; 2; . . .;mi � 1

i 2 XH

� ðC:26Þ

�Fmax
l þ tlCþ

XNw

k¼1

Plk

 !
�
XNg

i¼1

GP
l;iP

sch
i þ

XNw

k¼1

GR
l;kW

f
k �

XNd

j¼1

GD
l;iDj �Fmax

l

� tlCþ
XNw

k¼1

Plk

 !
;

l ¼ 1; . . .;Nl

ðC:27Þ
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tl þ plk 	We
k

XNg

i¼1

GP
l;ibi þGW

l;k

 !
; l ¼ 1; . . .;Nl; k ¼ 1; . . .;Nw ðC:28Þ

plk 	 0; tl 	 0; l ¼ 1; . . .;Nl; k ¼ 1; . . .;Nw ðC:29Þ

XNg

i¼1

bi ¼ 1; 0� bi � 1 ðC:30Þ

P
i2XW

Z1;i þ
P
i2XH

Z2;i 	 SuP
i2XW

Z3;i þ
P
i2XH

Z4;i 	 Sd

8<: ðC:31Þ

Z1;i �URi; Z1;i �min P0
i þURi;Pmax

i

� �� Psch
i i 2 XW

Z2;i �URi; Z2;i �
Pmi þ 1

j¼1
Pmax
i;j yi;j � yi;j�1
� �� Psch

i i 2 XH

Z3;i �DRi; Z3;i �Psch
i �max P0

i þDRi;Pmin
i

� �
i 2 XW

Z4;i �DRi; Z4;i �Psch
i � Pmi þ 1

j¼1
Pmin
i;j yi;j � yi;j�1
� �

i 2 XH

8>>>>>>><>>>>>>>:
ðC:32Þ

where h ¼ maxPNw

k¼1
yk¼C;0� yk � 1

PNw
k¼1 W

e
k yk ¼

Pk�1
m¼1 We

im �We
ik

� 	
þWe

ikC and k �

1�C� k are constants; β is the participation factors, Psch is the scheduled gen-
eration output and other parameters can be found in Sect. 4.2.
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Appendix D

Two-Stage Robust Interval Economic Dispatch
with Reliability Constraints

D.1 Two-Stage Robust Interval Economic Dispatch with N − 1
Contingencies Constraints

Putting the N − 1 contingency constraints into the original robust transmission
switching model (5.57)–(5.61), we can obtain a new two-stage robust interval
economic dispatch model. This model aims to find an optimal topology that satisfies
all the N − 1 contingencies. When one contingency occurs, the generation output
cannot be changed while the power flow will change. Therefore, we should set up
some new variables for describing the power flow after the contingency, yielding

min
Pt ;Zt ;ht ;yt ;Zc;t ;hc;t

PT
t¼1

bTPt þ sum cð Þ� � ðD:1Þ

s:t: CT
f Zt¼ CgPt � CdDt þCwW f

t ðD:2Þ

Pmin �Pt �Pmax; Rd�Pt � Pt�1 �Ru; ht refð Þ ¼ 0 ðD:3Þ

�Fmax � yt �Zt �Fmax � yt ðD:4Þ

�M 1� ytð Þ�Z� BCf ht �M 1� ytð Þ ðD:5Þ
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�M 2� yt � N1cð Þ�Zc;t � BCf hc;t �M 2� yt � N1cð Þ ðD:8Þ

yt 2 0; 1f g ðD:9Þ

where θc,t and Zc,t are nb × 1 angle vector and nl × 1 branch flow vector under the
contingence c at time t; N1c is an nl × 1 binary vector, and it is 0 when this is a
contingency, 1 otherwise. Furthermore, the robust interval optimization model can
be presented as:

min
yt2 0;1f g

max
W t2 W f

t �We
t ;W

f
t þWe

t½ �
min
Pt ;Zt ;ht

PT
t¼1

bTPt þ sum cð Þ� � ðD:10Þ

s:t: CT
f Zt¼ CgPt � CdDt þCwW t ðD:11Þ

Pmin �Pt �Pmax; Rd�Pt � Pt�1 �Ru; ht refð Þ ¼ 0 ðD:12Þ

�Fmax � yt �Zt �Fmax � yt ðD:13Þ

�M 1� ytð Þ�Z� BCf ht �M 1� ytð Þ ðD:14Þ

�M 2� yt � N1cð Þ�Zc;t � BCf hc;t �M 2� yt � N1cð Þ ðD:17Þ

D.2 Budget of the N − 1 contingencies

If taking all the N − 1 contingencies into one optimization model, the result may be
much too conservative. In order to trade off the security and economy, we can
design a budget to have a balance. In this book, we will limit the number of
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transmission lines that can be used for switching and the corresponding model can
be written as

min
Pt ;Zt ;ht ;yt

PT
t¼1

bTPt þ sum cð Þ� � ðD:18Þ

s:t: CT
f Zt¼ CgPt � CdDt þCwW t ðD:19Þ

Pmin �Pt �Pmax; Rd�Pt � Pt�1 �Ru; ht refð Þ ¼ 0 ðD:20Þ

�Fmax � yt �Zt �Fmax � yt ðD:21Þ

�M 1� ytð Þ�Zt � BCf ht �M 1� ytð Þ ðD:22Þ

ðD:23Þ

where Nl is the number of transmission lines, Δ is the maximum number of
transmission lines that is allowed to be switched. The robust optimization model
with this budget can be reformulated as

min

y2 0;1f g;
PNl
l¼1

1�ylð Þ�D

max
W t2 W f

t �We
t ;W

f
t þWe

t½ �
min
Pt ;Zt ;ht

PT
t¼1

bTPt þ sum cð Þ� � ðD:24Þ

s:t: CT
f Zt¼ CgPt � CdDt þCwW t ðD:25Þ

Pmin �Pt �Pmax; Rd�Pt � Pt�1 �Ru; ht refð Þ ¼ 0 ðD:26Þ

�Fmax � yt �Zt �Fmax � yt ðD:27Þ

�M 1� ytð Þ�Zt � BCf ht �M 1� ytð Þ ðD:28Þ

Furthermore, the price of robustness introduced in Sect. 5.2 also can be used in
the proposed robust optimization model with the consideration of the transmission
line budget. Thus, the model (D.24)–(D.28) becomes

ðD:29Þ
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s:t: CT
f Zt¼ CgPt � CdDt þCwW t ðD:30Þ

Pmin �Pt �Pmax;Rd�Pt � Pt�1 �Ru; ht refð Þ ¼ 0 ðD:31Þ

�Fmax � yt �Zt �Fmax � yt ðD:32Þ

�M 1� ytð Þ�Zt � BCf ht �M 1� ytð Þ ðD:33Þ

where Nw is the number of wind farms and Γ is the price of robustness.

D.3 Numerical Results

The same 30-bus test system as used in Sect. 5.3 is utilized, where Δ is chosen from
0 to 4. The model is solved by the CPLEX 12.5 and the results are shown in
Table D.1. It can be observed that different Δ leads to different results. Note that

Table D.1 Robust optimal solution for switching with the budget set

α=0.1 Transmission capacity factor γ

1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6

Δ 4 {∅} {2,
5, 7,
18}

{2,
26,
32,
35}

{2, 3,
6,
35}

{2,
10,
25,
41}

{5,
11,
28,
33}

{2,
6,
12,
33}

{7,
21,
23,
31}

{19,
22,
31,
41}

3 {∅} {9,
17,
29}

{1, 6,
7}

{2,
12,
35}

{2, 3,
35}

{1, 7,
33}

{19,
22,
31}

{5,
15,
33}

{15,
33,
41}

2 {∅} {1,
31}

{15,
31}

{15,
35}

{15} {15,
33}

{15,
33}

{15,
33}

{33,
41}

1 {∅} {7} {31} {33} {33} {33} {33} {33} ×
0 {∅} {∅} {∅} {∅} {∅} {∅} {∅} × ×

α=0.2 Transmission capacity factor γ

1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6

Δ 4 {∅} {1,
3,
28,
29}

{1,
20,
32,
35}

{2,
12,
30,
31}

{2, 5,
10,
41}

{1, 3,
11,
33}

{1,
31,
32}

{7,
19,
23,
31}

{9,
22,
31,
41}

3 {∅} {3,
9,
10}

{1, 6,
7}

{9,
11,
35}

{2, 3,
35}

{1,
17,
33}

{15,
31,
32}

{19,
22,
31}

{2,
33,
41}

2 {∅} {1,
7}

{11,
31}

{14,
35}

{11,
35}

{5,
33}

{31,
32}

{1,
33}

{33,
41}

(continued)

210 Appendix D

http://dx.doi.org/10.1007/978-981-10-2561-7_5


“×” represents that the model is infeasible. Besides, the robust objective value
considering transmission line switching set is shown in Table D.2. When α = 0.2
without the price of robustness, the objective value is always $3534.8 under any
transmission capacity factor γ from 1.4 to 0.7. When transmission capacity factor γ
becomes larger, Δ doesn’t affect the optimal objective value, whereas when
transmission capacity factor γ becomes smaller, Δ will affect the optimal objective
value. In fact, Δ can be termed as the tradeoff between economy and reliability.
Smaller Δ implies that the number of transmission lines available for switching is
limited, so that the reliability is higher; larger Δ will affect the system’s reliability
but is more economic.

Table D.1 (continued)

α=0.1 Transmission capacity factor γ

1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6

{31} {31} {33} {33} {∅} {33} {33} ×
0 {∅} {∅} {∅} {∅} {∅} {∅} {∅} × ×

α=0.3 Transmission capacity factor γ

1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6

Δ 4 {∅} {2,
6, 7,
27}

{2, 7,
18,
35}

{4, 7,
8,
31}

{2, 3,
14,
33}

{3,
18,
30,
31}

{2,
3,
31,
32}

{7,
19,
23,
31}

{19,
22,
31,
41}

3 {∅} {4,
6,
30}

{2, 3,
31}

{2,
12,
35}

{1, 3,
35}

{1, 3,
33}

{15,
31,
32}

{28,
29,
32}

{2,
33,
41}

2 {∅} {1,
31}

{11,
31}

{15,
35}

{2,
35}

{14,
33}

{31,
32}

{29,
33}

{33,
41}

1 {∅} {33} {33} {33} {35} {33} {33} {33} ×
0 {∅} {∅} {∅} {∅} {∅} {∅} {∅} × ×
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Appendix E

Multiple Solution Set for Two-Stage Robust Interval
Optimization Model

E.1 Method for Multiple Solution Set

The general mathematical model can be expressed as

MILPð Þ F1 ¼ min
w2R;v2Z

cTw s:t: w; vð Þ 2 H ðE:1Þ

First, let one optimal solution and the corresponding objective value of (E.1) be
uopt = (wopt, vopt) and Fopt, respectively. In order to find another optimal solution
with the same objective value, we add an objective cut that constrains the new
objective value through its current optimal value in (E.2).

Fopt
1 � cTw�Fopt

1 þ e ðE:2Þ

We can also find the approximate optimal solution as (E.3), which has a small
difference from the exact optimal solution.

Fopt
1 � cTw�Fopt

1 þ e ðE:3Þ

where ε is a small gap to the optimal solution, which can be adjusted by decision
makers. If ε is chosen as 0, (E.3) is the same with (E.2).

Because the current optimal solution satisfies all constraints in an inconse-
quential manner, it has to be precluded, explicitly, from the new search. To address
this issue, we introduce a new constraint, v ≠ vopt, where v is a binary variable. The
logic expression “exclusive” or (XOR, ⊕) can be employed to formulate “≠” in the
following expression.

© Springer Science+Business Media Singapore 2017
T. Ding, Power System Operation with Large Scale Stochastic Wind Power
Integration, Springer Theses, DOI 10.1007/978-981-10-2561-7
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Xm
i¼1

vi � vopti

� �	 1 ðE:4Þ

Since XOR yields v� 0 ¼ y, and v� 1 ¼ 1� v for any binary variable v, (E.4)
can be split into two parts by (E.4), as follows

Xm
i¼1 and vopti ¼0

vi þ
Xm

i¼1 and vopti ¼1

1� við Þ	 1 ðE:5Þ

Later, let Γ0 and Γ1 denote index sets of the optimal integer solution vopt valued
at zero and one, respectively. Then, we haveX

i2C0

vi þ
X
i2C1

1� við Þ	 1 ðE:6Þ

It has been established that (E.6) is cast as an integer cut that should be appended
in (E.1). Hence, a different optimal solution can be computed.

Based on the above analysis, a recursive process is proposed to capture other
optimal solutions with the same or nearly the same objective value.

Step 1: Solve the model (E.1), which gives the optimal solution u0,opt = (w0,opt,
v0,opt) and optimal objective value Fopt; let k ← 1, Ω ← {u0,opt}.

Step 2: Generate an objective cut in (E.3) and solve the minimum number of
switched branches problem as follows.

MILP
0

� 	
F2 ¼ max

w2R;v2Z
Pm
i¼1

vi ðE:7aÞ

s:t: w; vð Þ 2 H ðE:7bÞ

Fopt
1 � cTw�Fopt

1 þ e ðE:7cÞ

Step 3: Calculate the optimal solution of (E.7) Fopt
2 and generate an integer cut

through (E.6) to find the MOSs with minimum switched transmission
lines.

MILP
0

� 	
F2 ¼ max

w2R;v2Z
Pm
i¼1

vi ðE:8aÞ

s:t: w; vð Þ 2 H ðE:8bÞ

Fopt
1 � cTw�Fopt

1 þ e ðE:8cÞ
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Fopt
2 ¼

Xm
i¼1

vi ðE:8dÞ

X
i2Cj;0

vi þ
X
i2Cj;1

1� við Þ	 1 j ¼ 1; 2; . . .; k ðE:8eÞ

where Γj,0 and Γj,1 are the index sets of jth optimal integer solution vj,opt,
valued at zero and one, respectively.

Step 4: Solve (E.7) by the same MILP solver and achieve a new optimal solution
as uk+1,opt = (wk+1,opt, vk+1,opt).

Step 5: If the problem is infeasible, stop; otherwise, let k ← k + 1, Ω ← {Ω, uk,
opt}, and go to Step 3.

According to the algorithm above, a new integer cut is generated at each iter-
ation, which can be used to preclude the obtained MOSs in Step 3. Then, each
integer cut is added into model (E.7). This algorithm can compute a new optimal
solution with the same or approximate optimal objective values.

For instance, if the decision maker values branch l and hopes it not be switched,
one constraint “yl = 1” needs to be added. Now, we can give the following simple
example to capture the multiple optimal solutions, where the gap is 10−6.

min 2x1 þ 2x2 � x3
s:t: x1 þ x2 þ x3 	 2

x1; x2; x3 2 0; 1f g

Since x1; x2; x3 2 0; 1f g and x1 þ x2 þ x3 	 2, there are four feasible solutions:
{0, 1, 1}, {1, 0, 1}, {1, 1, 0}, and {1, 1, 1}. The corresponding objective values are
1, 1, 4, 3. Therefore, the optimal value is 1 and there are two optimal solutions {0,
1, 1} and {1, 0, 1}.

If using the MILP solver we can find one optimal solution {0, 1, 1} with the
optimal value 1, and then we set the model by (E.8) that

min 2x1 þ 2x2 � x3
s:t: x1 þ x2 þ x3 	 2

x1; x2; x3 2 0; 1f g
1� 2x1 þ 2x2 � x3 � 1þ 10�6

x1 þ 1� x2ð Þþ 1� x3ð Þ	 1

:

Then, the solution by the MILP solver is {1, 0, 1}, with the value 1.
Again, we construct a new model by (E.8), such that
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min 2x1 þ 2x2 � x3
s:t: x1 þ x2 þ x3 	 2

x1; x2; x3 2 0; 1f g
1� 2x1 þ 2x2 � x3 � 1þ 10�6

x1 þ 1� x2ð Þþ 1� x3ð Þ	 1

1� x1ð Þþ x2 þ 1� x3ð Þ	 1

:

This is an infeasible model detected by the MILP solvers.
Therefore, the recursive process stops and we capture two MOSs in total, {0, 1,

1} and {1, 0, 1} with the optimal objective value 1.

E.2 Numerical Results

For the case in Sect. 5.3.2, if not considering the budget set Δ, the optimal solution
by different solvers, such as CPLEX, GUROBI and MOSEK is shown in Table E.1,
where different solvers gives different optimal solution but the same optimal
objective value. This is because there are many kinds of heuristics in the branch and
bound method of the mixed integer programming, such as depth-first and

Table E.1 Impact of different solvers on the optimal solution of two-stage robust interval
transmission switching model

α = 0.1 Transmission capacity factor γ

1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6

Line switching
no. (CPLEX)

{13} {13} {1, 2,
3, 6,
7, 13,
30,
33}

{1, 2,
3, 5, 7,
13, 18,
31,
35}

{1, 2, 3,
6, 10, 12,
13, 25,
27, 30,
41}

{1, 2, 5,
6, 11, 13,
14, 15,
18, 24,
26, 28,
31}

{3, 4, 6,
13, 18,
20, 21,
23, 28,
29}

{1, 2,
7, 13,
18, 21,
23, 28,
29}

{1, 6, 13,
18, 20,
22, 26,
28, 29,
31, 41}

Line
Switching
No. (MOSEK)

{1, 2,
3, 9,
28, 29,
31, 38,
41}

{2, 8,
12,
17,
18,
21,
23,
28,
35}

{7,
18,
20,
28,
31,
32,
37,
41}

{10,
14, 20,
25, 26,
29, 30,
33,
37}

{3, 4, 7,
9, 10, 14,
17, 23,
28, 29,
31, 32,
39}

{1, 2, 6,
8, 12, 15,
18, 24,
28, 29,
31, 33,
38}

{3, 5,
12, 18,
20, 23,
26, 28,
29, 31}

{2, 7,
12, 18,
21, 23,
29, 31}

{2, 9, 18,
20, 22,
26, 27,
31, 41}

Line
Switching
No. (MOSEK)

{1, 2,
10, 11,
13, 14,
15, 28,
37, 41}

{1, 2,
13,
19}

{1, 2,
6, 7,
9, 11,
13,
28,
39,
40}

{13,
35}

{1, 11,
13, 18,
25, 28,
29, 32,
40}

{1, 2, 6,
12, 13,
15, 24,
26, 28,
31, 39}

{3, 5, 8,
12, 13,
18, 19,
20, 23,
31, 39}

{2, 7,
12, 13,
18, 21,
23, 28,
29, 39}

{4, 5, 12,
13, 18,
20, 22,
26, 28,
29, 31,
41}
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breadth-first methods. Since there are multiple optimal solutions, different solver
adopted different search strategies may leads to different optimal solution.

Comparing Table E.1 with Table 5.2 in Sect. 5.3.2, we can find that different
solvers lead to different optimal solution but the same optimal objective value.
Moreover, when using different budget set Δ, the optimal solution is also different
and the number of multiple optimal solutions will decrease.

Finally, the optimal solution with minimum switching line number can be
computed by the proposed method. Take the uncertainty degree with 0.1 for
instance and the results are shown in Table E.2. With the increase of transmission
capacity factor γ, the number of multiple optimal solutions will increase. For γ = 1,
the number of the multiple solutions is more than 3000. In fact, it needs only one
switched transmission line to achieve the optimal objective value, but the solver
may obtain the optimal solution more than one lines. Therefore, it is meaningful to
find the optimal solution with minimum switching line number, which can more or
less improves the reliability of the whole system. Meanwhile, the number of
optimal solution with minimum switching line number is greatly reduced. For
γ = 1, there are 16 optimal solutions with minimum switching line number, which
only need to switch one transmission line.

Table E.2 Multiple solution Set

Transmission capacity
factor γ (%)

Number of multiple
solutions

Number of minimum lines

Number of
minimum lines

Number of multiple
solutions

60 8 7 4

80 316 3 9

100 >3000 1 16
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