Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3739

Wenfei Fan Zhaohui Wu Jun Yang (Eds.)

Advances in Web-Age
Information Management

6th International Conference, WAIM 2005
Hangzhou, China, October 11 — 13, 2005
Proceedings

@ Springer

Volume Editors

Wenfei Fan

University of Edinburgh

School of Informatics

Appleton Tower, Crichton Street
Edinburgh EH8 9 LE, Scotland, UK
E-mail: wenfei @inf.ed.ac.uk

Zhaohui Wu

Zhejiang University

College of Computer Science and Technology
Hangzhou, Zhejiang, China

E-mail: wzh@cs.zju.edu.cn

Jun Yang

Duke University

Department of Computer Science

Durham, North Carolina 27708-0129, USA
E-mail: junyang @cs.duke.edu

Library of Congress Control Number: 2005932897

CR Subject Classification (1998): H.2, H.3,H4,1.2, H.5,C.2,J.1

ISSN 0302-9743
ISBN-10 3-540-29227-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29227-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11563952 06/3142 543210

Foreword by Conference Chairs

WAIM 2005 is the latest edition of the International Conference on Web-Age
Information Management. Built on the successes of the past five WAIM confer-
ences, WAIM 2005 takes another significant step in making WAIM conference
a high-caliber international conference in the area of Web information manage-
ment and database management. This year, WAIM received 486 submissions
from 20 countries and regions.

In response to the record number of paper submissions WAIM 2005 received,
the Program Co-chairs, Wenfei Fan and Zhaohui Wu, and the members of the
Program Committee worked extremely hard to review all the submitted papers
and select the best ones for inclusion in the conference proceedings. Their hard
work has produced an excellent technical program for WAIM 2005. The Program
Committee, together with Industrial Track Chair Phil Bohannon, Exhibition and
Demo Chair Ying Jianwei, Tutorial Chair X. Sean Wang, and Panel Chair Jef-
frey Xu Yu, has put together a very high-quality conference program. Jun Yang,
the Publication Chair of WAIM 2005, also worked diligently to produce the
conference proceedings.

The success of the conference would not have been possible without the hard
work of many people and their contributions are greatly appreciated. Qinming He
and Xiaohong Jiang are our local arrangement co-chairs. Ling Chen is the fi-
nancial and registration chair. Xiaofang Zhou, Floris Geerts and Haixun Wang
are the publicity co-chairs. Our special thanks go to the two Webmasters of
the conference website, Yu Zhang and Mengya Tang, for their tremendous ef-
fort in facilitating the entire paper submission/reviewing process and in keeping
the website running smoothly. We would also like to thank the Database Soci-
ety of China Computer Federation, the Natural Science Foundation of China,
Y. C. Tang Disciplinary Development Fund of Zhejiang University, and Oracle
China for sponsoring WAIM 2005.

We would like to join the Program Committee and the entire database com-
munity in paying our tribute to Hongjun Lu, who passed away in March this
year. Among his many outstanding contributions to the database community,
Hongjun was instrumental in founding the WAIM conference and ensuring its
success. He was heavily involved in the early preparation of WAIM 2005. Even
when he became very ill, he still paid close attention to the progress of WAIM
2005 preparation. We owe it to him to make WAIM a premier conference in the
database community.

Finally, we would like to use this opportunity to thank X. Sean Wang, who
succeeded Hongjun as the Steering Committee Liaison to WAIM 2005, for his
able guidance.

October 2005 Changjie Tang, Weiyi Meng
Conference Co-chairs
WAIM 2005

Foreword by Program Chairs

This volume contains the proceedings of the Sixth International Conference on
Web-Age Information Management (WAIM), held in Hangzhou, China on Octo-
ber 11-13, 2005. This year we are pleased to have a particularly strong program:
the Program Committee selected 48 papers for presentation and inclusion in
the proceedings, and 50 short papers for inclusion in the proceedings, from 486
submissions, a record number, from 20 countries and regions. Acceptance into
the conference proceedings was extremely competitive. The contributed papers
span the range of traditional database topics as well as issues of emerging in-
terest in connection with Web databases and services. The Program Committee
worked hard to select these papers through a detailed two-phase review process
and extensive discussion via a conference management tool, and put together a
diverse and exciting program.

In addition to the research track, we had 20 submissions to the industrial
track, which focuses on the early dissemination of prototype and system de-
velopment experience. The Industrial Committee, chaired by Philip Bohannon,
selected 3 papers for presentation and inclusion in the proceedings, and 1 short
paper for inclusion in the proceedings. The Industrial program is a key compo-
nent of this year’s conference.

Papers accompanying each of the invited talks, by Peter Buneman (keynote),
Hai Zhuge and Hai Jin, are included in this volume.

The success of WAIM 2005 is a concrete step toward establishing the status
of WAIM as one of the leading international forums for database researchers,
practitioners, developers and users to explore cutting-edge ideas and theories,
and to exchange techniques, tools and experiences.

The Program Committee and the Industrial Committee thank all those who
submitted their best work to the conference. On their behalf, we thank their
colleagues, listed separately, who helped in the review process, and the spon-
soring organizations, the Database Society of the China Computer Federation,
the Natural Science Foundation of China, Y. C. Tang Disciplinary Development
and Fund of Zhejiang University, and Oracle China. We also thank the local
organizers and volunteers in Hangzhou for their effort and time to help make
the conference a success.

As program co-chairs we would like to thank the members of the Program
Committee for the hard work they put in both in writing the detailed reviews
and for their participation in the active discussions. We also thank them for
bearing with the primitive conference management tool. In particular, we would
like to extend our special thanks to Gao Cong, Irini Fundulaki, Floris Geerts,
Anastasios Kementsietsidis, Weiyi Meng, Changjie Tang, X. Sean Wang and
Stratis D. Viglas, who worked extremely hard to conduct the first phase of the
review process; each of them reviewed at least 60 submissions, and their efforts

VIII Foreword

are essential to the quality of the program. We are grateful to Weiyi Meng,
X. Sean Wang, Stratis D. Viglas, and Jeffrey Xu Yu for their valuable help in
leading and monitoring the discussions on our behalf. We also thank Jun Yang
for his work in preparing the proceedings. Finally, we are deeply indebted to
Yu Zhang and Mengya Tang, the Web Masters, who took on tremendous pain
and extra work, and ably modified, extended and maintained the conference
management tool; for three long months they worked until late night every day,
seven days a week; the necessary extension of the tool also received help from
Kun Jing, Chengchao Xie, Shiqi Peng, Heng Wang, Cheng Jin and Ruizhi Ye;
without their hard and effective work the online discussions would not have been
possible, among other things.

October 2005 Wenfei Fan, Zhaohui Wu
Program Committee Co-chairs
WAIM 2005

Dedication: Hongjun Lu (1945-2005)

On behalf of the Program Committee, it is with sincere gratitude and great
sorrow that we would like to dedicate WAIM 2005 proceedings to Hongjun Lu,
who left us on March 3, 2005. Hongjun was not only an excellent researcher
and highly productive scholar of the database community, but also a wonder-
ful colleague and dear friend. For many years, he has been the ambassador
for database research to China, and tremendously fostered the growth of this
community. Among other things, Hongjun initiated, organized and monitored
WAIM conferences in the past 5 years, and he was personally involved in the
early stage of WAIM 2005 organization despite his health condition. Together
with all the authors and all the members of the Program Committee, we would
like to dedicate the proceedings to Hongjun as a tribute!

October 2005 Wenfei Fan, Zhaohui Wu
Program Committee Co-chairs
WAIM 2005

Organization

WAIM 2005 is organized by Zhejiang University (Hangzhou, China) in coop-
eration with the Database Society of China Computer Federation. It was also
sponsored by Natural Science Foundation of China and Oracle China.

Organizing Committee

General Co-chairs: Weiyi Meng, State Univ. of New York,
Binghamton (USA)
Changjie Tang, Sichuan Univ. (China)
Program Co-chairs: Wenfei Fan, Univ. of Edinburgh (UK) and
Bell Labs (USA)
Zhaohui Wu, Zhejiang Univ. (China)

Industrial-Track Chair: Philip Bohannon, Bell Labs (USA)

Tutorial Chair: X. Sean Wang, Univ. of Vermont (USA)

Panel Chair: Jeffrey Xu Yu, Chinese Univ. of Hong Kong
(China)

Demonstrations Chair: Jianwei Yin, Zhejiang Univ. (China)

Steering Committee Liaison: Hongjun Lu, Hong Kong Univ. of Science &

Tech. (China)
X. Sean Wang, Univ. of Vermont (USA)
Local Organization Co-chairs: Qinming He, Zhejiang Univ. (China)
Xiaohong Jiang, Zhejiang Univ. (China)

Publication Chair: Jun Yang, Duke Univ. (USA)

Financial & Registration Chair: Ling Chen, Zhejiang Univ. (China)

Publicity Co-chairs: Xiaofang Zhou, Univ. of Queensland
(Australia)

Floris Geerts, Univ. of Edinburgh (UK)
Wang Haixun, IBM (USA)

Program Committee

Steven Blott Dublin City Univ. (Ireland)

Philip Bohannon Bell Labs (USA)

Stephane Bressan National Univ. of Singapore (Singapore)
Chee Yong Chan National Univ. of Singapore (Singapore)
Mei Che CASC (China)

Qingzhang Chen Zhejiang Univ. of Tech. (China)

William Cheung Hong Kong Baptist Univ. (China)

XII Organization

Richard Connor
Guo-zhong Dai
Alin Deutsch
Guozhu Dong
Jin-xiang Dong
Zhumei Dou
Xiaoyong Du
Jianhua Feng

Irini Fundulaki
Sumit Ganguly
Floris Geerts
Michael Gertz
Cong Gao

Yanbo Han
Yanxiang He
Joshua Huang
Yoshiharu Ishikawa
Yan Jia

Hai Jin

Raghav Kaushik
Anastasios Kementsietsidis
Hiroyuki Kitagawa
Masaru Kitsuregawa
Yannis Kotidis
Laks VS Lakshmanan
Dongwon Lee
Chen Li

Chengkai Li
Dapeng Li

Minglu Li
Jianzhong Li
Jinyan Li
Zhanhuai Li
Daniel Lieuwen
Xuemin Lin

Weiyi Liu

Dianfu Ma
Xiaofeng Meng

Gu Ning

Werner Nutt

Beng Chin Ooi
Zhiyong Peng
Rajeev Rastogi
Prasan Roy

Junyi Shen

Univ. of Strathclyde (UK)

Inst. of Software, CAS (China)

UC San Diego (USA)

Wright State Univ. (USA)

Zhejiang Univ. (China)

CETC (China)

Renmin Univ. of China (China)
Tsinghua Univ. (China)

Bell Labs (USA)

IIT (India)

Univ. of Edinburgh (UK)

UC Davis (USA)

Univ. of Edinburgh (UK)

Inst. of Computing Tech., CAS (China)
Wuhan Univ. (China)

Hong Kong Univ. (China)

Univ. of Tsukuba (Japan)

National Univ. of Defence Tech. (China)
Huazhong Univ. of Science and Tech. (China)
Micorsoft (USA)

Univ. of Edinburgh (UK)

Univ. of Tsukuba (Japan)

Univ. of Tokyo (Japan)

AT&T Labs-Research (USA)

Univ. of British Columbia (Canada)
Pennsylvania State Univ. (USA)

UC Irvine (USA)

UIUC (USA)

Shanghai Futures Exchange (China)
Shanghai Jiaotong Univ. (China)
Harbin Inst. of Tech. (China)

Inst. for Infocomm Research (Singapore)
Northwestern Polytechnic Univ. (China)
Bell Labs (USA)

Univ. of New South Wales (Australia)
Yunnan Univ. (China)

Beihang Univ. (China)

Renmin Univ. of China (China)

Fudan Univ. (China)

Heriot-Watt Univ. (UK)

National Univ. of Singapore (Singapore)
Wuhan Univ. (China)

Bell Labs (India)

IBM (India)

Xi’an Jiaotong Univ. (China)

Jianwen Su
Changjie Tang
Stratis D. Viglas
Guoren Wang
Haiyang Wang
Qingxian Wang
X. Sean Wang
Shan Wang
Wei Wang
Limsoon Wong
Peter T. Wood
Ming Xiong
Dongqing Yang
Ge Yu

Jeffrey Xu Yu
Lihua Yue
Aoying Zhou
Lizhu Zhou
Xiaofang Zhou
Yueting Zhuang
Jin Zhi

Hai Zhuge

Organization XIIT

UC Santa Barbara (USA)

Sichuan Univ. (China)

Univ. of Edinburgh (UK)

Northeastern Univ. (China)

Shandong Univ. (China)

Zhengzhou Univ. of Info. Engineering (China)
Univ. of Vermont (USA)

Renmin Univ. of China (China)

Univ. of North Carolina at Chapel Hill (USA)
Inst. for Infocomm Research (Singapore)
Univ. of London (UK)

Bell Labs (USA)

Peking Univ. (China)

Northeastern Univ. (China)

Chinese Univ. of Hong Kong (China)
Univ. of Science and Tech. (China)
Fudan Univ. (China)

Tsinghua Univ. (China)

Univ. of Queensland (Australia)
Zhejiang Univ. (China)

Inst. of Mathematics, CAS (China)

Inst. of Computing Tech., CAS (China)

Referees

Ali Al-Lawati
Toshiyuki Amagasa
Yanrong Cai

Julie Chang

Helen Huang
Huan Huo

Noriko Imafuji
Markus Jakobsson

Lijun Chen Ou Jianbo
Wei Chen Tosif Lazaridis
Juntao Cui Cao Lei

Ken Deng Aiping Li
Zhiming Ding Haifei Li
Michael Flaster Xin Li
Cagdas Gerede Xuhui Li
Sipei Guo Jing Liping
Yang Guo Jiamao Liu

WeiHong Han Jungiang Liu
Ramaswamy Hariharan Qing Liu
Quinn Hart Zheng Liu
Bijit Hore Yi Luo
David Horgan Yuxin Mao
He Hu Weiyi Meng

Pabitra Mitra
Anirban Mondal
Seog-Chan Oh

Yuwei Peng

Weining Qian
Ganesh Ramesh

Yi Ren

Carlos Rueda
Takeshi Sagara
Derong Shen

Derong Shen

Jiali Shen

Zhongnan Shen
Quan Z. Sheng
Norihide Shinagawa
Houtan Shirani-Mehr
Michal Shmueli-Scheuer
Shefali Singhal
Katsumi Takahashi

XIV Organization

Changjie Tang
Feilong Tang
Meng Teng
Daling Wang
Di Wang
Hongzhi Wang
Jianyong Wang
Liwei Wang
Xiaoling Wang

Yitong Wang
Tok Wee Hyong
Li Xin

Chen Yan
Jiangming Yang
Nan Yang

Wei Ye

Bill Yu Zhang
Kun Yue

Cheng Zeng
Ende Zhang

Jie Zhang
Shichao Zhang
Xiaofeng Zhang
Zhongfei Zhang
Bin Zhou

Table of Contents

Keynote and Invited Talks

What the Web Has Done for Scientific Data — and What It Hasn'’t
Peter Buneman

Integrity Theory for Resource Space Model and Its Application
Hai Zhuge, Yunpeng Xingo,

Challenges of Grid Computing
Hai Jin ..o

Research Session 1: XML

BBTC: A New Update-Supporting Coding Scheme for XML Documents
Jianhua Feng, Guoliang Li, Lizhu Zhou, Na Ta, Qian Qian,
Yuguo Liao

Using XML Structure to Reduce Candidate Nodes Participated in
Query Processing
Zhenying He, Jianzhong Li, Chaokun Wang, Pengcheng Ge,
Haikun Chen e e e e e

An Effective and Efficient Approach for Keyword-Based XML Retrieval
Xiaoguang Li, Jian Gong, Daling Wang, Ge Yu

Subgraph Join: Efficient Processing Subgraph Queries on
Graph-Structured XML Document
Hongzhi Wang, Wei Wang, Xuemin Lin, Jianzhong Li

Research Session 2: Performance and Query
Evaluation

A Soft Real-Time Web News Classification System with Double Control
Loops
Huayong Wang, Yu Chen, Yigi Dai

Searching the World Wide Web for Local Services and Facilities: A
Review on the Patterns of Location-Based Queries
Saeid Asadi, Chung-Yi Chang, Xiaofang Zhou, Joachim Diederich . .

25

32

45

56

68

81

91

XVI Table of Contents

Self-adaptive Statistics Management for Efficient Query Processing
Xiaojing Li, Gang Chen, Jinxiang Dong, Yuan Wang

Design and Implementation of the Modified R-Tree Structure with
Non-blocking Querying
Myungkeun Kim, Sanghun Eo, Seokkyu Jang, Jaedong Lee,
Haeyoung Bae

Research Session 3: Data Mining (I)

Importance-Based Web Page Classification Using Cost-Sensitive SVM
Wei Liu, Gui-rong Xue, Yong Yu, Hua-jun Zeng..................

An Efficient Approach for Interactive Mining of Frequent Itemsets
Zhi-Hong Deng, Xin Li, Shi-Wei Tang

Similarity Search with Implicit Object Features
Yi Luo, Zheng Liu, Xuemin Lin, Wei Wang, Jeffrey Xu Yu

An Improved FloatBoost Algorithm for Naive Bayes Text Classification
Xiaoming Liu, Jianwei Yin, Jinziang Dong,
Memon Abdul Ghafoor. i

Research Session 4: Semantic Web and Web Ontology

An Approach to RDF(S) Query, Manipulation and Inference on
Databases
Jing Lu, Yong Yu, Kewei Tu, Chenzi Lin, Lei Zhang

Clustering OWL Documents Based on Semantic Analysis
Mingxia Gao, Chunnian Liu, Furong Chen

An Ontology Based Approach to Construct Behaviors in Web
Information Systems
Lv-an Tang, Hongyan Li, Zhiyong Pan, Dongqing Yang, Meimei Li,
Shiwetr Tang, Ying Ying

A Semi-automatic Ontology Acquisition Method for the Semantic Web
Man Li, Xiaoyong Du, Shan Wang........

Research Session 5: Data Management (I)

Watermarking Abstract Tree-Structured Data
Gang Chen, Ke Chen, Tianlei Hu, Jinxiang Dong

Table of Contents XVII

Location-Based Caching Scheme for Mobile Clients
KwangJin Park, MoonBae Song, Chong-Sun Hwang 233

Extended Derivation Cube Based View Materialization Selection in
Distributed Data Warehouse
Wei Ye, Ning Gu, Genxzing Yang, Zhenyu Liu 245

A Framework of HTML Content Selection and Adaptive Delivery
Chen Ding, Shutao Zhang, Chi-Hung Chi 257

Research Session 6: Information Systems

An Improved Multi-stage (¢, n)-Threshold Secret Sharing Scheme
Hui-Xian Li, Chun-Tian Cheng, Liao-Jun Pang 267

Information Management in E-Learning System
Liu Jing, Zheng Li, Yang Fang 275

A Stratification-Based Approach to Accurate and Fast Image
Annotation
Jianye Ye, Xiangdong Zhou, Jian Pei, Lian Chen, Liang Zhang 284

Research Session 7: Web Services and Workflow (I)

Web Services Composition Based on Ontology and Workflow
Huaizhou Yang, Zengzhi Li, Jing Chen, Hong Xia................. 297

Web Service Composition Using Markov Decision Processes
Aigiang Gao, Dongging Yang, Shiwei Tang, Ming Zhang 308

FECT: A Modelling Framework for Automatically Composing Web
Services
Lishan Hou, Zhi Jin e 320

Intrusion Detection of DoS/DDoS and Probing Attacks for Web Services
Jun Zheng, Ming-zeng Hu i 333

Research Session 8: Data Management (II)

cGridex: Efficient Processing of Continuous Range Queries over Moving
Objects
Xiaoyuan Wang, Qing Zhang, Weiwei Sun, Wei Wang, Baile Shi ... 345

XVIII Table of Contents

An Efficient Context Modeling and Reasoning System in Pervasive
Environment: Using Absolute and Relative Context Filtering Technology
Xin Lin, Shanping Li, Jian Xu, Wei Shi, Qing Gao

Influences of Functional Dependencies on Bucket-Based Rewriting
Algorithms
Qingyuan Bai, Jun Hong, Hui Wang, Michael F. McTear

GARWM: Towards a Generalized and Adaptive Watermark Scheme for
Relational Data
Tian-Lei Hu, Gang Chen, Ke Chen, Jin-Xiang Dong

Research Session 9: Data Grid and Database
Languages

Refined Rules Termination Analysis Through Activation Path
Zhongmin Xiong, Zhongxiao Hao

Stream Operators for Querying Data Streams
Lisha Ma, Stratis D. Viglas, Meng Li, Qian Li

Join Algorithm Using Multiple Replicas in Data Grid
Donghua Yang, Jianzhong Li, Qaisar Rasool

Research Session 10: Agent and Mobile Data

A Heuristic and Distributed QoS Route Discovery Method for Mobile
Ad Hoc Networks
Peng Fu, Deyun Zhang,

Planning Enhanced Grid Workflow Management System Based on Agent
Lei Cao, Minglu Li, Jian Cao, Ying Li

Reasoning Based on the Distributed S-PSML
Yila Su, Jiming Liu, Ning Zhong, Chunnian Liu

Research Session 11: Data Mining (II)

An Auto-stopped Hierarchical Clustering Algorithm Integrating Outlier
Detection Algorithm
Tian-yang Lv, Tai-zue Su, Zheng-ruan Wang, Wan-li Zuo

357

368

380

392

404

416

428

440

452

Table of Contents

Research Paper Recommender Systems: A Subspace Clustering
Approach
Nitin Agarwal, Ehtesham Haque, Huan Liu, Lance Parsons

Concept Updating with Support Vector Machines
Yangguang Liu, Qinming He

On the Performance of Feature Weighting K-Means for Text Subspace
Clustering
Liping Jing, Michael K. Ng, Jun Xu, Joshua Zhexue Huang

Research Session 12: Web Services and Workflow (II)

State Transfer Graph: An Efficient Tool for Webview Maintenance
Yan Zhang, Xiangdong Qin

An EJB-Based Very Large Scale Workflow System and Its Performance
Measurement
Kwang-Hoon Kim, Hyong-Jin Ahn

Deploying m-Calculus Technology in Inter-organizational Process
Memon Abdul Ghafoor, Jianwei Yin, Jinziang Dong,
Maree Mujeeb-u-Rehman i,

Modulation for Scalable Multimedia Content Delivery
Henry Novianus Palit, Chi-Hung Chi oo,

Research Session 13: Database Application and
Transaction Management

A Deadline-Sensitive Approach for Real-Time Processing of Sliding
Windows

Shanshan Wu, Ge Yu, Yaxin Yu, Zhengyu Ou, Xinhua Yang,

Yu Gu. .o

MPX: A Multiversion Concurrency Control Protocol for XML
Documents
Yuan Wang, Gang Chen, Jin-xiang Dong

An Index Structure for Parallel Processing of Multidimensional Data
KyoungSoo Bok, DongMin Seo, Seokll Song, MyoungHo Kim,
JaeS00 Y00

XIX

XX Table of Contents

Industrial Session

Construction of Security Architecture of Web Services Based EAI
Di Wu, Yabo Dong, Jian Lin, Miaoliang Zhu 601

Using Web Services and Scientific Workflow for Species Distribution
Prediction Modeling
Jianting Zhang, Deana D. Pennington, William K. Michener 610

Integrative Security Management for Web-Based Enterprise
Applications
Chen Zhao, Yang Chen, Dawei Xu, NuerMaimaiti Heilili,
Zuoquan Lin 618

Short Papers and Demonstration

An Ontology-Based Semantic Integration for Digital Museums
Hong Bao, Hongzhe Liu, Jiehua Yu, Hongwer Xu 626

A Unified Subspace Outlier Ensemble Framework for Outlier Detection
Zengyou He, Shengchun Deng, Xiaofei Xu 632

A Convertible Limited Verifier Signature Scheme
Jianhong Zhang, Hu’an Li, Jilin Wang 638

Short Signature Scheme Based on Discrete Logarithms
Zuhua Shao 645

Simulating a Finite State Mobile Agent System
Yong Liu, Congfu Xu, Yanyu Chen, Yunhe Pan 651

Algorithm for Analyzing N-Dimensional Hilbert Curve
Chenyang Li, Yucai FEngoooiiiiiniiiininnn.. 657

DMT: A Flexible and Versatile Selectivity Estimation Approach for
Graph Query
Jianhua Feng, Qian Qian, Yuguo Liao, Guoliang Li, Na Ta 663

A New Public Key Certificate Revocation Scheme Based on One-Way
Hash Chain
JingFeng Li, YueFei Zhu, Heng Pan, DaWei Wei 670

Interactive Chinese Search Results Clustering for Personalization
Wei Liu, Gui-Rong Xue, Shen Huang, Yong Yu................... 676

Table of Contents XXI

Efficient Delay Aware Peer-to-Peer Overlay Network
Da-lu Zhang, Chen Lin i 682

PIES: A Web Information Extraction System Using Ontology and Tag
Patterns
Byung-Kwon Park, Hyoil Han, Il-Yeol Song 688

An Algebraic Framework for Schema Matching
Zhi Zhang, Haoyang Che, Pengfei Shi, Yong Sun, Jun Gu.......... 694

A Clustering Algorithm Based Absorbing Nearest Neighbors
Jian-jun Hu, Chang-jie Tang, Jing Peng, Chuan Li,
Chang-an Yuan, An-long Cheno, 700

Parallel Mining of Top-K Frequent Itemsets in Very Large Text Database
Yongheng Wang, Yan Jia, Shugiang Yang 706

Removing Smoothing from Naive Bayes Text Classifier
Wang-bin Zhu, Ya-ping Lin, Mu Lin, Zhi-ping Chen 713

Medical Image Clustering with Domain Knowledge Constraint
Haiwei Pan, Jianzhong Li, Wei Zhang 719

Tick Scheduling: A Deadline Based Optimal Task Scheduling Approach
for Real-Time Data Stream Systems
Zhengyu Ou, Ge Yu, Yaxin Yu, Shanshan Wu, Xiaochun Yang,
Qingru Deng 725

A Novel Ranking Strategy in Hybrid Peer-to-Peer Networks
Qian Zhang, Zheng Liu, Xia Zhang, Xuezhi Wen, Yu Sun.......... 731

An Algorithmic Approach to High-Level Personalisation of Web
Information Systems
Klaus-Dieter Schewe, Bernhard Thalheim 737

sPAC (Web Services Performance Analysis Center):
A Performance-Aware Web Service Composition Tool
Hyung Gi Song, Kangsun Lee oo, 743

Design and Implementation of a Service Bundle Manager for Home
Network Middleware
Minwoo Son, Jonghwa Choi, Namhoon Kim, Dongkyoo Shin,
Dongil Shin 749

XXII Table of Contents

A State-Transfer-Based Dynamic Policy Approach for Constraints in
RBAC
Cheng Zang, Zhongdong Huang, Gang Chen, Jinziang Dong

A New Cache Model and Replacement Algorithm for Network Attached
Optical Jukebox
Xuan Liu, Tijun Lu, Hutbo Jia i,

Multiple Watermarking Using Hadamard Transform
Haifeng Li, Shuzun Wang, Weiwei Song, Quan Wen

An Immunity-Based Intrusion Detection Solution for Database Systems
Ke Chen, Gang Chen, Jinziang Dongo ..

Filtering Duplicate Items over Distributed Data Streams
Tian Xia, Cheging Jin, Xiaofang Zhou, Aoying Zhou

An Optimized K-Means Algorithm of Reducing Cluster
Intra-dissimilarity for Document Clustering
Daling Wang, Ge Yu, Yubin Bao, Meng Zhang

Hierarchical Metadata Driven View Selection for Spatial Query
Evaluations
Songmei Yu ..o

Priority Processing in the Web Service-Workflow Architecture
Huwa-Young Jeong

Policy-Based Workflow Management System
Shi Chen, Song Ouyang, G.K. Hassana

A Mobile-Aware System for Website Personalization
S. Greco, A. Scicchitano, A. Tagarelli, E. Zumpano

An Algorithm for Best Selection in Semantic Composition of Web
Service*
Juntao Cui, Yiwen Zhu, Ning Gu, Yuwei Zong, Zhigang Ding,
Shaohua Zhang, Quan Zhangc.oiiiiinninn..

Using Quantitative Association Rules in Collaborative Filtering
Xiaohua Sun, Fansheng Kong, Hong Chen

Extracting, Presenting and Browsing of Web Social Information
Yi Wang, Li-zhu Zhoto

Table of Contents XXIII

An Ontology-Based Host Resources Monitoring Approach in Grid
Environment

Yijiao Yu, Hai Jin 834

Domain-Specific Website Recognition Using Hybrid Vector Space Model
Baoli Dong, Guoning Qi, Xingian Gu. ..., 840

Understanding User Operations on Web Page in WISE
Hongyan Li, Ming Xue, Jianjun Wang, Shiwei Tang,
Dongqing Yang 846

Two-Phase Exclusion Based Broadcast Adaptation in Wireless Networks
Keke Cai, Huaizhong Lin, Chun Chenc.c.ouiiunn... 852

Web Service Collaboration Analysis via Automata
Yuliang Shi, Liang Zhang, Fangfang Liu, Lili Lin, Baile Shi 858

A Novel Resource Description Based Approach for Clustering Peers
Xing Zhu, Dingyi Han, Yong Yu, Weibin Zhu 864

The Segmentation of News Video into Story Units
Huayong Liu, Hut Zhang. oo, 870

Process Controlling and Monitoring Scheme for Distributed Systems
with Fault-Tolerance by Using Web Services

YunHee Kang, KyungWoo Kang 876
CoopStreaming: A Novel Peer-to-Peer System for Fast Live Media
Streaming

Jianwer Yin, Weipeng Yao, Lingxiao Ma, Jinxiang Dong 882

Ontology-Based HTML to XML Conversion
Shijun Li, Weijie Ou, Junqing Yu........ ... o oo, 888

Image Matrix Fisher Discriminant Analysis (IMFDA)- 2D Matrix
Based Face Image Retrieval Algorithm
C.Y. Zhang, H. X. Chen, M.S. Chen, Z.H. Sun 894

Approximate Common Structures in XML Schema Matching
Shengrui Wang, Jianguo Lu, Ju Wang 900

Bi-directional Ontology Versioning BOV
Siyang Zhao, Brendan Tierneyc..ciiiiiiiiiiii.. 906

Quantitative Modeling for Web Objects’ Cacheability
Chen Ding, Chi-Hung Chi, Lin Liu, LuWei Zhang, H.G. Wang 913

XXIV Table of Contents

An Efficient Scheme of Merging Multiple Public Key Infrastructures in
ERP
Heng Pan, YueFei Zhu, ZhengYun Pan, XianLing Lu 919

Forms-XML: Generating Form-Based User Interfaces for XML

Vocabularies
Y.S. Kuo, N.C. Shih, Lendle Tseng, Hsun-Cheng Hu 925

Author Index e 927

What the Web Has Done for Scientific
Data — and What It Hasn’t

Peter Buneman

School of Informatics, University of Edinburgh and Digital Curation Centre

Abstract. The web, together with database technology, has radically
changed the way scientific research is conducted. Scientists now have
access to an unprecedented quantity and range of data, and the speed
and ease of communication of all forms of scientific data has increased
hugely. This change has come at a price. Web and database technology
no longer support some of the desirable properties of paper publication,
and it has introduced new problems in maintaining the scientific record.
This brief paper is an examination of some of these issues.

1 Introduction

Try to imagine the unthinkable: you have lost your internet connection. So you
go to the reference shelves of your local library for some information relevant to
your work. Perhaps you are interested in demography and want the GDP and
population of some country. The chances are that you will find a rather sorry and
little-used collection of reference books, most of them relics of the time before
the web — only a few years ago — when libraries were the main vehicle for the
dissemination of scientific and scholarly information. The reference books have
been replaced by databases to which, if they are not open-access, the library has
subscribed on your behalf. You would, of course, be much better off using the
web. In fact, for scientific data the web has had huge benefits

— it has provided access to much larger and richer data collections;

— the information is much more timely — we do not have to wait for a new
edition to be printed to get an up-to-date GDP;

access to the information is much faster and simpler;

— the information is better presented; and

as a result, new information sources have been created which both classify
scientific data in useful ways and form a vehicle for the communication of
scientific opinion.

The impact of the web on the way scientific research is conducted has been
enormous. Michael Lesk [Les| has argued that it has actually changed the scien-
tific method from “hypothesize, design and run experiment, analyze results” to
“hypothesize, look up answer in data base”. Almost all of modern science is now
dependent on databases. Biology has led the way in the use of organised data
collections to disseminate knowledge (I shall refer to these as databases) but

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 1-{7 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 P. Buneman

nearly all branches of scientific research are now dependent on web-accessible
data resources. Databases are vehicles for publishing data (in fact the databases
themselves can be considered publications), and it is often a condition of scien-
tific funding that an appropriate database be generated and made accessible to
the scientific community.

All this represents spectacular progress. We should not be upset that the
library is no longer the primary vehicle for the dissemination of scholarship. But
is it possible that in the rush to place our data “on the web” we are losing some
important functions that libraries — whether or not by design — traditionally
provided? Consider again your journey to the library.

First, if the reference work you were looking for is not in the library, the
chances are that some other library has a copy of it. By having copies of the
same work distributed among many libraries, there is some guarantee that the
the information is being preserved. Copying has always been the best guarantee
of preservation. Now that your data is kept at some centralised database, it is not
at all clear that it is in a form appropriate for long-term presentation. Also, the
responsibility for keeping the information is now assumed by the organisation
that maintains the database rather than being distributed among a number of
libraries.

Second, maybe what you were looking for is in a reference book that is
updated from time to time. If the library decided not to buy the new edition, at
least you could revert to an old edition. Now, if the library drops its subscription
to the on-line data, what do you have? This underlines the fact that the economic
and intellectual property issues with databases on the web are very different
from those that apply to traditional paper-based dissemination of knowledge.
However the law that applies to digital data collections is effectively based on
the traditional copyright laws.

Third, once you had found the information you were looking for, there was
a serviceable method of citing it according to one of a few accepted methods.
You could, if needed, localise the information by giving a page number, and the
citation could be checked by other people who had access to the cited document.
Now it is not at all clear how you cite something you find in a database; and you
have no guarantee that it can be checked. Maybe the web site has disappeared,
or maybe the database has been updated.

Fourth, the database keeps up-to-date information, but you might want some
old information — perhaps the GDP from some past year. The old publications
in the library may have this information, but the database does not.

These differences indicate that there are a number of problems with the
dissemination of scientific data on the web. Having fast access to up-to-date
research material may come at the price of data quality. Arguably, the web is
losing the scientific record as fast as it is creating it; and users of web data have
little faith in it until they can verify its provenance and authorship.

The rest of this paper is an attempt to show that, in trying to remedy these
drawbacks of web data, we are led to some new and challenging problems that
involve databases, the web and other areas of computer science.

What the Web Has Done for Scientific Data — and What It Hasn’t 3

1.1 Scientific Data

The use of database technology — in a broad sense of the term — to support sci-
entific data is increasing rapidly. However, scientific data puts different demands
on database technology. For example, transaction rates are typically lower in
the maintenance of most scientific databases. Scale [HT] is arguably important,
and complexity is surely important. Not only is “schema” complexity high, but
the kinds of interactions between query languages and scientific programming
require relatively complex algorithms and place new demands on the already
complex area of query optimisation [Gra04]. The latter paper deals well with
some of the issues of scale. In this note I want to deal with a largely orthogo-
nal set of issues that have arisen in discussion with scientists who are dealing
with databases in which the primary issues, at least for the time being, do not
concern scale, but involve the manipulation, transfer, publishing, and long-term
sustainability of data. Biological data has been the prime mover in some of these
issues, but other sciences are catching up.

2 Data Transformation and Integration

Data integration, of course, a relatively old topic in database research, which
is crucial to curated databases. While low-level tools such as query languages
that can talk to a variety of data formats and databases are mow well-developed;
declarative techniques for integration and transformation based on schema anno-
tation and manipulation have been slow to come to market; and where progress
has been made it is with relatively simple data models|HHY 01, [PB03]. A sur-
vey of the status quo is well beyond the scope of this paper, but it is worth
remarking that that while the emergence of XML as universal data exchange
format may help in the low-level aspects of data integration through the use of
common tools such as XQuery [XQuj, it is not at all clear whether XML, has
helped in the higher-level, schema based approach to data integration. The com-
plexities of constraint systems such as XML Schema [XMT] appear to defy any
attempt at schema-based integration. Moreover, it is not clear what serialisation
formats — upon which XML Schema is based — have to do with the data models
in which people naturally describe data.

A more limited goal for XML research, and one in which progress has been
made, is that of data publishing. There is again a growing literature on this topic.
The idea is that individual organisations will maintain their data using a variety
of models and systems but will agree to common formats, probably XML, for
the exchange of data. The problem now is to export data efficiently in XML
and, possibly, to transform and import the XML into other databases. This not
only requires efficient and robust tools for describing and effecting the transfor-
mation [FTS00, BCFT02] but also tools for efficiently recomputing differences
when the source database is modified — a new form of the view maintenance
problem.

4 P. Buneman

3 Data Citation

A common complaint from people who annotate databases based on what is in
the printed literature is that citations are not specific enough. For example, in
the process of verifying an entry in some biological database, one needs to check
that a given article mentions a specific chemical compound. Even if one is given
a page number, it can be quite time consuming to pinpoint the reference. The
point here is that the more we can localise citations the better. Now consider the
issues involved with citing something in a database. There are two important
issues.

— How does one cite the database itself and localise the information within the
database?

— How does one cope with the fact that the database itself changes? Does a
change necessarily invalidate the citation?

As we know, URLs and URIs fail to meet the needs of stable “coarse grained”
identifiers, such as identifiers of a database or web site. This has led people in-
terested in long-term preservation to consider a variety of techniques for main-
taining digital object identifiers that persist over an extended period. But even
when the domain of citation is in our control, for example we want to spec-
ify localised citations within a website or database, how do we specify these
citations, and what whose responsibility is it to deal with changing data? For
relational databases, a solution to the localisation problem is to use keys or sys-
tem tuple identifiers. For hierarchical data such as XML, a solution is suggested
in [BDET02]. However these are partial solutions to the localisation problem.
Standards for data citation need to be developed, and dealing with change is a
major problem.

4 Annotation

This is a growing area of activity in scientific databases. Some biological data-
bases describe themselves as “annotation databases”, and there are some systems
[SED] which are designed to display an overlay of annotations on existing data-
bases. Database management systems typically do not provide “room” for ad
hoc or unanticipated annotation, and only recently has any attempt been made
to understand what is required of database systems to provide this functional-
ity [CTGO4].

5 Provenance

Also known as “lineage” and “pedigree” [CWOT, [BKTO0], this topic has a variety
of meanings. Scientific programming often involves complex chains or workflows
of computations. If only because one does not want to repeat some expensive
analysis, it is important to keep a complete record of all the parameters of

What the Web Has Done for Scientific Data — and What It Hasn’t 5

a workflow and of its execution. This is sometimes known as “workflow” or
“coarse-grained” provenance [SM03].

In curated databases, as we have already noted, data elements are repeatedly
copied from one database to the next. As part of data quality know where a
data element has come from, which databases it has passed through, and what
actions or agents created and modified it. Even formulating a model in which it
is possible to give precise definitions to these is non-trivial. Moreover, since much
copying is done by programs external to the databases or by user actions, it is
a major challenge to create a system in which provenance is properly recorded.
It involves much more than database technology. For example, data is often
copied by simple “copy-and-paste” operations from one database to another.
To provide proper mechanisms for tracking this data movement will involve not
only re-engineering the underlying database systems but also to the operating
systems and interactive environments in which the changes are made.

6 Preservation

Keeping the past states of a database is an important part of the scientific
record. Most of us have been “burned” by a reference to a web page or on-line
publication that has disappeared or has been changed without any acknowledg-
ment of the previous version. This is one area in which we have made some
progress [BKTT04]. A system has been implemented which records every ver-
sion of a database in a simple XML file. For a number of scientific databases on
which this has been tested, the size of an archive file containing a year’s worth
of changes exceeds the size of one version of the database by about 15%. Yet
any past version of the database may be retrieved from the archive by a simple
linear scan of the archive.

The principle behind this system is that, rather than recording a sequence of
versions, one records one database with the changes to each component or object
recorded at a fine-grained level. This relies on each component of the database
having a canonical location in the database, which is described by a simple path
from the root of the database. It is common for scientific data to exhibit such
an organisation, and this organisation may be of use in other aspects of curated
data such as annotation, where some notion of “co-ordinate” or “key” is needed
for the attachment of external annotation. In fact, it relies crucially on a system
for fine-grain citation such as that advocated in section [3]

Archiving in this fashion does a little more than “preserve the bits”. For a
relational database, it dumps the database into XML making it independent
of a specific database management system and intelligible to someone who un-
derstands the structure of the data. The subject of digital preservation is more
than preserving bits. It is about preserving the interpretation of a digital re-
source. For example, you have a document in the internal format of an early
word processor. Should you be concerned about preserving the text, the format-
ted text, or the “look and feel” of the document as it was to the users of that
word processor [CLB0T, LMMO0IL [OAT]. Databases may be in a better position

6 P. Buneman

because there is arguably only one level of interpretation — the SQL interface for
relational databases, or the syntactic representation of the data in XML. But
this does not mean that there is nothing to worry about. How do you preserve
the schema, and are there other issues of context that need to be maintained for
the long-term understanding of the data?

7 Database Research Is Not Enough

Integration, annotation, provenance, citation, and archiving are just a few of
the new topics that have emerged from the increasing use of curated databases.
Some progress can be made by augmenting existing database technology. But
fully to deal with provenance and integration, we need a closer integration of
databases with programming languages and operating systems. These require
better solutions to the impedance mismatch problem. Some progress was made
with object-oriented databases, and more recently in programming languages
[Com| and web programming [Wad] which understand typed data and in which
file systems are replaced by database systems as a fundamental approach to
solving the impedance mismatch problem. It is not clear whether the natural
inertia in software development will ever allow such a radical change to take
place. In addition, even if all the technical problems are solved, the social, legal
and economic problems with web data are enormous.

References

[BCFT02] Michael Benedikt, Chee Yong Chan, Wenfei Fan, Rajeev Rastogi, Shihui
Zheng, and Aoying Zhou. DTD-directed publishing with attribute trans-
lation grammars. In VLDB, 2002.

[BDF102] Peter Buneman, Susan Davidson, Wenfei Fan, Carmem Hara, and Wang-
Chiew Tan. Keys for XML. Computer Networks, 39(5):473-487, August
2002.

[BKT00] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Data Prove-
nance: Some Basic Issues. In Sanjiv Kapoor and Sanjiva Prasad, editors,
Proceedings of FST TCS 2000: Foundations of Software Technology and
Theoretical Computer Science, pages 87 — 93. Springer, LNCS 1974, Dec
2000.

[BKTTO04] Peter Buneman, Sanjeev Khanna, Keishi Tajima, and Wang-Chiew Tan.
Archiving scientific data. ACM Transactions on Database Systems,
27(1):2-42, 2004.

[CLBO1] James Cheney, Carl Lagoze, and Peter Botticelli. Toward a theory of
information preservation. In 5th FEuropean Conference on Research and
Advanced Technology for Digital Libraries (ECDL 2001, Darmstadt, 2001.

[Com] Cu. http://research.microsoft.com/Comega/.

[CTG04] L. Chiticariu, W-C. Tan, and G.Vijayvargiya. An annotation management
system for relational databases. In VLDB, 2004.

[CWO01] Yingwei Cui and Jennifer Widom. Lineage tracing for general data ware-
house transformations. In Proc. of 27th International Conference on Very
Large Data Bases (VLDB’01, Rome, Italy, September 2001.

What the Web Has Done for Scientific Data — and What It Hasn’t 7

[F'TS00] Mary F. Fernandez, Wang Chiew Tan, and Dan Suciu. SilkRoute: trading
between relations and XML. Computer Networks, 33(1-6):723-745, 2000.

[Gra04] Jim Gray. Distributed computing economics. In A. Herbert and K. Sparck
Jones, editors, Computer Systems Theory, Technology, and Applications,
A Tribute to Roger Needham, pages 93—-101. Springer, 2004.

[HHY101] R.J. Millerand M.A. Herndndez, L.M. Haas, L. Yan, C.T.H. Ho, R. Fagin,
and L. Popa. The clio project: Managing heterogeneity. SIGMOD Record,
30(1), March 2001.

[HT] Tony Hey and Anne Trefethen. The data deluge: An e-science perspective.
http://www.rcuk.ac.uk/escience/documents/report_datadeluge.pdf
referenced 20 July 2005.

[Les] Michael Lesk. archiv.twoday.net/stories/337419/ referenced 22 july
2005.

[LMMO1] B. Ludascher, R. Marciano, and R. Moore. Towards self-validating
knowledge-based archives. In 11th Workshop on Research Issues in Data
Engineering (RIDE), Heidelberg, Germany. IEEE Computer Society, April
2001.

[OAT] Reference model for an open archival information system (oais).
CCSDS 650.-B-1. Blue Book. Issue 1. Washington D.C. January 2002
http://www.ccsds.org/documents/pdf/CCSDS-650.0-B-1.pdf.

[PBO03] R.A. Pottinger. and P.A. Bernstein. Merging models based on given cor-
respondences. In VLDB, 2003.

[SED] Lincoln D. Stein, Sean Eddy, and Robin Dowell. Distributed Sequence An-
notation System (DAS). http://www.biodas.org/documents/spec.html.

[SMO03] Martin Szomszor and Luc Moreau. Recording and reasoning over data

provenance in web and grid services. In On The Move to Meaningful Inter-
net Systems 2003: CooplS, DOA, and ODBASE, pages 63-620. Springer,
LNCS 2888, 2003.

[Wad] P. Wadler. The links project. http://homepages.inf.ed.ac.uk/wadler/
papers/links/links-blurb.pdf
[XML)] XML Schema Part 1: Structures Second Edition. http://www.w3.org/

TR/xmlschema-1/|
[XQu] XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/.

Integrity Theory for Resource Space Model and Its
Application’

Hai Zhuge and Yunpeng Xing

China Knowledge Grid Research Group, Key Lab of Intelligent Information Processing
Institute of Computing Technology, Chinese Academy of Sciences, 100080, Beijing, China
Zhuge@ict.ac.cn, Ypxing@kg.ict.ac.cn
http://kg.ict.ac.cn/

Abstract. The Resource Space Model (RSM) is a semantic data model based on
orthogonal classification semantics for effectively managing various resources
in interconnection environment. In parallel with the integrity theories of rela-
tional and XML-based data models, this keynote presents the integrity theory
for the RSM, including the entity integrity constraints based on the key system
of the RSM, the membership integrity constraints, the referential integrity con-
straints, and the user-defined integrity constraints relevant to applications. This
theory guarantees the RSM to correctly and efficiently specify and manage re-
sources. Its implementation approach and application in culture exhibition are
demonstrated.

1 Introduction

Integrity theory plays an important role in the relational data model, which has ob-
tained a great success in both theory and systems [6, 7, 8, 10, 12, 15]. Database appli-
cations request that changes made to data by authorized users do not result in a loss of
data consistency. Effective integrity constraints are means to fight the damage to data
and to the consistency between data and its management mechanism. However, pre-
vious data models are limited in their abilities in effectively managing heterogeneous,
distributed, and ocean resources in an open and dynamic Internet environment [17].

On the other hand, the success of World Wide Web guides people to attack the rep-
resentation issue of resources. XML facilitates representation and exchange of struc-
tured information on the Internet. The Semantic Web steps further this way by using
markup languages like RDF and establishing ontology mechanisms [2].

Much research on XML-based information organization and management has been
done, such as Document Type Definitions, XML Schema and Unified Constraint
Model for XML [3, 11, 16]. The integrity constraints for semantic specifications of
XML data have drawn attention [9, 13]. However, the Internet still lacks ideal seman-
tic data model to effectively manage distributed and expanding resources.

The Resource Space Model RSM is a semantic data model for uniformly, normally
and effectively specifying and managing resources in interconnection environment.

! This work is supported by National Basic Research and Development Program (Semantic
Grid Project, No. 2003CB317001) and the National Science Foundation of China.

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 8 24 2005.
© Springer-Verlag Berlin Heidelberg 2005

Integrity Theory for Resource Space Model and Its Application 9

Its theoretical basis is a set of normal forms on orthogonal classification semantics
and the principles on relevant resource operations [17, 18, 19, 20].

Integrity is essential for the RSM to ensure its classification semantics, to maintain
the consistency on resource spaces, to optimize queries, and to correctly and effi-
ciently manage resources.

2 Resource Space System

The architecture of the resource space system includes five layers as depicted in Fig.
1: the application layer, the resource space system layer, the resource representation
layer representing semantics of resources, the entity resource layer, and the network
layer. Here focuses on the resource space system layer, which includes the resource
space layer organizing resources according to semantic normal forms [17] and the
operation mechanism layer implementing the operations on resources and resource
spaces.

Applications

][Interaction][

Resource Space System Resource Space System

Operation Mechanism Operation Mechanism

Resource Spaces - Resource Spaces
jE Index @

Resource Representation Layer

Entity Resource Layer

Network Layer

Fig. 1. The architecture of the resource space system

A resource space is an n-dimensional classification semantic space in which every
point uniquely determines a set of related resources. The space is denoted as RS(X},
X5, ..., Xy) or just by name RS in simple. X; = {C;;, Cp, ..., Cy,} represents axis X;
with its coordinate set. A point p(C, i, Cy o, ..., Cyjy) is determined by a set of coordi-
nate values at all axes. A point can uniquely determine a resource set, where each
element is called a resource entry. A point can be regarded as the container of a set of
resource entries.

Fig. 2 is an example of a two-dimensional resource space Com-Goods that speci-
fies goods’ information of three companies: Microsoft, Coca Cola and Nike. Two
axes in Com-Goods(Companies, Goods) are Companies = {Microsoft, Coca Cola,
Nike} and Goods = {soft drink, software, dress}. Each point specifies a class of
goods. For example, the point (Microsoft, software) represents the goods belonging to

10 H. Zhuge and Y. Xing

software and produced by Microsoft. A resource entry represents a piece of goods
belonging to a point in the Com-Goods. Point and resource entry are two types of
operation units in RSM.

Companies
A

—— _, Legend
O null point
| I @ aclass of goods

Nike ————{P-——_Q
Coca Cola ————‘————é:____é
’

Microsoft |---- d}— — =

|
| |
| |
! - » Goods

soft drink software dress

Fig. 2. An example of a two-dimensional resource space

R(p) represents the resources the point p can contain. If R(p) = &, then p is called
null point, otherwise non-null point (the hollow circle and solid circle in Fig. 2).
Large number of null points may exist in multidimensional resource spaces. For ex-
ample, the point (Microsoft, soft drink) is one of the six null points in the resource
space Com-Goods. Here focuses on how to identify non-null points.

DEFINITION 1. Let p.X; be the coordinate of p at axis X; in RS(X|, X», ..., X)), i.e.,
the projection of p on X;. If p;.X; = p,.X; for 1< i < n holds, then we say that p, is
equal to p,, denoted as p; =, p,.

3 Entity Integrity Constraints

3.1 Key

Keys play fundamental role in the relational data model and its conceptual design.
They enable tuples to refer to one another and guarantee operations to accurately
locate tuples [1, 4, 14].

As a coordinate system, the RSM naturally supports accurate resource location by
giving coordinates. However, it is sometimes unnecessary and even arduous to spec-
ify all the coordinates to identify a non-null point, especially for high-dimensional
resource spaces. The keys of RSM can further improve the efficiency of resource
location.

DEFINITION 2. Let CK be a subset of {X|, X, ..., X}, p1 and p, be two non-null
points in RS(X;, X5, ..., X,). CK is called a candidate key of RS if we can derive p, =,
p> fromp.X; = p,.X;, Xie CK.

Candidate keys provide us with necessary and enough information to identify non-
null points of a given resource space. Take Fig. 2 for example, {Companies},
{Goods} and {Companies, Goods} are candidate keys of the resource space Com-
Goods. Knowing the coordinates either on { Companies} or on {Goods}, we can eas-

Integrity Theory for Resource Space Model and Its Application 11

ily get the non-null points as needed. The primary key is one of the candidate keys
chosen by resource space designers. Any axis belonging to the primary key is called
primary axis.

Rule 1 (Point constraint): If axis X is one of the primary axes of the resource space
RS, then for any point in RS, its coordinate on axis X should not be null.

Rule 1 is used to guarantee the primary keys’ functionality of distinguishing non-
null points in a given resource space. One type of null value is “at present unknown”.
Let { Companies} be the primary key of Com-Goods, the axis Companies is a primary
axis of Com-Goods. If the coordinates of points at axis Companies are null, then the
points (null, soft drink) and (null, software) cannot be distinguished by the primary
key {Companies}.

In RSM, some keys can be inferred from the presence of others. This is important
in query optimization, especially when dynamically creating resource spaces. Infer-
ence rules for candidate keys include the following four theorems.

THEOREM 1. If a set of axes CK is a candidate key of the resource space RS, then
any axis set that includes CK is also the candidate key of RS.

Basic operations on resource spaces have been proposed in [18]. Here we introduce
relevant definitions (definition 3-6) to develop the theory of integrity constraint.

DEFINITION 3 (Merge of axes). If two axes X; = {Cy, Cyy, ..., Cip} and X, = {Cyy,
Cy, ..., Cyn} have the same axis name but have different coordinates, then they can
be merged into one: X = X; U X, = {Cyy, Cja, ..., Cin, Cop, Copy .oy Conn)

DEFINITION 4 (Join operation). Let IRS| be the number of dimensions of RS. If two
resource spaces RS and RS, store the same type of resources and they have n (n=1)
common axes, then they can be joined together as one RS such that RS, and RS, share
these n common axes and IRS| = IRS;| + IRS,| — n. RS is called the join of RS, and
RS,, denoted as RS,-RS, = RS.

DEFINITION 5 (Merge operation). If two resource spaces RS; and RS, store the
same type of resources and satisfy: (1) IRS,l = IRS,| = n; and (2) they have n — 1
common axes, and there exist two different axes X, and X, satisfying the merge con-
dition, then they can be merged into one RS by retaining the n — 1 common axes and
adding a new axis X; U X,. RS is called the merge of RS, and RS,, denoted as RS, U
RS, = RS, and IRS| = n.

DEFINITION 6 (Split operation). A resource space RS can be split into two resource
spaces RS, and RS, that store the same type of resources as that of RS and have IRS| —
1 common axes by splitting an axis X into two: X” and X, such that X = X" U X",
This split operation is denoted as RS =RS; U RS,.

According to the definition of the join operation, we have the following theorem.

THEOREM 2. Let RS, and RS, be two resource spaces that can be joined together to
generate a new resource space RS. Assume that CK; and CK, are the candidate keys
of RS| and RS, respectively. Then, CK = CK, U CK, is a candidate key of RS.

Proof. Let A be the set of all axes of RS and A, be the set of all axes of RS,. We as-
sume that CK = CK, U CK, is not the candidate key of RS. Thus, there must exist two

12 H. Zhuge and Y. Xing

non-null points p; and p, in RS, which satisfy both (VXeCK) (p,.X = p,.X) and
(AX'€A) (p,.X" # p,.X"). Without losing generality, we suppose that the axis X" exists
in RS. It is obvious that X" ¢ CK;. Letp,” be a point in RS, which satisfies (VXe A)
(p’-X =p1.X) and p,’ be a point in RS| which satisfies (VXe A)) (p,".X = p2.X). Ac-
cording to the definition of join, we have R(p,) < R(p,") and R(p,) < R(p,’) hold. So,
both p,” and p,’ are non-null points of RS;. We can conclude that (VXe CK)) (p,". X =
p>’.X) and p;’ .X'# p,”.X". This conclusion obviously contradicts the above assump-
tion that CK, is the candidate key of RS;,. So CK = CK, U CK, is a candidate key of
RS. 0

The following theorem can be drawn from the definition of the merge operation.

THEOREM 3. Let RS, and RS, be two resource spaces that can be merged into one
resource space RS. Let X; and X, be two different axes of RS, and RS, respectively,
and let X, = X; U X,. Assume that CK; and CK, are the candidate keys of RS, and
RS, respectively. Then, CK = (CK, — {X,}) U (CK, - {X,}) U {X_.} is a candidate key
of RS.

Proof. Let A be the set of all axes of RS. We assume that CK = (CK, - {X,}) U (CK,
- X5) U {X.} is not the candidate key of RS. Thus, there must exist two non-null
points p, and p, in RS, which satisfy both (VXeCK) (p,.X = p,.X) and (AX'€A)
(1. X" #p,.X"). It is obvious that X'¢ CK. Let p;” and p,’ be two points in RS, or RS,,
which satisfy (VXeA—{X.})(p;" X=p,.X), (VXeA-{X . })(p, X=p,.X), pi’ X| = p1. X,
(orpy’ X =p.Xo), and p,”. X, = pr.X. (or p,”. X, = p>.X,).

Suppose that p;” and p,’ belong to the same resource space, for example RS;. Since
(VXeA—(X))(p)' X=p,.X). (VXeA{X)(py X=p,.X). p X, = p1.X., and py' X, =
p».X. hold, we can reach (VXe CK))(p,’.X =p,’ . X) and p,;’ X" # p,’.X". This conclu-
sion obviously contradicts the above assumption that CK; is the candidate key of RS.

Suppose p;” € RS, and p,” € RS,, and let p,” be the point in RS, that has the same
coordinate values as p,’. Thus, p,” and p,” have the same coordinate values as p; and
p» respectively. We can reach that (VXeCK,) (p;’.X = p,”.X) and p’. X" # p," X"
This obviously contradicts above assumption that CK; is the candidate key of RS;.

According to (1) and (2), CK = (CK, — {X,}) U (CK;, — X,) U {X.} is a candidate
key of RS. U

According to the definition of the split operation, we have the following theorem.

THEOREM 4. Let RS, and RS, be two resource spaces created by splitting the re-
source space RS. Suppose that the axis X, of RS is split into X; and X, belonging to
RS, and RS, respectively. Let CK be a candidate key of RS. If X. ¢ CK holds, let CK;
= CK, = CK, otherwise let CK; = CK — {X.} U {X,} and CK, = CK - {X.} U {X,}.
Then, CK, and CK, are the candidate keys of RS, and RS, respectively.

Proof. Let A be the set of all axes of RS and A, be the set of all axes of RS,. We as-
sume that CK; is not the candidate key of RS,. Thus, there must exist two non-null
points p; and p, in RS;, which satisfy both (VXeCK)) (p,.X = p,.X) and (IX"€A))
@1 X" # p>.X"). Let p;’ and p,’ in RS have the same coordinate values as p, and p,
respectively. It is obvious that (VXe CK) (p;’.X = p,’.X) holds in case CK; = CK or
CK, = CK - {X.} U{X,} holds.

Integrity Theory for Resource Space Model and Its Application 13

When CK, = CK, if X" # X, then p,’. X" # p,’. X" holds, otherwise p," X # p,’ X,
holds;

When CK, = CK - {X.} U {X,}, then X" # X, holds. So p,;".X" # p,”. X" holds.

According to (1) and (2), p;’ =, p,” does not hold. This conclusion obviously con-
tradicts the above assumption that CK is the candidate key of RS. So CK, is a candi-
date key of RS;. Similarly, we can prove that CK, is a candidate key of RS,. U

In resource space systems, there often exist some resource spaces created dynami-
cally by join, merge and split operations. Theorem 2, 3 and 4 in fact provide efficient
means of deriving the candidate keys of these resource spaces created dynamically.

3.2 Resource Entry

In RSM, a resource entry denoted as a 3-tuple Resource-Entry<ID, Index, Semantic-
Description> is used to index a piece of resource of resource representation layer. The
first field ID is used to specify the resource entries in a given point. Two resource
entries residing in different points could have the same ID. The second field Index is
the index information linked to the representation layer. To facilitate semantic opera-
tions, the Semantic-Description uses a set of resource attributes to reflect the simple
semantics of the resource in the given resource space. The resource representation
layer describes the detailed semantics of all resources. In the following discussion,
re.ID, re.index and re.SD denote the ID, Index and Semantic-Description of resource
entry re respectively.

Three types of entity integrity constraints for resource entries are presented as fol-
lows. All resource space systems are required to satisfy the first two rules, and the
third one is optional according to application requirement.

Rule 2 (Resource entry constraint 1): Any ID should not be null, and for any two
resource entries re; and re; in the same non-null point, re,.ID # re,.ID holds.

Rule 2 requires that all resource entries in a given non-null point should be distin-
guishable through IDs. This is helpful to guarantee that any operation can precisely
locate the target resource entry.

Rule 3 (Resource entry constraint 2). Any index of a resource entry should not be
null, and for any two resource entries in the same non-null point re; and re,, re;.index
#re,.index.

Rule 3 requires the following two conditions: (1) any resource entry should include
the index information linked to the representation layer, and (2) there should not exist
two different resource entries that have identical index information in a given non-
null point. Otherwise, it will lead to information redundancy and unnecessary mainte-
nance of consistency between resource entries in a given point.

The syntactic structure of index information of resource entries depends on the im-
plementation of resource representation layer. For instance, the XML-based imple-
mentation of resource representation layer usually uses XPath expressions [5],
whereas filenames are often employed for the file-based implementation. To analyze
the indexes of resource entries, not only the syntactic structure but also the semantics
should be considered. For example, the absolute path differs from the relative path
syntactically. However, these two types of paths may represent the same index infor-
mation.

14 H. Zhuge and Y. Xing

Rule 4 (Resource entry constraint 3): Any semantic description SD of resource entry
should not be null, and for any two resource entries re; and re, in the same non-null
point, they are not the same and do not imply each other in semantics (i.e., neither
re;.SD = re,.SD nor re,.SD = re,.SD).

Rule 4 is the entity integrity constraint about the Semantic-Description of a re-
source entry. It is optional and stricter than Rule 3. Since re.SD determines the seman-
tic existence of the resource entries in the resource space, Rule 4 requires that re.SD
should not be null. Furthermore, resource entries in a given non-null point should not
be the same or imply each other in semantics. For example, a resource and its copies
are allowed to coexist in a given non-null point by Rule 3, but not by Rule 4.

4 Membership Integrity Constraint

In relational databases, a tuple can be inserted into a table only if all fields of the tuple
satisfy the corresponding domain constraints. So the membership between the tuple
and the table should be judged before operation. In RSM, a resource space represents
the classification semantics of resources. The existence of resource entry re in point p
means that the resource indexed by re belongs to the type represented by p. A re-
source entry can be inserted into a point by the following operation statement:

INSERT re<ID, index, Semantic-Description>INTO p(C,;;, Cajo, ---, Cyjn)-

Without any restriction, even a resource entry representing a car could be inserted
into the point (Microsoft, Software) of the resource space shown in Fig. 2. So, check-
ing the memberships of resource entries plays an important role in RSM.

Note that RA(RS), RA(C) and RA(p) denote the sets of resources currently stored by
resource space RS, coordinate C and point p respectively. For any resource entry re, if
re has been inserted into the point p, then re € RA(p).

Rule 5 (Membership constraint): Let re<ID, index, Semantic-Description> be a re-
source entry. For any point p(C,;;, Cs;, ..., Cpin) in a given resource space, re €
Rx(p) — re € R(p) holds.

As illustrated in Rule 5, a resource entry re can be inserted into point p only if re
really belongs to the type that p represents. This membership integrity constraint can
avoid incorrect resource classification. When the insert operation or update operation
on resource entries is involved, this constraint should be verified.

S Referential Integrity Constraints

Relational database applications often require that a value appeared in one relation for
given set of attributes should also appear for a certain set of attributes in another rela-
tion. This condition is called referential integrity constraint. In the following, three
types of referential integrity constraints for the RSM are given.

5.1 Referential Integrity for Resource Entries

In RSM, the basic function of a resource entry is to index a certain resource in re-
source representation layer. For any resource entry re<ID, index, Semantic-

Integrity Theory for Resource Space Model and Its Application 15

Description>, re.index represents the index information of the corresponding re-
source. In section 3.2, Rule 3 ensures that re.index is non-null. But it cannot guarantee
that re.index makes sense. This is mainly because some modifications on resource
entries or resource representation layer may cause indexes of resource entries to be
dead links. The following referential integrity constraint is to eliminate dead links.
Rule 6 (Referential constraint 1). For any resource entry re in a given resource space
system, there exists a resource in the resource representation layer which is referred
by the index information (re.index).

The resource space layer is the referencing layer and the resource representation
layer is the referenced layer. Rule 6 guarantees that re.index makes sense for any
resource entry re. This constraint should be checked when the insertion of re or the
update of re.index. When delete operation takes place in the resource representation
layer, this integrity also needs to be checked.

5.2 Referential Integrity Between Resource Spaces

The first type of referential integrity constraint between resource spaces is relevant to
the join operation. In Fig. 3(a), the two-dimensional resource space Price-Com stores
the same type of resources as the resource space Com-Goods (see Fig. 2.). The two
resource spaces have a common axis Companies, so they can be joined together. Fig.
3(b) depicts the resource space Com-Goods-Price created by joining Price-Com and
Com-Goods.

Companies
Vike ==
Price . 7 } 4 : 7 :
p [T H
Coca Colaf—-—A-t—~A-+-—a
high -~~~ @--~-@----9 L LT
e[o -
| | 1 Micrbsofif—-—7A-+4--2-+--4
i > b9 AR SR EDr e
moderate -——— - ———@——— s SR 1
(=105 & £1009) i i i P e -
} : : sc%ﬁwﬁlk Isofpfarel diess oods
// Jllll : 4
Jow F——— @ ———p——— (N CA TR
(= 1‘6;) *‘» |‘7 4‘| moderate
; i i i (108 & = 100§)
I ! | high
- ! - »Companies (=100%)
Microsoft Coca Cola Nike
Price
(a) (b}

Fig. 3. A two-dimensional resource space and a three-dimensional resource space

All resource entries of Com-Goods-Price come from Price-Com and Com-Goods.
Com-Goods-Price provides further classification for these resource entries. With no
doubt, there exists certain referential relation among Com-Goods-Price, Price-Com
and Com-Goods.

Rule 7 (Referential constraint 2). Let RS, RS, and RS be three resource spaces that
satisfy RS|-RS,=RS, then RA(RS) < RA(RS|) U RA(RS>) must hold.

RS is derived from RS, and RS,, and Rule 7 maintains the dependency of RS on
RS and RS,. Thus, when a resource entry is inserted into RS or deleted from RS, or
RS, this constraint should be checked.

16 H. Zhuge and Y. Xing

The second type of referential integrity constraint between resource spaces as-
sumes that the involved resource spaces satisfy the third-normal-form. We first define
the foreign key for RSM.

DEFINITION 7. Let S be a subset of axes of the resource space RS}, and it is not the
primary key of RS;. If there exists another resource space RS, such that R(RS,)
R(RS,) holds and S is the primary key of RS,, then S is called the foreign key of the
resource space RS|. RS, is called the referencing resource space of RS, and RS, is
called the referenced resource space of RS.

According to definition 7, we have the following theorem.

THEOREM 5. Let S = {X|, X,, ..., Xi,} be the foreign key of the referencing re-
source space RS (X, X5, ..., X, X5 ---» Xu), and RS (X, Xo, ..., X, Youts --o5 YD)
be the corresponding referenced resource space. For two non-null points p(Cy, C,, ...,
Cy, Coyt, ..., Cy) and p’(Cy, Cs, ..., Cy, Cryys ..., C’) in RS| and RS, respectively,
R(p) < R(p’) holds.

Proof. It is obvious that R(p’) = R(C}) " R(Cy) N ... " R(C) N R(C’y) N ... N
R(C’)). Because RS, satisfies the third-normal-form [18, 19] and S is the primary key
of RS, R(p’) = R(Cy) N R(Cy) N ... N R(Cy,) holds. Since R(p) = R(C;) N R(Cy) N ...
N R(Cy) N R(Cryp) N ... N R(C,) holds, we have R(p) < R(C;)) " R(Cy) N ... N
R(Cy). So R(p) € R(p’) holds.

The theorem 5 indicates the inclusion relation between the points in the referencing

resource space and their counterparts in the referenced resource space. The following
constraint is to maintain the legal referential relation between the referencing resource
space and its referenced resource space.
Rule 8 (Referential constraint 3). Let S = {X], X5, ..., X;,,} be the foreign key of the
referencing resource space RS (X1, Xo, ..., X, Xitts ---» Xn), and RS>(X, Xo, ..., X,
Y1, --., Yy) be the corresponding referenced resource space. For two non-null points
p(Cl, C2, ey Cm, Cm+1, ey Cn) andp’(Cl, Cz, ey Cm, C,m+1, ey C,[) in RSl and RSQ
respectively, Rx(p) < Ra(p’) holds.

Rule 8 guarantees that if a resource entry re appears in a point p in the referencing
resource space, then re must exist in the counterpart of p in the referenced resource
space.

6 User-Defined Integrity Constraints

Any resource space systems should conform to entity integrity constraints, member-
ship integrity constraints and referential integrity constraints. In specific applications,
different resource space systems should obey different context-relevant constraints.
These constraints are called user-defined integrity constraints. Here introduces three
frequently used types of user-defined constraints. Two resource spaces shown in Fig.
4 are used to illustrate the user-defined and application-relevant integrity constraints.
In Fig. 4(a), the resource space Age-Gender is used to accommodate employees’ in-
formation. Every point classifies these employees by their age and gender. In Fig.
4(b), resource space Tutor-Class is used to represent students’ information. Each
point of Tutor-Class classifies these students by their tutor and class information.

Integrity Theory for Resource Space Model and Its Application 17

Age Tutors
4 A
(Z50&E 60— ——— ,— _____ -? T, ____’____Q____Q
I I I I I
I I I I I
(308 <SD)-—— -~ &*-————- - T, f-—=O-—=0----®
T T
(218 & <30 ————— - -+ T, F-—=O————--0
I I I | I
I I I I I
! ! > Gender 1 L L—» Classes
Male Female C, C,)
(a) (b)

Fig. 4. Examples of two-dimensional resource space

6.1 Value-Based Constraint

This type of user-defined constraints requires the attributes’ values in resource de-
scription to satisfy some rules. Function GetValue(attr) returns the value of attribute
attr specified in the Semantic-Description of a certain resource entry. This type of
constraints can be described as follows:

<Constraint expression> = <Operand> <Relation-Op> <Operand> |
<Constraint expression> \ <Constraint expression> I
<Constraint expression> A <Constraint expression> I

— <Constraint expression>;
<Operand> ::= GetValue(attr) | user-defined-constant-value;

<Relation-Op> :=<I1>1=1<121=.

Take Fig. 4(a) for example, if the designer requires that any male employee should
not be older than 70 and female should not be older than 60 in Age-Gender, then this
user-defined constraint can be described as follows:

For any resource entry re,

(GetAttribute(gender) = “male” A GetAttribute(age) < 60) v
(GetAttribute(gender) = “female” A GetAttribute(age) < 55) holds.

Before the resource entry re can be inserted into Age-Gender or updated, the sys-
tem should check whether the above constraint has been violated.

6.2 Resource-Entry-Based Constraint

In some applications, semantic relations among resource entries should be considered.
Operations on a resource entry may require other operations on semantically relevant
resource entries. This type of user-defined constraints is called resource-entry-based
constraint. For example, RS is a resource space that contains all registration informa-
tion of students in a school and RS’ is a resource space that contains all health infor-
mation of these students. Let re be the resource entry representing a student’s registra-
tion information and re’ be the resource entry representing his/her health information.
The health information depends on the valid registration information, i.e.,
re’e RA(RS’) — ree R,(RS) must hold. So this constraint should be checked before
the insertion of re’ or after the deletion of re.

18 H. Zhuge and Y. Xing

6.3 Point-Based Constraints

As resource sets, points are often required to satisfy some application relevant rules
from the viewpoint of set theory. Take Fig. 4(b) for example, suppose that a class has
only one tutor in Tutor-Class and that each tutor is in charge of only one class. For
any T, there at most exists one Cj such that RA(p(T;, Cy)) # &, and for any C,, there at
most exists one 7, such that R (p(T,, C.)) # <. We define function

Nouli(p)=| > P2
O 0, Ru(p)=0

and use pj; to denote the point p(T;, Cj). Then, this con-

straint can be formally represented as: Vi(i NotNull(pi)<1) A

J=

3
vj(z NotNull(pi) <1) - Thus, before any student information can be inserted into
i=1
Tutor-Class, the system needs to check whether the above constraint is violated or
not.

7 Implementation

A resource space system includes functions for resource space definition, manipula-
tion and system management. Its underlying metadata and data structure use XML
and XML schema as shown in Fig. 5. An xml schema rsm-schema given at
kg.ict.ac.cn/rsm/rsm-schema.xsd specifies the generic definitions of resource space
such as resource space, axis, coordinate, and integrity constraint. The domain re-
source space schema is the derivation of the rsm-schema. Resource spaces can be
specified by the XML files, which are regulated by domain specific schemas. The
following statement defines resource spaces:

create resource_space rsname (
(axis_name(coor_namel[, coor_namel]...)
[, axis_name(coor_name|, coor_name]...)]...)
primary key (axis_namel, axis_name]...)
[no_sem_duplication]
[[foreign key (axis_name[, axis_name]...) references rsname]...]
[join_ref (rsnamel[, rsname]...)]
[[check expression]...]

)

The users and applications can define the schemas of resource spaces and specify
which optional constraints these resource spaces should obey besides the required
ones. The clauses “no_sem_duplication”, “join_ref (...)”, “foreign key (...) refer-
ence...”, and “check...” represent that the target resource space should comply with
the entity constraint on entry semantic description, the Join operation relevant refer-
ence constraints, the foreign key based reference constraints and the user-defined

Integrity Theory for Resource Space Model and Its Application 19

Resource Space Layer

XML files representing specific
Resource Resource | | | Resource | | | Resonrce Spaces with resources
Space I Space Space
| | |
; 1
Specii % Speci Spec XML schemas de.ﬁning specific
Resource Resource | | | Resource | | | Resouirce Space Schemas
Space Schemal [~ Space Schem: Space Schem:

XML schema (rsm-schema)

Generic Definition implementing the generic
of Resource Space definition of Resource Space

Fig. 5. The implementation of the Resource Space

constraints respectively. Here demonstrates how the integrity constraints of RSM are
expressed in the rsm-schema of the resource space system.

Point Constraint. The following XML definition defines the axes of RSM. The state-
ment “<xs:attribute name="iskey" type="xs:boolean"/>" defines a flag for each axis
from which the resource space system can judge whether a certain axis is one of the
primary axes of a resource space. Therefore, the resource space system can determine
the primary key of a given resource space.

=xs:icomplexType name="rsm; Axis">
“XSISCOUEnce
<xs:element ref="rsm:coorHierarchy" maxOccurs="unbounded"/>
<l-- rsm:coorHicrarchy represents the definition of coordinate hicrarchy =
</xs:sequence=
<xs:attribute name="axname" type="xs:string" use="required"/>
<xs:attribute name=""iskey" type="xs:boolean"'/>
<fxs:complexType>

Resource Entry Constraint. The first part of the following definition is the entry in
rsm-schema: <ID, Index, Semantic-Description>. In the second part, each point of a
resource space consists of a number of resource entries. The code in bold has defined
two types of “xs:key” in “point”. Therefore, the resource space system makes use of
the feature of “xs:key” in XML schema to guarantee the uniqueness of ID and Index
of resource entries respectively. Since resource entry constraint 3 is optional, the third
part has defined a boolean variable “IC-sem-entry” through which the resource space
system can determine whether a resource space need to keep this semantic description
constraint.

20 H. Zhuge and Y. Xing

<xsicomplexType name="Entry™>
<Xsisequence=
<xs:element ref="rsm:entrylD"/>
<xs:element ref="rsm:entryIndex”/>
<xs:element ref="rsm:entrySD"/>
</xsisequence=
<ixsicomplexType>
<xs:complexType name="Point">
<Xs:sequence=
<xs:clement re="rsm:axes'/>
<xs:clement ref="rsmzentry" minOccurs="0" maxOccurs="unbounded"/>
</xsIsequence=
</xs:complexType=
<xs:element name="point” type="rsm:Point">
<xs:key name=""KeyOfEntryID">
<xs:selector xpath="rsm:entry”/>
<xs:field xpath="rsm:entrylD"/>
</xs:key>
<xs:key name="KeyOfEntryIndex”>
<xs:selector xpath="rsm:entry”/>
<xs:field xpath="rsm:entryIndex”/>
<fxs:key=
</xsielement=
<xs:simpleType name="1C-sem-entry">
<xs:restriction base="xs:boolean" />
</xs:simpleType>

Membership Constraint guarantees a resource entry to fall into the proper point in a
resource space. Although there is no corresponding code to reflect the membership
constraint in the rsm-schema, the resource space system can provide a mechanism to
make sure that all resource spaces obey this constraint. Before a new resource entry is
inserted into a point or after an existing resource entry of a point is updated, the re-
source space system needs to retrieve the corresponding features of the resource over
the point to check whether the resource belongs to this point. If the membership con-
straint is violated, the insert or update operation should be cancelled.

Reference Constraint. The reference constraint 1 requests that the resource entity
corresponding to the index of a resource entry in a resource space must be represented
in the resource representation layer. Once modification to URIs of resource entities in
the representation layer or to the indices of resource entries takes place, the resource
space system needs to check whether the reference constraint 1 is violated.

As for the reference constraints 2 and 3, using the code in bold in the first part of
the following XML schema definition, the resource space system can record the refer-
ence relationship between resource spaces. Thus, once resource entries are inserted
into referring resource spaces or removed from referred resource spaces, the resource
space system will check whether the referring resource spaces and the referred re-
source spaces are compatible with the reference relationship.

Integrity Theory for Resource Space Model and Its Application 21

<xs:simpleType name="RefSpace™>
<xs:restriction base="xs:anyURI"/=
</xs:simpleType>
<xs;complexType name="1C-ref~join™>
<XsISEqUence
<xs:element name="joiningSpace™ type="rsm:RefSpace”/>
<xs:clement name="joiningSpace” type="rsm:RefSpace”/>
</xssequence™
</xs:complexType=
<xs:complexType name="I1C-foreign™>
CRSIEeQUenee
<xs:element name="foreignSpace” type="rsm:RefSpace”/>
</xs:sequence™
</xs;complexType=

=xs:complexType name="IC-userdefined">
CXSBCQUenCe
<xs:element ref="rsm:check" minOccurs="0"
maxOccurs="unbounded" />
</xssequence=
</xs:complexType=
User-defined Constraint. In the second part of above XML schema definition, the
resource space system uses “rsm:check” elements to record all the user-defined con-
straints a resource space should comply with. Once any of these constraints is broken,

the resource space system should cease the operations. The following is the definition
of “Constraint” element in rsm-schema.

<xs:complexType name="Cuonstraint"=
<X§5equences
<xs:element name "ic-sem-entry” type"rsm:lC-sem-entry"/=
<xs:element name - "ie-ref-join” type"rsm:1C-ref-join” minOccurs-"0"
maxCecurs= "unbounded"/>
<xs:element name ie-foreign” type “rsm:1C-foreign" minOccurs"0"
maxOceurs- "unbounded"/=
<xs:element name "ic-userdefined” type- "rsm:|C-userdefined” minOceurs "0/
</Rasequences
</xs:complexType=

Where the element “Constraint” is defined to totally specify which optional con-
straints should be complied with besides the required ones. The optional constraints
include entity constraint about entry semantic description (“ic-sem-entry”), Join op-
eration related reference constraints (“ic-ref-join”), foreign key based reference con-
straints (“ic-foreign”), and user-defined constraints (“ic-userdefined”).

8 Application in Dunhuang Culture Exhibition

Dunhuang of west China includes over 1000 ancient caves containing precious wall-
painting and color statues. Our project Dunhuang Culture Grid is to exhibit the arti-
facts on the Internet by using the technologies of animation, virtual reality and the

22 H. Zhuge and Y. Xing

Knowledge Grid [19]. The fundamental work is to establish the resource spaces for
the artifacts in caves and to set their integrity constraints. Fig. 6 illustrates the re-
source space modeling of a cave in contrast to the relational modeling. The resource
space is based on classification semantics. A point in a well-defined resource space
uniquely determines a class of artifacts.

Relational Tables

Artwork
.-'\rl]mL')ork Location | Dynasty | Type Status
Vall-Painti . _— <
Dunhuang Wall-Painting Construction Color-Statue
Cave No. 285 ..\rl]\;;:rrk Content Fresco .'\rL[v[;)urk Type C un;m;clmn ;’\rl‘\z-urk Material | Statue Style
Relationa tyle y
Model
Modeling
Location
A
TTATT AT T A
RSM Egf] - s
[y dwten shytetm I
e A= 1A
s -
L P S -
_sq'ﬁm-,— L= _jl_ __.? _)I
P e -
M“‘—T J;_f_— "Ir —— _f_;{_ - /: (}:D
s +’—I——+—’—l——+/|
L - Ceiftug] A A
Wall-painting S A S
g Zho e avm Conpuation_|Golor Type Definitions of
}}ui)j‘ i = ilita (Tm%@ T T T T Shatue “ Resource Space
Dyvna & g Schemas
yrasty Gieneric Definition o
Medicine Resaurce Space
Education,
Content Conceptual Resource Spaces Implementation

Fig. 6. RSM modeling in contrast to relational modeling

The Dunhuang culture resource space schemas derived from the rsm-schema are
given at kg.ict.ac.cn/rsm/dh/rsm-dunhuang.xsd. Here uses two resource spaces of the
system to illustrate how to define the integrity constraints for resource spaces. The
resource space fresco-285 is to specify all the wall-paintings in cave no. 285. The
following is the creation statement:

create resource_space fresco-285 (
(dynasty(Wei, Zhou, Sui, Tang),
location(east, south, west, north),
status(spoilt, maintained, available)
)
primary key (dynasty, location, status)
no_sem_duplication

)

All its dimensions dynasty, location and status constitute the primary key. This re-
source space also requires that the entity constraint about the entry semantic descrip-
tion needs to be maintained. A resource space flying-deity-285 described below is to
manage the unspoiled flying deities in cave no. 285.

Integrity Theory for Resource Space Model and Its Application 23

create resource_space flying-deity-285 (
(dynasty(Wei, Zhou, Sui, Tang),
location(east, south, west, north),
status(spoilt, maintained, available),
flying-style(childish, naked, flowered)
)
primary key (dynasty, location, status, flying-style)
no_sem_duplication
foreign key (dynasty, location, status) references fresco-285
check status#’spoilt’

)

flying-deity-285 has four dimensions: dynasty, location, status and flying-style,
they constitute the primary key. The axes dynasty, location and status are the foreign
key that results in the reference from flying-deity-285 to fresco-285. A user-defined
constraint “status#’spoilt’” has been defined to indicate that flying-deity-285 can only
contain the unspoiled flying deities.

status status

4
available fr === === —g————F;,———= available f-—— = = ———7———-,
- A i ATTTA - A i A
N] A
Yy RS Rashdl
maintqinedt ———A-4-—A—+——p - - maintdinedg-———A—t——A -+ ——
L N R P N | L A P]
|//#|¥|I/I-‘//‘ [R T
[EO B "G P "SR Y LGN P G VS P ¥4
3 I d
P,'u",lr/rr/“ Fr}mT/\Irﬂ
e el
e —A-g--+—@--F - —-g—+
1 1 | ! | Tocati ! | 1 Fly .
| \Casy Nty Wesp? Morhy > location [ying-s
L [[[1.
Wei/ 42 1011
Tang
dynasty dynasty
e @ e ®)

Fig. 7. The resource space fresco-285 (a) and a slice of the resource space flying-deity-285(b)

Fig. 7 (b) corresponds to the west coordinate in the axis location. The integrated
XML files representing fresco-285 and flying-deity-285 are available at
kg.ict.ac.cn/rsm/dh/fresco-285.xml and kg.ict.ac.cn/rsm/dh/flying-deity-285.xml.

9 Conclusion

Based on our resource space model RSM, this keynote proposes the integrity theory
for RSM. It is the basis for guaranteeing the correctness of operations on resource
spaces. The implementation approach and application in culture area demonstrate its
usability. More background and practice on Dunhuang Cultural Grid and Knowledge
Grid are available at www.culturegrid.net and www.knowledgegrid.net. We are in-
vestigating the integrity on a new semantic model integrating RSM with SLN (a Se-
mantic Link Network model [19]).

24

H. Zhuge and Y. Xing

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

. Abiteboul, S., Hull, R. and Vianu, V.: Foundations of Databases. Addison-Wesley, Read-

ing, MA (1995).

Berners-Lee, T., Hendler, J. and Lassila, O.: Semantic Web. Scientific American, 284 (5)
(2001) 34-43.

Bray, T., Paoli, J. and Sperberg-McQueen, C.M.: Extensible Markup Language (XML)
1.0. W3C Recommendation, February 1998. www.w3.org/TR/REC-xml/.

Buneman, P. et al.: Keys for XML. In: Proceedings of International World Wide Web
Conference, WWW10, Hong Kong, 1-5 May 2001.

Clark, J. and DeRose, S.: XML Path Language (XPath). W3C Working Draft, November
1999. www.w3c.org/TR/xpath.

Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Communications of
the ACM, 13 (6) (1970) 377-387.

Codd, E.F.: Extending the Database Relational Model to Capture More Meaning. ACM
Transactions on Database Systems, 4 (4) (1979) 397-434.

Date, C.J.: Referential Integrity. In: Proceedings of International Conference on Very
Large Data Bases, Cannes, 9-11 September 1981.

Davidson, A. et al.: Schema for Object-Oriented XML 2.0. W3C Note, July 1999.
www.w3c.org/TR/NOTE-SOX.

Eswaran, K.P. and Chamberlin, D. D.: Functional Specifications of a Subsystem for Data-
base Integrity. In: Proceedings of International Conference on Very Large Data Bases,
Framingham MA, 22-24 September 1975.

Fan, W. Kuper, G. and Simon, J.: A Unified Constraint Model for XML. In: Proceedings
of International World Wide Web Conference, WWW10, Hong Kong, 1-5 May 2001.
Hammer, M.M. and Mcleod, D.J.: Semantic Integrity in a Relational Data Base System.
In: Proceedings of International Conference on Very Large Data Bases, Framingham MA,
22-24 September 1975.

Layman, A. et al.: XML-Data. W3C Note, January 1998. www.w3c.org/TR/1998/NOTE-
XML-data.

Ramakrishnan, R. and Gehrke, J.: Database Management Systems. McGraw-Hill Higher
Education, New York, 2000.

Stonebraker, M.: Implementation of Integrity Constraints and Views by Query Modifica-
tion. In: Proceedings of ACM-SIGMOD International Conference on the Management of
Data, San Jose CA, 14-16 May 1975.

Thompson, H.S. et al: XML Schema. W3C Working Draft, May 2001.
www.w3c.org/XML/Schema.

Zhuge, H.: Resource Space Model, Its Design Method and Applications. Journal of Sys-
tems and Software, 72 (1) (2004) 71-81.

Zhuge, H.: Resource Space Grid: Model, Method and Platform. Concurrency and Compu-
tation: Practice and Experience, 16 (14) (2004) 1385-1413.

Zhuge, H.: The Knowledge Grid, World Scientific, Singapore, 2004.

Zhuge, H., Yao, E., Xing, Y. and Liu, J.: Extended Normal Form Theory of Resource
Space Model. Future Generation Computer Systems, 21 (2005) 189-198.

Challenges of Grid Computing*

Hai Jin

Cluster and Grid Computing Lab,
School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, 430074, China
hjin@hust.edu.cn

Abstract. Grid computing, being a promising way for distributed supercomput-
ing from its very beginning, attracts many attentions worldwide. Many national
or regional grid computing projects come into attention. Although lots of fruit-
ful results are obtained through such huge projects, grid computing is still far
way from what we expect, using all kinds of resources and services over the
internet just as using public utilities like water and electricity. There are lots of
challenges for grid computing, both from technical point of view and from non-
technical point of view. Also, there are quite a few barriers from grid computing
being widely accepted by ordinary end users. In this talk, detail discussions of
these challenges and barriers for the development and usage of grid computing
are listed. The purpose of this talk tries to point out that grid computing still has
long way to go to be more accepted not only by scientists but also by ordinary
end users.

1 Introduction

Just one day before 911 event, a paper appeared in the Forbes ASAP [23], stated that
the second generation of the Internet would happened in 2004 or 2005, and it would
become a $20 trillion industry by the year 2020. The key for Internet II is Great
Global Grid instead of World Wide Web. Unlike the current World Wide Web, the
Great Global Grid will be primarily a visual medium. The grid will be everywhere in
our daily lives--automobile dashboards, wristwatches, PDAs, cell phones, appliances,
game boys, cash registers, even on the walls of public spaces.

Actually, the idea of grid computing can be traced back to metacomputing [14].
With the appearance of Globus [13][14], more and more attentions are put to the grid
computing [1][3][15][17][21][25][31]. Grid computing visions to have all the re-
sources and services over internet as a utility just like the way we use electricity and
water. We need not to know the source of information, just as we do not know the
power station. We need not to know the type of machines providing the information,
just as we do not know the type of electricity.

There are lots of potential applications of grid computing. Besides traditional dis-
tributed supercomputing, such as TeraGrid [35], IPG [26], GIG [22], UK e-Science

This work is supported by National Science Foundation under grant 60125208, 60273076
and 90412010, ChinaGrid project from Ministry of Education of China, National 863 Hi-
Tech R&D Research Program under grant 2004AA104280, and National 973 Basic Research
program under grant 2003CB317003.

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 25 2005.
© Springer-Verlag Berlin Heidelberg 2005

26 H. Jin

[38], and ChinaGrid [6][20][39], computer supported cooperative work (CSCW),
high throughput computing with massive simulation and parameter study, remote
low-cost software access or software leasing, data intensive computing, such as Euro-
pean DataGrid project [8], and on-demand computing are all the promising driven
forces for grid computing. Grid computing will evolve over the next 10 years into a
mainstream IT infrastructure for business applications.

2 Challenges of Grid Computing

Although it seems promising to use grid computing to eliminate the resource islands
and to provide transparent way to access resources and services over internet, we till
know still could not see the very perspective of using grid computing. Some even
states that grid computing rates a 6.5 on a scale of 10 on the hype meter [11]. Till
now, we could not have the "dial tone" of the world's aggregating computing power,
but the resources for that capability have already existed. But lots of enterprises are
able to leverage existing excess computing power through private grids. In maybe five
years, we may see massive public grids on controlled basis--meaning inside a VPN or
a secure environment [11].

To achieve above goals, we need to analysis the current challenges and barriers in
developing, deploying, promoting, and using of grid computing. In this talk, I briefly
list the following challenges for possible discussions and researches. This talk are
based on my discussions with various peoples, including grid middleware developers,
grid administrators, grid application developers, and grid users.

Challenge 1: There is no clear standard to follow

In order to masks the heterogeneous features of different resources in grid environ-
ment, standard is the very first thing needs to be worked out. From the very beginning
of Global Grid Forum (GGF) [12], standard is the most important task for GGF. Till
now, Open Grid Systems Architecture (OGSA) [29][37] is now accepted by more and
more people, more and more voices from industries advocate Web Services Resource
Framework (WSRF) [7]. Even though, there are still different tones for the future
standards of grid computing. Without the widely accepted standards, the more grid
applications are developed, the more resource islands will incur.

Challenge 2: Still lots of debate on what grid computing is, and what is not
From the very beginning of grid computing, the definition or the scope of grid com-
puting has been constant changing. One popular the definition from Globus team is
that grid computing “enables coordinated resource sharing and problem solving in
dynamic, multi-institutional virtual organizations” [17]. But due to the challenge 4
below, more and more people in grid computing area turn their attention from grid
computing to services computing. Also with the success stealing of individual com-
puter cycles, more and more peer-to-peer style computing paradigm are utilized to
fulfill the requirement of high throughput computing, such as SETI@Home [33].
Now, more and more debates are raised for what indeed the grid computing is.
Maybe the following words from UK Prime Minister Tony Blair are a possible under-
standing of what the grid computing from ordinary users, grid “intends to make ac-

Challenges of Grid Computing 27

cess to computing power, scientific data repositories and experimental facilities as
easy as the Web makes access to information” [4].

Challenge 3: Grid application development is still difficult

Although there are some efforts working on how to provide users interface for grid
computing, the development of grid application is still very difficult and expensive.
These interfaces are not designed for grid application developers. Most of grid appli-
cations are implemented with the help of computer scientists case by case. This in
some senses embarrasses the widely use of grid computing. To provide a MPI-like
grid application programming language is not enough, as many scientists are not fa-
miliar with parallel programming language, and more and more grid applications are
not scientific computing anymore. The ideal way for the grid computing application
development is to use drag-and-play fashion. To achieve this goal, a suite of grid
application development toolkit is needed.

Challenge 4: Application area is limited and significant applications are lacked
For most scientific applications, more and more super clusters can meet the require-
ments of applications. For medium size scientific computations, it is much easier and
efficient to own and use a local super cluster. For special applications, such as global
weather modeling and bioinformatics, a special designed super computer is needed,
such as Earth-Simulator [9], Blue-Gene [5].

Due to the network latency and delay, a global super computer is not the most op-
timized project than others in performance/price ratio. Especially for data processing
over the grid, it is much more cost-effective to build a data center other than using
dataset remotely, as data storage is inexpensive than data transfer. Services computing
[10][19] could be a possible killer application style for the future grid computing, as
services are a much easier way to use than to own.

Challenge 5: Lots of efforts should be done to make a software package or a
service useable over grid

One major resource for the researchers is existing software package. Many existing
software packages are running on a dedicate platform, such as SMP cluster, or over a
dedicate operating system. Sometimes, it is very difficult to have them reusable over
grid environment due to various reasons, such as lack of source code, copyright is-
sues. Although there are some software vendors put their efforts on this issue, such as
Oracle 10g [30], this figure with grid-enable software packages is far behind the de-
velopment of grid middleware. For the time being, these software packages are en-
capsulated into a grid services so that requests to these software packages can be re-
directed to the grid node providing the services. Although this method solves the
problem in some extend, in order to have more collaborative researches over grid, one
important effort needed is to have more and more software packages have their grid
versions.

Challenge 6: Centralized management of grid computing

Currently, most of grid computing projects are in centralized management scheme.
This is due to two main reasons. The first is that for most grid projects, participant
organizations or institutions are limited, centralized management can be easily used to

28 H. Jin

manage all the resources and services within a grid domain. The second is most grid
middleware use “publish-find-bind” web services scheme [40]. All the resources and
services need to be registered to the Universal Discovery, Description and Integration
(UDDI) center. This UDDI center becomes the central management point of grid
system.

This single domain scheme restricts the scalability of grid entities joining the ef-
fort, and also will be the single point of failure of the whole grid system. ChinaGrid
Support Platform (CGSP) [20] from ChinaGrid project is a first step towards multi-
domain web services architecture. Therefore a domain manager is the key design
philosophy in CGSP. Each domain manages the resources and services within the
domain, and all the domain mangers among all the domains work collaboratively to
exchange information and scheduling resources.

Challenge 7: Lack of resource sharing between variant types of services

Each type of service has its own standard and protocol. Major grid computing appli-
cations only provides one type of service at present. This is because of several rea-
sons. One reason is that most grid applications are developed for different areas. Dif-
ferent grid applications have different focus, sharing computing power, or sharing
data/databases. The other reason is that different grid applications using different
platforms. The resources or services for a particular grid platform could not be shard
by other grid platforms. WSRF is a major effort to standardize the grid platform and
the way to encapsulate and publish resources and services among different grid plat-
form. But still, more and more computation oriented or data processing oriented grid
applications still doubt the efficiency of using web services for computation and data
processing.

Challenge 8: Lack of security/trust between different services

The US Department of Energy (DoE) Office of Advanced Scientific Computing Re-
search published a report which provides a good summary of the requirements for
grid security [2]. The grid requires a security infrastructure with the following proper-
ties: ease of use by users; conformation with the VO security needs while at the same
time working well with site policies of each resource provider site; provisions for
appropriate authentication and encryption of all interactions.

The Grid Security Infrastructure (GSI) [16] and MyProxy [27] are two primarily
important works for the grid security. But the two-party authentication protocols of
GSI do not provide an adequate solution to group oriented grid security applications.
GSI cannot easily achieve a common key for a VO wide encrypted communication.
Additionally, they do not have a inherent means for realizing behavior control for a
remote user and its client system environment. For example, consider that WS-
security [28] can achieve message encryption between a resource provider and a user.
However, there is no way for a stakeholder in the resource provider to know whether
or not the remote client environment is compromised (perhaps by a malicious code)
even though it knows that such a compromise is equivalent to the nullification of the
channel encryption service [24]. Trusted computing [36], which is an integrity protec-
tion of resources naturally, suits the security requirements for grid computing or sci-
ence collaborations.

Challenges of Grid Computing 29

Challenge 9: Business model of grid is ambiguous

On-demand computing is often used as an example of a business model that can be
used for grid computing. The model is that computing power is offered by companies
or centers with idle computing power to companies that need computing power. This
would be one of the first areas, where grid computing would have a major impact on
business. Due to the network costs, this is not a good model in general [18]. Only for
very compute intensive applications, like rendering, it makes sense. In most other
cases, a Beowulf cluster [34], with faster network connections than WANSs, is a more
inexpensive choice. For 1 US$ one can get 1 GB sent over the WAN, or 10 Tops tera-
CPU instructions, or 8 hours of CPU time, or 1 GB disk space, or 10 M database
accesses, or 10 TB of disk bandwidth. It is fine to send a Gbyte of data over the net-
work if it saves years of computation. But it is not economic to send a Kbyte question
if the answer could be computed locally in a second. On-Demand computing is only
economical for very CPU-intensive applications: about a CPU-day per Gbyte of net-
work traffic.

Challenge 10: Management and administration of grid is the most challenged one
All above challenges are technical issues for grid computing. However, grid comput-
ing is not only a technical concern. It is a huge project across many organizations and
institutes in a geographically distributed environment. Therefore, management and
administration of grid computing is the key to the success of grid project, especially
when the design purpose for grid computing project is a production grid. UK e-
Science program [38] gives us a good example of how to setup national grid center
and regional grid center, as well as some grid functional center, such as grid R&D
center, grid support center, grid training center, grid software verification center.

Also, there are huge resources and services existing in the grid environment. All
these resources and services needed to be manageable. There are lots of software
packages for monitoring the hardware resources, but seldom has functionality of
monitoring services over the grid environment. How to monitor and manage these
services efficiently and in real-time within grid domain is also a challenge.

3 Conclusion

In this paper, several key issues of the challenges and barriers for grid computing
have been addressed. In one word, there is a long way to go for grid computing being
widely accepted by end users. To end of this paper, I would like to quote a very inter-
esting passage from [32] to state the metrics for the success of grid computing:

The Grid can be considered a success when there are no more “Grid” papers, but
only footnote in the work that states, “This work was achieved using the Grid”.

The Grid can be considered a success when a supercomputer centers do not give a
user the choice of using their machines or using the Grid, they just use the Grid.

The Grid can be considered a success when a SuperComputing (SC) demo can be
run any time of the year.

Besides the above metrics, I would like to add two more metrics to further extend
the success of grid computing from scientific computation area to service computing
area:

30

H. Jin

The Grid can be considered a success when it becomes a common tool to build

various applications, and just like webpage, the people using grid to deign their appli-
cations are not computer scientists.

The Grid can be considered a success when a software package or a service can

just be uploaded to the grid and become a grid wide service just like we use memory
sticks, although they are produced from different manufactures, they can be immedi-
ately recognized by various computers.

References

1.

2.

11.
12.
13.
14.
15.

16.

17.

18.
19.
20.

21.

A. Abbas, Grid Computing: A Practical Guide to Technology and Applications, Charles
River Media, 2003.

D. Agarwal, R. Bair, et. al., National Collaboratories Horizons, Report of the August 10-
12, 2004, National Collaboratories Program Meeting, the U.S. Department of Energy Of-
fice of Science.

F. Berman, G. Fox, and A. J. G. Hey (eds), Grid Computing: Making The Global Infra-
structure a Reality, John Wiley & Sons, 2003.

Tony Blair Speech, Science matters, http://www.number-10.gov.uk/output/Page1715.asp,
April 10, 2002.

The Blue Gene Project, http://www.research.ibm.com/bluegene/.

ChinaGrid, http://www.chinagrid.edu.cn.

K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D. Snelling, S.
Tuecke, and W. Vambenepe, The WS-Resource Framework, http://www.globus.org/wsrf/
Data Grid Project WP1, “Definition of Architecture, Technical Plan and Evaluation Crite-
ria for Scheduling, Resource Management, Security and Job Description”, Datagrid
document DataGrid-01-D1.2-0112-0-3, 14/09/2001.

The Earth Simulator Center, http://www.es.jamstec.go.jp/.

T. Erl, Service-Oriented Architecture: A Field Guide to Integrating XML and Web Ser-
vices, Prentice Hall PTR, 2004.

D. Farber, “Grid computing rates a 6.5 on the hype meter”, Tech Update, May 15, 2002.
Global Grid Forum, http://www.ggf.org.

Globus, http://www.globus.org.

I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit”, Interna-
tional Journal of Supercomputer Applications, Vol.11, No.2, pp.115-128, 1997.

I. Foster and C. Kesselman (eds.), The Grid 2: Blueprint for a New Computing Infrastruc-
ture, Morgan Kaufmann Publishers, 2003.

L. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A security architecture for Computa-
tional Grids”, Proceedings of 5th ACM Conference on Computer and Communications
Security, pp.83-92, 1998.

I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations”, International Journal of High Performance Computing Applica-
tions, 15 (3), 200-222, 2001.

J. Gray, “Distributed Computing Economics”, GRIDtoday, Vol.2, No.29, July 21, 2003.
IEEE Services Computing Community, https://www.ieeecommunities.org/services.

H. Jin, “ChinaGrid: Making Grid Computing a Reality”, Digital Libraries: International
Collaboration and Cross-Fertilization - Lecture Notes in Computer Science, Vol.3334,
Springer-Verlag, December 2004, pp.13-24.

J. Joseph and C. Fellenstein, Grid Computing, Prentice Hall PTR, 2003.

22.

23.
24.

25.

26.
217.

28.

29.

30.
31.

32.

33.
34.

35.
36.
37.

38.
39.

40.

Challenges of Grid Computing 31

M. Libicki, Who Runs What in the Global Information Grid: Ways to Share Local and
Global Responsibility, RAND, 2000.

M. S. Malone, “Internet II: Rebooting America”, Forbes ASAP, Sept. 10, 2001.

W. Mao, “Innovations for the Grid Security from the Trusted Computing”, Technical Re-
port, Hewlett-Packard Laboratories, Feb. 2005.

D. Minoli, A Networking Approach to Grid Computing, Wiley-Interscience, 2004.

NASA Information Power Grid, http://www.ipg.nasa.org.

J. Novotny, S. Teucke, and V. Welch, “An Online Credential Repository for the Grid:
MyProxy”, Proceedings of the Tenth International Symposium on High Performance Dis-
tributed Computing (HPDC-10), August 2001.

M. O'Neill, Web Services Security, McGraw-Hill Osborne Media, 2003.

Open Grid Services Architecture,
http://www.ggf.org/Public_Comment_Docs/Documents/draft-ggf-ogsa-specv1.pdf.

Oracle 10g, http://www.oracle.com/database/index.html.

P. Plaszczak and Jr. R. Wellner, Grid Computing: The Savvy Manager's Guide, Morgan
Kaufmann, 2005.

J. M. Schopf and B. Nitzberg, “Grid: The Top Ten Questions”, Scientific Programming,
Special Issue on Grid Computing, 10(2):103-111, August 2002.

SETI@Home, http://setiathome.ssl.berkeley.edu/.

T. Sterling, J. Salmon, D. J. Becker, and D. F. Savarese, How to Build a Beowulf: A Guide
to the Implementation and Application of PC Clusters, MIT Press, 1998.

The TeraGrid Project, http://www.teragrid.org/.

Trusted Computing Group, https://www.trustedcomputinggroup.org/.

S. Tuecke, Kzajkowski, 1. Foster, J. Frey, S. Graham, C. Kesselman, D. Snelling, and P.
Vanderbilt, Open Grid Services Infrastructure, February 17, 2003.

UK e-Science Programme, http://www.rcuk.ac.uk/escience/.

G. Yang, H. Jin, M. Li, N. Xiao, W. Li, Z. Wu, Y. Wu, and F. Tang, “Grid Computing in
China”, Journal of Grid Computing, Vol.2, No.2, June 2004, pp.193-206.

O. Zimmermann, M. R. Tomlinson, and S. Peuser, Perspectives on Web Services: Apply-
ing SOAP, WSDL and UDDI to Real-World Projects, Springer, 2005.

BBTC: A New Update-Supporting Coding Scheme for
XML Documents

Jianhua Feng, Guoliang Li, Lizhu Zhou, Na Ta, Qian Qian, and Yuguo Liao

Department of Computer Science and Technology, Tsinghua University, Beijing, China
{fengjh, liguoliang, dcszlz}@tsinghua.edu.cn
{dan04, ggpeter99, liaoyg03}@mails.tsinghua.edu.cn

Abstract. The identification of parent-child or ancestor-descendant relationship
between XML elements plays a crucial role in efficient XML query processing.
One popular method is to code each node in the XML document tree. However,
its main problem is that either lacks the ability to support XML documents
update or need huge storage space. This paper proposes a new update-supporting
coding scheme based on binary-tree to identify the ancestor-descendant
relationship or the parent-child relationship in constant time bound, which also
effectively supports XML documents update. To reduce the coding space, we
then propose a new storage approach, Blocked Binary-Tree Coding scheme
(BBTC), whose average code length reduces to O(log(n)). Our extensive
experiments show that BBTC significantly outperforms previous ones.

1 Introduction

As huge amount of XML (eXtensible Markup Language) data emerge rapidly, the use
of XML is not limited to interpret and operate the documents from the Web. How to
effectively store and query these XML documents becomes an important issue. A
number of query languages have been proposed for querying XML documents, e.g.,
Lore[1], XML-QL[2], XPath[3], XQuery[4], and so on. One of their core techniques in
common is the use of path expressions to express and search user-defined structure
modes to implement structure query of XML. Series of XML coding schemes have
been brought forward for the query esp. structure query of XML documents [5]. Instead
of traversing the whole original document, each node in the document tree is assigned a
unique code so that the parent-child or ancestor- descendant relationship of element
nodes and attribute nodes in the tree can be worked out directly. Therefore, query of
XML can be converted to structure join by coding schemes.

However, there are problems with these recently suggested XML coding schemes:
either some of them do not support update of XML documents, which means that it has
to recode again whenever XML documents change, or need huge storage. Therefore, in
this paper a new update-supporting coding scheme based on binary-tree for XML
documents is proposed. It not only efficiently figures out relationship of two elements,
but also reduces average code length to O(log(n)), in addition it supports update
effectively.

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 32 -4l 2005.
© Springer-Verlag Berlin Heidelberg 2005

BBTC: A New Update-Supporting Coding Scheme for XML Documents 33

In brief, the major contributions of our BBTC work are as follows:

e It can identify the ancestor-descendant or the parent-child relationship in
constant time bound, and the identification of such relationships is very simple
through equal value operations, i.e. add and shift, rather than non-equal value
operations such as estimation of region range etc.

e There is no need of extra space tradeoff, the average code length is O(log(n)),
which is asymptotically minimum and state-of-the-art.

e BBTC maintains the order information of sibling nodes so that queries on
sibling relationship are supported effectively.

e BBTC supports XUpdate (http://xmldb-org.sourceforge.net/xupdate/) and if
XML documents are modified, it does not need to recode the documents again.

This paper is organized as follows: section 2 introduces and analyzes related
researches on XML coding techniques; in section 3, our coding scheme is addressed in
details; in section 4, a hierarchical storage method based on the binary-tree, BBTC, is
introduced, whose average code length is O(log(n)); in section 5, experimental analysis
of our coding scheme is presented with comparisons to other existing coding schemes;
a conclusion of XML coding schemes is addressed in section 6.

2 Related Work

Various kinds of coding schemes have been proposed for query processing of XML
documents. Among those, a number of methods that code nodes in XML document
trees construct the mainstream. And all the existing coding schemes fall into two main
classes: (1) coding based on region and (2) coding based on path. Making use of the
order characteristic of XML documents, the first class assigns each node a code
according to its document order in the original document; meanwhile, the second class
focuses on the nested characteristic of XML documents, allocating a code to each path
and each node which can be reached from the root of the tree. At present, coding based
on region takes priority.

Region code is one of the most popular among coding schemes. Its main idea is to
assign a region code [start, end] to each node in the XML document tree, satisfying
that a node’s region code contains all of its descendants’ codes. That is, node (u) is the
ancestor of node (v) iff. start (u) < start(v) and end(v) < end(u). Dietz coding scheme
was proposed in reference [6]. Li et al proposed the Li-Moon (XISS) coding scheme in
reference [7]. Zhang et al proposed the Zhang coding scheme in reference [8]. Wan et al
proposed the Wan coding scheme in reference [9]. The ideas in [6], [7], [8] and [9] are
basically the same. They estimate relationship between nodes according to their region
information. One of their advantages is that they are relatively simple, and the average
code length is O(log(n)). But, layer or height information is required when
differentiating the ancestor-descendant and parent-child relationships. A disadvantage
is that complex operation, instead of equal-value estimation, is used when deciding the
relationship between nodes, which means that if there are many nodes, it is not easy to
decide relationship among them. Moreover, these methods cannot support XML
documents update well. Some researches [9, 10, 11] have proposed a solution which
preserves code space for the value of size in <order, size> or make order the extended
pre-order traversal number so that extra space can be preserved to support future update

34 J. Feng et al.

operations. But it is difficult to decide how much space the preservation is to make, and
when the preserved space is used up, the XML document has to be recoded again.

Bit-vector coding scheme is proposed in reference [12]. Each node in the XML
document tree is assigned an n-bit vector with n being number of the nodes. This
method can easily work out the ancestor-descendant relationship but needs O(n) code
space. It does not support the update operation either. Dewey code is proposed in
reference [13]. It directly uses code of the parent node as the prefix of the child node,
which is like catalogue of a book. Since this method needs to employ the prefix when
estimating relationship among different nodes, it works slower than the arithmetic
operations. Meanwhile, the code space is O(n), which is relatively large. But this
method can support the update operation. Wang et al proposed the PBiTree coding
scheme in reference [14]. It converts an XML document tree into a binary tree, and
numbers each node sequentially. It runs the equal-value operation which is easy for
computer implementation. The main difference from our approach is that, it does not
support the update operation and involves large storage.

3 A New Update-Supporting Coding Scheme

The coding scheme for XML documents is important for structure query, but current
coding schemes have such problems that either they are disadvantageous for updating
XML documents or their coding space is too large. This paper proposes a new
update-supporting coding scheme which can solve these problems properly.

3.1 Coding Scheme and Algorithm

Our code is in form of a tuple <order, sibling_order>, in which order represents the
position information of a node in the XML document tree, and sibling_order means
the sequential number of a node among its sibling nodes. Thus query of sibling
relationship is effectively supported. The method to code XML documents is: the order
of the leftmost child is its parent’s order multiplying 2, and its sibling_order is O; the
order of other nodes except for the leftmost child are their left neighboring sibling
nodes’ order multiplying 2 plus 1,and sibling_order are their left neighboring sibling
nodes’ sibling_order plus 1(order of the root is 1,sibling_order is 0).

Algorithm 1: Coding XML_Tree (N)
{The coding algorithm for an XML document tree T}

Input: Node in T {N is a node of an XML document tree}.
Output: Codes of all nodes in T {T is an XML document tree.}
begin

if N is Root_of(T) then { N.order=1; N.sibling_order=0; }
else
if N is leftmost_child_of (parent (N))
then { N.order=parent (N).order*2; N.sibling order=0; }
else { N.order=left_neighbor_sibling(N) .order*2+1;
N.sibling_order=left_neighbor_sibling(N) .sibling order+1l; }
endif
endif
for each NC, NC is a child of Node (N)
Coding_XMIL_Tree (NC) ;
{recursive calling all the children nodes of N based on depth first
search}
endfor
end.

BBTC: A New Update-Supporting Coding Scheme for XML Documents 35

Algorithm 1 lists detailed steps about coding an XML document using our coding
scheme, and we can work out codes for all nodes during one time scan of the XML
document tree. A simple example (Fig.1.) below gives more details (codes of all
TEXT_NODEs are omitted).

<Bookset>
<Book>
<ID>1</ID>
<Author>
<Name>Fengjh</Name>
<Degree>PhD</Degree>
</Author>
<Name>DB</Name>
</Book>
<Book>
<ID>2</ID>
<Author>
<Name>Zhoulz</Name>
<Degree>PhD</Degree>
</Author>
<Name>DDB</Name>
</Book>
</Bookset>

Fig. 1. XML file bookset.xml and corresponding codes

3.2 Properties of the New Coding Scheme

3.2.1 Rules to Infer the Relationship Between Two Elements
We can infer the relationship between any two elements by making use of properties of
the new coding scheme through simple operations. The rules for deciding the
relationship between two elements are:

Given elements A, D, and N in an XML document tree T.

(1) N.layer= number of zeros in the binary representation of N.order plus 1; this
value represents which layer the node N lies in the XML document tree.

D.order J

2“032 D.Order |{ log, A-Order |-1

(2) if Ajis an ancestor of D <> 2% Aorder ={

& Aoorder <<1=D.order >> (|_10g2 (D.order)_| - |_log2 (A.order)J -1
D.order

ZU"gZ D.OrderJ—L]og2 A.OnierJ—l

(3) if Ais aparent of D < 2* Aorder = L J and Allayer +1=Dlayer

& Aorder <<1=D.order >> (| log, D.order |-| log, Aorder |-1) and Allayer +1=Dlayer

Note: | X | means to get the integer part of number X, << means shift leftward, >>
means shift rightward.

3.2.2 Advantages of Our Coding Scheme

(1) Only shift and add operations are needed (refer to section 3.2.1) when inferring the
ancestor-descendant or parent-child relationships between two elements. For instance,
if we want to identify the relationship between /Bookset/Book[1] (order is 2) and
/Bookset//Degree (1* order is 37,2™ is 85) in bookset.xml, (see also Fig.1. in section

3.1); meanwhile, layer(2)=2, layer(37)=4, layer(85)=4; log, 2=1;log, 37=5;log,85=6,

36 J. Feng et al.

2*2:[237 J.But, layer(2) +1 ! =layer(37)

511
.~ 1" Degree Node is descendant of Book[1], but not child;

o 2%2 1 ={2875J s 2™ Degree Node is not descendant of Book[1] .

6-1-1

(2) Equal-value inference is employed when deciding the ancestor-descendant
relationship instead of non-equal operation, which is advantageous for the structure
join operation of massive nodes.

(3) There is no need to attach the layer information of code, since order already
contains such information (refer to rule 1 in section 3.2.1).

(4) It is advantageous to get the sequential number of a given node among its sibling
nodes by sibling_order, so that it is easy to get the position of a node in XML
document. In addition, sibling_order is also in favor of update, we will introduce how
to process our codes when update in next section.

3.3 Updating of XML Documents

According to the basic idea, when using the new coding scheme, there is no need to
recode the XML document again but only some simple processes based on existing
codes when updating the XML document. The following segments about XUpdate’s
examples are cited from the web site, http://xmldb-org.sourceforge.net/xupdate/.

3.3.1 Insert Operation
There are two cases of the insert operation. The first case is to insert a node as sibling
node of a certain node with an appointed position. e.g.:

<xupdate:modifications version="1.0" xmlns:xupdate="bookset.xml">

<xupdate:insert-before select="/Bookset/Book[1]/Author/Degree">
<xupdate:element name="Sex">male</xupdate:element>

</xupdate:insert-before>

</xupdate:modifications>

The above example means: to insert Sex information to the first Author of the first
Book and as Degree’s left sibling , simply find the given referencing node <Degree>
(represented as N) whose code is <N.order, N.sibling_order> and its sibling node NR
with the maximal order code, then insert the new node with code as (NR.order*2+1,
N.sibling_order). At last, increase sibling_order of all sibling nodes of N (including
N itself) whose sibling_order’s values are not less than N.sibling_order by one. In the
given example, we only need to insert a new node <Sex> whose code is (75, 1), with the
code of <Degree> changing into (37, 2).

The second case is to add a node as a child node of a certain node but not appointing
sequence among its siblings. e.g.:

<xupdate:modifications version="1.0" xmlns:xupdate="bookset.xml">
<xupdate:append select="/Bookset/Book[1]/">
<xupdate:element name="Author">
<Name>Zhoulz</Name>
</xupdate:element>
</xupdate:append>
</xupdate:modifications>

BBTC: A New Update-Supporting Coding Scheme for XML Documents 37

The above example means: to insert an Author node as the child node of the first
Book. We find the code <N.order, N.sibling_order> of the given insertion position of
the referencing node <Book[1]> (represented as N), then find its child node NR with
the maximal order code and last child node NS with the maximal sibling_order code,
then insert the new node accordingly. The code of the new node can be computed by
(NR.order*2+1,NS.sibling_order+1). In the above example, <Author> node(19#2+1,
3) and its child node <Name> (39*2, 0) need to be inserted. Algorithm about inserting a
new node into an XML document tree is omitted due to the space limited.

3.3.2 Delete Operation

<xupdate:modifications version="1.0" xmlns:xupdate="bookset.xml">
<xupdate:remove select="/Bookset/Book[2]/Author/Name"/>
</xupdate:modifications>

This example tries to delete the <Name> node of the Author of the second Book. The
code of this node needs to be removed, and decrease the sibling_order of <Name>’s
sibling nodes whose sibling_order is greater than Name.sibling_order by one.

3.3.3 Update Operation
<xupdate:modifications version="1.0" xmlIns:xupdate="bookset.xml">

<xupdate:update select="/Bookset/Book[2]/Author/Name">Fengjh</xupdate:update>
</xupdate:modifications>

This example tends to change the Author name of the second Book. There is no need
to change the code but simply change this node’s value.

The above three sections present the new update-supporting coding scheme and its
properties. How to infer the ancestor-descendant relationship also has been covered. In
addition, we point out the advantages of this coding scheme and present some
necessary but simple processes needed to be carried out when updating XML
documents. The only disadvantage of the scheme is that it needs relatively large coding
space. Hence, we will explain how to solve the problems.

4 Storage of the Binary-Tree Code

General XML document trees are not regular, but the binary tree has such advantages
that they are hierarchical and easy to store, therefore general XML document trees need
to be converted to ordered binary trees in order to use these advantages.

4.1 Conversion from XML Document Tree to Binary-Tree

Let T be an XML document tree and BT be the correspondent converted binary tree, the
corresponding conversion rules are as follows:

(1) AeT,if A=root_of(T) then A =root_of (BT)
(2) V A,DeT,if D=first _child _of (A) then D =Ileft _child _of(A) in BT
(3) VDI1,D2eT,if D2 =right_sibling_of (D1) then D2 =right_child _of (D1) in BT

38 J. Feng et al.

Fig. 2. XML document tree of bookset.xml and corresponding converted binary tree According
to the above rules, we can convert the XML document tree in Fig.1. into the binary-tree in Fig.2

4.2 Coding Method of Binary-Tree

The binary-tree coding method makes use of order characteristics of the XML
document tree, and it codes nodes according to their positions in the complete binary
tree. The detailed coding method is as follows:

(1) root _of (BT).order =1
(2) VDIL,D2,Ae BT
if D1 is left _ child _ of (A) then Dl.order = A .order *2
if D2 is right _child _of (A) then D2.order = A .order *2 +1

The coding method of the binary-tree is identical with Algorithm 1 in section 3.1, we
can obviously draw the conclusion from Fig. 2.

4.3 Storage Strategy

Since the only disadvantage of the binary-tree code is that it needs relatively large
coding space, we have to solve this issue. There are two feasible ways to solve it:

Compression: Due to properties of binary-tree, the adjacent codes have strong
similarity in that they have the same ancestor nodes. Therefore, many nodes have the
same prefix, i.e., there is great redundancy in the codes. In other words, much work can
be done using data compression.

Hierarchical Storage: Due to properties of binary-tree, some offspring nodes store
information of their ancestors repeatedly. Therefore, we could employ hierarchical
storage method to process these codes. In other words, we could partition the
Binary-tree into different sub-blocks with nodes in each sub-block have the same
ancestor and code each node relative to the ancestor (root of the sub-block) in each
sub-block. In other words, common information of a sub-block is stored in its header so
that the storage space can be reduced.

Obviously, compression of codes will reduce the storage space greatly. However
compression itself and decompression will undoubtedly require extra time spending
when inserting a new node. Performance of query processing is affected accordingly.
Therefore, we use the hierarchical method to store codes.

BBTC: A New Update-Supporting Coding Scheme for XML Documents 39

4.4 BBTC

Problems must to be settled when partitioning the binary-tree are, how big a sub-block
should be and what structural relationship should be maintained between sub-blocks.
The scale of a sub-block directly affects performance of storage. If a sub-block is too
small, it is not good for nodes aggregation; while if it is too big, there is too much
redundancy in each sub-block. Before we introduce hierarchical storage in detail,
present these following definitions:

Definition 1. Non-trivial leaf node
If node N is a leaf node of a sub-block but not a leaf node of the whole binary tree, it is
called a non-trivial leaf node.

Definition 2. Non-trivial root node
If node N is the root node of a sub-block but not the root of the whole binary tree, it is
called a non-trivial root node.

Definition 3. Inner node
All nodes in each sub-block, are called this sub-block’s inner nodes.

4.4.1 Division of the Storage Structure and Sub-block
Due to properties of the binary-tree, some descendent nodes store information of their
ancestors repeatedly. Therefore, we could employ hierarchical storage method to
process these codes. In other words, we could partition the binary-tree into different
sub-blocks with nodes in each sub-block having the same ancestor, and then code each
node relative to the ancestor in each sub-block. Therefore, common information of a
sub-block is stored in its header so that the storage space can be reduced, and we call it
Blocked Binary-Tree Coding scheme (BBTC). The common prefix called BlockID
(BID), and the other part of the code to distinguish each other in the sub-block is called
InnerID (IID). And let B be the total number of bits needed to code one node in a
sub-block, which is also the height of a sub-block.

The header information of a whole block is not only helpful for inferring ancestor-
descendant relationship but also avoids searching between sub-blocks. Steps for
partitioning sub-blocks are:

(1) All nodes whose height differences to the root are less than B including the root
itself are in a same sub-block. The first sub-block’s BID is 1 and IID is 1, whose root is
the root of the binary tree.

(2) If some node Npis not allocated to any sub-block, and its parent node N,is a
non-trivial leaf node of some sub-block, then create a new sub-block with N as its
non-trivial root, and allocate its descendant nodes whose height difference to Np are
less than B into this sub-block. Suppose that the IID of N, is C, and the BID of this
sub-block which N belongs to is D, then the BID of the new block rooted at N can be
computed by formula 1:

(D -1)*2° "+ C)H*2 if N, is left-child of N, (1)

BlocklID =
(D -1*2° '+ CH*2+1 if N, isright-child of N,

(3) The IID of each sub-block’s root is always 1, and then code other inner nodes in
each sub-block using the method in section 3.1 or 4.2.

40 J. Feng et al.

4.4.2 Example

Let B be 3, we can partition the binary tree of the XML document bookset.xml(in
Fig.2.) into four sub-blocks (Fig.3.). In Fig.3., the sub-block rooted at the node 10
(original code), and its BID=((1-1)*2%"V+5)%2=10. Obviously, we can conclude that
the BID is shared by all nodes in a sub-block, and it is the order code of the sub-block’s
root in the original XML document tree. For each sub-block, we can compute each
node’s order code in its original XML document through its IID in the sub-block and
its BID. Suppose that one node with IID is C and BID is D, we can compute its order
code in the original XML document tree is (D—-1)*2!"= 4+ C .

For example, the node with IID is and BID is 10, so in the original XML document
tree, its code is (10-1)*22+7=43.

Thus, we can compute the original order code of one node in original XML
document tree, and then infer whether two nodes have the ancestor-descendant
relationship or not. However, we do not really need these somewhat complicated
computations to infer the relationship. We can simply use IIDs and BIDs to directly
identify relationship between them. Next section we will list the determining rules.

Fig. 3. Coding scheme based on BBTC

4.4.3 Decision of Relationship Between Nodes in Sub-blocks
There are two definitions to make before we give the rules.

Definition 4. Sibling sub-blocks
Given two different sub-blocks, suppose that their BIDs are B1 and B2 respectively, if
B1 and B2 satisfy | log,, B1|=|log,, B2] , these two sub-blocks are called sibling sub-blocks.

Definition 5. Collateral sub-blocks
Given two different sub-blocks, suppose that their BIDs are B1 and B2 respectively, if
B1 and B2 do not have the ancestor-descendant relationship according to rules in
section 3.2.1, then these two sub-blocks are called collateral sub-blocks. (i.e., if B1 is
B2’s prefix or vice versa in the binary representation, then they have the
ancestor-descendant relationship.)

Rules for inferring two nodes’ relationship by their IIDs and BIDs in sub-blocks:

(1) If the two nodes have the same BID, then use rules in section 3.2.1 to judge their
relationship.

BBTC: A New Update-Supporting Coding Scheme for XML Documents 41

(2) If the sub-blocks that these two nodes belong to are sibling sub-blocks or
collateral sub-blocks, then there is no ancestor-descendant relationship
between the two nodes.

(3) Otherwise, suppose IIDs are C1 and C2 respectively and their BIDs are D1 and
D2, then we infer their relationship by inferring relationship between N1 and D2
through rules in section 3.2.1. Here, ~N1=(D1-1)*2!"= 41 (suppose
D1<D2). While the layer number of a node is C.layer+D.layer-1 (C and D are
respectively its IID and BID).

Through these three rules, we can correctly and completely infer the relationship
between any two nodes. For instance, we infer the relationship between node 3(9) in
sub-block 9 and node 1(85) in sub-block 85 (such as, node 3(9) denotes BID=9 and
IID=3, and so on). Since 9 and 85 have no ancestor-descendant relationship, therefore,
sub-block 9 and sub-block 85 are collateral sub-blocks, and the two nodes have no
ancestor-descendant relationship. Then we infer the relationship between node 3(10) in
sub-block 10 and node 1(85) in sub-block 85. Since 10 is the ancestor of 85, so judging
relationship between (10-1)*2+3=21 and 85. We conclude that these two nodes are
ancestor and descendant. And their layers are 3(layer(3)+ layer(10)-1=3) and
4(layer(1)+layer(85))-1= 1+4-1=4), so they are also parent-child relationship.

4.5 Processing of the Insert Operation

When updating XML documents, the update and delete operations can be carried out
following operations in section 3.3, however, the insert operation needs some extra
cost. If the parent node of the insert node is a non-trivial leaf node of a sub-block, we
construct a new sub-block taking it as the root of this sub-block and calculate its BID by
formula 1, and its IID=1, then modify sibling_order according to the section 3.3. Or
otherwise, the new node should be inserted into the sub-block in which its parent node
is according to the section 3.3.

S Experimental Analysis of the Binary-Tree Code

Currently, there are mainly Region Code, Bit-Vector Code, Prefix Code and PBiTree
for coding XML documents, however Region Code is the most popular presently,
therefore we compare BBTC with it. BBTC rapidly infers the ancestor-descendant
relationship, reduces the average code length to O(log(n)) and supports update
efficiently. Therefore we devised several groups of experiments using the standard
XMark and Shakespeare data to test our approach in space performance and time
performance. XMark was generated from standard data [15] and Shakespeare used
standard Shakespeare 2.00 data [16]. The experimental environment is: windows 2000
server, AMD2600 CPU, 1G RAM. We used standard C++ for programming.

5.1 Experiment 1: To Determine Value of B in BBTC

The BBTC will reduce storage space evidently, thus the space cost is less than the
Region Code, and we have to determine the value of B firstly. In Fig.4. (a) and (b)

42 J. Feng et al.

illustrate the choice of B for Shakespeare and XMark data sets respectively. They
present the space of the BBTC consumed with different values of B for various XML
data sets. Due to the lowest point of each curve corresponding to the minimum space
cost, the value of B at this point is its best choice. On the one hand, the curves with
block-partitioning have observable advantages in storage size, but the stability of space
cost with different values of B is another advantage revealed.

500 16
450 [
400 [
aso [

—— 2w — W 3,410
a6m K5 6om

aoo [

o

Space(K)

250 [

Space(M)

200 [

150 [
100 [

oN & O ®

i o —_—
50 A —— e
16

No- 8 12 16 20 24 28 32 36 40 44 4§
Value of B (bits)

(@ (b)
Fig. 4. Fix on B in XML doc

In Fig.5. (a) and (b) illustrate the effect of different values of B on space
performance for Shakespeare and XMark data sets respectively. They present the space
of the BBTC consumed with different XML documents for various values of B.
Obviously, the cost of space is evidently reduced with BBTC. Compare with
Non-block, BBTC reduces 30% in Shakespeare data, but it reduces 73% in XMark
data.

500
450
400

@ No-Block B8 a1
gi1e m20
m2g as2

50
300
3

Space(M)

£250
200
150

100

228k 179 240k 210k 197k 112 227 341
size of Shakespeare doc(K) size of XML doc(M)

4.61 5.62

(@ (b)

Fig. 5. the effect of different B on space performance

We concluded from our analysis that the best B value has to do with the height of the
binary tree converted from the XML document tree. And it is also related to the number
of nodes in the XML document. Fig.6. indicates the relation between the best B and the
number of nodes in the XML document. Due to the relation between the best B and the
number of nodes meets logarithmic normal distribution, we make a conclusion that the
best B for one XML document can be represented by log(n) approximately, in which n
is the number of nodes in the XML document.

BBTC: A New Update-Supporting Coding Scheme for XML Documents 43

B(bits)

0000 20000
of nodes

Fig. 6. Relation between the best B value and the number of nodes in XML doc

num

5.2 Experiment 2: Comparison of Several Coding Algorithms

BBTC has superior storage performance to the Region Code, this is because the Region
Code maintains two numbers for one region and its performance decreases. The Region

Code is not as good as the BBTC in time performance either, since it has to scan the
XML documents at least twice.

179 249k 210k 197k 2.27 5.61 6.81 9.15 1.3 228 34.1 45.3
size of Shakespeare XML doc e
P size of XMark XML doc(M)

Fig. 7. Space performance comparison of several coding schemes

We compared the BBTC to Dietz and Zhang Code experimentally. The data sets are
also from the XMark and Shakespeare. Fig.7. & Fig.8. show BBTC better than other
coding schemes in space and time respectively. Compare with Region Code, BBTC
reduces 16% in space and 25% in time with Shakespeare data, and reduces 8% in space
and 40% in time with XMark data when its size of the data reaches 45.3M.

ok s 1}\4% L ém 197k 227 5.61 6.81 9.15 13 2.8 34.1 453
size ol Shakespeare o size of XMark XML doc (M)

Fig. 8. Time performance comparison of several coding schemes

6 Conclusion

In this paper, we propose the new update-supporting coding scheme based on
binary-tree, which not only codes the XML document and infers relationship between

44

J. Feng et al.

nodes rapidly, but also solves the problem of those previous schemes that documents
have to be recoded again when update. A hierarchical storage method, BBTC, is also
presented, which can reduce the average code length to O(log(n)). Experiments have
proved that BBTC has relatively strong query processing ability than naive ones.

References

10.

11.

12.

13.

14.

15.
16.

S Abiteboul, D Quass,] McHugh et al. The Lore query language for semi-structured datal
Int’1 Journal on Digital Libraries , 1997 ,1 (1) :68-88

Alin Deutsch , Mary Fernandez , Daniela Florescu et al. A query language for XML. The
8th Int’l World Wide Web Conf , Toronto , 1999

Jamex Clark , Steve DeRose, XML path language (XPath), W3C Recommendation1 World
Wide Web Consortium , 1999

Don Chamberlin , Daniela Florescu , Jonathan Robie et al. XQuery : A query language for
XML. W3C working draft, WWW, 2001

D. Florescu, D. Kossman et al. Storing and Querying XML Data using an RDBMS. IEEE
Data Engineering Bulletin, Vol. 22, No. 3, September 1999

Paul F Dietz. Maintaining order in a linked list. The 14th Annual ACM on Theory of
Computing , San Francisco , 1982

Quanzhong Li and Bongki Moon. Indexing and querying XML data for regular path
expressions. VLDB 2001

Zhang C, Naaghton J, DeWitt D et al. On Supporting Containment Queries in Relational
Database Management Systems. SIGMOD, California, May 2001. 426 -437

Dao Dinh Kha, Masatoshi Yoshikawa, and Shansake aemara. An XML indexing structure
with relative region coordinate. ICDE 2001

Lu Yan , Zhang Liang , Wang Wei and Shi BaiLe. A New XML Document Coding
Scheme,. Journal Of Computer Research And development, Vol.141, No.13, March 2004
Luo Daofeng, Meng Xiaofeng. Updating of Extended Preorder Numbering Scheme on
XML, Computer Science Vol.30, No. 10, October 2003

N.Wirth. Type Extentions. Acm Transaction on Programming Languages and systems
1988, 10(2):204~214

Igor Tatarinod, Stratis D, Kedin Beyer et al. Storing and querying ordered XML using a
relational database system. SIGMOD 2002

Wei Wang, Haifeng Jiang, Hongjun Lu, and Jeffrey Xu Yu. PBiTree coding and efficient
processing of containment joins. ICDE 2003

http://www.xml-benchmark.org/

http://www.xml.com/pub/r/396

Using XML Structure to Reduce Candidate Nodes
Participated in Query Processing’

Zhenying He, Jianzhong Li, Chaokun Wang, Pengcheng Ge, and Haikun Chen

Department of Computer Science and Engineering, Harbin Institute of Technology, China
{hzy, 1lijzh, chaokun, grey_hit}@hit.edu.cn
charkl983@hotmail.com

Abstract. Several algorithms have focused on processing path expression que-
ries. Following those algorithms, all the nodes, matched with path expressions,
are participated in computing. In this paper, we propose a novel filter strategy to
reduce the number of candidate nodes based on the structure of XML data. All
nodes are clustered based on their labels, and path information of each node is
kept in bit vectors. Our filter technology mainly depends on high performance
of bit operations. The experimental results show that these filter algorithms are
effective, scalable and efficient.

1 Introduction

A number of algorithms have been proposed to answer and accelerate path expression
queries. Those algorithms, however, only make use of parent-son and ancestor-
descendant relations between element nodes when query processing. All the nodes,
matched with path expressions, are participated in computing. Accordingly, CPU and
I/O costs are wasted in dealing with these useless nodes.

Some works make use of range-based coding method to build a special index,
namely XR-Tree[1], and only considered skipping by the coverage relationship be-
tween two nodes. As a result, the skip operations must follow the path steps one by
one. However, the skip will be disabled in some cases. For example, the query ex-
pression, against the data whose schema graph is shown in Fig.1(a): Q,=//a/e matches
e elements that have a element as their father. Following the methods of the structural
join[2-7]or the twig join[8-10], all the e-nodes will participate the query processing
and none of e-nodes will be skipped. In fact, the set of e-nodes is consisted of {e,},
{es} and {e.}, where {e,} is the set of e-nodes passing b nodes, {e; } is the set of e-
nodes via f-nodes and {e,} is the set of e-nodes who have a parent named a. Thus only
the elements in ({e}—({e,}{es})) will help bring about the results. It is efficient to
skip the e-nodes in ({e,}U{e/}) and compute the result against ({e}—({e,}\U{e})).

In this paper, we propose a novel filter strategy to reduce the number of candidate
nodes. All nodes are clustered based on their labels, and path information of each
node is kept in bit vectors. We first calculate the expression of filter operation accord-
ing to the query and the structure of data (Sec. 3). Then, we apply several methods to

! Supported by the Defence Pre-Research Project of the “Tenth Five-Year-Plan” of China
No.41315.2.3; the National Natural Science Foundation of China, No. 60273082.

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 45 {33, 2005.
© Springer-Verlag Berlin Heidelberg 2005

46 Z.He et al.

skip more nodes (Sec. 4). To the best of our knowledge, no previous work has ad-
dressed to reduce the number of candidate nodes based on XML schema information.
The contributions of this paper can be summarized as follows:

1. We propose a novel filter strategy to skip the elements in useless branches. Fol-
lowing this strategy, filter expression is calculated by exploring the XML schema
graph. We also provide pruning strategies to generate the filter expression efficiently.

2. We develop several filter algorithms against indexed XML data. Our technology
mainly depends on high performance of bit operations. For the sparseness of bit vec-
tors, we also develop compressed-based and signature-based algorithms to handle the
filter strategy. The experimental results demonstrate that our techniques have good
performance and better efficiency.

(a) A Sample of recursive schema graph, the (b) A Sample of DAG schema graph, there two
nodes cycled by blue line recursive structure of paths from a to e, a>b->e and a>f->h->j>e.
J>m->k->j

Fig. 1. Two sample XML schema graphs

The rest of this paper is organized as follows. Section 2 gives some preliminary
knowledge on XML schema graph. The filter strategy and the approach for computing
the filter expression are discussed in Section 3. Section 4 addresses the filter algo-
rithms based on bit vectors. And section 5 presents the performance study. Finally, we
conclude this paper in Section 6.

2 Preliminaries

An XML schema can be viewed as a directed graph SG= 2 F), where V is the set of
vertices and E is the set of edges. The vertices correspond to elements and attributes
and the edges represent parent-child relationships. A sample non-recursive schema
graph is given in Fig.1(b). If the schema graph is a tree, then we call it a Tree-
structure schema graph. If it is acyclic, we call it a DAG-structure schema graph
(directed acyclic graph). Otherwise, it is a recursive-structure schema graph. The
instance of an XML schema is a tree, which is called as data tree. We also give an
example data tree in Fig.2, which confirms to the XML schema graph illustrated in
Fig.1(a).

Definition 1. Let SG=(V,E) is an XML schema graph. There exists father-son relation
from n; to n,, denoted by n;2>n; or n,€ny, if (n;, ny)e E. There exists ancestor-
descendant relation from n to m, denoted by n>m, if: (i) n>m or (ii) there exists &,
satisfying n>k and k>m.

In the example of Fig.1(a), there exists father-son relation between a and b. Note
that there exists father-son relation between j and k, that is, j>k and k—>j.

Using XML Structure to Reduce Candidate Nodes Participated in Query Processing 47

node inlined
by j.k;m

Fig. 2. Data tree for Fig. 1(a) Fig. 3. ISG for Fig. 1(a)

Definition 2. Let o={n;,n,,...,n,} is a finite set of nodes. S is the isolated node in q.,
if VRe a(R#£S), not satisfying R>S and S>R.

Definition 3. Given an XML schema graph SG=(V,E). SG is recursive-structured, iff
there exists n €V, satisfying n>n. SG is non-recursive-structured, if it is not recursive-
structured.

Definition 4. Let SG=(V,E) is a non-recursive-structured XML schema graph. SG is
tree-structured, for any n;>n,, if n;>nz;Ans>n,an>nyang>n,, satisfying nz=ny or
nz>ngvng>n;. SG is DAG-structured, if SG is not tree-structured.

3 Filter Strategy

The start of this section is primarily a presentation of precisely defined notations. Its
purpose is more to ensure your use of notation reduces the number of candidate nodes
than only to acquire mathematical concepts. Then, subsection 3.2 delves further into
the method of generating the filter expression. For the limitation of space, the proof of
lemmas and thermos can not be included in this paper.

3.1 Filter Strategy

In an XML schema graph SG, it is reachable from e; to e,, denoted by e,=e,, if e,>e,
or e;=e,. It is reachable between e; and e,, if e,=e; and e,=e;, denoted by e,=e,.

Lemma 1. Let SG=(V,E) is an XML schema graph. The binary relation < on Vis a
relation of equivalence.

Example 1. Suppose ISG is the example schema graph given in Fig. 1(a). It is reach-
able from node a to every node in ISG, not reachable from node f to node b, reachable
between j, k and m. Thus, j, k and m must all lie in the same block of <.

Definition 5. Given an XML schema graph SG=(V,E). ISG=(V;ss, E;sc) is called as
the inlined schema graph of SG, and is defined as follows: (1). there exists a function
Fyv: V2>V, Vn;, neV, satisfying n;on,, iff Fy(n;) =F/(n;);(2). there exists a
function F: E-> Ejgg, satisfying V(n;, ny)e E, iff (F\(n;), F\{n,))€ Esc.

The nodes in the same block in V is partitioned into one node determined by <.

Fig. 3 give the inlined schema graph ISG of schema graph shown in Fig. 1(a). In ISG,
node j, k and m are inlined as a new node n.

48 Z.He et al.

Lemma 2. Suppose that SG=(V,E) is an XML schema graph, and ISG=(Vss, Ejsc) 1S
its inlined schema graph. SG is a non-recursive-structured schema graph if SG=ISG.

Definition 6. Let ISG=(V;s:, Esc) is an inlined schema graph, a, be Vg5, and a=b. A
reachable path from a to b is a sequence of a,nj,n,,...,n1,0,b, where a>n,
n>ny,... N0 >N, nk>b.

Definition 7. Let ISG=(Vss, E;sc) is an inlined schema graph, 7=(V, E, root) is a data
tree of ISG, and p=a,n,n,,...,n 1,0y,b is a reachable path from a to b. The p-reachable
set in 7, denoted by {p(a, b)}, is consists of the b nodes via the path p.

Lemma 3. Let ISG=(V}s;, Ejsc) is an inlined schema graph, T=(V, E, root) is a data
tree of ISG, and {node(e;)} is the set of all nodes labeled el. Vxe {node(e;)}, there
exists only one reachable path from root to e;.

Lemma 4. Let ISG=(Vis;, Ejsc) is an inlined schema graph, T=(V, E, root) is a data
tree of ISG. If there exists only reachable path p; from root;sc to e, then
{node(e)}={pi(e)}.

Theorem 1. Let ISG=(V/ss, Ejsc) is an inlined schema graph, T=(V, E, root) is a data
tree of ISG, {node(e)} is all the nodes of e in Vy, py,...,p, is all the reachable path
from rooty to e. {node(e) }={p;(e) }u{pa(e)}u...u{p.(e)}.

Theorem 2. Let ISG=(V/ss, Ejsc) is an inlined schema graph, T=(V, E, root) is a data
tree of ISG, {node(e)} is all the nodes of e in Vy, py,...,p, is all the reachable path

from rooty to e. {pi(e) }={node(e) }=({p,}...U{pi/}Api ... O {pa}).

3.2 Algorithm for Generating the Filter Expression

The method to computing filter expression is presented in algorithm 1. Two aided
data structures, stack chain and hash table chain, are applied to store the intermediate
data. The length of these two structures is the number of the stage. The purpose of
stack chain is to store the scanned nodes in that stage, while the hash table chain, to
store the definitely visited nodes in that stage. This algorithm falls into 3 stages: (i).
the stage for initializing from line 1 to line 4; (ii). searching the state space tree in line
5, and (iii). stitching the intermediate result in hash table chain and computing the
final filter expression in line 6.

Algorithm 1 FindFE(p, IG)
Input: p i1s the path expression; IG is the ISG;
Output: the filter expression FE;

begin

1: InitEx(p);

2: stage=0;

3: for each vertex ueV|[IG]
4: do color[u] €WHITE;
5: SCAN(root,root, stage) ;
6: return MergeHT() ;

end.

For the sample query of Q=//h/c/e, it is decomposed to 3 stages: (root, h, AD), (h,
¢, PS) and (c, e, PS) in the stage of InitEx. Meanwhile, a stack and a hash table are

Using XML Structure to Reduce Candidate Nodes Participated in Query Processing 49

initialized for each stage. Furthermore, all the nodes in inlined schema graph are
marked as WHITE (unvisited).

In the procedure of SCAN, pruning strategy, shown in line 6-line 8, is applied to re-
duce the state space tree, while the forward skipping strategy, shown in line 11-line
12, and in line 15-line 20, is applied to determine the location to store those interme-
diate results. Following the pruning strategy, the forward node will be stored into the
current position of hash table chain if that node has already been visited, and the rela-
tion of current stage is the relation of ancestor-descendant. Following the forward
skipping strategy, if the forward node emerges in other stages, the current stage will
be changed accordingly so that the intermediate result will be stored in proper struc-
tures. After the computing, the definitely passed nodes of each stage are stored in
corresponding hash table, which will be merged together by applying the procedure
MergeHT.

procedure SCAN(u, s, stage)

Input: u is the start node of this stage;
s is the current scanned node;
stage is the number of stage;

begin

1: 1if stage=2MAX_STAGE

2 return;

3: color[u] €GRAY;

4: Stack[stage] .PUSH(u)

5: for each veAdj[u] do

6: if color[v]=GRAY

7 if ((IsExisted(HT[stage],Vv)&&(Rel[stage]=AD))
8: Add (HT [stage] ,u) ;

9: else

10: x€stagenode (v) ;

11: if x>stage

12: SCAN(v,V,X) ;

13: if x<stage

14: SCAN (v, s, stage) ;

15: if x=stage

16: if (Rel[stage]=AD)

17: Stack[stage] 2HT [stage] ;
18: else //FS

19: if (Depth(s,v)=1)

20: Stack[stage] 2HT [stage] ;
21: Stack[stage] .POP() ;

end.

The procedure of MergeHT is used to stitch the intermediate results and require the
final filter expression. MergeHT is started with computing the complement set RH; of
every hash table in line 1-line 2. Then in line 3, the set of these filtered nodes are
required by calculating the intersection of all the RH;. At last, return the filter expres-
sion in line 4.

procudure MergeHT() ;

Output: the filter expression FE;
begin

1: for each HT, of Hash Table Chain

50 Z.He et al.

2: do Calculate complement of HT,;

3: ListC€&Intersection of each HTi;

4: return elements in ListP and —elements in ListC;
end.

It is obvious that the space cost of this algorithm is 9n+n°. As to the running time,
the cost of scanning in depth-first order is reduced to O(n’) because each edge in
inlined graph is visited only once. While the cost for other parts of this algorithm is
O(n). Therefore, the total amount of work is now bounded by O(nz).

4 Filter Algorithms

In this section, three filter algorithms are presented: BFX-Filter, SX-Filter and CX-
Filter.

The structure of bit vectors for node b is shown in Fig. 4. The BFX-Filter algorithm
works as follows. It scans the bit vectors with the help of a Window which size is
generally equal to m. It first aligns the up ends of the window and the bit vectors, then
execute the filter expression on the slices of these bit vectors in that window, and after
that, it shifts the window downwards. It repeats the same procedure again until the
bottom end of the window goes beyond the end of bit vectors.

Extended Vector |0111110000000000000000 |
Solid Vector |0100000000000000000000 |

Fig. 4. Bit vector for node b

The following pseudocode is the basic BFX-Filter algorithm. The input parameters
are path expression p and inlined schema graph IG. The BFX-Filter algorithm starts
with the algorithm of FindFE in line 1. From line 2 to line 7, it loads the bit vectors
into memory. In view of the object node in path expression, line 4 determines which
vector should be loaded. At last, execute the bit operation according to the filter ex-
pression from line 8 to line 10.

Algorithm BFX-Filter (p, IG)
Input p 1s the path expression;
IG is the Inlined Schema Graph;
Output List L of Candidate nodes;
begin
1: fe=FindFE(p, IG);
2: enode=GetLastNode (p) ;
3: the extended bit vectors of nodes in fe, except
enode>node-1ist;

if (IsExtended(enode))

Append Extended bit vector of enode to node-list;
else

Append Solid bit vector of enode to node-list;
for each 32 rows of loaded bit vectors do

if(GetFilter(fe))

Add position to the tail of L;

R wOwo Jo Ul i
O er se s we ae e

end.

Using XML Structure to Reduce Candidate Nodes Participated in Query Processing 51

In general, the bit vectors can be organized as a number of integers. Accordingly,
the window size of m is set as 32. To further improve the performance of BFX-Filter
algorithm, we store the slices of the bit vectors in the cache of processor directly, not
in memory, when they are loaded. The cost of the running time is O(n).

The BFX-Filter algorithm scans the bit vectors in up-down order, regardless
whether the vector is sparse or not. As a result, unnecessary bitwise operations are
executed during shifts. To handle this problem, we propose the signature-based SX-
Filter algorithm. A signature file uses a signature that maps several bits to bit masks
of 1 bit. It divides the bit vector in blocks of b bit each. To each vector block of size b,
a bit mask of size 1 will be assigned. This mask is obtained by checking the existence
of 1 bit in the vector block. Here, we use two signature files to store the sequence of
bit masks of all blocks. For instance, the sample signature files for the given bit vector
with the size of 30 are illustrated in Fig. 5. In that example, the size of block is 3. The
bit vector of 0-V is the sequence of masks of bit 0, while the 1-V, bit 1.

1-v: 10 1 1,0 1 1,0 0 0
OV: 111000010110000,101110000000/000
0-v: 0 ;1 1 1 ;1 31 ;1 31 1 41

Fig. 5. Two signature files for the given original vector

Different from BFX-Filter, the SX-Filter algorithm shifts the window and checks
the mask of this block. Whenever (Bi=1), therefore the vector block may contain the
needed bit. Hence, the filter algorithm must be performed to verify the exact positions
in that block. This algorithm is more efficient to filter nodes. This is because a num-
ber of blocks are skipped and loaded into the cache in processor.

Algorithm SX-Filter (p, IG)
Input p 1s the path expression;
IG is the Inlined Schema Graph;

Output List L of Candidate nodes;
begin
fe=FindFE(p, IG);
enode=GetLastNode (p) ;
Load the bit vectors of nodes, except enode, in fe;
if (IsExtended(enode))

Load Extended Signature Vector of enode—>SV;
else

Load Solid Signature Vector of enode—>SV;
while (!ISEOF(SV)) do

if(GetFilter(fe))
10: Add position to the tail of L;
end.

Voo JoU WP

Some additional storage costs are introduced in the methods above. This is because
the sparseness of the bit vectors. Hence, we also develop a compression-based algo-
rithm, named as CX-Filter, to skip nodes. The algorithm of CX-Filter makes use of
header compression method [11]. This algorithm operates directly on compressed
vectors without the need to first decompress them, and therefore, are efficient for
sparse bit vectors. It applies header that is vector of counts such as (ug,co,u;,Cys. ..,
U;,Cis- . -, Ug,Cs), in Which odd-positioned numbers are counts of 1 from the header of bit

52 Z.He et al.

vector, and even-positioned numbers are counts of 0 from the header. We give an
example in Fig. 6, where LB denotes the original bit vector and H is its compressed
header file. The algorithm for building the header file is more to scan the data or LB,
then calculate the Header. The cost of running time is O(n).

LB: 1111000000011100000011001111111110000
H: 4 7 7 13 9 15 18 19

Fig. 6. An example for header compression

Algorithm CX-Filter (p, IG)
Input p is the path expression;

IG is the Inlined Schema Graph;
Output List L of Candidate nodes;
begin

1: fe=FindFE(p, IG);

2: enode=GetLastNode (p) ;

3: Load the bit vectors of nodes, except enode, in fe;
4. 1if (IsExtended(enode))

5: Load Extended Header of enode;

6: else

7: Load Solid Header of enode;

8: while (!ISEOF (Header)) do

9: GetthePosition (Headers) 2position;
10: if (GetFilter(fe))

11: Add position to the tail of L;
end.

The CX-Filter algorithm shifts the window on Header files and calculates the long-
est shift in header files (line 8-line 11). The cost of running time is O(n).

5 Experimental Results

We implemented these algorithms in C++, and carry out our experiments on a Win-
dows XP machine with Celeron 1.7GHz CPU and 256M main memory. For our ex-
periments, we use the benchmark of XMark, whose factor is ranged from 1 to 4. The
test queries that we used are shown in Table 1. We chose these queries for the follow-
ing reasons. Q1 evaluates recursive (/) XPath queries. Q2 and Q3 are similar to Q1
but do not use recursion. The last query was chosen to test the number of elements
scanned. And we evaluated the performance of these filter algorithms using the fol-
lowing metrics: (1) disk storage requirements; (2) the number of elements scanned,
(3) running time; (4) the number of pages access.

Table 1. Test Queries

Query name Query
Q1 //regions//item/name
Q2 //regions/Asia/item
Q3 /[category/description
Q4 //person/address

Using XML Structure to Reduce Candidate Nodes Participated in Query Processing 53

5.1 Disk Storage Requirements

This metric reflects the external disk space requirements for building indices. And it
is measured by the ratio of the index size to the original data size. Note that, in Fig. 7,
the space cost of CX-Filter is lower than other two filter methods, no matter what is
the value of XMark factor.

z 50000
0.2 H
% 40000
Lo T3 E
T oo Bsx 5 0000 ‘u XR-Tree
= 0 05 ooy = 20000 B Our Tech
0 % 10000
! ! ' I
XMark factor ql 02 Q3 %]
Test Queries
Fig. 7. Storage requirements Fig. 8. Elements scanned

5.2 Number of Elements Scanned

Figure 8 shows the total number of elements scanned for XR-Tree and our technol-
ogy. In this experiment, we only demonstrate the experimental results for XMark 1.0
due to the space limitation of this paper.

It can be seen from figure 8 that our filter strategy leads to the least number of ele-
ments compared to the XR-Tree index. The benefit gets more obvious for Q1 and Q4.
The simple reason is that the pairs of 1:1 and 1:0 relations are involved in Stack-Join
method. As a result, many ancestor nodes are scanned to verify the relation between
two node sets.

@ BFX
mox
O SX(2K)

Running Time (ms)

Q1 Q2 Q3 @ at qz Q3 Q4 [} Gz Q3 Q4
Test Queries Test Queries Test Queries

(a) XMark 1.0 (b) XMark 2.0 (c) XMark 4.0

Fig. 9. Difference of running time
5.3 Running Time

To study the running time, we conduct two sets of experiments. In the first set of
experiments, we assume that the block size of SX-Filter is 64K bits, and evaluate the
running time for these methods. In the latter set of experiments, we investigate the

54 Z. He et al.

running time of SX-Filter approach on varying the block size. The running time is the
average of 10 times run.

Figure 9 shows the difference of running time. It can be observed that the SX-Filter
performs better than other two methods. The reason is that the bit vectors are sparse.
As a result, more blocks are skipped, in which there is no need to verify the exact
positions for elements. It is also observed that CX-Filter performs worse for most
queries. This is because many comparison operations are applied to verify the exact
positions to be evaluated.

From figure 10(a), we notice that the increase of block size leads to the decrease of
the running time when block size is lower than 64K bits, but leads to the increase
along with the crescent of block size.

120 160 250
~. 140
100
2 ~_ % 10 7 200
2 B 2
g = — B0 \\,,/4 2150 \\ ~a
PR = S - 2 — -
£ _ =) == % 100 == p
% w0] —] — w
g g w E —
= oy = = 50
20
o 0 o
512 1024 2048 A0St A2 1024 2048 4096 8192 1024 2048 4096 8152
Block Sizes(*32 hits) Black Size(k32 hits) Black Sizes(ki2 bits)
(a) XMark 1.0 (b) XMark 2.0 (¢c) XMark 4.0

Fig. 10. Time cost of SX-Filter on varying block sizes

8000 16000
7000 14000
6000 = 12000
2 5000 0000 — EERS
1000 —
< 3000 — 0 SX(2K)
— 2000 [f——rd ——
— 1000 — 2000 —
L 0 L L 0 .
a w2 a a a @ w w L w2 w a
Test Queries Test Queries Test Queries
(a) XMark 1.0 (b) XMark 2.0 (c) XMark 4.0
Fig. 11. Difference of I/O cost
1400 3000 5000 <
” : a3
1200 2500 s
- 1000 7 2000 7 jggg —~—ul
£ 800 == £ —-—
z = 1500 2500 @
S 600 1 2000 w
E 1000 ~— =T W
—_— . 5 1000
€W ————————— —— 500 —_ e . . 500 e —n
0 0 0
0.5k IK 2% &K 0Ak Ik 2% i 8K IK e K 8K
Black Sizes(+32bits) Black Sizes(+32bits) Black Sizes(+32bits)
(a) XMark 1.0 (b) XMark 2.0 (¢) XMark 4.0

Fig. 12. I/O cost of SX-Filter on varying block sizes

Using XML Structure to Reduce Candidate Nodes Participated in Query Processing 55

5.4 Numbers of Page Accesses

This metrics measures the performance of algorithms in terms of I/O cost. Figure 11
shows the difference of I/O cost. It can be observed that the SX-Filter and CX-Filter
are all significant lower than BFX-Filter. This is because the BFX-Filter reads all the
bit vectors, and I/O cost is wasted. Note that SX-Filter overperforms CX-Filter. This
is owing to the fact that the exact position can not be verified in header files, and only
brute force scan can be applied to these files.

The I/O cost of SX-Filter algorithm on varying the block sizes is summarized in
figure 12. From figure 12 we can see that the increase of block size leads to the de-
crease of the I/O cost when the block size is lower than some critical value, but leads
to the increase along with the crescent of block size. It is similar to the running cost
on varying the block sizes. To sum up, the running cost of SX-Filter is mainly con-
tributed by I/O times.

6 Conclusions

In this paper, we propose a novel filter strategy for reducing the number of candidate
nodes participated in XML query processing. Based on schema information, some
definitely useless nodes are skipped. The experimental results show that our method is
effective, scalable and efficient. To the best of our knowledge, no previous work has
addressed to reduce the number of candidate nodes based on XML schema informa-
tion.

References

1. H.Jiang, H.Lu, W.Wang, and J.X.Yu. Holistic Twig Joins on Indexed XML Documents. In
VLDB, pages 273-284, 2003.

2. S.-Y.Chien, Z.Vagena, D.Zhang, V.Tsotras, and C.Zaniolo. Efficient Structural Joins on
Indexed XML Documents. In VLDB 2002, pp: 263-274.

3. HJiang, H.Lu, W.Wang, and B.C.Ooi. XR-Tree: Indexing XML Data for Efficient Struc-
tural Joins. In ICDE 2003, pp: 253-264.

4. Q.Li, B.Moon. Indexing and Querying XML Data for Regular Path Expressions. In VLDB
2001, pp: 361-370.

5. D.Srivastava, S.Al-Khalifa, H.V.Jagadish, N.Koudas, J.M.Patel, and Y.Wu. Structural
Joins: A Primitive for Efficient XML Query Pattern Matching. In ICDE 2002, pp:141-152.

6. Y.Wu, J.M.Patel, and H.V .Jagadish. Structural Join Order Selection for XML Query Op-
timization. In ICDE 2003, pp: 443-454.

7. C.Zhang, J.F.Naughton, D.J.Dewitt, Q.Luo, and G.M.Lohman. On Supporting Containment
Queries in Relational Database Management Systems. In SIGMOD 2001, pp: 425-436.

8. N.Bruno, D.Srivastava, and N.Koudas. Holistic Twig Joins: Optimal XML Pattern Match-
ing. In SIGMOD, pages 310-321, 2002.

9. H.Jiang, H.Lu, W.Wang. Efficient Processing of XML Twig Queries with OR-Predicates.
In SIGMOD, pages 59-70, 2004.

10. J.Lu, T.Chen, T.W.Ling. Efficient Processing of XML Twig Patterns with Parent Child
Edges: A Look-ahead Approach. In CIKM, 533-542, 2004.
11. H.K.T.Wong, J.Z.Li, F.Olken, D.Rotem and L.Wong. Bit Transposition for Very Large

Scientific and Statistical Databases. In VLDB, pages 304-311, 1986.

An Effective and Efficient Approach for
Keyword-Based XML Retrieval”

Xiaoguang Li, Jian Gong, Daling Wang, and Ge Yu

School of Information Science and Engineering, Northeastern University
Shenyang 110004, P.R.China
xiaouangli@l63.com, {jiangong, dlwang, yugel}@mail.neu.edu.cn

Abstract. IR-style keyword-based search on XML document has become the
most common tool for XML query, as users need not to know the structural
information of the target XML document before constructing a query. For a
keyword-based search engine for XML document, the key issue is how to return
some sets of meaningfully related nodes to user’s query efficiently. An ordinary
solution of current approaches is to store the relationship of each pair of nodes
in an XML document to an index. Obviously, this will lead to serious storage
overhead. In this paper, we propose an enhanced inverted index structure (PN-
Inverted Index) that stores path information in addition to node ID, and import
and extend the concept of LCA to PLCA. Efficient algorithms with these
concepts are designed to check the relationship of arbitrary number of nodes.
Compared with existing approaches, our approach need not create additional
relationship index but just utilize the existing inverted index that is much
common for IR-style keyword search engine. Experimental results show that
with the promise of returning meaningful answers, our search engine offers
great performance benefits. Although the size of the inverted index is increased,
the total size of indices of search engine is smaller than the existing approaches.

1 Introduction

As the evolution of the Internet, XML has become the standard of data publishing and
exchanging. Now, more and more people often need to get information from XML
documents. How to retrieve information efficiently and effectively became a hot-point
in this research area.

Traditionally, the research works of XML document retrieval can be divided into
two taxonomies: structural query and keywords-based search. XPath [9] and XQuery
[10] are the generally accepted standards of the former. For structural query, user
usually needs to know structural information of the target XML document before
constructing a query. This kind of query can reveal what he queries about indeed.
However, most of XML documents in the real world are lack of DTD or XSD. Even
though such structural information exists, the structure maybe varied with XML

* Supported by the National Natural Science Foundation of China(60173051), and the
Teaching and the Teaching and Research Award Program for Outstanding Young Teachers
in Higher Education Institution of the Ministry of Education of China.

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 5667, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Effective and Efficient Approach for Keyword-Based XML Retrieval 57

document of the same content. In such a case user need write the query expression for
every document. In contrast, a query of keywords-based search is easy to be
constructed even by naive users, as it does not need any structural information of the
target document. Keywords-based search for XML is quite different from that for
HTML or text files in that the search engine does not return a whole document, but
return meaningful fragments consisted of some related nodes in the target XML
document.

The basic issue to keyword-based search is how to determine which sets of nodes
that satisfy the query are meaningful. Now, most of approaches to this issue are based
on the concept of Lowest Common Ancestor (LCA), and almost every IR-style
keyword search engine needs an inverted index to store information corresponding to
every keyword in the target documents. For each keyword, traditional inverted index
stores the node identifier, together with the document identifier if there is more than
one file in the repository. This kind of inverted index has been proved to be much
efficient for traditional keyword searching and ranking without checking the
meaningfulness of the returned nodes. However, returning the LCA of nodes directly
to user without meaningfulness checking, as Meet [11] does, will clearly lead to poor
retrieval precision. On the other hand, if we add meaningfulness checking step after
getting the LCA, the traditional inverted index is not suitable for efficient checking as
there is no structural information of the node stored in the index. In this case, the
search engine has to create additional index to store the relationship for each pair of
nodes, or provide an online algorithm, as XSEarch [1] does. Inevitably, the former
will increase space complexity, and the latter will be time-consuming.

In this paper, we propose an enhanced inverted index structure, PN-Inverted Index,
which stores path information of each keyword in addition to node id. The concept of
LCA is imported and extended to be PLCA (Lowest Common Ancestor of Label
Path), and efficient algorithms with these concepts are designed to check if arbitrary
numbers of nodes in an XML document are meaningfully related. Compared with
existing approaches, our approach need not create additional relationship index but
just utilize the existing inverted index that is much common for IR-style keyword
search engine, and all indices in this paper can be efficiently created after parsing the
XML document only once. Experimental results show that with the promise of
returning meaningful answers, our approach offers great performance benefits.
Although the size of inverted index is increased somewhat, the total size of indices is
much smaller than the existing approaches.

The rest of the paper is organized as follows. Section 2 introduces the background
knowledge of this paper, discusses major related works and our motivation. Section 3
introduces some definitions and concepts we used, and proposes the concept of PLCA
and PLCA rule to check the relationship of nodes. Section 4 describes the structure of
PN-Inverted Index, and gives the query evaluation algorithm. The experimental
results and analysis are presented in Section 5. Section 6 concludes the whole paper.

2 Preliminaries and Related Work

Let Q = {q1, g2,...,qx} be query, where ¢; is a keyword. Let N, be the set of nodes that
satisfying Q, i.e. N = Np'XNy'X...xNy', where N," is the set of node that satisfying

58 X. Liet al.

keyword ¢;. The basic issue is how to determine which elements of N, are
meaningful.

For example, the following XML document fragment is an excerpt from XMark
[16]. Suppose a query Q = {computer, white} on the XML document in Fig.1. As one
of answers, the first <name> node and second <color> node will be returned.
However, these two nodes are not meaningfully related to each other as they are
describing the different items and should

not be returned. <ASla<>item>

Towards this issue, many concepts and <name> computer </name>
approaches are proposed, such as Meet <color> black </color>
[11], XSearch [1] and Schema-Free <fitem>
XQuery [2], but most of approaches are <1tem<>name> car </name>
based on the concept of Lowest Common <color> white </color>
Ancestor. In this section, firstly we will </item>
introduce this concept and describe a </Asia>
widely accepted rule of checking the Fig. 1. An XML document

relationship of nodes. Secondly, some
related works are discussed.

2.1 Lowest Common Ancestor

Definition 1. An XML document is a rooted, ordered tree T = (N, E, r) with nodes N
and edges ECNxN and a distinguished node re N, the root node. The set of nodes N =
NEUNYV, where NE is the set of elements, also called the set of inner nodes, and NV is
the set of values, also called the set of leaf nodes.

For a tree T, let Label: NE—String be the function that assigns the label to the node
of NE, and let Value: NV—anyType [17] be the function that assigns the value to the
node of NV. A path p in a tree T is a sequence of nodes uy, u,,...,u,, such that for
every pair u;, u;;; of consecutive nodes there is an edge (u;, u;;;)€ E. A node u is called
an ancestor of an node v iff there is a path u=u,, u,,..., v=u,, where m>1 that lead
from u to v. If m=1, u is called the parent of v (and v is the child of u).

Definition 2. (Ancestor-or-self) A node N, is said to have a Ancestor-or-self
relationship with N, if it is a ancestor of N, or is equal to Ny, denoted as Ancestor-or-
self (N,, N,) = true.

Definition 3. (LCA of two nodes) For nodes u;, u,€ N, a node ue N is the LCA of u,
and u, if and only if:

® Ancestor-or-self(u, u,) = true, Ancestor-or-self(u, u,) = true, and

o Yu'e N, if Ancestor-or-self(u’, u,) = true and Ancestor-or-self(u', u,) = true, then
Ancestor-or-self(u, u") = true
u is denoted as LCA(uy, u»).

Based on the concept of LCA, a widely accepted rule of checking the relationship
of nodes is to utilize the relational subtree as the context and lookup whether or not a
pair of nodes shares the same label. This rule is proposed firstly in XSEarch and has

An Effective and Efficient Approach for Keyword-Based XML Retrieval 59

been proved to be suitable for most situations. Here, this rule is called LCA rule, and
introduced in brief.

LCA Rule: given nodes u; and u, in the XML document, the relational subtree of u;
and u, (denoted as Tl,;,,)is a subtree with root LCA(u,, u,) and all the nodes on the
path from LCA(u,, u,) to u; and u,, respectively. Then u; and u, are related
meaningfully if the following conditions hold:

1. T, does not contain two distinct nodes u and v, where Label(u)=Label(v).
2. If there are two distinct nodes u# and v in Tl,, ,,, where Label(u)=Label(v),
then u=u; and v=u,, or v=u; and u=u,

2.2 Related Work

Numerous works have been done about query on XML document. Traditionally,
research work in this area has been following one of the two paths: the structured
query approach and the keyword-based approach. XPath[9] and XQuery [10] are the
generally acknowledged standard of the former, while the latter class has several
recent suggestions, including Meet [11], XRANK [8], Schema-Free XQuery [2] and
XSEarch [1].

Meet operator returns the LCA as query answer. However, it does not consider the
meaningfulness of the LCA, which will lead to poor precision especially while
querying heterogeneous XML documents repository. XRANK has a ranking
mechanism and it returns document fragments as answers. However, XRANK just
return the most special fragment as answers, of which parts maybe semantically
unrelated. Schema-Free XQuery put forwards a concept of meaningful lowest
common ancestor based on the concept of LCA. It shows a promising precision of
query that outperforms other approaches. But Schema-Free XQuery uses and extends
XQuery as its query language, which is not as easy to write a query as IR-style
keyword search for naive users. Furthermore it requires accessing all the nodes with
the same entity type, even a query only contains keyword, not any element. This
feature increases time-complexity in a great degree.

XSEarch is a keyword-based semantic search engine, where the interconnection
relationship is introduced to determine if two nodes in an XML document are
meaningfully related to each other through the rule mentioned in Section 2.1.
XSEarch developed a syntax for search queries that is suitable for a naive user and
facilitates a fine-granularity search. It provide an offline index to record whether each
pair of nodes in a document is meaningful related, but this offline index leads to
serious storage overhead as the index size is much larger than the original file.
XSEarch also notice this point and proposes an online indexing method to make the
index size smaller, while increases greatly the cost of evaluating query, especially,
when deal with query on XML documents with deep hierarchical structure.

Some query languages and search engines are proposed to support keyword
searching and result ranking on XML document, such as XIRQL [12], XXL [13].
EquiX [14] proposed an advanced ranking method on returned answer set which is
similar to page-rank. We did not add any ranking mechanism to our search engine.
However, all these ranking methods can be easily integrated to our search engine.

60 X. Li et al.

After all, all the previous work could not efficiently perform IR-style keyword
search on XML document. They either implement with high time and space
complexity, or not consider meaningfulness of the query answer at all. In this paper,
we achieve this goal by means of a novel concept of lowest common ancestor of label
path (PLCA).

3 LCA of Label Path

We found the rule mentioned in Section 2.1 can give appropriate result for most
documents and adopt it as the meaningfulness checking criterion in our approach. Our
approach can efficiently determine whether or not two nodes are meaningfully related
without storing any relationship of pair of nodes in advanced. This section discusses
node encoding method which is absolutely necessary to our approach, and then gives
a theorem of relationship determination, which is basement of the following algorithm
of relationship determination.

3.1 XML Encoding

There are many encoding methods for XML document, such as absolute region code
[3], relative region coordinate [4], region-based code [5], PBiTree coding [6] and XR-
tree [7].

In this paper, we use Dewey
encoding of node id. The main

reason is that Dewey encoding NG

captures the relationship of 0.0 Africa Asia 0.1

ancestor and descendant

information. As discussed in the 000 item item 0.0.1

following, this feature is very

helpful to determine the 0.0.0.0 0.0.0.1 0.1 0.0.1. 0.(‘).1‘.2
relationship of nodes. Due to the Hj mim IlD name description
limitation of space, the detail of 9D0" “computer” “IDI” wcar” “luxury”

Dewey id is referred to [8], here
we just give an example as
illustrated in Fig. 2. Let le| be
the length of id or path, for example 10.0.11=3, Iregions.Asial=2.

Fig. 2. An illustration of Dewey id

Property 1. For nodes u,, uye N, if Ancestor(u,, uy) = true, then the Dewey id of u, is
a prefix of id of u,.

Certainly, other encoding also can be applied into our approach if they can get the
identifier of LCA and the depth from root to LCA. Here Dewey id is used just for its
simplicity of get the identifier of LCA.

3.2 Relationship Determination with LCA of Label Path

Definition 4. (Label path) A label path Ip=1,.1,...1, is a sequence of label names of a
path uy.uy,...,u,. A prefix path Ip' of Ip is a sub-sequence of Ip, where Ip’ has the same
beginning with Ip and lip'I<lipl.

An Effective and Efficient Approach for Keyword-Based XML Retrieval 61

Definition 5. (LCA of two label paths) For label path Ip, and Ip,, a label path Ip =
Ll,...1, is said to the Common Path of Ip, and Ip, if and only if:

e [p is the prefix path of both Ip, and Ip, and
e Vip', Ip' is a prefix path of both Ip; and Ip, then Ip’ is the prefix path of Ip and
then [, is the LCA of Ip, and /p,, denoted as PLCA(Ip;, Ip,).

Property 2. For nodes ue N, let id and Ip be the Dewey id of u and label path from the
root to u, respectively, then lidl=lipl.

Lemma 1. For a tree 7, given nodes u; and u,, let Ip; and Ip, be the label path from
the root of T to u; and u, respectively, suppose Ip is the common path of Ip; and Ip,,,
and u = LCA(uy, uy), then llpi=lid of ul.

Proof. Suppose lid of ul is k and id of u is i} i,,...,i;,, then according to property 1, the
id of u; and u, 1S iy. ip.....lge lgygeee B a0d 1y Dpeeen il iy q... . .0, TESpECtively. According
to property 2, the corresponding label paths from u; and u, are supposed as
rhydy. Ay Ay Ly and rl 0. U0y L, respectively. Obviously, for any /; and [,
i=2~k, I=l";. If Iy...1,, and ['4...l', do not share any common prefix, then Ip is
root.l,.1s...I;, and then lipl=lid of ul. Else let the length of common prefix is k (k >0),
then llpl=k+k , and then lip|>lid of ul.

Now, based on the concept of PLCA, we give a rule of checking the meaningful
relationship of nodes, called PLCA rule.

PLCA rule: for a tree 7, given nodes u; and uy, Ip, and Ip, is the label path from the
root of T to u; and u,, respectively, suppose Ip is the common path of /p, and Ip,,, and
u = LCA(uy, u,). u; and u, are meaningfully related if the following conditions holds:

o |lpl=lid of ul

e There are not two distinct label with the same name in the set of (Ip-Ip)U(Ip,-Ip)

e The only two distinct label with the same name in the set of (Ip;-Ip)U(Ip,-Ip) are
the ends of Ip;and Ip,

Theorem 1. PLCA rule is equivalent to LCA rule.

Proof. According to Lemma 1, the label of # must be contained in Ip. If lipllid of ul,
then there are at least two nodes in 71, ,, with the same label of PLCA(lp,, Ip,).
Obviously the condition 2 and 3 consist with the condition 1 and 2 of LCA rule. So if
nodes u; and u, satisfy PLCA rule then also satisfy LCA rule, vice versa.

Theorem 2. The time complexity of implementing PLCA rule is O(c+N,,!), where ¢
is a constant time of verifying condition land 3, Ny, = [(Ipi-Ip)U(Ip,-Ip)l.

Theorem 2 is intuitive and it proof is omitted due to the limitation of space.

4 PN-Inverted Index and Query Algorithm

Based on the concept of PLCA and Theorem 2, we design a proper index structure,
PN-Inverted Index, and develop an online algorithm to make the query progress
effective and efficient.

62 X. Li et al.

4.1 Index Structure

In our search engine, we design an enhanced inverted index, PN-Inverted Index. Here,
The PN-Inverted Index created only for a single document is discussed, and then the
document id is omitted. The support to a document repository is straight forward. The
basic idea of PN-Inverted Index is to store the label path for each node from root to
this node in addition to its id. As shown in next section, this feature turns online
checking into reality. PN-Inverted Index consists of two parts as shown in Fig. 3.

Keyword, —b{ PathIDy, | NodeSet,,)—P{ PaLhID12| NodeSet;,)—V PathID, — | Label Path,
Keyword, —{ PathIDy | NodeSety; |—*{ PathIDy, | NodeSetyy | ... PathiD, — [Label Path,

(a) Enhanced inverted list (b) Path index
Fig. 3. PN-Inverted Index

The first part is an enhanced inverted index as shown in Fig. 3 (a). In each entry of
the inverted index, for a keyword, ids of all the nodes that containing this keyword,
and for such each node, the label path from root to this node are stored. Here two
optimizations are made to reduce the size of index. Firstly, although the original XML
document may be of a large size and lots of nodes, the number of label paths is
usually small, as this number is determined by the schema of the document but have
nothing with the document size [15]. So in the our inverted index, for each entry,
those nodes with the same label path are grouped into together, called NodeSet, and
only one label path is stored for all these nodes. Clearly this would make the size of
inverted index smaller, especially when search engine support query on the label
name of nodes. Secondly, to further compress the inverted index, an id of label path,
called PathID, is created and stored instead of the label path itself, and then Path
Index is built to store the mapping of PathID and label path, as shown in Fig.3 (b).
Note that label paths for those nodes which have at least one text node as their child
are created, as label paths of other nodes would never appear in this inverted index.

Theorem 3. The space complexity of PN-Inverted Index is O(n,n, +n,n,n, +n,),
where n,, is the number of keywords, n,, is the number of label paths, &, is the average
number of nodes for each label path.

Proof. For each entry of inverted index, its space complexity is O(n,, +n,,n,), and for
path index, its space complexity is O(n,) , so the total space complexity is
O(nwn,P +”w"1pﬁu +n,P) .

However, all the relationships of nodes should be recorded in the traditional
inverted index, such as XSEarch, the space complexity in this case is

O(n,n,n,+IN1?), where N is the set of all nodes in an XML document. Generally

speaking, INl is usually very large, in such case the space complexity of O(IN I?)1is
much greater than that of O(n,,n,, +n,) . Algorithm 1 is the algorithm of PN-Inverted

An Effective and Efficient Approach for Keyword-Based XML Retrieval 63

Index creating. Note that this algorithm create inverted index only for the keywords in
each value node, not for the labels of nodes, but it is easy to be extended to support it.

Algorithm 1: CreateIndex
Input: an XML document
Output: PN-Inverted Index
1. while (parser.readNode(node) != NULL)
if (node is the start of an element and nodee NE)
if (\stack.isEmpty) stack[top].childCount ++;
childCount = 0; label < getCurrentNodeLabel();
stack.push(label, childCount);
if (nodee NV)
curlD « getIDfromStack();
curLabelPath < getLabelPathfromStack();
9. curPathID < pathIndex.getPathID(curLabelPath);
10. for each word in the text
11. invertedIndex.addEntry(word, curlD, curPathID)
12. if (node is the end of an element and nodes NE) stack.pop();
13. return;

PN E WD

Algorithm 1 creates the index meanwhile computing the Dewey id for current
node. The parser reads in every node in the XML document in pre-order (line 1) and
access the document only once. When the access node is the start of an element
belonging to the set of NE, such as “<regions>", the algorithm gets the label of node
and push it into stack (line 2~5). If the access node is the end of an element, then pop
the top of stack (line 12). So the sequence of stack from the bottom to top is proved to
be current label path with these processing. If the node is a value node, the algorithm
traverses the stack from bottom to top to compute id and label path of current nodes,
and then add an entry for each word (line 6~11). The addEntry (line 11) function adds
a given word to the corresponding entry and cluster according to given node id and
path id.

Theorem 4. The time complexity of algorithm 1 is O(N, +1log," '+ N, log,"") .

Proof. Each input node of value is pushed into the stack or popped from the stack at
most once. Since the stack operation falls into the one of these constant time
operations, the time complexity is O(N,), where N, is the number of value nodes.
Suppose the total number words in the document is n,, the total number used to add
keywords to the entry of inverted index is log,™". Then suppose each entry contain at

most 7, different label paths, the number used to add node id to the corresponding

label path is N, log,"" . So, the total time complexity is O(N, +log,"'+ N, log,"") .

4.2 Query Evaluation

While checking meaningful relationship of arbitrary number of nodes, all-pairs
relationship [1] is adopted, which means every pairs of nodes should be related

64 X. Li et al.

meaningfully, and leads to a higher precision than star-related relationship, which
means that all nodes are related with a star center node.

4.2.1 Naive Implementation

For a keyword-based query O={q, ¢2,-.-..,qx}, the straight forward implementation is
that firstly, the search engine lookups each of the k keywords in the inverted index
and returns k set of nodes, each corresponding to one keyword, then computes the
Cartesian product of these k sets, of which each element is a potential answer, finally
executes the meaningfulness checking based on PLCA rule on each potential answer
and adds those meaningful ones into final answer set. The problem with this
implementation is that the intermediate result set may grow to be of very large size.
This kind of implement suffers from high complexity of both space and time, even
though there may be just a piece of potential answers are meaningful.

Theorem 5. The time complexity of naive implementation is O(c,, k(k - DIIL, n,),

where n; is the number of returned nodes corresponding to each keyword, ¢, is the
maximum time of verifying PLCA rule.

Proof. There are [T', n, potential results after the Cartesian product calculated. The

i=1 "
number of verifying PLCA rule for each result is k(k-1)/2. So the total time
complexity is O(c,, . k(k =D I, n,).

4.2.2 Efficiently Query Evaluation

Obviously naive algorithm is simple, but expensive. To improve the efficiency, we
develop another algorithm. Since all-pairs relationship requires every pairs of nodes
should be related meaningfully, the basic idea of this algorithm is that if two nodes
are meaningless, then any answers containing these nodes inevitably lead to a
meaningless result at last, and then prune them as early as possible. The algorithm is
as follow.

Algorithm 2: EvaluateQuery

Input: a query 0={q1, ¢>,....qx}

Output: meaningful sets of nodes

1. for each g;€ Q in query

2. get PNPairSet that is a set of node id and path id from inverted index with g;;
3. add PNPairSet into PNPairSetN; [/PNPairSetN is an array of PNPairSet
4. let the intermediate Cartesian product be /;

5. for each PNPairSet in PNPairSetN

6. I < I ®PNPuairSet,

7. prune meaningless results in / according to PLCA rule;

8. return [;

Note that the ® operator (line 6) computes Cartesian product of two set. Line 7
prunes meaningless results immediately after getting the intermediate results. While
checking meaningfulness between I and new set of nodes, all nodes in / have been
meaningfully related to each other as we have checked them in the previous step. If
the size of query result is small, then a smaller size of intermediate result in this

An Effective and Efficient Approach for Keyword-Based XML Retrieval 65

algorithm than in algorithm 1 maybe obtained early, and this feature will absolutely
decrease the time complexity.

Theorem 6. The time complexity of algorithm 2 iS O(c 1 z; n;(i—1)) , where
N 18 the maximum number of intermediate result.

Proof. The maximum number of intermediate result at the i* is n,,,71;, and at this time
the number of verifying PLCA rule is i-I, so the total time complexity

IS O(C M D 1, = D)) .

S Performance Experiments

5.1 Experimental Environment

We performed extensive experiments with

. .) Table 1. Summary of dataset
our search engine, which was implemented

in C++. The experiments were carried out Datasetid ~ Size(kb) Number of node
on a Pentium 4, with a CPU of 2.8G and 1 116 1729
512M RAM, running Windows XP 2 1155 17132
operation system. When parsing an XML 3 11597 167865

document, MSXML3.0 and SAX model are
adopted. XMark [16] is used as the data set with factor varies from 0.001 to 0.1, as a
result the size of XML document varies from 116K to 11.5M and the detail of these
dataset is shown in Table 1. We constructed 300 queries with the keywords random
selected from all the words appeared in the document, and the number of keywords of
query varies from 2 to 4.

The experimental results are compared with XSEach [1] as it is a famous keyword
search engine on XML documents. We compare the size of index, the indexing time
and query responding time with it. Note that as proofed before, the meaningfulness
judge criteria of ours is equal to those used in XSEarch, so the precision and recall is
also equal to theirs and we do not give the result here.

5.2 Result Analysis

In Fig. 4, the comparison of the size of index under different approaches with
different size of XML documents is presented. Observe that our total index size is just
a few bigger than traditional inverted index. The total size of XSEarch is small when
online indexing strategy is used, while it becomes very large when offline indexing is
created, which can be 100 times of the original document.

In Fig.5, we present the result of indexing time. The indexing time of traditional
inverted index and XSEarch without interconnection index is the faster than ours, but
our indexing time is faster than XSEarch with interconnection index. We note that the
indexing time of interconnection in XSEarch is short when the structure of XML
document is flat. But when the depth grows, the indexing process becomes very time
consuming as it need to recursive compute many times. However, the indexing time

66 X. Li et al.

of our index has nothing with the structure of the document, but merely determined by
the original document size.

For each approach, we run 300 queries with the number of keyword varying from 2
to 4. All the keywords in the queries are drawn randomly from the set of keywords in
the document. From Fig.6, XSEarch with interconnection index is faster than our
approach, while much slower without interconnection index. In addition, as our
approach prunes meaningless answers as early as possible, which makes the
intermediate not grow too large, and the query time not increases exponentially with
the document size.

10000000
1000000
100000
10000
1000

100

10

1000000
100000
10000
1000
100

10

1

2 1000000
D0000
10000
1000
100
10

H 1

Indexing Time (m¢

Index Size(Kb,

Fig. 4. index size Fig.5. indexing time Fig. 6. average query time

6 Conclusion

In this paper, the concept of LCA, a widely accepted concept, is introduced and
extended to the concept of PLCA, and an enhanced index and algorithm of query
evaluation supporting this concept are developed to efficiently execute keyword-
based query with promise of query precision, to efficiently and effectively retrieve
meaningful results for keyword-based XML query. Main contributions in this paper
are:

e A new concept of PLCA and a PLCA rule of checking the meaningful
relationship of nodes, where PLCA rule is equivalent to LCA rule. These
innovations turn on-line query evaluation into practice.

® An enhanced index, PN-Inverted Index, whose size is compressed much more
than the traditional approaches, and the creating time is linear with the size of
document.

e An efficient algorithm of query evaluation, which can prune meaningless
results early, and then decreases the time complexity of evaluation greatly.

References

1. S. Cohen, J. Mamou, Y. Kanza, Y. Sagiv. XSearch: a semantic search engine for xml.
Proc. of VLDB, 2003
Y. Li, C. Yu, H. V. Jagadish. Schema-free XQuery. Proc. of VLDB, 2004
. C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G. Lohman. On supporting containment
queries in relational database management systems. Proc. of SIGMOD, 2001
4. D. D. Kha, M. Yoshikawa, S. Uemura. An XML indexing structure with relative region
coordinates. Proc. of ICDE 2001.

W

10.

11.

12.

13.

14.

15.

16.
17.

An Effective and Efficient Approach for Keyword-Based XML Retrieval 67

Q. Li, B. Moon. Indexing and querying XML data for regular path expressions. Proc. of
VLDB 2001.

. W. Wang, H. Jiang, H. Lu, J. X. Yu. PBiTree coding and efficient processing of

containment joins. Proc. of ICDE, 2003.

. H. Jiang, H. Lu, W. Wang, B. C. Ooi. XR-Tree: indexing xml data for efficient structural

joins. Proc. of ICDE, 2003.

. L. Guo, F. Shao, C. Botev, J. Shanmugasundaram. XRank: ranked keyword search over

xml documents. Proc. of SIGMOD, 2003.

. A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay, J. Robie, J. Simeon.

XML path language (XPath) 2.0. W3C working draft. Available from
http://www.w3.org/TR/xpath20/, 2002

S.Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, J. Simeon. XQuery 1.0:
an xml query language. W3C working draft. http://www.w3.org/TR/xquery/, 2003

A. Schmidt, M. Kersten, M. Windhouwer. Querying xml document made easy: nearest
concept queries. Proc. of ICDE, 2001

N. Fuhr and K. Grobjoham. XIRQL: a query language for information retrieval in XML
document. Proc. of SIGIR, 2001.

A. Theobald and G. Weikum. The index-based XXL search engine for querying XML data
with relevance ranking. Proc. of EDBT, 2002.

S. Cohen, Y. Kanza, Y. Kogan, W. Nutt. Y. Sagiv and A. Serebrenik. EquiX: a search and
query language for XML. Proc. of JASIST, 2002.

B. Choi. What are real dtds like? Proc. of the Fifth International Workshop on Web and
Database (WebDB), 2002.

XMark. http://monetdb.cwi.nl/xml/index.html, 2003.

W3C. XML schema, http://www.w3.org, 2003.

Subgraph Join: Efficient Processing Subgraph
Queries on Graph-Structured XML Document*

Hongzhi Wang!2, Wei Wang'!, Xuemin Lin', and Jianzhong Li?

! University of New South Wales, Australia
wangzh@hit.edu.cn, {weiw, lxue}@cse.unsw.edu.au
2 Harbin Institute of Technology, Harbin, China
1ijz@mail.banner.com.cn

Abstract. The information in many applications can be naturally rep-
resented as graph-structured XML document. Structural query on graph
structured XML document matches the subgraph of graph structured
XML document on some given schema. The query processing of graph-
structured XML document brings new challenges.

In this paper, for the processing of subgraph query, we design a sub-
graph join algorithm based on reachability coding. Using efficient data
structure, subgraph join algorithm can process subgraph query with var-
ious structures efficiently.

1 Introduction

XML has become the de facto standard for information representation and ex-
change over the Internet. XML data has hierarchy nesting structure. XML data
is often modeled as a tree. However, XML data may also have IDREFs that add
additional relationship to XML data. With such property, XML data also can
be represented in graph structure. In many applications, data can be modeled
as a graph more naturally than a tree.

Of course, graph structured XML document can be represented in tree struc-
ture by duplicate the element with more than one incoming paths. But it will
result in redundancy.

Query languages are proposed for XML data. XQuery [4] and XPath [6] are
query language standards for XML data. Structure query on graph structured
XML data has more power. Further than branching query on tree structured
XML data, structure query on graph-structured XML data can request sub-
graphs matching the general graph modeled schema described query.

Query processing on graph structured XML data brings new challenges:

— More complex query can be defined on graph-structured XML data. The
query can be also graph-structured to retrieve a subgraph of an XML docu-
ment. The schema of the subgraph can be various, possibly including nodes

* This work was partially supported by UNSW FRG Grant (PS06863), UNSW Gold-
star Grant (PS07248) and the Defence Pre- Research Project of the Tenth Five-
Year-Planof China no.41315.2.3.

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 68-80 2005.
© Springer-Verlag Berlin Heidelberg 2005

Subgraph Join: Efficient Processing Subgraph Queries 69

with multiple parents or circle. Existing method cannot process such query
efficiently.

— One way to processing structural query on XML data is to encode the nodes
of graph with some labelling scheme. With the code, the structure relation-
ship such as parent-child or ancestor-descendant can be judgment quickly. In
query processing on tree structured XML, it is a well-studied problem. But all
existing labeling scheme of XML representations and query processing meth-
ods are based on tree model. They can not be applied on graph-structured
XML data directly.

— Another kind query processing methods for XML is to use structural index
such as 1-index|[I5], F&B index[I3] to accelerate the query processing. But
the structural index of graph structured XML document has many nodes.
It is not practical to use structural index directly to process query on graph
structured XML. For example, the number of nodes in F&B index of tree
structured 100M XMark document has 436602 nodes while the number of
nodes in F&B index of graph structured 100M XMark document has 1.29M
nodes [13].

Using label to represent the relationship between nodes is a practical method
to process query on graph-structured XML data. With well-designed labeling,
the structural relationship between two nodes can be determined efficiently with-
out accessing any other node. In this paper we use an extension of the code in
[16] as reachability code.

To process the complex queries with a graph schema on graph-structured, we
design a novel subgraph join algorithm based on the reachability code. In order
to support the overlapping of intervals in the coding, we design a data structure
interval stack. Subgraph join algorithm uses a chain of linked interval stacks
to compactly represent partial results. Subgraph join algorithm can be used to
process subgraph query with both adjacent and reachability relationship.

The contributions of this paper can be summarized as follows:

— We use duplication to make the coding possible to be storage in relation or
apply sorted based join algorithms on.

— We present efficient graph structural join algorithms and efficient data struc-
ture, interval stack, to support join.

— We present subgraph query, a novel kind of structure query using general
graph as matching schema. To process subgraph query, we design a novel
subgraph join algorithm. It processes subgraph query efficiently.

The reset of the paper is organized as follows: Section 2] introduces some back-
ground knowledge. Data preprocessing and subgraph join algorithm are pre-
sented in Section[3l We present our experimental results and analysis in section 4l
Related work is described in Section [Bl We conclude the paper in Section

2 Preliminaries

In this section, we briefly introduce Graph-structural XML model and some
terms used in this paper.

70 H. Wang et al.

2.1 Data Model

XML data is often modeled as a labelled tree:elements and attributes are mapped
into nodes of graph; directed nesting relationships are mapped into edges in the
tree. A feature of XML is that from two elements in XML document, there may
be a IDREF representing reference relationships [23]. With this feature, XML
data can be modeled as a labelled digraph: elements and attributes are mapped
into nodes of graph; directed nesting and reference relationships are mapped into
edges in the graph. An XML fragment is shown in Fig It can be modeled

as the graph shown in Fig It is noted the graph in Fig is not a DAG.

(a) An XML Frag- (b) XML Graph of (c) The Reachibility code of Fig[L(b)]
ment Fig

Fig. 1. An Example of Graph-structured XML

In a graph, a node without incoming edge is called source. A node without
outcoming edge is called sink.

2.2 Subgraph Query

In graph-structured XML, the parent-child and ancestor-descendant relationship
should be extended. In [I3], the idref edges are represented as = and < for
the forward and backward direction, respectively. We define the reachability
relationship as two nodes a and b in the graph model G of XML data satisfy
reachability relationship if and only there is a path from a to b in G. Each edge
in this path can be either edges representing nested relationship or reference
relationship. We represent reachability by ~». For example, a ~ e is to retrieve
all the e elements with a path from a to it. In Fig this query will retrieve
dl,d2 and d3.

The combination to reachability restraints may forms subgraph query. Sub-
graph query will retrieve the subgraphs of graph-structured XML matching the
structure given by the query. The graph corresponding to the query is called
query graph. The nodes in query graph represent the tag name of required el-
ements. The edges in query graph represent the relationship between required
elements. If an edge in query graph represents adjacent relationship, it is called
adjacent edge. If an edge in query graph represents reachability relationship, it
is called reachability edge. For an example, the query shown in fig on XML
document shown in ﬁg represents the query to retrieve all the subgraphs of
it with structure a node connects to a ¢ node, d node reaches to this ¢ node and
this ¢ node reaches a f node. the result is shown in fig

Subgraph Join: Efficient Processing Subgraph Queries 71

2.3 Reachibility Coding

The goal of encoding XML is to represent the structural relationship so that
the relationship between nodes in XML graph can be judged from the code
quickly. With a good code, the query processing of structural query can be
efficient. In this paper, we focus on reachability coding, which is used to judge the
reachability relationship. We use an extension of reachability coding presented in
[16]. In this coding, at first, all strongly connected components in the graph are
contracted. Labeling is done by finding a spanning tree of the DAG generated
in last step and assigning interval labels for nodes in the tree. The coding of the
spanning tree is generated by post-order traversal. Each node is also assigned
the number during traversal. The number is called postid. Next, to capture
reachability relationships through non-spanning-forest edges, we add additional
intervals to labels in reverse topological order of the DAG; specifically, if (u, v)
is an edge not in the spanning forest, then all intervals of v are added to u (as
well as labels of all nodes that can reach u). For an example, the reachability
coding of graph in ﬁ is shown in Fig Using the spanning tree rooted
at al, we label d2, f1 with [2,2] and [0, 0]. In addition, d2 receives intervals from
f1, resulting in that b2’s code is [2, 2], [0, 0]. In this coding, a ~» b if and only if
b.postid is contained some interval associated with a.

3 Subgraph Join

In this section, we discuss the processing of subgraph queries. We present sub-
graph join algorithm and the method of preprocessing query and data to support
subgraph join algorithm.

3.1 Preprocess of the Input

The interval labelling scheme of a graph is different from that of tree. There
may be more than one intervals assigned to one node. The processing unit of
our method is interval. So that we should assign the postid of each node to all
of its intervals. If several intervals associated to nodes with the same tag have
the same x and y value but different postid, they are merged. The result of this
step is a list of intervals, each of which is associated with one or more postids.
The list is called candidate list.

For the convenience of process, we will sort the intervals of all the nodes with
the same tag by the value of x in ascending order and value of y in descending
order. x is prior to y. It means only if two intervals have same x value, their y
values are considered.

3.2 Preprocess for Subgraph Query

In order to apply subgraph join algorithm to process general subgraph query,
some preprocess should be applied on the query when the query graph has circle.

72 H. Wang et al.

If there are some circles in the query graph, a node n in each circle should be
split to n, and n; break this circle. n, includes all the incoming edges of n. ny
includes all the out edges of n. This node is the nodes related least edges in the
circle.

When subgraph join is finished, the nodes in result corresponding to split
query node are connected. Hash method is used.

Theorem 1. After connection processing in the last step, the splitting of query
node will not affect the final result of subgraph query.

For the efficiency of query processing, before the process of data stated in
Section [31] the nodes in the same SCC in each candidate list should be merged
into one node. This node is called stub node. Since the coding of nodes in the
same SCC have same intervals, the new node has these intervals, the number of
the stub node is any of the number of the nodes belonging to the same SCC.
Applying such preprocess is to prevent too large intermediate result during query
processing without affecting the final result. For example, to process query shown
in fig B there is a cycle in graph of the XML document with 100 @ nodes, 100 b
nodes and 100 ¢ nodes respectively. Since they are reachable to each other, there
will be 108 items in intermediate result after processing these nodes.

Corresponding to the merge, after the join is processed, the result should
be extracted. The process of extraction is, for each result with stub node, from
node set associated each merged nodes, one node is selected for one time to put
on the position of the merged node. With a different combination of the selected
nodes, one result is generated.

Theorem 2. With extraction after all results are generated, the merging of
nodes in the same SCC before query processing will not affect the final result.

3.3 Data Structure for Subgraph Join

In our coding, there may be overlap in the intervals. Therefore, the stack based
join of tree structured XML document can not be applied to our coding directly.
We design a data structure, interval stack, to support efficient graph structural
join. The interval stack is a DAG. Each node represents an interval. Each edge
e = n1 — ny represents the interval of n; contains the interval of ns. The child
of each node is sorted by the = values of the intervals.

There are two additional structures of the digraph, top and bottom. Top is
the list of the sinks which are intervals without any interval containing them.
Bottom is the list of sources which are intervals without any interval contained
in them. They are both sorted by = of the intervals.

There are mainly two operators of interval stack, append and trim. The
former is to append an interval to interval stack. The latter is to delete useless
intervals from interval stack. During the performing of these two operations, the
property of interval stack should be kept and top and bottom are maintained.

Subgraph Join: Efficient Processing Subgraph Queries 73

3.4 Subgraph Join Algorithms

With interval stack, we improve stack-based twig join [3]algorithm to support
subgraph queries.
Of compacted interval list, we have following observations:

— The postid of a node is contained one and only one of its intervals.

— If two nodes have reachability relationship, it can and only can be checked
by one interval. That is, if a ~ b, among all the intervals of the reachability
of a, only one contain the b.number.

Suppose the input query can be visualized as a rooted DAG. The circle in
input query will be broken in preprocess. If there is no root. A dummy root is
added to the query.

The join candidates are a series lists of intervals with a list of nodes it corre-
sponds to.

For each node in query graph, a structure is build which includes an interval
stack(S) and its current cursor(C), the parents and children of it in query graph.
The interval stack has the same function as that in structural join. M is a hash
map, mapping postid of node to its children. The algorithms of subgraph join
are described in Alg[Il

The subgraph join algorithm has two phases. In the first phase, each pair of
nodes satisfying partial reachability relation described in query is outputted. In
the second phase, the nodes in intermediate result unsatisfied the whole query are
trimmed. Such nodes being included in intermediate result is because in the first
phase, when each pair of nodes is outputted, only partial reachability relation
related to these two node is considered. For an example, for query shown in fig[3]
some of the intervals to process are shown in fig [the ids in brackets are the
postids corresponding to the interval. Suppose the first number in bracket is in
corresponding interval and others is not in the interval. During query processing,
although ag; and cg; are not in final result, the pair (as1,co1) is still outputted.

During processing the query in fig[3], interval a; contains interval ¢;. Based
on observation 1, only pairs (a11,c11), (a12,c¢11), (a13,c11) are appended to in-
termediate result. This is because from the containment of these two intervals,
only that ¢q; is in interval a; can be determined. So only the reachability of all
nodes in the extent of a; and cq1 is true.

getNext() is to find the next entry to process. It has similar function as
getNext of twigjoin in [3]. First of all, the interval with least x value is chosen.
If some intervals have same z value, the interval with largest y is chosen. If
two intervals have same = and same y and their corresponding query nodes have
reachability relation, the interval corresponding query node as ancestor is chosen.
Otherwise, some result will be lost. For an example, consider query in fig[3l on
the element sets visualized in fig @ the interval a; has the same z and y as
interval b;. The nodes corresponding to a; should be outputted with the nodes
corresponding to b; and in the interval of b;. But if by is chosen former than
a1, these pairs will not be outputted. Since interval a; contains interval by, the
nodes corresponding to a; should be outputted with the nodes corresponding to
bs and in the interval of bs. But if by is chosen former, these pairs will lose.

74 H. Wang et al.

Algorithm 1. GJoin(root)

while not end(root) do
q = getNext(root)
if not isSource(q) then
if isSource(q) OR not emptyParent(q) then
cleanNodes(q)
push(q)
advance(q)
obtainResult()

XA TN

function END(q)
return Vq; : tsSink(q;) = end(q;.C)

N =

—

procedure CLEARNODES(q)
2: q.5. Trim(q.C)

1: function EMPTYPARENT(q)
return dpi € g;.parents : p;.C = p;.end

N

procedure PUSH(q)
for each node n € ¢q.C.context do
if ¢ = root then
q.extent.add(n)
if n.id > q.C.y then
insertEntry(q.M, n)
n.type = q
else if n.id > q.C.x then
for each p € g.parents do
pointTo(p,q,n.id)

QVRAP TN

=

procedure POINTTO(p,q,id)
for each entry 7 € p.S do
if id > i.x AND id < i.y then
for each node n € i.context do
M [n.id].child.add (id)

g whe

procedure OBTAINRESULT
for each node n € root.extent do
b = generateResult(n)
if b= FALSFE then
delete n from root.extent

g Wb

function GENERATERESULT(node)
if node is visited then
return node.isresult
b = TRUE
for each child ¢ of node do
tb = generateResult(c)
if tb = FALSE then
delete ¢ from node.child
b = FALSE
10: else if NOT c.type € node.childtype then
11: node.childtype.add(c.type)
12: if node.childtype.size = node.type.child.size then
13: node.isresult = TRUFE
14: return TRUE
15: else
16: node.isresult = FALSFE
17: return FALSE

AR AR S

Subgraph Join: Efficient Processing Subgraph Queries 75

Algorithm 2. getNext(q)
1: function GETNEXT(q)

2: if isSink(q) then
3: return q
4: for gq; € q.children do
5: n; = getNext(q;)
6: if n;left < nmin.left then
7 Nmin = Ny
8: else if n;.left = nmin.left then
9: if n;.right > nmin.right then
10: Nmin = N4
11: else if n;.right = nmin.right AND n; is a ancestor of ny,» then
12: Nmin = N
13: Nmaz = Mazargn;{n:.C.x}
14: while ¢;.C.y < gmax.C.y do
15: advance(q;.C)
16: if ¢;.C.x < gmin.C.x AND ¢,.C.y > qmin.c.y then
17: return q
18: else
19: return Nmin

Note the function emptyParent() is to check whether the nodes in current
interval satisfies the restriction of all incoming paths in the query. In out example,
when interval c3 is met, since interval stack of b is empty, it will not be considered.

@ @ al(all, al2, al3) ad(adl)
@ a _a2(a2l)
_a3(a31, a32)
__ blpl1,bl2)
__b2(b22)

cl(cll cl12) c3(c31)
_c2(c21)
Fig. 2. Example Quries Fig.3. Example Fig. 4. Element sets for fig[3]

Query

Outputted pairs are organized by the ancestors. The main memory may
be not enough to store intermediate results. External memory is used to store
intermediate results. Since each node may have more than one descendant during
query processing, children of one node are stored as a list in disk. The head of
the list associated with a node record the number of the node, the query node
corresponding to the node and the pointer to the first entry of the list. Each of
entries in the list includes a 2-ary,(node, next), where node is the pointer to the
node this entry corresponding to and next is the pointer to next entry of the
list. In the hash map, each entry e,, corresponds one node n. Each entry contain
the head of the the position of the head and tail of list of n.

76 H. Wang et al.

Theorem 3. The logical 1/0 number of subgraph join algorithms is linear to
the number to the pair of nodes satisfying the reachability relationship described
m query.

4 Experiments

In this section, we present results and analysis of part of our extensive experiment
of subgraph join algorithms based on reachibility coding.

4.1 Experimental Setup

The Testbed. All our experiments were performed on a PC with Pentium 1GMHZ
CPU, 256M main memory and 30G IDE hard disk. The OS is Windows 2000
Professional. We implemented all the algorithms using Microsoft Visual C++
6.0. We implemented the encoding of graph and subgraph join algorithms. We
use LRU policy for buffer replacement.

For comparison, we also implemented F&B index [I3]for graph structured
XML document. F&B index supports all the subgraph queries for XML.

Dataset. The dataset we tested is the standard XMark benchmark dataset[21].
We used scale factor 0.1, 0.2, 0.3, 0.4 and 0.5, which generated XML document
with size 10M, 20M, 30M, 40M and 50M respectively. It has complicated schema,
including circle.

Some statistics information of test XML documents are shown in Table [l

Table 1. Information of Test Document

Document size 11.3M 22.8M 34.0M 45.3M 56.2M
Node number 175382 351241 524067 697342 870628
Edge number 206129 413110 616228 820437 1024072

Query Set. In order to better test and understand the characteristics of the
algorithms, we designed a set of queries that has different characteristics. We
design three queries. They represent various structures. The query graph of them

are shown in fig fig and fig respectively.

4.2 Changing System Parameters

In this subsection, we investigate the performance of our system by varying var-
ious system parameters. We use physicall/O and run time to reflect the impact
of different parameter setting.

Subgraph Join: Efficient Processing Subgraph Queries 7

closed_auction

buser seller

text
person
city age emph kéyword old
(b) GSQ2 (c) GSQ3

Fig. 5. Test Queries

Scalability Erperiment. We test the queries on XML documents with various
sizes. In order to test the scalability of the subgraph join algorithm. We choose
SGQ2 and SGQ3 as test query. We fix main memory 8M and block size 4096.
The results are shown in fig and fig respectively. SGQ1 is a simple
twig query. The nodes related to SGQ1 in XML document is not in any SCC
and all have single parent. Therefore, the increase trend is nearly linear. SGQ2
is a complex subgraph query. One person node may be reached by more than
one seller nodes and only parts of person nodes are reached by both seller node
and buyer node. The trend of run time is faster than linear but still slower than
square.

Varying Buffer Size. The physicallO change with block number of SGQ1 is
shown in fig From the fig we can find that without enough main
memory, the second phase result more physical I/O than the first phase. This is
because in the second phase the whole intermediate result is traversed while in
the first phase, the operation is mainly append.

4.3 Comparison Experiment

We do comparison in 10M XML document. Its F&B-index has 167072 nodes.
We naive implemented the depth first traversal-based query processing by F&B-
index. The reason why we do not compare larger XML document is that when
XML document gets larger, the query processing in F&B-index becomes too
slow.

The result of comparison subgraph query process efficiencies of subgraph join
algorithm and F&B index is shown in Fig Y axis is in log scale. subgraph
join algorithm outperforms the efficiency of F&B index. For SGQ1, the efficiency
are similar. It is because the nodes in XML document related to SGQ1 is in tree
structured in Xmark document and the search depth in F&B index is limited.

5 Related Work

With efficient coding, XML queries can also be evaluated on-the-fly using the
join-based approaches. Structural join and twig join are such operators and their
efficient evaluation algorithms have been extensively studied [27/TI8/T0/525]
[3TT]. Their basic tool is the coding schemes that enable efficient checking of

78 H. Wang et al.

SGQ2 SGQ3
T T 1400 T T

1200

1000

800 -

runtime
runtime

600 -

400 -

200
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50

data size data size

(a) Size change of SGQ2 (b) Size change of SGQ3
120000 ‘ ‘ ‘ sovitn : : e—
scan —+— F -index 2sseses
. total -—x-—
100000 ‘\x\ 4 164007 |
~
o 80000 [X 1 16+006 |
2 e -
g 60000 S E oo,
£ . €
& 40000 | " :
. 10000
20000 - I 1
\ 1000 |
oy 0 100 1000 10000 100 NN
availible memory size seq1 seq2 seq3
(c) Disk change of SGQ1 (d) Comparison between SGJ and Query

Process with F&B-index

Fig. 6. Experiment Results

structural relationship of any two nodes. TwigStack [3] is the best twig join
algorithm to answer all twig queries without using additional index. The idea of
these work can be referenced to process query on graph. But these algorithms
can not be applied on the coding of graph directly.

6 Conclusions

Information in some applications can be naturally stored as graph modeled data.
The processing of graph structured XML data brings new challenges. To process
structural query on graph structured XML data, in this paper, we present reach-
ability labelling scheme for graph structured XML. With such labelling scheme,
the reachability relationship between two nodes in graph structured XML can
be judged efficiently. Based on the labelling scheme, we design graph structural
join and subgraph join algorithms of graph structured XML to perform sub-
graph queries. From experiment, our labelling scheme has acceptable size. The
subgraph join algorithm outperforms the query processing with F&B-index.

Our further work includes designing efficient index structure so support effi-
cient query processing on graph structured XML document.

References

1. Introduction to Algorithms. MIT Press, Cambridge MA, 1990.

2. Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu, Nick Koudas, and
Divesh Srivastava. Structural joins: A primitive for efficient XML query pattern
matching. In Proceedings of the 18th International Conference on Data Engineering
(ICDE 2002), pages 141-152, 2002.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Subgraph Join: Efficient Processing Subgraph Queries 79

Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins: Optimal
XML pattern matching. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data (SIGMOD 2002), pages 310-321, 2002.
Donald D. Chamberlin, Daniela Florescu, and Jonathan Robie. XQuery: A query
language for XML. In W8C Working Draft, http://www.w3.org/ TR /xquery, 2001.
Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, Vassilis J. Tsotras, and Carlo
Zaniolo. Efficient structural joins on indexed XML documents. In Proceedings
of 28th International Conference on Very Large Data Bases (VLDB 2002), pages
263-274, 2002.

James Clark and Steve DeRose. XML path language (XPath). In W3C Recom-
mendation, 16 November 1999, http://www.w3.org/TR/xpath, 1999.

Haim Kaplan Uri Zwick Edith Cohen, Eran Halperin. Reachability and distance
queries via 2-hop labels. In Proceedings of the thirteenth annual ACM-SIAM sym-
posium on Discrete algorithms (SODA ’02), pages 937-946, San Francisco, CA,
USA, January 2002.

Torsten Grust. Accelerating XPath location steps. In Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data (SIGMOD 2002),
pages 109-120, Hong Kong, China, August 2002.

Ronen Shabo Haim Kaplan, Tova Milo. A comparison of labeling schemes for
ancestor queries. In Proceedings of the thirteenth annual ACM-SIAM symposium
on Discrete algorithms (SODA ’02), pages 954 — 963, San Francisco, CA, USA,
January 2002.

Haifeng Jiang, Hongjun Lu, Wei Wang, and Beng Chin Ooi. XR-Tree: Indexing
XML data for efficient structural join. In Proceedings of the 19th International
Conference on Data Engineering (ICDE 2003), pages 253-263, 2003.

Haifeng Jiang, Wei Wang, Hongjun Lu, and Jeffrey Xu Yu. Holistic twig joins on
indexed xml documents. In Proceedings of 29th International Conference on Very
Large Data Bases (VLDB 2003), pages 273-284, 2003.

Tiko Kameda. On the vector representation of the reachability in planar directed
graphs. Information Process Letters, 3(3):78-80, 1975.

Raghav Kaushik, Philip Bohannon, Jeffrey F. Naughton, and Henry F. Korth.
Covering indexes for branching path queries. In Proceedings of the 2002 ACM SIG-
MOD International Conference on Management of Data (SIGMOD 2002), pages
133-144, 2002.

Quanzhong Li and Bongki Moon. Indexing and querying XML data for regular
path expressions. In Proceedings of 27th International Conference on Very Large
Data Base (VLDB 2001), pages 361-370, 2001.

Tova Milo and Dan Suciu. Index structures for path expressions. In Proceedings of
the 7th International Conference on Database Theory (ICDE 1999), pages 277-295,
1999.

H. V. Jagadish Rakesh Agrawal, Alexander Borgida. Efficient management of
transitive relationships in large data and knowledge bases. In Proceedings of the
1989 ACM SIGMOD International Conference on Management of Data (SIGMOD
1989), pages 253-262, Portland, Oregon, May 1989.

Gerhard Weikum Ralf Schenkel, Anja Theobald. Hopi: An efficient connection
index for complex xml document collections. In Advances in Database Technol-
ogy - EDBT 2004, 9th International Conference on Extending Database Technol-
ogy(EDBTO0/), pages 237-255, Heraklion, Crete, Greece, March 14-18 2004.
Toannis G. Tollis Roberto Tamassia. Dynamic reachability in planar digraphs with
one source and one sink. Theoretical Computer Science, 119(2):331-343, 1993.

80

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

H. Wang et al.

A. Sayed and R. Unland. Indexing and querying heterogeneous xml collections. In
Proceedings of In 14th International Conference on Computer Theory and Appli-
cations, Alex, Egypt, Septempber 2004.

Ralf Schenkel. Flix: A flexible framework for indexing complex xml document
collections. In Proceedings of International Workshop on Database Technologies
for Handling XML Information on the Web(DATAX0/), Heraklion, Crete, Greece,
March 2004.

Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey, Ioana
Manolescu, and Ralph Busse. XMark: A benchmark for XML data management.
In Proceedings of 28th International Conference on Very Large Data Bases (VLDB
2002), pages 974-985, 2002.

Theis Rauhe Stephen Alstrup. Small induced-universal graphs and compact im-
plicit graph representations. In Proceedings of 2002 IEEE Symposium on Foun-
dations of Computer Science (FOCS ’02), pages 53-62, Vancouver, BC, Canada,
November 2002.

C. M. Sperberg-McQueen Franois Yergeau Tim Bray, Jean Paoli. FExtensible
markup language (xml) 1.0 (third edition). In W8C' Recommendation 04 February
2004, http://www.w3.org/TR/REC-xml/, 2004.

Michel Scholl Sotirios Tourtounis Vassilis Christophides, Dimitris Plexousakis. On
labeling schemes for the semantic web. In Proceedings of the Twelfth International
World Wide Web Conference(WWW2003), pages 544-555, Budapest, Hungary,
May 2003.

Wei Wang, Haifeng Jiang, Hongjun Lu, and Jeffrey Xu Yu. PBiTree coding and
efficient processing of containment joins. In Proceedings of the 19th International
Conference on Data Engineering (ICDE 2003), pages 391-402, 2003.

Joseph Gil Yoav Zibin. Efficient subtyping tests with pg-encoding. In Proceedings
of the 2001 ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA 2001), pages 96-107, San Francisco, CA,
USA, October 2001.

Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, and Guy M.
Lohman. On supporting containment queries in relational database management
systems. In Proceedings of the 2001 ACM SIGMOD International Conference on
Management of Data (SIGMOD 2001), pages 425-436, 2001.

Vassilis J. Tsotras Zografoula Vagena, Mirella Moura Moro. Twig query process-
ing over graph-structured xml data. In Proceedings of the Seventh International
Workshop on the Web and Databases(WebDB 2004), pages 43-48, 2004.

A Soft Real-Time Web News Classification System
with Double Control Loops

Huayong Wang, Yu Chen, and Yiqi Dai

Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, P.R.China
wanghy02@mails.tsinghua.edu.cn, yuchen@tsinghua.edu.cn,
dyg@theory.tsinghua.edu.cn

Abstract. This paper proposes a framework for soft real-time text classification
system, which use control theory as a scientific underpinning, rather than ad hoc
solutions. In order to provide real-time guarantee, two control loops are adopted.
The feed forward control loop estimates the suitable number of classifiers ac-
cording to the current workload, while the feedback control loop provides
fine-grained control to the number of classifiers that perform imprecise compu-
tation. The soft real-time classification system can accommodate to the change of
workload and transitional overload. The theory analysis and experiments result
further prove its effectiveness: the variation range of the average response time is
kept within = 3% of the desired value; the computational resource is dynami-
cally reallocated and reclaimed.

1 Introduction

The amount of online text data has grown greatly in recent years because of the increase
in popularity of the World Wide Web. As a result, there is a need to provide efficient
content-based retrieval, search, and filtering for these huge and unstructured online
repositories. One of the major applications in this aspect is search engine, which
fetches, classifies and indexes the web information. Usually, a full-fledged search en-
gine includes a front-end search subsystem and a back-end data processing subsystem.
The front-end follows the html links and fetches the web pages, while the back-end is in
responsible for classification and indexing. In this paper, we consider the problem of
how to design a soft real-time classification subsystem for a web news search system.
The bulk of the research on text classification (TC) system has focused on improve-
ments to "precision” or "recall”, and is not concerned with how long it takes to com-
plete the tasks. Our contribution is to take the time constraints into consideration, and
propose a general framework to design a text classification system with soft real-time
guarantee.

Real-time systems are computing systems that must react within precise time con-
straints to events in the environment. As a consequence, the correct behavior of these
systems depends not only on the value of the computation but also on the time at which
the results are produced. The time before which a task should be completed to avoid
damage to the system is called deadline. Real-time system should try its best to guar-

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 81 -[00] 2005.
© Springer-Verlag Berlin Heidelberg 2005

82 H. Wang, Y. Chen, and Y. Dai

antee all running tasks to finish before their respective deadlines. A system is said to be
soft real-time if deadline missing decreases the Qos of the system, but does not jeop-
ardize the system's correct behavior. With the rapid growth of textual information
available on the Internet, the search engine front-end is already able to fetch more and
more web pages in a given time. In order to keep up with the high-speed of the
front-end, it is most desirable that the classification subsystem should provide soft
real-time service.

However, very limited research work has been done in this direction, and the
evaluation to the existing systems is typically conducted experimentally, rather than
analytically. The reason is that, in order to evaluate a system analytically, we would
need a formal mathematical model for the system, and the classification system is such
a nonlinear and time-varying system that is difficult to be formalized inherently.
Without an analyzable mathematical model, it is impossible to apply real-time theory to
the system design. How to provide real-time guarantee without relying on
over-provisioning of system resource becomes a great challenge.

After this introduction, section two introduces the related work. Section three ex-
plains our system design method in theory. Section four gives the experiments result.
Section five makes the conclusion.

2 Related Work

Since the design of real-time TC system requires the knowledge of information re-
trieval, real-time system and control theory. This section introduces the related work in
all these fields.

Current TC algorithms include Naive Bayes, k-Nearest Neighbor (KNN), Linear
Least Squares Fit (LLSF), Neural Network, Boosting, Support Vector Machine (SVM)
and so on [1]. Based on these algorithms, great effort has been made by research
community to reduce the computational complexity and hence increase the running
speed. Yang provides a formal analysis of the computational complexities of five
popular TC algorithms [2]. Grossman introduce some techniques to improve the run-
time performance of information retrieval system with inverted index and signature
files [3]. The book also discusses the system implementation on parallel processors.
Paper [4,5,6] presents various methods to reduce the runtime complexity, for example,
density-based method, pruning method, and discriminating power method. However,
all these methods rely on powerful hardware or algorithm complexity reduction. If the
test document set is a static set, the results of aforementioned methods are acceptable.
While facing the large amount of textual information from Internet, the requirement is
quite different. How to integrate these classification methods into a practical real-time
system is not investigated by previous researches.

Real-time Task Model is the core concept of real-time scheduling systems. The most
famous scheduling algorithms for real-time tasks are RM and EDF, which is firstly
proposed by Liu and Layland in 1973 [7] and has been thoroughly studied [8,9]. In
these researches, a real-time system is modeled as a set of independent tasks.

T={7 15T n} denotes a task set containing n tasks. A real-time task 7, is char-

acterized by the following parameters: 1) Arrival time A; is the time at which a task
becomes ready for execution. 2) Start time S; (S; > A;) is the time at which a task starts

A Soft Real-Time Web News Classification System with Double Control Loops 83

its execution. 3) Finishing time F; (F; > §;) is the time at which a task finishes its exe-
cution. 4) Deadline D; is the time before which a task should be completed to avoid
damage to the system. Obviously, "F; > D;" means deadline missing. 5) Relative
deadline L; is equal to D; - A;. An important metric in this paper to evaluate real-time
performance is average response time:

E:lz(F,.—A,.). ()
n o

Average response time consistently longer than the desired relative deadline is unac-
ceptable to the users. Average response time consistently shorter indicates
over-provisioning of resource that could have been used for other users and applica-
tions.

Imprecise computation is a useful technique in real-time system. In an imprecise
computation system, every task is decomposed to a mandatory subtask and an optional
subtask. The mandatory subtask is the portion of the computation that must be done in
order to produce a result of acceptable quality, whereas the optional subtask refines this
result [10]. Web news classification system is suitable for imprecise computation
model for its characteristics of hierarchical classification. Hierarchical classification
refers to assigning of one or more suitable categories from a hierarchical category space
to a document. Web news classification system adopts a top-down level-based method
that can classify news to both leaf and internal categories in the category tree. Our hi-
erarchical category space contains ten major categories, and each major category
contains several minor categories. For example, "sport” is a major category while
"football" and "basketball" are its minor categories. If the system is overload, it can
omit the minor categories and only classifies news according to major categories. The
result is trading off computation accuracy with temporal requirements. Imprecise
computation model dose not change the essence of the classification algorithms, so
most of the current TC algorithms are able to support this model inherently. The
real-time framework in this paper dose not target for one specific classification algo-
rithm. Choosing what classification algorithm depends on the system implementers.

Feedback control is a powerful concept that has played a pivotal role in the devel-
opment of many areas of engineering. It has several advantages. Using feedback, it is
possible to create linear behavior out of non-linear components and to modify the dy-
namic behavior of a system. The advantage of using feedback in conjunction with
real-time scheduling is that precise real-time task model can be relaxed [11]. This
feature is especially desirable for TC system, because TC system runs in an unpre-
dictable environment, where the execution time of a task varies greatly from one in-
stance to another. However, feedback control theory has been mostly applied in me-
chanical and electrical systems. In trying to apply feedback control theory to a TC
system, the modeling and implementation face significant research challenges. This
paper tries to answer some of these challenges.

3 System Components

The dominant approach adopted by TC systems is based on machine learning tech-
niques: a general inductive process automatically builds a classifier by learning, from a

84 H. Wang, Y. Chen, and Y. Dai

set of pre-classified documents, the characteristics of the categories [1]. A classifier is a
program devoted to the classification work. We can speedup the TC system by running
multiple classifiers. However, it is generally believed that more classifiers will con-
sume more computing resources, which is undesirable. So, we now raise two questions.
1) How many classifiers are suitable for the current workload? 2) How to accurately
develop a linear feedback model to overcome the transient overload due to stochastic
environment? These two questions lead to the following system components.

Queuing Model A Incoming
Predictor [€ Documents
Document
Queue I , Feedback
Y7, mprecise Loop
Feed .
Forward ﬁ COArnputatlon Classifier
Loop TC System ~ [© ‘i\/lanager
Classifier 1 Controlled
. Input D(k)
Adjust | Cont‘rkoller <— Ly
Classifier Classifier N Controlled
Number N Variable R(k)

>|_ Monitor
Documents

classified

Fig. 1. Framework of real-time text classification system

As shown in Fig. 1, the incoming documents are put into a document queue. The
system assigns a desired relative deadline L, for all documents in the queue. From the
user's viewpoint, L. is the maximum allowable delay between the document's arrival
and leaving. In order to provide timely service, the system contains two control loops:
feed forward control loop and feedback control loop. In the feed forward control loop,
classical results from queuing theory are used for computing the number of classifiers
necessary to achieve the specified deadline requirement given the current observed
average document arrival rate A . In the feedback control loop, the average response
time R(k) is observed by the Monitor, and compared to L,.; by the Controller. And then,
Classifier Manager adjusts those classifiers according to the imprecise computation
model. The feed forward and feedback components operate concurrently in a com-
plementary manner.

3.1 Feed Forward Loop

The feed forward loop is relatively simple and easy to design. Its central idea is using an
M/M/N queuing model [12,13]. Let the document arrival process is a Poisson process

A Soft Real-Time Web News Classification System with Double Control Loops 85

with arrival rate A, and the average service rate of one classifier is M . According to
M/M/N queuing model, the average delay of a document in the system is

N
_ 2 1
W_N xNv(l—p)2+;’ @
HHXETN
where p = A/ and P, is
N i N+1
P P -1
B=lO)+, 3
‘ [(izo i N!(N—p)] ®

If A and M are known, we can compute the lower bound of classifier number N by
W<L,, . @)

In Fig. 1, queuing model predictor completes the above computation work. There are
three points to be explained for the queuing model predictor:

1) The average arrival rate A is monitored by queuing model predictor over an

observation window of 500 incoming documents. /4 may change abruptly since
the strength of the workload is variable.

2) Compared to parameter A, average service rate /U is relatively stable because
the classification algorithm is fixed. The actual value of 4 is measured from the

actual system by recording how many documents are classified by one classifier
on average over an observation window.

3) Queuing model predictor adjusts the classifier number according to formula 4. If
the parameter (/ is relatively constant, the numerical relationship between N and

A can be pre-computed offline. Therefore the computational complexity during
runtime is quite small. In the following discussion, the parameter & and A are
assumed to be known.

The feed forward loop can figure out the suitable classifier number by queuing
model. However, that is not enough for the real-time guarantee because the transitional
change of the workload cannot be observed by queuing model predictor. The feedback
control loop is designed to resolve this problem.

3.2 Feedback Loop

The feedback loop adjusts the system in an incremental manner. First of all, it is nec-
essary to decide the following variables in terms of control theory. Readers can refer to
[14,15,16] for the basic knowledge of control theory.

Controlled variable represents the performance metric controlled by the real-time
TC system. In our model, the variable "average response time" R(k) is used as con-
trolled variable, which is defined over a time window {(k-1)W, kW}, where W is the
sampling period and k is called the sampling instant.

86 H. Wang, Y. Chen, and Y. Dai

Performance reference is the desired relative deadline L, of the system. The dif-
ference between L,.r and the current value of the controlled variable is called an error.
The "average response time error" E(k) = L,.s— R(K).

Manipulated variable is the system attribute that can be dynamically changed to
affect the value of the controlled variable. In our system, the manipulated variable is
"classification speed" S(k). The classification speed S(k) at the k th sampling instant is
defined as

S(k)=(N =M k)X p+ME)X(u+A),)

where [/ is the average service rate of one classifier, {/ + A is the average service

rate of one classifier that performs imprecise computation, N is the current number of
all classifiers, M(k) is the current number of classifiers that perform imprecise com-
putation. The classifiers performing imprecise computation throw away the optional

part of the task, so their service rate is higher than the normal classifiers. { + A can
also be measured from the actual system like /£ .

Fig. 1 illustrates the feedback control loop. The monitor measures the controlled
variable R(k) and feeds the samples back to the controller. The controller compares the
performance references L, with R(k) to get the current error E(k) , and computes a
change D(k) (called control input) to the speed S(k). The classifier manager dynami-
cally changes the classification speed at each sampling instant k according to the con-
trol input D(k) by adjusting the number of classifiers that perform imprecise computa-
tion. The goal of the classifier manager is to enforce the new speed S(k+1) = S(k) +
D(k). According to formula 5, the number of the classifiers that perform imprecise
computation in next time window can be calculated by

S(k+1)—N><ﬂw}

(6)

M)=
(k+1 max{O,[A

With the aforementioned definitions, it is possible to establish an analyzable model
to approximate the feedback loop in the TC system. Although it is difficult to precisely
model a nonlinear and time-varying system, we can approximate such a system with a
linear model for the purpose of control design because of the robustness of feedback
control with regard to system variations. Starting from the control input, the classifier
manager changes the classification speed at every sampling instant:

Stk+1)=S(k)+D(k) . (7)

R(k) usually decreases nonlinearly with the classification speed S(k). The relation-
ship between R(k) and S(k) needs to be linearized by taking the derivative at the vicinity
of the performance reference L, , as the "response time factor" Ry:

_ dR(k)
N as(k)

®)

R()=L,y

In practice, the response time factor Ry can be estimated experimentally by plotting a
R(k) curve as a function of S(k) based on experimental data if the classifier number N is

A Soft Real-Time Web News Classification System with Double Control Loops 87

known. Given the response time factor, we have the following linearized formula for
the purpose of control design,

R(k)=R(k =1)+ R, (S(k) - S(k —1)))

Based on Equations (7) and (9), the analyzable model for the average response time
output is as

R(k)=R(k-1)+R,D(k -1) . (10)

We now convert this model to z-domain transfer function that is suitable to control
theory analysis. Let Y(z) be the z-transform of the output variable R(k), and X(z) be the
z-transform of the input variable D(k). A linear system can be represented by a transfer
function H(z) = Y(z)/X(z) . For our system, formula (10) can be converted into z-domain
as

Y(2)=2Y(@+Ry X (2)z ™, an
so the transfer function in open loop is
R
H, (7)=—2%. 12
pen (D) =775 (12)

At each sampling instant k, the controller computes a control input D(k) based on the
average response time error E(k) . We choose a simple P (proportional) control function
to compute the control input:

D(k) = KE(k) . (13)

It is obvious that the system performance can by adjusted by parameter K. System
implementors can choose suitable value of K for their own systems.

4 Experiment Results

The hardware platform of our experiments is a cluster of four PCs with CPU800MHz
and memory 256M. In a single CPU system, when the number of classifier increases,
the efficiency cannot increase linearly. The reason is that those classifiers run concur-
rently, rather than parallelly. In our experiment, multiple computers work together to
run multiple classifiers in order to alleviate the hardware bottleneck of the single CPU
system. This test system adopts KNN algorithm (the system dose not depend on one
specific classification algorithm), and the category space contains ten major categories.
The front-end search subsystem provides about 15000 web pages per hour to the TC
subsystem on average. The size of these web pages is about 25k bytes on average, in-
cluding the HTML tags. If the HTML tags are filtered out, the size of the text inside
each web page is about 2k-5K. In this test system, L,., chooses the value of 5 minutes.
Fig. 2 records the relationship between average service rate / and classifier number

N. The values presented in Fig. 2 are average values of hundreds of tests.

88 H. Wang, Y. Chen, and Y. Dai

0.6
g5

S04

Q

RERNY

z <

28 02¢F

5 —
= Q

L o

>‘U 1 1 1 1 1 1 1 1 1
<= 9

4 8 12 16 20 24 28 32 36 40
Classifier Number N

Fig. 2. The relationship between average service rate and classifier number

The next step is to determine the relationship between R(k) and S(k) with a given
value of N. Fig. 3 shows the experiment results of R(k) based on S(k) when N equals to
8,12, and 16. The relationship when N equals to other values is not drawn here because
of the space limit. If L,,,= 5 minutes, we can draw the tangent line at point R(k) = 5, the
tangent slope is

-01 N=8
_ dR(k) _|-002 N=12 (14)
YdS() |y, |-001 N=16

N = other

310

£

H

2 5

& AR

& AS (k)

&

2

<0II

155 180 205 230 255 280 305 330 355

Classification Speed (documents/minute)

Fig. 3. R(k) curve based on S(k)

A Soft Real-Time Web News Classification System with Double Control Loops 89

Figure 4 records the system performance in 100 successive time windows during
stable state. Each time window is 2 minutes. While the disturbance exists, the variation
range of R(k) is within & 3% to L,

A
w
L
]

Average Response Time
(minute)
How
O —
L L
T

P

9
1
)

(e
—_
()
[\®]
(@)
(%)
(e
N
S
W
)
D
(@)
Q]
S
o0
)
O
[e)
—_
S
S

Sampling Instant (k)

Fig. 4. Stable state performance

Fig. 5 records the change of classifier number during the same time segment. With
the soft real-time guarantee, the number of the classifiers are dynamically increased or
decreased to save the computation resource, which is one of the advantages of our
system. Since R(s) is stabilized at the point of L, the soft real-time guarantee is ob-
tained without relying on over-provisioning of system resource.

24

Number of Classifiers

Sampling Instant (k)

Number of All Classifiers N
—6— Number of Classifiers Performing Imprecise Computation M(k)

Fig. 5. Chang of classifier number

90

H. Wang, Y. Chen, and Y. Dai

5 Conclusions

This paper proposes a design method for soft real-time TC system. A mathematical
model of TC system is established. And the control theory is applied to prove the sys-
tem performance guarantee. Experiment results further prove the effectiveness of our
scheme. Future work will further investigate the feedback control of classifiers and
integrate the multiple different classification algorithms into one real-time framework.

References

10.

11.

12.

13.

14.

15.

16.

. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Sur-

veys. 34(1) (2002) 1-47

Yang, Y., Zhang, J., Kisiel, B.: A scalability analysis of classifiers in text categorization.
Proceedings of the 26th annual international ACM SIGIR conference on Research and de-
velopment in information retrieval. ACM Press, New York (2003) 96-103

Grossman, D.A., Frieder, O.: Information Retrieval - Algorithms and Heuristics. Kluwer
Academic Publishers, Massachusetts (1998)

Li, R.-L., Hu, Y.-F.: Noise reduction to text categorization based on density for KNN.
Proceedings of the International Conference on Machine Learning and Cybernetics, Vol. 5.
IEEE Computer Society, California (2003) 3119-3124

Zhou, S., Ling, T.-W., Guan, J., et al.: Fast text classification: a training-corpus pruning
based approach. Proceedings of 8th International Conference on Database Systems for
Advanced Applications. IEEE Computer Society, California (2003) 127-136

Deng, Z.-H., Tang S.-W., Yang D.-Q., et al.: SRFW: a simple, fast and effective text clas-
sification algorithm. Proceedings of International Conference on Machine Learning and
Cybernetics, Vol. 3. IEEE Computer Society, California (2002) 1267-1271

. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard real time

environment. Journal of the ACM, 20 (1973)

Krishna, C.M., Shin, K.G.: Real-Time Systems. McGraw-Hill Companies, Columbus
(1997)

Buttazzo, G.C.: Rate monotonic vs. EDF: judgment day. Real-Time Systems. 28(1) (2005)
5-26

Buttazzo, G.C.: Hard Real-Time Computing System: Predictable Scheduling Algorithms
and Applications. Kluwer Academic Publishers, Massachusetts (2000)

Sha, L., Abdelzaher, T.F., Arzen K. -E., et al.: Real time scheduling theory: a historical
perspective. Real-Time Systems. 28(2/3) (2004) 101 - 155

Lu, F.S.: Queuing Theory and Its Applications. Hunan Scientific Publication Press, Hunan,
P.R.China (1984)

Lin, Y.L.: Applied Stochastic Process. Tsinghua University Press, Beijing, P.R.China
(2002)

Cheng, S., Guo, B., Li, X., et al.: Signal and System. Press of Xian Electronic Technology
University, Xian, P.R.China (2001)

Shun, Z.: System Analysis and Control. Tsinghua University Press, Beijing, P.R.China
(1994)

Franklin, G.F., Powell, J.D., Workman, M.L.: Digital Control of Dynamic Systems. 3rd edn.
Addison-Wesley, Boston (1998)

Searching the World Wide Web for Local Services and
Facilities: A Review on the Patterns of Location-Based
Queries

Saeid Asadi', Chung-Yi Chang', Xiaofang Zhou', and Joachim Diederich"*

'School of ITEE, The University of Queensland, Brisbane, QLD 4072, Australia
{asadi, julie, zxf, joachimd}@itee.uqg.edu.au
% Department of Computer Science, School of Engineering, American University of Sharjah,
P.O. Box: 26666, Sharjah, UAE
jdiederich@aus.edu

Abstract. Many queries sent to search engines refer to specific locations in the
world. Location-based queries try to find local services and facilities around the
user’s environment or in a particular area. This paper reviews the specifications
of geospatial queries and discusses the similarities and differences between
location-based queries and other queries. We introduce nine patterns for
location-based queries containing either a service name alone or a service name
accompanied by a location name. Our survey indicates that at least 22% of the
Web queries have a geospatial dimension and most of these can be considered
as location-based queries. We propose that location-based queries should be
treated different from general queries to produce more relevant results.

1 Introduction

Many search engines have been designed to capture webpages and other resources on
the Web. On Google alone, 250 to 300 million queries are run every day [1]. People
search the Web for many reasons and this is reflected in the search queries. Spink et
al. [2] report some changes in Web search topics from entertainment and sex in 1997
to commerce, travel, employment, economy and finding people and places in 2001.
This indicates that people are gradually increasing use of the Web in responding their
life’s requirements. Although a certain part of Web queries contain location names or
have geospatial dimensions such as driving, shopping or accommodation, general
search engines do not provide results in a useful way based on the requested
locations; and therefore, users cannot easily find the webpages related to the
geographical locations [3].

This paper sets out to address challenges of location-based search through
analysing location-based queries. We first review previous work on geospatial
information retrieval in the context of the Web and then offer several patterns for
location-based queries. We believe that by distinguishing location-based query
patterns, search engines would be able to develop more effective location-based
services.

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 91 —[101, 2005.
© Springer-Verlag Berlin Heidelberg 2005

92 S. Asadi et al.

2 Background

Spatial data as has been described in GIS Glossary [4] “is the data pertaining to the
location of geographical entities together with their spatial dimensions”. Spatial data
is also known as geospatial data or geographic information [5] and has been studied
for years. However, there are many issues with geospatial information retrieval on the
Web which affect search engine results among them the ambiguity of location names
and multiple locations related to a webpage are notable.

Some basics concepts are adopted from other fields especially geography. In 1984,
basic themes of geography [6] were defined to facilitate the education of geography.
The five themes of geography are movement, human-environment interaction,
location, place and region. Based on these themes, location refers to “where”
something is while place says “what” it is. Location could be absolute or relative.
Absolute location is shown by an address. Relative location indicates an address by
referring to its relation with other places. Relative location is useful when we have a
reference point. For example, we can say the British Museum is located in the centre
of London 3 kilometres from City University.

In the context of the Web, location can be defined as “a place on the Internet where
an Internet resource, such as a webpage, is stored” [7]. However, in many cases, this
is not a sufficient definition. So far, efforts for making a world-wide location-based
search engine have been unsuccessful. Current search engines have offered some
location-aware facilities. Google Local' can search for local business information in
the USA and Canada [8]. Yahoo Local® has a similar function for the USA. The
SPIRITS project has tried to make a universal location-based search tool through
combining geographical ontologies with query expansion, machine learning and
geospatial ranking [9]. Other geographical search tools such as Northern Light’ or
GeoSearch® offer limited services. Localization of a website is the procedure of
designing a website based on local cultures and needs, and it consists of three levels:
identification of website subjects, identification of the target culture and applying
localized aspects in the design process [10]. Major general search engines such as
Yahoo, Google and MSN have developed local services for different countries,
regions and languages. Using mobile technologies and GIS techniques, many
location-aware or GPS-based devices have been established.

General issues and techniques of information extraction as well as extracting
geographic information such as addresses and location names have been identified in
[11, 12, 13 & 14]. Olga [15] describes an algorithm for finding the class of
geographic names i.e. city, region, country, island, river, and mountain by using
patterns and adding them to a name and sending this query to a search engine. Based
on the number of results, the algorithm determines which geographical category is
suitable for the name. For example, the number of retrieved documents for a query
like city of Tokyo is probably much higher than something like Tokyo country.
Therefore, the algorithm automatically considers Tokyo as a city and puts it in city

" http://local.google.com/

? http://local.yahoo.com/

? http://www.northernlight.com/

* http://www.geosearch.ca/Index.html

Searching the World Wide Web for Local Services and Facilities 93

table. The system is very accurate for all geographical features excluding city names.
The method is time-consuming and is not useful for real-time search.

Geographical web services and systems need defining and utilizing ontologies.
Such geographical ontologies have been described in [9, 16 & 17]. Watters & Amoudi
[3] report on the GeoSearcher project for re-ranking search results based on a
location-based approach. GeoSearcher sends a query and a reference point to a search
engine and tries to identify the geographic coordinates (latitudes and longitudes) of
the webpages by assistance of online gazetteers. Having the coordinates, the
algorithm calculates the distance of selected webpages from the reference point. The
results are then ranked in ascending order of distance. This approach also is slow and
needs various online resources.

Gravano et al. [18] divided Web queries into global and local based on search
results. If the best results of a query are local webpages i.e. the information is suitable
for a special area, the query is considered a local query; otherwise it is global. For
example, the query wild flowers seems to be global while the query real estate
retrieves more local results. The authors used this algorithm to re-rank search engine
results for local queries. This method relies on the frequency of location names in the
retrieved pages. The system does not focus on a special location as reference point
and all location names in a page are considered by the algorithm.

Work on geographic queries has also been reported by Sanderson & Kohler [19].
The authors ran a survey on the Excite Search Engine’ to analyse geographic queries.
18.6% of queries had geographic names (including name of mountains, seas, etc.) and
14.8% had location names (cities, states and countries). Geographic queries were
classified in different categories and the results show that locations, commerce and
services as well as recreation are most common subjects of geographic queries. The
study also indicates that geographic queries are often longer than other queries.

3 Methodology

To support this study, we conducted a survey on the MetaCrawler Search Engine® to
analyse real queries which people use to search the Web. MetaSpy’ is a service of
MetaCrawler that allows tracking of current searches. A random set of 4350 queries
was extracted from the Exposed MetaSpy which shows all searches including sex and
nudity queries. All queries were manually controlled by the researchers and location
names were compared with to various resources in the case of ambiguity. Symbols,
characters and Boolean features were ignored. A typical analysed entry looks like
this:

Query : Rental car Illinois

Type : Ibg

Pattern : 1

Subject Category : car

Location Type : state-us

Location Tree : N-America/USA/Illinois

> http://www.excite.com/
® http://www.metacrawler.com/
7 http://www.metaspy.com/info.metac.spy/metaspy/

94 S. Asadi et al.

Queries written in non-Roman scripts such as Arabic or Chinese were excluded. For
similar locations, wherever possible, we considered the bigger or more famous one;
otherwise, the same query was sent to MetaCrawler and the location was judged
based on the ten first results. Several patterns for location-based queries were defined
based on the surveyed queries.

4 Geospatial Queries (GSQ) on the Web

Many webpages have geospatial values and it is possible to assign a location to them.
This location might refer to the source [3] or to the target [20]. We define geospatial
queries (GSQ) as those containing location names or their subjects refer to special
regions in the world. People may add a city, state or country name to their queries.
Our survey as shown in Fig. 1 unveils that most of the GSQs are searched in city
level. For the USA, the name or abbreviations of states are common. Geospatial
queries can be divided into two major categories: local queries and location-based
queries.

regions &
: unknown

continents 5%
1%

countries
18%
cities, capitals &
states & towns
provinces 52%
24%

Fig. 1. Different types of location names in search queries

4.1 Local Queries (LQ)

A local query (LQ) asks about natural or human-made features on the Earth or
investigates different topics in a specific area. They all contain a geographical or
location name in them. The quality of a webpage is defined differently by each search
engine; however, the search engine’s ranking algorithm is applied equally to all
queries. Similar to normal queries, it is expected that the best results contain more
keywords, obtain better proximity of keywords or be linked by high quality
webpages. Local queries can be categorized in two groups:

Factual Local Queries. These queries ask about facts, figures, geographical and other
information which describe a special location. They might be geographic factual
questions which ask about geographical facts in the world by use of natural language

Searching the World Wide Web for Local Services and Facilities 95

[21]. Here are some examples for factual queries: Iraly, What is the biggest country in
Africa and the population of New Zealand.

Subject Local Queries. Unlike the factual queries that ask for descriptions and facts
about a location, subject local queries focus much more on a specific topic but in a
special area. For example, the topic of a query like drug addiction in France is
obviously drug addiction but the user is interested to study this subject in relation to
France. For subject local queries, the quality of a document is more important than the
physical location of it. In other words, the information itself is important not where
this information comes from. It is possible that the best results for the above
mentioned query is obtained from America or Asia but not France. In this case the
user can trust the ranking model of a search engine. Most of the local queries are
subject-based, such as: Soy bean production in china, London crime rate, and Texas oil
history.

4.2 Location-Based Queries (LBQ)

We define a location-based query as one that looks for a service, product, business or
professional group in a particular area. Unlike local queries, the site of the provided
information is important for location-based queries. For example, if you are looking
for air pollution in Queensland, what does matter is finding a good report on air
pollution in Queensland irrespective of the physical location of the document. A
query such as wedding service, Queensland seems to be more related to the location.
In the latter case, both the quality of information and the location of webpage or the
geographical scope of a website is important. The user is probably interested in
finding a wedding service in the Australian state of Queensland.

The location of Web resources can be defined in various ways. The location of a
webpage can be considered as its physical location. For example, GeoSearcher [3]
tries to find the IP of servers which host web pages and ranks the search results based
on the distance of servers from the user’s computer. This is a robust algorithm;
however, most of the times, the host server is not necessarily in the same area that
Webpage refers to. A user may lose a good website about dance club in Moscow if
that site is hosted by a server in the United States. Therefore, the location of a
webpage is better to be extracted through the addresses, metatags, headings and other
information in that page or even through the link structure of Web documents. Living
needs and daily activities are reflected in the Web queries. People search the Web to
find houses, restaurants, car services, jobs and recreation opportunities in their
surroundings. So, we can predict that in such cases the best Webpages are the ones
that are not only ranked higher by a search engine but are also geographically close to
user or to the location which is determined by the user. The following examples can
be considered as location-based queries: Property for sale, Heating and cooling service in
Clarksville, Real estate and Cabin rental Illinois.

4.3 LQ and LBQ Similarities and Differences

At the first glance, it seems to be impossible to determine if a query is location-based
or not. The real intention can only be determined by the user. However, there are
some criteria that can help us to judge whether a query is LQ or LBQ:

96 S. Asadi et al.

— The subject of a LBQ is limited to daily life requirements such as shopping
and accommodation which can be addressed through physical places while
LQ includes a variety of human intellectual, scientific, entertainment etc.
subjects.

— LQ has necessarily a location name with or without a subject, while LBQ
consist of a service with or without a location name.

— LQ could have an adjective as its location, but LBQ usually does not use
adjectives. For example, “American movie stars” is more likely to be a LQ
rather than a LBQ.

5 Patterns of Location-Based Queries

Nine different patterns for location-based queries have been determined through the
manual control of the query set. The patterns are chosen based on the researchers’
judgement. The list of abbreviations and symbols used in defining patterns are
available at the Table 1. For example, Q; ::={S 2K, 2L} means that the location-
based query Q; consists of three elements namely S, Ks and L and > indicates the
direction or sequence of elements in this pattern. A location-based query often
consists of two important components: 1) A service, product, profession or business
name (S); and 2) location name (L). As we will show, S is the basic part of a location-
based query.

Table 1. Abbreviations and symbols used to define the patterns

Symbol Meaning
Q “location-based query”
A service, product, profession or business name, such as child care, restaurant,
dentist, pizza, child care and so on
L A location name including suburb, city, state and country etc. names

A set of one or more keywords which represents a spatial relation between S
and L. Examples: in, at, close, far, around, between, etc.

A set of one or more keywords which shows compass or geographical
directions. Examples: west, southern, north east

A Any type of address, e.g. street name, zipcode, building number

P Possessive prepositions: (of) or (‘)
9

“is defined as”
direction or order between two elements. L= S means that S is located after L

{} Indicates that Q, consists of a set of elements
<> Indicates that the element is optional

The following patterns are high-frequent in location-based queries. Fig. 2 shows
the order of elements in location-based queries in LBQ patterns.

5.1 Omission of Extra Keywords

This is a common pattern for LBQs. People are used to enter a service name S and a
location name L without extra keywords or more information (patterns 1 and 3).
However, S and L can be divided into two sections (patterns 2 and 4):

Searching the World Wide Web for Local Services and Facilities 97

Pattern 1: 0,::={S2L}
Pattern 2: 0,::={S2L2S}
Pattern 3: Q,::={L2S}
Pattern 4: Q,::={L2>S2L}

Examples: New York cabs, Locksmith Melbourne, Cheap takeaway TX, Real estates, Michigan
rental vacation, Oswego used car NY

5.2 Spatial Relationship

Many queries have one or more words in them which indicate relations between S and
L. Often Ks is in; however, other prepositions and words such as at, close, near,
around etc. are used frequently. The query is constructed as:

Pattern 5: Qy::= {S 2K, 2L}

Examples: Car rent in NY, cheap accommodation in Hawaii, Motels around Tokyo

5.3 Geographical Directions

Location names accompanied with compass directions (K4) can make location-based
query patterns. North, Southern and South West are examples of directions. The
pattern looks like:

Pattern 6: Qj::= {S 2<K,>>K; 2<OF> 2L}

Examples: Back packers north of Queensland, car delivery in the western London, Thai food
around south east of Dakota

5.4 Possession

Many queries follow the rules of natural languages. Possessive prepositions (P)
especially OF are used in many location-based queries:

Pattern 7: Qy::= {S2>"OF” 2L}
Examples: Hotels of Esfehan, Ethnic butcheries of Calgary

5.5 Other Patterns

Service Names. Users might use a subject without entering a location name as a
reference point. If the subject is a service or business, it is probably a location-based
query. This pattern is very common:

Pattern 8: Q::={S}
Examples: List of summer pools, Real estate, Buy coral calcium, Garage sale

Addresses and Places. Adding an address (A) such as street address, zip code, building
name etc. to a subject indicates that probably the user is interested in a location-based
search. In combination with a service or facility name they can make an LBQ:

Pattern 9: Q,::={S ?<K>2<K;>>A DL}
Examples: Oxford Street London shopping, Car service post code 3233

98 S. Asadi et al.

CRCIECIRCRC I)
S & ®
R A)
© 0o 0 00
©
® © JoN
56, 2w
1 o
©® O 0o
CING

Fig. 2. Order of the components in location —based queries

6 Discussion

To find the portion of geospatial queries among all Web queries, we added the
number of queries containing location names to the number of location-based queries
which followed pattern number 8. Table 2 indicates that 14.16% of queries contain
location names. Also, more than one third of geospatial queries do not have any
location name in them. Altogether, 22.67% of all queries can be considered as
geospatial queries which supports the necessity of establishing and improving search
facilities for this sort of queries.

Table 2. The portion of geospatial queries (GSQ) in the studied dataset

Data set Number Percent
GSQ 986 22.67%
GSQ containing location names 616 14.16%
GSQ without location names 370 8.51%

More than half of the location names are capitals, big cities or small towns (Fig. 1).
States and provinces are ranked second and they often include the full name or
abbreviation of U.S states.

6.1 Evaluation

The dataset was used to measure the coverage of the above-mentioned patterns. Table
3 shows the results of the evaluation. Among the 4350 queries of the dataset, 686
queries (15.76%) have been considered as location-based queries. The last column of
the Table 3 surprisingly indicates that about 54% of location-based queries follow
pattern 8. In other words, people usually use location-based queries without adding a
location. This fact emphasises the importance of developing various methods and
tools for determining location-based queries automatically.

Searching the World Wide Web for Local Services and Facilities 99

Table 3. Distribution of the Location-Based Queries Patterns in the dataset

Pattern Matched in total set Matched in LBQ set
1 1.9% 12.40%
2 0.14% 0.87%
3 391% 24.78%
4 0.16% 1.02%
5 0.91% 5.83%
6 0.02% 0.15%
7 0.14% 0.87%
8 8.51% 53.93%
9 0.02% 0.15%
Total 15.76% 100%

Patterns 1, 3 and 9 cover more than 90% of all location-based queries. They
contain only a service name with or without a location name. As a result, it is possible
to distinguish and control most of the location-based queries through having access to
yellow pages and databases of location names. A comparison with Sanderson’s and
Kohler’s work (Table 4) shows that the proportion of queries with location names in
both studies is similar.

Table 4. Comparison between the results of Sanderson’s & Kohler’s study and the study here
on queries with location names

Item Sanderson study Current study

Portion in the total set 14.8% 14.16%
Average length of queries 34 3.0

1 term 9.5% 2.7%

2 terms 27.6% 22.7%

3 terms 24.7% 34.6%

4 terms 16.8% 25.8%

5 terms and more 21.4% 14.2%

6.2 Categories of Subjects

Table 5 illustrates different categories of services and products in LBQs. Most of the
LBQs look for dealers or services of cars, mobiles, electronic devices etc.

Table 5. Categories of location-based services in Web search queries

LBQ Subject Category Total Set LBQ Set
Products 2.31% 14.72%
Public Services 2.09% 13.26%
Travel & Tourism 2.03% 12.97%
Accommodation 1.79% 11.38%
Governmental Services 1.26% 8.02%
Car 1.22% 7.73%
Education 1.19% 7.58%
Health 1.15% 7.29%
Food 0.85% 5.39%
Employment 0.69% 4.08%
Lawyers 0.59% 3.79%
IT 0.43% 2.77%
Other 0.16% 1.02%

Total 15.76% 100%

100 S. Asadi et al.

6.3 Ambiguities

The patterns described above can help to determine location-based queries. However,
it is not possible to differentiate between LBQs and other queries completely without
the user’s direct assistance. There are several important ambiguities:

Service or Subject. It is hard to understand whether a subject is referring to a service
and business or if it is asking about a general topic. For example, the query “real
estate” can be a LBQ if the user is searching to find accommodation; or it might be a
simple request for facts and information about the profession of real estate.

Location Name Ambiguity. Many locations in the World have similar names. For
example, Newcastle is a city in England as well as in Australia. Sometimes, the name
of a location is similar to a person or any other proper name, for example Washington.
The name of a city can be identical or similar to the name of a country, province or
state such as Singapore, Tehran and New York. Location names in different
languages follow different rules and the main challenge is proper transcription. This is
a big issue for the Internet; because the content of the Web is developed by numerous
people without any linguistic control.

User Intention. A query can be similar to an LBQ even though the user is asking for
general information or a user may ask a general query while he is interested in
location-based information. A location name in a query is not enough to consider it as
an LBQ. The easiest solution is asking the user whether he is interested in location-
based information or not. In the Google Local interface for example, the location
input is simply separated from the service name. However, these tools have a limited
regional target and most people still prefer to use general search engines rather than
location-based facilities.

7 Conclusion

In this paper, we reviewed the specifics of geospatial queries on the Web that include
more than 22% of search queries. While 14% of Web queries have at least a location
name in them, they cannot easily be judged as location-based. We discussed earlier
that location-based queries are intended to search for products and services related to
specific locations. In spite of increasing demand for location-based search, tools are
insufficient in both availability and quality. Although some spatially-aware search
tools have been developed, people use general search engines for location-based
purposes. In the future, we plan to examine algorithms to determine location-based
queries automatically based on the described patterns. This can help search engines to
distinguish such queries and treat them properly based on their geospatial dimensions.

References

1. Intelligence - Center. Google en chiffres: Les données clés sur la société, les hommes, les
machines. (2004). English translation retrieved April 5, 2005, from: http://www.google.
angel-cage.de/ html/newsstatistics0704.html.

2. Spink, A. et al. From e-sex to e-commerce: Web search changes. IEEE Computer, 35 (3)
(2002): 133-135.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Searching the World Wide Web for Local Services and Facilities 101

Watters, C. & Amoudi, G. GeoSearcher: location-based ranking of search engine results.
JASIST, 54(2) (2003): 140-151.

Martin County GIS Team. GIS GLOSSARY. (2003). Available at: www.martin.fl.us/
GOVT/ depts/ isd/gis/glossary.html [Last visit July 22, 2005].

MaCGDI. What’s spatial data? (2004). Available at: http://www.nalis.gov.my/website/
web/ html/fags_info.htm [Last visit July 22, 2005].

NCGE. The five themes of geography. National Geographic Education. (1984). Available
at: http://www.nationalgeographic.com/resources/ngo/education/themes.html [Last visit
July 22, 2005].

Yet Another Internet Dictionary. (2004). Available at: http://dpsinfo.com/help/words.html
[Last visit July 22, 2005].

Newcomb, K. Google Gets Local in Canada. ClickZ News, Sep. 23 (2004). Available at:
http://www.clickz.com/news/article.php/3411681 [Last visit July 22, 2005].

Jones, C. B. Spatial Information Retrieval and Geographical Ontologies: An Overview of
the SPIRIT Project. Proc. of CIGIR, Tampere, Finland (2002): 387-8.

Stanley, J. W. & Speights, W.S. Website localization. Proc. of the Annual Int’l
Conference on Computer Documentation, New Orleans, USA (1999): 127-130.

Soderland, S. Learning to extract text-based information from the World Wide Web. In
the Proceedings of SIGKDD (1997).

Muslea, 1. Extraction patterns for information extraction tasks: A survey. AAAI
Workshop on Machine Learning for IE, Orlando, USA (1999).

Li, H., et al. Location normalization for information extraction. Proceedings of 19th Int’1
Conference on Computational Linguistics, Taipei (2002): 549-555.

Buyukkokten, O., et al. Exploiting geographical location information of Web pages. Proc.
of the SIGMOD WebDB'99, Philadelphia, USA (1999).

Olga, O. Extracting Geographical Knowledge from the Internet. Proceedings of ICDM-
AM International Workshop on Active Mining, Maebashi, Japan (2002).

Fonseca, F. T. & Egenhofer, M. J. Ontology-driven geographic information systems. In
the Proceedings of ACM GIS’99, Kansas City, USA (1999): 14 — 19.

Jones C.B., et al. Maintaining ontologies for geographical information retrieval on the
web. In Meersman, R.; Tari, Z.; Schmidt, D. C. (Eds.) On the Move to Meaningful
Internet Systems, ODBASE’03, Catania, Italy (2003): 934-951.

Gravano, L., et al. Categorizing Web Queries According to Geographical Locality.
CIKM, New Orleans, USA (2003).

Sanderson, M. & Kohler, J. Analyzing geographic queries. Proceedings of Workshop on
Geographic Information Retrieval SIGIR, Sheffield, UK (2004).

Ding, J., Gravano, L. & Shivakumar, N. Computing geographical scopes of Web
resources. Proceedings of the 26™ VLDB Conference, Cairo, Egypt (2000).

Radev, D. R., et al. Mining the web for answers to natural language questions.
Proceedings of the CIKM, Atlanta, Georgia, USA (2001): 143-150.

Self-adaptive Statistics Management
for Efficient Query Processing

Xiaojing Li, Gang Chen, Jinxiang Dong, and Yuan Wang

College of Computer Science, Zhejiang University, Hangzhou, 310027, China
{xjli, cg, djx}@zju.edu.cn

Abstract. Consistently good performance required by mission-critical
information systems has made it a pressing demand for self-tuning technologies
in DBMSs. Automated Statistics management is an important step towards a
self-tuning DBMS and plays a key role in improving the quality of execution
plans generated by the optimizer, and hence leads to shorter query processing
times. In this paper, we present SASM, a framework for Self-Adaptive
Statistics Management where, using query feedback information, an appropriate
set of histograms is recommended and refined, and through histogram refining
and reconstruction, fixed amount of memory is dynamically distributed to
histograms which are most useful to the current workload. Extensive
experiments showed the effectiveness of our techniques.

1 Introduction

Mission-critical information systems require consistently good performance. To this
end, virtually all large databases are managed by well paid system administrators. The
administrators must consistently monitor workload and system performance, predict
unforeseen or detect existing problems and give corresponding reaction. However, the
task has become more challenging due to increasing complexity and skilled system
administrators have become more scarce and expensive to employ. This situation calls
for a new generation of self-tuning database technologies. Over the past decade, the
importance and urgency of self-tuning database technologies have been deeply
understood. Gerhard Weikum in his brilliant work [1] showed the challenges,
achievements and direction toward a self-tuning database. Most DBMS vendors
provided tools to help automate the process of database administration which now
mainly focus on index and materialized view recommendation [2-6], table partition
[7], statistics organization and maintenance [8-12].

Statistics, especially histograms, are widely used by the query optimizer of a
relational database in choosing good execution plans [13]. The automation of
statistics management is of great value in improving system performance. Research
work toward automating statistics management can be classified to Static-Workload-
Analysis (SWA) approach and Execution-Feedback-Analysis (EFA) approach. SWA
approach is solely based on the form of queries in the workload and gives its
recommendations for statistics maintenance through analyzing the query workload.
The representative example of this approach is given by the SQL Server technique
described in [8] and [14]. EFA approach automates statistics recommendation and

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 102-{113| 2005.
© Springer-Verlag Berlin Heidelberg 2005

Self-adaptive Statistics Management for Efficient Query Processing 103

refresh by monitoring feedback from the execution engine. Our approach falls into
this category. DB2 UDB, Microsoft SQL Server and Oracle 10g all exploit this
approach [9]. In DB2 UDB, query feedback information is stored in a QFW. Through
analyzing QFW, stale statistics are recognized, and appropriate number of frequent
values, column-group statistics are recommended [9]. Moreover, the learning
optimizer LEO in DB2 uses the actual selectivity feedback from each operator in the
query plan to maintain adjustments that were used to correct the estimation errors
from histograms, and doesn’t change the histograms themselves [15]. Different from
DB2, we recommend histograms not frequent values, and the refining is directly
carried on histograms themselves. Self-Tuning histograms proposed by the SQL
Server technique described in [16, 17] can use query feedback information to adjust
frequencies of buckets in existing histograms. However, later refining will ruin results
of former ones as pointed out in [18]. Further more, histogram reconstruction doesn’t
consider workload information and can only redistribute memory within one
histogram, while our technique considers access frequencies in the workload for all
histograms and can globally distribute memory to the most critical histograms.
Jagadish et al in [19] present several greedy and heuristic algorithms for distributing
memory among a set of single attribute histograms, but they doesn’t address the
problem of finding the sets of attributes to build histogram on as in our technique.
Lim et al in [20] also propose a query-feedback-driven variant of the synopsis
approach where Junction trees of Ghordal Graphes and Delta Rule are used for
histogram recommendation and refining. Though interesting, as pointed out in [9],
this approach suffers from the scalability problem. Our former work [18] proposed
approaches for construction, refining and selectivity estimation of Self-Learning
Histograms (SLH) which can overcome the shortcomings of [16]. In this paper we
extend it by addressing the issue of recommending SLH histograms and dynamically
adjusting memory distribution among them.
In summary, our contributions are:

— We develop a new method to recommend and maintain an optimal set of SLH
histograms using on query feedback information, which avoids scanning the base
data, and can well adapt to workload and data distribution changes.

— We propose a new approach which can dynamically and globally distribute
memory distribution to the most useful histograms in the workload.

— We carried out extensive experiments to validate the effectiveness of our
techniques.

The rest of this paper is organized as follows. In section 2 we give some definitions
used in this paper. Section 3 describes query feedback processing and selectivity
estimating in detail, which is the main body of this paper. Section 4 shows our
experimental results and section 5 summarizes the whole paper.

2 Preliminaries

Consider a relation R, let R={A,A,,...,A,}. The domain D, of each attribute A, is the
set of real values of A that are present in relation R . Let D, be indexed
by {1,2,...,1 D, 1}, for each value d e D,, the frequency f(d) is the number of tuples in

104 X. Li et al.

R satisfying A; = d. Let r be a set of real intervals containing attribute A4,, we use
A erto represent a range query on attribute A, . Generally each range r can be
represented by [low,high), where low and high are the lower and higher bound of

r respectively. The frequency of range ron relation R is defined to the number of
tuples in relation R satisfying low < A, < high .

Let | RIdenote the total number of tuples in relation R, the selectivity S(r) of a
range query A e r is denoted by

NIG

which is used by the query optimizer to choose efficient execution plans in a cost-
based manner.
A histogram H, on attribute A, is an approximation to the frequency distribution

of attribute A, . It is constructed by partitioning the data distribution of 4, into several
buckets and approximating the frequencies and values in each bucket. A SLH
histogram H,with § buckets {B.B,....B,} is a quadruple (V',F",C".T"), where V"
is a vector <w,v,,..,vg,, > which represents boundaries between buckets, F"is a

vector < fi, fy,..., fz,, > Where each f, represents a cumulative frequency, namely the

number of tuples in R satisfying the predicate A <v, , and C" is a vector
<0,¢y5e,Cpy > Where ¢, represents CQF(Code of Query Feedback information), and
¢; =c; means the frequency of range [v,,v;) is accurate and it is f; - f;). Bucket B, can
be represented by [v,v,,), and f, and ¢, is the cumulative frequency and CQF of
boundary v, respectively. We noted that this could be represented by a
rule F(v,v))=f,—fi , so Hy can also be regarded as a set of rules
{F(v,v,) =f; = file,=c;ie[l,B+1], je[l,f+1], j=i} . Rules can be used to infer
more statistics. For example, from F([v,v;))=0.6 and F([v,,v,))=0.5 , we can
infer F([v, ,v,))=0.1, which means the accurate selectivity of query v, , <A<v;is
0.1. In [18] we showed how rules can be used to avoid ruining the results of former
refining. 7" is a f+1 dimension vector <7,,7,,...,7,, > Where each 7, reflects the

current value of SCF (defined later) when the rule is introduced into the histogram. It
is used to drop outdated rules from the histogram, as we discussed in [18].

Unit-frequency reflects the average frequency of each value in a bucket B, based
f ;’+1 - f !

Viin =V

i

on uniform data distribution assumption. It is denoted by

System Change Factor (SCF) represents the changes to data. The initial value of
SCF is 1, later when insertion, deletion and update come, SCF will be added by the
percentage of modified tuples. E.g. if 20% tuples are deleted, SCF will increase 0.2.

A query feedback is a quadruple FB(A,low,high,n) where A is the attribute

accessed, low and high represent the lower and higher bound of the query range
respectively, and 7 is the actual number of tuples satisfying the query low < A, < high .

Self-adaptive Statistics Management for Efficient Query Processing 105

3 SASM

3.1 Framework Overview

In this section, we propose SASM, a general framework aimed at recommending and
maintaining a set of SLH histograms within fixed amount of memory. SASM
monitors query feedback, and by analyzing estimation errors of queries, gives its
recommendations. When statistics memory limit is reached, SASM dynamically
reclaim some buckets from non-essential histograms and allocate them to the most
critical histograms. The workflow of SASM is shown in Fig. 1.

H Query Parser > Query Optimizer {—> Execution Engine @

-

Workload Monitor Query Feedback

— Collector
1 Statistics $
Statistics Access
H Frequency Analyzer

[} Query Feedback

L.

Y

Statistics Maintainer h Recommendation

Available

Memory for
Statistics

Fig. 1. Framework of SASM

Workload Monitor (WM) monitors how frequently each attribute is accessed. It
maintains an Access-Counter for each attribute. The Access-Counter will be used to
dynamically distribute memory among all histograms which we will describe in
subsections 3.3. The output of WM is recorded in Statistics Access Frequency (SAF)
which is organized in a table. For each column, the table it belongs to, and the
corresponding Access-Counter are stored in the table as a tuple. Attributes absent
from the table means that they are not frequently accessed in the current query
workload, and it is non-essential to maintain statistics for them.

When the Query Optimizer (QO) chooses the best execution plan for a query based
on costs of different ones, the size of the query, namely the number of tuples
satisfying the query predicates, is estimated by its cost-estimation model. And when

106 X. Li et al.

the chosen plan is executed by the Execution Engin (EE), the actual query size can be
gained. Query Feedbck Collector (QFC) collects these kinds of information together
with the skeleton of the execution plan. Table 1 shows an example of the information
QFC collects. The first tuple in Table 1 means the estimated and actual output size of
query 18<Age<20 is 9485 and 8945 respectively, and the estimated output size

(9485) is obtained using a histogram.

Table 1. Query Feedback Information

Table Attribute Low High useHist Est Actual

Student Age 18 20 Y 9485 8945

The query feedback information collected by QFC is then analyzed by the Query
Feedback Analyzer (QFA). QFA computes the estimation error for the query and
judges whether the estimation error exceeds a given threshold ¢ . If exceeds, the
attribute referenced by the query is recommended as a candidate column for statistics
building or refining, else it is ignored. The estimation error used is relative error
defined as follows.

_lo-o'l (D)
- max(o,1)

where o' and o denotes the estimated and actual query size respectively. The
recommendation information is similar to that showed in Table 1.

Recommendation for statistics building or refining given by QFA may all ask for
memory to build new histograms or accommodate new buckets. If available statistics
memory is not enough, it must be reclaimed from non-essential histograms. Statistics
Maintainer (SM) is responsible for these issues. It uses information in SAF table and
existing histograms to determine from which histograms to reclaim memory and build
a new histogram or refine an existing histogram using query feedback information
that QFC collects. In section 3.2 and 3.3, we will show how SM works in detail.

3.2 Candidate Statistics Recommendation and On-line Refining

In this section, we show how to use query feedback information to recommend
candidate histograms and to refine existing histograms. First we consider there is
enough memory. Suppose the query feedback information on A, in R

is FB(A,, X,Y,n) . When memory is enough and no histogram exists on 4,, a new
histogram is built using FB(A,X,Y,n) .We initialize the new histogram to
H =V ,F,C'\T)=(<X,Y ><0,n><0,0><SCF,SCF>) . H, and other existing
histograms form the set of candidate histograms. Later H, will be refined when
accessed and the estimation error exceeds the given threshold ¢ . A histogram H, may
already exist on 4, , then it is just refined using algorithm HistogramRefining in Fig.2.

Self-adaptive Statistics Management for Efficient Query Processing 107

Input: FB(A,,X,Y,n)
Output: newly built #, or H, refined by FB(A,X,Y,n)
BEGIN

Find buckets B, and B; where v, < X <v,

s Vi SY <y,

If X (or Y) doesn’t equal to any boundaries of B, (or B;)

split B, (or B,)to [v,v,) and [v,,v,) (or [v,v,) and [v,v,,)) where
v,=X(or v,=Y)
Y -

Compute f, =

V‘:*(fiﬂ_f;_)-rf;. (or fb: _V‘j).*(fﬁl_fj)‘kfj)

i+~ Vi j+l J

Set ¢, (or ¢,)to a value different from any existing CQFs
Set A= f, +n— f, // estimation error using histogram H,
if (¢, ==c¢ llc, =z){

for each CQF¢;in H,,if (¢, =¢,) ,set f,=f,+A;}

else{
for each CQF ¢,;in H,,if (¢; =c¢,), set f,=f,—A; }
Set c¢'to a value different any existing CQFs expect ¢, and ¢, ;
For each CQF ¢,;in H,,if (¢;=c,llc;==¢,) ,set ¢;=c";
Set 7, and 7, to the current value of SCF, namely setz, =7, = SCF ;
END.

Fig. 2. HistogramRefining

3.3 Dynamic Memory Distribution Among Histograms

In SASM, global memory redistribution is achieved by splitting and merging buckets
among all histograms. Bucket splitting is processed when refining histograms using
query feedback information when available statistics memory is enough, which has
been discussed in section 3.2. When available statistics memory is not enough, SM
will reclaim memory from non-essential histograms by merging some adjacent
buckets in them. In this section, we focus on this issue by determining which
histograms are non-essential and how to reclaim buckets from them. Merging may
cause accuracy losses. Ideal merging tactic should lower the loss to the least.

Merging tactic based only on frequencies as that in [16] is unsatisfying. In [16],
adjacent buckets with similar frequencies are merged. However, see Fig.3, the
frequency difference between B, and B, (110-90I=80) is much larger than that

(I10-91 =1), which means the later two buckets are more similar

will lead to high

between B;and B,

in frequency than the former two. However, merging B, and B

j+l

accuracy loss, e.g. before merging, the selectivity of query 1< A, <101is % , but after

108 X. Li et al.

. . . 10 1.9 . .
merging, the selectivity changes to ———x(10+9)=—— . While merging B. and
ging y g 100X R () IR gmng b;

B,,, can lead to no accuracy loss, for data in them is uniformly distributed and the

i+1

frequency of each value in the two buckets is always 1 no matter before or after
merging.

. 10 90

req

Hli] l l
value 1 B; 11 B 101
‘ 10 9
req

HQZ | l |
value 1 B; 11 B 101
¢ 10 1800
req

H3Z] l l
value 1 Bk 11 By 101

Fig. 3. Histograms

Merging adjacent buckets with similar unit-frequency seems a good choice. But
since we want to lower the estimation errors for the current running workload, only
unit-frequency can’t meet this goal. E.g. the unit-frequency difference of bucket B,

and B, is110+(11-1)-9+(101-11)}=0.9 , much smaller than that of B, and B,,,
which is110+(11-1)-1800+ (101-11) I=19 . However, if the Access-Counter of H, and
H, is 100 and 1 respectively, then merging bucket B, and B, is better than B,

and B,,,, for H, is accessed so seldom, reclaim buckets from it will do little harm of

j+l o
the current workload.

In SASM, we combine the access frequency and unit-frequency of histograms
when choosing buckets to merge. We compute the Merge-Factor (MF) of two
adjacent buckets of all the histograms. If the MF of two adjacent buckets B, and

B, is in the & % smallest MFs, they are considered to be merged and the histogram
they belong to is taken as a non-essential histogram. MF is defined to:

Iy f
MF = Acess — counter<|\UF, —UF, , l= Acess — counterx| =2 — “ a1

W,. VVH-I

2

where UF, f, and w, stand for the unit-frequency , width and frequency(not
accumulative frequency) of bucket B;. It should be emphasized that f, and f, are
estimated using all related rules as described in [18] with each bucket B, being seen as
aqueryv, <A <v,, -

After merging, B, and B,,, become to one bucket B[v,v,,) , the cumulative

frequency and CQF of v,and v,,, are the same as before. If a histogram remains only

i+2

one bucket due to merging, and its Access-Counter is very low, we can drop it from

Self-adaptive Statistics Management for Efficient Query Processing 109

the system. In this way, the origin set of candidate histograms is shrunken and
memory is dynamically distributed to the most critical histograms.

4 Experimental Evaluation

4.1 Setup for Experiments

We made comparisons in accuracy and maintenance cost between SASM and other
approaches including Self-Tuning, MaxDiff, Equi-Depth histograms. We use a
database consists 10 tables with each table having more than 5 randomly generated
attributes. A Zipfian distribution [21] generator is used to generate skewed data for
columns in the database. The degree of skew in the data is controlled by the Zipfian
parameter z, varied between 0 (uniform) and 4 (highly skewed). Which attribute a
histogram is built on is randomly chosen to simulate the initial status of the workload.

Table 2. Parameter Setting in the Experiments

Experiments No DSk WS MT SL DSc

1 1 1 changing 1800Byte 10*100K tuples
2 1 1 0.2 changing 10*100K tuples
3 1 changing 0.2 1800Byte 10*100K tuples
4 changing 1 0.2 1800Byte 10*100K tuples
5 1 1 0.2 1800Byte changing

6 1 1 0.2 changing 10*100K tuples

Query workload consisted 6000 queries of the form x<A <y, A =xand A <y,
where x and y were generated. Not all attribute are accessed equally, and the access
frequency of each attribute is also controlled by the Zipfian data generator. For

example, a class Zipfian(1, nATTs, nQueries, nATTs, z) can distribute nQueries to
nATTSs attribute with a skew z.

When the query workload was executed, estimation errors and maintenance costs
were computed for each approach. We used both average absolute error E,,, and
average relative error E,,, as accuracy metric in evaluating the accuracy of each
approach in estimating range query result size. They were computed as:

I 1 &lo, -0l 3
Eabx :7z| O-i _O-'i I and Erel = — ()
N = N 7' max(1,0;)
where N represents the number of queries in the workload, o, and o', represent the

actual and estimated output size of the i th query in the workload. Since results using
both error metric show no intrinsic difference, we only presents experimental results
using average relative error in this paper in the interest of space.

110 X. Li et al.

4.2 Results

We have done extensive experiments to evaluate the effectiveness of our technique
under various kinds of situations, but due to limited space, we only show results of six
representative experiments. We first give the parameter setting of each experiment in
Table 2. DSk, WS, MT, SL and DSc mean Data Skew, Workload Skew, Merge
Threshold, Space Limit and Data Scale respectively. Each figure corresponds to the
result of one experiment using parameters shown in one tuple in Table 2.

0.035
0.03 r
0.025 1
0.02 r
0.015 r

Estimation Error
(=]
—
Estimation Error

0.005 r
0 0.10.20.30.50.70.9 0

Merge Threshold 512 2048 . 8192
Sapce Limit

(a) Error - Merge Threshold (b) Estimation Error via Space Limit

Fig. 4. Estimation Error via Merge Threshold and Estimation Error via Space Limit

Fig.4.(a) shows the estimation error of SASM changes with the Merge Threshold.
ST, MD and ED stands for Self-Tuning histograms in [16], Maxdiff histograms and
Equi-Depth histogram respectively. SASM is our approach. From it, when Merge
Threshold increases but keeps smaller than 20%, the accuracy of SASM improves,
since more memory can be globally distributed to most critical histograms. However
when the threshold keeps increasing, the accuracy drops drastically. This is because
when Merge Threshold becomes very large, the number of buckets merged in each
redistribution of memory among all histograms will be very large and those reclaimed
buckets are not all assigned to histograms at once, so space currently occupied by
SASM is reduced. From the figure we can see 20% is an ideal value for Merge
Threshold, so we will use this value in later experiments. Fig.4. (b) shows the
estimation error changes with space limit. Generally, when space limit is large, more
buckets can be assigned to each set of histograms and hence they can achieve good
approximation to data. Fig.4. (b) shows this trend. When space limit increases,
estimation errors of all sets of histograms decrease. When space limit is large enough,
all errors keep in a nearly stable state. This is because when existing space is enough
to realize the data distribution, more memory can lean to no improvement in accuracy.
SASM performs better than ED and ST, while poorer than MD.

Fig.5. (a) shows the estimation error changes with increased workload skew of
each set of histograms. We can see that when the workload skew increases, the
estimation error all increases except SASM. When workload skew becomes large
enough (about z=2), estimation error of SASM begins to drop. This is because only
SASM can globally distribute memory among all histograms. When workload skew is
large, buckets from non-essential histograms are reclaimed and allocated to those

Self-adaptive Statistics Management for Efficient Query Processing 111

heavily accessed histograms. Fig.5.(b) shows the estimation error changes with data
skew. It can be seen that when data skew is small (z<1), each histogram is relative
accurate. MD is the most accurate. SASM is nearly as accurate as ED. When data
skew increases, the accuracy of all histograms drops slowly. When data skew is very
large, the accuracies of MD and ST drop drastically as pointed out in [16] while that
of SASM increases instead. This is because when data skew is large, the number of
distinct values becomes very small, and by self-refining using query feedback
information, SASM can well adapt to this change.

0.05 r —#—SASM 0.08
=St 0.07 | % —SAsSM
§0.04 —&— D 5 0 06 -—
o ~ . r
& —A—ED O B L
£0.03 2 0.0 i
= £ 0.04 ¢
g 0.02 20.03 |
%001 7 0.02 |
0.01 |
0 - 0 L—
0 05 1.5 2.5 4 0 0.5)) 5
Workload Skew Data Skew
(a) Estimation Error-Workload Skew (b) Estimation Error-Data Skew

Fig. 5. Estimation Errors via Workload Skew and Estimation Errors via Data Skew

30 6 ast
_ | msAsM
25 asT 5
W SASM U
3 3
o
2
1
0
512 1024 2048 4096 8192
5 10 20 40 60 80 100 . Limit
Data Scale emory Limli

(a) Cost via Data Scale (b) Cost via Memory Limit

Fig. 6. Cost via Data Scale and Cost via Memory Limit

In this experiment, we want to compare the costs (seconds) for query processing
using ST and SASM. Since MD and ED are static histograms, cost comparison
between SASM and them is non-essential. Fig.6. (a) shows the cost of processing the
workload changes with the total number of tuples (measured in thousand, e.g. 5
represents 5000 tuples for each table) in the database. We can see that the both costs
increase as data becomes larger and the cost of SASM is nearly the same as that of
ST. Fig.6. (b) is the result of costs changes with memory limit. The cost of SASM is
slightly higher than that of ST. However, since both ST and SASM piggyback on the
process of query answering, the cost is very small contrast to the cost of query
execution. We can also see from Fig.6.(b) that both costs keep almost stable, this is
due to decreases in reconstruction frequency when memory limit is large enough.

112 X. Li et al.

5 Conclusion

In this paper, we presented a unified framework SASM for autonomic statistics
management in DBMSs. SASM not only can recommend, construct and refine SLH
histograms using only query feedback information without accessing the base data,
but also can dynamically distribute fixed memory to the most critical histograms.
Histogram recommendation and refining are based on estimation error analysis, which
makes SASM adapt well to workload and data changes and using CQF, statistics can
be deduced using rules and ruining former reefing by later ones is avoided.
Experiments showed SASM can reduce estimation errors to a satisfying degree while
keep acceptable maintenance cost.

References

1. Gerhard Weikum, Axel Moenkeberg, Christof Hasse and Peter Zabback. Self-tuning
Database Technology and Informatino Services: from Wishful Thinking to Viable
Engineering. Proceedings of the 28th International Conference on Very Large DataBases,
HongKong, China, 2002, pp. 20-31.

2. Chaudhuri, S., Datar, M., Narasayya, V. Index selection for databases: a hardness study
and a principled heuristic solution. IEEE Transactions on Knowledge and Data
Engineering, Vol 16, Issue 11, Nov, 2004, pp.1313-1323.

3. Daniel C. Zilio, Calisto Zuzarte, Guy M. Lohman, Roberta J. Cochrane, Jarek Gryz, Eric
Alton and Gary Valentin. Recommending Materizlized Views and Indexes with the IBM
DB2 Design Advisor. Proceedings of the International Conference on Autonomic
Computing, New York, USA, 2004, pp.180- 187.

4. Automated Selection of Materialized Views and Indexes for SQL Databases. Proceedings
of the 26th International Conference on Very Large DataBases, Cairo, Egypt, 2000. pp.
496-505.

5. Surajit Chaudhuri and Vivek Narasayya. An Efficient, Cost-Driven Index Selection Tool
for Microsoft SQL Server. Proceedings of the 23rd International Conference on Very
Large DataBases, Athens, Greece, 1997, pp. 146-155.

6. Kai-Uwe Sattler, Eike Schallehn and Ingolf Geist. Autonomous Query-Driven Index
Tuning. Proceedings of the International Database Engineering and Applications
Symposium, 2004, pp.439- 448.

7. Sanjay Agrawal, Vivek Narasayya and Beverly Yang. Integrating Vertical and Horizontal
Partitioning into Automated Physical Database Design. Proceedings of ACM SIGMOD
International Conference on Management of Data, Paris, France, 2004, pp. 359-370.

8. Surajit Chaudhuri, Vivek Narasayya. Automating Statistics Management for Query
Optimizers. Proceedings of the 16th International Conference on Data Engineering, 2000.

9. A.Aboulnaga, P. Haas, M. Kandi, S. Lightstone, G. Lohman, V. Mark, I. Popivanov, and
V. Raman. Automated Statistics Collection in DB2 UDB. Proccedings of the 30th
International Conference on Very Large Data Bases, Toronto, Canada, 2004, pp.1146-
1157.

10. Thab Ilyas, Volker Markl, Peter J.Haas, Paul G. Brown and Ashraf Aboulnaga. Automatic
Relationship Discovery in Self-Managing Database Systems. Proceedings of the
International Conference on Autonomic Computing , 2004.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Self-adaptive Statistics Management for Efficient Query Processing 113

Ihab F. Ilyas, Volker Markl, Peter J.Haas, Paul G.Brown and Ashraf Aboulnaga. CORDS:
Automatic Generation of Correlation Statistics in DB2. Proceedings of the 30th
International Conference on Very Large Data Bases, Toronto, Canada, 2004, pp.1341-
1344.

Ihab F.llyas, Volker Markl, Peter Haas, Paul Brown and Ashraf Aboulnaga. CORDS:
Automatic Discovery of Correlations and Soft Functional Dependencies. Proceedings of
ACM SIGMOD Internation Conference on Management of Data, Paris, France, 2004.
Yannis loannidis. The History of Histograms. Proceedings of the 29th International
Conference on Very Large DataBases, Berlin, Germany, 2003, pp.19-30.

Nicolas Bruno and Surajit Chaudhuri. Exploiting Statistics on Query Expressions for
Optimization. Proceedings of ACM SIGMOD International Conference on Management
of Data,Madison, Wisconsin, USA, 2002, pp.263-274.

Michael Stillger, Guy Lohman,Volker Mark,Mokhtar Kandil. LEO-DB2's Learning
Optimizer. Proceedings of the 27th International Conference on Very Large DataBases,
Roma, Italy, 2001, pp. 19-28.

Ashraf Aboulnaga and Surajit Chaudhuri. Self-Tuning Histograms: Building Histograms
without Looking at Data. Proceedings of ACM SIGMOD International Conference on
Management of Data,1999, pp. 181-192.

Nicolas Bruno, Surajit Chaudhuri, Luis Gravano. STHoles:A Multidimensional Workload-
Aware Histogram. Proceedings of ACM SIGMOD International Conference on
Management of Data, Santa Barbara, CA, USA, 2001, pp.211-222.

Xiaojing LI, Bo Zhou and Jinxiang Dong. Self-Learning Histograms for Changing
Workloads. To appear in the Ninth International Database Engineering and Applications
Symposium, Montreal, Canada, 2005.

H.V.Jagadish, Hui Jin, Beng Chin Ooi and Kian-Lee Tan. Global Optimization of
Histogram. Proceedings of ACM SIGMOD International Conference on Management of
Data, Santa Barbara, California, USA, 2001, pp.223-234.

Lipyeow Lim, Min Wang and Jeffrey Scott Vitter. SASH: A Self-Adaptive Histogram Set
for Dynamically Changing Workloads. Proceedings of the 29th International Conference
on Very Large DataBases, Berlin, Germany, 2003, pp. 369-380.

G. Zipf. Human Behavior and the Principle of Least Effort. Addison Wesley, 1949.

Design and Implementation of the Modified R-Tree
Structure with Non-blocking Querying”

Myungkeun Kim', Sanghun Eo', Seokkyu Jang', Jaedong Lee”, and Haeyoung Bae®

3 Dept. of Computer Science & Information Engineering, Inha University

% Dept. of Computer Science, Dankook University
{kimmkeun, eosanghun, skjang}@dblab.inha.ac.kr,
letsdoit@dku.edu, hybae@inha.ac.kr

Abstract. In highly concurrent field such as location based services, massive
objects are moving concurrently. Due to continuously changing nature of their
location, traditional indexes cannot provide the real-time response since query
processing is frequently blocked by node-split or region propagation as the lo-
cations of objects change. In this paper, the modified R-tree structure with lock-
free querying for multi-dimension data, R'-tree, is proposed. Basically, R"-
tree uses the new versioning technique. When updating data such as key up-
date(region propagation) and index restructure(node-split), it never physically
modify original data, rather creates new version for compensating data intact-
ness. Due to data intactness, search operation can access data without any lock-
ing or latching by reading old version. In the performance evaluation, it is
proven that search operation of R""-tree is at least two times faster than a previ-
ous work.

1 Introduction

The advance in wireless networks and in positioning systems has led to the emergence
of location-based services (LBS). LBS support useful and convenient services based
on the user's location such as emergency service, driving direction, and buddy finding.
Due to rapidly expending field of location-based services, a large number of service
subscribers is continuously moving and sends queries via wireless communication.
Applications for location based services must store the current location of the large
number of moving user and process the location based query in real-time manner [13,
14]. To index massive moving objects, R-tree structure [4] may be used. However,
traditional R-tree structure suffers from poor performance since the query processing
is frequently blocked by node-split or region propagation as the locations of objects
change.

During the last decade, a number of index methods, which modified the basic struc-
ture of R-Tree, have been proposed to maximize the concurrent efficiency of updating
and querying, such as Rlink-tree [6], CGiST[7], and [2],[9],[12]. They have tried to
improve the query performance by using the lock minimally or by linking the sibling

* This research was supported by the MIC (Ministry of Information and Communication),
Korea, under the ITRC (Information Technology Research Center) support program super-
vised by the IITA (Institute of Information Technology Assessment).

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 114-[124, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Design and Implementation of the Modified R-Tree Structure 115

nodes like Rlink-tree. In highly concurrent environments, those index methods are not
suitable for indexing moving objects since the query processing is frequently blocked
even they have tried to minimize the blocking probability.

In this paper, the modified R-tree structure using “the instant versioning technique”
is proposed. It does not physically modify the original data, but rather make a new
version for compensating the data intactness. Unlike the traditional versioning tech-
nique [11], this technique does not keep multiple versions, but it instantly keeps the
original data only until the creation of new version is done. That is, the original data is
remained intact not for further operations but for operations that are currently access-
ing it. According to the instant versioning technique, an entry or a node is versioned.
The proposed technique make lock-free search operations by reading old version even
during the modification of an entry or a node.

The remainder of this paper is organized as follows. Section 2 describes related
works and section 3 describes the proposed concurrency technique. Section 4 presents
consistency, section 5 proves that the proposed index is the deadlock-free, and Sec-
tion 6 presents experiments compared to Rlink-tree. Finally section 7 makes a conclu-
sion.

2 Related Works

In this section we present a problem of concurrent operations in the R-Tree. And we e
xplain how the previous techniques solve this problem. Fig. 1 presents the problem of
wrong path.

(1) - o; waiting to acquire lock on node n,
n - 0, is splitting node n,

(2) - 0y copies to n, the half of n, entries, and
J reflects pointer to n3 on parent node

(3) - o, releases lock on n,

(4) - o; only visits the half of n,

Fig. 1. The problem of wrong path

In Fig. 1, let’s assume that o; is a search operation that is waiting for acquiring lock
on node 7n,, and 0, is an insert operation that is splitting node n,. When o; acquires the
lock on node n, after node-split finishes, it only searches the half of n, since the other
half of n, has been moved to n; by o0,.

The previous concurrency control techniques are classified into the pessimistic so-
lution [2, 9] and the optimistic solution [6, 7, 12] to solve the problem of wrong path.
The pessimistic solution does not allow node-splits in their path, and the optimistic
solution allows the problem of wrong path but it corrects the wrong path by applying
some special action.

The representative technique of the pessimistic solution is the lock-coupling [2, 9].
When descending the tree a lock on a parent node can only be released after the lock
on the child node is granted, also when ascending the tree (node-splits or region

116 M. Kim et al.

propagation) locks on ancestor nodes should be held until ascending step is termi-
nated. This technique decreases concurrent efficiency since minimum of two nodes
are kept locked at a time. The optimistic solution needs special method to correct the
wrong path and to judge if the visiting node has been modified. The representative
technique for the optimistic technique is Rlink-tree [6]. Rlink-tree uses LSN (Logical
Sequence Number) to judge if visiting node has been split, and it corrects the wrong
path by maintaining the link between sibling nodes. LSN is in charge of same roles as
the maximum key of Blink-tree [10] due to the fact that R-Tree has the property that
the entries of nodes are not linearly ordered. Each entry in a non-leaf node consists of
a key, a pointer, and the expected LSN that it expects the child node to have. If the
expected LSN taken from the parent node is different from the actual LSN of child
node, a process moves right via sibling link until the node having the expected LSN is
found, is carried out.

All of the previous works have the same drawback that search processing should
be blocked since they use the lock-based technique. They require the shared mode
lock for retrieving the consistent data against update operations. This situation over
the lock-based technique cannot be avoided. This paper proposes the version-based
technique which enables the search operation to progress without blocking it.

3 R"-Tree

This section describes the concept of the instant versioning technique, and introduces
the modified structure of R-Tree, called R*'-Tree, for applying the instant versioning
technique, and describes internal and external operations of R*'-tree. Finally, it dis-
cusses the reclamation of garbage space due to the instant versioning technique.

3.1 Instant Versioning Technique

The traditional versioning technique is designed for record manager. This approach
can make read-only transaction non-blocking by reading suitable record among mul-
tiple versions. From indexing point of view, keeping multiple versions is unnecessary
since index operations have to get only the latest versions.

Let f(x) be a function that chooses a latest version among the set of derived versions
{d, d’, da’, ..., a", a"*"}. a"*' is the derived version from a", where n is the version
number. If a" is the latest version and the installation of another new version a"*’ is
not done yet, the function f{x) chooses a”. This simple rule can make search operation
access data without any locking even when data is being physically modified. Let’s
assume that a” is a non-leaf node and it is being split. Node-split does not physically
modify a”", rather makes a new version a"*’. Search operation can traverse sub-tree of
a" via the intact node " without any locking. Also this rule is applied to version an
entry.

In order to implement the instant versioning technique, the linked list style is used.
This technique requires pointers to link between the latest versions of data. Those
pointers are not for sorting, but they are for preventing operations from accessing
non-latest versions. To add additional link pointers, the traditional R-Tree structure is
extended.

Design and Implementation of the Modified R-Tree Structure 117

First, the entry structure is extended by adding two pointers for linking between
sibling entries. Each entry in a node consists of a key rectangle, a pointer to the child
node or indexed object, a pointer nxtActive to the next sibling active entry, and a
pointer nxtFree to the next sibling free entry. Also, the node structure is extended by
adding two pointers, fstActive and fstFree, for completing the instant entry versioning.
[stActive is a pointer that points to the first among the active entries. And fstFree is a
pointer that points to the first among the unused entry. Search operations initially take
JstActive, and then they move right via nxtActive. They visit only the latest entries
since there are only the latest entries in the active link. And update operations take
new entry from fstFree.

Second, the node structure does not need additional pointers for applying the in-
stant node versioning technique since nodes in the tree are already linked between
parent node and child node. Just, the traditional splitting algorithm is modified ac-
cording to the instant node versioning. A node is instantly versioned only when it is
split. In Fig. 3, let’s assume that n;, is splitting. First, new nodes, n; and n, are created
unlike the traditional splitting (that only creates one new node), then entries of n, are
distributed onto n; and ny, then pointer of existing n, from parent node is removed,
finally the pointers of n; and n, are inserted to n;. This technique does not cause any
modification on the splitting node n,, so that the search operations can traverse sub-
tree of n, without any locking and latching. However, if insert operation is waiting for
acquiring lock on n,, it may insert a new key to the wrong node n, (versioned node).
This is the problem of wrong path as mentioned above in the related works. In order
to solve this problem, the basic node structure of R"-tree is extended as described in
the following paragraph.

——P Active link e » Free link

n;

Header Section

fstActive

‘ Traditional Information ‘

CrE e . v

Entry Section n, n, n,

Fig. 2. The basic node structure of R*-tree Fig. 3. The instant node versioning

Third, two pointers p;, p,and a version bit v are added to the basic node structure
of R*-tree. The variables are used to solve the problem of wrong path. That is, opera-
tions check v to detect the fact that the node has been split, and use p;, p, to correct the
wrong path. v is marked during the split process, and it indicates the fact that the node
is versioned. If a version bit v of visiting node is true, update operations can judge that
the node has been split by another operation while they were waiting. p,, p, are point-
ers that point to the two new nodes derived from the original node.

If the visiting node is a versioned node, a process moves right via version pointers
until meeting the latest nodes. Fig. 5 presents the scenario to correct the wrong path.
The version bit v of node n, is true, and p;, p, are pointing node n;and n, respectively.

118 M. Kim et al.

The update operation confirms the fact that n, has been versioned by checking the
version bit v, and fixes the wrong path by moving to n; and ny through p; and p,.
These pointers may point to another versioned node since the non-versioned node that
was derived from versioned node can still be versioned again by subsequent splits, but
continued moving via version pointers can guarantee that non-versioned nodes (latest
nodes) are found.

—» Active link e » Free link
Header Section F ‘ - ‘ -
Version | Pointer to left | Pointer to right
bit (v) | new version (p;)| new version (p2) m
‘ fstActive ‘ fstFree | Traditional Information (a)

B | Ly [Tl T

np
Entry Secti
ntry Section W

Fig. 4. The extended node structure of R*-tree Fig. 5. Correction of wrong path. (a) Detect the
fact that n, has been split. (b) Visit to new ver-
sions via version pointers

3.2 Internal Operations

R"'-tree has four internal operations, such as insertion, deletion, modification of en-
try, and search operation. They are limited to a node.

Insertion and deletion of entry are very simple. A new entry, allocated from the free
link, is appended to the end of the active link. It is linked only after it becomes consis-
tent. If it does not, search operations may access the inconsistent entry. Deletion of
entry is done by unlinking from the active link. In Fig. 6 (b), an entry e, is deleted by
assigning the nxtActive of e; to e;. And then it is linked into the free link. The active
link of e, should not be cut because of search operations that are accessing e,. If it is
cut, they cannot move to the next active entry, e;. The deleted entries are reused by
further operation. It should carefully be reused because of search operations that are
still accessing it. In order to simplify the procedure of internal operations, this issue is
discussed in subsection 3.4.

Entry modification is a combination of the insertion and deletion of entry. It should
be atomically done since search operations could access both entries, the original
entry and the entry derived from the original entry. Fig 6 (c) describes modification of
the entry e,. The entry e, is atomically modified by assigning the nxtActive of e; to e,.
Especially, when splitting a node according to the instant node versioning, entry
modification requires insertion of two entries unlike simple entry modification. It is
also done in the same manner.

Internal search operations visit entries by taking nxtActive. They do not require any
locking and latching due to the atomic linking of internal update operations.

Design and Implementation of the Modified R-Tree Structure 119

Before —» Active link e » Free link
‘ fstActive ‘ ‘ fstFree ‘ ‘ fstActive ‘ ‘ fstFree ‘ ‘ fstActlve ‘ ‘ fstFree ‘
e R R e ¥
After
‘ fstActlve ‘ ‘ fstFree ‘ ‘ fstActive ‘ ‘ fstFree ‘ ‘ fstActive H fstFree ‘
(a) Insertion of an entry (b) Deletion of the entry €, (c) Modification of the entry e,

Fig. 6. Internal operations

3.3 External Operations

This subsection describes external operations such as search and insert operation.
These operations are interactively invoked by the external component above the in-
dex, such as “cursor”. In this subsection, delete operation is not described since it is a
combination of the search and insert operation. Deletion of empty node is discussed in
subsection 3.4.

3.3.1 The Search Operation

Search operation finds all entries that belong in the range of query condition. Search-
ing starts by pushing the root node pointer to the stack. The stack is used to remember
pointers of nodes or objects that need to be tested. The root node pointer will be the
first to be popped from the stack. If the popped one is the pointer that indicates the
node, all entries qualifying the query conditions in it are pushed to the stack. If it is
the pointer that indicates objects, it is returned with the stack to caller who has in-
voked search operation. In next time, findNext procedure is invoked with the returned
stack as shown in Fig. 7 (line 6). This process is repeated until the stack becomes
empty.

1 findFirst(STACK s, RECT r) 13 if(p is pointer to indexed tuple)
2 push(s, root) 14 return p

3 return findEntry(s, r) 15 Else

4 end 16 for(all entries e of p)
5 17 if(e is intersecting r)
6 findNext(STACK s, RECT r) 18 push(s, NODE(e))
7 return findEntry(s, r) 19 End

8 end 20 end

9 21 end

10 findEntry(STACK s, RECT r) 22 end

11 while not empty(s) 23 end

12 p=pop(s)

Fig. 7. The Search operation

120 M. Kim et al.

3.3.2 The Insert Operation

The insert operation progresses in three steps. The first step is the descending step.
This step finds the optimal leaf node that is fit for inserting the new key by moving
down the tree. The second step inserts the new key to the found leaf node, and the last
step is the ascending step. It moves up the tree to modify the ancestor nodes in two
cases: when the region of node has changed or a node should be split due to the lack
of space.

1 insert(STACK s, RECT r) 23 w-lock(n)

2 findLeaf(s, root, r) 24 else

3 n =pop(s) 25 s-lock(n)

4 if(n is not full) 26 end

5 insert r to n 27 if(n is versioned)

6 if(MBR(n) has changed) 28 pop(n); unlock(n)

7 updateParent(s, n, MBR(n)) 29 n = node leading to optimal node
8 end from new versions of n
9 unlock(n) 30 push(s, n);

10 else 31 if(n is leaf node)

11 s-lock(n) 32 w-lock(n)

12 nl, n2 = create new node 33 else

13 distribute n's entries to n/ and n2 34 s-lock(n)

14 insert a new entry with r to optimal node 35 end

15 set pI and p2 to p's version pointers 36 end

16 mark the version bit of p as true 37 if(n is non-leaf node)

17 splitNode(s, n, nl, n2) 38 e = entry on n leading to
18 end minimal MBR with r
19 end 39 n =NODE(e)

20 findLeaf(STACK s, NODE n, RECT r) 40 findLeaf(s, n, r)

21 s-lock(n); push(s, n) 41 end

22 if(nis leaf node) 42 end

Fig. 8. The insert operation (descending step)

When descending the tree the visited nodes are pushed to the stack. Its saved path
will be used in the further ascending step. When descending the tree, the versioned
node is maybe found since the insert operation does not use lock-coupling to heighten
concurrent execution. That is, the child node could be split by another insert operation
after taking the child node pointer from its parent node. In this case, the non-
versioned nodes can be found by moving right via the version pointers. The version
pointers points to each derived nodes that have been created due to node-split, so that
all nodes derived from the original node can be visited by moving right. Before a
process moves right, the pushed node is popped as shown in Fig. 8 (line 28). If a
process finds non-versioned node leading to geometrically optimal node, it is pushed
to the stack. Finally, only non-versioned nodes are in turn pushed to the stack, and if a
process reaches to a leaf node, it returns.

If there is space to insert the new key to the found leaf node, it is simply inserted. If
region of the node is changed due to the key insertion, the region propagation occurs

Design and Implementation of the Modified R-Tree Structure 121

to reflect this change to the parent node. The region propagation moves up the tree
until the region of ancestor nodes do not need to be changed any more. It may meet a
versioned node during the region propagation. However, this case is little different to
the wrong path correction of the descending step. The descending step fixes the path
by finding a geometrically optimal node among all non-versioned nodes that have
been derived from the versioned node. That is, all non-versioned nodes derived from
the versioned node should be visited. But the ascending step only moves right via
version pointers until the non-versioned node, that contains the pointer to the corre-
sponding child node, is found.

1 updateParent(STACK s, NODE n, RECT r)33 distribute p's entries to p/ and p2
2 if(s is not empty) 34 insert entries(nl, n2) to optimal node
3 p = pop(s); w-lock(p) 35 set pl and p2 to p's version pointers
4 if(p is versioned) 36 mark the version bit of p as true
5 p = findVersion(p, n) 37 splitNode(s, p, p1, p2)

6 end 38 else

7 unlock(n) 39 insert entries(nl, n2) to p;

8 e = entry containing n's pointer in p 40 if(MBR(p) has changed)

9 update e with r 41 updateParent(s, p, MBR(p))

10 if(MBR(p) is changed) 42 else

11 updateParent(s, p, MBR(p)) 43 unlock(p)

12 else 44 end

13 unlock(p) 45 end

14 end 46 end

15 else 47

16 unlock(n) 48 NODE findVersion(NODE p, n)

17 end 49 if(p is versioned)

18 end 50 unlock(p); w-lock(p.leftVersion)
19 51 p = findVersion(p. leftVersion, n)
20 splitNode(STACK s, NODE n, nl, n2) 52 if(p is not null)

21 if(s is empty) 53 return p

22 p=root 54 end

23 else 55 w-lock(p.rightVersion)

24 p = pop(s); w-lock(p) 56 return findVersion(p.rightVersion, n)
25 if(p is versioned) 57 end

26 unlock(p) 58 if(p has the entry that contains n)
27 p =findVersion(p, n) 59 return p

28 end 60 end

29 unlock(n) 61 unlock(p)

30 if(p is full) 62 return null

31 s-lock(p) 63 end

32 pl, p2 = create new node

Fig. 9. The insert operation (ascending step)

A node is split if there is no space to insert the new key to the leaf node. Unlike the
traditional node-split, the splitting process does not physically modify the splitting

122 M. Kim et al.

node, but rather marks it as “versioned”, then two other nodes are created for com-
pensating its intactness. Finally, the pointers of newly created two nodes are reflected
on parent node. If there is no space to insert them in the parent node, the split process
moves up to its parent node again.

3.4 Space Reclamation

According to the instant versioning technique, the garbage space, such as versioned
entries and versioned nodes, is essentially created. This subsection discusses how to
reclaim garbage space and who collects it. In order to implement the timestamp, a
logical version number is used.

The versioned entries are not returned to system, but they are reused by internal
update operations. Each node keeps a logical entry version number (/evn) in its header
section. When versioning an entry, levn is increased and the new value is assigned to
the versioned entry. The internal operations memorize levn before they visit the node.
If levn of the versioned entry is smaller or equal to the smallest one among the inter-
nal operations that are currently visiting the node, the versioned entry can be reused.

The reclamation of versioned nodes is similar to that of versioned entries. That is,
tree globally keeps another logical version number, a logical node version number
(Invn), and the external operations memorize /nvn before they start. When versioning
a node, /nvn is increased and the new value is inserted into the collector queue with
the node. Garbage collector is activated on a regular basis, and pops a node from the
queue. If /nvn of the popped node is smaller or equal to the smallest one among the
active external operations, it is returned to system.

Actually, the space reclamation does not require heavy overhead since the ver-
sioned entries are reused and the versioned nodes are reclaimed by an independent
process without disturbing the normal operations.

4 Consistency

This section discusses the phantom problem that is a common requirement of data-
base systems. It is difficult to avoid the phantom problem by index itself. One simple
way to avoid the phantom problem is to hold the lock on every node (leaf nodes and
non-leaf nodes) that search operations visit until transaction finishes. However the
concurrent execution is severely decreased. Rlink-tree introduces a simplified form of
predicate locks [3], where exclusive predicates consist of a single rectangle and
shared predicates consist of query range. Insert operations check shared predicates
with their single rectangle, and if they conflict, they suspend until the conflicted
shared predicate is released. The main advantage of the predicate locking is to isolate
the concurrency technique on index from the phantom problem. That is, when an
operation is passed the predicate locking manager, it can freely access any nodes on
the tree without considering the phantom problem. The predicate locking could be
employed with R*'-tree. However, it does not utilize the advantage of this paper, i.e.
non-blocking search operation, since search operations could be blocked before enter-
ing to the index by the predicate locking.

Design and Implementation of the Modified R-Tree Structure 123

ver

A more effective solution for R™ -tree is to cooperate with the multi-version record
manager. Read transaction gets a candidate object qualifying their search condition
from the index, and then the candidate object is compared with multiple versions in
record manager. If the timestamp of the candidate object is greater than that of read
transaction, it is ignored since the candidate object was created after read transaction
has installed, and the next candidate object is got from the index. This approach needs
to consider a delete operation on index. If a key is deleted after search operation scan
the tree, the number of objects got from rescan operation is maybe smaller than that of
previous scan. So, the key deletion is not done by the current delete transaction, but it
is lately done by a garbage record collector like “ager” in [5]. The ager is an inde-
pendent process that reclaims garbage records. When reclaiming the garbage records
the corresponding keys are deleted from the index.

5 Deadlock

In this section, R"-tree proves itself to be deadlock-free. Deadlock occurs when there
is a cycle of operations waiting for each other. By figuring out locking sequence of
sub-functions, it is shown that R*'-tree does not make a cycle.

---------------- » avoid lock-coupling
— lock-coupling

f; : findLeaf
f, : updateParent

f; : splitNode

f, : findVersion

Fig. 10. The locking sequence of sub-functions of the external insert operation

Fig. 11 shows the locking sequence of sub-functions of the external insert opera-
tion. Another operations, such as internal operations, external search operation, and
external delete operation, are not considered since internal operations do not require
locks of two nodes at a time, external search operation does not acquire any lock, and
external delete operation uses the same functions in external insert operation. The dot
line indicates to release the lock on the visiting node before requiring the lock on next
node. And the solid line indicates to use lock-coupling. Deadlock can occurs only
when the solid line is crossed. As shown in Fig 11, the solid line is never crossed.

6 Experiments

This section proves the excellence of this technique through comparison to Rlink-tree.
It explains experimental environment, and estimates the proposed technique by in-
creasing insert and search process.

124 M. Kim et al.

6.1 Experimental Environment

Rlink-tree and R"-tree were implemented in C under GMS [10] which is a spatial
database management system. GMS run on Solaris equipped with 8§ CPUs of 1.2GHz
and main memory of 1G bytes.

The size of node is 4K. The fan-out of non-leaf node and leaf node is each 98 and
81 for Rlink-tree, 89 and 75 for R*'-tree. This experiment does not consider the phan-
tom problem since Rlink-tree does not mention in detail. And the quadratic split algo-
rithm is applied to both indexes.

Initially, the data sets with 10000 rectangles (10 X 10 size) were preloaded in the
20000 X 20000 area. It was equally distributed in total domain area. In actual experi-
ments, each insert process inserts objects with size of 10x10 randomly extracted from
total area into the tree. Also, each search process searches with size of 2000x2000
(1% of entire area) randomly extracted. The response time and throughput of search
and insert operation is estimated by dynamically increasing the number of insert and
search process.

6.2 Experimental Results

Fig. 11 and Fig. 12 are the results of estimating response times and throughputs by inc
reasing number of insert processes to measure insert-workload. It shows that R -tree
has slightly bad performance even though it tries to improve the concurrent efficiency
of the update operations. This is due to the fact that R*-tree is more split than Rlink-t
ree since the fan-out of R""-tree is smaller than Rlink-tree. That is, the overhead cause
d by correction of wrong path or blocking due to node-split, is increased.

1.6 140
14 + —o— Rlink-tree 10 F —e— Rlink-tree
512 —a— R -tree i —a—R"" -tree
g 2 100
o 10 | g
£ < %
08 2
2 = 60
3 06 Ed
o
2 2 40
L 04 £
02 20
0.0 0
2 4 6 8 10 12 14 16 18 20 2 4 6 8§ 10 12 14 16 18 20
number of insert processes number of insert processes

Fig. 11. Response times of insert-workload Fig. 12. Throughputs of insert-workload

Fig. 13, Fig. 14, Fig. 15, and Fig. 16 are the results of estimating average response
times and throughput of search operations by increasing search operations under the
low-contention (4 insert processes) and high-contention (20 insert processes). R™'-
tree is showing better performance than Rlink-tree under the low-contention as shown
in Fig. 12 and Fig. 13. This is due to the fact that search operations of R""-tree trav-
erse the tree without any locking. In contrast, those of Rlink-tree are blocked by con-
current insert operations. The difference in performance of both indexes is more se-
vere under the high-contention. Rlink-tree is getting worse as contention is increased.
Notice that response times of R"'-tree achieve nearly similar results in two cases,

Design and Implementation of the Modified R-Tree Structure 125

ver

low-contention and high-contention. Consequently, response times of R™-tree is
shown within expected time even though the contention is increased since search
operations of R*'-tree do not require any locking or latching.

45 40
4 —a— Rlink-tree 35 b —e— Rlink-tree
—m R _m— R tree
35 - tree 30 b

25

response time (sec)
throughtput (tx/sec)
)
S
T

R number of search processes
number of search processes

Fig. 13. Response times of search operations
(low-contention)

Fig. 14. Throughputs of search operations
(low-contention)

18k —e— Rlink-tree 14r —e— Rlink-tree
16 —=— R"' - tree 12 —=— R" - tree

response time (sec)
>
T
throughtput (tx/sec)

number of search processes

Fig. 15. Response times of search operations
(high-contention)

number of search processes

Fig. 16. Throughputs of search operations
(high-contention)

7 Conclusions

This paper has designed the modified R-Tree structure with lock-free querying, and
implements it on existing spatial database management system. In order to achieve the
goal, the instant versioning technique is introduced. This technique has not physically
modified data, but rather new version has been created for compensating data intact-
ness. Search operation could access data without any locking or latching by reading
old version. This approach has made garbage data due to compensating action, but the
reclamation task has not conflicted with the normal operation of index since it has
been executed by an independent process. Experiments have shown better perform-
ance in search operation at least twice as fast as compared to Rlink-tree.

The further work for this paper is the study of recovery. The reclamation of gar-
bage nodes are executed independently of transactions. If system is crashed after
creation of garbage nodes, it is never returned to system even after transaction is
committed.

126 M. Kim et al.
References
1. R. Bayer and M. Schkolnick.: Concurrency of Operations on B-Trees, Acta Inf., Vol. 9,
(1977) 1-21
2. J.K. Chen and Y.F. Huang.: A Study of Concurrent Operations on R-Trees, J. Information
Sciences, Vol 98, (1997) 94-162
3. K. Eswaren, J. Gray, R. Lorie and I. Traiger.: On the Notions of Consistency and Predi-
cate Locks in a Database System, Comm. ACM, Vol. 19, No. 11 (11 1976) 624-633
4. A. Guttman.: R-trees: A dynamic index structure for spatial searching, Proc. ACM

10.

11.

12.

13.

14.

SIGMOD Int. Conf. on Management of Data, (1984) 47-57

H.V. Jagadish, Dan Lieuwen, Rajeev Rastogi, Avi Silberschatz, and S. Sudarshan.: Dali:
A high performance main-memory storage manager, Proc. of the Int. Conf. on Very Large
Data Bases (1994)

M. Kornacker and D. Banks.: High-Concurrency Locking in R-Trees, Proc. of the Int.
Conf. on Very Large Data Bases, (9 1995) 134-145

M. Kornacker, C. Mohan, and J. Hellerstein.: Concurrency control and recovery in GiST,
Proc. ACM SIGMOD Int. Conf. on Management of Data (1997)

P. Lehman and S. Yao.: Efficient Locking for Concurrent Operations on B-Trees, ACM
TODS, Vol 6, No. 4 (12 1981)

V. Ng and T. Kamada.: Concurrent Accesses to R-Trees, Proc. Symp. Large Spatial Da-
tabases (1993) 142-161

S. Park, W. chung, and M. Kim GMS: Spatial database management system”, Proc. of the
KISS Spring Conf (4 2003)

R. Rastogi, S. Seshadri, P. Bohannon, D. Leinbaugh, A. Silberschatz, and S. Sudarshan.:
Logical and Physical Versioning in Main Memory Databases, Proc. of the Int. Conf. on
Very Large Data Bases (8 1997)

K.V. Ravi Kanth, Divyakant Agrawal, and Ambuj K. Singh.: Improved concurrency con-
trol techniques for multi-dimensional index structures, Technical Report, Univ. of Califor-
nia at santa Barbara (1998)

A. Prasad Sistla, U. Wolfson, S. Chamberlain, and SonDao.: Modeling and querying mov-
ing object, Proc. of the IEEE Int. Conf. on Data Engineering (4 1997) 422-432

O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang.: Moving objects databases: Issues and
solutions, Proc. of the Int. Conf. on Statistical and Scientific Database Management (6
1998) 111-122

Importance-Based Web Page Classification Using
Cost-Sensitive SVM™

Wei Liu!, Gui-rong Xue', Yong Yu2, and Hua-jun Zeng3

! Shanghai Jiao Tong University No.800, Dongchuan Road,
Min Hang Shanghai, China 200240
{liuweiweil, grxuel}@sjtu.edu.cn
2 Shanghai Jiao Tong University Computer Science Department,
Shanghai, China 200030
yyu@cs.sjtu.edu.cn
3 Microsoft Research Asia 5/F, Beijing Sigma Center, No0.49, Zhichun Road,
Hai Dian District, Beijing China 100080
hjzeng@microsoft.com

Abstract. Web page classification is facing great challenges since there is a
huge repository and diversity of information. As known, each web page varies
both in content and quality, just as PageRank suggested. Typical machine learn-
ing algorithms take advantage of positive and negative examples to train a clas-
sifier; however, it has been neglected that each instance has a different weight,
which can be user pre-defined. This paper presents an effective algorithm based
on Cost-Sensitive Support Vector Machine (CS-SVM) to improve the accuracy
of classification. During the training process of CS-SVM, different cost factors
are attached on the training errors to generate an optimized hyperplane. Our ex-
periments show that CS-SVM outperforms SVM on the standard ODP data set.
The web pages with relative high PageRank values contribute most to the clas-
sifier and using them for training can exceed the random sampling technique.

1 Introduction

The amount of information on the World Wide Web is growing with an incredible
speed nowadays. Every day approximate 60 terabytes of new content is added to the
Web’s 10 billion or so indexable pages[1]. Categorization plays an important role in
organizing the web content and people resort to web directories like Yahoo, ODP, and
LookSmart etc. for browsing. Web page classification is the task of deciding whether
a page belongs to a set of pre-defined category of documents or whether a page is
relevant to a certain topic. Initially, classification was done manually by domain ex-
perts. But due to the fast growth in online document data, this becomes more difficult
with time. Automatic classification schemes can greatly facilitate the process of cate-
gorization and many approaches have been proposed, such as K-Nearest Neighbor
[2], Bayesian probabilistic models [3], decision trees [4], Support Vector Machine [5]
and neural networks [6].

In this paper, we focus on the SVM algorithm, for its wide acceptance due to the
solid theoretical basis and high generalization ability. [7] introduced the concepts of

* This work was conducted while the author was doing internship at Microsoft Research Asia.

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 127-[137] 2005.
© Springer-Verlag Berlin Heidelberg 2005

128 W. Liu et al.

VC dimension and structural risk minimization, and then described linear SVMs for
separable and non-separable data. In classical SVMs, the hard margin loss function is
suitable for noise-free data sets. For other general cases, a soft margin loss function is
also popularly used, which introduces slack variables to allow some misclassification.
Our CS-SVM algorithm is based on the soft margin theory of SVM and deals with the
different weights of outliers. SVM can use the kernel trick to map the data into high
dimensional or even infinite dimensional space to solve the non-linear problems and
here we adopt the linear kernel for simplification.

Many variant forms of SVM have been suggested. [8] introduced Transductive
Support Vector Machines (TSVMs) for text classification, which took into account a
particular test set and tried to minimize misclassifications of just those particular
examples. In [9], Least Square Support Vector Machine (LS-SVM) has been investi-
gated for classification and function estimation. The solution worked with equality
instead of inequality constraints and a sum squared error (SSE) cost function. [10]
proposed a biased SVM to assign C+ and C- to weight positive and negative errors
respectively.

However, previous work on SVM has not realized that each instance in a training
data set should be treated differently. Especially in the application of web page classi-
fication, most users are concerned about the important or popular pages rather than
the infrequently visited web pages or desolate websites. The pages which have many
inlinks or authorized inlinks will have high PageRank [11] values. PageRank can be
used to characterize the popularity or importance of web pages, relying on the link
structure of the web. Therefore, in this paper, we propose the Cost-Sensitive SVM
algorithm based on the PageRank importance to improve the classification results.

During the training process of CS-SVM, different cost factors are attached on the
training errors to generate an optimized SVM hyperplane. This outperforms the exist-
ing technique of the standard SVM. Besides, web pages have different effects on
classification — the most contributive samples for classification are not the highest
PageRank web pages but the relative high and topic focused ones, thus sampling these
most contributive web pages for training is much better than the random sampling
technique.

The rest of the paper is organized as follows. In Section 2, the related work is in-
troduced. In Section 3, an overview of SVM is provided. In Section 4, we present the
Cost-Sensitive Support Vector Machine algorithm in and the experiment results are
reported in Section 5. Finally we draw the conclusions and suggest some future work
in Section 6.

2 Related Work

Web Page Classification
In web classification, web pages from one or more sites are assigned to pre-defined
categories according to their content. Previous work can be divided into two types:

a) Text content based classification: A collection of keywords and their frequency
of the occurrences etc, were calculated from a large collection of text. Then all the
documents would be presented as feature vectors and classified into appropriate direc-
tories using the KNN, Naive Bayes, or SVM etc.

Importance-Based Web Page Classification Using Cost-Sensitive SVM 129

b) Link and Tag based classification: Hyperlinks clearly contained high-quality
semantic clues that were lost upon a purely text classifier, but exploiting link informa-
tion was non-trivial because it was noisy. Naive use of terms in the link neighborhood
of a document would even hurt the classification performances. [17] put forward a
relaxation labeling technique for better classification. Meta data and title were also
helpful as described in [18]. [19] used the URLs and table layout for web classifica-
tion tasks.

However, all the previous work has not considered combining the PageRank values
of web pages into classification or taking full use of the importance information on
different data. That’s what we have explored in our paper.

SVM Variants and Weighted Methods

Transductive Support Vector Machines (TSVMs) [8] for text classification took into
account a particular test set and tried to minimize misclassifications of just those par-
ticular examples. In [9], a Least Square Support Vector Machine (LS-SVM) was
investigated for classification and function estimation. [20] suggested a Laplacian
SVM based on manifold regularization, which exploited the geometry of the probabil-
ity distribution and performed well in handwritten digit recognition and spoken letter
recognition. [10] proposed a biased SVM to assign C+ and C- to weight positive and
negative errors respectively. When the positive example set was homogenous, i.e.
focusing on one topic, and they covered a rather smaller region in the vector space, it
tended to extract many negative documents with high precision and produce a more
accurate classifier.

There are many weighted methods as well. Weighted least squares regression [21]
was sensitive to the effects of outliers, which could be used to maximize the effi-
ciency of parameter estimation. [22] proposed a weighted dissimilarity measure in
vectorial spaces to optimize the performance of the nearest neighbor classifier. Some
researchers have also combined different features of web pages such as text words,
link numbers and the titles etc, with different weights on them to train a classifier or
cluster the web documents[19][23].

3 SVM Overview

SVM was first bought forward by Cortes and Vapnik [12] as a learning algorithm for
classification and regression. It tried to maximize the margin of confidence of classi-
fication on the training data set, which could use the linear, polynomial or radial basis
function (RBF) kernels. Now we will outline the main ideas of SVM.

Starting from the simple case of two linearly separable classes, it is assumed that

there is a data set of labeled examples: (X, ¥, h(X3, ¥,)roos(X5 ¥,), Where y, € {-L1} .

From these training examples the algorithm finds the parameters of the decision func-
tion:

N
D(x)szi0x+b (1)

i=1

130 W. Liu et al.

where W; and b are the adjustable parameters of the decision function. The distance r
between the hyperplane and training example x is|D(x)l/llwll . Supposing that there is a
margin M between the hyperplane and supporting vectors, so that

S >M)

The problem of classification equals to finding the maximum margin of SVM. As in
Fig.1, the maximum margin is M ", P, P, on the boundary L, and Q (Q, on the bound-

ary L, are supporting vectors, which are closest to the hyperplane.

M* = max M 3)

Fig. 1. The linear separable case of Support vector machines, where the positive and negative
examples are represented by asterisks and circles respectively

The norm of w can be scaled so that the product of M and llwll amounts to 1, which
means that the distances of all the training data are at least 1 from the hyperplane.

y,(wex, +b)—120 Vi “)

Hence, maximizing the margin M is equivalent to minimizing the norm [lwll. It turns
out to be a quadratic optimization problem as follows:

mi’n %HWHZ subjectto y,D(x;)=1 Vi (5)

This solution involves contracting a dual problem where a Lagrange multiplier
«, is associated with every constraint in the primary problem:

max Q (o) = max Zai—LZZaiajyiijixj
’ =T 2T (6)

subject to Zaiyi=0 and o, =20

When the two classes are not linearly separable (e.g. due to noise), the condition (4)
can be relaxed by adding the slack variables:

Importance-Based Web Page Classification Using Cost-Sensitive SVM 131

yiwex, +b)21-¢, Vi 7

For minimum error, é‘i >0 should be minimized as well as||w||, and the objective

function will become:
P

minimize %HWHZ + ngik subjectto y,(wex, +b)21-¢, and¢, 20 Vi 8)
i=1

Here C is the trade-off between maximizing the margin and minimizing the train errors.
Small-valued C tends to emphasize the margin; otherwise it tends to overfit the training
data. In (8), every training example’s error is treated equally with the uniform parameter
C, no matter it is the error of a highly important instance or of the less important one. As
a matter of fact, we should distinguish different misclassification constraints of the data
objects-we never want an essential instance to be wrongly labeled. In the next section,
we will introduce our Cost-Sensitive SVM algorithm in detail.

4 Cost-Sensitive SVM

Generally, SVM doesn’t consider any weighted method for its soft margin error,
which will result in mistakes on the important data instances. Supposing every train-
ing instance has an importance value, there are two classes A and B, as can be seen in
Fig. 2, the asterisks belong to class A and the circles belong to class B. Point P is an
essential data instance. We assign a weight 0.9 to it and 0.1 to Q. Thus, the point P
has the priority to be correctly classified.

.*.

.*_
* *
A *
* o* P L

2

*
* o
[*.,—o—"‘”'
Q T—"%0 o

o

Fig. 2. Different weighted points P and Q in classification, with two hyperplanes [, and L,

The hyperplane L, puts P into class B and Q into class A, while L, does the con-
trary. As far as standard SVM concerned, L, is the optimal decision boundary, for it
only misclassifies three points and the total sum of errors is smaller than that of L, .
However, if we consider the importance of the data points, it is apparent that L, is the

better choice as the decision hyperplane.

Therefore, we propose a Cost-Sensitive SVM algorithm to promote the classifica-
tion accuracy on differently important data. In the soft margin of SVM solution, (8)
uses C to balance the margin and training error, which can be modified as:

132 W. Liu et al.

Fig. 3. Different importance on the each data point’s error in Cost-Sensitive SVM

ming,,, %HWH + Zp:impié‘ik subjectto y,(wex, +b)21-{, ¢, 20 Vi (9)
i=1

Every training data has got a imp; cost factor for its slack variable, which can be

pre-defined by users. For the reason of simplification, we set the power k of the slack
variable as 1, and the corresponding Lagrange dual problem of CS-SVM becomes:

1 . P P
L(w,b, ¢, 0, y) = EHWH+ Zlmpigi _Zai[yi(w.xi +b)—1+ é,i]_zyigi (10)
P P =l

wherea, 20, ¥, =20

We can take the partial derivative of L to obtain the dual form of Cost-Sensitive
SVM:

oL 2

—=w- E ox. =0 11
aw W 1:1 yl I'xl ()
8—inm —a. -y =0 12
aézi pi i 7/1 ()
oL &

== v =0 13
ab l:l al% ()

Substituting (11), (12) and (13) into primal Lagrange (10), we’ll get the dual formula-
tion for 1-norm soft margin problem:

~
~

p
L(w,b,{,a,7) = z a; - lz Z Yiy oo x;x
=l

i=1 j=I

[\

, (14)
subjectto 0 < o, <imp, D ay, =0 Vi
i=1

Importance-Based Web Page Classification Using Cost-Sensitive SVM 133

The Karush-Kuhn-Tucker [13] conditions are

aly,(wex +b)—1+¢]=0
;i(ai —imp,)=0

That means the slack variable is not zero only when ¢, = imp, .

Vi (15)

J. Platt [14] suggested a Sequential Minimal Optimization (SMO) for training
SVM, which broke the large quadratic programming (QP) optimization problem like
(14) into a series of smallest possible QP problems. The SMO algorithm searches
through the feasible region of the dual problem and maximizes the objective function.
It works by optimizing two ¢, ’s at a time, with other ¢, ’s fixed. When SMO applied

to CS-SVM, the optimization process would become as:
Optimizing ¢, , &, from an old set of feasible solution: ", 2, , x5 ..., ¢, (ini-

tial o,

is set to 0), because ZlN:l a;y; =0, we’ll have:
Id Id
oy ta,y, :alo y1+0{; Y, (16)

This confines the optimization to be on a deflective line, as shown in the following
figure:

o, =imp, @, =imp,
@ =0 e =imp e =0 e =imp
o, =0 a,=0
»o¥, <0 ¥, >0
() (b)

Fig. 4. Optimizing two (, 's in SMO during a loop

During optimization, there are different upper bounds for ¢, and ¢, according to

their importance weights and the Lagrange multipliers will be updated after each loop.

In the following two cases, the KKT condition are violated:
o; <imp; and R;<0
where R, =y.E, =y (wex,—b—1y,) (17

o; >0 and R; >0

The heuristic for picking two ¢, ’s for optimization in the SMO is two loops’
sweeping, i.e. the outer loop selects the first ¢, from the examples that violates the
KKT conditions and inner loop looks for a non-boundary example that maxi-
mizes|E1 —E2|. Because in CS-SVM there are different constraints on the two ¢,’s,

134 W. Liu et al.

their adjustment is biased compared with Standard SMO algorithm for SVM. Finally
after many sweeps, CS-SVM will reach the optimal solution.

Theimp;’s (i=0, 1, ..., p) can be pre-defined by users before training the classifier.

In our experiment, we take the original integral PageRank values for each imp; .

5 Experiment Evaluation

In this section, we provide the evaluation of CS-SVM algorithm on the 1,546,439 web
pages of Open Directory Project. All of the experiments are done in two Intel®
Xeon™ CPU 3.06GHZ machines with 3.87 GB of RAM and 2.0GB of RAM respec-

tively. CS-SVM is implemented based on SVM light 115,

5.1 Data Set

Our experiments are conducted on the 174 classes of ODP’s second level directory. In
fact, there are totally 388 classes in ODP. We remove the classes whose page num-
bers are less than 1,000 so that the training and testing data for each class in CS-SVM
will be large enough. In this paper, we generate two data sets for following experi-
ments. The first one has three 15,000 web page subsets, each randomly chosen from
the remaining 1,485,540 web pages. The second includes eleven groups, each of
which has 100 web pages at a specified PageRank value (0~10) and the corresponding
test sets are 100 web pages sets randomly selected from rest web pages.

5.2 Evaluation Metrics

We use Precision, Recall and F, measures to evaluate the results. As for multiple
categories, there are macro-average and micro-average measures [16]. Both of them
are used in our experiments.

5.3 Result Analysis

First, we conduct an experiment on the first data set, i.e. three groups, each of which
contains 15,000 random web pages from ODP. The results on CS-SVM and standard
SVM with ten-fold cross validation are presented in Table 1.

Compared with SVM, the MicroP, MicroR and MicroF1 has improved 6.8%, and
MacroP has improved 39%, MacroR 47% and MacroF1 49% respectively.

Table 1. The average results of three subsets. (MicroP = MicroPrecision, MicroR =
MicroRecall, MicroP = MicroPrecision, MicroR = MicroRecall).

CS-SVM SVM
MicroP 0.410666 0.384457
MicroR 0.410666 0.384457
MicroF1 0.410666 0.384457
MacroP 0.236968 0.170467
MacroR 0.193954 0.131289

MacroF1 0.199911 0.133953

Importance-Based Web Page Classification Using Cost-Sensitive SVM 135

Next, we perform ten experiments to compare the effects of web pages with differ-
ent PageRank values in a classification task. The 1,485,540 web pages are divided
into 90% training set and 10% testing set. Then 100 web pages are selected randomly
from original training set for each PageRank value, and 100 web pages from testing
set. The result is shown in Fig.5 as below.

0.25

o LT

0o 1 2 3 4 5 6 7 8 9 10 nseRank

—4—HicroP ——HacroP HacroR HacroF1

Fig. 5. Effects of web pages with different PageRank values

The web pages whose PageRank is equal to 7 plays the most important role in the
classification and surprisingly, the pages whose PageRank values are between 8 and
10 perform worse even than the low PageRank ones. We analyze the corresponding
web pages for PageRank 8~10, and find that most of them are homepages of popular
web sites or business service lists etc., which contain many outlinks but very short
length of paragraphs. For example, the 169055" web page with PageRank 10 only has
69 words, including the mail contact information etc. Therefore, they cannot offer
enough information because we use the TFIDF feature vectors for classification. And
low PageRank samples often contain many texts and somewhat can reflect the charac-
teristics of the category that they belong to, hence, their performances are not so bad.
The most contributive web pages are the ones with PageRank 7, because they are not
only of high quality and popular but also contain adequate information.

0.4

T E] iy Ti2h Inlz)

Oiicrof Biacrof Olacrof Biicrof1

Fig. 6. Five forms of PageRank used in CS-SVM

136 W. Liu et al.

During our experiments, we make further exploration to find which form of Pag-
eRank is the best for CS-SVM. There are squared form, linear form and logarithmic
format etc. For both Micro and Macro measures, the logarithmic PageRank is the best
choice as shown in Fig. 6

Finally, we apply our importance based classification method to the sampling tech-
nique. High PageRank web pages between 5 and 8 in a 15000 random set are sampled
for training and the compared same size samples are randomly selected. The ten fold
cross validation result is shown in Table 2:

Table 2. Ten cross validation result on random 15000 pages

Micro Precision
PageRank(5~8) 0.4165871
Random 0.3536129

The web pages with PageRank(5~8) contain the most contributive information and
their classification result exceeds the random sampling technique.

6 Conclusions and Future Work

In this paper, we improve the classification performance by using the Cost-Sensitive
SVM algorithm, compared with the standard SVM. Considering the web pages have
different quality and popularity, we utilize PageRank values as different error re-
quirements in the soft margin of CS-SVM, which results in an optimized decision
hyperplane. Experiments show that CS-SVM outperforms SVM in a great extent and
the most contributive samples for classification are not the highest PageRank web
pages but the relative high PageRank and rich text information providing ones. Be-
sides, the best form of PageRank in CS-SVM is the logarithmic value. Finally, using
the web pages whose PageRank values are between 5 and 8 as the training data set
can get better performance than the random sampling method.

In future, we can further take advantage of the link structure of web in the various
forms and combine them with SVM. Like the Laplacian method in [20], a link graph
can be constructed with each edge differently weighted, which need more knowledge
on manifold theory. Moreover, the importance based idea can be used in the tasks of
web page clustering and other applications, too.

References

1. W.Roush. Search Beyond Google. MIT technology review, pages, (2004) 34-35.

2. Yiming Y., Xin L.: A Reexamination of Text Categorization Methods, In proceedings of
the 22th International Conference on Research and Development in Information Retrieval,
University of California, Berkeley, USA (1999) 42-49

3. McCallum, A., Nigam, K.: A Comparison of Event Models for Naive Bayes Text Classifi-
cation. In Proceedings of AAAI-98 Workshop on Learning for Text Categorization,
Madison, WI, (1998) 41-48.

4. Lewis, D.D., Ringuette, M.: A Classification of Two Learning Algorithms for Text Cate-
gorization. In Proceedings of Third Annual Symposium on Document Analysis and Infor-
mation Retrieval (1994) 81-93

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Importance-Based Web Page Classification Using Cost-Sensitive SVM 137

Joachims, T.: Text Categorization with Support Vector Machines: Learning with Many
Relevant Features. In Proceedings of 10th European Conference on Machine Learn-
ing,(1998) 137-142.

M.E. Ruiz and P. Srinivasan. Hierarchical text categorization using neural networks. In-
formation Retrieval, 5(1), (2002) 87-118.

Burges, C.:A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining
and Knowledge Discovery, Vol. 2, No. 2, (Jun. 1998) 121-167

Joachims, T.: Transductive Inference for Text Classification using Support Vector Ma-
chines. In Proceedings of the 16th International Conference on Machine Learning ICML),
Bled, Slovenia, (1999) 200-209.

Suykens, JAK. Vandewalle, J.:Least Squares Support Vector Machine Classifiers. Neural
Processing Letters, 9(3) (1999) 293-300

Bing, L., Yang, D., Xiaoli, L., Wee Sum, L.: Building Text Classifiers Using Positive and
Unlabeled Examples. In Proceedings of International Conference on Data Mining (2003)
179-186

Brin, S., Page, L.:The Anatomy of a Large-scale Hypertextual Web Search Engine. In Pro-
ceedings of the Seventh International World Wide Web Conference, Brisbane, Australia,
(1998)

Bernhard E., B., Isabelle M., G., Vladimir N., V.: A Training Algorithm for Optimal Mar-
gin Classifiers, In Proceedings of International Conference on Computational Learning
Theory, (1992) 144-152

Kuhn, H., Tucker, A.:Nonlinear Programming,. In Proceedings of 2nd Berkeley Sympo-
sium on Mathematical Statistics and Probabilistics,University of California Press,(1951)
481-492

Platt., J.: Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector
Machines, In Advances in Kernel Methods - Support Vector Learning, (1998) 185-208
Joachims, T.: Making large-Scale SVM Learning Practical. Advances in Kernel Methods -
Support Vector Learning, MIT-Press, (1999)

Yiming, Y.: An Evaluation of Statistical Approaches to Text Categorization. Information
Retrieval, 1(1-2) (1999) 69-90

Chakrabarti, S., Dom, B., Indyk, P.:Enhanced Hypertext Categorization Using Hyperlinks.
In Proceedings of ACM Special Interest Group on Management of Data, 27(2): (June
1998) 307-318

Attardi, G., Gull, A., Sebastiani, F.: Automatic Web Page Categorization by Link and
Context Analysis. In Proceedings of 1st European Symposium on Telematics, Hypermedia
and Artificial Intelligence, (Varese, IT) (1999) 12

L.k.Shih, D.R.Karger,: Using URLs and Table Layout for Web Classification Tasks, In
Proceedings of the 13th international conference on World Wide Web(2004)

Belkin, M., Niyogi, P., Sindhwani, V.: Manifold Regularization: a Geometric Framework
for Learning from Examples, University of Chicago Computer Science Technical Report
TR-2004-06, (2004)

Carroll, R.J., Ruppert, D.: Transformation and Weighting in Regression, Chapman and
Hall, New York, (1998)

Paredes, R., Vidal, E.: A Nearest Neighbor Weighted Measure in Classification Problems.
In Proceedings of VIII Simposium Nacional de Reconocimiento de Formas y An alisis de
Im agenes, volume 1, , Bilbao, Spain, (May 1999) 437-444

Shen, H., Gui-Rong, X., Yong, Y., Benyu, Z., Zheng, C., Wei-Ying, M.:. Multi-type Fea-
tures based Web Document Clustering. In Proceedings. of the 5th International Conference
on Web Information Systems Engineering, Nov.22-24, Brisbane, Australia.(2004)

An Efficient Approach for Interactive Mining
of Frequent Itemsets

Zhi-Hong Deng, Xin Li, and Shi-Wei Tang

National Laboratory of Machine Perception,
School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, China
{zhdeng, lix}@cis.pku.edu.cn, tsw@pku.edu.cn

Abstract. There have been many studies on efficient discovery of frequent
itemsets in large databases. However, it is nontrivial to mine frequent itemsets
under interactive circumstances where users often change minimum support
threshold (minsup) because the change of minsup may invalidate existing fre-
quent itemsets or introduce new frequent itemsets. In this paper, we propose an
efficient interactive mining technique based on a novel vertical itemset tree
(VI-tree) structure. An important feature of our algorithm is that it does not have
to re-examine the existing frequent itemsets when minsup becomes small. Such
feature makes it very efficient for interactive mining. The algorithm we proposed
has been implemented and its performance is compared with re-running Eclat, a
vertical mining algorithm, under different minsup. Experimental results show
that our algorithm is over two orders of magnitude faster than the latter in av-
erage.

1 Introduction

Data mining has attracted tremendous amount of attention in the database research
community due to its wide applicability in many areas. Frequent itemset mining plays
an essential role in many important data mining tasks such as associations [1], corre-
lations [2], sequential itemsets [3], partical periodicity [4], classification [5], etc. The
problem is formulated as follows: given a large database of transactions, find all fre-
quent itemsets, where a frequent itemset is a set of items that occur in at least a
user-specified percentage of the transaction database. Since the first introduction of
mining of frequent itemsets in [1], various algorithms [6-10] have been proposed to
discover frequent itemsets efficiently. These algorithms can be partitioned into two
categories. One utilizes the traditional horizontal transactional database format, and the
other utilizes the vertical transactional database format. Apriori [6] and FPgrowth [9]
are most important algorithms belonging to the first category and Eclat [10] is one of
the most important algorithms belonging to the second category. As mentioned in [11],
mining algorithms using the vertical format have shown to be very effective and usu-
ally outperform horizontal approaches.

However, most of the previous work has focused on mining frequent itemsets under
specified minimum support threshold (or minsup for short) as soon as possible, and
very little work has been done on the mining problem where minsup may change. As
stated in [12], users are often unsure about their requirements on the minimum support

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 138 —[149] 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Efficient Approach for Interactive Mining of Frequent Itemsets 139

at first due to the lack of knowledge about the application domains or the outcomes
resulting from different threshold settings. Therefore, they may have to re-execute the
mining procedure many times with varied thresholds in order to get satisfied results in
real-world applications. This simple method of re-execution is clearly inefficient be-
cause all the computations done initially for finding the frequent itemsets under old
thresholds are wasted. As a result, it is both desirable and imperative to develop effec-
tive approaches for interactive mining, which is the problem of mining frequent item-
sets in a database under different thresholds. In 2001, an algorithm called Posteriori
[12] for interactive mining has been developed. It is based on the Apriori algorithm and
needs n passes over the database where n is the size of the maximal frequent itemset.
One year later, Remining [13] based on FPgrowth was proposed. Although it avoids the
problem of scanning database n times, it must re-examine all existing frequent itemsets
that are still frequent under new threshold due to the divide-and-conquer mining
strategy of FPgrowth.

In this paper, we present an algorithm to find the new frequent itemsets with minimal
re-computation when the minsup is changed. Our algorithm overcomes the shortcom-
ings of Posteriori and Remining by maintaining a vertical itemset tree. The important
characteristics of our algorithm are the following:

1. We adopt vertical data layout. That is, the database is organized as a set of
columns with each column storing an ordered list of only the transaction iden-
tifiers of the transactions in which the item in contained. As a result, computing
the support of itemsets is simple and faster with the vertical layout since it
involves only the intersections of lists of transaction identifiers (or tidsets for
short).

2. We use a novel data structure called vertical itemset tree (or VI-tree for short)
for storing frequent itemsets and negative borders. By VI-tree, we can reduce
much runtime for mining frequent itemsets when minsup gets small.

3. Our algorithm just needs one scan of the database in initial mining procedure.
In succedent mining procedures, no scans of database are needed.

The remaining of the paper is organized as follows. Section 2 gives a detailed
problem description. Section 3 introduces the vertical itemset tree and its construction
method. Section 4 develops a VI-tree based interactive mining algorithm of frequent
itemsets. Section 5 presents our performance study. Section 6 summarizes our study
and points out some future research issues.

2 Problem Description

2.1 Mining of Frequent Itemsets

Let/={a, a, ..., a,} beasetofitems. Let DB={T, T,, ..., T,} be a transaction
database ,where T (k € [1..n]) is a transaction which has a unique identifier and con-
tains a set of items in /. Given an itemset A (C I), which is a set of items, a transaction T
contains A if and only if A < 7. The support of A is the number of transactions con-
taining A in DB. An itemset A is a frequent itemset if A’s support is no less than a
predefined minsup &.

140 Z.-H. Deng, X. Li, and S.-W. Tang

Given a transaction database DB and a minsup &, the problem of finding the com-
plete set of frequent itemsets is called the frequent itemsets mining problem.

2.2 Interactive Mining of Frequent Itemsets

Let FI be the set of frequent itemsets in the database DB, and & be the minimum sup-

port. After users have found some frequent itemsets, they may be unsatisfied with the

mining results and want to try out new results with certain changes on the minimum

support thresholds, such as from & to &'. We call mining frequent itemsets under dif-

ferent minsups is interactive mining of frequent itemsets. The essence of the problem of

interactive mining is to find the set FI” of frequent itemsets under a new minsup &’.
When the minsup is changed, two cases may happen:

1. &<Z&': some frequent itemsets in FI will become infrequent under &’. Therefore,
these frequent itemsets don’t belong to FT'.

2. &>&" all frequent itemsets in FI will still be frequent under &'. Therefore, FI is
a subset of FI'. At the same time, some itemsets, which don’t belong to F1, will
become frequent under & and become an element of FI’.

For the first case, the finding of frequent itemsets is simple and intuitive. Just select
those frequent itemsets with support no less than &', and put them to FI'. The algorithm
can be found in [12]. In the paper, we concentrate on the second case.

3 Vertical Itemset Tree: Design and Construction

3.1 Preliminaries

Because the vertical itemset tree is based on vertical transactional database format, we
first introduce vertical data layout as preliminaries in this session.

Table 1. The database SDB (left) and the vertical format of SDB (right)

Transcation (tid) Items Item tids
1 actw C 1,3,4,5,6
2 w w 1,2,3,4,5
3 actw A 1,3,4,
4 acdw D 4,5,6
5 cdw T 1,3
6 acd
Letl={a;, a, ..., a,} beasetof items, DB={T,, T,, ..., T,} be a transaction
database, and /'={ id,, id,, ..., id, } is the set of tids (identifiers) of all transactions in

DB, where id; (k € [1..n]) is the tid of transaction T}. For convenience, we assume each
idy (k € [1..n]) is an integer. A set Y c /is called a tidset. Given an itemset A, A, the
tidset of A, is defined as follows:

A= {id)|ACT,).

An Efficient Approach for Interactive Mining of Frequent Itemsets 141

For the sake of discussion, elements in A, are listed according to ascending order. It
is obvious that the support of A is equal to the number of elements in A, As a result,
the mining of frequent itemsets is translated into the procedure of intersection of
itemsets’ tidsets. In the vertical layout, the database consists of a list items followed by
their tidsets. As an example, consider the database SDB show in the left of Table 1.
There are five different items I = {a, ¢, d, t, w} and six transactions /' ={1,2,3,4,5,6}.
The right of Table 1 illustrates the vertical format of SDB.

3.2 Vertical Itemset Tree

To design a data structure for efficient interactive mining, let’s first examine the ways
for vertical mining of frequent itemsets. A variety of frequent itemsets mining algo-
rithms have been proposed [10, 11, 14, 15] that use vertical data layout. In this paper,
we discuss Eclat.

Let I be the set of items. Define a function p: 2'xN — 2" where P(A, k) =A[1:k], the k
length prefix of A. 2" is the power set of I and we assume that elements in A < I are
listed in some order, such as support ascending order or lexicographic order. Define an
equivalence relation 6; on 2" as follows: VA, Be 2',6, (A4, B) & p(A, k) = p(B, k). That
is, two itemsets are in the same class if they share a common k length prefix. 6; is called
a prefix-based equivalence relation [10]. The equivalence relation partitions the set /
into disjoint subsets called equivalence classes. Eclat is based on a recursive decom-
position of each class into smaller classes induced by the equialence relation 6,. Figure
1 shows how the vertical mining of Eclat would proceed from one class to the next
using intersections of tidsets of frequent items.

In Figure 1, we assume that the minsup is 4 and the items list as the children of root
according to their support descending order. For each frequent node (itemsets) A, from
left to right, A intersects with all frequent left siblings of A to get all children of A. For
the children of A, which are frequent, we process them as A. By depth-first or
breadth-first manner, we can find all frequent itemsets. For example, the tidsets of a
(a;q = 1346) and of ¢ (w,;; = 13456) can be intersected to get the tidset for ac (ac,; =
1346). In the same way, we can get aw (aw,; = 134). We denote [a] = {ac, aw}, which
are the equivalence class with a as common prefix. Although ac is a frequent children
of a, it is not used to generate its children (or its equivalence class) because it don’t
have any left siblings. aw is also not used to generate its children because it is infre-
quent. For other nodes, we process them as above. Finally, we can get all frequent
itemsets. It is obvious that all frequent itemsets (minsup is 4) are in the tree showed by
Figure 1. For more information about Eclat, please refer to [10].

Let us examine what we will get if minsup change from 4 to 3. Figure 2 shows the
result of vertical mining when the absolute minsup is 3. We can find facts as follows.

1. The tree in Figure 2 is just the extension of the tree in Figure 1. In Figure2,
nodes in shadow are new nodes.

2. All new nodes of Figure2 originate from nodes that are infrequent under 4.
These infrequent nodes are registered in the left table of Figure 1.

With these observations, in order to facilitate the later mining, we can construct a
vertical itemset tree in the first time mining, and then extend the tree in later mining
without re-structuring it. The vertical itemset tree can be constructed as follows.

142 Z.-H. Deng, X. Li, and S.-W. Tang

C
1
3
d [3 [|4
¢ 2 | mmee T
aw | 3 |« e T

C
1
3
4
5
t 2 | -q-----d 61 _____
dw |2 | ~]. -
da [2 [] -~ we
. T 1
o a
so |-

Fig. 2. The VI-tree on SDB (minsup is 3)

First, we change the tree generated by vertical mining with attaching each node with
its tidset.

Second, to facilitate finding infrequent itemsets in the tree, a table is built in which
each infrequent nodes (itemsets) point to its occurrence in the tree via a head of
node-link. For judging whether an infrequent node is frequent or not under new minsup
quickly, the support of each infrequent node is also contained in the table. The tree with
the associated node-links is shown in Figure 1. If a node in the table is frequent under a
new minsup, the node will be deleted from the table and be used to generate all its
descendants. For example, because d is frequent under 3, new nodes dc, dw, da can be
generated as the children of d. As a result, we can expand the tree in Figure 1 into the

An Efficient Approach for Interactive Mining of Frequent Itemsets 143

tree in Figure 2. Of course, the table also should be modified for further mining when
the minsup is changed again.
These examples lead to the following design and construction of a vertical itemset tree.
Definition 1 (VI-tree): Given a transaction database DB and a minsup &. A vertical
itemset tree (or VI-tree for short) is a tree structure defined below.

1.
2.

It consists of one root labeled as “null”, which lies in level 0.

Sort I (the set of all items) in support descending order as OI. Without lost of
generalization, Let OI = {ay, a,, ... , a,}, while the support of a; is no less than
the support of a; if i is less than j. a; with its tidset is inserted into the VI-tree as
a children of root according to the item order in OI. That is, a; is a left sibling of
a;if i is less than j. It’s obvious that all items are lie in level 1.

Given an existing node A, if A is frequent, A will be used to generate its chil-
dren. The children of A are created as follows: from left to right, for each left
sibling of A, B, which is frequent, a node called AB with AB’s tidset is inserted
into the tree as a child of A. Let A; and A, are two children of A. The insertion
operation must ensure that A; should be the left sibling of A, if A; was inserted
into the tree before A,. A simple strategy, in which the newest generated child
is always inserted into the tree as the most right child of A, can efficient im-
plements this requirement. In this paper, we adopt this strategy. In addition,
items (elements) in AB are listed according to the inverse item order in OI. That
is, AB = auap...ay, where i, > i, if x <y. For example, AB = aya;a;. If A is in-
frequent, A will not be used to generate its children and will be inserted into a
negative border table with its position in the VI-tree.

Each node has two fields: itemset-name and tidset, where itemset-name reg-
isters which itemset this node represents, tidset registers the tidset of the
itemset represented by this node. Of course, the tidset of root is null. A node is
call frequent if the number of tid in its tidset is no less than &. Otherwise, we
call it infrequent.

A negative border table (or NB_table for short) is attached with the tree. A
node is called negative border if it is infrequent. Each entry (tuple or record) in
the NB_table consists of three fields: (1) node-name, (2) the support of node,
and (3) head of node-link, which points to the position of the node in the tree. In
addition, the entries in NB_table are listed according to the level of node in the
tree. The entries of high-level nodes lie above the entries of low-level nodes.
Actually, the NB_table consists of [buckets, which are labeled as 1_bucket,
2_bucket, ..., I_bucket. An entry is in i_bucket if the node that it contains lies
in ith level of the tree. In the NB_table, entries in i_bucket lie above entries in
Jj_bucket if i is less than j.

According to the definition of a VI-tree, we have some properties as follows.

Property 1: Let A = a;1a,,...a; be anode in the VI-tree. If B is a child of A, B must be in
the form of a;a;,...aya,, where x < i; for all j (1< j < k).

Rational. Refer to 2 and 3 in the definition of a VI-tree.

Property 2: Let A and B be two nodes in the VI-tree. If A = a;,a;...a; and B =
a;ap...ayd,, B must be a child of A.

144 Z.-H. Deng, X. Li, and S.-W. Tang

Rational. Let C = g;,a;,...a;, be the father of B. According to Property 1, B should be
ajap...a;,a,. As aresult, we have a,ap...aza, = ajap...a;,aq,. Because items in a node
are ordered according to 3 of the definition, we have k = m, a;; = a;;, (1< s< k), and a, =
ay. Therefore, we have C = A.

Property 3: all frequent itemsets are in the VI-tree.

Rational. According to the definition, the procedure of the VI-tree actually enumerates
all frequent itemsets by breadth-first or deep-first manner.

Based on this definition, we have the following VI-tree construction algorithm,
which adopt deep-first manner. It should be note that all frequent itemsets are also
found as byproduct in our algorithm.

Algorithm VIC (VI-tree construction)

Input: A transaction database DB and an initial minsup &.
Output: Its vertical itemset tree (VIT) and the set of all frequent itemsets (FP).
Method:

1. Create the root of a VI-tree, VIT, and label it as rt.
Attach a null NB_table to VIT. Set FP = .

2. Scan the transaction database DB once. Collect the set
of items I and their tidsets. Sort I in support de-
scending order as L, the list of items.

3. For each item a in L, do

insert a with its tidset into VIT as a child of rt;

if |a.itemset| =2 & (that is, a is frequent) then {FP

= FP U {a};}; else { insert a, with it support and
position in VIT, into 1_bucket of NB_table;}

4. Call TBD-growth(rt, &).
Procedure TBD-growth(F_node, &)
for A, A € F_node.children A |A.tidset| =2 & , do
for each B, Be A.left_siblings A |B.tidset| > §, do
R = A U B;
R.tidset = A.tidset m B.tidset;
insert R with R.tidset into VIT as a child of A;
if | R.tidset | 2 & then {FP = FP U {R};}; else {
i = level of R in VI-tree;

insert R, with it support and position in
VIT, into i_bucket of NB_table;}

if A has more than one child that is in FP, then { call
TBD-growth (4, &); }

An Efficient Approach for Interactive Mining of Frequent Itemsets 145

4 Interactive Mining of Frequent Itemset with VI-Tree

In section 3.2, we have informally discussed how to expand a VI-tree when minsup
become small without re-structuring a new VI-tree under new minsup. In this section,
we will study the equivalence of the expanding VI-tree and the new VI-tree. Based on
this study, we will propose an efficient algorithm for interacting mining of frequent
itemsets.

Let I be a set of items and DB be a transaction database. & and &’ are two minsup and
&’ is less than &. We denote that T is the VI-tree constructing on DB with & and Tis the
VI-tree constructing on DB with &'. Definition 2 gives the procedure for expanding T
when the minsup is changed from & to &

Definition 2 (expanding rule): For each node A in the NB_table of 7, A is delete from
the NB_table and is used to generate all of its descendants if its support is no less than
&’. The process of generating A’s descendants is showed as follows:

1. from left to right, for each left sibling of A, B, which is frequent under &', a node
called AB with AB’s tidset is inserted into 7 as a child of A. If the support of AB
is less than &', AB, with its support and position in 7, will also be inserted into
the i_bucket of the NB_table, where i is the level of ABin 7.

2. after generate all children of A, all no-child descendants of A will be generated
By calling TBD-growth(4, &).

It should be noted that the processing order of nodes in the NB_table is in the de-
scending order. That is, A is processed before B if A lies above B in the NB_table. Let T;
be the extension of T under minsup &'. It is obvious that 7, also have Property 1 and
Property 2. Now, we show that 7} also have Property 3.

Given a VI-tree VT, let the set of nodes in VT be VT.Nds. For each node X in VT, let
the set of the children of X be Xyr.children. We have following Lemma.

Lemma 1: T} and T have the relations as follows:

1) A(cl),if A e T,.Nds, then A € T’Nds, and vice versa.
2) VA,A, e T|Nds,if A, € Ay .children, then A; € Az-.children, and vice versa.

Proof. For convenience, Let I = {a,, ay, ..., a,,}. Without loss of generalization, we
assume that ay, a, , ... , a, are listed in the descending support order. That is, the
support g; of in DB is no less than that of g; if i is less than j. In addition, Let the support
of an itemsets X be X.sup. We first proof 1), and then proof 2).

The Proofing of 1):
If A is a l-itemset, we have A € T|.Nds and A € T according to the definition of a
Vl-tree. In this case, 1) is right. Now, we consider the case that A is a k-itemset (k> 1).
Let A = ay...apa;, where i\<i, if x <y.

= A € T,.Nds. there are two cases: A € T.Nds or A € (T|.Nds—7.Nds). If A € T.Nds,
we have ay...azap.sup = & and ay...apa;.sup = € according to the construction of T. If
A € (T,.Nds—T.Nds), then ay...aszap.sup = & and ay...ana;.sup = & according to the
expanding rule. As a result, we have ay...a;ap.sup =& and ay...a;a;.sup = £ because
of £ &’. According to the construction of T, ay...a;sa;, and ay. ..aza; must be frequent

146 Z.-H. Deng, X. Li, and S.-W. Tang

nodes in T, and they must be the children of ay...a;;. Hence, as a child of ay...apa;,
ai...apa; must be generated in the processing of constructing 77~ That is, A € T’Nds.

& A € T'.Nds. According to the construction of 7] we know a;.sup > &' (1< <k),
Q. ..apap.sup = &', and ay...apa;.sup = &', Let us see a; in T,. According to the con-
struction of Ty, auQig-1), --.,» Gwap, and aza; must be in T} as the children of ay. Ac-
cording to the rule': the support of any no-null subset of an itemset X is no less than the
support of X, we know aa;.sup = & (1£j £ k-1). From agaig.1), we know Ajplik-1yAjj €
(aitig-1y)ri-.children A agap.na; € T1.Nds A aga;g.a;.sup = & (1< j < k-2). Tterating
above procedure, we know ay...aszap and ay...aza; is nodes in 7). Because
Q. . .apap.sup = & and ay...apa;.sup = & is known, ay...apa;, the child of ay...apap,
should be in 7. That is, A € T|.Nds.

The Proofing of 2):
= Ae T,.Nds, A| € T|.Nds, and A, € A .children. Let A = a;a;,...a;. According to
Property 1, we know A| = a;a;,...aa,. According to 1), we have Ae T’Nds and A, €
T’Nds. As a result, According to Property 2, we have A; € Ag-.children.

< Ae T'Nds,A; € T’Nds, and A; € Ar-.children. In the same way, we can proof A,
€ Ay .children.

In fact, Lemma 1 shows that 7', and 7 “are one of the same in term of the structure of
trees.

Corollary 1: T, contains all frequent itemsets under &'.

Rational. According to Property 1, T’ contains all frequent itemsets under &'. As a
result, T also contains all frequent itemsets under & because T; and T ” have the same
nodes.

Because itemsets that are frequent with minsup & are also frequent with minsup &’,
we should only find new frequent itemsets” in order to get all frequent itemsets when
the minsup is changed from & to &’. It’s very lucky that we can do it in the process of
expending T into T, according to definition 2. The following Algorithm gives the de-
tails.

Algorithm VIBIM (VI-tree Based Interactive Mining)

Input: VIT and FP under old minsup &, and new minsup &< &;
Output: modified FP and modified VIT under &

Methods:

FPnew = Q’.
for 1 from 1 to the number of buckets in NB_table do

for each negative border NB in i_bucket of NB_table
do

if | NB.tidset| > & then {

! It is obvious that any transaction containing X must contain any no-null subset of X.
2 Their supports are less than &, but no less than &

An Efficient Approach for Interactive Mining of Frequent Itemsets 147

delete the entry containing NB from i_bucket
of NB_table;

FP__ = FP__ U {NB};

new new

for each B, B e NB.left_siblings A |B.tidset]
> &, do

R = NB U B;
R.tidset = NB.tidset N B.tidset ;

insert R with R.tidset into VIT as a
child of NB;

if |R.tidset| > & then {FP_ = FB_ U
{R};};else {

7 = level of R in VIT;

insert R, with it support and
position in VIT, into j_bucket
of NB_table;}
if NB has more than one child that is in FP__
then{ call TBD-growth(NB, &);}

W

FP = FP U FP

new’

5 Experimental Evaluation

In this section, we present a performance comparison of our approach (VIC+VIBIM)
for interactive mining with the re-executing Eclat under different minsups. Our ap-
proach runs VIC for the first time mining of frequent itemsets, and then run VIBIM for
the later mining procedure under small minsups. It should be pointed out again that we
just consider the case where the new minsup is smaller than the old minsup. For the
case, where the new minsup is greater than the old minsup, The procedure of mining
frequent itemsets is trivial because we can just select those old frequent itemsets with
support no less than new minsup in order to get all new frequent itemsets.

All the experiments are performed on a 1.4-GHz Pentium notebook PC machine
with 512 megabytes main memory, running on Microsoft Windows XP. All programs
are written in Microsoft Visual C++ 6.0. Notice we do not directly compare our ab-
solute number of runtime with those in [10] because different programs may differ on
the absolute runtime for the same algorithms. Instead, we implement Eclat in [10] in
our environment. The synthetic data sets, which we used for our experiments, were
generated using the procedure described in [6]. We report experimental results on two
data sets DB;= N1K.T10.L2K./4.D10K and DB,=N1K.T10.L2K./4.D100K, where N
denotes the number of items, 7 denotes the average transaction size, L denotes the
number of maximal potentially frequent itemsets, / denotes the average frequent
itemset size, and D denotes the number of transactions.

148 Z.-H. Deng, X. Li, and S.-W. Tang

~ 4
3 3L
Z —e— Eclat
22 f
=l —&— VIC+VIBIM
=
& 0 \ = .- —u |

0.25 0.5 0.75 1 1.5 2

Minsup(X100)

Fig. 3. Runtime under different minimum support thresholds for DB,

25
520 b
2
5 15 F —&—Eclat
§ 10k —#— VIC+VIBIM
= 5 F
&

0 s

0.25 0.5 0.75 1 1.5 2
Minsup(X1000)

Fig. 4. Runtime under different minimum support thresholds for DB,

Let us consider the case §/< €, the runtime of Eclat and VIC+VIBIM for DB, and
DB, are plotted in Figure 3 and Figure 4 respectively. We start the mining with relative
threshold 2%, and then tune the threshold to 1.5%, 1%, 0.75%, 0.5%, and 0.25% in
turn. By multiplying relative threshold by D (the number of transactions), It is easy to
get the Minsup in Figure 3 and Figure 4. For both datasets, it is obvious that
VIC+VIBIM is much faster than Eclat except for the first time mining. Because VIC,
which is used at the first time mining in our approach, is equal to Eclat in terms of the
process of mining except that VIC constructs a VI-tree in the first time mining. Figure 3
shows that VIC+VIBIM is 4 to over 1000 times fast than Eclat, and over 200 times in
average. Figure 4 shows that VIC+VIBIM is 10 to over 1000 times fast than Eclat, and
over 400 in average. All these figures show that our approach outperforms algorithms
proposed in [12, 13], where the speedup radio is between 2 and 6.

6 Conclusions

We studied an efficient approach for interactive mining of frequent patterns. Our ap-
proach has characteristics as below. First, by generating and maintaining a TV-tree, the
developed technique can fast find all new frequent itemsets under new minsup without
re-examining old frequent itemsets. Second, no scanning of databases are needed ex-
cept for the first time mining. These characteristics make it more suitable for interactive
mining than others existing algorithms.

An Efficient Approach for Interactive Mining of Frequent Itemsets 149

Recently, there have been some interesting studies at mining maximal frequent

itemsets [16, 17] and closed frequent itemsets [18, 19]. The extension of our technique
for interactive mining of these special frequent itemsets is an interesting topic for future
research. In addition, we also take efforts towards space-preserving interactive mining.

Acknowledgement. This research is supported by the National Natural Science
Foundation of China under grant No. 60473072. We are also grateful to anonymous
reviewers for their comments.

References

1.

2.

10.
11.
12.
13.
14.
15.

16.
17.

18.

19.

R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Set of Items in
Large Databases. In SIGMOD'93, pp. 207-216.

S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generatalizing association
rules to correlations. In SIGMOD’97, pp. 265-276.

R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE’95, pp. 3-14.

J. Han, G. Dong, and Y. Yin. Efficient mining of partical periodic patterns in time series
database. In ICDE'99, pp. 106-115.

B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In
KDD'98, pp. 80-86.

R. Agrawal and R.Srikant. Fast algorithm for mining Association rules. In VLDB’94, pp.
487-499.

J. S. Park, M. S. Chen, and P. S. Yu. An effective hash based algorithm for mining asso-
ciation rules. In SIGMOD'95, pp. 175-186.

S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic Itemset Counting and Implication
Rules for Market Basket Data. In SIGMOD'97, pp. 255-264.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In
SIGMOD'00, pp. 1-12.

M. J. Zaki. Scalable algorithms for association mining. IEEE TKDE, 12(3): 372-390, 2000.
M. Zaki and K. Gouda. Fast vertical mining using diffsets. In SIGKDD'03, pp. 326-335.

J. Liu and J. Yin. Towards efficient data re-mining (DRM). In PAKDD'01, pp. 406-412.
X.L.Ma, S. W. Tang, D. Q. Yang, and X. P. Du. Towards Efficient Re-mining of Frequent
Patterns upon Threshold Changes. In WAIM'02, pp. 80-91.

B. Dunkel and N. Soparkar. Data Organization and Access for Efficient Data Mining. In
ICDE'99 pp. 522-529.

P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M.Bawa, and D.Shah. Turbo Charging
Vertical Mining of Large Databases. In SIGMOD'00, pp. 22-33.

R. J. Bayardo. Efficiently mining long patterns from databases. In SIGMOD'98, pp. 85-93.
D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A maximal frequent itemset algorithm
for transactional databases. In ICDE'O1, pp. 443-452.

M. Zaki and C. Hsiao. CHARM: An efficient algorithm for closed itemset mining. In
SDM'02, pp. 12-28.

J. Y. Wang, J. Han, and J. Pei. CLOSET+: Searching for the Best Strategies for Mining
Frequent Closed Itemsets. In SIGKDD'03, PP. 236-245.

Similarity Search with Implicit Object Features

Yi Luo"?, Zheng Liu', Xuemin Lin'2, Wei Wang', and Jeffrey Xu Yu?

! The University of News South Wales, Sydney, Australia
{luoyi, zliu, lxue, weiw}@cse.unsw.edu.au
2 National ICT Australia, Sydney, Australia
3 The Chinese University of Hong Kong, Hong Kong, China
yu@se.cuhk.edu.hk

Abstract. Driven by many real applications, in this paper we study
the problem of similarity search with implicit object features; that is,
the features of each object are not pre-computed/evaluated. As the ex-
isting similarity search techniques are not applicable, a novel and efficient
algorithm is developed in this paper to approach the problem. The R-tree
based algorithm consists of two steps: feature evaluation and similarity
search. Our performance evaluation demonstrates that the algorithm is
very efficient for large spatial datasets.

1 Introduction

Similarity search is fundamental to many applications involving spatial data
analysis. Many research results [TI4J6I8/7IT0] have been published in the last
decade, where the most popular similarity model is based on a feature vector
for each data object. In such a model, each data object, available for similarity
search, is represented as a vector, and the similarity between objects is measured
by the distance between the vectors. Such applications include image similarity
retrieval [4J10], shape similarity search [6/8] and similarity search on spatio-
temporal trajectories [IJ7]. The k-nearest neighbor (KNN) search is one of the
most important similarity search queries. For a query object ¢ and a query
parameter k, KNN is to find the k objects that are most similar to ¢ [BUIT].
Consider that in many applications, objects for similarity search are not pre-
defined; consequently, the feature vector for each object is not pre-computed and
stored in a database. For instance, ornithologists may want to identify similar
bird communities for selecting a future research target or for behavior predica-
tion. A cluster of bird nests is an object. In the application, nest positions are
changing regularly and definition of a cluster may vary from time to time because
of difference research orientation. Feature groups are represented as groups of
polygons. For example, the open water map is a feature group, including lakes,
rivers and springs as polygons. Other feature groups are the vegetation map
including forests of specific vegetation, the predator distribution map including
communities of predatory birds, and man-made structure map including towns,
high ways and villages. Moreover, maps of rainfall precipitation and tempera-
ture should also be considered; but in these contour maps, each value range could

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 150-{I61] 2005.
© Springer-Verlag Berlin Heidelberg 2005

Similarity Search with Implicit Object Features 151

correspond to a feature group. In the application, a cluster of bird nests can be
evaluated based on the distances to the nearest feature in each feature group,
such as the nearest open water place and the nearest town. Figure [l illustrates
a cluster of nests and a nearby lake represented as a feature polygon.

Cluster of Nests X x X
Xx

X
X
XX X % Lake

Fig. 1. Ornithology Study

Similar applications lie in road traffic analysis, urban development, crime
analysis, etc.

Motivated by the above applications, in this paper we study the problem
of a non-conventional KNN, where the feature vector of an object is not pre-
computed, namely SSIOF(Similarity Search with Implicit Object Features). In
particular, we study the KNN problem where each object is a set of points in
2-dimensional space, and each object is evaluated against d groups of features to
obtain a d-dimensional feature vector. By effectively characterizing the results’
properties, we develop an efficient and novel R-tree based algorithm to evaluate
features of each object. Then, an effective filtering technique is developed to
prune away objects (clusters) as many as possible before a precise computation.
These are the contributions of the paper. Our performance study demonstrates
that our techniques are very efficient to process large spatial datasets.

The remaining paper is organized as follows. Section 2 presents the prelim-
inaries. Section 3 and 4 presents our algorithms and the analysis. Experiment
results are reported in Section 5. Finally, Section 6 concludes the paper.

2 Preliminaries

In this section, we start with formally defining the problem and then introduce
some necessary background.

2.1 Statement

In a 2-dimensional space, given n clusters Cy, C, . .., Cy, and d categories/groups
of features 7y, 73, ..., m4. Each cluster C; is a set of points and each feature is a
polygon. We use F}; to denote a feature and pt as a point.

Suppose the distance between a cluster C; and a feature(polygon) F}j, denoted
as d(C;, Fj), is defined as the average Euclidean distance from each point pt in

152 Y. Luo et al.

C' to the polygon. Here, the distance between a point and a feature dist(pt, F')
is the minimum distance between the point and the edges of the feature. The
aggregational feature evaluation of a cluster C; with respect to a feature category
7 is the distance from C; to its nearest polygon in 7, denoted as ¢(C;,).
The problem of Similarity Search in Implicit Feature Space (SSIOF) is to find
k most similar clusters to the given cluster Cy based on the following similarity
measure:

Sim(civ CO) = ||(¢(Cla 771)7 ceey d)(civﬂd))a (¢(C10a 771)7 ceey ¢(Cz‘»7Td))||f (1)

||l.|l is Euclidean or Manhattan distance function; we use the Manhattan
distance in our paper.

2.2 R-Tree Index

R-tree is a widely used index for spatial objects based on BT -trees, which orga-
nizes geometric objects by recursively grouping neighboring objects and repre-
senting them by minimum bounding rectangles(MBRs). A node of R-tree cor-
responds to a disk page. An intermediate node maintains a set of MBRs and
pointers which represent the children nodes, while a leaf node contains a set of
spatial objects with their positions in the database. Fig. 2] shows an instance of

R-tree.
el
| el
e3
c o ol 2
o 3| et 5| e6 | o7

i e3 e5
@
T L Lole] JLeeTo] |
e4 6
¢ n
e

Fig. 2. R-Tree Example

In this paper, we choose one of the most popular variations R*-tree to index
each feature categories and perform our evaluations. Each polygon is represented
by its MBR first, then those MBRs is indexed by R*-tree.

3 Evaluation and Search (ES) Algorithm

Our proposed algorithm ES for solving the SSIOFproblem contains two major
steps:

1) Feature Evaluation: in this step, we try to find all possible feature candi-
dates for each pair of cluster and feature group.

2) Similarity Search: this step is to compute the k most similar clusters to
the query Cp, based on the candidates outputted in the previous step.

Similarity Search with Implicit Object Features 153

3.1 Feature Evaluation

Let N¢, be the MBR of a cluster C; with 4 edges 71,72,73 and ry4; and N, be
the MBR of a feature polygon F; with 4 edges s1, 52, 53 and s5. We assume that
N¢,; and Np, do not overlap. We will first define some useful metrics between
MBR’s for later discussion.

L(rg, s;) denotes the minimum distance between two points falling on 7 and
s1, and U(rk, s;) denotes the maximum distance between two points falling on 7y,
and s;[2]. Thus the minimum of distance between two points contained in Ng,
and Np; can be expressed as:

minL(N¢,;, Nr;) = min{L(r, s1)} (2)
Similarly, we have:

minU(N¢,, Nr;) = min{U (1%, s1) } (3)
We also define the following distance. For the cluster C' and polygon F,

mazxminU(Ng,, NF;) = m}gx{mlin{U(rk,sl)}} (4)
Figure Bl shows the different metrics.
maxminU(Nc; ,Ng;)/UB

NE / minU(Nc; ,Ng;)
minL(N¢; ,NF;)

Nc;

AN

b(Cy)

Fig. 3. Distance Matrices

Pruning with the Lower and Upper Bounds
In the SSIOFproblem, the similarity is not measured between points but clusters
and polygons, so it’s too expensive to compute precise distances on pairs of
clusters and features, which makes it necessary to use relatively tight lower and
upper bounds for pruning. Then precise distances could be computed only on a
small set of clusters and features.

Consider a cluster C; bounded by MBR Ng, and a feature F; in MBR Ng,,
the lower and upper bounds of the distance between these two are :

drs(Ci, F;) = L(b(C;), NF;) (5)

154 Y. Luo et al.

and
du(Ci, Fj) = maxminU(N¢,, NF;). (6)

b(C;) in the Equation [is the centroid of the cluster C; computed by the av-
erage coordinates of all points in C; on each dimension. We use L(b(C;), NF;) to
denote the minimal distance between b(C;) and a point in rectangle N(Fj). The
lower and upper bounds are illustrated in Figure[3las LB and U B respectively.

The correctness of lower bound is proved in [9]. By definition, d(C, F') is the
average of dist(pt, F') for all pt € C. Based on the inequality:

K

K K
SR = | (w0 (Y
i=1 i=1

i=1

d(C, F) is no less than the distance from b(C') to some points inside N¢, which is
no less than L(b(C), Nr). Lemma[llshows the correctness of the upper bounds.

Lemma 1. For a cluster C; in MBR Ng¢, and a feature F; in MBR Np,, the
upper bound of d(C;, F;) is maxminU(Ng,, NF;).

Proof. Suppose that Np,; is bounded by s; (I = 1..4). Since Np, is the minimal
bound rectangle of F, there must be at least a point of F; on each s;. Thus the
upper bound of dist(pt, F;) equals min; U(pt, s;). Consider all points on N,
the upper bound of d(C;, F}) is maxyiec, dist(pt, F}), which is no larger than
maxminU(Nc¢,, NF,). O

When Np; and N¢, overlaps, it can be immediately verified that the above
bounds hold. When a feature group is indexed by an R-tree, the lemma still holds
if we change Np; to the MBR of an R-tree node. This gives us the opportunity
to prune features while traversing the index.

R-Tree Based Pruning. Making use of the index on each feature group could
speed up the process of feature evaluation. Next we will introduce the pruning
technique for a feature group 7y indexed by an R-tree T, , as shown in Algorithm
[Each node of Ty, corresponds to a disk page. To lower the disk I/O cost, we
traverse T, using the following strategy which allow us to visit each R-tree node
at most once.

The goal is to find a set of candidate features for each cluster. For each
cluster C;, we maintain a candidate list L(C;, 7x), implemented as a heap. Each
list entry e is either the MBR of an non-leaf R-tree node or the MBR of a
feature polygon, corresponding the intermediate levels and the leaf level in the
R-tree. As mentioned above, the lower and upper bounds hold on both kinds
of MBRs, denoted as dr,g(C;,e) and dyp(C;,e). For any pair of entries in the
list, their bounds overlap. ¢r,5(Ci, 7), ¢up(Ci,) and ¢(C;, 7)) are used to
record the minimum of d, g (C}, €), the minimum of dy 5 (C;, e) and the maximum
of dr,5(C;,e) for each list, respectively. ¢5(Ci,m) = ¢oup(Ci,) = oo and
q(Cy,) = 0 initially.

Similarity Search with Implicit Object Features 155

Algorithm 1. Feature Evaluation

Input: clusters C; (i = 0..n), R-tree of mp Tk, .
Output: ()ZSLB(CZ‘,TI'}@), ¢UB(Ci,7rk), feature list L(CZ‘,Trk).
Description:
1: repeat
2: for each cluster C; do
let e be the non-leaf entry in L(Cj, m,) with minimal drg(Cj, e);
for each cluster C; containing e do
replace e with its children in T, ;
remove entries e, if drs(Cj,er) > dup(Cj,mk);
update ¢L5(Cj,mk), pus(Cj, mk), a(Cj, mk);
if q(Cj,Tl'k) > (,ZSUB(C]‘,TUC) then
9: remove entries e, if drs(Cj,er) > ¢up(Cj,mr);
10: update ¢(Cj, mk);
11: until entries in L(C;, 7) for all ¢ are leaf entries

At the beginning of Algorithm[I] we assume the root of Ty, is a candidate for
all clusters, and insert it in all lists. In each iteration from Line 2 to Line 10 in
Algorithm [T], the lists are visited in a round-robin fashion. A non-leaf entry with
the minimum lower bound d;,5(C;, €) is selected for the current list. Here, a non-
leaf entry means the corresponding R-tree node is not a leaf node. We replace it
by its children in the R-tree in all lists. A child e, is inserted into C;’s list, when
its low bound dr5(Cj,) isn’t less than ¢y p(Cj, k), the minimum upper bound
of all entries in the list. After updating ¢r.5(Cj,), ¢ur(Cj, k) and ¢(Cj, 7),
we verify the list and filter those entries whose lower bounds dz,g(C}, e) is greater
than the updated ¢y (Cj, mx). This verification could be skipped when ¢(C;, 7x)
is between ¢, 5(C;, mx) and ¢y p(C;, 7). We repeat these steps until there is not
any non-leaf entry in all lists.

3.2 Similarity Search

In this section, we will discuss how to compute the exact distances between
pairs of clusters and feature groups based on the generated candidate features
for answering the SSIOFqueries. Our goal is the find the cluster most similar
to the query Cjy while minimizing the computation complexity. Algorithm
presents the overview of the similarity search step.

The input parameter L(C;, 7g) is the candidate list for cluster C; and feature
group 7. Function ComputeEzact(C;, 71) in Line 1 and 5 computes the exact
distance between C; and feature group 7mg. Chpnin is the cluster with minimal
Simp,p(C;, Co). Simpp(C;, Cy) and Simyp(C;, Cp) denote the lower and upper
bound of similarity between C; and Cj, as computed from the input as follows.

Firstly ¢(Co,m) are pre-computed for all feature groups. Suppose fr =
o1B(Ciymr) — &(Co, mx) and fu = dup(Ci,) — ¢(Co, Tk), then we have

0 fLXfU<0

LBij = {min(|fL|, |ful) otherwise

156 Y. Luo et al.

Algorithm 2. Similarity Search
Input: L(C;,) for i = 0..n,j = 1..d, cluster set {C;(i = 0..n)}
Output: The cluster C; with minimal Sim/(Cs, Co) (i # 0).
Description:

1: ComputeEzact(Co,) for all j; remove Cp from cluster set;
2: result = oo;

3: while Simrp(Cmin, Co) < result do

4 for all feature groups 7 do

5 Compute Exact(Cmin, Tk);

6 if SimrB(Cmin,Co) > result then
7 break; //from FOR
8
9
0

result = min{result, Sim(Cmin, Co)};
remove Ch,in from cluster set;
10: return all clusters C; with Sim(C;, Co) = result.

and
UB;,; = max(|frl,|ful)-

Thus,
Simpp(Cy, Co) ZLB iy

Simye(Ci, Co) Z UB; ;

For example, the results of the feature evaluation step, including the lower
bound (¢, 5(C;, 7)) and upper bound ¢y g (C;, 7k) are stored in a 2-dimensional
array as shown in Figure [dl The initial bound of similarity between C; and Cy
are computed as shown on the last column.

ot T2 w3 |Sim(Cs, Co)
Co| 6 2 9 [0, 0]

C1| [3,4] |[11, 12]| [8,9] [11, 14]
C2|[8,12]] [1,11] | [9, 14] (2, 20]

Cs| [4,7]| [2,4] |[10,10] 1, 5]

Fig. 4. Similarity Evaluation

The clusters are sorted on lower bound of Sim(C;, Cp) and iteratively com-
puted for precise similarity, until the next lower bound is larger than an already-
found result. This sequence can minimize the number of clusters that is pre-
cisely computed. Also in Line 6, after each calling of ComputeFExact, the cur-
rent lower bound of similarity is refined using the exact distance returned from
the function, and is compared with the result, which greatly reduce the number
of feature groups need to be computed. For the example in Fig. @ the cluster

Similarity Search with Implicit Object Features 157

(s is first chosen since lower bound of Sim(Cs,Cp) is the minimal in all clus-
ters. Suppose its precise similarity is 3. The next cluster is Cs. After calling
ComputeEzact(Cy, 1), assume the lower bound of Sim(Cy,Cy) is updated to
be 4, which is larger than the current result 3. As a result, Cs is dropped as it
can not be the result. Also the lower bound of Sim(Cy,Cp) is larger than the
current result 2, and C is eliminated as well and the final result Cj3 is returned.

Lemma 2. Algorithm[3 gives the correct answer to the similarity search query.

Proof. Consider the case that Algorithm 2] returns C; as result and the exact
answer is C; where ¢ # j. This is impossible since after C; is precisely com-
puted, the lower bound of Sim(Cj, Cy) must be smaller than Sim(C;, Cp), in
consequence, C; is chosen to be precisely computed and C; should be returned
instead of C;. a

Also, it is easy to see that Algorithm Pl minimize the number of chosen clus-
ters. Suppose that the cluster returned is C, with result r, and there exists an
algorithm A which minimizes the number of chosen clusters. In algorithm A, a
cluster C; such that lower bound of Sim(C;,Cy) is larger than r must not be
visited while all other clusters must be considered for precise computation. This
is exactly the case of Algorithm 21 For a cluster C; that Simpp(C;, Co) > r,
Simyp,p(C;, Co) > Simpp(Cy, Cp). Thus in Algorithm 2 C,. is chosen before C;.
After processing C,., result is updated to r and C; are dropped.

Edge Pruning

ComputeEzact(C;,my,) is used to compute the exact distances between a cluster
C; and a feature group 7. It need to calculate all the distance between the
points in C; and the candidate features in every feature groups. The brute-force
way is to compute the distance between a point and every edge in some feature
and choose the minimum one as the distance of the point to the feature. We
proposed some techniques that can avoid useless computations and save much
more time than the brute-force way.

| |
| |
sy s2_

.p1

Fig. 5. Edge Pruning

158 Y. Luo et al.

The optimization comes from reducing feature edges need to be computed.
As shown in Figure [f] the rectangle is the minimum bounding rectangle of a
certain feature. By extending the four edges of the MBR, we partition the whole
space into 8 areas expect the MBR itself. s1, s2, s3ands, are vertices of the MBR.
and a, b, c and d are four edges on the feature. p; and po are points belonging to
some cluster.

Take p; as an example. It need calculating all the distance between p; and
all edges of the feature in the brute-force way. In fact, we can found that the
minimum distance from p; to the feature must be the minimum distance of py
to one of the four edges a, b, c and d. In case of py, the minimum distance from
p2 to the feature must be the minimum distance of ps to one of the two edges ¢
and d.

To formalize, if the project of a point pj to the closest edge s;s; of the MBR
falls in the edge, then we only need to compute such kind of edges that s;s;
can be project on. If not, suppose the nearest vertex of MBR to p is s;, only
the edges that s; can be project on are computed. To further reduce the time
complexity, edge projections of a feature are computed at most once and then
stored in memory for all other points. Also, when the MBR of a cluster is wholly
contained in one of the 8 areas, it is not necessary to check the position of each
point any more.

Extend to k-Clusters

The above algorithm is extended to return the k clusters which are most similar
to the given cluster Cy. In Line 8 of Algorithm 2], variant result should be set to
the k-th lowest similarity,and k most similar clusters are returned in Line 13.

4 Discussion

As mentioned in the above section, for a node on the R*-tree, we visit it at
most once. In each step, the node to be visited is chosen considering only one
cluster while ignoring the preference of other clusters. This searching strategy is
based on an assumption that the number of clusters is relatively small, since the
strategy sacrifices local optimization for each cluster to achieve a better global
I/O cost. Since reading disk is much more costly than in-memory computation,
our algorithm works well when the number of clusters is not too large.

For the case that the number of clusters is so large that the sacrifice of local
computation is unbearable, we can use following divide-and-conquer strategy
which is similar to the Nested Loops Join. We first partition the clusters into
several parts by grouping near clusters. Then we use our proposed algorithm on
each part of clusters. In this case, if there are n groups of clusters, each node of
an R*-tree is visited for at most n times.

5 Experiments

We implemented our proposed ES algorithm and evaluate its performance on
synthetic data. We use the algorithm CPM (Compute Proximity Matching) as

Similarity Search with Implicit Object Features 159

a benchmark based on [9]. The algorithm C'PM solves a problem that is similar
to our problem assuming the number of feature polygons is relatively small and
there is no spatial index built on the features. It reads the relevant clusters into
buffer first, then read features batch by batch into buffer and determine their
groups. For each cluster C; and feature group 7;, it computes the approximate
distance between C; and each feature in 7; for filtering out features that are too
far from C;. Maintain a list of candidate features for computing ¢(Cj, ;). Then it
computes the approximate similarity for each cluster and filter out clusters that
are not the solution. Finally it calculates the exact similarities to the remaining
clusters and their associate features, and return the query result.

Suppose the number of cluster is n and the number of features is m. Feature
number is the same in each of the g features groups. The number of points in
each cluster is nc and nf gives the number of edges in each feature polygon. In
the experiments, average nc is 100 and average nf is 15.

To generate data, we firstly generate m + n rectangles that are uniformly
distributed in the 2-dimensional space. The size of rectangles are randomly cho-
sen within a limited range. Number of features in each group is determined such
that the summary is m. Rectangles corresponding to the clusters or a features
group do not intersect with each other. In each of n rectangles, nc points are
uniformly generated, based on which the M BRs are computed. This gives the nc
clusters. In each of the remaining rectangles, nf points are randomly generated.
To generate a simple polygon which is linked by the nf points. We will apply a
Graham’s scan-like algorithm [3].

We use Rx-trees, a variant of R-tree, to index the feature groups. Two al-
gorithms CPM and ES are implemented using C++, Experiments are run on
a Linux machine with 1.8G P4 CPU and 512M memory. For each dataset, we
process extensive queries and get the average result.

5.1 Scalability Comparison

We first compare the algorithms with different number of clusters, ranging from
200 to 1000. 100000 features are clustered in 10 groups. The experiment results
are shown in Fig.

The Fig. [(a) compares the I/O cost, which is the summary of the number
of pages that corresponding to R*-tree index and features. CPM does not use
index, but reads a large amount of features; ES reads a small number of index
pages in the first step and a few features in the second step. It is clear that the
I/0 cost of ES is much smaller than CPM.

User time for precessing a query is compared in Fig.[6l (b). For 1000 clusters,
ES responds in about 42 seconds while C PM needs nearly 5 minutes to get the
result.

We also study the performance of both algorithms with different number
of features. Feature number varies from 5000 to 100000. There are 10 feature
groups and the number of clusters is set to 200. Results are shown in Fig. [7
Similar with the previous experiments, the first sub-figure shows the I/O cost
while the second compares the precessing time.

160 Y. Luo et al.

_ 200000 CPM 400 CPM
2 ES —— ES ——
c 150000 300 r
3 100000 | = 200
S oy
=z 7]
+ 50000 r S 100
S N " L
0 +— ¥ T 0 4 + .
0 200 400 600 800 1000 0 200 400 600 800 1000
Cluster Number Cluster Number
(a) I/O (b) Time
Fig. 6. Compare Cluster Number
_ 150000 CPM 100 CPM
é ES —— - 80 ES —— |
3 100000 g 60
g [
°
Z 50000 g 40
i) 2 20
>
0 ; 4 } t + 0 } + t T
0 50000 100000 0 50000 100000
Feature Number Feature Number
(a) I/O (b) Time

Fig. 7. Compare Feature Number

With 100000 features, our algorithm processes a query in 6 seconds and less
than 6000 disk pages read in memory, compared with large I/O cost and more
than 1 minute processing time of CPM.

5.2 Dimensionality Comparison

We evaluate our algorithm with different dimensionality of feature space. The
number of feature group varies from 2 to 20. 100000 features are categorized
to the feature groups and number of clusters is 200. Fig. B shows the I/O cost
and user time of the two algorithms, which demonstrates the large performance
difference between the two algorithms.

6 Conclusions

In this paper, a similarity search problem which is based on an implicit feature
space is investigated. By making use of the spatial indexes like R-trees built on
the feature categories, we present an effective algorithm for the queries, which
consists two steps: feature evaluation and similarity search. Experiments show
the efficiency of the algorithm on all cases.

Similarity Search with Implicit Object Features 161

_ 150000 CPM = 120 “CPM .
] ES —— ES ——
g o—e—o——9© @ 90]
S 100000 ot o/e-"e”_e/Q
z €
g = 60 1
S oy
Z 50000]
S D 30+t
>
0 +—t t t 0 +— t H
2 5 10 15 20 2 5 10 15 20
Feature Group # Feature Group #
(a) I/O (b) Time

Fig. 8. Compare Feature Group Number

For the future work, we will investigate the problem of similarity join, which

joins a set of clusters to itself, with respect of d different categories of features.

Acknowledgment. The research described in this paper was partially sup-
ported by ARC Discovery Grant (DP0346004).

References

1.

2.

10.

11.

Yuhan Cai and Raymond Ng. Indexing spatio-temporal trajectories with chebyshev
polynomials. In Proceedings of the 2004 ACM SIGMOD, pages 599-610, 2004.
Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, and Michael Vassi-
lakopoulos. Closest pair queries in spatial databases. In Proceedings of the 2000
ACM SIGMOD, pages 189-200, 2000.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry - Algorithm and Applications. Springer-Verlag, Berlin, 1997.

Christos Faloutsos, Ron Barber, Myron Flickner, Jim Hafner, Wayne Niblack,
Dragutin Petkovic, and William Equitz. Efficient and effective querying by im-
age content. Journal of Intelligent Information Systems, 3(3/4):231-262, 1994.
Gisli. R. Hjaltason and Hanan Samet. Distance browsing in spatial databases.
ACM Trans. Database Syst., 24(2):265-318, 1999.

H. V. Jagadish. A retrieval technique for similar shapes. In Proceedings of the 1991
ACM SIGMOD, pages 208-217, 1991.

Tamer Kahveci, Ambuj K. Singh, and Aliekber Giirel. Similarity searching for
multi-attribute sequences. In Proceedings of the 14th SSDM, Washington, DC,
USA, 2002.

Hans-Peter Kriegel, Stefan Brecheisen, Peer Kroger, Martin Pfeifle, and Matthias
Schubert. Using sets of feature vectors for similarity search on voxelized CAD
objects. In Proceedings of the 2003 ACM SIGMOD, pages 587-598, 2003.
Xuemin Lin, Xiaomei Zhou, and Chengfei Liu. Efficient computation of a proximity
matching in spatial databases. Data Knowledge Engineering, 33(1):85-102, 2000.
Apostol Natsev, Rajeev Rastogi, and Kyuseok Shim. WALRUS: a similarity re-
trieval algorithm for image databases. In Proceedings of the 1999 ACM SIGMOD,
pages 395406, 1999.

Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. Nearest neighbor
queries. In Proceedings of the 1995 ACM SIGMOD, pages 71-79, 1995.

An Improved FloatBoost Algorithm for Naive Bayes Text
Classification

Xiaoming Liu, Jianwei Yin, Jinxiang Dong, and Memon Abdul Ghafoor

Department of Computer Science and Technology, Zhejiang University, China
{liuxiaoming, zjuyjw,djx}@zju.edu.cn, ghafoorgem@yahoo.com

Abstract. Boosting is a method for supervised learning, which has successfully
been applied to many different domains and has proven one of the best
performers in text classification exercises so far. FloatBoost learning uses a
backtrack mechanism after each iteration of AdaBoost learning to minimize the
error rate directly, rather than minimizing an exponential function of the margin
as in the traditional AdaBoost algorithm. This paper presents an improved
FloatBoost boosting algorithm for boosting Naive Bayes text classification,
called DifBoost, which combines Divide and Conquer Principal with the
FloatBoost algorithm. Integrating FloatBoost with the Divide and Conquer
principal, DifBoost divides the input space into a few sub-spaces during training
process and the final classifier is formed with the weighted combination of basic
classifiers, where basic classifiers are affected by different sub-spaces
differently. Extensive experiments using benchmarks are conducted and the
encouraging results show the effectiveness of our proposed algorithm.

1 Introduction

Text classification is the activity of automatically building, by means of machine
learning techniques, automatic text classifiers, i.e. programs capable of labeling natural
language texts with thematic categories from a predefined class set. A wealth of
different methods have been applied to it, including probabilistic classifiers, decision
trees, decision rules, regression methods, batch and incremental linear methods, neural
networks, example-based methods, and support vector machines (See [2] for a review).
In recent years, the method of classifier committees has also gained popularity in the
text classification community.

The boosting method [1] occupies a special place in the classifier committees
literature. Since the boosting technique was developed [1], it has been considered to be
one of the best approaches to improving classifiers in many previous studies. In
particular, boosting contributes to significantly improve the decision tree learning
algorithm [3,4]. FloatBoost [6] is an improved AdaBoost method for classification,
which incorporates into AdaBoost the idea of Float Search, originally specified in [5] for
feature selection. FloatBoost achieves a stronger classification consistency of fewer weak
classifiers than AdaBoost and has shown its performance in face detection field [6].

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 162-[171] 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Improved FloatBoost Algorithm for Naive Bayes Text Classification 163

When boosting is used to handle scenarios in complex environment with outliers, its
limitations have been pointed out by many researchers [4,7], some discussion and
approaches have been proposed to address these limitations [8,9]. In [8], S-AdaBoost
algorithm which applying the Divide and Conquer Principle to the AdaBoost algorithm
was proposed to enhance AdaBoost’s capability of handling outliers in face detection
field. In this paper, we focus on boosting Naive Bayes classifier, which is a simple yet
surprisingly accurate technique and has been used in many different classification
problems. In particular, for text classification, Naive Bayes classifier is known to be
remarkably successful despite the fact that text data generally has a huge number of
attributes (features). By integrating Divide and Conquer Principle with FloatBoost for
boosting Naive Bayes text classifier, we propose an improvement FloatBoost
algorithm, called DifBoost.

The rest of the paper is organized as follows. In section 2, preliminary backgrounds
are introduced. In Section 3, we describe in detail our proposed DifBoost algorithm.
The results of its experimentation and comparisons between DifBoost and other
methods are described in Section 4. In section 5, we conclude and predict future work.

2 Preliminaries

2.1 Naive Bayes Learning Framework for Text Classification

Bayes method assumes a particular probabilistic generation model for text
classification. That is, every document is assumed to be generated according to a
probability distribution defined by a set of parameters, denoted by 0. The probability
distribution consists of a mixture of components cje C={c;,...,cj} and each component
is parameterized by a disjoint subset of 0. To classify a given document, Bayes learning

method estimates the posterior probability of a class via Bayes rules, that is,

Pric.1d.g)= " 1OP 1¢,.6) The class identity of document d; is the class with the most
o Pr(d, 1)

posterior probability: argmaxje cPr(c;ld;, ©). Usually, a document d; is represented by a
bag of words (Wi, Wj...W;q). Moreover, Naive Bayes classifier assumes a

simplification that words independence and words position independence, which

Id;
results in the following classification function ¢ (7)=argmax__. Pr(c, Id')HPr(W'k Ic,)-
ONB / ! k=1 ’

To generate this classification function, Naive Bayes learning estimates the

parameters of the generative model using a set of labeled training data D={d,,...dp}.

The estimate of 0 is written as & . Naive Bayes uses the maximum a posteriori (MAP)

estimate, thus finding argmaxgPr(6ID). Which is the value of 6 that is most probable

164 X. Liu et al.

Table 1. The FloatBoost Algorithm with Naive Bayes

Input: (1)Training documents Dt={<di,cj>ldie D,cje C}. (2)Maximum number
M.« of weak classifiers. (3)Acceptance threshold €*.

Output: A classifier function f, where g;vg = {gwlc,gc}
6 NB

1,,(D")=argmax, Pr(D" |8us)Pr(Bys) /* MAP estimate */
O NB
Id;!
f. (d)=agmax, . Pr(c,1d,,0) =argmax, . Pr(c)[[Pr(w, I¢,)>
Onp / ! k=1
WM=(w, ™ wip™). /I*weight distribution */
1. Initialize : (1) wg"=1/IDI for any d;e D;
2) 8,':“ =max-value (for m=1,...,M,,,),M=0, H, ={}
2. Forward Inclusion:
(1) M=M-+1, estimate a class model with respect to the weighted training

documents, g, = Ly (DY)

(2) Build a base classifier &,, = fA(M) (d,) with estimated model éNB ;

oNB

(3) Calculate the weighted training error €(hy,) of éNB ,
ey =)= 2, W I (@)% f,d)]

di
(4) Calculate confidence ay of Oz, @), = %ln(l'gt%M) , and update weights

Wi exp(-a,) if £)= f,(d,)
Ong

M) _ 4

% , where Z, is a normalization
d, .
Z, |exp(ey,)if féM) d)# f,(d,)

factor making w™ a probabilistic distribution: S w0 =13
diep™ d;

(5) H, =H, Ulh,},if &)" >&(H,,) then &" =&(H,,);
3. Conditional Exclusion:
(1) h'=argmin, , &, (H, —h);
(2) If &(H, —h")<egp" , then
(2.1) Hy.,=Hy-h’, 5" = e(H,, —h'") M=M-1, goto 3.(1);
(3) else
(3.1) if M=M,;x or gy<€*, then goto 4;
(3.2) goto 2.(1);
4. Output the final classifier:
M
S, (@)=argmax, o Y[(d) = f,(d)]
NB m=1 z{l NB

An Improved FloatBoost Algorithm for Naive Bayes Text Classification 165

given the evidence of the training data set and a prior. The estimated probability of a

DI
word w, given a class ¢ is the equation: , 1+ N(w,.d)Pr(y, =c,1d,)
Ouic, =Pr(w, I c;) = "CZI' o
[CI+Y. Y N(w,.d)Pr(y, =c, 1d,)

j=1 i=1

A

Similarly, the class prior probabilities 6, are estimated as:

1D |
1+ Pr(y, =c,1d))
6. =Pr(c;16) = =l .

IC 1+ 1D

2.2 The FloatBoost Algorithm with Naive Bayes

This section presents the FloatBoost algorithm with Naive Bayes learning using
notation introduced in the previous section and Naive Bayes learning framework.
Different from AdaBoost, FloatBoost backtracks after a newest weak classifier hy; is
added and deletes unfavorable weak classifiers h,, from the ensemble, following the
idea of Float Search [5] for feature selection.

The FloatBoost procedure is shown in Table 1. Let Hy={h;h,,...hy} be the

so-far-best set of M weak classifiers, e(Hyy) be the error rate achieved by weighted sum

of weak classifiers H,, = Zw’”hm ,EM be the minimum error rate achieved so far

m

with an ensemble of m weak classifier. In step 2 (forward inclusion), given already
selected, the best weak classifier is added one at a time. In step 3 (conditional

exclusion), FloatBoost removes the least significant weak classifier from Hy,, subject to

min

the condition that the removal leads to a lower error rate £,;", . These are repeated until

no more removals can be done. The procedure terminates when the error rate is
acceptable or the maximum number M, is reached. Incorporated with the conditional
exclusion, FloatBoost usually needs fewer weak classifiers than AdaBoost to achieve

the same error rate €.

3 Robust Boosting of Naive Bayes

3.1 Basic Idea

As mentioned before, to make a classifier capable of handling complex environment
with outliers, we should find ways to decrease outliers’ effect on the classifier. Our
strategy for robust classification is to separate outliers from other patterns. We apply

166 X. Liu et al.

Divide and Separate Principle [8] through dividing the input pattern space X into a few
subspaces and conquering the subspaces by dealing them differently during training
weak classifiers. As in [8], input space is divided into 4 subspaces relative to a classifier
f(x): X=Xpo+ X p+ X+ Xpg, Where X, are normal patterns those can be easily classified
by (x), X, are special patterns those can be classified correctly by f(x) with bearable
adjustment, X, are noise patterns and X4 are patterns hard to be classified by f(x).

A typical input pattern space is shown in Figure 1. The first two subspaces are
further referred to as Ordinary Pattern Space and the last two are called Outliers:
Xoa=XnotXsp, Xoi=Xps+Xpg. It is relative easier for an algorithm like weak classifiers
Naive Bayes in FloatBoost to classify X,q well compared to classify the whole input
pattern space X. After the division, weak classifiers can concentrate more on X, in X4,
instead of X,;, which can often improve the generalization of the algorithm.

~ Hard-to-cla
ssify patterns+’

P> Noise pattemms

0 0.z 0.4 \] 0.6 0.8 1

MNormal pattems+ Special pattermns+’

Fig. 1. Input Pattern Space

3.2 Incorporating Divide and Conquer Principle into FloatBoost: DifBoost

To incorporate Divide and Conquer Principle into FloatBoost, a challenging problem is
how to isolate outliers X, from ordinary patterns X,q. Given a training data set with
some trained weak classifiers, we can see a prominent difference between X, and X4 is
that the misclassification count on X, with weak classifiers is much larger than
misclassification count on X4. So a threshold can be used to separate X, from X,4. To
improve the accuracy of outlier isolation, isolation is not performed during the initial
training stage. In our experiment, 1/2M,,,, is often used as a turning point, which means
that we do not try to isolate outliers until we have get 1/2M,,,x weak classifiers.
Furthermore, for the boundary between X4 and X4 is often not obvious in practice, we
deal X, and X4 differently. X, patterns once identified, they will be removed from
training set, while Xy4 patterns will still be used during training. One common thing
between X, and X4 as we can see is that their misclassification rates tend to be high.
Meanwhile, a major difference between them is that, a noise pattern will often be
misclassified to a specific wrong class, on the other hand, a hard-to-classify pattern will
tend be misclassified to different wrong classes.

With the proposed isolation method and treatment of different outlier patterns, table
2 shows modification to the FloatBoost algorithm which is integrated with Divide and
Conquer Principle. As shown in clause 2.(3), when we calculate the misclassification

An Improved FloatBoost Algorithm for Naive Bayes Text Classification 167

Table 2. Modification to the FloatBoost Algorithm with Naive Bayes: DifBoost

Input: Three same inputs as in Table 1, in addition, the outlier threshold €,

Output: A classifier function f, , where @ng = {Bui, 0.}
6 NB

1. Initialize: (1) wg'"=1/IDI, EC4={} for any d;e D; /*ECy; is classifier set that
misclassification d; */

(2) grrnnin =max-value (for mzlv . ~,Mmax)sM:Os H() :{ }s an:{ }sth:{ }9X0d:D;
2. Forward Inclusion:

(1) M=M+1, estimate a class model Ons with respect to the weighted training

documents;
h, =", A
(2) Build a base classifier onn with estimated model &~z ;
3) Calculate the weighted training error e(hyy),

URED I Uy (FARCA LN ACRI S I [wj,,M R TANCAESFAC)))]

¢~ Xna

(3.1) if M>1/2M 1,

2
>

£ = £.(d) _
(a) For Vd;e Xoq, if v o EC, =EC, Vih,}

(b) for VdiGXOd, if ECdl/M > €01
If |ECdi|>2, th:th U {dl}
EISG an:an U {dl} aXnd:Xnd'{di}

p =1 gy (M)
(4) Calculate confidence oy of Ong s ay =3In(",) , and update weights " ;

(5) H,=H, u{hM}’if &y >EMHy) qon En =EWH,)
3. Conditional Exclusion:
(1) h'=argmin,_, &, (H, —h);
Q) If e(H,, —h')< ep™ , then
(2.1) Hy.=Hy-h’, e" = e(H,, —h') M=M-1
(a) for Vdie th and h’e ECdi, if ECdi/M<801, th= th_{di};
(b) for VdeX,, and h’ €ECy, if ECgy/M<e,, X, =X.-{d},
Xn=XnaU { dl} 5
(2.2) goto 3.(1)
(3) else
(3.1) if M=M,,,;x or gy<e*, then goto 4

(3.2) goto 2.(1)
4. Output the final classifier:

f, (@)=argmax, . Y21 (d) = fy(d)]
NB m=1 20(NB

168 X. Liu et al.

rates of a weak classifier, patterns in X, are not taken into account and patterns in Xyq
are weighted half to patterns in X,4. Whether to put a pattern into X,y or Xyq is
considered in 2.(3.1) during forward inclusion. Correspondingly, 3.(2) considers
whether patterns in X,; and X,4 should be reconsidered as ordinary patterns.

In our algorithm, an important parameter is €,,, which is used to determine whether
a pattern should be regarded as an outlier. The optional value of €, is associated with
the classification task itself and the nature of patterns in X. Experiments were
conducted to determine the optimal value for the threshold €,. From the experiments
conducted, DifBoost performed reasonably well when the value of €, was around
0.85-0.95.

4 Experimental Setup and Results

In order to evaluate our proposed method, we have conducted experiments on two
data sets: the Reuters-21578 collection and 20-Newsgroups Data. Reuters-21578
consists of Reuters newswire stories from 1987, and is the most popular data set in the
text classification literature. The data set consists 21,578 articles, each one
pre-labeled with one or more of 135 topics. We use the modified Apte split (Mod
Apte), which assigns 9,603 documents dated before April 8, 1987 to the training set
and 3,299 documents dated from April 8, 1987 to the test set. In our experiments, we
use ninety topic categories that have at least one relevant (positive) training
documents and at least one relevant test document. The second data set
20-Newsgroups consists of 20,000 Usenet articles collected by K. Lang from 20
different newsgroups. For this data set, about 70% documents in each newsgroup are
used for training (700 documents per class), while left documents are used for testing
(300 documents per class).

We preprocess both data sets by removing the low-frequency words, which are the
words appear less than 2 times in a document. Stop-words are removed and term space
reduction is applied. After such a reduction, each (training or test) document d; is
represented by a vector <tjj,...,t;»> of the weights shorter than the original. Feature
selection is usually beneficial in that it tends to reduce both overfitting and the
computation cost of training the classifier. We use the information gain [9] for term
space reduction. If not specially mentioned, the number of features in our experiment is
600. We use macro-average F1 and micro-average F1 as [9] the evaluation measures of
the text classifiers.

Table 3 shows a comparison of the performances of 4 different classifiers on our
data sets Reuters and 20-Newsgroups respectively. All the parameters for different
classifiers are tuned to yield the best performance. For AdaBoost , FloatBoost and
DifBoost, we set training around M,,,,x to be 400 in both data sets. The parameter €, in
DifBoost is set to be 0.9. The experimental results indicate that FloatBoost
Performances.better.than .AdaBoost, while DifBoost gains most prominent
performance, which outperforms FloatBoost further.

An Improved FloatBoost Algorithm for Naive Bayes Text Classification 169

Table 3. Performances of four different classifiers

Macro-average F1 Micro-average F1
Reuters | 20-Newsgroups Reuters | 20-Newsgroups
Naive Bayes(NB) 0.785 0.804 0.796 0.798
AdaBoost(AB) 0.802 0.817 0.805 0.816
FloatBoost(FB) 0.822 0.832 0.816 0.826
DifBoost(DB) 0.852 0.843 0.837 0.854

Results of different methods on both data sets are shown in Figure 2-5 .Figure 2 and
3 show the effectiveness of individual methods on part of Reuters evaluated by
Macro-average F1 and Micro-average F1 respectively. Figure 4 and 5 shown
effectiveness of each method on 20-Newsgroups.The X-axis of each figure represents
the number of training documents. To explore the capacity of handling outliers of
DifBoost method, in Reuters we use only 10 largest and 10 smallest categories from the
ninety categories. Experimental parameters are set as follows, M,,.x in three boosting
algorithm are set to be 400, €, is 0.9 in DifBoost and optional parameter £* in DifBoost
is not set, which defaults to be 0.

As shown in Figures 2-5, we have observed that the proposed DifBoost method is
successful in boosting Naive Bayes. AdaBoost could increase the quality of Naive
Bayes classifier with an average increase about 10% in both F1 measures over pure
Naive Bayes algorithm (NB). FloatBoost could increase the quality of Naive Bayes
classifier with an average increase about 16% in both FI measures and DifBoost
outperforms Naive Bayes about 20% in both F1 measures. Note in some cases,
AdaBoost is worse than Naive Bayes in our experiments, the phenomenon was also
observed in previous experiments [10]. On our selected sub Reuters data set, DifBoost
performance much better than all the other three methods. The Macro-average F1
measure of DifBoost is about 25% better than Naive Bayes and 10% better than
FloatBoost, and the Micro-average F1 measure of DifBoost is 15% better than
FloatBoost on sub Reuters data set. Experimental results indicate that DifBoost
performs best with medium-size training set.

Performance Comparison On Subset of Reuters

o 500 1000 1500 2000 2500 3000 3500 4000
Number of training documents

Fig. 2. Macro-average F1 of Naive Bayes, AdaBoost, FloatBoost and DifBoost with different
training size on subset of Reuters

170 X. Liu et al.

Ferformance Comparison On Subset of Reuters

Micro-average F1
[m]
-
o

[u] s00 1000 1500 2000 2500 3000 3500 4000
Murmber of training docurment=

Fig. 3. Micro-average F1 of Naive Bayes, AdaBoost, FloatBoost and DifBoost with different
training size on subset of Reuters

Performance Comparison 20-Newsgroups

0.9
— e — NB
L 0.85r —w% — AB
osl —+— FB
—<&— DB
0.75 -
0.7t
0.65

O 10002000 30004000 5000 6000 7000 8000 900010000
Number of training documents

Fig. 4. Macro-average F1 of Naive Bayes, AdaBoost, FloatBoost and DifBoost with different
training size on 20-Newsgroups

Performance Comparison on 20-Newsgroups

0.9
T 0.85 - — :g
E e
0.75 -
0.7 -
0.65

2000 4000 6000 8000 10000
Number of training documents

Fig. 5. Micro-average F1 of Naive Bayes, AdaBoost, FloatBoost and DifBoost with different
training size on 20-Newsgroups

5 Conclusions and Future Work

We have described DifBoost, a boosting algorithm derived by FloatBoost with Naive
Bayes by integrating with the Divide and Conquer Policy, and we have reported the
results of its experimentation on Reuters-21578 and 20-Newsgroup data sets. The basic
idea behind our method is to increase the capability of FloatBoost algorithm to handle
outliers in the field of text classification. To this end, we have endowed the FloatBoost

An Improved FloatBoost Algorithm for Naive Bayes Text Classification 171

algorithm with the capacity of outlier detecting and handling. Experimental results
show the effectiveness of the proposed algorithm. In the future, we plan to combine
kNN, support vector machine algorithms with DifBoost algorithm since they are long
used and are effective in text classification also.

References:

10.

Freund, Y. and Schapire, R. E. 1995. A decision-theoretic generalization of on-line learning
and an application to boosting. Proceedings of the 2th European Conference on
Computational Learning Theory.

Sebastiani, F. 2002. Machine Learning in Automated Text Categorization. ACM
Computing Surveys. 34(1):1-47

Freund, Y. and Schapier, R.E., 1996. Experiments with a New Boosting Algorithm.
International Conference on Machine Learning. 148-156

Friedman, J.H., Hastie, T., and Tibshirani, R., 2000. Additive logistic regression: A
statistical view of boosting. Annals of Statistics. 28(2):337-374

Pudil, P., Novovicova, J. and Kittler, J. 1994. Floating search methods in feature selection.
Pattern Recognition Letters, (11):1119-1125

Li, S.Z., Zhang, Z.Q. 2004. FloatBoost Learning and Statistical Face Detection.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(9):1112-1123

. Jiang, W. 2001. Some theoretical aspects of boosting in the presence of noisy data.

Proceedings of the Eighteenth International Conference on Machine Learning. 234-241
Jimmy, L.J., Loe, K.F. 2003. S-AdaBoost and Pattern Detection in Complex Environment.
Proceeding of CVPR, 413-418

Yang, Y. and Liu, X. 1999. A re-examination of text categorization methods. In Proceedings
of SIGIR-99, pp.42-49

Kim, H. and Kim, J. 2004. Combining Active Learning and Boosting for Naive Bayes
Text Classifiers. Proceeding of WAIM 2004, LNCS 3129, pp.519-527

An Approach to RDF(S) Query, Manipulation
and Inference on Databases

Jing Lu, Yong Yu, Kewei Tu, Chenxi Lin, and Lei Zhang

APEX Data and Knowledge Management Lab,
Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, 200240, China
{robertlu, yyu, tkw, linchenxi, zhanglei}@apex.sjtu.edu.cn

Abstract. In order to lay a solid foundation for the emerging semantic
web, effective and efficient management of large RDF(S) data is in high
demand. In this paper we propose an approach to the storage, query,
manipulation and inference of large RDF(S) data on top of relational
databases. Specifically, RDF(S) inference is done on the database in ad-
vance instead of on the fly, so that the query efficiency is maximized.
To reduce the cost of inference, two inference modes, the batch mode
and the incremental mode, are provided for different scenarios. In both
modes, optimized strategies are applied for efficiency purpose. In order to
support efficient query and inference on the database, the storage schema
is also specially designed. In addition, a powerful RDF(S) query and ma-
nipulation language RQML is provided for easy and uniform data access
in a declarative way. Finally, we evaluate and report the performance on
both query and inference of our approach. Experiments show that our
approach achieves encouraging performance in million-scale real data.

1 Introduction

The semantic web is emerging as the next generation web, where web contents
could be understood by machines. RDF(S) is a W3C standard for the formal-
ization of information on web resources, laying one of the foundations of the
semantic web. Thus effective and efficient management of RDF(S) data is a
must, including storage, query, manipulation and inference.

Since scalability is of great concern in real-world applications, it is necessary
to support the management of RDF(S) data in large volumes. Therefore, in this
paper we propose an approach to the storage, query, manipulation and inference
of RDF(S) on top of the relational database, which is the primary choice to
manage large-volume data in practice.

A main feature of our approach is that, to maximize the query efliciency on
inferred data, we store all the triples that are deduced from the RDF(S) closure
computing, instead of calculating them on the fly. This is extremely imperative
if a large data set is presented or the query is quite complex. One consequence
of this decision is that we have to do inference on each manipulation, so as
to maintain the consistence and completeness of the inferred data. Two modes

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 172-{I83] 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Approach to RDF(S) Query, Manipulation and Inference on Databases 173

of inference, i.e. batch mode and incremental mode, are therefore developed to
reduce the maintenance cost according to different manipulation scenarios. In
addition, we introduce the Original Semantics Assumption and accordingly cir-
cumvent mutual dependency loops contained in the RDF(S) entailment rules
while performing inference. The database schemas in our approach are elabo-
rately designed so that not only query but also inference is well supported. We
also introduce a language called RQML, which provides powerful and flexible
query ability as well as manipulation ability. Finally, we report our performance
evaluation, which shows that in a typical scenario the inference time complexity
is around O(n?), and the query time complexity is around O(n).

We have implemented our approach as the base layer of an integrated ontol-
ogy engineering environment called ORIENT [I], which has been released at the
IBM AlphaWorks websitel.

The rest of the paper is organized as follows. Section 2l presents the database
schemas we adopted to store RDF(S) data. Section Bl discusses our inference
algorithm on databases, including the batch and incremental mode. Section [4]
introduces RQML, our RDF(S) query and manipulation language. The perfor-
mance of our approach on query and inference is evaluated in Section Bl Finally
we discuss the related work in Section [f] and conclude the paper in Section [7

2 Database Schemas for Storage

In order to support efficient RDF(S) query and manipulation processing as well
as RDF(S) inference (i.e. RDF(S) closure calculation), we carefully designed a
relational database schema to store RDF(S) ontology. We followed the following
principles in the design of the storage schema:

— For high-performance query, manipulation and inference, we trade storage
space for speed.

— Although the storage schema should be able to handle arbitrary RDF(S)
data, it must be optimized for normal data distribution and typical queries
in ontology engineering scenarios.

Tablellists the database tables in the current storage schema design. The design
of the tables are mainly influenced by and closely related to the RDF(S) closure
computing algorithm, which is introduced in detail in the next section.

On the other hand, queries can also be efficiently carried out on these ta-
bles. Typical queries about class hierarchy, property hierarchy/domain/range
and instance type can be answered quickly by directly querying the corre-
sponding table. In addition to these tables for certain RDF schema triples, the
RDFLiteralInteger, RDFLiteralFloat, RDFLiteralBoolean and RDFLiteral
String tables are created to hold common data type literals and leverage na-
tive SQL data type comparison and calculation, which is required to support
some kinds of queries. We also borrow Jena2’s Property Tables design [2] in

! http://www.alphaworks.ibm.com/tech /semanticstk.

174 J. Lu et al.
Table 1. Database tables

Table Name Table Description

RDFSubPropSubProp | This table holds all triples (?x, rdfs:subProperty0f,
rdfs:subProperty0f).

RDFSubPropDomain This table holds all triples (?x, rdfs:subProperty0f, rdfs:domain).

RDFSubPropRange This table holds all triples (?x, rdfs:subProperty0f, rdfs:range).

RDFSubPropSubClass | This table holds all triples (7x, rdfs:subProperty0f,
rdfs:subClass0f).

RDFSubPropType This table holds all triples (?x, rdfs:subProperty0f, rdf:type).

RDFSubProp This table holds all triples (?x, rdfs:subProperty0f, 7y).

RDFDomain This table holds all triples (?x, rdfs:domain, ?7y).

RDFRange This tables holds all triples (?x, rdfs:range, 7y).

RDFSubClass This table holds all triples (?x, rdfs:subClass0f, ?y).

RDFType This table holds all triples (?x, rdf:type, ?y).

RDFStatement This table holds all triples (?7x, ?y, ?z).

RDFResource This table holds the URI or blank node ID for all RDF resources.

RDFLiteralInteger | This table holds all literals with type xsd:integer.

RDFLiteralFloat This table holds all literals with type xsd:float.

RDFLiteralBoolean | This table holds all literals with type xsd:boolean.

RDFLiteralString This table holds all literals with type xsd:string.

RDFTypedLiteral This table holds all typed literals that are not contained in the above
literal tables.

RDFPlainLiteral This table holds all plain literals.

RDFUserProp This table holds the names of user specified properties.

RDFProp* These tables hold user specified property groups.

the RDFUserProp and RDFProp* tables to speed up the queries on certain user
specified properties.

The statement tables (i.e. the first eleven tables), which hold RDF(S) triples,
contain a flag column which can take one of the following values: EXPLICIT,
DERIVED and SUSPENDED. The value EXPLICIT and DERIVED indicate whether the
statement is explicitly declared or is derived by inference. The value SUSPENDED
is a temporary value which will be used in the process of inference.

Note that the RDF data are redundantly stored in the statement tables.
For example, a statement like (?x, rdf:type, ?7y) exists both in the RDFType
table and RDFStatement table. In addition, as mentioned above, we store derived
statements together with explicitly declared statements in the tables. This can
also be seen as a kind of redundancy. However, this redundancy greatly facilitates
and speeds up query processing.

— As derived statements are stored together with the explicitly declared state-
ments, answering queries involving inference is almost as quick as answering
queries without inference.

Since the data contained in each table are complete by itself, the minimum
number of tables are need to support a query. In this way, table join oper-
ations are greatly reduced. For example, the RDFSubProp table itself is able
to support the property hierarchy queries.

For most simple queries, only a single statement table is involved. As a
result, a single SQL sentence can answer the query and hence we could
simply utilize some SQL functions (e.g. ordering) provided by DBMS which
are more efficient than those implemented by ourselves outside DBMS.

An Approach to RDF(S) Query, Manipulation and Inference on Databases 175

3 Inference on Databases

Reasoning on existing knowledge to discover implicit information is an important
process on the Semantic Web. Common queries, such as “what are the (direct
and indirect) sub-classes and instances of an exiting class” and “which instances
have a certain relationship with a given instance”, may all involve inference.

In real-world applications, most users wish to view a knowledge base at the
semantic level, that is they want to query the derived data together with the
explicitly declared ones. Currently in most RDF(S) management systems, the
inference is not performed until it is imperative to answer a query. However,
answering queries in this way might be time-consuming, especially when the data
amount is large or the query is complex, which is the case in practice. Therefore,
we choose to achieve better query performance at the cost of larger storage size.
In other words, we choose to compute the complete RDF(S) closure and store
all the derived RDF(S) statements in the database together with the explicit
RDF(S) statements. When the knowledge base is modified, inference would be
performed to maintain the consistency and completeness of the inferred data.

Our inference supports a core subset of the RDF(S) entailment rules includ-
ing rdf1, rdfs2 — rdfsl1l, rdfs13 (as defined in the RDF Semantics docu-
ment [3]). We call these twelve rules the rule set and the involved five RDF(S)
properties (rdfs:domain, rdfs:range, rdfs:type, rdfs:subProperty0f and
rdfs:subClass0f) the reserved property vocabularies. This rule set is selected
based on the entailment rules’ importance and usage in common RDF ontology
engineering scenarios.

In order to reduce the inference cost for different scenarios, two inference
modes are provided, i.e. the batch mode and the incremental mode. In the batch
mode, RDF(S) closure is not computed until the system is told to do so. This
mode is suitable for batch update to the RDF data, since batch update may
lead to a large amount of closure computation that would cost a long time. We
design an optimized algorithm for this mode to compute the RDF(S) closure. In
section B0l we will give the detailed description of this algorithm.

In the incremental mode, inference is performed whenever there are updates
to the RDF data. The algorithm for the incremental mode is more like a forward-
chaining closure computing method. However, since the forward-chaining closure
computing method does not support retractions, we design an special algorithm
for this purpose. We will give the detailed description in section

3.1 Inference in the Batch Mode

A brute force method of calculating the closure is to repetitively grow the RDF
knowledge base according to the rule set until a fix point is reached. This straight-
forward method, however, is very inefficient, especially when it is performed on
a relational database. By analyzing the calculation process, we found that the
inefficiency of the process mainly stems from the following problems:

P1: The two transitive predicates, rdfs:subProperty0f and rdfs:subClassO0f, give
rise to repetitive calculation.

176 J. Lu et al.

P2: The rules in the rule set, such as rdfs7, and the rdfs:subProperty0f predicate
create interdependent derivation relationships among the predicates. The iteration
caused by such interdependency relationships is the main source of the inefficiency.

P3: On a relational database, the insertion of triples one by one is much less efficient
than using batch SQL commands.

To better explicate first two problems, we present here a simplified graph of
the predicates’ derivation relationships caused by the rule set (Figlll). Edge labels
are names of the rules that cause the derivation relation. Two set of derivation
relations are omitted from the graph:

R1: Rules rdfl, rdfs2, rdfs3, rdfs4a and rdfs4b may derive rdf:type from any
predicate.

R2: Rule rdfs7 may derive any predicate from any predicate due to rdfs:subProperty
0f relations.

rdfs:domain/range rdfs 2, 3
dfs 5 pfs 7 rdfs 11 rdfs 9

rdfs:subPropertyOf &rdfs:subClassOf ﬂ» rdf:type

rdfs 8,1

rdfs 7

Other predicates

Fig. 1. Derivation Relationships among Predicates in The Rule Set

The self loops caused by rdfs5, rdfsil, rdfs9 and rdfs7 in the figure
actually represent the problem P1. Without considering self loops, it is now
clear from Fig[] that rdfs6, rdfs8, rdfs10 and R2 create big and complex
loops in the derivation graph, which is just the cause of P2.

Since P2 is the main source of the inefficiency of the brute force method, now
we first attack the problem P2. We find that, if some dependency relationships
could be removed, then the graph could become a directed acyclic graph and the
vertices (rules) could be topologically sorted, so the repetitive calculation in P2
can be reduced to just one pass. For this purpose, we now introduce the OSA
(Original Semantics Assumption).

Original Semantics Assumption. Let A be the set of RDF(S) axiomatic triples
defined in the RDF Semantics document [3]. Let 7 be the closure of A un-
der the rule set. Let {2 be the closure of the current RDF knowledge base
under the rule set and R C {2 be the set of all the triples whose subject
is in the set {rdfs:domain, rdfs:range, rdfs:type, rdfs:subPropertyQf,
rdfs:subClass0f}. The original semantics assumption supposes that R C 7.

The assumption actually assumes that the RDF knowledge base does not
strengthen the semantics of the five reserved RDF(S) property vocabularies.

An Approach to RDF(S) Query, Manipulation and Inference on Databases 177

They still keep their original meaning defined by the axiomatic facts. In most
RDF(S) ontology engineering scenarios, this assumption is quite natural and can
be satisfied because most applications does not require the change of the original
RDF(S) semantics.

Under the OSAP , the rdfs6 and rdfs10 rules

rdfs6: (uuu rdf:type rdf:Property) — (uuu rdfs:subProperty0f uuu)
rdfs10: (uuu rdf:type rdfs:Class) — (uuu rdfs:subClassOf uuu)

become trivial. We can apply them only once after the rdf:type closure is
obtained. We can be sure that no more triples can be obtained from the results
of them. That is, they can not create loops in the derivation graph. Now let’s
look at the rdfs8 rule:

rdfs8: (uuu rdf:type rdfs:Class) — (uuu rdfs:subClass0f rdfs:Resource)

Under the OSA, rdfs:subClass0f can not be other property’s sub-property and
rdfs:Resource can not be other class’s sub-class. Therefore, this rule can be
applied only once after the rdf : type closure is obtained. We can be sure that no
more triples can be derived from the result of it. Hence this rule can not create
loops in the derivation graph either. We can now safely remove the back lines
caused by rdfs6, rdfs8, and rdfs10 from Figlll

Finally, let’s review R2. Because of the OSA, the five reserved vocabularies
cannot be the sub property of other predicates. Hence the rdfs7 rule can only
create derivation relation from “other predicates” to the five reserved vocabu-
laries in Fig[ll If R2 is now drawn on Figlll the only loop it can create is the
one between the “other predicates” and the rdfs:subProperty0f. However, this
loop can be broken because the rdfs:subPropertyOf closure actually can be
independently computed (step 2-4 of the algorithm described below).

Now, the only loops left in Fig[Ilare the self loops. Except for these self loops,
our algorithm can thus compute the entire closure in one pass.

In the following description, ?x, 7y, 7z are used as variables to represent
any resources or literals, with the restrictions that the predicates of a triple can
only be URI references and the subjects of a triple cannot be literals.

1. Add all the RDF(S) axiomatic triples to the database.

2. Calculate the closure of all the triples with the form (?x, rdfs:subProperty0f,
rdfs:subProperty0f)
— This step can be done as follows. Let P be a set of resources that initially has
rdfs:subProperty0f as the only member. For any triples of the form (?x, P,
P), add ?x to P. Repeat this rule until fix point. Then P should be the set of the
possible sub properties of rdfs:subProperty0f.

3. (?x, P, ?y) — (7x, rdfs:subProperty0f, ?y)

4. Calculate the rdfs:subProperty0f closure, that is, (?x, rdfs:subProperty0f,
?y), (?y, rdfs:subProperty0f, ?z) — (?x, rdfs:subProperty0f, 7z)
— This step will be repeated until fix point.

2 The Original Semantics Assumption is actually stronger than what we really needed.
However, it is easier to explain and understand.

178 J. Lu et al.

— After this step, we can obtain four sets D, R, C and 7, which represent the

set of the sub properties of the reserved property vocabularies rdfs:domain,

rdfs:range, rdfs:subClass0f and rdf:type respectively.

(?x, D, ?7y) — (7%, rdfs:domain, 7?7y)

(7x, R, ?7y) — (?x, rdfs:range, ?y)

(7x, C, ?7y) — (7x, rdfs:subClass0f, 7y)

Calculate the rdfs:subClass0f closure, that is, (?x, rdfs:subClassO0f, ?7y),

(?y, rdfs:subClass0f, 7z) — (?x, rdfs:subClass0f, 7z)

— This step will be repeated until fix point.

9. (7x, 7, ?7y) — (7%, rdf:type, 7y)

10. (?x, ?y, ?7z), (?y, rdfs:domain, 7a) — (?x, rdf:type, 7a)

11. (?x, ?y, 7z), (?y, rdfs:subProperty0f, ?7a), (?a, rdfs:domain, 7b) — (7x,
rdf :type, 7b)

12. (?x, ?y, 7z), (?y, rdfs:range, 7a) — (?7z, rdf:type, 7a)

13. (?x, ?y, ?7z), (7y, rdfs:subProperty0f, ?a), (7a, rdfs:range, ?b) — (7z,
rdf :type, 7b)

14. (7x, 7?7y, ?7z) — (?x, rdf:type, rdfs:Resource)

15. (?x, ?y, ?7z) — (7z, rdf:type, rdfs:Resource)

16. (?x, 7y, 7z) — (7y, rdf:type, rdf:property)

17. (?x, rdf:type, 7y), (?y, rdfs:subClass0f, ?z) — (7x, rdf:type, ?z)

18. (?x, rdf:type, rdfs:Class) — (?x, rdfs:subClassOf, ?x)

19. (7%, rdf:type, rdfs:Class) — (7x, rdfs:subClass0f, rdfs:Resource)

20. (7x, rdf:type, rdfs:Datatype) — (?x, rdfs:subClass0f, rdfs:Literal)

21. (?x, rdf:type, rdf:property) — (?x, rdfs:subProperty0f, 7x)

22. (7x, ?y, ?z), (?y, rdfs:subProperty0f, 7a) — (7x, 7a, ?z)

® N oo

After applying these steps , it can be proved that under the OSA, all triples
which can be entailed by the rule set have been added to the database. We have
also verified the correctness of our algorithm using W3C RDF test cases.

Now let’s turn to the problem P1. In the two steps of computing the tran-
sitive closure on rdfs:subProperty0f and rdfs:subClassO0f, actually a Floyd
[4] like algorithm is used for better efficiency. Take rdfs:subProperty0f for ex-
ample. For each property 7y, the rule “(?x, rdfs:subProperty0f, ?7y), (7y,
rdfs:subProperty0f, ?7z) — (7x, rdfs:subProperty0f, 7z)” is applied by
table join to insert entailed triples into database in batches. This implementation
has better performance than the two intuitive implementations as follows.

— One possible implementation is to apply the transitive rule directly on the database
until fix point. On each iteration of applying the transitive rule, table join and batch
insertion SQL command are used. The main drawback of such an implementation
is that the less constrained self join of the RDFSubClass table will result in too
many duplicate insertions, consuming too much time and memory when the data
amount in the table is large.

— Another possible implementation is to read all the initial rdfs:subClass0f triples
into the memory (if it is possible), perform the Floyd algorithm in the memory,
and finally add the newly derived rdfs:subClass0f triples to the database. The
main drawback of this implementation is that the one by one insertion of the
resulting triples using SQL will consume much more time than using a similar
batch insertion SQL command.

An Approach to RDF(S) Query, Manipulation and Inference on Databases 179

As to our Floyd like algorithm, the new triples are added to the database mainly
in batches, while the self join of the RDFSubClass table is much more constrained,
thus achieving better performance.

Finally, for the problem P3, on each rule application in our algorithm, we
employ table join and batch insertion SQL command.

3.2 Inference in the Incremental Mode

In this section, we will describe the algorithm used in the incremental mode.
In the incremental mode, every modification to the RDF(S) data will trigger
computing the changes of the RDF(S) closure. The modification to the RDF(S)
data can be regarded as appending some RDF triples and/or removing some
RDF triples. We will discuss these two kinds of modification respectively.

When explicit triples are appended to the knowledge base, a simple forward-
chaining closure computing is performed. The key point is that, according to the
characteristic of the triple being appended, only a few rules in the rule set which
may be relevant to the triple will be triggered. For example, if the predicate of
the triple is not one of the RDF(S) reserved property vocabularies, only rdf1,
rdfs4a, rdfsdb and rdfs6 will be triggered.

When explicit triples are removed from the knowledge base, maintaining
the consistency of the RDF(S) data is not as easy as when inserting triples.
Since some triples derived from the removed triples may also be derived from
some remaining triples, they could not be simply removed. However, examining
one by one whether they can be derived from remaining triples is greatly time
consuming. So we propose an algorithm which first removes all the suspect triples
and then perform an incremental batch closure computing.

First, the triples to be removed are marked as SUSPENDED instead of being
removed from the database immediately. Simultaneously, these triples are added
to a queue for further processing.

Second, for each triple in the queue, the rules in the rule set that may be rel-
evant to the triple are checked to see if there are DERIVED triples in the database
that could be derived from the triple being processedE If such triples exist, they
are marked as SUSPENDED and are added to the queue. This process continues
until the queue becomes empty. Actually, it is a Breadth-First Search.

Third, all the SUSPENDED triples are removed from the database. All the
tables which contain SUSPENDED triples are marked as DIRTY.

Finally, an incremental batch closure computing, similar to the algorithm
used in the batch mode, is performed. The difference is that, if a table is not
marked as DIRTY, the steps that add triples to that table will be skipped.

4 Query and Manipulation Through RQML
In order for both users and programs to query and manipulate RDF data in
an uniform manner, here we define a declarative RDF Query and Manipulation

3 The triples that are marked as SUSPENDED are still regarded as valid triples in the
database when the rules are being checked.

180 J. Lu et al.

Language (RQML). RQML is designed based on several previous RDF query
languages such as RQL[5], RDQL[2] and SeRQLI[6].

The queries in RQML are designed to be maximally syntax-compatible with
RDQL, while at the same time borrow features like path expression from SeRQL.
In addition, as literal comparison and calculation are frequently used in prac-
tice, RQML provides direct support of these features on several widely used
XML literals. Such support is not available in most of the previous RDF query
languages.

In addition to the above features, RQML queries support sorting on the result
URI references or literals. Further, the implementation of RQML queries allows
the query results to be read in a streaming fashion. Therefore with all these
features, the use of RQML in practice can be quite scalable.

Being also an RDF manipulation language in addition to an RDF query
language, RQML includes some necessary manipulation commands like INSERT,
DELETE and UPDATE.

Here are some examples of RQML commandsf

— Example of literal processing: Find all the employees who is older than 35 and
taller than 1.75 meter and whose stature is greater than 0.08 times his/her age.

SELECT 7p WHERE (?p, <!http://employee/age>, 7a),
(?p, <'http://employee/height>, 7h)
SUCHTHAT 7a > 35 AND 7h. > 1.75 AND ?h. > 0.08 * 7a

— Example of UPDATE command: Update the level of all the engineer employees
with Linux certification to Senior Engineer.

UPDATE (7p, <!'http://employee/level>, °‘Senior Engineer’’)
WHERE (?7p, <!http://employee/level>, °‘Engineer’’),
(7p, <'http://employee/hasCert>, ‘Linux’’).

5 Query and Inference Performance

In this section we report the results of the experiments performed to empirically
evaluate the performance of query and inference of our approach. The inference
performance test is first presented followed by the query performance test.
Two data sets are used in the experiments. One is an artificial data set
called “T'57” that consists of only rdfs:subClass0f and rdfs:subProperty0f
relation triples that construct a class hierarchy tree and a property hierarchy
tree. Both the two trees have a maximum height of 7 and a constant fan-out of
5. Another data set is “WN” | which is the RDF representation of WordNetf. All
experiments are performed on a PC with one Pentium-4 2.4GHz CPU and 1GB
memory running Windows XP Pro, using J2SDK 1.4.1 and Eclipse-SDK-2.1.1
connecting to a local machine DB2 UDB V8.1 Workgroup Server. The inference

4 Please refer to http://apex.sjtu.edu.cn/projects/orient/Documentation.htm#
RQML for more examples.
® Available at http://www.semanticweb.org/library/

An Approach to RDF(S) Query, Manipulation and Inference on Databases 181

time is measured as the time cost to perform a full RDF(S) closure computing in
the batch mode, starting from the database state of containing only the explicit
triples. The query time is measured as the total time consumed from the sending
of the query to finish fetching all the results from the database.

In our batch mode inference algorithm, the major component that determines
the time complexity is the calculation of the transitive closure of sub properties
and sub classes. The T57 data set is specifically designed to measure the empir-
ical time complexity of it. By growing the two trees in T57 via adding one level
of height each time, a series of growing data set for inference is got. The result
is shown in Figl2l The T57-1 line shows the relation between the inference time
and the number of explicit triples. The T57-2 line shows the relation between
the inference time and the number of triples after inference.

Different from T57, the WordNet data set has a very small RDF Schema
with a very large set of instances and instance relations. The instance data in
the four WordNet RDF files are sampled at the same speed. The number of
sampled triples are multiplied by 5 each time and the triples from the four files
are put together to get a series of growing data set for inference. The result is
also shown in Figl2l The WN-1 line shows the relation between the inference
time and the number of explicit triples and the WN-2 line shows the relation
between the inference time and the number of triples after inference.

16407 100
T57-1 —%— Q1
T572 —B— —a—
16406 WN-1 —e— | Q3 —e—
WN-2 —A— 10 4 —a—
100000 /¢ s /(
10000 / /A !
1000
Vi ' % i
100
i A Vs
° / ,a/
e B,a/n%é
10 100 1000 10000 100000 1e+06 1e+07 00 1000 10000 100000 1e+06 16407
Number of Triples Number of Triples After Inference

Inference Time (s)
Query Time (s)

0.001
1

Fig. 2. RDF(S) Inference Performance Fig. 3. RQML Query Performance

Both axes of Figl] are in logl0 scale. The two T57 lines show a linear trend
when the number of triples are large (> 1000). Linear regression analysis of the
last four points at the end of each T57 line shows that the slopes are 1.87 and
1.75 for T57-1 and T57-2 respectively. This indicates approximately O(n!-37) and
O(n*") time complexity. In theory, calculating transitive closure using Floyd al-
gorithm has worst-case time complexity O(n?). When the algorithm is performed
on a database, many factors of the RDBMS may further affect the performance.
Combining the experiment result, we tend to empirically predicate that, when
performed on a largely tree hierarchy ontology like T57 on a relational database,
the time complexity of our batch inference algorithm is around O(n?).

Because the WordNet RDF data consists mostly of instance data, its number
of inferred triples and inference time are much lower than T57 It, however, shows

182 J. Lu et al.

the same trend of linear relation in Figl2l Linear regression analysis of the last
four data points at the end of each WN line indicates approximately O(n"92) and
O(n%93) time complexity. Similarly, we empirically expect that, when performed
on a largely instance data ontology like WordNet on a relational database, the
time complexity of our batch inference algorithm is around O(n).

We can see in Fig[] that, in the experiments, the number of the triples after
inference is in linear proportion to that of the explicit triples. If an RDF(S) on-
tology satisfies this property and the OSA, with characteristics between T57 and
WN, we empirically estimate that its inference time complexity on a relational
database is likely between O(n) and O(n?). The n here can represent either the
number of the explicit triples or the number of the triples after inference.

The RQML query performance is tested on both T57 and WordNet data set
with derived triples. We used the following four queries to test sub-class query,
simple query, query with join and query involving literals:

Q1: SELECT ?X WHERE (?X, <rdfs:subClass0f>, [aClass])
Q2: SELECT ?X WHERE (?X, <wn:similarTo>, [randomAdjective])
Q3: SELECT ?Y WHERE ([randomNoun] <wn:hyponymOf>, 7X),
(?X, <wn:wordForm>, 7?7Y)
Q4: SELECT 7?X WHERE (?X, <wn:wordForm>, ?Y) SUCHTHAT ?Y=[randomWordForm]

Q1 is performed on the T57 data set to obtain all subclasses of a given class. For
each T57 data sample, and for each height of the tree hierarchy in that sample,
Q1 is executed once using a class in that height. The query time of Q1 is then
obtained as the average of the execution times. Q2, Q3 and Q4 are performed
on the WordNet inferred data sets. The query time is averaged over 1000 query
executions by randomly selecting a WordNet constant to replace the random
constant in the above queries. The result is shown in Fig[3

Both axes of Figl3 is in logl0 scale. Lines in Figll are in linear trend, es-
pecially Q1. Linear regression analysis of the four lines shows approximately
O(n%8), O(n®®), O(n*%), and O(n' %) time complexity for them. In theory,
the worst-case time complexity of querying on one database table with indices
is O(nlog n). The actual query time also depends on the size of the result set.
This test shows that the query time has a strong tendency of linear time O(n)
complexity and the query is executed quite speedy.

6 Related Work

There exist some other RDF(S) management systems such as Jena2 [2] and the
Sesame system [6]. They also support storage and management of the RDF data
on a relational database, but they only treat database as an alternative storage
method. When answering queries, performing the inference on the fly is time
consuming. In contrast, our approach performs efficient inference on database
and stores all the derived triples to optimize the online query answering response.

The incremental inference algorithm used in our system is similar to the
algorithm in [7]. The main difference is that, in [7], after marking some of the
triples as SUSPENDED, these triples are examined whether they can be entailed

An Approach to RDF(S) Query, Manipulation and Inference on Databases 183

from explicit triples. However, as this examining process requires accessing the
database very frequently and fragmentally, such an approach is not as efficient as
it seems to be. On the other hand, although our algorithm may first remove some
triples and then insert them back to the database, these removal and insertion
operations are executed in a batch manner (that is, use less SQL commands to
circumvent the problem P3 discussed in Sec[3)). Thus, our algorithm could run
faster than the one proposed by [7] in most cases.

Another inference algorithm that should be mentioned here is RETE [g]. As a
generic rule-based forward-chaining algorithm, RETE is very efficient. However,
as the RETE algorithm will consume lots of temporary memory in the inference
procedure, it is not suitable for processing large-volume RDF data on databases.

7 Conclusion

In this paper, we present our approach on query, manipulation and inference of
RDF data on relational databases. Different from most of the previous systems,
the design of our approach aims at highly efficient query and inference with large-
volume RDF data on relational databases. For query, we chose to store all the
derived triples in database as well as the explicit ones. For inference, we carefully
designed our algorithms for two inference modes, i.e. the batch mode and the
incremental mode. We also defined a powerful RDF(S) query and manipulation
language RQML, and presented the evaluation result of our approach.

References

1. Zhang, L., Yu, Y., Lu, J., Lin, C., Tu, K., Guo, M., Zhang, Z., Xie, G., Su, Z., Pan,
Y.: ORIENT: Integrate ontology engineering into industry tooling environment. In:
Proceedings of the 3rd International Semantic Web Conference (ISWC2004). (2004)

2. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF storage and
retrieval in Jena2. In: Proceedings of the first International Workshop on Semantic
Web and Databases (SWDB), Berlin,Germany (2003) 131-150

3. Hayes, P., McBride, B.: RDF Semantics. W3C Recommendation, W3C (2004)
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.

4. Floyd, R.W.: Algorithm 97: Shortest path. Commun. ACM 5 (1962) 345

5. G.Karvounarakis, S.Alexaki, V.Christophides, D.Plexousakis, Scholl, M.: RQL: A
declarative query language for RDF. In: Proceedings of the Eleventh International
World Wide Web Conference (WWW02). (2002)

6. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for
storing and querying RDF and RDF Schema. In: Proceedings of the 1st International
Semantic Web Conference (ISWC02). LNCS 2342 (2002) 54-68

7. Broekstra, J., Kampman, A.: Inferencing and truth maintenance in rdf schema. In:
Proceedings of the First International Workshop on Practical and Scalable Semantic
Systems (PSSS). (2003)

8. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match prob-
lem. Artificial Intelligence 19 (1982) 17-37

Clustering OWL Documents Based
on Semantic Analysis

Mingxia Gao', Chunnian Liu', and Furong Chen?

Beijing Municipal Key Laboratory of Multimedia and Intelligent Software
Technology, Beijing University of Technology, 100022, Beijing
gaomx@emails.bjut.edu.cn
ai@bjut.edu.cn
2 R&D Center TravelSky Technology Limited
bjcfr@163.com

Abstract. Clustering OWL documents on the WWW or the Semantic
Web is an important task in domain of ontology research and WI re-
search. This paper analyzes semantic of OWL documents and proposes
a method for computing semantic similarity between OWL documents.
The method considers inheritance of objects and representation of com-
plex classes. It can be used in clustering OWL documents built by experts
and OWL documents learned by automatic tools.

1 Introduction

Ontology, special domain ontology [1, 2], plays an important role in information
extract and exchange. These ontology documents must be sound and complete.
Now, most of them had been built by experts. On the one hand this work con-
sumes lots of time, on the other hand these ontologies have personal features.
Clustering existing lots of ontology documents on the WWW or the Semantic
Web is important for user to refine ontology or integrate ontology.

One of typical problems on Web Intelligence (WI) [3] technologies is PSML
(Problem Solving Makeup Language). The core of PSML is distributed inference
engines. The precondition of PSML is clustering appropriate contents and meta-
knowledge like ontology information on the Semantic Web. Therefore clustering
ontology documents on the WWW or the Semantic Web is very important for
PSML.

OWL [4], which is the standard web ontology language proposed by W3C,
has become the new standard for ontology representation and exchange on the
Internet. It uses characteristic of other ontology languages for reference in its de-
veloping process. Clustering research in this paper aims at the OWL documents.
Clustering other ontology languages like as: RDF, RDFS, DAML can amend the
method in the paper.

1.1 Related Work

A key problem in clustering research is computing semantic similarity between
objects. Traditional distance-based method in computing similarity between

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 184-[193] 2005.
© Springer-Verlag Berlin Heidelberg 2005

Clustering OWL Documents Based on Semantic Analysis 185

database objects is not suitable for OWL documents. OWL essentially is semi-
structure data. So evaluating semantic similarity can use methods of computing
semantic similarity between XML documents for reference. The methods in lit-
eratures [5-8] can be divided into two kinds: one is structure similarity [5,7, 8]
and another is semantic similarity [6]. The common feature of structure simi-
larity is modelling XML document as XML tree and evaluating similarity by
tree operation [8] or path structure [5,7]. Semantic similarity firstly computes
similarity between basic elements in document, then evaluates full document
based on these similarities. However, the methods can’t directly evaluate sim-
ilarity between OWL documents. The reason is that the method of structure
similarity lacks semantic information whereas the method of semantic similarity
only considers basic elements in XML document. OWL document is a language
of representing knowledge. It can describe all kinds of objects in world and re-
lations between the objects. The most important difference from XML is that
OWL is an inferential language with semantic. It enhances inheritance between
objects and complex classes representation.

This paper considers inheritance relation between objects and complex classes
representation in OWL document. Then it proposes a method of computing se-
mantic similarity between OWL documents and integrates it with hierarchical
clustering algorithm to cluster OWL documents, which are built by experts or
auto tools. The results of experiments show the algorithm has better effect on
clustering OWL documents.

There are contributes in the paper as follow:

1. The paper proposes a method of computing similarity between simple classes
based on resource similarity and property constraints.

2. When the paper evaluates similarity between complex classes, it uses set
operation for reference.

3. The method in the paper has better effect on clustering OWL documents,
which are built by experts or auto tools.

1.2 Paper Organization

The paper is organized as follows. Section 2 discourses upon method of com-
puting similarity between classes in OWL documents. Section 3 introduces how
to compute similarity matrix of OWL documents set. Experimental results are
found in section 4. Section 5 concludes the paper and presents future work.

2 Similarity of Two Classes

An OWL concerns classes, properties, instances of classes (named individual). To
compute similarity of two OWL documents, it is necessary to compute similar-
ity of elements in OWL documents. Basic elements in OWL are classes. Classes
have three types: simple named classes, anonymous classes, and complex classes.
Commonly anonymous classes have not own local names, but they have prop-
erties which restrict instances of anonymous classes. Anonymous classes can be

186 M. Gao, C. Liu, and F. Chen

seen as special simple classes. DatatypeProperty in OWL denotes relation be-
tween instances of classes and RDF literals or XML Schema and ObjectProperty
denotes relation between instances of two classes. Similarity of properties includ-
ing DatatypeProperty and ObjectProperty just explains similarity of two classes,
which are domains of these properties. We propose a method to compute simple
classes similarity that considers the basic semantic, properties of classes.

2.1 Similarity of Two Simple Classes

Members of simple classes generally are restricted by directly sup-classes and
their properties as Figure 1. According to inheritance of class, a class can inherit
its all sup-classes properties. In the way, restriction of sup-classes can translate
into restriction of properties in sup-classes. In addition to consider basic semantic
similarity of classes (names of simple named classes denote semantic), similarity
between properties which restrict the classes in computing similarity of two
classes must be considered.

Property can divided into two sorts: DatatypeProperty, ObjectProperty. Be-
cause two kinds of properties have different restrained rang, it is not meaning
to compare similarity of different property typies. So similarity of two classes
can be computed by basic semantic similarity BasicSim(cy, c2)(If ¢1, ca have an
anonymous class, then BasicSim(cq,c2) = 0.), similarity of DatatypeProper-

ties in two classes, and similarity of ObjectProperties in two classes as Equa-
tion 1. where w; — Wo — [number(BMDP)| wWa — [number(BMOP)|
’ 1 [number(sum)|’ 2 [number(sum)| * =3 [number(sum)|

number(sum) = 14 |number(BM D P)|+ |number(BM OP)|, number(BM DP)
and number(BM OP) are number of the most mapping DatatypeProperty pair
and number of the most mapping ObjectProperty pair respectively.

ClassSim(c1, ca) = w1 BasicSim(cy, c2)

+ws Z DataPropertySim(ci1.pi, c2.pj)
(pi,p;)€EBMDP (1)

+ w3 Z Object PropertySim(ci.p;, c2.pj)
(pi,p;)EBMOP

mmpcms Sup—property

é% 5\% Direct sup-class

SymmetricProperty ransitivePr
A DatatypeProperty v perty TransitiveProperty

nxo’l'n O Oblectbroperty

InverseFunctionalProperty FunctionalProperty

Fig. 1. Relation of class Fig. 2. ObjectProperty restriction

Clustering OWL Documents Based on Semantic Analysis 187

Classes, DatatypeProperties, ObjectProperties and individuals in OWL are
essentially resources. Determining basic semantic similarity of these resources
is matching their names. Their names include local names and namespaces. In
general, different OWL documents have their own namespaces. Namespaces only
denote location of resource. So computing similarity between names considers
local name. Comparing rule is that if local names of two resources are same, value
of their basic semantic similarity is ”1”; otherwise value of their basic similarity
is 70”.

DataPropertySim(p1,p2) denotes similarity of two DatatypeProperties.
DatatypeProperties may range over RDF literals or simple types defined in
accordance with XML Schema datatypes. If DatatyperProperty has rang re-
striction, determining similarity of DatatypeProperties must consider their rang
restriction other than their basic semantic similarity as resources. Rang restric-
tion directly compares Datatypes in Table 1, which are recommended for use
with OWL. The similarity of DatatypeProperties is defined as Equation 2.

BasicSim(p1, p2) :no rang restriction

DataPropertySim(p1,p2) = { wiBasicSim(p1,p2) : (2)
+w2RangSim(p1,p2):w1 + wo = 1

Table 1. Datatype in OWL

xsd:string xsd:normalizedString|xsd:boolean xsd:decimal
xsd:float xsd:double xsd:integer xsd:NCName
xsd:nonNegativelnteger|xsd:positivelnteger |xsd:nonPositivelnteger|xsd:negativelnteger
xsd:long xsd:int xsd:short xsd:byte
xsd:unsignedLong xsd:unsignedInt xsd:unsignedShort xsd:unsignedByte
xsd:hexBinary xsd:base64Binary xsd:dateTime xsd:time

xsd:date xsd:gYearMonth xsd:gYear xsd:gMonthDay
xsd:gDay xsd:gMonth xsd:anyURI xsd:token
xsd:language xsd:NMTOKEN xsd:Name

ObjectProperty relates individuals in two classes. An ObjectProperty can
be defined to be a specialization (subproperty) of an existing ObjectProperty.
In the condition, it can inherit super property’s domain and rang as Figure 2.
Similarity of ObjectProperty mainly is restricted by their ranges other than their
basic similarity as resources. Though type restriction and cardinality restriction
have a little influence on similarity of ObjectProperty, they can be neglected to
avoid expensive time. So computing method of ObjectProperty similarity is the
same as DatatypeProperty’s (Equation 3).

However, similarity of ObjectProperty rang (RangSim(pi,p2)) is different
from similarity of DatatypeProperty rang. It is mainly decided by similarity of
classes which restricts rang of ObjectProperty. Note that if class of represent
rang includes class of represent domain, the computing method of simple class

188 M. Gao, C. Liu, and F. Chen

similarity can come forth infinity circulation. In the situation, similarity of Ob-
jectProperty is to match their local names, that is basic semantic similarity.

_no rang restriction

BasicSim(ps, p2) "infinity circulation

Object PropertySim(p1,p2) = (3)

w1 BasicSim(p1, p2)
+w2ClassSim(p1.c, p2.c)iwy +we =1

To sum up, the detailed algorithm about similarity of two simple classes is
in the appendix.

2.2 Similarity of Complex Classes

In order to improve reasoning capability, deducible ontology languages like as:
DAML and OWL provide representation of complex classes comparing ontology
language of metadata representation such as: RDF, RDFS. Representation of
complex classes in OWL document includes Enumerated, Intersection, Union,
Complement, and Equivalence. Complex classes also are sets. Evaluating their
similarity can use similarity of two sets for reference.

Enumerated classes directly enumerate individuals when they are represented
in OWL document. So similarity of two enumerated classes is the percent of
number of same individuals in two classes on maximum number of individuals
in every class. If there is only one Enumerated class in comparing two classes,
similarity between them can directly use similarity of basic resource.

Example 1: Figure 3 represents three different classes ” WineColor” in three
OWL documents. According to the above comparing rule:

ClassSim(winel . WineColor, wine2. WineColor) = 2/3

ClassSim(winel.WineColor, wine3.WineColor) = 1

Union, Intersection, Complement and Equivalence are set operations. Eval-
uating similarity between Union (Intersection, Complement, Equivalence) and
simple class can be translated into computing similarity between members in
set operations and simple class. We use theory of fuzzy sets to evaluate their
similarity for reference. Table 2 shows detailed expression. Strictly speaking,the
expression is not right. However, it can reflect value of similarity in a way. Note
that if members of complex classes include complex classes again, the computing
method will come forth infinite circulation. In the situation, comparing classes
can directly be seen as resources and their similarity is their basic semantic
similarity.

Example 2: Figure 4 is representation of complex classes in two OWL docu-
ments. According to computing rule:

. { ClassSim(Wine, WhiteBurgundy) }
ClassSim (W hiteWine, W hite Burgundy) = min
ClassSim(anonymityl, White Burgundy)

Clustering OWL Documents Based on Semantic Analysis 189

<owl:Claszs rdf:ID="WineColaor">
{rdf=:subClasz=z0f rdf:resource="#Winelescriptor” />
<owl:one0f rdf:parselyvpe="Collection”>
<owl: Thing rdf:about="#White"/>
<owl: Thing rdf:about="#FRoze” />
<owl: Thing rdf:about="#Red" />
£ owl: onedf >
SSowlClasss
<owl:Claszs rdf:ID="WineColaor">
{rdf=:subClas=z0f rdf:resource="#Winelescriptor” />
<owl:onedf rdf:parseTvpe="Collection”>
<owl: Thing rdf:about="#White"/>
<owl: Thing rdf:about="#FRoze” />
£ owl: onedf >
SSowlClasss
<owl:Class rdf:ID="WineCaolaor" />

Fig. 3. Enumerated classes

<owl:Class rdf:ID="WhiteWine" >
<owl:intersectiondf rdf:parzelype="Collection”>
<owl:Class rdf:about="#Wine" />
<owl:Restriction:>
{owl:onProperty rdf:resource="#hasColor” />
<owl:hasValue rdf:resource="#Vhite" />
<fowl:Restrictions
<fowl:irterzect iondf
<fowl:Class>
<owl:Class rdf:ID="WhiteBurgundy” />

Fig. 4. Intersection classes

Table 2. Computing method of set operations

Set operations|Logic Computing equations

Union C = AU B|ClassSim(C, D) = max{ClassSim(A, D), ClassSim(B, D)}
Intersection |C' = AN B|ClassSim(C, D) = min{ClassSim(A, D), ClassSim(B, D)}
Complement |C=—-A |ClassSim(C,D)=1— ClassSim(A, D)

Equivalence |[C=A ClassSim(C, D) = ClassSim(A, D)

3 Clustering OWL Documents

In addition to classes, similarity between instances is also considered because
we call the set of individuals the extension of the class. An OWL document

190 M. Gao, C. Liu, and F. Chen

can be parsed as set of classes and set of individuals. Similarity of two OWL
documents is defined as weighted sum of classes sets similarity and individuals
sets similarity.

If there are two sets of classes {c1,¢a, -+, cn} and {b1,ba, -+, by}, they will
give birth to the matrix of m *x n, in which every element is similarity of corre-
sponding two class in sets according to the algorithm in section 2. Classes sets
similarity is the following equation.

max{d ;L max{z, -, Tin},)5y max{@iy, -, Ty}

max{n, m}

ClassesSim(o1,02) =

Similarity of individuals sets satisfies the following equation.

number (o1, 02)

Inst Si =
nstanceSim(o, o) max{number(o1), number(oz)}

where number(o1,02) is number of same individuals in two OWL documents;
number(o1) and number(oz) is number of individuals in documents 0 and og
respectively. Generally, OWL documents built by experts represent vocabularies
in domain and rarely deal with individuals. OWL documents learned by auto
tools include lots of individuals. From the point a view, selecting weight in com-
puting similarity of two OWL documents is different.

Set of n documents will obtain an n % n matrix by two-to-two compare. The
matrix is seen as similarity matrix in hierarchical clustering algorithm. However,
we must select right weight, number of clusters, and threshold.

Generally, computing similarity of two OWL documents includes two cir-
culations. The first is computing similarity of two classes. Complication of the
algorithm is product of number of properties in two classes. The second is used to
compute similarity of two documents. Complication of the algorithm is product
of number of classes or individuals in two documents. Complication of comput-
ing similarity matrix is decided by number of documents and complication of
computing similarity of two documents.

4 Experiments

To evaluate performance of the method in the paper, we collect two sets of OWL
documents on different application domain from Internet. One is built manually;
another is learned from text by auto tools. The number of classes and individuals
in these documents ranges from 20 to 300. We implement the method in Java and
run the experiments on 2.4GHZ Pentium 4 PC with 1GB RAM under Windows
2000 professional.

Table 3 shows the method of computing similarity matrix of OWL set has
better effect on two kind sets of documents: OWL documents built manually
and OWL documents learned by auto tools. However, efficiency of auto sets
is better than manual sets’. Through random sampling, we find that there are
fewer complex classes and relation of class-property in auto sets than in manual

Clustering OWL Documents Based on Semantic Analysis 191

Table 3. Process time

Time of computing similarity matrix

Number of documents

Auto set(s) Manual(s)
10 45 78
20 190 369
50 1275 3010
200 39800 92000

Table 4. Documents sorts

... . |Auto (30) |Manual (20)
Natural partitioning Numbor Natural partitioning Number
University 5 Book 3
Trade 10 Person and animal 4
College 3 Travel 5
Publication 12 Food 8

sets. Computing similarity of two classes in manual sets expends more time than
computing similarity of two classes in auto sets.

In order to evaluate precision of the algorithm, we select auto and manual
documents that have clearly natural partitioning as Table 4. When setting right
number of clusters, we obtain clusters that exactly match the original partition-
ing. However, we select different weight and threshold for auto sets and manual
sets in clustering these documents. Manual building OWL documents generally
illuminate vocabularies in domain and include a few individuals. So weight of
individuals set is little. Auto learning OWL documents generally include lots of
individuals. So weight of individuals set is more. In addition to, we select differ-
ent threshold for auto sets and manual sets. The reason is that manual building
OWL documents in different domain have less similarity than auto learning OWL
documents from text. Though auto learning OWL documents belong to different
domain, they have some same node as: root node. In the condition, similarity
between these documents generally is not ”0”. So threshold of cluster is greater.

Besides studying performance and precision of the method in the paper, we
also compared it with tree-edit distance in literature [7]. To our best knowledge,
there are not methods which focus on computing similarity between OWL doc-
uments. This paper employs a method of computing similarity between XML
documents—tree-edit distance to compute similarity between OWL documents.
From the performance angle, complication of tree-edit distance is the same as
the method in the paper. But practically, our experiments show that tree-edit
distance algorithm has lower performance. The reason is that when parsing OWL
document as normal XML tree, the number of nodes can be doubled. From the
precision angle, when setting right number of clusters, we don’t obtain clusters
that exactly match the original partitioning. We find that some OWL documents
without correlation obtain large value of similarity using tree-edit distance. The
reason is that the method of tree-edit distance only considers structure. For ex-

192 M. Gao, C. Liu, and F. Chen

Table 5. Two ObjectProperties in OWL

(owl:ObjectProperty rdf:ID="madeFromGrape”)|(owl:ObjectProperty rdf:ID="course”)
(rdfs:domain rdf:resource="f Wine” /) (rdfs:domain rdf:resource="4 Meal” /)
(rdfs:range rdf:resource=" WineGrape” /) (rdfs:range rdf:resource="MealCourse” /)
(/owl:ObjectProperty) (/owl:ObjectProperty)

ample, there are two ObjectProperties in OWL documents as Table 5. Their
semantic are not completely the same, but structure is the same to some extent.

5 Conclusion and Future Work

The paper proposes a method about computing similarity matrix of OWL docu-
ments set based on semantic analysis. In order to cluster OWL documents built
by experts and auto tools, we integrate the method with hierarchical clustering
algorithm. A great lot of experiments results show that the method has better
effect on clustering OWL documents.

Refining or integrating ontologies is future research work according to cluster-
ing results. Another interesting work is management of ontology knowledge base.

Acknowledgements

The work is (Partially) supported by the NSFC major research program: ”Ba-
sic Theory and Core Techniques of Non-Canonical Knowledge” (60496322) and
Open Foundation of Beijing Municipal Key Laboratory of Multimedia and In-
telligent Software Technology.

References

1. Travis D. Breaux, Joel Reed. ”Hierarchical Information Clustering Using Ontology
Languages”, In Proceedings of the 38 th Hawaii International Conference on System
Sciences (HICSS-38), p. 112b, Honolulu, Hawaii, January 2005.

2. Brigitte Safar, Hassen Kefi. ”Domain Ontology and Galois Lattice structure for
Query Refinement” Proceedings of the 15th IEEE international conference on Tools
with Artificial Intelligence,Computer Society2003.

3. Zhong Ning, Liu Jiming, Yao Yiyu (Eds.) Web Intelligence, 440 p, Springer,2003.

4. 1. Horrocks, P. Patel-Schneider, F. Harmelen. ”From SHIQ and RDF to OWL: the
making of a Web Ontology language”, Journal of Web Semantics, 1(1):7-26, 2003.

5. Wang Lian, David Wai-lok Cheung, Nikos Mamoulis, Siu-Ming Yiu. ”An efficient
and scalable algorithm for clustering XML Documents by structure”. IEEE Trans-
actions on Knowledge and Data Engineering, vol 16, 2004, pp82-96.

6. Mong Li Lee, Liang Huai Yang, Wynne Hsu, Xia Yang. ”XCLust: Clustering XML
schemas for effective integration”, CIKM’02, McLean, Virginia, USA2002.

7. J. Yoon, V. Raghavan, V. Chakilam. ”BitCube: Clustering and Statistical Analy-
sis for XML Documents”, Thirteenth International Conference on Scientific and
Statistical Database Management, Fairfax, Virginia, July 18-20, 2001.

8. Theodore Dalamagas, Tao Cheng, Klaas-Jan Winkel, Timos K. Sellis. ” Clustering
XML Documents by Structure”. SETN 2004: 112-121. 108.

Clustering OWL Documents Based on Semantic Analysis 193

Appendix: The Detailed Algorithm

Algorithm: ClassSim

Input: Classes ¢y, c2;

Output: Class similarity

Step 1: Basic similarity

If ¢y = ¢o Then BasicSim(cy,ce) = 1; Else BasicSim(ci,c2) =0

Step 2: computing similarity of DatatypeProperty

If there are DatatypeProperties in ¢; and co Then DPSim(cy,c2) Else DPSim = 0
Step 3: computing similarity of ObjectProperty

If there are ObjectProperties in ¢; and ¢o Then OPSim(cy, ca) Else OPSim =0
Step 4: similarity between simple classes

ClassSim = wy BasicSim(cy, ¢2) + weDPSim(c1, c2) + wsOPSim(cy, ¢2)

Program: DPSim (The program of OPSim(cy, c2) is similar as it.)

Input: Classes c¢q, co

Output: Similarity sum

For every p1; € DatatypePropery(cy)

for every ps; € DatatypePropery(cs)

if p; and py have not rang restriction w; = 1,wy = 0 else w; = 0.5, w2 = 0.5
compute DataPropertySim(pi;, p2;)

SimMatriz = SimMatriz U (p1,, p2;, DataPropertySim)

MatchList = Local M atch(SimMatriz,|DataProperty(ci)|, |DataProperty(cs)|)

DPSim = ZDa.taPropertySirnE]\/IatchList DataPropertySim

max{|DataProperty(ci)|,|DataProperty(cz)|}
return DPSim

The following program finds the best matching pair of elements (Datatype-
Property or ObjectProperty). It will produce a one-to-one mapping, i.e., a
DatatypeProperty in ¢; matches one DatatyperProperty in ¢, and vice versa.

Program: LocalMatch

Input: SimMatrix, m, n

Output: MatchList

MatchList={}

For SimMatriz /=9 {

Select (pi1p, pag, DataPropertySim) from SimMatrix condition as follow:

DataPropertySim = max,,, p,. v)eSimMatriz 1V}

MatchList = MatchList U { DataPropertySim|(pip, p2q, DataPropertySim)}

SimMatriz = SimMatriz — {(p1p, p2j, any)|(p1p, p2j, any) € StimMatriz,j =1,---,m}
— {(p1i, p2q, any)|(p1i, D2g, any) € SimMatriz,i=1,---,n}

return MatchList

An Ontology Based Approach to Construct
Behaviors in Web Information Systems**

Lv-an Tang"?, Hongyan Li"*", Zhiyong Pan"?, Dongging Yang?,
Meimei Li"?, Shiwei Tang'?, and Ying Ying"*

! National Laboratory on Machine Perception
% School of Electronics Engineering and Computer Science,
Peking University, Beijing, 100871, P. R. China
{Tangla, Lihy,Panzy, Limm, Yingy}@cis.pku.edu.cn
yvdg@db.pku.edu.cn
tsw@pku.edu.cn

Abstract. System behaviors specify the major functions of domain specific Web
Information Systems (WIS). Traditional techniques can not satisfy various
requirements or manage innumerous data while developing WIS behaviors.
People appeal to a smart tool for implementing the WIS behaviors. This article
makes the following contributions: (1) Proposes the concept of domain ontology
and behavior ontology to describe the contents and operations of WIS; (2)
Extends traditional ECA model to characterize the triggers, parameters, actions
as well as validations of WIS behaviors; (3) Analyses the relationships between
domain ontology and behavior ontology with rule sets; (4) Implements a tool
named WISE Builder with four algorithms to help users building behavior
ontology with domain ontology; (5)Shows the feasibility of this technique in a
real application case.

Keywords: Web Information System, Behavior, Domain, Ontology, Code
Generation.

1 Introduction

Featured with client logic, operational integration and high level knowledge
management, WIS fetches information resources and carries out the business process
by Web technologies'". Tt is suitable for large applications such as ERP or Hospital
Information Systems. However, associated with the application domains, WIS
becomes both usage centralized and data intensive, various requirements and huge
amount of data make WIS development a troublesome and complaining task.

From a user’s view, the WIS can be roughly seen in two perspectives: (a) the static
entities such as system structures, page presentations and the stored data, (b) the

x* Supported by Natural Science Foundation of China (NSFC) under grant number 60473072.
“ Corresponding author.

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 194 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Ontology Based Approach to Construct Behaviors in Web Information Systems 195

dynamic process such as data operations, system activities and interactions. They are
quite different and hard to be integrated.

Researchers have proposed many methods such as MDA'®, Hera" to solve the
problem. But in most cases, the users can not give requirements in detail and the
designers may sketch wrong system frames due to misunderstanding domain
knowledge'”' Some rough ideas of using ontology for building information systems
can be found in reference [5] [6].

What is the advantage of using ontology in WIS development? The ontology helps to
confirm user’s requirements and describes domain knowledge in both human
understandable and computer process-able way. And the formalized ontology is also a
good template for codes generation.

To describe the concepts of WIS clearly, two different ontologies: the domain
ontology and behavior ontology are used in this paper (Figure 1). However, manually
constructing them, especially the behavior ontology, is a time consuming, labor
intensive and error prone task. The main reason is that behavior is just a process which
can be viewed as a kind of logic or function codes, the invisibility makes it inherently
difficult for modeling.

Architecture:

Domuain Ontology- /

Web Information Syste}mil

Presentation-

Linko §
Structure- e .
f User’s .~ View.
Contents- o i b .
Words: ¢ ,"’ Systen: Functions:
. I3
Web Page. e o

Interaction: Operation Activitye Process-

Fig. 1. Specify WIS from User’s View

To help users construct the behavior ontology easily, we extend traditional ECA
model to characterize behaviors and implement an automatic tool named WISE Builder
(WISE is short for Web Information System auto-construction Environment) with
following features:

® WISE Builder implements the system behaviors as page elements and supports
the “What You See Is What You Get” in ontology building;

® By analyzing the domain ontology, WISE Builder gets the characters of each
page and generates the behavior ontology.

196 L.-a. Tang et al.

This article will discuss the models, techniques and tools for constructing both
domain and behavior ontology. The rest of the paper is organized in the following
manner: Section 2 presents some background knowledge and related work; Section 3
gives some concepts about WIS ontology, along with the problem specification;
Section 4 gives the algorithms; Section 5 gives an application case; at last, Section 6
summarizes the paper and discusses future work.

2 Related Work

The WIS development is a hot research topic both in the industry and academia. Many
projects are conducted by mapping the domain content to some logical function or
physical representation. However, most of them pay little attention on the description
and generation of WIS behaviors.

Model Driven Architecture (MDA) ' is a kind of software development style. The
key point of MDA is to build a core model with high level abstraction independent on
any implementation technology. With the help of mapping rules, the core model is
transformed into one or more Platform Specific Models(PSM), at last PSMs are
transformed into codes. MDA-based Approach for WIS Development(MIDAS)" is a
MDA implementation for WIS development. It represents the whole system in
structure model and defines a ring around to describe different platforms or support
technologies. However, MIDAS does not specify the system behaviors in integrative
style, the design and implementation about behavior models are remained as future
work.

Scenario Based Design (SBD)™ defines system behaviors by describing how people
use it to accomplish tasks and other activities. A user interaction scenario is a sketch of
applications, which describes a sequence of events related in context including the
goals, plans, and reactions. SBD is widely used to analyze software requirements,
specify system’s functionality and guide the design of interfaces. Requirements
Engineering Through Hypertext (RETH)® is a tool for requirements engineering
through scenario. It presents a model that combines scenarios both with functions and
goals. It also proposes a systematic and concrete design process that is both model
driven and data driven. But those scenarios are stored in the format of tables or texts,
which is hard to be parsed by other tools. And the scenarios may also be too prolific and
deficient at the same time.

There are also some approaches based on ontology. OntoWebber "™ is a part of the
OntoAgents project developed by Stanford University. It integrates different aspects of
Web sites, uses ontology as the foundation for sites design, and supports the reusable
specifications of Web sites. OntoWeaver'""! is also an ontology based approach to
achieve high level support for Web site design and development. The site ontology is
defined to provide fine-grained modeling support for user interfaces and Web site
structures. Another similar tool--WebRatio"'* has been presented on SIGMOD 2004. It
extends a declarative language—WebML for specifying data intensive Web
applications.

However, the models defined in those tools are too simple to describe the complex
WIS behaviors. Mainly used to construct personal Web applications or normal Web

[10]

An Ontology Based Approach to Construct Behaviors in Web Information Systems 197

sites, they focus on the representation of data than manipulation. While WIS is
enterprise oriented, which involves complex domain knowledge and business rules.

As our previous work, Personalized tool for Ontology Development in Web
Information System (PODWIS)"* is an intelligent tool which provides graphical views
in ontology building, discovers the frequent resources and composes them to a reusable
component to improve efficiency. It is a pity that PODWIS does not support the
modeling of WIS behaviors. To remedy this, a new approach called WISE Builder
extended PODWIS to specify WIS behaviors. Table 1 gives a comparison of the above
tools and WISE Builder.

Table 1. A Comparison of WISE Builder and Related Tools

Target User Data Reusability Code Behavior

Integration Generation Specification
MIDAS Programmer Strong None Strong None
RETH Domain User None None None Strong
OntoWebber Domain User Weak Strong Strong None
OntoWeaver Domain User Weak Weak Strong Weak
WebRatio Designer Strong Strong Strong Weak
PODWIS Domain User Strong Strong Strong None
WISE Builder Domain User Strong Strong Strong Strong

3 Features in WIS Ontology

As a special context of WIS project, WIS ontology is made by two parts: the domain
ontology and the behavior ontology. To get better compatibility, portability and
integration, the WIS ontology is described in XML format. Thus it can be shared
conveniently by other tools through XML interface.

To illustrate, we will derive the formal concepts of WIS ontology from Web Health
Resource Planning System (WHRP)'™, which is a large Web based hospital
information system.

Example 1. The Web page of doctor diagnosis in WHRP is as Fig.2: The page can be
analyzed according to two aspects: (a) the widgets, formats and framework illustrate
domain content and system structure; (b) buttons such as ‘Add’, ‘Confirm’ specify the
available operations and behaviors. Since the domain contents and system behaviors
are rather complex. They will be defined step by step.

3.1 Review of Domain Ontology

The details of domain ontology in WIS development can be found in author’s previous
work!"*). The main concepts are as follows:

198 L.-a. Tang et al.

Doctor Diagnosis

Diagnosis Information
Type of Diagnosis | Cutpstient Diagnosis v
1CD Code 18533 Pinin Code Jin fua Description Diagnosis for DD a
Remarks Other Diagmosis
Status | Others A
MCR Mo, N163 Q Diagnosed by Han XiaoFeng (5}
Sub-Gpecialty | Mg v Diagnosed Date 2005-03-02 4
Add ‘ Update Clear
Diagnosis Listing
Diag.Type ICD10 Diagnasis Remarks Status | Diagnosed by Sub-Specialty| Entered By | Entered On |Delete
. Description
Qutpatient:) o {
Disgrass 16533 Diagnosis for RR TMain Chen Zigi EEH 2005-03-02 |7
Qutpatient: | TRy
Rras 16533 Diagnasis for LL ‘ Others | Ja Jands J# | | 2005-03-02 | r ‘
O&;E;gi;t 16533 Diagriosis for DD Other Diagrmisis Others Wang DarHua PE 2005-03-01 r
O&;z;zigt 16533 Diagriosis for DD Other Diagrmisis Others Han ¥aoFeng Juikits] 2005-03-06 r

Confirm Delte

Fig. 2. The Page of Doctor Diagnosis

Definition 1. The basic item / of domain ontology is a 5-tuples, I=<[temName,
ItemType, DisplayInfo, Valuelnfo, Constrains >, where Displaylnfo is a set of display
features used for the generation of Web pages, Valuelnfo is a set of value’s source
information, Constraints is a set of constraints for the value.

Note that, in Definition 1, all items in a page are distinguished by the unique
ItemName; ItemType could be usual page widgets such as textfield, droplist, checkbox,
etc; Displaylnfo includes item size, location and displayed text; Valuelnfo illustrates
the source of the item’s value such as database tables, sessions or user input streams;
Constraints can be used to verify inputs.

Definition 2. The content piece P of domain ontology is a 3-tuples, P=<PName,
Elements, AddTag >, where Elements is a set which only contains other pieces or basic
items, AddTag is a possible tag recording styles or shapes about the piece.

Note that, content pieces in WIS should be distinguished by names, Elements
reflects the architecture of the piece, which only contains basic items or other pieces.
AddTag records the style of the pieces.

3.2 The Definitions of Behavior Ontology

Although the content piece can record almost all user requirements, it can not specify
the dynamic process of WIS in the following example.

Example 2. Consider the steps to arrange bed for a new patient: (1) login WHRP as a
doctor, (2) go to patient admission page, (3) input patient and doctor’s information, (4)
search an empty bed and arrange it for the patient. The whole process is described in
scenario as Table 2.

An Ontology Based Approach to Construct Behaviors in Web Information Systems 199
Table 2. The Scenario of Bed Arrangement
User Behaviors Interactions WIS Behaviors Web Page
1. Input user name and Check user name and password are not
password Click Button ‘Login’ > null. Log in
<Go to WHRP’s Main Load the user information from database.
Page
2. Choose the module to Click Button ‘Patient Read the user’s information in session to
register patients Admission” > see whether he has the authorization. Main Page
< Go to Patient
Admission Page
3. Input the patient and Click Button ‘Patient Check the inputs are validated.
his/her doctor’s info. Admission’ > Insert those input values to database tables Patient
< Go to Bed Admission
Arrangement Page
4. Input the conditions Click Button ‘Query Check the conditions are validated.
such to query empty Beds’ > Search the matched beds from database Bed
beds and display the result. Arrangement
<Update current page
5. Choose an empty bed in ~ Click Button ‘Arrange Check whether a bed has been selected
the result list Beds’ > Update the related data include the patient Bed
& The work is information and the bed status in different Arrangement

completed and back to tables of database

Main Page

Although the structure and contents of Web pages can be represented in terms of
basic items and pieces, the interactions, operations and process can not be described in
domain ontology. To remedy this, we need to define some new concepts for the WIS
behaviors.

The five WIS behaviors of Example 2 almost cover all types of user requirements for
system functions in WHRP. We have following observations from the example:

Observation 1 (Trigger). The WIS behaviors are all triggered by user’s actions on
some basic items such as clicking buttons;

Observation 2 (Validation). Before behavior execution, the parameters must be
validated to ensure the safety and efficiencys;

Observation 3 (Key Action). Although behaviors are running in various and complex
style, but their key operations can be reduced to simple actions such as insert, delete,
etc;

200 L.-a. Tang et al.

Observation 4 (Fault Management). In most cases, behaviors can be carried out
successfully, but there are times with errors, such as invalid password. Scenarios lack
the ability to deal with this sort of situation, but behavior ontology should consider
those things.

To format above observations, we introduce:

Definition 3. The Conditions C for behavior execution is defined as a set of 2-tuples in
the format of

C= {(ItemName[k], ValidConstraints(k]) | k<N} where N is the total number of
involved basic items, ltemName[k] is the item’s name and ValidConstraints[k] is a
constraint about the item.

The behavior is executed if and only if all items satisfy corresponding constraint.

Definition 4. The Action A is defined as 3-tuples, A=<ActionType,
ParameterltemNames, Destination>, where ParameterltemNames is a name set of the
basic items whose values are the action’s parameters and Destination is used to store
and display results.

Note that, in definition 4, ActionType is one of the five frequent action types:
‘Insert’, ‘Delete’, ‘Update’, ‘Select’ and ‘Clear’; Take the select action for example,
ParameterltemNames specifies the basic items whose values are the search conditions,
item’s valueinfo provides the database table information and the Destimation is a list on
the page to display search results;

Definition 5. The ResultLink R is defined as a 2-truples, R=<SuccessfulLink,
ErrorLink>, where SuccessfulLink is the link page if the behavior is completed,
ErrorLink is the one if the behavior ended unsuccessfully. The link can be the current
page itself, thus the page will be updated to display results.

Based on the Observation 1-4 and definition 3-5, we finally give formal definition of
behavior ontology:

Definition 6. The behavior B of WIS ontology is defined as a S5-truples,
B=<BehaviorName, Eventltem, Conditions, Action, ResultLink >, where Eventltem is
a basic item on which the behavior is triggered, Conditions is the execution condition in
definition 3, Action is the above definition 4, ResultLink is the link page in definition 5.

Note that, in Definition 6, all behaviors in a Web page are distinguished by the
unique BehaviorName, Eventltem is usually a button or selection in the page. An
example of the behaviors is described in XML as in Figure 3.

To integrate the WIS functions with the structures and contents, we extended the
domain piece to define the WIS ontology component

Definition 7. The Component C of WIS ontology is a 4-tuples, C=<ComName,
Elements, Behaviors, AddTag >, where Behaviors is a set of behaviors defined on the
component.

An Ontology Based Approach to Construct Behaviors in Web Information Systems 201

-<Behavior Name="Search Bed">
-<Eventltem>
<Button> SearchBed </Button>
</Eventltem>
- < Conditions >
<Textfield Condition= "NotNull" >
WardName </ Textfield >
< /Conditions >
- < Action >
< ActionType>Select</ActionType>
<ParameterltemNames >
<Textfield> WardName </ Textfield >
< Textfield > BedNO</ Textfield >
</ParameterltemNames >
<Destination>
<Table>Bed Info</Table>
</Destination>
</Action>
- < ResultLink>
<SucessfulLink>Bed Arrangment</SucessfulLink >
< ErrorLink >Search Error</ ErrorLink >
< /ResultLink>
</ Behavior >
Fig. 3. The Behavior ‘Search Bed’

Note that, Elements reflect the component architecture, while Behaviors illustrates
the functions and operations. This definition shows that a component could be applied
to represent a whole interface page, or just a part of another component. The former one
is called Page Component, and the latter one is called Child Component.

3.3 The Problem Specification

To make the construction of WIS ontology easier, we have implemented a visual tool
for the non-professional users to build domain ontology and behavior ontology.
However, in real practice we find that although a smart tool has been provided, the
difficulty still exists in building behavior ontology: users are willing to build the
domain ontology, because it is what the final WIS looks like--which is always in the
user’s mind; the definition and formats of domain ontology are also clear at a glance. In
contrast, the behavior ontology is more abstract and obscure, and the definition is too
complicated to be manually built, especially the parts of Conditions and Action. Too
many entries need to be filled in and users complained about that monotonous work.

Can we provide a tool to build the behavior ontology automatically or
semi-automatically? A careful study on the features of domain and behavior ontology
gives a new observation:

202 L.-a. Tang et al.

Observation 5. The WIS behavior’s action types have correlations with the types of
items in same component.

Example 3. There are 335 page components in WHRP’s ontology, 232 components
contain the basic item ‘Table’, all of them have the select action to search in the
database. 155 components have to do insert to the database, 84.5% of them (131
components) contain more than 18 basic items.

Those curious situations can be explained by our development experience: the table
item is mainly used to display search results, thus it is always connected with the select
action. In the same way, if there are many textfields in the page, the input information
should be stored in database, thus an insert behavior is needed. The experience can be
represented as rule sets. To formalize the observation, we have following definition:

Definition 8. Let P be the piece of domain ontology and B be the corresponding
behavior. The Action-Itm Correlation rule is the expression in the format “IF X The Y”,
where X is a well-defined Boolean expression consisting of symbols in{ A,V }, Y is
the action type of B.

With help of visual tools, users can define the rules from their own experiences and
domain knowledge. Since the users prefer to build domain ontology rather than
behavior ontology, why not generate the behaviors form the constructed domain
ontology? Thus, an interesting problem arises and will be discussed in rest of this

paper:
Problem Specification. Giving a constructed piece P of domain ontology, with the
help of rule set R, generate the corresponding behavior B, and compose P with B to WIS

ontology component C.

4 The Algorithms for WIS Behavior Generation

The behavior B=<BehaviorName, Eventltem, Conditions, Action, ResultLink>, where
BehaviorName, Eventltem and ResultLink can be built from default configurations, the
Conditions can be composed by the basic items’ constraints. The difficulty of behavior
generation is building the Action, for it is the most complex part of the five, and the
action type is also unknown. Our approach is: (a) determine the type, (b) generate
action and other parts from given pieces of domain ontology, (c) assemble them to the
behavior.

Algorithm 1 calculates the frequency of different items in pieces of domain

ontology:

Algorithm 1 Statistics of Items
Input: A piece of domain ontology, named Piece ;
Output: A statistic set of piece items, named StatSet

Interior variables: a variable denotes the basic item, named Item;

An Ontology Based Approach to Construct Behaviors in Web Information Systems 203

Begin

1. Initialize the stack;

2. For each line of the file Piece, do
3. If the line contains ‘< ’then
4. Push the current XML element in stack;
5. Else if the line contains ‘</’ and the element.type != ‘piece’
6. Pop stack top to variable Item;
7. If Item.Type is included in StatSet
8. Add 1 to ‘Time’ of corresponding;
9. Else
10. Create a new record R of StatSet;
11. R.Type < ITtem.type;
12. R.Time =1;
13. End if
14. Endif
15. End for
16. Return StatSet;
END

Proposition 1. Let n be the total number of the piece elements, the complexity of
Algorithm 1 is O(n?).
The proofs of the propositions are omitted here due to page limitation.

With the help of rule sets, we can determine the action types based on StatSet.

Algorithm 2 Determine Action Types
Input: The statistic set, named StatSet; the Action-Item correlation rule set, named
RuleSet;
Output: The set of action types, named ActionTypes;
Interior variables: a variable denotes the rule in RuleSet, named Rule
Begin
1. Initialize the stack;
For each line of the file RuleSet, do
If the line contains ‘<Rule>’
Push the current XML element in stack;

Else if the line contains ‘</Rule>’

A

Pop stack top to variable Rule;

204 L.-a. Tang et al.

7. Search Rule. Presupposition in StatSet;
8. If(Rule. Presupposition in StatSet)
9. ActionTypes = ActionTypesJRule.Result;
10. Endif
11. End for
12. Return ActionTypes;
END

Proposition 2. Let n be the length of StatSet and m be the length of RuleSet, time
complexity of Algorithm 2 is O(m*n).

When types are confirmed, the action can be built. It is defined as 3-tuple
A=<ActionType, ParameterltemNames, Destination>, ParameterltemNames and
Destination are concealed in the domain ontology. The following algorithm can
generate them according to 5 different types of actions: Insert, Delete, Update, Select,
Clear.

Algorithm 3 Building Actions
Input: The set of action types, named ActionTypes; the piece of domain ontology,
named Piece;
Output: a set of generated actions, named ActionSet;
Interior variables: a variable denotes an action, named Action.
Begin
1. For each action type of the set ActionTypes, do
If the type is ‘Select’
Action€<Generate_Select_Action; //Procedure 1
ActionSet = ActionSet U Action ;
Continue;
Else if the type is ‘Insert’
Action € Generate_ Insert_Action; //Procedure 2
ActionSet = ActionSet U Action ;

O 0 9 N L bW

Continue;

—_
=

—_—
—_—

Else if the type is ‘Clear’

—_
\S}

Action€<Generate_ Clear_Action; //Procedure 5
ActionSet = ActionSet U Action ;

_ =
AW

Continue;

An Ontology Based Approach to Construct Behaviors in Web Information Systems 205

15. Endif

16. End for

17. Return ActionSet;
END

We just present Procedure 1(generate the select action) here due to the page

limitation.

Procedure 1 Generate_Select_Action
Input: The piece, named Piece;
Output: Generated select action, named SAction;
Interior variables: a variable denotes the basic item, named Item;
a variable denotes the table in database, named Table.
Begin
1. SAction. ActionType<’Select’;

2. Search in Piece for the basic item ‘table’;
3. Item<€ search result;
4. SAction. Destination€ Item.ItemName;
5. Table€Item.Valuelnfo.Table;
6. Search in Piece for the Basic Item whose Valuelnfo.Table is the same as Table;
7. For each basic item I of the search result, do
8. Item€T,;
9. SAction. ParameterltemNames = ParameterltemNames [Item.ItemName;
10. End for
11. Return SAction;
END

Proposition 3. Let m be the size of ActionTypes set and n be the length of the piece, the
complexity of Algorithm 3 is O(m*n).

Algorithm 4 Generating Conditions
Input: a set of actions, named ActionSet; the piece of domain ontology, named Piece;
Output: a set of conditions, named ConditionSet;

Interior variables: a variable denotes the basic item, named Item; a variable denotes

the action, named Action; a variable denotes the condition, named Condition,;

206 L.-a. Tang et al.

Begin
1 For each action A in ActionSet, do

2 Action € A;

3 For each ItemName in Action, do

4. Search in Piece for the basic item I whose name is the same as ItemName;
5. Item < 1;

6 Condition.ItemName < Item.ItemName;

7 Condition.ValidConstraints <Item.Constraints;

8

9

ConditionSet = ConditionSet U Condition,;

End for
10. End for
11. Return ConditionSet;
END

Proposition 4. Let a be the size of ActionSet, b be the size of the ParameterltemNames

and c be the length of the piece, the complexity of Algorithm 4 is O(a*b*c).

Note that, in practice, although b or ¢ may be a large number, but the ActionSet’s
size is always small, so the total time complexity is acceptable.

Other parts of behaviors (BehaviorName, Eventltem, ResultLink) can be generated
from default settings instead of the domain ontology, because they are the interactions
between users and computer, which are not strongly related to the structure and content
of domain ontology. The default generated parts may not be exact, but they can be
modified on a visual editor. After the five parts are generated, it is easy to compose
them to the behaviors. The WIS ontology component is an integration of the domain
piece and the generated behaviors. The algorithms for composition and integration are
omitted here due to page limitation.

5 The Application of WISE Builder

The algorithms are implemented in an ontology development tool called WISE Builder.
Non-professional users can use it easily to build WIS ontology. As it is a new
exploration on WIS behavior generation, there is seldom similar existing algorithm to
be compared with. Hence our experiment is combined with practical applications. The
results show that the algorithms and WISE Builder work with acceptable speed and
good quality.

WISE Builder is a part of the project Web Information System auto-construction
Environment (WISE)USJ, which aims to construct WIS automatically from users' view,
and achieve good extensibility and maintainability. They are currently used in
developing a Web based hospital information system —-WHRP, and they do a good job.
There are totally 227 JSP pages and 108 HTML pages in WHRP, with 1,119 Java

An Ontology Based Approach to Construct Behaviors in Web Information Systems 207

Beans to contain the behavior functions, the system is also required to provide
multi-views and support multi-formats. Using WISE Builder solved the following
problems:

6

Acquiring the requirements: The doctors and experts in hospital use WISE Builder
to construct the ontology of WHRP so as to provide a precise requirements and
system structure;

Multi-view output: WHRP need to output a page component in many formats such
as the JSP page for browsing or PDF page for printing, but the ontology building
on WISE Builder was not affected, even they didn’t need to know the existence of
different views;

Shorten developing period: The JSP pages and Java Beans are all generated from
the corresponding page components in WHRP’s ontology constructed by WISE
Builder, system developers just need to adjust or custom some functions. Totally
about 55% codes of the interface and 80% codes about the system behaviors are
generated. The period of development is shortened greatly while the system is
easier to be maintained.

Summary and Future Work

It is a new approach to automatically build WIS behaviors with domain ontology in
WIS engineering. In order to carry out the WIS behaviors smartly, we have proposed an
automatic tool named WISE Builder, the main contributions include:

® Providing graphical views to support the construction of behavior ontology;

® Extending ECA model to specify the trigger, data, destination and validation of
WIS behaviors;

® Four algorithms for WIS behavior generation and four propositions about the
algorithms;

The research of developing WIS based on ontology is just beginning, there is much

more work to be done, such as:

® Implementing user custom action and complex behaviors: WISE Builder can
auto build the frequent actions, but the user custom action should also be carried
out due to various situations;

® Refining the generated codes: There are also redundancies in the generated WIS
codes. Reduce redundancy and increase efficiency is a main task of our future
work.

Acknowledgments

Several people have contributed to the project and this paper, they are: Ming Xue (IBM
China), Baojun Qiu, Jianjun Wang, Lei Wang, Bin Zhou, Ke Li, Mengqing Wu, etc.

208 L.-a. Tang et al.

We would like to thank for their helpful discussions and we also want to thank four
anonymous reviewers for their comments.

References

1. Tomas Isakowitz, Michael Bieber, Fabio Vitalii Web Information Systems.
Communications of the ACM, Page: 78 - 80, Vol 41(7), ACM Press, July 1998;

2. Joaquin Miller and Jishnu Mukerji. (Eds). Model Driven Architecture—The MDA Guide,
OMG, 2003. Retrieved from: http://www.omg.com/mda, 2003;

3. Habib, Reza, Nyberg, Lars, Tulving, Endel: Hemispheric asymmetries of memory: the
HERA model revisited. Trends in Cognitive Sciences Volume: 7, Issue: 6, June, 2003, pp.
241-245;

4. Stefano Ceri, loana Manolescu: Constructing and integrating data-centric Web
Applications: Methods, Tools, and Techniques. In Proceedings of VLDB 2003, Berlin,
Germany ;

5. Kietz, J., Maedche, A, etc: Extracting a Domain-Specific Ontology Learning from a
Corporate Intranet. In Proceedings of Learning Language In Logic Workshop 2000, Lisbon,
Portugal;

6. Ding, Y., & Foo, S.: Ontology research and development. Journal of Information Science,
Vol 28(5), 375-388, 2002;

7. Paloma Caceres, Esperanza Marcos, Belen Vela: A MDA-Based Approach for Web
Information System Development. In Proceedings of WISME 2003, October 21st, 2003,
San Francisco, USA;

8. Mary Beth Rosson, John M.Carroll: The Human-Computer Interaction Handbook:
Fundamentals, Evolving Technologies and Emerging Applications. Lawrence Erlbaum
Associates, 2002;

9. Hermann Kaindl: Active Tool Support for Requirements Engineering Through RETH. In
Proceedings of the 12th IEEE International Requirements Engineering Conference(RE
2004), September 6-10, 2004, Kyoto, Japan;

10. Yuhui Jin, Sichun Xu, Stefan Decker: OntoWebber: A Novel Approach for Managing Data
on the Web. In Proceedings of EDBT 2002, Prague, Czech Republic;

11. Y. Lei, E. Motta, and J. Domingue: Modelling Data-Intensive Web Sites with OntoWeaver.
In Proceedings of WISM 2004, Riga, Latvia, 2004;

12. Marco Brambilla, Stefano Ceri, etc: Declarative Specification of Web Applications
exploiting Web Services and Workflows. In Proceedings of the ACM SIGMOD 2004, Paris,
France;

13. Lv-an Tang, Hongyan Li, etc: PODWIS: A Personalized Tool for Ontology Developing in
Domain Specific Web Information System. In Proceedings of APWeb 2005, Shanghai,
China;

14. Hongyan Li, Ming Xue, Ying Ying: A Web-based and Integrated Hospital Information
System. In Proceedings of IDEAS04-DH, September 29-31, 2004, China;

15. Ming Xue, Hongyan Li: Managing User Interaction Forms on Web Pages: A
Component-base approach. Journal (Naturals Science) Of Peking University, Vol. 40(3),
May 2004, pp 473~479;

A Semi-automatic Ontology Acquisition Method
for the Semantic Web

Man Li, Xiaoyong Du, and Shan Wang

School of Information, Renmin University of China, Beijing 100872, China
limanl@ruc.edu.cn

Abstract. The success of the Semantic Web strongly depends on the
proliferation of ontologies, which requires fast and easy engineering of on-
tologies. The paper analyzes the semantic similarity between relational
model and ontology, and proposes a semi-automatic ontology acquisition
method(SOAM) based on data in relational database. SOAM tries to
ensure the quality of constructed ontology and the automatic degree of
acquiring process by balancing the cooperation between user contribu-
tions and machine learning. Because OWL is the latest ontology language
standard recommended by W3C, the implementation of SOAM is given
to acquire OWL ontology automatically as much as possible. Different
from existing methods, the implementation method not only can acquire
OWL ontology from relational database directly without demanding a
middle model, but also can refine obtained ontology according to existing
lexical knowledge repositories semi-automatically.

1 Introduction

The Semantic Web[I] proposed by Tim Berners-Lee has been regarded as the
next generation of the current Web, which aims to add semantics and better
structure to the information available on the Web. With the development of
Semantic Web research, people have realized that the success of Semantic Web
depends on the proliferation of ontologies and pay more attention to the con-
struction of ontologies. Though ontology construction tools have become mature
over the last decade, the manual development of ontologies still remains a te-
dious and cumbersome task. So this paper concerns how to acquire ontology
automatically or semi-automatically from existing resources.

Due to the wide use of relational database in information management, a
large amount of data about various domains are organized and stored in rela-
tional database. Data in relational database may be used as a kind of important
resource for acquiring ontology. The paper proposes a semi-automatic ontology
acquisition method(SOAM) based on data in relational database by analyzing
the semantic similarity between relational model and ontology. SOAM divides
ontology acquisition process into two stages and proposes the necessity of refining
the obtained ontological structure before acquiring ontological instances. SOAM
tries to balance the cooperation between user contributions and machine learn-
ing reasonably to ensure the quality of constructed ontology and the automatic
degree of acquiring process.

W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 209220 2005.
© Springer-Verlag Berlin Heidelberg 2005

210 M. Li, X. Du, and S. Wang

OWL[Z is the latest standard recommended by W3C. It facilitates greater
machine interpretability of Web content than that supported by XML, RDF, and
RDF Schema (RDFS) by providing additional vocabulary along with a formal
semantics. So in this paper the implementation of SOAM is introduced to acquire
OWL ontology from data in relational database. Different from existing methods,
the implementation method not only can acquire OWL ontology from relational
database directly by using a group of rules without demanding a middle model,
but also can refine obtained ontology according to existing lexical knowledge
repositories semi-automatically.

The paper is organized as followings. Section 2 analyzes the semantic sim-
ilarity between relational model and ontology and then proposes the SOAM .
Section 3 introduces the implementation of SOAM in detail. Section 4 gives a
case study. Section 5 introduces related works. Section 6 draws a conclusion and
gives the future works.

2 Acquiring Ontology from Relational Database

To explain the semi-automatic ontology acquisition method based on data in
relational database clearly, the semantic similarity between relational model and
ontology are analyzed firstly here.

2.1 Semantic Similarity Between Relational Model and Ontology

The underlying model of relational database is the relational model[3]. The
model includes a finite set R called relations, a finite set A called attributes,
primary keys and foreign keys etc. Some functions in common use are as follow-
ing.

— A function dom(A;). It acquires the value’s range of attribute A;, where
A; € A

— A function attr(R;). It acquires th