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Preface

A few words on the second edition. By a nice coincidence, Springer’s proposal to
revise the book came when I was giving a serious thought to the idea. Ten years
have passed and my research shifted mostly to other topics, which discouraged my
attempt, but there always seemed to be a small community interested in the book,
which gave me hope that the work is not useless. The proposal tipped the balance.

Besides correcting some errors and typos, the new version has a few additions
and modifications. Chapter 9, dedicated to optimization problems using the atomic
norm and to the related super-resolution problem, is completely new. The Bounded
Real Lemma (BRL) for trigonometric polynomial is central to the solution; it was a
great reward to see that this BRL, which is the contribution that I consider the most
personal and of which I was very proud at the time, has been applied in all its forms
in a topic that I never foresaw. To help reading this chapter, all theory regarding the
BRL is now gathered in Chap. 4. Another new topic, mentioned mostly in passing,
is that of hybrid polynomials, having both real and trigonometric variables. The
convex optimization software has greatly evolved, especially toward user conve-
nience; some of the programs shown in the book are now written for CVX, which
attracted immediate popularity due to its simple and versatile language; other
programs use Pos3Poly, which is a package built on top of CVX, especially for
optimization with positive polynomials.

On the contents of the book. Although trigonometric polynomials appear
naturally in discrete-time signal processing and their positivity characterizes many
design problems, it was only in the late 1990s that an exact and computationally
useful parameterization of nonnegative trigonometric polynomials was found. The
idea of parameterizing the coefficients of the polynomial as a linear function of the
elements of a positive semidefinite matrix was already present (somewhat in dis-
guise) in the previous literature; however, its implementation needed the emergence
of semidefinite programming (SDP) methods in the early 1990s and, shortly after,
of freely available SDP libraries. The following result is the foundation of this book.
Any trigonometric polynomial
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RðzÞ ¼
Xn
k¼�n

rkz
�k; r�k ¼ r�k ; ð1Þ

that is nonnegative on the unit circle (for jzj ¼ 1), can be parameterized with a
positive semidefinite matrix Q by

rk ¼ tr½HkQ�; k ¼ �n : n; ð2Þ

where Hk is an elementary Toeplitz matrix, with ones on diagonal k and zeros
elsewhere, and tr is the trace operator. The matrix Q is named Gram matrix. The
parameterization (2) allows the description of a nonnegative trigonometric poly-
nomial through a linear matrix inequality (LMI). Hence, SDP is applicable.

The book has two parts. In a simplistic classification, the first four chapters
contain the theory and the other five chapters deal with applications. Here is a
description of their contents that could help orient the lecture. Although the book
treats also (inevitably) polynomials of real variable, we discuss here only the results
pertaining to trigonometric polynomials, which have the lion’s share.

Chapter 1 is written only in terms of polynomials. It starts with the spectral
factorization of polynomials (1) that are nonnegative on the unit circle and which
can be written as

RðzÞ ¼ HðzÞH�ðz�1Þ; ð3Þ

where HðzÞ is causal and the asterisk denotes complex conjugated coefficients. It
also describes polynomials (1) that are nonnegative on an interval, as a simple
function of two nonnegative polynomials.

Chapter 2 is built around the Gram matrix parameterization (2) and contains
examples of use and several side results linking it to the Kalman–Yakubovich–
Popov lemma and spectral factorization. More importantly, it gives alternative
parameterizations that are more efficient, for example, the Gram-pair parameteri-
zation, in which the matrix Q from (2) is replaced by two smaller positive definite
matrices.

In Chap. 3, the presentation goes to multivariate polynomials. The most
prominent trigonometric polynomial becomes now the sum-of-squares

RðzÞ ¼
Xm

‘¼1

H‘ðzÞH�
‘ ðz�1Þ: ð4Þ

(We use bold letters, like z ¼ ðz1; . . .; zdÞ, to denote multidimensional entities.) The
polynomials H‘ðzÞ have support on the positive orthant, while the support of RðzÞ is
symmetric with respect to the origin. It turns out that all trigonometric polynomials
that are strictly positive on the unit d-circle (where z1j j ¼ � � � ¼ zdj j ¼ 1) are also
sum-of-squares; note that sum-of-squares are by construction nonnegative on the
unit d-circle. However, the degrees of the polynomials H‘ðzÞ from (4) can be

viii Preface



arbitrarily high. A parameterization like (2) holds, this time for sum-of-squares
polynomials. In a practical implementation, an optimization problem with non-
negative polynomials can be solved only in a relaxed way, with sum-of-squares
whose factors H‘ðzÞ have the degrees bounded to a convenient value. Typically, a
higher relaxation degree leads to a better approximation of the original problem, but
with a higher complexity, due to the higher size of the Gram matrix Q. Chapter 3
contains also the multivariate version of the Gram-pair parameterization and the
means for reducing the size of the Gram matrix for sparse polynomials. The chapter
ends with a short presentation of polynomials with matrix coefficients, for which,
mutatis mutandis, all previous results hold true.

Chapter 4, dealing also with multivariate polynomials, is dedicated to the most
general results, which are of three types.

Polynomials positive on domains. Let

D ¼ x 2 ½�p; p�d j D‘ðxÞ� 0; ‘ ¼ 1 : L
n o

ð5Þ

be a frequency domain defined by the positivity of L given trigonometric poly-
nomials D‘ðzÞ. Then, any trigonometric polynomial RðzÞ that is positive on D can
be expressed as

RðzÞ ¼ S0ðzÞþ
XL
‘¼1

D‘ðzÞ � S‘ðzÞ; ð6Þ

where S‘ðzÞ, ‘ ¼ 0 : L, are sum-of-squares. Using a Gram matrix (or a pair of
matrices) to parameterize the sum-of-squares, we associate an LMI with RðzÞ.

Bounded Real Lemma. Let HðzÞ be a polynomial with positive orthant support.
Then, the inequality HðzÞj j\c, with c 2 R, can be written in the form of an LMI;
see Theorems 4.26 (basic general result), 4.32 (extension to matrix coefficients),
and 4.35 (Gram-pair version). This LMI makes possible the formulation of some
optimization problems in terms of HðzÞ; the lack of spectral factorization (3) for
multivariate polynomials can be thus circumvented in some cases.

Positivstellensatz. We add equalities to the set (5), obtaining

DE ¼ x 2 ½�p; p�d EkðxÞ ¼ 0; k ¼ 1 : K
D‘ðxÞ� 0; ‘ ¼ 1 : L

����
� �

: ð7Þ

Sum-of-squares polynomials can be used to determine whether the set (7) is empty.
This happens if and only if there exist polynomials UkðzÞ and sum-of-squares
polynomials S‘ðzÞ such that

1þ
XK
k¼1

EkðzÞUkðzÞþ S0ðzÞþ
XL
‘¼1

D‘ðzÞS‘ðzÞ ¼ 0: ð8Þ
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In all the results from Chap. 4 listed above, the degrees of the variable
polynomials can be high. Hence, only relaxed versions (i.e., sufficient conditions)
can be actually implemented.

In Chaps. 5–9, each basic theoretical result is applied at least once. With uni-
variate polynomials, the typical optimization problems are obtained by replacing
the unknown FIR filter HðzÞ, in which the problem is not convex, with its squared
magnitude (3), in which the problem is convex (and SDP). After solving the SDP
problem, the desired filter is obtained by spectral factorization, with algorithms
discussed in Appendix B. The optimization problems are signal processing classics,
ranging from the design of FIR and IIR filters to the design of filterbanks and
wavelets.

With multivariate polynomials, the applications are the design of 2-D FIR and
IIR filters, H1 deconvolution, and stability tests, including robust stability. One
interesting conclusion is that the relaxations of minimal degree, obtained, e.g., by
taking in (4) the degrees of the factors H‘ðzÞ equal to the degree of RðzÞ, give
practically optimal solutions in almost all problems. So, the limitations of relax-
ations are mostly theoretical. This allows solving optimally some problems for
which no other known algorithm could guarantee practical optimality.

The BRL is used in filter design, deconvolution, and especially in all opti-
mization problems involving the atomic norm and deconvolution, such as line
spectrum and direction of arrival estimation.

Each chapter ends with bibliographical notes and a number of problems, whose
difficulty ranges from very simple to medium. There are no solutions given in the
book, but some hints are provided for many of the “not-so-trivial” problems. The
programs for solving the numerical examples are available at http://www.
schur.pub.ro/postrigpol_book.htm; in case of trouble, e-mail to
bogdan.dumitrescu@upb.ro.

Acknowledgements. Ten years is actually quite a long time, especially when you
are ten years older. A lot of things happened since the first edition. My dual
affiliation to Tampere University of Technology and University Politehnica of
Bucharest, miraculously lasting for so many professionally happy years, came to its
natural end. I work now only in Romania. My genial friend (now I dare to say it)
Corneliu Popeea passed away; independently of other researchers, he made in
August 1999 the breakthrough that led, on a tortuous primal-dual-primal way, to the
parameterization of positive trigonometric polynomials. Good things happened
also. I still love my family. I learned to play a bit the trombone, despite being
somewhat tone deaf. I ran a marathon (in 3:47) and many half marathons. I still play
football.

The first edition of this book was based mostly on work done in Tampere. I am
and always be grateful to Ioan Tăbuş, long time friend and collaborator, and Jaakko
Astola, for the opportunity to come and stay there. Besides them, I thank to my
other coauthors (in alphabetical order) on topics related to this book: Ilker Bayram,
Robert Bregović, B.C. Chang, Boris Jora, Riitta Niemistö, Tae Roh, Tapio
Saramäki, Ivan Selesnick, Petre Stoica, and Lieven Vandenberghe. A special
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Scheiderer, Carsten Scherer, and Markus Schweighofer; I am thankful especially to
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Chapter 1
Positive Polynomials

Abstract This short chapter presents the characterizations of nonnegative univariate
polynomials, with an emphasis on trigonometric polynomials. The basic result (the
well-known Riesz-Fejér theorem) is the existence of a spectral factorization for a
globally nonnegative trigonometric polynomial. Polynomials that are nonnegative
only on a specified interval canbeparameterized as a functionof twoglobally nonneg-
ative polynomials. These first characterizations aremostly formulated in “polynomial
language”; they will be helpful later, when they serve as a basis for translation into
a linear matrix inequality (LMI) form that opens the way for semidefinite program-
ming (SDP) optimization. For completeness, we have added an old characterization
of positivity in terms of positive semidefinite Toeplitz matrices.

1.1 Types of Polynomials

Themost importantmathematical object in this book is the (Hermitian) trigonometric
polynomial

R(z) =
n∑

k=−n

rkz
−k, r−k = r∗

k , (1.1)

defined for z ∈ C. We denoteR[z] the set of polynomials (1.1) with real coefficients;
we name these polynomials symmetric, since r−k = rk , or even. If the coefficients
are complex, the polynomials (1.1) are Hermitian, since r−k = r∗

k ; we denote C[z]
the set of such polynomials. The degree of the polynomial is deg R = n. When the
degree is fixed to n, we denote the corresponding sets of polynomials by Rn[z] and
Cn[z]. We note that the sum and the product of symmetric (Hermitian) polynomials
are also symmetric (Hermitian) polynomials; the sets R[z] and C[z] are rings.

A causal polynomial is H(z) = ∑n
k=0 hkz

−k , and the set of causal polynomials is
denotedR+[z] orC+[z], as the coefficients of H(z) are real or complex, respectively.
The causal part of the polynomial (1.1) is
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2 1 Positive Polynomials

R+(z) = r0
2

+
n∑

k=1

rkz
−k . (1.2)

We are interested especially by the values of R(z) on the unit circle T, i.e., when

z = e jω, ω ∈ [−π, π ]. (1.3)

If R ∈ R[z], then, on the unit circle, it has the form

R(ω)
Δ= R(e jω) = 2Re[R+(e jω)] = r0 + 2

n∑

k=1

rk cos kω (1.4)

and has real values. Note that R(ω) is the Fourier transform of the sequence rk , k =
−n : n. (We use the notation R(ω) to enhance the idea of spectrum of the discrete-
time “signal” rk .) The symmetry relation R(−ω) = R(ω) holds. The form (1.4)
explains the name trigonometric polynomial attached to R(z). Denoting

t = cosω = z + z−1

2
(1.5)

and Ck(t) = cos(k arccos t) the k-th order Chebyshev polynomial, the polynomial
(1.4) can be written in the form

R(ω) = r0 + 2
n∑

k=1

rkCk(t) =
n∑

k=0

pkt
k = P(t), t ∈ [−1, 1]. (1.6)

The transformation between the coefficients rk and pk is linear and is given in
Sect. 1.5.1.

If R ∈ C[z], we can write

R(z) =
n∑

k=−n

(uk + jvk)z
−k = U (z) + jV (z), (1.7)

whereU (z) is a symmetric polynomial, while V (z) is antisymmetric, i.e., v−k = −vk
(in particular, v0 = 0). On the unit circle, the polynomial (1.7) becomes

R(ω) = u0 + 2
n∑

k=1

uk cos kω + 2
n∑

k=1

vk sin kω (1.8)

and has real values.
Finally, let us define the set R[t] of polynomials
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P(t) =
n∑

k=0

pkt
k, (1.9)

where t runs on the real axisR, and the coefficients pk are real. There is a one-to-one
correspondence between the polynomials of the same degree in R[t] and R[z] (i.e.,
between Rn[t] and Rn[z]), as suggested by (1.6). As shown in Sect. 1.5.1, the linear
transformation (1.45) between their coefficients is invertible.

1.2 Positive Polynomials

Characterization of polynomials (1.1) that are nonnegative on the unit circle, i.e.,
R(ω) ≥ 0, ∀ω ∈ T, or positive (R(ω) > 0) is of great interest in several signal
processing problems, as we will see starting with this section. We denote RP[z]
andCP[z] (RP[z] andCP[z]) the sets of polynomials that are nonnegative (positive)
on the unit circle, with real and complex coefficients, respectively. We treat mainly
polynomials with complex coefficients, since particularization from C[z] to R[z] is
trivial.

Theorem 1.1 (Riesz-Fejér, spectral factorization) A polynomial R ∈ C[z], defined
as in (1.1), is nonnegative on the unit circle if and only if a causal polynomial

H(z) =
n∑

k=0

hkz
−k (1.10)

exists such that
R(z) = H(z)H∗(z−1), (1.11)

where

H∗(z) Δ=
n∑

k=0

h∗
k z

−k .

The equality (1.11) is called spectral factorization of the nonnegative polynomial.

Proof If (1.11) holds, then, for z = e jω, it becomes

R(ω) = H(ω)H(ω)∗ = |H(ω)|2 ≥ 0. (1.12)

To prove the converse implication, start by noticing that

R(1/z∗)∗ =
n∑

k=−n

r∗
k z

k = R(z)
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and so if ζ is a zero of R(z), then 1/ζ ∗ is a zero of R(z). Note that ζ �= 1/ζ ∗
means |ζ | �= 1. Since R(z) has 2n zeros, it can be expressed as the product R(z) =
aF(z)G(z), with a ≥ 0. The factor

F(z) =
m∏

k=1

(z − zk)(z−1 − z∗
k )

1 + |zk |2 (1.13)

contains the zeros zk that are not on the unit circle, and thus come in pairs, or are
on the unit circle and have double multiplicity. The factor G(z) can be restricted to
have distinct single zeros on the unit circle and has the form

G(z) =
n∏

k=m+1

(z − e jαk )(z−1 − e− jβk )

1 + e j (αk−βk )
, (1.14)

where αk �= βk ± π and αk , βk are distinct numbers in (−π, π ]. For any z = e jω, we
have

F(z) =
m∏

k=1

|e jω − zk |2
1 + |zk |2 ≥ 0.

We now prove that m = n, i.e., R(z) has no zeros of multiplicity one (or odd, gen-
erally) on the unit circle. To do this, consider the Hermitian polynomial

G1(z) = (z − e jα)(z−1 − e− jβ)

1 + e j (α−β)
(1.15)

and assume without loss of generality that α < β; assume also that β �= α + π . For
z = e jω, it results that

G1(ω) = 1 + cos(β − α) − cos(ω − α) − cos(β − ω)

1 + cos(α − β)
.

Denoting

ω − α = β − α

2
+ θ, β − ω = β − α

2
− θ,

it results that

G1(ω) = 2 cos β−α

2 (cos β−α

2 − cos θ)

1 + cos(α − β)
.

It can be seen immediately thatG1(ω) has different signs for θ ∈ [− β−α

2 ,
β−α

2 ] and its
complement, or equivalently, forω ∈ [α, β] and its complement over [−π, π ]. Ifβ =
α + π , the only possible form corresponding to (1.15) is G1(z) = (z + j)(z−1 − j),
forwhichG1(ω) = 2 sinω, which again changes its sign over [−π, π ]. SinceG(ω) is
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a finite product of terms of the formG1(ω), it results thatG(z) cannot be nonnegative
on the whole unit circle. So R(z) = aF(z) and (1.11) holds with

H(z) = b
n∏

k=1

(z − zk), (1.16)

obtained by taking half of the factors from (1.13) (b is a convenient scalar).

Remark 1.2 The proof above gives an algorithm for computing the spectral factor-
ization of a nonnegative polynomial R(z). First compute the 2n zeros of R(z) and
pair the zeros that are one the conjugated reciprocal of the other. (If single roots on the
unit circle remain, then the polynomial is actually not nonnegative.) Then compute
H(z) by assigning it a zero from each pair. It is clear that the spectral factorization is
not unique. It can be made unique, e.g., if the zeros of H(z) are chosen to be inside
or on the unit circle; thus, a minimum-phase spectral factor is obtained.

The above algorithm behaves poorly numerically and can be recommended only
for rather short polynomials, in general. One difficulty is in identifying multiple
roots on the unit circle. However, the worst effect is due to the ill conditioning of the
operation of forming the coefficients of a polynomial from its roots. Other algorithms
are discussed in Appendix B.

Remark 1.3 In the particular case of real coefficients, if R ∈ R[z] and R(ω) ≥ 0,
∀ω ∈ T, then there exists a causal polynomial H(z) with real coefficients such that
R(z) = H(z)H(z−1). This follows from the fact that if ζ is a zero of R(z), then
ζ ∗, 1/ζ and 1/ζ ∗ are also zeros of R(z). Hence, we can assign ζ and ζ ∗ to the
same spectral factor, obtaining a polynomial with real coefficients. In particular, the
minimum-phase spectral factor has real coefficients. However, a nonnegative R(z)
may have also spectral factors with complex coefficients.

The spectral factorization relation (1.11) can bewritten in terms of the coefficients
of R(z) and H(z) as follows:

rk =
n∑

i=k

hi h
∗
i−k, k ≥ 0. (1.17)

This expression tells that rk is an autocorrelation sequence if R(ω) ≥ 0.

Example 1.4 (Autocorrelations of an MA process.) Consider the MA (moving aver-
age) process

y(	) =
n∑

k=0

hkw(	 − k), (1.18)

where w(	) is white noise of variance 1, i.e., E{w(	)w∗(	 − k)} = δk . The autocor-
relation sequence of the MA process is



6 1 Positive Polynomials

rk = E{y(	)y∗(	 − k)} = E

{
n∑

i=0

hiw(	 − i)
n∑

m=0

h∗
mw

∗(	 − k − m)

}
. (1.19)

Simple computation shows that rk is given by (1.17), for k ≥ 0 (and r−k = r∗
k ).

Due to Theorem 1.1, any finite Hermitian sequence rk for which R(ω) ≥ 0 is the
autocorrelation sequence of an MA process. From now on, we will use the terms
nonnegative polynomial and autocorrelation (or nonnegative) sequence as synonyms.

Problem (MA_Estimation) Assume that we know the order n of the MA process
(1.18) and we want to estimate its parameters hk , k = 0 : n, from a finite realization
of the process y(	), 	 = 0 : L − 1. A possible solution is to compute an estimation
r̂k of theMA autocorrelation sequence from the given L samples, using, for instance,
the biased estimation

r̂k = 1

L

L−1∑

	=k

y(	)y∗(	 − k), k = 0 : n, (1.20)

or other estimations [1, 2]. Then, perform the spectral factorization R̂(z) = Ĥ(z)Ĥ∗
(z−1) to obtain estimations of hk .

This algorithm cannot work if, due to the finite character of the estimation, the
estimated autocorrelation sequence is not nonnegative, i.e., there are frequencies ω

for which R̂(ω) < 0. In this case, spectral factorization is not possible. For the biased
estimation (1.20), the sequence r̂k is always nonnegative; however, this is not true
for other estimations that may be more meaningful, especially for short data sets [2].
So, if R̂(ω) is not nonnegative, we must replace r̂k with a nonnegative sequence,
possibly the nearest. We will show immediately that this is possible.

Remark 1.5 The set CPn[z] ⊂ C[z] of Hermitian polynomials of degree at most n
that are positive on the unit circle is convex. Indeed, if R1(z) and R2(z) are positive,
so is any convex combination aR1(z) + (1 − a)R2(z), for a ∈ [0, 1]; note that the
degree of the convex combination might be smaller than the degree of the polyno-
mials. Moreover, CPn[z] is a cone, since if R ∈ CPn[z], then aR ∈ CPn[z], for any
a > 0. Also, the set CPn[z] of polynomials nonnegative on the unit circle (which is
the closure of CPn[z]) is a convex cone.

Problem (Nearest_autocorrelation)Aswehave seen above inProblemMA_Estima-
tion, it may be useful to find the autocorrelation nearest from a given sequence.
Suppose that the Hermitian sequence r̂k , k = −n : n, with r̂−k = r̂∗

k , is given and
we want to find the nonnegative sequence rk that is nearest from r̂k . The distance
between the sequences is measured via the norm
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dist (r, r̂) =
n∑

k=−n

|rk − r̂k |2 = (r − r̂)HΓ (r − r̂), (1.21)

where r = [r0 r1 . . . rn]T ∈ C
n+1 is the vector of the elements in the sequence

and Γ = diag(1, 2, . . . , 2). Other norms could be used as well; also, Γ may be an
arbitrary positive definitematrix. Since the set of autocorrelation sequences is convex,
the problem

min
r

(r − r̂)HΓ (r − r̂)

subject to R(ω) ≥ 0, ∀ω ∈ [−π, π ]
(1.22)

of finding the autocorrelation nearest from r̂ has a unique solution. Solving (1.22)
is not trivial. As posed, it is a semi-infinite optimization problem, since the number
of constraints is infinite. An approximated solution may be obtained by discretizing
the constraint R(ω) ≥ 0 over a finite grid of frequencies; note that for a given ω,
the constraint is linear in the coefficients rk ; however, such a solution may become
negative between some grid points and is usually not optimal. As this is probably
the simplest problem involving a signal processing application of positive polyno-
mials, we will concentrate in the sequel (in this and next chapter) on presenting the
tools necessary for its solution, restating the problem as soon as we advance. Other
important applications will be presented further in Chaps. 5–9.

The spectral factorization relations (1.11) and (1.12) allow a generalization, which
now may seem insignificant but later will prove important.

Definition 1.6 A trigonometric polynomial R(z) defined as in (1.1) is sum-of-
squares if it can be written in the form

R(z) =
ν∑

	=1

H	(z)H
∗
	 (z−1), (1.23)

for some ν ≥ 0 and causal polynomials H	(z).

On the unit circle, a sum-of-squares polynomial is

R(ω) =
ν∑

	=1

|H	(ω)|2 (1.24)

and so is nonnegative. Theorem 1.1 says that any polynomial that is nonnegative on
the unit circle is sum-of-squareswith a single term. Therefore, the sets of nonnegative
and sum-of-squares polynomials coincide.

For polynomials of real variable, there is no equivalent of the spectral factorization
theorem.Let P ∈ R[t]benonnegative, i.e., P(t) ≥ 0,∀t ∈ R. It is clear that its degree
n must be even. Such a polynomial is sum-of-squares if it can be written as

http://dx.doi.org/10.1007/978-3-319-53688-0_5
http://dx.doi.org/10.1007/978-3-319-53688-0_9
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P(t) =
ν∑

	=1

H	(t)
2, (1.25)

for some ν ≥ 0 and polynomials H	(t) of degree at most n/2.

Theorem 1.7 Any polynomial P ∈ R[t] that is nonnegative on the real axis can be
expressed as a sum-of-squares with two terms.

The proof is elementary and is presented in Sect. 1.5.2. So again the sets of positive
and sum-of-squares polynomials are identical; however, a positive polynomial cannot
be expressed as a square, as in the case of polynomials in C[z].

1.3 Toeplitz Positivity Conditions

Let R ∈ Cn[z] be nonnegative. We have shown in the previous section that its coef-
ficients rk , k = −n : n, form an autocorrelation sequence. Let us consider again the
MA process (1.18), reminding that rk = E{y(	)y∗(	 − k)}. For an arbitrary positive
integer m, denote

ym(	) =

⎡

⎢⎢⎢⎣

y(	)
y(	 − 1)

...

y(	 − m)

⎤

⎥⎥⎥⎦ . (1.26)

It is clear that the (m + 1) × (m + 1) matrix

Rm = E{ ym yHm } (1.27)

is positive semidefinite. (For any x ∈ C
m+1, we have xH Rmx = E{xH ym yHm x} =

E{|xH ym |2} ≥ 0.) Using (1.26) and the definition of rk , we can write

Rm =

⎡

⎢⎢⎣

...

. . . E{y(	 − i)y∗(	 − s)} . . .
...

⎤

⎥⎥⎦

is

=

⎡

⎢⎢⎣

...

. . . rs−i . . .
...

⎤

⎥⎥⎦

is

,

where rk = 0 if |k| > n. So, for m > n, the matrix Rm has the Toeplitz structure
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Rm =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0 r1 . . . rn 0 . . . 0

r−1 r0 r1
. . . rn

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . .
. . . rn

0
. . .

. . .
. . .

. . .
. . .

...
...

. . . r−n
. . . r−1 r0 r1

0 . . . 0 r−n . . . r−1 r0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Δ= Toep(r0, r1, . . . , rn, 0, . . . , 0). (1.28)

If m ≤ n, the matrix Rm is just a principal submatrix of the matrix above, precisely
Rm = Toep(r0, . . . , rm). The considerations above lead to the following result.

Theorem 1.8 The polynomial R ∈ Cn[z] is nonnegative if and only if the matrices
Rm defined by (1.28) are positive semidefinite for any m.

Proof The “only if” part has been proved above. The “if” part results by contradic-
tion. Suppose that some ω ∈ [−π, π ] exists such that R(ω) < 0. Denote

xm = [1 e jω . . . e jnω 0 . . . 0]T ∈ C
m+1,

define

αm = 1

m + 1
xH
m Rmxm =

n∑

k=−n

m + 1 − |k|
m + 1

rke
− jkω (1.29)

and remark that

|R(ω) − αm | =
∣∣∣∣∣

n∑

k=−n

|k|
m + 1

rke
− jkω

∣∣∣∣∣ ≤ 2n

m + 1

n∑

k=1

|rk |.

Taking m > 2n(
∑n

k=1 |rk |)/|R(ω)|, it results that

|R(ω) − αm | < |R(ω)|,

which implies that αm < 0 and so, by virtue of the definition (1.29), the matrix Rm

is not positive semidefinite, which is the sought after contradiction.

Remark 1.9 Defining Rm as in (1.28), for a particular m, the condition Rm 	 0 is
necessary but not sufficient for the nonnegativity of the polynomial R(z). Theorem
1.8 provides only the following possible nonnegativity check: If Rm is not positive
semidefinite, then R(z) is not nonnegative.
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Fig. 1.1 From exterior to
interior, the domains for
which Rm 	 0, drawn in the
plane (r1, r2), for
m = 2, 3, 4, 5 (with n = 2,
r0 = 1). The most interior
domain corresponds to
values of r1, r2 for which 1 +
2r1 cosω + 2r2 cos 2ω ≥ 0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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0
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Example 1.10 Since the principal submatrices of a positive semidefinite matrix are
positive semidefinite themselves, it is clear that if Rm 	 0, then Ri 	 0, for all
i ≤ m. On the other side, as m → ∞, the condition Rm 	 0 approximates better
and better the nonnegativity condition R(ω) ≥ 0. One may wonder how good the
approximation is for moderate values of m, i.e., values only slightly greater than
n. To have an image of this phenomenon, let us take n = 2 and, without loss of
generality, consider r0 = 1. For a polynomial R(z) with real coefficients, we draw,
in the (r1, r2) plane, the domain for which R(ω) = 1 + 2r1 cosω + 2r2 cos 2ω ≥ 0.
In Fig. 1.1, this is the most interior domain, marked with m = ∞. Similarly, we
draw domains for the values (r1, r2) for which Rm 	 0. In Fig. 1.1, such domains
are presented for values of m going from 2 (the most exterior domain) to 5 (the one
but most interior). Obviously, all these domains are convex. It appears that for small
values of m, the approximation is not very good and we may assume that this is
happening also for larger n. So, probably, the practical importance of the conditions
Rm 	 0 is small, although theoretically they prove to be useful.

1.4 Positivity on an Interval

We seek now characterizations of polynomials that are nonnegative only on an inter-
val, unlike those discussed in Sect. 1.2, which were nonnegative on the whole unit
circle or real axis. For polynomials of real variable, P ∈ R[t], the relevant cases are
those of the finite interval [a, b] and of the half-infinite interval [a,∞). For R[z] or
C[z], we are interested by trigonometric polynomials R(z) for which R(ω) ≥ 0 for
ω ∈ [α, β] ⊂ [−π, π ].

In this section, we present only themain results. The proofs can be found at the end
of the chapter; although, at least for polynomials of real variable, elementary proofs
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are available (see [3]), we have preferred to use the following derivation scheme:
Theorem1.1 ⇒ Theorem1.11 ⇒ Theorem1.13, Theorem1.11 ⇒ Theorem1.15,
Theorem1.17, Theorem1.18. The proofs are based on transformations between dif-
ferent intervals, which may be interesting by themselves.

All the theorems below show the same type of result. A polynomial that is non-
negative on an interval can be expressed as a function of squared polynomials (which
are globally nonnegative) and elementary polynomials (of degree one or two) that
are positive on that interval.

Theorem 1.11 Let P ∈ R[t] be such that P(t) ≥ 0 for any t ∈ [a, b]. Then, if
deg P = 2n, the polynomial can be expressed as

P(t) = F(t)2 + (t − a)(b − t)G(t)2, (1.30)

with F,G ∈ R[t] and deg F ≤ n, degG ≤ n − 1.
If deg P = 2n + 1, then the polynomial can be expressed as

P(t) = (t − a)F̃(t)2 + (b − t)G̃(t)2, (1.31)

with F̃, G̃ ∈ R[t] and deg F̃ ≤ n, deg G̃ ≤ n.

Example 1.12 The polynomial P(t) = 1 − t6 is nonnegative on [−1, 1] (and nega-
tive elsewhere). It can be written as

1 − t6 = 0.4641(1 − t2)2 + (1 − t2)(0.73205 + t2)2,

and so the relation (1.30) holdswith F(t) = √
0.4641(1 − t2) andG(t) = 0.73205 +

t2.

Theorem 1.13 A polynomial P ∈ Rn[t] for which P(t) ≥ 0, for any t ∈ [a,∞],
can be expressed as

P(t) = F(t)2 + (t − a)G(t)2, (1.32)

with F,G ∈ R[t], deg F ≤ �n/2�, degG ≤ �(n − 1)/2�.
Example 1.14 The polynomial P(t) = t3 + t2 + t is nonnegative on [0,∞] (and
negative elsewhere). It can be written in the form (1.32) as P(t) = 3t2 + t (t − 1)2.

Theorem 1.15 A polynomial R ∈ Cn[z] for which R(ω) ≥ 0, for any ω ∈ [α, β] ⊂
(−π, π), can be expressed as

R(z) = F(z)F∗(z−1) + Dαβ(z) · G(z)G∗(z−1), (1.33)

where F,G are causal polynomials with complex coefficients, of degree at most n
and n − 1, respectively. The polynomial
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Dαβ(z) = d1z
−1 + d0 + d∗

1 z (1.34)

is defined such that Dαβ(ω) is nonnegative for ω ∈ [α, β] and negative on its com-
plementary. Denoting

a = tan α
2 , b = tan β

2 , (1.35)

the coefficients of Dαβ(z) are

d0 = − ab+1
2 , d1 = 1−ab

4 + j a+b
4 . (1.36)

(These coefficients may be multiplied by any positive constant.)

Remark 1.16 The proof of the above theorem is based on the transformation
t = tan(ω/2) (explained in detail in Sect. 1.5.5) that maps ω ∈ [α, β] to t ∈ [a, b].
Theorem 1.11 is used to express the transformed polynomial, which is nonnegative
on [a, b], as in relation (1.30). When α = −π or β = π , Theorem 1.13 should be
applied, as either a or b are infinite; in this case, the polynomial Dαβ has a slightly
different form; the reader is invited to prove it in Problem 1.6.

A simple way of avoiding a different formula when α = −π or β = π is to work
with the polynomial R̃(z) = R(e jγ z) instead of R(z), where γ is chosen such that
[α + γ, β + γ ] ⊂ (−π, π). It is obvious that R̃(ω) is nonnegative on [α + γ, β + γ ]
if R(ω) is nonnegative on [α, β]. The transformation between the coefficients of R(z)
and R̃(z) is linear.

Finally, note that if α = −β, then the coefficients of Dαβ are real.

For trigonometric polynomials with real coefficients, the analogous of Theorem
1.15 is as follows. Note that now [α, β] ⊂ [0, π ], as R(−ω) = R(ω) for R ∈ R[z].
Theorem 1.17 Let R ∈ Rn[z] be such that R(ω) ≥ 0 for any ω ∈ [α, β] ⊂ [0, π ].
If n is even, then the polynomial can be expressed as

R(z) = F(z)F(z−1) + ( z+z−1

2 − cosβ)(cosα − z+z−1

2 ) · G(z)G(z−1), (1.37)

with F,G ∈ R+[z], deg F ≤ n, degG ≤ n − 2.
If n is odd, then the polynomial can be expressed as

R(z) = ( z+z−1

2 − cosβ) · F̃(z)F̃(z−1) + (cosα − z+z−1

2 ) · G̃(z)G̃(z−1), (1.38)

with F̃, G̃ ∈ R+[z], deg F̃ ≤ n − 1, deg G̃ ≤ n − 1.

On the unit circle, the relations (1.37) and (1.38) can be stated in another form,
by using symmetric (not causal, as above) polynomials as parameters.

Theorem 1.18 Let R ∈ Rn[z] be such that R(ω) ≥ 0 for any ω ∈ [α, β] ⊂ [0, π ].
If n is even, then, on the unit circle, the polynomial can be expressed as

R(ω) = R1(ω)2 + (cosω − cosβ)(cosα − cosω) · R2(ω)2, (1.39)
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with R1, R2 ∈ R[z], deg R1 ≤ n/2, deg R2 ≤ n/2 − 1.
If n is odd, then the polynomial can be expressed as

R(ω) = (cosω − cosβ) · R̃1(ω)2 + (cosα − cosω) · R̃2(ω)2, (1.40)

with R̃1, R̃2 ∈ R[z], deg R̃1 ≤ (n − 1)/2, deg R̃2 ≤ (n − 1)/2.

Example 1.19 The symmetric polynomial

R(z) = z4+z−4

2 − 13 z3+z−3

2 − 30 z2+z−2

2 + 121 z+z−1

2 − 79

has real coefficients and is nonnegative on the interval [0, π/3] (and a little outside
it; draw its graph !). Theorem 1.18 says that we can write

R(ω) = R1(ω)2 + D(ω)R2(ω)2,

where (we introduce a factor of 2, to get integer coefficients)

D(ω) = 2(cosω − 1
2 )(1 − cosω) = − cos 2ω + 3 cosω − 2.

It can be checked that

R1(ω) = 2(cos 2ω − 1), R2(ω) = 2(cosω + 4).

Using (1.5), it results that

R1(z)2 = 4
(
z2+z−2

2 − 1
)2 = (z−4 − 2z−2 + 1)(z4 + 2z2 + 1),

R2(z)2 = 4
(
z+z−1

2 + 4
)2 = (z−2 + 8z−1 + 1)(z2 + 8z + 1).

We see immediately that relation (1.37) holds with

F(z) = z−4 − 2z−2 + 1, G(z) = 1√
2
(z−2 + 8z−1 + 1).

The reader is invited to use the technique illustrated by this example for deriving
Theorem1.18 from Theorem1.17.

Remark 1.20 (Positivity on a union of intervals) The results in this section have been
all for polynomials that are positive on an interval. A natural question is whether the
same type of result holds for an union of disjoint intervals U = ⋃ν

i=1[ai , bi ]. The
full answer will be given in a broader context in Chap.4 . Here, we give only the
generalization of Theorem 1.11. Let D(t) be a polynomial that is nonnegative on U
and positive elsewhere, for example

http://dx.doi.org/10.1007/978-3-319-53688-0_4
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g1(t) = (−1)ν+1
ν∏

i=1

(t − ai )(bi − t).

Then, any polynomial P ∈ R[t] with P(t) ≥ 0 for all t ∈ U can be expressed as

P(t) = s0(t) + g1(t)s1(t), (1.41)

where s0 and s1 are sum-of-squares. So, the difference with respect to Theorem 1.11
and (1.30) is that here we have sum-of-squares instead of simple squares and also
that the degrees of these sum-of-squares may be higher than deg P .

1.5 Details and Other Facts

1.5.1 Chebyshev Polynomials

The (first kind) k-th orderChebyshevpolynomial is defined asCk(t)= cos(k arccos t),
for t ∈ [−1, 1]. With t = cosω, the definition is Ck(cosω) = cos(kω). It is imme-
diate that C0(t) = 1, C1(t) = t , C2(t) = 2t2 − 1. Also, the recurrence relation

Ck+1(t) = 2tCk(t) − Ck−1(t), k ≥ 1, (1.42)

holds. Since degCk = k, the polynomialsCk(t), k = 0 : n, form a basis toRn[t]. Let
us denote

Ck(t) =
k∑

i=0

cki t
i , (1.43)

where the coefficients cki can be computed through the recurrence given by (1.42),
i.e., ck+1,i = 2ck,i−1 − ck−1,i . The transformation between the canonical basis and
the basis of Chebyshev polynomials is given by

⎡

⎢⎢⎢⎣

C0(t)
C1(t)

...

Cn(t)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

c00
c10 c11
...

...
. . .

cn0 cn1 . . . cnn

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1
t
...

tn

⎤

⎥⎥⎥⎦ . (1.44)

Let us denote C the lower triangular matrix from (1.44). If P ∈ R[t] is an arbitrary
polynomial and

P(t) =
n∑

k=0

pkt
k =

n∑

k=0

rkCk(t),
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then the vectors of coefficients p (in the canonical basis) and r (in the Chebyshev
basis) are related by

p = CT r. (1.45)

Finally, note that an equivalent definition of Chebyshev polynomials is based on the
relation

z−k+zk

2 = Ck(
z−1+z

2 ).

1.5.2 Positive Polynomials in R[t] as Sum-of-Squares

Theorem 1.7 states that if P ∈ R[t] and P(t) ≥ 0, ∀t ∈ R, then P(t) = F(t)2 +
G(t)2. Here is the proof.

The degree of the polynomial is 2n. Without loss of generality, we can assume
that the coefficient of t2n in P(t) is 1. By expressing the polynomial function of its
roots ai ± jbi , i = 1 : n, we obtain

P(t) =
n∏

i=1

(t − ai − jbi )(t − ai + jbi )

=
n∏

i=1

(t − ai − jbi )
n∏

i=1

(t − ai + jbi )

= [F(t) − jG(t)][F(t) + jG(t)] = F(t)2 + G(t)2, (1.46)

where F,G ∈ R[t] and their degrees are at most n (but at least one has degree equal
to n).

1.5.3 Proof of Theorem 1.11

It is only necessary to prove the Theorem for the interval [−1, 1]. The linear change
of variable

t = (b − a)τ + a + b

2
(1.47)

transforms [−1, 1] into [a, b]. So, if P(t) ≥ 0 for any t ∈ [a, b], then

P̃(τ ) = P( (b−a)τ+a+b
2 ) ≥ 0, ∀τ ∈ [−1, 1].

So, we prove that any P ∈ R[t] such that P(t) ≥ 0 for t ∈ [−1, 1] can be
expressed as
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P(t) =
{
F(t)2 + (1 − t2)G(t)2, if deg P = 2n,

(1 − t)F̃(t)2 + (1 + t)G̃(t)2, if deg P = 2n + 1.
(1.48)

We discuss first the case where deg P = 2n. Let us replace t = (z−1 + z)/2 and
denote R(z) = P(t). For z = e jω, it results that t = cosω, relation that links poly-
nomials in Rn[t] and Rn[z] (and polynomials in Rn[t] nonnegative on [−1, 1] to
polynomials in Rn[z] nonnegative on the unit circle). Since R(z) is nonnegative on
the unit circle, by Theorem 1.1 it can be written as R(z) = H(z)H(z−1). We can
write

H(z) =
2n∑

k=0

hkz
−k = z−n[A(z) + B(z)], (1.49)

where A(z) is symmetric (a−k = ak), B(z) is antisymmetric (b−k = −bk) and their
degree is atmostn. Symmetrymeans that A(z−1) = A(z), while antisymmetrymeans
that B(z−1) = −B(z). It results that

R(z) = H(z)H(z−1) = A(z)2 − B(z)2. (1.50)

Since
z−k+zk

2 = Ck(
z−1+z

2 ),

where Ck(z) is the k-th order Chebyshev polynomial, the symmetric polynomial
A(z) can be written as

A(z) = a0 + 2
n∑

k=1

ak
z−k + zk

2
= a0 + 2

n∑

k=1

akCk(t)
Δ= F(t). (1.51)

The antisymmetric polynomial B(z) can be expressed as

B(z) = 2
n∑

k=1

bk
z−k − zk

2

= z−1 − z

2
· 2

n∑

k=1

bk(z
−k+1 + . . . + 1 + . . . + zk−1)

Δ= z−1 − z

2
G(t). (1.52)

Since (
z−1−z

2

)2 =
(
z−1+z

2

)2 − 1,

it results that
B(z)2 = (t2 − 1)G(t)2. (1.53)
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Substituting (1.51) and (1.53) into (1.50), we obtain the first expression from (1.48).
The case with deg P = 2n + 1 is proved similarly, with the difference that (1.49)

is replaced with

H(z) = z−n[(1 + z−1)A(z) + (1 − z−1)B(z)],

where now both A(z) and B(z) are symmetric polynomials.

1.5.4 Proof of Theorem 1.13

It is clear that if P(t) ≥ 0, ∀t ∈ [a,∞), then P(t − a) ≥ 0, ∀t ∈ [0,∞). So, instead
of (1.32), we prove that any polynomial P(t) that is nonnegative for t ≥ 0 can be
written as

P(t) = F(t)2 + tG(t)2. (1.54)

For the proof, we use Theorem 1.11 and theGoursat transform [4], which transforms
apolynomial positive on [−1, 1] into a polynomial positive on [0,∞) (andviceversa).
Denote as usual n = deg P . The n-th order Goursat transform of P(t) is

P̆(t) = (1 + t)n P
(
1−t
1+t

)
.

Note that n̆ = deg P̆ ≤ n. The Goursat transform is its own inverse, modulo a con-
stant factor:

˘̆P(t) = (1 + t)n P̆
(
1−t
1+t

) = (1 + t)n
(
1 + 1−t

1+t

)n
P

(
1− 1−t

1+t

1+ 1−t
1+t

)
= 2n P(t).

If P(t) ≥ 0 for t ≥ 0, then P̆(t) ≥ 0 for t ∈ [−1, 1]. From Theorem 1.11, it results
that depending on the parity of n̆, we can write either

P̆(t) = A(t)2 + (1 − t2)B(t)2 (1.55)

or
P̆(t) = (1 − t)A(t)2 + (1 + t)B(t)2. (1.56)

In both cases, by applying the Goursat transform, we obtain

2n P(t) = (1 + t)m[F(t)2 + tG(t)2], (1.57)

where m = n − n̆. (If (1.55) holds, then F(t) = A(t) and G(t) = 2B(t). If (1.56)
holds, then F(t) = √

2B(t) and G(t) = √
2A(t).) If m is even, then (1.57) has

already the form (1.54). If m is odd, then we notice that
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(1 + t)[F(t)2 + tG(t)2] = [F(t) + tG(t)]2 + t[F(t) − G(t)]2

has the form (1.54).

1.5.5 Proof of Theorem 1.15

Consider the bilinear transform

z = 1 + j t

1 − j t
= (1 + j t)2

1 + t2
. (1.58)

For t ∈ R and z = e jω, it results that

cosω = z + z−1

2
= 1 − t2

1 + t2
, sinω = z − z−1

2 j
= 2t

1 + t2
, (1.59)

It is clear that the transform (1.58) maps the real axis to the unit circle, since relations
(1.59) are equivalent to

t = tan(ω/2). (1.60)

A polynomial R ∈ C[z], with deg R = n, can be written as in (1.7)

R(z) = U (z) + jV (z) = Ũ ( z+z−1

2 ) + z−z−1

2 j · Ṽ ( z+z−1

2 ),

with Ũ , Ṽ ∈ R[z] and deg Ũ = n, deg Ṽ = n − 1 (one of the degrees could be
smaller, but this is irrelevant). On the unit circle, this is

R(ω) = Ũ (cosω) + sinω · Ṽ (cosω). (1.61)

Taking (1.59) into account, we obtain

R(ω) = Ũ ( 1−t2

1+t2 ) + 2t
1+t2 · Ṽ ( 1−t2

1+t2 ) = P(t)

(1 + t2)n
, (1.62)

where P ∈ R[t] and deg P = 2n. Reciprocally, for any polynomial P ∈ R[t] of
degree 2n, we can find Ũ , Ṽ ∈ R[z], of degrees n and n − 1, respectively, such
that (1.62) holds; this is due to the fact that the polynomials (1 − t2)k(1 + t2)n−k ,
k = 0 : n, and t (1 − t2)k(1 + t2)n−1−k , k = 0 : n − 1, form a basis to R2n[t].

From (1.62), it results also that if R(ω) ≥ 0 for ω ∈ [α, β], then P(t) ≥ 0 for
t ∈ [a, b], where a and b are defined in (1.35). So, using Theorem 1.11, we can write

P(t)

(1 + t2)n
= Ã(t)2

(1 + t2)n
+ (t − a)(b − t)

(1 + t2)
· B̃(t)2

(1 + t2)n−1
, (1.63)
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with deg Ã ≤ n, deg B̃ ≤ n − 1.
Now, using the transformations (1.59), the following relations similar to (1.62)

hold:
Ã(t)2

(1 + t2)n
= A(ω),

B̃(t)2

(1 + t2)n−1
= B(ω), (1.64)

for some A, B ∈ C[z].Moreover, A(ω) ≥ 0, B(ω) ≥ 0 for anyω. By the spectral fac-
torization Theorem 1.1, it results that A(z) = F(z)F∗(z−1), B(z) = G(z)G∗(z−1),
with deg F ≤ n, degG ≤ n − 1.

Finally, we note that

(t − a)(b − t)

(1 + t2)
=

1−ab
2 (1 − t2) + (a + b)t − ab+1

2 (1 + t2)

(1 + t2)
= Dαβ(ω),

for Dαβ(z) defined as in (1.36). It results that R(z) has the expression (1.33).

1.5.6 Proof of Theorem 1.17

We prove only the case of even n, the other being similar. Using (1.6), we note that
P(t) ≥ 0, ∀t ∈ [cosβ, cosα]. From Theorem 1.11, it results that

P(t) = Ã(t)2 + (t − cosβ)(cosα − t)B̃(t)2, (1.65)

with Ã, B̃ ∈ R[t], deg Ã ≤ n/2, deg B̃ ≤ n/2 − 1. Going back to the Chebyshev
polynomials basis, there exist A, B ∈ RP[z] such that

Ã(t)2 = A(ω), B̃(t)2 = B(ω).

Using the spectral factorizationTheorem1.1, there exist F,G ∈ R+[z], with deg F ≤
n, degG ≤ n − 2, such that A(z) = F(z)F(z−1), B(z) = G(z)G(z−1). Replacing
these relations in (1.65), together with (1.5), leads to (1.37).

1.5.7 Proof of Theorem 1.18

The relation (1.39) results directly from (1.65), by putting R1(ω) = Ã(t), R2(ω) =
B̃(t) (via the usual transformation t = cosω).
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1.6 Bibliographical and Historical Notes

The characterizations of real polynomials that are nonnegative on an interval, as in
Theorem 1.11 and Theorem1.13, are attributed to Lukács [3] and date from the first
decades of the twentieth century.Amore advanced treatment and other references can
be found in [4]. The interest in trigonometric polynomials is more recent, although
results similar to Theorems 1.15, 1.17 were presented in [5]; in [6–9], they have been
rediscovered or rediscussed and interpreted in connection with SDP.

Problems

P 1.1 Prove that if R(z−1) = R∗(z), then R(e jω) ∈ R. Moreover, if R(z) is a finite
support polynomial, i.e., R(z) = ∑n2

k=−n1
rkz−k , then it has the form (1.1).

P 1.2 (Spectral factorization with respect to the imaginary axis.) Let P(s) =∑n
k=0 pks

k be a polynomial of complex variable, with pk ∈ C, such that P(−s) =
P∗(s). Show that P( j t) ∈ R, for any t ∈ R; moreover, pk ∈ R if k is even and
pk ∈ jR if k is odd. If P( j t) ≥ 0, ∀t ∈ R, then n is even and P(s) = F(s)F(−s),
with F(s) = ∑n/2

k=0 fksk .

P 1.3 (“Spectral factorization”with respect to the real axis.) Let P(s) = ∑n
k=0 pks

k ,
be a polynomial of complex variable, with pk ∈ C, such that P(s) = P∗(s). Show
that pk ∈ R and so P(t) ∈ R, for any t ∈ R. If P(t) ≥ 0, ∀t ∈ R, then n is even and
P(s) = F∗(s)F(s), with F(s) = ∑n/2

k=0 fksk .
Use this result to solve the previous problem.

P 1.4 Let P ∈ Rn[t] be such that P(t) ≥ 0 for t ∈ (−∞, a] ∪ [b,∞). Prove that
the polynomial can be expressed as

P(t) =
{
F(t)2 − (t − a)(b − t)G(t)2, if n even,

(a − t)F(t)2 + (t − b)G(t)2, if n odd,

with F,G ∈ R[t].
P 1.5 Show that if R ∈ C[z] is such that R(ω) ≥ 0 for ω ∈ [−α, α], then

R(z) = F(z)F∗(z−1) + ( z+z−1

2 − cosα) · G(z)G∗(z−1),

where F,G ∈ C+[z], deg F ≤ n, degG ≤ n − 1. (Hint: this is a particular case of
Theorem 1.15.)

P 1.6 Show that if R ∈ C[z] is such that R(ω) ≥ 0 for ω ∈ [α, π ], then

R(z) = F(z)F∗(z−1) + Dα(z) · G(z)G∗(z−1),
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where F,G ∈ C+[z], deg F ≤ n, degG ≤ n − 1 and

Dα(z) = (− a
4 + 1

4 j)z
−1 − a

2 + (− a
4 − 1

4 j)z,

with a = tan(α/2). (Hint: The coefficients of Dα(z) result by dividing with b in
(1.36) and then putting b → ∞.)

P 1.7 Show that if R ∈ C[z] is such that R(ω) ≥ 0 for ω ∈ [−π, π ] \ (α, β), then

R(z) = F(z)F∗(z−1) − Dαβ(z) · G(z)G∗(z−1),

where F,G ∈ C+[z], deg F ≤ n, degG ≤ n − 1 and Dαβ(z) is defined as in
Theorem 1.15.
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Chapter 2
Gram Matrix Representation

Abstract There are several ways of characterizing nonnegative polynomials that
may be interesting for a mathematician. However, not all of them are appropriate
for computational purposes, by “computational” understanding primarily optimiza-
tion methods. Nonnegative polynomials have a basic property extremely useful in
optimization: They form a convex set. So, an optimization problem whose variables
are the coefficients of a nonnegative polynomial has a unique solution (or, in the
degenerate case, multiple solutions belonging to a convex set), if the objective and
the other constraints besides positivity are also convex. Convexity is not enough for
obtaining efficiently a reliable solution. Efficiency and reliability are specific only
to some classes of convex optimization, such as linear programming (LP), second-
order cone problems (SOCP), and semidefinite programming (SDP). SDP includes
LP and SOCP and is probably the most important advance in optimization in the last
decade of the previous century. See some basic information on SDP in Appendix A.
In this chapter, we present a parameterization of nonnegative polynomials that is
intimately related to SDP. Each polynomial can be associated with a set of matrices,
called Gram matrices (Choi et al., Proc Symp Pure Math 58:103–126, 1995, [1]);
if the polynomial is nonnegative, then there is at least a positive semidefinite Gram
matrix associated with it. Solving optimization problems with nonnegative polyno-
mials may thus be reduced, in many cases, to SDP. We give several examples of
such problems and of programs that solve them. Spectral factorization is important
in this context, and we present several techniques for its computation. Besides the
standard, or trace, parameterization, we discuss several other possibilities that may
have computational advantages.

2.1 Parameterization of Trigonometric Polynomials

Let us start with some notations. The vector

ψn(z) = [1 z z2 . . . zn]T (2.1)
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24 2 Gram Matrix Representation

contains the canonical basis for polynomials of degree n in z. Whenever the degree
results from the context, we denote ψ(z) the vector from (2.1). A causal polynomial
(1.10) can be written in the form H(z) = hTψ(z−1), where h = [h0 h1 . . . hn]T ∈
R

n+1 (orCn+1) is the vector of its coefficients. We use the notationψ(ω) forψ(e jω);
remark that ψT (−ω) = ψH (ω). Also, we denote n′ = n + 1.

Definition 2.1 Consider the trigonometric polynomial R ∈ Cn[z], defined as in
(1.1). A Hermitian matrix Q ∈ C

n′×n′
is called a Gram matrix associated with R(z)

if
R(z) = ψT (z−1) · Q · ψ(z). (2.2)

We denote G(R) the set of Gram matrices associated with R(z).

If R ∈ Rn[z], then the matrix Q obeying to (2.2) belongs to R
n′×n′

and is sym-
metric.

Example 2.2 Let us consider polynomials of degree two with real coefficients,
R(z) = r2z−2 + r1z−1 + r0 + r1z + r2z2. A few computations show that if

R(z) = [1 z−1 z−2]
⎡

⎣
q00 q10 q20
q10 q11 q21
q20 q21 q22

⎤

⎦

⎡

⎣
1
z
z2

⎤

⎦ ,

where Q ∈ R
3×3 is a Gram matrix associated with R(z), then

r0 = q00 + q11 + q22,
r1 = q10 + q21,
r2 = q20.

(2.3)

Hence, any Gram matrix associated with R(z) has the form

Q =
⎡

⎣
r0 − q11 − q22 r1 − q21 r2

r1 − q21 q11 q21
r2 q21 q22

⎤

⎦

=
⎡

⎣
r0 r1 r2
r1 0 0
r2 0 0

⎤

⎦ +
⎡

⎣
−q11 − q22 −q21 0

−q21 q11 q21
0 q21 q22

⎤

⎦ .

It is clear that, in general, any Hermitian matrix in C
n′×n′

produces a Hermitian
polynomial through the mapping (2.2), which is many-to-one. For instance, taking

R(z) = 2z−2 − 3z−1 + 6 − 3z + 2z2 = (2 − z−1 + z−2)(2 − z + z2), (2.4)

the following three matrices

http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
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Q0 =
⎡

⎣
6 −3 2

−3 0 0
2 0 0

⎤

⎦ , Q1 =
⎡

⎣
4 −2 2

−2 1 −1
2 −1 1

⎤

⎦ ,

Q2 =
⎡

⎣
2.2 −1.5 2.0

−1.5 1.6 −1.5
2.0 −1.5 2.2

⎤

⎦
(2.5)

are Gram matrices associated with R(z).

A natural (and simple) question regards the relation between the coefficients of
R(z) and the elements of Q ∈ G(R). From (2.3), we may infer that rk is the sum of
elements of Q along diagonal −k (the main diagonal has number 0, and the lower
triangle diagonals have negative numbers, as in MATLAB). This is indeed the case.

Theorem 2.3 If R ∈ Cn[z] and Q ∈ G(R), then the relation

rk = tr[Θk Q] =
min(n+k,n)∑

i=max(0,k)

qi,i−k, k = −n : n, (2.6)

holds, where Θk is the elementary Toeplitz matrix with ones on the k-th diagonal
and zeros elsewhere and trX is the trace of the matrix X . We name (2.6) the trace
parameterization of the trigonometric polynomial R(z).

Proof We recall that tr[ABC] = tr[CAB], where A, B, and C are matrices of
appropriate sizes and also that a = tr[a], if a is a scalar. The relation (2.2) can be
written as

R(z) = ψT (z−1) · Q · ψ(z) = tr[ψ(z) · ψT (z−1) · Q] = tr[Ψ (z) · Q],

where

Ψ (z) =

⎡

⎢⎢⎢⎣

1
z
...

zn

⎤

⎥⎥⎥⎦ [1 z−1 . . . z−n] =

⎡

⎢⎢⎢⎢⎣

1 z−1 . . . z−n

z 1
. . . z−n+1

...
. . .

. . .
...

zn zn−1 . . . 1

⎤

⎥⎥⎥⎥⎦
=

n∑

k=−n

Θk z
−k . (2.7)

Combining the above two relations, we obtain

R(z) =
n∑

k=−n

tr[Θk Q]z−k,

which proves (2.6) after identification with (1.1).

Example 2.4 For a polynomial of degree 2, as in Example 2.2, the trace parameter-
ization (2.6) tells that

http://dx.doi.org/10.1007/978-3-319-53688-0_1
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r0 = trQ, r1 = tr

⎡

⎣
0 1 0
0 0 1
0 0 0

⎤

⎦ Q, r2 = tr

⎡

⎣
0 0 1
0 0 0
0 0 0

⎤

⎦ Q.

We are now ready to state themain result, namely that the setCn[z] of nonnegative
polynomials (of order n) and the set of positive semidefinite matrices of size n′ × n′
are connected by the trace parameterization mapping (2.6).

Theorem 2.5 A polynomial R ∈ Cn[z] is nonnegative (positive) on the unit circle if
and only if there exists a positive semidefinite (definite) matrix Q ∈ C

n′×n′
such that

(2.6) holds.

Proof If Q � 0 exists such that (2.6) holds, then, using the definition (2.2) of a
Gram matrix, we can write

R(ω) = [1 e− jω . . . e− jnω] · Q ·

⎡

⎢⎢⎢⎣

1
e jω

...

e jnω

⎤

⎥⎥⎥⎦ = ψH (ω) · Q · ψ(ω) ≥ 0,

for all ω. The same reasoning shows that if Q � 0, then R(ω) > 0.
Reciprocally, if R(ω) ≥ 0, then the spectral factorization Theorem 1.1 says that

R(z) = H(z)H∗(z−1) = hTψ(z−1) · hHψ(z) = ψT (z−1) · hhH · ψ(z).

It results that
Q1 = hhH � 0 (2.8)

is a Gram matrix associated with R(z). Note that rankQ1 = 1.
If R(ω) > 0, since [−π, π ] is compact, there exists ε > 0 such that Rε(z) =

R(z) − ε is nonnegative. Denoting Hε(z) a spectral factor of Rε(z) and noticing that
ψT (z−1) · ψ(z) = n′, it results as above that

R(z) = ψT (z−1) · (
hhH + (ε/n′)I

) · ψ(z)

and so hhH + (ε/n′)I � 0 is a Gram matrix associated with R(z).

Example 2.6 Returning to Example 2.2 and the three Gram matrices from (2.5), we
notice that Q1 is defined as in (2.8) and so is positive semidefinite of rank 1 and also
Q2 � 0. We conclude that R(ω) > 0. The fact that a Gram matrix, in our case Q0,
is not definite has no consequence on the positivity of R(z).

Remark 2.7 Theorem 2.5 establishes a linear relation between the elements of two
convex sets: nonnegative polynomials and positive semidefinite matrices. On one
side, we have the usual parameterization of CPn[z] using the n + 1 coefficients of
the polynomial R(z). On the other side, we have an overparameterization, using the

http://dx.doi.org/10.1007/978-3-319-53688-0_1
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n(n + 1)/2 independent elements of the Gram matrix Q. The high number of para-
meters of the latter is compensated by the reliability and efficiency of optimization
algorithms dealing with linear combinations of positive semidefinite matrices, which
belong to the class of semidefinite programming.

Remark 2.8 If the polynomial has complex coefficients, Theorem 2.5 can be formu-
lated in terms of real matrices, as follows. The polynomial R(z) is nonnegative if
and only if there exist matrices Qr , Qi ∈ R

n′×n′
such that

Rerk = tr[Θk Qr ], Imrk = tr[Θk Qi ] (2.9)

and [
Qr −Qi
Qi Qr

]
� 0. (2.10)

Indeed, putting Q = Qr + j Qi , relation (2.10) is equivalent to Q � 0 and relation
(2.9) is equivalent to (2.6). (Such a formulation might be useful when using SDP
algorithms thatwork onlywith realmatrices.However, all important SDP libraries are
able to deal with complex matrices.) A more efficient way to parameterize complex
polynomials with real Gram matrices will be presented in Sect. 2.8.1.

Remark 2.9 (Sum-of-squares decomposition) Let R ∈ Cn[z] be a nonnegative
trigonometric polynomial, and let Q � 0 be a positive semidefinite Gram matrix
associated with it. A distinct sum-of-squares decomposition (1.23) of R(z) can be
derived from each such Gram matrix. Let

Q =
ν∑

�=1

λ2
�x�xH

� , (2.11)

be the eigendecomposition of Q, in which ν is the rank, λ2
� the eigenvalues, and x�

the eigenvectors, � = 1 : ν. Inserting (2.11) into (2.2), we obtain the sum-of-squares
decomposition

R(z) =
ν∑

�=1

[λ�ψ
T (z−1)x�] · [λ�xH

� ψ(z)] =
ν∑

�=1

H�(z)H
∗
� (z−1), (2.12)

where
H�(z) = λ�ψ

T (z−1)x�. (2.13)

So, the sum-of-squares (2.12) has a number of terms equal to the rank of the Gram
matrix Q. If the Gram matrix is Q1 from (2.8), then the spectral factorization (1.11)
is obtained.

Remark 2.10 (Toeplitz Gram matrices) There is a single Toeplitz Gram matrix
of size n′ × n′ associated with a given polynomial R(z) of degree n, namely

http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
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Q = Toep(r0/(n + 1), r1/n, . . . , rn). If R(ω) ≥ 0, is this matrix positive semi-
definite? For example, for the positive polynomial (2.4), this matrix is

Q =
⎡

⎣
2.0 −1.5 2.0

−1.5 2.0 −1.5
2.0 −1.5 2.0

⎤

⎦

and is positive semidefinite (and singular). Modifying r2 to e.g., 2.001 keeps the
polynomial positive, but the Toeplitz Gram matrix is no more positive semidefinite.
So, in general, there is no connection between the nonnegativity of the polynomial
and the positive semidefiniteness of the Toeplitz Gram matrix.

However, we can show that, for any nonnegative R(z), there is an arbitrarily close
R̃(z) for which the Toeplitz Gram matrix is positive semidefinite. The trick is to
remove the size restrictions. We can artificially consider the degree of R(z) to be
m > n, by adding coefficients rk = 0, k = n + 1 : m. Remember now Theorem 1.8,
which states that the Toeplitz matrices Rm defined in (1.28) are positive semidefinite.
For any m, the polynomial R̃(z), with coefficients defined by

r̃k = tr

[
Θk · 1

m + 1
Rm

]
=

(
1 − |k|

m + 1

)
rk,

is thus nonnegative and the Gram matrix Rm/(m + 1) is Toeplitz and positive semi-
definite. For large enough m, the polynomial R̃(z) is arbitrarily close to R(z).

2.2 Optimization Using the Trace Parameterization

We present now some simple problems that can be solved using the trace parameter-
ization (2.6) and SDP.

Let us notice first that, given the polynomial R(z), the set G(R) is convex. Indeed,
for anyα ∈ [0, 1] and Q, Q̃ ∈ G(R), it is immediate from (2.2) thatαQ+(1−α) Q̃ ∈
G(R). Moreover, if R(ω) ≥ 0, then the set of positive semidefinite Gram matrices
associated with R(z) is also convex, as the intersection of two convex sets.

Problem (Most_positive_Gram_matrix) It is clear that, given R ∈ Cn[z] with
R(ω) > 0, there are an infinite number of positive definite Gram matrices in G(R).
This results, for example, by taking all possible values for the parameter ε appearing
at the end of the proof of Theorem 2.5. A distinguished member of G(R) is the most
positive one, i.e., the most nonsingular. The distance to nonsingularity is measured
by the smallest singular value, or, as we deal with positive definite matrices, by the
smallest eigenvalue. So, we want the matrix in G(R) having the largest smallest
eigenvalue, namely the solution of the optimization problem

http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
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λ	 = max
λ,Q

λ

s.t. tr[Θk Q] = rk, k = 0 : n
λ ≥ 0, Q � λI

(2.14)

The inequality Q � λI ensures that maximization of λ is equivalent to maximiza-
tion of the smallest eigenvalue of the Gram matrix Q. (We always assume that the
Gram matrices are Hermitian and will not specify it explicitly from now on.) The
optimization problem (2.14) is a semidefinite program, since the variables are the
positive semidefinite matrix Q and the positive scalar λ and the constraints are linear
equalities in the elements of Q.

Although in evolved optimization problem solvers such as CVX the problem
(2.14) can be posed as it is, some popular SDP libraries need the problem in the
standard equality form shown in Appendix A. The transformation to standard form
can be made by denoting Q̃ = Q − λI ; as the matrix Q̃ is positive semidefinite, it
can serve as variable in the SDP problem. Since Θ0 = I , it follows that trΘ0 = n′,
while for k �= 0 we have trΘk = 0. We conclude that

tr[Θk Q̃] =
{
r0 − n′λ, if k = 0,

rk, otherwise.

Thus, the problem (2.14) is equivalent to the standard SDP problem

λ	 = max
λ, Q̃

λ

s.t. n′λ + tr Q̃ = r0
tr[Θk Q̃] = rk, k = 1 : n
λ ≥ 0, Q̃ � 0

(2.15)

We finally note that the SDP problem (2.14) or (2.15) gives no solution if the
polynomial R(z) is not nonnegative, as no positive semidefinite Gram matrix exists.
However, the problemof finding theGrammatrixwithmaximum smallest eigenvalue
is well defined; removing the constraint λ ≥ 0 in (2.14) or (2.15) and thus leaving λ

free is the single necessary modification.

Example 2.11 In Example 2.2, none of the three Gram matrices from (2.5) is the
most positive one. Solving the SDP problem (2.14), we obtain

Q =
⎡

⎣
2.2917 −1.5000 2.0000

−1.5000 1.4167 −1.5000
2.0000 −1.5000 2.2917

⎤

⎦ .

The smallest eigenvalue of this matrix is λ	 = 0.2917. For comparison, the smallest
eigenvalue of the matrix Q2 from (2.5) is 0.2.
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Problem (Min_poly_value) A problem related to that of finding the most positive
Gram matrix is to compute the minimum value on the unit circle of a given trigono-
metric polynomial R(z). Let R ∈ Cn[z] be a polynomial not necessarily nonnegative.
We want to find

μ	 = min
ω∈[−π,π] R(ω). (2.16)

Certainly, this is a problem that can be solved using elementary tools, so the solution
given below may not be the most efficient, although it is instructive in the current
context. Since μ	 is the maximum scalar for which R(ω) − μ	 is nonnegative, we
can connect (2.16) to nonnegative polynomials by transforming it into

μ	 = max
μ

μ

s.t. R(ω) − μ ≥ 0, ∀ω ∈ [−π, π ]
(2.17)

Denoting R̃(z) = R(z) − μ, we note that r̃0 = r0 − μ and r̃k = rk , k = 1 : n. Using
the trace parameterization (and reminding again that Θ0 = I), the problem (2.17)
can brought to the following SDP form

μ	 = max
μ, Q̃

μ

s.t. μ + tr Q̃ = r0
tr[Θk Q̃] = rk, k = 1 : n
Q̃ � 0

(2.18)

If R(ω) ≥ 0, the SDP problems (2.14) and (2.18) are equivalent, expressing the
connection between the most positive Gram matrix and the minimum value of a
polynomial. The equivalence is shown by the relations

μ = n′λ, Q̃ = Q − λI (2.19)

between the variables of the two problems, which are obvious if we look at the (2.15),
which is equivalent to (2.14) and becomes identical to (2.18) by taking μ = n′λ. So,
the optimal values of (2.14) and (2.18) are related by μ	 = n′λ	, and solving one
problem leads immediately to the solution of the other through (2.19).

SeDuMi, CVX, and Pos3Poly programs for solving the SDP problems (2.14) and
(2.18) are presented and commented in Sect. 2.12.1.

Example 2.12 The minimum value on the unit circle of the polynomial (2.4) (of
degree n = 2) considered in Example 2.2 is μ	 = 3λ	 = 3 · 0.2917 = 0.8750.

Problem (Nearest_autocorrelation) We return to a problem discussed in the pre-
vious chapter: Given a symmetric (or Hermitian) sequence r̂k , k = −n : n, find
the nonnegative sequence rk that is nearest from r̂k . The optimization problem to
be solved is (1.22); remind that r = [r0 r1 . . . rn]T . Expressing the nonnegativity
condition with the trace parameterization, we obtain the problem

http://dx.doi.org/10.1007/978-3-319-53688-0_1
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min
r,Q

(r − r̂)HΓ (r − r̂)

s.t. tr[Θk Q] = rk, k = 0 : n
Q � 0

(2.20)

where Γ � 0. To bring (2.20) to a standard form, notice that

(r − r̂)HΓ (r − r̂) = ‖Γ 1/2(r − r̂)‖2, (2.21)

where Γ 1/2 is the square root of Γ , i.e., the positive definite matrix X such that
XHX = Γ . An alternative possibility in (2.21) is to use the Cholesky factor of Γ

instead of Γ 1/2. Using the same trick as in passing from (2.16) to (2.17), we obtain

min
α,r,Q

α

s.t. ‖Γ 1/2(r − r̂)‖ ≤ α

tr[Θk Q] = rk, k = 0 : n
Q � 0

(2.22)

The first constraint has a second-order cone form, so (2.22) is a semidefinite-
quadratic-linear programming (SQLP) problem. We have only to bring it to one
of the standard forms shown in Appendix A. To this purpose, denote

y = Γ 1/2(r − r̂)

and, in r − Γ −1/2 y = r̂ , replace r by its trace parameterization. So, the problem
(2.22) is equivalent to

min
α, y,Q

α

s.t.

⎡

⎢⎢⎣

...

tr[Θk Q]
...

⎤

⎥⎥⎦ − Γ −1/2 y = r̂

Q � 0, ‖ y‖ ≤ α

(2.23)

This is a standard SQLP problem in equality form.

Remark 2.13 (Complexity issues) As discussed in Appendix A, the complexity
of an SDP problem in equality form is O(n2m2), where n × n is the size of the
variable positive semidefinite matrix and m is the number of equality constraints.
The scalar or SOC variables (from (2.14) and (2.23), respectively) do not change
significantly the complexity. Since the size of the Gram matrix Q is (n + 1) ×
(n + 1) and the number of equality constraints is n + 1, we can appreciate that the
complexity of the three problems—Most_positive_Gram_matrix, Min_poly_value
and Nearest_autocorrelation—formulated in SDP form in this section is O(n4).
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2.3 Toeplitz Quadratic Optimization

In the previous section,we have presented several optimization problems inwhich the
variable was genuinely a nonnegative polynomial. Here, we discuss a problem that
can be transformed—in a general way—into one with nonnegative polynomials. The
idea is to replace the variable causal polynomial H(z) with R(z) = H(z)H∗(z−1)

(i.e., with its squared magnitude on the unit circle), solve the presumably easier
problemwith R(z) as variable, and finally recover H(z) by spectral factorization.We
have already met a somewhat similar problem, namely MA_Estimation in Sect. 1.2.

Consider the quadratic optimization problem

min
h

hH A0h

s.t. hH A�h = b�, � = 1 : L
(2.24)

where thematrices A�, � = 0 : L , and the scalars b�, � = 1 : L , are given. Thematrix
A0 is positive semidefinite. The variable is the vector h ∈ C

n+1; we can interpret its
elements as the coefficients of the causal filter (1.10). Although the objective function
is convex, the problem (2.24) is not convex, in general; a notorious exception occurs
when L = 1, A1 = I , for which the solution is an eigenvector of A0 corresponding
to the minimal eigenvalue. We treat here only the case where all the matrices A� are
Toeplitz and Hermitian; that the matrices are Hermitian is not a particularization, due
to the quadratic form of the objective and constraints; for an anti-Hermitian matrix
A (with AH = −A), the quadratic function is hH Ah = 0; so, if the matrices A�

were not Hermitian, they could be replaced with their Hermitian part (A + AH )/2.
We note also that if the matrices A�, � = 1 : L , are real, the equality constraints
from (2.24) can be changed into inequalities without changing the character of the
solution presented below.

We denote
A� = Toep(a�0, . . . , a�n) (2.25)

and notice that

A� = a�0Θ0 +
n∑

k=1

(a�kΘk + a∗
�kΘ−k). (2.26)

If we consider H(z) as the spectral factor of a nonnegative polynomial R(z), i.e.,
relation (1.11) holds, then the coefficients of H(z) and R(z) are related through
(1.17), which is equivalent to

rk = hHΘkh. (2.27)

From (2.26) and (2.27), it results that

hH A�h = r0 +
n∑

k=1

(a�krk + a∗
�kr

∗
k ) = r0 + 2

n∑

k=1

Re(a�krk). (2.28)

http://dx.doi.org/10.1007/978-3-319-53688-0_1
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So, the problem (2.24) can be transformed into

min
r

r0 + 2
∑n

k=1 Re(a0krk)

s.t. r0 + 2
∑n

k=1 Re(a�krk) = b�, � = 1 : L
R(ω) ≥ 0, ∀ω ∈ [−π, π ]

(2.29)

This is a convex optimization problem! The variables are the coefficients of a non-
negative polynomial, and the quadratic objective and constraints from (2.24) are now
linear. We can use the trace parameterization (2.6) to transform (2.29) into an SDP
problem. Inserting rk = tr[Θk Q] into (2.26), we obtain

hH A�h = tr

[
a�0Θ0Q +

n∑

k=1

(a�kΘk + a∗
�kΘ−k)Q

]
= tr[A� Q]. (2.30)

Using this equality, the problem (2.29) is equivalent to the SDP problem

min
Q

tr[A0Q]
s.t. tr[A� Q] = b�, � = 1 : L

Q � 0

(2.31)

We conclude that the solution of the Toeplitz quadratic optimization problem
(2.24) can be obtained as follows:

1. Solve the SDP problem (2.31) for the positive semidefinite matrix Q.
2. Compute R(z) with (2.6): rk = tr[Θk Q].
3. Obtain h from the spectral factorization of R(z).

It is clear from the above method that any spectral factor of R(z) is a solution
to (2.24). Spectral factorization algorithms compute usually (and reliably) only the
minimum-phase (or maximum-phase) factor. This might be the only drawback of
the method; however, in signal processing applications, the minimum-phase spectral
factor is often the desired one.

Examples of problems of the form (2.24) and interpretations of their solutions
will be given in Chap.6.

2.4 Duality

Asmentioned in Remark 1.5, the setRPn[z] of nonnegative trigonometric polynomi-
als of degree n is a cone. Due to the interest in optimization problems, we naturally
look at the dual cone, defined by

RP
	

n[z] = { y ∈ R
n+1 | yT r ≥ 0, ∀R ∈ RPn[z]}. (2.32)

http://dx.doi.org/10.1007/978-3-319-53688-0_6
http://dx.doi.org/10.1007/978-3-319-53688-0_1
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Theorem 2.14 The dual cone (2.32) is the space of sequences y ∈ R
n+1 for which

Toep(2y0, y1, . . . , yn) � 0. (In other words, the dual cone can be identified with the
space of positive semidefinite Toeplitz matrices.)

Proof Since the polynomial R(z) is nonnegative, it admits a spectral factorization
(1.11), relation (1.17) holds and we can write

yT r =
n∑

k=0

yk

n∑

i=k

hi hi−k = 1

2
hT

⎡

⎢⎢⎢⎢⎣

2y0 y1 . . . yn

y1 2y0
. . . yn−1

...
. . .

. . .
...

yn yn−1 . . . 2y0

⎤

⎥⎥⎥⎥⎦
h.

Since the above quadratic form is nonnegative for all h ∈ R
n+1, it follows that the

matrix Toep(2y0, y1, . . . , yn) is positive semidefinite.

Knowing the form of the dual cone, we can build easier the duals of optimization
problems with nonnegative trigonometric polynomials. Let us consider the problem
(1.22), where, for simplicity, we take Γ = I . The function dual to

f (r)
Δ= (r − r̂)T (r − r̂) (2.33)

is
g( y) = inf

r

[
f (r) − yT r

]
,

where theLagrangeanmultiplier y belongs to the dual cone.Theminimum is obtained
trivially for y = 2(r − r̂) and so

g( y) = −1

4
yT y − yT r̂.

The optimization problem dual to (1.22) is

max
y

g( y)

s.t. y ∈ RP
	

n[z]
⇐⇒ min

y

1
4 y

T y + yT r̂

s.t. Toep(2y0, y1, . . . , yn) � 0

(2.34)

and is (as all duals are) a convex problem. Since (1.22) is convex and the Slater con-
dition holds (which translates to the mere existence of strictly positive polynomials),
it follows that the problems (1.22) and (2.34) have the same optimal value.

Moreover, we see immediately that (2.34) is an SDP problem (more precisely, it
can be written as an SQLP one) since its constraint is the positive semidefinite matrix

Y = Toep(2y0, y1, . . . , yn) = 2y0 I +
n∑

k=1

yk(Θk + ΘT
k ) (2.35)

http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
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that depends linearly on the variables yk .
We can now derive the dual of (2.34), using the scalar product specific to the space

of positive semidefinite matrices, when building the Lagrangean function. The new
primal (i.e., dual of the dual) function is

f̃ (Q) = inf
y

(−g( y) − tr[QY ]) , (2.36)

where the Lagrangean multiplier is Q � 0. We note that, due to (2.35), we have

∂tr[QY ]
∂yk

= tr[(Θk + ΘT
k )Q] = 2tr[Θk Q].

Since the function to be minimized in (2.36) is quadratic, the minimum is obtained
by equating its derivative with zero, giving

1

2
y = 2

⎡

⎢⎢⎣

...

tr[Θk Q]
...

⎤

⎥⎥⎦ − r̂.

The dual of (2.34) is identical to (1.22), for r ∈ R
n+1 given by

rk = 2tr[Θk Q].

Barring an insignificant factor of 2 that can be included in Q, we have obtained
again the trace parameterization of nonnegative polynomials, stated by Theorem
2.5. Although this is not a complete proof, it is an instructive result on how the
Lagrangean duality mechanism can be used.

2.5 Kalman–Yakubovich–Popov Lemma

We show here that the trace parameterization (2.6) can be derived from the Kalman–
Yakubovich–Popov (KYP) lemma. Consider a discrete-time system with transfer
functionG(z) = C(z I−A)−1B,where (A, B,C, D) is a state-spacemodel.Assume
that the state-space representation is minimal (or (A, B) is controllable, (C, A) is
observable). The KYP lemma states that the system is positive real, i.e.,

Re[G(ω)] ≥ 0, ∀ω ∈ [−π, π ],

if and only if there exists a matrix P � 0 such that

http://dx.doi.org/10.1007/978-3-319-53688-0_1
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Q =
[
P − AT P A sym
C − BT P A (D + DT ) − BT PB

]
� 0. (2.37)

The causal part R+(z) of a nonnegative trigonometric polynomial, defined in (1.2),
is positive real. Its controllable state-space realization is

A = Θ1 =

⎡

⎢⎢⎢⎢⎣

0 1 . . . 0
...

. . .
. . .

...
...

. . .
. . . 1

0 . . . . . . 0

⎤

⎥⎥⎥⎥⎦
, B =

⎡

⎢⎢⎢⎣

0
...

0
1

⎤

⎥⎥⎥⎦ ,

C = [
rn . . . r2 r1

]
, D = r0/2.

(2.38)

Replacing these matrices in (2.37), we obtain

Q =
[
P CT

C D + DT

]
−

[
AT

BT

]
P

[
A B

]

=

⎡

⎢⎢⎢⎣

rn

P
...

r1
rn . . . r1 r0

⎤

⎥⎥⎥⎦ −

⎡

⎢⎢⎢⎣

0 0 . . . 0
0
... P
0

⎤

⎥⎥⎥⎦ � 0. (2.39)

Remarking that

trΘk

([
P 0
0 0

]
−

[
0 0
0 P

])
= 0, (2.40)

for all k = 0 : n, the relation (2.39) is equivalent to tr[Θk Q] = rk , i.e., the trace
parameterization (2.6).

Despite the equivalence, it is not efficient to solve problems with nonnegative
polynomials, as those presented in Sect. 2.2, by using the constraint (2.39), P � 0,
instead of the trace parameterization. The LMI (2.39) has size (n + 1) × (n + 1) (as
in the trace parameterization), but it contains O(n2) scalar variables in the matrix P
(compared to only n + 1 equalities for the trace parameterization, which is an LMI
in equality form). Consequently, the use of the KYP lemma leads to a complexity of
O(n6), much higher than the O(n4) needed by the trace parameterization.

2.6 Spectral Factorization from a Gram Matrix

Let R(z) be a nonnegative trigonometric polynomial and H(z) a spectral factor
respecting (1.11). As we have seen, we can express certain optimization problems
involving R(z) in terms of its associated Gram matrices. In this section, we explore
how the spectral factor H(z) can be computed directly from a Gram matrix Q, and

http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
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not by using (2.6) to get R(z) and then obtaining H(z) with one of the spectral
factorization algorithms described in Appendix B.

2.6.1 SDP Computation of a Rank-1 Gram Matrix

We have remarked that the positive semidefinite matrix Q1 = hhH is a Grammatrix
associated with R(z) (see the lines preceding (2.8)). So, if

Q =
[
q00 qH

q Q̂

]
� 0 (2.41)

is a rank-1 Grammatrix, then the spectral factor can be readily obtained from its first
column as

h = 1√
q00

[
q00
q

]
. (2.42)

The following theorem gives the conditions to obtain such a Gram matrix, more
precisely the one giving the minimum-phase spectral factor.

Theorem 2.15 Let R ∈ Cn[z] be a nonnegative trigonometric polynomial. Let Q ∈
C

n′×n′
be the positive semidefiniteGrammatrix (2.41) associatedwith R(z)which has

the largest element q00. Then, the rank of the matrix Q is equal to 1 and Q = hhH ,
where the vector h contains the coefficients of the minimum-phase spectral factor of
R(z).

Proof The set G(R) of positive semidefinite Gram matrices Q associated with R(z)
is convex and closed and the function f (Q) = q00 is linear and so is convex. It
results that the maximum of f (Q) is attained for some Q ∈ G(R), Q � 0, and thus,
the Gram matrix asserted in the theorem indeed exists. Let us assume that its rank is
not one. Then, writing Q as in (2.41), there exists a nonzero matrix P � 0 such that

[
q00 qH

q Q̂ − P

]
� 0. (2.43)

For example, we can take P = Q̂ − qqH/q00, i.e., the Schur complement of q00 in
Q. For this P , it is clear that P = 0 only if the rankQ = 1, which we have assumed
not true. Let us write

P =
[
0 0
0 P̂

]
,

where p̂00 > 0. So, we put in evidence the first nonzero (and positive, since P � 0
and P is nonzero) diagonal element of P as upper-left element of the block P̂ . Define
the matrix
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X = Q −
[
0 0
0 P̂

]
+

[
P̂ 0
0 0

]
. (2.44)

Since X is obtained by adding a positive semidefinite matrix to (2.43), it follows that
X � 0. Moreover, taking (2.40) into account, it results that tr[ΘkX] = tr[Θk Q],
for any k = 0 : n, and so X ∈ G(R). Finally, we note that x00 = q00 + p̂00 > q00.
We have thus built a Gram matrix associated with R(z), whose upper-left element is
greater than q00, which is impossible. We conclude that the rank of Q is one and so
Q = hhH , with h defined by (2.42).

That h is minimum-phase follows from the well-known Robinson’s energy delay
property, stating that the minimum-phase filter has the most energy concentrated in
its first coefficients. Let g be a spectral factor of R(z) having at least one zero outside
the unit circle; if h is minimum-phase, then

k∑

i=0

|hi |2 ≥
k∑

i=0

|gi |2, ∀k = 0 : n − 1,

and reciprocally. Moreover, for k = 0, the inequality is strict, i.e., |h0|2 > |g0|2.
Since for the vector (2.42) we have q00 = |h0|2 > |g0|2 and q00 is maximum, it
results that h is minimum-phase.

We conclude that the spectral factorization of a polynomial R(z) can be computed
with the following algorithm.

1. Solve the SDP problem

max
Q

q00

s.t. tr[Θk Q] = rk, k = 0 : n
Q � 0

(2.45)

2. Writing the solution Q as in (2.41), compute the minimum-phase spectral factor
h with (2.42).

This spectral factorization algorithm has generally a higher complexity thanmany
of those presented in Appendix B. However, it has two advantages. With appropriate
modifications described in Sect. B.5, it can be used for polynomials with matrix
coefficients (a topic discussed later in Sect. 3.10). Also, it can be combined with
certain optimization problems in order to avoid spectral factorization as a separate
operation. Consider for example the Toeplitz quadratic optimization problem (2.24).
Instead of solving (2.31), computing R(z), and then its spectral factor, we can solve

min
Q

tr[A0Q] − αq00

s.t. tr[A� Q] = b�, � = 1 : L
Q � 0

(2.46)

http://dx.doi.org/10.1007/978-3-319-53688-0_3
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where α is a constant. This constant should be small enough such that (2.46) gives
(approximately) the same R(z) as the original problem (2.31). However, the Gram
matrix Q given by (2.46) will have rank equal to 1. (That there is a rank-1 solution
to (2.31) is ensured by its equivalence to (2.24)!)

2.6.2 Spectral Factorization Using a Riccati Equation

Let (ΘT
1 , h̃, cT , h0) be the observable state-space realization of H(z), where

h̃ = [hn . . . h1]T , c = [0 . . . 0 1]T . (2.47)

Given R(z), the state-space formalism can be used to obtain a spectral factorization
algorithm, based on solving a Riccati equation, as follows. Note also that in the
spectral factorization relation (1.11), we can always take H(z) such that h0 is real.

Theorem 2.16 Let R ∈ Cn[z] be a nonnegative polynomial and denote

r̃ = [rn . . . r1]T .

Let Ξ be the (positive semidefinite) solution of the discrete-time matrix Riccati
equation

Ξ = ΘT
1 ΞΘ1 + (r̃ − ΘT

1 Ξ c)(r0 − cTΞ c)−1(r̃ − ΘT
1 Ξ c)H . (2.48)

The minimum-phase spectral factor of R(z) is given by

h0 = (r0 − cTΞ c)1/2,
h̃ = (r̃ − ΘT

1 Ξ c)/h0,
(2.49)

where h̃ and c are like in (2.47).

This is a relatively well-known result; for completeness, the proof is given in
Sect. 2.12.2. Note that the matrix Θ1 is stable (has all eigenvalues inside the unit
circle) and thus makes possible the existence of a positive semidefinite solutionΞ of
the Riccati equation (2.48); this ensures the minimum-phase property of the spectral
factor.

So, the minimum-phase spectral factor is computed simply with (2.49), after
solving the Riccati equation (2.48); due to the special form of Θ1 and c, some
computations are trivial; for example, cTΞ c is the element ofΞ from the lower-right
corner, etc. Note that relations (2.48), (2.49) can be written in the equivalent form

http://dx.doi.org/10.1007/978-3-319-53688-0_1
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h20 = r0 − cTΞ c,

h0 h̃ = r̃ − ΘT
1 Ξ c, (2.50)

h̃h̃
H = Ξ − ΘT

1 ΞΘ1.

Now, let assume that we have a positive semidefinite Gram matrix Q associated
with R(z), split as follows:

Q =
[
Q̃ s
sH ρ

]
, (2.51)

where ρ is a scalar. Writing Q as in (2.39) and identifying the blocks with (2.51),
we obtain

ρ = r0 − cT Pc,

s = r̃ − ΘT
1 Pc, (2.52)

Q̃ = P − ΘT
1 PΘ1.

Subtracting (2.52) from (2.50) and denoting Π = P − Ξ , we obtain

h20 = ρ + cTΠc,

h0 h̃ = s + ΘT
1 Πc, (2.53)

h̃h̃
H = Q̃ − Π + ΘT

1 ΠΘ1.

These relations give the spectral factorization algorithm working directly with the
Gram matrix Q, split as in (2.51):

1. Compute the matrix Π by solving the Riccati equation

Π = Q̃ + ΘT
1 ΠΘ1 − (s + ΘT

1 Πc)(ρ + cTΠc)−1(s + ΘT
1 Πc)H . (2.54)

2. Compute the minimum-phase spectral factor H(z) with

h0 = (ρ + cTΠc)1/2,
h̃ = (s + ΘT

1 Πc)/h0.
(2.55)

In principle, the algorithm for solving the Riccati equation may fail if the poly-
nomial R(z) has zeros on the unit circle (and so a symplectic matrix built with the
parameters of the equation has eigenvalues on the unit circle). However, in practice,
the algorithm based on solving (2.54) works very well; this appears to be due to
the presence of small numerical errors in the Gram matrix, and so in Q̃. (On the
contrary, the algorithm based on solving (2.48) was observed to fail!) Although this
algorithm is rather slow and can be used only for degrees up to 200–300, the author’s
experience recommends it as very safe.
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2.7 Parameterization of Real Polynomials

The presentation of the Gram matrix concept given in Sect. 2.1 can be followed with
fewmodifications for the case of polynomials of real variable. Sincewe are interested
by positive polynomials, we consider only even degrees. Most of the proofs are given
at the end of the chapter.

Definition 2.17 Consider the polynomial P ∈ R2n[t]. A symmetric matrix Q ∈
R

n′×n′
, where n′ = n + 1, is called a Gram matrix associated with P(t) if

P(t) = ψT
n (t) · Q · ψn(t). (2.56)

We denote G(P) the set of Gram matrices associated with P(t).

Example 2.18 Consider polynomials of degree four, P(t) = p0 + p1t + p2t2 +
p3t3 + p4t4. A Gram matrix Q ∈ R

3×3 satisfies the relation

P(t) = [1 t t2]
⎡

⎣
q00 q10 q20
q10 q11 q21
q20 q21 q22

⎤

⎦

⎡

⎣
1
t
t2

⎤

⎦ .

It results that
p0 = q00,
p1 = 2q10,
p2 = q11 + 2q20,
p3 = 2q21,
p4 = q22.

(2.57)

Unlike the 3×3 Grammatrix in Example 2.2, here there is only one degree of liberty
left to the Gram matrices associated with P(t), which have the form

Q =
⎡

⎣
p0

p1
2

p2
2p1

2 0 p3
2p2

2
p3
2 p4

⎤

⎦ +
⎡

⎣
0 0 − q11

2
0 q11 0

− q11
2 0 0

⎤

⎦ .

In general, the mapping (2.56) that associates symmetric matrices in R
n′×n′

to real
polynomials is many-to-one. For instance, taking

P(t) = 2 + 2t + 7t2 − 2t3 + t4, (2.58)

the following two matrices

Q0 =
⎡

⎣
2 1 0
1 7 −1
0 −1 1

⎤

⎦ , Q1 =
⎡

⎣
2 1 2
1 3 −1
2 −1 1

⎤

⎦ (2.59)
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are Gram matrices associated with P(t).

Relations (2.57) suggest that the coefficients of P(t) are obtained as sums along
the antidiagonals of the Gram matrix.

Theorem 2.19 If P ∈ R2n[t] and Q ∈ G(P), then the relation

pk = tr[Υ k Q] =
min(k,n)∑

i=max(0,k−n)

qi,k−i , k = 0 : 2n, (2.60)

holds, where Υ k is the elementary Hankel matrix with ones on the k-th antidiagonal
and zeros elsewhere (antidiagonals are numbered from zero, starting with the upper
left corner of the matrix).

Example 2.20 For a polynomial of degree 4, as in Example 2.18, the first three
coefficients are given through (2.60) by

p0 = tr

⎡

⎣
1 0 0
0 0 0
0 0 0

⎤

⎦ Q, p1 = tr

⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦ Q, p2 = tr

⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ Q.

Theorem 2.21 A polynomial P ∈ R2n[t] is nonnegative (positive) on the real axis
if and only if there exists a positive semidefinite (definite) matrix Q ∈ R

n′×n′
such

that (2.60) holds.

Example 2.22 In Example 2.18, the Grammatrix Q0 from (2.59) is positive definite,
which shows that the polynomial (2.58) is positive. However, the Gram matrix Q1
is not positive semidefinite.

Remark 2.23 (Sum-of-squares decomposition) Let P ∈ R2n[t] be a nonnegative
polynomial. Let Q be an associated positive semidefinite Grammatrix, whose eigen-
value decomposition is (2.11); as Q is real, the eigenvectors x� are also real. Inserting
(2.11) into (2.56), we obtain the sum-of-squares decomposition

P(t) =
ν∑

�=1

λ2
� · [ψT (t)x�] · [xT

� ψ(t)] =
ν∑

�=1

F�(t)
2, (2.61)

where F�(t) = λ�ψ
T (t)x�.

As examples of SDP programs solving some simple problems involving non-
negative polynomials of real variable, we will give below short descriptions of the
problemsMin_poly_value andMost_positive_Gram_matrix for real polynomials. In
contrast with the trigonometric polynomials case, it will result that these problems
are not equivalent.
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Problem (Min_poly_value) Let P ∈ R2n[t], with p2n > 0. We compute μ	 =
mint∈R P(t) by finding the maximum μ ∈ R for which P̃(t) = P(t) − μ is a non-
negative polynomial. Using the parameterization (2.60), the following SDP problem,

μ	 = max
μ, Q̃

μ

s.t. μ + tr[Υ 0 Q̃] = p0
tr[Υ k Q̃] = pk, k = 1 : 2n
Q̃ � 0

(2.62)

similar to (2.18), provides the solution.

Problem (Most_positive_Gram_matrix) Let P ∈ R2n[t] be a positive polynomial.
To compute the most positive Gram matrix associated with P(t), we have to solve
an SDP problem similar to (2.14), namely

λ	 = max
λ,Q

λ

s.t. tr[Υ k Q] = pk, k = 0 : 2n
λ ≥ 0, Q � λI

(2.63)

To bring the above problem to standard form, we use, as in Sect. 2.2, the positive
definite matrix Q̃ = Q − λI . The difference is that now we have

trΥ k =
{
1, if k is even

0, if k is odd.

Thus, the standard form of (2.63) is

λ	 = max
λ, Q̃

λ

s.t. λ + tr[Υ k Q̃] = pk, k = 0 : 2 : 2n,

tr[Υ k Q̃] = pk, k = 1 : 2 : 2n
λ ≥ 0, Q̃ � 0

(2.64)

It is obvious that the constraints of (2.64) and (2.62) are different.

Example 2.24 Consider again the polynomial (2.58). Its minimum value for t ∈ R

is 1.8628. The most positive Gram matrix associated with P(t) is

Q =
⎡

⎣
2.0000 1.0000 −0.1763
1.0000 7.3525 −1.0000

−0.1763 −1.0000 1.0000

⎤

⎦ .

The smallest eigenvalue of Q is 0.8458.
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2.8 Choosing the Right Basis

In defining the Gram matrices for trigonometric polynomials, we have used the
natural basis (2.1). However, there are other possibilities. The technically simplest
way is to replace the vector ψ(z) with

φ(z) = Cψ(z), (2.65)

where C ∈ C
(n+1)×(n+1) is a nonsingular matrix. The relation (2.2) becomes

R(z) = φH (z−1) · C−H QC−1 · φ(z). (2.66)

From Theorem 2.5, we immediately conclude that R(z) is nonnegative if and only
if there exist Q̂ � 0 such that

R(z) = φH (z−1) · Q̂ · φ(z). (2.67)

(Since C is nonsingular, any Q̂ � 0 can be written as Q̂ = C−H QC−1, for some
Q � 0.) We can name Q̂ a Gram matrix associated with R(z), for the basis φ(z).
The parameterization (2.6) takes the form

rk = tr[ΘkCH Q̂C] = tr[CΘkCH · Q̂]. (2.68)

This general approach may be not so useful, especially as it may produce complex
Gram matrices Q̂ even for polynomials with real coefficients. Since R(ω) has real
values, we would be more interested in associating real Gram matrices even with
polynomials with complex coefficients. We introduce in the sequel several new para-
meterizations.

2.8.1 Basis of Trigonometric Polynomials

Let us consider a nonnegative trigonometric polynomial R(z) of degree n = 2ñ.
The spectral factorization Theorem 1.1 says that R(ω) = |H(ω)|2, where H(z) is a
causal polynomial; since H(z) may be multiplied with any unit-norm constant and
is still a spectral factor, we can take hñ real. We can also write R(ω) = |H̃(ω)|2,
with

H̃(z) = zñ H(z) =
ñ∑

k=−ñ

hk+ñ z
−k . (2.69)

It results that
H̃(ω) = A(ω) + j B(ω), (2.70)

http://dx.doi.org/10.1007/978-3-319-53688-0_1
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where

A(ω) = hñ + ∑ñ
k=1[Re(hñ−k + hñ+k) cos kω + Im(−hñ−k + hñ+k) sin kω],

B(ω) = ∑ñ
k=1[Im(hñ−k + hñ+k) cos kω + Re(hñ−k − hñ+k) sin kω]

are trigonometric polynomials of degree ñ, with real coefficients. Introducing the
basis vector (of length n + 1)

χ(ω) = [1 cosω sinω . . . cos ñω sin ñω]T , (2.71)

we can write
A(ω) = aTχ(ω), B(ω) = bTχ(ω),

with a, b ∈ R
n+1, and so we obtain

|H̃(ω)|2 = A(ω)2 + B(ω)2 = χT (ω)(aaT + bbT )χ(ω). (2.72)

This expression leads to a result similar with Theorems 2.5 and 2.21.

Theorem 2.25 A polynomial R ∈ C2ñ[z] is nonnegative on the unit circle if and
only if there exists a positive semidefinite matrix Q ∈ R

(2ñ+1)×(2ñ+1) such that

R(ω) = χT (ω) · Q · χ(ω), (2.73)

where χ(ω) is defined in (2.71).

Proof If there exists Q � 0 such that (2.73) holds, then it is clear that R(ω) ≥ 0 for

all ω. Reciprocally, if R(ω) ≥ 0, then the matrix Q
Δ= aaT + bbT � 0 from (2.72)

satisfies (2.73).

Example 2.26 Let us take a polynomial of degree n = 2 (i.e., ñ = 1), with complex
coefficients. On the unit circle, according to (2.73), we have

R(ω) = [1 cosω sinω]
⎡

⎣
q00 q10 q20
q10 q11 q21
q20 q21 q22

⎤

⎦

⎡

⎣
1

cosω

sinω

⎤

⎦ .

By using simple trigonometric expressions such as (cosω)2 = (1 + cos 2ω)/2, we
obtain

R(ω) = (q00 + q11
2 + q22

2 )+2q10 cosω+2q20 sinω+ (
q11
2 − q22

2 ) cos 2ω+q21 sin 2ω.

(2.74)
In the particular case where the polynomial is

R(z) = (2 + j)z−2 + (3 − j)z−1 + 9 + (3 + j)z + (2 − j)z2,
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on the unit circle we have

R(ω) = 9 + 6 cosω − 2 sinω + 4 cos 2ω + 2 sin 2ω. (2.75)

Identifying with (2.74), we obtain the general form of the Gram matrix

Q =
⎡

⎣
q00 3 −1
3 13 − q00 2

−1 2 5 − q00

⎤

⎦ . (2.76)

Taking q00 = 2, we get the matrix

Q =
⎡

⎣
2 3 −1
3 11 2

−1 2 3

⎤

⎦ � 0.

Its positivity ensures that the polynomial R(z) is positive on the unit circle. Indeed,
the minimum value of the polynomial is 0.5224, as obtained by solving (2.18) with
the programs shown in Sect. 2.12.1.

Using the standard trigonometric identities

cos iω cos �ω = 1
2 [cos(i + �)ω + cos(i − �)ω],

sin iω sin �ω = 1
2 [− cos(i + �)ω + cos(i − �)ω], (2.77)

and

sin iω cos �ω = 1

2
[sin(i + �)ω + sin(i − �)ω], (2.78)

it can be easily shown that the relation (2.73) can be written as a linear dependence
between the coefficients of R(z) and the elements of the matrix Q. This proves the
following.

Theorem 2.27 A polynomial R ∈ C2ñ[z] is nonnegative on the unit circle if and
only if there exists a positive semidefinite matrix Q ∈ R

(2ñ+1)×(2ñ+1) such that

rk = tr[Γ k Q], k = 0 : 2ñ, (2.79)

where Γ k are constant matrices.

The expressions of the matrices Γ k are not derived here. Note that these matrices
are in general complex; in this sense, the parameterization (2.79) is opposed to the
trace parameterization (2.6), where the constant matrices Θk are real, while the
parameter matrix Q is complex. However, the relation (2.79) can be immediately
split into Rerk = tr[(ReΓ k)Q], Imrk = tr[(ImΓ k)Q]; the total number of real
equalities is 2n + 1 (remind that n = 2ñ). In contrast, the trace parameterization
(2.6) has n + 1 complex equalities (amounting also to 2n + 1 real equalities).
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For example, we derive from (2.73) that the (always real) free term is

r0 = q00 + 1
2

n∑

i=1

qii

and so Γ 0 = diag(1, 1/2, . . . , 1/2). We leave the formulas for the other matrices Γ k

as a problem for the interested reader. A simpler case, when the polynomial has real
coefficients, will be detailed in Sect. 2.8.3.

Problem (Min_poly_value) The parameterization (2.79) can be used to solve opti-
mization problems in the same way as the trace parameterization. For example, the
minimum value of a given polynomial R(ω) can be computed by solving

μ	 = max
μ

μ

s.t. R(ω) − μ = tr[Γ k Q̃], k = 0 : n
Q̃ � 0

(2.80)

This is obviously an SDP problem. The main difference with respect to (2.18) is that
the Gram matrix is now real, even though R(z) has complex coefficients. The size of
the matrix is the same in both problems. The number of equality constraints in (2.80)
is 2n + 1, i.e., the number of real coefficients in (1.8); that is why, for example, the
matrix (2.76) depends only on a single variable, q00; the 6 distinct elements of a 3×3
symmetric matrix must satisfy 5 linear equalities. In (2.18), the number of equality
constraints is only n + 1, but these are complex equalities. Generally, we expect that
(2.80) is solved faster than (2.18). We note also that the problem (2.80) is equivalent
to finding the most positive matrix Q for which (2.73) holds; see P 2.10.

Example 2.28 (continued) The most positive matrix (2.76) is obtained for q00 =
2.55. Its smallest eigenvalue is 0.2612. This leads to a minimum value of R(ω) equal
to 0.5224. (See again problem P 2.10.)

Let us now look at the case where the degree of the polynomial is odd, n = 2ñ + 1.
We have now R(ω) = |H̃(ω)|2, with

H̃(z) = zñ+ 1
2 H(z) =

ñ+1∑

k=−ñ

hk+ñ z
−k+ 1

2 . (2.81)

With the basis vector

χ̃(ω) = [cos ω
2 sin ω

2 . . . cos(ñ + 1
2 )ω sin(ñ + 1

2 )ω]T (2.82)

of length n+1 = 2(ñ+1), it results that (2.70) holds with A(ω) = aT χ̃(ω), B(ω) =
bT χ̃(ω). Hence, Theorem 2.25 holds also for odd-order polynomials if we replace
χ(ω) with χ̃(ω) in (2.73). However, in this case, although the polynomial R(ω) is

http://dx.doi.org/10.1007/978-3-319-53688-0_1
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expressed as a sum-of-squares, the terms of the sum-of-squares are trigonometric
polynomials in ω/2. This aspect has no consequence on optimization applications
that can be carried on as for even-order polynomials. A parameterization like (2.79)
also holds, but with different constant matrices Γ k .

2.8.2 Transformation to Real Polynomials

We consider now trigonometric polynomials with real coefficients, having thus the
form (1.4). (Polynomials in which all terms are sine functions can be treated simi-
larly.) As already written in (1.6), using the simple substitution t = cosω, a polyno-
mial R ∈ Rn[z] can be expressed on the unit circle as

R(ω) ≡ P(t) =
n∑

k=0

pkt
k, t ∈ [−1, 1]. (2.83)

We can parameterize nonnegative trigonometric polynomials with real coefficients
by using results valid for real polynomials nonnegative on an interval, specifically
Theorem 1.11. For simplicity, we consider only the case n = 2ñ. According to (1.30),
a polynomial (2.83) which is nonnegative for t ∈ [−1, 1], can always be written as

P(t) = F(t)2 + (1 − t2)G(t)2, (2.84)

where F(t) and G(t) are polynomials of degree ñ and ñ − 1, respectively. Since
F(t)2 and G(t)2 are globally nonnegative polynomials, they can be characterized
via (2.56), using positive semidefinite Gram matrices Q1 and Q2, as follows:

F(t)2 = ψT
ñ (t)Q1ψ ñ(t),

G(t)2 = ψT
ñ−1(t)Q2ψ ñ−1(t).

(2.85)

Replacing these equalities with their counterparts similar to (2.60), the coefficients
of the polynomial P(t), as resulting from the identity (2.84), are given by

pk =
{
tr[Υ k Q1] + tr[Υ k Q2] − tr[Υ k−2Q2], if k ≥ 2,

tr[Υ k Q1] + tr[Υ k Q2], if k < 2.
(2.86)

Hence, we can parameterize a nonnegative trigonometric polynomials with two pos-
itive semidefinite matrices, of sizes (ñ + 1) × (ñ + 1) and ñ × ñ (Q1 and Q2,
respectively). (Note the ambiguity of notation in (2.86), where the size of a matrix
Υ k is dictated by the size of the matrix multiplying it.) This is in contrast with
the trace parameterization (2.6), where a single matrix of size (n + 1) × (n + 1)
appears. In terms of complexity, the parameterization (2.86) seems more convenient,
as the size of the matrices is twice smaller; we can hope that, at least asymptotically,

http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
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the problems using (2.86) may be solved faster than when using (2.6). In practice,
the speedup is not visible, since typically the former problems need significantly
more iterations. Moreover, the use of (2.86) is hampered by numerical stability con-
siderations. The transformation from R(ω) to P(t), using a Chebyshev basis (see
Sect. 1.5.1), is made using coefficients that have a broad range of values (practically,
from 1 to 2n); also, the Chebyshev transformation matrix from (1.44) has a large
condition number. For these reason, the use of (2.86) is limited to, say, n ≤ 30; even
so, the solutions obtained using the trace parameterization (2.6) are more accurate.

We conclude that the transformation (2.83) is a bad idea, although it may seem
attractive from a complexity viewpoint. However, since the Chebyshev transforma-
tion is the main troublemaker, we can try to use bases of trigonometric functions, as
shown in the sequel.

2.8.3 Gram-Pair Matrix Parameterization

We consider again a nonnegative trigonometric polynomial R(z) with real coeffi-
cients, whose degree is n = 2ñ. The polynomial (2.69) has the form (2.70), where

A(ω) = hñ + ∑ñ
k=1(hñ−k + hñ+k) cos kω,

B(ω) = ∑ñ
k=1(hñ−k − hñ+k) sin kω.

(2.87)

As in (2.72), we obtain

R(ω) = |H̃(ω)|2 = A(ω)2 + B(ω)2, (2.88)

where now A(ω) is a polynomial with cosine terms, while B(ω) is a polynomial with
sine terms. Let us denote the bases of such ñth order polynomials with

χ c(ω) = [1 cosω . . . cos ñω]T , (2.89)

and
χ s(ω) = [sinω . . . sin ñω]T . (2.90)

With these bases, a Gram parameterization of R(ω) is possible, using two Gram
matrices.

Theorem 2.29 Let R ∈ Rn[z] be a trigonometric polynomial of order n = 2ñ. The
polynomial is nonnegative if and only if there exist positive semidefinite matrices
Q ∈ R

(ñ+1)×(ñ+1) and S ∈ R
ñ×ñ such that

R(ω) = χT
c (ω)Qχ c(ω) + χT

s (ω)Sχ s(ω). (2.91)

We name (Q, S) a Gram pair associated with R(ω).

http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
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Proof If there exist Q � 0, S � 0 such that (2.91) holds, it results that R(ω) ≥ 0.

Reciprocally, if R(ω) ≥ 0, then the matrices Q
Δ= aaT � 0 and S

Δ= bbT � 0,
where a and b are the vectors of coefficients of the polynomials A(ω) and B(ω) from
(2.87), satisfy (2.91).

To be able to formulate optimization problems, we need the expressions of the
coefficients of R(ω) that result from (2.91). We start by expanding the quadratic
forms, thus obtaining

R(ω) =
ñ∑

i,�=0

qi� cos iω cos �ω +
ñ−1∑

i,�=0

si� sin(i + 1)ω sin(� + 1)ω. (2.92)

Using the trigonometric identities (2.77) in (2.92) and taking (1.4) into account, the
coefficients of R(ω) are given by

r0 = q00 + 1

2

ñ∑

i=1

qii + 1

2

ñ−1∑

i=0

sii ,

rk = 1

4

⎛

⎝
∑

i+�=k

qi� +
∑

|i−�|=k

qi� −
∑

i+�+2=k

si� +
∑

|i−�|=k

si�

⎞

⎠ , k ≥ 1.

(2.93)

Thus, we can formulate the following theorem, expressing the coefficients in the
style of (2.6).

Theorem 2.30 The relation (2.91) defining a Gram pair associated with the even
order trigonometric polynomial R(ω) is equivalent to

rk = tr[Φk Q] + tr[ΛkS], (2.94)

where the matrices Φk ∈ R
(ñ+1)×(ñ+1) and Λk ∈ R

ñ×ñ are

Φ0 = 1
2 (Υ 0 + I),

Φk = 1
4 (Υ k + Θk + Θ−k), k ≥ 1,

(2.95)

and, respectively
Λ0 = 1

2 I,

Λk = 1
4 (−Υ k−2 + Θk + Θ−k), k ≥ 1.

(2.96)

In the above relations, we assume that the matrices Υ k or Θk are zero whenever k
is out of range (i.e., negative or larger than the number of diagonals). (For example,
in (2.96), Υ k−2 = 0 if k = 1 and Θk = 0 if k ≥ ñ.)

We note that the matrices Φk and Λk are symmetric. We can replace Θk + Θ−k

with 2Θk , in their expressions, and the parameterization (2.94) remains valid.

http://dx.doi.org/10.1007/978-3-319-53688-0_1
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Example 2.31 If n = 4, and so ñ = 2, the first three pairs of constant matrices from
(2.94) are

Φ0 = 1

2

⎛

⎝

⎡

⎣
1 0 0
0 0 0
0 0 0

⎤

⎦ +
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎞

⎠ , Λ0 = 1

2

(
−

[
0 0
0 0

]
+

[
1 0
0 1

])
,

Φ1 = 1

4

⎛

⎝

⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦ +
⎡

⎣
0 1 0
1 0 1
0 1 0

⎤

⎦

⎞

⎠ , Λ1 = 1

4

(
−

[
0 0
0 0

]
+

[
0 1
1 0

])
,

Φ2 = 1

4

⎛

⎝

⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ +
⎡

⎣
0 0 1
0 0 0
1 0 0

⎤

⎦

⎞

⎠ , Λ2 = 1

4

(
−

[
1 0
0 0

]
+

[
0 0
0 0

])
.

In general, for k = 0 : ñ, the matrices Φk have a Toeplitz+Hankel structure, while
Φk = Υ k for k > ñ. The matrices Λk are Toeplitz for k = 0, 1, Toeplitz+Hankel for
k = 2 : ñ − 1 and Hankel for k = ñ : n.
Problem (Min_poly_value) Using the parameterization (2.91), the minimum value
of a given polynomial R(ω) can be computed by solving

μ	 = max
μ

μ

s.t. R(ω) − μ = χT
c (ω) Q̃χ c(ω) + χT

s (ω)S̃χ s(ω)

Q̃ � 0, S̃ � 0

(2.97)

The form (2.94) confirms that this is an SDP problem. As in Sect. 2.8.2, the two
matrices from (2.97) are twice smaller than the single matrix from the correspond-
ing problem (2.18), where the trace parameterization (2.6) is used. As discussed in
Remark 2.13, the complexity of such an SDP problem depends on the square of
the size of the matrices (the number of equality constraints is the same in the two
problems). So, we can expect that (2.97) is solved up to four times faster than its
counterpart (2.18); however, since there are twomatrices in (2.97), the speedup factor
could be actually twice smaller. These are only qualitative considerations; the fact
that the constant matrices from (2.94) and (2.6) are sparse makes the complexity
analysis more difficult.

We also note that solving (2.97) is equivalent to finding the most positive matrices
Q, S for which (2.91) holds. By this, we understand that min(λmin(Q), λmin(S)) is
maximum. See problem P 2.11 for details.

Example 2.32 We give in Table2.1 the times needed for finding the minimum value
of a trigonometric polynomial with random coefficients by solving two SDP prob-
lems; the first is (2.18), based on the trace parameterization (2.6); the second is (2.97),
based on the Gram-pair parameterization (2.91). The first two rows contain data from
2006, when the first edition of this bookwas written. The last two rowswere obtained
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Table 2.1 Times, in seconds, for finding the minimum value of a trigonometric polynomial via
two SDP problems

Year SDP
problem

Parameterization Order n

20 50 100 200 300

2006 (2.18) Trace 0.26 1.00 7.0 120 800

(2.97) Gram pair 0.21 0.51 2.7 22 99

2016 (2.18) Trace 0.10 0.50 1.2 5.5 18

(2.97) Gram pair 0.04 0.20 0.7 2.6 7.5

in 2016, when preparing the second edition. In both cases, the computers were rather
average for the period.We see that the Gram-pair parameterization leads to a roughly
twice faster solution for almost all sizes in 2016, but only for small sizes in 2006
(excepting very small problems, where overhead due to preparing data and other
operations may be significant). The most likely reason for the much better behavior
of the Gram-pair parameterization on the old computer is the lower memory require-
ment of this parameterization. We also note that, no matter the parameterization, we
can solve in the same time problems that are twice larger than 10years ago. We con-
clude that the Gram-pair parameterization is clearly faster and should be preferred
to the trace parameterization.

If the order of the polynomial R(ω) is odd, n = 2ñ + 1, the pseudopolynomial
(2.81) leads to an expression (2.88) where A(ω) and B(ω) depend linearly on the
elements of the basis vectors

χ̃ c(ω) = [cos ω
2 cos 3ω

2 . . . cos(ñ + 1
2 )ω]T (2.98)

and
χ̃ s(ω) = [sin ω

2 sin 3ω
2 . . . sin(ñ + 1

2 )ω]T (2.99)

respectively. It is easy to see that Theorem 2.29 holds also for odd n, with χ̃ c(ω)

and χ̃ s(ω) replacing χ c(ω) and χ s(ω), respectively, in (2.91). Also, we note that the
matrices Q and S have the same size, namely (ñ + 1) × (ñ + 1), since the basis
vectors (2.98) and (2.99) have the same length. The relations between the coefficients
of R(ω) and the elements of the two Grammatrices are simpler than in the even case
(2.93). They are

r0 = 1

2

ñ∑

i=0

(qii + sii ),

rk = 1

4

⎛

⎝
∑

i+�+1=k

(qi� − si�) +
∑

|i−�|=k

(qi� + si�)

⎞

⎠ , k ≥ 1.

(2.100)
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The proof of the above formulas, based on relations in the style of (2.77), is left to
the reader. From (2.100) it results that, for odd order, the constant matrices Φk and
Λk appearing in (2.94) should be replaced with

Φ̃k = 1
4 (Υ k−1 + Θk + Θ−k),

Λ̃k = 1
4 (−Υ k−1 + Θk + Θ−k),

(2.101)

respectively, for k = 0 : n.

2.9 Interpolation Representations

Until now, in all parameterizations, we have defined the polynomials by their coef-
ficients. Alternatively, we can use as parameters the values of the polynomial on a
specified set of points. Let  = {ωi }i=1:2n+1 ⊂ (−π, π ] be a set of 2n+1 frequency
points. We return to the general case of trigonometric polynomials with complex
coefficients. If the values

ρi = R(ωi ), i = 1 : 2n + 1, (2.102)

of the nth order trigonometric polynomial R(z) are known, then the polynomial is
completely determined.

For simplicity, let us consider only the case where n = 2ñ. We work with the
basis of trigonometric polynomials

ϕ(ω) = Cχ(ω), (2.103)

where C is a nonsingular matrix; so, we consider all bases that are similar to (2.71).
We can now state a characterization of nonnegative polynomials defined in terms of
the values (2.102).

Theorem 2.33 The trigonometric polynomial R ∈ Cn[z] satisfying (2.102) is non-
negative if and only if there exists a positive semidefinite matrix Q̂ ∈ R

(n+1)×(n+1)

such that
ρi = ϕT (ωi ) · Q̂ · ϕ(ωi ), (2.104)

for all the 2n + 1 points ωi ∈ .

Proof The nth order polynomial ϕT (ω) Q̂ϕ(ω) has the values ρi for the 2n + 1
frequenciesωi ∈  and so is identical to R(ω) (which satisfies the relations (2.102)).
Due to (2.103), it results that R(ω) = χT (ω)CT Q̂Cϕ(ω), which is nonnegative if
and only if Q̂ � 0.

In principle, any basis ϕ(ω) and any set of points  may be used. However, some
choices are more appealing by offering a simple interpretation of some elements of
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the matrix Q̂. One interesting basis is given by the Dirichlet kernel

Dñ(ω) = 1

2ñ + 1

ñ∑

k=−ñ

e− jkω = 1

2ñ + 1

sin (2ñ+1)ω
2

sin ω
2

. (2.105)

Denote τ = 2π/(2ñ + 1). We note that

Dñ(�τ) =
{
1, if � = 0,

0, if � ∈ Z \ {0}. (2.106)

This means that the 2ñ + 1 polynomials from the vector

ϕ(ω) = [Dñ(ω + ñτ) . . . Dñ(ω) . . . Dñ(ω − ñτ)]T (2.107)

form of basis for the space of ñth order trigonometric polynomials. Moreover, any
ñth order polynomial S(ω) can be expressed as

S(ω) =
ñ∑

�=−ñ

S(�τ)Dñ(ω − �τ). (2.108)

(It is clear that the above equality holds for the points �τ ; a dimensionality argument
shows that it holds everywhere.)

We can use the basis (2.107) in the representation (2.104). The points �τ , with
� = −ñ : ñ, are very good candidates for the set  (note that other 2ñ points are
needed to complete the set). Since ϕ(�τ) is a unit vector, it results immediately that

R(�τ) = q̂�+ñ,�+ñ, � = −ñ : ñ, (2.109)

i.e., the diagonal elements of the Gram matrix Q̂ are equal to the values of the
polynomial in the given points.

Example 2.34 Let us take ñ = 1. Since τ = 2π/3, the vector (2.107) is

ϕ(ω) = [D1(ω + 2π
3 ) D1(ω) D1(ω − 2π

3 )]T ,

with
D1(ω) = 1

3 (1 + 2 cosω),

D1(ω + 2π
3 ) = 1

3 (1 − cosω − √
3 sinω),

D1(ω − 2π
3 ) = 1

3 (1 − cosω + √
3 sinω).

It results that the relation (2.103) becomes
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⎡

⎣
D1(ω + 2π

3 )

D1(ω)

D1(ω − 2π
3 )

⎤

⎦ = 1

3

⎡

⎣
1 −1 −√

3
1 2 0
1 −1

√
3

⎤

⎦

⎡

⎣
1

cosω

sinω

⎤

⎦ .

We now represent the polynomial (2.75) using the basis (2.107), i.e., in the form
R(ω) = ϕT (ω) Q̂ϕ(ω). Using (2.76), the Grammatrices satisfying this relation have
the form

Q̂ = C−T QC =
⎡

⎢⎣
4 + 2

√
3 −5 −

√
3
2 + α − 7

2 + α

−5 −
√
3
2 + α 19 −5 +

√
3
2 + α

− 7
2 + α −5 +

√
3
2 + α 4 − 2

√
3

⎤

⎥⎦ ,

where α is a free parameter (equal to 3q00/2, where q00 is the parameter from (2.76)).
It is easy to see that the diagonal entries of the matrix Q̂ are, in order, the values
R(−2π/3), R(0) and R(2π/3).

Problem (Min_poly_value) Using the parameterization (2.104), theminimumvalue
of the polynomial R(ω) can be found by solving the SDP problem

μ	 = max
μ

μ

s.t. R(ωi ) − μ = ϕT (ωi ) Q̂ϕ(ωi ), i = 1 : 2n + 1
Q̂ � 0

(2.110)

The difference with respect to (2.80) is that the equality constraints are defined using
polynomial values (and not coefficients). We note that the constraints can be written
in the equivalent form

R(ωi ) − μ = tr[Ai Q̂], with Ai = ϕ(ωi )ϕ
T (ωi ). (2.111)

The rank of the matrices Ai is 1. (Moreover, if the Dirichlet kernel is used for
generating a basis (2.107) as discussed above, some of these matrices have only one
diagonal element equal to 1, the others being zero.)

Remark 2.35 If the polynomial R(z) has real coefficients, then n + 1 values (2.102)
are sufficient for describing it uniquely. Moreover, we can use the Gram-pair repre-
sentation (2.91) to say that R(z) is nonnegative if and only if there exist Q � 0 and
S � 0 such that

ρi = χT
c (ωi )Qχ c(ωi ) + χT

s (ωi )Sχ s(ωi ), i = 1 : n + 1. (2.112)

Moreover, the bases χ c(ω) and χ s(ω) can be replaced by (different) linear combi-
nations of themselves.
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2.10 Mixed Representations

This section presents a new parameterization of the coefficients of a nonnegative
polynomial, using ideas from interpolation representations to make a connection
with discrete transforms.We start with a general presentation, going then to particular
cases. Let R ∈ Cn[z] be a nonnegative trigonometric polynomial. Then, there exists
Q ∈ C

(n+1)×(n+1), Q � 0, such that

R(ω) = ϕH
Q (ω)QϕQ(ω), (2.113)

whereϕQ(ω) is a basis vector, e.g., like in (2.73). Consider a set of N frequency points
ωi , with sufficiently large N . Let x ∈ C

M be a vector representing the polynomial,
such that R(ωi ) = ϕT

R(ωi )x, where ϕR(ω) is a vector of trigonometric functions
(another basis vector). The equality

ϕT
R(ωi )x = ϕH

Q (ωi )QϕQ(ωi ), i = 1 : N , (2.114)

can be written as
Ax = diag(BH QB), (2.115)

where A ∈ C
N×M and B ∈ C

(n+1)×N are given by

A =

⎡

⎢⎢⎣

...

ϕT
R(ωi )
...

⎤

⎥⎥⎦ , B = [. . . ϕQ(ωi ) . . .]. (2.116)

We assume that the matrix A has full column rank, which happens when N is large
enough (N ≥ M anyway). Denoting A# the pseudoinverse of A, the relation (2.115)
becomes

x = A#diag(BH QB), (2.117)

which is the desired parameterization.As the relation (2.117) is fairly abstract,wewill
see immediately its (probably) simplest particular case. In any case, it is apparent
that this parameterization is useful if the vector x contains the coefficients of the
polynomial and the matrices A#, B have “nice” properties.

2.10.1 Complex Polynomials and the DFT

We take the points ωi = 2π i/N , i = 0 : N − 1, with N ≥ 2n + 1. Let M = N and
the vector of parameters be
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x = [r0 r1 . . . rn 0 . . . 0 r−n . . . r−1]T . (2.118)

Since the polynomial is Hermitian, we are interested only in the first n + 1 elements
of x, which form the vector r . Taking

ϕT
R(ω) = [1 e− jω . . . e− j (N−1)ω],

the matrix
A =

[
e− j 2π�i

N

]

�,i=0:N−1
(2.119)

is the length-N DFTmatrix. We split A = [W A2], whereW contains the first n+1
columns of A. We take ϕQ(ω) = ψn(e

jω), i.e., the standard basis from (2.1). It can
be seen immediately that B = W H . Since A (and in particular W ) has orthogonal
columns, it follows that

W H A = 1

N
[I 0].

By multiplying (2.115) with W H , we obtain the parameterization

r = 1

N
W Hdiag(W QW H ) (2.120)

of the coefficients of a nonnegative polynomial in terms of a positive semidefinite
matrix.

Remark 2.36 Since we have used the same basis for the Gram matrix expression
of R(ω), i.e., ϕQ(ω) = ψn(e

jω), it results that (2.120) is identical with the trace
parameterization (2.6). (The mapping between the elements of the Gram matrix and
the coefficients of the polynomial is linear.) SeeP 2.14 for an explicit proof. However,
the parameterization (2.120) can be used directly in fast algorithms, as discussed in
Sect. 2.11.

2.10.2 Cosine Polynomials and the DCT

We consider now polynomials R(z) with real coefficients; for simplicity, we look
only at the even degree case, n = 2ñ. Using the Gram-pair parameterization (2.112),
it results similarly to (2.115) that R(z) is nonnegative if there exist Q � 0 and S � 0
such that

Ax = diag(BT
1 QB1) + diag(BT

2 SB2), (2.121)

where A is defined as in (2.116) and

B1 = [. . . χ c(ωi ) . . .], B2 = [. . . χ s(ωi ) . . .].
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We take the points ωi = π i/(N − 1), i = 0 : N − 1, with N ≥ n + 1. Let M = N
and the vector of parameters be

x = [r0 2r1 . . . 2rn 0 . . . 0]T ∈ R
N . (2.122)

With
ϕT

R(ω) = [1 cosω . . . cos(N − 1)ω],

the matrix A is

A =
[
cos

π�i

N − 1

]

�,i=0:N−1

. (2.123)

We remark that, denoting D = diag(1/2, 1, . . . , 1, 1/2), the matrix AD is the DCT-I
transform. Moreover, the inverse of A is

A−1 = 2

N − 1
DAD.

We denote W ∈ R
N×(n+1) the first n + 1 columns of A−1 (which are also its first

rows, as the matrix is symmetric), and so W T A = [I 0]. By the choice of frequency
points, the other constant matrices from (2.121) are

B1 =
[
cos

π�i

N − 1

]

�=0:n,i=0:N−1

, B2 =
[
sin

π�(i + 1)

N − 1

]

�=0:n−1,i=0:N−1

.

With these notations, by multiplication with W T in (2.121), we obtain the parame-
terization ⎡

⎢⎢⎢⎣

r0
2r1
...

2rn

⎤

⎥⎥⎥⎦ = W T
(
diag(BT

1 QB1) + diag(BT
2 SB2)

)
. (2.124)

Remark 2.37 For reasons similar to those exposed in Remark 2.36, i.e., identity
of bases and linearity, the parameterization (2.124) is identical with the Gram-pair
parameterization (2.94).

2.11 Fast Algorithms

In this book, the presentation is focused on parameterizations of positive polynomi-
als suited to the use of off-the-shelf SDP libraries. This approach is not only very
convenient, as the implementation effort is minimal, but also efficient for polynomi-
als of low or medium order (going to more than 100). Alternatively, SDP algorithms



2.11 Fast Algorithms 59

can be tailored to the specific of positive polynomials, obtaining fast methods. This
section aims to open the path for the reader interested in such methods.

As mentioned before, a typical SDP problem involving a nonnegative trigono-
metric polynomial of order n has an O(n4) complexity, if either the trace (2.6) or
Gram-pair (2.94) parameterizations are used. However, these parameterizations are
expressed with sparse matrices, which allows a complexity reduction by simply
informing the SDP library of the sparseness (actually, the current version of SeDuMi
assumes that all matrices are sparse). So, in this case, the constant hidden by the O(·)
notation is relatively small.

Fastmethods have anO(n3) complexity. The identity between the dual cone (2.32)
and the space of positive semidefinite Toeplitzmatrices, presented in Sect. 2.4, allows
the fast computation of the Hessian and gradient of the barrier function, required
by interior point methods for solving SDP problems. The method from [2] uses
displacement rank techniques. The method from [3] uses the Levinson–Durbin
algorithm and the DFT. Unfortunately, it appears that the numerical stability of these
algorithms limits their use to polynomials of relatively small degrees (less than, e.g.,
50, for some applications). So, they may have no significant practical advantage over
the algorithms based on the trace or Gram-pair parameterization, which are robust
and for which the only limitation on the degree of the polynomials appears to be
due mostly to the time necessary to obtain the solution and possibly also to memory
requirements.

Another fast method is based on the interpolation representation presented in the
previous section. The fact that the constant matrices appearing in constraints such
as (2.111) have rank equal to one can be used for building fast algorithms, using a
dual solver [4]; again, the Hessian of the barrier function can be evaluated with low
complexity, precisely O(n3) operations.

Finally, the method from [5] is based on representations such as (2.120) and
(2.124), that can be exploited when solving the Newton equations appearing in inte-
rior point methods. Not only the special form of the representations helps in reducing
the number of operations, but also the fact that matrix multiplication can be sped up
via the FFT, due to the connection of the constant matrices from (2.120) and (2.124)
with discrete transforms such as the DFT and the DCT. Moreover, it seems that this
method does not suffer from numerical stability problems, like the others above.

Typically, for small orders, the fast O(n3)methods are not faster than the standard
O(n4) methods (especially if sparseness is used). The order no for which the fast
methods become indeed faster depends on the implementation, the SDP algorithm,
the programming and running environments, and the problem solved. From the data
available in the literature and the author’s experiments, it seems that no may be
around 100.
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2.12 Details and Other Facts

2.12.1 Writing Programs with Positive Trigonometric
Polynomials

Solving an optimization problem with positive trigonometric polynomials requires
an SDP library. We give here three programs for finding the minimum value of a
trigonometric polynomial by solving (2.18). The first uses directly the SDP library
SeDuMi [6]. The second works at a higher level, calling the convex optimization
software CVX [7], which includes SDP but also other types of convex optimization.
CVX calls SeDuMi or SDPT3 [8], depending on user’s choice. CVX has the great
advantage of expressing the optimization problems in a form very close to the math-
ematical one. The third program uses Pos3Poly [9], which is a library dedicated
to positive polynomials, covering all types and situations described in this book.
Pos3Poly is built on top of CVX, taking advantage of the possibility to build convex
sets offered by CVX. The parameterization is hidden for the user, who simply works
directly with the coefficients of the polynomial.

Table2.2 contains the SeDuMi program for solving (2.18). The problem needs
to be expressed in a standard form, here the equality form, see Appendix A. The
polynomial has the form (1.1) and is given through its vector of coefficients r =
[r0 . . . rn]T . The variable K contains a description of the optimization variables
from (2.18): μ is a free scalar (it may have any real value), while Q̃ is a matrix
of size n′ × n′ (where n′ = n + 1 is the number of distinct coefficients of the
polynomial). Denoting the variables vector with x = [μ vec( Q̃)T ]T , the constraints
of (2.18) are expressed in SeDuMi as a linear system Ax=b; so, the first column
of A contains a single nonzero value, i.e., A(1,1), which represent the coefficient
of μ in the first constraint from (2.18). The rows of A contain, starting with the
second column, the vectorized elementaryToeplitzmatrices; this is due to the equality
tr[Θk Q̃] = vec(Θk)

T vec( Q̃). Finally, the vector b is the right hand side of the
constraints of (2.18) and so it is equal to r . In SeDuMi, the objective is to minimize
cTx and so only the first component of c is nonzero and equal to −1, in order to
maximizeμ; thematrix variable Q̃ does not appear in the objective. If the polynomial
is complex, the variable K.scomplex specifies the positive semidefinite matrices
that are complex, by their indices in the variable K.s; in our case, there is only one
such variable, the Gram matrix. However, this is not enough; we should specify that
the equality constraints should be regarded as equalities of complex numbers; this is
done by specifying that the dual variables are complex, with K.ycomplex.

The program gives also the solution to problem (2.14), i.e., themost positiveGram
matrix associated with the polynomial R(z). The Gram matrix Q is computed using
relation (2.19), from the solution of (2.18).

Running this program for r = [6 -3 2], which represents the polynomial
(2.4), gives the Gram matrix Q and the minimal value μ shown in Examples 2.11
and 2.12, respectively.

http://dx.doi.org/10.1007/978-3-319-53688-0_1
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Table 2.2 SeDuMi program for solving the SDP problem (2.18)

function [m,Q] = minpol1(r)

n = length(r); % length of the polynomial

K.f = 1; % one free variable (m)

K.s = [n]; % one pos. semidef. matrix of size nxn (Q)

nrA = n; % number of equality constraints

% (one for each coefficient of r)

ncA = 1+n*n; % number of scalar variables (in m and Q)

if ˜isreal(r) % specify complex data, if this is the case

K.scomplex = 1;

K.ycomplex = 1:n;

end

A = sparse(nrA,ncA);

b = r(:); % right hand term of equality constraints

c = zeros(ncA,1);

c(1) = -1; % the objective is to maximize m

e = ones(n,1); % generate Toeplitz elementary matrices

for k = 1:n

A(k,2:end) = vec( spdiags(e,k-1,n,n) )’;

end

A(1,1) = 1; % coefficient of m in first constraint

[x,y,info] = sedumi(A,b,c,K); % call SeDuMi

m = x(1); % recover the variables

Q = mat(x(2:end)) + (m/n)*eye(n);

The CVX program is shown in Table2.3 and is practically self-explanatory. The
optimization variables are declared explicitly and the constraints have a very natural
expression. In general, it is not needed to put the problem in a standard form, which
was very easy for (2.18), but sometimes may be cumbersome.

Finally, the Pos3Poly program is shown in Table2.4. The function sos_pol can
be used to declare all kinds of positive polynomials; it has two arguments: The first is
a vector containing the degree of the polynomial and the size of the coefficients (here
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Table 2.3 CVX program for solving (2.18)

function [m,Q] = minpol1_cvx(r)

n = length(r); % length of the polynomial

cvx_begin

variable m;

if ˜isreal(r) % complex data

variable Q(n,n) complex semidefinite;

else % real data

variable Q(n,n) semidefinite;

end

maximize( m ) % variable for the minimum

subject to % equality constraints

m + trace(Q) == r(1);

e = ones(n,1);

for k = 2:n

vec( spdiags(e,k-1,n,n) )’ * vec(Q) == r(k);

end

cvx_end

Q = Q + (m/n)*eye(n);

they are scalars, but we will talk later about polynomials with matrix coefficients),
and the second is a structure describing the type of the polynomial; in our case, it is
useful only when declaring that the polynomial is complex. The output of sos_pol
is a variable vector representing the positive trigonometric polynomial and containing
its coefficients (like r contains the coefficients of R(z)). Hence, the constraint can
be written as a single vector equality. Since Pos3Poly hides the parameterization, we
do not have access to the Gram matrix.

It is clear that the programming effort decreases as we go from SeDuMi to CVX
and then to Pos3Poly. If the reader intends to solve only a small number of simple
problems involving positive polynomials, then CVX might be the easiest way. For
thosewhoneed to solvemany ormore difficult problems, or for thosewhodo notwant
to read this book in detail, Pos3Poly is probably the best choice. SeDuMi (note that
Pos3Poly can also work directly on top of SeDuMi, without CVX; read the manual
if interested) is hard to recommend for others than those already very experienced
with it.
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Table 2.4 Pos3Poly program for solving (2.18)

function m = minpol1_pos3poly(r)

n = length(r); % length of the polynomial

r = r(:); % force column vector

p = [n-1 1]; % degree and coefficients size (scalars)

ptype = []; % for real data this variable is not necessary

if ˜isreal(r) % complex data

ptype.complex_coef = 1;

end

cvx_begin

variable m; % variable for the minimum

maximize( m )

subject to % equality constraints

m*eye(n,1) + sos_pol(p, ptype) == r;

cvx_end

2.12.2 Proof of Theorem 2.16

Consider that the FIR filter H(z) has a white noise e(�) (of unit variance) at its input
and the output is y(�). The state-space model of H(z) is

{
ξ(� + 1) = ΘT

1 ξ(�) + h̃e(�),
y(�) = cT ξ(�) + h0e(�),

(2.125)

where ξ ∈ C
n is the vector of states and h̃ and c are defined in (2.47). Denote

Ξ = E{ξ(�)ξ H (�)}

the state autocorrelation matrix. Multiplying both sides of the first equation from
(2.125) with their Hermitians and taking the average, it results that

Ξ = ΘT
1 ΞΘ1 + h̃h̃

H
.

This is the last relation from (2.50).
Using now the second equation from (2.125), we obtain r0 = E{y(�)y∗(�)} =

cTΞ c+ h20, which is the first relation from (2.50) (remind that we have assumed h0
to be real).
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Finally, combining both equations from (2.125), we get

E{ξ(� + 1)y∗(�)} = ΘT
1 Ξ c+ h0 h̃. (2.126)

Rewriting (2.125) for each scalar component of the state vector, we obtain

y(�) = ξ n−1(�) + h0e(�),
ξ n−1(� + 1) = ξ n−2(�) + h1e(�),

...

ξ 1(� + 1) = ξ 0(�) + hn−1e(�),
ξ 0(� + 1) = hne(�)

By substituting successively the expressions of states, these relations are equivalent
to

ξ n−k(� + 1) = y(� + k) −
k−1∑

i=0

hie(� + k − i), k = 1 : n.

With this, we obtain
E{ξ(� + 1)y∗(�)} = r̃,

which makes (2.126) identical with the second relation from (2.50). Thus, we have
shown that all three relations from (2.50) hold. Since they are equivalent to (2.48),
(2.49), the proof is ready.

2.12.3 Proof of Theorem 2.19

The relation (2.56) can be written as

P(t) = tr[ψ(t) · ψT (t) · Q] = tr[Ψ (t) · Q],

where

Ψ (t) =

⎡

⎢⎢⎢⎣

1
t
...

tn

⎤

⎥⎥⎥⎦ [1 t . . . tn] =

⎡

⎢⎢⎢⎢⎣

1 t . . . tn

t t2 . .
.
tn+1

... . .
.

. .
. ...

tn tn+1 . . . t2n

⎤

⎥⎥⎥⎥⎦
=

2n∑

k=0

Υ k t
k .

Combining the last two relations, we obtain

P(t) =
2n∑

k=0

tr[Υ k Q]t k,

which proves (2.60).
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2.12.4 Proof of Theorem 2.21

If Q � 0 (or Q � 0) exists such that (2.60) holds, then it results directly from (2.56)
that P(t) ≥ 0 (or P(t) > 0), ∀t ∈ R.

Reciprocally, if P(t) ≥ 0, then, as stated by Theorem 1.7, the polynomial can be
written as

P(t) = F2(t) + G2(t) = ψT (t)
(
f f T + ggT

)
ψ(t),

which shows that Q = f f T + ggT is a (rank-2) Gram matrix associated with P(t).
If P(t) > 0, then there exists ε > 0 such that Pε(t) = P(t)−ε(1+ t2+ . . .+ t2n)

is nonnegative. Let Qε � 0 be a Gram matrix associated with Pε(t) (obtained, e.g.,
as above). Since I is the Gram matrix of the polynomial 1+ t2 + . . . + t2n , it results
that Q = Qε + ε I � 0 is a Gram matrix associated with P(t).

2.13 Bibliographical and Historical Notes

The trace parameterization of trigonometric polynomials (Theorem 2.5) and its use
as optimization tool have been proposed independently by several researchers [2, 3,
10–12], starting from different applications. Many of these works were motivated by
the high complexity of the KYP lemma parameterization (see Sect. 2.5) of positive
polynomials proposed in [13] (for FIR filter design), [14] (for MA estimation), [15]
(for compaction filter design), and [16] (for the design of orthogonal pulse shapes
for communication). The jump from an O(n6) complexity to O(n4) allowed a much
higher range of problems to be solved.

The Toeplitz quadratic optimization problem discussed in Sect. 2.3 has been ana-
lyzed in SDP terms in [17]. Some extensions can be found in [18]. The dual-cone
formulation is a simple dualization exercise; the presentation from Sect. 2.4 is taken
from [3]; an excellent lecture on convex optimization and, among many others, dual
cones is [19]. For the discrete-time version of the KYP lemma and other results
regarding positive real systems, we recommend [20, 21].

Spectral factorization using SDP has been proposed by several authors. The proof
of Theorem 2.15 using the Schur complement was presented in [22]. For Robinson’s
energy delay property see [23], problem 5.66. The spectral factorization method
based on the Riccati equation appeared in [24]; useful information can be found
in [25] (including connections with Kalman filtering). Other spectral factorization
algorithms are presented in Appendix B.

The Gram-pair factorization from Sect. 2.8.3 and the real Gram representation
of polynomials with complex coefficients from Theorem 2.25 have appeared in [5],
in their equivalent forms from Sect. 2.10. The explicit representations from Theo-
rems 2.27 and 2.30 have been derived here in the style of other Gram parameter-
izations. The idea of using interpolation representations, as presented in Sect. 2.9,
appeared first in [4].

http://dx.doi.org/10.1007/978-3-319-53688-0_1
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Problems

P 2.1 Are there nonnegative polynomials R(z) for which the set G(R) of associated
Gram matrices contains a single positive semidefinite matrix?

P 2.2 (problems VI.50, VI.51 [26]) The polynomial R ∈ Cn[z] is nonnegative and
has the free coefficient r0 = 1.

(a) Show that R(ω) ≤ n + 1.
(b) Show that |rn| ≤ 1/2.
Hint: use the Gram matrix representation (2.6).
(a) A Gram matrix Q � 0 has nonnegative eigenvalues λi , i = 1 : n + 1. Since∑
λi = trQ = r0 = 1, it results that max λi ≤ 1. Note also that ‖ψ(ω)‖2 = n + 1.

It results that R(ω) = ψH (ω)Qψ(ω) ≤ ‖ψ(ω)‖2 max λi = n + 1.
(b) The determinant of the 2 × 2 matrix containing the corner elements of Q is

nonnegative. The sum of the diagonal elements of this 2×2 matrix is less than 1 and
the other two elements are rn and r∗

n .

P 2.3 (problems VI.57, VI.58 [26]) The polynomial R ∈ Cn[z] has the free coeffi-
cient r0 = 0.

(a) Show that R(ω) cannot have the same sign for all values of ω, unless it is
identically zero.

(b) Let −m and M be the minimum and maximum, respectively, of the values
R(ω) (note that m ≥ 0, M ≥ 0). Show that M ≤ nm, m ≤ nM .

Hint: any Gram matrix has trQ = 0 and hence both positive and negative eigen-
values, unless it is the null matrix.

P 2.4 Are there polynomials P ∈ R2n[t] with a single associated Gram matrix?
What is their degree?

P 2.5 Let P ∈ R2n[t] be a positive polynomial. Let μ	 be the minimum value
of P(t), i.e., the optimal value of the SDP problem (2.62). Let λ	 be the smallest
eigenvalue of the most positive Gram matrix associated with P(t), i.e., the optimum
of (2.64). Show that μ	 ≥ λ	.

Show that there exist polynomials for which μ	 = λ	. Hint: think at polynomials
with nonzero coefficients only for even powers of t .

P 2.6 Let R ∈ Rn[z] be the polynomial whose coefficients are rk = n+1−k. (This
is the triangular, or Bartlett, window.) Show that R(ω) ≥ 0 by finding a positive
semidefinite Gram matrix associated with R(z).

P 2.7 Consider the quadratic optimization problem (2.24), in which the matrices
A�, � = 0 : L , are Hankel (and not Toeplitz). Why cannot the problem (2.24) be
solved from the solution of an SDP problem (2.31) with Hankel matrices (and so
there is no analogous for real polynomials of the algorithm presented in Sect. 2.3 for
trigonometric polynomials)?
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P 2.8 (LMI form of Theorem 1.15) The polynomial R ∈ Cn[z] is nonnegative on
the interval [α, β] ⊂ (−π, π) if and only if there exist positive semidefinite matrices
Q1 ∈ C

(n+1)×(n+1) and Q2 ∈ C
n×n such that

rk = tr[Θk Q1] + tr[(d1Θk−1 + d0Θk + d∗
1Θk+1)Q2].

Here, d0 and d1 are the coefficients of the polynomial (1.34). Also, in the argument of
the second trace operator, we use the notation convention that Θk = 0 if k > n − 1.

P 2.9 Let R ∈ C2ñ[z] be a trigonometric polynomial. Show that the parameterization
(2.73) is equivalent to

R(z) = φT (z) · Q · φ(z),

with the basis vector

φ(z) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
z + z−1

...

zñ + z−ñ

j (z − z−1)
...

j (zñ − z−ñ)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Notice the resemblance with the definition (2.56) of Gram matrices for real polyno-
mials.

P 2.10 Show that the problem (2.80) (for computing the minimum value of a com-
plex trigonometric polynomial) is equivalent to finding the most positive matrix Q
for which (2.73) holds. Hint: notice that ‖χ(ω)‖2 = ñ + 1.

P 2.11 The SDP problem (2.97) computes the minimum value of a trigonometric
polynomial R(z) with real coefficients. Denote λ(Q), λ(S) the sets of eigenvalues
of the matrices Q and S, respectively, from the Gram-pair parameterization (2.91)
of R(z). Show that (2.97) is equivalent to finding the matrices Q and S for which
the smallest eigenvalue from λ(Q) ∪ λ(S) is maximum.

Hint: notice that (2.91) is equivalent to

R(ω) = [χT
c (ω) χT

s (ω)]
[
Q 0
0 S

] [
χ c(ω)

χ s(ω)

]

and that the vector [χT
c (ω) χT

s (ω)] has constant norm.

P 2.12 (LMI form of Theorem 1.18) The polynomial R ∈ Rn[z], with n = 2ñ,
is nonnegative on [α, β] ⊂ [0, π ] if and only if there exist positive semidefinite
matrices Q1 ∈ R

(ñ+1)×(ñ+1) and Q2 ∈ R
ñ×ñ such that (for brevity, we denote

cosα = a, cosβ = b)

http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
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rk = tr[Φk Q1] + tr
[(

(−ab − 1
2 )Φk + a+b

2 (Φk−1 + Φk+1)

− 1
4 (Φk−2 + Φk+2)

)
Q2

]
,

where the matrices Φk are defined in (2.95).
Derive a similar result for the case of odd degree n.

P 2.13 Let R1(z), R2(z) be two trigonometric polynomials of the same degree. Prove
the following:

(a) R1(ω) ≥ R2(ω), ∀ω ∈ [−π, π ], if and only if there exist Gram matrices Q1
and Q2, associated with R1(z) and R2(z), respectively (i.e., defined as in the trace
parameterization (2.6)) such that Q1 � Q2.

(b) R1(ω) ≥ R2(ω), ∀ω ∈ [−π, π ], if and only if there exist Gram pairs (Q1, S1)

and (Q2, S2), associated with R1(z) and R2(z), respectively (i.e., defined as in the
Gram-pair parameterization (2.94)) such that Q1 � Q2 and S1 � S2.

Generalize this kind of results to polynomials that are positive on an interval.

P 2.14 Show that the trace parameterization (2.6) and the DFT parameterization
(2.120) of a nonnegative polynomial are identical.

Hint [5]: Denote wk the k-th column of the DFT matrix (2.119), which is also the
k-th column of W from (2.120). It results from (2.120) that

rk = 1
N wH

k diag(W QW H ) = 1
N tr[diag(wH

k )W QW H ]
= 1

N tr[W Hdiag(wH
k )W Q].

It remains to show that W Hdiag(wH
k )W = NΘk .

P 2.15 It is clear that if any polynomial R ∈ C[z] can be written as R(ω) =
tr[QP(ω)], with positive semidefinite matrices Q (which depends on R) and P(ω)

(the same for all polynomials), then it follows that R(ω) ≥ 0. Investigate what are
the conditions for the reverse implication to hold. Describe the parameterizations
from this chapter as particular cases of these conditions.
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Chapter 3
Multivariate Polynomials

Abstract Are the notions and results presented in the previous two chapters valid
in the multivariate case? The answer is mostly yes, but with some limitations. The
notion of Grammatrix is related directly only to sum-of-squares polynomials. Unlike
the univariate case, multivariate nonnegative polynomials are not necessarily sum-
of-squares. However, positive trigonometric polynomials are sum-of-squares, but
the degrees of the sum-of-squares factors may be arbitrarily high, at least theoreti-
cally. To benefit from the SDP computation machinery, we must relax the framework
from nonnegative polynomials to sum-of-squares polynomials (whose factors have
bounded degree). The principle of sum-of-squares relaxations, presented in Sect. 3.5,
is central to the understanding of this chapter. It resides in the idea that (many inter-
esting) optimization problems with nonnegative polynomials can be approximated
with a sequence of problems with sum-of-squares, implemented via SDP. Larger
the order of the sum-of-squares, better the approximation, but higher the complex-
ity. This chapter is rather long, so here is an outline of its content. The first three
sections present some important properties of nonnegative and sum-of-squares mul-
tivariate polynomials. The Gram matrix (or generalized trace) parameterization of
sum-of-squares trigonometric polynomials is introduced inSect. 3.4.After discussing
sum-of-squares relaxations in Sect. 3.5, dealing with sparse polynomials is consid-
ered in Sect. 3.6. The similar notions for real polynomials are presented in Sect. 3.7.
The connections between pairs of relaxations for trigonometric and real polynomi-
als are investigated in Sect. 3.8. The Gram pair parameterization of sum-of-squares
trigonometric polynomials is examined in Sect. 3.9; similarly to the univariate case,
as discussed in Sect. 2.8.3, the Gram-pair matrices have half the size of the Gram
matrix. Finally, in Sect. 3.10, the previous results are generalized for polynomials
with matrix coefficients.

3.1 Multivariate Polynomials

We investigate multivariate trigonometric polynomials, in the indeterminate z =
(z1, . . . , zd) ∈ C

d . A monomial of degree k ∈ Z
d is

zk = zk11 z
k2
2 . . . zkdd .
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Its total degree is
∑d

i=1 |ki | = ‖k‖1. A (Hermitian) trigonometric polynomial of
degree n is

R(z) =
n∑

k=−n

rk z−k, r−k = r∗
k . (3.1)

By the notation above, we understand that the sum is taken for all indices k such that
−n ≤ k ≤ n (these inequalities are understood elementwise).

Example 3.1 The bivariate (2D) polynomial

R(z1, z2) = 4 + 3(z1 + z−1
1 ) + 2(z−1

1 z2 + z1z
−1
2 ) + (z1z2 + z−1

1 z−1
2 ) (3.2)

has degree (1, 1) and total degree 2.

The sets of multivariate polynomials are denoted as in the univariate case, with
appropriate bold letters; for example, the set of all polynomials (3.1) is C[z]; if the
degree is (at most) a fixed n, then the set is Cn[z]; we omit from the notation the
number of variables, denoted usually d or resulting from the context.

Unlike the univariate case, there is no unique definition of causality. The reason
is that Zd can be split in several ways into half-spaces. A half-space is a set H ⊂ Z

d

such that H ∩ (−H) = {0}, H ∪ (−H) = Z
d , H + H ⊂ H. A standard half-space

can be defined recursively. In Z, the standard half-space is H1 = N = {0, 1, 2, . . .}.
In Z

d , we say that k ∈ Hd if kd > 0 or kd = 0 and (k1, . . . , kd−1) ∈ Hd−1. By
permuting the order of dimensions in the definition above, we obtain d! different
half-spaces. We illustrate in Fig. 3.1 the two half-spaces thus obtained in 2D. The
filled circles are inH, the empty circles in−H (the origin is in both sets); the standard
half-space is represented in the left side of the figure. There are other ways to build
half-spaces, see, e.g., problem P 3.1. The causal part of the polynomial (3.1) is

R+(z) = r0
2

+
∑

k∈H,k 	=0

rk z−k, (3.3)

i.e., its support is in the standard half-space H (the free term is split between the
causal and the “anticausal” parts; the latter is defined on −H). From now on, when
speaking about the support of a polynomial, by k ∈ H we will understand also that

Fig. 3.1 Half-spaces in 2D

k1

k2

k1

k2
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|k| ≤ |n| (or similar bounds). The number of coefficients of R(z) belonging to a
half-space is

M = 1 +∏d
i=1(2ni + 1)

2
(3.4)

and is actually the number of distinct coefficients of R(z) (considering symmetry).

Example 3.2 The causal part of the polynomial (3.2) is R+(z1, z2) = 2 + 3z−1
1 +

2z1z
−1
2 + z−1

1 z−1
2 .

Positive orthant polynomials, which are a special class of causal polynomials, are
defined by

H(z) =
n∑

k=0

hk z−k. (3.5)

On the unit d-circle Td , i.e., when

z = e jω = (e jω1 , . . . , e jωd ), ω ∈ [−π, π ]d , (3.6)

the polynomial R(z) has real values. If the coefficients are real, then

R(ω)
Δ= R(e jω) = 2Re[R+(e jω)] = r0 + 2

∑

k∈H,k 	=0

rk cos k
Tω. (3.7)

If R(z) has complex coefficients, we can write

R(z) =
n∑

k=−n

(uk + jvk)z−k = U (z) + jV (z), (3.8)

whereU (z) is a symmetric polynomial, while V (z) is antisymmetric, i.e., v−k = −vk
(in particular, v0 = 0). On the unit d-circle, the polynomial (3.8) becomes

R(ω) = u0 + 2
∑

k∈H,k 	=0

uk cos k
Tω + 2

∑

k∈H,k 	=0

vk sin k
Tω. (3.9)

For z ∈ T
d , the transformation from (3.1) to (3.9) is also made by

cos kTω = zk + z−k

2
, sin kTω = zk − z−k

2 j
. (3.10)
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Finally, let us define the set R[t] of polynomials

P(t) =
n∑

k=0

pk t k (3.11)

of variable t ∈ R
d , with real coefficients. We will discuss later the connections

between trigonometric polynomials and real polynomials. For the moment, let us
note that, unlike the univariate case, there is no one-to-one correspondence between
Rn[z] andRn[t]. A transformation such as (1.5), i.e., ti = cosωi , is not enough, since
the expression of R(ω) from (3.7) contains usually also sin terms (that appear when
expressing cos kTω with elementary cos and sin terms). The simplest example is
R(z1, z2) = 0.5(z−1

1 z−1
2 + z1z2), for which R(ω) = cos(ω1 +ω2) = cosω1 cosω2 −

sinω1 sinω2. By putting ti = cosωi and ti+d = sinωi , we can express any d-variate
trigonometric polynomial as a 2d-variate real polynomial; however, many such real
polynomials will correspond to the same trigonometric polynomial. Nevertheless,
we will see that such a transformation is useful.

3.2 Sum-of-Squares Multivariate Polynomials

We are especially interested by trigonometric polynomials (3.1) that are nonnegative
(i.e., R(ω) ≥ 0) or positive (R(ω) > 0) on the unit d-circle. Factorable and sum-of-
squares polynomials are defined as in the univariate case.

Definition 3.3 A trigonometric polynomial R(z) defined as in (3.1) is factorable if
it can be written as

R(z) = H(z)H∗(z−1) (3.12)

and sum-of-squares if it can be written in the form

R(z) =
ν∑

�=1

H�(z)H∗
� (z−1), (3.13)

where H(z) and H�(z), � = 1 : ν, are positive orthant polynomials and ν is a positive
integer.

On the unit d-circle, a sum-of-squares polynomial has the expression

R(ω) =
ν∑

�=1

|H�(ω)|2 (3.14)

and so is nonnegative. We have seen that the sets of nonnegative, factorable, and
sum-of-squares univariate trigonometric polynomials are identical. For multivariate

http://dx.doi.org/10.1007/978-3-319-53688-0_1
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polynomials, this is no longer the case. The relations between the above-defined types
of polynomials can be depicted by the following diagram, in which the inclusions
are strict.

{factorable}
	= ⊂ {sum-of-squares} ⊂ {nonnegative}

{positive}
(3.15)

Some of the relations are trivial. For instance, a factorable polynomial is a sum-of-
squares with a single term. The following example shows that the inclusion is strict
and suggests that the set of factorable polynomials is “small” in the set of nonneg-
ative polynomials. So, in general, there is no spectral factorization of nonnegative
multivariate polynomials and hence no correspondence for Theorem1.1.

Example 3.4 Let us consider the polynomial

R(z) = 4 + (z1 + z−1
1 ) + (z1z2 + z−1

1 z−1
2 ). (3.16)

Since R(ω) = 4 + 2 cosω1 + 2 cos(ω1 + ω2), it is clear that R(z) is nonnegative.
Moreover, the polynomial can be expressed as the sum-of-squares

R(z) = (1 + z1)(1 + z−1
1 ) + (1 + z1z2)(1 + z−1

1 z−1
2 ).

However, it can be easily proved that the polynomial is not factorable; see problem
P 3.3. A free term larger than 4 in (3.16) makes the polynomial positive, but still not
factorable.

To stress its importance, the most significant inclusion from the diagram (3.15) is
stated formally here as a theorem.

Theorem 3.5 Any polynomial (3.1) positive on the unit d-circle is sum-of-squares.

The proof is delayed to Chap.4, where it will turn out that the above result is a
particular case of Theorem4.11.

Remark 3.6 It is clear that sum-of-squares can be zero on the unit d-circle and so
the inclusion {positive} ⊂ {sum-of-squares} is strict.

Less trivial is an important aspect of Theorem3.5,whichmakes an extra difference
with respect to the univariate case. If R(z) is a positive polynomial of degree n and
so it can be written as in (3.13), then it is possible that the degrees of some factors
H�(z) are greater than n. By “greater”, wemean that for some �, we have the relation
m = deg H� > deg R = n. (Of course, it is possible that only the total degree of
H� is greater than the total degree of R, or only mi > ni , for some i ∈ 1 : d.)
Moreover, the degrees of the factors may be arbitrarily large. Here is an example of
positive polynomial whose sum-of-squares expression has factors with degree larger
than deg R.

http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
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Example 3.7 ([1]) Consider the polynomial

R(z1, z2) = 7
2 + (z2 + z−1

2 ) + 1
4 (z

2
2 + z−2

2 )

+ (z1 + z−1
1 )[1 + (z2 + z−1

2 ) + 1
2 (z

2
2 + z−2

2 )]
+ (z21 + z−2

1 )[ 14 + 1
2 (z2 + z−1

2 ) − 1
8 (z

2
2 + z−2

2 )].
(3.17)

We notice that deg R = (2, 2). It can be shown that R(ω) ≥ 0; the polynomial is
obtained from a positive polynomial with real coefficients, by the transformation
described in Sect. 3.11.1; the minimum value on the unit circle is actually zero and
is obtained, for example, when z1 = z2 = −1. However, there is no sum-of-squares
decomposition of R(z) with factors with deg H� ≤ deg R. We will show later, in
Example3.19, that such a decomposition cannot be obtained even for R(z) + α, for
any 0 < α ≤ 0.01 (i.e., for a positive polynomial).

Nevertheless, we can express R(z) as the sum-of-squares (3.13), with ν = 8 and

H1(z1, z2) = (1 − z1)3(1 − z2)2(1 + z2)/16,
H2(z1, z2) = (1 − z1)2(1 + z1)(1 − z2)3/16,
H3(z1, z2) = (1 − z1)3(1 − z2)(1 + z2)2/16,
H4(z1, z2) = (1 − z1)(1 + z1)2(1 − z2)3/16,
H5(z1, z2) = (1 − z1)2(1 + z1)(1 − z2)2(1 + z2)/16,
H6(z1, z2) = (1 − z1)(1 + z1)2(1 + z2)3/16,
H7(z1, z2) = (1 + z1)3(1 − z2)(1 + z2)2/16,
H8(z1, z2) = (1 + z1)3(1 + z2)3/16.

(3.18)

In this case, deg H� = (3, 3) > deg R, for all � = 1 : 8.
Finally, we remind that any sum-of-squares polynomial is nonnegative. How-

ever, in at least three variables, there may be nonnegative trigonometric polynomials
that are not sum-of-squares, no matter the degree of the factors. For two variables,
however, {nonnegative} = {sum-of-squares}.

3.3 Sum-of-Squares of Real Polynomials

A polynomial P ∈ R2n[t] is sum-of-squares if it can be written as

P(t) =
ν∑

�=1

F�(t)2, (3.19)

where F� ∈ Rn[t]. We note that, unlike the trigonometric polynomials case, the
degree of the factors F� is limited to n.

Obviously, sum-of-squares polynomials are nonnegative over Rd . The relations
between different sets of nonnegative polynomials are depicted by the following
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diagram (note the differences with respect to the trigonometric polynomials diagram
(3.15))

{squares} ⊂ {sum-of-squares}
	= ⊂ {nonnegative}

{positive}
(3.20)

While the inclusions are clear, the relation between positive and sum-of-squares
polynomials needs more explanations. Each of the two sets contains polynomials
that do not belong to the other. Trivially, there are sum-of-squares that take the value
zero, and so they are not strictly positive. Also, there are positive polynomials which
are not sum-of-squares and, although their existence was proved by Hilbert in 1888,
an example was given only in the 1960s. We give here the first example of Motzkin,
adapted from [2].

Example 3.8 Consider the polynomial

P(t1, t2) = t41 t
2
2 + t21 t

4
2 − αt21 t

2
2 + 1, (3.21)

where 0 < α ≤ 3. (Motzkin’s example was actually given with α = 3.) Using the
arithmetic-geometric means inequality

t41 t
2
2 + t21 t

4
2 + 1 ≥ 3 3

√
t41 t

2
2 · t21 t42 · 1 = 3t21 t

2
2 ≥ αt21 t

2
2 ,

we see that the polynomial (3.21) is nonnegative for α = 3 and positive for 0 < α <

3. (The first inequality is strict unless t41 t
2
2 = t21 t

4
2 = 1, i.e., t21 = t22 = 1; the second

inequality is strict unless t1 = t2 = 0 or α = 3.) If P(t1, t2) were a sum-of-squares,
it would have the form

P(t1, t2) =
∑

�

(a�t
2
1 + b�t

2
1 t2 + c�t1 + d�t1t2 + e�t1t

2
2 + f� + g�t2 + h�t

2
2 )

2.

By identification of the coefficients of t41 , we see that
∑

a2� = 0 and so a� = 0;
similarly, we obtain h� = 0. Now, we look at the coefficients of t21 and see that∑

c2� = 0 and so c� = 0; similarly, we obtain g� = 0. Finally, the coefficients of t21 t
2
2

say that
∑

d2
� = −α, which is impossible. So, P(t1, t2) is not sum-of-squares.

Although not all nonnegative polynomials are sum-of-squares, there are important
sum-of-squares characterizations. The first one is that any nonnegative polynomial
is a sum-of-squares of rational functions.

Theorem 3.9 (Artin 1927) For any nonnegative polynomial P ∈ R2n[t], there exist
polynomials F0, F1, . . . , Fν ∈ R[t] such that

P(t) · F0(t)2 =
ν∑

�=1

F�(t)2. (3.22)
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For a proof, see [3]. In this formulation, F0 is the common denominator of the
rational functions, i.e., it is possible that F0 and some F� have some nontrivial divi-
sor. Anyway, even after such simplifications, it is possible that the degrees of the
polynomials are greater than n.

The relation (3.22) is not appropriate to optimizationdue to the product P(t)F0(t)2

which involves two usually unknown polynomials. Much more interesting are sum-
of-squares of rational functions in which the denominator F0 is fixed. One result of
this type is the following.

Theorem 3.10 (Reznick 1995) For any positive polynomial P ∈ R2n[t], there exist
polynomials F1, . . . , Fν ∈ R[t] and a positive integer κ such that

P(t) · (1 + t21 + . . . + t2d
)κ =

ν∑

�=1

F�(t)2. (3.23)

We note that now the polynomial has to be strictly positive. Again, the degrees of
the polynomials F� are higher than n; they are actually at most n + κ .

Example 3.8 (continued) Take P(t1, t2) = t41 t
2
2 + t21 t

4
2 − t21 t

2
2 +1, i.e., the polynomial

from (3.21), with α = 1. As shown before, it is not sum-of-squares. However, the
polynomial

P(t1, t2)(1 + t21 + t22 ) = 1
2 (t

2
1 t

2
2 − 1)2 + t61 t

2
2 + t21 t

6
2 + 3

2 t
4
1 t

4
2 + t21 + t22 + 1

2

is clearly sum-of-squares. So, in this case, Theorem3.10 holds for κ = 1. (Exercise:
Show that the same is true for the polynomial (3.21) and any value 0 < α ≤ 3.)

3.4 Gram Matrix Parameterization of Multivariate
Trigonometric Polynomials

We now generalize the constructions from Sect. 2.1 for the case of multivariate poly-
nomials. Using the notation (2.1), the canonical basis for d-variate polynomials of
degree n is

ψn(z) = ψnd (zd) ⊗ . . . ⊗ ψn1(z1) =
1⊗

i=d

ψni (zi ), (3.24)

where ⊗ represents the Kronecker product. As before, we ignore the index n if it is
obvious from the context. For instance, with d = 2, n1 = 2, n2 = 1, we have

ψ(z) = [1 z2]T ⊗ [1 z1 z
2
1]T = [1 z1 z

2
1 z2 z1z2 z

2
1z2]T . (3.25)

http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
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We note that the basis contains

N =
d∏

i=1

(ni + 1) (3.26)

monomials. A positive orthant trigonometric polynomial (3.5) can be written in the
form

H(z) = ψT (z−1)h, (3.27)

where h ∈ C
N is a vector containing the coefficients of H(z) ordered as correspond-

ing to (3.24). For example, for d = 2, n1 = 2, n2 = 1, the vector is

h = [h00 h10 h20 h01 h11 h21]T .

Definition 3.11 A Hermitian matrix Q is called a Gram matrix associated with the
trigonometric polynomial (3.1) if

R(z) = ψT (z−1) · Q · ψ(z). (3.28)

As in the univariate case, we denote G(R) the set of Gram matrices associated with
R(z).

Example 3.12 Let us take again d = 2, n1 = 2, n2 = 1 and consider polynomi-
als with real coefficients. The equality (3.28) is equivalent to the following scalar
equalities (we enumerate all coefficients in a half plane)

r00 = q00 + q11 + q22 + q33 + q44 + q55,
r10 = q10 + q21 + q43 + q54,
r20 = q20 + q53,
r−2,1 = q32,
r−1,1 = q31 + q42,
r01 = q30 + q41 + q52,
r11 = q40 + q51,
r21 = q50.

(3.29)

To understand easily the above equalities, we write, as in the proof of Theorem2.3,

R(z) = ψT (z−1) · Q · ψ(z) = tr[ψ(z) · ψT (z−1) · Q] = tr[Ψ (z) · Q]. (3.30)

http://dx.doi.org/10.1007/978-3-319-53688-0_2
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Taking (3.25) into account, the matrix Ψ (z) has the form

Ψ (z) =

⎡

⎢⎢⎢⎢⎢⎢⎣

1
z1 1 sym−1

z21 z1 1
z2 z−1

1 z2 z−2
1 z2 1

z1z2 z2 z−1
1 z2 z1 1

z21z2 z1z2 z2 z21 z1 1

⎤

⎥⎥⎥⎥⎥⎥⎦
. (3.31)

Looking at the positions of some monomial in Ψ (z), we recover the expressions
from (3.29). For example, the positions of z1 (or the symmetric ones, for z−1

1 ) give
the indices of the elements of Q that appear in the expression of r10.

The general relation between the coefficients of the polynomial R(z) and an
associated Gram matrix is given by the following theorem.

Theorem 3.13 If R ∈ Cn[z] and Q ∈ G(R), then the relation

rk = tr[Θ k · Q] (3.32)

holds, where
Θ k = Θkd ⊗ . . . ⊗ Θk1 (3.33)

and the matrices Θk are defined as in the body of Theorem2.3. We name (3.32) the
generalized trace parameterization of the trigonometric polynomial R(z).

Proof Using (3.24), the matrix Ψ (z) from (3.30) can be expressed as

Ψ (z) =
[

1⊗

i=d

ψ(zi )

]
·
[

1⊗

i=d

ψT (z−1
i )

]
=

1⊗

i=d

[
ψ(zi ) · ψT (z−1

i )
]
. (3.34)

For the last equality above, we have used d−1 times the identity (A⊗B)(C⊗ D) =
(AC)⊗ (BD), where A, B, C , and D are matrices of appropriate sizes. Taking into
account that each of thematricesψ(zi )ψ

T (z−1
i ) has the Toeplitz form shown in (2.7),

we rewrite (3.34) as

Ψ (z) =
1⊗

i=d

⎡

⎣
ni∑

ki=−ni

Θki z
−ki
i

⎤

⎦ =
n∑

k=−n

z−k

[
1⊗

i=d

Θki

]
=

n∑

k=−n

Θ k z−k. (3.35)

Combining the last relation with (3.30), we obtain

R(z) =
n∑

k=−n

tr[Θ k Q]z−k,

which proves (3.32) after identification with (3.1).

http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
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Example 3.14 With d = 2, n1 = 2, n2 = 1, we look at (3.32) for k = (1, 0), i.e., at
the expression of r10. The matrix Θ k has the form

Θ k = Θ0 ⊗ Θ1 =
[
1 0
0 1

]
⊗
⎡

⎣
0 1 0
0 0 1
0 0 0

⎤

⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Let us consider the symmetric polynomial

R(z) = sym−1 + 38+ 18z1 + 4z21 + z−2
1 z2 + 2z−1

1 z2 + z2 − 8z1z2 − 5z21z2. (3.36)

Then,

Q1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

38
18 0 sym
4 0 0
1 2 1 0

−8 0 0 0 0
−5 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
, Q2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

9
7 8 sym
2 2 2
1 1 1 2

−4 −1 1 2 8
−5 −4 1 2 7 9

⎤

⎥⎥⎥⎥⎥⎥⎦
(3.37)

are Gram matrices associated with R(z). The sum of underlined elements is equal
to the coefficient of z−1

1 (these elements are selected by the ones from Θ k when
computing tr[Θ k Q]). The matrix Q1 is chosen such that each coefficient of R(z)
appears as one element.

The Gram matrix expression (3.32) of a polynomial allows a characterization of
sum-of-squares polynomials by positive semidefinite matrices.

Theorem 3.15 A polynomial R ∈ Cn[z] is sum-of-squares, with deg H� ≤ n for
the factors from (3.13), if and only if there exists a positive semidefinite matrix
Q ∈ C

N×N such that (3.32) holds.

Proof The proof is similar to that from the univariate case, see Remark2.9. The only
change is to replace z with z. The condition deg H� ≤ n is necessary for obtaining
Grammatrices of size N ×N . (We will discuss in the next section when larger Gram
matrices are useful.)

Optimization problemswith sum-of-squares polynomials can be formulated using
the Gram matrix representation (3.32) and SDP, similarly to the univariate case. We
discuss here one such problem.

Problem (Most_positive_Gram_matrix) Given the sum-of-squares polynomial R ∈
Cn[z], we want to find the most positive Gram matrix (of size N × N ) associated
with it. This is equivalent to finding the matrix from G(R)whose smallest eigenvalue
is maximum. The corresponding optimization problem is

http://dx.doi.org/10.1007/978-3-319-53688-0_2
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λ
 = max
λ,Q

λ

s.t. tr[Θ k Q] = rk, k ∈ H
λ ≥ 0, Q � λI

(3.38)

where H is a half-space and is the multivariate version of (2.14). This SDP problem
is transformed into standard equality form by denoting Q̃ = Q − λI . Note that
Θ0 = I , and so trΘ0 = N , while for k 	= 0 we have trΘ k = 0. We obtain

λ
 = max
λ, Q̃

λ

s.t. Nλ + tr Q̃ = r0
tr[Θ k Q̃] = rk, k ∈ H \ {0}
λ ≥ 0, Q̃ � 0

(3.39)

The complexity of solving such a problem is O(N 2M2) (see Remark2.13), where
M is the number (3.4) of coefficients in a half-space. If n1 = . . . = nd = n, then the
complexity is O(n4d). The complexity grows fast with the number of variables, but
polynomially with respect to the degree of R(z).

Example 3.16 The smallest eigenvalue of the matrix Q2 from (3.37) is 0.1853 and
so the polynomial (3.36) is sum-of-squares (since Q2  0). We have actually taken
R(z) = H(z)H(z−1), with

H(z) = 5 + 3z1 + z21 + z2 − z1z2 − z21z2, (3.40)

and so R(z) is not only sum-of-squares, but also factorable. Solving the SDP problem
(3.39), we obtain the Gram matrix

Qo =

⎡

⎢⎢⎢⎢⎢⎢⎣

8.9619
6.8512 7.6099 sym
1.9998 2.1482 2.4274
1.3322 0.9998 1.0000 2.4275

−4.0002 −1.6646 1.0002 2.1485 7.6109
−5.0000 −3.9998 1.3324 2.0002 6.8522 8.9625

⎤

⎥⎥⎥⎥⎥⎥⎦
,

whose smallest eigenvalue is λ
 = 0.3036.

3.5 Sum-of-Squares Relaxations

As formulated in the previous section, the computation of the most positive Gram
matrix is one of the few optimization problems genuinely related to sum-of-squares
polynomials; we will see in this section that it can have another significance. More
often, interesting problems can be formulated in terms of nonnegative polynomials.

http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
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However, although the set of multivariate nonnegative polynomials is convex, there
is no known direct method for working in it. More important, many problems with
nonnegative polynomials are NP-hard, i.e., in general there is no algorithm to solve
them in polynomial time. Since {sum-of-squares}⊂ {nonnegative} and optimization
problems with sum-of-squares can be cast into SDP, a natural approach is to ignore
that the above inclusion is strict andworkwith sum-of-squares instead of nonnegative
polynomials. This approach, known as sum-of-squares relaxation, is discussed in this
section.

3.5.1 Relaxation Principle

Wehavementioned in Sect. 3.2 that some positive (or even nonnegative) polynomials
R(z) have only a sum-of-squares expression (3.13) inwhich the degrees of the factors
H�(z) are larger than n = deg R. So, it makes sense to distinguish between sum-of-
squares of same degree, but with factors of different degrees. For given degrees n,
m, with m ≥ n, we denote

RS
m
n [z] = {R ∈ Rn[z] | R(z) =

ν∑

�=1

H�(z)H∗
� (z−1), deg H� ≤ m}, (3.41)

i.e., the set of sum-of-squares of degree n, with factors of degree m. It is clear that
if n < m, then we have the following inclusions

RS
n
n[z] ⊂ RS

m
n [z] ⊂ RPn[z]. (3.42)

(The inclusions are trivially justified by the fact that a factor H� can be considered
as having a degree higher than its actual degree, by adding zero coefficients.) The
inclusions may be strict or not, depending on the values of n, m, and d. In any case,
a higher value of m gives a better approximation of RPn[z] by RS

m
n [z].

Assume thatwe have a convex optimization problemwhose variable is the nonneg-
ative polynomial R ∈ RPn[z]. Since optimization with sum-of-squares polynomials
can be expressed in terms of SDP (if the objective and the constraints are appropri-
ate), as shown in the previous section, we can approximate the original problem with
a new one, in which the variable is R ∈ RS

m
n [z]. Thus, we replace a high complexity

problem, for which there is no efficient and reliable algorithm, with a simpler prob-
lem having a convenient SDP formulation. This procedure is called sum-of-squares
relaxation. If the solution R
 of the original problem is in RS

m
n [z], then it is also

the solution of the relaxed problem. If R
 ∈ RPn[z] \ RS
m
n [z], then the relaxed

problem gives only an approximation of the original solution. This is the price of
the relaxation. However, the approximation can be sufficiently good for practical
purposes.
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Fig. 3.2 Coefficients of a
bivariate polynomial of
degree (2, 2), padded with
zeros up to degree (4, 3).
Filled circles represent the
original coefficients and
circles the added zero
coefficients

k1

k2

The Gram matrix parameterization of a sum-of-squares polynomial R ∈ RS
m
n [z]

has the form (3.28), with a vector ψ(z) containing all the monomials of degree at
most m. Since the true degree of R(z) is n, we have to impose the condition

rk = 0, if |ki | > |ni | for some i ∈ 1 : d. (3.43)

The zero padding is illustrated in Fig. 3.2, for n = (2, 2), m = (4, 3). Using the
Gram matrix parameterization (3.32), the condition (3.43) is replaced by

tr[Θ k · Q] = 0, if |ki | > |ni | for some i ∈ 1 : d. (3.44)

In the sequel, we will not write explicitly the condition (3.44) in optimization prob-
lems that are sum-of-squares relaxations, but we will assume that it is used. The size
of the Grammatrix depends on the degreem of the relaxation. Specifically, the Gram
matrix Q is N × N , where N is no more given by (3.26), but by

N =
d∏

i=1

(mi + 1), (3.45)

in accordance with the number of monomials in ψ(z).

3.5.2 A Case Study

To illustrate the sum-of-squares relaxation idea, we consider a problem solved pre-
viously for univariate polynomials.

Problem (Min_poly_value) Let R ∈ Rn[z] be a given polynomial. We want to find
its minimum value on the unit d-circle

μ
 = min
ω∈[−π,π]d

R(ω). (3.46)
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The problem is NP-hard. Traditionally, such a problem is solved by discretization or
by using nonlinear optimization techniques; the former method leads to suboptimal
solutions and has high complexity, and the latter may give a local optimum, since the
problem is not convex. As in the univariate case, we transform (3.46) into a problem
with nonnegative polynomials, namely into

μ
 = max
μ

μ

s.t. R(ω) − μ ≥ 0, ∀ω ∈ [−π, π ]d
(3.47)

However, in this formulation, we lack an appropriate description of the set of nonneg-
ative polynomials. Thus, we can appeal to sum-of-squares relaxations and approxi-
mate (3.47) with

μ

m = max

μ
μ

s.t. R(z) − μ ∈ RS
m
n [z]

(3.48)

for some m ≥ n. In view of (3.42), by solving (3.48) we obtain solutions that satisfy

μ

n ≤ μ


m ≤ μ
. (3.49)

These inequalities follow from the fact that for a given μ, the polynomial R(z) − μ

may be sum-of-squares with factors of degreem, but not sum-of-squares with factors
of degree n. We have to note that the nonnegative polynomial R(z)−μ
 may be not
sum-of-squares for any m (remind that Theorem3.5 is valid only for strictly positive
polynomials) and so it is theoretically possible that μ


m < μ
 for any m.
Since μ
 is not known (and often it cannot be known, see next subsection), the

sum-of-squares relaxation process may be iterative:

1. Put m = n.
2. Solve (3.48).
3. If satisfied, stop. Otherwise, increase m and go back to 2.

Of course, the definition of the “satisfaction” from step 3 is loose. For example, if
for some m̃ > m we obtain μ


m̃ = μ

m, then we may assume that the true minimum

is attained, although there are no guarantees that this happened indeed. Since the
complexity of the problem grows with m, we can solve (3.48) only once, for m = n
(or for a slightly larger value of m). We will give immediately some examples.

Let us first note that using the generalized trace parameterization (3.32), the prob-
lem (3.48) can be cast into the following SDP form

μ

m = max

μ, Q̃
μ

s.t. μ + tr Q̃ = r0
tr[Θ k Q̃] = rk, k ∈ H \ {0}
Q̃ � 0, Q̃ ∈ R

N×N

(3.50)
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Similarly to the univariate case, this problem is equivalent to the eigenvalue maxi-
mization (3.39) (from which the constraint λ ≥ 0 has to be removed), with μ = Nλ

and N given by (3.45).

Example 3.17 Let us compute the minimum value on the unit bicircle of the poly-
nomial

R(z) = 5 + (z1 + z−1
1 ) + (z1z2 + z−1

1 z−1
2 )

of degree n = (1, 1). As shown in Example3.4 (where the free term was 4 instead of
5), we have R(ω) ≥ 1; moreover, for z1 = −1, z2 = 1, we have R(z) = 1. So, the
minimum value on the unit bicircle is 1. Moreover, for any μ ≤ 1, the polynomial

R(z) − μ = (
√
1 − μ)2 + (1 + z1)(1 + z−1

1 ) + (1 + z1z2)(1 + z−1
1 z−1

2 )

is sum-of-squares of degree n. Due to the particular form of R(z), it results that
the sum-of-squares relaxation (3.48) with m = n gives the exact solution. There-
fore, solving the SDP problem (3.50) for this minimal value of m gives the exact
solution.

Example 3.18 We solve the problem Min_poly_value for the polynomial (3.36),
whose graph is displayed in Fig. 3.3. Its degree is n = (2, 1). Solving (3.50) for
m = n, we obtain μ


n = 1.8214. We note that μ

n = Nλ
, where the size of the

Grammatrix is N = 6 and themost positive Grammatrix has the smallest eigenvalue
λ
 = 0.3036, see Example3.16.

As we cannot check that we have indeed obtained the minimum value of R(ω),
we solve (3.50) for greater values of m. For all degrees of the relaxation less than
or equal to (10, 9) (we have not tried larger values), we obtain the same minimum
value (within a relative error of 10−10, which is due to the numerical tolerance of the
SeDuMi routine). So, it is safe to assume that we have indeed obtained the optimal
value.

Fig. 3.3 Graph of the
polynomial from
Example3.18
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Fig. 3.4 Graph of the
polynomial from
Example3.19
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Example 3.19 Let us revisit Example3.7. The polynomial (3.17) is nonnegative and
its minimum value on the unit bicircle is zero. The graph of the polynomial is shown
in Fig. 3.4. Its degree is n = (2, 2). Since the polynomial is not a sum-of-squares of
degree (2, 2), it follows that the sum-of-squares relaxation (3.50) withm = n should
have a negative solution. Indeed, we obtain μ


n = −0.01177. (It follows that for any
0 > μ > μ


n, the positive polynomial R(z) − μ is not sum-of-squares with factors
of degree (2, 2).)

For any m > n, including m = (3, 2) or m = (2, 3), i.e., the smallest values
greater than n, the solution of (3.50) is μ


m = 0 (within the numerical accuracy). So,
in this case, the first increase in the degree brings with it the optimal value. Even
without knowing the solution, we may assume that it is μ
 = 0, since this is the
value obtained for several relaxations with m > n.

The above examples suggest that in practical applications where the values of
the degree n are moderate, sum-of-squares relaxations of degree only slightly larger
than n are likely to give the optimal solution. This is indeed the case, at least as
documented by the relatively scarce literature in this domain. By moderate degrees,
we understand here the values ofm for which the size (3.45) of the Grammatrix is at
most a few hundreds maybe nearing one thousand. Otherwise, the time for obtaining
the solution of the SDP problem becomes impractically large.

3.5.3 Optimality Certificate

As we have seen, the sum-of-squares relaxation cannot guarantee by itself the opti-
mality of the obtained solution. So, we need to appeal to other means for certifying
the optimality. Here, we present two such methods. Although they imply a compu-
tation effort that may be larger than the sum-of-squares relaxation and they may not
succeed in providing the optimality certificate, these methods can be useful.
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The first method attempts to bracket the optimal value. We describe it for the
problemMin_poly_value, but it can be adapted to other problems. For solving (3.46),
we simply use a nonlinear optimization algorithm and obtain a minimum value μ̃.
Since there is no certainty that we have not obtained a local optimum, it follows that
μ̃ ≥ μ
. Solving the sum-of-squares relaxation (3.50) gives a solution μ


m satisfying
(3.49). Thus, we bracket the true optimum by

μ

m ≤ μ
 ≤ μ̃. (3.51)

If it happens that μ

m = μ̃, then we are sure to have obtained the true minimum.

Otherwise, the distance between μ

m and μ̃ indicates how near we are from the

solution, in the worst case; if this distance is small, then we may be satisfied with
the obtained results.

The second method is intimately related to sum-of-squares relaxations. As instan-
tiated by (3.50), the relaxation provides only the minimum value of the objective,
but not the values of the variable ω for which this minimum is obtained. Were this
ω

Δ= ω

m available, we could simply compute R(ω


m); if

μ

m = R(ω


m), (3.52)

then we have indeed obtained the true minimum of (3.46); if μ

m < R(ω


m), then at
least we have found an interval where the minimum lies, i.e., a relation similar to
(3.51).

What the solution of (3.50) provides is the optimal (and positive semidefinite)
Gram matrix Q̃




m, associated with the polynomial R(z) − μ

m. We consider the

eigendecomposition

Q̃



m =
ν∑

�=1

λ�x�xH
� , (3.53)

where only the positive eigenvalues are considered; usually, several eigenvalues of
the optimal Gram matrix are zero, and so ν = rank Q̃




m < N . As in (2.12), it results
that

R(ω) − μ

m =

ν∑

�=1

λ�|H�(ω)|2, (3.54)

where H�(z) = ψT (z−1)x�. If we can find a solution to the system

|H�(ω)|2 = 0, � = 1 : ν, (3.55)

then from (3.54) we obtain R(ω) = μ

m. Hence, the minimum is attained and so

μ

m = μ
.
However, solving (3.55) is a difficult optimization problem and numerical algo-

rithmsmay not find a solution to it. Nevertheless, even if an approximate solution can

http://dx.doi.org/10.1007/978-3-319-53688-0_2
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be obtained, it is helpful in evaluating how far from optimality is the sum-of-squares
relaxation. Note that solving (3.55) means finding a common root on the unit circle
of the polynomials H�(z), which opens the way for specificmethods, like those using
Gröbner bases.

Example 3.20 We consider again Examples3.17–3.19.
We have attempted to solve (3.55) using the MATLAB functions fsolve and

fminsearch; the second function actually founds a minimum of

f (ω) =
ν∑

�=1

|H�(ω)|2. (3.56)

For both functions, the results may depend heavily on the initialization of ω. Of
course, since we can check whether (3.55) indeed holds for the reported solution, we
can run the functions for several initializations.

For Example3.17, the solution of (3.55) is ω = (π, 0), i.e., the one we already
knew from the form of R(z).

For Example3.18 and m = n = (2, 1), i.e., the minimum value, the solution
is ω


n = (2.3003, 3.4092). Moreover, we have R(ω

n) = 1.8214 = μ


n, and so we
know that we have obtained the optimal solution. There is no need of solving higher
degree relaxations.

Finally, for Example3.19 andm = n = (2, 2), the minimum of (3.56) is obtained
forω


n = (π, 0); this is not a solution of (3.55). As it can be easily checked by looking
at (3.17) or (3.18), it results that R(ω


n) = 0. Since μ

n = −0.01177, we know that

we have not obtained the true optimum. However, when solving the sum-of-squares
relaxation with m > n, we obtain μ


m = 0. This confirms that we have obtained the
optimum since we already have the frequency point ω


n for which R(ω

n) = 0; there

is no need to solve again (3.55) for the new Gram matrix Q̃



m.

3.6 Gram Matrices from Partial Bases

Until now, the Grammatrices have been built using the vector (3.24), which contains
all the d-variate monomials of degree at most n. For sparse polynomials, which
have only few nonzero coefficients, it may be interesting to use only part of the
vector (3.24). Thus, Gram matrices of smaller size are obtained and the complexity
of optimization problems decreases. As we will see, the price to pay is a possible
loss of optimality.
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3.6.1 Sparse Polynomials and Gram Representation

Let Ic = {k ∈ N
d | k ≤ n} be the complete set of monomial degrees appearing in

the vector ψn(z) from (3.24). Let I ⊂ Ic be a set of degrees and

ψI(z) = [. . . zk . . .]T , with k ∈ I. (3.57)

We also can write
ψI(z) = C · ψn(z), (3.58)

where C is a selection matrix of size |I|× N , having a single value of 1 on each row
(all the other elements being zero).

Example 3.21 Taking d = 2, n1 = 2, n2 = 1, and I = {(0, 0), (2, 0), (1, 1)}, the
vector (3.57) is

ψI(z) = [1 z21 z1z2]T . (3.59)

The selection matrix C from (3.58) is

C =
⎡

⎣
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎤

⎦ ,

due to the form (3.25) of the vector ψn(z).

Assume now that the trigonometric polynomial R(z) is such that we can express
it using the basis (3.58) and an appropriate Gram matrix, similarly to relation (3.28),
by

R(z) = ψT
I(z−1) · QI · ψI(z), (3.60)

with QI of size |I| × |I|. As in (3.30), we can write

R(z) = tr[Ψ I(z) · QI], with Ψ I(z) = ψI(z) · ψT
I(z−1). (3.61)

Example 3.21 (continued) Consider the polynomial

R(z1, z2) = sym−1 + 38 + 4z21 + 2z−1
1 z2 − 8z1z2. (3.62)

(Remark that this polynomial is obtained by removing some of the monomials of
(3.36).) We can see easily that we can write it in the form (3.61), using the basis
vector (3.59), with

Ψ I(z) =
⎡

⎣
1 sym−1

z21 1
z1z2 z−1

1 z2 1

⎤

⎦ , QI =
⎡

⎣
q00 sym
4 q11

−8 2 38 − q00 − q11

⎤

⎦ . (3.63)
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Remark that Ψ I(z) is a submatrix of Ψ (z) from (3.31). We also see that it is impos-
sible to represent R(z) on a sparser basis. However, we can freely add monomials to
the basis and obtain a larger size Gram matrix (with more degrees of freedom).

We describe now the relation between the coefficients of R(z) and the elements
of the Gram matrix QI .

Theorem 3.22 If R ∈ Cn[z] can be represented as in (3.60) for some set of degrees
I, then the relation

rk = tr[Θ k(I) · QI] (3.64)

holds, where
Θ k(I) = C · Θ k · CT . (3.65)

The matrices Θ k and C are defined in (3.33) and (3.58), respectively.

Proof Combining relations (3.61), (3.58), and (3.35), we obtain

R(z) = tr[Ψ I(z)QI] = tr[CΨ (z)CT QI] =
n∑

k=−n

tr[CΘ kCT QI]z−k. (3.66)

By identification with (3.1), the proof is ready.

Example 3.21 (continued) Let k = (2, 0). The matrix Θ k is

Θ k =
[
1 0
0 1

]
⊗
⎡

⎣
0 0 1
0 0 0
0 0 0

⎤

⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Using the basis (3.59), the matrix (3.65) is the submatrix obtained by taking the first,
third, and fifth rows and columns of Θ k, i.e.,

Θ k(I) =
⎡

⎣
0 1 0
0 0 0
0 0 0

⎤

⎦ .

So, the relation (3.64) says that rk = (QI)10, which is visible in (3.63).

Remark 3.23 It is clear that if QI � 0 in (3.64), then the polynomial R(z) is
nonnegative on T

d . The reverse implication is not true, even if the polynomial is
positive, in the sense that not any positive polynomial that can be represented as
(3.60), for a fixed set I, admits a positive semidefinite QI . We will shortly give an
example, but the reason is obvious: by fixing I, we limit the factors H�(z) of the sum-
of-squares decomposition (3.13) to have only monomials with degrees in I (remind
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that these factors have expressions similar to (2.13), i.e., H�(z) = λ�ψ
T (z−1)x�,

where λ� and x� are eigenvalues and, respectively, eigenvectors of the Gram matrix
QI); by doing so, we also bound the degrees of the sum-of-squares associated with
a Gram matrix.

Remark 3.24 The relation (3.64) can be described in a different way. Due to (3.61),
the onlymonomials that can appear in R(z) are those from thematrixΨ I(z). Looking
now at the expression of Ψ I(z), we see that R(z) can have only monomials rk z−k

with degree k such that there are i, l ∈ I, with k = i − l . We denote

I − I = {k ∈ Z
d | k = i − l, i, l ∈ I}. (3.67)

So, a polynomial R(z) havingmonomials with degrees belonging to a setJ ⊂ Z
d

can have a Gram representation (3.64) if and only if J ∈ I − I. Moreover, if we
index the rows and columns of the Gram matrix QI with the elements of I, in the
same order as they appear in the basis vector (3.57), then the relation between the
coefficients of R(z) and the elements of QI is

rk =
∑

i−l=k

(
QI
)
i,l . (3.68)

This relation results directly from (3.61).

Example 3.21 (continued) For k = (2, 0), it results from (3.63) that rk = (QI)10,
as k = i − l , with i = (2, 0), l = (0, 0), which are in positions 1 and 0, respectively,
in the set I ordered as in (3.59).

For k = (−1, 1), we have k = i − �, with i = (1, 1), l = (2, 0), which are in
positions 2 and 1, respectively, in the set I; it results that rk = (QI)21.

3.6.2 Relaxations

For sparse polynomials, the Grammatrix representation (3.60) is tempting due to the
lower complexity associated with smaller Gram matrices. In this case, the sum-of-
squares relaxations are based on the same idea as in Sect. 3.5: We replace a sparse
nonnegative polynomial with a sum-of-squares whose Gram matrices are defined by
a chosen set of degrees I; of course, the set I includes the minimal set necessary to
obtain R(z) in (3.60). We denote

RSI[z] = {R ∈ R[z] | R(z) as in (3.60), QI � 0}, (3.69)

the set of such sparse sum-of-squares. For two sets of degrees I ⊂ J (with degrees
less or equal n), we clearly have (compare with (3.42))

RSI[z] ⊂ RSJ [z] ⊂ RS
n
n[z] ⊂ RPn[z]. (3.70)

http://dx.doi.org/10.1007/978-3-319-53688-0_2
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In the sparse case, the sum-of-squares relaxation means replacing a nonnegative
polynomial R ∈ RPn[z] with the sum-of-squares R ∈ RSI[z], with the advantages
and limitations discussed in Sect. 3.5.

Problem (Min_poly_value) We come back again to our workhorse. Let R ∈ Rn[z]
be a given sparse polynomial, whose minimum value on T

d is sought. Given a set
of degrees I, the sum-of-squares relaxation of the basic problem (3.46) has a form
similar to (3.50), namely

μ

I = max

μ, Q̃I
μ

s.t. μ + tr Q̃I = r0
tr[Θ k(I) Q̃I] = rk, k ∈ (I − I) ∩ (H \ {0})
Q̃I � 0, Q̃I ∈ R

|I|×|I|

(3.71)

Remark that the equality constraints are imposed only for the distinct coefficients
fromI−I (someof themmaybe zero). Theother coefficients are zero by construction
(i.e., by the choice of I), and so there is no need of an explicit constraint for them.
So, the complexity of solving (3.71) is lower than that of (3.50) not only due to the
smaller size of the Gram matrix Q̃I , but also due to the smaller number of equality
constraints.

Obviously, by solving (3.71), we obtain μ

I ≤ μ
. A certificate of optimality can

be obtained as discussed in Sect. 3.5, e.g., by using the optimal Gram matrix.

Example 3.25 We compute the minimum value of the polynomial (3.62) by solving
(3.71) for the set I giving the basis (3.59). We obtain the value μ


I = 10. The same
value is obtained when solving the complete problem (3.50), with m = n = (2, 1);
it is also the true optimal value. So, in this case, the relaxation has given the correct
result.

Consider now the polynomial (obtained from (3.36) by removing the last mono-
mial)

R(z) = sym−1 + 38 + 18z1 + 4z21 + z−2
1 z2 + 2z−1

1 z2 + z2 − 8z1z2. (3.72)

The smallest set I that can be used for representing this polynomial is

I = {(0, 0), (2, 0), (0, 1), (1, 1)}

and the corresponding basis of monomials is

ψI(z) = [1 z21 z2 z1z2]T .

The optimum of (3.71) isμ

I = −26. However, solving the complete problem (3.50),

with m = n = (2, 1), leads to μ

n = −6, which is the true optimum. So, in this case,

the relaxation failed to provide the correct optimal value. This is due to the fact



94 3 Multivariate Polynomials

that the polynomial R(z) + α, with −26 < α < −6, although positive, has no
sum-of-squares representation with the sparse factors generated by I.

For the same polynomial (3.72), we use now the set of degrees

J = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1)},

obtaining the basis of monomials

ψJ (z) = [1 z1 z
2
1 z2 z1z2]T .

The optimum of (3.71) is μ

J = −7.5. As expected, we obtain μ


J > μ

I , i.e., a

better approximation of the true optimum (however, still not the exact value).
This example has illustrated both sides of the relaxation. For highly sparse poly-

nomials, as (3.62) could be an example, the relaxations may be successful even with
relatively small bases. On the other hand, it is always useful to check the result by
using a larger basis.

3.7 Gram Matrices of Real Multivariate Polynomials

Here, we generalize the Gram matrix parameterization presented in Sect. 2.7. Since
the material is similar in spirit to that for trigonometric polynomials, we will give
only the most important facts.

3.7.1 Gram Parameterization

Let P ∈ R2n[t] be a real polynomial. A symmetric matrix Q ∈ R
N×N , where N is

given by (3.26), is called a Gram matrix associated with P(t) if

P(t) = ψT
n (t) · Q · ψn(t), (3.73)

where

ψn(t) = ψnd (td) ⊗ . . . ⊗ ψn1(t1) =
1⊗

i=d

ψni (ti ) (3.74)

is a vector containing the canonical basis for d-variate polynomials of degree n.

Theorem 3.26 If P ∈ R2n[t] and Q is a Gram matrix satisfying (3.73), then the
relation

pk = tr[Υ k · Q] (3.75)

http://dx.doi.org/10.1007/978-3-319-53688-0_2
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holds, where
Υ k = Υ kd ⊗ . . . ⊗ Υ k1 (3.76)

and the matrices Υ k are defined as in the body of Theorem2.19.
Moreover, the polynomial P(t) is sum-of-squares if and only if there exists a

positive semidefinite matrix Q ∈ C
N×N such that (3.75) holds.

Proof The proof is similar to that of Theorems3.13 and 3.15 and is left as an exercise.

Example 3.27 Let d = 2, n1 = 2, n2 = 1. The vector containing the basis monomi-
als is

ψ(t) = [1 t2]T ⊗ [1 t1 t21 ]T = [1 t1 t21 t2 t1t2 t
2
1 t2]T .

For k = (3, 1), the matrix Υ k from (3.76) is

Υ k = Υ 1 ⊗ Υ 3 =
[
0 1
1 0

]
⊗
⎡

⎣
0 0 0
0 0 1
0 1 0

⎤

⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦

and so the relation (3.75) gives pk = 2(q51 + q42).

3.7.2 Sum-of-Squares Relaxations

For real polynomials, the basic idea of relaxation is the same: replace nonnegative
polynomialswith sum-of-squares andoptimizeusing theGrammatrix representation.
For example, if we seek the minimum value μ
 = mint∈Rd P(t) of the polynomial
P ∈ R2n[t] (we assume that theminimum exists), we can relax this NP-hard problem
to that of finding themaximumμ ∈ R for which P̃(t) = P(t)−μ is sum-of-squares.
Unlike the case of trigonometric polynomials, this formulation poses a difficulty:
there may be polynomials for which P(t) − μ is not a sum-of-squares for any value
of μ.

Example 3.28 Consider again the polynomial (3.21). In Example3.8, it is shown
that this polynomial is not sum-of-squares. Reading again the proof, we see that this
fact does not depend on the value of the free term. So, the polynomial P(t1, t2) − μ

is not sum-of-squares for anyμ. Trying to find the minimum value of the polynomial
by a sum-of-squares relaxation leads to μ = −∞.

To make the relaxation more flexible, we can appeal to Theorem3.10 and, for
some κ ∈ N, solve

http://dx.doi.org/10.1007/978-3-319-53688-0_2


96 3 Multivariate Polynomials

μ

κ = max

μ
μ

s.t. (P(t) − μ)(1 + t21 + . . . + t2d )
κ ∈ ∑R[t]2

(3.77)

For κ = 0, we obtain the basic relaxation described initially. Since it is possible that
P(t)(1 + t21 + . . . + t2d )

κ is not sum-of-squares, but P(t)(1 + t21 + . . . + t2d )
κ+1 is

(and not the other way around), it follows that

μ0 ≤ μ1 ≤ . . . ≤ μ
. (3.78)

Wenote that the coefficients of the sum-of-squares polynomial from (3.77) depend
linearly on the variable μ (and, generally, on the coefficients of P(t), which has no
consequence here but may be important in other problems). So, when using the
Gram matrix parameterization (3.75), we obtain a linear dependence between the
elements of the Gram matrix Q and the other variables (μ, in the current case) of
the optimization problem. Thus, the problem (3.77) can be implemented as an SDP
problem.

3.7.3 Sparseness Treatment

Let I ∈ N
d be a set of degrees (all less or equal a given n). As in Sect. 3.6, we

consider the vector of monomials

ψI(t) = [. . . t k . . .]T , with k ∈ I, (3.79)

and note that ψI(t) = Cψn(t), where C is a selection matrix of size |I| × N .

Theorem 3.29 Let P ∈ R2n[t] be a real polynomial that can be expressed as

P(t) = ψT
I(t) · QI · ψI(t), (3.80)

for a given set of degrees I and aGrammatrix QI of size |I|×|I|. Then, the relation

pk = tr[Υ k(I) · QI] (3.81)

holds, where Υ k(I) = C · Υ k · CT .

Proof Similar to that of Theorem3.22.

Remark 3.30 An alternative way to describe relation (3.81) can be deduced as in
Remark3.24. The only monomials that can appear in a polynomial P(t) of the form
(3.80) are those from the matrix

Ψ I(t) = ψI(t)ψT
I(t).
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Their degrees belong to

I + I = {k ∈ N
d | k = i + l, i, l ∈ I}. (3.82)

Moreover, ifwe index the rows and columns of theGrammatrix QI with the elements
of I, in the same order as they appear in the basis vector (3.79), then we obtain the
relation

pk =
∑

i+l=k

(
QI
)
i,l (3.83)

between the coefficients of the polynomial P(t) and the elements of the Gram
matrix.

Practically, given a polynomial P ∈ R2n[t]whose support is J , we are interested
in finding a minimal set I such that J ⊂ I + I. The following result shows that for
real sum-of-squares polynomials, the set I can be nicely confined. (Remark that a
similar result does not exist for trigonometric sum-of-squares!)

Theorem 3.31 Let P ∈ R2n[t] be a real polynomial whose support is S(P). If P(t)
is sum-of-squares, i.e., it can be written as in (3.19), then the support of the factors
F�(t), � = 1 : ν, is such that

S(F�) ⊂ 1

2
conv (S(P)) , (3.84)

where conv(A) is the convex hull of the set A.

The set conv(S(P)) is called Newton polytope associated with the polynomial
P(t).

Example 3.32 Let us consider the polynomial (d = 2, n1 = 2, n2 = 1)

P(t1, t2) = 3 + 4t31 + 3t41 − 4t21 t2 + 4t31 t2 + 2t21 t
2
2 . (3.85)

Its support is shown in Fig. 3.5. The polynomial has 6 monomials, marked with
filled circles. The border of the convex hull of its support (obtained by all convex

k2

k1

Fig. 3.5 Filled circles represent the support S(P) of the polynomial (3.85). The thin line is the
border of conv(S(P)). The thick line is the border of 1

2 conv(S(P)), which is the support of the
factors in the sum-of-squares
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combinations between the points of S(P)) is represented with a thin line. If this
polynomial is a sum-of-squares (and it is!), then Theorem3.31 says that the support
of the factors F�(t) is inside the thick line. Indeed, one can represent the polynomial
(3.85) as

P(t1, t2) = (1 − t1 + t21 + t1t2)
2 + (1 + t1 − t21 − t1t2)

2 + (1 − t21 )
2.

The support of the factors is {(0, 0), (0, 1), (0, 2), (1, 1)}, as seen in the figure.
Consider now the polynomial (3.21) from Example3.8, which is nonnegative, but

not sum-of-squares. Its support is {(0, 0), (2, 2), (4, 2), (2, 4)}. If it would be sum-
of-squares, its factors would have the support limited to {(0, 0), (1, 1), (2, 1), (1, 2)}.
Writing the expression (3.19) with such factors and looking at the coefficient of t21 t

2
2

results immediately in a contradiction. So, in this case, we can prove much faster
than in Example3.8 that the polynomial is not sum-of-squares.

Proof of Theorem3.31. We only sketch a possible line of proof. We try to con-
fine S(F�) to a (convex) polyhedron I. Initially, this polyhedron is the (hyper)-
parallelepiped [0, n1] × . . . × [0, nd ]. We look at a vertex v ∈ I; the vertices are
points in the polyhedron that cannot be expressed as a convex combination of other
points of the polyhedron. Assume that 2v /∈ S(P), i.e., p2v = 0. Looking at the terms
t2v in the sum-of-squares expression (3.19), we see that p2v = ∑

�(F�)
2
v . (There are

no other terms in the above equality since the monomials with degrees i, l ∈ I of a
factor in the sum-of-squares produce a monomial with degree k = i + l; if k = 2v
and v is a vertex of I, then the only way of obtaining themonomial is with k = v+v.)
It follows that (F�)v = 0, for any �, and so v /∈ I.

This trimming process continues until we have 2v ∈ S(P), for any vertex v ∈ I.
It follows that I = 1

2 conv(S(P)) and the theorem is proved.
The implication of Theorem3.31 is clear. For sparse polynomials, we can safely

reduce the degrees of the monomials in the factors of the sum-of-squares decom-
position to the set I = 1

2 conv(S(P)). Of course, this approach has to be combined
with relaxations in the style of problem (3.77).

3.8 Pairs of Relaxations

Let us look again at the modality to obtain relaxations for trigonometric and real
polynomials. We continue to use as a prototype the problem of finding the minimum
value of a polynomial.

For a trigonometric polynomial R ∈ Rn[z], the relaxations are obtained as in
problem (3.48), by allowing the degrees of the sum-of-squares factors H�(z) from
(3.13) to be larger than the degree of R(z). The polynomial is not altered.

For a real polynomial P ∈ R2n[t], the relaxation is obtained as in problem (3.77),
by multiplying P(t) with a fixed polynomial and expressing the result as a sum-of-
squares. Naturally, the sum-of-squares factors F�(t) have degree larger than n.
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Although these two relaxations are different in form, we may ask whether they
are related by the transformations described in Sect. 3.11.1. Precisely, the question
is what we obtain if we transform the real polynomial P(t) (appearing in some
optimizationproblem) into an R(z)via (3.121), relax the problemas for trigonometric
polynomials, and go back via (3.120). The answer is already given by Remark3.39,
precisely by relation (3.123), showing how sum-of-squares are transformed. Using
this approach, the relaxation has the form

μ

κ = max

μ
μ

s.t. (P(t) − μ)(1 + t21 )
κ1 . . . (1 + t2d )

κd ∈ ∑R[t]2
(3.86)

Remark the differences with respect to (3.77). The relaxation (3.86) may be more
interesting because one can take, e.g., only one nonzero κi and thus obtain a sparser
polynomial than in (3.77). However, the degree of the polynomial from (3.86) is
potentially larger than in (3.77).

There is also a difference on the theoretical side (which probably has little impor-
tance in practice). We must be aware that (3.86) is not based on a result similar to
Theorem3.10. That is, it is not proved that for any positive polynomial P(t), there
exists κ ∈ N

d such that P(t)(1+ t21 )
κ1 . . . (1+ t2d )

κd is sum-of-squares. (This would
be true if all nonnegative trigonometric polynomials would be sum-of-squares.)

We look now at the reverse transformation. Given a trigonometric polynomial
R(z), we transform it into a real polynomial P(t) via (3.120), apply a relaxation
as for real polynomials and go back via (3.121). Since the transformations apply
separately to factors, this is equivalent to multiplying the polynomial R(z) with the
transform (3.121) of (1 + t21 + . . . + t2d )

κ , i.e., with the polynomial

Aκ(z) =
(
1 − (1 − z1)2

(1 + z1)2
− . . . − (1 − zd)2

(1 + zd)2

)κ d∏

i=1

(1 + zi )2

4zi
. (3.87)

So, we replace the relaxation (3.48) by

μ

κ = max

μ
μ

s.t. (R(z) − μ)Aκ(z) ∈ RS
n+κ
n+κ [z]

(3.88)

Remark that the degree of the sum-of-squares polynomial has increased to n + κ ,
but the factors have the same degree. Therefore, the problem has approximately the
same complexity as (3.48) for m = n+ κ . However, it is simpler to write a program
for (3.48), since there is no multiplication of R(z) − μ with a fixed polynomial
(depending, however, on the degree κ of relaxation).

We have thus presented two pairs of relaxations, (3.48)–(3.86) and (3.88)–(3.77).
The first problem of the pair is for trigonometric polynomials, the second for real
polynomials. The relaxations from the same pair are obtained by transformation from
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one to the other. It is difficult to give preference to a formulation. However, the basic
problems (3.48) and (3.77) seem to have a slight advantage.

3.9 The Gram-Pair Parameterization

We investigate now the multivariate version of the Gram-pair parameterization pre-
sented in Sect. 2.8.3. Let R(z) be a sum-of-squares d-variate trigonometric polyno-
mial with real coefficients. Let the positive orthant polynomial H(z) be a generic fac-
tor in a term of the sum-of-squares representation (3.13).We assume that R ∈ RS

n
n[z]

and so the degree of H(z) is n. (It is the degree of the sum-of-squares factors that
matters in all that follows.) We can write n = 2ñ + δ, where δ = n mod 2; the
elements of the vector δ indicate the parity (0 means even and 1 means odd) of the
elements of n.

3.9.1 Basic Gram-Pair Parameterization

We define the (pseudo)-polynomial

H̃(z) = zn/2H(z) =
n∑

k=0

hk zn/2−k. (3.89)

On the unit circle, we have

H̃(ω) =
n∑

k=0

hk
[
cos(k − n/2)Tω − j sin(k − n/2)Tω

] = A(ω) + j B(ω). (3.90)

We perform now two simple operations in (3.90). First, since k − n/2 takes values
that are symmetric with respect to the origin, we can group the terms in the sum such
that k − n/2 is confined to a half-space H; a similar operation has been done, e.g.,
in (2.87), in the univariate case. We then replace k with k − ñ. It results that

A(ω) = aTχ c(ω), B(ω) = bTχ s(ω),

where

χ c(ω) = [ . . . cos(k − δ/2)Tω . . . ]T ,

χ s(ω) = [ . . . sin(k − δ/2)Tω . . . ]T ,
− ñ ≤ k ≤ ñ + δ, k − δ/2 ∈ H, (3.91)

are basis vectors of lengths Nc and Ns , respectively, and a and b are vectors of
coefficients. The elements of a and b depend linearly on the coefficients of H(z);

http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
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typically, they are a sum or difference of two coefficients, see e.g., (2.87) for the
univariate case. Thus, there exist two matrices Cc ∈ R

Nc×N and Cs ∈ R
Ns×N such

that [
a
b

]
=
[
Cc

Cs

]
h, (3.92)

where h is the vector (3.27) containing the coefficients of the polynomial. Moreover,
the correspondence between a pair (a, b) and the vector h is one-to-one; so, the
matrix from (3.92) is nonsingular and Nc + Ns = N (as we will see again later).

From (3.90), we thus obtain

|H(ω)|2 = |H̃(ω)|2 = A(ω)2 + B(ω)2

= χT
c (ω)aaTχ c(ω) + χT

s (ω)bbTχ s(ω). (3.93)

Using this relation, we can generalize Theorem2.28 to the multivariate case.

Theorem 3.33 Let R ∈ Rn[z] be a trigonometric polynomial. The polynomial is
sum-of-squares with factors of degree n (i.e., R ∈ RS

n
n[z]) if and only if there exist

positive semidefinite matrices Q ∈ R
Nc×Nc and S ∈ R

Ns×Ns such that

R(ω) = χT
c (ω)Qχ c(ω) + χT

s (ω)Sχ s(ω). (3.94)

We name (Q, S) a Gram-pair associated with R(ω).

Proof The proof follows the already familiar pattern. If there exist Q � 0, S � 0
such that (3.94) holds, then by using the eigendecompositions of the matrices, it
results that R(z) is sum-of-squares as in Remark2.9. Reciprocally, if R(ω) is sum-
of-squares, then each term of the sum-of-squares can be expressed as in (3.93). It

follows that the matrices Q
Δ= ∑

aaT and S
Δ= ∑

bbT (where the sums are taken
for all the terms in the sum-of-squares decomposition), satisfy (3.94).

3.9.2 Parity Discussion

For univariate polynomials, we have seen in Sect. 2.8.3 that the parameterization
(2.94) depended (through the constant matrices appearing there) on the parity of the
degree. In the d-variate case, there are 2d possible combinations of the parities of
the degrees ni , i = 1 : d. However, only d + 1 of them are essentially different, as
we can reorder the variables such that the polynomial has, say, even order in the first
variables and odd order in the others; so, the parity vector δ is formed by a sequence
of zeros followed by a sequence of ones. Here, we discuss two extreme parity cases.

(i) If all the degrees ni are even and so n = 2ñ (i.e., δ = 0), then the support
of H(z) contains its center of symmetry, as seen in the left of Fig. 3.6, for d = 2,
n1 = 4, n2 = 2. After the translation of the support implied by (3.89), the support of

http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
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n1

n2

ñ1

ñ2

Fig. 3.6 Support of H(z) (left) and H̃(z) (right), for even degrees, in the 2D case. The degrees in
the standard half plane are denoted with bullets

H̃(z) is symmetric with respect to the origin and contains it. The restriction of this
support to a half-space contains, as given by (3.4), a number of

Nc = 1 +∏d
i=1(2ñi + 1)

2
= 1 +∏d

i=1(ni + 1)

2
= N + 1

2
(3.95)

points, where N is defined in (3.26); Nc is the number of elements of the basis vector
χ c(ω) from (3.91). Since sin 0 = 0, the vector χ s(ω) has

Ns = N − 1

2
(3.96)

useful elements. Note that Nc + Ns = N , as announced. The basis vectors (3.91) are

χ c(ω) = [ . . . cos kTω . . . ]T , k ∈ H,

χ s(ω) = [ . . . sin kTω . . . ]T , k ∈ H \ {0}, − ñ ≤ k ≤ ñ. (3.97)

In our example, we have Nc = 8, Ns = 7 (and N = 15). Enumerating from left to
right and upwards the points in the upper half plane, as in Fig. 3.9, the basis vectors
(3.97) are

χ c(ω) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
cosω1

cos 2ω1

cos(−2ω1 + ω2)

cos(−ω1 + ω2)

cosω2

cos(ω1 + ω2)

cos(2ω1 + ω2)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, χ s(ω) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

sinω1

sin 2ω1

sin(−2ω1 + ω2)

sin(−ω1 + ω2)

sinω2

sin(ω1 + ω2)

sin(2ω1 + ω2)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(ii) If at least one of the elements of n is odd, then the support of H(z) no longer
contains its center of symmetry, and thus the support of H̃(z) does not contain the
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◦ ◦
n1

n2

ñ1+ 1
2

ñ2+ 1
2

Fig. 3.7 Same as in Fig. 3.6, for odd degrees

origin. This situation is illustrated by Fig. 3.7, with d = 2, n1 = 5, n2 = 3. The
number of points from the support of H̃(z) that fall in the same half-space is exactly
half the number of points in the support of H(z) and so the basis vectors (3.91) have
the same length

Nc = Ns = 1

2

d∏

i=1

(ni + 1) = N

2
.

If all the elements of n are odd (and so δ = 1), then the basis vectors are

χ c(ω) = [ . . . cos(k − 1/2)Tω . . . ]T ,

χ s(ω) = [ . . . sin(k − 1/2)Tω . . . ]T ,
− ñ ≤ k ≤ ñ + 1, k − 1/2 ∈ H. (3.98)

In our example, we have Nc = Ns = 12. The first basis vector from (3.98) has the
form

χ c(ω) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

cos(−5ω1 + ω2)/2
cos(−3ω1 + ω2)/2
cos(−ω1 + ω2)/2

...

cos(3ω1 + 3ω2)/2
cos(5ω1 + 3ω2)/2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

The basis vector χ s(ω) is obtained by simply replacing cos with sin in the above
formula.

3.9.3 LMI Form

Based on (3.94), we can state the multivariate version of Theorem2.29, which is
formally similar to the univariate version.

http://dx.doi.org/10.1007/978-3-319-53688-0_2
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Theorem 3.34 The trigonometric polynomial R(z) is sum-of-squares with factors
of degree n (i.e., R ∈ RS

n
n[z]) if and only if there exist positive semidefinite matrices

Q ∈ R
Nc×Nc and S ∈ R

Ns×Ns such that

rk = tr[Φk Q] + tr[ΛkS], (3.99)

where Φk ∈ R
Nc×Nc and Λk ∈ R

Ns×Ns are constant matrices.

Proof The relations (3.94) and (3.99) express linear relations between the coefficients
of R(z) and the elements of the matrices Q and S. The constant matrices Φk and Λk

result by simple identification.

Certainly, for implementing (3.99) we need the precise values of the matrices Φk

and Λk. Although they result after detailing (3.94) and using trigonometric identi-
ties in the style of (2.77), an explicit formula for the matrices is not necessary for
implementation. Instead, we can use relations similar to (2.93) to build the matrices.
We assume that the rows and columns of the matrices Q and S are numbered via
i, � ∈ Z

d ; the mapping between these d-dimensional numbers and the usual index
range (0 : Nc −1, for example), which is not unique, is not discussed; note, however,
that the mostly used mappings are linear. (An example of program will be given later
in Sect. 3.11.3.)

Let us consider only the case where all elements of the degree n are even. Using
the basis vectors (3.97) and the identities (2.77), the relation (3.94) is equivalent to

R(ω) = 1

2

∑

i,�∈H
qi�[cos(i + �)Tω + cos(i − �)Tω]

+ 1

2

∑

i,�∈H∗
si�[− cos(i + �)Tω + cos(i − �)Tω]

(3.100)

Here, we have denoted H∗ = H \ {0}; by i ∈ H, we understand implicitly that
|i | ≤ ñ, as in (3.97). The coefficients of the polynomial are thus given by

r0 = q00 + 1

2

∑

i∈H∗
qi i + 1

2

∑

i∈H∗
si i ,

rk = 1

4

⎛

⎜⎜⎜⎜⎜⎝

∑

i+�=k

i,�∈H

qi� +
∑

i−�=±k

i,�∈H

qi� −
∑

i+�=k

i,�∈H∗

si� +
∑

i−�=±k

i,�∈H∗

si�

⎞

⎟⎟⎟⎟⎟⎠
, k 	= 0.

(3.101)

Example 3.35 Let us consider the simplest example where relations (3.101) are
applicable and nontrivial, namely d = 2, n1 = n2 = 2 (and so ñ1 = ñ2 = 1). The
standard half plane support of R(z) is shown in Fig. 3.8 (with ×); the figure shows

http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
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Fig. 3.8 With ×, support of
R(z). With circles, support
of the basis vectors (3.97)

n1ñ1

n2

ñ2

also the values k that appear in (3.97) (with circles). Accordingly, the sizes of the
basis vectors (3.97) are Nc = 5, Ns = 4 (and N = 9).

A simple way to see the form of the matrices Φk and Λk from (3.99) is to look
at all the possible results i + � and i − �, with i and � in the same half plane (i.e.,
the circles from Fig. 3.8). We enumerate the indices in a lexicographic order. For the
sum, the table is

i \ � (0, 0) (1, 0) (−1, 1) (0, 1) (1, 1)
(0, 0) (0, 0) (1, 0) (−1, 1) (0, 1) (1, 1)
(1, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1)

(−1, 1) (−1, 1) (0, 1) (−2, 2) (−1, 2) (0, 2)
(0, 1) (0, 1) (1, 1) (−1, 2) (0, 2) (1, 2)
(1, 1) (1, 1) (2, 1) (0, 2) (1, 2) (2, 2)

(3.102)

For the difference i − �, the table is

i \ � (0, 0) (1, 0) (−1, 1) (0, 1) (1, 1)
(0, 0) (0, 0) (−1, 0) (1,−1) (0,−1) (−1,−1)
(1, 0) (1, 0) (0, 0) (2,−1) (1,−1) (0,−1)

(−1, 1) (−1, 1) (−2, 1) (0, 0) (−1, 0) (−2, 0)
(0, 1) (0, 1) (−1, 1) (1, 0) (0, 0) (−1, 0)
(1, 1) (1, 1) (0, 1) (2, 0) (1, 0) (0, 0)

(3.103)

For building Φk and Λk, we search the values k and −k in the tables (for Λk, we
ignore the first rows and columns of the tables) and use the appropriate coefficients
and signs as indicated by (3.101). Here are two pairs of matrices:

Φ(1,0) = 1

4

⎡

⎢⎢⎢⎢⎣

0 2 0 0 0
2 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 0 1 0

⎤

⎥⎥⎥⎥⎦
, Λ(1,0) = 1

4

⎡

⎢⎢⎣

0 0 0 0
0 0 1 0
0 1 0 1
0 0 1 0

⎤

⎥⎥⎦ ,
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Table 3.1 Times, in seconds, for finding the minimum value of 2D trigonometric polynomials
using two parameterizations

Year Parameterization Order n

4 6 8 10 12 14 16

2006 Trace 0.36 1.1 5.4 18 65 270 540

Gram pair 0.34 0.8 2.7 8.2 27 63 110

2016 Trace 0.08 0.15 0.5 1.1 3.0 7.0 18

Gram pair 0.1 0.2 0.4 1.0 2.3 5.5 12

Φ(2,0) = 1

4

⎡

⎢⎢⎢⎢⎣

0 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0

⎤

⎥⎥⎥⎥⎦
, Λ(2,0) = 1

4

⎡

⎢⎢⎣

−1 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎤

⎥⎥⎦ .

A systematic way to build these matrices will be given in Sect. 3.11.3.

Remark 3.36 The Gram-pair parameterization (3.94) can be used instead of the
generalized trace parameterization (3.32) without any restriction (for polynomials
with real coefficients, obviously). For example, the multivariate version of problem
(2.97) (which results formally by simply replacing ω with ω) can be used instead
of (3.50) as a sum-of-squares relaxation for computing the minimum value of a
trigonometric polynomial. As in the univariate case, we expect a speedup when
using theGram-pair parameterization, since the parametermatrices are twice smaller;
remind that in (3.32), the Gram matrix is N × N , while the sizes of the matrices
from (3.94) are given by (3.95) and (3.96). Table3.1 contains the times needed for
solving the problem Min_poly_value using sum-of-squares relaxations (in RSn

n[z]),
with the two parameterizations. The orders of the polynomials are n = (n, n). Like
in Example2.31, we repeat the experiments 10 years later. In the 2D case, in 2016,
the advantage of the Gram-pair parameterization is smaller than in the univariate
case (1.5 times faster vs twice faster). The largest size we tried is n = (20, 20) (not
given in the table), in which case the size of the Gram matrix is N = 441, while the
sizes of the Gram-pair matrices are Nc = 221, Ns = 220; the execution times are 75
and 48s, respectively. So, again, on nowadays computers, limitations due to memory
are apparently not visible at these degrees. We conclude that in the multivariate case,
although theGram-pair parameterization leads to faster solutions, it is less appealing,
considering the implementation effort.

3.10 Polynomials with Matrix Coefficients

We extend the results presented until now to trigonometric polynomials with matrix
coefficients, having the form

http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
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R(z) =
n∑

k=−n

Rk z−k, R−k = RH
k . (3.104)

The coefficients Rk ∈ C
κ×κ are matrices, as well as the polynomial R(z) itself. The

polynomial (3.104) is named positive if

R(ω)
Δ= R(e jω)  0 (3.105)

and nonnegative if the matrix R(ω) is positive semidefinite. (Note that R(ω) is
Hermitian, i.e., R(ω)H = R(ω).)

A trigonometric polynomial is sum-of-squares if it can be written as

R(z) =
ν∑

�=1

H�(z)HH
� (z−1), (3.106)

where H�(z) are positive orthant polynomials (defined as in (3.5), but with matrix
coefficients). We note that Theorem3.5 holds as stated for polynomials with matrix
coefficients, i.e., any positive polynomial can be expressed as sum-of-squares, pos-
sibly with deg H� > n.

Similarly to (2.1), we define

ψn(z) = [Iκ z Iκ . . . zn Iκ ]T (3.107)

and interpret (3.24) as a canonical basis of monomials with matrix coefficients. A
Hermitianmatrix Q ∈ C

Nκ×Nκ , where N is defined in (3.26), is called aGrammatrix
associated with the polynomial (3.104) if

R(z) = ψT (z−1) · Q · ψ(z). (3.108)

In this context, it is natural to look at blocks of size κ × κ . Let A ∈ C
pκ×pκ be a

matrix split as
A = [Ai�]i,�=0:p−1, Ai� ∈ C

κ×κ . (3.109)

We define a block trace operator by

TR[A] Δ=
p−1∑

i=0

Ai i . (3.110)

Now we can give the equivalent of Theorem3.13 and Theorem3.15. The proof is
based on the same ideas and it will not be presented.

Theorem 3.37 The relation between the coefficients of the polynomial (3.104) and
the elements of the Gram matrix Q ∈ C

Nκ×Nκ from (3.108) is

http://dx.doi.org/10.1007/978-3-319-53688-0_2
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Rk = TR[Θκ,k · Q], (3.111)

where
Θκ,k = Θκd ⊗ . . . ⊗ Θκ1 ⊗ Iκ = Θ k ⊗ Iκ , (3.112)

andΘ k is defined in (3.33). (The matrixΘκ,k is obtained from the N ×N matrixΘ k

by replacing the 1 values with κ × κ identity matrices and the 0 values with κ × κ

zero matrices.)
Moreover, the polynomial (3.104) is sum-of-squares if and only if there exists a

positive semidefinite matrix Q ∈ C
Nκ×Nκ such that (3.111) holds.

Example 3.38 With d = 2, n1 = n2 = 1, we consider the polynomial

R(z) = sym−1 +
[
4 0
0 4

]
+
[
1 0
0 0

]
z1 +

[
0 0
0 1

]
z2 +

[
0 −1
0 0

]
z1z2. (3.113)

On the unit bicircle, the polynomial becomes

R(ω) =
[

4 + 2 cosω1 − cos(ω1 + ω2)

− cos(ω1 + ω2) 4 + 2 cosω2

]
+ j

[
0 − sin(ω1 + ω2)

sin(ω1 + ω2) 0

]

and it is obvious that R(ω) is a positive definite matrix for all ω. Let

Q =

⎡

⎢⎢⎣

Q00 QT
10 QT

20 QT
30

Q10 Q11 QT
21 QT

31
Q20 Q21 Q22 QT

32
Q30 Q31 Q32 Q33

⎤

⎥⎥⎦

be a Gram matrix associated with R(z). The parameterization (3.111) is equivalent
to the following equalities

R0,0 =
[
4 0
0 4

]
= Q00 + Q11 + Q22 + Q33,

R1,0 =
[
1 0
0 0

]
= Q10 + Q32,

R−1,1 =
[
0 0
0 0

]
= Q21,

R0,1 =
[
0 0
0 1

]
= Q20 + Q31,

R1,1 =
[

0 0
−1 0

]
= Q30.

Remark that the above coefficients Rk are the transposed of those appearing in
(3.113), due to the definition (3.104). An example of matrix (3.112) is
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Θ2,(1,0) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Two Gram matrices associated with R(z) are

Q1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0
0 4 sym
1 0 0 0
0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.3 0
0 0.7 sym
0.5 0 1 0
0 0 0 1
0 0 0 0 1 0
0 0.5 0 0 0 1
0 0 0 0 0.5 0 0.7 0

−1 0 0 0.5 0 0 0 1.3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(Check that R1,0 = TR[Θ2,(1,0) · Qi ], i = 1, 2.) The matrix Q2 is positive definite
(its smallest eigenvalue is 0.0397), which confirms the positivity of R(z). (Again,
the fact that Q1 is indefinite is of no consequence.)

Problem (Most_positive_Gram_matrix) The problem of finding the most positive
Grammatrix (of size Nκ×Nκ) associatedwith a polynomialwithmatrix coefficients
is clearlywell defined.Using the parameterization (3.111),weobtain anSDPproblem
similar to (3.38), namely

λ
 = max
λ,Q

λ

s.t. TR[Θκ,k Q] = Rk, k ∈ H
Q � λI

(3.114)

where H is a half-space. Since Θκ,0 = I , it results that TR[Θ0] = N Iκ ; for k 	= 0
we have TR[Θκ,k] = 0. Denoting Q̃ = Q − λI , we transform (3.114) into the
standard equality form SDP problem

λ
 = max
λ, Q̃

λ

s.t. NλIκ + TR[ Q̃] = R0

TR[Θκ,k Q̃] = Rk, k ∈ H \ {0}
Q̃ � 0

(3.115)

Certainly, in an actual implementation, the κ × κ equalities from (3.115) are trans-
formed into scalar equalities. The number of scalar equalities is Mκ2 − κ(κ − 1)/2,
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where M is the number of coefficients in a half-space, given by (3.4). (The first
equality from (3.115) relates symmetric matrices, while the others involve general
matrices.)

Since the size of the Gram matrix is Nκ × Nκ , the complexity of solving (3.115)
is O(N 2M2κ6).

Example 3.38 (continued) Solving (3.115), we find that the most positive Gram
matrix associated with the polynomial (3.113) is

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5483 0.0867
0.0867 0.7784 sym
0.4835 −0.0377 0.6880 −0.1721

−0.2786 0.0986 −0.1721 0.6880
−0.0986 0.0377 0 0 0.9854 −0.0012
0.2786 0.5165 0 0 −0.0012 0.9854

0 0 0.0986 −0.0377 0.5165 0.0377 0.7784 0.0867
−1.0000 0 −0.2786 0.4835 0.2786 −0.0986 0.0867 1.5483

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Its smallest eigenvalue is λ
 = 0.25.

As we have seen before, the problem of finding the most positive Gram matrix
is related to that of computing the minimum value of a polynomial. In the case of
polynomials with matrix coefficients, the correspondent of (2.17) is

μ
 = max
μ

μ

s.t. R(ω) − μIκ � 0, ∀ω ∈ [−π, π ]d
(3.116)

and it amounts to finding the minimal value of the smallest eigenvalue of the matrix
R(ω). We can solve a relaxed version of (3.116) by imposing the condition that
R(z) − μIκ is sum-of-squares. The resulting problem is

μ

m = max

μ, Q̃
μ

s.t. μIκ + TR[ Q̃] = R0

TR[Θκ,k Q̃] = Rk, k ∈ H \ {0}
Q̃ � 0

(3.117)

The size of the Gram matrix Q̃ is taken according to the degree m of the relaxation,
as discussed in Sect. 3.5. We obtainμ


m ≤ μ
. We note that the solutions of problems
(3.115) and (3.117) are related by μ


m = Nλ
 (we redefine N as in (3.45), such that
the size of the Gram matrix is Nκ × Nκ). We also remark that, in general, there
is no ω such that R(ω) = μ


m Iκ . However, there exists an ω such that the matrix
R(ω) − μ
 Iκ is singular (and, of course, positive semidefinite). So, if we find an ω

such that R(ω) − μ

m Iκ is singular, then we are sure that μ


m = μ
.

http://dx.doi.org/10.1007/978-3-319-53688-0_2
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Example 3.38 (continued) The solution of (3.117) for the polynomial (3.113) is
μ
 = 1; we use the smallest relaxation possible, with the degree of the sum-of-
squares factors m = n = (1, 1), and so μ
 = 4λ
. We conclude that R(ω) � Iκ , for
all ω. Since

R(0, 0) − I2 =
[

1 −1
−1 1

]

has the smallest eigenvalue equal to 0, we conclude that we have found the true
optimum.

3.11 Details and Other Facts

3.11.1 Transformation Between Trigonometric and Real
Nonnegative Polynomials

We are interested by a positivity-preserving transformation between trigonometric
polynomials and real polynomials. The obvious candidate is the bilinear transform
(1.58). For multivariate polynomials, we define it for each variable by

zi = 1 + j ti
1 − j ti

= j − ti
j + ti

, i = 1 : d. (3.118)

The inverse transform is

ti = j
1 − zi
1 + zi

, i = 1 : d. (3.119)

We transform a trigonometric polynomial R ∈ Rn[z] into a real polynomial P ∈
R2n[t] by

P(t) = R

(
j − t1
j + t1

, . . . ,
j − td
j + td

) d∏

i=1

(1 + t2i )
ni . (3.120)

So, we replace each complex variable by (3.118) and then multiply with the product∏d
i=1(1 + t2i )

ni in order to cancel the resulting denominator (see (1.62)). Since

1 + t2i = 4zi
(1 + zi )2

,

the transformation inverse to (3.120) is

R(z) = P

(
j
1 − z1
1 + z1

, . . . , j
1 − zd
1 + zd

) d∏

i=1

(1 + zi )2ni

(4zi )ni
. (3.121)

http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
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Since (3.118)maps the real axis to the unit circle (for each variable), a nonnegative
polynomial P(t) is mapped to a nonnegative polynomial R(z) through (3.121) or,
in the reverse sense, through (3.120). However, a positive P(t) can be mapped to a
nonnegative R(z), i.e., strict positivity is not preserved by (3.121); this happens, for
example, when the monomial t2n11 · · · t2ndd does not appear in P(t); in this case, the
relation (3.120) allows us to write

R(−1, . . . ,−1) = lim
ti→∞, i=1:�

P(t)
∏d

i=1(1 + t2i )
ni

= 0.

Remark 3.39 Moreover, the transformations (3.120) and (3.121)map sum-of-squares
over Rd to sum-of-squares over Cd . We prove this fact, giving also more details on
the mapping.

Let P ∈ R2n[t] be a sum-of-squares polynomial, having the form (3.19). Denoting

H�(z) = F�

(
j
1 − z1
1 + z1

, . . . , j
1 − zd
1 + zd

) d∏

i=1

(1 + zi )ni

2ni

and noticing that for z ∈ T
d , we have

H∗
� (z−1) =F�

(
− j

1 − z−1
1

1 + z−1
1

, . . . ,− j
1 − z−1

d

1 + z−1
d

)
d∏

i=1

(1 + z−1
i )ni

2ni

=F�

(
j
1 − z1
1 + z1

, . . . , j
1 − zd
1 + zd

)∗ d∏

i=1

(1 + zi )ni

2ni znii
,

it results that the trigonometric polynomial R(z) defined by the transformation
(3.121) is also sum-of-squares, with the form (3.13). Note that the degree of the
factors H�(z) is at most n.

In the opposite sense, let the trigonometric polynomial R ∈ Rn[z] be sum-of-
squares, with factors of degree n. We denote

F�(t) = H�

(
j − t1
j + t1

, . . . ,
j − td
j + td

) d∏

i=1

( j + ti )
ni .

Since (
j − ti
j + ti

)∗
= j + ti

j − ti
,

it results that the transformation (3.120) gives

P(t) =
ν∑

�=1

F�(t)F�(t)∗ =
ν∑

�=1

(F�r (t)2 + F�i (t)2), (3.122)
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where we have denoted F�(t) = F�r (t) + j F�i (t), with F�r , F�i having real coeffi-
cients. So, the real polynomial P(t) is sum-of-squares.

Now, let the trigonometric polynomial R ∈ Rn[z] be sum-of-squares, with factors
of degreem ≥ n. Let P(t) be the polynomial obtained by the transformation (3.120).
As above, we denote

F�(t) = H�

(
j − t1
j + t1

, . . . ,
j − td
j + td

) d∏

i=1

( j + ti )
mi .

The exponent of the rightmost factors is m, otherwise F�(t) would not be a polyno-
mial. It results that

ν∑

�=1

F�(t)F�(t)∗
Δ= P̃(t) = P(t) ·

d∏

i=1

(1 + t2i )
mi−ni . (3.123)

So, if the degrees of the factors of the sum-of-squares trigonometric polynomial are
larger than n, then not P(t) is sum-of-squares, but the polynomial P̃(t) from (3.123).
This is the way in which sum-of-squares are mapped by the transformations (3.120)
and (3.121).

Example 3.40 We return to Example3.7. The trigonometric polynomial (3.17) is
obtained through the transformation (3.121) from the real polynomial

P(t1, t2) = t41 t
2
2 + t21 t

4
2 − t21 t

2
2 + 1. (3.124)

This polynomial is positive, but not sum-of-squares, as shown in Example3.8. So,
the trigonometric polynomial (3.17) is not sum-of-squares with factors of degree
(2, 2). However, it is sum-of-squares with the factors of degree (3, 3) shown in
(3.18), which means that the real polynomial P̃(t1, t2) = (1+ t21 )(1+ t22 )P(t1, t2) is
sum-of-squares. We also notice that R(−1,−1) = 0, since there is no t41 t

4
2 term in

P(t1, t2).

3.11.2 Pos3Poly Program with Multivariate Polynomials

We give in Table3.2 the multivariate version of the Pos3Poly [4] program from
Sect. 2.12.1 for solving the problem Min_poly_value. The polynomial is given by
the vector of its coefficients in a half-space, ordered as shown in Fig. 3.9 for the
bivariate case; the order is lexicographic. For example, the polynomial (3.36) is rep-
resented by the vectorr = [38 18 4 1 2 1 -8 -5]. The size of the vector is
given by (3.4). Since this relation is not invertible, we need to feed the program with
the degree of the polynomial. In our case, this is n = [2 1]. The equality con-
straint, which works with vectorized polynomials, models the fact the R(z) − μ is

http://dx.doi.org/10.1007/978-3-319-53688-0_2
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Table 3.2 Pos3Poly program for the minimum of a multivariate trigonometric polynomial

function m = minpold_pos3poly(r)

r = r(:); % force column vector
p = [n 1]; % degree and coefficients size (scalars)
ptype = [];
if ˜isreal(r) % complex data

ptype.complex_coef = 1;
end
cvx_begin

variable m; % variable for the minimum
maximize( m )
subject to % equality constraints

m*eye( (prod(2*n+1)+1)/2, 1 ) + sos_pol(p, ptype) == r;
cvx_end

Fig. 3.9 Indices of the half
plane coefficients of a
symmetric polynomial with
d = 2, n1 = n2 = 2

9

1

11

2

4 6 7

8

0

10

3 5

12

sum-of-squares; we could use length(r) instead of the explicit relation (3.4),
which is there only for pedagogical purposes. Of course, running the program gives
the value 1.8214 announced in Example3.18. The sum-of-squares has the same
degree as the polynomial; for using a higher degree sum-of-squares, the polynomial
has to be padded with zeros and n has to be increased accordingly; the reader is
invited to call the function in this manner.

Note that the differences with respect to the program from Table2.4 are very
small and that this program can also solve the univariate problem. This is the main
incentive for using Pos3Poly.

3.11.3 A CVX Program Using the Gram-Pair
Parameterization

Wepresent here aCVXprogram for finding theminimumvalue of a bivariate trigono-
metric polynomial R ∈ Rn[z], using sum-of-squares relaxations inRSn

n[z] (the adap-
tation of the program to a higher degree of the sum-of-squares factors is trivial). Note
that Pos3Poly uses exclusively the trace parameterization. We discuss only the case

http://dx.doi.org/10.1007/978-3-319-53688-0_2
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where both elements of the order n are even. Using the Gram-pair parameterization
(3.99), the SDP problem (in standard equality form) is

μ

n = max

μ, Q̃,S̃
μ

s.t. μδk + tr[Φk Q̃] + tr[Λk S̃] = rk, k ∈ H
Q̃ � 0, S̃ � 0

(3.125)

The program is presented in Table3.3. The polynomial R(z) is represented like
in the previous subsection, by the vector r of coefficients in the standard half plane,
in row major order. For the polynomial discussed in Example3.35, the indices of the
coefficients of vec(R) are as shown in Fig. 3.9.

The correspondence between the 2D index k and the index in r is given by the
linear mapping

ind(k) = (2n1 + 1)k2 + k1. (3.126)

Here, the indices start from 0, as in the whole book; in the MATLAB program,
they start from 1. Note that if k belongs to the standard half plane, then ind(k) is
nonnegative.

For the Gram matrices, we also need the indices of the basis vectors (3.97). In
Fig. 3.9, they are those inside the box. In the program, the vector iv contains the
values ind(k) for these indices. (To understand the second section of the program,
note that each row of the standard half plane support of R(z), excepting the lowest,
contains n1 + 1 elements; the value ind(k) for the first element in the second lowest
row is 2n1 + 1 − ñ1.)

The fourth and fifth sections of the program build all the matrices Φk and Λk,
initialized with zeros in the third section. The technique is to take all combinations
of indices i and � of the basis vectors (3.97) and set, for each combination, the
appropriate elements of the matrices Φk and Λk. Referring to Example3.35, we
build one by one the elements k of tables (3.102) and (3.103) and then set to 1/2 (if
k = 0) or ±1/4 (otherwise) the element of Φk or Λk in that position, as indicated
by (3.101) (taking into account also the signs). This approach is possible due to the
linearity of the index mapping (3.126), which means that

i + � = k ⇐⇒ ind(i) + ind(�) = ind(k),

i − � = ±k ⇐⇒ |ind(i) − ind(�)| = ind(k).

So, we do not have to work with 2D indices. Instead, we use the true indices ii and
ll in the matrices Φk or Λk. The CVX part of the program is built directly from
(3.125) with obvious correspondences.
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Table 3.3 CVX program for solving the SDP problem (3.125)

function m = minpol2_g2_even_cvx(n, r)

nh = floor(n/2); % half the order
Nc = (prod(n+1)+1)/2; % number of coefs for cos base
Ns = Nc - 1; % number of coefs for sin base

iv = (1:Nc)’; % halfplane indices
ii = nh(1)+1;
kk = 2*n(1) + 1 - nh(1);
for i2 = 1 : nh(2)

iv( ii+1 : ii+n(1)+1 ) = kk+1 : kk+n(1)+1;
ii = ii + n(1)+1;
kk = kk + 2*n(1) + 1;

end

for k = 1 : length(r) % initialize Phi and Lambda matrices
Phi{k} = zeros(Nc);
Lam{k} = zeros(Ns);

end

for ii = 1 : Nc % compute Phi matrices
for ll = 1 : Nc

k = iv(ii) + iv(ll) - 1; % coef affected by sum
if k == 1, ad = 0.5; else, ad = 0.25; end
Phi{k}(ii,ll) = Phi{k}(ii,ll) + ad;
k = abs(iv(ii) - iv(ll)) + 1; % coef affected by difference
if k == 1, ad = 0.5; else, ad = 0.25; end
Phi{k}(ii,ll) = Phi{k}(ii,ll) + ad;

end
end

iv = iv(2:end); % no free term for sines
for ii = 1 : Ns % compute Lambda matrices

for ll = 1 : Ns
k = iv(ii) + iv(ll) - 1; % coef affected by sum
if k == 1, ad = 0.5; else, ad = 0.25; end
Lam{k}(ii,ll) = Lam{k}(ii,ll) - ad;
k = abs(iv(ii) - iv(ll)) + 1; % coef affected by difference
if k == 1, ad = 0.5; else, ad = 0.25; end
Lam{k}(ii,ll) = Lam{k}(ii,ll) + ad;

end
end

cvx_begin
variable m;
variable Q(Nc,Nc) semidefinite;
variable S(Ns,Ns) semidefinite;

(continued)
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Table 3.3 (continued)

maximize m
subject to

m + vec(Phi{1})’ * vec(Q) + vec(Lam{1})’ * vec(S) == r(1);
for k = 2 : length(r)

vec(Phi{k})’ * vec(Q) + vec(Lam{k})’ * vec(S) == r(k);
end

cvx_end

3.12 Bibliographical and Historical Notes

That any positive trigonometric polynomial is sum-of-squares is proved in different
manners in several places [1, 5–7]. However, the problem did not attract special
interest until the year 2000. The transformation described in Sect. 3.11.1 can be
found in [1], but was used as early as in [8].

Nonnegative trigonometric polynomials in two variables are also sum-of-squares;
this results from Theorem 3.3.1 from [9]. For more than two variables, one can build
examples of nonnegative trigonometric polynomials that are not sum-of-squares; in
a personal email, Markus Schweighofer described such a procedure that starts from
a homogeneous nonnegative real polynomial that is not sum-of-squares.

The sum-of-squares problem for real polynomials is a classic theme in math-
ematics (Hilbert’s 17th problem) and good presentations can be found in [2, 3].
Theorem3.10, the theoretical base for real sum-of-squares relaxations, appeared in
[10].

Although not named so, the Gram matrix representation (for multivariate real
polynomials) appeared for the first time in [11] as a tool to test the positivity of
a polynomial; no optimization methods were suggested. The name Gram matrix
was coined in [12], where the explicit relation to sum-of-squares was shown. An
algorithm to find the sum-of-squares decomposition of a polynomial (or to infirm its
existence) was proposed in [13], taking advantage of the convexity of the problem.
The connection to SDP followed soon in [14–16] for real polynomials and in [17] for
trigonometric polynomials, opening the way to solving a broad range of problems.
The generalized trace parameterization as in Theorem3.13 has been given in [18]
and previous conference papers.

Sum-of-squares relaxations for trigonometric polynomials are discussed in [7,
18]. For real polynomials, the idea of sum-of-squares relaxations was originated by
Shor [19]. Different SDP forms, based on different sum-of-squares decomposition
are presented in [16, 20], with different approaches (to be discussed also in the next
chapter). A good survey is [21]. The library SOSTOOLS [22] is an interface easing
the implementation of such relaxations, based on the SDP library SeDuMi [23].

The Gram matrix representation can be immediately extended to hybrid polyno-
mials, which are a mix of real and trigonometric polynomials. See P 3.10 and [24].
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Sparseness was recognized from the beginning as an advantage, as the Gram
matrices of sparse polynomials have smaller size. Theorem3.22 (in the form given
byRemark3.24)was given in [17]. For real polynomials, the important Theorem3.31
appeared already in [25].More refinedways of identifying themonomials that appear
in the terms of a sum-of-squares are presented in [26]. Sparse polynomials are dealt
with in a very simple manner in SOSTOOLS.

The Gram-pair parameterization is a generalization of the univariate results from
[27]; the simple proofs from Sect. 3.9 have appeared in [28]; more developments,
including faster algorithms, are presented in [29].

Finally, positive polynomials with matrix coefficients were the natural presenta-
tion framework in [17, 30]. We have allocated Sect. 3.10 especially to them only for
didactic purposes, since most of the scalar coefficient results generalize directly for
matrix coefficients.

Problems

P 3.1 Show that the set H ∈ Z
2, defined by

k ∈ H ⇔
{
k1 ≥ k2, if k1 ≥ 0,
k1 > k2, if k1 < 0,

is a half-space. Show how to build half-spaces in Z
2 by using lines passing through

the origin. Generalize to Zd .

P 3.2 Let R, S ∈ C[z] be sum-of-squares polynomials. Show that R + S and RS
are also sum-of-squares. Same problem for R, S ∈ R[t].
P 3.3 Show that the polynomial

R(z1, z2) = 4 + (z1 + z−1
1 ) + (z1z2 + z−1

1 z−1
2 )

is nonnegative, but cannot be factored as R(z) = H(z)H(z−1). (Hint: take H(z) =
a + bz1 + cz2 + dz1z2, express the spectral factorization equation function of the
coefficients a, b, c, d and show that there is no solution.)

P 3.4 The first example of polynomial P ∈ R[t] that is positive but not sum-of-
squares was given by Motzkin and is P(t1, t2) = t41 t

2
2 + t21 t

4
2 − 3t21 t

2
2 + 1. Use the

transformation (3.121) to obtain a nonnegative trigonometric polynomial that is not
sum-of-squareswith factors of degree (2, 2). Search a sum-of-squares decomposition
with higher degree.

P 3.5 The general form ofMotzkin’s counterexample is P(t) = (t21 + . . .+ t2d −d−
1)t21 . . . t2d + 1. Show that this polynomial is nonnegative, but not sum-of-squares.

P 3.6 Show that the polynomial (1 + t21 )(1 + t22 )P(t1, t2) is sum-of-squares, where
P(t1, t2) is given by (3.124). Show also that (1 + t21 )P(t1, t2) is sum-of-squares.
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P 3.7 (Generalized Toeplitz positivity conditions) Let R ∈ Cn[z] be a trigonomet-
ric polynomial. Remind that in the univariate case, Theorem1.8 says that R(z) is
nonnegative if and only if the matrices

Rm =
n∑

k=−n

rkΘk

are positive semidefinite for any m ≥ n, where the size of Θk is m × m.
Generalizing this result to the multivariate case, show that the polynomial R(z)

is sum-of-squares if and only if the matrices

Rm =
n∑

k=−n

rkΘ k

are positive semidefinite for anym ≥ n, where the matricesΘ k are defined in (3.33).
Hint: Express the coefficients of R(z) as a sum of MA autocorrelation sequences,

generated by the processes H�(z) (i.e., use the same proof technique as in Sect. 1.3).

P 3.8 Let R1(z), R2(z) be two trigonometric polynomials. Prove the following:
(a) R1(z) − R2(z) is sum-of-squares if and only if there exist Gram matrices Q1

and Q2, associated with R1(z) and R2(z), respectively (i.e., defined as in the trace
parameterization (3.32)) such that Q1 � Q2.

(b) R1(z)− R2(z) is sum-of-squares if and only if there exist Gram pairs (Q1, S1)

and (Q2, S2), associated with R1(z) and R2(z), respectively (i.e., defined as in the
parameterization (3.99)) such that Q1 � Q2 and S1 � S2.

P 3.9 Prove the following multivariate version of Theorems2.25 and 2.27. A
trigonometric polynomial R(z) with complex coefficients and order n is sum-of-
squares with factors of degree n if and only if there exist a positive semidefinite
matrix Q ∈ R

(Nc+Ns )×(Nc+Ns ) such that

R(ω) = χT (ω)Qχ(ω), (3.127)

where χ(ω) = [χT
c (ω) χT

s (ω)]T and all the other notations are as in Theorem3.33.
Show that (3.127) is equivalent to

rk = tr[k Q] (3.128)

and find the expressions of the constant matrices k.

P 3.10 A 2D hybrid real-trigonometric polynomial has the expression

R(t, z) =
n1∑

k1=0

n2∑

k2=−n2

rk1,k2 t
k1 z−k2 , (3.129)

http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
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with t ∈ R, z ∈ C, and satisfies the symmetry relation rk1,−k2 = r∗
k1,k2

. The polyno-
mial (3.129) is sum-of-squares if it can be written as

R(t, z) =
ν∑

�=1

H�(t, z)H
∗
� (t, z−1), (3.130)

where H(t, z) is causal in z. Show that (3.129) is sum-of-squares if and only if there
exists Q � 0 such that

rk1,k2 = tr[(Θk2 ⊗ Υ k1) · Q]. (3.131)

Extend the result to more than two variables.

P 3.11 When implementing an SDPproblemusing the blockGramparameterization
(3.111), the equalitymust be expressed for each element of a block. Show that (3.111)
is equivalent to

(Rk)i� = tr[((Θkd ⊗ . . . ⊗ Θk1) ⊗ Ei�) · Q],

where Ei� ∈ R
κ×κ is the elementary matrix with 1 in position (i, �) and zeros

elsewhere.
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Chapter 4
Polynomials Positive on Domains

Abstract In Sect. 1.4, we have presented the parameterizations of univariate poly-
nomials that are positive on an interval. Here, we look at the generalization of this
kind of results for multivariate polynomials that are positive on a domain D, where
D ⊂ R

d for real polynomials and D ⊂ [−π, π ]d for trigonometric polynomials.
The set D is characterized by the nonnegativity of some given polynomials. As in
the case of globally positive polynomials, as discussed in the previous chapters,
the parameterization can be expressed in terms of sum-of-squares polynomials and
Gram matrices; again, SDP can be used as optimization tool for solving a relaxed
version of the initial problem. We start by presenting, without proof, some recent
results regarding real polynomials. More information can be found in [1, 2]. These
results are used for deriving characterizations valid for trigonometric polynomials, in
three standard frameworks: positivity on a frequency domain, Bounded Real Lemma,
Positivstellensatz.

4.1 Real Polynomials Positive on Compact Domains

Let g� ∈ R[t], � = 1 : L , with L ∈ N, be given d-variate polynomials. We define
the set

D(g) = {t ∈ R
d | g�(t) ≥ 0, � = 1 : L}. (4.1)

We assume thatD(g) is not empty. Note that the set is defined by the nonnegativity of
somegiven polynomials. This definition can accommodate equality constraints, since
g(t) = 0 is replaced by g(t) ≥ 0 and −g(t) ≥ 0. A set is called semialgebraic if it
can be described as a Boolean combination (using intersection, union, complement)
of sets of the form (4.1).

The problem we discuss in this section is how to describe polynomials that are
positive on D(g). We present here several results of this type.

Let us assume first that the setD(g) is bounded (and thus compact). This is almost
always true in practice, where finite solutions are interesting. With this assumption,
the following remarkable result holds.
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Theorem 4.1 (Schmüdgen 1991) If D(g) is bounded, then any polynomial P ∈
R[t], with P(t) > 0, for any t ∈ D(g), can be written as

P =
∑

α∈{0,1}L
gα1
1 · · · gαL

L sα, (4.2)

where sα ∈ ∑
R[t]2.

This theorem says that a polynomial that is positive onD(g) can be parameterized
as a function of 2L sum-of-squares; the set of polynomials of the form (4.2) is called
the preordering generated by the polynomials g�. Moreover, the dependence between
the coefficients of P(t) and those of the sum-of-squares from (4.2) is linear. However,
Schmüdgen’sTheorem is hardly practical, due to the large number of sum-of-squares,
even for relatively small L . A stronger result gives a convenient alternative, at least
in some cases. Let us arrange the products of g polynomials that appear in (4.2) in
increasing order of the number of factors (i.e., in increasing order of the number of
ones in the binary number α) as follows: 1, g1, …, gL , g1g2, …, gL−1 gL , g1g2g3,
…, g1 . . . gL . Denote the above polynomials as p1, p2, …, p2L .

Theorem 4.2 (Jacobi-Prestel 2001) If D(g) is bounded, then any polynomial P ∈
R[t], with P(t) > 0, for any t ∈ D(g), can be written as

P =
2L−1+1∑

�=1

p�s�, (4.3)

where s� ∈ ∑
R[t]2.

Remark 4.3 Since only 2L−1 + 1 terms are actually necessary in (4.2), it turns out
that if L = 2, then P = s0 + g1s1 + g2s2. If L = 3, then 5 sum-of-squares are
enough in (4.2), instead of the 8 assessed by Theorem 4.2; in this case, we have
P = s0 + g1s1 + g2s2 + g3s3 + g1g2s4; the sum includes only one product of g
functions. �

In this context, it is natural to ask when the polynomials that are positive onD(g)
belong to the set

M(g) = {P ∈ R[t] | P = s0 +
L∑

�=1

g�s�, s� ∈
∑

R[t]2}, (4.4)

i.e., have a form that is linear in the polynomials g�, as in the case L = 2 of
Theorem 4.2. Of course, it is not this kind of linearity that is the most interesting
(although it is mathematically beautiful), but the low number of sum-of-squares. The
following theorems show what conditions can be added to the boundedness ofD(g)
in order to obtain such a form.
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Theorem 4.4 (Putinar 1993) If there exists a polynomial p0 ∈ M(g) such that the
set

W(p0) = {t ∈ R
d | p0(t) ≥ 0} (4.5)

is bounded, then for any polynomial P ∈ R[t], with P(t) > 0, ∀t ∈ D(g), it results
that P ∈ M(g).

Theorem 4.5 (Jacobi 2001) If there exists N ∈ N such that the polynomial

p0(t) = N −
d∑

i=1

t2i (4.6)

belongs to M(g), then for any polynomial P ∈ R[t], with P(t) > 0, ∀t ∈ D(g), it
results that P ∈ M(g).

Remark 4.6 Theorem 4.5 is stronger than Theorem 4.4, since the setW(p0) defined
in (4.5) is clearly bounded for the polynomial p0 from (4.6). However, both theorems
give useful conditions to check whether the equivalence “P positive on D(g)” ⇔
“P ∈ M(g)” holds.

The two theorems cover some particular forms of the set D(g). For example, the
hypotheses of Theorems 4.4 and 4.5 hold if all the functions g� are linear (Handel-
man’s theorem). Moreover, it is enough that only the first L0 < L functions are
linear, provided the set D0(g) = {t ∈ R

d | g�(t) ≥ 0, � = 1 : L0} ⊃ D(g) is
bounded. �

Remark 4.7 In all the parameterizations given in this section, the degrees of the sum-
of-squares may be greater than deg P (for s0) or deg P − deg g� (for s�). The case
of globally positive polynomials treated in Sect. 3.3 was different: The degrees of
the sum-of-squares terms were less or equal deg P , but not all positive polynomials
were expressible as sum-of-squares. �

Remark 4.8 The reciprocals of all these theorems hold trivially. For instance, if
P ∈ M(g), it follows that P(t) ≥ 0 for any t ∈ D(g). So, some of the polynomials
that are nonnegative on D(g) have sum-of-squares representations, but not all of
them (a zero on D(g) may imply that such a representation is impossible, no matter
the degrees of the sum-of-squares polynomials). �

Remark 4.9 For univariate polynomials, similar but stronger results are given by
Theorems 1.11 and 1.13. Note that there the degrees of the sum-of-squares (actually
just squares) are minimal. Moreover, in Theorem 1.13, the domain D (actually an
interval) is unbounded. �

Remark 4.10 The algebraic structure at the basis of Theorem 4.5 is that of quadratic
module. A set M ⊂ R[t] is a quadratic module if

M + M ⊂ M, R[t]2 · M ⊂ M, 1 ∈ M, −1 /∈ M. (4.7)

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
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(Here, e.g., the second inclusion means that for any p ∈ R[t], q ∈ M, it results that
p2q ∈ M.) It is clear that M(g) is a quadratic module; the first three rules from
(4.7) are satisfied from the mere definition (4.4), while the nonemptiness of D(g)
implies −1 /∈ M(g).

Moreover, the existence condition of the polynomial (4.6) is equivalent toM(g)
to be Archimedean. A quadratic module M is Archimedean if for each f ∈ R[t],
there exists N ∈ N such that N − f ∈ M.

So, Theorem 4.5 holds in the more general context of Archimedean quadratic
modules of polynomials. However, the stated form of the theorem is enough for our
(and most practical) purposes. �

As a first application, we appeal again at the problem of finding the minimum
value of a polynomial, this time with constraints.

Problem Constrained_min_poly_value Let P ∈ R2n[t] be a given polynomial;
the set D(g) is defined as in (4.1), for L known polynomials. We want to find the
minimum value of the polynomial on D(g), i.e., to solve the optimization problem

μ� = min
t∈D(g)

P(t). (4.8)

Again, the problem is NP-hard. We note that generally neither the objective nor the
domain D(g) are convex.

Since the problem (4.8) is equivalent to

μ� = max
μ

μ

s.t. P(t) − μ ≥ 0, ∀t ∈ D(g)

(4.9)

we approach it by solving

μ� = max
μ

μ

s.t. P(t) − μ ∈ M(g)

(4.10)

Passing from (4.9) to (4.10) is possible, even though D(g) might not respect the
conditions of Theorems 4.4 or 4.5. If D(g) is compact, then we add the polynomial

gL+1(t) = N −
d∑

i=1

t2i (4.11)

to the set of constraints, with N large enough for the hypersphere

{t ∈ R[t] | gL+1(t) ≥ 0}

to contain D(g). The constraint gL+1(t) ≥ 0 is redundant but makes the newM(g)
satisfy the conditions of Theorems 4.4 or 4.5.
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If D(g) is not compact, we seek practically a finite minimum, if it exists, and
thus proceed like above for a large N . If the solution appears to be too small (i.e.,
the original problem may have the solution μ� = −∞), then we solve it again for
a larger N and are able to diagnose the case. So, from now on we assume that the
polynomial (4.11) is part of the set of constraints defining D(g), if necessary (and
redefine D(g) accordingly).

Although not all polynomials that are nonnegative on D(g) belong to M(g)
(but surely the positive ones), passing from (4.8) to (4.10) is not restrictive, since
P(t) − μ ∈ M(g) for any μ < μ�; for numerical computation, the distinction
between positivity and nonnegativity is irrelevant. However, the problem (4.10) can
be solved only in relaxed form, since we have to bound the degrees of the sum-of-
squares polynomials. One possible relaxation is

μ�
κ = max

μ,s0,...,sL
μ

s.t. P(t) − μ = s0(t) + ∑L
�=1 g�(t)s�(t)

s� ∈ ∑
R[t]2, � = 0 : L

deg s0 = 2(n + κ)

deg s� = 2	n + κ − 1
2 deg g�
, � = 1 : L

(4.12)

The degrees of the sum-of-squares polynomials s� are chosen such that all the terms
in the expression of P(t) − μ have degrees as near as possible from 2(n+ κ); if the
i-th component of deg g� is odd, then the degree of ti in g�s� is odd and so equal to
2(ni +κi )−1. Using the sum-of-squares parameterization (3.75) for the polynomials
s�, � = 0 : L , the problem (4.12) becomes an SDP problem; it is essential that the
relation between the coefficients of P and those of s� is linear. Since we will discuss
in more detail a similar problem for trigonometric polynomials, the precise form of
the SDP problem is left as an exercise. We note only that relaxations alternative to
(4.12) can be obtained by bounding the total degree of the terms g�s�. �

4.2 Trigonometric Polynomials Positive on Frequency
Domains

We tackle now a problem similar to the basic one from the previous section, this time
for trigonometric polynomials. Let

D = {ω ∈ [−π, π ]d | D�(ω) ≥ 0, � = 1 : L} (4.13)

be a nonempty frequency domain defined by the positivity of L given trigonometric
polynomials D�(z), possibly with complex coefficients, as in (3.1). We want to
characterize the set of trigonometric polynomials that are positive on D. We note
that D is bounded and so we expect parameterizations similar to those from the

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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previous section. It turns out that without any supplementary condition, a “linear”
sum-of-squares representation is valid, in the spirit of Theorems 4.4 and 4.5.

Theorem 4.11 If a polynomial R ∈ Cn[z] defined as in (3.1) is positive on D (i.e.,
R(ω) > 0, ∀ω ∈ D), then there exist sum-of-squares polynomials S�(z), � = 0 : L,
such that

R(z) = S0(z) +
L∑

�=1

D�(z) · S�(z). (4.14)

Moreover, if R(z) and the polynomials D�(z) defining D have real coefficients, then
the above sum-of-squares polynomials have also real coefficients.

The proof is given in Sect. 4.5. The idea is to transform trigonometric polynomials
into real ones, apply Theorem 4.5 and go back.

Remark 4.12 The reciprocal of Theorem 4.11 holds in the sense that if the form
(4.14) exists, then R(ω) ≥ 0,∀ω ∈ D; the proof is trivial. So, someof the polynomials
that are nonnegative on D have the form (4.14), but not all of them.

We note also that the degrees of the sum-of-squares polynomials from (4.14) may
be arbitrarily high, at least theoretically. �

Remark 4.13 What happens in the particular case whereD = [−π, π ]d , i.e., L = 0
in (4.13)? This is the case of globally positive trigonometric polynomials. From
Theorem 4.11, we draw the simple conclusion that such a polynomial is sum-of-
squares. This is actually Theorem 3.5! �

Remark 4.14 Another natural question is: What do we obtain when d = 1, i.e., for
univariate polynomials? In this case, the domain D can be only an interval [α, β] or
an union of intervals.

In the case of a single interval, for complex coefficients, the simplest description
(4.13) is via the polynomial (1.34–1.36) and so Theorems 4.11 becomes 1.15. In
particular, relation (4.14) becomes (1.33); however, in the univariate case we know
that the sum-of-squares polynomials (actually pure squares in the univariate case)
have the minimum possible degree!

For real coefficients,weobtainTheorem1.17,where (1.37) corresponds to the case
whereD is described by a single polynomial, namely (cosω−cosβ)(cosα−cosω),
while in (1.38) the “domain” D is described by two polynomials, cosω − cosβ and
cosα − cosω. Again, the degrees are minimal. Moreover, in (1.38) the term S0(z)
from (4.14) is not present and so the sum-of-squares decomposition has two terms
instead of three.

In the case of a union of intervals, which can be described by D1(z) only, relation
(4.14) obviously holdswith L = 1.Opposite to the case of a single interval, the degree
of the sum-of-squares can be larger than the minimum. This is the trigonometric
polynomial version of Remark 1.20. Exercise: Prove the real polynomials relation
(1.41), using Theorem 4.4. Hint: Take p0(t) = 1 + g1(t) and note that W(p0) is
bounded. �

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
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Remark 4.15 The matrix coefficients case has a very similar description. With the
notation from Sect. 3.10, Theorem 4.11 stands with obvious modifications: If the
polynomial (3.104) is positive definite on D (i.e., R(ω) � 0, ∀ω ∈ D), then there
exist sum-of-squares polynomials S�(z), � = 0 : L , such that

R(z) = S0(z) +
L∑

�=1

D�(z) · S�(z). (4.15)

All the above Remarks 4.12–4.14 apply as well, although there are no specific results
for an interval [α, β]. �

4.2.1 Gram Set Parameterization

We now transform (4.14) by using the Gram matrix parameterization (3.32) of sum-
of-squares polynomials.

Theorem 4.16 If the trigonometric polynomial R(z) is positive on the domain D
defined as in (4.13), then there exist matrices Q� � 0, � = 0 : L, such that

rk = tr
[
Θ k Q0

] +
L∑

�=1

tr
[
Ψ �k Q�

]
, k ∈ H, (4.16)

where H is a halfspace, the constant matrices Ψ �k are given by

Ψ �k =
∑

i+l=k

(d�)iΘ l (4.17)

and the matrices Θ k are defined by (3.33); by (d�)i we denote the coefficients of
D�(z). If the polynomials R(z) and D�(z) have real coefficients, then the matrices
Q� are real. Otherwise, the matrices Q� are complex.

Proof The matrices Q� are Grammatrices associated with the sum-of-squares S�(z)
from (4.14) and so obey to relations similar to (3.32). The coefficient of z−k of
a product D�(z)S�(z) from (4.14) is

∑
i+l=k(d�)i (s�)l . Since the parameterization

(3.32) says that (s�)l = trΘ l Q�, the relations (4.16) and (4.17) result immediately
by identification in (4.14). �

We name {Q�}�=0:L a Gram set associated with the polynomial R(z) that is posi-
tive onD. Generally, there are many Gram sets associated with a single polynomial.

Remark 4.17 The reciprocal of Theorem 4.16 holds in the sense that if the matrices
Q� � 0, � = 0 : L , exist such that (4.16) holds, then R(ω) ≥ 0, ∀ω ∈ D. (Note
that similar to the reciprocal of Theorem 4.11, the strict positivity is replaced by
nonnegativity.) The proof is immediate, since (4.16) is equivalent to (4.14). �

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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Remark 4.18 The sizes of the Gram matrices Q� from (4.16) depend on the degrees
of the sum-of-squares polynomials from (4.14). Since these degreesmust be bounded,
we actually can implement only a sufficient positivity condition. Such a relaxation
is similar to that discussed in Sect. 3.5. So, in a practical implementation, we use the
degrees values

deg S0 = m,

deg S� = m − deg D�, � = 1 : L ,
(4.18)

where m ≥ n; the difference m − n is usually small, preferably equal to zero. It is
clear that a largerm allows a better approximation by (4.16) of the set of polynomials
that are positive on D, at the cost of higher complexity. �

Problem Constrained_min_poly_valueWith trigonometric polynomials, the prob-
lem is

μ� = max
μ

μ

s.t. R(ω) − μ ≥ 0, ∀ω ∈ D
(4.19)

We appeal to Theorem 4.11, by using the expression (4.14) for the polynomial R(z)−
μ that is positive on D, and obtain the equivalent problem

μ� = max
μ,S0,...,SL

μ

s.t. R(z) − μ = S0(z) + ∑L
�=1D�(z)S�(z)

S� ∈ RS[z], � = 0 : L

(4.20)

We can solve only a relaxed version of this problem, by imposing the degree bounds
(4.18) to obtain

μ�
m = max

μ,Q0,...,QL

μ

s.t. r0 − μ = tr[Q0] + ∑L
�=1tr[Ψ �0Q�]

rk = tr[Θ k Q0] + ∑L
�=1tr[Ψ �k Q�], k ∈ H \ {0}

Q� � 0, Q� ∈ R
N�×N� , � = 0 : L

(4.21)

where N� is given by formulas similar to (3.45) for the degrees from (4.18). (In
particular, N0 has exactly the expression (3.45).) The solutions of (4.21) obey to
the relation (3.49), i.e., a better approximation of the true solution is expected for
larger m. �

Example 4.19 Let us consider the frequency domain

D = {ω ∈ [−π, π ]2 | cosω1 + cosω2 − 1 ≥ 0}. (4.22)

It is one of the simplest possible domains, since it is defined by a single polynomial,
i.e., L = 1 in (4.13), and the degree of this polynomial is (1, 1). The shape of the
domain is illustrated in Fig. 4.1.

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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Fig. 4.1 Frequency domain
(4.22), in black, and its
complementary, in gray
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We solve the problem (4.21) for the polynomial (3.36) and the domain (4.22). (See
Example 3.18 for the global minimum of this polynomial and Fig. 3.3 for the graph
of the polynomial.) We obtain μ�

m = 26.7952 for several values of m ≥ n = (2, 1),
including m = n. So, in this case, we can assume that the smallest degree relaxation
gives the true optimum.

We now solve the same problem, but for the complementary of the considered
domain, i.e., [−π, π ]2 \ D. The complementary is obtained by simply changing
the sign of the polynomial from (4.22). With m = n, the solution of (4.21) is
μ�
n = 1.8214, which coincides with the global optimum computed in Example 3.18.

�

Example 4.20 Let us now solve the problem (4.21) for the polynomial (3.17); the
computation of its global minimum was discussed in Example 3.19; remind that
the smallest degree sum-of-squares relaxation was unable to find the true minimum.
The frequency domain on which the minimum is searched is [−π, π ]2 \ D, with D
defined by (4.22). We see from Figs. 4.1 and 3.4 that this domain contains the global
minimum μ� = 0. Solving the problem (4.21) with m = n = (2, 2), we obtain the
negative value μ�

n = −0.01177 (the same as for the global minimum, see Example
3.19; remark that this is actually the worst value we could obtain, since it corresponds
to a decomposition R + μ�

n = S0 + D1S1 in which S1 = 0; we could hope that S1
would contribute to increasing the value of the minimum). Again, the minimum
degree relaxation is not successful. However, for anym > n, the solution isμ�

m = 0,
i.e., all other higher degree relaxations succeed in finding the true minimum. �

http://dx.doi.org/10.1007/978-3-319-53688-0_3
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http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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Remark 4.21 Problems such as (4.19) can be solved with constraints that are an
intersection, union, and/or complementary of sets defined as in (4.13). The intersec-
tion of several domains is intrinsic to the definition (4.13); the resulting domain is
defined by all the polynomials defining the initial domains. The complementary of
D from (4.13) is the union of domains characterized by the positivity of a single
trigonometric polynomial; more exactly, the complementary is

L⋃

�=1

{ω ∈ [−π, π ]d | − D�(ω) ≥ 0}. (4.23)

So, we have to see only how union can be treated. Consider two domains, D1 and
D2, defined as in (4.13), with polynomials D1�(z), � = 1 : L1, and, respectively,
D2l(z), l = 1 : L2. In order to solve the problem

μ� = max
μ

μ

s.t. R(ω) − μ ≥ 0, ∀ω ∈ D1 ∪ D2

(4.24)

we express the positive polynomial R(z) − μ using (4.14) on each of the domains
D1 and D2, obtaining

μ� = max
μ,S10,...,S1L1 ,S20,...,S2L2

μ

s.t. R(z) − μ = S10(z) + ∑L1
�=1D1�(z)S1�(z)

R(z) − μ = S20(z) + ∑L2
l=1D2l(z)S2l(z)

S1�, S2l ∈ RS[z], � = 0 : L1, l = 0 : L2

(4.25)

This problem can be relaxed to an SDP form similar to (4.21); the number of positive
semidefinite matrices is L1 + L2 + 2 (one for each sum-of-squares polynomial).
We conclude that any intersection or union of domains (4.13) can be handled, the
complexity of the SDP relaxation being roughly proportional to the total number of
trigonometric polynomials defining the domains. An estimate of the complexity can
be computed as for problem (3.39), depending on the degree of the relaxation.

Examples using unions of domains will be given later in the chapter dedicated to
FIR filters design. �

Remark 4.22 In view of Remark 4.15, the extension of Theorem 4.16 to matrix
polynomials (3.104) is made by only changing (4.16) into

Rk = TR
[
(Θ k ⊗ Iκ)Q0

] +
L∑

�=1

TR
[
(Ψ �k ⊗ Iκ)Q�

]
, k ∈ H. (4.26)

The proof is the same, but Theorem 3.37 is used for the parameterization. �

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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4.2.2 Gram-Pair Set Parameterization

For polynomials with real coefficients, an LMI form of Theorem 4.11 can be obtained
via the Gram pair parameterization (3.99).

Theorem 4.23 If the symmetric polynomial R ∈ R[z] is positive on the domain D
defined as in (4.13), with D� ∈ R[z], then there exist matrices Q� � 0, S� � 0,
� = 0 : L, such that

rk = tr
[
Φk Q0

] +
L∑

�=1

tr
[
Φ̃�k Q�

]
+ tr [ΛkS0]+

L∑

�=1

tr
[
Λ̃�kS�

]
, k ∈ H, (4.27)

where H is a halfspace, the coefficient matrices are defined by

Φ̃�k = 1

2

∑

i+l=k

(d�)iΦ l + 1

2

∑

i−l=k

(d�)iΦ l , (4.28)

Λ̃�k = 1

2

∑

i+l=k

(d�)iΛl + 1

2

∑

i−l=k

(d�)iΛl , (4.29)

and the matrices Φk, Λk are those from (3.99).

Proof The matrices (Q�, S�) are Gram pairs associated with the sum-of-squares
S�(z) from (3.99) and so obey to relations similar to (3.99). Using the first trigono-
metric identity from (2.77), we can write

D�(ω)S�(ω) =
∑

i

∑

l

(d�)i (s�)l · 1
2
[cos(i + l)Tω + cos(i − l)Tω].

After inserting this relation into

R(ω) = S0(ω) +
L∑

�=1

D�(ω) · S�(ω)

and identifying the coefficients of the “monomials” cos kTω, the theorem is proved.
(Note that here the indices are not confined to a halfplane, as in (3.101).) �

We name {(Q�, S�)}�=0:L a Gram-pair set associated with the polynomial R(z).
The remarks and the examples following Theorem 4.16 can be easily adapted to the
parameterization (4.27).

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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4.3 Bounded Real Lemma

For univariate polynomials, the existence of the spectral factorization (1.11) allows
the liberty of replacing, in many optimization problems, the causal polynomial H(z)
with a nonnegative R(z), representing the squared magnitude R(ω) = |H(ω)|2. The
lack of a spectral factorization for multivariate polynomials makes impossible such
an approach, narrowing the field of applications where positive polynomials could
be used. However, another type of result can be derived, specifically a Bounded Real
Lemma (BRL) for multivariate polynomials (or multidimensional FIR systems, if
we adopt a signal processing terminology).

Let H(z) be a d-variate positive orthant polynomial, defined as in (3.5). A BRL
is a characterization of the inequality

|H(ω)| ≤ γ, ∀ω ∈ D, (4.30)

where the positive real number γ and the frequency domain D are given. Typically,
the inequality (4.30) is desired globally, i.e., D = [−π, π ]d . In this section, we
will approximate (4.30) with two LMIs, for frequency domains defined as in (4.13).
Practically, the approximations lead to relaxations similar to those already discussed.

4.3.1 Gram Set BRL

We start with two simple, but important results on the Gram set associated with a
polynomial that is positive on D.

Remark 4.24 Let h be a vector containing the coefficients of the positive orthant
polynomial H(z), as in (3.27). The polynomial

Rh(z)
Δ= H(z)H∗(z−1) = ψT (z−1)hhHψ(z) (4.31)

is globally nonnegative. Comparing (4.31) with (3.28), we see that Y 0 = hhH � 0
is a Grammatrix associated with Rh(z). We can also interpret Rh(z) as a polynomial
nonnegative onD, having trivially the form (4.14), with S0(z) = Rh(z) and S�(z) =
0, � = 1 : L . So, a relation like (4.16) holds, with the Gram set

Y 0 = hhH , Y � = 0, � = 1 : L . (4.32)

We have thus associated a special Gram set with Rh(z). �

The second result relates theGram sets of two polynomials that obey to amajoriza-
tion relation on a frequency domain. The following result, which is a generalization
of problem P 3.8a, holds even if we extend the notion of Gram set associated with a

http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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polynomial R(z) to any matrices Q� that respect (4.16), even if they are not positive
semidefinite.

Lemma 4.25 Let R(z)and R̃(z)be two trigonometric polynomials and let { Q̃�}�=0:L
be a Gram set associated with R̃(z). If R(ω) > R̃(ω) on a frequency domain D
defined as in (4.13), then there exists a Gram set {Q�}�=0:L associated with R(z),
such that Q� � Q̃�, � = 0 : L.

Reciprocally, if the Gram sets satisfy Q� � Q̃�, � = 0 : L, then the associated
polynomials respect the relation R(ω) ≥ R̃(ω), ∀ω ∈ D.

Proof The polynomial X (z) = R(z) − R̃(z) is positive on D and so, according to
Theorem 4.16, it has a Gram set {X�}, � = 0 : L , with X� � 0. Due to the linearity
of (4.16), it results that {Q� = Q̃� + X�} is a Gram set associated with R(z). It
follows that Q� � Q̃�.

The reciprocal results by going back in the above reasoning (and noticing that
strict inequality may not be always obtained). �

We can now state the BRL, for an inequality more general than (4.30).

Theorem 4.26 Let H(z) and A(z) be positive orthant polynomials and D a fre-
quency domain defined as in (4.13). Denote

R(z) = A(z)A∗(z−1). (4.33)

If the inequality
|H(ω)| < |A(ω)|, ∀ω ∈ D, (4.34)

is satisfied, then there exist matrices Q� � 0, � = 0 : L, such that the relations
(4.16) and [

Q0 h
hH 1

]
� 0 (4.35)

hold, where h is the vector of the coefficients of the filter H(z) defined by (3.27).
Reciprocally, relations (4.16) and (4.35) imply |H(ω)| ≤ |A(ω)|.

Proof The inequality (4.34) holds if and only if |A(ω)|2 > |H(ω)|2, which is the
same with R(ω) > Rh(ω), ∀ω ∈ D, where Rh is defined in (4.31). If the latter
inequality holds, then, by applying Lemma 4.25 with R̃ = Rh , there exists a Gram
set {Q�}�=0:L associated with R(z) such that Q0 � Y 0 and Q� � Y �, � = 1 : L ,
where Y � are the Grammatrices from (4.32), associated with Rh(z). This means that
(4.16) holds for Q� � 0, � = 0 : L . Moreover, the inequality

Q0 � hhH (4.36)

is equivalent to (4.35) via a Schur complement argument.
Following backwards the above reasoning and using the reciprocal of Lemma

4.25, if (4.16) and (4.35) hold for Qi � 0, it results that |H(ω)| ≤ |A(ω)|. �

http://dx.doi.org/10.1007/978-3-319-53688-0_3
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The traditional form of the BRL results by taking A(z) = γ in Theorem 4.26.

Corollary 4.27 If the inequality

|H(ω)| < γ, ∀ω ∈ D, (4.37)

holds, then there exist matrices Q� � 0, � = 0 : L, such that

γ 2δk = tr
[
Θ k Q0

] +
L∑

�=1

tr
[
Ψ �k Q�

]
, k ∈ H, (4.38)

where H is a halfspace, and [
Q0 h
hH 1

]
� 0,

where δ0 = 1 and δk = 0 if k �= 0.
Reciprocally, relations (4.38) and (4.35) imply (4.30).

Remark 4.28 Since the BRL is a consequence of Theorem 4.11, applied for the
positive polynomial |A(ω)|2−|H(ω)|2, we can implement only a sufficient bounded
realness condition, by choosing a degree m of this polynomial. It is clear that we
have to respect m ≥ max(deg A, deg H). For a given degree m, the sizes of the
Gram matrices result as discussed in Remark 4.18. Accordingly, zero coefficients
are added to the polynomials (4.33) and H(z) (for the latter, in the vector h from
(3.27)) in order to formally raise their degree up to m. �

Remark 4.29 In the particular case of univariate polynomials (d = 1), there are only
two Gram matrices, Q0 and Q1. If D is an interval, the matrices (4.17) are defined
using the polynomial (1.34–1.36). For the reasons discussed in Remark 4.14, it is
enough to take m = max(deg A, deg H) for obtaining a condition equivalent to
(4.30). �

Remark 4.30 In the important particular case D = [−π, π ]d , the standard BRL has
the following form. If |H(ω)| < γ , ∀ω ∈ [−π, π ]d , then there exists a matrix Q � 0
such that

γ 2δk = tr[Θ k Q], k ∈ H,
[

Q h
hH 1

]
� 0.

(4.39)

The comments from the previous two Remarks apply here as well. �

Problem (H∞-norm) A simple application of the BRL is the computation of the
H∞-norm of a FIR system described by the transfer function (3.5). The definition

‖H‖∞ = max
ω∈[−π,π]d

|H(ω)| (4.40)

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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can be written as

‖H‖∞ = min
γ

γ

s.t. |H(ω)| ≤ γ, ∀ω ∈ [−π, π ]d
(4.41)

Using the BRL results presented above, we obtain the SDP relaxation

‖H‖∞ = min
γ,Q

γ

s.t. (4.39), Q � 0

(4.42)

We note that a practically equivalent (in nature, but not in form) solution could be
obtained by computing the maximum value of the polynomial |H(ω)|2, using the
approach from Sect. 3.5. Besides the numerical advantage of not having to square the
polynomial, solving (4.42) is the only possible way when the coefficients of H(z)
are not constant, but depend linearly on some parameters; in this case, squaring
destroys the convexity of the problem. An application of this type will be presented
in Sect. 5.3, dedicated to deconvolution. �

Example 4.31 We approximate the H∞ norm of the 2-D FIR filter

H(z1, z2) = (z−1
1 + z−1

2 )3 + z−2
2 + z−1

2 (4.43)

by solving (4.42), for the smallest degree of relaxation, i.e.,m = n = (3, 3) (the size
of Q is thus 16× 16). The result is 10 (within an error less than 10−8), which is the
true H∞ norm of the system (4.43). Various other BRLs proposed in the literature
for 2-D systems (not necessarily FIR) fail to give the correct value; for example, the
BRL from [3] leads to a value of 10.2. The advantage of the BRL presented here
comes from its adequacy to the FIR (i.e., polynomial) case. �

4.3.2 BRL for Polynomials with Matrix Coefficients

Consider the positive orthant polynomial

H(z) =
n∑

k=0

Hkz−k, (4.44)

with matrix coefficients Hk ∈ R
p×κ ; note that they may be rectangular, unlike the

square coefficients of a symmetric polynomial (3.104). The BRL inequality (4.30)
is replaced by

σmax[H(ω)] ≤ γ, ∀ω ∈ D, (4.45)

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_5
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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where σmax [·] is the maximum singular value of its matrix argument. This extension
is obviously related to the H∞ norm of MIMO systems, defined by

‖H‖∞ = sup
ω∈[−π,π]d

σmax[H(ω)]. (4.46)

Similarly to the scalar case (3.27), we stack the coefficients of (4.44) in a block
column in lexicographic order of the indices

H̄ =
⎡

⎢⎣
H0
...

Hn

⎤

⎥⎦ ∈ R
Np×κ , (4.47)

where N is defined in (3.26). The generalization of Corollary 4.27 to matrix coeffi-
cients is the following.

Theorem 4.32 Let H(z) be the polynomial (4.44). If the inequality

σmax[H(ω)] < γ, ∀ω ∈ D, (4.48)

holds, then there exist matrices Q� � 0, � = 0 : L, such that

γ 2δk I p = TR
[
(Θ k ⊗ I p)Q0

] +
L∑

�=1

TR
[
(Ψ �k ⊗ I p)Q�

]
, k ∈ H, (4.49)

where H is a halfspace, and [
Q0 H̄

H̄
T
Iκ

]
� 0. (4.50)

Reciprocally, relations (4.49) and (4.50) imply σmax[H(ω)] ≤ γ, ∀ω ∈ D.

Proof Similar to that of Corollary 4.27, using Remark 4.22. See problem P 4.6. �

Remark 4.33 Since H(ω) and HT (ω) have the same singular values, we can replace
(4.49) and (4.50) by their correspondent for the transposed system, such that the size
of the matrices Q� is smaller. To gain efficiency, the transposed system should be
used whenever p > κ . �

Sections5.3 and 9.2 will present applications of the BRL for polynomials with
matrix coefficients.

4.3.3 Gram-Pair Set BRL

Returning to the scalar case, if the polynomial H(z) has real coefficients, the Gram
pair parameterization (3.99) can also be used for obtaining a BRL in the style of

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_5
http://dx.doi.org/10.1007/978-3-319-53688-0_9
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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Theorem 4.26. We follow the same preliminary steps. Firstly, we obtain an analogue
of Remark 4.24. As in (3.93), we note that the polynomial

Rh(ω)
Δ= |H(ω)|2 = χT

c (ω)aaTχ c(ω) + χT
s (ω)bbTχ s(ω), (4.51)

is nonnegative (the coefficient vectors a and b are defined in (3.92) and the basis
vectors χ c(ω) and χ s(ω) in (3.91)). Comparing with (3.94), we see that

Y 0 = aaT , Z0 = bbT (4.52)

is a Gram pair associated with Rh(ω). Adding to it zero matrices Y � = 0, Z� = 0,
� = 1 : L , we obtain a Gram-pair set associated with Rh(ω), which is a polynomial
(also) nonnegative on D.

The following counterpart ofLemma4.25has a similar significance: thatmajoriza-
tion of polynomials can be translated into element-wise majorization of Gram-pair
sets. It is a generalization of problem P 3.8b.

Lemma 4.34 Let R(z) and R̃(z) be two trigonometric polynomials with real
coefficients and let {( Q̃�, S̃�)}�=0:L be a Gram-pair set associated with R̃(z). If
R(ω) > R̃(ω) on a frequency domain D defined as in (4.13), then there exists a
Gram set {(Q�, S�)}�=0:L associated with R(z), such that

Q� � Q̃�, S� � S̃�, � = 0 : L . (4.53)

Reciprocally, if the Gram sets satisfy (4.53), then the associated polynomials respect
the relation R(ω) ≥ R̃(ω), ∀ω ∈ D.

Proof Similar to that of Lemma 4.25 and based on the fact that the polynomial
R(z) − R̃(z) is positive on D and, due to the linearity of (4.27), has Gram-pair sets
of the form {(Q� − Q̃�, S� − S̃�)}�=0:L ; at least one of these sets is made of positive
semidefinite matrices. �

We can formulate now the Gram-pair counterpart of Theorem 4.26.

Theorem 4.35 Let H(z) and A(z) be positive orthant polynomials with real coeffi-
cients andD a frequency domain defined as in (4.13), with D� ∈ R[z]. Denote R(z)
as in (4.33). If the inequality (4.34) is satisfied, then there exist matrices Q� � 0,
S� � 0, � = 0 : L, such that the LMIs (4.27) and

[
Q0 Cch

hTCT
c 1

]
� 0,

[
S0 Csh

hTCT
s 1

]
� 0, (4.54)

hold, where h is the vector of the coefficients of the filter H(z) defined by (3.27) and
the matrices Cc, Cs are defined in (3.92).

Proof Similar to that of Theorem 4.26. The polynomial |H(ω)|2 has the remarkable
Gram-pair set (Y �, Z�), with Y 0, Z0 defined in (4.52) and the other matrices equal

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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to zero. From Lemma 4.34, it results that the polynomial R(ω) = |A(ω)|2 has a
Gram-pair set {(Q�, S�)}�=0:L (respecting (4.27)) such that Q� � Y � and S� � Z�.
The inequalities Q0 � aaT and S0 � bbT are equivalent, via Schur complements
and using (3.92), with (4.54). �

The typical BRL form given by Corollary 4.27 and the remarks that follow Theo-
rem 4.26 can be straightforwardly adapted to the Gram pair BRL fromTheorem 4.35.

4.4 Positivstellensatz for Trigonometric Polynomials

The Positivstellensatz is a characterization, in terms of sum-of-squares polynomials,
of the nonexistence of a solution to a systemof polynomial inequalities and equalities.
We present here a somewhat particular version that does not include inequations. Let
fk ∈ R[t], k = 1 : K , g� ∈ R[t], � = 1 : L , be given d-variate polynomials. We
define the set

D( f, g) =
{
t ∈ R

d

∣∣∣∣
fk(t) = 0, k = 1 : K
g�(t) ≥ 0, � = 1 : L

}
. (4.55)

Theorem 4.36 (Positivstellensatz, Stengle 1974) The set (4.55) is empty if and only
if

1 +
K∑

k=1

fkuk +
∑

α∈{0,1}L
gα1
1 · · · gαL

L sα = 0, (4.56)

for some polynomials uk ∈ R[t] and sum-of-squares sα ∈ ∑
R[t]2.

We note that sufficiency is obvious. It there were a t ∈ D( f, g), it would follow
that fk(t) = 0, g�(t) ≥ 0 and so the left-hand term of (4.56) would be strictly
positive, which would be a contradiction.

Similarly to other results of this type, the degrees of the polynomials uk and sα
can be arbitrarily high. A bounded degree relaxation of (4.56) is an SDP problem,
due to the sum-of-squares polynomials. Such a relaxation provides only a sufficient
condition that the set (4.55) is empty.

Remark 4.37 The Positivstellensatz may be used for characterizing polynomials
that are positive on a set D(g) as in (4.1). If P(t) > 0, ∀t ∈ D(g), then the set
D(g) ∩ {t ∈ R

d | − P(t) ≥ 0} is empty and has the form (4.55), without equality
constraints. Applying Theorem4.36, it results that aP = 1+b, for some polynomials
a, b belonging to the preordering generated by g�, � = 1 : L (i.e., a, b have the form
(4.2)). Comparing this result with Schmüdgen’s Theorem 4.1, we remark that its use
for optimization is limited, due to the multiplication of P with a variable polynomial;
it can be used only if the coefficients of P are fixed, which is a rare case. However,
the Positivstellensatz has other applications. �

http://dx.doi.org/10.1007/978-3-319-53688-0_3
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The Positivstellensatz can take a simpler form under conditions similar to those
that allow passing from Theorems 4.1 or 4.2 to Theorem 4.5.

Theorem 4.38 Assume that the set of polynomials M(g) defined in (4.4) satisfies
the hypothesis of Theorem 4.5 (i.e., M(g) is an Archimedean quadratic module).
Then, the set (4.55) is empty if and only if

1 +
K∑

k=1

fkuk + s0 +
L∑

�=1

g�s� = 0, (4.57)

for some polynomials uk ∈ R[t] and sum-of-squares s� ∈ ∑
R[t]2.

Proof The sufficiency is obvious, as noted after Theorem 4.36. We prove now the
necessity. The set D(g) defined in (4.1) is compact, otherwise the polynomial (4.6)
could not belong toM(g). Then, there exist polynomials uk , k = 1 : K , such that

v(t)
Δ= 1 +

K∑

k=1

fk(t)uk(t) < 0, ∀t ∈ D(g).

Indeed, we can take uk = −α fk (where α > 0 has to be determined), which leads
to v(t) = 1 − α

∑K
k=1 fk(t)2. Since D(g) is compact and fk(t) �= 0, ∀t ∈ D(g)

(otherwise the set (4.55) would not be empty), it follows that there exists β > 0 such
that fk(t)2 ≥ β, ∀t ∈ D(g). Taking α > 1/Kβ ensures the negativity of v(t).

Since the conditions of Theorem 4.5 are satisfied, it results that −v ∈ M(g), i.e.,
there exist s� ∈ ∑

R[t]2 such that

−v = s0 +
L∑

�=1

g�s�,

which is exactly (4.57). �

We note that Theorem 4.38 also holds if the hypothesis of Theorem 4.5 is replaced
with that of Theorem 4.4.

We can now state a Positivstellensatz for trigonometric polynomials. Consider the
set

DE =
{
ω ∈ [−π, π ]d

∣∣∣∣
Ek(ω) = 0, k = 1 : K
D�(ω) ≥ 0, � = 1 : L

}
, (4.58)

where D�, Ek ∈ C[z], k = 1 : K , � = 1 : L , are given trigonometric polynomials.

Theorem 4.39 The set (4.58) is empty if and only if

1 +
K∑

k=1

Ek(z)Uk(z) + S0(z) +
L∑

�=1

D�(z)S�(z) = 0, (4.59)



142 4 Polynomials Positive on Domains

for some polynomials Uk(z) and sum-of-squares polynomials S�(z).

Proof There are (at least) two possible ways of proving the theorem. The first is simi-
lar to the proof of Theorem 4.11: the transformations from Sect. 3.11.1 are employed
to obtain a similar problem with real polynomials, for which Theorem 4.38 holds.

The second proof is similar to that of Theorem 4.38. Since trigonometric polyno-
mials are continuous functions and the domain (4.13) is compact, there exist poly-
nomials Uk(z), k = 1 : K , such that

V (ω)
Δ= 1 +

K∑

k=1

Ek(ω)Uk(ω) < 0, ∀ω ∈ D.

Applying Theorem 4.11 for the polynomial −V (z), we obtain (4.59). �

We note that if the polynomials D�(z) and Ek(z) have complex coefficients, then
the sum-of-squares S�(z) and the polynomials Uk(z) from (4.59) have also complex
coefficients. However, if the polynomials defining (4.58) have real coefficients, then
S�(z) and Uk(z) have also real coefficients. The implementation of the Positivstel-
lensatz from Theorem 4.39 and its applications to stability tests are discussed in
Sect. 7.1.3.

4.5 Proof of Theorem 4.11

Complex coefficients. We assume for the beginning that the polynomial R(z) has
complex coefficients. Using standard trigonometric equalities, the polynomial (3.9)
can be transformed into the form

R(ω) =
(n,n)∑

k=0

ck

d∏

i=1

(cosωi )
ki (sinωi )

ki+d , (4.60)

where the relation between the coefficients ck ∈ R and the coefficients of R(z) needs
no explicit form; we need only to know that one can go from (3.9) to (4.60) and back.
Defining t ∈ R

2d by

ti = cosωi , ti+d = sinωi , i = 1 : d, (4.61)

we can write

R(ω)
Δ= P(t) =

(n,n)∑

k=0

ck t k. (4.62)

The polynomial P ∈ R[t] is defined on the set

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_7
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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T = {t ∈ R
2d | t2i + t2i+d = 1, i = 1 : d}. (4.63)

Similarly, the trigonometric polynomials D�(ω) from (4.13) are transformed into
the real polynomials d�(t). We denote

Dr = {t ∈ R
2d | d�(t) ≥ 0, � = 1 : L}. (4.64)

By the above transformation, the domain D defined in (4.13) is transformed into

D(g) = Dr ∩ T . (4.65)

We can write D(g) in the form (4.1), using the following L + 2d polynomials:

g�(t) =

⎧
⎪⎨

⎪⎩

d�(t), � = 1 : L ,

−t2�−L − t2�+d−L + 1, � = L + 1 : L + d,

t2�−d−L + t2�−L − 1, � = L + d + 1 : L + 2d.

(4.66)

SinceD is not empty, it follows thatD(g) from (4.65) is also not empty. Thus,M(g)
defined as in (4.4) with the polynomials (4.66) is a quadratic module.

Moreover, it results from (4.66) that

p0(t)
Δ= d −

2d∑

i=1

t2i =
L+d∑

�=L+1

g�(t) · 1 ∈ M(g). (4.67)

This shows that the quadratic module M(g) is Archimedean. We can now apply
Theorem 4.5. Since by construction we have P(t) > 0, ∀t ∈ D(g), it results that
P ∈ M(g), i.e.,

P(t) = s0(t) +
L+2d∑

�=1

g�(t)s�(t), (4.68)

with s� ∈ ∑
R[t]2.We transform back to trigonometric polynomials by using (4.61).

Since g�(t) = 0 for any t ∈ T , � = L + 1 : L + 2d, we obtain

R(ω) = S0(ω) +
L∑

�=1

D�(ω) · S�(ω), (4.69)

where S�(ω) are sum-of-squares. The extension from T
d to C

d is made via (3.10)
and so we obtain (4.14).

Real coefficients. If R(z) and Di (z) have real coefficients, then the equality (4.14)
still stands, but now the polynomials S�(z) are the “real parts” (in the sense of
retaining the real part of the coefficients) of some sum-of-squares. It remains to
prove that these S�(z) are still sum-of-squares. Denote

http://dx.doi.org/10.1007/978-3-319-53688-0_3
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H(z) =
n∑

k=0

(uk + jvk)z−k = U (z) + jV (z) (4.70)

a positive orthant polynomial, with U, V ∈ R[z], and let

E(z) = H(z)H∗(z−1) (4.71)

be a term of a sum-of-squares polynomial. Using (4.70), it results that

E(z) = U (z)U (z−1) + V (z)V (z−1) + j[U (z−1)V (z) −U (z)V (z−1)]. (4.72)

Thus, the real part of E(z) is a sum of two squares. We conclude that the real part of
a sum-of-squares is sum-of-squares.

4.6 Bibliographical and Historical Notes

Theorems 4.1, 4.2, 4.4 and 4.5 are authored by, respectively, Schmüdgen [4], Jacobi
and Prestel [5], Putinar [6], and Jacobi [7] (a simpler proof of the latter theorem
appears in [8]); some particular cases have been previously investigated, e.g., when
the constraints from (4.1) are linear [9]. The remarkable synchronization between
these results on positive polynomials and the development of semidefinite program-
ming seems to bemostly coincidental. However, the applicative side of thementioned
theorems has been grasped quickly by researchers in optimization. For example, the
relaxations for finding the minimum value of a polynomial, subject to polynomial
positivity constraints have been proposed by Lasserre [10]. Some results for matrix
polynomials can be found in [11].

The results fromSects. 4.2 and4.3 appear in [12], in theirGramset form; theGram-
pair set form is a direct application of the results from Sect. 3.9. The first BRL for
univariate trigonometric polynomials, including the matrix case, was given in [13].
BoundedReal Lemmas for discrete-time systems (in state-space representation) have
been proposed previously in [3, 14]; they are valid for recursive systems (although
they may be implemented with SDP only for FIR systems), but work only globally,
i.e., not on a frequency domain like (4.13).

The Positivstellensatz Theorem 4.36 is due to Stengle [15]. Its use for solving
optimization problems with polynomials using SDP was initiated by Parrilo [16,
17]. Theorem 4.39 appeared in [18].

Problems

P 4.1 A relaxation method for finding the unconstrained minimum of a real poly-
nomial P(t) was presented in Sect. 3.7, based on Theorem 3.10. Assuming that the
optimal t is finite (and in a region that can be roughly guessed), devise a different

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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relaxation, based on solving a constrained problem like (4.8). (Hint: use the polyno-
mial (4.11).)

P 4.2 An optimization problem with polynomials that are positive on a frequency
domain (4.13) is solved in relaxed form using (i) the Gram set parameterization
(4.16) and (ii) the Gram pair set parameterization (4.27). When it is certain that the
results coincide?

P 4.3 Using the Bounded Real Lemma from Corollary 4.27, formulate an SDP
problem to find the value of the real parameters a, b for which the H∞ norm of the
system

H(z1, z2) = (z−1
1 + z−1

2 )3 + az−2
2 + bz−1

2

is minimum.

P 4.4 (BRL with real matrices for complex polynomials) Let H(z) be a n-th order
causal polynomial with complex coefficients. Prove that we have |H(ω)| ≤ γ if and
only if there exists a positive semidefinite matrix Q ∈ R

(n+1)×(n+1) such that

γ 2δk = tr[Γ k Q],
⎡

⎣
Q a b
aT 1 0
bT 0 1

⎤

⎦ � 0,

where a and b depend on the coefficients of H(z) as in the relations before (2.72)
and the matrices Γ k appear in (2.79).

Generalize this result to multivariate polynomials (after reviewing P 3.9).
Finally, generalize the result for the case where the inequality H(ω) < γ is not

valid globally, but on a frequency domain (4.13).

P 4.5 Let H(z) andG(z) be positive orthant polynomials andD a frequency domain
(4.13). Show that

|H(ω)|2 + |G(ω)|2 < γ 2, ∀ω ∈ D,

if and only if there exist matrices Q� � 0, � = 0 : L , such that the LMIs (4.38) and

⎡

⎣
Q0 h g
hT 1 0
gT 0 1

⎤

⎦ � 0

hold, where h and g are the vectors of coefficients.
Formulate a similar result using the Gram-pair set parameterization.

P 4.6 Prove the matrix polynomial BRL Theorem 4.32, on the following steps.
1. σmax[H(ω)] < γ onD if and only if R(z) = γ 2 I p − H(z)HT (z−1) is positive

on D.

http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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2. H̄ H̄
T
is a Gram matrix for H(z)HT (z−1).

3. R(z) is positive on D if there exists a Gram set Q� ≥ 0 associated with γ 2 I p,

which is equivalent to (4.49), such that Q0 � H̄ H̄
T
, which is equivalent to (4.50).

Extend the result for characterizing the inequalityσmax[H(ω)] < |A(ω)|,∀ω ∈ D,
instead of (4.48), where A(z) is given.

P 4.7 Remind the definition of 2D hybrid polynomials fromP 3.10 and the notations
therein. Assume that the domain

D = {(t, z) ∈ R × T | D�(t, z) ≥ 0, � = 1 : L}, (4.73)

where D�(t, z) are defined as in (3.129), is bounded and thus D ⊂ [a, b] × T for
some constants a and b; we can assume with no loss of generality that DL(t, z) =
(t − a)(b − t). Prove that if a polynomial (3.129) is positive on D, then there exist
sum-of-squares S�(t, z), � = 0 : L , such that

R(t, z) = S0(t, z) +
L∑

�=1

D�(t, z) · S�(t, z). (4.74)

Equivalently, there exist positive semidefinite matrices Q�, � = 0 : L , such that

rk1,k2 = tr[T k1,k2 Q0] +
L∑

�=1

tr[Ψ �,k1,k2 Q�], (4.75)

where T k1,k2 = Θk2 ⊗ Υ k1 and

Ψ �,k1,k2 =
∑

i1+ j1=k1

∑

i2+ j2=k2

(d�)i1,i2T j1, j2 . (4.76)

P 4.8 (BRL for hybrid polynomials) Let H(t, z) be a hybrid polynomial that is
causal in z and h the vector of its coefficients, arranged as usual. If the inequality
|H(t, z)| < γ , ∀(t, z) ∈ D, holds for D defined in (4.73), then there exist matrices
Q� � 0, � = 0 : L , such that

γ 2δk1k2 = tr[T k1,k2 Q0] +
L∑

�=1

tr[Ψ �,k1,k2 Q�], (4.77)

where the notations are like in the previous problem, δk1k2 is the Kronecker symbol,
and [

Q0 h
hH 1

]
� 0. (4.78)

Conversely, (4.77) and (4.78) imply |H(t, z)| ≤ γ , ∀(t, z) ∈ D.

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3


4.6 Bibliographical and Historical Notes 147

P 4.9 Let R ∈ C[z] be a polynomial that is positive on the domain (4.13). Using the
Positivstellensatz Theorem 4.39, show that there exist sum-of-squares polynomials
S(z) and S�(z), � ∈ 0 : L , such that

S(z)R(z) = 1 + S0(z) +
L∑

�=1

D�(z)S�(z).

Compare this result with Theorem 4.11.
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Chapter 5
Design of FIR Filters

Abstract Filter design is one of the perennial topics in signal processing. FIR filters
are often preferred for their simple implementation and robustness, so they are an ap-
propriate subject for this first chapter devoted to applications. All the design methods
presented here are based on positive trigonometric polynomials and the associated
optimization tools; they are optimal for 1D filters and practically optimal for 2D
filters. This is in contrast with many other methods that approximate the optimum,
either from a desire to obtain rapidly the solution or from a lack of instruments that
give optimality. We treat here three basic design problems: 1D filters, 2D filters, and
deconvolution. For each problem, we consider several design specifications. In the
2D (and multidimensional) case, at the time of apparition, the methods were very
different from those present in the literature.

5.1 Design of FIR Filters

In this section, we present three optimization methods for FIR filters, based on the
LMIs described in the previous chapters. Although, for most applications, FIR filters
can be satisfactorily designed using approximate constraints—and not exactly, as
below—the presented methods deserve careful study, as they solve the simplest
instances of more general problems. Let

H(z) =
n∑

k=0

hkz
−k (5.1)

be an FIR filter of order n, with real coefficients. For simplicity, we design only low-
pass filters, the generalization to other types being straightforward. The passband is
[0, ωp]; the stopband is [ωs, π ]; and their edgesωp andωs are given. A typical design
of such a filter is based on the peak constrained least squares (PCLS) optimization, in
which the stopband energy is minimized, while the maximum error (with respect to
1 in the passband and 0 in the stopband) is kept below some prescribed bounds. Since

© Springer International Publishing AG 2017
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there will be differences between the design specifications for the three methods, we
give here only the common information. The stopband energy of an FIR filter is

Es = 1

π

∫ π

ωs

|H(ω)|2dω. (5.2)

Denoting, as usual, the vector of filter coefficients by h, the stopband energy is given
by the quadratic form

Es = hTCh, (5.3)

where C = Toep(c0, c1, . . . , cn) � 0 and

ck =
⎧
⎨

⎩
1 − ωs/π, if k = 0,

− sin kωs

kπ
, if k > 0.

(5.4)

In terms of the squaredmagnitude R(ω) = |H(ω)|2, the stopband energy is the linear
function

Es = c0r0 + 2
n∑

k=1

ckrk . (5.5)

Refer to Sect. 2.3 for details on the transformation from (5.3) to (5.5). Notice also
that both functions (5.3) (since C is positive semidefinite) and (5.5) are convex in
their variables (the coefficients of H(z) and R(z), respectively).

We remind that the coefficients of a polynomial R̃(z) which is nonnegative on an
interval [α, β] can be parameterized via an LMI. For example, using Theorem1.17
and denoting cosα = a, cosβ = b, positivity on [α, β] is equivalent to the existence
of positive semidefinite matrices Q1 ∈ R

(n+1)×(n+1), Q2 ∈ R
(n−1)×(n−1) such that

r̃k = tr[Θk Q1] + tr
[(−(ab + 1

2 )Θk + a+b
2 (Θk−1 + Θk+1)

− 1
4 (Θk−2 + Θk+2)

)
Q2

]

Δ= Lk,α,β(Q1, Q2). (5.6)

A similar equality, but with smaller matrices, can be derived from Theorem1.18,
as in problem P2.12. In the remainder of this section, we will use generically the
notation (5.6), without detailing the exact form of the LMI. If the polynomial is
globally nonnegative, its coefficients are parameterized as in (2.6) or (2.94) (the
trace and Gram-pair parameterizations, respectively). We denote these equalities by
r̃k = Lk(Q), where Q � 0 (we hide the second matrix that appears in (2.94)).

http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
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5.1.1 Optimization of Linear-Phase FIR Filters

We consider the optimization of linear-phase symmetric FIR filters of even order
n = 2ñ. Since we have to optimize only the magnitude of the filter, we can work
with the zero-phase filter

H̃(z) =
ñ∑

k=−ñ

h̃k z
−k, h̃−k = h̃k . (5.7)

This is a symmetric trigonometric polynomial and so H̃(ω) is real, having the form
(1.4). The standard PCLS problem can be formulated as

min
H̃∈Rñ [z]

Es

s.t. |H̃(ω) − 1| ≤ γp, ∀ω ∈ [0, ωp]
|H̃(ω)| ≤ γs, ∀ω ∈ [ωs, π ]

(5.8)

where γp and γs are given error bounds. The magnitude constraints are formulated
only in passband and stopband. Additionally, we can enforce an upper bound on the
frequency response in the transition band, in order to prevent undesirable spikes there;
the constraint is H̃(ω) ≤ 1 + γp, ∀ω ∈ [ωp, ωs]. The spectral mask that contains
the frequency response is shown in Fig. 5.1. We can formulate the design problem
(5.8) by means of polynomials that are nonnegative on given intervals, obtaining

min
H̃∈Rñ [z]

Es

s.t. 1 + γp − H̃(ω) ≥ 0, ∀ω ∈ [0, ωs]
H̃(ω) − 1 + γp ≥ 0, ∀ω ∈ [0, ωp]
γs − H̃(ω) ≥ 0, ∀ω ∈ [ωs, π ]
H̃(ω) − γs ≥ 0, ∀ω ∈ [ωs, π ]

(5.9)

Using the parameterization (5.6), we transform (5.9) into an SDP problem. Before
doing so, we remark that the first inequality constraint can be extended to the whole
domain [0, π ], since in the stopband it holds obviously; this is an advantage, as the

Fig. 5.1 Magnitude bounds
for the frequency response of
a lowpass filter

ωs πωp

ω

1− γp

1+ γp

γs

http://dx.doi.org/10.1007/978-3-319-53688-0_1
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global nonnegativity LMI is simpler; using the trace parameterization (2.6), it can
be expressed as a function of a single positive definite matrix, while two matrices
are necessary for nonnegativity on an interval; with the Gram-pair parameterization
(2.94), there are two matrices of the same size in both cases, so the advantage is
marginal (simpler coefficientmatrices). Also, we have to express the stopband energy
function of the coefficients of H̃(z). The vector h̃ = [h̃0 h̃1 . . . h̃ñ]T , containing the
distinct coefficients of H̃(z), generates h via

h = Ph̃, P =
⎡

⎣
0 J ñ

1 0
0 I ñ

⎤

⎦ , (5.10)

where J ñ is the counteridentity matrix of size ñ × ñ. The stopband energy (5.3) can
be expressed as

Es = h̃
T
C̃ h̃, with C̃ = PTCP � 0. (5.11)

Finally, the SDP form of (5.9) is (actually, this is SQLP, due to the SOC constraint)

min
h̃, y,ε,Q1,...,Q7

ε

s.t.

(1 + γp)δk − h̃k = Lk(Q1)

h̃k − (1 − γp)δk = Lk,0,ωp (Q2, Q3)

γsδk − h̃k = Lk,ωs ,π (Q4, Q5)

h̃k − γsδk = Lk,ωs ,π (Q6, Q7)

⎫
⎪⎪⎬

⎪⎪⎭
k = 0 : ñ

y = C̃
1/2

h̃
‖ y‖ ≤ ε, Q1 � 0, . . . , Q7 � 0

(5.12)

Example 5.1 We design a linear-phase filter with the specifications n = 50, ωp =
0.2π , ωs = 0.25π , γp = 0.1, and γs = 0.0158 (the last two values correspond
to a passband ripple of 1.74dB and a stopband attenuation of 36dB, respectively).
Solving (5.12), we obtain the filter whose frequency response is shown in Fig. 5.2.
The stopband energy is Es = 4.36 · 10−5. The frequency response has a typical
shape; it is equiripple in the passband; in the stopband, the first ripples have height
γs , while for higher frequencies, the attenuation is better. Varying γs , one can trade
off stopband attenuation and energy. For γs = −36.5dB, the frequency response is
almost equiripple. Of course, further decreasing the value of γs leads to no solution
to the problem; this is signaled when trying to solve (5.12).

5.1.2 Magnitude Optimization

We remove now the linear-phase constraint and assume no relations between the
coefficients of the FIR filter (5.1).We optimize only themagnitude R(ω) = |H(ω)|2,

http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
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Fig. 5.2 Frequency
response of the filter
designed in Example5.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−80

−70

−60

−50

−40

−30

−20

−10

0

10

Frequency (ω / π)

M
ag

ni
tu

de
 (

dB
)

disregarding completely the phase information. With the spectral mask constraints
from Fig. 5.1, the PCLS optimization can be formulated in terms of the magnitude
R(ω), which is a nonnegative trigonometric polynomial. Using the same remarks
that have led to (5.9) and the stopband energy formula (5.5), the design problem is
formulated in terms of polynomials nonnegative on intervals as follows

min
R∈Rn [z]

c0r0 + 2
∑n

k=1 ckrk

s.t. (1 + γp)
2 − R(ω) ≥ 0, ∀ω

R(ω) − (1 − γp)
2 ≥ 0, ∀ω ∈ [0, ωp]

γ 2
s − R(ω) ≥ 0, ∀ω ∈ [ωs, π ]
R(ω) ≥ 0, ∀ω

(5.13)

The equivalent SDP problem is

min
Q1,...,Q6

c0r0 + 2
∑n

k=1 ckrk

s.t.

(1 + γp)
2δk − rk = Lk(Q1)

rk − (1 − γp)
2δk = Lk,0,ωp (Q2, Q3)

γ 2
s δk − rk = Lk,ωs ,π (Q4, Q5)

rk = Lk(Q6)

⎫
⎪⎪⎬

⎪⎪⎭
k = 0 : n

(5.14)

After solving (5.14), the FIR filter H(z) is recovered from R(z) via spectral factor-
ization.

Example 5.2 Weuse the same specifications as inExample5.1, butwithγs = 0.01 =
−40dB. Solving (5.14), we obtain after spectral factorization the filter whose fre-
quency response is shown in Fig. 5.3. Its stopband energy is Es = 3.29 · 10−6. We
note that the performance is improved with respect to the linear-phase case, in terms
of both stopband energy and attenuation. Decreasing the stopband attenuation bound
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Fig. 5.3 Frequency response
of the filter designed in
Example5.2, γs = −40dB
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Fig. 5.4 Frequency response
of the filter designed in
Example5.2, γs = −43dB
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to γs = −43dB leads to a stopband energy increased to Es = 7.19 · 10−6 and
the frequency response from Fig. 5.4. As for the linear-phase filters, the response is
equiripple in the passband and in the initial part of the stopband.

5.1.3 Approximate Linear-Phase FIR Filters

The third design problem is a compromise between the previous two. The phase is
not structurally constrained, but the optimization problem is formulated such that
approximately linear phase is obtained. Given a desired group delay τ , we optimize
the FIR filter as follows
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min
H∈Rn+[z]

Es

s.t. |H(ω) − e− jτω| ≤ γp, ∀ω ∈ [0, ωp]
|H(ω)| ≤ γs, ∀ω ∈ [ωs, π ]

(5.15)

In the passband, the error is considered with respect to an ideal complex response,
that of a filter with group delay equal to τ . Typically, the interest is in low delay
filters, with τ < n/2. (If τ = n/2, then the solution of (5.15) is a linear-phase
filter identical to the solution of (5.8)). We note that the first constraint of (5.15)
implies that 1 − γp ≤ |H(ω)| ≤ 1 + γp and so γp serves also as an upper bound
for the magnitude error in the passband. To express (5.15) as an SDP problem, let us
remind the Bounded Real Lemma from Corollary4.27. In the 1D case, it says that
|H(ω)| ≤ γ , ∀ω ∈ [α, β], if and only if there exist positive semidefinite matrices
Q1 and Q2 such that

γ 2δk = Lk,α,β(Q1, Q2), k = 0 : n,[
Q1 h
hT 1

]
� 0.

(5.16)

(A similar BRL can be derived from the Gram-pair form given by Theorem4.35.)
The stopband constraint from (5.15) has the standard BRL form, while the passband
constraint has this form if the group delay τ is a nonnegative integer; if so, the BRL
is formulated for the FIR filter Ĥ(z) = H(z)− z−τ . Denoting eτ the unit vector with
the value of 1 on the τ -th position, the SDP problem equivalent to (5.15) is

min
h, y,ε,Q1,...,Q4

ε

s.t. γ 2
p δk = Lk,0,ωp (Q1, Q2), k = 0 : n

[
Q1 h − eτ

hT − eTτ 1

]
� 0

γ 2
s δk = Lk,ωs ,π (Q3, Q4), k = 0 : n[
Q3 h
hT 1

]
� 0

y = C1/2h
‖ y‖ ≤ ε, Q2 � 0, Q4 � 0

(5.17)

Remark that there is no need to put explicitly the constraints Q1 � 0, Q3 � 0, since
these matrices are principal blocks of larger positive semidefinite matrices. We note
that this SDPproblemhas the smallest number ofmatrix variables, compared to (5.12)
and (5.14), and hence the lower complexity. However, adding a magnitude constraint
in the transition band (see problemP5.3) increases the number of parameter matrices
to six.

Example 5.3 We use the same specifications as in Example5.1 and τ = 22 (note
that τ < n/2 = 25). After solving (5.17), we obtain the filter whose frequency
response is shown in Fig. 5.5 and a stopband energy Es = 1.92 · 10−5. Comparing

http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
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Fig. 5.5 Frequency response of the filter designed in Example5.3
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Fig. 5.6 Magnitude of complex passband error (left) and group delay (right) of the filter designed
in Example5.3

with Example5.1, we see that relaxing the linear-phase constraint leads to a lower
stopband energy, for the same error bounds. We note that the magnitude response is
not equiripple in the passband. This is a normal behavior, since the passband error
|H(ω)−e− jτω| is optimized; this error, shown in the left side of Fig. 5.6, is equiripple.
In the right side of the figure, the group delay is shown in the passband. The group
delay error with respect to τ is about 2.2. Of course, due to the expression of the error,
we cannot optimize the magnitude and the group delay independently. However, the
compromise is usually satisfactory.
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5.2 Design of 2D FIR Filters

Only two of the three methods presented in the previous section can be generalized
to multidimensional FIR filters. The method that obviously fails to generalize is that
based on the optimization of themagnitude; we can optimize a positive trigonometric
polynomial meant to signify |H(ω)|2, but the result cannot be spectrally factorized to
recover H(z). Still, we can use the properties of positive trigonometric polynomials
described in Chap.4, especially the parameterization of positive polynomials on
frequency domains given by Theorem4.11 and the LMI forms that result from it. We
remind that if R(z) is a multivariate trigonometric polynomial (3.1) that is positive
on a domainD defined as in (4.13), then its coefficients can be parameterized via the
LMIs (4.16) or (4.27). For brevity, we denote generically these identities by

rk = Lk,D(Q0, . . . , QL). (5.18)

If the polynomial is globally positive, we denote rk = Lk(Q).
Before going into details, let us point out the difficulties in generalizing the ap-

proach illustrated by e.g., the design problems (5.8), (5.12). Since this is the most
practical case, many comments will be related to 2D filters.

• The frequency domains that represent the passband and the stopbandmay have var-
ious shapes. The immediate generalization of an interval [α, β] on the frequency
axis is a Cartesian product [α1, β1] × [α2, β2]. However, many other shapes (dia-
mond, circle, fan, etc.) are interesting in the design of 2D FIR filters. We have to
investigate if such shapes can be generated in the form required by Theorem4.11.

• Typically, the LMIs that go together with multivariate positive polynomials imple-
ment relaxed versions of the optimization problems. It is possible that the solutions
given by the relaxed problems are not optimal with respect to the original problem.

In the sequel, we will see that these difficulties can be overcome. The shapes of
the frequency domains will be discussed in Sect. 5.2.1. The distance from optimality
will be studied experimentally.

The design problemwill be simpler than in the 1D case. Our studywill be confined
to minimax (or H∞) optimization. Given a passband Dp, a stopband Ds , both being
unions of frequency domains defined as in (4.13), and amaximum passband error γp,
the maximum stopband error is minimized. This approach can be combined easily
with stopband energy (least squares) minimization, as in the 1D case, but, besides
its simpler form, the minimax optimization will allow us to evaluate accurately the
effects of relaxation.

5.2.1 2D Frequency Domains

In classic design methods, the passbands and stopbands of 2D filters are delimited by
simple curves (circle, ellipse, diamond), described by low-degree polynomials in ω.

http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
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Fig. 5.7 Left borders of the domains defined by (5.20), for c = −1.5 : 0.3 : 1.5 (from exterior to
interior). Middle diamond domains described by (5.21). Right borders of the domains defined by
(5.22), for c = −1.5 : 0.5 : 2.5

Since we aim to obtain SDP methods based on Theorem4.11, we consider domains
D described by the positivity of some trigonometric polynomials, as in (4.13). On
the one side, this approach reduces the number of possible shapes. On the other, it
is more natural, since the frequency response of an FIR filter is also a trigonometric
polynomial.

We give here few examples of frequency domains that can be obtainedwith simple
trigonometric polynomials with real coefficients, in the 2D case; these examples
suggest that other shapes can be obtained as well.We remind that intersection, union,
and complementary of such domains can be used without restrictions, as discussed
in Remark4.21.

Rectangles.A rectangle in [−π, π ]2, whose sides are parallel to the axis, is defined
by

D1(ω) = cosω1 − c1 ≥ 0,
D2(ω) = cosω2 − c2 ≥ 0.

(5.19)

This rectangle is actually [− arccos c1, arccos c1] × [− arccos c2, arccos c2].
Low band. The simplest (in the sense that it is defined by a single polynomial)

shape suited to describe low-frequency bands is defined by

D1(ω) = cosω1 + cosω2 − c ≥ 0. (5.20)

The curves defined by D1(ω) = 0, representing the borders of the domain defined
by (5.20), are drawn on the left of Fig. 5.7, for several values of the parameter c.
For values of c near 2, the shape is almost circular, while for c near 0, it is almost a
diamond.

Diamond shapes of any size can be obtained with

D1(ω) = cos(ω1 + ω2) − c ≥ 0,
D2(ω) = cos(ω1 − ω2) − c ≥ 0,
D3(ω) = cosω1 + cosω2 ≥ 0.

(5.21)

http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
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In this case, the periodicity of trigonometric polynomials should be taken into ac-
count. Since ω1 ± ω2 ∈ [−2π, 2π ], the first two polynomials from (5.21) define not
only the desired central diamond shown in black in the middle of Fig. 5.7, but also
the four gray triangles in the corners of [−π, π ]2. The third polynomial from (5.21)
(which has the form (5.20)) has the purpose of removing these high-frequency areas;
the line corresponding to D3(ω) = 0 (which is the border of a diamond) separates
the desired area from the undesired ones.

Fan. Shapes suited to fan filters are defined by e.g.,

D1(ω) = 2 cosω1 − cosω2 − c ≥ 0 (5.22)

and illustrated on the right of Fig. 5.7 where dashed lines correspond to c < 1 and
solid lines to c ≥ 1. It is clear that the coefficient of cosω1 affects the width of the
fan on the ω1 direction. Similar effects can be obtained in (5.20).

5.2.2 Linear-Phase Designs

We consider here symmetric FIR filters of odd degree, i.e., the simplest (and most
common) case of linear-phase filters. With no loss of generality, we consider the
zero-phase filter

H(z) =
n∑

k=−n

hk z−k, h−k = hk, (5.23)

with real coefficients. This is a symmetric trigonometric polynomial and H(ω) is real.
DenotingDp,Ds , andDt the passband, stopband, and transition bands, respectively,
the minimax design problem is

min
γs ,H

γs

s.t. H(ω) − 1 ≤ γp, ∀ω ∈ Dp ∪ Dt

1 − H(ω) ≤ γp, ∀ω ∈ Dp

|H(ω)| ≤ γs, ∀ω ∈ Ds

(5.24)

where γp is the given passband error bound. Note that, as in the 1D case, we bound
the frequency response in the transition band; similarly, we can replace the first
constraint, posed on Dp ∪ Dt , with a global one; in the 2D case, the saving in
complexity is clearly greater, since global positivity is expressed by a single matrix
(or two for the Gram-pair parameterization), while positivity on a domain by at least
two matrices (or two pairs), often more. Using this remark and emphasizing the
presence of nonnegative polynomials, the problem (5.24) becomes
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min
γs ,H

γs

s.t. 1 + γp − H(ω) ≥ 0, ∀ω

H(ω) − 1 + γp ≥ 0, ∀ω ∈ Dp

γs − H(ω) ≥ 0, ∀ω ∈ Ds

H(ω) − γs ≥ 0, ∀ω ∈ Ds

(5.25)

We assume that the passband Dp and the stopband Ds are unions of domains
defined by the positivity of some trigonometric polynomials. Thus, the passband has
the form

Dp =
dp⋃

i=1

Dpi , (5.26)

whereDpi are defined as in (4.13) by L pi polynomials. The total number of polyno-
mials necessary to define the passband is

L p =
dp∑

i=1

L pi . (5.27)

For the stopband, we use the same notations with the index s instead of p. For
example, for the diamond passband defined by (5.21), there is a single domain in
the union and so dp = 1. The domain is defined by L p = L p1 = 3 polynomials.
A corresponding stopband is the complementary of a domain (5.21) and is a union
having the form (4.23). It follows that ds = 3, Ls1 = Ls2 = Ls3 = 1, and Ls = 3.

Using Theorem4.11 and its LMI equivalents from Sect. 4.2, and also the notations
(5.18), (5.26), (5.27) the design problem (5.25) can be relaxed to the SDP form

min
γs, h, Q,

Q̃..., Q̂..., Q̌...

γs

s.t.

(1 + γp)δk − hk = Lk(Q)

hk − (1 − γp)δk = Lk,Dpi ( Q̃i,0, . . . , Q̃i,L pi
), i = 1 : dp

γsδk − hk = Lk,Dsi ( Q̂i,0, . . . , Q̂i,Lsi
), i = 1 : ds

hk − γsδk = Lk,Dsi ( Q̌i,0, . . . , Q̌i,Lsi
), i = 1 : ds

⎫
⎪⎪⎬

⎪⎪⎭
k ∈ H

Q � 0, Q̃... � 0, Q̂... � 0, Q̌... � 0
(5.28)

where H is a half plane and the notation e.g., Q̃... covers all possible indices (i, �),
with i = 1 : dp and � = 1 : L pi . The number of positive semidefinite parameter
matrices in (5.28) is 1+ L p + dp + 2(Ls + ds) (this number must be doubled if the
Gram-pair parameterization is used). Although the SDP problem (5.28) looks cum-
bersome, the program implementing it has (only) about 250 lines. The complexity
of the problem depends on the degree of the relaxation. As discussed in Sect. 3.5,
we can use a degree m ≥ n for the sum-of-squares that parameterize the positive
polynomials from (5.25) and dictate the size of the Gram matrices from (5.28); for

http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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Fig. 5.8 Passbands (black) and stopbands (gray) for 2D filter design

the specific case of polynomials that are positive on domains, see relation (4.18). The
typical question that we have to answer is: how far from optimality are the results of
(5.28) if m is equal to n or only slightly larger? Since there is no useful theoretical
answer, we search one through the design examples below.

In Fig. 5.8, we present the passband (in black) and stopband (in gray) frequency
domains for three linear-phase FIR filters: a simple lowpass, a diamond lowpass,
and a fan. The filters are designed by solving the SDP problem (5.28), with the
specifications listed below. The passband error bound is γp = 0.05 (corresponding
to a passband ripple of about 0.87dB) for the first example and γp = 0.1 (1.74dB
ripple) for the other two. The size of the filters is 15 × 15, i.e., n = (7, 7) in (5.23).
The degree of the relaxation is m = n if not otherwise stated.

Example 5.4 The passband and the stopband are defined as in (5.20), by

Dp = {ω1, ω2 ∈ [−π, π ] | cosω1 + cosω2 − 1 ≥ 0},
Ds = {ω1, ω2 ∈ [−π, π ] | − cosω1 − cosω2 + 0.3 ≥ 0}. (5.29)

This is the simplest possible case, as each band is described by a single polynomial.
The frequency response of the filter is shown in Fig. 5.9. The design time is about
40 s. The optimal value of the stopband error reported by the SDP program is γs =
0.012496 = −38.06dB.

Toevaluate the effect of the relaxationdegree,we solve theSDPproblem for values
m > n. The optimal values of the stopband errorγs are shown inTable5.1.We see that
taking m = n + (1, 1) = (8, 8) improves the error to γs = 0.012303 = −38.20dB,
but further increase of the degree has almost no effect. The frequency response
obtainedwithm = (8, 8) is given inFig. 5.10; the equiripple character ismore evident
than in Fig. 5.9, where there are some small irregularities in the high-frequency area.

The largest filter we have designed has size 25 × 25; the design time was about
15min and the optimal stopband error γs = 1.624 · 10−4 = −75.79dB.

Example 5.5 For the diamond lowpass filter, the frequency bands have the descrip-
tion

http://dx.doi.org/10.1007/978-3-319-53688-0_4
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Fig. 5.9 Magnitude response of the filter from Example5.4, m = n = (7, 7)

Table 5.1 Optimal values of γs in Examples5.4–5.6

m − n (0,0) (1,1) (2,2) (3,3)

Example5.4 0.012496 0.012303 0.012297 0.012297

Example5.5 0.020174 0.020174 0.020174 -

Example5.6 0.020837 0.020837 0.020837 -

Fig. 5.10 Magnitude response of the filter from Example5.4, m = n + 1 = (8, 8)
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Fig. 5.11 Magnitude response of the filter from Example5.5

Dp = {ω1,2 | cos(ω1 + ω2) − 0.1 ≥ 0, cos(ω1 − ω2) − 0.1 ≥ 0,
cosω1 + cosω2 ≥ 0},

Ds = {ω1,2 | − cos(ω1 + ω2) − 0.7 ≥ 0}
∪ {ω1,2 | − cos(ω1 − ω2) − 0.7 ≥ 0}
∪ {ω1,2 | − cosω1 − cosω2 ≥ 0}.

(5.30)

Now, the passband is defined by the positivity of three polynomials and the stop-
band by the union of three simple domains; this will increase the complexity of
the SDP problem since there are more parameter matrices. Indeed, the design
time is about 140s, significantly greater than for Example5.4. The frequency re-
sponse of the optimal filter is shown in Fig. 5.11. The optimal stopband error is
γs = 0.020174 = −33.9dB. As shown in Table5.1, increasing the relaxation degree
does not change the optimal stopband error; actually, there are changes, but only in
the seventh significant digit and thus negligible.

Example 5.6 The passband and the stopband of the fan filter are defined by

Dp = {ω1,2 | 2 cosω1 − cosω2 − 1 ≥ 0, cosω2 ≥ 0},
Ds = {ω1,2 | − 2 cosω1 + cosω2 ≥ 0} ∪ {ω1,2 | − cosω2 − 0.7 ≥ 0}. (5.31)

The design time is about 60 s, greater than for Example5.4, but smaller than
for Example5.5; this would have been easy to forecast, due to the complexity
of (5.31), compared with that of (5.29) or (5.30). The optimal stopband error is
γs = 0.020837 = −33.62dB; again, this value does not change by increasing the
degree of the relaxation. The frequency response of the filter is shown in Fig. 5.12.
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Fig. 5.12 Magnitude response of the filter from Example5.6

Looking again at Table5.1, we conclude that there is little departure from optimal-
ity even with m = n; we conjecture that for all practical purposes we can safely take
m ≤ n + 1 to obtain the optimal filter. Thus, we can extend to FIR filters and larger
degrees, the practical remarks made in previous chapters for the simpler problem of
computing the minimum value of a polynomial.

5.2.3 Approximate Linear-Phase Designs

We consider now positive orthant FIR filters (3.5). Given a desired group delay τ ,
we optimize the FIR filter as follows

min
γs ,H

γs

s.t. |H(ω) − e(− jτ Tω)| ≤ γp, ∀ω ∈ Dp

|H(ω)| ≤ γs, ∀ω ∈ Ds

(5.32)

As in Sect. 5.1.3, we can use BRL results for transforming the above problem into an
SDP one, this time obtaining only a relaxation. The group delay should have integer
elements, i.e., τ ∈ N

d . We denote h the vector containing the coefficients of H(z)
and eτ the unit vector containing the coefficients of z−τ ; obviously, the same ordering
of coefficients is adopted for both vectors. The SDP relaxation of (5.32) is

http://dx.doi.org/10.1007/978-3-319-53688-0_3
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Fig. 5.13 Magnitude response of the filter from Example5.7

min
h,γs ,Q..., Q̃...

γs

s.t.

γ 2
p δk = Lk,Dpi (Qi,0, . . . , Qi,L pi

)[
Qi,0 h − eτ

hT − eTτ 1

]
� 0

⎫
⎬

⎭ i = 1 : dp

γ 2
s δk = Lk,Dsi ( Q̃i,0, . . . , Q̃i,Lsi

)[
Q̃i,0 h
hT 1

]
� 0

⎫
⎬

⎭ i = 1 : ds

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

k ∈ H

Q... � 0, Q̃... � 0

(5.33)

Example 5.7 The stopband and passband are defined as in (5.29), i.e., identically
to those in Example5.4. We take n = (10, 10) (and so the filter size is 11 × 11),
τ = (4, 4) and γp = 0.1. The SDP problem (5.33) is solved in about 150s, giving
γs = 0.0367562 = −28.69dB and the filter whose frequency response is shown in
Fig. 5.13. Solving the problem with m = n + 1, we obtain γs = 0.0367560, i.e.,
virtually the same value; for other design specifications, we have noted a similar
behavior, upholding the conclusion that lowest degree relaxations give practically
optimal results.

5.3 FIR Deconvolution

Several signal processing problems, such as channel equalization, deconvolution,
system inversion, can be modeled by the structure shown in Fig. 5.14. The signal s
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Fig. 5.14 Channel
equalization scheme

G X

D

s y

η

ŝ ε+ + +

−

passes through the channel G(z) and is contaminated by the noise η. Our aim is to
design a filter X(z) such that its output ŝ is an approximation of the ideal output
Ds. The filters G(z) and D(z) are given and very often D(z) is a simple delay; in
this case, we actually compute an approximate inverse of G(z). For the generality of
presentation, we assume that all filters have p inputs and p outputs, i.e., weworkwith
(square) MIMO systems. We also assume that all systems are FIR; this is very often
the case for the given systems (e.g., typical channels have a short impulse response);
the FIR choice for X(z) is preferred for the ease and robustness of implementation;
it also allows the safe computation of the optimal solution, as we will see.

The output error in Fig. 5.14 is

ε = ŝ − Ds = (
X[G I p] − [D 0p]

) [
s
η

]
Δ= H

[
s
η

]
. (5.34)

The error function H(z) has the general form

H(z) = X(z)A(z) − B(z), (5.35)

where A(z), B(z) are given. We note that the coefficients of H(z) depend linearly
on those of X(z). Without a priori information on the signal s and the noise η, the
error (5.34) is controlled by minimizing a norm of the error function H(z). The most
used norms are the H2 norm

‖H(z)‖2 =
(

1

2π

∫ π

−π

tr[H(ω)H H(ω)]dω

)1/2

(5.36)

and the H∞ norm (4.46) which can also be interpreted as

‖H(z)‖∞ = sup
‖ξ‖2=1

‖Hξ‖2. (5.37)

In (5.37), ξ is an input signal and Hξ is the corresponding output (error) signal. A
minimum ‖H(z)‖2 means minimum energy of the error signal, while a minimum
‖H(z)‖∞ means a smallest largest magnitude of the error over the whole frequency
spectrum.

If H(z) is a FIR system (4.44) with m inputs and p outputs and coefficients
Hk ∈ R

p×m , then its H2 norm is

http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
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‖H(z)‖22 =
n∑

k=0

‖Hk‖2F =
n∑

k=0

p−1∑

i=0

m−1∑

�=0

(Hk)
2
i� = ‖h‖22, (5.38)

where h is a vector of size mp(n + 1) containing the coefficients of H(z). If H(z)
has the form (5.35) and x is a vector containing the coefficients of the FIR system
X(z), then we have

‖H(z)‖2 = ‖Cx − f ‖, (5.39)

where the constant matrix C and vector f depend (linearly) on the coefficients of
A(z) and B(z). More precisely, using notations similar to (4.44) for A(z) and B(z),
the equality (5.35) means that

Hk =
∑

i

X i Ak−i − Bk . (5.40)

Using the matrix equality vec(UVW) = (W T ⊗ U)vecV , the relation (5.40) be-
comes

vec(Hk) =
∑

i

(AT
k−i ⊗ I p)vec(X i ) − vec(Bk), (5.41)

which gives h = Cx − f as in (5.39).
The H∞ norm can be characterized by the BRL Theorem4.32, with coefficients

stacked as in (4.47). Note that H̄ ∈ R
p(n+1)×m .

5.3.1 Basic Optimization Problem

A general way of designing the system X(z) from Fig. 5.14 is based on the mixed
H2/H∞ optimization

min
X

‖H(z)‖2
s.t. ‖H(z)‖∞ ≤ γ

(5.42)

where γ is a given error bound and H(z) is defined in (5.35). Denoting H̄ = L(x)

the linear dependence between the block vector (4.47) and the coefficients of X(z),
and using the relations derived above, the problem (5.42) can be expressed in the
SDP form

min
ε,x,Q

ε

s.t. γ 2δk I p = TR[Θ pk Q], k = 0 : n[
Q L(x)

L(x)T Im

]
� 0

‖Cx − f ‖ ≤ ε

(5.43)

http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
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Table 5.2 H2 and H∞ norms for the error system from Example5.8

‖H(z)‖2 0.4066 0.3651 0.3505 0.3435 0.3348

‖H(z)‖∞ 0.4471 0.45 0.46 0.47 0.5134

(Compare with Theorem4.32, with an inequality that holds globally, and note that
Θk ⊗ I p = Θ pk .)

Example 5.8 The given channel model from Fig. 5.14 is

G(z) = 1 + 0.33562z−1 + 4.627z−2 − 0.14487z−3 + 1.6837z−4 (5.44)

and the desired model is the delay D(z) = z−2 (this is the first example from [1]).We
take deg X = 6. In Table5.2 we present the H2 and H∞ norms of the error system (of
order 10), obtained by solving (5.43) for several values of the bound γ . The second
column of the table corresponds to the H∞ solution, obtained by a simple variation
of (5.43); the last column gives the values for the H2 solution (obtained via a simple
quadratic optimization or by using a large value of γ in (5.43)). The behavior is
typical and shows that the mixed H2/H∞ optimization offers compromise solutions
that are not far from the minimum values obtained when a single error norm is
optimized.

5.3.2 Deconvolution of Periodic FIR Filters

In the previous example, the systems G(z), X(z) were single-input single-output
(SISO) and only the error system H(z) had size 1 × 2. Here, we give an example
leading to MIMO systems. Let the channel model be the periodic SISO filter whose
input–output behavior is given by

y(t) =
ν∑

k=0

gk,t s(t − k). (5.45)

The period is p, which means that gk,t = gk,t+i p for any integer i . We consider that in
Fig. 5.14 the system X (z) is also periodic. Formulated in terms of periodic filters, the
problem (5.42) is nonlinear. To make it linear, but MIMO, the lifting technique can
be used. All scalar signals are transformed in vector signals of size p, by grouping
blocks of p successive samples, e.g.,

s(t) = [s(tp) s(tp + 1) . . . s(tp + p − 1)]T .

Denoting

http://dx.doi.org/10.1007/978-3-319-53688-0_4
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G�(z) =
ν∑

k=0

gk,�z
−k, � = 0 : p − 1,

and introducing the polyphase decomposition

G�(z) =
p−1∑

i=0

z−iG�,i (z
p),

the input–output relation (5.45) can be modeled at block level as y(z) = G(z)s(z),
with the transfer matrix

G(z) =

⎡

⎢⎢⎢⎣

G0,0(z) G0,1(z) . . . G0,p−1(z)
z−1G1,p−1(z) G1,0(z) . . . G1,p−2(z)

...
...

...

z−1Gp−1,1(z) z−1Gp−1,2(z) . . . Gp−1,0(z)

⎤

⎥⎥⎥⎦
Δ=

Ng∑

n=0

Gnz
−n. (5.46)

In (5.46), the degree of the FIR MIMO system is Ng = �ν/p�. The matrix G0 is
upper triangular; also, some elements of GNg are zero and possibly some of GNg−1.
For example, if ν = 4, p = 3, then we have

G0 =
⎡

⎣
g0,0 g1,0 g2,0
0 g0,1 g1,1
0 0 g0,2

⎤

⎦ , G1 =
⎡

⎣
g3,0 g4,0 0
g2,1 g3,1 g4,1
g1,2 g2,2 g3,2

⎤

⎦ , G2 =
⎡

⎣
0 0 0
0 0 0
g4,2 0 0

⎤

⎦ .

A similar lifting is valid for the FIR periodic inverse filter X , whose degree is μ,
possibly different from ν. The degree of the MIMO system is Nx = �μ/p�.

With vector signals, the deconvolution scheme is identical to that from Fig.5.14.
The relation between the norms of the periodic error system H and lifted error H(z)
is

‖H‖22 = 1

p
‖H(z)‖22, ‖H‖∞ = ‖H(z)‖∞. (5.47)

The first equality is the (natural) definition of the H2 norm of a periodic FIR filter,
while the second comes from (5.37) after remarking that the norms of the input and
output signals are not affected by blocking. So, we can design a FIR periodic filter
X by solving an optimization problem (5.43), subject to the additional constraints
imposed by the structure of zeros in the coefficients of X(z), which can be cast more
generally as a linear equality C̃x = f̃ (in our case f̃ = 0). Adding a linear constraint
to (5.43) does not change the SDP nature of the problem and has little influence on
the complexity.

Example 5.9 Let us consider the toy example from [2], where p = 2, ν = 3 and

H0(z) = 5 + z−1 + 2z−2 − z−3,

H1(z) = 3 + 2z−1 − 2z−2 + z−3.
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We seek a FIR periodic equalizer X (z) of degree μ = 3; the desired system is
D(z) = 1, i.e., the delay is 0. For a bound γ = 0.74 of the H∞ norm, the solution
of (5.43) (with the extra linear equalities mentioned above) is

X0(z) = 0.1892 − 0.0571z−1 − 0.0464z−2 + 0.0396z−3,

X1(z) = 0.2663 − 0.1111z−1 + 0.1439z−2 − 0.0594z−3.

The error H2 norm is ‖E‖2 = 0.3932. Varying γ , a behavior similar to that described
in Example5.8 is obtained.

5.3.3 Robust H∞ Deconvolution

Let us assume that the channel model G(z) from Fig. 5.14 is not known exactly.
However, we know that its coefficients belong to a polytope with given vertices
Gi (z), i = 1 : I , i.e.,

G(z) =
I∑

i=1

λiGi (z),
I∑

i=1

λi = 1, λi ≥ 0, (5.48)

where the parameters λi of the convex combination are not known. We denote Ai (z)
the systems that appear in (5.35) and correspond to the vertices Gi (z) and note that
A(z) belongs to the polytope A with vertices Ai (z). Our aim is to design a filter
X(z) that minimizes the H∞ norm of the error in the worst case (over all the models
in the polytope), i.e.,

min
X

‖X(z)A(z) − B(z)‖∞
s.t. A(z) ∈ A

(5.49)

However, it is enough to minimize the H∞ norm for the vertices, i.e., to solve

min
γ,X

γ

s.t. ‖X(z)Ai (z) − B(z)‖∞ ≤ γ, i = 1 : I
(5.50)

Indeed, any solution of (5.50) respects

‖X(z)
I∑

i=1

λi Ai (z) − B(z)‖∞ ≤
I∑

i=1

λi‖X(z)Ai (z) − B(z)‖∞ ≤ γ

and so is a solution of (5.49). (The inverse implication is trivial.) UsingTheorem4.32,
the problem (5.50) has the SDP form

http://dx.doi.org/10.1007/978-3-319-53688-0_4
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min
γ,x,Q1,...,Q I

γ 2

s.t.
γ 2δk I p = TR[Θ pk Qi ], k = 0 : n[

Qi Li (x)

Li (x)T Im

]
� 0

⎫
⎬

⎭ i = 1 : I

(5.51)

where Li (x) describes the linear function of the coefficients of X(z) that produces
the block vector (4.47) corresponding to the “vertex” error system X(z)Ai (z)−B(z).
Note that we use γ 2 as variable, in order to preserve linearity.

Example 5.10 Let us reconsider the model from Example5.8 and assume that it is

G(g1, g2, z) = 1 + g1z
−1 + g2z

−2 − 0.14487z−3 + 1.6837z−4,

where 0.3 ≤ g1 ≤ 0.4 and 4.5 ≤ g2 ≤ 4.8. So, there are two coefficients taking un-
known values inside a rectangle, which is our polytope (in a five-dimensional space);
note that the model (5.44) is a point inside the polytope. The polynomials corre-
sponding to the I = 4 corners (vertices) of the rectangle are G1(z) = G(0.3, 4.5, z),
G2(z) = G(0.3, 4.8, z), G3(z) = G(0.4, 4.5, z), G4(z) = G(0.4, 4.8, z). Solving
(5.51) with these data and deg X = 6, we obtain γ = 0.4722 and

X (z) = 0.2273 + 0.0487z−1 − 0.1079z−2 − 0.0233z−3

+ 0.0356z−4 + 0.0246z−5 − 0.0247z−6.

If, instead of this filter, we use the H∞ solution

X (z) = 0.2309 + 0.0452z−1 − 0.1014z−2 − 0.0273z−3

+ 0.0320z−4 + 0.0259z−5 − 0.0216z−6

from Example5.8, which minimizes the H∞ norm only for (5.44), not for the entire
polytope, then the worst error norm in a corner of the rectangle is 0.4811, i.e., a larger
value than for the robust filter.

5.3.4 2D H∞ Deconvolution

We examine now the case where the systems G(z) and X(z) from Fig. 5.14 are 2D
and FIR (possibly with matrix coefficients), applying the results from Sect. 4.3.2.
The error system from the deconvolution problem (5.42) is

H(z) =
n1∑

k1=0

n2∑

k2=0

Hk1k2 z
−k1
1 z−k2

2 , Hk1k2 ∈ R
p×m . (5.52)

http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
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The BRL given by Theorem4.32 can be directly applied, taking into account that
the particular form of (4.47) for (5.52) is

H̄ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

H00
...

Hn10

H01
...

Hn1n2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
p(n1+1)(n2+1)×m . (5.53)

We study the H∞ deconvolution problem

min
X

γ

s.t. ‖X(z)A(z) − B(z)‖∞ ≤ γ

(5.54)

with A(z) and B(z) depending on the given systems G and D from Fig. 5.14. We
denote H̄ = L(X) the linear dependence between the block vector (5.53) and the
coefficients of X(z). Using Theorem4.32, the problem (5.54) can be relaxed to the
SDP form

min
γ,X,Q

γ 2

s.t. γ 2δk I p = TR
[
(Θk2 ⊗ Θk1 ⊗ I p)Q

]
, k ∈ H[

Q L(X)

L(X)T Im

]
� 0

(5.55)

Example 5.11 Let us consider the 2D channel model [3]

G(z1, z2) = 0.1(z−1
1 + z−1

2 )3 + 0.1z−2
2 + 0.1z−1

2 + 8 (5.56)

= [1 z−1
1 z−2

1 z−3
1 ]

⎡

⎢⎢⎣

8 0.1 0.1 0.1
0 0 0.3 0
0 0.3 0 0
0.1 0 0 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1
z−1
2
z−2
2
z−3
2

⎤

⎥⎥⎦ .

We take D(z) = 1 and thus the solution of (5.54) is an approximate inverse of G(z).
Solving (5.55) with the smallest relaxation degree and several values of deg X =
(ν1, ν2), we obtain the H∞ norms shown in Table5.3. We notice that the minimum
error is already attained for a degree ν1 = ν2 = 2; the corresponding solution is

X (z1, z2) = [1 z−1
1 z−2

1 ]
⎡

⎣
0.12402 −0.00138 −0.00150

−0.00006 −0.00026 −0.00060
−0.00006 −0.00603 0.00012

⎤

⎦

⎡

⎣
1
z−1
2
z−2
2

⎤

⎦ .

http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
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Table 5.3 H∞ norms for the error system from Example5.11

ν1\ν2 1 2 3 4

1 0.1604 0.1418 0.1397 0.1397

2 0.1434 0.1379 0.1379 0.1379

3 0.1404 0.1379 0.1379 0.1379

4 0.1404 0.1379 0.1379 0.1379

For comparison, in [3] where a sufficient BRL for 2D systems in the Fornasini–
Marchesini model is employed, a value γ = 0.15 is reported for a degree equal to
(3,3); the respective solution is not FIR.

Increasing the relaxation degree, which amounts to adding zero blocks in (5.53)
in the appropriate positions, leads to solutions of (5.55) for which the error bound γ

is improved only in the seventh or eighth significant digit with respect to the values
from Table5.3.

5.4 Bibliographical and Historical Notes

The first exact method for the magnitude design of FIR filters using polynomials
positive on an interval and their parameterization was based on the KYP lemma [4,
5]. Themethod has been adapted to the trace parameterization, as in Sect. 5.1.2, in [6,
7]; in the latter paper, the design of linear-phase filters described in Sect. 5.1.1 is also
proposed; the method is more flexible than the classic Remez algorithm. The design
of approximately linear phase from Sect. 5.1.3 is a variation on the same theme. An
overview of convex optimization methods used in FIR filter design can be found
in [8].

The 2D FIR filter design methods described in Sect. 5.2 are taken from [9]. The
only other method using positivity and leading to SDP is based on a 2D KYP lemma
[10] and gives clearly suboptimal results; it alsoworks only for rectangular frequency
domains.

FIR H∞ deconvolution using the KYP lemma and SDP was proposed in [1]. An
algorithm for FIR H2 equalization can be found in [11]. The design of periodic filters,
as in Sect. 5.3.2, using the BRL for FIR MIMO systems, appeared in [12]. The H2

optimal deconvolution of periodic filters using SDP is discussed in [2].
H∞ deconvolution of 2D systems in Fornasini-Marchesini model, based on a suf-

ficient condition in the form of an LMI,was proposed in [3]. The (practically) optimal
FIR deconvolution from Sect. 5.3.4 has not been published, but is a consequence of
the results from Sect. 4.3.

The 2D results from this chapter show that the design of FIR systems using positive
trigonometric polynomials is almost always optimal and, in any case, clearly better

http://dx.doi.org/10.1007/978-3-319-53688-0_4
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than sufficient conditions for general systems, applied in particular form to FIR
systems.

More applications of the BRL for matrix polynomials can be found in [13].
Hybrid polynomials results can be applied to the design of adjustable FIR filters,

see [14].

Problems

P 5.1 A linear-phase symmetric FIR filter (5.1) of odd order n = 2ñ + 1 has a
frequency response identical (modulo a phase shift) to

H̃(ω) = ∑ñ
k=0 h̃k cos(k + 1

2 )ω.

Denoting θ = ω/2, it results that H̃(ω) = F(θ) = ∑ñ
k=0 h̃k cos(2k+1)θ . Show that

the PCLS design of a lowpass linear-phase symmetric filter of odd order is equivalent
to

min
F∈Rn [z]

Es

s.t. |F(θ) − 1| ≤ γp, ∀ω ∈ [0, ωp/2]
|F(θ)| ≤ γs, ∀ω ∈ [ωs/2, π/2]
f2k = 0, k = 0 : ñ

and express this as an SDP problem. (The notations are as in (5.8), the optimization
problem for even order.)

P 5.2 We consider linear-phase antisymmetric FIR filters (5.1), of even order
n = 2ñ.

a. Show that the magnitude of H(z) is identical to that of the trigonometric
polynomial

F(z) =
ñ∑

k=−ñ

fk, f−k = f ∗
k ,

defined by fk = jhñ−k , f0 = 0. (Note that the polynomial F(z) has imaginary
coefficients, but its frequency response is real.)

b. Show that the PCLS design of a bandpass filter H(z) is equivalent to

min
F∈Cñ [z]

Es

s.t. |F(ω) − 1| ≤ γp, ∀ω ∈ [ωp1, ωp2]
|F(ω)| ≤ γs, ∀ω ∈ [0, ωs1] ∪ [ωs2, π ]
Re fk = 0, k = 0 : ñ

and express this as an SDP problem.
c. Using also the ideas from the previous problem, formulate an SDP problem for

the design of linear-phase antisymmetric filters with odd order.
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P 5.3 In the design problem (5.15), the frequency response is not constrained in the
transition band. Show that adding an upper bound on the magnitude is possible and
append the corresponding LMI to the SDP problem (5.17).

P 5.4 What are the changes in the three design problems discussed in Sect. 5.1 if the
coefficients of the filter are complex?

P 5.5 Show that interpolation constraints H(ω0) = b, for a givenω0 (e.g., H(ω0) =
1 forω0 = 0), can be expressed as linear constraints for all the three design problems
from Sect. 5.1. Append these constraints to the corresponding SDP problems.

P 5.6 (Frequency response fitting) We have the power spectrum measurements
|F(ω�)|2 = R�, � = 1 : L , of a certain process F . We want to approximate it
with an FIR process H(z) of order n. Denoting R(z) = H(z)H(z−1), we can find
H(z) by solving the minimax problem

min
R∈Rn [z]

max�=1:L |R(ω�) − R�|
s.t. R(ω) ≥ 0, ∀ω ∈ [−π, π ]

(followed by spectral factorization). Express this problem in SDP form.
Same requirement if the optimization objective is quadratic, i.e., equal to

L∑

�=1

|R(ω�) − R�|2

P 5.7 In the linear-phase FIR filter design problem (5.8), the stopband constraint
|H̃(ω)| ≤ γs , ∀ω ∈ [ωs, π ], has been imposed with two positivity conditions, see
(5.9). Show how the constraint (on the original filter) |H(ω)| ≤ γs , ∀ω ∈ [ωs, π ],
can be imposed using the LMI form (5.16) of the BRL. Compare the two approaches.

Extend the comparison to the 2D case.

P 5.8 (Approximation of a fractional delay [15]) Let G(z) be a given FIR filter.
Find the FIR filter H(z) for which the approximation error ‖H(z)− z−1/2G(z)‖∞ is
minimum. Thinking in the frequency domain and focusing on low frequencies, one
canminimize‖H(ω)−e− jω/2G(ω)‖, overω ∈ [0, ω0],whereω0 is given. (Otherwise
explained, find a sequence that best approximates another sequence shiftedwith 1/2.)
Generalize to any fractional delay instead of 1/2.

Hint: note that the problem is equivalent to minimizing ‖H(2ω) − e− jωG(2ω)‖,
over ω ∈ [0, ω0/2] and express the problem using the BRL for trigonometric poly-
nomials.

P 5.9 A 2D bandpass filter has the passband and the stopband as in the left of
Fig. 5.15, bounded by rectangles of different sizes. Describe the passband and the
stopband by unions of domains (4.13). Show that the parameters from (5.26), (5.27)
have the following values: dp = 2, L p1 = L p2 = 3 for the passband and ds = 3,
Ls1 = 2, Ls2 = Ls3 = 1 for the stopband.

Same problem for the diamond bandpass filter from the right of Fig. 5.15.

http://dx.doi.org/10.1007/978-3-319-53688-0_4
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Fig. 5.15 Passbands (black) and stopbands (gray) for the filters from P5.9

P 5.10 We assume that in the robust deconvolution problem (5.49) not only A(z)
belongs to a polytope with La known vertices, but also B(z) belongs to another
polytope, with Lb vertices.Write the optimization problems corresponding to (5.50).
How many H∞-norm inequality constraints (on vertices) are necessary? Write also
the SDP equivalent problem.

Notice that the robustness deconvolution problem can be posed and solved simi-
larly in the multidimensional case.
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Chapter 6
Orthogonal Filterbanks

Abstract In this chapter, we explore the use of positive polynomials in the design
of FIR filterbanks (FB). The study is confined to a single class, that of orthogonal
FBs. Two-channel FBs are discussed first, as the simplest instance of the problem;
naturally related with it are the design of compaction filters or of signal-adapted
wavelets. We go then to DFT-modulated FBs, with an arbitrary number of channels;
similarly to the two-channel case, the free parameters of the whole FB are the coef-
ficients of a single prototype filter. A typical requirement on FBs is that of perfect
reconstruction (PR): the output signal is a delayed version of the input one. The
connection between orthogonal FBs and positive polynomials is eased by the fact
that PR amounts to simple (Nyquist) conditions on the squared magnitude of the
prototype filter. Optimization problems that are nonconvex in the coefficients of the
prototype filter become convex once expressed using its squared magnitude, which
is a nonegative polynomial described by an appropriate Gram matrix parameteriza-
tion. After solving the equivalent SDP problem, the prototype filter is recovered by
spectral factorization.

6.1 Two-Channel Filterbanks

The scheme of a two-channel FB is presented in Fig. 6.1. In the first channel, the
input signal x is filtered by the analysis filter H0(z), then decimated with a factor
of two (every other sample is ignored); the resulting signal x0 is interpolated with a
factor of two (a zero sample is inserted between each two samples of x0) and then
filtered with the synthesis filter F0(z). Similar operations are performed in the second
channel. The output y of the filter is the sum of the signals from the two channels.

The FB is composed of the analysis and synthesis banks. In applications, the
subband signals x0 and x1 are processed in some manner (e.g., quantized or filtered),
with the advantage of a lower sampling rate. However, when designing the FB, one
often assumes that there is no subband processing. The main requirement on the FB
is perfect reconstruction (PR): the output signal is a copy of the input one, with a
delay Δ, i.e.,

Y (z) = z−ΔX (z). (6.1)
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Fig. 6.1 Two-channel filterbank

This condition can be relaxed to near-PR; in this case, the output is only an approx-
imate copy of the input; see Sect. 6.2 and problem P 6.6 for developments of this
subject.

Let us first derive the input–output behavior of the FB. Due to decimation, the
first subband signal is

X0(z) = 1

2

[
H0(z

1/2)X (z1/2) + H0(−z1/2)X (−z1/2)
]
.

A similar expression holds for X1(z). Due to interpolation, the output is

Y (z) = F0(z)X0(z
2) + F1(z)X1(z

2).

We obtain the input–output relationship

Y (z) = Td(z)X (z) + Ta(z)X (−z), (6.2)

where

Td(z) = 1

2
[F0(z)H0(z) + F1(z)H1(z)] (6.3)

is the distortion transfer function (which accounts for the transformation of the input
signal) and

Ta(z) = 1

2
[F0(z)H0(−z) + F1(z)H1(−z)] (6.4)

is the aliasing transfer function (which describes the transformation of the aliased
input X (−z)). From (6.2), it results that perfect reconstruction is equivalent to the
conditions

Td(z) = z−Δ, Ta(z) = 0. (6.5)
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6.1.1 Orthogonal FB Design

The PR conditions (6.5) can be satisfied in different manners. The simplest choice,
which leads to orthogonal (or conjugate quadrature) FBs, is to define all the filters
as functions of a single one. We denote H0(z) = H(z) and assume that it is an FIR
filter of odd order n, with complex coefficients; we will see later why the order must
be odd; although we are interested mainly by FBs with real coefficients, we treat the
complex case for the sake of generality. In an orthogonal FB, the other filters are
defined by

H1(z) = −z−nH∗(−z−1),

F0(z) = H1(−z) = z−nH∗(z−1),

F1(z) = −H0(−z) = −H(−z).
(6.6)

These conditions lead to simple relations between the frequency responses of the
filters. The analysis and synthesis filters have the same magnitude, i.e., |H0(ω)| =
|F0(ω)|, |H1(ω)| = |F1(ω)|. The magnitudes of filters from the same bank have a
mirror property; they are symmetric about π/2, i.e.,

|H1(ω)| = |H0(π − ω)|. (6.7)

Substituting (6.6) into (6.4), it results immediately that Ta(z) = 0, i.e., aliasing is
perfectly canceled. On the unit circle, the trigonometric polynomial

R(z) = H(z)H∗(z−1) (6.8)

is the squared magnitude of the filter (R(ω) = |H(ω)|2); in the FB context, R(z) is
often named product filter. With this notation, the distortion transfer function (6.3)
becomes

Td(z) = 1
2 [R(z) + R(−z)] z−n. (6.9)

Imposing a delay Δ = n, the first condition from (6.5) is met if

R(z) + R(−z) = 2. (6.10)

Since all the odd-indexed coefficients of R(z) + R(−z) are zero, perfect reconstruc-
tion is achieved if and only if

r2k = δk, (6.11)

i.e., the product filter has the Nyquist(2) property.
Reminding the relation (2.27) between the coefficients of R(z) and H(z), which

is rk = hHΘkh (where h ∈ R
n+1 contains the coefficients of H(z)), we note that the

PR condition (6.11) is quadratic (with indefinite matrices) in the filter coefficients,
but linear in those of the squaredmagnitude and thus more amenable to optimization.

http://dx.doi.org/10.1007/978-3-319-53688-0_2
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Optimization objectives. There are several objectives for the optimization of an
orthogonal FB. A first option may be the minimization of the energy in the stopband
[ωs, π ], whereωs is a given stopband edge. Aswe have seen in Sect. 5.1, the stopband
energy (5.2) has a linear expression in the coefficients of R(z), as shown by (5.5).
Moreover, the PR condition (6.10) leads to

|H(ω)|2 + |H(π − ω)|2 = 2. (6.12)

Due to the mirror property (6.7), this is equivalent to the power complementarity
equality

|H0(ω)|2 + |H1(ω)|2 = 2. (6.13)

The relation (6.12) tells that the minimization of the stopband energy (5.2) implies
also an optimization of the passband error (more precisely, of the integral error
between |H(ω)|2 and the ideal value 2), in the interval [0, π − ωs]. In general, for a
Nyquist filter, it is enough to impose conditions on the stopband.

A second optimization objective arises in the design of signal-adapted FBs,
strongly related to that of optimal compaction filters. Let us assume that the input
signal x is a random process whose autocorrelations

ρk = E{x(�)x∗(� − k)}

are known. A compaction filter H(z) maximizes the variance of its output ξ(z) =
H(z)x(z) and its squared magnitude (6.8) is a Nyquist filter. Equivalently, the first
channel of the orthogonal FB with H0(z) = H(z) takes the most energy from the
input signal; note that in an orthogonal FB, due to the power complementarity relation
(6.13), the sum of the energies of the subband signals is equal to the energy of the
input; maximizing the energy in the first channel is equivalent to minimizing the
energy in the second channel. An orthogonal FB with this property is optimal for
quantization purposes (the number of bits for each subband signal can be allocated
optimally according to the variance of the signal).

The variance of the signal ξ is

σ 2
ξ

Δ= E{|ξ(�)|2} = E

{
n∑

i=0

hi x(� − i)
n∑

k=0

h∗
k x

∗(� − k)

}

=
n∑

i=0

n∑

k=0

hih
∗
k E{x(� − i)x∗(� − k)} =

n∑

i=0

n∑

k=0

hih
∗
kρk−i

=
n∑

k=−n

ρkh
HΘkh

(2.27)=
n∑

k=−n

ρkrk . (6.14)

Again, we have obtained a linear expression in the coefficients of the product filter.

http://dx.doi.org/10.1007/978-3-319-53688-0_5
http://dx.doi.org/10.1007/978-3-319-53688-0_5
http://dx.doi.org/10.1007/978-3-319-53688-0_5
http://dx.doi.org/10.1007/978-3-319-53688-0_5
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Design problem. We conclude that the design of an orthogonal FB with real
coefficients can be completed as follows. The degree n of the filters is an odd integer
value; giving it an even value is useless, since from (6.11) it would result that rn = 0
and so hn = 0. We solve the problem

min
R∈Rn [z]

∑n
k=0 ckrk

s.t. r2k = δk, k = 0 : (n − 1)/2
R(ω) ≥ 0, ∀ω

(6.15)

where the coefficients of the linear objective come from one of the two objectives
discussed above: stopband energy or variance of the first channel signal. The nonneg-
ativity of the trigonometric polynomial R(z) is expressed via the trace (2.6) or Gram
pair (2.94) parameterization. After solving the SDP problem equivalent to (6.15) (see
problem P 6.1), the filter H(z) is found by spectral factorization and the filters of the
orthogonal FB are derived from (6.6).

Example 6.1 We consider an input signal generated by an AR(1) process with the
pole α = 0.9. Its autocorrelations are ρk = αk . Such a process has a pronounced low-
band spectral power density. We design a two-channel orthogonal FB maximizing
the variance (6.14) of the first channel signal (or, in other words, we design a com-
paction filter adapted to the AR(1) process). After solving the SDP version of (6.15)
for n = 19, we obtain the frequency responses shown in Fig. 6.2; the filter H0(z) is
lowpass and H1(z) is highpass (we remind that the analysis and the synthesis filters
have the same magnitude response). �

Fig. 6.2 Frequency
response of the filterbank
from Example 6.1
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6.1.2 Towards Signal-Adapted Wavelets

Let us assume that H(z) is the first analysis filter of an orthogonal FB, and thus, its
product filter (6.8) satisfies theNyquist (or orthogonality) condition (6.11).As before,
H(z) is an FIR filter of odd degree n. We also make a supplementary assumption,
that the filter H(z) has nr > 0 degrees of regularity, i.e., it has nr roots in z = −1.
Consequently, it has the form

H(z) = (1 + z−1)nrU (z), (6.16)

where U (z) is an FIR filter of degree n − nr .
We can associate with H(z) the dilation equation

φ(t) = √
2

n∑

k=0

hkφ(2t − k), (6.17)

whose solution, the function φ of real variable t , which exists and is unique, is named
scaling function. The corresponding wavelet function is

ψ(t) = √
2

n∑

k=0

(−1)khn−kφ(2t − k). (6.18)

Under the above conditions on H(z) (and some other mild conditions, e.g., an
upper bound on |U (ω)|), the set of functions (wavelets)

{
ψi,�(t) = 2i/2ψ(2i t − �)

}
i,�∈Z (6.19)

forms an orthogonal basis for L2(R); we remind that L2(R) is the set of real signals
with finite energy; the scalar product of f, g ∈ L2(R) is

∫ ∞
−∞ f (t)g(t)dt . The indices

i and � denote, respectively, the scale and the translation of the wavelet ψi,�(t).
Given a function f ∈ L2(R) (viewed as the representative of a class of signals),

we may want to approximate it with wavelets whose scale is less than or equal to
an integer I , i.e., we ignore “details”; this is meaningful if the function has a finite
support spectrum. Since the wavelet basis (6.19) is orthogonal, the approximation
is made by projection onto the space generated by ψi,�(t), i ≤ I . As the subspaces
generated by wavelets with the same scale form a multiresolution analysis, the same
approximation is obtained by projection onto the subspace generated by the scaling
functions

φI,�(t) = 2I/2φ(2I t − �), � ∈ Z (6.20)

of scale I . We thus approximate

f (t) ≈
∑

�∈Z
aI�φI,�(t), (6.21)



6.1 Two-Channel Filterbanks 185

where the coefficients are obtained by the orthogonal projection

aI� =
∫ ∞

−∞
f (t)φI,�(t)dt.

We want to minimize the approximation error in (6.21). The natural optimization
variables are the coefficients of the filter H(z) that not only appear in (6.17) and
(6.18), but also are effectively used in a practical approximation scheme, based on FB
processing. Unfortunately, the approximation error is not convex in these variables.
With arguments that are too long to present here, a simplified optimization objective
is presented in [1], that is linear in the coefficients of the product filter (6.8), i.e.,
has the form (5.5) or (6.14). With this simplification, the design of signal-adapted
wavelets is similar to the FB design problem (6.15), to which we have to add only
the regularity constraints. This can be done in two ways, which we discuss in detail.

Explicit regularity constraints.We can force nr roots of H(z) to be equal to−1 by
imposing conditions on the derivatives of H(z), i.e., H (�)(−1) = 0, � = 0 : nr − 1,
or, equivalently,

n∑

k=0

(−1)kk�hk = 0, � = 0 : nr − 1. (6.22)

(When k = � = 0, we assume k� = 1.) Since each root of H(z) on the unit circle is
a double root of the product filter R(z), the constraint (6.22) can be written as

r0 + 2
n∑

k=1

(−1)kk2�rk = 0, � = 0 : nr − 1. (6.23)

We have ignored half of the constraints due to the positivity of R(ω): the number
of roots in −1 is always even. The constraint (6.23) is linear in the coefficients of
the product filter. Adding this constraint to FB design problem (6.15), we obtain the
optimization problem

min
R∈Rn [z]

∑n
k=0 ckrk

s.t. r2k = δk, k = 0 : (n − 1)/2
r0 + 2

∑n
k=1(−1)kk2�rk = 0, � = 0 : nr − 1

R(ω) ≥ 0, ∀ω

(6.24)

This can be easily transformed into an SDP problem, in the style suggested by
problem P 6.1. Although this approach is straightforward and easy to implement,
it can cause numerical trouble for moderate values of n and nr . The reason is the
large range of values for the coefficients from (6.23). For instance, taking n = 39
and nr = 6, the magnitude of the coefficients from (6.23) goes from 1 to n2(nr−1) =
3910 ≈ 1016; it is clear that the constraint can be imposed numerically with only low
accuracy. Practical experiments have shown that evenwith values such as n = 19 and

http://dx.doi.org/10.1007/978-3-319-53688-0_5
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nr = 4, the roots of the designed filter H(z) are spread around −1 (in the complex
plane); the accuracy is worse as n and nr grow.

Implicit regularity constraints.Another possibility is towork directlywith the fac-
torization (6.16), usingU (z) as variable. Denoting V (z) = U (z)U ∗(z−1) the product
filter corresponding to U (z), it results that

R(z) = (1 + z−1)nr (1 + z)nr V (z). (6.25)

We denote

B(z) = (1 + z−1)nr (1 + z)nr =
nr∑

i=0

(
nr
i

)
z−i

nr∑

�=0

(
nr
�

)
z�,

which is a symmetric polynomial whose coefficients are

bk =
∑

�−i=k

(
nr
i

) (
nr
�

)
=

nr∑

i=0

(
nr
i

) (
nr

nr − k − i

)
=

(
2nr

nr − k

)
. (6.26)

We have used the fact that

(
nr
�

)
=

(
nr

nr − �

)
; the last equality in (6.26) is the Van-

dermonde identity. Anyway, it is not the expression (6.26) that is important, but the
linear dependence of the coefficients of R(z) from those of V (z), that results from
(6.25) and is

rk =
nr∑

i=−nr

bi vk−i . (6.27)

Thus, adding regularity constraints to (6.15) gives

min
R∈Rn−nr [z]

∑n
k=0

∑nr
i=−nr

ckbi vk−i

s.t.
∑nr

i=−nr
bi v2k−i = δk, k = 0 : (n − 1)/2

V (ω) ≥ 0, ∀ω

(6.28)

The advantage over (6.24) is not only the smaller number of constraints (since there
are no more regularity constraints on V (z)), but also the lower degree of the posi-
tive polynomial V (z) (which is n − nr ). Hence, when expressing (6.28) as an SDP
problem, the size of the Gram matrix (or matrices) will be smaller.

After solving (6.28), the FIR filter U (z) is computed from V (z) by spectral fac-
torization and inserted in (6.16) to give the desired filter H(z). Using this implicit
approach, the roots in −1 can be possibly affected only by the computation involved
by the convolution (6.16); typically, the actual roots are very near from −1.

Example 6.2 We consider the same design problem as in Example 6.1, but adding
the regularity requirement of nr roots in −1. For n = 19, nr = 4, we solve the
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Fig. 6.3 Frequency
response of the filterbank
from Example 6.2
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Fig. 6.4 Scaling function
designed in Example 6.2
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SDP version of (6.28) and obtain the FB whose frequency response is shown in
Fig. 6.3. The effect of the regularity zeros is visible in the high frequency area. The
corresponding scaling function φ(t), found by solving the dilation equation (6.17),
is shown in Fig. 6.4; we remind that its support is the interval [0, n]. (This scaling
function is quite similar to the one designed in [1] for the optimal approximation
(6.21) of the sinc function f (t) = sin π t/π t .) �
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6.1.3 Design of Symmetric Complex-Valued FBs

Until now, we have designed real-valued FBs, although the theoretical considerations
were derived in the general case of complex-valued FBs. Here, we consider a special
class of FBs that belong to the latter case.

FIR orthogonal FBs as described in Sect. 6.1.1 cannot have linear phase, in the
sense that it is impossible to have hk = h∗

n−k or hk = −h∗
n−k (in this case, all filters

(6.6) would have linear phase). However, it is possible to build such FBs that are
symmetric. In this case, the coefficients of the first analysis filter obey to the condition

hk = hn−k . (6.29)

In the real case, symmetrymeans linear phase, and thus, such symmetric FBs can only
be complex-valued. The designation “symmetric FB” is actually misleading, since
it results from (6.6) that the second analysis filter has antisymmetric coefficients.
We note also that the scaling and wavelet functions given by (6.17) and (6.18) are
symmetric and antisymmetric, respectively (and complex-valued).

To be able to design symmetric FBs using the method from Sect. 6.1.1, we must
ensure that the product filter (6.8) is generated by a symmetric filter H(z). Let us
examine the properties of such a product filter.

Remark 6.3 The product filter has real coefficients. Indeed, since the symmetry
condition (6.29) is equivalent to the equality

H(z−1) = znH(z), (6.30)

it results that the product filter satisfies the relation

R(z)
Δ= H(z)H∗(z−1) = znH(z)z−nH∗(z−1) = H(z−1)H∗(z) = R(z−1).

As the definition (1.1) implies R(z−1) = R∗(z), it results that R(z) has real coef-
ficients. (A polynomial that is both Hermitian and symmetric has real coeffi-
cients.) �

Remark 6.4 Weexaminenow the zeros of the product filter. Since H(z) is symmetric,
if z is a zero of H(z), then 1/z is also a zero. Therefore, R(z) has (clusters of) four
zeros: z, 1/z (fromH(z)), z∗, 1/z∗ (fromH∗(z−1)). If z is complex, then this is the root
configuration for all nonnegative trigonometric polynomials with real coefficients.
What is specific to the case of symmetric spectral factors occurs when the zero z is
real; the four zeros collapse to two double zeros: z and 1/z; in particular, if 1 would
be a zero of R(z), then its multiplicity would be a multiple of 4 (typically there is
no zero in 1, due to the usual lowpass nature of H(z)). There is a single exception
to this rule, when the zero is in −1; since the degree of H(z) is odd, it results from
(6.30) that H(−1) = −H(−1) and so −1 is always a root; its multiplicity is thus
odd; so, −1 is a root of R(z) of multiplicity 2nr , where nr is odd.

http://dx.doi.org/10.1007/978-3-319-53688-0_1


6.1 Two-Channel Filterbanks 189

Fig. 6.5 Splitting of the
complex plane: the gray area
contains the roots of a
symmetric spectral factor

The discussion above shows how to perform the special spectral factorization
that, given R(z), computes a symmetric spectral factor (assuming that it exists).
The complex plane is split into two parts, such that if z belongs to a part, then 1/z
belongs to the same part. An example of splitting is given in Fig. 6.5. At spectral
factorization, we assign e.g., the roots from the gray region to H(z), the other roots
going to H∗(z−1). The roots on the border between regions have even multiplicity
(on the unit circle as a general rule for nonnegative trigonometric polynomials, and
on the real axis as shown above for the case at hand) and they are split evenly between
the two spectral factors. �

Moreover, we can give the following Gram parameterization.

Theorem 6.5 A nonnegative trigonometric polynomial R ∈ R[z] of order n = 2ñ +
1 has the form R(z) = H(z)H∗(z−1), with H(z) satisfying the symmetry condition
(6.29) (in other words, R(z) has a symmetric spectral factor, possibly with complex
coefficients), if and only if there exists a positive semidefinitematrix Q ∈ R

(ñ+1)×(ñ+1)

such that
R(ω) = χ̃T

c (ω)Qχ̃ c(ω), (6.31)

where the vector χ̃ c(ω) is defined in (2.98). The coefficients of R(z) have the form

rk = tr[Φ̃k Q], k = 0 : n, (6.32)

where the constant matrices Φ̃k are defined in (2.101).

Proof We note that (6.31) represents a “half” of the Gram pair parameterization
presented in Sect. 2.8.3. The proof there is based on splitting the symmetric and
antisymmetric parts of a spectral factor of R(z). In our case, the antisymmetric part
does not exist, since H(z) is symmetric. Although this remark would seem almost
sufficient for a proof, we will see immediately that the arguments are not at all
immediate. It follows from (6.29) that

http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
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H(ω)
Δ=

n∑

k=0

hke
− jkω = e− jnω/2

ñ∑

k=0

2hñ−k cos
(
k + 1

2

)
ω = e− jnω/2χ̃T

c (ω)a,

where
a = 2[hñ . . . h1 h0]T = b + j c (6.33)

with b, c ∈ R
ñ+1. Hence, we obtain

|H(ω)|2 = χ̃T
c (ω)(bbT + ccT )χ̃ c(ω). (6.34)

So, if R(ω) is nonnegative and has a symmetric spectral factor, there exists Q =
bbT + ccT such that (6.31) holds. This implication follows the pattern used in several
proofs in this book. However, the reverse implication is not as trivial as usual.

If (6.31) holds, then R(ω) ≥ 0, ∀ω ∈ [−π, π ]. It remains to show that R(z) has a
symmetric spectral factor. We denote t = cosω/2. Due to the recurrence (1.42), the
Chebyshev polynomial cos(k + 1

2 )ω, k ∈ N, depends only on the odd powers of t .
Hence, similarly to (1.44), we can write

χ̃ c(ω) = A

⎡

⎢⎢⎢⎣

t
t3

...

t2ñ+1

⎤

⎥⎥⎥⎦ = Atψ(t2), (6.35)

where A is a constant nonsingular matrix and ψ(t) = [1 t . . . t ñ]T . So, (6.31)
becomes

R(ω) = t2ψT (t2)AT QAψ(t2) = t2 R̃(t2). (6.36)

The real polynomial R̃(t) = ψT (t)AT QAψ(t) is nonnegative for any t ∈ R, since
AT QA 
 0. Theorem 1.7 states that it can be expressed as the sum of two squares,
i.e., there exist polynomials B̃(t) = ψT (t)b̃ and C̃(t) = ψT (t)c̃ such that

R̃(t) = B̃(t)2 + C̃(t)2 = ψT (t)(b̃b̃
T + c̃c̃T )ψ(t).

Inserting this expression into (6.36) and taking (6.35) into account, we obtain

R(ω) = χ̃T
c (ω)(bbT + ccT )χ̃ c(ω),

with b = A−T b̃, c = A−T c̃. As in (6.34), the vectors b and c contain the real and
imaginary parts, respectively, of the distinct coefficients of a symmetric spectral
factor H(z), as detailed by (6.33). We conclude that the trigonometric polynomial
(6.31) has a symmetric spectral factor.

Finally, since (6.31) is equivalent to

http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
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R(ω) = 1

2

ñ∑

i=0

ñ∑

�=0

qi�[cos(i + � + 1)ω + cos(i − �)ω],

the relation (6.32) follows immediately. (It is obtained by putting si� = 0 in (2.100).)
�

Remark 6.6 The existence of a Gram parameterization (6.31) ensures the existence
of a symmetric spectral factor with complex coefficients. A parameterization of non-
negative polynomials with symmetric spectral factors with real coefficients is equiv-
alent to a parameterization of real polynomials that are squares; hence, it seems not
possible in the Gram formalism. For other parameterizations involving symmetry or
antisymmetry, see problem P 6.5. �

Design problem. A typical optimization of the FB consists of minimizing the
stopband energy, towhichwemay add a bound on the stopband ripple, i.e., we impose
|H(z)| ≤ γs , ∀ω ∈ [ωs, π ], for a given bound γs . (Due to power complementarity,
it is useless to impose a bound in the passband.) We have seen that the stopband
energy is linear in the coefficients of the product filter R(z), as in (6.15). We control
stopband attenuation by requiring that the trigonometric polynomial γ 2

s − R(ω) is
nonnegative on [ωs, π ]. Appealing to Theorem 1.18—the case of odd n, for which
(1.40) holds—the stopband bound is satisfied if

γ 2
s − R(ω) = (cosω + 1) · R̃1(ω)2 + (cosωs − cosω) · R̃2(ω)2,

for somepolynomials R1(ω) and R2(ω)of degree ñ. This is equivalent to the existence
of positive semidefinite matrices Q1, Q2 ∈ R

(ñ+1)×(ñ+1) such that

γ 2
s − R(ω) = (cosω + 1)χT

c (ω)Q1χ c(ω) + (cosωs − cosω)χT
c (ω)Q2χ c(ω),

where the vector χ c(ω) is defined in (2.89). Using transformations similar to those
from Sect. 2.8.3, it results that

γ 2
s δk − rk = tr

[(
Φk + 1

2
Φk−1 + 1

2
Φk+1

)
Q1

]

+ tr

[(
cosωsΦk − 1

2
Φk−1 − 1

2
Φk+1

)
Q2

]
,

(6.37)

where the matrices Φk are defined in (2.95). So, the symmetric FB design problem,
expressed in terms of the product filter, is

min
Q,Q1,Q2

∑n
k=0 ckrk

s.t. rk = tr[Φ̃k Q], k = 0 : n
r2k = δk, k = 0 : ñ
(6.37), k = 0 : n
Q 
 0, Q1 
 0, Q2 
 0

(6.38)

http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
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Fig. 6.6 Frequency
response of symmetric FB
from Example 6.7, with no
stopband ripple bound
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Fig. 6.7 Symmetric FB
from Example 6.7, with
γs = −21 dB
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The constraints express, in order, the positivity of the product filter (ensuring also
the existence of a symmetric spectral factor), the orthogonality of the FB and the
stopband bound. We can add regularity constraints to this problem (not forgetting
that R(z) has always at least two zeros in −1), preferably in the implicit manner
discussed in the previous section. After solving (6.38), the symmetric spectral factor
H(z) is found by selecting the roots of R(z) as discussed in Remark 6.4.

Example 6.7 We take n = 29 and ωs = 0.55π . Firstly, we solve (6.38) for γs =
1, i.e., for a large value that makes the constraint (6.37) inactive. The frequency
response of this least squares optimized symmetric FB is shown in Fig. 6.6. The
maximum stopband error is −17 dB. Then, we put γs = −21 dB and solve (6.38)
again. The new frequency response is shown inFig. 6.7. The stopbandbound is visibly
respected. �
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Fig. 6.8 M-channel filterbank

6.2 GDFT Modulated Filterbanks

We move now to filterbanks with more than two channels. An M-channel FB is
shown in Fig. 6.8. Each channel has the same structure as in the two-channel case,
but now the subband signals are obtained by downsampling with a factor of L . The
same factor is used for upsampling. If L = M , then the FB is critically sampled. If
L < M , the FB is oversampled. The FB has the perfect reconstruction property if
(6.1) holds, where Δ is the delay.

6.2.1 GDFT Modulation: Definitions and Properties

Although in principle the analysis and synthesis filters can have independent coeffi-
cients, good performance and a simpler implementation can be obtained by building
all the filters of a bank from a single prototype, by modulation. We discuss here
a single type of modulation, that gives filters with complex coefficients; the main
application of such FBs is in subband adaptive filtering. Let H(z) and F(z) be FIR
prototype filters of degree n, with real coefficients (the degrees of the twofilters can be
different, but this does not change the developments below). The impulse responses
of the filters from the FB are obtained by generalized DFT (GDFT) modulation, with

Hm(z) = ∑n
k=0 hke

jπ(2m+1)(k−Δ/2)/Mz−k,

Fm(z) = ∑n
k=0 fke jπ(2m+1)(k−Δ/2)/Mz−k,

(6.39)

where hk , fk , k = 0 : n, are the coefficients of the prototype filters.
Ideally, the analysis filters have the frequency responses from Fig. 6.9 (the syn-

thesis filters have similar responses). The prototype filter H(z) is lowpass, and since
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Fig. 6.9 Frequency responses (magnitude) of a prototype (up) and of the corresponding analysis
filters (down), for M = 8

it has real coefficients, its magnitude response is symmetric with respect to ω = 0.
The responses of the analysis filters are obtained by shifting the response of the pro-
totype and are asymmetric. The passband of a filter has (ideally) a width of 2π/M ,
covering, for Hm(z), the interval [2mπ/M, 2(m + 1)π/M].

The advantage of oversampling is evident from Fig. 6.9. If the frequency response
of the prototype filter is, like there, equal to zero outside the baseband [−π/L , π/L],
then the subband signals xm ,m = 0 : M − 1, are not affected by aliasing. In this ideal
situation, the processing of these signals (not shown in Fig. 6.8) uses only information
that genuinely belongs to the respective frequency channels. In contrast, in critically
sampled FBs, subband aliasing cannot be avoided and perfect reconstruction is real-
ized by canceling the aliased components in the output. Subband processing and
aliasing cancellation are usually independent processes and so PR is not a robust
property of critically sampled FBs. Certainly, in practice one cannot have ideal fre-
quency responses like those fromFig. 6.9, and so a certain amount of subband aliasing
is unavoidable. However, oversampled FBs offer the potential of restricting the alias-
ing. Before examining the objectives for designing oversampled GDFT FBs, let us
see first the relevant input–output relations.

The output of the FB from Fig. 6.8 is

Y (z) = T0(z)X (z) +
L−1∑

�=1

T�(z)X (ze− j2π�/L), (6.40)

where

T0(z) = 1

L

M−1∑

m=0

Hm(z)Fm(z) (6.41)

is the distortion transfer function and
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T�(z) = 1

L

M−1∑

m=0

Hm(ze− j2π�/L)Fm(z), � = 1 : L − 1, (6.42)

are the aliasing transfer functions.

Proposition 6.8 Thedistortion transfer function (6.41) of theFBgenerated by (6.39)
has the expression

T0(z) = M

L

∑

i, 0≤Δ+iM≤2n

(−1)i (hTΥ Δ+iM f )z−(Δ+iM), (6.43)

where h, f are the vectors containing the coefficients of the analysis and synthesis
prototypes, respectively (of length n + 1).

Proof Using the modulation expressions (6.39), it results that

Hm(z) = hT

⎡

⎢⎢⎣

...

e jπ(2m+1)(k−Δ/2)/Mz−k

...

⎤

⎥⎥⎦

k=0:n

.

Hence, a term of the distortion transfer function (6.41) can be written as

Hm(z)Fm(z) = f TΓ m(z)h,

where Γ m(z) is the Hankel matrix

Γ m(z) =
2n∑

k=0

e jπ(2m+1)(k−Δ)/MΥ k z
−k . (6.44)

Using the above relations, the distortion transfer function (6.41) becomes

T0(z) = 1

L
f T

(
2n∑

k=0

M−1∑

m=0

e jπ(2m+1)(k−Δ)/MΥ k z
−k

)
h

= 1

L
f T

(
2n∑

k=0

e jπ(k−Δ)/MΥ k z
−k

M−1∑

m=0

e j2πm(k−Δ)/M

)
h. (6.45)

Since
M−1∑

m=0

e j2πm(k−Δ)/M =
{
M, if (k − Δ) mod M = 0,

0, otherwise,

and e jπ(k−Δ)/M = (−1)(k−Δ)/M when (k − Δ) mod M = 0, the expression (6.45) of
the distortion transfer function is equivalent to (6.43). �
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It is clear from (6.40) that perfect reconstruction is achieved if T0(z) = z−Δ and
T�(z) = 0, � = 1 : L − 1. However, in the applications that use GDFT-modulated
FBs, PR is not important and so we will consider FBs with near-PR property.

GDFT-modulated FBs as defined by (6.39) are described by the coefficients of two
prototype filters; such FBs are named near-biorthogonal or two-prototype FBs. From
now on, we consider GDFT-modulated FBs that are defined by a single prototype
filter.

Definition 6.9 A GDFT-modulated FB is named near-orthogonal if the prototype
filters appearing in (6.39) are related by

fk = hn−k . (6.46)

(The word “near” is used in this definition because only PR FBs can be
orthogonal.) �

This class of FBs can be related to positive polynomials, as we will soon see.

Remark 6.10 For near-orthogonal FBs, it follows from (6.46) that

Υ k f = Θn−kh.

Choosing a delay Δ = n, the distortion transfer function (6.43) becomes

T0(z) = M

L
z−n

∑

i, |i |M≤n

(−1)i (hTΘ iMh)z−iM

= M

L
z−n

∑

i, |i |M≤n

(−1)i riM z
−iM , (6.47)

where R(z) is the product filter (6.8); we have used (again!) the relation (2.27). We
also remark that it is not enough to take riM = (L/M)δi to obtain perfect reconstruc-
tion, since aliasing is not necessarily canceled by this choice (like in the two-channel
case). �

6.2.2 Design of Near-Orthogonal GDFT-Modulated FBs

The optimization of near-orthogonalGDFT-modulated FBs is based on several objec-
tives that can be expressed by conditions on the prototype filter.

• A good frequency selectivity of the filters is achieved by imposing conditions on
the frequency response of the prototype filter only (since all responses are shifted
versions of this response). Typically, we desire

minimization of the stopband energy (5.2) (6.48)

http://dx.doi.org/10.1007/978-3-319-53688-0_2
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and
|H(ω)| ≤ γs, ∀ω ∈ [ωs, π ], (6.49)

where γs is a given bound and the stopband edge is usually

ωs = π/L , (6.50)

as explained later.
• Near perfect reconstruction is obtained by putting conditions on the distortion
transfer function (6.47) and also on the aliasing in the output.

• As explained in the beginning of the section, it is desirable to reduce the aliasing in
subbands, such that subband processing uses only relevant information. However,
since we aim to a general analysis, we will assume that there is no processing of
subband signals.

The conditions (6.48) and (6.49) can be easily expressed using the product filter
(6.8), as we have seen previously. We discuss now the other objectives. We assume
(with no loss of generality) that the energy of the prototype filter is normalized to
L/M and so we have

r0 =
n∑

k=0

h2k = L

M
. (6.51)

Distortion in the output. The deviation of the distortion transfer function (6.41)
from the ideal value z−n (remind that the delay of our FB isΔ = n) can be measured
by H2 error norm

Ed = 1

π

∫ π

0
|e− jnω − T0(ω)|2dω.

Using (6.47), (6.51) and Parseval’s theorem, we obtain

Ed = M

L

1

π

∫ π

0

∣∣∣∣∣∣

∑

i �=0

(−1)i riMe
− j iMω

∣∣∣∣∣∣

2

dω = M

L

∑

i �=0

r2iM (6.52)

This least squares error can be bounded by an imposed value.
Aliasing in the output. The frequency response of the aliasing transfer functions

(6.42) is obtained from products between the frequency response of the prototype
and a shifted version of itself (the shift being a multiple of 2π/L). If the response
of the prototype would be zero outside the baseband [−π/L , π/L], then each such
product and thus the aliasing transfer functions would be zero. Although this is not
possible, it suggests that instead of seeking possible cancellations in the expressions
of the aliasing transfer functions, we could reduce aliasing by imposing limitations
on H(ω) for frequencies outside the baseband. That is, the natural conditions (6.48)
and (6.49), with the choice (6.50), serve well to bound aliasing in the output.
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Subband aliasing. The Fourier transform of the m-th subband signal is

Xm(ω) = 1

L

L−1∑

�=0

Hm

(
ω − 2π�

L

)
X

(
ω − 2π�

L

)
,

i.e., it is a sum of L copies of Hm(ω)X (ω), shifted with multiples of 2π/L and
expanded L times. If Hm(ω) is zero outside an interval I of length 2π/L (centered
in (2m + 1)π/M , as in Fig. 6.9), then Xm(ω), on [−π, π ], contains essentially the
same information as X (ω), on the interval I. In this ideal case, there is no alias-
ing. To approximate the ideal, we can minimize the energy of Hm(ω) outside of I.
This is equivalent to minimizing the energy of the prototype H(ω) outside the base-
band [−π/L , π/L]. We conclude that bounding subband aliasing can be realized by
imposing the same conditions (6.48) and (6.49).

Optimization problem. We can now formulate the design problem. The design
data are the number of channels M , the downsampling factor L , the degree n of
the prototype (which is not a multiple of M), a distortion error bound γd and a
stopband error bound γs . The optimization problem consists of the minimization of
the stopband energy, subject to the constraints discussed above, i.e.,

min
R∈Rn [z]

∑n
k=0 ckrk

s.t. r0 = L/M∑
i �=0 r

2
iM ≤ γd

R(ω) ≤ γ 2
s , ∀ω ∈ [π/L , π ]

R(ω) ≥ 0, ∀ω

(6.53)

This problem can be routinely transformed into an SQLP problem, as it is expressed
in terms of nonnegative polynomials. The objective (stopband energy) and the first
constraint (prototype energy normalization (6.51)) are linear. The second constraint
(bound for the distortion error (6.52)) has a second order cone form. The third con-
straint is the stopband error bound (6.49) expressed in terms of the squaredmagnitude
R(ω) = |H(ω)|2. After solving the SQLPproblem equivalent to (6.53), the prototype
filter is found from the spectral factorization of the optimal product filter R(z).

Example 6.11 We design a GDFT modulated filter bank with M = 8 channels and
downsampling factor L = 6. The degree of the prototype filter is n = 47. The dis-
tortion error bound is γd = 10−6 and the stopband error bound is given a large value
(e.g., γs = 1) such that the third constraint from (6.53) is actually eliminated. After
solving the SQLP version of (6.53), we obtain the prototype filter whose frequency
response is shown in Fig. 6.10. The frequency response of the whole analysis bank
(obtained by the modulation (6.39)) is shown in Fig. 6.11. We note that, for real
signals, only the first M/2 filters have to be used (whose passbands cover [0, π ]).
Finally, the distortion error function z−n − T0(z), where the distortion transfer func-
tion T0(z) is given by (6.47), has the frequency response shown in Fig. 6.12. The
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Fig. 6.10 Frequency
response of prototype filter
from Example 6.11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−70

−60

−50

−40

−30

−20

−10

0

10

Frequency (ω / π )

M
ag

ni
tu

de
 (

dB
)

Fig. 6.11 Frequency
responses of the analysis
filters
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maximum error is about −50dB. Alternatively, we can minimize an H∞ error, as
suggested in problem P 6.6. �

6.3 Bibliographical and Historical Notes

The design of two-channel orthogonal filterbankswas the signal processing topic that
led to the formulation and use of the trace parameterization. The first approaches for
solving the compaction filter design problem (6.15) were based on semi-infinite
optimization [2] or the Kalman–Yakubovich–Popov lemma [3]. The trace parame-
terization has been used in [4] (in a dual, not explicit, form) and [5] (for a related
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Fig. 6.12 Frequency
response of the distortion
error function
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problem, that of pulse amplitude modulation; this problem belongs to a larger class,
that of multiplexing, where the synthesis bank comes before the analysis one).

The use of positive polynomials for designing signal-adapted wavelets was pro-
posed in [1]. The implicit expression of regularity constraints appeared in [1, 6]. A
similar approach could be used for the optimization of other types of wavelets, as
those from [7, 8].

The design of symmetric orthogonal complex-valued FBs and wavelets was dis-
cussed in many papers, among which [9, 10]. The use of positive polynomials that
have a symmetric spectral factor was employed only more recently [11]; there, a
parameterization equivalent to that from Theorem 6.5 was proposed, precisely the
one found in problem P 6.5b.

The use of GDFT-modulated FBs for adaptive filters was advocated in [12–14],
among others. The design of near-orthogonal GDFT-modulated FBs, as presented
in Sect. 6.2, was proposed in [15]. Other papers [16, 17] deal with the design of
biorthogonal GDFT-modulated FBs, preferred for their low-delay potential. In [18],
biorthogonal FBs are designed with an iterative method, initialized with a near-
orthogonal FB.

Problems

P 6.1 Show that the orthogonal two-channel FBdesignproblem (6.15) canbewritten
in the SDP form

min
Q

tr[C Q]
s.t. tr[Θ2k Q] = δk, k = 0 : (n − 1)/2

Q 
 0

(6.54)

where C is a Toeplitz matrix. (The coefficients of R(z) from (6.8) are defined by the
trace parameterization (2.6).)

http://dx.doi.org/10.1007/978-3-319-53688-0_2
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Find a similar SDP problem, using the Gram pair parameterization (2.94).

P 6.2 Inspired by the previous problem, find the most economical SDP form of the
two-channel FB design problem (6.28), which includes regularity constraints.

P 6.3 Consider a two-channel orthogonal FBwith whose first analysis filter H0(z) is
symmetric (and complex-valued). Show that |H0(1)| = √

2. (Hint: use power com-
plementarity and the location of the roots of H0(z).)

P 6.4 Propose other partitions of the complex plane respecting the rule that generates
Fig. 6.5. What can you say about the roots that belong to the border between the two
regions? Have they always even multiplicity?

P 6.5 (Nonnegative trigonometric polynomials with symmetric or antisymmetric
spectral factors—completion of Theorem 6.5)

a.We consider all the cases of nonnegative trigonometric polynomials R ∈ R[z]
of order n with a symmetric or antisymmetric spectral factor H(z) (with complex
coefficients):
(i) n even (n = 2ñ), H(z) symmetric (hk = hn−k),
(ii) n odd (n = 2ñ + 1), H(z) symmetric,
(iii) n even, H(z) antisymmetric (hk = −hn−k),
(iv) n odd, H(z) antisymmetric.
Show that these polynomials can be parameterized by the Gram equality

R(ω) = xT (ω)Qx(ω), (6.55)

where the positive semidefinite matrix Q and the basis vector x(ω) are:
(i) Q ∈ R

(ñ+1)×(ñ+1), x(ω) = χ c(ω) (2.89),
(ii) Q ∈ R

(ñ+1)×(ñ+1), x(ω) = χ̃ c(ω) (2.98),
(iii) Q ∈ R

ñ×ñ , x(ω) = χ s(ω) (2.90),
(iv) Q ∈ R

(ñ+1)×(ñ+1), x(ω) = χ̃ s(ω) (2.99).

b. Remind that if H̃(z) is an FIR filter of type ii–iv, then it can be written as,
respectively, (1 + z−1)H(z), (1 + z−1)(1 − z−1)H(z), (1 − z−1)H(z), where H(z)
is of type i). Extend this property to the corresponding product filter and show how to
derive parameterizations for types ii–iv, starting from the relation (6.55) for type (i).
For example, show that if R̃(z) is of type ii), then R̃(ω) = (1 + cosω)χT

c (ω) Q̃χ c(ω).
Is this relation identical with (6.31)? (The answer is negative: the matrices Q from
(6.31) and Q̃ are not identical!)

P 6.6 (Near-PR orthogonal FBs)
a.Consider an orthogonal two-channel FB defined by the first analysis filter H(z)

of degree n = 2ñ + 1. Let R(z) be the associated product filter (6.8), normalized
such that r0 = 1. Derive the PR error measure

http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
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Ed = 1

4π

∫ π

0
|2 − R(ω) − R(π − ω)|2dω = 2

ñ∑

k=1

r22k .

Given a PR error bound γd , append the near-PR condition Ed ≤ γd to a FB design
problem in SDP form, like (6.38) or (6.54).

b. Another near-PR condition can be |e− jnω − Td(ω)| ≤ γt , for a given bound γt ,
where Td(z) is the distortion transfer function (6.9). Show how this constraint can
be imposed using positive polynomials.

We denote R̃(z) = ∑ñ
k=−ñ r2k z

−k . Show that the above near-PR condition is
equivalent to |1 − R̃(ω)| ≤ γt , ∀ω ∈ [0, π/2]. What is the advantage of this form of
the condition?

Derive a similar result for GDFT-modulated FBs.
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Chapter 7
Stability

Abstract Stability is a basic property of dynamic systems. In this chapter,we explore
several issues related to the stability of multidimensional discrete-time systems. First
come stability tests: Given a system, we have to decide whether it is stable or not.
Then, we discuss a robust stability problem, for the case where the coefficients of the
system depend polynomially on some bounded parameters. Finally, we show how to
build a convex stability domain around a given stable system. For all these problems,
the solutions we present are based on the use of positive polynomials.

7.1 Multidimensional Stability Tests

The d-dimensional discrete-time system with transfer function

H(z) = B(z)
A(z)

, (7.1)

where the denominator is the (anticausal) positive orthant polynomial

A(z) =
n∑

k=0

ak zk (7.2)

is structurally stable if and only if

A(z) �= 0, for |z1| ≤ 1, . . . , |zd | ≤ 1. (7.3)

(Note that here, by exception to the rest of the book, we follow the traditional notation
in stability and work with anticausal filters.) This definition of stability eliminates
stable systemswith nonessential singularities of the secondkind,where thenumerator
and the denominator may become simultaneously zero on the unit d-circle; anyway,
these systems have no practical importance since an infinitely small perturbation of
the numerator may make them unstable.
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Multidimensional stability testing is anNP-hard problem.Moreover, the definition
above does not look amenable to an implementation form. One of the simplifications
of (7.3) is theDeCarlo–Strintzis test, saying that the system (7.1) is structurally stable
if and only if the following univariate polynomials

A(z1, 1, . . . , 1)
A(1, z2, . . . , 1)

...

A(1, 1, . . . , zd)

(7.4)

have no roots inside and on the unit circle and

A(z1, . . . , zd) �= 0, for |z1| = . . . = |zd | = 1. (7.5)

Only condition (7.5) is difficult to implement, since it involves all d variables. In the
rest of this section, we assume that the 1D conditions hold true and discuss only the
multivariate condition (7.5), for whose implementation we propose two algorithms:
The first is based on testing the positivity of a polynomial, while the second uses a
special form of Positivstellensatz.

7.1.1 Stability Test via Positivity

Since we have to test if A(ω) �= 0, ∀ω ∈ [−π, π ]d , a simple alternative is to test
if |A(ω)| > 0. We can transform this into a problem with positive trigonometric
polynomials by defining

R(z) = A(z)A(z−1) (7.6)

and checking if R(ω) > 0. This can be done by computing the minimum value of
R(ω) on the unit d-circle, i.e., by solving the problem (3.46). Of course, as discussed
in Sect. 3.5, we can solve this problem only in relaxed form and find a minimum
value μ�

m (where m is the degree of the relaxation) that is smaller than the true
minimum μ�. If μ�

m > 0, then the system is stable. If μ�
m = 0, then we decide that

the system is not stable, although it is possible that μ� > 0. So, the test implements
only a sufficient condition. In view of our experience with relaxations, we can safely
presume that the test is practically accurate even with relaxations of smallest degree
(m = n).

Another approach that leads to a feasibility SDP problem is to choose a constant
ε > 0 and test whether R(z) − ε is strictly positive; again, this can be implemented
only in a relaxed version, by checking whether R(z) − ε is sum-of-squares.

An important aspect of the decision is related to the numerical computation. The
numerical value μ�

m computed by an SDP solver will be never exactly zero, but very

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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often positive. How small shouldμ�
m be to say that it is actually zero? In the feasibility

approach, how small should we choose ε?
It was found in [1] that the safest approach seems to be the following. Instead of

finding the minimum value of R(z), we solve the equivalent problem (3.38) of com-
puting the most positive Grammatrix associated with R(z); the minimum eigenvalue
isλ�

m,where againm is the degree of the relaxation. TheSDPalgorithms implemented
in [2] and similar libraries solve the specified (primal) SDP problem and its dual;
thus, they can return the gap δ between the values of the primal and dual optimal
(numerical) values. Theoretically, the duality gap should be zero. Practically, the gap
is nonzero and gives the order of magnitude of the accuracy of the computed optimal
value of the problem. The polynomial R(z) is deemed to be strictly positive if λ�

m
is sufficiently large with respect to the gap. So, the stability test is as follows: if
λ�
m ≥ cδ, where, e.g., c = 100, then the system is stable. Otherwise, we decide that

the system is unstable.

Example 7.1 A first example was already given in disguise. The system having as
denominator the polynomial (3.40) is stable, since the minimum eigenvalue of the
most positive Gram matrix associated with R(z) is 0.3036, as seen in Example 3.16.
We consider now polynomials with more than 2 variables:

A1(z) = 5 + z21z
3
3 + z33z

2
4 + z31z2z5 + z1z2z3z4z5, (7.7)

A2(z) = 5.6 + 0.8z1 + 1.5z21z2 + 1.8z32 + 0.2z3 + 1.3z2z
2
3. (7.8)

The polynomial A1(z) is stable, since λ�
n = 0.0052 and δ = 1.8 · 10−13. The

polynomial A2(z)was found to be unstable, withλ�
n = 1.1·10−12 and δ = 6.8·10−13;

higher order relaxations give the same decision. However, a small perturbation of
A2(z) may make it stable. For example, for the polynomial A(0.9999z), we obtain
λ�
n = 6.1 · 10−8 and δ = 1.2 · 10−12. This and other examples show that the test is

indeed accurate. �

However, the test may be costly. For the polynomial (7.7), the stability test took
about 15 s (timemeasured in 2016), but the complexity grows quicklywith the degree
and number of variables. Since the polynomial has only few nonzero coefficients, a
cure is to appeal to sparse bases for the Gram matrix, as in Sect. 3.6. The question is
what set of indices I to use in (3.57). The first idea is to try a minimal (in the sense
that its number of elements is minimum) set Im . For an arbitrary polynomial R(z),
finding Im is a difficult task; however, in the case of (7.6), the minimal set is simply
given by the degrees appearing in A(z).

The minimal set Im and the complete set Ic = {k ∈ N
d | k ≤ n} are the extreme

cases. Other sets could be used, based on heuristic choices, for example

Id = {k ∈ N
d | ∃km ∈ Im such that k ≤ km}. (7.9)

The monomials with degrees from Id are divisors of the monomials that appear in
A(z). By construction, we have Im ⊂ Id ⊂ Ic.

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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Fig. 7.1 Index sets for
Example 7.2. Left complete
set Ic; bullets represent the
basic set Ib. Right divisors
set Id
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Example 7.2 Figure7.1 presents the above sets of indices for the polynomial A(z) =
2 + z31 + z1z22. The basic set Ib is shown with bullets, and the complete set is on the
left and the divisors set on the right. �

Example 7.3 Using sparse bases, the polynomial (7.7) is still deemed stable. With
the minimal set Im , the minimal eigenvalue is λ�

m = 0.2; with the divisors set Id ,
we obtain λ�

d = 0.0189. The execution time is 0.05 s for Im and 1s for Id , much
smaller than for solving the complete problem. Of course, for (7.8) the decision is
instability: If the computed minimal value of the polynomial is zero for the complete
set, then it is zero for any index set included in it. �

Other tests, performed on randomly generated polynomials and reported in [1],
show that the test based on the minimal set often fails. On the contrary, the test based
on the divisors set gave the correct decision in all experiments.

7.1.2 Stability of Fornasini–Marchesini Model

We assume now that the model of the multidimensional system is given not by the
transfer function (7.1), but in a state-space form. We confine the discussion to the
2D case, although its generality will be clear. The Fornasini–Marchesini first model
is

ξ(�1+1, �2+1) = A1ξ(�1+1, �2) + A2ξ(�1, �2+1) + A3ξ(�1, �2) + Bυ(�1, �2)

η(�1, �2) = Cξ(�1, �2) (7.10)

This is the most general description of a linear 2D system; other models such as
Roesser or Attasi can be brought to this form. The vectors ξ ∈ R

n , υ, and η represent
the state, the input and the output of the system, respectively. We denote

F(z1, z2) = In − A1z1 − A2z2 − A3z1z2. (7.11)

The system (7.10) is stable if A(z) = det F(z) respects the condition (7.3). So,
the methods described in Sect. 7.1.1 are applicable. However, we can work directly
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with (7.11), which is a polynomial with matrix coefficients; the advantage is the low
degree of this polynomial.

The system (7.10) is stable if F(z) has no zero eigenvalues for z inside or on the
unit bicircle. The univariate DeCarlo–Strintzis conditions say that the polynomials

det(I − A2 − z(A1 + A3)),

det(I − A1 − z(A2 + A3))

must be stable. These conditions can be expressed in several ways, for example by

ρ((I − A2)
−1(A1 + A3)) < 1,

ρ((I − A1)
−1(A2 + A3)) < 1,

where ρ(·) is the spectral radius (the largest modulus of an eigenvalue). (To these
conditions, we typically add the natural constraints ρ(A1) < 1, ρ(A2) < 1 that
come from the requirement that F(z1, 0) and F(0, z2) are stable.) The multivariate
condition (7.5) means that the eigenvalues of F(ω) must be nonzero. Equivalently,
the smallest eigenvalue of R(ω), where

R(z) = F(z)FT (z−1),

must be strictly positive. As discussed in Sect. 7.1.1 in the scalar case, a stability
test consists of computing the most positive Gram matrix associated with R(z) an
testing its strict positivity. We simply have to solve the SDP problem (3.115) and see
whether the numerical value λ�

m (for a degree of relaxationm) is significantly greater
than the optimality gap.

Example 7.4 Let us consider the Fornasini–Marchesini model with

A1 =
⎡

⎣
0.5 −0.1 0.2
0.1 −0.2 0.3

−0.2 0.1 0.3

⎤

⎦ , A2 =
⎡

⎣
0.1 −0.4 0.2
0.1 −0.4 0.3

−0.2 0.2 0.2

⎤

⎦ ,

A3 =
⎡

⎣
0.2 −0.3 0.2
0.2 −0.2 0.3

−0.1 0.4 0.3

⎤

⎦ .

Solving (3.115) with the smallest relaxation degree m = (1, 1), we obtain λ�
m =

3.0 · 10−5 and a gap δ = 1.8 · 10−13 and so the system is stable. Applying the
scalar stability test from Sect. 7.1.1 to the n-th order polynomial det F(z), we obtain
λ�
n = 1.4 ·10−5 and δ = 6.2 ·10−13. These values suggest that the matrix polynomial

test is potentiallymore accurate, as the smallest eigenvalue of R(ω) is typically larger
than the smallest value of the scalar polynomial. The execution times for the two
tests are of about 0.1 s. �

In general, the matrix polynomial test described here is faster than the scalar
one from Sect. 7.1.1. For the smallest relaxation degree, the Gram matrix of R(z)

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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has size 4n × 4n, since the degree of the polynomial (7.11) is (1, 1) and the size
of its coefficients is n × n. For the scalar algorithm, the polynomial det F(z) has
(typically) degree (n, n), and so the Grammatrix has size (n+1)2×(n+1)2. Hence,
in Example 7.4, the size of the Gram matrix is 12 × 12 for the matrix polynomial
test and 16 × 16 for the scalar coefficients tests. For a larger n, we expect smaller
execution times of the matrix polynomial test.

7.1.3 Positivstellensatz for Testing Stability

We return now to the transfer function model (7.1) and derive a stability test based
on the Positivstellensatz for trigonometric polynomials described in Sect. 4.4. We
assume that the polynomial A(z) has real coefficients and its degree is even (n = 2ñ).
We denote

Ã(z) = zn/2A(z) = As(z) + Aa(z), (7.12)

where the polynomials

As(z) = Ã(z) + Ã(z−1)

2
, Aa(z) = Ã(z) − Ã(z−1)

2
(7.13)

have degree ñ, As(z) is symmetric, and Aa(z) is antisymmetric, i.e., Aa(z−1) =
−Aa(z). It follows that

Ã(ω) = As(ω) + Aa(ω),

where
As(ω) = aTs χc(ω), Aa(ω) = jaTa χs(ω). (7.14)

The vectors as and aa are real and the basis vectorsχc(ω) andχs(ω) are those defined
in (3.97). Since As(ω) is real and Aa(ω) purely imaginary, the second DeCarlo–
Strintzis condition (7.5) is equivalent to the requirement that the set

DA
	= {ω ∈ [−π, π ]d | As(ω) = 0 and Aa(ω) = 0} (7.15)

is empty. This formulation hints immediately to the use of the Positivstellensatz given
by Theorem 4.39. The only apparent impediment is that the theorem is formulated
in terms of Hermitian polynomials, while in (7.15), we have also the antisymmetric
polynomial Aa(z). However, we can derive a result in the same style that takes into
account the different symmetries.

Theorem 7.5 (Positivstellensatz stability test)
The even degree polynomial A(z) has no roots on the unit d-circle if and only if

there exist a symmetric polynomial X (z), an antisymmetric polynomial Y (z), and a
sum-of-squares polynomial R(z), all with real coefficients, such that

http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_4
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1 + X (z)As(z) + Y (z)Aa(z) + R(z) = 0, (7.16)

where As(z) and Aa(z) are defined by (7.12), (7.13).

Proof The polynomials E1(z) = As(z) and E2(z) = j Aa(z) are symmetric and
Hermitian, respectively (note that E∗

2 (z
−1) = − j Aa(z−1) = j Aa(z) = E2(z)), and

E2(z) has purely imaginary coefficients. Applying Theorem 4.39, the set (7.15) is
empty if and only if there exist polynomials U1(z) and U2(z) and sum-of-squares
S0(z), all with complex coefficients, such that

1 +U1(z)E1(z) +U2(z)E2(z) + S0(z) = 0. (7.17)

Denoting U1(z) = U1r (z) + jU1i (z) etc., where U1r (z) and U1i (z) have real coeffi-
cients, it results that (7.17) is equivalent to (we omit the argument for readability)

1 +U1r As −U2i Aa + S0r + j (U1i As +U2r Aa + S0i ) = 0.

The above equality shows that we can take U1i (z) = 0, U2r (z) = 0, S0i (z) = 0 and
so we obtain (7.16) with X (z) = U1r (z), Y (z) = −U2i (z), and R(z) = S0r (z); the
latter polynomial is sum-of-squares as the real part of a sum-of-squares, see the end
of the proof of Theorem 4.11. �

The equality (7.16) can be checked computationally using either the trace or the
Gram-pair parameterizations. We detail here the latter variant. Since X (z) and Y (z)
have real coefficients and are symmetric and, respectively, antisymmetric, we can
write

X (ω) = xTχc(ω), Y (ω) = j yTχs(ω),

with real vectors x and y. Indexing these vectors and those from (7.14) with a single
d-dimensional index (from a half-space H), we have

X (ω)As(ω) = ∑
i,�∈H xias� cos iTω cos �Tω,

Y (ω)Aa(ω) = −∑
i,�∈H yiaa� sin iTω sin �Tω.

Using the Gram-pair parameterization (3.99) for the sum-of-squares R(ω) and the
trigonometric identities (2.77) and (2.78), it results that the Positivstellensatz (7.16)
is equivalent to

δk + tr[Φk Q] + tr[	kS] + 1

2

∑

i+�=k

i,�∈H

(xias� + yiaa�) + 1

2

∑

i−�=±k

i,�∈H

(xias� − yiaa�) = 0, (7.18)

for any k ∈ H and for some positive semidefinite matrices Q and S. (To simplify the
notation, we have introduced the coefficients y0 = aa0 = 0.) We have thus reduced
the stability test to a feasibility SDP problem; again, we can solve the problem only

http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_2
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in relaxed form, by choosing the degrees of the variable polynomials X (z), Y (z) and
the sum-of-squares R(z), and thus the sizes of the Gram-pair matrices. Regarding the
accuracy, this approach has two slight advantages over the method from Sect. 7.1.1
(based on computing the minimum value of |A(ω)|2):
• The coefficients of A(z) are combined only by addition, in (7.13); “squaring,” as
necessary in the computation of |A(ω)|2, is avoided;

• The numerical accuracy is that of the SDP algorithm; it is not necessary to interpret
output data (more or less heuristically) when deciding stability.

The complexity of the feasibility SDP problem based on (7.16) is that typical
to the Gram-pair parameterization. The natural choice of the degrees is deg X =
deg Y = ñ; it results that deg R = n = 2ñ and the Gram-pair matrices have sizes
(3.95), (3.96). With these degrees, the Positivstellensatz stability test never failed in
our experiments. (In principle, we could try to satisfy (7.16) with polynomials of
smaller degree; however, in our experiments with such degrees, the equality (7.16)
could not be satisfied for many stable polynomials.)

Example 7.6 We give here a very simple example, illustrative to the accuracy of the
test. Let us consider the 2D system with denominator

A(z1, z2) = [1 z1 z
2
1]

⎡

⎣
1 −0.8 0.5

−0.5 0.4 −0.25
1 − ε −0.8 0.5

⎤

⎦

⎡

⎣
1
z2
z22

⎤

⎦ .

The system is stable for small positive values of ε (e.g., ε ≤ 0.4), but is unstable
for ε = 0; in this case, the polynomial has the separable form A(z) = (1 − 0.5z1 +
z21)(1 − 0.8z2 + 0.5z22) and the roots of the first factor are on the unit circle. The
test based on Theorem 7.5 and described in this section decides that the system is
stable for ε as small as 10−8. For comparison, the test from Sect. 7.1.1 gives an
instability decision for values ε = 10−4 and smaller and a stability decision only for
ε = 2 · 10−4. In general, for other examples, the accuracy is always in favor of the
Positivstellensatz test. �

7.2 Robust Stability

We turn now to a robust stability problem that, although formulated for 1D systems,
has a multivariate nature. Let

A(z, q) =
n∑

k=0

ak(q)zk (7.19)

be the denominator of a discrete-time transfer function. The coefficients ak(q) depend
on p parameters q ∈ Q. The robust stability problem consists of deciding whether

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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the polynomial (7.19) is Schur, i.e., has no roots inside or on the unit circle, for any
q ∈ Q. We study here the case where the coefficients ak(q) depend polynomially on
the parameters q and each parameter q�, � = 1 : p, is bounded by some constants;
without loss of generality, we can consider |q�| ≤ 1.

If the parameters are complex, then Q = D
p, where D = {z ∈ C | |z| ≤

1} is the unit disk. Deciding whether the polynomial (7.19) is Schur is simply a
multidimensional stability test on the p + 1-variate polynomial A(z) in the variable
z = (z, q1, . . . , qp). The tests discussed in the previous section can be applied
without any restriction.

In the remainder of this section, we treat the real parameters case, where
Q = [−1, 1]p. We will transform the robust stability problem into two different
Positivstellensatz: one with real polynomials and the other with trigonometric poly-
nomials.

7.2.1 Real Polynomial Test

Since we aim to obtain real polynomials, we replace the complex variable z with
two real variables. Denoting z = τ1 + jτ2, with τ1, τ2 ∈ R, we can transform the
polynomial (7.19) into

A(z, q) = f1(τ1, τ2, q) + j f2(τ1, τ2, q), (7.20)

where the polynomials f1(·) and f2(·) have real coefficients and depend on d = p+2
real variables. The degrees of the variables τ1 and τ2 in f1(·) and f2(·) are at most
n. In the variable

t = (τ1, τ2, q) ∈ R
d ,

the polynomials A(t), f1(t), and f2(t) have the same total degrees.
Since f1(t) and f2(t) have real values, the polynomial (7.20) is robustly Schur if

and only if f1(t) �= 0, f2(t) �= 0 for all t ∈ R
d such that τ 2

1 + τ 2
2 ≤ 1 and q ∈ Q.

Denoting

g�(t) =
{
1 − q2

� , � = 1 : p,
1 − τ 2

1 − τ 2
2 , � = p + 1,

(7.21)

it results that the polynomial is robustly Schur if and only if the set

D( f, g) =
{
t ∈ R

d

∣∣∣∣
f1(t) = 0, f2(t) = 0
g�(t) ≥ 0, � = 1 : p + 1

}
(7.22)

is empty. This formulation hints immediately to a Positivstellensatz expression of
the robust stability test.
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Theorem 7.7 The polynomial (7.19) is Schur for any q ∈ Q = [−1, 1]p if and only
if there exist u1, u2 ∈ R[t] and s� ∈ ∑

R[t]2, � = 0 : p + 1, such that

1 + f1(t)u1(t) + f2(t)u2(t) + s0(t) +
p+1∑

�=1

g�(t)s�(t) = 0. (7.23)

Proof The polynomials (7.21) have the property

p + 1 −
d∑

�=1

t2� =
p+1∑

�=1

g�(t) · 1 ∈ M(G), (7.24)

where M(G) is defined in (4.4). It results that the polynomial (4.6) belongs to
M(g), with N = p + 1; as discussed in Remark 4.10, this means that M(g) is an
Archimedean quadratic module. It follows that we can apply Theorem 4.38, of which
the current theorem is a particular instance, as the set (7.22) is a particular case of
(4.55). The relation (7.23) comes from (4.57), for K = 2, L = p + 1. �

Remark 7.8 The test (7.23) can be implemented only in relaxed form, with bounded
degrees of the polynomials f1(t), f2(t), s�(t). A sensible strategy is to take these
polynomials such that the total degreem of each term appearing in (7.23) is the same.
Since the sum-of-squares have even degree, it results thatm ≥ m0 = 2
tdegA/2�.�
Remark 7.9 The test proposed in [3] is based on the strict positivity of |A(z, q)|2 =
f1(t)2 + f2(t)2 (tested using Bernstein polynomials). This is equivalent to the test
(7.23) in which u1(t), u2(t) are scalar multiples of − f1(t) and − f2(t), respectively.
In this case, the degrees of the terms from (7.23) would be 2 tdegA, i.e., about twice
m0. We will see that our test can be accurate for smaller values of the degree. �

Remark 7.10 Since the roots of a polynomial are continuous functions of the coef-
ficients and Q is connected, the stability test can be split in two parts:

(i) A(z, q0) is Schur for some q0 ∈ Q, e.g., q0 = 0;
(ii) A(z, q) is Schur for any z with |z| = 1 (i.e., only on the unit circle) and any

q ∈ Q.

Implementing (i) is trivial. As for (ii), we have to take into account that now 1 −
τ 2
1 − τ 2

2 = 0. So, in (7.22), the polynomial gp+1(t) is now involved in an equality
constraint, instead of a positivity constraint. It results that in (7.23), sp+1(t) becomes a
general polynomial instead of a sum-of-squares. Although in principle suchmodified
test is less conservative, we have not noticed any practical difference between (7.23)
and its modified version. �

Example 7.11 Transforming the classic continuous-time example from [4] via the
bilinear transformation, we obtain

http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
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A(z, q1, q2) = (26.38 + ρ + 9.18q1 + 10.67q2 + 1.87q1q2)
+ (49.64 + 3ρ + 22.44q1 + 25.41q2 + 5.61q1q2)z
+ (45.14 + 3ρ + 20.74q1 + 23.21q2 + 5.61q1q2)z2

+ (13.88 + ρ + 7.48q1 + 8.47q2 + 1.87q1q2)z3.

(7.25)

This polynomial is not robustly Schur for any ρ ≥ 0, but Schur for small negative
values of ρ. When ρ = 0, there is a single point in Q for which the polynomial is
not Schur, and thus, gridding methods are prone to fail; these methods test stability
only for a discrete set of points in Q.

The total degree of the polynomial (7.25) is 5. We take the polynomials from
(7.23) such that the total degree of the terms is m0 = 6, the minimum possible; so,
the total degrees of, e.g., f1(t), s0(t), and s1(t) are 1, 6, and 4, respectively. Solving
the SDP relaxation of (7.23), the polynomial (7.25) is considered not robustly Schur
for any ρ > ρ0 = −4 · 10−6. The negative value of ρ0, instead of exactly 0, exhibits
the numerical accuracy of the test. Note that the value ρ0 is very small with respect
to the coefficients of the polynomial; anyway, the numerical inaccuracy may only
make a stable system to be assessed as unstable. The polynomial (7.25) is considered
robustly Schur for any ρ ∈ [−2.799999, ρ0]. The execution time for a test is about
0.2 s.

Other few experiments suggest that the test is accurate with m = 2(1 +
�tdegA/2); this is the minimum degree m0 when tdegA is odd and m0 + 2 when
tdegA is even. �

7.2.2 Trigonometric Polynomial Test

We give now an alternative Positivstellensatz, similar in spirit with that from
Sect. 7.1.3. Since the parameters, q�, � = 1 : p, are real and subunitary, we transform
(7.19) into a trigonometric polynomial by putting

q� = ζ� + ζ−1
�

2
. (7.26)

On the unit circle, it results that q� = cos θ� ∈ [−1, 1]. We denote A(z, ζ ) the
polynomial (7.19) obtained after the substitution (7.26). We assume that n = 2ñ in
(7.19); if n is odd, similar developments are possible. We shift A(z, ζ ) such that its
support is symmetric, obtaining

Ã(z, ζ ) = zn/2A(z, ζ ) = As(z, ζ ) + Aa(z, ζ ). (7.27)

The polynomials

As(z, ζ ) = Ã(z, ζ ) + Ã(z−1, ζ )

2
, Aa(z, ζ ) = Ã(z, ζ ) − Ã(z−1, ζ )

2
(7.28)
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are symmetric and antisymmetric, respectively, in their first variable, i.e.,

As(z
−1, ζ ) = As(z, ζ ), Aa(z

−1, ζ ) = −Aa(z, ζ ).

Moreover, due to (7.26), the polynomial Ã(z, ζ ) is symmetric in ζ . Denoting d =
p + 1 and

z = (z, ζ ) ∈ C
d ,

it results that the polynomials (7.28) satisfy

As(z−1) = As(z), Aa(z−1) = −Aa(z),

i.e., they are symmetric and antisymmetric, respectively. As noticed in Remark 7.10,
the robust stability test can be split in two parts. The second (and more difficult)
condition that A(z, q) is Schur for any q ∈ Q and for z ∈ T is equivalent to the
requirement that the set (7.15) is empty, with As(ω) and Aa(ω) as defined by (7.28).
Hence, we can apply Theorem 7.5 to obtain the following.

Corollary 7.12 The polynomial (7.19) is Schur for any z on the unit circle and any
q ∈ Q if and only if there exist a symmetric polynomial X (z), an antisymmetric
polynomial Y (z) and a sum-of-squares polynomial R(z), all with real coefficients,
such that

1 + X (z)As(z) + Y (z)Aa(z) + R(z) = 0.

Remark 7.13 Although Aa(z) has also other symmetry properties which reduce the
number of its distinct coefficients, it seems that they cannot be used to reduce the
complexity of the problem, in the sense that Y (z) has no particular structure apart
from being antisymmetric. �
Remark 7.14 Asdiscussed inSect. 7.1.3, the degrees of X (z) andY (z) are practically
taken equal to those of As(z) and Aa(z), respectively. With this choice, the degree
of the sum-of-squares R(z) is n = 2ñ in the first variable and twice the degree of
A(z, ζ ) in the variables ζ . Comparing the robust stability tests from Corollary 7.12
and Theorem 7.7, the first test has the advantage of working with polynomials with
p+ 1 variables, while in the second, there are p+ 2 variables; there is a single sum-
of-squares polynomial in the first test and p+ 2 in the second. However, a drawback
of the first test is the larger degree of the polynomials. Overall, we can appreciate that
the trigonometric polynomial test given by Corollary 7.12 is better especially when
the degree n of the polynomial (7.19) is relatively large with respect to the degrees
of the parameters q. �
Example 7.15 We consider the polynomial [5]

A(z, q) = [a(q + 1) − 6] + [a(1 − q) + 6]z + b(1 + q)z3 + b(1 − q)z4, (7.29)

where the parameter is q ∈ [−1, 1] and a, b are real constants. By putting q =
(ζ + ζ−1)/2 as in (7.26), we obtain
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2ζ A(z, ζ ) = [a(ζ +1)2 −12ζ ]+[−a(ζ −1)2 +12ζ ]z+b(ζ +1)2z3 −b(ζ −1)2z4.
(7.30)

For testing that the polynomial (7.29) is robustly Schur, we must check whether the
polynomial (7.30) has no roots on the unit bicircle. (The multiplication with ζ in
(7.30) does not affect the roots and allows us to obtain a quarter plane polynomial.)
By using the Positivstellensatz from Theorem 7.5, we find that, with a = −3, this
happens for −2.99999999 ≤ b ≤ 2.99999998. The test is accurate, as already
suggested in Example 7.6. For b = 3, it results that A(z,−1) = −6 + 6z4, whose
roots are obviously on the unit circle; same remark is valid for b = −3, when
A(z,−1) = −6 − 6z4. �

7.3 Convex Stability Domains

The set of Schur polynomials is not convex, and so, in optimization problems where
a stable system is sought, it is customary to use diverse sufficient conditions. Some
of these conditions amount to building a convex domain around a given Schur poly-
nomial (7.2). In this section, we characterize such a domain, using a positive realness
condition that takes the form of an LMI. We present the results directly for multi-
variate polynomials, although their illustration will be mostly in the univariate case.

7.3.1 Positive Realness Stability Domain

We aim to build the convex stability around a given Schur polynomial A(z) (in
optimization problems, this polynomial would be a nominal point of interest at a
certain stage). Thus, we consider sets of polynomials Ã = A + D, for a variable
D(z); for simplicity, we consider the free terms of Ã(z) and A(z) both equal to
1, while the free term of D(z) is zero (a0 = ã0 = 1, d0 = 0). The base for our
construction is the following positive realness result.

Theorem 7.16 Let A(z), Ã(z) be polynomials defined as in (7.2). If A(z) is Schur
(i.e., has no roots inside or on the unit circle) and

Re

[
Ã(ω)

A(ω)

]
> 0, ∀ω ∈ [−π, π ]d , (7.31)

then Ã(z) is also Schur.

The proof is presented in Sect. 7.3.3. The domain built using (7.31) has convenient
properties.

Theorem 7.17 Let A(z), defined as in (7.2), be a Schur polynomial. The domain
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DA = { Ã(z) such that (7.31) holds} (7.32)

is convex and A(z) is an interior point of it.

Proof Let Ã1, Ã2 be arbitrary polynomials from DA. Denoting Ãα = α Ã1 + (1 −
α) Ã2, for α ∈ [0, 1], it results immediately that Re[ Ãα(ω)/A(ω)] > 0 and thus
Ãα ∈ DA.

Now take an arbitrary polynomial D(z), with zero free term. Since D(ω) has
a finite maximum value, it follows that there is an ε > 0 such that Re[1 +
εD(ω)/A(ω)] > 0, i.e., the distance from A(z) to the border of DA is nonzero
in any direction D(z). It is also clear from (7.31) that A ∈ DA. �

We express now the positive realness condition (7.31) with the aid of positive
polynomials. We denote

T+(z) = Ã(z)
A(z)

= 1 + D(z)
A(z)

(7.33)

and

T (z) = T+(z) + T+(z−1) = R(z)
A(z) · A(z−1)

, (7.34)

where
R(z) = 2A(z)A(z−1) + A(z)D(z−1) + A(z−1)D(z) (7.35)

is a trigonometric polynomial. Then, condition (7.31) is obviously equivalent with

R(ω) > 0, ∀ω ∈ [−π, π ]d . (7.36)

Since we aim to an implementable form of the condition (7.31), we relax (7.36) to
the requirement that R(z) is sum-of-squares.

Theorem 7.18 Let A(z) be a Schur polynomial defined as in (7.2), with a0 = 1.
Consider the domain

D̂A = { Ã = A + D | R ∈ RS
n
n[z], R(ω) > 0, ∀ω ∈ [−π, π ]d}, (7.37)

where R(z) is defined by (7.35) and D is a positive orthant polynomial of degree n,
with d0 = 0. Then, the next affirmations are true:

(a) D̂A ⊂ DA (and thus A + D is Schur).
(b) The domain D̂A is convex.

Proof (a) Obvious. (b) The relation (7.35) between the coefficients of the sum-of-
squares R(z) and of the polynomial D(z) is linear. Since the set of positive sum-
of-squares polynomials (with factors of a given degree) is convex, the set of D(z)
satisfying (7.35) is also convex, i.e., D̂A is convex. �
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Remark 7.19 The advantage of the domain (7.37) lies on its description via an LMI.
Since R(z) is sum-of-squares, it can be expressed with the generalized trace (3.32)
or Gram-pair (3.99) parameterizations. As D(z) (and thus Ã(z)) is linearly related to
R(z), it results that the coefficients of D(z) can be parameterized through an LMI.
To stress the linearity of (7.35), we can write it in the equivalent form

r = (F + G)d + 2Ga, (7.38)

where F and G are constant matrices (i.e., depending only on the coefficients of
A(z)) and r , d, and a are vectors of the coefficients of the polynomials R(z), D(z),
and A(z), respectively (the vector r contains only the coefficients of R(z) from a
half-space). We define the vectors d and a as in (3.27). The relation (7.35) can be
written as

R(z) = 2aTΨ (z−1)a + aT
[
Ψ (z−1) + Ψ (z)

]
d,

where Ψ (z) is defined in (3.34). By identification, we can derive the expressions of
the matrices F and G.

1-D case. For univariate polynomials (when r = [r0 . . . rn]T , etc.), the constant
matrices from (7.38) are

F = Toep(aR)
	=

⎡

⎢⎢⎢⎢⎣

a0 a1 . . . an

0 a0
. . . an−1

...
. . .

. . .
...

0 . . . 0 a0

⎤

⎥⎥⎥⎥⎦
,

G = Hank(a)
	=

⎡

⎢⎢⎢⎢⎣

a0 . . . an−1 an

a1 . .
.

an 0
... . .

.
. .
. ...

an 0 . . . 0

⎤

⎥⎥⎥⎥⎦
.

(7.39)

(The upper index in aR denotes the reversal of the order of the elements of a; the
overline indicates a block of a larger matrix; the notation will become more relevant
later.)

2-D case. If d = 2, we define r by concatenating the columns of the following
table (giving the coefficients situated in a half plane)

r−n1,1 . . . r−n1,n2
...

...

r0,0 r0,1 . . . r0,n2
r1,0 r1,1 . . . r1,n2
...

...
...

rn1,0 rn1,1 . . . rn1,n2

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
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With this convention, the matrix F from (7.38) has the block Toeplitz structure

F =

⎡

⎢⎢⎢⎢⎣

Toep(aR
0 ) Toep(aR

1 ) . . . Toep(aR
n2)

0 Toep(aR
0 )

. . .
...

0 0
. . . Toep(aR

1 )

0 0 0 Toep(aR
0 )

⎤

⎥⎥⎥⎥⎦
, (7.40)

where the blocks of size (2n1 + 1) × (n1 + 1) of F are Toeplitz matrices defined by

Toep(aR
k2) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

an1,k2 0 0
...

. . . 0

a0,k2
. . . an1,k2

0
. . .

...

0 0 a0,k2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (7.41)

Also, the matrix G has the block Hankel structure

G =

⎡

⎢⎢⎢⎢⎣

Hank(a0) . . . Hank(an2−1) Hank(an2)
... . .

.
Hank(an2) 0

Hank(an2−1) . .
.

0 0
Hank(an2) 0 0 0

⎤

⎥⎥⎥⎥⎦
, (7.42)

where the blocks have size (2n1 + 1) × (n1 + 1) and the Hankel structure

Hank(ak2) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 a0,k2

0 . .
. ...

a0,k2 . .
.
an1,k2

... . .
.

0
an1,k2 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (7.43)

Remark 7.20 Finally,wenote thatwe could allow in (7.37) a relaxation degree higher
than n, obtaining a domain including D̂A. However, it seems that the implementation
cost would not justify the (probably not significant) increase in the domain. �
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7.3.2 Comparisons and Examples

Another convex stability domain around a given Schur polynomial A(z), used in
several optimization methods for IIR filter design, is

DR
A = { Ã = A + D | |D(ω)| < |A(ω)|, ω ∈ [−π, π ]d}. (7.44)

The proof that DR
A contains only Schur polynomials is based on Rouché’s criterion

and is suggested in problem P 7.3. More interestingly, for any A(z), this domain
is included in the positive realness domain (7.32); a proof is suggested in problem
P 7.4.

We illustrate the shape and the size of the presented convex stability domains in
the simplest case, that of univariate polynomials of degree n = 2. In this case, we
have A(z) = 1 + a1z + a2z2, D(z) = d1z + d2z2 and ã1 = a1 + d1, ã2 = a2 + d2.
The stability domain for polynomials of order two is the interior of a triangle in the
parameter plane (ã1, ã2), as shown in Figs. 7.2 and 7.3.

Example 7.21 For A(z) = 1 − 0.5z + 0.6z2, Fig. 7.2 shows three convex stability
domains. Besides DA (dashed line) and DR

A (dotted), we have also drawn, with solid
line, the circleDS

A with radius equal to the stability radius of A(z) (the stability radius
is the shortest Euclidean distance from A(z) to an unstable polynomial, measured
in the vector space of coefficients). It is clear that DR

A ⊂ DA, while DS
A has points

outside DA, although having a much smaller area. �

Example 7.22 We take now A(z) = 1−0.3z−0.4z2 and obtain the domains shown
in Fig. 7.3. It is interesting to remark that when A(z) approaches the lower corner
of the stability triangle, i.e., the polynomial 1− z2, the positive realness domain DA

tends to be the whole triangle, while DR
A and DS

A tend to become empty (the stability
radius domain tends to be empty whenever the distance to the border of the triangle
becomes small). �

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
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 0
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Fig. 7.2 Convex stability domains for Example 7.21.Dashed line positive realness.Dotted Rouché.
Solid stability radius
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Fig. 7.3 Convex stability domains for Example 7.22. Same legend as in Fig. 7.2

7.3.3 Proof of Theorem 7.16

Proof for univariate polynomials. From (7.31), it results that Ã(ω) �= 0, ∀ω ∈
[−π, π ], i.e., Ã(z) has no roots on the unit circle. Let z0 = re jθ be an arbitrary point
inside the unit circle (0 ≤ r < 1). We have to show that Ã(z0) �= 0.

Since A(z) and Ã(z) are polynomials and A(z) has no zeros on the unit disk, we
can apply Cauchy’s integral formula on the unit circle to obtain

Ã(z0)

A(z0)
= 1

2π j

∮

T

Ã(z)

(z − z0)A(z)
dz

z=e jω= 1

2π j

∫ π

−π

Ã(ω)

(e jω − re jθ )A(ω)
je jωdω

= 1

2π

∫ π

−π

Ã(ω)

A(ω)[1 − re j (θ−ω)]dω

0≤r<1= 1

2π

∫ π

−π

Ã(ω)

A(ω)

∞∑

k=0

rke jk(θ−ω)dω.

(7.45)

We can also apply Cauchy’s integral theorem, again on the unit circle, to obtain,
for any integer � ≥ 0, ∮

T

Ã(z)z�

A(z)
dz = 0

and thus ∫ π

−π

Ã(ω)e j (�+1)ω

A(ω)
dω = 0.

It follows immediately that we have
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1

2π

∫ π

−π

Ã(ω)

A(ω)

∞∑

k=1

rke jk(ω−θ)dω = 0. (7.46)

The sum

P(ω) =
∞∑

k=0

rke− jkω +
∞∑

k=1

rke jkω (7.47)

is the Poisson kernel. It is easy to see that P(ω) is real. Moreover, it can be proved
that for 0 ≤ r < 1, we have

P(ω) = 1 − r2

1 + r2 − 2r cosω
> 0, ∀ω ∈ [−π, π ]. (7.48)

Adding (7.45) and (7.46), we obtain

Ã(z0)

A(z0)
= 1

2π

∫ π

−π

Ã(ω)

A(ω)
P(ω − θ)dω. (7.49)

Due to (7.31) and to the positivity of the Poisson kernel, it results that the real part
of the right-hand term of (7.49) is strictly positive, and thus, Ã(z0) �= 0, which is the
desired conclusion.

The multivariate case is proved by means of the DeCarlo–Strintzis conditions.
If (7.31) holds, then Ã(ω) �= 0, ∀ω ∈ [−π, π ]d , and so the second condi-
tion (7.5) holds. We fix now z2 = . . . = zd = 1. The univariate polynomial
A1(z1) = A(z1, 1, . . . , 1) is Schur. Denoting Ã1(z1) = Ã(z1, 1, . . . , 1), it results
from (7.31) that Re[ Ã1(ω1)/A1(ω1)] > 0, ∀ω1 ∈ [−π, π ]. Applying the above
proved univariate version of this theorem, we conclude that the univariate polyno-
mial Ã(z1, 1, . . . , 1) is Schur. Repeating this proof for z2, …, zd , it results that all the
univariate polynomials (7.4) are Schur and so the first DeCarlo–Strintzis conditions
also hold.

7.4 Bibliographical and Historical Notes

To decide whether the stability condition (7.3) is true or not for a given system is an
NP-hard problem [6] for d ≥ 2. The DeCarlo–Strintzis test [7] was used, e.g., for a
genetic algorithm approach [8]; its relation with positive polynomials and SDP was
presented in [1]. Older algorithms for testing stability are based on solving systems of
polynomial equations [9, 10]. The results from Sects. 7.1.2 and 7.1.3 have appeared
in [11] and [12], respectively.

The robust stability problem from Sect. 7.2 has been solved with different types
of gridding [4] (for which it is easy to generate counterexamples) or Bernstein poly-
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nomials expansions [3, 5]; the Positivstellensatz method from Sect. 7.2.1 has been
presented in [13], while the trigonometric version from Sect. 7.2.2 appeared in [12].

The proof of Theorem 7.16 is inspired from the proof [14] of a simpler result, sta-
ting that if Re[ Ã(ω)] > 0, ∀ω ∈ [−π, π ], then Ã(z) is Schur. (This is Theorem 7.16
for A(z) = 1.) The univariate version of the positive realness convex stability do-
main presented in Sect. 7.3.1 has been proposed in [15, 16], while the multivariate
version appeared in [17]. The first use of the Rouché stability domain was in IIR
filter design [18].

Problems

P 7.1 How many distinct nonzero coefficients may have a d-variate polynomial of
complex variable z = (z1, . . . , zd), that is, antisymmetric in z1 and symmetric in z2,
…, zd?

P 7.2 Generalize the robust stability tests from Sect. 7.2 tomultivariate polynomials
whose coefficients depend polynomially on some bounded parameters.

P 7.3 a. Show that the domain DR
A defined by (7.44) is convex.

b. Show that DR
A contains only Schur polynomials.

Hints. a. For each ω, the inequality |D(ω)| < |A(ω)| defines a convex set. As
their intersection, DR

A is convex.
b. In the univariate case, this is a consequence of Rouché’s criterion (if |D(ω)| <

|A(ω)|, then A(z) and A(z) + D(z) have the same number of zeros inside the unit
circle). For multivariate polynomials, use the DeCarlo–Strintzis conditions, as in the
proof of Theorem 7.16.

P 7.4 Prove that DR
A ⊂ DA, for any Schur polynomial A(z), where the do-

mains DA and DR
A are defined in (7.32) and (7.44), respectively. (Hint: prove that

|D(ω)|/|A(ω)| < 1 implies 1 + Re[D(ω)/A(ω)] > 0.)
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Chapter 8
Design of IIR Filters

Abstract IIR filters can give the same magnitude performance with fewer parame-
ters than FIR filters. However, they cannot have exact linear phase. Their design is
more complicated due to the difficulty in ensuring stability and to the non-convexity
of the optimization problems. In this short chapter, we give few guidelines for the
optimization of IIR filters, insisting on algorithms that use positive polynomials. For
1D filters, we discuss two design problems, using magnitude and approximate linear
phase as design criteria; in the latter case, stability domains based on positive realness
are an important tool. The method for approximate linear phase is then extended to
2D, for the case when passband and stopband are described by the positivity of some
polynomials.

8.1 Magnitude Design of IIR Filters

We consider IIR filters given by the transfer function

H(z) = B(z)

A(z)
=

∑m
i=0 bi z

−i

∑n
k=0 akz

−k
. (8.1)

The orders of the numerator (m) and denominator (n) can be different. Since the
multiplication with a constant of both the denominator and the numerator does not
change the filter, a normalization constraint is imposed, usually on the denominator.
In this section, the normalization constraint presets the energy of the denominator
and is

1

2π

∫ π

−π

|A(ω)|2dω = 1 ⇐⇒
n∑

k=0

a2k = 1. (8.2)

Similarly to the FIR case, presented in Chap. 5, we discuss here only the simplest
design, that of lowpass filters, with given passband [0, ωp] and stopband [ωs, π ].
In this section, we confine our discussion to minimax optimization. The reason is
that the stopband energy (5.2) is not a convex function of the coefficients of the
denominator; although it is possible (and interesting) to deal with such an objective,
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228 8 Design of IIR Filters

we start by solving the easier problem. For given bounds γp and γs , wewant to design
a filter (8.1) that respects the magnitude constraints shown in Fig. 5.1; there are no
constraints on the phase. That is, with given orders m and n, we want to solve the
feasibility problem

find ak, bi , k = 0 : n, i = 0 : m
s.t. |H(ω)| ≤ 1 + γp, ∀ω

|H(ω)| ≥ 1 − γp, ∀ω ∈ [0, ωp]
|H(ω)| ≤ γs, ∀ω ∈ [ωs, π ]∑n

k=0 a
2
k = 1

H(z) is stable

(8.3)

(Note that, similarly to the problems from Sect. 5.1, we have extended the first con-
straint from [0, ωs] to the whole range of frequencies.) In this form, the problem is
not convex. Since the problem is formulated only in terms of magnitude, it is natural
to work with the squared magnitudes

Ra(z) = A(z)A(z−1), Rb(z) = B(z)B(z−1), (8.4)

as variables. We note that the normalization constraint (8.2) is equivalent to the
simple condition ra0 = 1 on the free term of Ra(z). In terms of polynomials that
are nonnegative, globally or on some intervals, the problem (8.3) can be transformed
into

find Ra ∈ Rn[z], Rb ∈ Rm[z]
s.t. (1 + γp)

2Ra(ω) − Rb(ω) ≥ 0, ∀ω

Rb(ω) − (1 − γp)
2Ra(ω) ≥ 0, ∀ω ∈ [0, ωp]

γ 2
s Ra(ω) − Rb(ω) ≥ 0, ∀ω ∈ [ωs, π ]
Ra(ω) ≥ 0, Rb(ω) ≥ 0, ∀ω

ra0 = 1

(8.5)

This problem can be transformed easily into an SDP problem (similarly to the trans-
formation from (5.13) to (5.14) from the FIR case). For example, using the notation
(5.6), the second constraint from (8.5) can be written as the LMI

rbk − (1 − γp)
2rak = Lk,0,ωp (Q1, Q2), k = 0 : max(m, n),

where Q1, Q2 are positive semidefinite parameter matrices. After solving the SDP
form of (8.5), the numerator and denominator of H(z) are recovered from Rb(z) and
Ra(z), respectively, via spectral factorization.

Remark 8.1 There is no stability constraint present in (8.5). If, at the spectral factor-
ization of Ra(z), we compute a minimum phase denominator A(z), then we are sure
that H(z) has no poles outside the unit circle. However, there may be poles on the
unit circle or arbitrarily close to it. In this situation, there are two partial cures. The
first is old in signal processing and consists of changing the design data! For example,

http://dx.doi.org/10.1007/978-3-319-53688-0_5
http://dx.doi.org/10.1007/978-3-319-53688-0_5
http://dx.doi.org/10.1007/978-3-319-53688-0_5
http://dx.doi.org/10.1007/978-3-319-53688-0_5
http://dx.doi.org/10.1007/978-3-319-53688-0_5
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a larger transition band may lead to poles farther from the unit circle. The second
simple way to keep the poles away from the unit circle is to change the nonnegativity
condition Ra(ω) ≥ 0 into Ra(ω) ≥ ε, where ε is a given positive constant; thus, it
will result that R(z) is strictly positive and so it cannot have zeros on the unit circle.
Of course, this method cannot control how far from the unit circle are actually the
poles of H(z); anyway, a larger ε implies a smaller pole radius.

Remark 8.2 Since (8.5) is a feasibility problem, the resulting filter is not optimal in
a certain sense. However, it can be made so.

For example, it is possible to minimize the stopband error γs . For a given γs , the
feasibility problem (8.5) may have or not a solution. If it has, we can decrease γs and
try again. If it has not, we increase γs . Using a bisection procedure, the optimal γs
is found. A similar approach can lead to a filter of minimum order that satisfies the
magnitude constraints. Keeping, e.g., n fixed, we solve (8.5) for various values of m
until the minimum one is found. (Of course, we could try to minimize n with fixed
m, or even minimize the sum n +m, which gives the implementation complexity of
the IIR filters, since H(z) has n + m + 1 free coefficients.)

Example 8.3 As in Example 5.2, we take ωp = 0.2π , ωs = 0.25π , γp = 0.1, and
γs = 0.01. We choose a denominator degree n = 4; for simple bandpass structures,
as in our case, it is often indicated to choose n < m and a small value of n. We
solve (8.5) for several numerator orders, until finding the smallest one: m = 7. The
magnitude response of the obtained IIR filter is shown in Fig. 8.1. The maximum
magnitude of a pole is 0.9651, i.e., relatively near from the unit circle.

If we want poles with smaller radius, we have to increase the degree of the numer-
ator (assuming that we keep n = 4). For example, puttingm = 20, the filter resulting
from (8.5) has poles with maximal radius equal to 0.9548. Imposing the positivity
condition Ra(ω) ≥ ε, with ε = 0.08, leads to maximum pole magnitude of 0.9409.
(Larger values, e.g., ε = 0.09 lead to the infeasibility of (8.5).)

8.2 Approximate Linear-Phase Designs

Since IIRfilters cannot have exact linear phase,we explore the possibilities of approx-
imating the ideal frequency response (we stick to our basic lowpass filter)

Hid(ω) =
{
e− jτω, ω ∈ [0, ωp],
0, ω ∈ [ωs, π ], (8.6)

http://dx.doi.org/10.1007/978-3-319-53688-0_5
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Fig. 8.1 Frequency response of the filter designed in Example 8.3

where the group delay τ ∈ R is given. We have at least two options regarding the
optimization objective. The first is based on a p-norm error measure. To simplify
the numerical approach, we adopt a discretized form, on a set of frequencies ω�,
� = 1 : L , that cover the passband and stopband. We denote Hid(ω�) = H�, having
in mind that ideal responses other than (8.6) could be used. The objective is

Jp(A, B) = 1

L

L∑

�=1

λ�

∣∣∣∣
B(ω�)

A(ω�)
− H�

∣∣∣∣
p

, (8.7)

where λ� > 0 are weights.We are interested especially by the least squares objective,
when p = 2, and by the case of large p, when (8.7) may be used for approximating
the Chebyshev (minimax) objective

J∞(A, B) = max
�=1:L λ�,∞

∣∣∣∣
B(ω�)

A(ω�)
− H�

∣∣∣∣ . (8.8)

If λ� = λ
p
�,∞, then (8.7) is a good approximation of (8.8) if the value of p is larger

than, e.g., 50. Relatively low values of p, e.g., between 4 and 10, can serve to obtain
an approximate PCLS design.
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The second optimization option is the minimax problem

min
A∈Rn+[z],B∈Rm+[z],γs

γs

s.t.
∣∣∣ B(ω)

A(ω)
− e− jτω

∣∣∣ ≤ γp, ∀ω ∈ [0, ωp]∣∣∣ B(ω)

A(ω)

∣∣∣ ≤ γs, ∀ω ∈ [ωs, π ]

(8.9)

where γp is a given passband error bound. The solution of (8.9) is not necessarily a
minimizer for J∞(A, B) and vice versa. The coincidence (approximate only, due to
the grid optimization inherent in (8.8)) appears if the weights in (8.8) are equal to,
e.g., 1 in the passband and γp/γ

∗
s in the stopband, where γ ∗

s is the solution of (8.9).
The formulations above are non-convex. Obviously, we seek stable IIR filters,

which is a supplementary complication. In this section, we will present several algo-
rithms that give approximate solutions to the minimization of (8.7) or to (8.9). The
solutions are typically only local minima, but obtained with a good trade-off between
quality and complexity.

We do not seek PCLS solutions, inserting (8.7) into the objective of (8.9), since the
resulting problem would be too complicated. We will focus on the simpler problems,
trying to enhance the basic ideas in the treatment of non-convexity and of the stability
constraint.

Since we will not appeal to squared magnitudes, the normalization constraint for
(8.1) used in this section is the most natural one, i.e., a0 = 1.

8.2.1 Optimization with Fixed Denominator

If the denominator of the IIR filter (8.1) is given, the optimization difficulties disap-
pear almost completely. For the moment, we do not discuss how one could choose a
denominator A(z) and we just assume that it is known.

The p-norm error (8.7) becomes a convex function. In particular, for p = 2, the
objective is

J2(B) = 1

L

L∑

�=1

λ�

∣∣∣∣∣

m∑

k=0

αk�bk − H�

∣∣∣∣∣

2

= bTCb − 2 f T b + ct, (8.10)

where αk� = e− jkω�/A(ω�) and the positive definite matrix C and the vector f
can be computed easily. The minimization of (8.10) leads to the optimal vector of
coefficients b = C−1 f . We denote BLS(A, λ) this optimal numerator.
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For a nonnegative integer τ , the minimax problem (8.9) becomes

min
B∈Rm+[z],γs

γs

s.t. |B(ω) − e− jτωA(ω)| ≤ γp|A(ω)|, ∀ω ∈ [0, ωp]
|B(ω)| ≤ γs |A(ω)|, ∀ω ∈ [ωs, π ]

(8.11)

and can be solved exactly by appealing to the Bounded Real Lemma from Theo-
rem 4.26. Denoting again Ra(z) = A(z)A(z−1) and also m ′ = max(m, n + τ), the
problem (8.11) can be written in the SDP form

min
b,γ 2

s ,Q1,...,Q4

γ 2
s

γ 2
p rak = Lk,0,ωp (Q1, Q2), k = 0 : m ′

[
Q1 g
gT 1

]
� 0

gk = bk − ak+τ , k = 0 : m ′
γ 2
s rak = Lk,ωs ,π (Q3, Q4), k = 0 : max(m, n)[
Q3 b
bT 1

]
� 0

(8.12)

We have assumed that all coefficient vectors are padded with zeros whenever neces-
sary.

Example 8.4 We use the same specifications as in Example 5.3, i.e., n = 50, ωp =
0.2π , ωs = 0.25π and τ = 22. We choose a denominator A(z) of order two, with
zeros in 0.8e± j0.2π ; this is by nomeans an optimal denominator, but a pole angle near
the passband edge and a reasonably large pole radius are typical good choices. We
design two numerators as described above. The first is obtained via the minimization
of the least squares objective (8.10), on a grid of L = 200 equidistant frequencies
covering [0, π ]; the weights λ� are equal to 1 in the passband, 100 in the stopband
and zero in the transition band. The second numerator is obtained by solving the
minimax problem (8.12) for γp = 0.1. The frequency responses of the two filters
are shown in Fig. 8.2. It is interesting to note that the SDP problem (8.12) is prone to
numerical errors (at least with the algorithms used by SeDuMi); in our example, it
is visible that the frequency response is not exactly equiripple in the stopband. The
addition of only two poles gives a clearly better filter; the minimax FIR solution of
order 50 has a stopband error of −38.19dB, while in Fig. 8.2, the stopband error is
−41.07dB. (Compare also with the design from Example 5.3.)

If the group delay τ is not integer, then we cannot use the BRL and a formulation
like (8.12) is impossible. However, there are other algorithms,many of themdesigned
originally for FIR filters, that can be employed in the fixed denominator case.

The p-norm objective (8.7) can be minimized with any standard descent method
(e.g., Newton or conjugate gradient). Also, iterative reweighted least squares (IRLS)
[1] is a useful approach. This algorithm belongs to a family of methods in which
the weights of (8.10) are changed iteratively until some values λ̃� are obtained, such

http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_5
http://dx.doi.org/10.1007/978-3-319-53688-0_5
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Fig. 8.2 Frequency responses of the filters designed in Example 8.4: minimax (solid line) and least
squares (dashed line)

that BLS(A, λ̃) is the minimizer of (8.7) or (8.8). These methods work well, even for
large values of p, when the weights are uniform, i.e., λ� = 1; otherwise, especially
if the weights in the stopband are clearly larger than those in the passband, we have
encountered numerical problems. However, the Chebyshev objective (8.8) can be
minimized, apparently for arbitrary weight values, with another iterative reweighting
algorithm, that from [2].

For solving (8.11), we can recur to discretization. For a given ω, a constraint of
(8.11) has a SOC form, and so, on a discrete grid of frequencies, we end up with a
SOCP problem. The obtained solution is, of course, only an approximation.

We conclude that there are many methods for optimizing IIR filters with fixed
denominator. Barring the easy least squares case, none of the methods are perfect,
but a good approximation of the solution can be expected.

8.2.2 IIR Filter Design Using Convex Stability Domains

We treat now the general case where both the numerator and the denominator of
(8.1) are unknown. We study mainly the optimization of the least squares objective
J2(A, B) given by (8.7) for p = 2. The methods described in this section have the
general structure shown in Table8.1. The initialization is usually trivial: if a good
denominator is not known, we can take A(z) = 1. The best initial numerator is
BLS(A, λ), i.e., the optimal numerator for the given denominator.
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Table 8.1 Basic structure of IIR design method

Input: orders m, n of the filter (8.1); frequency points ω� and weights λ� of the least squares
objective J2(A, B) from (8.7); a tolerance ε.

0. Initialize A and B.

1. Improve the objective: find DA, DB such that

J2(A + DA, B + DB) < J2(A, B), A + DA ∈ DA. (8.13)

2. Put Ã ← A + DA, B̃ ← B + DB .

3. If the relative improvement is small, i.e., the stop condition
J2(A,B)−J2( Ã,B̃)

J2(A,B)
< ε, (8.14)

is satisfied, exit. Otherwise, put A ← Ã, B ← B̃ and go to 1.

The most important operation—common in nonlinear optimization—is to find a
descent step (DA, DB) that improves the objective, compared to its value for the
current IIR filter with numerator B(z) and denominator A(z). The distinguishing
feature of (8.13) is that the new denominator Ã = A + DA must belong to a convex
stability domain DA containing A(z). An obvious candidate for DA is the positive
realness domain described in Sect. 7.3. With a proper transformation of the least
squares objective, we will be able to express each step of the iterative method from
Table8.1 as an SDP problem. We present here two such transformations.

The Steiglitz–McBride (SM) method is based on the approximation

J2( Ã, B̃) = 1

L

L∑

�=1

λ�

∣∣∣∣∣
B̃(ω�)

Ã(ω�)
− H�

∣∣∣∣∣

2

≈ 1

L

L∑

�=1

λ�

|A(ω�)|2
∣∣∣B̃(ω�) − H� Ã(ω�)

∣∣∣
2
. (8.15)

The new objective is quadratic in the variables Ã and B̃ (or DA, DB), with weights
depending on the current denominator A.

The Gauss–Newton (GN)method is based on a first-order approximation of H(ω)

as a function of its coefficients.We denote d A, dB the vectors of coefficients of DA(z),
DB(z), respectively, and d = [dT

A dT
B]T the vector of optimization variables. Also,

we denote H(ω�, A, B) the value of (8.1) for z = e jω� and some denominator A(z)
and numerator B(z). The Gauss–Newton approximation is

H(ω�, Ã, B̃) ≈ H(ω�, A, B) + ∇T H(ω�, A, B) · d, (8.16)

where ∇H(ω�, A, B) is the gradient of H(ω�, A, B) with respect to the coefficients
of the filter, evaluated in the current values A, B. Using (8.16), the optimization
objective is approximated with

http://dx.doi.org/10.1007/978-3-319-53688-0_7
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J2( Ã, B̃) ≈ 1

L

L∑

�=1

λ�

∣∣∣∣∇T H(ω�, A, B) · d + B(ω�)

A(ω�)
− H�

∣∣∣∣
2

. (8.17)

This is also a quadratic form in d.
It results that both (8.15) and (8.17) have the form

J2( Ã, B̃) ≈ dTCd + f T d + ct, (8.18)

where C is a positive semidefinite matrix and f a vector, both known. Using the
positive realness stability domain from Sect. 7.3, an iteration of the method from
Table8.1 consists of solving the problem

min
d∈Rm+n+1, R∈Rn [z]

dTCd + f T d

s.t. r = (F + G)d A + 2Ga
R(ω) ≥ 0, ∀ω ∈ [−π, π ]

(8.19)

where thematrices F andG are defined in (7.39) and the vector r contains the distinct
coefficients of the nonnegative trigonometric polynomial R(z). The first constraint
from (8.19) is (7.38). Using the trace (2.6) or Gram-pair (2.94) parameterizations,
we transform (8.19) into an SQLP problem.

The solutions DA, DB can be used as descent steps (as in Table8.1, especially for
the Steiglitz–McBride method) or as descent directions (especially for the Gauss–
Newton method). In the latter case, we perform a unidimensional search to find the
optimal value α ∈ [0, 1] for which J2(A + αDA, B + αDB) is minimum and then
put Ã = A + αDA, B̃ = B + αDB in step 2 from Table8.1.

Remark 8.5 (Robust stability) As shown in Examples 7.21 and 7.22, the border of
the positive realness domain DA may coincide with that of the set of stable polyno-
mials. Consequently, the iterative algorithm described above may produce IIR filters
with poles arbitrarily close to the unit circle. In applications, a certain robustness
of stability is usually required. For example, we can impose the constraint that the
poles lie inside a circle of radius ρ < 1, denoted Cρ . We assume that, in a certain
iteration of the algorithm from Table8.1, the zeros of the current denominator A(z)
are in Cρ . We define Aρ(z) = A(ρz); then, the zeros of Aρ(z) are in C1, i.e., Aρ(z)
is stable. Denoting Γ = diag(ρ−1, ρ−2, . . . , ρ−n), we have aρ = Γ a, where aρ

is the vector of the coefficients of Aρ(z). We also denote Dρ

A(z) = DA(ρz) and
Ãρ(z) = Ã(ρz) = Aρ(z) + Dρ

A(z). To have the zeros of Ã(z) in Cρ , we impose the
stability conditions on Ãρ instead of Ã. The problem (8.19) becomes

min
d,R

dTCd + f T d

s.t. r = (Fρ + Gρ)Γ d A + 2GρΓ a
R(ω) ≥ 0, ∀ω ∈ [−π, π ]

(8.20)

where Fρ and Gρ are the matrices from (7.39) with Aρ replacing A.

http://dx.doi.org/10.1007/978-3-319-53688-0_7
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http://dx.doi.org/10.1007/978-3-319-53688-0_7
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Remark 8.6 An extensive study [3] showed that it is difficult to say that one of
the SM or GN methods is better than the other. However, using first SM and then
GN, initialized with the result of SM, gives significantly better results than a single
method. Moreover, refining the solution with a simple descent method (see problem
P 8.2) is useful in some cases. We name SMGNR this combined method.

Example 8.7 In Example 8.4, with m = 50 and n = 2, we have chosen the poles
heuristically.Weperformnow the full optimizationwith SMGNR, initialized trivially
with A(z) = 1. We set the maximal stability radius to ρ = 0.8. The objective
J2(A, B) is improved with about 9% with respect to the fixed denominator case
(1.078 · 10−5 with SMGNR versus 1.177 · 10−5 in Example 8.4). The optimized
poles are 0.8 · e± j0.2353π . We remark that the poles have maximal radius, which is
the intuitively correct result.

Example 8.8 Wekeep the samedesign data as before, but increasing the denominator
order to n = 4 and the maximum pole radius to ρ = 0.9. The filter designed with
SMGNR has the frequency response shown in Fig. 8.3 with dashed line. The value
of the least squares objective is 3.42 ·10−6, i.e., about 3 times smaller than for n = 2,
ρ = 0.8. The poles are 0.9 · e± j0.2187π and 0.865 · e± j0.2256π .

A quick minimax design can be obtained by applying the iterative reweighting
algorithm from [2], for the denominator designed with SMGNR. The equiripple
response from Fig. 8.3 (solid line) was obtained by minimizing the objective (8.8)
forweights equal to 1 in the passband and10 in the stopband. (As a result, themaximal
error is 0.0435 in the passband and 0.00433 = −47.26dB in the stopband.)
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Fig. 8.3 Frequency responses of the filters designed in Example 8.8: Least squares (dashed line)
and minimax (solid line)
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8.3 2D IIR Filter Design

Many of the ideas for IIR filter design can be generalized to the 2D case, where the
transfer function is (compare with (8.1))

H(z) = B(z)
A(z)

=
∑m

i=0 bi z
−i

∑n
k=0 ak z

−k
, (8.21)

where n = (n1, n2) etc. and a0 = 1. There are two main difficulties: the increased
complexity of the optimization problems and the more demanding treatment of sta-
bility. If not disregarded at all (by the hands-on approach: “design first, then check”),
the stability issue can be alleviated in several ways, with a loss of optimality. One
can express A(z) as a product of factors of degree (1, 1), for which the stability
conditions are linear; besides the suboptimality, this gives an optimization objec-
tive with more local minima. Also, we can work with a separable denominator
A(z1, z2) = A1(z1)A2(z2), which is a product of univariate polynomials; in this case,
the treatment of stability is identical to the 1Dcase.Although lacking generality, these
factorization approaches have the advantage that the (hardware or software) imple-
mentation of the 2D IIR filter is more efficient. So, a trade-off optimality/complexity
may become interesting.

In this section, we discuss only the general case of nonseparable denominator.
Since, as in the FIR case, the magnitude design is impossible in 2D due to the lack
of spectral factorization, we examine the approximate linear-phase design. Given
two frequency domains, Dp for passband and Ds for stopband, the ideal frequency
response is

Hid(ω1, ω2) =
{
e− j (τ1ω1+τ2ω2), ω ∈ Dp,

0, ω ∈ Ds,
(8.22)

where τ = (τ1, τ2) is the group delay. The objectives (8.7) and (8.8) generalize
immediately to 2D, using a set of frequencies ω�, � = 1 : L; typically, the set is an
L1 × L2 grid.

If the denominator is fixed, the least squares reduce to a positive semidefinite
quadratic expression, similar to (8.10), and so become an easy problem. Theminimax
optimization can be approached, as in the 1D case, via the Bounded Real Lemma;
see problem P 8.3.

The algorithm structure from Table8.1 is valid also for the complete optimiza-
tion of a 2D IIR filter. The convex stability domain used in the 2D case is the
sum-of-squares version of the positive realness domain, described by Theorem 7.18.
However, unlike the 1D case, only the Gauss–Newton method has given good results
in the author’s experiments [4] (while the greedy character of the Steiglitz–McBride
method appears to prevent the approach of “good” local minima). Using the GN
transformation (8.17), (8.18) and the usual notations (e.g., d A for the vector of coef-
ficients of DA(z)), the descent direction in the 2D GN method is found by solving
the SDP problem

http://dx.doi.org/10.1007/978-3-319-53688-0_7
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min
d, R

dTCd + f T d

s.t. r = (F + G)d A + 2Ga
R ∈ RS

n
n[z]

(8.23)

where the matrices F and G are given by (7.40) and (7.42), respectively. The descent
step is found by unidimensional search. The poles of the IIR filter can be forced to
have radius less than a given ρ, as shown in Remark 8.5.

The initialization of the GN algorithm becomes more important than in the 1D
case. Since the main danger seems to be a fast advance toward the border of the
(robust) stability region, a cure is the following. The GN algorithm is run first with a
reduced maximal pole radius, e.g., equal to 0.9ρ. The result is used as initialization
for a new run, this time with the nominal value ρ.

Example 8.9 We consider the ideal response

|Hid(ω1, ω2)| =
⎧
⎨

⎩
1, i f

√
ω2
1 + ω2

2 ≤ ωp,

0, i f
√

ω2
1 + ω2

2 ≥ ωs,
(8.24)

with ωp = 0.5π , ωs = 0.7π . The passband and stopband have circular border, as
shown in Fig. 8.4. The filter orders are m = (12, 12) and n = (4, 4). The group
delay is τ = (7, 7). The frequency grid is uniform and has 80× 80 points. (Actually
only half of them are sufficient, those covering a half plane.) The weights are 1 in
the passband and stopband and 0 in the transition band. The maximal pole radius is
ρ = 0.9. The GN algorithm produces the filter whose frequency response is shown
in Fig. 8.5. The value of the least squares objective is J2(A, B) = 1.63 · 10−5.

Fig. 8.4 Passband (black)
and stopband (gray) for the
filter designed in
Example 8.9
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Fig. 8.5 Frequency response of the filter designed in Example 8.9

8.4 Bibliographical and Historical Notes

There is a huge literature on IIR filter design, and so we select only few references
relevant to the contents of this chapter.

The magnitude optimization method based on positive polynomials, presented in
Sect. 8.1, has been proposed in [5]. Previous methods for magnitude optimization
were based mostly on modifications of the Remez exchange algorithm, with no
guarantee of convergence.

Ensuring stability has been performed by various means. A simple idea, in the
context of descent methods, is to reduce (e.g., to halve) the descent step if the new
denominator is unstable. The fixed (and restrictive) stability domain Re[ Ã(ω)] > 0
was used in [6, 7]. Stability domains built around the current denominator (in an
iterative process) may be based on Rouché’s criterion [8] or the positive realness
condition from Theorem 7.16 [3]. Other means to obtain stability are a barrier term
added to the objective [9] or a Lyapunov condition leading to an SDP formulation
[10]. A stability constrain based on the argument principle was proposed in [11].

Optimization methods for IIR filters based on standard descent methods and used
in the 1980s are usually not successful, unless a good initialization is available. The
methods reported in Sect. 8.2 are Steiglitz–McBride [7, 12], Gauss–Newton [8] and
their successive use [3]. The idea to relate the search direction with a stability domain
appeared in [8], in an implicit form, andwas conceptualized in [3].Other optimization
ideas include sequentially constrained least squares [13], SDP relaxation [14], and
second-order cone programming [15].

http://dx.doi.org/10.1007/978-3-319-53688-0_7
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Some methods for the optimization of IIR filters with fixed denominator are
reviewed in Sect. 8.2.1. That a minimax IIR filter, obtained as in Example 8.8 by
using the poles generated by the least squares optimization with SMGNR and the
iterative reweighting method from [2], can be near-optimal (and easy to design) has
been argued in [16].

There are relatively few ideas for treating stability in the design of 2D IIR filter
with nonseparable denominator. The sufficient condition Re[ Ã(ω] > 0 was used
in [17]. A kind of barrier based on the distance to a stable spectral factor has been
employed in [18]. The sum-of-squares stability domain from Theorem 7.18 has been
used in [4].

It is hard to argue which one of the separable or nonseparable denominator IIR
filters are better [4].However, there are examples [19]where nonseparable denomina-
tors can have better performance even if the ideal response is quadrantally symmetric.
(Filters with quadrantally symmetric frequency response have separable denomina-
tors [20].)

Besides those described in this chapter, there are other methods using convex
programming in each iteration, e.g., linear programming [17], SOCP [21], SDP [7]
or more general [8].

Problems

P 8.1 (Frequency response fitting with IIR model [5]) We have the power spectrum
measurements |F(ω�)|2 = R�, � = 1 : L , of a certain process F . We want to
approximate it with an IIR model (8.1). Using the notations (8.4), we can find H(z)
by solving the minimax problem

min
Ra∈Rn [z],Rb∈Rm [z]

max�=1:L
∣∣∣ Rb(ω�)

Ra(ω�)
− R�

∣∣∣
s.t. Ra(ω) ≥ 0, Rb(ω) ≥ 0, ∀ω ∈ [−π, π ]

ra0 = 1

Express this problem in SDP form.
Can we obtain an SDP problem if the optimization objective is quadratic, i.e.,

∑L
�=1

∣∣∣ Rb(ω�)

Ra(ω�)
− R�

∣∣∣
2
? Compare with the FIR case from problem P 5.6.

P 8.2 In the basic algorithm from Table8.1, a descent direction DA, DB can be
found using standard nonlinear optimization algorithms (like Newton or conjugate
gradient). Assuming that DA is known, a maximum descent step αm (in the sense
that A + αmDA is on the border of DA) can be found by solving the problem

αm = max
α

α

s.t. 1 + αRe DA(ω)

A(ω)
> 0, ∀ω ∈ [−π, π ]

Put this optimization problem in SDP form.

http://dx.doi.org/10.1007/978-3-319-53688-0_7
http://dx.doi.org/10.1007/978-3-319-53688-0_5
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P 8.3 If the denominator of the 2D IIR filter (8.21) is known, then the minimax
optimization of the filter can be formulated as

min
B,γs

γs

s.t. |B(ω) − e− j (τ1ω1+τ2ω2)A(ω)| ≤ γp|A(ω)|, ∀ω ∈ Dp

|B(ω)| ≤ γs |A(ω)|, ∀ω ∈ Ds

(8.25)

If the passband Dp and the stopband Ds are frequency domains defined as in (4.13),
by the positivity of some trigonometric polynomials, and the group delays τ1 and τ2
are integers, relax the problem (8.25) to an SDP form, using the BRL Theorem 4.26.
Compare this SDP problem with the 1D case (8.12).
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Chapter 9
Optimization with the Atomic Norm

Abstract Sparse representations have showngreat potential in achieving parsimony,
with applications in various signal processing topics. Typically, sparse representa-
tions are made with the help of an overcomplete basis, called also dictionary. The
case of infinite dictionaries depending on a few parameters with continuous values
has been tackled recently. The atomic norm is the mathematical notion that helps
finding sparse representations in this case. Of particular interest are the dictionaries
formed on the basis of trigonometric polynomials, because they are connected with
elementary signal processing problems such as identifying the frequencies of a sum
of sinusoids (called also line spectrum estimation) or finding the direction of arrival
(DOA) of radio or sound sources, using linear arrays of sensors. It turns out that opti-
mization problems with this instance of atomic norm are intimately connected with
the Bounded Real Lemma for trigonometric polynomials and can be reduced through
it to SDP problems. This chapter presents the basic atomic norm optimization prob-
lem and its solution via BRL, together with several extensions such as the matrix
or 2D case, solved by the appropriate BRL forms. Besides line spectrum and DOA
estimation, the important and fertile problem of super-resolution is discussed. The
presentation skips the underlying theory that guarantees the success of the atomic
norm approach, whose main hypothesis is that the frequencies of the sinusoids are
sufficiently well separated, and insists on the optimization problems that effectively
give the solution.

9.1 Sparse Representations

Traditionally, discrete-time signals are represented or analyzed with the help of
orthogonal bases, like those given by the Discrete Fourier, Discrete Cosine, Walsh–
Hadamard, or other transforms. Nonorthogonal bases, such as those given by some
wavelets transforms, have also found various uses. Departing from this trend, the
latest 20 years have seen an increased popularity of overcomplete bases or frames,
used especially in the context of sparse representations. Let A ∈ R

m×M a matrix
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244 9 Optimization with the Atomic Norm

with more columns than rows, i.e., M > m, which can be seen as a redundant basis
for Rm . Such a matrix is often called a dictionary and its columns ai , i = 1 : M ,
are called atoms; typically, all atoms have norm equal to 1. A signal x ∈ R

m has a
sparse representation if it can be expressed as the linear combination

x =
∑

i∈I
ci ai (9.1)

of a few atoms, where the index set I represents the support of the signal and |I| = s,
with s � M and s < m. An overcomplete dictionary offers many more possibilities
of sparse representations than a usual basis and, in particular, many more subspaces
of dimension s where the representations can lie. Many applications in, for example,
compression, denoising, and image processing have shown that such dictionaries
allow parsimonious representations and clear benefits with respect to traditional
transforms.

The basic problem in this context is to find the sparse representation (9.1) of a given
signal x (assuming that such a representation indeed exists). Even if s is known, this
is essentially an NP-hard problem, since all combinations of s atoms are candidates.
There are many heuristics for solving the problem, some having guaranteed success
depending on the properties of the dictionary. Obtaining the representation is more
likely if the atoms are well spread on all directions (the scalar product of two atoms
is small) and s is small.

A particularly successful idea (although one of themost computationally demand-
ing) is to solve the optimization problem

min
c∈RM

‖c‖1
s.t. Ac = x

(9.2)

Here, the �1 norm is defined by ‖c‖1 = ∑
i |ci |.

The problem (9.2) can be seen as a convex relaxation of the minimization of the �0
“norm” ‖c‖0, which is the number of nonzero elements of the vector c. (Note that this
is not a norm since it is not homogeneous.) Under certain conditions, the solution
of the convex (linear programming, in fact) problem (9.2) is indeed the sparsest
representation of x. Some variations of the problem, such as the well-known lasso,
allow the recovery of noisy representations.

The topic of this chapter is the extension of sparse representations to dictionaries
with an infinite number of atoms. In this case, instead of being the columns of amatrix
A, the atoms have a parametric form, depending on one or more real parameters.
So, the vector c from (9.2) would have infinite size, case in which the �1 norm is not
defined. A new tool is necessary, and this is the atomic norm, presented in the next
section.
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9.2 Atomic Norms

We replace the matrix dictionary A with a set of atoms A, also called dictionary.
This set may be finite, although the infinite case is the most interesting. We assume
thatA is centrally symmetric about the origin, i.e., a ∈ A implies −a ∈ A, and that
all atoms are extreme points of the convex hull ofA, i.e., no atom lies in the convex
hull of the other atoms.

Definition 9.1 The atomic norm associated with A is

‖x‖A = inf{t ≥ 0 | x ∈ t · conv(A)}, (9.3)

where conv(A) is the convex hull of A.

It can be proved that

‖x‖A = inf

{
∑

a∈A
ca | x =

∑

a∈A
caa, with ca ≥ 0,∀a ∈ A

}
. (9.4)

Indeed, for a short justification, consider z ∈ conv(A), but z /∈ A, and z on the
boundary of conv(A). By directly using the representation t z in (9.3), it results that
‖z‖A = t = 1. However, by the definition of conv(A), the vector z can be expressed
as the convex combination of some atoms, z = ∑

i ci ai ,
∑

i ci = 1. Then, the
triangle inequality gives ‖z‖A ≤ ∑

i ci‖ai‖A = 1, since ‖ai‖A = 1 by definition.
So, in a linear combination of vectors from conv(A), one can always replace a vector
that is not an atom with a linear combination of atoms without increasing the sum of
the coefficients.

The dual atomic norm is

‖h‖∗
A

�= sup
‖x‖A≤1

Re[xHh]. (9.5)

We note that the unit ball ‖x‖A ≤ 1 in the atomic norm is conv(A). Since the atoms
are extremal points of this unit ball, it follows that

‖h‖∗
A = sup

a∈A
Re[aHh]. (9.6)

There are several sets of atoms that can be useful in signal processing applications
and not only. A simple and not really relevant example is the �1 norm, which is the
atomic norm if the set A is made of the unit vectors (this is in fact the case of the
finite dictionary A = I); note that this interpretation is not helpful in the context of
problem (9.2), since it would mean that |x| = c; a signal is usually sparse in some
transform domain, not in the standard basis. Another example is that of the nuclear
norm in the context of low-rank matrices; the atoms are rank-1 matrices with unit
Frobenius norm. In the context of this book, the most interesting example, which
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will be discussed in detail in the remainder of this section, is that of atoms that are
extracted from the canonical basis for trigonometric polynomials, on the unit circle.

9.2.1 Canonical Polynomial Basis Atoms

Trigonometric polynomials are naturally connected with the set

A = {
a(ω, ϕ) = e jϕψ(ω) | ω, ϕ ∈ [−π, π ]} , (9.7)

where ψ(ω) = [1 ejω . . . ejnω], like in (2.1). This is clearly a parametric dictionary
since the atoms depend on two parameters that take continuous values. A sparse
linear combination of vectors from A is in fact a sum of sinusoids. Indeed, if

x =
∑

i

ci a(ωi , ϕi ), ci ≥ 0, (9.8)

is such a linear combination, then an element of the vector x has the expression

x� =
∑

i

cie
jϕiej�ωi (9.9)

and hence the signal is a sum of discrete-time sinusoids of frequencies ωi with
complex coefficients cie jϕi . Estimating the frequencies of the sinusoids, given a
number of noisymeasurements, is a common signal processing problem, often named
line spectrum estimation. Before discussing specific problems, let us study the atomic
norm in this case.

The dual norm is

‖h‖∗
A = sup

ω,ϕ

Re[hH a(ω, ϕ)] = sup
ω,ϕ

∣∣∣∣∣e
−jϕ

n∑

k=0

hke
−jkω

∣∣∣∣∣ = max|z|=1

∣∣∣∣∣

n∑

k=0

hkz
−k

∣∣∣∣∣ . (9.10)

Thefirst equality is (9.6), the second is obtained from the definition (9.7), and the third
is a simple conclusion. So, the dual norm is the maximum of a causal trigonometric
polynomial on the unit circle, i.e., the H∞ norm of the FIR systemwhose coefficients
are in the vector h, see (4.41). By dualizing the dual atomic norm and using the BRL
from Corollary 4.27, which holds with nonstrict inequality in the unidimensional
case, we can express the atomic norm as

‖x‖A = sup
‖h‖∗

A≤1
Re[xHh] = max

h,Q
Re[xHh]

s.t. δk = tr[Θk Q], k = 0 : n,[
Q h
hH 1

]

 0

(9.11)

http://dx.doi.org/10.1007/978-3-319-53688-0_2
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
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We have thus obtained an SDP formulation for computing the atomic norm. The
exact decomposition (9.8) can be then computed as shown by the following theorem.

Theorem 9.2 Let (9.8) be the linear combination of atoms for which the minimum
is attained in (9.4). The frequencies ωi from (9.8) are those for which |H(ωi )| = 1,
where H(z) is the causal trigonometric polynomial whose coefficients are given by
the vector h which is the solution of (9.11).

Proof Let O be the set of frequencies ω̃i for which |H(ω̃i )| = |a(ω̃i , ϕ)Hh| = 1
(the value of ϕ is arbitrary). If ω /∈ O, then |H(ω)| < 1. If h is the solution of (9.11),
then ‖x‖A = Re[xHh]. Noting that (9.8) means also ‖x‖A = ∑

i ci , it results that

‖x‖A = Re[xHh] =
∑

i

ci |a(ωi , ϕi )
Hh| =

∑

i

ci |H(ωi )| ≤
∑

i

ci .

The equality is attained only if ωi ∈ O.

So, the frequencies defining the optimal atoms from (9.8) are the extrema of
|H(ω)| and can be computed, for example, as the roots on the unit circle of the
symmetric polynomial R(z) = 1 − H∗(z−1)H(z); note that these roots are double,
since they are also extreme points. With the frequencies ωi available, computing the
coefficients from (9.8) can be trivially done by solving a least squares linear system
(having in principle an exact solution). Denoting s the number of frequencies, the
system is [

a(ω1, 0) . . . a(ωs, 0)
]
ĉ = x. (9.12)

Expressing the coefficients of the solution as ĉi = ciejϕi , with ci > 0, we completely
retrieve the information from (9.8).

We will see later when the representation (9.8) is necessary. For the moment, let
us give a simple example of computation.

Example 9.3 Let n = 31 and x = 1.5a(0.2π)−2a(0.3π)+2.5a(0.6π). The phase
ϕ is ignored here, but it is clear that the coefficients become positive if ϕ2 = π and
ϕ1 = ϕ3 = 0. By solving (9.11), we obtain the expected result ‖x‖A = 6, i.e., the
sum of the (positive) coefficients. The graph of |H(ω)| is shown in Fig. 9.1. It is
visible that the maximum value is 1 and it is attained in exactly three points, namely
the frequencies defining the atoms with which the signal has been created.

This example might suggest that the above method for computing the atomic
norm can recover any sparse linear combination of atoms. This is true only if the
minimum distance between two distinct frequencies is larger than a bound, as will be
later explained in Sect. 9.3.3. If the frequencies are not well separated, the program
(9.11) still gives the atomic norm, but the condition |H(ω)| = 1 will possibly give a
different set of frequencies, that corresponding to the optimal atoms. For instance, if
in Example 9.3 we change the last frequency from 0.6π into 0.32π , then the atomic
norm is 5.1718 (not 6 as we might hastily assume) and the optimal representation
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Fig. 9.1 Graph of |H(ω)| from Example 9.3. The vertical lines mark the true frequencies

(9.8) has 31 atoms. Since the degree of H(z) is n = 31, this is actually the maximum
number of atoms that can appear. So, in this case, the computation of the atomic
norm does not lead to the sparsest representation with the considered dictionary.

This result is natural: One cannot always recover a sparse representation by simply
finding (or, in a more general context, minimizing) the atomic norm. Finding the
sparsest representation is an NP-hard problem, and the minimization of the atomic
norm is only a well-founded heuristic, not an unconditionally guaranteed tool.

Before presenting applicative uses of the atomic norm, let us note that, since
(9.11) is an SDP problem, its dual has the same value; hence, the atomic norm can
be computed also with

‖x‖A = min
ζ,λ

1
2 (λ0 + ζ )

s.t.

[
Toep(λ0, . . . , λn) x

xH ζ

]

 0

(9.13)

The proof is presented in Sect. 9.5.2. In view of Theorem 2.14, the presence of a
Toeplitz matrix in the dual is no surprise. Relation (9.13) can be proved directly,
without the help of the dual, see [1].

9.2.2 Matrix Atoms

A generalization of the atomic set (9.7) to matrices is interesting when modeling
several sums of sinusoids with the same frequencies but with different phases. Let
us consider a set A with (n + 1) × � matrix atoms

http://dx.doi.org/10.1007/978-3-319-53688-0_2
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A(ω, b) = ψ(ω) · bH , ‖b‖ = 1. (9.14)

We can easily check that all atoms have the same 2-norm and no atom lies in the
convex hull of the others. So, the atomic norm can be defined as in (9.3). Similarly
to (9.10), the dual norm is

‖H‖∗
A = sup

ω,‖b‖=1
Re

{
tr[HH A(ω, b)]} = sup

ω,‖b‖=1

∣∣bH HHψ(ω)
∣∣

= max|z|=1
‖H(z)‖ = max

ω∈[−π,π] σmax[H(ω)] (9.15)

where (with an abuse of notation) H(z) = HHψ(z) is a causal polynomial with �×1
coefficients. So, again the BRL for trigonometric polynomials applies—this time in
the form of Theorem 4.32. Since the coefficients of the polynomial concatenated like
in (4.47) form a long vector, in view of Remark 4.33, it is better to work with the
transposed polynomial; in this case, the block column of coefficients (4.47) is exactly
the matrix H whose dual norm is sought. So, similar to (9.11), we can express the
atomic norm as

‖X‖A = sup
‖H‖∗

A≤1
Re

{
tr[XH H]} = max

H,Q
Re

{
tr[XH H]}

s.t. δk = tr[Θk Q], k = 0 : n,[
Q H
HH I�

]

 0

(9.16)

We proceed similarly to the scalar case. Let

X =
∑

i

ciψ(ωi ) · bHi , ci ≥ 0, ‖bi‖ = 1, (9.17)

be the linear combination of atoms for which the minimum is attained in (9.4).

Theorem 9.4 The frequencies ωi from (9.17) are those for which ‖H(ωi )‖ = 1,
where H(z) is the causal trigonometric polynomial whose coefficients are given by
the rows of the matrix H which is the solution of (9.16). Moreover, it results that
bi = H(ωi ).

Proof Let O be the set of frequencies ω̃i for which ‖H(ω̃i )‖2 = 1. If ω /∈ O, then
‖H(ω)‖ < 1. Reminding that (9.8) means also ‖X‖A = ∑

i ci , it results for the
optimal H that

‖X‖A = Re
{
tr[XH H]} =

∑

i

ciRe|bHi H(ωi )| ≤
∑

i

ci .

The equality is attained only if ωi ∈ O and bi = H(ωi ).

Writing explicitly the scalar polynomials, we denote H(z) = [H1(z) . . . H�(z)]T .
Computing the frequencies from O amounts to finding the zeros of the polynomial

http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
http://dx.doi.org/10.1007/978-3-319-53688-0_4
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R(z) = 1 − HH (z−1)H(z) = 1 −
�∑

k=1

H∗
k (z−1)Hk(z).

The degree of the polynomial is n. Once the frequencies are available, finding the
coefficients ci and the vectors bi from (9.17) is a least squares problem proposed to
the reader in P 9.2.

Example 9.5 We take now n = 15 and consider two signals that are sums of
sinusoids with the same frequencies, but with different coefficients. The first is
x1 = 1.5a(0.2π) − 2a(0.3π) + 2.5a(0.6π), like in Example 9.3. The second is
x2 = 2a(0.2π, 0.5π)+a(0.3π, 0.25π)−1.5a(0.6π, 1.8π).Wedenote X = [x1 x2].
By solving (9.16), we obtain ‖X‖A = 7.65, a value that can be explained if we
express X using atoms (9.14):

X = c1A(0.2π, b1) + c2A(0.3π, b2) + c3A(0.6π, b3), (9.18)

with ci > 0. By identifying the coefficients of the first atom with those of x1 and x2
for the first frequency

c1b
H
1 = [1.5 2ej0.5π ]

and taking into account that ‖b1‖ = 1, we get c1 = ‖[1.5 2ej0.5π ]‖, etc. The sum
c1+c2+c3 is then the atomic norm of X . (Again, wemust be aware that this happens
only if the frequencies defining X are well separated.)
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Fig. 9.2 Graph of ‖H(ω)‖ (solid line), |H1(ω)| (dashed line), and |H2(ω)| (dotted line), for Exam-
ple 9.5. The vertical lines mark the true frequencies
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The graph of ‖H(ω)‖ is shown in Fig. 9.2, together with those of |H1(ω)| and
|H2(ω)|, where H(ω) = [H1(ω) H2(ω)]T . The maximum is attained in the three
frequencies defining our signals.

9.3 The Atomic Norm at Work

The facts and examples from the previous section suggest that the atomic norm is a
good ingredient when sparse linear combinations of atoms are desired. This section
presents several applications featuring the atom set (9.7) or its matrix form with
atoms (9.14).

9.3.1 Line Spectral Estimation

The problem here is to recover a sum of s sinusoids from noisy measurements. The
model is thus

x̂ =
s∑

i=1

ci a(ωi , ϕi ) + v, (9.19)

where v is a vector whose elements are Gaussian noise of zero mean and unknown
variance. The number s of sinusoids is not known but is assumed to be small. Having
only the measurements vector x̂, we want to find the frequencies ωi . The name of
line spectrum is intuitive, since the spectrum of the clean signal is concentrated in
exactly s frequencies. (An image of the spectrum, without figuring the amplitudes,
which should be equal to ci , is given by the vertical lines from Fig. 9.1).

Since the atomic norm induces sparsity, we can try to find the line spectrum by
solving the optimization problem

min
x

1
2‖x − x̂‖22 + γ ‖x‖A (9.20)

That is, we aim to find a signal that is near from the measured one and is a sparse
sum of sinusoids. Here, γ > 0 is a trade-off parameter that roughly quantifies the
relative importance of sparsity and distance from the measured signal.

Using the expression (9.11) of the atomic norm, the problem (9.20) is equivalent to

min
x,h

1
2‖x − x̂‖22 − Re[xHh]

s.t. ‖h‖∗
A ≤ γ

= min
x,h,Q

1
2‖x − x̂‖22 − Re[xHh]

s.t. γ 2δk = tr[Θk Q], k = 0 : n,[
Q h
hH 1

]

 0

(9.21)
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Thefirst form is obtained by incorporating themultiplicationwithγ in the polynomial
defined by h; hence, the norm bound is changed from 1 into γ . The second form
is obtained as usual with the BRL for trigonometric polynomials. At optimality,
the value of Re[xHh] is maximum for the optimal x, under the constraint ‖h‖∗

A ≤
γ . So, like in the atomic norm computation (9.11), the frequencies where |H(ω)|
attains its maximum value, i.e., now γ , are the optimal ones. We can thus retrieve
(approximations of) the s frequencies from (9.19). The (approximated) coefficients
ci can be found by solving (9.12), using the optimal x.

Example 9.6 We take again n = 31 and x = 1.5a(0.2π)−2a(0.3π)+2.5a(0.6π).
The noise v in (9.19) has variance σ 2 = 0.01. With γ = 4, the graph of |H(ω)|
obtained by solving (9.21) is shown in Fig. 9.3. The frequencies where |H(ω)| = γ

are very near from the true frequencies. Of course, typically it is necessary to solve
the problem for several values of γ to have the confirmation of a plausible solution.
If γ is too small the solution is usually not sparse. If γ is too large, it is possible
that the computed frequencies are farther away from the true ones or even that the
number of frequencies is smaller than the true s.

The solution presented above is satisfactory for n relatively small, at most a few
hundreds. Otherwise, solving the SDP problem (9.21) takes too much time (if it can
be solved); also, finding the maxima of a trigonometric polynomial of such order
may become ill-conditioned and time-consuming. A lower complexity alternative
using the matrix atomic norm is as follows.

Instead of using a single long signal (9.19), we split it into � segments (that may
be overlapped or not)

Frequency
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Fig. 9.3 Graph of |H(ω)| for line spectrum estimation, Example 9.6
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x̂k =
s∑

i=1

ci a(ωi , ϕik) + vk, k = 1 : �. (9.22)

The coefficients and the frequencies are the same, but the phases are different for for
each segment. We then join the segments in the matrix

X̂ = [x̂1 x̂2 . . . x̂�]. (9.23)

To keep the same notation as in the previous section, the size of this matrix is
(n + 1) × �.

Using the matrix atomic norm defined by the atoms (9.14), we attempt finding
the line spectrum by solving

min
X

1
2‖X − X̂‖2F + γ ‖X‖A (9.24)

Using the expression (9.16) of the atomic norm and reasoning like for (9.21), the
problem (9.24) is equivalent to

min
X,H

1
2‖X − X̂‖2F − Re

{
tr[XH H]}

s.t. ‖H‖∗
A ≤ γ

= min
X,H,Q

1
2‖X − X̂‖2F − Re

{
tr[XH H]}

s.t. γ 2δk = tr[Θk Q], k = 0 : n,[
Q H
HH 1

]

 0

(9.25)
Note that the size of the matrix Q is that of a segment; hence, for signals of the same
length, it is much cheaper to solve the matrix version (9.25) than the scalar version
(9.21). For a proper choice of γ , the graph of ‖H(ω)‖ is similar to that from Fig. 9.3.

9.3.2 Direction of Arrival Estimation

A basic problem in radar is to estimate the direction of a source using an uniform
linear array (ULA), as shown in Fig. 9.4. The array has n + 1 identical sensors; the
distance between two successive sensors is d. The source emits a sinusoidal signal
of known frequency f and is far from the ULA. Hence, the lines of propagation
between the source and the sensors can be considered parallel and they make an
angle θ with the direction of the array. The dashed line marks a wave front: all its
points are at equal distance from the source. The velocity of the waves is v and is
known. The inter-sensor distance d is smaller than half the wavelength. Numbering
the sensors from one end to the other and taking sensor 0 (the leftmost in the figure)
as reference, the delay with which a wave hits sensor k is

τk = kd cos θ

v
. (9.26)
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Fig. 9.4 Uniform linear array and impinging waves (from a single source)

A snapshot x is a vector of measurements of the signals received by the sensors at
the same time t . At sensor k, the signal is

xk = ce j f (t−τk ) = ce j f te− jkω, with ω = f d cos θ

v
, (9.27)

+ where c is a coefficient that depends on the power of the source. Assuming now
that there are s sources that emit simultaneously from different angles θi , i = 1 : s,
the measurement model is exactly (9.19), that is a sum of sinusoids with frequencies

ωi = f d cos θi

v
. (9.28)

The direction of arrival (DOA) problem consists of estimating the angles θi given
the noisy snapshot x̂. Obviously, the solution from the previous section applies ad
litteram. After solving (9.21) and estimating the frequencies ωi , the DOAs result as

cos θi = vωi

f d
. (9.29)

Of course, a more reliable estimation is used if several snapshots are used. In this
case, the model is (9.22), and the SDP problem (9.25) is solved and again the DOAs
result from (9.29).

Several variations in the DOA theme can be made, among which is the problem
of DOA estimation with nonuniform arrays, in particular with ULA with missing
sensors, see P 9.5.

9.3.3 Super-Resolution

Viewed as a general concept, super-resolution is the recovery of high frequency
details of a signal from low-frequency information and comes in different forms
in medical imaging, spectroscopy, microscopy, and astronomy, among others. We
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present here an abstract formulation that is basically equivalent in outcome with the
atomic norm problem treated previously.

The primary signal is a sum of spikes

ξ(t) =
∑

i

ciδti (t), (9.30)

where δτ is a Dirac impulse located at time τ and the spikes temporal positions ti are
in the interval [0,1]. The coefficients ci may be complex. The length of the interval
is taken equal to 1 only for convenience; similar results hold for any finite interval.
The Fourier coefficients of the signal are

xk =
∫ 1

0
e−j2πktξ(t)dt =

∑

i

cie
−j2πkti , k ∈ Z. (9.31)

One can immediately see that the Fourier coefficients are obtained by a linear com-
bination of atoms from (9.7) similar with (9.8), with ωi = 2π ti . The coefficients
ci can be easily made positive by the introduction of a phase factor, but the focus
here is different. Assume that we have the Fourier coefficients corresponding to low
frequencies, i.e., |k| ≤ fc, where fc, the cutting frequency, is an integer. Hence, the
signal x from (9.31) has length n + 1 = 2 fc + 1.

The super-resolution problem consists of retrieving ξ , which has a significant
high-frequency content, from only the above Fourier coefficients corresponding to
low frequencies. The solution is related to the total variation norm. Considering
partitions

⋃
l Ii of [0,1] in a countable number of disjoint measurable subsets Il

(e.g., intervals, in our case), the total variation of a complex measure ν on [0,1] is

‖ν‖TV = sup
∞∑

l=1

|ν(Il)|, (9.32)

where the supremum is taken over all possible partitions. For the function ξ defined
in (9.30), the total variation norm is in fact ‖ξ‖TV = ∑

i |ci |. This norm is clearly a
generalization of the �1-norm from the discrete case to the real line.

So, by analogy with (9.2), the optimization problem whose solution is, under
certain conditions detailed below, the sum of spikes, has the simple form

min
ξ̃

‖ξ̃‖TV
s.t. F ξ̃ = x

(9.33)

where the map F collects the 2 fc + 1 low-frequency Fourier coefficients of the
signal ξ̃ (t). One can see that problem (9.33) is equivalent to minimizing the atomic
norm of x using the atoms (9.7). Hence, by solving (9.11) and then finding the roots
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of the trigonometric polynomial associated with the solution, we can retrieve the
frequencies ωi and thus the temporal positions ti of the spikes from (9.30).

Beyond the similarity with the atomic norm approach, the line of thought based
on total variation has lead to an important result regarding the recovery of the sum
of spikes.

Theorem 9.7 ([2]) If the distance |ti − t j | between any two temporal positions
ti �= t j is larger than 2/ fc and fc ≥ 128, then the unique solution of (9.33) is (9.30).

Besides the technical condition fc ≥ 128, this theorem says that if the temporal
positions ti , or the frequenciesωi , are not too close, then they can be exactly recovered
by solving anSDPproblemandfinding the roots of a polynomial. This is a remarkable
result, different from all previous methods. Note, however, that it stands for noiseless
signals that have the exact form (9.30).

9.4 Generalizations to 2D

The extension of the results from Sect. 9.2.1 to the multivariate case is relatively
straightforward. For the ease of exposition, we confine the discussion to 2D, which
is representative for the differences with respect to the univariate case.

The 2D generalization of the set (9.7) is made of atoms

a(ω, ϕ) = ejϕψ(ω2) ⊗ ψ(ω1) = ejϕψ(ω), (9.34)

whereω = (ω1, ω2) ∈ [−π, π ]2 is the 2D frequency, ϕ is the (unique) phase variable
and ψ(ω) is defined in (3.24).

Similarly to (9.10), the dual norm is

‖h‖∗
A = sup

ω,ϕ

Re[hH a(ω, ϕ)] = max
ω,ϕ

∣∣hHψ(ω)
∣∣ = max|z|=1

|H(z)| , (9.35)

where H(z) is the causal polynomial (3.27). So, again, we are led to the BRL from
Corollary 4.27. This time, unfortunately, there is no equivalence between the SDP
formulation and the polynomial boundedness. However, for practical purposes, we
can approximate the atomic norm with

‖x‖A = sup
‖h‖∗

A≤1
Re[xHh] � max

h,Q
Re[xHh]

s.t. δk = tr[Θ k Q], k ∈ H,[
Q h
hH 1

]

 0

(9.36)

where H is a halfspace. Of course, the approximation can be better (from below)
for a higher relaxation degree, which means a larger matrix Q and hence higher
complexity.

http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_3
http://dx.doi.org/10.1007/978-3-319-53688-0_4
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All the other developments from Sect. 9.2.1 apply as follows: After solving (9.36),
the frequencies ωi that define the signal

x =
∑

i

ci a(ωi , ϕi ), ci ≥ 0, (9.37)

are found by solving the polynomial equation |H(ω)| = 1. This is somewhat more
difficult than in the univariate case, but still feasible. The coefficients ci are again
computed via a least squares problem.

The approximation induced by the relaxation can be checked following the general
rules from Sect. 3.5.3, which take here a much simpler form. The atomic norm of
the signal, as computed above, is

∑
i ci . If this sum is equal to the value of the SDP

problem (9.36), then we have obtained an optimality certificate. (Note however that
another conditionmust bemet: the least squares should have an exact solution, which
means that the computed signal (9.37) is identical with the original signal. Again,
all these procedures work under the condition that the frequencies ωi are sufficiently
far one from another.)

Example 9.8 Let n1 = n2 = 7, so the signal has 64 samples. We take the signal

x = 1.5a(0.2π, 0.7π) − 2a(0.3π,−0.5π) + 2.5a(0.6π, 0.1π),

Fig. 9.5 Graph of |H(ω)| from Example 9.8. The small vertical lines mark the true frequencies

http://dx.doi.org/10.1007/978-3-319-53688-0_3
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where only the two frequencies are used to define an atom (phase is not specified).
By solving (9.36), we obtain the expected result ‖x‖A = 6. The graph of |H(ω)| is
shown in Fig. 9.5, where the value 1 is attained for the correct frequencies.

9.5 Details and Other Facts

9.5.1 Sums of Real Exponentials

It is tempting to extend the results presented in this chapter to real or hybrid polynomi-
als. Let us consider the former case. The atoms have the formψ(t) = [1 t t2 . . . tn]T .
A condition like t ∈ [T1, T2] is imposed for having only atoms with bounded norm;
however, the atoms have not equal norm. Consider the problem of recovering a signal

x =
s∑

i=1

ciψ(ti ), (9.38)

where ti > 0 are given values. For example, such a signal is a sum of real fading
exponentials sampled on a uniform grid of time instants starting from zero; if τ is
the grid step and λi > 0 is the exponent of the i–the exponential, then ti = e−λi τ ,
T1 = 0, T2 = 1.

Using the set A of atoms ψ(t), with t ∈ [T1, T2], and proceeding like in (9.10),
the dual norm is

‖ p‖∗
A = sup

t∈[T1,T2]
pTψ(t) = max

t∈[T1,T2]

∣∣∣∣∣

n∑

k=0

pkt
k

∣∣∣∣∣ . (9.39)

So, the dual norm is the maximum of a polynomial on an interval. We denote P(t)
the polynomial with coefficients pk , k = 0 : n. Going back to the atomic norm by
dualization of the dual norm, we obtain, similarly to (9.11)

‖x‖A = max
‖ p‖∗

A≤1
xT p = max

|P(t)|≤1, t∈[T1,T2]
xT p (9.40)

The constraint of the rightmost optimization problem can be expressed as a BRL,
whose explicit form is left to the reader. For inspiration, see problem P 4.8; the
BRL for hybrid polynomials can be immediately written for a real polynomial that
is positive on an interval. The solution of the resulting SDP problem allows forming
the polynomial P(t) and the condition |P(t)| = 1 gives the values ti from (9.38).

Although apparently straightforward, the extension to real polynomials has a
major drawback: it is very ill-conditioned, as real polynomials tend to be. Some
numerical experiments have shown that one can recover the original atoms, i.e., the
values ti , only for signals whose length is at most 20–30 in the noiseless case. In

http://dx.doi.org/10.1007/978-3-319-53688-0_4
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the noisy case, the computed ti may be quite far from the true values. Hence, the
practical appeal of this approach seems very limited.

9.5.2 Proof of (9.13)

The Lagrangian function associated with (9.11) is the real part of (the arguments are
obvious, hence ignored)

L = −xHh −
n∑

k=0

λk (δk − tr[Θk Q]) − tr

[
Z u
uH 1

] [
Q h
hH 1

]

= −(x + 2u)Hh − λ0 + tr

[(
n∑

k=0

λkΘk − Z

)
Q

]
− ζ

To obtain the Lagrange dual function, we minimize the above with respect to the
primal variables. The minimum is finite only if 2u = −x and

Z =
n∑

k=0

λkΘk .

After imposing

[
Z u
uH 1

]

 0 and scaling with 2, the maximization of the dual

function is in fact (9.13).

9.6 Bibliographical and Historical Notes

There is a large body of literature on sparse representations. One can start reading
with [3].

The atomic norm was introduced in [4] as a convex optimization framework
for a series of problems involving sparse representations, low-rank matrices and
tensors, orthogonal matrices, and permutation matrices. It was employed in [1] for
compressed sensing off the grid, using an infinite dictionary with atoms built from
the canonical trigonometric polynomial basis; the same paper contains a probabilistic
estimation of the number of measurements that are necessary to recover a sum of
sines, with a frequency separation condition similar to that from Theorem 9.7. These
ideas were applied for line spectral estimation with atomic norm denoising [5]. The
extension to the matrix case, more precisely to spectral estimation with multiple
measurement vectors, was given in [6].
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The ideas regarding super-resolution come from [2], where the problem of finding
the full spectrum from low-frequency information was solved for a sum of spikes.
This line of research was continued for noisy signals in [7].

The application of the atomic norm approach for estimating the direction of arrival
was proposed in [8]. Sparse representations techniques for DOAwere initiated in [9]
long before, but using a finite dictionary obtained by uniformly sampling the infinite
one.

Extensions to the multidimensional case were given in [10, 11], with the problem
of estimating a two-dimensional spectrum as immediate target. In [12], similar tools
were used for an extension on the sphere.

Several other developments have been lately proposed. Among them is super-
resolution with prior knowledge [13], for example, using weighted atomic normwith
different weights on different frequency intervals. See problem P 9.3. The extension
of line spectrum estimation with arbitrary (not equidistant) time samples is discussed
in [14]. The dual problem is expressedwith prolate spheroidal wave functions instead
of polynomials. In [15], algorithms for estimating a sum of complex exponentials
convolved with unknown waveforms are given.

There is also intensive research on algorithms not based on SDP (and hence
not using the BRL for trigonometric polynomials), in order to overcome the high
complexity for large problems. Among the main results are a greedy algorithm for
atomic norm regularization [16] or the appeal to nonconvex measures instead of
the atomic norm [17, 18], leading to optimization problems solved through iterative
methods, for example, based on reweighted atomic norm minimization.

The developments for real polynomials from Sect. 9.5.1 are not present in the
literature, most likely due to their poor numerical behavior.

Problems

P 9.1 Let x ∈ C
n be a sequence and f ∈ C

n the coefficients of its discrete Fourier
transform. Show that ‖x‖A ≤ ∑

i | fi |, where A is the set (9.7).

P 9.2 Assume that we know the matrix X and the frequencies ωi from the optimal
atomic decomposition (9.17). Propose a method to compute the coefficients ci > 0
and the vectors bi , ‖bi‖ = 1. Hint: Denote b̃i = ci bi and form a linear least squares
problem with b̃i as unknowns.

P 9.3 (Weighted atomic norm.) We modify the atoms from (9.7) by introducing
weights. So, an atom is now a(ω, ϕ) = μ(ω)ejϕψ(ω), whereμ(ω) > 0 is a piecewise
constant function. One can interpret weights as prior information that the frequencies
appearing in the decomposition of a signal are more likely in an interval (where the
weights hence have a low value) than in another (where the weights are higher).
Having the frequency split [−π, π ] = ⋃m

i=1 Ji , where Ji are intervals, and the
weighting function μ(ω) = di , for ω ∈ Ji , show that the atomic norm can be
expressed as
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‖x‖A = max
h

Re[xHh]
s.t. |H(ω)| ≤ di , ∀ω ∈ Ji , i = 1 : m

where H(z) is the causal trigonometric polynomial whose coefficients vector is
h. Use the BRL on intervals to express this relation as an SDP problem. Show
how to compute the frequencies that characterize the atoms appearing in the atomic
decomposition of x.

P 9.4 (Explicit 2D atoms.) The elements of a matrix X are a superposition of s
sinusoids, i.e., are given by

xk1,k2 =
s∑

i=1

cie
j(k1ω1i+k2ω2i).

Show that

X =
s∑

i=1

ciψ(ω1i )ψ(ω2i )
T = [ψ(ω11) . . . ψ(ω1s)] · diag(c1, . . . , cs) · [ψ(ω21) . . . ψ(ω2s)]T .

The first equality shows the explicit construction of a 2D signal as a linear combi-
nation of a few matrix atoms. Denoting x = vec(X), show that the above relations
are equivalent with (9.37).

P 9.5 (ULA with missing sensors.) A particular array for DOA estimation is that
obtained from a long ULA by removing some of the sensors; with proper choice of
the removed sensors positions, the resulting array is only slightly inferior to the full
ULA, but obviously cheaper. Translating the DOA problem with such an array to the
sum of sinusoids (9.19), the interpretation is that some samples of the signal x̂ are
missing. Show how to modify the SDP problem (9.21) such that the DOAs (or the
frequencies) can be estimated.

P 9.6 Generalize the 2D line spectrum estimation problem to the matrix atomic
norm case and find the SDP problem that is similar to (9.36).
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Appendix A: Semidefinite Programming

We present here some basic facts about semidefinite programming (SDP) and the
more general semidefinite-quadratic-linear programming (SQLP). For more infor-
mation, we recommend [1–4].

An SDP problem can be expressed in two standard forms. The inequality form is

max
y∈Rm

bT y

s.t. Z = A0 − ∑m
i=1 yi Ai � 0

(A.1)

where the matrices Ai ∈ R
n×n , i = 0 : m, are symmetric. The objective is linear and

the constraint is a linear matrix inequality (LMI), so the optimization problem (A.1)
is convex. The equality form is

min
X∈Rn×n

tr[A0X]
s.t. tr[AiX] = bi , i = 1 : m

X � 0

(A.2)

This is the problem dual to (A.1). If the Slater condition holds (there exists y ∈ R
m

such that Z � 0, i.e., the set described by the LMI constraint of (A.1) has an interior
point), then the solutions of (A.1) and (A.2) exist and satisfy the equalities bT y =
tr[A0X] (i.e., the optimal values of the two problems are equal) and ZX = 0 (called
complementarity condition).

The problem (A.1) may have several LMI constraints Zk � 0, case in which
the dual problem (A.2) has the same number of matrix variables Xk . (This situation
corresponds to a single block diagonal LMI andmatrix variable X .) SDP problems in
equality form are often formulated with nonsymmetric constant matrices Ai , since
tr[AiX] = tr[(Ai + AT

i )/2 · X], i.e., their symmetrization is trivial. The variable
vector y may be complex, case in which the objective of (A.1) is Re[bT y] and the
positive semidefinite matrix variable X of (A.2) is also complex (and Hermitian).

Interior point algorithms solve typically both problems (A.1) and (A.2) (and are
called primal-dual algorithms). The algorithms are iterative, and the complexity of an
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iteration is O(n2m2); the number of iterations can be regarded as a constant (depends
lightly on m and n). The algorithms offer a certificate of optimality—the value of
the gap between the computed values of (A.1) and (A.2).

Besides standard LMIs, SQLP problems contain other types of convex constraints
that are particular cases ofLMIsbut canbe treatedmore efficiently.AnSQLPproblem
in inequality form is

max
y∈Rm

bT y

s.t. A0 − ∑m
i=1 yi Ai � 0

‖d − DT y‖2 ≤ γ − eT y
f − FT y ≥ 0

(A.3)

The first constraint is a standard LMI. The second constraint has a second-order cone
(SOC) form, with D ∈ R

m×p, d ∈ R
p, e ∈ R

m , γ ∈ R. The third constraint is linear,
with f ∈ R

q , F ∈ R
m×q ; the vector inequality is understood elementwise. The dual

of (A.3) has the equality form

min
X,x,ξ,x̃

tr[A0X] + dT x + γ ξ + f T x̃

s.t.

⎡

⎢⎣
tr[A1X]

...

tr[AmX]

⎤

⎥⎦ + Dx + eξ + Fx̃ = b

X � 0, ‖x‖2 ≤ ξ, x̃ ≥ 0

(A.4)

The variables are X ∈ R
n×n , x ∈ R

p, ξ ∈ R, x̃ ∈ R
q . The SOC dual variables are

related by ‖x‖2 ≤ ξ . This is equivalent with the LMI

[
ξ I x
xT ξ

]
� 0,

but it is much more efficient to use algorithms specific to SOC than to treat the SOC
constraint as an LMI. The linear elementwise nonnegative variable is x̃.

SQLP has properties similar to those of SDP (equal values at optimality if Slater’s
condition holds, complementarity relation, etc.). The complexity of solving an SQLP
problem is mainly dictated by the SDP part.

There are a number of free libraries for solving SQLP (or only SDP) problems,
among which we can cite SeDuMi [5] (used exclusively for the examples from this
book), SDPT3 [6] and SDPA [7]. A friendlier and more general environment for
convex optimization is provided by CVX [8].
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Appendix B: Spectral Factorization

Given a nonnegative trigonometric polynomial R(z) defined as in (1.1), a spectral
factorization algorithm computes the causal trigonometric polynomial H(z) such
that (1.11) holds. The existence of a solution is ensured by Theorem 1.1. We present
here several algorithms and comment on their properties. We consider implicitly
polynomials with real coefficients; for many algorithms, the extension to complex
coefficients is immediate. More reading on this topic can be found, e.g., in [1–3] and
the articles cited as references for each method given below.

B.1 Root Finding

As discussed in Remark 1.2, a spectral factor can be found by computing the roots
of R(z), or rather the 2n roots of R̃(z) = zn R(z). Several root finding algorithms are
used and compared in [4, 5]. While the convergence speed and the complexity of
root finding methods may be different, there are more important issues occurring in
spectral factorization.

It is often assumed that the zeros on the unit circle have exactly doublemultiplicity
(which is a fair assumption in practice). These are single roots of R̃′(z) = d H̃(z)/dz
and thus can be computed more accurately. The identification of zeros on the unit
circle is made by associating two zeros of R̃(z) with a zero of R̃′(z). This procedure
works well if the double zeros are well separated.

Even more delicate is the formation of H(z) from the zeros inside the unit circle.
An heuristic called Leja ordering specifies the order in which the elementary factors
z − zk have to be multiplied, depending on the values of the roots zk . Even so, the
process of computing the coefficients of a polynomial from its zeros is prone to
instability.

We conclude by not recommending this algorithm, unless the polynomial is short,
and thus, the results are safe. However, this algorithm has the advantage of choosing
easily the roots for the spectral factors and so it becomes interesting, e.g., when
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approximately linear-phase spectral factors are sought; these factors have roots both
inside and outside the unit circle.

B.2 Newton–Raphson Algorithm

The relation R(z) = H(z)H(z−1) can be seen as the system of quadratic equations

rk = hTΘkh, k = 0 : n. (B.1)

(See relations (1.17), (2.27).)
The Newton–Raphson method for solving a nonlinear system f (x) = 0, with

x, f (x) ∈ R
m is based on the iteration

xi+1 = xi − f ′(x)−1 f (x), (B.2)

where i is the iteration number and f ′(x) is the Jacobian matrix of the function f ,
evaluated in x.

In the case of the system (B.1), the nonlinear function is

f (h) =

⎡

⎢⎢⎣

...

hTΘkh − rk
...

⎤

⎥⎥⎦

and its Jacobian is

f ′(h) =

⎡

⎢⎢⎢⎢⎣

h0 h1 . . . hn

h1 h2 . .
.
0

... . .
.
. .
.
0

hn 0 . . . 0

⎤

⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎣

h0 h1 . . . hn

0 h0
. . . hn−1

...
. . .

. . .
...

0 0 . . . h0

⎤

⎥⎥⎥⎥⎦
. (B.3)

It results that the main task in an iteration (B.2) is to solve a linear system of
equations. Moreover, due to the Toeplitz-plus-Hankel form of the matrix (B.3), fast
algorithms are possible. Finally, an appealing trait of the method is that initializa-
tion with h0 = [1 0 . . . 0]T , i.e., with a trivial polynomial of degree 1, makes the
Newton–Raphson iteration converge to the minimum-phase spectral factor. (Actu-
ally, this always happens when the initial polynomial is minimum-phase itself.)More
details on this method can be found in [5–7] and the references therein.

The method is relatively fast, but the convergence is slower when there are zeros
on the unit circle. The matrix (B.3) tends to be ill-conditioned as the iterative process
advances.
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B.3 Factorization of Banded Toeplitz Matrices

In Sect. 1.3, we have argued that the banded Toeplitz matrices Rm defined in (1.28)
are positive semidefinite. If they are positive definite, which means that R(z) has
no zeros on the unit circle, then there exist a Cholesky factorization Rm = LmLH

m ,
where Lm is lower triangular. Moreover, the matrix Lm is also banded. It can be
proved that, asm → ∞, the nonzero elements on the last row of Lm tend to be equal
to [hn . . . h0], i.e., to the coefficients of the spectral factor H(z). This is the base of
the Bauer spectral factorization method [8]. Faster algorithms, taking advantage of
the Toeplitz structure, are given, e.g., in [9].

B.4 Hilbert Transform Method

For a minimum-phase system, in our case the spectral factor H(z), the magnitude of
the frequency response determines completely the response. The phase is given by

argH(ω) = −H{log |H(ω)|}, (B.4)

where H is the Hilbert transform, i.e., the linear system whose frequency response
is

H(θ) =

⎧
⎪⎨

⎪⎩

− j, for θ ∈ (0, π),

0, for θ = 0, π,

j, for θ = (−π, 0).

(B.5)

The relation (B.4) can be implemented using several FFT transforms, along the
following steps.

1. Compute the log magnitude

x� = log |H(ω�)| = 1
2 log R(ω�), (B.6)

on a grid of N � n points ω� = 2π�/N , � = 0 : N − 1. The FFT can be used for
an efficient calculation of R(ω�). The number of points for the FFT can be taken as
a power of two, the smallest larger than, e.g., 20n.

2. Compute the Hilbert transform (B.4), using FFT twice. Let

Xi = FFT (x�), i = 0 : N − 1,

be the discrete Fourier transform of the sequence x�. In the transform domain, the
application of the Hilbert transform (B.5) is equivalent to the operations

http://dx.doi.org/10.1007/978-3-319-53688-0_1
http://dx.doi.org/10.1007/978-3-319-53688-0_1
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Xi =

⎧
⎪⎨

⎪⎩

− j Xi , for i = 1 : N/2 − 1,

0, for i = 0, N/2,

j Xi , for i = N/2 + 1 : N − 1.

Going back to the original domain by y� = I FFT (Xi ), we obtain the phase response
on the frequency grid.

3. The frequency response of the spectral factor is H(ω�) = ex�− j y� .
4. The coefficients of H(z) result by applying IFFT (and retaining only the first

n + 1 coefficients; the others should be approximately zero). If N is a multiple of
n + 1, then an FFT of order n + 1 can be used.

The idea of this method is attributed to Kolmogorov.

B.5 Polynomials with Matrix Coefficients

Many spectral factorization methods generalize to polynomials with matrix coeffi-
cients by simply replacing scalars with matrices. For the methods from this appen-
dix, this is true for the Cholesky factorization and the Newton–Raphson methods
(although for the latter we are not aware of any confirming experiments). Also, the
two algorithms from Sect. 2.6 generalize directly (see [10] and [11]). For example,
when the coefficients are κ × κ matrices, the problem (2.45) must be replaced with

max
Q

trQ00

s.t. TR[Θκk Q] = Rk, k = 0 : n
Q � 0

(B.7)

where Q00 is the κ × κ upper left block of the matrix variable Q and Rk are the
coefficients of the polynomial to be factorized. The solution Q	 of (B.7) has rank
κ and thus can be written as (through, e.g., eigenvalue decomposition or Cholesky
factorization with pivoting)

Q	 =
⎡

⎢⎣
HH

0
...

HH
n

⎤

⎥⎦
[
H0 . . . Hn

]
,

where Hk are the coefficients of the desired spectral factor.
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Symbols
�(z), 80
ψn(z), canonical polynomial basis, 24
ψn(z), canonical multivariate polynomial

basis, 78
Θk , elementary Toeplitz matrix, 25
ϒk , Hankel elementary matrix, 42

A
Aliasing transfer function, 180, 195
Archimedean (Quadratic module), 125
Artin, 77
Atomic norm, 245

dual, 245
matrix, 248
multidimensional, 256
weighted, 260

Autocorrelation
nearest, 6, 30
sequence, 5

B
BLS(A, λ), 231
Bilinear transform, 18
Bisection, 229
Block trace operator, 107
Bounded Real Lemma (BRL), 134, 155

Gram pair, 139
Gram set, 135
hybrid polynomial, 146
matrix coefficients, 138

C
Channel equalization, 165

Chebyshev polynomial, 2, 14
Compaction filter, 182
Complementarity condition, 263
Complexity, 31
Cone, 6

dual, 33
CP[z], set of nonnegative trigonometric

polynomials with complex coeffi-
cients, 3

CP[z], set of positive trigonometric polyno-
mials with complex coefficients, 3

CVX, 60, 114
C[z], set of trigonometric polynomials, with

complex coefficients, 1
C+[z], set of causal trigonometric polyno-

mials with complex coefficients, 1
Cn[z], set of trigonometric polynomials of

degree n, with complex coefficients,
1

D
DCT matrix, 58
DeCarlo–Strintzis test, 206
Deconvolution, 165
Degree, 1

complete set, 90
minimal set, 97
total, 72

DFT matrix, 57
Dictionary, 244
Dilation equation, 184
Direction of arrival, 254
Dirichlet kernel, 54
Displacement rank, 59
Distortion transfer function, 180, 194
Duality gap, 207
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D, unit disk, 213

E
Eigenvalue maximization, 29

F
Filterbank (FB), 179

GDFT modulated, 193
near-orthogonal, 196
orthogonal, 181
oversampled, 193
perfect reconstruction, 179
signal-adapted, 182
symmetric, 188

FIR filter, 149
multidimensional, 157

Fornasini-Marchesini model, 173, 208
Fourier transform, 2
Frequency domain, 127, 157

complementary, 132
union, 132

G
Gauss-Newton (GN), 234
Generalized trace parameterization, 80
Goursat transform, 17
Gram matrix, 24, 41, 79, 94, 96, 107

most positive, 28, 43, 81, 109
sparse basis, 90

Gram pair, 49, 101, 115
Gram set, 129
Group delay, 154
G(R), set of Gram matrices associated with

polynomial R(z), 24, 79

H
Halfspace, 72
Handelman, 125
Hankel elementary matrix, 42
Hilbert transform, 269
Hybrid polynomial, 119

I
IIR filter, 227

multidimensional, 237
normalization, 227, 231
pole radius, 235

Index mapping, 115

J
Jacobi, 125
Jacobi-Prestel, 124

K
Kalman–Yakubovich–Popov (KYP) lemma,

35, 65

L
Lagrange multiplier, 34
Line spectrum, 251
Linear matrix inequality (LMI), 263
�1 norm, 244
Lukács, 20

M
MA estimation, 6
MA process, 5, 8
Minimum-phase spectral factor, 5, 38
Mixed H2/H∞ optimization, 167
Motzkin’s polynomial, 77
Multiresolution analysis, 184

N
Newton polytope, 97
Newton-Raphson, 268
Nyquist filter, 181

O
Optimality certificate, 87

P
PCLS filter design, 151
Peak constrained least squares (PCLS), 149
Perfect reconstruction (PR), 179
Periodic filter, 168
p-norm error, 230
Poisson kernel, 223
Polynomial (multivariate)

canonical basis, 78, 107
causal, 72
factorable, 74
matrix coefficients, 106
minimum smallest eigenvalue, 110
minimum value, 84, 93, 95, 106, 114
minimum value, constrained, 126, 130
positive orthant, 73
sparse, 89
total degree, 72
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trigonometric, 71
Polynomial (univariate)

canonical basis, 24
causal, 1
degree, 1
Hermitian, 1
minimum value, 30, 43, 47, 51, 55
nonnegative, 3
nonnegative on an interval, 11
real, 2
Schur, 213
symmetric, 1
trigonometric, 1

Polyphase decomposition, 169
Polytope, 170
Pos3Poly, 60, 113
Positivstellensatz, 140

trigonometric polynomials, 141, 210
Power complementarity, 182
Preordering, 124
Product filter, 181
Prototype filter, 193
Putinar, 125

Q
Quadratic module, 125

R
Regularity constraints, 184
Relaxation, 83, 95
Reznick, 78
Riccati equation, 39, 40
Riesz-Fejér, 3
Robinson’s energy delay property, 38
Rouché’s criterion, 224
Rouché stability domain, 221
RP[z], set of nonnegative trigonometric

polynomials with real coefficients, 3
RP[z], set of positive trigonometric polyno-

mials with real coefficients, 3
RS

m
n [z], set of sum-of-squares of degree n,

with factors of degree m, 83
RSI [z], set of positive trigonometric poly-

nomials with real coefficients and
monomials with exponents from set
I, 92

R[t], set of real polynomials, 2
Rn[t], set of real polynomials of degree n, 2
R[z], set of trigonometric polynomials, with

real coefficients, 1
R+[z], set of causal trigonometric polyno-

mials with real coefficients, 1

Rn[z], set of trigonometric polynomials of
degree n, with real coefficients, 1

S
Scaling function, 184
Schmüdgen, 124
Schur polynomial, 213
Second-Order Cone (SOC), 264
SeDuMi, 60
Selection matrix, 90, 96
Semialgebraic set, 123
Semidefinite Programming (SDP), 263
Semidefinite-Quadratic-Linear Program-

ming (SQLP), 264
Semi-infinite optimization, 7
Slater condition, 263
SMGNR, 236
Sparse polynomial, 89, 96

minimum value, 93
relaxation, 92

Sparse representation, 244
Spectral factorization, 3, 38, 40, 267
Spectral mask, 151
Stability

DeCarlo–Strintzis test, 206
Positivstellensatz test, 210
structural, 205

Stability radius, 221
State-space representation, 35
Steiglitz-McBride (SM), 234
Stengle, 140
Stopband energy, 150
Sum of sinusoids, 246, 251
Sum of spikes, 255
Sum-of-squares, 7, 74

decomposition, 27
relaxation, 83, 95, 98

Support, 97
Symmetric spectral factor, 189
System

H2-norm, 166
H∞-norm, 136, 166
positive real, 35

T
Toeplitz

banded matrices, 8
elementary matrix, 25
Gram matrix, 27
positive definite matrices, 34
quadratic optimization, 33

Toeplitz+Hankel, 51
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Total variation, 255
Trace parameterization, 25
T, unit circle, 2

U
Unit d-circle, 73
Unit circle, 2

V
Vandermonde identity, 186

W
Wavelet function, 184

Z
Zero padding, 84
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